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B: Time’s Arrow
Let’s look at how entropy changes in some simple and familiar systems.

Simple systems 
In order to focus on entropy, it helps to consider isolated systems in which all the other extensive variables are fixed by virtue of
rigid, impermeable and insulating walls. To then interrogate spontaneous processes in the simplest way, we divide the isolated
system into just two subsystems, A and B, each initially at internal equilibrium and consider what happens when the boundary
between them is changed to allow transfers.

The convenience of an isolated system is that we know that extensive quantities can only be redistributed between the subsystems:

What about ? Rearranging the fundamental equation for the energy (Equation 12) gives

Given Equations  and , we see that the sign of each of the terms in  is opposite that of the corresponding term in  no
matter how the energy and volume are redistributed. However, we are interested in the overall change in entropy

Familiar systems 
The idea is to choose scenarios with which we have ample experience. The figure below shows two such cases. In one, the
subsystems are initially at different temperatures, to make use of our experience that energy always moves from hotter to cooler
objects. In the other, the subsystems are initially at different pressures, to make use of our experience that a region of lower
pressure always gives up volume to a region of higher pressure. The following analyses show that both spontaneous processes are
accompanied by an increase in the total entropy of the composite system, with one subsystem gaining more entropy than the other
loses until overall equilibrium is achieved. The reader can verify that a similar analysis obtains the same result for a scenario in
which the subsystems differ in the electrochemical potential for a constituent.

Two simple and familiar systems. Both are isolated (with their rigid, impermeable and insulating boundaries represented by double
lines according to convention). Both have two subsystems that are initially at internal equilibrium. In one case, the two subsystems
differ in temperature and the other in pressure.

The ΔT system 
Suppose that the barrier between subsystems is rigid and impermeable (so ), but becomes thermally conducting (so 

). Then
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and, specifically, with respect to time, 

We know from experience that

if , then  and so 

if , i.e.,  then  and so 

if , i.e.,  then  and so 

In other words, our experience for this system says that

until the system reaches equilibrium where  and .

Notice that, according to Equation ,

and

Therefore,  has a maximum value at equilibrium  and no distribution of  between  and  has a higher .

The ΔP system 

Suppose that the barrier between subsystems is a perfect thermal conductor (so that ) and becomes free to move (so 
). Then

and specifically, with respect to time

We know from experience that

if , then  and so 

if , then  and so 

if , then  and so 

In other words, our experience for this system says that

dS = [( )−( )]d
1

TA

1

TB
EA (B6)

t

= [( )−( )]
dS

dt

1

TA

1

TB

dEA

dt
(B7)

=TA TB ( ) = 0
dEA

dt
( ) = 0
dS

dt

<TA TB [( )−( )] > 0
1

TA

1

TB

( ) > 0
dEA

dt
( ) > 0
dS

dt

>TA TB [( )−( )] < 0
1

TA

1

TB
( ) < 0
dEA

dt
( ) > 0
dS

dt

> 0
dS

dt
(B8)

= , (d /dt) = 0TA TB EA (dS/dt) = 0
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until system reaches equilibrium where  and .

Notice that, according to Equation ,

and

Therefore,  has a maximum value at equilibrium  and no distribution of  between A and B has a higher .

Generalizing from the above examples, with no known counter-examples 
In an isolated system,  increases until it attains its maximum possible value with respect to all available "degrees of freedom".

Notice that, while the entropy of the entire isolated system increases, the entropy of a subsystem can decrease. However, a local
decrease in entropy always occurs at the expense of a greater increase in entropy elsewhere. This is especially relevant to biological
growth and differentiation.

Notice also that, while the total energy in the system remains constant, one subsystem is initially capable of doing work on the
other and finally is not. In other words, in the course of redistributing the energy, its availability to do work has been degraded.

This page titled B: Time’s Arrow is shared under a CC BY-NC-ND 4.0 license and was authored, remixed, and/or curated by Judith Herzfeld.
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