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3: The Microscopic Response

Statistics for large numbers 

In the previous section, we established that, among the extensive properties of macroscopic systems, there is one, called the entropy,
that is not macroscopically observable. Notice that although the development did not depend in any way on any features of the
microscopic structure of matter, it did seem to reflect hidden or averaged degrees of freedom within the system. Of course, we now
live in a time when the microscopically discrete nature of matter has been deeply characterized and is taken completely for granted.
It is clear that very many sets of the positions and velocities of the microscopic constituents of a system can correspond to a single
macroscopic state of that system. Considering the very large number of particles involved ( , constructing relationships
between the numerous microstates in the microscopic picture and the macroscopic properties is inevitably a statistical enterprise.

Averages for energy and volume 
Given the complexity, it helps to start with the energy and the volume, extensive state functions that we have more intuition about.
Let’s, once again, consider a system A, a system B, and the composite system AB comprising A and B as independent subsystems.
It seems reasonable to suppose that the macroscopically observed energy and volume,  and , of each of these systems will be the
average over those of the distinguishable microstates of each system,

where  is the probability that the system  is in microstate  with energy  and volume ,  is the probability that the system B
is in microstate  with energy  and volume , and  is the probability that the system AB is in microstate  (i.e., with subsystem 

 in state  and subsystem B in state ). As always, energies and volumes are additive,

and, since the two subsystems are independent of one another,

It follows that

And, since probabilities sum to 1 (by definition),

In other words, our interpretation of the macroscopic values of extensive variables as averages of microscopic ones is self-
consistent. This can be generalized to the other macroscopic extensive variables,  and presumably .

Averages for entropy 
An analogous microscopic accounting for  would posit a feature  of microstates, with the averages
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The question is what  should be, given that it must have a value for each microstate that is distinct from those directly related to
the macroscopic observables. The remaining possibility is that it is a function of the microstate’s probability. But what sort of
function would that be?

As the above analysis for  and  shows, for  to be extensive, i.e.,

it is necessary that

which corresponds to the well-known property of the logarithm,

Since this relationship also holds when multiplied by any constant, we can now posit that

where  is a yet-to-be-determined constant, and find that, by substitution of Eq.25 into Eq. 21, a proper accounting of the
macroscopic entropy  can be had from the averages

or, using angle bracket notation for averaging,

Notice that the values of  and  are always positive if  is positive, because the probabilities are all . Notice also that 
has the peculiar property that it is zero for both  and for , about which more below.

In some simple cases, all the microstates have the same probability. If there are  of them

and

This is the expression that appears on Ludwig Boltzmann’s grave stone.

The one remaining unknown is the value of the constant , named after Boltzmann. Once again, we need consistency with
macroscopic observations. As shown in Appendix G, this dictates that
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where  is Avogadro’s constant. In other words, Boltzmann’s constant  and the gas constant  are the same constant in different
units (per particle in  and per mole of particles in ).

Information, order and spread 

What more can we say about the entropy from the microscopic vantage point?

As we have seen,  is always positive.

The lower limit, , corresponds to the special situation of certainty that the system exists in just one microstate, in other words
that  (so ) for one microstate and  (so ) for all others.

On the other hand,  has its maximum value in the case of maximum uncertainty where the system is equally likely to be in any
microstate, in other words where  is the same for all the microstates. This is the result  for a system with  equally
probably states (i.e., Equation  ).

In general, increasing  is associated with decreasing microscopic information or order, and can be imagined as a measure of the
"spread" of the system’s visits among microstates.

The probabilities 

So far, we have seen that understanding the behavior of a system at the microscopic level amounts to enumerating all distinct
microstates and determining their probabilities. However, where do the probabilities come from? Specifically, how do the properties
of microstates figure into their probabilities of occurring?

Once again, agreement with macroscopic observations is essential. In particular, the probabilities have to comport with the
extremum condition that describes equilibrium for each type of system. It is also necessary that the probabilities are normalized
(i.e., sum to 1). This sort of constrained optimization is most readily accomplished using the Method of Lagrange Multipliers with
the following results for the most common types of systems.

In an isolated system (i.e., with rigid, insulating and impermeable walls, such that  and  are fixed), equilibrium
corresponds to the maximum of

and the corresponding probabilities are all equal to

where

normalizes the probabilities (i.e., assures that they sum to 1). Notice that this result followed entirely from the necessary
relationship to macroscopic observations. You may come across some presentations of statistical mechanics that avoid this reference
to macroscopic observations by citing the equal probabilities of states of the same content, volume and energy as a postulate dubbed
"The Principle of Equal A Priori Probabilities". However, it is far more satisfying to derive this result than to assume it.

For an NVT system (i.e., with thermally conducting, but still rigid and impermeable walls), equilibrium corresponds to the
minimum of

and the corresponding probabilities are equal to
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where

normalizes the probabilities. In other words, in this non-isolated system, the temperature imposed by the surroundings influences
the probability distribution and it does so in a fashion that satisfies the multiplication rule for a system composed of two
independent subsystems (see Equation ). The probability distribution in Equation  is known as "the Boltzmann distribution"
and it is the basis for the Maxwell-Boltzmann distribution of molecular speeds in a gas.

For an NPT system (i.e., with thermally conducting and flexible, but still impermeable walls), equilibrium corresponds to the
minimum of

and the corresponding probabilities are equal to

where

normalizes the probabilities. In other words, in this non-isolated system, the probability distribution is influenced by the temperature
and pressure imposed by the surroundings, in a fashion that satisfies the multiplication rule for a composite system comprising two
independent subsystems (see Equation ).

The partition function 

The symbol  comes from the German "Zustandssumme" for "sum over states". Of course, the sum varies with the values of the
applied conditions and, in this respect,  is known as the partition function. As for any function of multiple variables, we can take
partial derivatives and we find that those with respect to intensive variables provide averages of practical significance. In particular,
for the NVT system

and for the NPT system

and

From these results, other state functions can be obtained by using the relationships in Appendices E and F.

This page titled 3: The Microscopic Response is shared under a CC BY-NC-ND 4.0 license and was authored, remixed, and/or curated by Judith
Herzfeld.
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