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3.2.1: Molecular Point Groups

Introduction

In group theory, molecules or other objects can be organized into point groups based on the type and number of symmetry
operations they possess. Every molecule in a point group will have all of the same symmetry operations as any other molecule in
that same point group. The most common, and chemically relevant point groups are described below.

The Low Symmetry Point Groups

C1 Point Group

Overall, we divide point groups into three major categories: High symmetry point groups, low symmetry point groups, dihedral
point groups, and rotational point groups. Let us begin with the low symmetry point groups. As the name says, these point groups
only have few symmetry elements and operations. The point group C; is the point group with the lowest symmetry. Molecules that
belong to this point group only have the identity as symmetry element.
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Figure 3.2.1.1 C, point group of bromochlorofluromethane (Attribution: symotter.org/gallery)

An example is the bromochlorofluromethane molecule (Figure 3.2.1.1). It has no symmetry element except the identity (E). The
name C; comes from the symmetry element C;. A C; operation is the same as the identity.

Cs Point Group

The point group Cg has a mirror plane in a addition to the identity. An example is the 1,2-bromochloroethene molecule (Figure

3.2.1.9.
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Figure
3.2.1.2

C
point group of 1,
2-bromochloroethene

(Attribution:
symotter.org/gallery

)

This is a planar molecule and the mirror plane is within the plane of the molecule. This mirror plane does not move any atoms
when the reflection operation is carried out, nonetheless it exists because any point of the molecule above the mirror plane will be
found below the mirror plane after the execution of the operation. Vice versa, any point below the mirror plane will be above the
mirror plane. This mirror plane does not have a vertical or horizontal mirror plane designation because no proper rotational axes
exist.
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C; Point Group

The point group C; has the inversion as the only symmetry element besides the identity. The point group C; is sometimes also called
S, because an S, improper rotation-reflection is the same as an inversion. An example is the 1,2-dibromo 1,2-dichloro ethane
(Figure 3.2.1.3).
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Figure 3.2.1.3 The C; point group: 1,2-dibromo-1,2-dichloroethane (Attribution: symotter.org/gallery)
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This molecule looks quite symmetric, but it has inversion center in the middle of the carbon-carbon bond as the only symmetry
element. Upon execution of the inversion operation, the two carbons swap up their positions, and so do the two bromine, the two
chorine, and the two hydrogen atoms.

The High Symmetry Point Groups

The symmetry elements of the high symmetry point groups can be more easily understood when the properties of platonic solids
are understood first. Platonic solids are polyhedra made of regular polygons. In a platonic solid all faces, edges, and vertices
(corners) are symmetry-equivalent. We will see that this is a property that can be used to understand the symmetry elements in high
symmetry point groups. There are only five possibilities to make platonic solids from regular polygons (Figure 3.2.1.4).

l'jFile:Plalonic Solids Transparent.svg

Figure 3.2.1.4 The platonic solids (Attribution: Drummyfish [CCO0] https://commons.wikimedia.org/wiki/EF...ransparent.svg

The first possibility is to construct a tetrahedron from four regular triangles. The second platonic solid is the octahedron made of
eight regular triangles. The third possibility is the icosahedron made of twenty triangles. In addition, six squares can be connected
to form a cube, and twelve pentagons can be connected to form a dodecahedron. There are no possibilities to connect other regular
polygons like hexagons to make a platonic solid.

The T4 Point Group

The tetrahedron, as well as tetrahedral molecules and anions such as CHy and BF4- belong to the high symmetry point group Tq
(Note that only tetrahedral molecules where all four outer atoms/groups are the same will be in the T4 point group). Let us find the
symmetry elements and symmetry operations that belong to the point group Tg. First, we should not forget the identity operation, E.
Next, it is useful to look for the principal axes.

=
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Figure 3.2.1.5 The Cj axes in a tetrahedron (Attribution: symotter.org/gallery)

The tetrahedron has four principal C3 axes (Figure 3.2.1.5). It is a property of the high-symmetry point groups that they have more
than one principal axis. The C3 axes go through the vertices of the tetrahedron. Because each Cj3 axis goes through one vertex, there
are four vertices, and we know that in a platonic solid all vertices are symmetry-equivalent, we can understand that there are four
C3 axes. How many unique C3 operations are associated with these axes? After three rotations around 120° we reach the identity.
Therefore C3°=E, and we only need to consider the C3' and the C3? rotation about 120 and 240° respectively. Because there are
four Cjs axes, there are four C3' and four C3? operations and eight C3 operations overall. In addition to the C3 axes there are C, axes
(Figure 3.2.1.6).
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Figure 3.2.1.6 The C; axes in a tetrahedron belonging to the point group T4 (Attribution: symotter.org/gallery)
You can see that a C, axis goes through two opposite edges in the tetrahedron. Because a tetrahedron has six edges, and each C,

axis go through two edges there are 6/2=3 C, axes. There is only one C, symmetry operation per C, axis because we produce the
identity already after two rotations. Therefore there are three C,' operations overall.

Figure 3.2.1.7 The S, axes in a tetrahedron (Attribution: symotter.org/gallery)

In addition, the T4 point group has S, improper rotation reflections. Like the C, axes, they pass through the middle of two opposite
edges. This also means that they are superimposing the C, axes. Because there are six edges, and two S4 axes per edge there are
6/2=3 S, axes (Figure 3.2.1.7). How many operations are associated with these S4 axes? The order of the axes are even, and
therefore we need four S, operations to produce the identity. The S4> operation is the same as a Cy' operation because reflecting
two times is equivalent to not reflecting at all, and rotating two times by 90° is the same as rotating about 180°. Therefore overall,
only S4! and S, operations are unique operations. S4*> and S4* can be expressed by the simpler operations C,' and E respectively.
Because there are 3 S, axes, there are three S4! and three S;3 operations. Overall there are six S4 operations.

Figure 3.2.1.8 The mirror planes and C; axes in a tetrahedron belonging to the point group T4 (Attribution: symotter.org/gallery)

There are also mirror planes (Figure 3.2.1.8. The planes contain a single edge of the tetrahedron, thereby bisecting the tetrahedron.
There a six edges in a tetrahedron, and therefore there are 6/1=6 mirror planes.These planes are dihedral planes because each plane
contains a Cy principal axis and is bisects the angle between two C, axes. Overall, there are three C, axes and three C, operations.
There is one reflection operation per mirror plane because reflecting two times produces the identity. Therefore, there are six oy
reflection operations.

X Symmetry Operations in the T4 Point Group

Every molecule or object in the T, point group has the following symmetry operations:

e E,8C3,3Cy 6Sy and 6 oq
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The Octahedral Point Group Oy,

Another high symmetry point group is the point group Oy. Both the octahedron as well as the cube belong to this point group
despite their very different shape Figure 3.2.1.9 Because they belong to the same point group they must have the same symmetry
elements and operations. There are many octahedrally shaped molecules, such as the SFg.

¢ 0
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SF, cubane

Figure 3.2.1.9: SFg and cubane with cubic and octahedral shape, respectively, belong to the point group Oy (Attribution:
symotter.org/gallery)
Molecules with cubic shapes are far less common, because a cubic shape often leads to significant strain in the molecule. An
example is cubane CgHg. Let us determine the symmetry elements and operations for the point group Oy, using the example of the
octahedron. If we used the cube, we would get exactly the same results.

There are three C, principal axes in the octahedron. They go through two opposite vertices of the octahedron (Figure 3.2.1.10.
There are three C, axes because an octahedron has six vertices which are all symmetry-equivalent because the octahedron is a
platonic solid.
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Figure 3.2.1.10: The C4 and C, axes in the octahedral point group Oy (Attribution:
symotter.org/gallery)

We can see that there are also C; axes where the C4 axes run. This is because rotating two times around 90° is the same as rotating
around 180°. What are the symmetry operations associated with these symmetry elements? Rotating four times around 90° using
the C4 axes produces the identity. So we have to consider the operations C4l, C42, C42 and C4*. How many of these are unique? (o
is the same as the identity, so it is not unique, In addition a C4? is identical to a Cy!, and thus C4? is also not unique, and can be
expressed by the simpler operation C,'. That leaves the C4! and the C,4> as the only unique symmetry operations. Because we have
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three Cy4 axes, there are 2x3=6 C,4 operations, in detail there are 3C,4' and three C4> operations. In addition, there are the three C,'
operations belonging the the three C, axes.

Figure 3.2.1.11: The Cj axes in the octahedral point group Oy (Attribution:
symotter.org/gallery)

In addition, there are four C; axes (Figure 3.2.1.11). They are going through the center of two opposite triangular faces of the
octahedron.You see above a single C; axis, and on the right hand side all four of these axes. How can we understand that there are
four axes? An octahedron has overall eight triangular faces, and each C; axis goes through two opposite faces, so there are 8/2=4
C, axes. Each Cj axis has the C;! and the C52 as unique symmetry operations. The Cs? is the same as the identity. So overall we
have 4x2=8 operations, four of them are Cs, and four of them are C52.

C2

Figure 3.2.1.12: The G, axes in the octahedral point group Oy, (Attribution:
symotter.org/gallery)

In addition to the C, axes that superimpose the C, axes, there are C,” axes which go though two opposite edges of the octahedron
(Figure 3.2.1.12). How many of them are there? An octahedron has twelve edges, and because each C,’ passes through two edges,
there must be 12/2=6 C,’ axes. These axes have primes because they are not conjugate to the C, axes that superimpose the C, axes.
For each C,’ axis there is only the C,’ ! as the unique symmetry operation, and therefore there are overall 6 C,’' symmetry
operations.
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Figure 3.2.1.13: The horizontal mirror planes in the octahedral point group O (Attribution:
symotter.org/gallery)

Let us look at the horzontal mirror planes next (Figure 3.2.1.13). There are horizontal mirror planes that stand perpendicular to the
C4 principal axes. Note that this mirror plane also contains two axes, in addition to the one to which it stands perpendicular.
Because it contains two principal C4 axes, it has also properties of a vertical mirror plane. Nonetheless, we call it a horizontal
mirror plane because it stands perpendicular to the third C4. The horizontal properties trump the vertical ones, so to say. You can
see that a single mirror plane contains four edges of the octahedron. Because there are twelve edges, there are 12/4=3 horizontal
mirror planes. There is one mirror plane per principal C4 axis. There are three horizontal reflection operations because there is
always only one reflection operation per mirror plane

Ca

Figure 3.2.1.14: The vertical mirror planes in the octahedral point group O;, (Attribution:
symotter.org/gallery)

Next let us look for vertical mirror planes (Figure 3.2.1.14). You can see that - contrast to the horizontal mirror planes - it does not
contain any edges. Rather, it cuts through two opposite edges. You can see that this plane contains a C, axis, but it does not stand
perpendicular to the other two C, axes. Therefore it has only the properties of a vertical mirror plane. You can see however, that the
mirror plane bisects the angle between two C,’ axes which also depicted. This makes the vertical mirror planes dihedral mirror
planes, o4. How may of them do we have? As previously mentioned, each mirror plane cuts through two opposite edges. There are
twelve edges in an octahedron, and thus there are 12/2=6 dihedral mirror planes. You can see all of them on the right side of Figure
3.2.1.14 Each mirror plane is associated with one reflection operation, therefore there are six dihedral reflection operations.

Next we can ask if the point group Oy, has an inversion center? Yes, there is one in the center of the octahedron (Figure 3.2.1.15)!
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Figure 3.2.1.15: The inversion center of the octahedral point group O (Attribution:
symotter.org/gallery)

Each point in the octahedron can be moved through the inversion center to the other side, and the produced octahedron will
superimpose the original one. There is always one inversion operation associated with an inversion center.

Next, let us look for improper rotations. You can see an Sg improper rotation operation below (Figure 3.2.1.16 left).

Figure 3.2.1.16: The Sg improper rotation element of the octahedral point group Oy (Attribution:
symotter.org/gallery)

The improper Sg axis passes though the centers of two opposite triangular faces. One can see that rotation about 60° alone does not
make the octahedron superimpose. The reflection at a plane perpendicular to the improper axis is required to achieve superposition.
Overall, the rotation-reflection swaps up the position of the two opposite triangular faces. How many Sg improper axes are there?
Since each Sg passes through two faces, and an octahedron has 8 faces there must be 8/2=4 S, axes. You can see all of them above
(Fig. 2.2.31, right). Note that they are in the same position as the 4C3 axes we previously discussed. How many unique operations
are associated with them? For an Sg axis we need to consider operations from Se! to Seb. Sl is the same as the identity so it is not
unique. The Sg? is the same as a C3' because rotating two times round 60° is the same as rotating around 120°, and reflecting twice
is the same as not reflecting at all. Similarly, an Sg* is the same as an C3°. Rotating four time by 60° is the same as rotating two
times by 120° and reflecting four times is the same as not reflecting at all. Further, an Sg® is the same as an inversion. After three
60° rotations we have rotated by 180°. If we reflect after that, then this is the same as an S,! operation which is the same as an
inversion. Therefore, only the Sg' and the S¢° operations are unique, all other operations can be expressed by simpler operations.
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Figure 3.2.1.17: The S, improper axis of the octahedral point group Oy, (Attribution: symotter.org/gallery)

The octahedron also has S4 improper axes, and you can see one of them in Figure 3.2.1.17 right). It goes through two opposite
corners of the octahedron. The S, improper axis seemingly does the same as the C4 axis that goes through the same two opposite
vertices, but actually does not. While rotating around 90° already makes the octahedron superimpose with its original form,
executing the reflection operation after the rotation swaps up the position of the two vertices, and generally all points of the
octahedron above and below the plane, respectively. Overall the S4 moves the points within the object differently compared to the
C4 which makes it an additional, unique symmetry element. There are overall three S, improper axes because the octahedron has
six vertices and one S4 passes through two vertices.

X Symmetry Operations in the O}, Point Group

Every molecule or object in the Oy, point group has the following 48 symmetry operations:

(] E, 8 C3, 6 Cz, 6 C4, 3 C2 (C42), i, 6 S4, 8 SG’ 3 Op, and 6 04

The I,, Point Group

The two remaining platonic solids, the icosahedron and the dodecahedron, belong both to the icosahedral point group Ij,. This is
despite they are made of different polygons. Because they belong to the same point group, they have exactly the same symmetry
operations. An example for a molecule with icosahedral shape is the molecular anion B;,H;»?". Examples of molecules with
dodecahedral shape include dodecahedrane (CpoHyg) and buckminsterfullerene (Cgp). Let us determine the symmetry elements and
symmetry operations for the example of the icosahedron. We could also use the dodecahedron, and the results would be the same.
The principal axes of the icosahedron are the Cs axes. You can see one of them, going through the center of the pentagon
comprised of five triangular faces below (Figure 3.2.1.18.

Figure 3.2.1.18: One of the Cs axes of the icosahedron stands perpendicular to the paper plane going through the center of a
pentagon of the icosahedron (Attribution: symotter.org/gallery)

You can understand that there is a C5 when considering that there are five triangular faces making a pentagon. The Cs axis sits in
the center of the pentagon. We can see that when we rotate around this Cs axis, then the produced icosahedron superimposes the
original one. The Cs axis goes through two opposite vertices of the icosahedron. Because an icosahedron has 12 vertices, there
must be six Cg axes overall. You can see all of them below (Figure 3.2.1.19. There are four unique symmetry operations
associated with a single Cs axis, namely the Cs!, the Cs2, the Cs3, and the C¢*. The Cs® is the same as the identity. Because there
are six Cg axes, there are overall 6x4=24 C5 symmetry operations.

https://chem.libretexts.org/@go/page/510733



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/510733?pdf

LibreTextsw

Figure 3.2.1.19: The Cs axes of the icosahedron (Attribution: symotter.org/gallery)

Figure 3.2.1.20: One of the C3 axes of the icosahedral point group (Attribution: symotter.org/gallery)

In addition, there are C3 axes. One of them is shown below, and you can see that it passes through the centers of two opposite
triangular faces (Figure 3.2.1.20). As one rotates by 120° the atoms on the triangular faces change their position, and the resulting
icosahedron superimposes the original one. As the name icosahedron says, there are twenty faces overall.
Ca
Cs

Cs

Figure 3.2.1.21: The Cj axes of the icosahedral point group (Attribution: symotter.org/gallery)

Because one Cj3 passes through two opposite axes, there are 20/2=10 C3 axes overall (Figure 3.2.1.21). Each Cj axis is associated
with two symmetry operations, namely Cs, and C32. Thus, there are overall 10x2=20 Cj symmetry operations.
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Figure 3.2.1.22: The C; axes of the icosahedral point group (Attribution: symotter.org/gallery)

There are also C, axes (Figure 3.2.1.21). They pass through the centers of two opposite edges of the icosahedron. Rotating around
the C, axis shown makes the icosahedron superimpose. An icosoahedron has overall 30 edges. Because one C, axis passes through
the centers of two opposite edges, we can understand that there are 30/2=15 C, axes. There is one unique C, operation per axis, and
therefore there are 15 C, operations.

We have now found all proper rotations. Let us look for mirror planes, next. You can see a mirror plane below (Figure 3.2.1.22).

Figure 3.2.1.22: A mirror plane in the icosahedral point group (Attribution: symotter.org/gallery)

It contains two opposite edges. It also bisects two other edges. An icosahedron has overall 30 edges, therefore there are 30/2=15
mirror planes. You can see all of them below (Figure 3.2.1.23).

https://chem.libretexts.org/@go/page/510733



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/510733?pdf

LibreTextsw

Figure 3.2.1.23: All the mirror planes in the icosahedral point group (Attribution: symotter.org/gallery)

The icosahedron also has an inversion center in the center of the icosahedron (Figure 3.2.1.24). As we carry out the associated
symmetry operation, all points in the icosahedron move through the inversion center to the other side.

Figure 3.2.1.24: The inversion center in the icosahedron (Attribution: symotter.org/gallery)

Let us now look for improper rotations. The improper rotational axes with the highest order are S1g axes. They are located in the
same position as the Cs axes, and go through two opposite corners (Figure 3.2.1.25).

S >

Figure 3.2.1.25: The S;oimproper rotational axes in the icosahedral point group (Attribution: symotter.org/gallery)

The S, exists because in an icosahedron there are pairs of co-planar pentagons that are oriented staggered relative to each other.
The rotation around 36° brings one pentagon in eclipsed position relative to the other, but superposition is only achieved after the
reflection at the mirror plane perpendicular to the rotational axis. Because one S;, passes through two opposite vertices, and there
are 12 vertices there are 6 S;, improper axes. For each axis there are four unique symmetry operations, the S;,', the S;,> the S;,’,
and the S;°. Therefore, there are overall 4x6=24 operations possible.
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Figure 3.2.1.26: The Sgrotation-reflections in the icosahedral point group (Attribution: symotter.org/gallery)

Are the lower order improper rotational axes? Yes, there are Sg axes that pass through the centers of two opposite triangular faces
(Figure 3.2.1.26). This symmetry element exists because the two triangular faces are in staggered orientation to each other.
Rotation alone brings one face in eclipsed orientation relative to the other, but reflection at a mirror plane perpendicular to the axis
is required to achieve superposition. The Sg axes are in the same location as the Cz axes. There are 10 Sg axes because there are
twenty faces and one axis passes through two opposite faces. Only the Sg' and the Sg° operations are unique Sg operations, all
others can be expressed by simpler operations. Therefore there are overall 10 Sg'+10 Sg° = 20 Sg operations.

We have now found all symmetry operations for the I;, symmetry. There are overall 120 operations making the point group I}, the
point group with the highest symmetry.

X Symmetry Operations in the I, Point Group

Every molecule or object in the I, point group has the following 120 symmetry operations:

e E,24Cs, 20 Cs, 15C,, i, 24 S;9, 20 S, and 15 &

Rotational Point Groups

After having discussed high and low symmetry point groups, let us next look at rotational point groups. Unlike the high symmetry
point groups, these only have a single proper rotational axis. The presence or absence of reflection planes further defines this class
of point groups

Cn Point Groups

In the most simple case the point groups do not have any additional symmetry element such as mirror planes or improper rotations.
These point groups are called pure rotation groups and denoted C, whereby n is the order of the proper rotation axis. An example is
the hydrogen peroxide molecule H,O, (Figure 3.2.1.27). It has a so-called roof-structure due to its non-planarity. One hydrogen
atom points toward us, and the other points away from us. This structure is due to the two electron-lone pairs at each sp>-hybridized
oxygen atom. These electron-lone pairs consume somewhat more space than the H atoms, and there is electrostatic repulsion
between the electron lone pairs. Therefore, the electron lone pairs at the different oxygen atoms try to achieve the greatest distance
from each other. This forces the H-atoms out of the plane, leading to the roof-structure of the hydrogen peroxide. Because the H,0,
molecule is not planar, it only has a single C, axis, but no other symmetry element besides the identity. The C, axis passes through
the center of the O-O bond. Execution of the C, operation swaps up both the O and the H atoms.

Figure 3.2.1.27: The C; rotational axis of hydrogen peroxide (Attribution: symotter.org/gallery)
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C,v Point Groups

Another class of groups are the pyramidal groups, denoted Cp. They have n vertical mirror planes containing the principal axis C,
in addition to the principal axis C;,. Generally molecules belonging to pyramidal groups are derived from an n-gonal pyramid. An
n-gonal pyramid has an n-gonal polygon as the basis which is capped. For example a trigonal pyramid has a triangular basis which
is capped, a tetragonal pyramid has a square which is capped, and so on. The proper axis associated with a specific pyramid has the
order n and goes through the tip of the pyramid and the center of the polygon. An example of a molecule with a trigonal pyramidal
shape is the NH3 (Figure 3.2.1.28.

Figure 3.2.1.28: C;3 axis and vertical mirror planes in NH3 (Attribution: symotter.org/gallery)

The three H atoms form the triangular basis of the pyramid, which is capped by the N atom. The NH3 molecule belongs to the point
group Csy. The Cj3 axis goes though the N atom which is the tip of the pyramid, and the center of the triangle defined by the H
atoms. There are three vertical mirror planes that contain the Cj axis. Each of them goes through an N-H bond.

Cnn Point Groups

If we add a horizontal mirror plane instead of n vertical mirror planes to a proper rotational axis C, we arrive at the point group
type Cpp. The presence of the horizontal mirror planes also generates an improper axis of the order n. This is because when one can
rotate and reflect perpendicular to the rotational axes independently, then it must also be possible to do it in combination. An
example of a molecule belong to a Cpj, group is the trans-difluorodiazene NyF; (Figure 3.2.1.29. It is a planar molecule with a C,
axis going through the middle of the N-N double bond, and standing perpendicular to the plane of the molecule. The horizontal
mirror plane stands perpendicular to the C; axis, and is within the plane of the molecule. There is an additional inversion center
because an S, must exist which is the same as an inversion center. The inversion center is in the middle of the N-N bonds. Overall,
the molecule has the symmetry Cop.

Cz

Figure 3.2.1.29: C, axis and horizontal mirror plane in trans-N,F; (Attribution: symotter.org/gallery)

Son Point Groups

The category of rotational point groups to be discussed are the improper rotation point groups. The only have one proper rotational
axis, and an improper rotational axis that has twice the order of the proper rotational axis (Figure 3.2.1.30). There may be an
inversion center present depending on the order of the proper and improper axes. Molecules that fall into these point groups are
rare. An example the tetramethylcycloocta-tetraene molecule (Figure 3.2.1.30).
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Point Group = Sy, Order = 4

Figure 3.2.1.30: The S4 and an C; axes of tetramethyl cycloocta-tetraene

It has an S, and an C, axis as the only symmetry elements besides the identity. Rotating by 90° alone does not superimpose the
molecule because two C-C double bonds lie above the plane and two below the plane. In addition, two opposite methyl groups lie
above and below the plane respectively. Therefore it needs the additional reflection to achieve superposition. There is also a C, axis
which is in the same locations as the S, axis.

Dihedral Groups
D, Point Groups

Dihedral groups are point groups that have n additional C; axes that stand perpendicular to the principal axis of the order n. If there
are no other symmetry elements, then the point group is of the type D;. For example in the point group D3 there is a C3 principal
axis, and three additional C; axes, but no other symmetry element (Fig. 2.2.75). The tris-oxolatoferrate(III) ion belongs to this point
group (Figure 3.2.1.31). You can see that the C3 axis stands perpendicular to the paper plane, and there are three C, axes in the
paper plane.

Figure 3.2.1.31: The tris-oxolatoferrate(III) ion and its symmetry elements. (Attribution: symotter.org/gallery)

Dnh Point Groups

If a horizontal mirror plane is added to the C, axis and the n C, axes we arrive at the Dy, point groups. The addition of the
horizontal mirror plane generates further symmetry elements namely an S, and n vertical mirror planes. An example for a molecule
belonging to this class of point group is PF5 (Figure 3.2.1.32). It has a trigonal bipyramidal shape. The C3 axis goes through the
axial F atoms of the molecule, and the three C;, axes go through the three equatorial F atom. The horizontal mirror plane stands
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/510733?pdf

LibreTextsw

perpendicular to the principal Cs axis and is located within the equatorial plane of the molecule. In addition, there are the vertical
mirror planes that contain the Cj3 axis, and go through the three equatorial P-F bonds. There is also an S3 axis which superimposes

the Cj3 axis.

C3

Figure 3.2.1.32: The PFs molecule belonging to the point group D3j, and its symmetry elements. (Attribution: symotter.org/gallery)

Dng Point Groups

If we add n vertical mirror planes to the principal axis and the n C; axes, we arrive at the point group Dpq. The vertical mirror
planes are dihedral mirror planes because they bisect the angle between the C, axes. An example is the ethane molecule in
staggered conformation which has the symmetry D3q (Figure 3.2.1.33). The Cj3 axis goes along the C-C bond, and the 3C, axes
pass through the middle of the carbon-carbon bond, and bisect the angle between two hydrogens and one carbon atom. The three
dihedral mirror planes pass through the C-H bonds. In addition, the ethane molecule has an Sg axis, and an inversion center.

https://chem.libretexts.org/@go/page/510733
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Figure 3.2.1.33: The ethane molecule in the staggered conformation belongs to the point group type D,q (Attribution:
symotter.org/gallery)

Linear Point Groups

The principal rotation axis in a linear molecule is a Co, axis, meaning the molecule can be rotated along its bond axis an infinitely
small amount and remain unchanged. Linear molecules can be subdivided based on the presence or absence of a horizontal

reflection plane and inversion center.

C.y Point groups
A special n-gonal polygon is the cone. A cone can be conceived as an n-gonal pyramid with an infinite number n of corners at the
base (Figure 3.2.1.34.
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cone
Figure 3.2.1.34: Cone having a proper rotational axis with infinite order.

In this case the order of the rotational axis that passes through the tip of the cone and the center of the circular basis is infinite. This
also means that there is an infinite number of vertical mirror planes that contain the C, axis. The point group describing the
symmetry of a cone is called the linear point group Cuy. Polar, linear molecules such as CO, HF, N,O, and HCN belong to this
point group. You can see the HCN molecule with its Cs axis and its infinite number of vertical mirror planes below (Figure
3.2.1.35H). The infinite number of mirror planes, shown in blue are forming a cylinder that surround the molecule.

Figure 3.2.1.35: Cy axis of the HCN molecule.

Deh point groups

A special case of a Dy, group is the linear group Dap. An object that has this symmetry is a cylinder. A cylinder can be conceived
as a prism with an infinite number of vertices. Thus, the principal axis that passes through a cylinder has infinite order. Because of
the infinite order of the principal axis, there is an infinite number of C, axes that stand perpendicular to the principal axis. You can
see one such C, going though the cylinder (Figure 3.2.1.36).

Co

Cylinder Doy,
Figure 3.2.1.36: Cylinder as an example of linear group De.
There is now also an improper axis of infinite order, as well as an infinite number of vertical mirror planes. Non-polar linear
molecules like Hy, CO;, and acetylene C,H, belong to the point group Dup. You can see the Co axis passing through a CO;

molecule below (Figure 3.2.1.37). You can see the infinite number of vertical mirror planes as a blue cylinder. The infinite number
of C, axes is shown a yellow lines going around the molecule.
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Co,

Figure 3.2.1.37: Cw in a CO, molecule.

Dr. Kai Landskron (Lehigh University). If you like this textbook, please consider to make a donation to support the author's
research at Lehigh University: Click Here to Donate.

This page titled 3.2.1: Molecular Point Groups is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Kai
Landskron.

« 2.2: Point Groups by Kai Landskron is licensed CC BY 4.0.
e 4.2: Point Groups by Kai Landskron is licensed CC BY-NC-SA 4.0.
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