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21.4: Bohr Theory of the Atom
In a classic paper published in 1913, the young Niels Bohr, then working with Rutherford in Manchester, England, proceeded to
show how Rydberg’s formula could be explained in terms of a very simple model of the hydrogen atom. The model was based on
the nuclear view of atomic structure which had just been proposed by Rutherford. Bohr’s model is shown in Figure . An
electron of charge –e and mass  moves around a heavy nucleus of charge +e. Ordinarily the electron would move in a straight
line, but the attraction of the nucleus bends its path so that it moves with a constant velocity  in a perfect circle of radius r around
the nucleus. The situation and the mathematics are very similar to that of a planet arcing round the sun. The major difference is that
instead of the force of gravity there is an electrostatic force of attraction  between the proton and the electron described by
Coulomb’s law:

where  has the value 8.9876 × 10  J m C .

Expressions for both the kinetic and potential energies of the electron can be derived using Equation  and the principles of
elementary physics. Such a derivation can be found in most introductory physics texts. The two expressions are

and

If these are added together, we obtain a simple formula for the total energy of the electron:

If we now insert the known values of  and , we have the result

From Equation  we see that the total energy of the electron is very negative for an orbit with a small radius but increases as
the orbit gets larger.

In addition to suggesting the planetary model just described, Bohr also made two further postulates which enabled him to explain
the spectrum of hydrogen. The first of these was the suggestion that an electron of high energy circling the nucleus at a large radius
can lose some of that energy and assume an orbit of lower energy closer to the nucleus. The energy lost by the electron is emitted as
a photon of light of frequency  given by Planck’s formula

where  is the energy lost by the electron.

Bohr’s second postulate was that only certain orbits are possible to the electron in a hydrogen atom. This enabled him to explain
why it is that only light of a few particular frequencies can be emitted by the hydrogen atom. Since only a limited number of orbits
are allowed, when an electron shifts from an outer to an inner orbit, the photon which emerges cannot have just any frequency but
only that frequency corresponding to the energy difference between two allowed orbits.
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Figure : Bohr theory of the atom. The force of attraction keeps bending the path of the electron toward the nucleus and away
from the straight-line motion. The net result is a circular path.

According to Bohr’s theory two of the allowed orbits in the hydrogen atom have radii of 52.918 and 211.67 pm. Calculate the
energy, the frequency, and the wavelength of the photon emitted when the electron moves from the outer to the inner of these
two orbits.

Solution

Labeling the outer orbit 2 and the inner orbit 1, we first calculate the energy of each orbit from Equation :

Thus

Using Equation , we now have

Finally . In order to predict the right frequencies for the lines in the hydrogen

spectrum, Bohr found that he had to assume that the quantity  (called the angular momentum by physicists) needed to be a
multiple of . In other words the condition restricting the orbits to only certain radii and certain energies was found to be

where could have the value 1, 2, 3, etc.

By manipulating both Equations  and , it is possible to show that this restriction on the angular momentum
restricts the radii of orbits to those given by the expression

If the known values of h, m, k, and e are inserted, this formula reduces to the convenient form

Bohr’s postulate thus restricts the electron to orbits for which the radius is 52.9 pm, 2  × 52.9 pm, 3  × 52.9 pm, and so on.

21.4.1

 Example : Emitted Photon21.4.1

21.4.7

= − = −0.54500aJE2
1.1536 × Jm10−28

211.67 × m10−12

= − = −2.1780 aJE1
1.1536 × Jm10−28

52.918 × m10−12

ΔE =– 0.54500aJ– (– 2.1780aJ) = 1.6330 aJ

21.4.8

υ = = = 2.4645 × = 2.4645 PHz
ΔE

h

1.6330 ×  J10−18

6.6262 ×  J s10−34
1015 s−1

λ = = 1.2164 ×  m = 121.64 nm
c

υ
10−7

mur

h/2π

mur =
nh

2π
(21.4.9)

21.4.9 21.4.2

r = n = 1, 2, 3, ⋯
n2h2

4 mkπ2 e2
(21.4.10)

r = ×52.918 pm n = 1, 2, 3, ⋯n2 (21.4.11)

2 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/49639?pdf


21.4.3 https://chem.libretexts.org/@go/page/49639

If we substitute Equation  into Equation , we arrive at a general expression for the energy in terms of n:

Again substituting in the known values for all the constants, we obtain

Figure : It turns out that both n’s are the same and that the energy levels of the hydrogen atom predicted by the Bohr
theory are the same as those predicted by wave mechanics. The relationship between them is shown in this figure.

The integer  thus determines how far the electron is from the nucleus and how much energy it has, just as the principal
quantum number  described previously.

Using Equation  or  find the ionization energy of the hydrogen atom.

Solution

The ionization energy of the hydrogen atom corresponds to the energy difference between the electron in its innermost orbit (n
= 1) and the electron when completely separated from the proton. For the completely separated electron r = ∞ (infinity) and so
does n. Thus

and
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The energy difference is thus

which is the ionization energy per atom. On a molar basis the ionization energy is the Avogadro constant times this quantity;
namely,

Note: In an atom, the electronic configuration of lowest energy is called the ground
state while other configurations are called excited states.

We can now derive Rydberg’s experimental formula from Bohr’s theory. Suppose an electron moves from an outer orbit for
which the quantum number is n  to an inner orbit of quantum number n . The energy lost by the electron and emitted as a
photon is then given by

However,

where  is the wavelength of the photon. Combining Eqs.  and , we obtain

or

This expression is of exactly the same form as that found experimentally by Rydberg with a value for R  of 1.0974 × 10  m ,
very close to the experimental value of 1.097 094 × 10  m . Even better agreement can be obtained if allowance is made for
the fact that the nucleus is not stationary but that the electron and nucleus revolve around a common center of gravity.

Calculate the wavelength of the light emitted when the electron in a hydrogen atom drops from the n = 3 to the n = 1 orbit. In
what region of the spectrum does this spectral line lie? To what series does it belong?

Solution

From Equation  we find

giving . This is the second line in the Lyman series and lies in the far ultraviolet. The experimentally
determined wavelength is 102.573 nm.

Bohr’s success with the hydrogen atom soon led to attempts both by him and by others to extend the same model to other atoms.
On the qualitative level these attempts met with some success, and a general picture of electrons occupying orbits in successive
levels and sub-levels, similar to that shown in Figure 5.2, began to emerge. On the quantitative level, however, all attempts to
calculate accurate values for the energies of the electrons in their quantized orbitals were dismal failures. It was not until
Schrödinger’s introduction of wave mechanics in 1926 that these difficulties could be resolved. Suddenly, it seemed, everything fell
into place. Since then virtually every line in the spectrum of every element has been accounted for theoretically. As a result, we
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now have a very exact, though mathematically rather complex, picture of the behavior of electrons in both the ground state and in
excited states of atoms. In particular, the study of atomic spectra has allowed us to determine the ionization energies of all the
elements very accurately.

Details of the spectra of polyelectronic atoms are complex, and so we will consider only one example: sodium. Excited states of
sodium may be obtained by increasing the energy of the atom so that the 3s valence electron occupies the 3p, 3d, 4s, 4p, 4d, 4f or
some other orbital. By contrast with the hydrogen atom, however, a sodium atom has other electrons which shield the valence
electron from nuclear charge, and this shielding is different for each different orbital shape (s, p, d, f, etc.). Consequently the energy
of an excited sodium atom whose electron configuration is 1s 2s 2p 4s  is not the same as that of an excited sodium atom whose
configuration is 1s 2s 2p 4p . Different shielding of the outermost (4s or 4p) electron results in a different energy. Because of this,
four formulas are needed to describe the energy of the sodium atom—one for each of the orbital shapes available to the outermost
electron:

In all these equations n represents the principal quantum number. It must be 3 or greater since the electron is in the 3s orbital to
begin with. The different shielding requires a different correction for each type of orbital: a  = 1.36; a  = 0.87; a  = 0.012; and a  =
0.001.

Because there are four different sets of energy levels, the number of transitions between levels (and hence the number of lines in
the spectrum) is larger for sodium than for hydrogen. Early spectroscopists were able to distinguish four different types of lines,
which they labeled the sharp, principal, diffuse, and fundamental series. It is from the abbreviation of these terms that we have
obtained the modern symbols s, p, d, and f.

As most readers will know, when almost any sodium compound is held in a Bunsen burner, it imparts a brilliant yellow color to the
flame. This yellow color corresponds to the most prominent line in the sodium spectrum. Its wavelength is 589 nm. On the atomic
scale this line is caused by the sodium atom moving from an excited state (in which the valence electron is in a 3p orbital) to the
ground state (in which the electron is in a 3s orbital). Using the above equations we can obtain approximate values for the two
energies involved in the transition:

and

Thus  giving  This agrees approximately with the experimental result. Another feature of

the sodium spectrum deserves mention. Careful observation reveals that the yellow color of sodium is actually due to two closely
spaced lines (a doublet). One has a wavelength of 588.995 nm, and the other is at 589.592 nm. When the electron is in a 3p orbital,
its spin can be aligned in two ways with respect to the axis of the orbital. The small difference in energy between these two
orientations results in two slightly different wavelengths
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