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1.5: The Second Law of Thermodynamics

The first law of thermodynamics describes the conservation of energy but does not tell us anything about the direction or
spontaneity of a reaction. In this chapter we introduce the concept of entropy as derived by Rudolf Clausius and formulate the
second law of thermodynamics. The second law of thermodynamics is of central importance in science and tells us the direction of
spontaneous change for any process. We then calculate the change of entropy for a number of example cases.

@b Learning Objectives

e Be able to provide a thermodynamic definition of entropy as the reversible heat divided by the temperature.

o Be able to articulate the second law of thermodynamics and understand its meaning and significance: the entropy of the
universe increases for all spontaneous processes and the entropy of the universe remains unchanged for an equilibrium
(reversible) process.

e Be able to calculate the change in entropy for the compression/expansion of an ideal gas.

o Be able to calculate the change in entropy for the various processes: heating/cooling, phase transition, ideal mixing.

1.5.1: Relevance of the first law of thermodynamics

So far we have been concerning ourselves with the interconversion of heat and work as two form of energy. The first law sets a
limit on the magnitude of energy transfer by stating that energy cannot be created or destroyed, thus any change in energy (AU)
must be due to work (w) or heat (g) transferred to/from the system with the surroundings.

The mathematical statement of the first law, AU = g+ w is a consequence of the fact that energy is neither created or destroyed
but flows from one part of the universe (the system) to another (the surroundings) or is converted from one form to another.
Although the first law limits the magnitude of energy change, it says nothing about the directionality of energy transfer or whether
or not a process will be spontaneous.

Consider an example sketched in figure 1.5.1. A rubber ball is held some height h above a table. The ball has some potential
energy due to gravity. When the ball is released, its potential energy is converted to kinetic energy, and the ball bounces off the
table. Each time the ball bounces, it does not reach the same height as the previous bounce because some of the kinetic energy is
being dissipated to the molecules in the table. Eventually, the ball comes to rest, and all its kinetic energy has been transferred to
the molecules in the table. This increase in kinetic energy results in the temperature of the table rising, and we can say that the
kinetic energy of the ball was converted into heat. This process occurs spontaneously once the ball is dropped and is indicated by
the forward arrow labeled a) in figure 1.5.1.

Let’s now consider the reverse process in which the ball at rest on the table absorbs the kinetic energy of the molecules in the table
and converts this energy into work by spontaneously levitating against the force of gravity. During this process, the molecules in
the table lose some kinetic energy, causing the temperature of the table to decrease. Thus, heat has been converted to work needed
to raise the ball to some height h. This process is indicated by the reverse arrow labeled b) in figure 1.5.1.
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Figure 1.5.1: a) A ball suspended at a height h will spontaneous bounce off the table, converting its potential energy into kinetic
energy and heat. b) In the reverse process, the ball absorbs heat from the table, converts this heat to kinetic energy to elevate a
distance h above the table.

In both cases, the total energy is conserved in compliance with the first law of thermodynamics, but the first process occurs
spontaneously, while the second process does not occur spontaneously. For the second process to occur, all the molecules in the
table would need to spontaneously synchronize their random motion and transfer their kinetic energy to the ball. If there are
sufficiently many molecules in the table, the probability for these molecules to synchronize their random motion is extremely
unlikely. The second law of thermodynamics will set a limit on the direction of energy transfer, such that case 1 (potential energy
— kinetic energy — heat) is spontaneous, but that the reverse process, case 2 (heat — kinetic energy — potential energy), will not
happen.
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1.5.2: Thermodynamic Definition of Entropy

In this chapter we consider the thermodynamic definition of entropy as formulated by Rudolf Clausius (1822-1888). Let’s
consider again the reversible heat transfer of a system going from some initial state (P, T1, V1) to some final state (Py, T2, V2).
From the first law of thermodynamics we have dU = dw + dq,., where the subscript on dg,, indicates that the heat transfer we
are considering is for a reversible process. Recall that both work and heat are not state properties and thus depend on the path
taken. For reversible work we know that dw = —P - dV . Also, we know that dU = C,, - dT' . Inserting these into the equation for
the first law and solving for the unknown d¢,, we have:

SGrey = Cy-dT + P-dV (1.5.1)

Equation 1.5.1is an expression for the reversible heat. Integrating both sides of Equation 1.5.1 from an initial state ¢ to a final state

f:

f
Qrev :CUAT+/ P-dVv (152)

K3

We see that the reversible heat depends on the path due to the work term P - dV . This is not surprising because the heat is not a
state property.

Following Clausius, let’s now consider a slightly different quality Jq;” . From Equation 1.5.1, dividing both side by 7', we have:
OGrew dl" P
=Cy —+—=-dV 1.5.3
T s (1.5.3)

Using the fact that % = % for an ideal gas, we can integrate both sides of Equation 1.5.3 independently of the path!
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Therefore, we conclude that the quantity Lo

7 is a state property! We define this new state property S, so that:
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as T

(1.5.5)

and, integrating both sides from an initial state ¢ to a final state f:
f s
/ dS:/ Y _ Ag (1.5.6)
i i T
where AS = S~ S;. The state property S is called the entropy.

Key Result: The infinitesimal change in entropy is defined as dS = 5;” . Notice the entropy is defined in terms of the

reversible heat.

From equation 1.5.4 and equation 1.5.6 we have that for the expansion of an ideal gas, the change in entropy is:
T Va
AS=C,In|l = Rln( — 1.5.7
(7)ol ) s

Notice that Equation 1.5.7is valid for any expansion/compression of an ideal gas regardless of whether the process was carried our
reversibly or irreversibly because entropy is a state property.

Key_Result: The change in entropy for the reversible or irreversible expansion/compression of an ideal gas is:
AS=C,ln(7t) +nRln(72)
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Note: Clausius was able to find a new state property by dividing the reversible heat dqrey (not a state property) by the

0G0y
7

temperature. The temperature in this case is called an integrating factor that makes the integral f exact.

1.5.3: Entropy for an irreversible vs. reversible process

So far, we have defined dS from Equation 1.5.5 in terms of the reversible heat dqyev. Note that the subscript rev indicates the
process is reversible. While the entropy is a state property (independent of the path), the heat is not and will depend on the path.
Therefore, the equivalence in Equation 1.5.5is valid only for a reversible path. Even though the entropy is the same, the magnitude
of the heat transfer is greater for the reversible process, so we have:

6‘17'61) > (SQirrev (1 5. 8)

Dividing both sides of Equation 1.5.8by T and inserting the definition of entropy from equation 1.5.5 gives:

éqwrev
ds> =2 (1.5.9)

While the entropy change would be the same for an irreversible or reversible process, AS = AS,c, = ASjmey , the heat flow is not
the same, so for any irreversible process AS > @iprey /T -

Key Result: For any process the change in entropy is dS > 6—;. The equality holds only for a reversible process, whereas the
inequality holds if the process is irreversible.

1.5.4: Entropy of the Surroundings

So far we have only focused on the entropy of the system. In this section we will consider the change in entropy of the
surroundings. First, we notice that any heat gained (or lost) by the system must have come from (or gone to) the surroundings:

5‘15315 = 0qsurr (1.5.10)

We consider the surroundings as an infinitely large reservoir. Any amount of heat transferred to the surroundings (gsy) will only
lead to an infinitesimally small change in the reservoir, given that the reservoir is sufficiently large. Infinitesimally small changes
are characteristic of a reversible process, so any heat transfer from the perspective of the surroundings can be treated as reversible,
since it will have the same effect on the surroundings as a reversible process. Thus, from equation 1.5.5, we can always write for
the surroundings:

5QSur7'

dSsurr = T (1511)
or
AS gy = T2 (1.5.12)
T

1.5.5: The Second Law of Thermodynamics

The Second Law of Thermodynamics deals with the change in entropy of the universe. The change of entropy of the universe is:

ASum'verse = ASsys + ASsurr (1513)
Substituting Equation 1.5.12into Equation 1.5.13 gives:
Gsurr
ASuniverse = ASsys + ;1 (1514)

For a reversible process we can substitute the equality of Equation 1.5.5to give:

Asuniverse = %"% + qs;:“?‘

ASuniverse =0 (1515)
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where the last line follows from the fact that the heat gained by the surroundings is equal and opposite to the heat lost by the system
(@sys = —qsurr ). We see that for a reversible process the change of entropy of the universe is zero.

Now, if the processes is irreversible we have to use the inequality of Equation 1.5.9. Substituting this into equation 1.5.14 gives for
an irreversible processes:

Qrev Qsurr

T+T

ASuniverse >0 (1516)

Asuniverse >

where again the last line follows from the fact that the heat gained by the surroundings is equal and opposite to the heat lost by the
system (qsys = —Qsurr )- Thus, for an irreversible process, the change in entropy of the universe must be greater than zero.

This result is known as the Second Law of Thermodynamics which can be expressed in mathematical form as:

ASuniverse >0 (1517)

Where the equality holds if the process is reversible, and the inequality applies if the process is irreversible.

Key _Result: The entropy of an isolated system always increases in an irreversible process and remains unchanged in a
reversible process. It can never decrease. This statement is known as the second law of thermodynamics and is expressed
mathematically as: ASyniverse > 0

See Practice Problem 1.5.1

1.5.6: Some applications of calculating the entropy

Having defined the second law of thermodynamics, we will now consider some specific examples of calculating AS.

1.5.6.1: Example 1: Cyclic process

A cyclic process is any series of steps that returns the system to its original state. Because entropy is a state property:

AS=) AS;=0 (1.5.18)

where AS; is the entropy change for the ith step and the change in entropy for the cycle is zero because S is a state property.

1.5.6.2: Example 2: Reversible adiabatic process

An adiabatic process is a process in which no heat is exchanged between the system and surroundings. For a reversible adiabatic
processes, d¢,e, = 0 since no heat is exchanged. Integrating Equation 1.5.5 gives:

6q1"€’l)
AS = / T

AS=0 (1.5.19)
where the second line follows for an adiabatic process (§g,e, = 0).

1.5.6.3: Example 3: Reversible phase change at constant T and P

At the phase transition temperature, both the forward and reverse reactions are in equilibrium. Therefore, at precisely the phase
transition temperature, the phase transition is reversible. For example, the freezing of liquid water is reversible (at equilibrium) at
the phase transition temperature of 0 °C.

H,0 (1) < Hy0 (s) T=0°C

From Equation 1.5.5 at constant T we can write:

_ v
AS = T (1.5.20)

Recalling, that under constant pressure conditions, g, = AH , we can write, for a reversible phase transition:
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_AH
T

where AH is the change in enthalpy of the associated phase transition.

AS (1.5.21)

1.5.6.4: Example 4: Constant pressure (reversible) heating (no phase change)

Consider heating a substance from some initial temperature T'; to some final temperature T reversibly. We assume that there are
no phase transitions between T; and T¢. At constant pressure, we begin with the definition of the heat capacity:

6q=C,-dT (1.5.22)

Substituting Equation 1.5.22into the definition of the entropy, Equation 1.5.5 gives:

AS = C’pd?
T;
Ty
AS=C, / ar (1.5.23)
. T

Ty
AS=Cpln| =
T.

7
where we have assumed the heat capacity Cp, is independent of temperature.

See Practice Problem 1.5.2

1.5.6.5: Example 5: Ideal mixing of two inert gases at constant T and P

In this example, we consider the mixing of two ideal gases. Consider the situation shown in figure 1.5.2. Two gases of different
chemical identities A and B are contained in two flasks of volume V, and V3. Let n4 be the number of moles of gas A, and np be
the number of moles of gas B. When the stopcock separating the two flasks is open, the gases will spontaneously mix so that both
gases fill the final volume of V' =V + Vg . Similarly, the total number of moles of the combined systemisn =n4 +np .
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Figure 1.5.2. Ideal mixing of two inert gases. When the stopcock is opened, gas A initially contained in a volume V, with ny
number of moles spontaneously mixes with ny moles of gas B initially contained in volume V. The final volume is V=V, + Vg
and the total number of moles of gas isn=n, + np.

The overall change in entropy for the mixing of two gases is the sum of the change in entropy for each gas:

AS=AS,+ASp (1.5.24)
At constant T', the entropy change for gas A is given by the second term in Equation 1.5.7:
v
ASA :nARln _ (1.5.25)
Va
and similarly for gas B:
V
ASp=ngRIn| — (1.5.26)
\Z:]

Substituting Equation 1.5.25and Equation 1.5.26into equation 1.5.24 gives:

%4 %4
AS—TLARIII(VA) +TLBR1n(VB) (1.5.27)

Using the fact that the total volume is V' =nRT'/ P for an ideal gas, Equation 1.5.27becomes:
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AS = —nARln(%) —nBRln(n—B)

n
AS = —nyRIn(z4) —npRIn(zpg) (1.5.28)

where z 4 is the mole fraction of gas A defined as x4 =n,4/n and zp is the mole fraction of gas B. Notice that because the mole
fraction is less than one, AS for mixing of two ideal gases is be greater than zero.

See Practice Problem 1.5.3

1.5.7: Examples

v/ Example 1.5.1

What is the change in entropy when one mole of liquid water is heated from its freezing point to its boiling point in an open
container. The molar heat capacity of liquid water is 75.38 J mol * K~!.

Solution

Since the water is being heated at constant pressure, we use Equation 1.5.23
AS=C,ln(Z)

or, after introducing the definition of the molar heat capacity:

AS=nC,In ( % )

Substituting in the values of the initial and final temperatures gives:

AS =1mole x 75.38 Jmol ! K! ln(%)

AS=123.52JK!

Notice that the entropy increases upon heating.

v/ Example 1.5.2

Show that for a reversible adiabatic expansion of an ideal gas AS =0, but for an irreversible adiabatic expansion of an
(isolated) ideal gas AS >0

Solution

For a reversible process, (see Example 2), we have from the definition of the entropy:
quev
AS= [
Since the process is adiabatic, there is no heat exchange with the surroundings, meaning that g,¢, = 0 and
AS=0
For an irreversible process, we have from Equation 1.5.9:
qurrev
AS > [l
Again, the process is adiabatic so there is no heat exchange with the surroundings, meaning that g;., = 0, giving:

AS >0

Note that this result applies only to an isolated system. It is possible to reduce the entropy of the system with the aid of the
external surroundings. The entropy change of both system + surroundings taken together, however, cannot decrease.

1.5.8: Practice Problems

Problem 1.5.1. One mole of an ideal gas is isothermally expanded from 5.0 L to 10 L at 300 K. Compare the entropy changes for
the system, surroundings, and the universe if the process is carried out a) reversibly, and b) irreversibly against a constant external
pressure of 2.0 atm.
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Problem 1.5.2. The molar enthalpy of vaporization of water is AH,,, =40.6 kJ/mol at the boiling temperature of 100 °C. a)
What is the value of AS when one mole of liquid water is converted to a gas at 100 °C. b) What is AS for the conversion of one
mole of liquid water to a gas at a temperature of 120 °C. The molar heat capacity of liquid water is 75.38 J mol* K~! and the
molar heat capacity of water vapor is 36.57 J mol * K1,

Hint consider AS of heating/cooling from Example 4 (see Example 1.4.1) in addition to AS for a phase transition in Example 3.

Problem 1.5.3. Suppose you have a compartment that contains 1 mole of NO and a second compartment that contains 0.3 moles

of O,. Calculate the change in entropy AS of mixing the two gasses together. Assume the gasses do not react and are ideal gasses.

This page titled 1.5: The Second Law of Thermodynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Serge L. Smirnov and James McCarty.

¢ 1.4: The Second Law of Thermodynamics by Serge L. Smirnov and James McCarty is licensed CC BY-NC-SA 4.0.
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