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1.7: The Gibbs and Helmholtz Energy
Based on "The Gibbs and Helmholtz Energy" by Serge L. Smirnov and James McCarty, LibreTexts is licensed under CC BY-NC-
SA .

In this chapter we introduce two additional state properties: the Gibbs energy and the Helmholtz energy. These additional variables
are useful for allowing us to determine the direction of spontaneous change without having to directly calculate the change in
entropy of the universe from the second law. The Gibbs energy has particular importance in biochemistry.

Know the thermodynamic definitions of the Gibbs energy and Helmholtz energy and why these two properties are
important.
Understand that the change in Gibbs energy has both an enthalpic and entropic contribution.
Know that at constant pressure and temperature the Gibbs energy decreases for a spontaneous process, and at constant
volume and temperature the Helmholtz energy decreases for a spontaneous process.
Be able to identify the fundamental differentials for dU, dH, dG, and dA and how these can be used to arrive at
thermodynamic relationships.

1.7.1: The Gibbs and Helmholtz energy 
The first law of thermodynamics (Chapter I.2) accounts for the conservation of energy and the second law of thermodynamics
(Chapter I.4) determines the spontaneity. Together, these laws should allow us to deal with any biophysical problem, but their direct
application is not always convenient. In addition to our current set of state properties it is useful to define two additional state
properties: the Gibbs energy and the Helmholtz energy.

Recall that we have already define the total internal energy U and the enthalpy H=U+PV. Similarly, we now define the Gibbs
energy:

The Gibbs energy (G) is the enthalpy minus the product of the temperature and the entropy.

We also define the Helmholtz energy:

The Helmholtz energy (A) is the total internal energy minus the product of the temperature and the entropy.

If we are interested in infinitesimal changes in the Gibbs or Helmholtz energies we can consider the differential form of equations 
 and 

Note: In the differential form of Equation 2 we have made use of the product rule for derivatives: d(AB)=BdA+AdB

1.7.2: The Significance of the Gibbs and Helmholtz energy 
In order to understand why the Gibbs and Helmholtz energies are important, we need to recall the second law of thermodynamics
which states

Recalling that for the surroundings:

 Learning Objectives

G= H– TS (1.7.1)

A = U– TS (1.7.2)

1.7.1 1.7.2

dG= dH −TdS−SdT (1.7.3)

dA = dU −Tds−SdT (1.7.4)

 Note

d +d ≥ 0Ssys Ssurr (1.7.5)

d = = −Ssurr

∂qsurr
T

∂qsys

T
(1.7.6)
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We can substitute equation  into Equation  to obtain an alternative expression for the second law in terms of only the
system variables:

Equation  follows from the second law of thermodynamics. We will now consider two particular cases. Since all the quantities
refer to the system we will drop the subscript "sys" in the remaining discussion.

1.7.3: Case 1: Constant T and P Conditions 

At constant P, the heat transfer is equivalent to the enthalpy:

Substitution of equation  into equation  gives:

Substituting the differential form of the Gibbs energy (equation ) into equation  gives:

At constant T, the second term SdT=0 because T is not changing, giving the final result:

or upon integrating both sides from an initial to final state:

The equality holds for a reversible (equilibrium) process, and the inequality holds for any spontaneous process at constant T and P.

Key Result: At constant T and P conditions  for a spontaneous process and ΔG=0 for a reversible process.

Since we are at constant T, the differential form of dG from equation  simplifies to:

Integrating both sides at constant T and P from an initial state to a final state gives:

from which we see that the Gibbs energy has an enthalpic term and an entropic term.

Key Result: . This expression is valid at constant T and P.

1.7.4: Case 2: Constant T and V Conditions 

For the case of constant volume, the heat transfer is equivalent to the total internal energy:

Substitution of Equation  into equation  gives:

Substituting the differential form of the Helmholtz energy (equation ) into Equation  gives:

Again at constant T, the second term SdT=0 because T is not changing, giving the final result:

1.7.6 1.7.5

d − ≥ 0 ⟹ Td −δ ≥ 0Ssys

δqsys

T
Ssys qsys (1.7.7)

1.7.7

δ = dHqp (1.7.8)

1.7.8 1.7.7

TdS– dH ≥ 0 (1.7.9)

1.7.3 1.7.9

dG+SdT ≤ 0 (1.7.10)

dG≤ 0 (1.7.11)

ΔG≤ 0 (1.7.12)

ΔG≤ 0

1.7.3

dG= dH −TdS (1.7.13)

ΔG= ΔH −TΔS (1.7.14)

ΔG= ΔH– TΔS

δ = dUqv (1.7.15)

1.7.15 1.7.7

TdS– dU ≥ 0 (1.7.16)

1.7.4 1.7.16

dA+SdT ≤ 0 (1.7.17)

dA ≤ 0 (1.7.18)
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or upon integrating both sides from an initial to final state:

The equality holds for a reversible (equilibrium) process, and the inequality holds for any spontaneous process at constant T and V.

Key Result: At constant T and V conditions  for a spontaneous process and ΔA=0 for a reversible process.

Since we are at constant T, the differential form of dA from Equation 2 simplifies to:

Integrating both sides at constant T and V from an initial state to a final state gives:

Key Result: . This expression is valid at constant T and V.

1.7.5: Four Fundamental differentials of thermodynamics 

The first law of thermodynamics in differential form is:

For a reversible process we have defined the entropy as  and the reversible work as . Substituting
these identities into equation  gives the following differential form of the first law:

Note that Equation  is valid for a reversible process in which the only work is due to compression/expansion.

The enthalpy is defined as:

From Equation  we can write a differential form of the enthalpy as:

where we have again used the product rule from calculus on the PV term. Substituting equation  into equation  for the
dU term gives another differential relation for dH:

Similarly, substitution of equation  into the dU term in the differential form for dA in equation  gives another
differential for dA:

Finally, substitution of equation  into the dH term differential form for dG in equation  gives another differential for dG:

dGdGamp;=amp;=amp;TdS+VdP−TdS−SdTamp;VdP−SdT(24)

These results are summarized in table .

Table : the four fundamental differential relations for dU, dH, dG, and dA.

Differential Relation Equation

dU=TdS−PdV

dH = TdS – VdP

dA=−PdV−SdT

ΔA ≤ 0 (1.7.19)

ΔA ≤ 0

dA = dU −TdS (1.7.20)

ΔA = ΔU −TΔS (1.7.21)

ΔA = ΔU– TΔS

dU = δq+δw (1.7.22)

dS = δ /Tqrev δw = −P ⋅ dV

1.7.22

dU = TdS−PdV (1.7.23)

1.7.23

H = U +PV (1.7.24)

1.7.24

dH = dU +PdV +V dPn (1.7.25)

1.7.23 1.7.25

dH = TdS− + +V dP = TdS+V dPPdV PdV (1.7.26)

1.7.23 1.7.4

dA = −PdV − −SdT = −PdV −SdTTdS TdS (1.7.27)

1.7.26 1.7.3

dG= +V dP − −SdT = V dP −SdTTdS TdS (1.7.28)

1.7.1

1.7.1

1.7.23

1.7.26

1.7.27
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Differential Relation Equation

dG=VdP−SdT

1.7.6: Pressure dependence of ΔG 
The fundamental differentials from table  are useful for deriving various thermodynamic relationships. As an example, we can
use equation  to derive the pressure dependence of ΔG. Starting from equation , at constant T the second term SdT=0,
giving:

or

Integrating both sides of equation  from an initial pressure P  to a final pressure P  gives:

Solids and liquids are nearly incompressible, so the volume does not change significantly with changes in the pressure. Therefore,
for solids and liquids the volume can be treated as constant in equation , and upon integration gives:

Note that equation  is valid for solids and liquids. For an ideal gas we can substitute V=nRT/P for the volume in equation 
:

If we set the initial pressure to 1 bar (standard pressure), and replace the initial Gibbs energy G  with the symbol for G at the
standard state G , then equation  becomes:

See Practice Problem .

1.7.7: Examples 

Show that at constant pressure, the entropy is given by:

Solution
Starting with equation :

dG=VdP−SdT

At constant pressure (dP=0), we have:

dG=−SdT

1.7.28

1.7.1

1.7.28 1.7.28

dG= V dP (1.7.29)

= V( )
∂G

∂P T

(1.7.30)

1.7.29 i f

ΔG= V dP∫
Pf

Pi

(1.7.31)

1.7.31

ΔG= V ΔP (1.7.32)

1.7.32

1.7.31

ΔG

ΔG

ΔG

=

=

=

dP∫
Pf

Pi

nRT

P

nRT ∫
Pf

Pi

dP

P

nRT ln( )
Pf

Pi

(1.7.33)

i
o 1.7.33

G= +nRT ln( )G∘ P

1 bar
(1.7.34)

1.7.2

 Example 1.7.1

S = −( )∂G
∂T P

1.7.28
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or, solving for S:

1.7.8: Practice Problems 

Problem : Starting with equation , show that temperature has the thermodynamic definitions .

Problem : Assume we have 2.00 moles of ideal gas at 20.0 mbar and 37.0  and compress it to 100. mbar while keeping
the temperature constant. What is the change in the free energy of this sample?

1.7: The Gibbs and Helmholtz Energy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

1.6: The Gibbs and Helmholtz Energy by Serge L. Smirnov and James McCarty is licensed CC BY-NC-SA 4.0.

S = −( )∂G
∂T P

1.7.1 1.7.23 T = ( )∂U
∂S V

1.7.2 Co
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