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1.10.5: The Clausius-Clapeyron Equation

1.10.5.1: Evaporation 

In Section 23.3, the Clapeyron Equation was derived for melting points.

However, our argument is actually quite general and should hold for vapor equilibria as well. The only problem is that the molar volume of gases are by no means so nicely constant as they are for
condensed phases. (i. e., for condenses phases, both  and  are pretty small).

We can write:

as

we can approximate

by just taking . Further more if the vapor is considered an ideal gas, then

We get

Equation  is known as the Clausius-Clapeyron equation. We can further work our the integration and find the how the equilibrium vapor pressure changes with temperature:

Thus if we know the molar enthalpy of vaporization we can predict the vapor lines in the diagram. Of course the approximations made are likely to lead to deviations if the vapor is not ideal or very
dense (e.g., approaching the critical point).

1.10.5.2: The Clapeyron Equation 

The Clapeyron attempts to answer the question of what the shape of a two-phase coexistence line is. In the  plane, we see the a function , which gives us the dependence of  on  along
a coexistence curve.

Consider two phases, denoted  and , in equilibrium with each other. These could be solid and liquid, liquid and gas, solid and gas, two solid phases, et. Let  and  be the chemical
potentials of the two phases. We have just seen that

Next, suppose that the pressure and temperature are changed by  and . The changes in the chemical potentials of each phase are

However, since , the molar free energy , which is , is also just equal to the chemical potential

Moreover, the derivatives of  are

Applying these results to the chemical potential condition in Equation , we obtain

\[\begin{align} \left( \dfrac{\partial \bar{G}_\alpha}{\partial P} \right)_T dP + \left( \dfrac{\partial \bar{G}_\alpha}{\partial T} \right)_P dT &= \left( \dfrac{\partial \bar{G}_\beta}{\partial P}
\right)_T dP + \left( \dfrac{\partial \bar{G}_\beta}{\partial T} \right)_P dT \

Dividing through by , we obtain

\[\begin{align} \bar{V}_\alpha \dfrac{\partial P}{\partial T} - \bar{S}_\alpha &= \bar{V}_\beta \dfrac{\partial P}{\partial T} - \bar{S}_\beta \

\[5pt] (\bar{V}_\alpha - \bar{V}_\beta) \dfrac{\partial P}{\partial T} &= \bar{S}_\alpha - \bar{S}_\beta \

The importance of the quantity  is that is represents the slope of the coexistence curve on the phase diagram between the two phases. Now, in equilibrium , and since , it
follows that  at fixed . In the narrow temperature range in which the two phases are in equilibrium, we can assume that  is independent of , hence, we can write .
Consequently, we can write the molar entropy difference as

and the pressure derivative  becomes
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5pt] \bar{V}_\alpha dP - \bar{S}_\alpha dT &= \bar{V}_\beta dP - \bar{S}_\beta dT \end{align} \label{14.5}

dT

5pt] \dfrac{dP}{dT} &= \dfrac{\bar{S}_\alpha - \bar{S}_\beta}{\bar{V}_\alpha - \bar{V}_\beta} \end{align} \label{14.6}
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a result known as the Clapeyron equation, which tells us that the slope of the coexistence curve is related to the ratio of the molar enthalpy between the phases to the change in the molar volume
between the phases. If the phase equilibrium is between the solid and liquid phases, then  and  are  and , respectively. If the phase equilibrium is between the liquid and gas
phases, then  and  are  and , respectively.

For the liquid-gas equilibrium, some interesting approximations can be made in the use of the Clapeyron equation. For this equilibrium, Equation  becomes

In this case, , and we can approximate Equation  as

Suppose that we can treat the vapor phase as an ideal gas. Certainly, this is not a good approximation so close to the vaporization point, but it leads to an example we can integrate. Since 
, , Equation  becomes

\[\begin{align} \dfrac{dP}{dT} &= \dfrac{\Delta \bar{H}_\text{vap} P}{RT^2} \

\[5pt] \dfrac{1}{P} \dfrac{dP}{dT} &= \dfrac{\Delta \bar{H}_\text{vap}}{RT^2} \

which is called the Clausius-Clapeyron equation. We now integrate both sides, which yields

where  is a constant of integration. Exponentiating both sides, we find

which actually has the wrong curvature for large , but since the liquid-vapor coexistence line terminates in a critical point, as long as  is not too large, the approximation leading to the above
expression is not that bad.

If we, instead, integrate both sides, the left from  to , and the right from  to , we find

\[\begin{align} \int_{P_1}^{P_2} d \: \text{ln} \: P &= \int_{T_1}^{T_2} \dfrac{\Delta \bar{H}_\text{vap}}{RT^2} dT \

\[5pt] \text{ln} \: \left( \dfrac{P_2}{P_1} \right) &= -\dfrac{\Delta \bar{H}_\text{vap}}{R} \left( \dfrac{1}{T_2} - \dfrac{1}{T_1} \right) \

assuming that  is independent of . Here  is the pressure of the liquid phase, and  is the pressure of the vapor phase. Suppose we know  at a temperature , and we want to know 
at another temperature . The above result can be written as

Subtracting the two results, we obtain

so that we can determine the vapor pressure at any temperature if it is known as one temperature.

In order to illustrate the use of this result, consider the following example:

At , the boiling point of water is . At what pressure does water boil at ? Take the heat of vaporization of water to be .

Solution
Let  and . Take , and we need to calculate . Substituting in the numbers, we find

\[\begin{align} \text{ln} \: P_2(\text{bar}) &= -\dfrac{(40.65 \: \text{kJ/mol})(1000 \: \text{J/kJ})}{8.3145 \: \text{J/mol} \cdot \text{K}} \left( \dfrac{1}{473 \: \text{K}} - \dfrac{1}{373 \:
\text{K}} \right) = 2.77 \

1.10.5.3: The Clapeyron Equation 

The Clapeyron attempts to answer the question of what the shape of a two-phase coexistence line is. In the  plane, we see the a function , which gives us the dependence of  on  along
a coexistence curve.

Consider two phases, denoted  and , in equilibrium with each other. These could be solid and liquid, liquid and gas, solid and gas, two solid phases, et. Let  and  be the chemical
potentials of the two phases. We have just seen that

Next, suppose that the pressure and temperature are changed by  and . The changes in the chemical potentials of each phase are

However, since , the molar free energy , which is , is also just equal to the chemical potential

Moreover, the derivatives of  are

Applying these results to the chemical potential condition in Equation , we obtain
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5pt] \dfrac{d \: \text{ln} \: P}{dT} &= \dfrac{\Delta \bar{H}_\text{vap}}{RT^2} \end{align} \label{14.11}
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 Example 1.10.5.1

1 bar 373 K 473 K 40.65 kJ/mol

= 1 barP1 = 373 KT1 = 473 KT2 P2

5pt] P_2(\text{bar}) &= (1 \: \text{bar}) \: e^{2.77} = 16 \: \text{bar} \end{align}
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Dividing through by , we obtain

The importance of the quantity  is that is represents the slope of the coexistence curve on the phase diagram between the two phases. Now, in equilibrium , and since , it
follows that  at fixed . In the narrow temperature range in which the two phases are in equilibrium, we can assume that  is independent of , hence, we can write .
Consequently, we can write the molar entropy difference as

and the pressure derivative  becomes

a result known as the Clapeyron equation, which tells us that the slope of the coexistence curve is related to the ratio of the molar enthalpy between the phases to the change in the molar volume
between the phases. If the phase equilibrium is between the solid and liquid phases, then  and  are  and , respectively. If the phase equilibrium is between the liquid and gas
phases, then  and  are  and , respectively.

For the liquid-gas equilibrium, some interesting approximations can be made in the use of the Clapeyron equation. For this equilibrium, Equation  becomes

In this case, , and we can approximate Equation  as

Suppose that we can treat the vapor phase as an ideal gas. Certainly, this is not a good approximation so close to the vaporization point, but it leads to an example we can integrate. Since 
, , Equation  becomes

which is called the Clausius-Clapeyron equation. We now integrate both sides, which yields

where  is a constant of integration. Exponentiating both sides, we find

which actually has the wrong curvature for large , but since the liquid-vapor coexistence line terminates in a critical point, as long as  is not too large, the approximation leading to the above
expression is not that bad.

If we, instead, integrate both sides, the left from  to , and the right from  to , we find

assuming that  is independent of . Here  is the pressure of the liquid phase, and  is the pressure of the vapor phase. Suppose we know  at a temperature , and we want to know 
at another temperature . The above result can be written as

Subtracting the two results, we obtain

so that we can determine the vapor pressure at any temperature if it is known as one temperature.

In order to illustrate the use of this result, consider the following example:

At , the boiling point of water is . At what pressure does water boil at ? Take the heat of vaporization of water to be .

Solution
Let  and . Take , and we need to calculate . Substituting in the numbers, we find
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dP/dT dG= 0 G= H −TS

dH = T dS T H T S = H/T

\bar{S}_\alpha - \bar{S}_\beta = \dfrac{\bar{H}_\alpha - \bar{H}_\beta}{T} \label{14.7}

dP/dT

\dfrac{dP}{dT} = \dfrac{\bar{H}_\alpha - \bar{H}_\beta}{T (\bar{V}_\alpha - \bar{V}_\beta)} = \dfrac{\Delta_{\alpha \beta} \bar{H}}{T \Delta_{\alpha \beta} \bar{V}} \label{14.8}

ΔαβH̄ ΔαβV̄ ΔH̄fus ΔV̄ fus

ΔαβH̄ ΔαβV̄ ΔH̄vap ΔV̄ vap

1.10.5.8

\dfrac{dP}{dT} = \dfrac{\Delta \bar{H}_\text{vap}}{T (\bar{V}_g - \bar{V}_l)} \label{14.9}
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\text{ln} \: \left( \dfrac{P_3}{P_1} \right) = -\dfrac{\Delta \bar{H}_\text{vap}}{R} \left( \dfrac{1}{T_3} - \dfrac{1}{T_1} \right) \label{14.13}

\text{ln} \: \left( \dfrac{P_2}{P_3} \right) = -\dfrac{\Delta \bar{H}_\text{vap}}{R} \left( \dfrac{1}{T_2} - \dfrac{1}{T_3} \right) \label{14.14}

 Example 1.10.5.1

1 bar 373 K 473 K 40.65 kJ/mol

= 1 barP1 = 373 KT1 = 473 KT2 P2
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Apply the Clausius-Clapeyron equation to estimate the vapor pressure at any temperature.
Estimate the heat of phase transition from the vapor pressures measured at two temperatures.

The vaporization curves of most liquids have similar shapes with the vapor pressure steadily increasing as the temperature increases (Figure ).

Figure : The Vapor Pressures of Several Liquids as a Function of Temperature. The point at which the vapor pressure curve crosses the P = 1 atm line (dashed) is the normal boiling point of
the liquid. (CC BY-SA-NC 3.0; Anonymous)

A good approach is to find a mathematical model for the pressure increase as a function of temperature. Experiments showed that the vapor pressure  and temperature  are related,

where  is the Enthalpy (heat) of Vaporization and  is the gas constant (8.3145 J mol  K ).

A simple relationship can be found by integrating Equation  between two pressure-temperature endpoints:

where  and  are the vapor pressures at two temperatures  and . Equation  is known as the Clausius-Clapeyron Equation and allows us to estimate the vapor pressure at another
temperature, if the vapor pressure is known at some temperature, and if the enthalpy of vaporization is known.

The order of the temperatures in Equation  matters as the Clausius-Clapeyron Equation is sometimes written with a negative sign (and switched order of temperatures):

The vapor pressure of water is 1.0 atm at 373 K, and the enthalpy of vaporization is 40.7 kJ mol . Estimate the vapor pressure at temperature 363 and 383 K respectively.

Solution
Using the Clausius-Clapeyron equation (Equation ), we have:

Note that the increase in vapor pressure from 363 K to 373 K is 0.303 atm, but the increase from 373 to 383 K is 0.409 atm. The increase in vapor pressure is not a linear process.

Discussion
We can use the Clausius-Clapeyron equation to construct the entire vaporization curve. There is a deviation from experimental value, that is because the enthalpy of vaporization varies slightly
with temperature.

The Clausius-Clapeyron equation can be also applied to sublimation; the following example shows its application in estimating the heat of sublimation.

The vapor pressures of ice at 268 K and 273 K are 2.965 and 4.560 torr respectively. Estimate the heat of sublimation of ice.

Solution
The enthalpy of sublimation is . Use a piece of paper and derive the Clausius-Clapeyron equation so that you can get the form:

ln (bar)P2

(bar)P2

= − ( − ) = 2.77
(40.65 kJ/mol)(1000 J/kJ)

8.3145 J/mol ⋅ K

1
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1
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= (1 bar) = 16 bare2.77
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 Example : Vapor Pressure of Water1.10.5.1

-1

1.10.5.30

P363 = 1.0 exp[−( )( − )]
40, 700

8.3145

1

363 K

1

373 K

= 0.697 atm

P383 = 1.0 exp[−( )( − )]
40, 700

8.3145

1

383 K

1

373 K

= 1.409 atm

 Example : Sublimation of Ice1.10.5.2
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Note that the heat of sublimation is the sum of heat of melting (6,006 J/mol at 0°C and 101 kPa) and the heat of vaporization (45,051 J/mol at 0 °C).

Show that the vapor pressure of ice at 274 K is higher than that of water at the same temperature. Note the curve of vaporization is also called the curve of evaporization.

Calculate  for ethanol, given vapor pressure at 40 C = 150 torr. The normal boiling point for ethanol is 78 C.

Solution
Recognize that we have TWO sets of  data:

Set 1: (150 torr at 40+273K)
Set 2: (760 torr at 78+273K)

We then directly use these data in Equation 

Then solving for 

It is important to not use the Clausius-Clapeyron equation for the solid to liquid transition. That requires the use of the more general Clapeyron equation

where  and  is the molar change in enthalpy (the enthalpy of fusion in this case) and volume respectively between the two phases in the transition.
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 Exercise 1.10.5.2

 Example : Vaporization of Ethanol1.10.5.3
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ΔHvap = 3.90 ×  joule/mole104

= 39.0 kJ/mole

 Advanced Note
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