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1.9: Phase Equilibria and Mixtures

Template:DraftBanner
Based on "Equilibria in Biochemical Systems" by Serge L. Smirnov and James McCarty, LibreTexts is licensed under CC BY-NC-SA .

In this chapter we extend the concept of the Gibbs energy to phase transitions and mixtures. In the case of mixtures, the number of moles of
the different components can change as a result of a chemical reaction or a phase transition. The partial molar Gibbs energy or chemical
potential can be used to determine the spontaneity a process. We first derive an expression for the chemical potential. Then we will consider
the impacts of pressure and temperature and use that to understand phase transitions, vapor pressure of volatile liquids, and ideal solutions.
We then introduce the concept of the activity to write a general expression for the chemical potential.

4 Learning Objectives

o Know the definition of the chemical potential as the partial molar Gibbs energy, and be able to analyze the spontaneity of a phase
transition based on the change in chemical potential.

o Be able to use the chemical potential to calculate the change in Gibbs energy for a process involving changing number of moles.

o Understand how to model the shapes of the phase boundaries in a pressure versus temperature phase diagram.

o Understand the definition of the activity and how it can be used to describe both ideal and real solutions.

1.9.1: Gibbs energy and phase equilibria

For a phase transition in equilibrium at the phase transition temperature, such as the freezing of liquid water at 0 °C, the process is reversible.
At equilibrium, the change in the molar Gibbs energy AG,o10 = 0, meaning that if two phases are at equilibrium,

Grolar(80lid) = Grpiar(liquid) (1.9.1)

Notice here that the molar Gibbs energy is the same for the two phases. The molar Gibbs energy is an intensive variable (Gibbs energy per
mole). We must use the molar Gibbs energy because the phase equilibrium is independent of the amount of substance. For example, we
could have a small ice cube in equilibrium with a large volume of water at 0 °C.

If we have multiple species in our system, the intensive variable of interest is the partial molar Gibbs energy that is defined for the i
component of the system as:

Gmolar,i = ( oG ) (192)
ani T,P,n;

where n; is the number of moles of the i component, and n; is the number of moles of all the other components in the system. The total
Gibbs energy is a function of the number of moles of each species:

G =Y niGrmolari (1.9.3)

The partial molar Gibbs, Goiar,; also shows how infinitesimal changes in the Gibbs energy, dG, depend on infinitesimal changes in the
number of moles of a component (ny, ny, ...):

dG = Gmolar,ldnl + Gmolm«,ang —+... (1.9.4)
1.9.2: The chemical potential

Because the partial molar Gibbs is used so often when considering equilibria, we give this quantity a special name called the chemical
potential which gets the Greek symbol 1, and we write the chemical potential of the i component as:

oG
Hi = GmolaT,i - (anl )T,Pvnj (195)

Substituting into Equation 1.9.4 gives:

%

Consider the spontaneous transfer of some moles of a molecule from state A to state B as shown in figure 1.9.1 .
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Figure 1.9.1 The conversion of a molecule from state A into state B. The number of moles converted from state A into state B is given by
dnB, and is equal and opposite to dnA.

The change in the number of moles in state A, dna will be equal and opposite to the change in the number of moles in state B, dng, so we
can write the total change in Gibbs energy from equation 1.9.6 as

dG = padny +ppdnp = (up — pa)dnp (1.9.7)

We now ask ourselves, when will the transition from state A into state B become spontaneous? For a spontaneous process dG < 0. Thus, the
transition of dng moles from state A to state B, will be spontaneous if

(LB —pa)dnp <0 = pp <piy (1.9.8)

We see that matter flows in the direction of lower chemical potential.

Key Result: Matter flows spontaneously from high chemical potential to low chemical potential. The flow of matter will continue until
the chemical potentials are equal, which is the equilibrium condition.

1.9.3: How does changes in conditions change G and thus p?

In order to determine how the equilibria between phases change as conditions change we need to understand the dependence of G (and thus
1) on state variables such as T and P.

1.9.3.1: Changes in pressure

Recall that:
(%)T:V (1.9.9)
or for p:
(55, = Voot (1.9.10)
For an ideal gas V41, depends on P :
(S_Z)T _ R_IT (1.9.11)

For incompressible liquids and solids V4 is a constant.

1.9.3.2: Changes in temperature

Recall that the fundamental differential relation for free energy is:

dG=VdP —SdT = dp = ViolardP — SmotardT (1.9.12)
If pressure is constant dP = 0 and and equation 1.9.12becomes:
ou
d/J' = _SmolaTdT = ar = _Smolar (1913)
oT ) p

1.9.4: Single species phase equilibria

The simplest use of these relations is to understand the shape of the curves in a pressure versus temperature phase diagram for a pure
substance. If we have two phases A and B equilibrium is when 4 = g . We need to understand how the combinations of P and T where
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this is true change.

1.9.4.1: Impact of changes in P

First, we consider how P impacts the values of £ at constant T. Since matter takes up space Vyoiar > 0 (equations 1.9.10and 1.9.11), u
increases with pressure (P). The slope of the increase is the constant V4, for solids and liquids, while for gases the slope is steepest at
lower pressures. Without knowing actual values of & we can sketch a p versus P diagram showing when the chemical potential of pairs of
phases are equal. At high pressure the most stable phase will be the one with the lowest V514, (highest density, usually the solid phase)
because as pressure increases that one will increase the least. In figure 1.9.2 this is indicated by the right most point on the line for p;.
Likewise the liquid phase will have a slightly higher y; indicated by the right most point on the line for g; in figure 1.9.2. The gas phase has
the highest 1, at high pressure, with a p that drops of more steeply as the pressure drops.
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Figure 1.9.2: Variation of u for solids, liquids and gases versus pressure. Each phase is stable in the region where p of that phase is lowest.
In this example only a little sliver near P = 0 favors the gas phase.

As seen in figure 1.9.2, this leads to the lowest pressure equilibrium occurring where the gas and liquid lines cross. The next equilibrium
occurs at a slightly higher pressure where the gas and solid lines cross. The final equilibrium occurs at the highest pressure between the
liquid and solid. As noted matter flows towards the lowest p. Thus figure 1.9.2 can be divided into three pressure regions demarcated by the
pressures of the equlibriums: 1) the lowest pressure region is where the gas phase is thermodynamically favored; 2) the middle pressure
region where the liquid phase is favored; and 3) the high pressure region where the solid phase is favored. Thus, if we started with a sample
in the gas phase and increased the pressure it would undergo a phase transition to the liquid phase at the left edge of the liquid region. The
chemical potential 4 would then follow the liquid line until reaching the right edge of the liquid region. The material then undergoes a phase
transition to the solid phase and follows the solid p line as the pressure increase more.

1.9.4.2: Impact of changes in T

Second, we consider how T impacts the values of £ at constant P. Since entropy is always greater than zero the slope of p (equation
1.9.13) is negative for all phases. As before, we can draw a qualitative diagram showing the relations of the chemical potentials as the
temperature is varied. At any temperature Spolar(9) > Smolar(l) > Smoiar(s) - Thus at low temperatures the most stable phase will be the
the solid; the next most stable the liquid and the least stable the gas. This relationship is indicated by the initial (leftmost) values of the y for
each phase in figure 1.9.3. Although entropy increases with temperature, so that the slopes of the curves should get more steeply negative, in
this diagram we assume the temperature range is small enough that \S,,,14, is nearly constant leading to linear behavior over the temperature
range plotted. Once again this leads to three places where two of the phases are in equilibrium and three regions of phase stability: 1) solid
stable at low temperature; 2) liquid stable in an intermediate range and 3) gas stable at the highest temperatures (see figure 1.9.3).
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Figure 1.9.3: Variation of y for solids, liquids and gases versus temperature. Each phase is stable in the region where p of that phase is
lowest. We hava assumed that the temperature range of this figure is small enough that the entropies of each phase is nearly constant, leading
to a nearly constant slope.

1.9.4.3: Pressure versus temperature phase diagrams

Typical phase diagrams for pure substances display curves in P-T space, where the curves indicate the boundaries between the phases.
Alternatively, you can think of the curves as representing the combinations of P and T where the neighboring phases A and B are in
equilibrium (x4 = pp ). To describe the shapes of these curves we require expressions for % along these boundaries. First we will derive
the generic relation and then examine the implications for the shape of each boundary.

Beginning with equation 1.9.12in its chemical potential form we note that chemical potentials of the two species must stay equal to stay on
the boundary. This means the the changes in the two chemical potentials must be equal:

d/J/A = Vmolar,AdP - Smolar,AdT = d/J/B = Vmolar,BdP - Smola.'r,BdT - Vmolar,AdP - Smolar,AdT = Vmolar,BdP (1914)
- Smolar,BdT

Rearranging the last expression to get the molar volumes on one side and the molar entropies on the other leads to:
Smolar,BdT - Smolar,AdT = Vmolar,BdP - Vmolar,AdP - (Smolar,B - Smola'r,A)dT = (Vmolar,B - Vmolar,A)dP (1915)

Notice that in equation 1.9.15the collected differences are just the changes in the molar entropy and volume on shifting phases. So this can
be rewritten as:

ASmolardT = Avaolm‘d-P (1916)
Dividing both sides by AV;,514- and dT yields an expression for the change in P for a change in T:

dP _ ASmolar _ Astrs
ﬁ N AVmolar B A‘/trs (1917)

where in the final version the subscript 'trs' stands for transition ('vap' for vaporization, 'fus' for melting, 'sub' for sublimation). This is the

fundamental form of the Clapyron equation. A very useful alternative form of this equation makes use of the fact that when P and T are

Aft” . Substituting this into equation 1.9.17yields:

trs

constant (at a particular equilibrium point on the boundary) AS,.s =

dP AHy,

—_—= 1.9.1
dT ~ Tpu AV (1.9.18)

With this expression we can estimate the slope at any point along a phase boundary given enthalpy, temperature and molar volume change or
a way to estimate them.

Carbon dioxide exhibits a phase diagram (figure 1.9.4) that is typical of substances that exist as solids, liquids and gases between a 0 and a
few hundred atmospheres of pressure and between temperatures that are easily achieved in the lab. Thus it is a good example to keep in mind
as we look at the slopes of the phase boundaries.
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Figure 1.9.4 Phase diagram of CO,. This is an example of a typical phase diagram.

1.9.4.4: Solid — liquid phase boundary

In most cases Vmolar(solid) < Vipelar(liquid) so AV, > 0. Also AHy,.; > 0. Since temperature is also positive, equation 1.9.18implies that
the solid - liquid coexistence boundary will have a positive slope. As the enthalpy and volume change are nearly constant with pressure and
temperature the slope will slowly decrease as the temperature increases. In the part of the CO, phase diagram shown in figure 1.9.4 this
phase boundary appears to grow linearly. This is because the ratio 2—5 is so large that the temperature changes little in the pressure range
considered. We can rearrange 1.9.18and integrate to get an expression for the change in P for a given change in T assuming % is constant:

dP AH AH
= P=——dT 1.9.1
TN TN (1.9.19)
so, assuming constant enthalpy and volume changes:
P T T
[ ar=] A gp — ap=2H [T (1.9.20)
P, 1, TAV AV Jr, T
which integrates to:
AH T
AP =—— - 1.9.21
AV In (T1 ) (1.9.21)

So given a starting point on the curve we can estimate nearby P and T combinations on the curve.

Note that water has a solid - liquid phase boundary with a negative slope because V. (ice) > V. (water); thus AV <0 (see figure
1.9.5).
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Figure 1.9.5: Two Versions of the Phase Diagram of Water. (a) In this graph with linear temperature and pressure axes, the boundary
between ice and liquid water is almost vertical. (b) This graph with an expanded scale illustrates the decrease in melting point with
increasing pressure.

1.9.4.5: Liquid — gas and solid — gas phase boundaries

In this case Viglar(g) is much greater than Vigla(l) or Vipolar(s). For example near room temperature the molar volume of liquid water is
about 18 mL, while the molar volume of gaseous water is about 800 L. So Vihjar(g) is around 40000 times larger than that of the liquid or
solid. Thus, to within about 1 part in 10%:

AV;frs = Vmolar (g) - Vmolm‘ (S or 1) ~ Vmolar (g) (1922)
Substituting this into the Clapyron equation 1.9.18and assuming the gas behaves ideally, V;,,514r = % , yields:

dP  AH,, _ PAH,,
ar fI'tTS Vmolar (g) RT?

(1.9.23)

Collecting all the Ps on one side and Ts on the other allows us to integrate one side versus P and the other versus T. First consider the
indefinite integral:

dP [ AH,, _ _AH

where we have collected the constants of integration from both sides into C. Exponentiating both sides and calling e¢ C' gives us an
expression for the temperature dependence of P along the phase boundary:

_AH _
P=C'exp <R—T) =l (1.9.25)

So, we expect to see exponentially increasing curves. These terminate at the triple and critical points, so do not blow up. We can also do the
definite integrals of equation 1.9.23, which yields the most commonly used form of the Clausius-Clapyron equation:

P, —-AH (1 1
m(=2) = - _ 1.9.2
n<P1> R <T2 Tl) (1.9:26)
Vapor pressure of a pure substance

Equations 1.9.25and 1.9.26also show how the vapor pressure of a pure substance varies with temperature.

NOTE: keep in mind that the assumption that A H,,, is constant means that the equation is only valid over relatively small temperature
changes. For larger changes the the variation must be taken into account, usually by measuring the values experimentally.

1.9.5: Mixtures

For a multi-component system of ideal gases, chemical potential for each component is related to the partial pressure P; of each species
compared to the standard potential at 1 bar. Rearranging and integrating equation 1.9.11we get:

https://chem.libretexts.org/@go/page/512047


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/512047?pdf

LibreTextsm

P, P,
i i RT P
= —dP Ap=RT == 1.9.2
/odu /o Pd = Ap Rln(PO) (1.9.27)
Adding this to the standard chemical potential of the species u? yields:
— 1% + RTI b 1.9.28
pi = pi +RTIn | 55 (1.9.28)

P;
P

pressure of the gas and p? is the standard chemical potential of component i when its partial pressure is 1 bar.

Key Result: For a mixture of ideal gases, the chemical potential of the i species is p; = u® + RTIn ( ) where P; is the partial

1.9.6: Thermodynamics of mixing volatile liquids

Figure 1.9.6 shows a pure liquid at equilibrium with its vapor in a closed container.

@ x
. /J’vapor

*
Pliquid

Figure 1.9.6

Since the system is at equilibrium the chemical potentials are equal:
Woapor = Miiquid (1.9.29)

where the asterisk (*) indicates a pure substance. From equation 1.9.28for the gas phase we can write:

P*
:u’;apor = N;iquid = ,Ufgapor + RTIn < po ) (1930)

where P* is the vapor pressure and 194, is the chemical potential at P° = 1 bar.

Now consider a mixture of volatile liquids as shown in figure 1.9.7

Py =z,P*

° °o°
o ‘o
o'o”o"‘
0e0e° g
o 090 O

pal(g)

pa(l)

Figure 1.9.7

Since both components are in equilibrium with their vapors, the chemical potential for each component is still equal in the two phases. For
example, for component A, we have:

Py
) = ale) = 5(0) + BT (7 ) (1.9.31)
where Py is the partial pressure of vapor A. Because, p3qpor = 1£% (g) , we subtract equation 1.9.30from equation 1.9.31 to obtain:
. Py P . Py
pa(l)-py (1) = RTIn(F) —RTln( Po ) = pa(l) = py (1) —|—RTln( P; ) (1.9.32)

Thus, from equation 1.9.32 the chemical potential of a liquid in a mixture, pa(l), is given in terms of the chemical potential of the pure

liquid (%, (1)) and the ratio of the vapor pressure in the pure state over the vapor pressure in the mixture.
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The relationship between the two vapor pressures in equation is given by Raoult’s law which states that the vapor pressure of a substance in
a mixture is the product of its vapor pressure as a pure liquid and its mole fraction:

Py Z:EAP;{ (1.9.33)

where x4 is the mole fraction of component A in the mixture. Inserting equation 1.9.33 into equation 1.9.32 gives the final expression for
the chemical potential of a liquid in an ideal mixture:

pa(l) = p (1) + RTIn(z4) (1.9.34)

Raoult's law is based on a lifetime of work measuring vapor pressures (partial pressures) of liquid vapor above solutions by F. Raoult in
the 1800s. It is only valid for solutions that behave ideally or are very dilute (x, % 1).

Very dilute conditions are met when the volatile liquid of interest is in large excess (often the case for the solvent in a solution). The
closer the mole fraction of the solvent is to 1, the more ideally it behaves. There are some cases where the two species being mixed are
similar enough that ideal behavior is seen for all mole fractions. An example where ideal behavior is seen at all concentrations is when
mixing benzene and methylbenzene.

Physical interpretation of Raoult's law: For an ideal mixture of two substances the fraction of each substance at the surface will be
their mole fractions. This means that the chance a molecule of a substance can escape the surface will be reduced from the pure case by
a factor of its mole fraction.

Thermodynamic interpretation of Raoult's law: A mixture has a higher entropy than a pure substance. This reduces the propensity of
liquid molecules escaping into the gas phase to increase their entropy.

See Practice Problems 1.9.4and 1.9.5.

1.9.7: Thermodynamics of ideal solutions

For the case of a solute dissolved in a solvent (liquid), the chemical potential of the solvent is the same as for a mixture of volatile liquids:
Wsolvent(l) = u:olvem(l) 4+ RT In 2 so1pent (1.9.35)

For the case of the solute, it is often more convenient to express the chemical potential in terms of the molality m defined as

moles of solute

lality =
oMM = nass of solvent in kg
For the solute, the chemical potential is:
Msolute
protute () = 1315, (1) + RT I 222 ) (1.9.36)

Note here the careful choice of the reference state for the solute. The references state is defined as a state of unit molality where m® = 1 mol
kgL
1.9.8: Thermodynamics of real solutions

Under realistic conditions such as inside a cell or in a body of surface water (oceans and most lakes and streams) the conditions are far from
that of an ideal solution. To account for more realistic conditions while maintaining the mathematical formulations as clost to what we have
derived as possible we write the chemical potential of a species as:

pi = pg +RTIna; (1.9.37)
where ai is called the activity and poi is a reference state. For real solutions, the activity is given as
a; =vi(mi/m°) (1.9.38)

where vy; is called the activity coefficient that is a measure of the deviation from ideality. For an ideal solution, y=1 and a; = % Table
1.9.1 summarizes the expression of the activity and standard state for various substances. Note that for a pure sold and a pure liquid the
activity is one.

Table 1.9.1 Activity and standard state for various substances.

Substance Standard State (11°) activity (a)

solid pure solid, 1 bar 1
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Substance Standard State (p°) activity (a)
liquid pure liquid, 1 bar 1

gas pure gas, 1 bar P*/(1 bar)
solvent pure solvent mole fraction x;
ideal solute molality of 1 mol kg™t o

real solution molality of 1 mol kg™" vi(m; /m°)

1.9.9: Practice Problems

Problem 1.9.1. At high pressure, graphite (density p=2.25 g/cm?3) can be spontaneously converted into diamond (density p=3.51 g/cm?3)
through a solid-to-solid phase transition:

C (graphite) — C (diamond)

At 1 atm of pressure the standard molar Gibbs energy of this reaction is AG°=2.84 kJ/mol. At what pressure does the reaction become
spontaneous (i.e. at what pressure does AG;41,=0)?

Problem 1.9.2. Consider the reversible freezing of liquid water into ice at a constant temperature of 0 °C and constant pressure of 1 atm.
H,O (1) ~ HyO(g)0°C

Show that AG for this process is 0. (Hint: use the relation AG = AH-TAS).

Problem 1.9.3. Which of the following has a higher chemical potential? (If neither, answer “same”)

(a) H,O (1) or H,O (s) at water’s normal melting point (0 °C).

(b) HyO (1) or HyO (s) at -5 °C and 1 bar.

Problem 1.9.4. Which would have the higher chemical potential? Benzene at 25 °C and 1 bar or benzene in a 0.1 M toluene solution at 25
°C and 1 bar.

Problem 1.9.5. Calculate the chemical potential of ethanol in solution relative to that of pure ethanol when its mole fraction is 0.40 at its
boiling point (78.3 °C.)
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