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3.3: Standard Reduction Potentials

To use redox potentials to predict whether a reaction is spontaneous.
To balance redox reactions using half-reactions.

In a galvanic cell, current is produced when electrons flow externally through the circuit from the anode to the cathode because of a
difference in potential energy between the two electrodes in the electrochemical cell. In the Zn/Cu system, the valence electrons in
zinc have a substantially higher potential energy than the valence electrons in copper because of shielding of the s electrons of zinc
by the electrons in filled d orbitals. Hence electrons flow spontaneously from zinc to copper(II) ions, forming zinc(II) ions and
metallic copper. Just like water flowing spontaneously downhill, which can be made to do work by forcing a waterwheel, the flow
of electrons from a higher potential energy to a lower one can also be harnessed to perform work.

Figure : Potential Energy Difference in the Zn/Cu System. The potential energy of a system consisting of metallic  and
aqueous Cu  ions is greater than the potential energy of a system consisting of metallic Cu and aqueous  ions. Much of this
potential energy difference is because the valence electrons of metallic Zn are higher in energy than the valence electrons of
metallic Cu. Because the Zn(s) + Cu (aq) system is higher in energy by 1.10 V than the Cu(s) + Zn (aq) system, energy is
released when electrons are transferred from Zn to Cu  to form Cu and Zn .

Because the potential energy of valence electrons differs greatly from one substance to another, the voltage of a galvanic cell
depends partly on the identity of the reacting substances. If we construct a galvanic cell similar to the one in part (a) in Figure 
but instead of copper use a strip of cobalt metal and 1 M Co  in the cathode compartment, the measured voltage is not 1.10 V but
0.51 V. Thus we can conclude that the difference in potential energy between the valence electrons of cobalt and zinc is less than
the difference between the valence electrons of copper and zinc by 0.59 V.

The measured potential of a cell also depends strongly on the concentrations of the reacting species and the temperature of the
system. To develop a scale of relative potentials that will allow us to predict the direction of an electrochemical reaction and the
magnitude of the driving force for the reaction, the potentials for oxidations and reductions of different substances must be
measured under comparable conditions. To do this, chemists use the standard cell potential (E° ), defined as the potential of a
cell measured under standard conditions—that is, with all species in their standard states (1 M for solutions, concentrated solutions
of salts (about 1 M) generally do not exhibit ideal behavior, and the actual standard state corresponds to an activity of 1 rather than
a concentration of 1 M. Corrections for non ideal behavior are important for precise quantitative work but not for the more
qualitative approach that we are taking here. 1 atm for gases, pure solids or pure liquids for other substances) and at a fixed
temperature, usually 25°C.

Measured redox potentials depend on the potential energy of valence electrons, the
concentrations of the species in the reaction, and the temperature of the system.
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Measuring Standard Electrode Potentials
It is physically impossible to measure the potential of a single electrode: only the difference between the potentials of two
electrodes can be measured (this is analogous to measuring absolute enthalpies or free energies; recall that only differences in
enthalpy and free energy can be measured.) We can, however, compare the standard cell potentials for two different galvanic cells
that have one kind of electrode in common. This allows us to measure the potential difference between two dissimilar electrodes.
For example, the measured standard cell potential (E°) for the Zn/Cu system is 1.10 V, whereas E° for the corresponding Zn/Co
system is 0.51 V. This implies that the potential difference between the Co and Cu electrodes is 1.10 V − 0.51 V = 0.59 V. In fact,
that is exactly the potential measured under standard conditions if a cell is constructed with the following cell diagram:

This cell diagram corresponds to the oxidation of a cobalt anode and the reduction of Cu  in solution at the copper cathode.

All tabulated values of standard electrode potentials by convention are listed for a reaction written as a reduction, not as an
oxidation, to be able to compare standard potentials for different substances (Table P1). The standard cell potential (E° ) is
therefore the difference between the tabulated reduction potentials of the two half-reactions, not their sum:

In contrast, recall that half-reactions are written to show the reduction and oxidation reactions that actually occur in the cell, so the
overall cell reaction is written as the sum of the two half-reactions. According to Equation , when we know the standard
potential for any single half-reaction, we can obtain the value of the standard potential of many other half-reactions by measuring
the standard potential of the corresponding cell.

Figure : The Standard Hydrogen Electrode. The SHE consists of platinum wire that is connected to a Pt surface in contact
with an aqueous solution containing 1 M H  in equilibrium with H  gas at a pressure of 1 atm. In the molecular view, the Pt surface
catalyzes the oxidation of hydrogen molecules to protons or the reduction of protons to hydrogen gas. (Water is omitted for clarity.)
The standard potential of the SHE is arbitrarily assigned a value of 0 V.

Although it is impossible to measure the potential of any electrode directly, we can choose a reference electrode whose potential is
defined as 0 V under standard conditions. The standard hydrogen electrode (SHE) is universally used for this purpose and is
assigned a standard potential of 0 V. It consists of a strip of platinum wire in contact with an aqueous solution containing 1 M H .
The [H ] in solution is in equilibrium with H  gas at a pressure of 1 atm at the Pt-solution interface (Figure ). Protons are
reduced or hydrogen molecules are oxidized at the Pt surface according to the following equation:

One especially attractive feature of the SHE is that the Pt metal electrode is not consumed during the reaction.

C ∣ C (aq, 1M) ∥ C (aq, 1M) ∣ Cu(s)  E° = 0.59 Vo(s) o2+ u2+ (3.3.1)
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Figure : Determining a Standard Electrode Potential Using a Standard Hydrogen Electrode. The voltmeter shows that the
standard cell potential of a galvanic cell consisting of a SHE and a Zn/Zn  couple is  = 0.76 V. Because the zinc electrode in
this cell dissolves spontaneously to form Zn (aq) ions while H (aq) ions are reduced to H  at the platinum surface, the standard
electrode potential of the Zn /Zn couple is −0.76 V.

Figure  shows a galvanic cell that consists of a SHE in one beaker and a Zn strip in another beaker containing a solution of
Zn  ions. When the circuit is closed, the voltmeter indicates a potential of 0.76 V. The zinc electrode begins to dissolve to form
Zn , and H  ions are reduced to H  in the other compartment. Thus the hydrogen electrode is the cathode, and the zinc electrode is
the anode. The diagram for this galvanic cell is as follows:

The half-reactions that actually occur in the cell and their corresponding electrode potentials are as follows:

cathode:

anode:

overall:

We then use Equation  to calculate the cell potential

Although the reaction at the anode is an oxidation, by convention its tabulated E° value is reported as a reduction potential. The
potential of a half-reaction measured against the SHE under standard conditions is called the standard electrode potential for that
half-reaction. In this example, the standard reduction potential for Zn (aq) + 2e  → Zn(s) is −0.76 V, which means that the
standard electrode potential for the reaction that occurs at the anode, the oxidation of Zn to Zn , often called the Zn/Zn  redox
couple, or the Zn/Zn  couple, is −(−0.76 V) = 0.76 V. We must therefore subtract E°  from E°  to obtain
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Because electrical potential is the energy needed to move a charged particle in an electric field, standard electrode potentials for
half-reactions are intensive properties and do not depend on the amount of substance involved. Consequently, E° values are
independent of the stoichiometric coefficients for the half-reaction, and, most important, the coefficients used to produce a
balanced overall reaction do not affect the value of the cell potential.

E° values do NOT depend on the stoichiometric coefficients for a half-reaction, because it
is an intensive property.

The Standard Hydrogen Electrode (SHE): The Standard Hydrogen Electrode (SHE)(opens in new window) [youtu.be]

Standard Electrode Potentials
To measure the potential of the Cu/Cu  couple, we can construct a galvanic cell analogous to the one shown in Figure  but
containing a Cu/Cu  couple in the sample compartment instead of Zn/Zn . When we close the circuit this time, the measured
potential for the cell is negative (−0.34 V) rather than positive. The negative value of  indicates that the direction of
spontaneous electron flow is the opposite of that for the Zn/Zn  couple. Hence the reactions that occur spontaneously, indicated by
a positive , are the reduction of Cu  to Cu at the copper electrode. The copper electrode gains mass as the reaction proceeds,
and H  is oxidized to H  at the platinum electrode. In this cell, the copper strip is the cathode, and the hydrogen electrode is the
anode. The cell diagram therefore is written with the SHE on the left and the Cu /Cu couple on the right:

The half-cell reactions and potentials of the spontaneous reaction are as follows:

Cathode:

Anode:

Overall:

We then use Equation  to calculate the cell potential

Thus the standard electrode potential for the Cu /Cu couple is 0.34 V.

The Standard hydrogen electrode (SHE)The Standard hydrogen electrode (SHE)

2+ 3.3.3
2+ 2+

E°cell
2+

E°cell 2+

2
+

2+

P ∣ (g, 1atm) ∣ (aq, 1 M) ∥ C (aq, 1M) ∣ Ct(s) H2 H+ u2+ u(s) (3.3.8)

C (aq) +2 → C E = 0.34 Vu2+ e− u(g) °cathode (3.3.9)

→ 2 +2 E = 0 VH2(g) H+
(aq)

e− °anode (3.3.10)

+C → 2 +CH2(g) u2+
(aq)

H+
(aq)

u(s) (3.3.11)

3.3.2

E°cell = E −E°cathode °anode

= 0.34 V

2+

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/506739?pdf
https://youtu.be/GS-SE7IDDtY
https://www.youtube.com/watch?v=GS-SE7IDDtY
https://www.youtube.com/watch?v=GS-SE7IDDtY


3.3.5 https://chem.libretexts.org/@go/page/506739

Electrode Potentials and ECell: Electrode and Potentials and Ecell(opens in new window) [youtu.be]

Balancing Redox Reactions Using the Half-Reaction Method

In Section 4.4, we described a method for balancing redox reactions using oxidation numbers. Oxidation numbers were assigned to
each atom in a redox reaction to identify any changes in the oxidation states. Here we present an alternative approach to balancing
redox reactions, the half-reaction method, in which the overall redox reaction is divided into an oxidation half-reaction and a
reduction half-reaction, each balanced for mass and charge. This method more closely reflects the events that take place in an
electrochemical cell, where the two half-reactions may be physically separated from each other.

We can illustrate how to balance a redox reaction using half-reactions with the reaction that occurs when Drano, a commercial solid
drain cleaner, is poured into a clogged drain. Drano contains a mixture of sodium hydroxide and powdered aluminum, which in
solution reacts to produce hydrogen gas:

In this reaction,  is oxidized to Al , and H  in water is reduced to H  gas, which bubbles through the solution, agitating it and
breaking up the clogs.

The overall redox reaction is composed of a reduction half-reaction and an oxidation half-reaction. From the standard electrode
potentials listed Table P1, we find the corresponding half-reactions that describe the reduction of H  ions in water to H and the
oxidation of Al to Al  in basic solution:

reduction:

oxidation:

The half-reactions chosen must exactly reflect the reaction conditions, such as the basic conditions shown here. Moreover, the
physical states of the reactants and the products must be identical to those given in the overall reaction, whether gaseous, liquid,
solid, or in solution.

In Equation , two H  ions gain one electron each in the reduction; in Equation , the aluminum atom loses three
electrons in the oxidation. The charges are balanced by multiplying the reduction half-reaction (Equation ) by 3 and the
oxidation half-reaction (Equation ) by 2 to give the same number of electrons in both half-reactions:

reduction:

oxidation:

Electrode Potentials and E CellElectrode Potentials and E Cell

A +O → Al(OH +l(s) H−
(aq) )−

4(aq) H2(g) (3.3.12)

Al(s)
3+ +

2

+
2

3+

2 +2 → 2O +H2O(l) e− H−
(aq)

H2(g) (3.3.13)

A +4O → Al(OH +3l(s) H−
(aq)

)−
4(aq)

e− (3.3.14)

3.3.13 + 3.3.14
3.3.13

3.3.14

6 +6 → 6O +3H2O(l) e− H−
(aq) H2(g) (3.3.15)

2A +8O → 2Al(OH +6l(s) H−
(aq)

)−
4(aq)

e− (3.3.16)
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Adding the two half-reactions,

Simplifying by canceling substances that appear on both sides of the equation,

We have a −2 charge on the left side of the equation and a −2 charge on the right side. Thus the charges are balanced, but we must
also check that atoms are balanced:

The atoms also balance, so Equation  is a balanced chemical equation for the redox reaction depicted in Equation .

The half-reaction method requires that half-reactions exactly reflect reaction conditions,
and the physical states of the reactants and the products must be identical to those in the
overall reaction.

We can also balance a redox reaction by first balancing the atoms in each half-reaction and then balancing the charges. With this
alternative method, we do not need to use the half-reactions listed in Table P1, but instead focus on the atoms whose oxidation
states change, as illustrated in the following steps:

Step 1: Write the reduction half-reaction and the oxidation half-reaction.

For the reaction shown in Equation , hydrogen is reduced from H  in OH  to H , and aluminum is oxidized from Al° to Al :

reduction:

oxidation:

Step 2: Balance the atoms by balancing elements other than O and H. Then balance O atoms by adding H O and balance H atoms
by adding H .

Elements other than O and H in the previous two equations are balanced as written, so we proceed with balancing the O atoms. We
can do this by adding water to the appropriate side of each half-reaction:

reduction:

oxidation:

Balancing H atoms by adding H , we obtain the following:

reduction:

oxidation:

We have now balanced the atoms in each half-reaction, but the charges are not balanced.

Step 3: Balance the charges in each half-reaction by adding electrons.

Two electrons are gained in the reduction of H  ions to H , and three electrons are lost during the oxidation of Al° to Al :

reduction:

6 +2A +8O → 2Al(OH 4(aq) +3 +6OH2O(l) l(s) H−
(aq)

)− H2(g) H−
(aq)

(3.3.17)

6 +2A +2O → 2Al(OH +3H2O(l) l(s) H−
(aq)

)−
4(aq)

H2(g) (3.3.18)

2Al+8O+14H = 2Al+8O+14H (3.3.19)

3.3.18 3.3.12

3.3.12 + −
2

3+

O →H−
(aq)

H2(g) (3.3.20)

A → Al(OHl(s) )−
4(aq)

(3.3.21)

2
+

O → +H−
(aq)

H2(g) H2O(l) (3.3.22)

A +4 → Al(OHl(s) H2O(l) )−
4(aq)

(3.3.23)

+

O +3 → +H−
(aq) H+

(aq) H2(g) H2O(l) (3.3.24)

A +4 → Al(OH +4l(s) H2O(l) )−
4(aq)

H+
(aq)

(3.3.25)

+
2
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oxidation:

Step 4: Multiply the reductive and oxidative half-reactions by appropriate integers to obtain the same number of electrons in both
half-reactions.

In this case, we multiply Equation  (the reductive half-reaction) by 3 and Equation  (the oxidative half-reaction) by 2
to obtain the same number of electrons in both half-reactions:

reduction:

oxidation:

Step 5: Add the two half-reactions and cancel substances that appear on both sides of the equation.

Adding and, in this case, canceling 8H , 3H O, and 6e ,

We have three OH  and one H  on the left side. Neutralizing the H  gives us a total of 5H O + H O = 6H O and leaves 2OH  on
the left side:

Step 6: Check to make sure that all atoms and charges are balanced.

Equation  is identical to Equation , obtained using the first method, so the charges and numbers of atoms on each side
of the equation balance.

In acidic solution, the redox reaction of dichromate ion ( ) and iodide ( ) can be monitored visually. The yellow
dichromate solution reacts with the colorless iodide solution to produce a solution that is deep amber due to the presence of a
green  complex and brown  ions (Figure ):

Balance this equation using half-reactions.

Given: redox reaction and Table P1

Asked for: balanced chemical equation using half-reactions

Strategy:
Follow the steps to balance the redox reaction using the half-reaction method.

Solution
From the standard electrode potentials listed in Table P1, we find the half-reactions corresponding to the overall reaction:

reduction:

oxidation:

Balancing the number of electrons by multiplying the oxidation reaction by 3,

O +3 +2 → +H−
(aq)

H+
(aq)

e− H2(g) H2O(l) (3.3.26)

A +4 → Al(OH +4 +3l(s) H2O(l) )−
4(aq) H+

(aq) e− (3.3.27)

3.3.26 3.3.27

3O +9 +6 → 3 +3H−
(aq)

H+
(aq)

e− H2(g) H2O(l) (3.3.28)

2A +8 → 2Al(OH +8 +6l(s) H2O(l) )−
4(aq)

H+
(aq)

e− (3.3.29)

+
2

−

2A +5 +3O + → 2Al(OH +3l(s) H2O(l) H−
(aq)

H+
(aq)

)−
4(aq)

H2(g) (3.3.30)

− + +
2 2 2

−

2A +6 +2O → 2Al(OH +3l(s) H2O(l) H−
(aq)

)−
4(aq)

H2(g) (3.3.31)

3.3.31 3.3.18

 Example 3.3.1

Cr2O2 −
7 I−

(aq)Cr3 + (aq)I2 3.3.4

(aq) + (aq)⟶ (aq) + (aq)Cr2O2 −
7 I− Cr3 + I2

(aq) +14 (aq) +6 ⟶ 2 (aq) +7 O(l)Cr2O2 −
7 H+ e− Cr3 + H2

2 (aq)⟶ (aq) +2I− I2 e−
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oxidation:

Adding the two half-reactions and canceling electrons,

We must now check to make sure the charges and atoms on each side of the equation balance:

and atoms

Both the charges and atoms balance, so our equation is balanced.

We can also use the alternative procedure, which does not require the half-reactions listed in Table P1.

Step 1: Chromium is reduced from  in  to , and  ions are oxidized to . Dividing the reaction into two
half-reactions,

reduction:

oxidation:

Step 2: Balancing the atoms other than oxygen and hydrogen,

reduction:

oxidation:

We now balance the O atoms by adding H O—in this case, to the right side of the reduction half-reaction. Because the
oxidation half-reaction does not contain oxygen, it can be ignored in this step.

reduction:

Next we balance the H atoms by adding H  to the left side of the reduction half-reaction. Again, we can ignore the oxidation
half-reaction.

reduction:

Step 3: We must now add electrons to balance the charges. The reduction half-reaction (2Cr  to 2Cr ) has a +12 charge on
the left and a +6 charge on the right, so six electrons are needed to balance the charge. The oxidation half-reaction (2I  to I )
has a −2 charge on the left side and a 0 charge on the right, so it needs two electrons to balance the charge:

reduction: Cr O (aq) + 14H (aq) + 6e  → 2Cr (aq) + 7H O(l)
oxidation: 2I (aq) → I (aq) + 2e

Step 4: To have the same number of electrons in both half-reactions, we must multiply the oxidation half-reaction by 3:

6 (aq)⟶ 3 (aq) +6I− I2 e−

(aq) +14 (aq) +6 (aq)⟶ 2 (aq) +7 O(l) +3 (aq)Cr2O2 −
7 H+ I− Cr3 + H2 I2

(−2) +14 +(−6)

+6

= +6

+6=✓

2 Cr +7 O+14 H +6 I 2 Cr +7 O+14 H +6 I=
✓

Cr6 + Cr2O2 −
7 Cr3 + I− I2

C → Cr2O
2−
7(aq)

r3+
(aq)

→I−
(aq)

I2(aq)

C → 2Cr2O
2−
7(aq)

r3+
(aq)

2 →I−
(aq)

I2(aq)

2

C → 2C +7r2O
2−
7(aq)

r3+
(aq)

H2O(l)

+

C +14 → 2C +7r2O
2−
7(aq)

H+
(aq)

r3+
(aq)

H2O(l)

+6 +3

−
2

2 7
2− + − 3+

2
−

2
−
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oxidation: 6I (aq) → 3I (s) + 6e

Step 5: Adding the two half-reactions and canceling substances that appear in both reactions,

Step 6: This is the same equation we obtained using the first method. Thus the charges and atoms on each side of the equation
balance.

Copper is found as the mineral covellite ( ). The first step in extracting the copper is to dissolve the mineral in nitric acid (
), which oxidizes sulfide to sulfate and reduces nitric acid to :

Balance this equation using the half-reaction method.

Covellite (also known as covelline) is a rare copper sulfide mineral with an indigo blue color that is ubiquitous in copper ores.
(CC SA-BY 3.0;'Didier Descouens).

Answer

Calculating Standard Cell Potentials
The standard cell potential for a redox reaction (E° ) is a measure of the tendency of reactants in their standard states to form
products in their standard states; consequently, it is a measure of the driving force for the reaction, which earlier we called voltage.
We can use the two standard electrode potentials we found earlier to calculate the standard potential for the Zn/Cu cell represented
by the following cell diagram:

We know the values of E°  for the reduction of Zn  and E°  for the reduction of Cu , so we can calculate :

cathode:

anode:

overall:

This is the same value that is observed experimentally. If the value of  is positive, the reaction will occur spontaneously as
written. If the value of  is negative, then the reaction is not spontaneous, and it will not occur as written under standard
conditions; it will, however, proceed spontaneously in the opposite direction. As we shall see in Section 20.9, this does not mean
that the reaction cannot be made to occur at all under standard conditions. With a sufficient input of electrical energy, virtually any

−
2

−

(aq) +14 (aq) +6 (aq) → 2 (aq) +7 O(l) +3 (aq)Cr2O2 −
7 H+ I− Cr3 + H2 I2

 Exercise 3.3.1

CuS
HNO3 NO

CuS(s) + (aq) → NO(g) + (aq)HNO3 CuSO4

3 CuS(s) +8 (aq)⟶ 8 NO(g) +3 (aq) +4 O(l)HNO3 CuSO4 H2

cell

Zn(s) ∣ Z (aq, 1M) ∥ C (aq, 1M) ∣ Cn2+ u2+ u(s) (3.3.32)

anode
2+

cathode
2+ E°cell

C +2 → C  E = 0.34 Vu2+
(aq) e− u(s) °cathode (3.3.33)

Z → Z (aq, 1M) +2  E = −0.76 Vn(s) n2+ e− °anode (3.3.34)

Z +C → Z +Cn(s) u2+
(aq)

n2+
(aq)

u(s) (3.3.35)

E = E −E = 1.10 V°cell °cathode °anode

E°cell
E°cell
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reaction can be forced to occur. Example  and its corresponding exercise illustrate how we can use measured cell potentials to
calculate standard potentials for redox couples.

A positive  means that the reaction will occur spontaneously as written. A negative 
 means that the reaction will proceed spontaneously in the opposite direction.

A galvanic cell with a measured standard cell potential of 0.27 V is constructed using two beakers connected by a salt bridge.
One beaker contains a strip of gallium metal immersed in a 1 M solution of GaCl , and the other contains a piece of nickel
immersed in a 1 M solution of NiCl . The half-reactions that occur when the compartments are connected are as follows:

cathode: Ni (aq) + 2e  → Ni(s)

anode: Ga(s) → Ga (aq) + 3e

If the potential for the oxidation of Ga to Ga  is 0.55 V under standard conditions, what is the potential for the oxidation of Ni
to Ni ?

Given: galvanic cell, half-reactions, standard cell potential, and potential for the oxidation half-reaction under standard
conditions

Asked for: standard electrode potential of reaction occurring at the cathode

Strategy:
A. Write the equation for the half-reaction that occurs at the anode along with the value of the standard electrode potential for

the half-reaction.
B. Use Equation  to calculate the standard electrode potential for the half-reaction that occurs at the cathode. Then

reverse the sign to obtain the potential for the corresponding oxidation half-reaction under standard conditions.

Solution
A We have been given the potential for the oxidation of Ga to Ga  under standard conditions, but to report the standard
electrode potential, we must reverse the sign. For the reduction reaction Ga (aq) + 3e  → Ga(s), E°  = −0.55 V.

B Using the value given for  and the calculated value of E° , we can calculate the standard potential for the reduction
of Ni  to Ni from Equation :

This is the standard electrode potential for the reaction Ni (aq) + 2e  → Ni(s). Because we are asked for the potential for the
oxidation of Ni to Ni  under standard conditions, we must reverse the sign of E° . Thus E° = −(−0.28 V) = 0.28 V for the
oxidation. With three electrons consumed in the reduction and two produced in the oxidation, the overall reaction is not
balanced. Recall, however, that standard potentials are independent of stoichiometry.

A galvanic cell is constructed with one compartment that contains a mercury electrode immersed in a 1 M aqueous solution of
mercuric acetate  and one compartment that contains a strip of magnesium immersed in a 1 M aqueous
solution of . When the compartments are connected, a potential of 3.22 V is measured and the following half-reactions
occur:

cathode: 
anode: 

If the potential for the oxidation of  to  is 2.37 V under standard conditions, what is the standard electrode potential
for the reaction that occurs at the cathode?

3.3.2

E°cell
E°cell

 Example 3.3.2

3

2

2+ −

3+ −

3+

2+

3.3.2

3+

3+ −
anode

E°cell anode
2+ 3.3.2

E°cell

0.27 V

E∘
cathode

= E −E°cathode °anode

= −(−0.55 V )Eo°cathhode

= −0.28 V

2+ −

2+
cathode

 Exercise 3.3.2

Hg( )CH3CO2 2

MgCl2

(aq) +2 → Hg(l)Hg2 + e−

Mg(s) → (aq) +2Mg2 + e−

Mg Mg2 +
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Answer

0.85 V

Reference Electrodes and Measuring Concentrations

When using a galvanic cell to measure the concentration of a substance, we are generally interested in the potential of only one of
the electrodes of the cell, the so-called indicator electrode, whose potential is related to the concentration of the substance being
measured. To ensure that any change in the measured potential of the cell is due to only the substance being analyzed, the potential
of the other electrode, the reference electrode, must be constant. You are already familiar with one example of a reference
electrode: the SHE. The potential of a reference electrode must be unaffected by the properties of the solution, and if possible, it
should be physically isolated from the solution of interest. To measure the potential of a solution, we select a reference electrode
and an appropriate indicator electrode. Whether reduction or oxidation of the substance being analyzed occurs depends on the
potential of the half-reaction for the substance of interest (the sample) and the potential of the reference electrode.

The potential of any reference electrode should not be affected by the properties of the
solution to be analyzed, and it should also be physically isolated.

There are many possible choices of reference electrode other than the SHE. The SHE requires a constant flow of highly flammable
hydrogen gas, which makes it inconvenient to use. Consequently, two other electrodes are commonly chosen as reference
electrodes. One is the silver–silver chloride electrode, which consists of a silver wire coated with a very thin layer of AgCl that is
dipped into a chloride ion solution with a fixed concentration. The cell diagram and reduction half-reaction are as follows:

If a saturated solution of KCl is used as the chloride solution, the potential of the silver–silver chloride electrode is 0.197 V versus
the SHE. That is, 0.197 V must be subtracted from the measured value to obtain the standard electrode potential measured against
the SHE.

A second common reference electrode is the saturated calomel electrode (SCE), which has the same general form as the silver–
silver chloride electrode. The SCE consists of a platinum wire inserted into a moist paste of liquid mercury (Hg Cl ; called calomel
in the old chemical literature) and KCl. This interior cell is surrounded by an aqueous KCl solution, which acts as a salt bridge
between the interior cell and the exterior solution (part (a) in Figure . Although it sounds and looks complex, this cell is
actually easy to prepare and maintain, and its potential is highly reproducible. The SCE cell diagram and corresponding half-
reaction are as follows:

C ∣ AgC ∣ Al−
(aq)

l(s) g(s) (3.3.36)

AgC + → A +Cl(s) e− g(s) l−
(aq)

2 2

3.3.5

P ∣ H C ∣ KCt(s) g2 l2(s) l(aq,sat) (3.3.37)

H C +2 → 2H +2C (aq)g2 l2(s) e− g(l) l− (3.3.38)
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Figure : Three Common Types of Electrodes. (a) The SCE is a reference electrode that consists of a platinum wire inserted
into a moist paste of liquid mercury (calomel; Hg Cl ) and KCl. The interior cell is surrounded by an aqueous KCl solution, which
acts as a salt bridge between the interior cell and the exterior solution. (b) In a glass electrode, an internal Ag/AgCl electrode is
immersed in a 1 M HCl solution that is separated from the sample solution by a very thin glass membrane. The potential of the
electrode depends on the H  ion concentration of the sample. (c) The potential of an ion-selective electrode depends on the
concentration of only a single ionic species in solution. (CC BY-SA-NC; anonymous)

At 25°C, the potential of the SCE is 0.2415 V versus the SHE, which means that 0.2415 V must be subtracted from the potential
versus an SCE to obtain the standard electrode potential.

One of the most common uses of electrochemistry is to measure the H  ion concentration of a solution. A glass electrode is
generally used for this purpose, in which an internal Ag/AgCl electrode is immersed in a 0.10 M HCl solution that is separated
from the solution by a very thin glass membrane (part (b) in Figure . The glass membrane absorbs protons, which affects the
measured potential. The extent of the adsorption on the inner side is fixed because [H ] is fixed inside the electrode, but the
adsorption of protons on the outer surface depends on the pH of the solution. The potential of the glass electrode depends on [H ]
as follows (recall that pH = −log[H ]):

The voltage E′ is a constant that depends on the exact construction of the electrode. Although it can be measured, in practice, a
glass electrode is calibrated; that is, it is inserted into a solution of known pH, and the display on the pH meter is adjusted to the
known value. Once the electrode is properly calibrated, it can be placed in a solution and used to determine an unknown pH.

Ion-selective electrodes are used to measure the concentration of a particular species in solution; they are designed so that their
potential depends on only the concentration of the desired species (part (c) in Figure ). These electrodes usually contain an
internal reference electrode that is connected by a solution of an electrolyte to a crystalline inorganic material or a membrane,
which acts as the sensor. For example, one type of ion-selective electrode uses a single crystal of Eu-doped  as the inorganic
material. When fluoride ions in solution diffuse to the surface of the solid, the potential of the electrode changes, resulting in a so-
called fluoride electrode. Similar electrodes are used to measure the concentrations of other species in solution. Some of the species
whose concentrations can be determined in aqueous solution using ion-selective electrodes and similar devices are listed in Table 

.

Table : Some Species Whose Aqueous Concentrations Can Be Measured Using Electrochemical Methods

Species Type of Sample

H laboratory samples, blood, soil, and ground and surface water

NH /NH wastewater and runoff water

K blood, wine, and soil

CO /HCO blood and groundwater

F groundwater, drinking water, and soil

Br grains and plant extracts

I milk and pharmaceuticals

NO groundwater, drinking water, soil, and fertilizer

3.3.5
2 2

+

+

3.3.5
+

+

+

= E' +(0.0591 V ×log[ ]) = E' −0.0591 V ×pHEglass H+ (3.3.39)
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Summary
Redox reactions can be balanced using the half-reaction method. The standard cell potential is a measure of the driving force for
the reaction. \(E°_{cell} = E°_{cathode} − E°_{anode} \nonumber \] The flow of electrons in an electrochemical cell depends on
the identity of the reacting substances, the difference in the potential energy of their valence electrons, and their concentrations.
The potential of the cell under standard conditions (1 M for solutions, 1 atm for gases, pure solids or liquids for other substances)
and at a fixed temperature (25°C) is called the standard cell potential (E° ). Only the difference between the potentials of two
electrodes can be measured. By convention, all tabulated values of standard electrode potentials are listed as standard reduction
potentials. The overall cell potential is the reduction potential of the reductive half-reaction minus the reduction potential of the
oxidative half-reaction (E°  = E°  − E° ). The potential of the standard hydrogen electrode (SHE) is defined as 0 V under
standard conditions. The potential of a half-reaction measured against the SHE under standard conditions is called its standard
electrode potential. The standard cell potential is a measure of the driving force for a given redox reaction. All E° values are
independent of the stoichiometric coefficients for the half-reaction. Redox reactions can be balanced using the half-reaction
method, in which the overall redox reaction is divided into an oxidation half-reaction and a reduction half-reaction, each balanced
for mass and charge. The half-reactions selected from tabulated lists must exactly reflect reaction conditions. In an alternative
method, the atoms in each half-reaction are balanced, and then the charges are balanced. Whenever a half-reaction is reversed, the
sign of E° corresponding to that reaction must also be reversed. If  is positive, the reaction will occur spontaneously under
standard conditions. If  is negative, then the reaction is not spontaneous under standard conditions, although it will proceed
spontaneously in the opposite direction. The potential of an indicator electrode is related to the concentration of the substance being
measured, whereas the potential of the reference electrode is held constant. Whether reduction or oxidation occurs depends on the
potential of the sample versus the potential of the reference electrode. In addition to the SHE, other reference electrodes are the
silver–silver chloride electrode; the saturated calomel electrode (SCE); the glass electrode, which is commonly used to measure
pH; and ion-selective electrodes, which depend on the concentration of a single ionic species in solution. Differences in potential
between the SHE and other reference electrodes must be included when calculating values for E°.
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