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2.2: Liouville's Theorem for non-Hamiltonian systems
The equations of motion of a system can be cast in the generic form

where, for a Hamiltonian system, the vector function  would be

and the incompressibility condition would be a condition on :

A non-Hamiltonian system, described by a general vector funciton , will not, in general, satisfy the incompressibility condition.
That is:

Non-Hamiltonian dynamical systems are often used to describe open systems, i.e., systems in contact with heat reservoirs or
mechanical pistons or particle reservoirs. They are also often used to describe driven systems or systems in contact with external
fields.

The fact that the compressibility does not vanish has interesting consequences for the structure of the phase space. The Jacobian,
which satisfies

will no longer be 1 for all time. Defining , the general solution for the Jacobian can be written as

Note that  as before. Also, note that . Thus,  can be expressed as the total time derivative of some

function, which we will denote W, i.e., . Then, the Jacobian becomes

Thus, the volume element in phase space now transforms according to

which can be arranged to read as a conservation law:

 {

Thus, we have a conservation law for a modified volume element, involving a "metric factor'' . Introducing the
suggestive notation , the conservation law reads . This is a generalized version of
Liouville's theorem. Furthermore, a generalized Liouville equation for non-Hamiltonian systems can be derived which incorporates
this metric factor. The derivation is beyond the scope of this course, however, the result is

We have called this equation, the generalized Liouville equation Finally, noting that  satisfies the same equation as J, i.e.,
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= J ⋅
dJ

dt
Δx ẋ
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the presence of  in the generalized Liouville equation can be eliminated, resulting in

which is the ordinary Liouville equation from before. Thus, we have derived a modified version of Liouville's theorem and have
shown that it leads to a conservation law for f equivalent to the Hamiltonian case. This, then, supports the generality of the
Liouville equation for both Hamiltonian and non-Hamiltonian based ensembles, an important fact considering that this equation is
the foundation of statistical mechanics.
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