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13.1.2: The Transition Rate
In the next lecture, we will solve the quantum Liouville equation

perturbatively and derive quantum linear response theory. However, the transition rate can actually be determined directly within
perturbation theory using the Fermi Golden Rule approximation, which states that the probability of a transition's occurring per unit
time, , is given by

The -function expresses the fact that energy is conserved. This describes the rate of transitions between specific states  and .
The transition rate between any initial and final states can be obtained by summing over both  and  and weighting the sum by the
probability that the system is found in the initial state :

where  is an eigenvalue of the density matrix, which we will take to be the canonical density matrix:

Using the expression for , we find

Note that

This quantity corresponds to a time-reversed analog of the absorption process. Thus, it describes an emission event  with 
, i.e., emission of a photon with energy . If can also be expressed as a process  by recognizing that

or

Therefore

If we now interchange the summation indices, we find

where the fact that  has been used. Comparing this expression for  to that for , we find
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which is the equation of detailed balance. We see from it that the probability of emission is less than that for absorption. The
reason for this is that it is less likely to find the system in an excited state  initially, when it is in contact with a heat bath and
hence thermally equilibrated. However, we must remember that the microscopic laws of motion (Newton's equations for classical
systems and the Schrödinger equation for quantum systems) are reversible. This means that

The conclusion is that, since , reversibility is lost when the system is placed in contact with a heat bath, i.e., the
system is being driven irreversibly in time.

Define

then

Now using the fact that the -function can be written as

 becomes

Recall that the evolution of an operator in the Heisenberg picture is given by

if the evolution is determined solely by . Thus, the expression for  becomes

which involves the quantum autocorrelation function .

In general, a quantum time correlation function in the canonical ensemble is defined by
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In a similar manner, we can show that

since

in general. Also, the product  is not Hermitian. However, a hermitian combination occurs if we consider the energy
difference between absorption and emission. The energy absorbed per unit of time by the system is , while the emitted into
the bath by the system per unit of time is . The energy difference  is just

But since

it follows that

or

Note, however, that

where  is known as the anticommutator:

The anticommutator between two operators is, itself, hermitian. Therefore, the energy difference is

The quantity  is the symmetrized quantum autocorrelation function. The classical limit is now manifest ( 
 ):

The classically, the energy spectrum  is directly related to the Fourier transform of a time correlation function.
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