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5.4: Temperature and pressure estimators
From the classical virial theorem

we arrived at the equipartition theorem:

where  are the  Cartesian momenta of the  particles in a system. This says that the microscopic function of the 
momenta that corresponds to the temperature, a macroscopic observable of the system, is given by

The ensemble average of  can be related directly to the temperature

  \\) is known as an estimator (a term taken over from the Monte Carlo literature) for the temperature. An estimator
is some function of the phase space coordinates, i.e., a function of microscopic states, whose ensemble average gives rise to a
physical observable.

An estimator for the pressure can be derived as well, starting from the basic thermodynamic relation:

with

The volume dependence of the partition function is contained in the limits of integration, since the range of integration for the
coordinates is determined by the size of the physical container. For example, if the system is confined within a cubic box of volume

, with  the length of a side, then the range of each  integration will be from 0 to . If a change of variables is made to 
, then the range of each  integration will be from 0 to 1. The coordinates   are known as scaled coordinates. For

containers of a more general shape, a more general transformation is

To preserve the phase space volume element, however, we need to ensure that the transformation is a canonical one. Thus, the
corresponding momentum transformation is

With this coordinate/momentum transformation, the phase space volume element transforms as

Thus, the volume element remains the same as required. With this transformation, the Hamiltonian becomes

and the canonical partition function becomes
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Thus, the pressure can now be calculated by explicit differentiation with respect to the volume, :

  

     

     

     

     

Thus, the pressure estimator is

and the pressure is given by

For periodic systems, such as solids and currently used models of liquids, an absolute Cartesian coordinate  is ill-defined. Thus,
the virial part of the pressure estimator  must be rewritten in a form appropriate for periodic systems. This can be done by
recognizing that the force  is obtained as a sum of contributions , which is the force on particle  due to particle . Then, the
classical virial becomes

  

     

     

     

where  is now a relative coordinate.  must be computed consistent with periodic boundary conditions, i.e., the relative
coordinate is defined with respect to the closest periodic image of particle  with respect to particle . This gives rise to surface
contributions, which lead to a nonzero pressure, as expected.
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