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11.1.3: Dominant Paths in the Propagator and Density Matrix
Let us first consider the real time quantum propagator. The quantity appearing in the exponential is an integral of

which is known as the Lagrangian in classical mechanics. We can ask, which paths will contribute most to the integral

known as the action integral. Since we are integrating over a complex exponential , which is oscillatory, those paths away
from which small deviations cause no change in  (at least to first order) will give rise to the dominant contribution. Other paths
that cause  to oscillate rapidly as we change from one path to another will give rise to phase decoherence and will
ultimately cancel when integrated over. Thus, we consider two paths  and a nearby one constructed from it  and
demand that the change in  between these paths be 0

Note that, since  and , , since all paths must begin at  and end at . The change in  is

Expanding the first term to first order in , we obtain

The term proportional to  can be handled by an integration by parts:

because  vanishes at  and , the surface term is 0, leaving us with

Since the variation itself is arbitrary, the only way the integral can vanish, in general, is if the term in brackets vanishes:

This is known as the Euler-Lagrange equation in classical mechanics. For the case that , they give

which is just Newton's equation of motion, subject to the conditions that , . Thus, the classical path and those near it
contribute the most to the path integral.

The classical path condition was derived by requiring that  to first order. This is known as an action stationarity principle.
However, it turns out that there is also a principle of least action, which states that the classical path minimizes the action as well.
This is an important consideration when deriving the dominant paths for the density matrix, which takes the form
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ẋ ẋ ∫
t

0

ẋ
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ẋ ∫
t

0

∂L

∂ẋ
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δẋ

ds δ = δx = ∂x − ds δx∫
t

0

∂L

∂ẋ
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The action appearing in this expression is

which is known as the Euclidean action and is just the integral over a path of the total energy or Euclidean Lagrangian .
Here, we see that a minimum action principle is needed, since the smallest values of  will contribute most to the integral. Again,
we require that to first order . Applying the same logic as before, we obtain the condition

which is just Newton's equation of motion on the inverted potential surface , subject to the conditions , 
. For the partition function , the same equation of motion must be solved, but subject to the conditions that 

, i.e., periodic paths.

This page titled 11.1.3: Dominant Paths in the Propagator and Density Matrix is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Mark E. Tuckerman.

[x] = dτ [ +U(x(τ))] = dτH(x, )SE ∫
βℏ

0

m

2
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