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11.3.1: The harmonic Oscillator - Expansion about the Classical Path
It will be shown how to compute the density matrix for the harmonic oscillator:

using the functional integral representation. The density matrix is given by

As we saw in the last lecture, paths in the vicinity of the classical path on the inverted potential give rise to the dominant
contribution to the functional integral. Thus, it proves useful to expand the path  about the classical path. We introduce a
change of path variables from  to , where

where  satisfies

subject to the conditions

so that .

Substituting this change of variables into the action integral yields

An integration by parts makes the cross terms vanish:

where the surface term vanishes because  and the second term vanishes because \(xcl\) satisfies the classical
equation of motion.

The first term in the expression for  is the classical action, which we have seen is given by

Therefore, the density matrix for the harmonic oscillator becomes

where  is the path integral

H = + m
P 2

2m

1

2
ω2X2

ρ(x, ; β) = Dx(τ)exp [− dτ ( m + m )]x′ ∫
x(βℏ)=x′

x(0)=x

1

ℏ
∫

βℏ

0

1

2
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Note that  does not depend on the points  and  and therefore can only contribute an overall (temperature dependent) constant
to the density matrix. This will affect the thermodynamics but not any averages of physical observables. Nevertheless, it is
important to see how such a path integral is done.

To compute , we note that it is a functional integral over functions  that vanish at  and . Thus, they are a
special class of periodic functions and can be expanded in a Fourier sine series:

where

Thus, we wish to change from an integral over the functions  to an integral over the Fourier expansion coefficients . The two
integrations should be equivalent, as the coefficients uniquely determine the functions . Note that

Thus, terms in the action are:

Since the cosines are orthogonal between  and , the integral becomes

similarly,

The measure becomes

which, is not an equivalent measure (since it is not derived from a determination of the Jacobian), but is chosen to give the correct
free-particle ( ) limit, which can ultimately be corrected by attaching an overall factor of .

With this change of variables,  becomes

The infinite product can be written as

the product in the square brackets is just the infinite product formula for , so that  is just
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ẏ2 m

2
∑
n=1

∞

∑
=1n′

∞

cncn′ωnωn′ .βℏ
0 ωn ωn′

τ = 0 τ = βℏ

dτ = dτ ( τ) = dτ [ + cos(2 τ)] =∫
βℏ

0

1

m
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Finally, attaching the free-particle factor , the harmonic oscillator density matrix becomes:

Notice that in the free-particle limit ,  and , so that

which is the expected free-particle density matrix.

This page titled 11.3.1: The harmonic Oscillator - Expansion about the Classical Path is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by Mark Tuckerman.

m/2πβℏ2
− −−−−−−−

√

ρ(x, ; β) = exp [− (( + ) cosh(βℏω) −2x )]x′ mω

2πℏsinh(βℏω)

− −−−−−−−−−−−
√

mω

2 sinh(βℏω)
x2 x′2 x′

(ω → 0) sinh(βℏω) ≈ βℏω cosh(βℏω) ≈ 1

ρ(x, ; β) → exp[− (x− ]x′ m

2πβℏ2

− −−−−−
√

m

2βℏ2
x′)2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/5223?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Statistical_Mechanics_(Tuckerman)/11%3A_Introduction_to_path_integrals_in_quantum_mechanics_and_quantum_statistical_mechanics/11.03%3A_Expansion_about_the_classical_path_and_stationary_phase/11.3.01%3A_The_harmonic_Oscillator_-_Expansion_about_the_Classical_Path
https://creativecommons.org/licenses/by-nc-sa/4.0
http://as.nyu.edu/content/nyu-as/as/faculty/mark-e-tuckerman.html

