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1.4: Phase Space
We construct a Cartesian space in which each of the  coordinates and momenta is assigned to one of  mutually orthogonal
axes. Phase space is, therefore, a  dimensional space. A point in this space is specified by giving a particular set of values for
the  coordinates and momenta. Denote such a point by

 is a  dimensional vector. Thus, the time evolution or trajectory of a system as specified by Hamilton's equations of motion,
can be expressed by giving the phase space vector,  as a function of time.

Figure : Evolution of an ensemble of classical systems in phase space (top). The systems are a massive particle in a one-
dimensional potential well (red curve, lower figure). The initially compact ensemble becomes swirled up over time.

The law of conservation of energy, expressed as a condition on the phase space vector:

defines a  dimensional hypersurface in phase space on which the trajectory must remain.
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H(x(t)) = const = E
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