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8.6: The "blue moon" Ensemble Approach

The term "blue moon" in the present context describes rare events, i.e. events that happen once in a blue moon. The blue moon
ensemble approach was introduced by Ciccotti and coworkers as a technique for computing the free energy profile along a reaction
coordinate direction characterized by one or more barriers high enough that they would not likely be crossed in a normal
thermostatted molecular dynamics calculation.

Suppose a process of interest can be monitored by a single reaction coordinate g; = fi(ry,...,ry) so that eqns. (29) and (30)
reduce to
P(s) = Cn / dVp dN¥re PHPI §(f (r,...,tN8) —5) (8.6.1)
QN,V,T)
- ! N pe—AUE)
- N!)\BNQ(N,V,T)/ d7re 6(fi(ry,...,rn) —s) (8.6.2)
A(s) = —kTInP(s) (8.6.3)

The "1" subscript on the value s of g; is superfluous and will be dropped throughout this discussion. In the second line, the
integration over the momenta has been performed giving the thermal prefactor factor A>". In the blue moon ensemble approach, a
holonomic constraint o(ry,...,ry) = fi(ry,...,ry)—s is introduced in a molecular dynamics calculation as a means of
"driving" the reaction coordinate from an initial value s; to a final value s; via a set of intermediate points sy, ..., s, between s;
and sy. Unfortunately, the introduction of a holonomic, constraint does not yield the single J-function condition
6(o(r)=6(fi(r)—s), where r=ry,...,ry required by Equation 8.6.3 but rather the product of §-functions
4(o(r))d(s(r, p)), since both the constraint and its first time derivative are imposed in a constrained dynamics calculation. We
will return to this point a bit later in this section. In addition to this, the blue moon ensemble approach does not yield A(s) directly
but rather the derivative

dA __ KT dp
ds P(s) ds

(8.6.4)

from which the free energy profile A(g) along the reaction coordinate and the free energy difference AA = A(sy) —A(s;) are
given by the integrals

7 dA 5 dA
A(q) = A(s; ds— AA= ds— 8.6.5
@=Ae)+ [ as | s (8:6.5)
In the free-energy profile expression A(s;) is just an additive constant that can be left off. The values si,..., s, at which the

reaction coordinate is constrained can be chosen at equally-spaced intervals between s; and sy, in which a standard numerical
quadrature can ¢ = fi(r) be applied for evaluating the integrals in Equation 8.6.5, or they can be chosen according to a more
sophisticated quadrature scheme.

We next turn to the evaluation of the derivative in Equation 8.6.4. Noting that P(s) = (6(f1(r) —s)) , the derivative can be
written as

1 dP  Cn J dVpdNre PHon L5(f, (r) - s)
P(s) ds Q(N,V,T) (6(f1(r) —s))

In order to avoid evaluating the derivative of the §-function, an integration by parts can be used. First, we introduce a complete set
of 3NV generalized coordinates:

(8.6.6)

Qa:fa(rla---arN) (8.6.7)

and their conjugate momenta p,. Such a transformation has a unit Jacobian so that dVp d¥r = d*Vp d*"¢. Denoting the
transformed Hamiltonian as H(p, g), Equation 8.6.6 becomes

1 dP Oy [ dNPdqe P10 Lo(q, —s)

(8.6.8)

P(s) ds  Q(N,V,T) (8(q1—9))
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Changing the derivative in front of the §-function from 8/ds to d/dq:, which introduces an overall minus sign, and then
integrating by parts yields

L dp - [ d*Np d¥Ng [a%efﬁﬁ(p,q)} (g1 —s)
PG ds QW V) o —5) (8:6.9)
C poy S dPpdVq SR (g )
C W, v,T) (8(q1 — ) (8.6:10)
0H
OH \ s(ar —
—_8 <(an) o s)> (8.6.11)

(0(q1 —s))

The last line defines a new ensemble average, specifically an average subject to the condition (not constraint) that the coordinate ¢;
have the particular value s. This average will be denoted (- - -)°®4, Thus, the derivative becomes

~ \ cond
1 dP OH
Wﬁﬂ<6_ql> (8.6.12)

S

Substituting Equation 8.6.12yields a free energy profile of the form

~ \ cond
A(q) A(si)Jr/& ds <g—i> (8.6.13)

S

from which A A can be computed by letting ¢ = s¢. Given that - (8[—:’ /8q1)™ is the expression for the average of the generalized
force on ¢; when ¢; = s, the integral represents the work done on the system, i.e. the negative of the work done by the system, in
moving from s; to an arbitrary final point ¢. Since the conditional average implies a full simulation at each fixed value of g, the
thermodynamic transformation is certainly carried out reversibly, so that Equation 8.6.13is consistent with the Clausius inequality.

Although Equation 8.6.13 provides a very useful insight into the underlying statistical mechanical expression for the free energy,
technically, the need for a full canonical transformation of both coordinates and momenta is inconvenient since, from the chain rule

oH . [6H 0Op; OH or;
E_Z[ (8.6.14)

i—1 8_pz a_ql+ ari ‘ a(h

A more useful expression results if the momenta integrations are performed before introducing the transformation to generalized
coordinates. Starting again with Equation 8.6.6, we carry out the momentum integrations, yielding

1 dp 1 Jdre M) L5(f(r) —s) 5615
P ds - NWNQNLVT) () ) (8.6:15)
Now, we introduce only the transformation of the coordinates to generalized coordinates g, = fo(r1,...,ry). However, because

there is no corresponding momentum transformation, the Jacobian of the transformation is not unity. Let
J(@) =J(q1,.-.,q3n) =0(r1,...,vN)/O(q1,...,q3n) denote the Jacobian of the transformation. Then, Equation 8.6.15

becomes
1 dP 1 J &g J(@)e ™) L 5(q1 —5) (8.6.16)
P(s) ds  NIWNQ(N,V,T) {0(q1 —3) -
) ) [ 3N g e AU —HTI(a) %5((]1 — ) (8.6.17)
~ NIXNNQ(N,V,T) (0(q1 —3)) -

where, in the last line, the Jacobian has been exponentiated. Changing the derivative 8/8s to 8/9g; and performing the integration
by parts as was done in Equation 8.6.11, we obtain
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1 dpP 1 J a¥q e T 0) 50, ) Cos
P) ds ~ NDVQN,V.T) =) (5018
_ 8 [ aq [ KT md(g] 0T s g (8.6.19)
- ONDNQN,V,T) (8(q1 — ) -
~ cond
oU 0
Therefore, the free energy profile becomes
q a(j P cond
A(q) = A(s; —|—/ d — —KT—1InJ 8.6.21
(9) = A(si) | ds < o o " (Q)] >s ( )

Again, the derivative of U, the transformed potential, can be computed form the untransformed potential via the chain rule

oU 80U ori

- _ - . 8.6.22
oq or; Oq ( )

i=1
Equation 8.6.21 is useful for simple reaction coordinates in which the full transformation to generalized coordinates is known. We
will see shortly how the expression for A(q) can be further simplified in a way that does not require knowledge of the
transformation at all. First, however, we must tackle the problem alluded to earlier of computing the conditional ensemble averages
from the constrained dynamics employed by the blue moon ensemble method.
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