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11.1.1: Derivation of the Discretized Path Integral
We begin our discussion of the Feynman path integral with the canonical ensemble. The expressions for the partition function and
expectation value of an observable  are, respectively

It is clear that we need to be able to evaluate traces of the type appearing in these expressions. We have already derived expressions
for these in the basis of eigenvectors of . However, since the trace is basis independent, let us explore carrying out these traces in
the coordinate basis. We will begin with the partition function and treat expectation values later.

Consider the ensemble of a one-particle system. The partition function evaluated as a trace in the coordinate basis is

We see that the trace involves the diagonal density matrix element . Let us solve the more general problem of any
density matrix element .

If the Hamiltonian takes the form

then we cannot evaluate the operator  explicitly because the operators for kinetic  and potential energies  do not
commute with each other, being, respectively, functions of momentum and position, i.e.,

In this instance, we will make use of the Trotter theorem, which states that given two operators  and , such that ,
then for any number ,

Thus, for the Boltzmann operator,

and the partition function becomes

Define the operator in brackets to be :

Then,

In between each of the  factors of , the coordinate space identity operator

is inserted. Since there are  factors, there will be  such insertions. the integration variables will be labeled .
Thus, the expression for the matrix element becomes
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The next step clearly involves evaluating the matrix elementx

Note that in the above expression, the operators involving the potential  act on their eigenvectors and can thus be replaced by
the corresponding eigenvalues:

In order to evaluate the remaining matrix element, we introduce the momentum space identity operator

Letting , the matrix remaining matrix element becomes

Using the fact that

it follows that

The remaining integral over  can be performed by completing the square, leading to the result

Collecting the pieces together, and introducing the  limit, we have for the density matrix

The partition function is obtained by setting , which is equivalent to setting  and integrating over , or
equivalently . Thus, the expression for  becomes

where we have introduced a "frequency''

When expressed in this way, the partition function, for a finite value of , is isomorphic to a classical configuration integral for a 
-particle system, that is a cyclic chain of particles, with harmonic nearest neighbor interactions and interacting with an external
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potential . That is, the partition function becomes

where

Thus, for finite (if large)  the partition function in the discretized path integral representation can be treated as any ordinary
classical configuration integral. Consider the integrand of  in the limit that all  points on the cyclic chain are at the same
location . Then the harmonic nearest neighbor coupling (which is due to the quantum kinetic energy) vanishes and 

, and the integrand becomes

which is just the true classical canonical position space distribution function. Therefore, the greater the spatial spread in the cyclic
chain, the more "quantum'' the system is, since this indicates a greater contribution from the quantum kinetic energy. The spatially
localized it is, the more the system behaves like a classical system.

It remains formally to take the limit that . There we will see an elegant formulation for the density matrix and partition
function emerges.
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