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9.1: Measurement
The result of a measurement of the observable  must yield one of the eigenvalues of . Thus, we see why  is required to be a
hermitian operator: Hermitian operators have real eigenvalues. If we denote the set of eigenvalues of  by , then each of the
eigenvalues  satisfies an eigenvalue equation

where  is the corresponding eigenvector. Since the operator  is hermitian and  is therefore real, we have also the left
eigenvalue equation

The probability amplitude that a measurement of  will yield the eigenvalue  is obtained by taking the inner product of the
corresponding eigenvector  with the state vector , . Thus, the probability that the value  is obtained is given
by

Another useful and important property of hermitian operators is that their eigenvectors form a complete orthonormal basis of the
Hilbert space, when the eigenvalue spectrum is non-degenerate. That is, they are linearly independent, span the space, satisfy the
orthonormality condition

and thus any arbitrary vector  can be expanded as a linear combination of these vectors:

By multiplying both sides of this equation by  and using the orthonormality condition, it can be seen that the expansion
coefficients are

The eigenvectors also satisfy a closure relation:

where  is the identity operator.

Averaging over many individual measurements of  gives rise to an average value or expectation value for the observable ,
which we denote  and is given by

That this is true can be seen by expanding the state vector  in the eigenvectors of :

where  are the amplitudes for obtaining the eigenvalue  upon measuring , i.e., . Introducing this expansion
into the expectation value expression gives
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The interpretation of the above result is that the expectation value of  is the sum over possible outcomes of a measurement of 
weighted by the probability that each result is obtained. Since  is this probability, the equivalence of the
expressions can be seen.

Two observables are said to be compatible if . If this is true, then the observables can be diagonalized simultaneously to
yield the same set of eigenvectors. To see this, consider the action of  on an eigenvector  of . . But if
this must equal , then the only way this can be true is if  yields a vector proportional to  which means it must also
be an eigenvector of . The condition  can be expressed as

that is

 

where, in the second line, the quantity  is know as the commutator between  and . If , then 
and  are said to commute with each other. That they can be simultaneously diagonalized implies that one can simultaneously
predict the observables  and  with the same measurement.

As we have seen, classical observables are functions of position  and momentum  (for a one-particle system). Quantum analogs
of classical observables are, therefore, functions of the operators  and  corresponding to position and momentum. Like other
observables  and  are linear hermitian operators. The corresponding eigenvalues  and  and eigenvectors  and  satisfy
the equations

which, in general, could constitute a continuous spectrum of eigenvalues and eigenvectors. The operators  and  are not
compatible. In accordance with the Heisenberg uncertainty principle (to be discussed below), the commutator between  and  is
given by

and that the inner product between eigenvectors of  and  is

Since, in general, the eigenvalues and eigenvectors of  and  form a continuous spectrum, we write the orthonormality and
closure relations for the eigenvectors as:

The probability that a measurement of the operator  will yield an eigenvalue  in a region  about some point is
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The object  is best represented by a continuous function  often referred to as the wave function. It is a
representation of the inner product between eigenvectors of  with the state vector. To determine the action of the operator  on
the state vector in the basis set of the operator , we compute

The action of  on the state vector in the basis of the  operator is consequential of the incompatibility of  and  and is given by

Thus, in general, for any observable , its action on the state vector represented in the basis of  is
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