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8.3: Adiabatic Switching and Thermodynamic Integration
The free-energy perturbation approach evokes a physical picture in which configurations sampled from the canonical distribution
of state  are immediately "switched'' to the state  by simply changing the potential from  to . Such "instantaneous''
switching clearly represents an unphysical path from one state to the other, but we need not concern ourselves with this because the
free energy is a state function and, therefore, independent of the path connecting the states. Nevertheless, we showed that the free-
energy perturbation theory formula, Equation (6), is only useful if the states  and  do not differ vastly from one another, thus
naturally raising the question of what can be done if the states are very different.

The use of a series of intermediate states, by which Equation (7) is derived, exploits the fact that any path between the states can be
employed to obtain the free energy difference. In this section, we will discuss an alternative approach in which the system is
switched slowly or adiabatically from one state to the other, allowing the system to fully relax at each point along a chosen path
from state  to state , rather than instantaneously switching the system between intermediate states, as occurs in Equation (7). In
order to effect the switching from one state to the other, we will employ a common trick in the form of an "external'' switching
parameter, . This parameter is introduced by defining a new potential energy function

The functions  and  are referred to as switching functions, and they required to satisfy the conditions 
, corresponding to the state , and , corresponding to the state . Apart from these

conditions,  and  are completely arbitrary. The mechanism embodied in Equation  is one in which some imaginary
external controlling influence ("hand of God''), represented by the  parameter, starts the system off in state  and slowly
switches off the potential  while simultaneously switching on the potential . The process is complete when , when the
system is in state . A simple choice for the functions  and  is, for example,  and .

In order to see how Equation  can be used to compute the free energy difference , consider the canonical partition
function of a system described by the potential of Equation  for a particular choice of :

This partition function leads to a free energy  via

Recall, however, that the derivatives of the free energy with repsect to , and  and  lead to the chemical potential, pressure and
entropy, respectively. What does the derivative of the free energy  with respect to  represent? According to
Equation 

The reader should check that the expressions involving  and  are equivalent. Computing the derivative of  with respect to ,
we find

Now, the free energy difference  can be obtained trivially from the relation

Substituting eqns.  and  into Equation , we obtain the free energy difference as
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where  denotes an average over the canonical ensemble described by the distribution  with  fixed
at a particular value. The special choice of  and  has a simple interpretation. For this choice, Equation 

 becomes

The content of Equation (15) can be understood by recalling the relationship between work and free energy from the second law of
thermodynamics. If, in transforming the system from state  to state , an amount of work  is performed on the system, then

where equality holds only if the transformation is carried out along a reversible path. Since reversible work is related to a change in
potential energy, Equation  is actually a statistical version of Equation  for the special case of equality. Equation (15)
tells us that the free energy difference is the ensemble average of the microscopic reversible work needed to change the potential
energy of each configuration from  to  along the chosen -path. Note, however, that Equation (14), which is known as the
thermodynamic integration formula, is true independent of the choice of  and , which means that Equation (14) always
yields the reversible work via the free energy difference. The flexibility in the choice of the -path, however, can be exploited to
design adiabatic switching algorithms of greater efficiency that can be achieved with the simple choice .

In practice, the thermodynamic integration formula is implemented as follows: A set of  values of  is chosen from the interval 
, and at each chosen value , a full molecular dynamics or Monte Carlo calculation is carried out in order to generate the

average . The resulting values of ,  are then substituted into Equation (14), and the resulted is

integrated numerically to produce the free energy difference . Thus, we see that the selected values  can be evenly
spaced, for example, or they could be a set of Gaussian quadrature nodes, depending on how  is expected to vary
with  for the chosen  and .

As with free-energy perturbation theory, the thermodynamic integration approach can be implemented very easily. An immediately
obvious disadvantage of the method, however, is the same one that applies to Equation (7): In order to perform the numerical
integration, it is necessary to perform many simulations of a system at physically uninteresting intermediate values of  where the
potential  is, itself, unphysical. Only  correspond to actual physical states and ultimately, we can only
attach physical meaning to the free energy difference . Nevertheless, the intermediate
averages must be accurately calculated in order for the integration to yield a correct result. The approach to be presented in the next
section attempts to reduce the time spent in such unphysical intermediate states and focuses the sampling in the important regions 
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