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11.3.2: The Stationary Phase Approximation
Consider the simple integral:

Assume  has a global minimum at , such that . If this minimum is well separated from other minima of 
 and the value of  at the global minimum is significantly lower than it is at other minima, then the dominant contributions

to the above integral, as  will come from the integration region around . Thus, we may expand  about this point:

Since , this becomes:

Inserting the expansion into the expression for  gives

Corrections can be obtained by further expansion of higher order terms. For example, consider the expansion of  up to fourth
order:

Substituting this into the integrand and further expanding the exponential would give, as the lowest order nonvanishing correction:

This approximation is known as the stationary phase or saddle point approximation. The former may seem a little out-of-place,
since there is no phase in the problem, but that is because we formulated it in such a way as to anticipate its application to the path
integral. But this is only if  is taken to be a real instead of an imaginary quantity.

The application to the path integral follows via a similar argument. Consider the path integral expression for the density matrix:

We showed that the classical path satisfying

is a stationary point of the Euclidean action , i.e., . Thus, we can develop a stationary phase or saddle point
approximation for the density matrix by introducing an expansion about the classical path according to

where the correction , satisfying  has been expanded in a complete set of orthonormal functions ,
which are orthonormal on the interval  and satisfy  as well as the orthogonality condition:
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Setting all the expansion coefficients to 0 recovers the classical path. Thus, we may expand the action  (the "E'' subscript will
henceforth be dropped from this discussion) with respect to the expansion coefficients:

Since

the expansion can be worked out straightforwardly by substitution and subsequent differentiation:

where the fourth and eighth lines are obtained from an integration by parts. Let us write the integral in the last line in the suggestive
form:

which emphasizes the fact that we have matrix elements of the operator  with respect to the basis
functions. Thus, the expansion for  can be written as

and the density matrix becomes

where .  is an overall normalization constant. The integral over the coefficients becomes a generalized
Gaussian integral, which brings down a factor of :
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\left.{\partial^2 S \over \partial c_j\partial c_k}\right\vertical ... ...tau^2} + U''(x_{\rm cl}(\tau))\vert\phi_k\rangle = \Delta_{jk}
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\]

where the last line is the abstract representation of the determinant. The determinant is called the Van Vleck-Pauli-Morette
determinant.

If we choose the basis functions  to be eigenfunctions of the operator appearing in the above expression, so that they satisfy

Then,

and the determinant can be expressed as a product of the eigenvalues. Thus,

The product must exclude any 0-eigenvalues.

Incidentally, by performing a Wick rotation back to real time according to , the saddle point or stationary phase
approximation to the real-time propagator can be derived. The derivation is somewhat tedious and will not be given in detail here,
but the result is

where  satisfies

\] m\ddot{x}_{\rm cl} = -\left.{\partial U \over \partial x}\right\vert _{x=x_{\rm cl}}\)   \( x_{\rm cl}(0) = x\]

and  is an integer that increases by 1 each time the determinant vanishes along the classical path.  is called the Maslov index. It
is important to note that because the classical paths satisfy an endpoint problem, rather than an initial value problem, there can be
more than one solution. In this case, one must sum the result over classical paths:

\( U(x,x';t) = \sum_{\rm classical\ paths} e^

\)

This page titled 11.3.2: The Stationary Phase Approximation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Mark Tuckerman.
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