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8.2: Free-energy Perturbation Theory
We begin our treatment of free energy differences by examining the problem of transforming a system from one thermodynamic
state to another. Let these states be denoted generically as  and . At the microscopic level, these two states are characterized by
potential energy functions  and . For example, in a drug-binding study, the state  might
correspond to the unbound ligand and enzyme, while  would correspond to the bound complex. In this case, the potential 
would exclude all interactions between the enzyme and the ligand and the enzyme, whereas they would be included in the potential 

.

The Helmholtz free energy difference between the states  and  is simply . The two free energies  and 
are given in terms of their respective canonical partition functions  and , respectively by  and 

, where

The free energy difference is, therefore,

where  and  are the configurational partition functions for states  and , respectively,

The ratio of full partition functions  reduces to the ratio of configurational partition functions  because the
momentum integrations in the former cancel out of the ratio.

Equation  is difficult to implement in practice because in any numerical calculation via either molecular dynamics or Monte
Carlo, we do not have direct access to the partition function only averages of phase-space functions corresponding to physical
observables. However, if we are willing to extend the class of phase-space functions whose averages we seek to functions that do
not necessarily correspond to direct observables, then the ratio of configurational partition functions can be manipulated to be in the
form of such an average. Consider inserting unity into the expression for  as follows:

If we now take the ratio , we find
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where the notation  indicates an average taken with respect to the canonical configurational distribution of the state .
Substituting Equation  into Equation , we find

Equation  is known as the free-energy perturbation formula; it should be reminiscent of the thermodynamic perturbation
formula used to derive the van der Waals equation. Equation  can be interpreted as follows: We start with microstates 

 selected from the canonical ensemble of state  and use these to compute  by placing them in the state  by
simply changing the potential energy from  to . In so doing, we need to "unbias'' our choice to sample the configurations
from the canonical distribution of state   by removing the weight factor  from which the microstates are sample
and reweighting the states by the factor  corresponding to state . This leads to Equation . The difficulty with
this approach is that the microstates corresponding to the canonical distribution of state  may not be states of high probability in
the canonical distribution of state . If this is the case, then the potential enegy difference  will be large, he exponential
factor  will be negligibly small, and the free energy difference will be very slow to converge in an actual
simulation. For this reason, it is clear that the free-energy perturbation formula is only useful for cases in which the two states 
and  are not that different from each other.

If  is not a small perturbation to , then the free-energy perturbation formula can still be salvaged by introducing a set of 
 intermediate states with potentials , where ,  corresponds to the state  and 

corresponds to the state . Let . We can now imagine transforming the system from state  to state  by
passing through these intermediate states and computing the average of  in the state . Applying the free-energy
perturbation formula to this protocol yields the free-energy difference as

where  means an average taken over the distribution . The key to applying Equation  is choosing the
intermediate states so as to achieve sufficient overlap between the intermediate states without requiring a large number of them, i.e.
choosing the thermodynamic path between states  and  effectively.
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