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8.5: Jarzynski's Equality and Nonequilibrium Methods
In this section, the relationship between work and free energy will be explored in greater detail. We have already introduced the
inequality in Equation , which states that if an amount of work  is performed on a system, taking from state  to state ,
then . Here, equality holds only if the work is performed reversibly. The work referred to here is thermodynamic
quantity and, as such, must be regarded as an ensemble average. In statistical mechanics, we can also introduce the mechanical or
microscopic work  performed on one member of the ensemble to drive it from state  to state . Then,  is simply an
ensemble average of . However, we need to be somewhat careful about how we define this ensemble average because the
work is defined along a particular path or trajectory which takes the system from state  to state , and equilibrium averages do
not refer not to paths but to microstates. This distinction is emphasized by the fact that the work could be carried out irreversibly,
such that the system is driven out of equilibrium. Thus, the proper definition of the ensemble average follows along the lines
already discussed in the context of the free-energy perturbation approach, namely, averaging over the canonical distribution for the
state . In this case, since we will be discussing actual paths , we let the initial condition  be the phase space vector for the
system in the (initial) state . Recall that  is a unique function of the initial conditions. Then

and the Clausius inequality can be stated as .

From such an inequality, it would seem that using the work as a method for calculating the free energy is of limited utility, since the
work necessarily must be performed reversibly, otherwise one obtains only upper bound on the free energy. It turns out, however,
that irreversible work can be used to calculate free energy differences by virtue of a connection between the two quantities first
discovered in 1997 by C. Jarzynski that as come to be known as the Jarzynski equality. This equality states that if, instead of
averaging  over the initial canonical distribution (that of state ), an average of  is performed over the
same distribution, the result is , i.e.

This remarkable result not only provides a foundation for the development of nonequilibrium free-energy methods but also has
profound implications for thermodynamics, in general.

The Jarzynski equality be proved using different strategies. Here, however, we will present a proof that is most relevant for the
finite-sized systems and techniques employed in molecular dynamics calculations. Consider a time-dependent Hamiltonian of the
form

For time-dependent Hamiltonian's, the usual conservation law  no longer holds, which can be seen by computing

where the phase space vector  has been introduced. Integrating both sides over time from 
 to a final time , we find

Equation  can be regarded as a microscopic version of the first law of thermodynamics, in which the first and second terms
represent the heat absorbed by the system and the work done on the system over the trajectory, respectively. Note that the work is
actually a function of the initial phase-space vector , which can be seen by writing this term explicitly as
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where the fact that the work depends explicitly on  in Equation  is indicated by the subscript. In the present discussion, we
will consider that each initial condition, selected from a canonical distribution in , evolves according to Hamilton's equations in
isolation. In this case, the heat term , and we have the usual addition to Hamilton's equations .

With the above condition, we can write the microscopic work as

The last term  is also . Thus, the ensemble average of the exponential of the work becomes

The numerator in this expression becomes much more interesting if we perform a change of variables from  to . Since the
solution of Hamilton's equations for the time-dependent Hamiltonian uniquely map the initial condition  onto , when ,
we have a new set of phase-space variables, and by Liouville's theorem, the phase-space volume element is preserved

When the Hamiltonian is transformed, we find . Consequently,

thus proving the equality. The implication of the Jarzynski equality is that the work can be carried out along a reversible or
irreversible path, and the correct free energy will still be obtained.

Note that due to Jensen's inequality:

Using Jarzynski's equality, this becomes

which implies, as expected, that

This page titled 8.5: Jarzynski's Equality and Nonequilibrium Methods is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Mark E. Tuckerman.

( ) = dt H( ( ), t)Wτ x0 ∫
τ

0

∂

∂t
xt x0 (8.5.8)

τ 8.5.8

x0
H ⋅ = 0∇xt xt dH/dt = ∂H/∂t

= H( ( ), t)dt =H( ( ), τ)−H( , 0)WAB ∫
τ

0

d

dt
xt x0 xτ x0 x0 (8.5.9)

H( , 0)x0 ( )HA x0

⟨ = ∫ de−βWAB ⟩A

CN

(N ,V ,T )QA

x0 e
−β ( )HA x0 e−β[H( ( ),τ)− ( )]xτ x0 HA x0 (8.5.10)

∫ d
CN

(N ,V ,T )QA

x0 e
−βH( ( ),τ)xτ x0 (8.5.11)

x0 xτ
x0 xt t = τ

d = dxτ x0 (8.5.12)

H( , τ) = ( )xτ HB xτ

⟨e−βWAB ⟩A = ∫ d
CN

Q(N ,V ,T )
xτ e

−β ( )HB xτ

=
(N ,V ,T )QB

(N ,V ,T )QA

= e−βAAB

(8.5.13)

(8.5.14)

(8.5.15)

⟨ ≥e−βWAB ⟩A e−β⟨WAB ⟩
A (8.5.16)

≥e−βAAB e−β⟨WAB ⟩
A (8.5.17)

≤ ⟨AAB WAB⟩A (8.5.18)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/5250?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Statistical_Mechanics_(Tuckerman)/08%3A_Rare-event_sampling_and_free_energy_calculations/8.05%3A_Jarzynski's_Equality_and_Nonequilibrium_Methods
https://creativecommons.org/licenses/by-nc-sa/4.0
http://as.nyu.edu/content/nyu-as/as/faculty/mark-e-tuckerman.html

