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7.5: Thermodynamic quantities in terms of g(r)
In the canonical ensemble, the average energy is given by

Therefore,

Since

Thus,

In order to compute the average energy, therefore, one needs to be able to compute the average of the potential . In general, this
is a nontrivial task, however, let us work out the average for the case of a pairwise-additive potential of the form

i.e., U is a sum of terms that depend only the distance between two particles at a time. This form turns out to be an excellent
approximation in many cases. U therefore contains N(N-1) total terms, and  becomes

The second line follows from the fact that all terms in the first line are the exact same integral, just with the labels changed. Thus,

Once again, we change variables to  and . Thus, we find that
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Therefore, the average energy becomes

Thus, we have an expression for E in terms of a simple integral over the pair potential form and the radial distribution function. It
also makes explicit the deviation from "ideal gas'' behavior, where E=3NkT/2.

By a similar procedure, we can develop an equation for the pressure P in terms of g(r). Recall that the pressure is given by

The volume dependence can be made explicit by changing variables of integration in  to

Using these variables,  becomes

Carrying out the volume derivative gives

Thus,

Let us consider, once again, a pair potential. We showed in an earlier lecture that

where  is the force on particle i due to particle j. By interchaning the i and j summations in the above expression, we obtain

However, by Newton's third law, the force on particle i due to particle j is equal and opposite to the force on particle j due to
particle i:
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Thus,

The ensemble average of this quantity is

As before, all integrals are exactly the same, so that

Then, for a pair potential, we have

where u'(r) = du/dr, and . Substituting this into the ensemble average gives

As in the case of the average energy, we change variables at this point to  and . This gives

Therefore, the pressure becomes

which again gives a simple expression for the pressure in terms only of the derivative of the pair potential form and the radial
distribution function. It also shows explicitly how the equation of state differs from the that of the ideal gas .

From the definition of g(r) it can be seen that it depends on the density  and temperature T: . Note, however, that
the equation of state, derived above, has the general form

which looks like the first few terms in an expansion about ideal gas behavior. This suggests that it may be possible to develop a
general expansion in all powers of the density  about ideal gas behavior. Consider representing  as such a power series:
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Substituting this into the equation of state derived above, we obtain

This is known as the virial equation of state, and the coefficients  are given by

are known as the virial coefficients. The coefficient  is of particular interest, as it gives the leading order deviation from ideal
gas behavior. It is known as the second virial coefficient. In the low density limit,  and  is directly
related to the radial distribution function.

This page titled 7.5: Thermodynamic quantities in terms of g(r) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Mark Tuckerman.
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