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3.3: The Classical Virial Theorem (Microcanonical Derivation)

Consider a system with Hamiltonian H (). Let ; and x; be specific components of the phase space vector.

& Theorem 3.3.1: Classical Virial Theorem

The classical virial theorem states that
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where the average is taken with respect to a microcanonical ensemble.

To prove the theorem, start with the definition of the average:
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where the fact that §(z) = 6(—z) has been used. Also, the N and V' dependence of the partition function have been suppressed.
Note that the above average can be written as
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allows the average to be expressed as
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The first integral in the brackets is obtained by integrating the total derivative with respect to z; over the phase space variable ;.
This leaves an integral that must be performed over all other variables at the boundary of phase space where H = E, as indicated
by the surface element d.S;. But the integrand involves the factor H — E, so this integral will vanish. This leaves:
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where 3 (E) is the partition function of the uniform ensemble. Recalling that Q(E) = %Z(E) we have
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which proves the theorem.
v/ Example 3.3.1
x; = p;: and ¢ = j The virial theorem says that
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Thus, at equilibrium, the kinetic energy of each particle must be kTT By summing both sides over all the particles, we obtain a
well know result
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