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4.4: Preservation of Phase Space Volume and Liouville's Theorem
Consider a phase space volume element  at t=0, containing a small collection of initial conditions on a set of trajectories. The
trajectories evolve in time according to Hamilton's equations of motion, and at a time t later will be located in a new volume
element  as shown in the figure below:

Figure 

How is  related to  dxdd ? To answer this, consider a trajectory starting from a phase space vector  in  and having a
phase space vector  at time  in . Since the solution of Hamilton's equations depends on the choice of initial conditions, 
depends on  :

Thus, the phase space vector components can be viewed as a coordinate transformation on the phase space from  to time .
The phase space volume element then transforms according to

where  is the Jacobian of the transformation:

where . The precise form of the Jacobian can be determined as will be demonstrated below.

The Jacobian is the determinant of a matrix ,

whose matrix elements are

Taking the time derivative of the Jacobian, we therefore have

The matrices  and  can be seen to be given by
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Substituting into the expression for  gives

where the chain rule has been introduced for the derivative . The sum over i can now be performed:

Thus,

or

The initial condition on this differential equation is . Moreover, for a Hamiltonian system . This
says that  and . Thus, . If this is true, then the phase space volume element transforms according
to

which is another conservation law. This conservation law states that the phase space volume occupied by a collection of systems
evolving according to Hamilton's equations of motion will be preserved in time. This is one statement of Liouville's theorem.

Combining this with the fact that , we have a conservation law for the phase space probability:

which is an equivalent statement of Liouville's theorem.
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