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13.2: Iterative solution for the interaction-picture state vector
The solution to Equation  can be expressed in terms of a unitary propagator , the interaction-picture propagator, which evolves the
initial state  according to

Substitution of Equation  into Equation  yields an evolution equation for the propagator :

The initial condition on Equation  is . In developing a solution to Equation , we assume that  is a small
perturbation, so that the solution can take the form of a sum of powers of .

A solution of this form can be generated by recognizing that Equation  can be solved formally in terms of an integral equation:

It is straightforward to verify this form solution for . Computing the time derivative of both sides gives

Thus, Equation  is a valid expression of the solution. The implicit nature of the integral equation means that an iterative procedure based
on the assumption that  is a small perturbation can be easily developed. We start with a zeroth-order solution by setting  in
Equation , which gives the trivial result

This solution is now fed back into the right side of Equation  to develop a first-order solution:

The first order solution is fed back into the right side of Equation  to develop a second-order solution:

and so forth, such that the  th-order solution is always generated from the  st-order solution according to the recursion formula:

Thus, the third-order solution is given by

The exact solution is then just a sum of the solutions obtained at each order:

Having seen how to generate a solution for the propagator in the interaction picture to arbitrarily high orders in the perturbation, the time
evolution of the state vector  in the interaction picture can be determined from

and from this expression, the time evolution of the original state vector  in the Schrödinger picture can be determined
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where we have used the fact that  and, in the last line, the full propagator in the Schrödinger picture is identified as

From Equation , the structure of the full propagator for the time-dependent system reveals itself. Let us use Equation  to
generate the first few lowest order terms in the propagator. Substituting Equation  into Equation  yields the lowest order
contribution to :

Thus, at zeroth order, Equation  implies that the system is to be propagated using the unperturbed propagator  as if the
perturbation did not exist. At first order, we obtain

where, in the second line, the definition of  in terms of the original perturbation Hamiltonian  has been used. What Equation 
 says is that at first order, the propagator is composed of two terms. The first term is simply the unperturbed propagation from  to .

In the second term, the system undergoes unperturbed propagation from  to  and at , the perturbation  is allowed to act. From  to 
, the system undergoes unperturbed propagation. Finally, we need to integrate over all possible intermediate times .

In a similar manner, it can be shown that up to second order, the full propagator is given by

Thus, at second order, the new term involves unperturbed propagation from  to , action of  at , unperturbed propagation from 
to , action of  at  and, finally, unperturbed propagation from  to . Again, the intermediate times  and  must be integrated over.
The picture on the left side of the equation indicates that the perturbation causes the system to undergo some undetermined dynamical process
between  and . The terms on the right show how that process is broken down in terms of the action of the perturbation  at specific
intermediate times. At the  th order, the perturbation Hamiltonian  acts on the system at  specific instances in time. Because of the limits
of integration, these time instances are ordered chronologically.

The specific ordering of the instances in time when  acts on the unperturbed system raises an important point. At each order the expansion
for , the order in which the operators , , etc. are multiplied is important. The reason for this is that the operator 
does not commute with itself at different instances in time

Thus, in order to remove any possible ambiguity when specifying the order in which operators are to be applied in a time series, we introduce
the time-ordering operator, . The purpose of  is to take a product string of time-dependent operators  which act
at different instances in time  and order the operators in the product such that they act chronologically in time from the earliest
time to the latest time. For example, the action of  on two operators  and  is

Let us now apply the time-ordering operator to the second-order term. First write the double integral as a sum of two terms generated simply
interchanging the names of the dummy variables  and :

The same region can be covered by choosing  and . With this choice, Equation  becomes
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In the first term on the right side of Equation ,  and  acts first, followed by . In the second term,  and 
 acts first followed by . The two terms can, thus, be combined with both  and  lying in the interval  if the time-ordering

operator is applied:

The same analysis can be applied to each order in Equation , recognizing that the number of possible time orderings of a product of 
operators is . Thus, Equation  can be rewritten in terms of the time-ordering operator as

The sum in Equation  resembles the power-series expansion of an exponential, and, indeed, we can write the sum symbolically as

which is known as a time-ordered exponential. Equation  is really a symbolic representation of Equation , in which it is
understood that the time-ordering operator acts to order the operators in each term of the expansion of the exponential.

Given the formalism of time-dependent perturbation theory, we now seek to answer the following question: If the system is initially in an
eigenstate of  with energy , what is the probability as a function of time  that the system will undergo a transition to a new eigenstate of 

 with energy ? From the statement of the question, it is clear that the initial state vector  is simply the eigenstate of  with
energy 

The amplitude as a function of time that the system will undergo a transition to the eigenstate  is obtained by propagating this initial state
out to time  with the propagator  and then taking the overlap of the resultant state with the eigenstate :

and the probability is just the square magnitude of this complex amplitude:

Consider, first, the amplitude at zeroth order in perturbation theory. At this order, , and the amplitude is simply

which clearly vanishes if . Thus, at zeroth order, the only possibility is the trivial one in which no transition occurs.

The lowest nontrivial order is first order, where the transition amplitude is given by

Define a transition frequency  by

Then, taking the absolute square of the last line of Equation , we obtain the probability at first-order
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At first order, the probability depends on the matrix element of the perturbation between the initial and final eigenstates. Thus far, the
formalism we have derived is valid for any perturbation Hamiltonian . If we consider the use of an external perturbation to probe the
eigenvalue spectrum of , then the specific type of probe determines the form of , as we saw in the first section and will explore in the
next subsection.

This page titled 13.2: Iterative solution for the interaction-picture state vector is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Mark Tuckerman.
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