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4.4: Preservation of Phase Space Volume and Liouville's Theorem

Consider a phase space volume element dz at t=0, containing a small collection of initial conditions on a set of trajectories. The
trajectories evolve in time according to Hamilton's equations of motion, and at a time t later will be located in a new volume
element dz; as shown in the figure below:
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Figure 4.4.1
How is dz related to dz;dxdd ? To answer this, consider a trajectory starting from a phase space vector x in dzy and having a
phase space vector x; at time ¢ in dx;. Since the solution of Hamilton's equations depends on the choice of initial conditions, x;
depends on g :
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Thus, the phase space vector components can be viewed as a coordinate transformation on the phase space from ¢t =0 to time ¢.
The phase space volume element then transforms according to

dxy = J(xy; 20)dxzo
where J(x; ) is the Jacobian of the transformation:
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where n = 6N . The precise form of the Jacobian can be determined as will be demonstrated below.

The Jacobian is the determinant of a matrix M,

J(xs;20) = det(M) = 7™M
whose matrix elements are
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Taking the time derivative of the Jacobian, we therefore have
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The matrices M_; and % can be seen to be given by
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Substituting into the expression for d.J/d¢ gives
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where the chain rule has been introduced for the derivative 8_ The sum over i can now be performed:
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The initial condition on this differential equation is J(0) = J(z¢; z¢) =1 . Moreover, for a Hamiltonian system V,, -z =0 . This

says that dJ/dt =0 and J(0) = 1. Thus, J(z¢; o) = 1. If this is true, then the phase space volume element transforms according
to

dz, = dx;

which is another conservation law. This conservation law states that the phase space volume occupied by a collection of systems
evolving according to Hamilton's equations of motion will be preserved in time. This is one statement of Liouville's theorem.

Combining this with the fact that df /dt = 0, we have a conservation law for the phase space probability:

f(mm O)dmo = f(wta t)dmt

which is an equivalent statement of Liouville's theorem.
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