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11.2.1: Expectation values of observables
Recall the basic formula for the expectation value of an observable :

Two important cases pertaining to the evaluation of the trace in the coordinate basis for expectation values will be considered
below:

Case 1: Functions only of position 
If , i.e., a function of the operator  only, then the trace can be easily evaluated in the coordinate basis:

Since  acts to the left on one of its eigenstates, we have

which only involves a diagonal element of the density matrix. This can, therefore, be written as a path integral:

However, since all points  are equivalent, due to the fact that they are all integrated over, we can make  equivalent
cyclic renaming of the coordinates ,  etc. and generate  equivalent integrals. In each, the function  or 

, etc. will appear. If we sum these  equivalent integrals and divide by , we get an expression:

This allows us to define an estimator for the observable . Recall that an estimator is a function of the  variables 
whose average over the ensemble yields the expectation value of :

Then

where the average on the right is taken over many configurations of the  variables  (we will discuss, in the nex lecture,
a way to generate these configurations).

The limit  can be taken in the same way that we did in the previous lecture, yielding a functional integral expression for the
expectation value:

Case 2: Functions only of momentum 

Suppose that , i.e., a function of the momentum operator. Then, the trace can still be evaluated in the coordinate basis:
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However,  acting to the left does not act on an eigenvector. Let us insert a coordinate space identity  between 
 and :

Now, we see that the expectation value can be obtained by evaluating all the coordinate space matrix elements of the operator and
all the coordinate space matrix elements of the density matrix.

A particularly useful form for the expectation value can be obtained if a momentum space identity is inserted:

Now, we see that  acts on an eigenstate (at the price of introducing another integral). Thus, we have

Using the fact that , we find that

In the above expression, we introduce the change of variables

Then

Define a distribution function

Then, the expectation value can be written as

which looks just like a classical phase space average using the "phase space'' distribution function . The distribution
function  is known as the Wigner density matrix and it has many interesting features. For one thing, its classical limit is

which is the true classical phase space distribution function. There are various examples, in which the exact Wigner distribution
function is the classical phase space distribution function, in particularly for quadratic Hamiltonians. Despite its compelling
appearance, the evaluation of expectation values of functions of momentum are considerably more difficult than functions of
position, due to the fact that the entire density matrix is required. However, there are a few quantities of interest, that are functions
of momentum, that can be evaluated without resorting to the entire density matrix. These are thermodynamic quantities which will
be discussed in the next section.
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