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13.4: Fermi's Golden Rule
In the first section, we saw how to formulate the Hamiltonian of a material system coupled to an external electromagnetic field.
Moreover, we obtained solutions for the electromagnetic field in the absence of sources or physical boundaries, namely, solutions
of the free-field wave equations. In this chapter, we will focus primarily on weak fields. We will also focus on a class of
experiments in which the wavelength of electromagnetic radiation is taken to be long compared to the size of the sample under
investigation. In this case, the spatial dependence of the electromagnetic field can also be neglected, since

and

in the long-wavelength limit. In this case, it is sufficient to consider  to be of the general form

where  is a Hermitian operator.

Although we could use  and  to express the perturbation, the form in Equation  is a particularly convenient one,
and since we will be seeking probabilities of transitions, the results we obtain will be real in the end.

Again, the question we seek to answer is given this form for the perturbation, what is the probability that the material system will
be excited from an initial eigenstate  with energy  to a final state  with energy ? However, since the perturbation is
periodic in time, what we really seek to know is if the perturbation is applied over a long time interval, what is the probability per
unit time or rate at which transitions will occur. Thus, in order to make the calculation somewhat easier, let us consider a time
interval  and choose  and . At first order, the transition rate  is just the total probability 
divided by the interval length :

For finite , the integral can be carried out explicitly yielding

Thus, the transition rate can be expressed as

In the limit of  very large, this expression becomes highly peaked only if . Otherwise, as , the expression
vanishes. The condition  is equivalent to the condition , which is a statement of energy conservation. Since 

 is the energy quantum of the electromagnetic field, the transition can only occur if the energy of the field is exactly "tuned'' for
the the transition, and this "tuning'' depends on the frequency of the field. In this way, the frequency of the field can be used as a
probe of the allowed transitions, which then serves to probe the eigenvalue structure of .

Now, let us consider the  more carefully. We shall denote the rate in this limit simply as . In this limit, the integral
becomes
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Therefore, the expression for the rate in this limit can be written as

where we have dropped the "(1)'' superscript (it is understood that the result is derived from first-order perturbation theory), and
indicate explicitly the dependence on the frequency . When one the first integral is replaced by the -function, the remaining
integral becomes simply , which cancels the  in the denominator. Thus, the expression for the rate is finally

which is known as Fermi's Golden Rule. It states that, to first-order in perturbation theory, the transition rate depends only the
square of the matrix element of the operator  between initial and final states and includes, via the -function, an energy-
conservation condition. We will make use of the Fermi Golden Rule expression to analyze the application of an external
monochromatic field to an ensemble of systems in order to derive expressions for the observed frequency spectra.
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