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2.9: Extracting Atomic and Molecular Parameters from the deBroglie-Bohn Model for
the Atom
The 1913 Bohr model of the hydrogen atom was replaced by Schrödingerʹs wave mechanical model in 1926. However, Bohrʹs
model is still profitably taught today because of its conceptual and mathematical simplicity, and because it introduced a number of
key quantum mechanical ideas such as the quantum number, quantization of observable properties, quantum jump and stationary
state. In addition it provided realistic values for such parameters as atomic and molecular size, electron ionization energy, and
molecular bond energy.

In his ʺplanetaryʺ model of the hydrogen atom Bohr began with a Newtonian analysis of the electron executing a circular orbit of
radius R about a stationary nucleus, and then arbitrarily quantized the electronʹs angular momentum. Finally, by fiat he declared
that the electron was in a non‐radiating stationary state because an orbiting (accelerating) charge radiates energy and will collapse
into the oppositely charge nucleus.

In 1924 de Broglie postulated wave‐particle duality for the electron and other massive particles, thereby providing the opportunity
to remove some of the arbitrariness from Bohrʹs model. For example, an electron possessing wave properties is subject to
constructive and destructive interference. As will be shown this leads naturally to quantization of electron momentum and kinetic
energy, and consequently to a stable ground state for the hydrogen atom.

The de Broglie‐Bohr model of the hydrogen atom presented here treats the electron as a particle on a ring with wave‐like
properties. The key equation is wave‐particle duality as expressed by the de Broglie equation. The particle concept momentum and
the wave concept λ are joined in a reciprocal relationship mediated by the ubiquitous Planckʹs constant.

This equation will be used with the Bohr model of the hydrogen atom to explain atomic stability and to generate estimates of
atomic size and electron binding energy in the atom.

In the de Broglie version of the Bohr hydrogen atom we say that the electron occupies a ring of radius R. It is not orbiting the
nucleus, it is behaving as a stationary wave. In order to avoid self‐interference the following wavelength restriction must be obeyed
for the ground state of the hydrogen atom.

When combined with the de Broglie equation it reveals the following restriction on the electron's particle property, linear
momentum.

This means that there is also a restriction on the electron's kinetic energy. Use of this equation in the classical expression for kinetic
energy yields the quantum mechanical kinetic energy or more accurately electron confinement energy.

In this equation we have moved from the classical definition of kinetic energy to the quantum mechanical version expressed on the
right in atomic units.

The electrostatic potential energy retains its classical definition in quantum mechanics.
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The total electron energy, , is now minimized with respect to the ring or orbit radius, the only variational
parameter in the model. The total energy, and kinetic and potential energy, are also displayed as a function of ring radius.

From this simple model we learn that it is the wave nature of the electron that explains atomic stability. The electronʹs ring does not
collapse into the nucleus because kinetic (confinement) energy goes to positive infinity (~R ) faster than potential energy goes to
negative infinity (~‐R ). This is seen very clearly in the graph. The ground state is due to the sharp increase in kinetic energy as the
ring radius decreases. This is a quantum effect, a consequence of de Broglieʹs hypothesis that electrons have wave‐like properties.
As Klaus Ruedenberg has written, ʺThere are no ground states in classical mechanics.ʺ

The minimization process above the figure provides the ground state ring radius and electron energy in atomic units, a0 and Eh,
respectively. R = 1 a  = 52.9 pm gives us the benchmark for atomic size. Tables of atomic and ionic radii carry entries ranging from
approximately half this value to roughly five or six times it. The ground state (binding) energy, E = ‐0.5 E  = ‐13.6 eV = ‐1312
kJ/mol, is the negative of the ionization energy. This value serves as a benchmark for how tightly electrons are held in atoms and
molecules.

A more comprehensive treatment of the Bohr atom utilizing the restriction that an integral number of wavelengths must fit within
the ring, nλ = 2πR , where n = 1, 2, 3, ... reveals a manifold of allowed energy states (‐0.5 Eh/n2) and the basis for Bohrʹs concept
of the quantum jump which ʺexplainedʺ the hydrogen atom emission spectrum. Here for example is the n = 4 Bohr atom excited
state.

Rudimentary estimates of some molecular parameters, the most important being bond energy and bond length, can be obtained
using the following Bohr model for H2. The distance between the protons is D, the electron ring radius is R, and the bond axis is
perpendicular to the plane of the ring.

There are eight contributions to the total molecular energy based on this model: electron kinetic energy (2), electron‐proton
potential energy (4), proton‐proton potential energy (1) and electron‐electron potential energy (1).

Minimization of the energy with respect to ring radius and proton‐proton distance yields the following results.
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The H‐H bond energy is the key parameter provided by this analysis. We see that it predicts a stable molecule and that the energy
released on the formation of H2 is 0.1 Eh or 263 kJ/mol, compared with the experimental value of 458 kJ/mol. The model predicts
a H‐H bond length of 58 pm (D.52.9 pm), compared to the literature value of 74 pm. These results are acceptable given the
primitive character of the model.

In addition to these estimates of molecular parameters, the model clearly shows that molecular stability depends on a balancing act
between electron‐proton attraction and the ʺrepulsiveʺ character of electron kinetic energy. Just as in the atomic case, it is the 1/R2
dependence of kinetic (confinement) energy on ring radius that prevents molecular collapse under electron‐proton attraction. As the
energy profile provided in the Appendix shows, the immediate cause of the molecular ground state is a rise in kinetic energy.
Potential energy is still declining at this point and does not begin to rise until 0.55 a , well after the ground state is reached at 1.10
a .

Although the model is a relic from the early days of quantum theory it still has pedagogical value. Its mathematical simplicity
clearly reveals the importance of the wave nature of matter, the foundational concept of quantum theory.

Two relatively recent appraisals of Bohrʹs models of atomic and molecular structure have been appeared in Physics Today:

ʺNiels Bohr between physics and chemistry,ʺ by Helge Kragh, May 2013, 36‐41.
ʺBohrʹs molecular model, a century later,ʺ by Anatoly Svidzinsky, Marlan Scully, and Dudley Herschbach, January 2014, 33‐
39.
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