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9.1: Introduction to Numerical Solutions of Schödinger's Equation
Solving Schrödinger's equation is the primary task of chemists in the field of quantum chemistry. However, exact solutions for
Schrödinger's equation are available only for a small number of simple systems. Therefore the purpose of this tutorial is to illustrate
one of the computational methods used to obtain approximate solutions.
Mathcad offers the user a variety of numerical differential equation solvers. We will use Mathcad's ordinary differential equation
solver, Odesolve, because it allows one to type Schrödinger's equation just as it appears on paper or on the blackboard; in other
words it is pedagogically friendly. In what follows the use of Odesolve will be demonstrated for the one-dimensional harmonic
oscillator. All applications of Odesolve naturally require the input of certain parameters: integration limits, mass, force constant,
etc. Therefore the first part of the Mathcad worksheet will be reserved for this purpose.

Integration limit: x  := 5
Effective mass: µ := 1
Force constant: k := 1

The most important thing distinguishing one quantum mechanical problem from another is the potential energy term, . It is
entered below.
Potential energy:

Entering the potential energy separately, as done above, allows one to write a generic form for the Schrödinger equation applicable
to any one-dimensional problem. This creates a template that is easily edited when moving from one quantum mechanical problem
to another. All that is necessary is to type in the appropriate potential energy expression and edit the input parameters. This is the
most valuable feature of the numerical approach - you don't need a new mathematical tool or trick for each new problem, a single
template works for all one-dimensional problems after minor editing.
Mathcad's syntax for solving the Schrödinger equation is given below. As it may be necessary to do subsequent calculations, the
wavefunction is normalized. Note that seed values for an initial value for the wavefunction and its first derivative are required. It is
also important to note that the numerical integration is carried out in atomic units:

Given

with  and .

Normalize wavefunction:

Numerical solutions also require an energy guess. If the correct energy is entered the integration algorithm will generate a
wavefunction that satisfies the right-hand boundary condition. If the right boundary condition is not satisfied another energy guess
is made. In other words it is advisable to sit on the energy input place holder, type a value and press F9 to recalculate.
Energy guesses that are too small yield wavefunctions that miss the right boundary condition on the high side, while high energy
guesses miss the right boundary condition on the low side. Therefore it is generally quite easy to bracket the correct energy after a
few guesses.
Enter energy guess: E ≡ .5
Of course the solution has to be displayed graphically to determine whether a solution (an eigenstate) has been found. The
graphical display is shown below. It is frequently instructive to also display the potential energy function.
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run restart restart & run all

wavefunction:

Potential energy:

%matplotlib inline

 

from scipy.integrate import odeint

import matplotlib.pyplot as plt  

import numpy as np

 

 

mu=1

k=1

E=.5

xmax=-5

 

def psi(y,x):

    psi1, psi2_dx2 = y 

    return [psi2_dx2, ((2*mu)/(-1))*(E*psi1 - (1/2)*x**2*psi1)]

 

x0 = [0.0, 0.1]

val = np.linspace(-5,5,101)

sol = odeint(psi, x0, val)

#plot, legends, and titles 

plt.plot(val,sol[:,0],color = "red",label = " ")

plt.title("Wave Function")

leg = plt.legend(title = "(x)  ", loc = "center", bbox_to_anchor=[-.11,.5],frameon=Fal

 

plt.show()

%matplotlib inline  

 

import matplotlib.pyplot as plt

import numpy as np

import math

 

# initialize constants k and create x array

k = 1 

x = np.linspace(-5,5,100)

 

# set boundaries

plt.xticks([-5,5])
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It is quite easy, as shown below, to generate the momentum-space wavefunction by a Fourier transform of its coordinate-space
counterpart.

p := −4, −3.9..5

Φ(p) = ψ(x)dx
1

2π
−−

√
∫

xmax

−xmax

e−ipx

plt.yticks([0,5,10,15])

 

# plot

plt.plot(x,(.5)*k*(x**2), color = "red",label = " ")

 

# add titles and legend

plt.title("Potential Energy")

leg = plt.legend(title = "\u03A8  ", loc = "center", bbox_to_anchor=[-.11,.5],frameon=

 

plt.show()

%matplotlib inline  

 

import numpy as np

import matplotlib.pyplot as plt 

from scipy.integrate import odeint

import scipy.integrate as integrate

import math

 

#set constants

mu=1

k=1

E=.5

xmax=5

 

#create ode 

def psi(y,x):

    psi1, psi2_dx2 = y 

    return [psi2_dx2, ((2*mu)/(-1))*(E*psi1 - (1/2)*x**2*psi1)]

 

#create space 

x0 = [0.0, 0.001]

val = np.linspace(-xmax,xmax,101)
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#solve ode using odeint

sol = odeint(psi, x0, val)

 

#format plot

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

 

#show tick marks to the left and lower axes only

plt.yticks([])

plt.axis(xmin = -4,xmax = 4,ymin = 0,ymax = 30)

 

#move left yaxis passing through origin

ax.spines["left"].set_position("center")

 

#eliminate upper and right axes

ax.spines["right"].set_color("none")

ax.spines["top"].set_color("none")

 

#plot graph

plt.plot(val,sol[:,0],color = "red",label = " ")

 

 

#add titles and legend

plt.title("Momentum Distribution")

leg = plt.legend(title = "(|\u03A6(p)|\u00b2)", loc = "center", bbox_to_anchor=[-.10,

 

plt.show()
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