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1.14: Quantum Mechanics and the Fourier Transform

However, just as with the circular aperture (Airy pattern) a single slit also yields a diffraction pattern when illuminated. Both are
examples of the superposition principle because the photons that arrive at the detection screen can get there from any points within
the aperture or slit. So, in general, we calculate the diffraction pattern by a Fourier transform of the coordinate space geometry, slit
or circle or something more complicated. The following tutorial explores single-slit diffraction and the uncertainty principle.

A Quantum Mechanical Interpretation of Single-slit Diffraction

Diffraction has a simple quantum mechanical interpretation based on the uncertainty principle. Or we could say diffraction is an
excellent way to illustrate the uncertainty principle.

A screen with a single slit of width, w, is illuminated with a coherent photon or particle beam. The normalized coordinate-space
wave function at the slit screen is,
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The coordinate-space probability density, |¥(z, w) |, is displayed for a slit of unit width below

The slit-screen measures position, it localizes the incident beam in the x-direction. According to the uncertainty principle, because
position and momentum are complementary, or conjugate, observables, this measurement must be accompanied by a delocalization
of the x-component of the momentum. This can be seen by a Fourier transform of ¥(z,w) into momentum space to obtain the
momentum wave function, @ (p,, w).
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It is the momentum distribution, |®(p,, w)|2, shown histographically below that is projected onto the detection screen. Thus, a
position measurement at the detection screen is also effectively a measure of the x-component of the particle momentum.
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In this figure we see the spread in momentum required by the uncertainty principle, plus interference fringes due to the fact that the
incident beam can imerge from any where within the slit, allowing for constructive and destructive interference at the detection
screen. If the slit width is decreased the position is more precisely known and the uncertainty principle demands a broadening in the
momentum distribution as shown below.

Equating uncertainty in position with slit width and uncertainty in momentum with the width of the intense center of the diffraction
pattern, we have in atomic units: AzAp, = 12.6. If the slit width is decreased the position is more precisely known and the
uncertainty principle demands a broadening in the momentum distribution as shown below. For slit width 0.5 we again find the
product of the uncertainties is 12.6.
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Naturally if the slit width is increased to 2.0 the position uncertainty increases and the uncertainty in momentum decreases yielding
again AzAp, = 12.6.
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The x-direction momentum can be expressed in terms of the wavelength of the illuminating beam and the diffraction angle using
the following sequence of equations of which the second is the de Broglie relation in atomic units (h = 27).
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This allows one to explore the effect of the wavelength of the illuminating beam on the diffraction pattern. The figure below shows
that a short wavelength (high momentum) illuminating beam gives rise to a narrower diffraction pattern.
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The method used here to calculate single-slit diffraction patterns (momentum-space distribution functions) is easily extended to
multiple slits, and also to diffraction at two-dimensional masks with a variety of hole geometries.
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"Experimental verification of the Heisenberg uncertainty principle for hot fullerene molecules”, O. Nairz, M. Arndt, and A.
Zeilinger, Phys. Rev. A, 65, 032109 (2002).
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The next link shows how the methods used to examine these relatively simple cases can be expanded to more interesting
geometries, including the DNA double helix. The following tutorial provides details regarding a simple simulation of the DNA
diffraction pattern.

Simulating the DNA Diffraction Pattern

The publication of the DNA double-helix structure by x-ray diffraction in 1953 is one the most significant scientific events of the
20th century (1). Therefore, it is important that science students and their teachers have some understanding of how this great
achievement was accomplished. X-ray diffraction is conceptually simple: a source of X-rays illuminates a sample which scatters
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the x-rays, and a detector records the arrival of the scattered x-rays (diffraction pattern). However, the mathematical analysis
required to extract from diffraction pattern the molecular geometry of the sample that caused the diffraction pattern is quite
formidable. Therefore, the purpose of this tutorial is to illustrate some of the elements of the mathematical analysis required to
solve a structure.

The famous X-ray diffraction pattern obtained by Rosalind Franklin is shown below (2).

This X-ray picture stimulated Watson and Crick to propose the now famous double-helix sturcture for DNA. It was surely
fortuitous that Crick had recently completed an unrelated study of the diffraction patterns of helical molecules ( 3).

To gain some understanding of how the experimental pattern led to the hypothesis of a double-helical structure we will work in
reverse. We will assume the double-helix structure, calculate the diffraction pattern, and compare it with the experimental result.
This, therefore, is a deductive exercise as opposed to the brilliant inductive accomplishment of Watson and Crick in determining
the DNA structure from Franklin's experimental X-ray pattern.

The experimental pattern will be simulated by modeling DNA solely as a planar double strand of sugar-phosphate backbone groups
shown below. Reference 4 provides the justification and the limitations in using two-dimensional models for three-dimensional
structures when simulating X-ray diffraction experiments.

The double-strand geometry shown below was created using the following mathematics. Calculations are carried out in atomic
units.

Sugar-phosphate groups per strand:

A= 20 Strand radius: R :=1 Phase difference between strands: 0.8 - 7
First strand:
4-7-m
m:=1...A Oy:= e Y i=M Xy :=R-cos(On)

Second strand:
4.-7-(m—A)
A
m:=1...20 n:=21...40

m:=21...40 Oy := Vm:=(m—A) xpu:=R-cos(0y+0.8-7)
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According to quantum mechanical principles, the photons illuminating this geometrical arrangement interact with all its members
simultaneously thus being cast into the spatial superposition, ¥, given below.

1 N
U) = — > |,
) \/Ni:1| i)

This spatial wave function is then projected into momentum space by a Fourier transform to yield the theoretical diffraction pattern.
What is measured at the detector according to quantum mechanics is the two-dimensional momentum distribution created by the
spatial localization that occurs during illumination of the structure. If the sugar-phosphate groups are treated as point scatterers the
momentum wave function is given by the following Fourier transform.

1 40
® (Pxrpy) =5 Z (—1- Py Xm) - exp(—i-Dy - ¥m)

The theoretical diffraction pattern can now be displayed as the absolute magnitude squared of the momentum wave function.

2-A-j 2-A-k

A:=8 N:=200 j:=0...N p,:=—A+——— k:=0...N pyi=—A+ N

2
DiffractionPattern; i := (|‘I‘ (pxj,pyk) |)

@ 0 1.14.5 https://chem.libretexts.org/@go/page/143477


https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/143477?pdf

LibreTextsw

] fr— L — L
= s =
_ - — L— [ ——
(S ———— s —
R i
_> <_
—— —_ P — ——
—— U
—— [ —— e | ——
P — _
_> <_
i - e~ ===
_— o —
S — e — ] ——— —
o Al o=
——— [ s — f——— ————
DiffractionPattern

Clearly the naive model diffraction pattern presented here captures several important features of the experimental diffraction
pattern. Among those are the characteristic X-shaped cross of the diffraction pattern and the missing fourth horizontal layer
(indicated by arrows).

Lucas, Lisensky, and co-workers (4, 5) have simulated the DNA diffraction pattern using the optical transform method. This
tutorial might therefore be considered to be a theoretical companion to their more empirical approach to the subject.

References:
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A brief discussion of the impact of rotational symmetry in determining diffraction patterns and the concept of the quasi-crystal can
be found at the following tutorial.

Crystal Structure, Rotational Symmetry and Quasicrystals

Prior to 1991 crystals were defined to be solids having only 2-, 3-, 4- and 6-fold rotational symmetry because only these rotational
symmetries have the required translational periodicity to build the long-range order of a crystalline solid. Long-range order is
synonymous with periodicity, requiring some unit structure which repeats itself by translation in all directions infinitely. It is easy
to demonstrate that a pentagon, with 5-fold rotational symmetry cannot be used as a unit cell to create long-range order in a plane
or in three-dimensions.

The justification for this definition was that solid structures with 2-, 3-, 4- and 6-fold rotational symmetry yield discrete diffraction
patterns that also have translational periodicity. Another way to put this is to say that solid structures with 2-, 3-, 4- and 6-fold
rotational symmetry have reciprocal lattices that also have translational periodicity. Yet, another way to put this, of course, is that
the Fourier transforms of geometries with 2-, 3-, 4- and 6-fold rotational symmetry yield lattice-like momentum distributions with
translational periodicity. This latter statement is preferred by the author because it emphasizes that diffraction patterns are actually
the momentum distributions of the diffracted particles.
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The key in this latter interpretation is that diffraction experiments involve an initial spatial localization of the radiation through
interaction with the crystal lattice, followed as required by the uncertainty principle, a delocalization of the momentum distribution
in the detection plane.

Let’s look at some examples. First we examine the Fourier transforms of two mini-lattices with two- and three-fold rotational
symmetry.

Position Distribution Function Momentum Distribution Function

MaskPattern DiffractionPattern

Posttion Distribution Function Momentum Distribution Function

MaskPattern DiffractionPattern

Clearly both diffraction patterns exhibit translational periodicity, their repeating units being a 90 degree rotation of the spatial
structure. Next we look at four-fold rotational symmetry and see that the unit cell is obvious.
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Position Distribution Function Momentum Distribution Function

MaskPattern DiffractionPattern

Six-fold rotational symmetry is more interesting than the previous three examples, but again the unit cell is easy to find.

Position Distribution Function Momentum Distribution Function

MaskPattern DiffractionPattern

Now look at what happens when we consider 5-fold symmetry — the diffraction pattern generated by a pentagon.
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Position Distribution Function

MaskPattern DiffractionPattern

The unit cell, the universal repeating unit, is gone. The diffraction pattern is well-defined, it has rotational symmetry and it is
appealing, but it does not satisfy the criterion for translational periodicity. That’s why 5-fold rotational symmetry is excluded from
the list of symmetries that can generate diffraction patterns that have translational periodicity, and why by definition crystalline
solids are not supposed to have 5-fold axes, or rotational axes greater than order six.

However, in 1984 an international research team consisting of D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, published
“Metallic phase with long-range orientational order and no translational symmetry” in Physical Review Letters 53, 1951-1953
(1984). The crystalline metallic phases they studied produced discrete diffraction patterns that were characteristic of the 5- and 10-
fold rotational symmetry axes that were prohibited by the accepted definition of a crystalline solid.

In the face of this contradictory evidence, 5-fold rotational symmetry and a well-defined diffraction pattern, the International Union
of Crystallography in 1991 redefined crystal to mean any solid having a discrete diffraction pattern. However, the solid phases
discovered by Shechtman and his co-workers go by the name quasicrystals, indicating that they don’t quite have the same stature as
those that don’t violate the rotational symmetry rule.

The striking diffraction pattern created by a pentagon of point scatterers is shown below.
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In these recent examples we have been Fourier transforming from coordinate space to momentum space because the momentum
distribution function is the diffraction pattern, and our experiments are set up in coordinate space. In quantum mechanics an
experiment requires two steps: state preparation followed by a measurement. State preparation occurs at the slit screen and
measurement at the detection screen. The following link shows how to go from the coordinate representation to the momentum
representation and back again.

Single Slit Diffraction and the Fourier Transform

Coordinate-space wave function:

Slit width: w :=1 T, w) = if [(xzf%)-(xg%),l,O]

m::;w,;w+0.005...%

2 2

A Fourier transform of the coordinate-space wave function yields the momentum wave function and the momentum distribution
function, which is the diffraction pattern.

V2 sin(Z2
exp(—i- py - x)dz simplify — ( 2 )
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Now Fourier transform the momentum wave function back to coordinate space and display result. This is done numerically using
large limits of integration for momentum.

/5000 %sin(%-w-pz) exp(i-py - )

1 1 .
5000 7T w3 -p, V2w

U(z,w):= dp.
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