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1.60: Kinetic Energy Is Important in the Nanoscale World
Most explanations of atomic and molecular phenomena found in textbooks are expressed in terms of potential-energy-only (PEO)
models. Inclusion of kinetic energy in the analysis is generally considered to be unnecessary or irrelevant. This view is of
questionable validity, and it is becoming increasing clear that ignoring kinetic energy at the nanoscopic level can lead to facile but
incorrect explanations of atomic and molecular behavior. (1-4)

The idea that kinetic energy should not be ignored is not too surprising since quantum mechanical calculations involve
minimization of the total energy, which includes both kinetic and potential energy contributions. In other words, kinetic energy
plays an important role at the computational level, and therefore should not be excluded at the level of analysis and interpretation.
For example, the fundamental questions regarding the stability of matter, the nature of the covalent bond, and the interaction of
electromagnetic radiation with matter cannot be answered without a consideration of kinetic energy in the quantum mechanical
context. (5)

The following simple variational calculation on a particle in a one-dimensional box with a linear internal potential clearly illustrates
the importance of kinetic energy. For a particle of unit mass in a one-dimensional box of length one bohr (1a  =52.9 pm = 0.0529
nm) with internal potential energy V = 2x the Schrödinger equation in atomic units (h = 2 ) is,

Three normalized trial wave functions are considered in this analysis, and are shown below both mathematically and graphically.
The potential energy function is superimposed on the graphical representation of the trial wave functions.

If asked to choose the best trial wave function by inspection, one would undoubtedly be inclined to select  because it is skewed
to the left side of the box where the potential energy is lowest.  would be next best because it is symmetric, and  would be
last because it is skewed to the right side of the box where the potential energy is highest. However, the quantum mechanical
calculations reveal that  is the best trial function of the three because it gives the lowest total energy, the primary criterion of the
variational principle.
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For each trial wave function the expectation values for kinetic energy (T), potential energy (V), total energy (E = T + V), and
position are calculated. Atomic units are used all calculations: 1E  = 4.36 aJ and 1a  = 52.9 pm)

Calculations for trial wave function  

Kinetic energy:

Potential energy:

Total energy:

Average position:

Calculations for trial wave function  

Kinetic energy:

Potential energy:

Total energy:

Average position:

Calculations for trial wave function  

Kinetic energy:

Potential energy:

Total energy:

Average position:

These calculations are summarized in following table.

Property\Wave function Qa Qb Qc

Kinetic Energy/E 4.935 7.000 7.000

Potential Energy/E 1.000 0.750 1.250

Total Energy/E 5.935 7.750 8.250

Average Position/a 0.500 0.375 0.625

 is a symmetric function which favors neither the low potential energy region nor the high potential energy region, but has the
lowest total energy because it has a significantly lower kinetic energy than the other trial wave functions. The reason it has a lower
kinetic energy is because it has a lower curvature than the other wave functions (curvature is the second derivative of the function). 

 has a somewhat lower potential energy than  because it favors the left side of the box, but consequentially a much higher
kinetic energy because of its greater curvature. Total energy, as noted above, is what counts in a variational calculation.  is the
worst trial function because it has both high kinetic energy and high potential energy.

Of course,  is not the best possible wave function for this problem; it is only the best of the three considered here. The best wave
function can be found by a more elaborate variational calculation or by numerical integration of Schrödinger's equation. A Mathcad
(6) program for numerical integration of Schrödinger's equation for a particle in a box with linear internal potential is given in the
appendix.

This latter method yields a wave function with the following physical properties: = 4.942 E ; = 0.983 E ; = 5.925 E ; = 0.491 a .
Note that this optimum wave function is skewed a little to the left of center, increasing kinetic energy slightly (+.007 Eh) and
reducing potential energy slightly more (-.017 E ), and overall yielding an energy reduction of -.01 E . The details of these
calculations can be found in the appendix.
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However, it is also important to note that , the eigenfunction for the particle in a box problem [V(x)=0], is a very good trial wave
function for this particular problem. It is in error by only 0.17% when compared with the more accurate, and essentially exact,
numerical solution.  is displayed along with the numerical wave function in the appendix to show how little it differs from the
numerical solution.

Another point that should be noted is that  does not become the preferred trial function until V(x) = 16.6x. In other words it
requires a rather steeply rising internal potential energy to offset the kinetic energy advantage that  has. The energy calculations
for both wave functions are given below.

In conclusion, this simple example reveals that our intuition about the importance of potential energy in the analysis of physical
phenomena at the nanoscale level should be tempered by a realization that the quantum mechanical nature of kinetic energy cannot
be safely ignored.
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5. In the context of quantum mechanics, confinement energy is probably a better descriptor than kinetic energy, because the latter

implies classical motion. According to quantum mechanical principles, confined particles, because of their wave-like charcter,
are described by a weighted superposition of the allowed position eignestates. They are not executing a trajectory in the
classical sense. In other words, they are not here and later there; they are here and there, simultaneously

6. Mathcad 11 is a product of Mathsoft, Cambridge, MA 02142; www.mathsoft.com/.

Appendix 

Numerical Solution for the Particle in a Slanted Box 

Parameters:

Potential energy:

Solve Schrödinger's equation numerically:
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Normalize wavefunction:

Enter energy guess: E = 5.925
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Calculate most probable position:

Calculate average position:

Calculate potential and kinetic energy:

This page titled 1.60: Kinetic Energy Is Important in the Nanoscale World is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

x := .5 Given  Ψ(x) = 0  Find (x) = 0.485
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