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1.13: Quantum Mechanics and the Fourier Transform
Wave-particle duality as expressed by the de Broglie wave equation

is the seminal concept of quantum mechanics. On the left side we have the wave property, wavelength, and on the right in a
reciprocal relationship mediated by the ubiquitous Planck’s constant, we have the particle property, momentum.

Wave and particle are physically incompatible concepts because waves are spatially delocalized, while particles are spatially
localized. In spite of this incongruity we find in quantum theory that they are necessary companions in the analysis of atomic and
molecular phenomena. Both concepts are required for a complete examination of experiments at the nanoscale level.

This view can be summarized by saying that in quantum-level experiments we always detect particles, but we predict or interpret
the experimental outcome by assuming wavelike behavior prior to particle detection. As Bragg once said, “Everything in the future
is a wave; everything in the past is a particle.” It has also been said that between release and detection particles behave like waves.

Wave-particle duality, a strange dichotomous co-dependency, was first recognized as a permanent feature of modern nanoscience
when Niels Bohr proclaimed the complementarity principle as the corner stone of the Copenhagen interpretation of quantum
theory. This scientific dogma states, among other things, that there will be no future resolution of the cognitive dissonance that
results from analyses that require, at root level, the use of irreconcilable concepts such as wave and particle.

In what follows it will be shown that wave-particle duality leads naturally to other conjugate relationships between traditional
physical variables such as position and momentum, and energy and time. The vehicle for this extension will turn out to be the
Fourier transform.

To reason mathematically about wave behavior requires a wave function. The one-dimensional, time-independent plane wave
expression for a free particle is suitable for this purpose.

We see that this expression contains the basics of wave-particle duality; x represents position, a particle characteristic, and 
represents wave behavior. Substitution of the de Broglie equation for  yields one of the most important mathematical functions in
quantum mechanics.

By convention this function is called the momentum eigenfunction in the coordinate representation. We express this in Dirac
notation as follows (the normalization constant is ignored for the time being).

Its complex conjugate is the position eigenfunction in the momentum representation.

Both expressions are also simple examples of Fourier transforms. They are dictionaries for translating between two different
languages or representations. A rudimentary graphical illustration of this ability to translate also provides a concise illustration of
the uncertainty principle. (See The Emperor’s New Mind, by Roger Penrrose, page 246.)

A quon (“A quon is any entity, no matter how immense, that exhibits both wave and particle aspects in the peculiar quantum
manner.” Quantum Reality by Nick Herbert page 64.) with a precise position is represented by a Dirac delta function in coordinate
space and a helix in momentum space. If the position is known exactly, the momentum is completely unknown because  is
a constant for all values of the momentum. All momentum values have the same probability of being observed.
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These rudimentary examples of the use of the Fourier transform in quantum mechanics involve infinitesimal points in coordinate
and momentum space. To employ the Fourier transform for objects of finite dimensions requires integration over the spatial or
momentum dimensions.

For example, suppose we ask what the pattern of diffracted light on a distant screen would look like if a light source illuminated a
mask with a single small circular aperture. This, of course, yields the well-known Airy diffraction pattern, which is nothing more
than the Fourier transform of the coordinate wave function (the circular aperture) into momentum space. The Airy pattern
calculation is given in the following tutorial, along with illustrations of how the radius of the hole illustrates the uncertainty
principle.

Calculating the Airy Diffraction Pattern 

The Airy diffraction pattern is created by illuminating a screen containing a circular hole with photons. The experiment can be
performed with weak sources such that there is only one photon interacting with the screen at a time. This photon-screen
interaction constitutes a position measurement.

The position wave function has a constant amplitude within the area of the hole and is shown to be normalized.

The Airy diffraction pattern is the Fourier transform of the position wave function into the momentum representation. In other
words, the interference pattern at the detection screen actually represents a momentum measurement. The following calculations
are carried out in atomic units using a hole radius of 0.2.

Hole radius: 

Calculate the Airy diffraction pattern:

Display the Airy diffraction pattern.
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Truncating the high intensity central disk provides a better picture of the outer maxima and minima.

Examining a radial slice of the Airy diffraction pattern provides a simple illustration of the uncertainty principle. Assume that the
position uncertainty is given by the diameter of the hole and that the momentum uncertainty is given by the momentum range of the
central disk.
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For a diameter of 0.4 the position-momentum uncertainty product is:

For a diameter of 0.2 the position-momentum uncertainty product is:

The reciprocal relationship between the uncertainty in position and momentum is clearly revealed in this example.

The Double-Slit Experiment 

0.4 ⋅ 38.5 = 15.4

0.2 ⋅ 77.0 = 15.4
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Coordinate wave function:

Momentum wave function for infinitesimally thin slits:

Position of first slit:

Position of second slit:

Momentum wave function for finite slits:
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According to the Encyclopedia Britannica, Fresnel and Arago “using an apparatus based on Young’s experiment” observed that
“two beams polarized in mutually parallel planes never yield fringes.” In the following tutorial this phenomenon is examined from
the quantum mechanical perspective and a critique of the concept of the quantum eraser is provided.

Which Path Information and the Quantum Eraser 
This tutorial examines the real reason which‐path information destroys the double‐slit diffraction pattern and how the so‐called
ʺquantum eraserʺ restores it. The wave function for a photon illuminating the slit screen is written as a superposition of the photon
being present at both slits simultaneously. The double‐slit diffraction pattern is calculated by projecting this superposition into
momentum space. This is a Fourier transform for which the mathematical details can be found in the Appendix.

Attaching polarizers to the slits creates an entangled superposition of the photon being at slit 1 with vertical polarization and at slit
2 with horizontal polarization. This leads to the following momentum distribution at the detection screen. The interference fringes
have disappeared leaving a single‐slit diffraction pattern.
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The usual explanation for this effect is that it is now possible to know which slit the photons went through, and that such
knowledge destroys the interference fringes because the photons are no longer in a superposition of passing through both slits, but
rather a mixture of passing through one slit or the other.

However, a better explanation is that the superposition persists with orthogonal polarization tags, and because of this the
interference (cross) terms in the momentum distribution, , vanish leaving a pattern at the detection screen which is the sum
of two single‐slit diffraction patterns, one from the upper slit and the other from the lower slit.

That this is a reasonable interpretation is confirmed when a so‐called quantum eraser, a polarizer (D) rotated clockwise by 45
degrees relative to the vertical, is placed before the detection screen.

The diagonal polarizer is called a quantum eraser because it appears to restore the interference pattern lost because of the which‐
path information provided by the V/H polarizers. However, it is clear from this analysis that the diagonal polarizer doesnʹt actually
erase, it simply passes the diagonal component of  which then shows an attenuated (by half) version of the original interference
pattern produced by .

Placing an anti‐diagonal polarizer (rotated counterclockwise by 45 degrees relative to the vertical) before the detection screen
causes a 180 degree phase shift in the restored interference pattern.
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This phase shift is inconsistent with any straightforward explanation based on the concept of erasure of which‐path information.
Erasure implies removal of which‐path information. If which‐path information has been removed shouldnʹt the original
interference pattern be restored without a phase shift?

Appendix:

The V/H polarization which‐path tags and the D/A polarization ʺerasersʺ in vector format:

For infinitesimally thin slits the momentum‐space wave function is,

Assuming a slit width  the calculations of  and  are carried out as follows:

Position of first slit: Position of second slit: Slit width: 

For  the V/H polarization which‐path tags are added to the two terms of 

 is the projection of  onto a diagonal polarizer .

 is the projection of  onto an anti‐diagonal polarizer .
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Rewriting  in terms of  and  clearly shows the origin of the phase difference between the  and 
 interference patterns.

This page titled 1.13: Quantum Mechanics and the Fourier Transform is shared under a CC BY 4.0 license and was authored, remixed, and/or
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