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1.7: Quantum Computation- A Short Course
As can be seen in the previous tutorials, teleportation involves entanglement transfer. Alice projects her photons onto one of the entangled Bell states and Bob receives a photon state which using
information provided via the classical communication channel can be transformed into the teleportee state. Given the importance of entanglement in quantum computing a more elaborate example of
entanglement transfer is provided in the following tutorial.

An Entanglement Swapping Protocol 
In the field of quantum information interference, superpositions and entangled states are essential resources. Entanglement, a non-factorable superposition, is routinely achieved when two photons are
emitted from the same source, say a parametric down converter (PDC). Entanglement swapping involves the transfer of entanglement to two photons that were produced independently and never
previously interacted. The Bell states are the four maximally entangled two-qubit entangled basis for a four-dimensional Hilbert space and play an essential role in quantum information theory and
technology, including teleportation and entanglement swapping. The Bell states are shown below.

A four-qubit state is prepared in which photons 1 and 2 are entangled in Bell state , and photons 3 and 4 are entangled in Bell state . The state multiplication below is understood to be tensor
vector multiplication.

Four Bell state measurements are now made on photons 2 and 3 which entangles photons 1 and 4. Projection of photons 2 and 3 onto  projects photons 1 and 4 onto .

Projection of photons 2 and 3 onto  projects photons 1 and 4 onto .

Projection of photons 2 and 3 onto  projects photons 1 and 4 onto .

Finally, projection of photons 2 and 3 onto  projects photons 1 and 4 onto .

In our earlier examination of the quantum computer we saw that a quantum circuit can calculate all the values of f(x) simultaneously, but we can only retrieve one value due to the collapse of the
superposition of answers on observation. To achieve a quantum advantage in computation requires more subtle programming techniques which exploit the effects of quantum interference. The
following tutorials reveal how the quantum advantage can be achieved in several areas of practical importance.
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While quantum mechanics could spell disaster for public-key cryptography, it may also offer salvation. This is because the resources of the
quantum world appear to offer the ultimate form of secret code, one that is guaranteed by the laws of physics to be unbreakable. Julian Brown,
The Quest for the Quantum Computer, page 189.

In other words, “The quantum taketh away and the quantum giveth back!” Asher Peres

We begin with Shor’s algorithm which demonstrates how quantum entanglement and interference effects can facilitate the factorization of large integers into their prime factors. The inability of
conventional computers to do this is essential to the integrity of public-key cryptography.

Factoring Using Shor's Quantum Algorithm 

This tutorial presents a toy calculation dealing with quantum factorization using Shor's algorithm. Before beginning that task, traditional classical factorization is reviewed with the example of finding
the prime factors of 15. As shown below the key is to find the period of a  modulo 15, where a is chosen randomly.

x f(x)

0 1

1 4

2 1

3 4

4 1

5 4

6 1

7 4

Seeing that the period of f(x) is two, the next step is to use the Euclidian algorithm by calculating the greatest common denominator of two functions involving the period and a, and the number to be
factored, N.

We proceed by ignoring the fact that we already know that the period of f(x) is 2 and demonstrate how it is determined using a quantum (discrete) Fourier transform. After the registers are loaded with
x and f(x) using a quantum computer, they exist in the following superposition.

The next step is to find the period of f(x) by performing a quantum Fourier transform (QFT) on the input register |x>.

The operation of the QFT on the x-register is expressed algebraically in the middle term below. Quantum interference in this term yields the result on the right which shows a period of 2 on the x-
register.

Figure 5 in "Quantum Computation," by David P. DiVincenzo, Science 270, 258 (1995) provides a graphical illustration of the steps of Shor's factorization algorithm.

x
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How quantum theory gives back is demonstrated by an examination of Ekert’s quantum secret key proposal.

The Quantum Math Behind Ekert's Key Distribution Scheme 

Alice and Bob share an entangled photon (EPR) pair in the following state.

They agree to make random polarization measurements in the rectilinear and circular polarization bases. When a measurement is made on a quantum system the result is always an eigenstate of the
measurement operator. The eigenstates in the circular and rectilinear bases are:

Pertinent superpositions:

Alice's random measurement effectively sends a random photon to Bob due to the correlations built into the entangled state of their shared photon pair. Alice's four measurement possibilities and their
consequences for Bob are now examined.

Alice's photon is found to be right circularly polarized, |R>. If Bob measures circular polarization he is certain to find his photon to be |R>. But if he chooses to measure in the rectilinear basis the
probability he will observe |V> is 0.5 and the probability he will observe |H> is 0.5.

If Alice observes |L>, Bob will also if he measures circular polarization. But if he measures in the rectilinear basis the probability he will observe |V> is 0.5 and the probability he will observe |H> is
0.5.

The same kind of reasoning applies to measurements Alice makes in the rectilinear basis.

Alice and Bob keep the results for the experiments for which they measured in the same basis (blue in the table below), and make the following bit value assignments: |V> = |R> = 0 and |H> = |L> =
1. This leads to the secret key on the bottom line.

The following demonstrates how a binary message is coded and subsequently decoded using a shared binary secret key and modulo 2 arithmetic.

Message Key Coded Message Decoded 
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It is clear by inspection that the message has been accurately decoded. This is confirmed by calculating the difference between the message and the decoded message.

Coding and Decoding Venus 
In 2000 Anton Zeilinger and his research team sent an encrypted photo of the fertility goddess Venus of Willendorf from Alice to Bob, two computers in two buildings about 400 meters apart. The
figure summarizing this achievement first appeared in Physical Review Letters and later in a review article in Nature.

It is easy to produce a rudimentary simulation of the experiment. Bitwise XOR is nothing more than addition modulo 2. The original Venus and the shared key are represented by the following
matrices, where the matrix elements are pixels that are either off (0) or on (1).

A coded version of Venus is prepared by adding Venus and the Key modulo 2 and sent to Bob.

Bob adds the key to CVenus modulo 2 and sends the result to his printer.

A graphic summary of the simulation:

(Mes −DMes = ( ))T 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i = 1. .7 j := 1. .6 := trunc(md(2))Keyi,j
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This page titled 1.7: Quantum Computation- A Short Course is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of
the LibreTexts platform.
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