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3.31: Quantum Mechanics, Group Theory and C60
The recent discovery of a new allotropic form of carbon  and its production in macroscopic amounts  has generated a tremendous
amount of research activity in chemistry, physics and material science.  Among the areas of current interest are the electronic
properties of the fullerenes and this note describes a simple model for the electronic structure of Coo that is consistent with recent
experimental findings. It is based on the most elementary principles of quantum mechanics and group theory.

After the soccer-ball structure for C  was first suggested in 1985 it became important to obtain as much independent supporting
evidence as possible. This came in the areas of nmr, IR, and Raman spectroscopy. The nmr spectrum showed a single resonance
indicating 60 equivalent carbon atoms in the structure. The IR spectrum was found to have four lines, while Raman spectroscopy
yielded ten lines. The second half of this paper will use group theory to demonstrate that a C  molecule with a soccer-ball structure
must have four IR active and ten Raman active vibrational modes.

Electronic Structure 

As is well-known C  is a carbon cage consisting of 20 hexagons and 12 pentagons and resembles a soccerball. Removing the
leather, but keeping the seams, leaves 60 vertices for the carbon atoms and 90 covalent bonds between them. Actually C  has
spheroidal geometry and belongs to the truncated icosahedral symmetry group, l . Curly and Smalley, codiscoverers of
buckminsterfullerene, have described it as the "roundest molecule that can possibly exist"  so the model presented here assumes,
initially, that Coo is a perfect sphere. Each carbon is sigma bonded to three other carbons using three of its four valence electrons to
form these bonds. The remaining electron is considered to be delocalized on the surface of the sphere created by the 60 atom
carbon cage.

The quantum mechanical behavior of an individual electron restricted to the surface of a sphere is well-known.  Solving
Schrödinger's equation for a particle on a sphere yields the spherical harmonic wavefunctions, pictures of which can be found in
Atkins' physical chemistry textbook. The energy levels associated with the spherical harmonic states are a function of the radius of
the sphere and the angular momentum quantum number.

Just as the quantum mechanical solution for the one-electron hydrogen atom can be adapted for qualitative treatments of the
electronic structure of multi-electron atoms, so the energy level diagram for the electron moving on a sphere can be used to
describe the electronic structure of C . The energy level diagram shown in Figure 1 provides a qualitative description of the
electronic structure obtained when one applies the aufbau principle, the Pauli exclusion principle, and Hund' s rule to the addition
of 60 electrons to the available spherical harmonic energy levels.
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Figure 1. Sixty electrons placed in the lowest available energy levels according to the aufbau principle, the Pauli exclusion
principle, and Hund's rule. The energies for the individual levels shown on the right are in eV and were calculated using equation 1.

As it stands this is not a satisfactory picture because pristine C  is an insulator and has no un-paired electrons. This difficulty is
resolved by recalling that C  is not a perfect sphere, but has the lower symmetry of the icosahedral group. Invoking icosahedral
symmetry at this point splits the degeneracies of all levels above L = 2. However, initially it is only necessary to examine what
happens to the highest occupied level, L = 5, since all other levels are completely filled.

Using traditional group theoretical methods , it can be shown that the L = 5 spherical harmonics transform under the rotations of
the icosahedral symmetry group as shown in the last row of the icosahedral character table shown below. The behavior of the
spherical harmonics under the rotations of the icosahedral group is given by

I E 12C 12C 20C 15C

A 1 1 1 1 1

T 3 1.618 -.618 0 -1

T 3 -.618 1.618 0 -1

G 4 -1 -1 1 0

H 5 0 0 -1 1

L=5 11 1 1 -1 -1

It is easy to show that this reducible representation is a linear combination of the fivefold degenerate H , an the two three-fold
degenergate, T  and T  irreducible representations of the icosahedral group. Group theory doesn't predict the order of the levels,
but Figure 2 shows that if the five-fold degenerate level is placed lowest, an energy level diagram that captures the essentials of the
known electronic structure of C  is obtained.  This assignment is consistent with HOMO, LUMO, and LUMO+ 1 levels of the
Huckel molecular orbital calculation on C .  In addition, if the splittings of the L = 3 and L = 4 states are also examined in the
manner outlined above, the complete energy level diagram for the π-electrons of C  shown in Figure 3 is obtained. This set of π-
electron levels is qualitatively consistent with the results of an ab initio calculation based on the pseudopotentiallocal density
method.

Figure 2. The splitting of the L = 5 energy level under icosahedral symmetry.
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Figure 3. A complete energy level diagram for the π-electrons of C60 showing the splitting of the relevant angular momentum
states under icosahedral symmetry.

The HOMO-LUMO energy gap is known to be 1.5 eV. However, the HOMO -> LUMO electronic transition is optically forbidden.
Because H  level is full, (H ) , the ground electronic state has A  symmetry. The first excited state (H ) (T )  produces the
reducible representation shown in the table below. This is obtained by taking the direct product of the H  and T  irreducible
representations (H xT ). The reducible representation of the second excited state, (H ) (T )  is also shown in the table. It is
important to note that both excited states are 15-fold degenerate.

 E 12C 12C 20C 15C i 12S 12S 20S
15
σ

H T 15 0 0 0 -15 15 0 0 0 15

H T 15 0 0 0 -15 -15 0 0 0 15

Employing the usual methods it is not difficult to show that the first and second excited electronic configurations contain the
following irreducible representations.

Thus, it can be seen that the excited electronic configurations each give rise to four excited states. In order for a transition to any of
these states from the ground state to be allowed, the transition probability integral ∫Ψ μΨ dτ must be non-zero. For this integral to
be non-zero the direct product of the irreducible representations for the ground electronic state, the electric dipole operator, and the
excited electronic state must contain the totally symmetric irreducible representation A . Because the ground state itself has A
symmetry and the electric dipole operator has T  symmetry, only an excited state with T  symmetry will lead to a direct product
which contains the A  irreducible representation.

Inspection of the irreducible representations for the first and second exited electronic configurations shows that only the second
excited electronic configuration contains the T  irreducible representation. Thus, while the HOMO → LUMO transition is
forbidden, the HOMO → LUMO+ 1 transition is allowed. This result is consistent with the visible spectrum of the free molecule.

A further comment on the magnitude of the HOMO-LUMO gap might be made at this point. The energies of the spherical
harmonic states shown in Figure 1 were calculated using equation (1) and a value of 710 pm for the diameter of the carbon cage. At
the L = 5 level the energy difference between adjacent states is 3.1 and 3.6 eV. While the model doesn't provide a detailed
quantitative analysis of.the splitting of the L = 5 level, using reasonable assumptions one can obtain a value for the HOMO-LUMO
gap that is "in the ball park. "

In summary, this analysis provides a simple interpretation of the fact that C  is an insulator. The model also provides low-lying,
un-occupied orbitals to form conduction bands and receive electrons from donors such as potassium. Furthermore, the fact that the
LUMO is triply degenerate is consistent with the experimental evidence that K C  is a conductor and K C  is an insulator.  While
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this simple model is not a rival to the more sophisticated molecular orbital or band theory calculations, it does provide the non-
specialist with an appealing and simple alternative.

Vibrational Spectroscopy 

To analyze the vibrational modes of C  using group theory it is necessary to determine how the 180 degrees of freedom of the C
molecule transform under the symmetry operations of the I  group. This is actually quite easily done because the rotations and the
inversion symmetry operation move all the carbon atoms and, therefore, have characters of O. The identity operation leaves all
carbons unmoved for a character of 180, while the 15 planes of symmetry contain four carbon atoms each and can be shown to
have a character of 4. The model of C  on the first page shows one of these planes. It is perpendicular to the plane of the paper and
clearly contains four carbon atoms, two at the top and two at the bottom.

This makes it very easy to decompose the reducible representation, Γ , into its irreducible representations by the usual methods.
This is summarized in the table on the next two pages. For simplicity only the E and cr symmetry operations are shown, but it must
be remembered that there are 120 symmetry operations total. For example, the occurrence of H  is calculated as follows:

After translation and rotation are subtracted from the total, 174 vibrational degrees of freedom remain. However, group theory
shows that many vibrational modes are degenerate. In fact, as the table below shows, there are only 46 distinct vibrational
frequencies.

Of these, the table indicates that only the four triply degenerate T  modes are IR active while ten vibrational modes (2A  + 8H )
are Raman active. This analysis is in complete agreement with the experimental measurements  and was considered to be crucial
evidence in support of the proposed soccer-ball structure for C . Several of the rotational axes for C  are shown below to
illustrate that they do move all atoms.

I E 15σ Occurrence h = 120

Γ 180 4   

A 1 1 2 Raman active

T 3 -1 4 R , R , R

T 3 -1 4  

G 4 0 6  

H 5 1 8 Raman active

A 1 -1 1  

T 3 1 5 T , T , T  /IR

T 3 1 5  

G 4 0 6  

H 5 -1 7  
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