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11.12: Thermodynamics and Kinetics
Most thermodynamics expression in textbooks are "intramural" relations. They tell us how to determine numerical values for
unfamiliar quantities, such as  and  (Equation - ) for example), or how one such quantity depends on another
such quantity (Equation - ).

Only a few thermodynamic expressions are "extramural" relations--ones that tell us immediately something about "directly
measurable" or familiar quantities: how, for example, an equilibrium pressure P, or concentration N , or quotient of concentrations
K or cell voltage ξ varies with temperature (Equations - ).

These extramural relations (Equation - ) show how equilibrium parameters (P, N , K, ξ) must change with
temperature if perpetual motion of the second kind is impossible. Perpetual motion of the second kind is production of work (an
increase in energy of a mechanical system) solely at the expense of the energy of a thermal reservoir. In its net effect upon the
environment, it is, with respect to energy transformations, precisely the opposite of friction.

The most general statement of the Second-Law like behavior of Nature states that any process whose net effect is precisely the
opposite of friction -- or heat flow, or any natural event -- is impossible. From that statement can be developed by relatively long
and mathematically demanding arguments, as shown in many physical chemistry texts, the extramural relations (Equation -

).

It is the chief purpose of this paper to show that the Clapeyron equation ( ), the colligative property relations (such as
Equation ), van 't Hoff's relation (Equation ), Gibbs-Helmholtz-type equations (such as Equation ) and, also
(discussed later), the osmotic pressure law (Equation 19), Boltzmann's factor (equation 25), and Carnot's theorem (equation 35) can
be obtained directly from the laws of chemical kinetics, without the use of calculus.

Our kinetic derivations of the extramural relations of the thermodynamics are based on Arrhenius's rate-constant expression

It will be shown that the derivations depend ultimately, therefore, on van 't Hoff's thermodynamic equilibrium-constant expression

Thus, the kinetic derivations are not, in a logical sense, a substitute for the usual thermodynamics arguments. It is often
illuminating, however, to see abstract expressions (such as those of thermodynamics) emerge seemingly unexpectedly from more
concrete equations (those of chemical kinetics).

The mathematical procedures in this paper can be used, also, in purely thermodynamic arguments. With no change in the algebraic
steps given below, one can derive the extramural relations of thermodynamics directly from the thermodynamic expression in
Equation . Thus one can move rigorously and easily from one extramural relation to another without employing calculus
and the entropy function (or the chemical potential), or Carnot cycles. This simplification of the syntax of thermodynamics serves
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to emphasize an essential point: there is essentially only one physically independent extramural thermodynamic relation. There is
only one Second Law. Expressions (Equations - ), the osmotic pressure rule (19), and Boltzmann's factor (25) are all
special instances of Carnot's theorem (35).

In summary the present discussion is, simultaneously: a set of novel applications to thermodynamics of Arrhenius's rate-constant
expression; a non-calculus review from several new points of view of the central expressions of classical (and, briefly, statistical)
thermodynamics; and, in close, a brief account of the origins in kinetics and thermodynamics of activated complex theory.

Henry's Law and Raoult's Law 
Many texts give this kinetic interpretation of Henry and Raoult laws. Consider the change

Let  represent the rate of the forward (backward) reaction, specific rate constant k . Let  be the concentration (in any
units) of  in the condensed phase,  its mole fraction therein,  its partial pressure in the gas phase,  the vapor pressure of
pure . On the assumption that one has

that at equilibrium (R  = R )

Similar derivations of mathematical expressions for other colligative properties can be achieved by introducing Arrhenius's
expression for the dependence upon temperature (and pressure) of the specific rate constants  and .

Arrhenius's Rate-Constant Law 

According to Arrhenius (in modern notation), for forward and backward reactions

where, over small temperature intervals,  and  may be treated as constants, and where, Fig. 1,

The Ideal Solubility Equation and Freezing Point Depression 
To illustrate the use of the Arrhenius Rate-Constant Law to obtain by a kinetic analysis expressions normally obtained through
reasoning based on thermodynamic principles, consider the solution, or melting, of a pure solid.
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On the assumption that R  = k  and R  = k N , one has that, at equilibrium, k  = k N  or, on using the Arrhenius expression,
(Equation ), that

A ) = N A ).

Rearrangement and use of Equation  yields

ΔH is the enthalpy of solution, or melting, of X. Taking the natural logarithm of both sides of Equation , one obtains

 is a constant

(b) 

(c) 

From (9c),

For N  ≈ 1, ln N  ≈ -(1-N ) ≡ -N , T ≈ T , and equation 10 reduces to

Equation 10, the ideal solubility equation, is a special case of equation 2c. Equation 11, the thermodynamic expression for freezing
point depressions, is an integrated form of equation 2b.

Clapeyron's Equation 

If a pure solid dissolves (melts) in its pure liquid,

 and, in place of Equation 9, one that has, at equilibrium, . Taking the natural logarithm of both sides, one
obtains in place of Equation 9a

Equation  is obtained through equation 7b.

If the pressure and temperature change from values  and  that satisfy equation to new values  and , for
equilibrium to be maintained,  and  must be such that

In writing Equation , it has been assumed that, like ,  and  are temperature- and pressure-independent.
Simplification of Equation  yields, on solving for the ration of  to  in Equation  with
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A kinetic analysis of the similar but slightly more complicated case of the vaporization of a liquid (or solid) is given in Appendix 1,
together with a kinetic analysis of the effect on a vapor pressure of squeezing a liquid (the Gibbs-Poynting effect), with an
application to osmosis.

Osmotic Equilibrium 

Consider, next, diffusion of a pure solvent at pressure P through a rigid, semi-permeable membrane into a solution at pressure P +
π,

 Pure Solvent Solution

Pressure P P + π

Mole Fraction N  = 1 N < 1

The kinetic analysis R  = k  = R  = k N  yields with Arrhenius's relation, (6), expressions identical to (9) and (9a). In this instance,
at least approximately, ΔE = ΔV = 0. Thus for (15)

Substitution from (16) into (9a) yields

where  is a constant.

For N  = 1, π = 0 (at equilibrium). In this instance, therefore,

Substitution from (18) into (17) yields for dilute solutions (lnN  ≈ -N ) the usual thermodynamic expression for a solution's
osmotic pressure π:

in moles/liter.

Chemical Equilibrium 
By the Principle of Microscopic Reversibility, one has that for chemical change

the rate at which A and B disappear by the (perhaps unlikely) mechanism aA + bB, rate law R  = k c c , is at equilibrium equal
to the rate at which A and B appear by the mechanism dD + eE, rate law R  = k c c .  Thus, from R  = R  one obtains the
familiar Law of Mass Action, equation 21 below, which with equations 6 and 7 yields equation 22, from which can be obtained
directly equation 2c (Q  = ΔH).

For later reference, we note that, from equations 21 and 22,
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(b) 

For a further discussion of this point see: Frost, A. A., and Pearson, R. G., "Kinetics and Mechanism," John Wiley and Sons, Inc.,
1953, Ch. 8; or Frost, A. A., J. Chem. Educ., 18, 272 (1941).

Boltzmann's Factor 

A particularly simple "chemical" change is the transition of a molecule X in a quantum energy state i, energy ε , to a quantum
energy state j, energy ε .

By arguments identical to those given in the preceding section, one obtains expressions of the form of equations 21 and 22. In this

simple instance  [C  = concentrations of molecules in state j (i)], ΔH = N  (ε  - ε ) [Δ(PV) = 0\, and A  = A . Thus, for a
system that is at equilibrium with respect to the change indicated in equation 24,

where 

From the Boltzmann factor expression, equation 25 can be obtained directly by summation partition functions and thence, by
differentiation and the taking of logarithms, the other standard expressions of statistical thermodynamics.

Electrochemical Equilibrium 

For the flow of electrons from a potential V  to a potential V ,

in an electrochemical circuit, cell voltage ξ = V  - V , one has that at equilibrium (a "balanced circuit"), R  = k  = R  = k . Thus, by
the Arrhenius relation, equation 6, at equilibrium

The activation enthalpies of ΔH^{*} contain, in this instance, two contributions: one from the enthalpy of activation of the
chemical change to which the electron flow is coupled in an electrochemical cell; the other from the enthalpy of activation for the
physical transfer of electrons across a potential difference ξ. Thus, in this instance,

, a constant (b)

At equilibrium the right-hand-side of (28) is equal to , a constant, equation 28b. If the temperature and voltage change from
values T and ξ that satisfy equations 28 to new values T + dT and ξ + dξ, for equilibrium to be maintained, dT and dξ must be such
that

In writing equation 29 it has been assumed (again) that, like , Δ H is temperature independent: simplification of equation 29
yields on solving for the ratio of dξ to dT
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Equation 30 is, in disguise, equation 2d. For consider this universe (or isolated system): a chemical system σ, an atmosphere atm,
mechanical surroundings wt, and thermal surroundings θ [for example, as here, a chemical cell σ at constant temperature (owing to
thermal contact with θ) and constant pressure (owing to mechanical contact with atm) performing useful work nFξ]. Application of
the First Law (the conservation of energy) to the universe σ + atm + wt + θ yields, on introducing the definitions of P, Δ H, and Q,
the expression in equation 31.

where ; ; ; .

Thus, for a universe σ (a chemical cell) + atm + wt + θ, Δ H + nFξ = Q. When the universe is in internal equilibrium (the change
in equation 26 is reversible), one may write

Substitution from equation 32 into equation 30 yields equation 2d.

Carnot's Theorem 
The previous results can be generalized. The work obtained from a spontaneous chemical change need not appear as electrical
energy. Replacing nFξ in equation 28a by W, any useful work, one has for reversible changes that

In writing Equation , it has been assumed (again) that  is independent of temperature, i.e., that

W  and W  represent the work obtained at, respectively, temperatures T  and T .

Consider now this partial cycle (a cycle for a composite chemical system σ  + σ , not, however, for its thermal and mechanical
surroundings): A chemical reaction for which the change in enthalpy is ΔH advances forward reversibly at temperature T  in a
system σ  in contact with a thermal reservoir θ  performing useful work W  with Q  ≡ Q  = ΔH + W  (by Equation ). Next the
reaction is run backward reversibly at a lower temperature T  in a system σ  (except for its temperature, identical with σ ) in
contact with thermal reservoir θ  consuming useful work W . Finally with a graded series of external thermal reservoirs the
products in σ  (chemically identical to the reactants in σ ) are warmed reversibly from T  to T  and, using the same set of thermal
reservoirs, but in the opposite order, the products in σ  (chemically identical to the reactants in σ ) are cooled from T  to T . By
Equation , the individual external reservoirs suffer no net change. The net work obtained from the overall, reversible process
(cyclic for σ  + σ ) is W  - W . By Equation ,

.

Thus

where .

Division of both sides by Q , the energy absorbed from the warmer thermal reservoir, yields Carnot's theorem.

Our discussion of the kinetic derivation of the extramural relations of chemical thermodynamics concludes with Equation 
and its companion
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obtained, after replacing nFξ by W, from Equations  and . All the second-law based relations of thermodynamics are
essentially special instances of Equations  or .

ΔS and ΔG - Clausius-Gibbs Thermodynamics 

The major intramural relations of chemical thermodynamics are obtained by introducing the abbreviation

From the present viewpoint Equation  may be considered a definition of ΔS.

Use of Equation  in Equation  yields for the melting-freezing equilibrium.

Use of Equation  in Equation  yields

The superscript ° on S in Equation  is added to indicate that in this instance the numerical value of ΔS calculated from equation
37 will depend on the units used to express the concentrations of, for example, A and B, since the latter will determine, in part, the

numerical value assigned to the kinetic parameter A  in the rate law .

Use of Equation  in Equations  and  yields (with nFξ = W)

or,

(b) 

Taken with equation 32, equation 40a yields equation 1a, which, with equation 36, yields

Together, equations 40a and 41 yield  or

This last relation is an extramural relation. The symbols S and/or G do not appear in it. It can be obtained directly from equation 36
and equation 32, with nFξ  = W ).

Introduction of the abbreviation of equation 1c, a definition of ΔG, yields with equation 39 (an th ideal-solution theory
approximation that ΔH is concentration independent) equation 1b. Use of equation 1c in equation 40b yields W = -ΔG. The latter
with equation 41 yields equation 1d and, with equation 42, the Gibbs-Helmholtz equation:

Equivalence of the Inter- and Extra-Mural Relations of Thermodynamics 

Introduction of the symbols  and  with the assigned properties
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does not increase the physical content of thermodynamics, namely that:

(32)  The First Law

(36)  The Second Law

For a universe σ + θ + atm + wt

With definitions of Equations  and , Equations  and  imply Equation :

Conversely, with Definitions  and , Equations  and  imply Equation . The intramural and
extramural relations of thermodynamics are logically equivalent to each other. To write equation 1b

is, with Equations  and , equivalent mathematically, to writing the van 't Hoff relation (Equation ) in its
differential form

The position in the above, hierarchical arrangement of ideas of the expression  is described in Appendix 2.

Summary and Conclusions 

Equations of classical (and statistical) thermodynamics based on the Second Law can be divided into two classes: those that contain
the symbols S and/or G (or A) (the intramural relations) and those that do not (the extramural relations). The latter relations, those
of immediate practical use, can be obtained quickly and easily, without calculus, from simple kinetic arguments based on
Arrhenius's Rate-Constant Law and the assumptions of ideal solution theory (ΔH independent of concentration; activities of
solvents equal to mole fractions, those of gases to partial pressures); the assumption, or approximation, that ; and, in some
instances, the Principle of Microscopic Reversibility. The kinetic treatment is, thus, a complement to, not a complete substitute for,
the usual thermodynamic derivations of, for example, Clapeyron's equation and Carnot's theorem, which are valid relations even
for non-ideal systems and for systems in which .

Arrhenius's Law is the non-thermodynamically inclined chemist's friend. While not encompassing the full content of the Second
Law, and probably precisely because of that fact, Arrhenius's Rate-Constant Law embodies in a form immediately and easily
applicable to many problems (both classical and statistical) those implications of the Second Law of particular interest to chemists.
One may wonder how Arrhenius was led to an expression that captures so simply yet effectively the chemically significant features
of the Second Law of thermodynamics.

Origin of Arrhenius's Rate-Constant Law 

"In his notable book Studies in Chemical Dynamics van 't Hoff gives a theoretically-based formulation of the influence of
temperature on the rate of reaction," wrote Arrhenius in 1889 in a paper (his chief contribution to chemical kinetics) On the
Reaction Velocity of the Inversion of Cane Sugar by Acids (1).

"It may be proved, by means of thermodynamics," van 't Hoff had written (2), "that the values of k  and k  [our k  and k ] must
satisfy the following equation: -

[Today we usually write ln for log, ΔH for q, R for 2.]

"Although this equation does not directly give the relationship between the constants k and the temperature," continued van 't Hoff,
"it shows that this relationship must be of the form

where A and B are constants" (2).

Implicit in van 't Hoff's remarks is the understanding that A - A = q (cf. equation 7a) and that B  = B .
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"It is, however, easily seen," notes Arrhenius, "that B can be any function, F(T), of the temperature... [provided only that] the F(T)
belonging to two reciprocal reactions are the same" (1).

"Since F(T) can be anything at all," continues Arrhenius, "it is not possible to proceed further without introducing a new
hypothesis, which is in a certain sense a paraphrase of the observed facts" [emphasis added].

Noting that the influence of temperature on specific reaction rate is very large, much larger than increasing gas-phase collision
frequencies or decreasing liquid-phase viscicities, Arrhenius suggests by analogy with the "similar extraordinary large change in
specific reaction velocity (k)... brought about by weak basis and acids" [an effect arising from the catalytic effect of often an
infinitesimal amount of H  or OH ] that in, for example, the inversion of cane sugar, the rate of which is sharply temperature-
dependent, the "actual reacting substance is not [ordinary] sugar, since its amount does not change with temperature, but is another
hypothetical substance... which we call 'active cane sugar' [today, 'activated cane sugar']... that is generated [in small amounts, by
activation] from [ordinary, inactive] cane sugar... and must [be supposed to] increase rapidly in quantity with increasing
temperature."

Continuing with his paraphrase of the observed facts, Arrhenius writes that "since the reaction velocity is approximately
proportional to the amount [concentration] of [ordinary] cane sugar... the amount [concentration] of 'active can sugar', M , must be
take to be approximately proportional to the amount of inactive cane sugar, M . The equilibrium condition [emphasis added] is
thus:

"The form of this equation shows us that a molecule of 'active cane sugar' is formed from a molecule of inactive cane sugar either
by a displacement of the atom or by addition of water", whose amount is constant; its concentration, therefore, does not appear in
equation 46.

The constant k in equation 46 wears two hats. It is simultaneously a thermodynamic parameter and a rate parameter. It is the
thermodynamic equilibrium constant for the postulated equilibrium between active and inactive cane sugar molecules (it would be
written today as K* or K ). And, if the rate of inversion is, as postulated, proportional to M , k is proportional to the kinetic rate
constant for the inversion of cane sugar.

Carrying over in this way to kinetics a thermodynamic relation, Arrhenius applies van 't Hoff's thermodynamic expression, equation
44, for the temperature variation of an equilibrium constant K (  to the thermodynamic-kinetic constant k of equation
46. In the spirit of modern absolute rate theory, he write that "Thus for the constant k (or what is the same thing  we have the
equation

which on integration yields, with q = ΔH  (and 2 = R), equation 6.

That Arrhenius's Rate-Constant Law captures for chemistry the essential features of the Second Law of thermodynamics is, thus,
no mystery. It is a plausible application, based on a selective if brief axiomatization of nearly universal features of chemical
reaction rates, of van 't Hoff's thermodynamic relation (equation 44), which is a special instance - THE CHEMICAL INSTANCE -
of the Gibbs-Helmholtz equation (equation 43), which in turn is a general instance, if not quite the complete embodiment of
Carnot's theorem (equations 35 and 36), itself THE most general mathematical statement of the Second-Law-like behavior of
nature. As we have shown, however, in many chemical problems Arrhenius's Law (equation 6) is a more quickly an easily-used
expression of the Second Law than is Carnot's more widely applicable and, though mathematically simpler, chemically more
remote theorem (equation 35).

In absolute rate theory . Hence, for ,  and . More generally, if,

empirically, one has , a, A, constants, then, by equation 45, .

Appendix 1 
Derivation of Clapeyron's Equation for the Phase Change
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With a Note on the Gibbs-Poynting Effect and Osmotic Pressure

At equilibrium (R  = R ), k  = k P. Using equations 6 and 7a, one obtains on taking logarithms.

, a constant

Thus, on going from an equilibrium point T,P to another equilibrium point T + dT, P + dP, one has that if ΔH is (in this instance)
independent of T and P, dT must be such that

.

Multiplying through by R(T + dT)T, simplifying, noting that  and that  and
dropping the term containing dP x dT, one obtains

.

If the partial pressure on the gas, P , is not the same as the pressure on the liquid phase, P , (the liquid, for example, might be
squeezed -- as in an osmotic experiment--behind a rigid, x-permeable barrier), the first equation above should be written

, a constant.

For vapors behaving as ideal gases, one has . If, now, at constant temperature, the two pressures change from values
P  and P  that satisfy the above relation to new values P  + dP  and P  + dP , for equilibrium to be maintained, dP  and dP  must
be such that

.

Simplifying, one obtains the Gibbs-Poynting equation

.

Consider, now, a squeezed, impure liquid X in equilibrium with the pure, unsqueezed liquid, equation 15, equilibration occurring
(in one's mind) via a common vapor phase. A finite squeeze ΔP = π increases the vapor pressure (the pressure of the gas that

maintains equilibrium with the liquid) by an amount (see above) . The presence, however, of a second component, 2,

decreases the vapor pressure from that of the pure liquid, P , by an amount, (see equation 5b) 
. Equating those two terms, one finds that the amount π an impure liquid must be squeezed

to maintain equilibrium with the pure liquid is given by the expression

(in agreement with equation 19).

Appendix 2 

 and 

The primary implications for classical thermodynamics of the Second-Law-type behavior of nature are embodied in expression 36: 
. The variation with temperature of W  is a property jointly of the initial and final states of a system σ. It is, so to

speak, a "double state function". Define, in the spirit with which equation 36 was introduced,

 For convenience

 By Carnot's Theorem

 By definition: 

 By the First Law

Define, also, purely for bookkeeping purposes,
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Clearly, for a reversible process, . For irreversible processes, one has that

.

It's easier to write " " than " ".
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Figure 1. The Arrhenius-van 't Hoff relation between the kinetic parameters  and the thermodynamic parameter :
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