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8.82: The Discrete or Quantum Fourier Transform
The continuous-variable Fourier transforms involving position and momentum are well known. In Dirac notation (see chapter 6 in
A Modern Approach to Quantum Mechanics by John S. Townsend) they are,

where

Using the coordinate and momentum completeness relations

we can write the following generic Fourier transforms.

By analogy a discrete Fourier transform between the k and j indices can be created.

were, again, by analogy

so that

Summing over the k index and projecting on to |Ψ> yields a system of linear equations.

Like all systems it is expressible in matrix form. For example, with N=2 and  as the operand we have,

Here the matrix operator is the well-known Hadamard transform. In this case it transforms spin-up in the z-direction to spin-up in
the x-direction, or horizontal polarization to diagonal polarization, etc. Naturally it transforms spin-up in the x-direction to spin-up
in the z-direction.

This, of course, also occurs with the continuous-variable Fourier transform.

The Mathcad implementation of the discrete or quantum Fourier transform (QFT) is now demonstrated.

⟨ |Ψ⟩ = ∫⟨ |x⟩⟨x|Ψ⟩dx and ⟨x|Ψ⟩ = ∫⟨x|p⟩⟨ |Ψ⟩dp
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These calculations demonstrate that the QFT is a unitary operator:

This page titled 8.82: The Discrete or Quantum Fourier Transform is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.
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