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5.3: Copper-zinc Superoxide Dismutase

Background

Two families of metalloproteins are excellent catalysts for the disproportionation of superoxide (Reaction 5.95).

SOD
202_ +2H+ —— 09+ Hy09 (595)

These are (1) the copper-zinc superoxide dismutases, CuZnSOD,'%192 found in almost all eukaryotic cells and a very few
prokaryotes, and (2) the manganese and iron superoxide dismutases, MnSOD and FeSOD, the former found in the mitochondria of
eukaryotic cells, and both found in many prokaryotes.'%> Recent studies of bacterial'® and yeast'%> mutants that were engineered to
contain no superoxide dismutases demonstrated that the cells were unusually sensitive to dioxygen and that the sensitivity to
dioxygen was relieved when an SOD gene was reintroduced into the cells. These results indicate that the superoxide dismutase
enzymes playa critical role in dioxygen metabolism, but they do not define the chemical agent responsible for dioxygen toxicity
(see Section III).

Enzymatic Activity

Several transition-metal complexes have been observed to catalyze superoxide disproportionation; in fact, aqueous copper ion,
Cu?, is an excellent SOD catalyst, comparable in activity to CuZnSOD itself!37 Free aqueous Cu?* would not itself be suitable for
use as an SOD in vivo, however, because it is too toxic (see Section III) and because it binds too strongly to a large variety of
cellular components and thus would not be present as the free ion. (Most forms of complexed cupric ion show much less
superoxide dismutase activity than the free ion.) Aside from aqueous copper ion, few other complexes are as effective as the SOD
enzymes.

Two mechanisms (Reactions 5.96 to 5.99) have been proposed for catalysis of superoxide disproportionation by metal complexes
and metalloenzymes.>”

Mechanism I: $$MA{n+} + O_{2}A{-} \rightarrow MA{(n-1)+} + O_{2} \tag{5.96}\]
M@+ 105 — M+ (02) 2 e +Hy0, (5.97)
Mechanism II: $$MA{n+} + O_{2}7{-} \rightarrow MA {n+} (O_{2}7{-}) \tag{5.98}\]
M"(05)+0y —>M"+(O§*)£>M”+H202 (5.99)
+0; (5.3.1)

In Mechanism I, which is favored for the SOD enzymes and most redox-active metal complexes with SOD activity, superoxide
reduces the metal ion in the first step, and then the reduced metal ion is reoxidized by another superoxide, presumably via a metal-
peroxo complex intermediate. In Mechanism II, which is proposed for nonredox metal complexes but may be operating in other
situations as well, the metal ion is never reduced, but instead forms a superoxo complex, which is reduced to a peroxo complex by
a second superoxide ion. In both mechanisms, the peroxo ligands are protonated and dissociate to give hydrogen peroxide.

Analogues for each of the separate steps of Reactions (5.96) to (5.99) have been observed in reactions of superoxide with
transition-metal complexes, thereby establishing the feasibility of both mechanisms. For example, superoxide was shown to reduce
Culllphen),?* to give Cul(phen),* (phen = 1,10-phenanthroline),'9¢ a reaction analogous to Reaction (5.96). On the other hand,
superoxide reacts with Cull(tet b)2* to form a superoxo complex!%7 (a reaction analogous to Reaction 5.98), presumably because
Cull(tet b)2* is not easily reduced to the cuprous state, because the ligand cannot adjust to the tetrahedral geometry that Cu!
prefers.53
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Reaction of superoxide with a reduced metal-ion complex to give oxidation of the complex and release of hydrogen peroxide
(analogous to Reaction 5.97) has been observed in the reaction of Fe!EDTA with superoxide.'% Reduction of a Co"! superoxo
complex by free superoxide to give a peroxo complex (analogous to Reaction 5.99) has also been observed.'%”

If a metal complex can be reduced by superoxide and if its reduced form can be oxidized by superoxide, both at rates competitive
with superoxide disproportionation, the complex can probably act as an SOD by Mechanism I. Mechanism II has been proposed to
account for the apparent catalysis of superoxide disproportionation by Lewis acidic nonredox-active metal ions under certain
conditions.?” However, this mechanism should probably be considered possible for redox metal ions and the SOD enzymes as well.
It is difficult to distinguish the two mechanisms for redox-active metal ions and the SOD enzymes unless the reduced form of the
catalyst is observed directly as an intermediate in the reaction. So far it has not been possible to observe this intermediate in the
SOD enzymes or the metal complexes.

Structure

The x-ray crystal structure of the oxidized form of CuZnSOD from bovine erythrocytes shows a protein consisting of two identical
subunits held together almost entirely by hydrophobic interactions.'?*1%? Each subunit consists of a flattened cylindrical barrel of
B-pleated sheet from which three external loops of irregular structure extend (Figure 5.15). The metal-binding region of the protein
binds Cu'' and Zn" in close proximity to each other, bridged by the imidazolate ring of a histidyI side chain. Figure 5.16 represents
the metal-binding region. The Culion is coordinated to four histidyl imidazoles and a water in a highly distorted square-pyramidal
geometry with water at the apical position. The Zn''ion is coordinated to three histidyl imidazoles (including the one shared with
copper) and an aspartyl carboxylate group, forming a distorted tetrahedral geometry around the metal ion.

Figure 5.15 - Schematic drawing of the polypeptide backbone of one of the two subunits of bovine CuZnSOD. The strands of the 8
structure are shown as arrows. The active-site channel provides access to the copper site from the direction of the viewer. (From J.
A. Tainer et al., J. Mol. Biol. 160 (1982), 181-217.)
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Figure 5.16 - Representation of the metal-binding region of bovine CuZnSOD.

One of the most unusual aspects of the structure of this enzyme is the occurrence of the bridging imidazolate ligand, which holds
the copper and zinc ions 6 A apart. Such a configuration is not unusual for imidazole complexes of metal ions, which sometimes
form long polymeric imidazolate-bridged structures.

M—N@N—MMNQN—M—N@N—M

(5.101)
However, no other imidazolate-bridged bi- or polymetallic metalloprotein has yet been identified.

The role of the zinc ion in CuZnSOD appears to be primarily structural. There is no evidence that water, anions, or other potential
ligands can bind to the zinc, so it is highly unlikely that superoxide could interact with that site. Moreover, removal of zinc under
conditions where the copper ion remains bound to the copper site does not significantly diminish the SOD activity of the
enzyme.'? However, such removal does result in a diminished thermal stability, i.e., the zinc-depleted protein denatures at a lower
temperature than the native protein, supporting the hypothesis that the role of the zinc is primarily structural in nature.™

The copper site is clearly the site of primary interaction of superoxide with the protein. The x-ray structure shows that the copper
ion lies at the bottom of a narrow channel that is large enough to admit only water, small anions, and similarly small ligands
(Figure 5.17). In the lining of the channel is the positively charged side chain of an arginine residue, 5 A away from the copper ion
and situated in such a position that it could interact with superoxide and other anions when they bind to copper. Near the mouth of
the channel, at the surface of the protein, are two positively charged lysine residues, which are believed to play a role in attracting
anions and guiding them into the channel.!'? Chemical modification of these lysine or arginine residues substantially diminishes the
SOD activity, supporting their role in the mechanism of reaction with superoxide,'90-102

I~ 24A
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Figure 5.17 - Schematic diagram of a cross section of the active-site channel in CuZnSOD. The diameter of the channel narrows as
the Cu'! center is approached, and only small ligands can actually reach that site. In addition to the positively charged Cu'ion at the
bottom of the channel, the positively charged side chain of Arg-141 is part of the walls of the channel. Two positively charged
lysine side chains, not shown in this diagram, are close to the mouth of the channel. (From E. D. Getzoff, R. A. Hallewell, and J. A.
Tainer, in M. Inouye, ed., Protein Engineering: Applications in Science, Industry, and Medicine, Academic Press, 1986, pp. 41-69.)

The x-ray structural results described above apply only to the oxidized form of the protein, i.e., the form containing Cu'. The
reduced form of the enzyme containing Cu' is also stable and fully active as an SOD. If, as is likely, the mechanism of CuZnSOD-
catalyzed superoxide disproportionation is Mechanism I (Reactions 5.96-5.97), the structure of the reduced form is of critical
importance in understanding the enzymatic mechanism. Unfortunately, that structure is not yet available.
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Enzymatic Activity and Mechanism

The mechanism of superoxide disproportionation catalyzed by CuZnSOD is generally believed to go by Mechanism I (Reactions
5.96-5.97), i.e., reduction of Cu"! to Cu! by superoxide with the release of dioxygen, followed by reoxidation of Cu' to Cu" by a
second superoxide with the release of HO,™ or H,O;. The protonation of peroxide dianion, 0,2, prior to its release from the
enzyme is required, because peroxide dianion is highly basic and thus too unstable to be released in its unprotonated form. The
source of the proton that protonates peroxide in the enzymatic mechanism is the subject of some interest.

Reduction of the oxidized protein has been shown to be accompanied by the uptake of one proton per subunit. That proton is
believed to protonate the bridging imidazolate in association with the breaking of the bridge upon reduction of the copper.
Derivatives with Co'! substituted for Zn'! at the native zinc site have been used to follow the process of reduction of the oxidized
Cu"! form to the reduced Cu' form. The Co' in the zinc site does not change oxidation state, but acts instead as a spectroscopic
probe of changes occurring at the native zinc-binding site. Upon reduction (Reaction 5.102), the visible absorption band due to Co'!
shifts in a manner consistent with a change occurring in the ligand environment of Co'’. The resulting spectrum of the derivative
containing Cu'in the copper site and Co'! in the zinc site is very similar to the spectrum of the derivative in which the copper site is
empty and the zinc site contains Co'’. This result suggests strongly that the imidazolate bridge is cleaved and protonated and that
the resulting imidazole ligand is retained in the coordination sphere of Co'' (Reaction 5.102).1°!

Cu(lh — Nyz N — Co(i) %» cull) H—N_ _N—Co(ll)

~F
(5.102)

The same proton is thus an attractive possibility for protonation of peroxide as it is formed in the enzymatic mechanism (Reactions
5.103 and 5.104).

= . —
Culll) =Ny N—2Zn(ll) + O, —— Cull) H—N___N—Zn(il) + O,
(5.103)
o - T -
Cufl) H—N__N—Zn(l) + O, — Cu(ll) —NyZN—Zn(ll) + HO,
(5.104)

Attractive as this picture appears, there are several uncertainties about it. For example, the turnover of the enzyme may be too fast
for protonation and deprotonation of the bridging histidine to occur.''®> Moreover, the mechanism proposed would require the
presence of a metal ion at the zinc site to hold the imidazole in place and to regulate the pK, of the proton being transferred. The
observation that removal of zinc gives a derivative with almost full SOD activity is thus surprising and may also cast some doubt
on this mechanism. Other criticisms of this mechanism have been recently summarized. %>

Studies of CuZnSOD derivatives prepared by site-directed mutagenesis are also providing interesting results concerning the SOD
mechanism. For example, it has been shown that mutagenized derivatives of human CuZnSOD with major differences in copper-
site geometry relative to the wild-type enzyme may nonetheless remain fully active.''* Studies of these and similar derivatives
should provide considerable insight into the mechanism of reaction of CuZnSOD with superoxide.

Anions as Inhibitors

Studies of the interaction of CuZnSOD and its metal-substituted derivatives with anions have been useful in predicting the behavior
of the protein in its reactions with its substrate, the superoxide anion, 0,101,102 Cyanide, azide, cyanate, and thiocyanate bind to
the copper ion, causing dissociation of a histidyl ligand and the water ligand from the copper.''® Phosphate also binds to the
enzyme at a position close to the Cu'! center, but it apparently does not bind directly to it as a ligand. Chemical modification of
Arg-141 with phenylglyoxal blocks the interaction of phosphate with the enzyme, suggesting that this positively charged residue is
the site of interaction with phosphate. '

Electrostatic calculations of the charges on the CuZnSOD protein suggest that superoxide and other anions entering into the
vicinity of the protein will be drawn toward and into the channel leading down to the copper site by the distribution of positive
charges on the surface of the protein, the positively charged lysines at the mouth of the active-site cavity, and the positively charged
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arginine and copper ion within the active-site region.''? Some of the anions studied, e.g., CN", F, N3",and phosphate, have been
shown to inhibit the SOD activity of the enzyme. The source of the inhibition is generally assumed to be competition with
superoxide for binding to the copper, but it may sometimes result from a shift in the redox potential of copper, which is known to
occur sometimes when an anion binds to copper.'%10

Metal-ion Substitutions

1. SOD Activity

In the example described above, studies of a metal-substituted derivative helped in the evaluation of mechanistic possibilities for
the enzymatic reaction. In addition, studies of such derivatives have provided useful information about the environment of the
metal-ion binding sites. For example, metal-ion-substituted derivatives of CuZnSOD have been prepared with Cu'l, Cul, Zn'l, Ag],
Nil, or Co!! bound to the native copper site, and with Zn!, Cull, Cu!, Co", Hg!, Cd!, Nil, or Ag' bound to the native zinc
site.100,10L117 The SOD activities of these derivatives are interesting; only those derivatives with copper in the copper site have a
high degree of SOD activity, whereas the nature of the metal ion in the zinc site or even its absence has little or no effect,100:101

2. Spectroscopy

Derivatives of CuZnSOD are known with Cu'" ion bound either to the native copper site or to the native zinc site. The electronic
absorption spectra of these derivatives indicate that the ligand environments of the two sites are very different. Copper(Il) is a d°
transition-metal ion, and its d-d transitions are usually found in the visible and near-IR regions of the spectrum.”® Copper(II)
complexes with coordinated nitrogen ligands are generally found to have an absorption band between 500 and 700 nm, with an
extinction coefficient below 100 M'cm™. Bands in the absorption spectra of complexes with geometries that are distorted away
from square planar tend to be red-shifted because of a smaller d-d splitting, and to have higher extinction coefficients because of
the loss of centrosymmetry. Thus the optical spectrum of CuZnSOD with an absorption band with a maximum at 680 nm (14,700
cm’!; see Figure 5.18A) and an extinction coefficient of 155 M'cm™ per Cu is consistent with the crystal structural results that
indicate that copper(II) is bound to four imidazole nitrogens and a water molecule in a distorted square-pyramidal geometry. Metal-
substituted derivatives with Cu'! at the native copper site but with Co'!, Cd", Hg", or Ni'" substituted for Zn'! at the native zinc site
all have a band at 680 nm, suggesting that the substitution of another metal ion for zinc perturbs the copper site very little, despite
the proximity of the two metal sites. The absorption spectra of native CuZnSOD and these CuMSOD derivatives also have a
shoulder at 417 nm (24,000 cml; see Figure 5.18A), which is at lower energy than normal imidazole-to-Cu™ charge-transfer
transitions, and has been assigned to an imidazolate-to-Cu'! charge transfer, indicating that the imidazolate bridge between Cu'' and
the metal ion in the native zinc site is present, as observed in the crystal structure of CuZnSOD. Derivatives with the zinc site
empty, which therefore cannot have an imidazolate bridge, are lacking this 417 nm shoulder.
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Figure 5.18 - Vis-UV spectra of (A) CuZnSOD, (B) copper-only SOD (zinc site empty), and (C) Ag'CuSOD, In all three spectra,

the low-energy band is the Cul! d-d transition. Note that the spectrum of CuZnSOD contains a shoulder at 24,000 cm™ (417 nm)

that is assigned to the imidazolate-to-copper(Il) charge-transfer transition. This shoulder is not present in the copper-only

derivative. For Ag'CuSOD, the d-d transition is red-shifted because of the change in the ligand geometry when Cu' is moved from

the copper site to the zinc site (see text), (From M. W. Pantoliano, L. A. Nafie, and J. S. Valentine, J. Am. Chem. Soc. 104 (1982),

6310-6317.)
Small but significant changes in the absorption spectrum are seen when the metal ion is removed from the zinc site, e.g., in copper-
only SOD (Figure 5.18B). The visible absorption band shifts to 700 nm (14,300 cm™), presumably due to a change in ligand field
strength upon protonation of the bridging imidazolate. In addition, the shoulder at 417 nm has disappeared, again due to the
absence of the imidazolate ligand.

The spectroscopic properties due to copper in the native zinc site are best observed in the derivative Ag'CuSOD, which has Ag' in
the copper site and Cu'! in the zinc site (see Figure 5.18C), since the d'® Ag! ion is spectroscopically silent. In this derivative, the d-
d transition is markedly red-shifted from the visible region of the spectrum into the near-IR, indicating that the ligand environment
of Cu'" in that site is either tetrahedral or five coordinate. The EPR properties of Cu'! in this derivative are particularly interesting
(as discussed below).

The derivative with Cu'! bound at both sites, CuCuSOD, has a visible-near IR spectrum that is nearly a superposition of the spectra
of CuZnSOD and Ag!CuSOD (see Figure 5.19), indicating that the geometry of Cu'' in each of these sites is little affected by the
nature of the metal ion in the other site.
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Figure 5.19 - Comparison of the visible absorption spectrum of CuCuSOD, -------- , with that of CuZnSOD, , and of

Ag'CuSOD, « + » « + « « « « «_ A digital addition of the spectra of CuZnSOD and of Ag'CuSOD generated the other spectrum, -+-+-+-e.

Note that the spectrum of CuCuSOD, which has cu' ions in both the cop?er and the zinc sites, closely resembles a superposition of

the spectra of CuZnSOD, which has cu' in the copper site, and Ag CuSOD, which has cul in the zinc site. (From M. W.

Pantoliano, L. A. Ndfie, and J. S. Valentine, J. Am. Chem. Soc. 104 (1982), 6310-6317.)
EPR spectroscopy has also proven to be particularly valuable in characterizing the metal environments in CuZnSOD and
derivatives. The EPR spectrum of native CuZnSOD is shown in Figure 5.20A. The g| resonance is split by the hyperfine coupling
between the unpaired electron on Cu'' and the I = % nuclear spin of copper. The A| value, 130 G, is intermediate between the larger
A|| typical of square-planar Cu! complexes with four nitrogen donor ligands and the lower A observed in blue copper proteins
(see Chapter 6). The large linewidth seen in the g | region indicates that the copper ion is in a rhombic (i.e., distorted) environment.
Thus, the EPR spectrum is entirely consistent with the distorted square-pyramidal geometry observed in the x-ray structure.
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Figure 5.20 - Frozen solution EPR spectra of (A) CuZnSOD, (B) copper-only SOD (zinc site empty), and (C) Ag'CuSOD. See text
for discussion. (Adapted from References 100 and 101.)
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Removal of zinc from the native protein to give copper-only SOD results in a perturbed EPR spectrum, with a narrower g
resonance and a larger A| value (142 G) more nearly typical of Cu in an axial N4 environment (Figure 5.20B). Apparently the
removal of zinc relaxes some constraints imposed on the geometry of the active-site ligands, allowing the copper to adopt to a
geometry closer to its preferred tetragonal arrangement.

The EPR spectrum due to Cull in the native Zn! site in the Ag'CuSOD derivative indicates that Cul! is in a very different
environment than when it is in the native copper site (Figure 5.20C). The spectrum is strongly rhombic, with a low value of A (97
G), supporting the conclusion based on the visible spectrum that copper is bound in a tetrahedral or five-coordinate environment.
This type of site is unusual either for copper coordination complexes or for copper proteins in general, but does resemble the Cu!!
EPR signal seen when either laccase or cytochrome c oxidase is partially reduced (see Figure 5.21).
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Figure 5.21 - Relationship between g| and A for naturally occurring copper proteins and copper-substituted metalloproteins.
Points labeled a-f are for laccases (a and b), cytochrome c oxidase (c), CuZnSOD (d), Ag'CuSOD (e), and Cu'Cu"SOD (f). See text
for discussion. (From M. W. Pantoliana, L. A. Nafie, and J. S. Valentine, J. Am. Chem. Soc. 104 (1982), 6310-6317.)
Partial reduction disrupts the magnetic coupling between these Cul centers that makes them EPR-silent in the fully oxidized

protein.

The EPR spectrum of CuCuSOD is very different from that of any of the other copper-containing derivatives (Figure 5.22) because
the unpaired spins on the two copper centers interact and magnetically couple across the imidazolate bridge, resulting in a triplet
EPR spectrum. This spectrum is virtually identical with that of model imidazolate-bridged binuclear copper complexes. !
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Figure 5.20. These differences are due to the fact that the two Cu'! centers are magnetically coupled across the imidazolate
bridge.100

Electronic absorption and EPR studies of derivatives of CuZnSOD containing Cu'' have provided useful information concerning
the nature of the metal binding sites of those derivatives. "H NMR spectra of those derivatives are generally not useful, however,
because the relatively slowly relaxing paramagnetic Cu'! center causes the nearby proton resonances to be extremely broad. This
difficulty has been overcome in two derivatives, CuCoSOD and CuNiSOD, in which the fast-relaxing paramagnetic Co" and Ni''
centers at the zinc site interact across the imidazolate bridge and increase the relaxation rate of the Cu'' center, such that well-
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resolved paramagnetically shifted '"H NMR spectra of the region of the proteins near the two paramagnetic metal centers in the
protein can be obtained and the resonances assigned. 8119

The use of 1H NMR to study CuCoSOD derivatives of CuZnSOD in combination with electronic absorption and EPR
spectroscopies has enabled investigators to compare active-site structures of a variety of wild-type and mutant CuZnSOD proteins
in order to find out if large changes in active-site structure have resulted from replacement of nearby amino-acid residues.!2
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