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CHAPTER OVERVIEW

1: The Basic Tools of Quantum Mechanics

Quantum Mechanics Describes Matter in Terms of Wavefunctions and Energy Levels and physical Measurements are Described in
Terms of Operators Acting on Wavefunctions

1.1: Operators

1.2: Wavefunctions

1.3: The Schrédinger Equation

1.4: Free-Particle Motion in Two Dimensions

1.5: Particles in Boxes

1.6: One Electron Moving About a Nucleus

1.7: Harmonic Vibrational Motion

1.8: Rotational Motion for a Rigid Diatomic Molecule

1.9: The Physical Relevance of Wavefunctions, Operators and Eigenvalues

This page titled 1: The Basic Tools of Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.



https://libretexts.org/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.01%3A_Operators
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.02%3A_Wavefunctions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.03%3A_The_Schrodinger_Equation
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.04%3A_Free-Particle_Motion_in_Two_Dimensions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.05%3A_Particles_in_Boxes
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.06%3A_One_Electron_Moving_About_a_Nucleus
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.07%3A_Harmonic_Vibrational_Motion
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.08%3A_Rotational_Motion_for_a_Rigid_Diatomic_Molecule
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics/1.09%3A_The_Physical_Relevance_of_Wavefunctions_Operators_and_Eigenvalues
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/01%3A_The_Basic_Tools_of_Quantum_Mechanics
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/

LibreTextsw

1.1: Operators

Each physically measurable quantity has a corresponding operator. The eigenvalues of the operator tell the values of the
corresponding physical property that can be observed

In quantum mechanics, any experimentally measurable physical quantity F (e.g., energy, dipole moment, orbital angular
momentum, spin angular momentum, linear momentum, kinetic energy) whose classical mechanical expression can be written in
terms of the cartesian positions {q;} and momenta {p;} of the particles that comprise the system of interest is assigned a
corresponding quantum mechanical operator F. Given F in terms of the {q; } and {p; }, F is formed by replacing p; by —ihaiqj and

leaving q; untouched. For example, if
N 2
F= k 0)2 L _ 0
; 3y T 3h@—a) + L@ —a))

then

N 2 2
F=> . +lk(Q1_Q?)2+L(Q1_q9)
=1 2m1 aql 2

The x-component of the dipole moment for a collection of N particles has

N
F = Z Zje:cj
j=1

and

N
F = Z Zjemj
j=1

where Z;e is the charge on the jt* particle.

The mapping from F to F is straightforward only in terms of cartesian coordinates. To map a classical function F, given in terms of
curvilinear coordinates (even if they are orthogonal), into its quantum operator is not at all straightforward. Interested readers are
referred to Kemble's text on quantum mechanics which deals with this matter in detail. The mapping can always be done in terms
of cartesian coordinates after which a transformation of the resulting coordinates and differential operators to a curvilinear system
can be performed. The corresponding transformation of the kinetic energy operator to spherical coordinates is treated in detail in
Appendix A. The text by EWK also covers this topic in considerable detail.

The relationship of these quantum mechanical operators to experimental measurement will be made clear later in this chapter. For
now, suffice it to say that these operators define equations whose solutions determine the values of the corresponding physical
property that can be observed when a measurement is carried out; only the values so determined can be observed. This should
suggest the origins of quantum mechanics' prediction that some measurements will produce discrete or quantized values of certain
variables (e.g., energy, angular momentum, etc.).

This page titled 1.1: Operators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source
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1.2: Wavefunctions

The eigenfunctions of a quantum mechanical operator depend on the coordinates upon which the operator acts; these functions are
called wavefunctions

In addition to operators corresponding to each physically measurable quantity, quantum mechanics describes the state of the system
in terms of a wavefunction ¥ that is a function of the coordinates {q;} and of time ¢. The function [¥(g;, t)]> = ¥*T gives the
probability density for observing the coordinates at the values g; at time t. For a many-particle system such as the H,O molecule,
the wavefunction depends on many coordinates. For the H,O example, it depends on the X, y, and z (or 1,q, and f) coordinates of
the ten electrons and the X, y, and z (or 1,q, and f) coordinates of the oxygen nucleus and of the two protons; a total of thirty-nine
coordinates appear in V.

In classical mechanics, the coordinates qj and their corresponding momenta p; are functions of time. The state of the system is then
described by specifying g; (t) and p; (t). In quantum mechanics, the concept that qj is known as a function of time is replaced by
the concept of the probability density for finding g; at a particular value at a particular time t: [¥(g;, t)*. Knowledge of the
corresponding momenta as functions of time is also relinquished in quantum mechanics; again, only knowledge of the probability
density for finding p; with any particular value at a particular time ¢ remains.

This page titled 1.2: Wavefunctions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
source content that was edited to the style and standards of the LibreTexts platform.
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1.3: The Schrodinger Equation

The Time-Dependent Schrédinger Equation

How to extract from ¥(g;, t) knowledge about momenta is treated, where the structure of quantum mechanics, the use of operators
and wavefunctions to make predictions and interpretations about experimental measurements, and the origin of 'uncertainty
relations' such as the well known Heisenberg uncertainty condition dealing with measurements of coordinates and momenta are
also treated.

Before moving deeper into understanding what quantum mechanics 'means, it is useful to learn how the wavefunctions ¥ are
found by applying the basic equation of quantum mechanics, the Schrédinger equation, to a few exactly soluble model problems.
Knowing the solutions to these 'easy' yet chemically very relevant models will then facilitate learning more of the details about the
structure of quantum mechanics because these model cases can be used as 'concrete examples'.

The Schrodinger equation is a differential equation depending on time and on all of the spatial coordinates necessary to describe the
system at hand (thirty-nine for the Ho O example cited above). It is usually written

ov
HY = 7,h6—

where ¥(g;,t) is the unknown wavefunction and H is the operator corresponding to the total energy physical property of the
system. This operator is called the Hamiltonian and is formed, as stated above, by first writing down the classical mechanical
expression for the total energy (kinetic plus potential) in Cartesian coordinates and momenta and then replacing all classical

momenta pj by their quantum mechanical operators p; = —th—.

0g;

For the Hy O example used above, the classical mechanical energy of all thirteen particles is

R (STt S (i)

Ti,j p Tia
where the indices i and j are used to label the ten electrons whose thirty cartesian coordinates are {q; } and a and b label the three

nuclei whose charges are denoted {Z,}, and whose nine cartesian coordinates are {q,}. The electron and nuclear masses are
The corresponding Hamiltonian operator is

denoted me and {m, }, respectively.
K2 82 H? 1 e?
H-= —_— — .
Z ( ( ) ) Z ( ( ) 8q§ 2 a,b)

Notice that H is a second order differential operator in the space of the thirty-nine Cartesian coordinates that describe the positions

7'1,]

of the ten electrons and three nuclei. It is a second order operator because the momenta appear in the kinetic energy as p? and p2,

., 0
and the quantum mechanical operator for each momentum p = zha— is of first order.
q

8 2
( ) dq3 3 Tab

The Schrédinger equation for the H,O then reads

|- (o) a3

v

\I:+Z

ovr
—ihor

7'1,]

If the Hamiltonian operator contains the time variable explicitly, one must solve the time-

dependent Schrddinger equation. If the Hamiltonian operator does not contain the time
variable explicitly, one can solve the time-independent Schrddinger equation
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The Time-Independent Schrédinger Equation

In cases where the classical energy, and hence the quantum Hamiltonian, do not contain terms that are explicitly time dependent
(e.g., interactions with time varying external electric or magnetic fields would add to the above classical energy expression time
dependent terms discussed later in this text), the separations of variables techniques can be used to reduce the Schrédinger equation
to a time-independent equation.

In such cases, H is not explicitly time dependent, so one can assume that ¥(g;,t) is of the for
¥(gj,t) = ¥(g;)F(t).
Substituting this 'ansatz' into the time-dependent Schrédinger equation gives

W(q))in G = HU(g))F (1)

Dividing by ¥(g;)F(t) then gives
OF
F! (zh—) =yl (H¥(g))).
ot
Since F(t) is only a function of time t, and ¥(g; ) is only a function of the spatial coordinates {g;}, and because the left hand and

right hand sides must be equal for all values of t and of {g;}, both the left and right hand sides must equal a constant. If this
constant is called E, the two equations that are embodied in this separated Schrodinger equation read as follows:

H¥(q;) = E¥(g;), (1.3.1)
LOF(t) _dF(t)
ih 5t =ih g7 = EF(t).

Equation 1.3.1 is called the time-independent Schréddinger Equation; it is a so-called eigenvalue equation in which one is asked to
find functions that yield a constant multiple of themselves when acted on by the Hamiltonian operator. Such functions are called
eigenfunctions of H and the corresponding constants are called eigenvalues of H. For example, if H were of the form

—h? 02

2M 9¢?

then functions of the form e(¥) would be eigenfunctions because

—h% 92 N g _ (PR (ims)
2M 02 oM

Il’l thS case
1 y
2M

) is the eigenvalue.

When the Schrodinger equation can be separated to generate a time-independent equation describing the spatial coordinate
dependence of the wavefunction, the eigenvalue E must be returned to the equation determining F(t) to find the time dependent
part of the wavefunction. By solving

ihdZit) =EF(t)
once F is known, one obtains
—iEt
F(t)=e h
and the full wavefunction can be written as
—iEt

and the full wavefunction can be written as
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—i Bt
¥(gj,t) =¥(g)e h

For the above example, the time dependence is expressed by

it m*h?
R 2M

F(t):e(

Having been introduced to the concepts of operators, wavefunctions, the Hamiltonian and its Schrodinger equation, it is important
to now consider several examples of the applications of these concepts. The examples treated below were chosen to provide the
learner with valuable experience in solving the Schrédinger equation; they were also chosen because the models they embody form
the most elementary chemical models of electronic motions in conjugated molecules and in atoms, rotations of linear molecules,
and vibrations of chemical bonds.

This page titled 1.3: The Schrodinger Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform.
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1.4: Free-Particle Motion in Two Dimensions

The Schrodinger Equation

The number of dimensions depends on the number of particles and the number of spatial (and other) dimensions needed to
characterize the position and motion of each particle

Consider an electron of mass m and charge e moving on a two-dimensional surface that defines the x,y plane (perhaps the electron
is constrained to the surface of a solid by a potential that binds it tightly to a narrow region in the z-direction), and assume that the
electron experiences a constant potential Vj at all points in this plane (on any real atomic or molecular surface, the electron would
experience a potential that varies with position in a manner that reflects the periodic structure of the surface). The pertinent time
independent Schrodinger equation is:

h2 82 62
—— | =t = % =F
s (507 + 307 ) ¥1e9) + Vole,) = Be,0)
- . o N b 0
Because there are no terms in this equation that couple motion in the x and y directions (e.g., no terms of the form z®y” or P B0
z oy

0
or ma—), separation of variables can be used to write ¢ as a product ¢(x,y)=A(x)B(y). Substitution of this form into the
Schrodinger equation, followed by collecting together all x-dependent and all y-dependent terms, gives;
h2 0’°A  h? 0’B
——A'—— - _—_—_B'——=E-V
2m Ox? 2m Oy?

Since the first term contains no y-dependence and the second contains no x-dependence, both must actually be constant (these two
constants are denoted E, and E,, respectively), which allows two separate Schrédinger equations to be written:

32 2
iA—l oA —E,, and
2m Ox?
_K2 2
h = 0°B _5,
2m Oy?

The total energy E can then be expressed in terms of these separate energies F, and Ey as E, +E, = E—V; . Solutions to the x-

and y- Schrédinger equations are easily seen to be:
~|2mE,
k29 5
A(z)=e h*  and

| 2mE,
—T
e \ B2
2mEy

1y
B(y)=e \l R*  and

' 2mE,
eiw h?

Two independent solutions are obtained for each equation because the x- and y-space Schrodinger equations are both second order
differential equations.

Boundary Conditions

The boundary conditions, not the Schrédinger equation, determine whether the eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the x,y plane, the energies E, and E, can assume any value; this means that the
experimenter can 'inject' the electron onto the x,y plane with any total energy E and any components E, and E, along the two axes
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as long as E, + E, = E. In such a situation, one speaks of the energies along both coordinates as being 'in the continuum' or 'not
quantized'.

In contrast, if the electron is constrained to remain within a fixed area in the x,y plane (e.g., a rectangular or circular region), then
the situation is qualitatively different. Constraining the electron to any such specified area gives rise to so-called boundary
conditions that impose additional requirements on the above A and B functions. These constraints can arise, for example, if the
potential V(x,y) becomes very large for x,y values outside the region, in which case, the probability of finding the electron outside
the region is very small. Such a case might represent, for example, a situation in which the molecular structure of the solid surface
changes outside the enclosed region in a way that is highly repulsive to the electron.

For example, if motion is constrained to take place within a rectangular region defined by 0 < x < IL,; 0 <y < L,, then the
continuity property that all wavefunctions must obey (because of their interpretation as probability densities, which must be
continuous) causes A(x) to vanish at 0 and at L. Likewise, B(y) must vanish at 0 and at L. To implement these constraints for

| 2mE, |2mE,
(29 9 —ir h2
A(x), one must linearly combine the above two solutions e h and e to achieve a function that vanishes at x=0:

) \[2mEz . \FmEﬂc
A(z) =e R? h?

One is allowed to linearly combine solutions of the Schrédinger equation that have the same energy (i.e., are degenerate) because
Schrodinger equations are linear differential equations. An analogous process must be applied to B(y) to achieve a function that
vanishes at y=0:

) [2mE’y y [2mE'y
By)=e V B _e \ B

Further requiring A(x) and B(y) to vanish, respectively, at x=L, and y=L,, gives equations that can be obeyed only if E, and E,
assume particular values:

\FmEx \PmEZ
iLg 2 —iL, 2
e h —e h =0and

[QmE’y (QmEy
iLy\l 2 —iLy 2
e h —e \l h =0

2mE, 2mkE,
sin (z‘Lm = ) — sin <iLy T”) —0

Knowing that sin(f) vanishes at 8 = n, for n=1,2,3,..., (although the sin(n7) function vanishes for n=0, this function vanishes for
all x or y, and is therefore unacceptable because it represents zero probability density at all points in space) one concludes that the
energies E; and E, can assume only values that obey:

These equations are equivalent to

2mkE,
L, M2z _ T
K2
2mE,
L, he = Ty T, OT
2. 252
+7°h
E, = Dol B , and
2mIL2
nim’h?
E, = —2,w1th n, andn, =1,2,3,...
2mL
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It is important to stress that it is the imposition of boundary conditions, expressing the fact that the electron is spatially constrained,
that gives rise to quantized energies. In the absence of spatial confinement, or with confinement only at x =0 or L, or only at y =0
or L, quantized energies would not be realized.

In this example, confinement of the electron to a finite interval along both the x and y coordinates yields energies that are quantized
along both axes. If the electron were confined along one coordinate (e.g., between 0 < x < L, ) but not along the other (i.e., B(y) is
either restricted to vanish at y=0 or at y=L,, or at neither point), then the total energy E lies in the continuum; its E, component is
quantized but E, is not. Such cases arise, for example, when a linear triatomic molecule has more than enough energy in one of its
bonds to rupture it but not much energy in the other bond; the first bond's energy lies in the continuum, but the second bond's
energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation energy is excited to a level that is not enough to
break it but that is in excess of the dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the strong
bond having high internal energy and the weak bond having low energy (1), and ii. the strong bond having little energy and the
weak bond having more than enough energy to rupture it (12). Although an experiment may prepare the molecule in a state that
contains only the former component (i.e., ¥ = C11¢; + CarhpawithCy < Cs) , coupling between the two degenerate functions

(induced by terms in the Hamiltonian H that have been ignored in defining v; and ) usually causes the true wavefunction ¥ = e
( —itH

h >1/J to acquire a component of the second function as time evolves. In such a case, one speaks of internal vibrational
energy flow giving rise to unimolecular decomposition of the molecule.

3. Energies and Wavefunctions for Bound States

For discrete energy levels, the energies are specified functions the depend on quantum numbers, one for each degree of freedom
that is quantized

Returning to the situation in which motion is constrained along both axes, the resultant total energies and wavefunctions (obtained
by inserting the quantum energy levels into the expressions for A(z)B(y) are as follows:

| nin’R?
°T omI2’
and
B nzﬂ'2h2
v 2mL2 ’
E= Ex + Ey’
N, TT —iN, TT Ny TY —in,TY
1 1
1/’(%,:‘/) ( 2Lq;) ( 2Ly> e e e e

withn; andn, =1,2,3, ...
1 . . .
The two 5L factors are included to guarantee that 1) is normalized:
2
/Il/f(:v,y)l dxdy =1.

Normalization allows |1 (z, y) |2 to be properly identified as a probability density for finding the electron at a point x, y.

4. Quantized Action Can Also be Used to Derive Energy Levels

There is another approach that can be used to find energy levels and is especially straightforward to use for systems whose
Schrodinger equations are separable. The socalled classical action (denoted S) of a particle moving with momentum p along a path
leading from initial coordinate q; at initial time t; to a final coordinate q; at time ¢y is defined by:
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qy,tf
S= / p-dgq
q;,ti
Here, the momentum vector p contains the momenta along all coordinates of the system, and the coordinate vector q likewise

contains the coordinates along all such degrees of freedom. For example, in the two-dimensional particle in a box problem
considered above, q = (x, y) has two components as does p = (pz, Py), and the action integral is:

TfYpits
S§= / (pzdx +pydy)'
Ti3Yssti
In computing such actions, it is essential to keep in mind the sign of the momentum as the particle moves from its initial to its final
positions. An example will help clarify these matters.

For systems such as the above particle in a box example for which the Hamiltonian is separable, the action integral decomposed
into a sum of such integrals, one for each degree of freedom. In this two-dimensional example, the additivity of H:

2
. . 23 Py
H=H,+H,= 5 o +V(z)+V(y)
—h% 9? B 92
“amoe ) om0

means that p, and p, can be independently solved for in terms of the potentials V(x) and V(y) as well as the energies E, and E,

associated with each separate degree of freedom:
Pz =14/2m(E; —V(2))
by = :l:\/ 2m(Ey —V(y));

the signs on p, and p, must be chosen to properly reflect the motion that the particle is actually undergoing. Substituting these
expressions into the action integral yields:

S=8,+8,

zp,ty ygits
:/ :I:‘/2m(Ez—V(m))dx+/ +,/2m(E, —V(y))dy.
ziti Yisti

The relationship between these classical action integrals and existence of quantized energy levels has been show to involve
equating the classical action for motion on a closed path (i.e., a path that starts and ends at the same place after undergoing motion
away from the starting point but eventually returning to the starting coordinate at a later time) to an integral multiple of Planck's
constant:

q;=q;;ts
Sclosed: / pdqznh (n:1,2,3,4,...).
q;5ti

Applied to each of the independent coordinates of the two-dimensional particle in a box problem, this expression reads:

z=L, z=0
nzh:/o J2m(E, —V(2))dz + / — [2m(B, —V(2)))de

z=L,
y=Ly y=0

nyh = / 2m(E, —V(y))dz + / —/2m(E, =V (y)))dy.
y=0 y=Ly

https://chem.libretexts.org/@go/page/60539


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60539?pdf

LibreTextsm

Notice that the sign of the momenta are positive in each of the first integrals appearing above (because the particle is moving from
x = 0 to x = L,, and analogously for y-motion, and thus has positive momentum) and negative in each of the second integrals
(because the motion is from x = L, to x = 0 (and analogously for y-motion) and thus with negative momentum). Within the region
bounded by 0 < x < L,; 0 <y < L,, the potential vanishes, so V(x) = V(y) = 0. Using this fact, and reversing the upper and
lower limits, and thus the sign, in the second integrals above, one obtains:

z=L,
ngh =2 / \2mE.dx =2./2mE,L,
=0

yzLy
nyh =2 / vV2mE,dy =2+/2mE,L,.
y=0

Solving for E, and E,, one finds:

h 2

B, = )
8mL3

_ (nyh)2
- 8mL2

These are the same quantized energy levels that arose when the wavefunction boundary conditions were matched at x = 0, x = L,
andy =0, y = L. In this case, one says that the Bohr-Sommerfeld quantization condition:

q5=q;;ts
nh = / q-dqgq
q;;ti

has been used to obtain the result.

This page titled 1.4: Free-Particle Motion in Two Dimensions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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1.5: Particles in Boxes
The particle-in-a-box problem provides an important model for several relevant chemical situations

The above 'particle in a box' model for motion in two dimensions can obviously be extended to three dimensions or to one. For two
and three dimensions, it provides a crude but useful picture for electronic states on surfaces or in crystals, respectively. Free motion
within a spherical volume gives rise to eigenfunctions that are used in nuclear physics to describe the motions of neutrons and
protons in nuclei. In the so-called shell model of nuclei, the neutrons and protons fill separate s, p, d, etc orbitals with each type of
nucleon forced to obey the Pauli principle. These orbitals are not the same in their radial 'shapes' as the s, p, d, etc orbitals of atoms
because, in atoms, there is an additional radial potential
2
V(r)=-2=

present. However, their angular shapes are the same as in atomic structure because, in both cases, the potential is independent of §
and ¢. This same spherical box model has been used to describe the orbitals of valence electrons in clusters of mono-valent metal
atoms such as Cs,, Cu,, Na, and their positive and negative ions. Because of the metallic nature of these species, their valence
electrons are sufficiently delocalized to render this simple model rather effective (see T. P. Martin, T. Bergmann, H. Gohlich, and T.
Lange, J. Phys. Chem. 95, 6421 (1991)).

One-dimensional free particle motion provides a qualitatively correct picture for 7-electron motion along the p, orbitals of a
delocalized polyene. The one cartesian dimension then corresponds to motion along the delocalized chain. In such a model, the box
length L is related to the carbon-carbon bond length R and the number N of carbon centers involved in the delocalized network L=
(N-1)R. Below, such a conjugated network involving nine centers is depicted. In this example, the box length would be eight times
the C-C bond length.

Figure 1.5.1: p-atomic orbitals in Nonanane

Conjugated 7 Network with 9 Centers Involved

The eigenstates 1,(x) and their energies E,, represent orbitals into which electrons are placed. In the example case, if nine 7w
electrons are present (e.g., as in the 1,3,5,7- nonatetraene radical), the ground electronic state would be represented by a total
wavefunction consisting of a product in which the lowest four v's are doubly occupied and the fifth 4 is singly occupied:

U = thraths frpaaths Bipsaps frpsanhs fips .

A product wavefunction is appropriate because the total Hamiltonian involves the kinetic plus potential energies of nine electrons.
To the extent that this total energy can be represented as the sum of nine separate energies, one for each electron, the Hamiltonian
allows a separation of variables

HgZH(j)

in which each H(j) describes the kinetic and potential energy of an individual electron. This (approximate) additivity of H implies
that solutions of H ¥ = E ¥ are products of solutions to

H(j)y(r;) = Ejip(r;).
The two lowest 7-excited states would correspond to states of the form

U* = o1 0)1 Brhaanps frpzanhs Brpsahs Bps o

and

U™ = gray B anhs fhsats fyaaps fsa,
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where the spin-orbitals (orbitals multiplied by « or ) appearing in the above products depend on the coordinates of the various
electrons. For example,

Prap B anhs Brpz s Bpsanps Brpsa

denotes

ra(ry )1 B(re) Yo (rs) e B(rs)hso(rs )ibs B(re)Yaa(rr) s B(rs)ibs a(ry)

The electronic excitation energies within this model would be

AE' :,rzﬁ_2[5_2 _ﬁ]

2m | 2  [?
and
K2 [62 5°
/ JR— — — —
AE*—T&'2 [L2_L2}’

for the two excited-state functions described above. It turns out that this simple model of m-electron energies provides a
qualitatively correct picture of such excitation energies.

This simple particle-in-a-box model does not yield orbital energies that relate to ionization energies unless the potential 'inside the
box' is specified. Choosing the value of this potential V such that

B? [ 5°
PRLC B
Vot 2m[L2]

is equal to minus the lowest ionization energy of the 1,3,5,7-nonatetraene radical, gives energy levels

2 1,2
n
(as E=Vy+nt— [—] ) which then are approximations to ionization energies.

2m | L2
2 . /nnx
o=y 7o)

are depicted in the figure below for a model of the 1,3,5 hexatriene m-orbital system for which the 'box length' L is five times the
distance R¢c between neighboring pairs of Carbon atoms.

The individual p-molecular orbitals

Figure 1.5.2: 1,3,5 hexatriene m-orbitals in order or increasing energy.
2 nme
—sin| — ); L=5zR,
VL ( L ) co

In this figure, positive amplitude is denoted by the clear spheres and negative amplitude is shown by the darkened spheres; the
magnitude of the k™ C-atom centered atomic orbital in the n'* pi-molecular orbital is given by

zsin n‘ll'kRCC
VL L ’
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This simple model allows one to estimate spin densities at each carbon center and provides insight into which centers should be
most amenable to electrophilic or nucleophilic attack. For example, radical attack at the Cs carbon of the nine-atom system
described earlier would be more facile for the ground state ¥ than for either ¥* or W'*. In the former, the unpaired spin density

L
resides in 5, which has non-zero amplitude at the Cj site z = 5; in U* and U, the unpaired density is in 4 and g,

respectively, both of which have zero density at Cy. These densities reflect the values

zsin nrkReoc
V L L

of the amplitudes for this case in which L = 8 x Rg¢ for n = 5, 4, and 6, respectively.

This page titled 1.5: Particles in Boxes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons
via source content that was edited to the style and standards of the LibreTexts platform.
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1.6: One Electron Moving About a Nucleus

The Schrodinger equation for a single particle of mass m moving in a central potential (one that depends only on the radial

coordinate r) can be written as
—K2 /[ 92 92 92 SR
—_— [ —_— = E
2 (8w2+8y + )1/)+V(~/a: +yP 420 ) § = By

This equation is not separable in cartesian coordinates (x,y,z) because of the way x,y, and z appear together in the square root.
However, it is separable in spherical coordinates

h? ) O 18 o L o2y
2ur? (67’ (T or )) t 2sing r2sinf 00 (sm@ao) + 25in20 Op? +V(r)y = Ey.

2

Subtracting V(r)y from both sides of the equation and multiplying by — then moving the derivatives with respect to r to the

right-hand side, one obtains

1 Y 1 9y —2ur? , O
sinf 00 <sm9 80) * Sin0 op2 R2 E-VENY =3, or ( 81") ’

Notice that the right-hand side of this equation is a function of r only; it contains no q or f dependence. Let's call the entire right
hand side F(r) to emphasize this fact.

To further separate the  and ¢ dependence, we multiply by sin?6 and subtract the  derivative terms from both sides to obtain

2
3715 =F(r)ysin’0 —sin 6% (sm 02—1;)
Now we have separated the ¢ dependence from the ¢ and r dependence. If we now substitute 1 = ®(f)Q(r, 8) and divide by Psi

Q, we obtain

10° 1 ) oQ
3o 0 (F(r)szn 0—s1n060 (sm0 50 ))

Now all of the ¢ dependence is isolated on the left hand side; the right hand side contains only r and 6 dependence.

Whenever one has isolated the entire dependence on one variable as we have done above for the ¢ dependence, one can easily see
that the left and right hand sides of the equation must equal a constant. For the above example, the left hand side contains no r or 8
dependence and the right hand side contains no ¢ dependence. Because the two sides are equal, they both must actually contain no
r, , or ¢ dependence; that is, they are constant.

For the above example, we therefore can set both sides equal to a so-called separation constant that we call -m2. It will become
clear shortly why we have chosen to express the constant in this form.

The Hydrogenic atom problem forms the basis of much of our thinking about atomic
structure. To solve the corresponding Schrédinger equation requires separation of the r, 6,
and ¢ variables

The & Equation
The resulting F equation reads

®"+m2T =0
which has as its most general solution

® = Ae™? 4 Be™™? .

We must require the function ® to be single-valued, which means that

B(p) = B(2m +¢) or
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Aeimd) (1 _e2im7r) +B€7im¢ (1 _672im7r) —0.

This is satisfied only when the separation constant is equal to an integer m = 0, +1, + 2, ... . and provides another example of the
rule that quantization comes from the boundary conditions on the wavefunction. Here m is restricted to certain discrete values
because the wavefunction must be such that when you rotate through 27 about the z-axis, you must get back what you started with.

The ® Equation

Now returning to the equation in which the ¢ dependence was isolated from the r and § dependence and rearranging the 6 terms to
the left-hand side, we have

sin20

1 0 —m?
sme%@ne%) ™9 pmo.

In this equation we have separated 6 and r variations so we can further decompose the wavefunction by introducing
Q = ©(9)R(r), which yields

1 1 0. 00 m? F(r)R
————|sinf— | —— =

O sind 00 00 sin26 R
where a second separation constant, -1, has been introduced once the r and q dependent terms have been separated onto the right

and left hand sides, respectively.

We now can write the 8 equation as

2
1 a( 6@>_m@ e,

sinfd 00 st 0%

sin%0

where m is the integer introduced earlier. To solve this equation for ©, we make the substitutions z = cosf and P(z) = ©(0), so

V1 —22 =sind, and

0 0z 0 -
— =777 = —sinf—
00 06 0z 0z
The range of values for 8 was 0 < 8 < 7, so the range for z is -1 < z < 1. The equation for ®, when expressed in terms of P and z,

becomes

d ,.dP\ m?P
dz<(1z )dz) 1 +AP=0.

Now we can look for polynomial solutions for P, because z is restricted to be less than unity in magnitude. If m = 0, we first let

o0
_ k
P = E apz”,
k=0

and substitute into the differential equation to obtain

D (k+2)(k+Dap2z" = (k+1Dkapz" + 1> arz* =0.
k=1 k=0 k=0

Equating like powers of z gives

ap(k(k+1)—A)
k+2)(k11)

1
k2 (1 + —)
af12 N k

Qg2 =

Note that for large values of k

=1.

ak 2 2 1
k (1+k) (1+k)
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Since the coefficients do not decrease with k for large k, this series will diverge for z = + 1 unless it truncates at finite order. This
truncation only happens if the separation constant A obeys A = 1(1+1), where 1 is an integer. So, once again, we see that a boundary
condition (i.e., that the wavefunction be normalizable in this case) give rise to quantization. In this case, the values of A\ are
restricted to 1(1+1); before, we saw that m is restricted to 0, £1, + 2, ... .

Since this recursion relation links every other coefficient, we can choose to solve for the even and odd functions separately.
Choosing ag and then determining all of the even ak in terms of this ag, followed by rescaling all of these a; to make the function
normalized generates an even solution. Choosing a; and determining all of the odd a;, in like manner, generates an odd solution.

For 1= 0, the series truncates after one term and results in P,(z) =1. For 1= 1 the same thing applies and P;(z) = z. For 1= 2, a

9 =—6 (12—0 = —3a, , 5o one obtains Py = 322 — 1, and so on. These polynomials are called Legendre polynomials.

For the more general case where m ! 0, one can proceed as above to generate a polynomial solution for the Q function. Doing so,
results in the following solutions:
2 m dml 1(2)
m — 2 — -V
P (2)=(1-2%) m

These functions are called Associated Legendre polynomials, and they constitute the solutions to the ® problem for non-zero m
values.

The above P and e functions, when re-expressed in terms of § and ¢, yield the full angular part of the wavefunction for any
centrosymmetric potential. These solutions are usually written as

m cost
V2T

These are called spherical harmonics. They provide the angular solution of the r,0, ¢ Schrodinger equation for any problem in
which the potential depends only on the radial coordinate. Such situations include all one-electron atoms and ions (e.g., H, He™, Li
*+ etc.), the rotational motion of a diatomic molecule (where the potential depends only on bond length r), the motion of a
nucleon in a spherically symmetrical "box" (as occurs in the shell model of nuclei), and the scattering of two atoms (where the
potential depends only on interatomic distance).

imae

Yim(6,¢) =P,

The R Equation

Let us now turn our attention to the radial equation, which is the only place that the explicit form of the potential appears. Using
our derived results and specifying V'(r) to be the coulomb potential appropriate for an electron in the field of a nucleus of charge

+Ze, yields:
1 d /[ ,dR 2u Ze? I(1+1)
JE—— [— —_— E B — — = U.
72 dr(r dr)+(h2 + r 72 R=0

We can simplify things considerably if we choose rescaled length and energy units because doing so removes the factors that
depend on p, k, and e. We introduce a new radial coordinate rho and a quantity o as follows:

| —8uk
p= h2 r

2 —pZ’e!
o' =——

2Eh2

and

Notice that if E is negative, as it will be for bound states (i.e., those states with energy below that of a free electron infinitely far
from the nucleus and with zero kinetic energy), rho is real. On the other hand, if F is positive, as it will be for states that lie in the
continuum, rho will be imaginary. These two cases will give rise to qualitatively different behavior in the solutions of the radial
equation developed below.

We now define a function S such that
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and substitute S for R to obtain:

1d [ ,dS 1 I1+1) o).
pde(p dp>+(_4_ s Tp)°0

The differential operator terms can be recast in several ways using

1 d/(,dS d2s 2dS 1 d?
S\ )=zt =759

p°dp \" dp dp* pdp pdp
It is useful to keep in mind these three embodiments of the derivatives that enter into the radial kinetic energy; in various contexts it
will be useful to employ various of these.

The strategy that we now follow is characteristic of solving second order differential equations. We will examine the equation for S
at large and small p values. Having found solutions at these limits, we will use a power series in p to "interpolate” between these
two limits.

Let us begin by examining the solution of the above equation at small values of p to see how the radial functions behave at small r.
As p —0, the second term in the brackets will dominate. Neglecting the other two terms in the brackets, we find that, for small
values of rho (or 1), the solution should behave like p” and because the function must be normalizable, we must have L > 0. Since
L can be any non-negative integer, this suggests the following more general form for S(p) :

S(p) = pte.
This form will insure that the function is normalizable since S(p) — Oasr — oo for all L, as long as rho is a real quantity. If p is
imaginary, such a form may not be normalized (see below for further consequences).

Turning now to the behavior of S for large p, we make the substitution of S(p) into the above equation and keep only the terms
with the largest power of p (e.g., first term in brackets). Upon so doing, we obtain the equation

1
a2pLe—ap — ZpLe—ap’

1
which leads us to conclude that the exponent in the large-rho behavior of S is a = 5

Having found the small- and large-p behaviors of S(p), we can take S to have the following form to interpolate between large and
small rho-values:
—r
S(p) =p"e 2 P(p),

where the function L is expanded in an infinite power series in p as P(p) = Y axp" . Again Substituting this expression for S into
the above equation we obtain

P'p+P'(2Ly—p)+Pc—L—-1)=0,
and then substituting the power series expansion of P and solving for the ak's we arrive at:

(k—o+L+1)a
(k+1)(k+2L+2)

ap+1 1 . . .
u =% which has the same behavior as the power series
ay,

expansion of e”. Because the power series expansion of P describes a function that behaves like e” for large p, the resulting S(p)
_r

function would not be normalizable because the e 2 factor would be overwhelmed by this e’ dependence. Hence, the series

expansion of P must truncate in order to achieve a normalizable S function. Notice that if p is imaginary, as it will be if E is in the

continuum, the argument that the series must truncate to avoid an exponentially diverging function no longer applies. Thus, we see

ap41 =

For large k, the ration of expansion coefficients reaches the limit

a key difference between bound (with r real) and continuum (with p imaginary) states. In the former case, the boundary condition
of non-divergence arises; in the latter, it does not.

https://chem.libretexts.org/@go/page/60541



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60541?pdf

LibreTextsw

To truncate at a polynomial of order n', we must have n' - o + L+ 1= 0. This implies that the quantity o introduced previously is
restricted to o = n' + L + 1, which is certainly an integer; let us call this integer n. If we label states in order of increasing n =
1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the P(p) polynomial n' = 0,1,2,... after which
the 1-value can run from 1 = 0, in steps of unity up to L = n-1.

Substituting the integer n for o, we find that the energy levels are quantized because ¢ is quantized (equal to n):

E AL d Zr
__2712712 rand: p= aon'
h2
Here, the length a, is the so called Bohr radius (ao = —2> ; it appears once the above E-expression is substituted into the
e

equation for p. Using the recursion equation to solve for the polynomial's coefficients a; for any choice of n and 1 quantum
numbers generates a so-called Laguerre polynomial; P,,_1_1 (p). They contain powers of p from zero through n-1-1.

This energy quantization does not arise for states lying in the continuum because the condition that the expansion of P(p) terminate
does not arise. The solutions of the radial equation appropriate to these scattering states (which relate to the scattering motion of an
electron in the field of a nucleus of charge Z) are treated on p. 90 of EWK.

In summary, separation of variables has been used to solve the full 1,0, ¢ Schrédinger equation for one electron moving about a
nucleus of charge Z. The 6 and ¢ solutions are the spherical harmonics Y7, ,, (6, ¢). The bound-state radial solutions
_r
R, (r)=S(p)=p"e 2 Py 11(p)

depend on the n and 1 quantum numbers and are given in terms of the Laguerre polynomials (see EWK for tabulations of these
polynomials).

Summary

To summarize, the quantum numbers 1 and m arise through boundary conditions requiring that )(¢) be normalizable (i.e., not
diverge) and ¥(¢) = (¢ + 27). In the texts by Atkins, EWK, and McQuarrie the differential equations obeyed by the 6 and ¢
components of Y; ,,, are solved in more detail and properties of the solutions are discussed. This differential equation involves the

three-dimensional Schrédinger equation's angular kinetic energy operator. That is, the angular part of the above Hamiltonian is
2

L
equal to 2
2mr

> where L2 is the square of the total angular momentum for the electron.

The radial equation, which is the only place the potential energy enters, is found to possess both bound-states (i.e., states whose
energies lie below the asymptote at which the potential vanishes and the kinetic energy is zero) and continuum states lying
energetically above this asymptote. The resulting hydrogenic wavefunctions (angular and radial) and energies are summarized in

Appendix B for principal quantum numbers n ranging from 1 to 3 and in Pauling and Wilson for n up to 5.

There are both bound and continuum solutions to the radial Schrédinger equation for the attractive coulomb potential because, at
energies below the asymptote the potential confines the particle between r=0 and an outer turning point, whereas at energies above
the asymptote, the particle is no longer confined by an outer turning point (see the figure below).

Zee /I_T Continuum State

0.0

r—

Boun

Stated%)
Y

Figure 1.6.1: Insert caption here!
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The solutions of this one-electron problem form the qualitative basis for much of atomic and molecular orbital theory. For this
reason, the reader is encouraged to use Appendix B to gain a firmer understanding of the nature of the radial and angular parts of
these wavefunctions. The orbitals that result are labeled by n, I, and m quantum numbers for the bound states and by 1 and m
quantum numbers and the energy E for the continuum states. Much as the particle-in-a-box orbitals are used to qualitatively
describe 7 - electrons in conjugated polyenes, these so-called hydrogen-like orbitals provide qualitative descriptions of orbitals of
atoms with more than a single electron. By introducing the concept of screening as a way to represent the repulsive interactions
among the electrons of an atom, an effective nuclear charge Z.;; can be used in place of Z in the v, ;, and E, ; to generate
approximate atomic orbitals to be filled by electrons in a many-electron atom. For example, in the crudest approximation of a
carbon atom, the two 1s electrons experience the full nuclear attraction so Z.ry=6 for them, whereas the 2s and 2p electrons are
screened by the two 1s electrons, so Z.ss= 4 for them. Within this approximation, one then occupies two 1s orbitals with Z=6, two
2s orbitals with Z=4 and two 2p orbitals with Z=4 in forming the full six-electron wavefunction of the lowest-energy state of
carbon.

This page titled 1.6: One Electron Moving About a Nucleus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or

curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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1.7: Harmonic Vibrational Motion

The radial motion of a diatomic molecule in its lowest (J=0) rotational level can be described by the following Schrodinger

equation:
—h? 8 (%0
— | — +V(r)y = Ev,
2 ur? (9r(3r>¢ ()¢ 4
where m is the reduced mass
- mime
(my +my)
of the two atoms. By substituting ¢ = %r) into this equation, one obtains an equation for F(r) in which the differential operators
appear to be less complicated:
—h? d*F
—+V(r)F =EF.
5 (r)

This equation is exactly the same as the equation seen above for the radial motion of the electron in the hydrogen-like atoms except
that the reduced mass 4 replaces the electron mass m and the potential V'(r) is not the Coulomb potential.

If the potential is approximated as a quadratic function of the bond displacement * = r —r. expanded about the point at which V'
is minimum:

1
V=-k _62,
K(r—ro)

the resulting harmonic-oscillator equation can be solved exactly. Because the potential V grows without bound as x approaches
ooor — 0o, only bound-state solutions exist for this model problem; that is, the motion is confined by the nature of the potential, so
no continuum states exist.

This Schrédinger equation forms the basis for our thinking about bond stretching and
angle bending vibrations as well as collective phonon motions in solids

In solving the radial differential equation for this potential (see Chapter 5 of McQuarrie), the large-r behavior is first examined. For

large-r, the equation reads:
d?F 1 2u
—— =—kz*? (= | F
dzz 2 (h2> ’

where x = r —r, is the bond displacement away from equilibrium. Defining & = ,* % x as a new scaled radial coordinate allows

the solution of the large-r equation to be written as:

—zi?

Earger-r =e 2

The general solution to the radial equation is then taken to be of the form:

,52
F=e 2 ) £C,
n=0

where the C,, are coefficients to be determined. Substituting this expression into the full radial equation generates a set of recursion
equations for the C), amplitudes. As in the solution of the hydrogen-like radial equation, the series described by these coefficients
is divergent unless the energy E happens to equal specific values. It is this requirement that the wavefunction not diverge so it can
be normalized that yields energy quantization. The energies of the states that arise are given by:

En:h‘/E (n+l)
o 2
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and the eigenfunctions are given in terms of the so-called Hermite polynomials H, (y) as follows:

—O£$2

e 2 H, (yaz),

1
vn!2"

4

Yn(z) =

3Q

where o = (, / ’;—’;) . Within this harmonic approximation to the potential, the vibrational energy levels are evenly spaced:

k
AE=E,.1—E,=h (— .
I
In experimental data such evenly spaced energy level patterns are seldom seen; most commonly, one finds spacings E, 1 — E,
that decrease as the quantum number n increases. In such cases, one says that the progression of vibrational levels displays
anharmonicity.

Because the H,, are odd or even functions of x (depending on whether n is odd or even), the wavefunctions ,,(x) are odd or even.
This splitting of the solutions into two distinct classes is an example of the effect of symmetry; in this case, the symmetry is caused
by the symmetry of the harmonic potential with respect to reflection through the origin along the x-axis. Throughout this text, many
symmetries will arise; in each case, symmetry properties of the potential will cause the solutions of the Schrédinger equation to be
decomposed into various symmetry groupings. Such symmetry decompositions are of great use because they provide additional
quantum numbers (i.e., symmetry labels) by which the wavefunctions and energies can be labeled.

The harmonic oscillator energies and wavefunctions comprise the simplest reasonable model for vibrational motion. Vibrations of a
polyatomic molecule are often characterized in terms of individual bond-stretching and angle-bending motions each of which is, in
turn, approximated harmonically. This results in a total vibrational wavefunction that is written as a product of functions one for
each of the vibrational coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of anharmonicity (i.e., non-uniform energy level
spacings) and lack of bond dissociation, result from the quadratic nature of its potential. By introducing model potentials that allow
for proper bond dissociation (i.e., that do not increase without bound as x— oco), the major shortcomings of the harmonic oscillator
picture can be overcome. The so-called Morse potential (see the figure below)

V(r) =D, (1 - e—“(’—w) ’

is often used in this regard.

1
Dissociation Energ

S—

Energy

re
Internuclear Separation (7)

Figure 1.7.1: The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic
oscillator potential, which are evenly spaced by hw, the Morse potential level spacing decreases as the energy approaches the
dissociation energy. The dissociation energy De is larger than the true energy required for dissociation DO due to the zero point
energy of the lowest (v = 0) vibrational level. (CC-SA-BY-3.0; Somoza).

Here, D, is the bond dissociation energy, 7. is the equilibrium bond length, and a is a constant that characterizes the 'steepness' of

the potential and determines the vibrational frequencies. The advantage of using the Morse potential to improve upon harmonic
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oscillator-level predictions is that its energy levels and wavefunctions are also known exactly. The energies are given in terms of
the parameters of the potential as follows:

[k 1 \’r [k
E,=h ; <n+§>—<n+§> Z Z.De

where the force constant k is k= 2D.a?. The Morse potential supports both bound states (those lying below the dissociation
threshold for which vibration is confined by an outer turning point) and continuum states lying above the dissociation threshold. Its

k
degree of anharmonicity is governed by the ratio of the harmonic energy ki, /| — to the dissociation energy D,.
m

This page titled 1.7: Harmonic Vibrational Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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1.8: Rotational Motion for a Rigid Diatomic Molecule

A diatomic molecule with fixed bond length R rotating in the absence of any external potential is described by the following

Schrodinger equation:
2 2
Ly EEE ¥ (LA R T 1 PR
2p | R?sinf 06 00 R?sin’ § 092

or
L%y
2uR?

= Ey.

The angles 6 and ¢ describe the orientation of the diatomic molecule's axis relative to a laboratory-fixed coordinate system, and p
is the reduced mass of the diatomic molecule

mimsa

m1 +my '

The differential operators can be seen to be exactly the same as those that arose in the hydrogen-like-atom case, and, as discussed
above, these #: and: ¢ differential operators are identical to the L? angular momentum operator whose general properties are
analyzed in Appendix G. Therefore, the same spherical harmonics that served as the angular parts of the wavefunction in the
earlier case now serve as the entire wavefunction for the so-called rigid rotor: ¢ =Y 3/(6, ¢) . As detailed later in this text, the
eigenvalues corresponding to each such eigenfunction are given as:

J(J+1)

E;,=h?
T =)

=BJ(J+1)

and are independent of M. Thus each energy level is labeled by J and is 2J+1-fold degenerate (because M ranges from -J to J). The
2

so-called rotational constant B < defined as > ) depends on the molecule's bond length and reduced mass. Spacings between

I
successive rotational levels (which are of spectroscopic relevance because angular momentum selection rules often restrict AJ to

1,0, and -1) are given by
AE=B(J+1)(J+2)—BJ(J+1)=2B(J+1).
These energy spacings are of relevance to microwave spectroscopy which probes the rotational energy levels of molecules.

This Schrédinger equation relates to the rotation of diatomic and linear polyatomic
molecules. It also arises when treating the angular motions of electrons in any spherically
symmetric potential.

Summary

The rigid rotor provides the most commonly employed approximation to the rotational energies and wavefunctions of linear
molecules. As presented above, the model restricts the bond length to be fixed. Vibrational motion of the molecule gives rise to
changes in R which are then reflected in changes in the rotational energy levels. The coupling between rotational and vibrational
motion gives rise to rotational B constants that depend on vibrational state as well as dynamical couplings,called centrifugal
distortions, that cause the total ro-vibrational energy of the molecule to depend on rotational and vibrational quantum numbers in a
non-separable manner

This page titled 1.8: Rotational Motion for a Rigid Diatomic Molecule is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,

and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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1.9: The Physical Relevance of Wavefunctions, Operators and Eigenvalues

Quantum mechanics has a set of 'rules' that link operators, wavefunctions, and
eigenvalues to physically measurable properties. These rules have been formulated not in
some arbitrary manner nor by derivation from some higher subject. Rather, the rules were
designed to allow quantum mechanics to mimic the experimentally observed facts as
revealed in mother nature's data. The extent to which these rules seem difficult to
understand usually reflects the presence of experimental observations that do not fit in
with our common experience base.

The structure of quantum mechanics (QM) relates the wavefunction ¥ and operators F to the 'real world' in which experimental
measurements are performed through a set of rules. Some of these rules have already been introduced above. Here, they are
presented in total as follows:

1: The Time Evolution

The time evolution of the wavefunction ¥ is determined by solving the time-dependent Schrodinger equation (see pp 23-25 of
EWK for a rationalization of how the Schrédinger equation arises from the classical equation governing waves, Einstein's £ = hv,
and deBroglie's postulate that A = % )

ind¥ _ HY,
ot

where H is the Hamiltonian operator corresponding to the total (kinetic plus potential) energy of the system. For an isolated system

(e.g., an atom or molecule not in contact with any external fields), H consists of the kinetic and potential energies of the particles

comprising the system. To describe interactions with an external field (e.g., an electromagnetic field, a static electric field, or the

'crystal field' caused by surrounding ligands), additional terms are added to H to properly account for the system-field interactions.

If H contains no explicit time dependence, then separation of space and time variables can be performed on the above Schrodinger
—i1Et

equation ¥ =e A  to give

Hy =e.

—Bt
In such a case, the time dependence of the state is carried in the phase factor e » ; the spatial dependence appears in 9(g;).

The so called time independent Schrédinger equation Hi = E1 must be solved to determine the physically measurable energies
E}, and wavefunctions 1, of the system. The most general solution to the full Schrodinger equation

., 0¥

—iHt
is then given by applying e % to the wavefunction at some initial time (t=0)

U= Z@ﬂﬁk
k

to obtain

The relative amplitudes Cj, are determined by knowledge of the state at the initial time; this depends on how the system has been
prepared in an earlier experiment. Just as Newton's laws of motion do not fully determine the time evolution of a classical system
(i.e., the coordinates and momenta must be known at some initial time), the Schrodinger equation must be accompanied by initial
conditions to fully determine ¥(g;, t).
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Using the results of Problem 11 of this chapter to illustrate, the sudden ionization of N, in its v=0 vibrational state to generate
N,' produces a vibrational wavefunction

—04332

1
U= =e 2 =—3.53333—
iy

/A

that was created by the fast ionization of V3. Subsequent to ionization, this N, function is not an eigenfunction of the new

vibrational Schrédinger equation appropriate to N,". As a result, this function will time evolve under the influence of the N,
Hamiltonian. The time evolved wavefunction, according to this first rule, can be expressed in terms of the vibrational functions
{¥,} and energies { E,} of the N," ion as

—iE,t

()= CTe h

The amplitudes C,,, which reflect the manner in which the wavefunction is prepared (at t=0), are determined by determining
the component of each ¥, in the function ¥ at t=0. To do this, one uses

/ VUt = 0)dr = Cy,

*

which is easily obtained by multiplying the above summation by ¥,

functions.

integrating, and using the orthonormality of the {¥,}

For the case at hand, this results shows that by forming integrals involving products of the Ny v=0 function ¥(¢ = 0)

o0
_ / 3.47522¢ 220 1I3(m )’ 5g333,-244.83(r )y,
o0

As demonstrated in Problem 11, this integral reduces to 0.959. This means that the Ny v=0 state, subsequent to sudden
ionization, can be represented as containing |0.959|2 = 0.92 fraction of the v=0 state of the N; ion.

Example 1.9.1 relates to the well known Franck-Condon principal of spectroscopy in which squares of 'overlaps' between the
initial electronic state's vibrational wavefunction and the final electronic state's vibrational wavefunctions allow one to estimate the
probabilities of populating various final-state vibrational levels.

In addition to initial conditions, solutions to the Schrédinger equation must obey certain other constraints in form. They must be
continuous functions of all of their spatial coordinates and must be single valued; these properties allow ¥* ¥ to be interpreted as a
probability density (i.e., the probability of finding a particle at some position can not be multivalued nor can it be 'jerky' or
discontinuous). The derivative of the wavefunction must also be continuous except at points where the potential function undergoes
an infinite jump (e.g., at the wall of an infinitely high and steep potential barrier). This condition relates to the fact that the
momentum must be continuous except at infinitely 'steep' potential barriers where the momentum undergoes a 'sudden' reversal.

2: Measurements are Eigenvalues

An experimental measurement of any quantity (whose corresponding operator is F) must result in one of the eigenvalues f; of the
operator F. These eigenvalues are obtained by solving

Fo;= f;0;,

where the f; are the eigenfunctions of F. Once the measurement of F is made, for that subpopulation of the experimental sample
found to have the particular eigenvalue f;, the wavefunction becomes ¢;.

The equation Hyy, = Eyty, is but a special case; it is an especially important case because much of the machinery of modern
experimental chemistry is directed at placing the system in a particular energy quantum state by detecting its energy (e.g., by
spectroscopic means). The reader is strongly urged to also study Appendix C to gain a more detailed and illustrated treatment of
this and subsequent rules of quantum mechanics.
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3: Operators that correspond to Measurables are Hermitian

The operators F corresponding to all physically measurable quantities are Hermitian; this means that their matrix representations
obey (see Appendix C for a description of the 'bra' | \rangle and 'ket' \langle | notation used below):

G 1F Ixw) = el Fxg)x = (Fxglxe)

in any basis {x;} of functions appropriate for the action of F (i.e., functions of the variables on which F operates). As expressed
through equality of the first and third elements above, Hermitian operators are often said to 'obey the turn-over rule'. This means
that F can be allowed to operate on the function to its right or on the function to its left if F is Hermitian.

Hermiticity assures that the eigenvalues { f;} are all real, that eigenfunctions {x;} having different eigenvalues are orthogonal and
can be normalized (x;|xx) =0,k and that eigenfunctions having the same eigenvalues can be made orthonormal (these
statements are proven in Appendix C).

4: Stationary states do not have varying Measurables

Once a particular value f; is observed in a measurement of F, this same value will be observed in all subsequent measurements of F
as long as the system remains undisturbed by measurements of other properties or by interactions with external fields. In fact, once
fi has been observed, the state of the system becomes an eigenstate of F (if it already was, it remains unchanged):

FU = f,0.

This means that the measurement process itself may interfere with the state of the system and even determines what that state will
be once the measurement has been made.

v/ Example 1.9.2:

Again consider the v=0 IV, ionization treated in Problem 11 of this chapter. If, subsequent to ionization, the N, ions produced
were probed to determine their internal vibrational state, a fraction of the sample equal to

|(\I!(N2;1/:0)|\IJ(N2+;1/:0)>|2 =0.92 would be detected in the v=0 state of the N, ion. For this sub-sample, the
vibrational wavefunction becomes, and remains from then on,
—itE}
U(t) = \II(N;’; v=0e h
where E;;O is the energy of the N; ion in its ¥ = 0 state. If, at some later time, this subsample is again probed, all species
will be found to be in therv = 0 state.

5: Probability of observed a specific Eigenvalue

The probability P, of observing a particular value f when F is measured, given that the system wavefunction is ¥ prior to the
measurement, is given by expanding ¥ in terms of the complete set of normalized eigenstates of F

‘I’=Z|¢j><¢j|‘1’>

and then computing P, = |<g25k|\Il>|2 For the special case in which ¥ is already one of the eigenstates of F (i.e., ¥ = ¢},), the
probability of observing f; reduces to P; = §; 1. The set of numbers C; = (¢;|¥) are called the expansion coefficients of ¥ in the
basis of the {f;}. These coefficients, when collected together in all possible products as D;; = CZ.* C; form the so-called density
matrix D; ; of the wavefunction ¥ within the {+;} basis.

v/ Example 1.9.3:

If F is the operator for momentum in the x-direction and ¥(z, t) is the wave function for x as a function of time t, then the
above expansion corresponds to a Fourier transform of ¥

1 . o’
U(z,t) = o /e“”” /e”kz V(' t)dz'dk.
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Here , /%eik’” is the normalized eigenfunction of F = —iha% corresponding to momentum eigenvalue hk. These momentum
eigenfunctions are orthonormal:

i etk ik qp. d(z—x')
27

because F is a Hermitian operator. The function [ e % U(z', t)dz' is called the momentum-space transform of ¥(z, t) and is
denoted ¥ (k, t); it gives, when used as ¥ « (k, t)¥(k, t) , the probability density for observing momentum values %k at time t.

v/ Example 1.9.4:

Take the initial ¢ to be a superposition state of the form
¥ =a(2po +2p—1 — 2p1) +b(3po — 3p-1),
where the a and b are amplitudes that describe the admixture of 2, and 3,, functions in this wavefunction. Then:

a. If L? were measured, the value 242 would be observed with probability 3|a|* + 2|b|*> = 1, since all of the functions in 1 are
p-type orbitals. After said measurement, the wavefunction would still be this same % because this entire ¢ is an eigenfunction
of L.

b. If L, were measured for this
¥ =a(2po+2p-1—2p1) +b(3po — 3p-1),
the values 0k, 1, and — 1A would be observed (because these are the only functions with non-zero C,, coefficients for the L,
operator) with respective probabilities |a|® 4 |b|?, | — a|?, and|a|* +| — b|?.
c. After L, were measured, if the sub-population for which —1% had been detected were subjected to measurement of L? the

value 2/2 would certainly be found because the new wavefunction

1

y/ lal® + [b]*

d. Again after L, were measured, if the sub-population for which —1% had been observed and for which the wavefunction is
now

¢ =[—a2p_; —b3p_]

is still an eigenfunction of L with this eigenvalue.

1
¥ =[—a2p 1 —b3pp 1] ———
\/ laf® +[b

were subjected to measurement of the energy (through the Hamiltonian operator), two values would be found. With probability

‘ ‘2‘1Hb|2 the energy of the 2p_; orbital would be observed; with probability | —b|* | |2~1Hb\2 :

orbital would be observed.

| —a|2 the energy of the 3p_;

If ¥ is a function of several variables (e.g., when ¥ describes more than one particle in a composite system), and if F is a

property that depends on a subset of these variables (e.g., when F is a property of one of the particles in the composite system),

then the expansion ¥ = [$;) (¢;|¥) is viewed as relating only to ¥'s dependence on the subset of variables related to F. In
J

this case, the integrals (¢r|¥) are carried out over only these variables; thus the probabilities Py = \<¢>k|\11>|2 depend
parametrically on the remaining variables.

Suppose that ¥(r, §) describes the radial (r) and angular () motion of a diatomic molecule constrained to move on a planar
surface. If an experiment were performed to measure the component of the rotational angular momentum of the diatomic molecule

perpendicular to the surface (Lz = fih%) , only values equal to mh(m=0,1,-1,2,-2,3,- 3,...) could be observed, because these are

the eigenvalues of L, :
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., 0
L.¢m = —m%(ﬁm = mha,,, where

/ 1 im@
¢m— %e .

The quantization of L, arises because the eigenfunctions ¢,,m(6) must be periodic in 6:
P(0+2m) = ¢(6).

Such quantization (i.e., constraints on the values that physical properties can realize) will be seen to occur whenever the pertinent
wavefunction is constrained to obey a so-called boundary condition (in this case, the boundary condition is ¢(6+27) = ¢(6).

Expanding the 8-dependence of ¥ in terms of the ¢y,
U= (dm|¥)¢m(6)
m
allows one to write the probability that m# is observed if the angular momentum L, is measured as follows:

Po = (W) =| / b (0)¥(r, 0)d0).

If one is interested in the probability that mh be observed when L, is measured regardless of what bond length r is involved, then it
is appropriate to integrate this expression over the r-variable about which one does not care. This, in effect, sums contributions
from all rvalues to obtain a result that is independent of the r variable. As a result, the probability reduces to:

P, = / & (@) [\1/*(1», 0)u(r, 9)] $(6)de' ds,

which is simply the above result integrated over r with a volume element r dr for the twodimensional motion treated here. If, on the
other hand, one were able to measure L, values when r is equal to some specified bond length (this is only a hypothetical example;
there is no known way to perform such a measurement), then the probability would equal:

P, rdr = rdr /d):n (@)T" (r, 0)T(r, 0) by (0)dO' dO = | (G |T) > rdr.

6. Commuting Operators
Two or more properties F, G, J whose corresponding Hermitian operators F, G, J commute
FG-GF=FJ-JF=GJ-JG=0

have complete sets of simultaneous eigenfunctions (the proof of this is treated in Appendix C). This means that the set of functions
that are eigenfunctions of one of the operators can be formed into a set of functions that are also eigenfunctions of the others:

Fo;=fip; = Go; =g;0; — Jb; = j;j9;-
v/ Example 1.9.5:

The p;,pyandp, orbitals are eigenfunctions of the L? angular momentum operator with eigenvalues equal to
L(L+1)k? =2h% . Since L’andL, commute and act on the same (angle) coordinates, they possess a complete set of
simultaneous eigenfunctions.

Although the p,,pyandp, orbitals are not eigenfunctions of L., they can be combined to form three new orbitals:
Do =Pz, P1 = ﬁ[pm +ipy|,andp_; = %[pm —ip,| that are still eigenfunctions of L? but are now eigenfunctions of L,
also (with eigenvalues Ok, 1k, and — 1k, respectively).

It should be mentioned that if two operators do not commute, they may still have some eigenfunctions in common, but they
will not have a complete set of simultaneous eigenfunctions. For example, the L,andL, components of the angular

momentum operator do not commute; however, a wavefunction with L=0 (i.e.,, an S-state) is an eigenfunction of both
operators.
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The fact that two operators commute is of great importance. It means that once a measurement of one of the properties is
carried out, subsequent measurement of that property or of any of the other properties corresponding to mutually commuting

operators can be made without altering the system's value of the properties measured earlier. Only subsequent measurement of
another property whose operator does not commute with F, G, or J will destroy precise knowledge of the values of the
properties measured earlier.

v/ Example 1.9.6:

Assume that an experiment has been carried out on an atom to measure its total angular momentum L?. According to quantum
mechanics, only values equal to L(L+1)h? will be observed. Further assume, for the particular experimental sample
subjected to observation, that values of L? equal to 2h%and0k? were detected in relative amounts of 64 % and 36 % ,
respectively. This means that the atom's original wavefunction 1 could be represented as:

¥ =0.8P+0.65,

where P and S represent the P-state and S-state components of . The squares of the amplitudes 0.8 and 0.6 give the 64 % and
36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular momentum along the lab-fixed z-axis is to be
measured for that sub-population of the original sample found to be in the P-state. For that population, the wavefunction is now
a pure P-function:

¥ =P
However, at this stage we have no information about how much of this ' is of m = 1, 0, or -1, nor do we know how much 2p,
3p, 4p, ... np components this state contains.

Because the property corresponding to the operator L, is about to be measured, we express the above 7’ in terms of the
eigenfunctions of L, :

' =P.
However, at this stage we have no information about how much of this y' is of m = 1, 0, or -1, nor do we know how much 2p,
3p, 4p, ... np components this state contains.

Because the property corresponding to the operator L, is about to be measured, we express the above ' in terms of the
eigenfunctions of L, :

Y =P= Z ClLP,.
m=1,0,—1

When the measurement of L, is made, the values 1h,0h,and —1h will be observed with probabilities given by
|Cy?,|C4|?, and|C", |?, respectively. For that sub-population found to have, for example, L, equal to —1, the wavefunction
then becomes

W =P,.

At this stage, we do not know how much of 2p_;,3p_1,4p_1,...np_1 this wavefunction contains. To probe this question
another subsequent measurement of the energy (corresponding to the H operator) could be made. Doing so would allow the
amplitudes in the expansion of the above /' = P_;

W'=P,=) CinP,
n

to be found.

The kind of experiment outlined above allows one to find the content of each particular component of an initial sample's
wavefunction. For example, the original wavefunction has 0.64|C’,’[|2 |Cha |2 fractional content of the various n.P,, functions. It

is analogous to the other examples considered above because all of the operators whose properties are measured commute.
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Let us consider an experiment in which we begin with a sample (with wavefunction ) that is first subjected to measurement
of L, and then subjected to measurement of L? and then of the energy. In this order, one would first find specific values
(integer multiples of k) of L, and one would express \psi as

Y= Z-Dm"/)m-

At this stage, the nature of each \(\m is unknown (e.g., the y1 function can contain np1, n'd1, n"f1, etc. components); all that is
known is that ym has m h as its Lz value

Taking that sub-population (\Dm|2 fraction) with a particular m# value for L, and subjecting it to subsequent measurement
of L? requires the current wavefunction 1, to be expressed as

¢m = Z DL,mq;[)L,m-
L

When L? is measured the value L(L+1)%2 will be observed with probability | Dy, L|2, and the wavefunction for that particular
sub-population will become

1;[)// = 1;Z)L,m .

At this stage, we know the value of L and of m, but we do not know the energy of the state. For example, we may know that
the present sub-population has L=1, m=-1, but we have no knowledge (yet) of how much 2p-1, 3p-1, ... np-1 the system
contains.

To further probe the sample, the above sub-population with L=1 and m=-1 can be subjected to measurement of the energy. In
this case, the function 1);, _; must be expressed as

Y11= Z nnP_y.

n

When the energy measurement is made, the state nP_; will be found | D}! |2 fraction of the time.

The fact that L,, L2, and H all commute with one another (i.e., are mutually commutative) makes the series of measurements
described in the above examples more straightforward than if these operators did not commute.

In the first experiment, the fact that they are mutually commutative allowed us to expand the 64 % probable L’ eigenstate with
L=1 in terms of functions that were eigenfunctions of the operator for which measurement was about to be made without
destroying our knowledge of the value of L2. That is, because L? and L, can have simultaneous eigenfunctions, the L = 1 function

can be expanded in terms of functions that are eigenfunctions of both L? and L,. This in turn, allowed us to find experimentally
the sub-population that had, for example -1% as its value of L, while retaining knowledge that the state remains an eigenstate of L?
(the state at this time had L = 1 and m = -1 and was denoted P_;). Then, when this P_; state was subjected to energy
measurement, knowledge of the energy of the sub-population could be gained without giving up knowledge of the L? and L,
information; upon carrying out said measurement, the state became nP_; .

We therefore conclude that the act of carrying out an experimental measurement disturbs the system in that it causes the system's
wavefunction to become an eigenfunction of the operator whose property is measured. If two properties whose corresponding
operators commute are measured, the measurement of the second property does not destroy knowledge of the first property's value
gained in the first measurement.

On the other hand, as detailed further in Appendix C, if the two properties (F and G) do not commute, the second measurement
destroys knowledge of the first property's value. After the first measurement, ¥ is an eigenfunction of F; after the second
measurement, it becomes an eigenfunction of G. If the two non-commuting operators' properties are measured in the opposite
order, the wavefunction first is an eigenfunction of G, and subsequently becomes an eigenfunction of F.

It is thus often said that 'measurements for operators that do not commute interfere with one another'. The simultaneous
measurement of the position and momentum along the same axis provides an example of two measurements that are incompatible.

The fact that x = x and p, = fiha—'i do not commute is straightforward to demonstrate:
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Operators that commute with the Hamiltonian and with one another form a particularly important class because each such operator
permits each of the energy eigenstates of the system to be labelled with a corresponding quantum number. These operators are
called symmetry operators. As will be seen later, they include angular momenta (e.g., L?, L., S2, S,, for atoms) and point group
symmetries (e.g., planes and rotations about axes). Every operator that qualifies as a symmetry operator provides a quantum
number with which the energy levels of the system can be labeled.

7: Expectation Values

If a property F is measured for a large number of systems all described by the same ¥, the average value of \langle F\rangle for
such a set of measurements can be computed as

(F) = (Y|F|¥).
Expanding ¥ in terms of the complete set of eigenstates of F allows \langle F\rangle to be rewritten as follows:

<F>:ij|<¢j|‘1’>l2,

which clearly expresses \langle F\rangle as the product of the probability P; of obtaining the particular value f; when the property
F is measured and the value f;.of the property in such a measurement. This same result can be expressed in terms of the density
matrix D; ; of the state ¥ defined above as:

(F) = (¥|6)(¢i[F|¢;)(51%) = D C] (4i|F|9;)C;
i,j ¥
> Di;(i|F|¢;) = Tr(DF).
i,
Here, DF represents the matrix product of the density matrix D, ; and the matrix representation F; ; = (¢;|F|¢;) of the F operator,
both taken in the {¢;} basis, and Tr represents the matrix trace operation.

As mentioned at the beginning of this Section, this set of rules and their relationships to experimental measurements can be quite
perplexing. The structure of quantum mechanics embodied in the above rules was developed in light of new scientific observations
(e.g., the photoelectric effect, diffraction of electrons) that could not be interpreted within the conventional pictures of classical
mechanics. Throughout its development, these and other experimental observations placed severe constraints on the structure of the
equations of the new quantum mechanics as well as on their interpretations. For example, the observation of discrete lines in the
emission spectra of atoms gave rise to the idea that the atom's electrons could exist with only certain discrete energies and that light
of specific frequencies would be given off as transitions among these quantized energy states took place.

Even with the assurance that quantum mechanics has firm underpinnings in experimental observations, students learning this
subject for the first time often encounter difficulty. Therefore, it is useful to again examine some of the model problems for which
the Schrédinger equation can be exactly solved and to learn how the above rules apply to such concrete examples.

The examples examined earlier in this Chapter and those given in the Exercises and Problems serve as useful models for
chemically important phenomena: electronic motion in polyenes, in solids, and in atoms as well as vibrational and rotational
motions. Their study thus far has served two purposes; it allowed the reader to gain some familiarity with applications of quantum
mechanics and it introduced models that play central roles in much of chemistry. Their study now is designed to illustrate how the
above seven rules of quantum mechanics relate to experimental reality.

An Example lllustrating Several of the Fundamental Rules

The physical significance of the time independent wavefunctions and energies treated in Section II as well as the meaning of the
seven fundamental points given above can be further illustrated by again considering the simple two-dimensional electronic motion
model.

If the electron were prepared in the eigenstate corresponding to n, = 1,n, = 2, its total energy would be
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If the energy were experimentally measured, this and only this value would be observed, and this same result would hold for all
time as long as the electron is undisturbed.

If an experiment were carried out to measure the momentum of the electron along the y-axis, according to the second postulate

0
above, only values equal to the eigenvalues of —A—— could be observed. The p, eigenfunctions (i.e., functions that obey p

oy
i eikyy,
L,

where the momentum Ak, can achieve any value; the /LL factor is used to normalize the eigenfunctions over the range
Y

JF = —hB%F =cF') are of the form

i2my —i2my

0 <y < L,. Itis useful to note that the y-dependence of 1) as expressed above [eL_y — eL_y] is already written in terms of two

such eigenstates of fihai :
y

12Ty 12Ty
0 2h
h—|e Ly — ey , and
Oy y
—i2my —i2my
7hﬁ . L, _ —2h L,
Oy L,

Thus, the expansion of ¢ in terms of eigenstates of the property being measured dictated by the fifth postulate above is already
accomplished. The only two terms in this expansion correspond to momenta along the y-axis of i—h and — ih ; the probabilities of
Yy y

observing these two momenta are given by the squares of the expansion coefficients of % in terms of the normalized eigenfunctions

i2my 2my
of —ih%. The functions LL (e Ly ) and , /LL (e Ly ) are such normalized eigenfunctions; the expansion coefficients of
Yy Yy
1

respectively. Thus the momentum 2k will be observed with probability

. . 1
these functions in are — and —
’(p \/5 Ly

V2’
2 2
(%) = % and — i—h will be observed with probability (ﬁ) = % If the momentum along the x-axis were experimentally
Y -

measured, again only two values 1h and — 1t

. s 1
I 7, would be found, each with a probability of 3.

The average value of the momentum along the x-axis can be computed either as the sum of the probabilities multiplied by the

momentum Values:
1[1h 1A
(p2) = 2 [Lx B LJ =0,

or as the so-called expectation value integral shown in the seventh postulate:

we) = [ (—hg—f) dxdy.

Inserting the full expression for 1)(x,y) and integrating over x and y from 0 to L, and L,, respectively, this integral is seen to
vanish. This means that the result of a large number of measurements of p, on electrons each described by the same v will yield
zero net momentum along the x-axis.; half of the measurements will yield positive momenta and half will yield negative momenta
of the same magnitude.

The time evolution of the full wavefunction given above for the n, =1, n,=2 state is easy to express because this 1 is an energy
eigenstate:
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—iEt
Y(z,y,t) =v(z,y)e R

If, on the other hand, the electron had been prepared in a state t(z, y) that is not a pure eigenstate (i.e., cannot be expressed as a
single energy eigenfunction), then the time evolution is more complicated. For example, if at t=0 1) were of the form

" 2 2 . 2w . 1my b si 1z . 2y
=, /—,/— |asin sin | —= sin sin | —=
L.\l L, L, L, L, L, ’
with a and b both real numbers whose squares give the probabilities of finding the system in the respective states, then the time

—iHt
evolution operatore B applied to 1/ would yield the following time dependent function:

2,1t —iE ot

—iE
2 2 ’ 2 2 1 —_— 1 2
= I L_y ae h sin( [7:8) szn( gj) sin( IZE) +be R sin( gj)sm (Liyy) ,

where
R2 722 12
PR A
2m L7 LZ
K212 22
_ 20 z
E]_’Q ™ 2m|:L% —&—Lg],and

—Z'Ezylt
The probability of finding Ey; if an experiment were carried out to measure energy would be ale Fk  |*=]a|?; the
probability for finding E; » would be |b\2. The spatial probability distribution for finding the electron at points x,y will, in this case,
be given by:

2 2 2 2
|17 = [al"|3ha]" +[b]"[th1,2

AFEt
?+2ab g 131 2c08 ( 5 ) )
o1 = 2 2 sin 2mx sin 17y
NI, L, L, )’
2 2 . ( lww) ) ( 27ry)
o= —, | sin sin| —2 ),
2N T T, L, L,

This spatial distribution is not stationary but evolves in time. So in this case, one has a wavefunction that is not a pure eigenstate of
the Hamiltonian (one says that ¥ is a superposition state or a non-stationary state) whose average energy remains constant
(E = Ez1lal” + E1 5|b|*) but whose spatial distribution changes with time.

where AE is Ey 1 — En 9,

and

Although it might seem that most spectroscopic measurements would be designed to prepare the system in an eigenstate (e.g., by
focusing on the sample light whose frequency matches that of a particular transition), such need not be the case. For example, if
very short laser pulses are employed, the Heisenberg uncertainty broadening (AEAt > k) causes the light impinging on the
sample to be very non-monochromatic (e.g., a pulse time of 121072 sec corresponds to a frequency spread of approximately
5¢m™1). This, in turn, removes any possibility of preparing the system in a particular quantum state with a resolution of better than
30cm ™! because the system experiences time oscillating electromagnetic fields whose frequencies range over at least 5¢m™!).

Essentially all of the model problems that have been introduced in this Chapter to illustrate the application of quantum mechanics
constitute widely used, highly successful 'starting-point' models for important chemical phenomena. As such, it is important that
students retain working knowledge of the energy levels, wavefunctions, and symmetries that pertain to these models.
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Thus far, exactly soluble model problems that represent one or more aspects of an atom or molecule's quantum-state structure have
been introduced and solved. For example, electronic motion in polyenes was modeled by a particle-in-a-box. The harmonic
oscillator and rigid rotor were introduced to model vibrational and rotational motion of a diatomic molecule

As chemists, we are used to thinking of electronic, vibrational, rotational, and translational energy levels as being (at least
approximately) separable. On the other hand, we are aware that situations exist in which energy can flow from one such degree of
freedom to another (e.g., electronic-to-vibrational energy flow occurs in radiationless relaxation and vibration-rotation couplings
are important in molecular spectroscopy). It is important to understand how the simplifications that allow us to focus on electronic
or vibrational or rotational motion arise, how they can be obtained from a first-principles derivation, and what their limitations and
range of accuracy are.

This page titled 1.9: The Physical Relevance of Wavefunctions, Operators and Eigenvalues is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

2: Approximation Methods

Approximation methods can be used when exact solutions to the Schrodinger equation cannot be found. In applying quantum
mechanics to 'real' chemical problems, one is usually faced with a Schrodinger differential equation for which, to date, no one has
found an analytical solution. This is equally true for electronic and nuclear-motion problems. It has therefore proven essential to
develop and efficiently implement mathematical methods which can provide approximate solutions to such eigenvalue equations.
Two methods are widely used in this context- the variational method and perturbation theory. These tools, whose use permeates
virtually all areas of theoretical chemistry, are briefly outlined here, and the details of perturbation theory are amplified in
Appendix D

2.1: The Variational Method
2.2: Perturbation Theory
2.E: Approximation Methods (Exercises)

This page titled 2: Approximation Methods is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: The Variational Method

For the kind of potentials that arise in atomic and molecular structure, the Hamiltonian H is a Hermitian operator that is bounded
from below (i.e., it has a lowest eigenvalue). Because it is Hermitian, it possesses a complete set of orthonormal eigenfunctions
{|%;)}. Any function @ that depends on the same spatial and spin variables on which H operates and obeys the same boundary
conditions that the { ¥ j } obey can be expanded in this complete set

®=> Cjlv;).
J

The expectation value of the Hamiltonian for any such function can be expressed in terms of its C; coefficients and the exact
energy levels E; of H as follows:

J

(®|H|®) = Y CiCs(Wi| Hy) = ¥ I, E;.
2

If the function @ is normalized, the sum ) |C; \2 is equal to unity. Because H is bounded from below, all of the E; must be greater
J
than or equal to the lowest energy Ej. Combining the latter two observations allows the energy expectation value of @ to be used

to produce a very important inequality:
(@|H|®) > By.
The equality can hold only if @ is equal to vy ; if ® contains components along any of the other 1);, the energy of ® will exceed
Ey.
This upper-bound property forms the basis of the so-called variational method in which 'trial wavefunctions' ®@ are constructed:

1. To guarantee that ® obeys all of the boundary conditions that the exact ¥; do and that & is of the proper spin and space
symmetry and is a function of the same spatial and spin coordinates as the ¥;
2. With parameters embedded in ® whose 'optimal' values are to be determined by making (®|H|®) a minimum.

It is perfectly acceptable to vary any parameters in @ to attain the lowest possible value for (®|H|®) because the proof outlined
above constrains this expectation value to be above the true lowest eigenstate's energy Ej for any ®. The philosophy then is that
the @ that gives the lowest (®|H|®) is the best because its expectation value is closes to the exact energy.

Linear Variational Calculations

Quite often a trial wavefunction is expanded as a linear combination of other functions (not the eigenvalues of the Hamiltonian,
since they are not known)

N
2= "Cyl®,). (2.1.1)
J

In these cases, one says that a 'linear variational' calculation is being performed. The set of functions {®;} are usually constructed
to obey all of the boundary conditions that the exact state ¥ obeys, to be functions of the the same coordinates as ¥, and to be of
the same spatial and spin symmetry as ¥. Beyond these conditions, the {® ;} are nothing more than members of a set of functions
that are convenient to deal with (e.g., convenient to evaluate Hamiltonian matrix elements (®;|H|® ) that can, in principle, be
made complete if more and more such functions are included in the expansion in Equation 2.1.1 (i.e., increase V).

For such a trial wavefunction, the energy depends quadratically on the 'linear variational' C'; coefficients:

NN
(BIH|®) = C1C;(®1|H|®,).
7

Minimization of this energy with the constraint that ® remain normalized, i.e.,

(®|®) = ZCICJ<‘I’I|‘I’J> =1
7

gives rise to a so-called secular or eigenvalue-eigenvector problem:
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> (@1 H|®;) — E(®]®,)]Cy =Y [Hiy — ES1]Cr =0.
J J
If the functions {|® )} are orthonormal, then the overlap matrix S reduces to the unit matrix and the above generalized eigenvalue
problem reduces to the more familiar form:

N
ZHUC’J:ECI.
J

The secular problem, in either form, has as many eigenvalues E; and eigenvectors {C;s} as the dimension of the H;; matrix as ®.
It can also be shown that between successive pairs of the eigenvalues obtained by solving the secular problem at least one exact
eigenvalue must occur (i.e.,F;11 > Feyaet > E; , for all i). This observation is referred to as 'the bracketing theorem'.

Variational methods, in particular the linear variational method, are the most widely used approximation techniques in quantum
chemistry. To implement such a method one needs to know the Hamiltonian H whose energy levels are sought and one needs to
construct a trial wavefunction in which some 'flexibility' exists (e.g., as in the linear variational method where the C; coefficients
can be varied). In Section 6 this tool will be used to develop several of the most commonly used and powerful molecular orbital
methods in chemistry.

This page titled 2.1: The Variational Method is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Perturbation Theory

Perturbation theory is the second most widely used approximation method in quantum chemistry. It allows one to estimate the
splittings and shifts in energy levels and changes in wavefunctions that occur when an external field (e.g., an electric or magnetic
field or a field that is due to a surrounding set of 'ligands'- a crystal field) or a field arising when a previously-ignored term in the
Hamiltonian is applied to a species whose 'unperturbed' states are known. These "perturbations' in energies and wavefunctions are
expressed in terms of the (complete) set of unperturbed eigenstates.

Assuming that all of the wavefunctions ¢y, and energies E,S belonging to the unperturbed Hamiltonian H° are known
H'®), = E) &,

and given that one wishes to find eigenstates (v, and E},) of the perturbed Hamiltonian
H=H"+)\V,

perturbation theory expresses 1, and Ej as power series in the perturbation strength A:

Yo = A"y
n=0

E, = i A*E™.
n=0

(n)

.~ and the 1/’5:) is presented in Appendix D. Here, we

The systematic development of the equations needed to determine the E
simply quote the few lowest-order results.

The zeroth-order wavefunctions and energies are given in terms of the solutions of the unperturbed problem as follows:

1/’20) =&

and
(0) _ 70
Ek = Ek.

This simply means that one must be willing to identify one of the unperturbed states as the 'best' approximation to the state being
sought. This, of course, implies that one must therefore strive to find an unperturbed model problem, characterized by H? that
represents the true system as accurately as possible, so that one of the ®; will be as close as possible to 1.

The first-order energy correction is given in terms of the zeroth-order (i.e., unperturbed) wavefunction as:
1
Elg ) =< Qk‘V|<I>k >,

which is identified as the average value of the perturbation taken with respect to the unperturbed function ®;. The so-called first-
order wavefunction 1/)21) expressed in terms of the complete set of unperturbed functions {®} is:

(W|V] @)
P =" ®;).
S TmE

and the second-order correction to the wavefunction is expressed as

v =3 . > [<<I>J-IV|¢’1> - 5f7iE'9)]

£k [EI?_E](')] Ik

(@i V|®%) ®5)-

0 0
Ek El

An essential point about perturbation theory is that the energy corrections E,g") and wavefunction corrections 1,b§€") are expressed in

terms of integrals over the unperturbed wavefunctions ®;, involving the perturbation (i.e.,(®;|V|®;) ) and the unperturbed energies
E]Q. Perturbation theory is most useful when one has, in hand, the solutions to an unperturbed Schrédinger equation that is
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reasonably 'close' to the full Schrédinger equation whose solutions are being sought. In such a case, it is likely that low-order
corrections will be adequate to describe the energies and wavefunctions of the full problem.

It is important to stress that although the solutions to the full 'perturbed' Schrodinger equation are expressed, as above, in terms of
sums over all states of the unperturbed Schrodinger equation, it is improper to speak of the perturbation as creating excited-state
species. For example, the polarization of the 1s orbital of the Hydrogen atom caused by the application of a static external electric
field of strength E along the z-axis is described, in first-order perturbation theory, through the sum

(énp, | E €1 cosh|1s)
Z ¢np0 Els - Enpo

n=2,00

over all p, = py orbitals labeled by principal quantum number n. The coefficient multiplying each p, orbital depends on the energy
gap corresponding to the 1s-to-np 'excitation' as well as the electric dipole integral (¢, | E e r cosf|1s) between the 1s orbital and
the npy orbital.

This sum describes the polarization of the 1s orbital in terms of functions that have py symmetry; by combining an s orbital and p,
orbitals, one can form a 'hybrid-like' orbital that is nothing but a distorted 1s orbital. The appearance of the excited npy orbitals has
nothing to do with forming excited states; these np, orbitals simply provide a set of functions that can describe the response of the
1s orbital to the applied electric field.

The relative strengths and weaknesses of perturbation theory and the variational method, as applied to studies of the electronic
structure of atoms and molecules, are discussed in Section 6.
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2.E: Approximation Methods (Exercises)

Your page has been created!
Remove this content and add your own.

| Edit page
Click the Edit page button in your user bar. You will see a suggested structure for your content. Add your content and hit
Save.

Tips:

[l Drag and drop
Drag one or more image files from your computer and drop them onto your browser window to add them to your page.

[l Classifications
Tags are used to link pages to one another along common themes. Tags are also used as markers for the dynamic organization

of content in the CXone Expert framework.

[ Working with templates
CXone Expert templates help guide and organize your documentation, making it flow easier and more uniformly. Edit
existing templates or create your own.

[ Visit for all help topics.
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3.1: The Born-Oppenheimer Separation of Electronic and Nuclear Motions

Many elements of chemists' pictures of molecular structure hinge on the point of view that separates the electronic motions from
the vibrational/rotational motions and treats couplings between these (approximately) separated motions as 'perturbations'. It is
essential to understand the origins and limitations of this separated-motions picture.

To develop a framework in terms of which to understand when such separability is valid, one thinks of an atom or molecule as
consisting of a collection of N electrons and M nuclei each of which possesses kinetic energy and among which coulombic
potential energies of interaction arise. To properly describe the motions of all these particles, one needs to consider the full
Schrodinger equation H¥ = EW¥, in which the Hamiltonian H contains the sum (denoted H, ) of the kinetic energies of all N
electrons and the coulomb potential energies among the N electrons and the M nuclei as well as the kinetic energy T of the M
nuclei

_h? )
T= Z (2ma) Va,

a=1,M
H=H,+T
—hK? Z,e? e? e?
H, = V2 - Y — 4 ZZp—.

Here, m, is the mass of the nucleus a, Z,e? is its charge, and V2 is the Laplacian with respect to the three cartesian coordinates of
this nucleus (this operator V2 is given in spherical polar coordinates in Appendix A); T; 4 is the distance between the 4% electron
and the a** nucleus, 7; 1 is the distance between the jth and k™ electrons, m, is the electron's mass, and R, is the distance from
nucleus a to nucleus b.

The full Hamiltonian H thus contains differential operators over the 3N electronic coordinates (denoted r as a shorthand) and the
3M nuclear coordinates (denoted R as a shorthand). In contrast, the electronic Hamiltonian H, is a Hermitian differential operator
in r-space but not in R-space. Although H. is indeed a function of the R-variables, it is not a differential operator involving them.

Because He is a Hermitian operator in r-space, its eigenfunctions ¥; (r| R) obey H.¥;(r|R) = E;(R)¥;(r|R)

for any values of the R-variables, and form a complete set of functions of r for any values of R. These eigenfunctions and their
eigenvalues E;(R) depend on R only because the potentials appearing in H, depend on R. The ¥; and E; are the electronic
wavefunctions and electronic energies whose evaluations are treated in the next three Chapters.

The fact that the set of {¥;} is, in principle, complete in r-space allows the full (electronic and nuclear) wavefunction ¥ to have its
r-dependence expanded in terms of the ¥, :

¥(r,R) = Z ¥, (7| R)Zi(R).

The =;(R) functions, carry the remaining R-dependence of ¥ and are determined by insisting that ¥ as expressed here obey the
full Schrédinger equation:

(H.+T-E) Z ¥, (r|R)Z;(R) = 0.

Projecting this equation against (¥;(r|R)| (integrating only over the electronic coordinates because the ¥; are orthonormal only
when so integrated) gives:

32
(B ()~ B)E,(R) + TE,(R)] =~ | (BTIW) (RE(R) + Y 0|V ) () VZ:(R)|

i a=1,M "%

where the (R) notation in (¥;|T'|¥;)(R) and (¥;|V,|¥;)(R) has been used to remind one that the integrals < ...> are carried out
only over the r coordinates and, as a result, still depend on the R coordinates.

In the Born-Oppenheimer (BO) approximation, one neglects the so-called nonadiabatic or non-BO couplings on the right-hand
side of the above equation. Doing so yields the following equations for the Z;(R) functions:
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[(E;(R) — E)=}(R) + TE}(R)] =0,
where the superscript in E? (R) is used to indicate that these functions are solutions within the BO approximation only.

These BO equations can be recognized as the equations for the translational, rotational, and vibrational motion of the nuclei on
the 'potential energy surface' E;(R). That is, within the BO picture, the electronic energies E;(R), considered as functions of the
nuclear positions R, provide the potentials on which the nuclei move. The electronic and nuclear-motion aspects of the Schrédinger
equation are thereby separated.
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3.2: Time Scale Separation

The physical parameters that determine under what circumstances the BO approximation is accurate relate to the motional time
scales of the electronic and vibrational/rotational coordinates.

The range of accuracy of this separation can be understood by considering the differences in time scales that relate to electronic
motions and nuclear motions under ordinary circumstances. In most atoms and molecules, the electrons orbit the nuclei at speeds
much in excess of even the fastest nuclear motions (the vibrations). As a result, the electrons can adjust 'quickly' to the slow
motions of the nuclei. This means it should be possible to develop a model in which the electrons 'follow' smoothly as the nuclei
vibrate and rotate.

This picture is that described by the BO approximation. Of course, one should expect large corrections to such a model for
electronic states in which 'loosely held' electrons exist. For example, in molecular Rydberg states and in anions, where the outer
valence electrons are bound by a fraction of an electron volt, the natural orbit frequencies of these electrons are not much faster (if
at all) than vibrational frequencies. In such cases, significant breakdown of the BO picture is to be expected.
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3.3: Vibration/Rotation States for Each Electronic Surface

The BO picture is what gives rise to the concept of a manifold of potential energy surfaces on which vibrational/rotational motions
occur.

Even within the BO approximation, motion of the nuclei on the various electronic energy surfaces is different because the nature of
the chemical bonding differs from surface to surface. That is, the vibrational/rotational motion on the ground-state surface is
certainly not the same as on one of the excited-state surfaces. However, there are a complete set of wavefunctions Xi‘;m(R) and

energy levels E](.{m for each surface E;(R)T + E;(R) is a Hermitian operator in R-space for each surface (labelled j):

[T+ By(R)|E),.(R) = B, &

JmTjm’
The eigenvalues E]Q ., Must be labelled by the electronic surface (j) on which the motion occurs as well as to denote the particular

state (m) on that surface.
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3.4: Rotation and Vibration of Diatomic Molecules

v
For a diatomic species, the vibration-rotation (E kinetic energy operator can be expressed as follows in terms of the bond

length R and the angles 6 and ¢ that describe the orientation of the bond axis relative to a laboratory-fixed coordinate system:

1 0 (0 L\?
R?2 OR OR Rh
where the square of the rotational angular momentum of the diatomic species is

1 0 ) 1 5
2=k | — —(sinf— | + ———|.
L [sin@ 0 (3’”0 aa) T Sin?0 6¢2}

—h?
T = —
V/R 2%

)

|4
Because the potential F;(R) depends on R but not on 6 or ¢ , the 7 function Xi;?’m can be written as a product of an angular

part and an R-dependent part; moreover, because L? contains the full angle-dependence of Ty/r, X z?n can be written as
g, =Y;u(6,9)Fj 10(R).

The general subscript n, which had represented the state in the full set of 3M-3 R-space coordinates, is replaced by the three
quantum numbers J,M, and v (i.e., once one focuses on the three specific coordinates R, 6, and ¢, a total of three quantum
numbers arise in place of the symbol n).

=0 - Vv o
Substituting this product form for :2 ,, into the 7 equation gives:

BL (D) 2D

2 | or\F or) “Row ]Fj’“(RHEﬂ'(R)%(R)=E;2J,v%

as the equation for the vibrational (i.e., R-dependent) wavefunction within electronic state j and with the species rotating with
J(J+1)R? as the square of the total angular momentum and a projection along the laboratory-fixed Z-axis of MA. The fact that
the Fj j,, functions do not depend on the M quantum number derives from the fact that the Ty, r kinetic energy operator does not
explicitly contain Jz; only J? appears in Ty/r-
The solutions for which J=0 correspond to vibrational states in which the species has no rotational energy; they obey
~R%2[1 0 0
BT [ﬁ R (32 ﬁ) ] Fj0.(R) + Ej(R)Fj0,(R) = E ,Fj0,0-
The differential-operator parts of this equation can be simplified somewhat by substituting F' = % and thus obtaining the
following equation for the new function  :
~h? 8 0 0
2 R ﬁXj,O,v(R) + Ej(R)xj,0,0(R) = B} ,Xj,0,0-

Solutions for which J # 0 require the vibrational wavefunction and energy to respond to the presence of the 'centrifugal potential'

R2J(J+1) | . . .
Wl these solutions obey the full coupled V/R equations given above.

given by
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3.5: Separation of Vibration and Rotation

It is common, in developing the working equations of diatomic-molecule rotational/vibrational spectroscopy, to treat the coupling

between the two degrees of freedom using perturbation theory as developed later in this chapter. In particular, one can expand the

+1)

centrifugal coupling &> J;JT around the equilibrium geometry R, (which depends, of course, on J):
w

(CE VIS (O

2uR? 2u[R?(1+ AR)?]
1
h2M[1 —2AR+...],
2 R?

and treat the terms containing powers of the bond length displacement AR* as perturbations. The zeroth-order equations read:

JUHD po o
QuRE B 3

R ILO (O] po (R)+BRF, (R)+H?
2u |[R2OR\ ~ OR/| 3w R

and have solutions whose energies separate

J(J+1)

E° =pg?
JyJyv 2,uR§

+Ejy

and whose wavefunctions are independent of J (because the coupling is not R-dependent in zeroth order)

FJ?J,U(R) = F]’U(R)

Perturbation theory is then used to express the corrections to these zeroth order solutions as indicated in Appendix D.
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3.6: The Rigid Rotor and Harmonic Oscillator

Treatment of the rotational motion at the zeroth-order level described above introduces the so-called 'rigid rotor' energy levels and

. J(J+1 . . . . . -
wavefunctions: Ey = h2% and Y 51 (6, ¢) ; these same quantities arise when the diatomic molecule is treated as a rigid rod
it

of length R, . The spacings between successive rotational levels within this approximation are
AEJ+]7J = 2hCB(J+ 1),

where the so-called rotational constant B is given in cm ! as

_ h
8m2cuR?’

The rotational level J is (2J+1)-fold degenerate because the energy E; is independent of the M quantum number of which there are
(2J+1) values for each J: M= -J, -J+1, -J+2, ... J-2, J-1, J.

The explicit form of the zeroth-order vibrational wavefunctions and energy levels, F].OU and E]Q »» depends on the description used
for the electronic potential energy surface E;(R). In the crudest useful approximation, E;(R) is taken to be a so-called harmonic
potential

1
E;(R) ~ §kj(R—Re)2;

as a consequence, the wavefunctions and energy levels reduce to

vk 1
E,?,v = Ej(Re) +h7 (U+ 5) , and

) —a(R—R,)?

aQ ———
F? =— = 2 Hv — Ite ),
RR) = —= e Ja(R—R,)

kjp

where a = and H,(y) denotes the Hermite polynomial defined by:

2 d’U eiyz
dy?

Hy(y) = (-1)"¢’
The solution of the vibrational differential equation

__h2 ii R2i F;(R)+ E;(R)F;,(R) = E; ,F;
2p | R? OR OR e J PO TR

is treated in EWK, Atkins, and McQuarrie.

These harmonic-oscillator solutions predict evenly spaced energy levels (i.e., no anharmonicity) that persist for all v. It is, of
course, known that molecular vibrations display anharmonicity (i.e., the energy levels move closer together as one moves to higher
v) and that quantized vibrational motion ceases once the bond dissociation energy is reached.
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3.7: The Morse Oscillator

The Morse oscillator model is often used to go beyond the harmonic oscillator approximation. In this model, the potential E;(R) is
expressed in terms of the bond dissociation energy D. and a parameter a related to the second derivative k of Ej;(R) at

4’E; 2 .

Rk = T 2a°D, as follows:
2

Ej(R) — Ej(R,) = D, [1—e (" 7],

The Morse oscillator energy levels are given by

vk 1 K2 k 1\2
0 _ r. -~ =) = -
E},=Ej(R.) +h P (1}+2> 1 (uDe) <v+2)

the corresponding eigenfunctions are also known analytically in terms of hypergeometric functions (see, for example, Handbook of
Mathematical Functions , M. Abramowitz and I. A. Stegun, Dover, Inc. New York, N. Y. (1964)). Clearly, the Morse solutions

1
display anharmonicity as reflected in the negative term proportional to (v-+ 5)2
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3.8: Rotation of Polyatomic Molecules

For a non-linear polyatomic molecule, again with the centrifugal couplings to the vibrations evaluated at the equilibrium geometry,
the following terms form the rotational part of the nuclear-motion kinetic energy:

J2
Trot = Z <2_Iz) .

i=a,b,c

Here, I; is the eigenvalue of the moment of inertia tensor:

Iz,z = Z ma[(Ra - 1'2C’ofM)2 - (ma - wCofM)z]

Ly = Z Ma[(Ta —Tcofmr) Yo — Yoorm)]

expressed originally in terms of the cartesian coordinates of the nuclei (a) and of the center of mass in an arbitrary molecule-fixed
coordinate system (and similarly for I ., I, y, I, , and I, ). The operator J; corresponds to the component of the total rotational
angular momentum J along the direction belonging to the i*h eigenvector of the moment of inertia tensor.

Molecules for which all three principal moments of inertia (the I/s) are equal are called 'spherical tops'. For these species, the
rotational Hamiltonian can be expressed in terms of the square of the total rotational angular momentum J2 :

JZ
Trot = o7
‘Tl

as a consequence of which the rotational energies once again become

J(J+1)

E;=h?
7 o1

However, the Y 5s are not the corresponding eigenfunctions because the operator J 2 now contains contributions from rotations
about three (no longer two) axes (i.e., the three principal axes). The proper rotational eigenfunctions are the D{L x(o, 8,7)
functions known as 'rotation matrices' (see Sections 3.5 and 3.6 of Zare's book on angular momentum) these functions depend on
three angles (the three Euler angles needed to describe the orientation of the molecule in space) and three quantum numbers- J,M,
and K. The quantum number M labels the projection of the total angular momentum (as M%) along the laboratory-fixed z-axis; Kh
is the projection along one of the internal principal axes ( in a spherical top molecule, all three axes are equivalent, so it does not
matter which axis is chosen).

The energy levels of spherical top molecules are (2.J +1)? -fold degenerate. Both the M and K quantum numbers run from -J, in
steps of unity, to J; because the energy is independent of M and of K, the degeneracy is (2J +1)2.

Molecules for which two of the three principal moments of inertia are equal are called symmetric top molecules. Prolate symmetric
tops have I, < I, =1, ; oblate symmetric tops have I, =1, < I. ( it is convention to order the moments of inertia as
I, < I, <1.). The rotational Hamiltonian can now be written in terms of J 2 and the component of J along the unique moment of

inertia's axis as:
1 1 J?2
Tror = J2 ( ——)+—2Ib

for prolate tops, and

1 1 J?
T =J2 [ ——— ) +=—
ot = Jc (2Ic 2Ib)+2Ib

for oblate tops. Again, the DJM’ (o, B,7) are the eigenfunctions, where the quantum number K describes the component of the

rotational angular momentum J along the unique molecule-fixed axis (i.e., the axis of the unique moment of inertia). The energy
levels are now given in terms of J and K as follows:
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for prolate tops, and

J(J+1)

1 1
— h2 h2K2 -
By o, 5, 21

for oblate tops.

Because the rotational energies now depend on K (as well as on J), the degeneracies are lower than for spherical tops. In particular,
because the energies do not depend on M and depend on the square of K, the degeneracies are (2J+1) for states with K=0 and
2(2J+1) for states with |[K| > 0; the extra factor of 2 arises for |K| > 0 states because pairs of states with K = [K| and K = |-K| are
degenerate.
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3.9: Rotation of Linear Molecules

The rotational motion of a linear polyatomic molecule can be treated as an extension of the diatomic molecule case. One obtains
the Y ps(6, ¢) as rotational wavefunctions and, within the approximation in which the centrifugal potential is approximated at the

equilibrium geometry of the molecule (R, ), the energy levels are:
J(J+1)
EY=r*———.
7 21

Here the total moment of inertia I of the molecule takes the place of R2 in the diatomic molecule case

I= Zma(Ra _RCofM)2;

m, is the mass of atom a whose distance from the center of mass of the molecule is (R, — R¢, fM). The rotational level with
quantum number J is (2J+1)-fold degenerate again because there are (2J+1) M- values.
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3.E: Exercises

Your page has been created!
Remove this content and add your own.

| Edit page
Click the Edit page button in your user bar. You will see a suggested structure for your content. Add your content and hit
Save.

Tips:

[l Drag and drop
Drag one or more image files from your computer and drop them onto your browser window to add them to your page.

[l Classifications
Tags are used to link pages to one another along common themes. Tags are also used as markers for the dynamic organization
of content in the CXone Expert framework.

[ Working with templates
CXone Expert templates help guide and organize your documentation, making it flow easier and more uniformly. Edit
existing templates or create your own.

[ Visit for all help topics.
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3.10: Rotation of Non-Linear Molecules

For a non-linear polyatomic molecule, again with the centrifugal couplings to the vibrations evaluated at the equilibrium geometry,
the following terms form the rotational part of the nuclear-motion kinetic energy:

J2
Trot = Z <2_Iz) .

i=a,b,c

Here, I; is the eigenvalue of the moment of inertia tensor:

Iz,z = Z ma[(Ra - 1'2C’ofM)2 - (ma - wCofM)z]

Ly = Z Ma[(Ta —Tcofmr) Yo — Yoorm)]

expressed originally in terms of the cartesian coordinates of the nuclei (a) and of the center of mass in an arbitrary molecule-fixed
coordinate system (and similarly for I ., I, y, I, , and I, ). The operator J; corresponds to the component of the total rotational
angular momentum J along the direction belonging to the i*h eigenvector of the moment of inertia tensor.

Molecules for which all three principal moments of inertia (the I/s) are equal are called 'spherical tops'. For these species, the
rotational Hamiltonian can be expressed in terms of the square of the total rotational angular momentum J2 :

JZ
Trot = o7
‘Tl

as a consequence of which the rotational energies once again become

J(J+1)

E;=h?
7 o1

However, the Y 5s are not the corresponding eigenfunctions because the operator J 2 now contains contributions from rotations
about three (no longer two) axes (i.e., the three principal axes). The proper rotational eigenfunctions are the D{L x(o, 8,7)
functions known as 'rotation matrices' (see Sections 3.5 and 3.6 of Zare's book on angular momentum) these functions depend on
three angles (the three Euler angles needed to describe the orientation of the molecule in space) and three quantum numbers- J,M,
and K. The quantum number M labels the projection of the total angular momentum (as M%) along the laboratory-fixed z-axis; Kh
is the projection along one of the internal principal axes ( in a spherical top molecule, all three axes are equivalent, so it does not
matter which axis is chosen).

The energy levels of spherical top molecules are (2.J +1)? -fold degenerate. Both the M and K quantum numbers run from -J, in
steps of unity, to J; because the energy is independent of M and of K, the degeneracy is (2J +1)2.

Molecules for which two of the three principal moments of inertia are equal are called symmetric top molecules. Prolate symmetric
tops have I, < I, =1, ; oblate symmetric tops have I, =1, < I. ( it is convention to order the moments of inertia as
I, < I, <1.). The rotational Hamiltonian can now be written in terms of J 2 and the component of J along the unique moment of

inertia's axis as:
1 1 J?2
Tror = J2 ( ——)+—2Ib

for prolate tops, and

1 1 J?
T =J2 [ ——— ) +=—
ot = Jc (2Ic 2Ib)+2Ib

for oblate tops. Again, the DJM’ (o, B,7) are the eigenfunctions, where the quantum number K describes the component of the

rotational angular momentum J along the unique molecule-fixed axis (i.e., the axis of the unique moment of inertia). The energy
levels are now given in terms of J and K as follows:
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for prolate tops, and

J(J+1)

1 1
— h2 h2K2 -
By o, 5, 21

for oblate tops.

Because the rotational energies now depend on K (as well as on J), the degeneracies are lower than for spherical tops. In particular,
because the energies do not depend on M and depend on the square of K, the degeneracies are (2J+1) for states with K=0 and
2(2J+1) for states with |[K| > 0; the extra factor of 2 arises for |K| > 0 states because pairs of states with K = [K| and K = |-K| are
degenerate.
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3.11: Chapter Summary

This Chapter has shown how the solution of the Schrédinger equation governing the motions and interparticle potential energies of
the nuclei and electrons of an atom or molecule (or ion) can be decomposed into two distinct problems:

i. solution of the electronic Schrodinger equation for the electronic wavefunctions and energies, both of which depend on the
nuclear geometry and

ii. solution of the vibration/rotation Schrodinger equation for the motion of the nuclei on any one of the electronic energy
surfaces.

This decomposition into approximately separable electronic and nuclearmotion problems remains an important point of view in
chemistry. It forms the basis of many of our models of molecular structure and our interpretation of molecular spectroscopy. It also
establishes how we approach the computational simulation of the energy levels of atoms and molecules; we first compute
electronic energy levels at a 'grid' of different positions of the nuclei, and we then solve for the motion of the nuclei on a particular
energy surface using this grid of data.

The treatment of electronic motion is treated in detail in Sections 2, 3, and 6 where molecular orbitals and configurations and their
computer evaluation is covered. The vibration/rotation motion of molecules on BO surfaces is introduced above, but should be
treated in more detail in a subsequent course in molecular spectroscopy.
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CHAPTER OVERVIEW

4: Atomic Orbitals

Valence atomic orbitals on neighboring atoms combine to form bonding, non-bonding and antibonding molecular orbitals. In
Section 1 the Schrodinger equation for the motion of a single electron moving about a nucleus of charge Z was explicitly solved.
The energies of these orbitals relative to an electron infinitely far from the nucleus with zero kinetic energy were found to depend
strongly on Z and on the principal quantum number n, as were the radial "sizes" of these hydrogenic orbitals. Closed analytical
expressions for the r,0, and ¢ dependence of these orbitals are given in Appendix B. The reader is advised to also review this
material before undertaking study of this section.

4.1: Shapes of Atomic Orbitals
4.2: Directions of Atomic Orbitals
4.3: Sizes and Energies
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4.1: Shapes of Atomic Orbitals

Shapes of atomic orbitals play central roles in governing the types of directional bonds an atom can form.

All atoms have sets of bound and continuum s, p, d, f, g, etc. orbitals. Some of these orbitals may be unoccupied in the atom's low
energy states, but they are still present and able to accept electron density if some physical process (e.g., photon absorption,
electron attachment, or Lewis-base donation) causes such to occur. For example, the Hydrogen atom has 1s, 2s, 2p, 3s, 3p, 3d, etc.
orbitals. Its negative ion H ~ has states that involve 1s2s, 2p*, 352, 3p?, etc. orbital occupancy. Moreover, when an H atom is
placed in an external electronic field, its charge density polarizes in the direction of the field. This polarization can be described in
terms of the orbitals of the isolated atom being combined to yield distorted orbitals (e.g., the 1s and 2p orbitals can "mix" or
combine to yield sp hybrid orbitals, one directed toward increasing field and the other directed in the opposite direction). Thus in
many situations it is important to keep in mind that each atom has a full set of orbitals available to it even if some of these orbitals
are not occupied in the lowest energy state of the atom.
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4.2: Directions of Atomic Orbitals

Atomic orbital directions also determine what directional bonds an atom will form.

Each set of p orbitals has three distinct directions or three different angular momentum m-quantum numbers as discussed in
Appendix G. Each set of d orbitals has five distinct directions or m-quantum numbers, etc; s orbitals are unidirectional in that they
are spherically symmetric, and have only m = 0. Note that the degeneracy of an orbital (21+1), which is the number of distinct
spatial orientations or the number of m-values, grows with the angular momentum quantum number 1 of the orbital without bound.

It is because of the energy degeneracy within a set of orbitals, that these distinct directional orbitals (e.g., X, y, z for p orbitals)
may be combined to give new orbitals which no longer possess specific spatial directions but which have specified angular
momentum characteristics. The act of combining these degenerate orbitals does not change their energies. For example, the

% (ps +1ipy) and % (ps —tpy) combinations no longer point along the x and y axes, but instead correspond to specific angular

momenta (+1% and — 1k) about the z axis. The fact that they are angular momentum eigenfunctions can be seen by noting that
the x and y orbitals contain ¢ dependences of cos(¢) and sin(¢), respectively. Thus the above combinations contain e and e ¢,
respectively. The sizes, shapes, and directions of a few s, p, and d orbitals are illustrated below (the light and dark areas represent
positive and negative values, respectively).

2s

p orbitals d orbitals

Figure 4.3.1: Insert caption here!
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4.3: Sizes and Energies

The size (e.g., average value or expectation value of the distance from the atomic nucleus to the electron) of an atomic orbital is
determined primarily by its principal quantum number n and by the strength of the potential attracting an electron in this orbital to
the atomic center (which has some 1-dependence too). The energy (with negative energies corresponding to bound states in which
the electron is attached to the atom with positive binding energy and positive energies corresponding to unbound scattering states)
is also determined by n and by the electrostatic potential produced by the nucleus and by the other electrons. Each atom has an
infinite set of orbitals of each | quantum number ranging from those with low energy and small size to those with higher energy and
larger size.

Atomic orbitals are solutions to an orbital-level Schrodinger equation in which an electron moves in a potential energy field
provided by the nucleus and all the other electrons. Such one-electron Schrédinger equations are discussed, as they pertain to
qualitative and semi-empirical models of electronic structure in Appendix F. The spherical symmetry of the one-electron potential
appropriate to atoms and atomic ions is what makes sets of the atomic orbitals degenerate. Such degeneracies arise in molecules
too, but the extent of degeneracy is lower because the molecule's nuclear coulomb and electrostatic potential energy has lower
symmetry than in the atomic case. As will be seen, it is the symmetry of the potential experienced by an electron moving in the
orbital that determines the kind and degree of orbital degeneracy which arises.

Symmetry operators leave the electronic Hamiltonian H invariant because the potential and kinetic energies are not changed if one
applies such an operator R to the coordinates and momenta of all the electrons in the system. Because symmetry operations involve
reflections through planes, rotations about axes, or inversions through points, the application of such an operation to a product such
as H1p gives the product of the operation applied to each term in the original product. Hence, one can write:

R(HY) = (RH)(Ry).
Now using the fact that H is invariant to R, which means that (RH) = H, this result reduces to:
R(Hy) = H(Ry),
which says that R commutes with H:
[R,H|=0

Because symmetry operators commute with the electronic Hamiltonian, the wavefunctions that are eigenstates of H can be labeled
by the symmetry of the point group of the molecule (i.e., those operators that leave H invariant). It is for this reason that one
constructs symmetry-adapted atomic basis orbitals to use in forming molecular orbitals.
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5: Molecular Orbitals

Molecular orbitals possess specific topology, symmetry, and energy-level patterns.
5.1: Orbital Interaction Topology
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5.1: Orbital Interaction Topology

The orbital interactions determine how many and which molecular orbitals will have low (bonding), intermediate (non-bonding),
and higher (antibonding) energies, with all energies viewed relative to those of the constituent atomic orbitals. The general
patterns that are observed in most compounds can be summarized as follows:

1. If the energy splittings among a given atom's atomic orbitals with the same principal quantum number are small, hybridization
can easily occur to produce hybrid orbitals that are directed toward (and perhaps away from) the other atoms in the molecule. In
the first-row elements (Li, Be, B, C, N, O, and F), the 2s-2p splitting is small, so hybridization is common. In contrast, for Ca,
Ga, Ge, As, and Br it is less common, because the 4s-4p splitting is larger. Orbitals directed toward other atoms can form
bonding and antibonding mos; those directed toward no other atoms will form nonbonding molecular orbitals.

2. In attempting to gain a qualitative picture of the electronic structure of any given molecule, it is advantageous to begin by
hybridizing the atomic orbitals of those atoms which contain more than one ao in their valence shell. Only those atomic orbitals
that are not involved in p-orbital interactions should be so hybridized.

3. Atomic or hybrid orbitals that are not directed in a s-interaction manner toward other atomic orbitals or hybrids on neighboring
atoms can be involved in p-interactions or in nonbonding interactions.

4. Pairs of atomic orbitals or hybrid orbitals on neighboring atoms directed toward one another interact to produce bonding and
antibonding orbitals. The more the bonding orbital lies below the lower-energy ao or hybrid orbital involved in its formation,
the higher the antibonding orbital lies above the higher-energy ao or hybrid orbital.

For example, in formaldehyde, H,C O, one forms sp? hybrids on the C atom; on the O atom, either sp hybrids (with one p
orbital "reserved" for use in forming the 7 and 7~ orbitals and another p orbital to be used as a non-bonding orbital lying in the
plane of the molecule) or sp? hybrids (with the remaining p orbital reserved for the 7 and T orbitals) can be used. The H
atoms use their 1s orbitals since hybridization is not feasible for them. The C atom clearly uses its sp? hybrids to form two CH
and one CO ¢ bonding - antibonding orbital pairs.

The O atom uses one of its sp or sp? hybrids to form the CO o bond and antibond. When sp hybrids are used in conceptualizing
the bonding, the other sp hybrid forms a lone pair orbital directed away from the CO bond axis; one of the atomic p orbitals is
involved in the CO 7 and " orbitals, while the other forms an in-plane non-bonding orbital. Alternatively, when sp? hybrids
are used, the two sp? hybrids that do not interact with the C-atom sp? orbital form the two non-bonding orbitals. Hence, the
final picture of bonding, non-bonding, and antibonding orbitals does not depend on which hybrids one uses as intermediates.

As another example, the 2s and 2p orbitals on the two N atoms of N, can be formed into pairs of sp hybrids on each N atom
plus a pair of p, atomic orbitals on each N atom. The sp hybrids directed toward the other N atom give rise to bonding

o and antibonding ¢ orbitals, and the sp hybrids directed away from the other N atom yield nonbonding o orbitals. The p;
orbitals, which consist of 2p orbitals on the N atoms directed perpendicular to the N-N bond axis, produce bonding

7 and antibonding 7" orbitals.

5. In general, o interactions for a given pair of atoms interacting are stronger than 7 interactions (which, in turn, are stronger than
¢ interactions, etc.) for any given sets (i.e., principal quantum number) of atomic orbitals that interact. Hence, o bonding
orbitals (originating from a given set of aos) lie below 7 bonding orbitals, and o orbitals lie above 7" orbitals that arise from
the same sets of aos. In the Ny example, the o bonding orbital formed from the two sp hybrids lies below the 7 bonding orbital,
but the 7" orbital lies below the ¢~ orbital. In the H,CO example, the two CH and the one CO bonding orbitals have low
energy; the CO 7 bonding orbital has the next lowest energy; the two O-atom non-bonding orbitals have intermediate energy;
the CO 7 orbital has somewhat higher energy; and the two CH and one CO antibonding orbitals have the highest energies.

6. If a given ao or hybrid orbital interacts with or is coupled to orbitals on more than a single neighboring atom, multicenter
bonding can occur. For example, in the allyl radical the central carbon atom's p, orbital is coupled to the p, orbitals on both

neighboring atoms; in linear L¢3, the central Li atom's 2s orbital interacts with the 2s orbitals on both terminal Li atoms; in
triangular C'ug, the 2s orbitals on each Cu atom couple to each of the other two atoms' 4s orbitals.

7. Multicenter bonding that involves "linear" chains containing N atoms (e.g., as in conjugated polyenes or in chains of Cu or Na
atoms for which the valence orbitals on one atom interact with those of its neighbors on both sides) gives rise to mo energy
patterns in which there are N/2 (if N is even) or N/2 — 1 non-degenerate bonding orbitals and the same number of antibonding
orbitals (if N is odd, there is also a single non-bonding orbital).
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8. Multicenter bonding that involves "cyclic" chains of N atoms (e.g., as in cyclic conjugated polyenes or in rings of Cu or Na
atoms for which the valence orbitals on one atom interact with those of its neighbors on both sides and the entire net forms a
closed cycle) gives rise to mo energy patterns in which there is a lowest non-degenerate orbital and then a progression of doubly
degenerate orbitals. If N is odd, this progression includes (N- 1)/2 levels; if N is even, there are (N-2)/2 doubly degenerate
levels and a final nondegenerate highest orbital. These patterns and those that appear in linear multicenter bonding are
summarized in the Figures shown below.

— =— | antibonding

non-bonding

—_— } bonding

Pattern for Linear Multicenter
Bonding Situation: N=2, 3, .6

- —_— J antibonding

— —_— == non-bonding

- - — __} bonding

Pattern for Cyclic Multicenter Bonding -
N=3,4,5,..8

Figure 5.1.1: Insert caption here!

1. In extended systems such as solids, atom-based orbitals combine as above to form so called 'bands' of molecular orbitals. These
bands are continuous rather than discrete as in the above cases involving small polyenes. The energy 'spread’ within a band
depends on the overlap among the atom-based orbitals that form the band; large overlap gives rise to a large band width, while
small overlap produces a narrow band. As one moves from the bottom (i.e., the lower energy part) of a band to the top, the
number of nodes in the corresponding band orbital increases, as a result of which its bonding nature decreases. In the figure
shown below, the bands of a metal such as Ni (with 3d, 4s, and 4p orbitals) is illustrated. The d-orbital band is narrow because
the 3d orbitals are small and hence do not overlap appreciably; the 4s and 4p bands are wider because the larger 4s and 4p
orbitals overlap to a greater extent. The d-band is split into o, 7w, andd components corresponding to the nature of the overlap
interactions among the constituent atomic d orbitals. Likewise, the p-band is split into o and 7 components. The widths of the
o components of each band are larger than those of the 7 components because the corresponding o overlap interactions are
stronger. The intensities of the bands at energy E measure the densities of states at that E. The total integrated intensity under a
given band is a measure of the total number of atomic orbitals that form the band.
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Figure 5.1.2: Insert caption here!

This page titled 5.1: Orbital Interaction Topology is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform.

https://chem.libretexts.org/@go/page/60551


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60551?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/05%3A_Molecular_Orbitals/5.01%3A_Orbital_Interaction_Topology
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/

LibreTextsw

5.2: Orbital Symmetry

Symmetry provides additional quantum numbers or labels to use in describing the
molecular orbitals. Each such quantum number further sub-divides the collection of all
molecular orbitals into sets that have vanishing Hamiltonian matrix elements among
members belonging to different sets.

Orbital interaction "topology" as discussed above plays a most- important role in determining the orbital energy level patterns of a
molecule. Symmetry also comes into play, but in a different manner. Symmetry can be used to characterize the core, bonding,
nonbonding, and antibonding molecular orbitals. Much of this chapter is devoted to how this can be carried out in a systematic
manner. Once the various molecular orbitals have been labeled according to symmetry, it may be possible to recognize additional
degeneracies that may not have been apparent on the basis of orbital-interaction considerations alone. Thus, topology provides the
basic energy ordering pattern and then symmetry enters to identify additional degeneracies.

For example, the three NH bonding and three NH antibonding orbitals in N H3, when symmetry adapted within the Cj,, point
group, cluster into a; and e molecular orbitals as shown in the Figure below. The N-atom localized non-bonding lone pair orbital
and the N-atom 1s core orbital also belong to a; symmetry.

In a second example, the three CH bonds, three CH antibonds, CO bond and antibond, and three O-atom non-bonding orbitals of
the methoxy radical H3C' — O also cluster into a; and e orbitals as shown below. In these cases, point group symmetry allows one
to identify degeneracies that may not have been apparent from the structure of the orbital interactions alone.
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Figure 5.2.1: Insert caption here!

The three resultant molecular orbital energies are, of course, identical to those obtained without symmetry above. The three LCAO-
MO coefficients , now expressing the molecular orbitals in terms of the symmetry adapted orbitals are C;; = (0.707, 0.707, 0.0) for
the bonding orbital, (0.0, 0.0, 1.00) for the nonbonding orbital, and (0.707, -0.707, 0.0) for the antibonding orbital. These
coefficients, when combined with the symmetry adaptation coefficients Cy, given earlier, express the three molecular orbitals in
terms of the three atomic orbitals as
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gives the LCAO-MO coefficients C;, which, for example, for the bonding orbital, are (0.7 07,0.707, 0.7072), in agreement with
what was found earlier without using symmetry.

The low energy orbitals of the H,O molecule can be used to illustrate the use of symmetry within the primitive ao basis as well as
in terms of hybrid orbitals. The 1s orbital on the Oxygen atom is clearly a nonbonding core orbital. The Oxygen 2s orbital and its
three 2p orbitals are of valence type, as are the two Hydrogen 1s orbitals. In the absence of symmetry, these six valence orbitals
would give rise to a 6x6 secular problem. By combining the two Hydrogen 1s orbitals into 0.707(1sy 4+ 1sgr) and 0.707(
1s; —1sg) symmetry adapted orbitals (labeled a; and by within the Cy, point group; see the Figure below), and recognizing
that the Oxygen 2s and 2p, orbitals belong to a; symmetry (the z axis is taken as the C'; rotation axis and the x axis is taken to be
perpendicular to the plane in which the three nuclei lie) while the 2p,, orbital is b; and the 2p, orbital is by, allows the 6x6 problem
to be decomposed into a 3x3 ( a;) secular problem, a 2x2 ( by) secular problem and a 1x1 ( b; ) problem. These decompositions
allow one to conclude that there is one nonbonding b; orbital (the Oxygen 2p, orbital), bonding and antibonding bs orbitals ( the
O-H bond and antibond formed by the Oxygen 2p, orbital interacting with 0.707(1sz —1sg)), and, finally, a set of bonding,
nonbonding, and antibonding a; orbitals (the O-H bond and antibond formed by the Oxygen 2s and 2p, orbitals interacting with
0.707(1sy, + 1sg) and the nonbonding orbital formed by the Oxygen 2s and 2p, orbitals combining to form the "lone pair" orbital
directed along the z-axis away from the two Hydrogen atoms).

& o e

a; Hydrogen b, Hydrogen
Orbitals Orbitals
>/< R ; 9 H
H H
Oxygen a, Orbitals Oxygen b, Orbital
H H

Oxygen b, Orbital

Figure 5.2.2: Insert caption here!
Alternatively, to analyze the H>O molecule in terms of hybrid orbitals, one first combines the Oxygen 2s, 2p,, 2p,and2p, orbitals
to form four sp® hybrid orbitals. The valence-shell electron-pair repulsion (VSEPR) model of chemical bonding (see R. J. Gillespie
and R. S. Nyholm, Quart. Rev. 11, 339 (1957) and R. J. Gillespie, J. Chem. Educ. 40, 295 (1963)) directs one to involve all of the
Oxygen valence orbitals in the hybridization because four o-bond or nonbonding electron pairs need to be accommodated about the
Oxygen center; no 7 orbital interactions are involved, of course. Having formed the four sp® hybrid orbitals, one proceeds as with
the primitive atomic orbitals; one forms symmetry adapted orbitals. In this case, the two Hydrogen 1s orbitals are combined exactly
as above to form

0.707(1sg, +1sg)
and

0.707(1s; —1sg).

The two sp® hybrids which lie in the plane of the H and O nuclei ( label them L and R) are combined to give symmetry adapted
hybrids: 0.707(L+R) and 0.707(L-R), which are of a; and by symmetry, respectively (Figure Figure 5.2.3). The two sp> hybrids
that lie above and below the plane of the three nuclei (label them T and B) are also symmetry adapted to form 0.707(T+ B) and
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0.707(TB), which are of a; and b; symmetry, respectively. Once again, one has broken the 6x6 secular problem into a 3x3 a;
block, a 2x2 bs block and a 1x1 b; block. Although the resulting bonding, nonbonding and antibonding a; orbitals, the bonding
and antibonding b, orbitals and the nonbonding b; orbital are now viewed as formed from symmetry adapted Hydrogen orbitals
and four Oxygen sp® orbitals, they are, of course, exactly the same molecular orbitals as were obtained earlier in terms of the
symmetry adapted primitive aos. The formation of hybrid orbitals was an intermediate step which could not alter the final outcome.

N, N,

L + R a, Hybrid L - R b, Hybrid

Symmetry Orbital Symmetry Orbital
H H
T + B Hybrid T-BHybrid
Symmetry Orbital Symmetry Orbltfﬂ
Seen From the Side Seen From the Side

Figure 5.2.3: Insert caption here!

That no degenerate molecular orbitals arose in the above examples is a result of the fact that the Cs, point group to which HoO and
the allyl system belong (and certainly the Cs subgroup which was used above in the allyl case) has no degenerate representations.
Molecules with higher symmetry such as N Hs, C'Hy, and benzene have energetically degenerate orbitals because their molecular
point groups have degenerate representations.

This page titled 5.2: Orbital Symmetry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons
via source content that was edited to the style and standards of the LibreTexts platform.
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5.3: Linear Molecules

Linear molecules belong to the axial rotation group. Their symmetry is intermediate in
complexity between nonlinear molecules and atoms.

For linear molecules, the symmetry of the electrostatic potential provided by the nuclei and the other electrons is described by
either the Cy,, or Do, group. The essential difference between these symmetry groups and the finite point groups which
characterize the non-linear molecules lies in the fact that the electrostatic potential which an electron feels is invariant to rotations
of any amount about the molecular axis (i.e., V(y+dvy) = V(7), for any angle increment d-y). This means that the operator Cj,
which generates a rotation of the electron's azimuthal angle v by an amount d+ about the molecular axis commutes with the
Hamiltonian [h, Cs, ] =0. Cj, can be written in terms of the quantum mechanical operator L, = —iha% describing the orbital

angular momentum of the electron about the molecular (z) axis:

6 Lz

W0Y

Csy=e h .

Because C, commutes with the Hamiltonian and Cy, can be written in terms of L, L, must commute with the Hamiltonian. As a
result, the molecular orbitals ¢ of a linear molecule must be eigenfunctions of the z-component of angular momentum L, :

. 0
*’Lﬁa—yl@ =mh|g).

The electrostatic potential is not invariant under rotations of the electron about the x or y axes (those perpendicular to the molecular
axis), so L, and L, do not commute with the Hamiltonian. Therefore, only L, provides a "good quantum number" in the sense
that the operator L, commutes with the Hamiltonian.

In summary, the molecular orbitals of a linear molecule can be labeled by their m quantum number, which plays the same role as
the point group labels did for non-linear polyatomic molecules, and which gives the eigenvalue of the angular momentum of the
h?_ 9%

o D77 whereas the

potential energy part is independent of ~, the energies of the molecular orbitals depend on the square of the m quantum number.
Thus, pairs of orbitals with m= + 1 are energetically degenerate; pairs with m= + 2 are degenerate, and so on. The absolute value of
m, which is what the energy depends on, is called the A quantum number. Molecular orbitals with A = 0 are called o orbitals;
those with A = 1 are 7 orbitals; and those with A = 2 are § orbitals.

orbital about the molecule's symmetry axis. Because the kinetic energy part of the Hamiltonian contains

Just as in the non-linear polyatomic-molecule case, the atomic orbitals which constitute a given molecular orbital must have the
same symmetry as that of the molecular orbital. This means that o, 7w, and § molecular orbitals are formed, via LCAO-MO, from
m=0, m= + 1, and m= + 2 atomic orbitals, respectively. In the diatomic /Ny molecule, for example, the core orbitals are of o
symmetry as are the molecular orbitals formed from the 2s and 2p, atomic orbitals (or their hybrids) on each Nitrogen atom. The
molecular orbitals formed from the atomic 2p_; = (2p, —i2p,) and the 2p,; = (2p, +142p, ) orbitals are of p symmetry and
have m = -1 and +1.

For homonuclear diatomic molecules and other linear molecules which have a center of symmetry, the inversion operation (in
which an electron's coordinates are inverted through the center of symmetry of the molecule) is also a symmetry operation. Each
resultant molecular orbital can then also be labeled by a quantum number denoting its parity with respect to inversion. The symbols
g (for gerade or even) and u (for ungerade or odd) are used for this label. Again for Ny, the core orbitals are of o4 and oy,
symmetry, and the bonding and antibonding o orbitals formed from the 2s and 2p, orbitals on the two Nitrogen atoms are of
04 and o, symmetry.
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Figure 5.4.1: Insert caption here!

The bonding 7 molecular orbital pair (with m = +1 and -1) is of 7, symmetry whereas the corresponding antibonding orbital is of
7, symmetry. Examples of such molecular orbital symmetries are shown above.

The use of hybrid orbitals can be illustrated in the linear-molecule case by considering the N5 molecule. Because two 7 bonding
and antibonding molecular orbital pairs are involved in Ny (one with m = +1, one with m = -1), VSEPR theory guides one to form
sp hybrid orbitals from each of the Nitrogen atom's 2s and 2p, (which is also the 2p orbital with m = 0) orbitals. Ignoring the core
orbitals, which are of o, and o, symmetry as noted above, one then symmetry adapts the four sp hybrids (two from each atom) to
build one o, orbital involving a bonding interaction between two sp hybrids pointed toward one another, an antibonding o, orbital
involving the same pair of sp orbitals but coupled with opposite signs, a nonbonding o, orbital composed of two sp hybrids pointed
away from the interatomic region combined with like sign, and a nonbonding o, orbital made of the latter two sp hybrids combined
with opposite signs. The two 2p,, orbitals (m= +1 and -1) on each Nitrogen atom are then symmetry adapted to produce a pair of
bonding 7, orbitals (with m = +1 and -1) and a pair of antibonding , orbitals (with m = +1 and -1). This hybridization and
symmetry adaptation thereby reduces the 8x8 secular problem (which would be 10x10 if the core orbitals were included) into a 2x2
o4 problem (one bonding and one nonbonding), a 2x2 o, problem (one bonding and one nonbonding), an identical pair of 1x1 m,
problems (bonding), and an identical pair of 1x1 7, problems (antibonding).

Another example of the equivalence among various hybrid and atomic orbital points of view is provided by the CO molecule.
Using, for example, sp hybrid orbitals on C and O, one obtains a picture in which there are: two core o orbitals corresponding to
the O-atom 1s and C-atom 1s orbitals; one CO bonding, two non-bonding, and one CO antibonding orbitals arising from the four sp
hybrids; a pair of bonding and a pair of antibonding 7 orbitals formed from the two p orbitals on O and the two p orbitals on C.
Alternatively, using sp® hybrids on both C and O, one obtains: the two core ¢ orbitals as above; a CO bonding and antibonding
orbital pair formed from the sp? hybrids that are directed along the CO bond; and a single 7 bonding and antibonding 7" orbital
set. The remaining two sp? orbitals on C and the two on O can then be symmetry adapted by forming + combinations within each
pair to yield: an a; non-bonding orbital (from the + combination) on each of C and O directed away from the CO bond axis; and a
Py orbital on each of C and O that can subsequently overlap to form the second 7 bonding and 7" antibonding orbital pair.

It should be clear from the above examples, that no matter what particular hybrid orbitals one chooses to utilize in conceptualizing
a molecule's orbital interactions, symmetry ultimately returns to force one to form proper symmetry adapted combinations which,
in turn, renders the various points of view equivalent. In the above examples and in several earlier examples, symmetry adaptation
of, for example, sp? orbital pairs (e.g., sp2L isp%) generated orbitals of pure spatial symmetry. In fact, symmetry combining
hybrid orbitals in this manner amounts to forming other hybrid orbitals. For example, the above + combinations of sp? hybrids
directed to the left (L) and right (R) of some bond axis generate a new sp hybrid directed along the bond axis but opposite to the
sp® hybrid used to form the bond and a non-hybridized p orbital directed along the L-to-R direction. In the CO example, these
combinations of sp? hybrids on O and C produce sp hybrids on O and C and p;; orbitals on O and C.

This page titled 5.3: Linear Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via
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5.4: Atoms

Atoms belong to the full rotation symmetry group; this makes their symmetry analysis the
most complex to treat.

In moving from linear molecules to atoms, additional symmetry elements arise. In particular, the potential field experienced by an
electron in an orbital becomes invariant to rotations of arbitrary amounts about the X, y, and z axes; in the linear-molecule case, it is
invariant only to rotations of the electron's position about the molecule's symmetry axis (the z axis). These invariances are, of
course, caused by the spherical symmetry of the potential of any atom. This additional symmetry of the potential causes the
Hamiltonian to commute with all three components of the electron's angular momentum:

e [L,,H =0
e [L,,H]=0
e [L,,H]=0

It is straightforward to show that H also commutes with the operator L?, defined as the sum of the squares of the three individual
components of the angular momentum

L’ =L3+L}+ L2

Because L,, L,, and L, do not commute with one another, orbitals which are eigenfunctions of H cannet be simultaneous
eigenfunctions of all three angular momentum operators. However, because L,, L, and L, do commute with L2, orbitals can be
found which are eigenfunctions of H, of L? and of any one component of L; it is convention to select L, as the operator which,
along with H and L?, form a mutually commutative operator set of which the orbitals are simultaneous eigenfunctions.

So, for any atom, the orbitals can be labeled by both 1 and m quantum numbers, which play the role that point group labels did for
non-linear molecules and A did for linear molecules. Because (i) the kinetic energy operator in the electronic Hamiltonian explicitly

2
Hamiltonian is spherically symmetric (and commutes with L? and L, ), the energies of atomic orbitals depend upon the 1 quantum

number and are independent of the m quantum number. This is the source of the 21+1- fold degeneracy of atomic orbitals.

2
contains #, (ii) the Hamiltonian does not contain additional L, L;, or L, factors, and (iii) the potential energy part of the

The angular part of the atomic orbitals is described in terms of the spherical harmonics Y ,,; that is, each atomic orbital ¢ can be
expressed as

¢n,l,m - Y;,m(ea W)Rn,l(r)'

The explicit solutions for the YI,m and for the radial wavefunctions R, ; are given in Appendix B. The variables , 8, ¢ give the
position of the electron in the orbital in spherical coordinates. These angular functions are, as discussed earlier, related to the
cartesian (i.e., spatially oriented) orbitals by simple transformations; for example, the orbitals with 1=2 and m=2,1,0,-1,-2 can be
expressed in terms of the dyy, du, dy, duw—yy, and d,, orbitals. Either set of orbitals is acceptable in the sense that each orbital is
an eigenfunction of H; transformations within a degenerate set of orbitals do not destroy the Hamiltonian- eigenfunction feature.
The orbital set labeled with 1 and m quantum numbers is most useful when one is dealing with isolated atoms (which have spherical
symmetry), because m is then a valid symmetry label, or with an atom in a local environment which is axially symmetric (e.g., in a
linear molecule) where the m quantum number remains a useful symmetry label. The cartesian orbitals are preferred for describing
an atom in a local environment which displays lower than axial symmetry (e.g., an atom interacting with a diatomic molecule in
Cs, symmetry).

1(1+1)R*
2m,r2

The radial part of the orbital R, j(r) as well as the orbital energy €, ; depend on 1 because the Hamiltonian itself contains

they are independent of m because the Hamiltonian has no m-dependence. For bound orbitals, R, (r) decays exponentially for
large 1 (as 6’2“/25"«1), and for unbound (scattering) orbitals, it is oscillatory at large r with an oscillation period related to the
deBroglie wavelength of the electron. In R,, ; (r) there are (n-1-1) radial nodes lying between r=0 and r = co. These nodes provide
differential stabilization of low-1 orbitals over high-1 orbitals of the same principal quantum number n. That is, penetration of outer
shells is greater for low-1 orbitals because they have more radial nodes; as a result, they have larger amplitude near the atomic
nucleus and thus experience enhanced attraction to the positive nuclear charge.

The average size (i.e., (r):
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(r)= /Ri7lrr2d7‘)

of an orbital depends strongly on n, weakly on [ and is independent of m. It also depends strongly on the nuclear charge and on the
potential produced by the other electrons. This potential is often characterized qualitatively in terms of an effective nuclear charge
Zeg¢ which is the true nuclear charge of the atom Z minus a screening component Z,. which describes the repulsive effect of the
electron density lying radially inside the electron under study. Because, for a given n, low-1 orbitals penetrate closer to the nucleus
than do high-1 orbitals, they have higher Z.; values (i.e., smaller Z,, values) and correspondingly smaller average sizes and larger
binding energies.

This page titled 5.4: Atoms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source
content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

6: Quantum Mechanics in Reactions

Along "reaction paths", orbitals can be connected one-to-one according to their symmetries and energies. This is the origin of the
Woodward-Hoffmann rules.

6.1: Reduction in Symmetry Along Reaction Paths
6.2: Orbital Correlation Diagrams - Origins of the Woodward-Hoffmann Rules

This page titled 6: Quantum Mechanics in Reactions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: Reduction in Symmetry Along Reaction Paths

As fragments are brought together to form a larger molecule, the symmetry of the nuclear
framework (recall the symmetry of the Coulombic potential experienced by electrons
depends on the locations of the nuclei) changes. However, in some cases, certain
symmetry elements persist throughout the path connecting the fragments and the product
molecule. These preserved symmetry elements can be used to label the orbitals throughout
the 'reaction’.

The point-group, axial- and full-rotation group symmetries which arise in nonlinear molecules, linear molecules, and atoms,
respectively, are seen to provide quantum numbers or symmetry labels which can be used to characterize the orbitals appropriate
for each such species. In a physical event such as interaction with an external electric or magnetic field or a chemical process such
as collision or reaction with another species, the atom or molecule can experience a change in environment which causes the
electrostatic potential which its orbitals experience to be of lower symmetry than that of the isolated atom or molecule. For
example, when an atom interacts with another atom to form a diatomic molecule or simply to exchange energy during a collision,
each atom's environment changes from being spherically symmetric to being axially symmetric. When the formaldehyde molecule
undergoes unimolecular decomposition to produce CO + Hy along a path that preserves Cy, symmetry, the orbitals of the CO
moiety evolve from Cy, symmetry to axial symmetry.

It is important, therefore to be able to label the orbitals of atoms, linear, and nonlinear molecules in terms of their full symmetries
as well in terms of the groups appropriate to lower-symmetry situations. This can be done by knowing how the representations of a
higher symmetry group decompose into representations of a lower group. For example, the Y; ,, functions appropriate for spherical
symmetry, which belong to a 21+1 fold degenerate set in this higher symmetry, decompose into doubly degenerate pairs of
functions Y;;,Y; _;;Y7,-1,Y; —141; etc., plus a single non-degenerate function Y} o, in axial symmetry. Moreover, because L? no
longer commutes with the Hamiltonian whereas L, does, orbitals with different 1-values but the same m-values can be coupled. As
the N5 molecule is formed from two N atoms, the 2s and 2p, orbitals, both of which belong to the same (o) symmetry in the axial
rotation group but which are of different symmetry in the isolated-atom spherical symmetry, can mix to form the sg bonding
orbital, the su antibonding, as well as the o, and o, nonbonding lone-pair orbitals. The fact that 2s and 2p have different l-values
no longer uncouples these orbitals as it did for the isolated atoms, because 1 is no longer a "good" quantum number.

Another example of reduced symmetry is provided by the changes that occur as H2O fragments into OH and H. The ¢ bonding
orbitals (a; and b2) and in-plane lone pair (a;) and the o* antibonding (a; and by) of H2O become a' orbitals (see the Figure
below); the out-of-plane b; lone pair orbital becomes a" (in Appendix IV of Electronic Spectra and Electronic Structure of
Polyatomic Molecules , G. Herzberg, Van Nostrand Reinhold Co., New York, N.Y. (1966) tables are given which allow one to
determine how particular symmetries of a higher group evolve into symmetries of a lower group).

a, o bonding a, o* antibonding
orbital orbital
b, o bonding b. ¢* antibonding
orbital orbital

Figure 6.1.1: Insert caption here!
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To further illustrate these points dealing with orbital symmetry, consider the insertion of CO into H along a path which preserves
Cs, symmetry. As the insertion occurs, the degenerate 7 bonding orbitals of CO become b1 and by orbitals. The antibonding 7*
orbitals of CO also become b;andby,. The o, bonding orbital of H;becomesa;, and the
o, antibonding H, orbital becomes by. The orbitals of the reactant HoCO are energy-ordered and labeled according to Cy,
symmetry in the Figure shown below as are the orbitals of the product Hy + CO.

/)2 = HHo*
ot =ale
COg* = 1= CO0c*

COx* _.gll_‘\\tll:“b?__ COx*
b"’MM a;__ C lone pair

O lone pairs = ar——a;= 3lone pair

COn bond = by——b,, b= — CO=x bonds
Cobond == ar—=___ 3, — COobond
CHbonds = 72
\1 =— HHobond
IsC —_a A IsC
1s0 —a 4T 150

H,CO ==>H, + CO Orbital Correlation Diagram in C,, Symmetry

Figure 6.1.2: Insert caption here!

When these orbitals are connected according to their symmetries as shown above, one reactant orbital to one product orbital
starting with the low-energy orbitals and working to increasing energy, an orbital correlation diagram (OCD) is formed. These
diagrams play essential roles in analyzing whether reactions will have symmetry-imposed energy barriers on their potential energy
surfaces along the reaction path considered in the symmetry analysis. The essence of this analysis, which is covered in detail in
Chapter 12, can be understood by noticing that the sixteen electrons of ground-state HoC'O do not occupy their orbitals with the
same occupancy pattern, symmetry-by-symmetry, as do the sixteen electrons of ground-state H, + CO. In particular, H,CO places
a pair of electrons in the second by orbital while Hy + CO does not; on the other hand, Hs + CO places two electrons in the sixth
ay orbital while HoC'O does not. The mismatch of the orbitals near the 5a;,6a;, and 2b, orbitals is the source of the mismatch
in the electronic configurations of the ground-states of H,C'O and Hs + CO. These mismatches give rise, as shown in Chapter 12,
to symmetry-caused energy barriers on the HoC' O — Hjy + CO reaction potential energy surface.

This page titled 6.1: Reduction in Symmetry Along Reaction Paths is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
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6.2: Orbital Correlation Diagrams - Origins of the Woodward-Hoffmann Rules

Connecting the energy-ordered orbitals of reactants to those of products according to
symmetry elements that are preserved throughout the reaction produces an orbital
correlation diagram.

In each of the examples cited above, symmetry reduction occurred as a molecule or atom approached and interacted with another
species. The "path" along which this approach was thought to occur was characterized by symmetry in the sense that it preserved
certain symmetry elements while destroying others. For example, the collision of two Nitrogen atoms to produce N» clearly occurs
in a way which destroys spherical symmetry but preserves axial symmetry. In the other example used above, the formaldehyde
molecule was postulated to decompose along a path which preserves Cy, symmetry while destroying the axial symmetries of CO
and H. The actual decomposition of formaldehyde may occur along some other path, but if it were to occur along the proposed
path, then the symmetry analysis presented above would be useful.

The symmetry reduction analysis outlined above allows one to see new orbital interactions that arise (e.g., the 2s and 2p,
interactions in the N 4N — N, example) as the interaction increases. It also allows one to construct orbital correlation diagrams
(OCD's) in which the orbitals of the "reactants" and "products" are energy ordered and labeled by the symmetries which are
preserved throughout the "path", and the orbitals are then correlated by drawing lines connecting the orbitals of a given symmetry,
one-by-one in increasing energy, from the reactants side of the diagram to the products side. As noted above, such orbital
correlation diagrams play a central role in using symmetry to predict whether photochemical and thermal chemical reactions will
experience activation barriers along proposed reaction paths (this subject is treated in Chapter 12).

To again illustrate the construction of an OCD, consider the p orbitals of 1,3- butadiene as the molecule undergoes disrotatory
closing (notice that this is where a particular path is postulated; the actual reaction may or may not occur along such a path) to form
cyclobutene. Along this path, the plane of symmetry which bisects and is perpendicular to the C; — C3 bond is preserved, so the
orbitals of the reactant and product are labeled as being even-e or odd-o under reflection through this plane. It is not proper to label
the orbitals with respect to their symmetry under the plane containing the four C atoms; although this plane is indeed a symmetry
operation for the reactants and products, it does not remain a valid symmetry throughout the reaction path.

%

Lowest x orbital of
1.3- butadiene denoted

34
LA
ey

x orbital of x* orbital of
cyclobutene cyclobutene
o orbital of o* orbital of
cyclobutene cyclobutene
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The four 7 orbitals of 1,3-butadiene are of the following symmetries under the preserved plane (see the orbitals in the Figure
above): m = e, my =0,m3 =e,m4 =0. The 7w and 7n* and o and o* orbitals of cyclobutane which evolve from the four active

Figure 6.2.1: Insert caption here!

orbitals of the 1,3-butadiene are of the following symmetry and energy order: o =e, 7 =e, = 0, o =0. Connecting these
orbitals by symmetry, starting with the lowest energy orbital and going through the highest energy orbital, gives the following
OCD:

/i
ZANN

Figure 6.2.2: Insert caption here!

The fact that the lowest two orbitals of the reactants, which are those occupied by the four 7 electrons of the reactant, do not
correlate to the lowest two orbitals of the products, which are the orbitals occupied by the two o and two 7 electrons of the
products, will be shown later in Chapter 12 to be the origin of the activation barrier for the thermal disrotatory rearrangement (in
which the four active electrons occupy these lowest two orbitals) of 1,3-butadiene to produce cyclobutene.

If the reactants could be prepared, for example by photolysis, in an excited state having orbital occupancy 7?7373, then reaction
along the path considered would not have any symmetry-imposed barrier because this singly excited configuration correlates to a
singly-excited configuration o7!7"! of the products. The fact that the reactant and product configurations are of equivalent
excitation level causes there to be no symmetry constraints on the photochemically induced reaction of 1,3-butadiene to produce
cyclobutene. In contrast, the thermal reaction considered first above has a symmetry-imposed barrier because the orbital occupancy
is forced to rearrange (by the occupancy of two electrons) from the ground-state wavefunction of the reactant to smoothly evolve
into that of the product.

It should be stressed that although these symmetry considerations may allow one to anticipate barriers on reaction potential energy
surfaces, they have nothing to do with the thermodynamic energy differences of such reactions. Symmetry says whether there will
be symmetry-imposed barriers above and beyond any thermodynamic energy differences. The enthalpies of formation of reactants
and products contain the information about the reaction's overall energy balance.

As another example of an OCD, consider the N +N — N, recombination reaction mentioned above. The orbitals of the atoms
must first be labeled according to the axial rotation group (including the inversion operation because this is a homonuclear
molecule). The core 1s orbitals are symmetry adapted to produce 1o, and 1o, orbitals (the number 1 is used to indicate that these
are the lowest energy orbitals of their respective symmetries); the 2s orbitals generate 20, and 20, orbitals; the 2p orbitals
combine to yield 30,4, a pair of 1m, orbitals, a pair of 17, orbitals, and the 30, orbital, whose bonding, nonbonding, and
antibonding nature was detailed earlier. In the two separated Nitrogen atoms, the two orbitals derived from the 2s atomic orbitals
are degenerate, and the six orbitals derived from the Nitrogen atoms' 2p orbitals are degenerate. At the equilibrium geometry of the
N, molecule, these degeneracies are lifted, Only the degeneracies of the 1w, and 1w, orbitals, which are dictated by the
degeneracy of +m and -m orbitals within the axial rotation group, remain.

As one proceeds inward past the equilibrium bond length of N2, toward the unitedatom limit in which the two Nitrogen nuclei are
fused to produce a Silicon nucleus, the energy ordering of the orbitals changes. Labeling the orbitals of the Silicon atom according
to the axial rotation group, one finds the 1s is o4, the 2sis o4, the 2p orbitals are o, and , , the 3s orbital is o, the 3p orbitals
are o, and 7, and the 3d orbitals are 4, 7y, and d;,. The following OCD is obtained when one connects the orbitals of the
two separated Nitrogen atoms (properly symmetry adapted) to those of the Ny molecule and eventually to those of the Silicon
atom.
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si Ny N+N

Figure 6.2.3: Insert caption here!

The fact that the separated-atom and united-atom limits involve several crossings in the OCD can be used to explain barriers in the
potential energy curves of such diatomic molecules which occur at short internuclear distances. It should be noted that the Silicon
atom's 3p orbitals of , symmetry and its 3d orbitals of oy and §, symmetry correlate with higher energy orbitals of N5 not with
the valence orbitals of this molecule, and that the 3su antibonding orbital of N2 correlates with a higher energy orbital of Silicon (in
particular, its 4p orbital).

This page titled 6.2: Orbital Correlation Diagrams - Origins of the Woodward-Hoffmann Rules is shared under a CC BY-NC-SA 4.0 license and
was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

7: Further Characterization of Molecular Orbitals

The most elementary molecular orbital models contain symmetry, nodal pattern, and approximate energy information
7.1: The LCAO-MO Expansion and the Orbital-Level Schrodinger Equation
7.2: Determining the Effective Potential
7.3: The Hiickel Parameterization
7.4: The Extended Hiickel Method
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7.1: The LCAO-MO Expansion and the Orbital-Level Schrodinger Equation

In the simplest picture of chemical bonding, the valence molecular orbitals ¢; are constructed as linear combinations of valence
atomic orbitals X, according to the LCAOMO formula:

¢i = Z CiuX,u-
W

The core electrons are not explicitly included in such a treatment, although their effects are felt through an electrostatic potential V
that has the following properties:

1. V contains contributions from all of the nuclei in the molecule exerting coulombic attractions on the electron, as well as
coulombic repulsions and exchange interactions exerted by the other electrons on this electron;

2. As a result of the (assumed) cancellation of attractions from distant nuclei and repulsions from the electron clouds (i.e., the
core, lone-pair, and valence orbitals) that surround these distant nuclei, the effect of V on any particular mo ¢; depends
primarily on the atomic charges and local bond polarities of the atoms over which ¢; is delocalized.

As a result of these assumptions, qualitative molecular orbital models can be developed in which one assumes that each mo fi
obeys a one-electron Schrodinger equation

h¢; =¢€ig;.
Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron and the potential V mentioned above:

—R2
[W] b =€i;-
Expanding the mo ¢; in the LCAO-MO manner, substituting this expansion into the above Schrédinger equation, multiplying on
the left by XZ’ and integrating over the coordinates of the electron generates the following orbital-level eigenvalue problem:

_R?
D00l 5=V VIxu) o = € Y o) G
© e 3

If the constituent atomic orbitals {)x, } have been orthonormalized as discussed earlier in this chapter, the overlap integrals {x, |X)
reduce to 6.,

This page titled 7.1: The LCAO-MO Expansion and the Orbital-Level Schrodinger Equation is shared under a CC BY-NC-SA 4.0 license and was
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7.2: Determining the Effective Potential

In the most elementary models of orbital structure, the quantities that explicitly define the potential V are not computed from first
principles as they are in so-called ab initio methods. Rather, either experimental data or results of ab initio calculations are used to
determine the parameters in terms of which V' is expressed. The resulting empirical or semi-empirical methods discussed below
differ in the sophistication used to include electron-electron interactions as well as in the manner experimental data or ab initio
computational results are used to specify V.

If experimental data is used to parameterize a semi-empirical model, then the model should not be extended beyond the level at
which it has been parameterized. For example, experimental bond energies, excitation energies, and ionization energies may be
used to determine molecular orbital energies which, in turn, are summed to compute total energies. In such a parameterization it
would be incorrect to subsequently use these molecular orbitals to form a wavefunction, as in Sections 3 and 6, that goes beyond
the simple 'product of orbitals' description. To do so would be inconsistent because the more sophisticated wavefunction would
duplicate what using the experimental data (which already contains mother nature's electronic correlations) to determine the
parameters had accomplished.

Alternatively, if results of ab initio theory at the single-configuration orbital-product wavefunction level are used to define the
parameters of a semi-empirical model, it would then be proper to use the semi-empirical orbitals in a subsequent higher-level
treatment of electronic structure as done in Section 6.

This page titled 7.2: Determining the Effective Potential is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated

by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.

https://chem.libretexts.org/@go/page/60562



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60562?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/07%3A_Further_Characterization_of_Molecular_Orbitals/7.02%3A_Determining_the_Effective_Potential
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/06%3A_Quantum_Mechanics_in_Reactions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/07%3A_Further_Characterization_of_Molecular_Orbitals/7.02%3A_Determining_the_Effective_Potential
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/

LibreTextsw

7.3: The Hickel Parameterization

In the most simplified embodiment of the above orbital-level model, the following additional approximations are introduced.

Approximation 1: Diagonal Component

2
The diagonal values (x| %Vz + V| xu), which are usually denoted a,,, are taken to be equal to the energy of an electron in the

atomic orbital x,, and, as such, are evaluated in terms of atomic ionization energies (IP's) and electron affinities (EA's):

2

(Xu| =—V* +V|x,) = —IP,,

2m,

for atomic orbitals that are occupied in the atom, and

2

(Xl V2 +V|x,) =—EA,,

2me,
for atomic orbitals that are not occupied in the atom.

These approximations assume that contributions in V arising from coulombic attraction to nuclei other than the one on which ,, is
located, and repulsions from the core, lone-pair, and valence electron clouds surrounding these other nuclei cancel to an extent that
(Xu|V|xy) contains only potentials from the atom on which x, sits.

It should be noted that the IP's and EA's of valence-state orbitals are not identical to the experimentally measured IP's and EA's of
the corresponding atom, but can be obtained from such information. For example, the 2p valence-state IP (VSIP) for a Carbon atom
is the energy difference associated with the hypothetical process

C(1322s2pz2py2pz) —C7 (152252pz2py).

If the energy differences for the "promotion" of C
C(15°25%2p,2p,) — C(15*252p,2p,2p.); AEc

and for the promotion of C'*

C"(1s%2s*2p,) — C* (15°252p,2p, ); AE,,
are known, the desired VSIP is given by:

1Py, =IP;+AEc+—-AE¢.

The EA of the 2p orbital is obtained from the

C(1522522pz2py) —C~ (1522322pz2py2pz)
energy gap, which means that FA;, = EAc. Some common IP's of valence 2p orbitals in eV are as follows: C (11.16), N
(14.12), N (28.71), O (17.70), Ot (31.42), F'*™ (37.28).
Approximation 2: Nearest Neighbors Approximation
The off-diagonal elements <X"|2__7sz2 +V|x,) are taken as zero if x, and x,u belong to the same atom because the atomic
orbitals are assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to an electron moving in that

atom. They are set equal to a parameter denoted f3,, ,, if x,, and x, reside on neighboring atoms that are chemically bonded. If ¢,
and ¢,, reside on atoms that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

Approximation 3: Off-Diagonal Component

The geometry dependence of the 3,, , parameters is often approximated by assuming that 8, , is proportional to the overlap S, ,
between the corresponding atomic orbitals:

ﬂ/—h” = /BlotﬁVS:uﬂ"
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Here f3;;, is a constant (having energy units) characteristic of the bonding interaction between x, and yx, ; its value is usually
determined by forcing the molecular orbital energies obtained from such a qualitative orbital treatment to yield experimentally
correct ionization potentials, bond dissociation energies, or electronic transition energies.

It is sometimes assumed that the overlap matrix S is the identity matrix. This means that overlap between the orbitals is
neglected

The three approximations above form the basis of the so-called Hiickel model. Its implementation requires knowledge of the
atomic o, and ,327,, values, which are eventually expressed in terms of experimental data, as well as a means of calculating the
geometry dependence of the 3, ,'s (e.g., some method for computing overlap matrices S, ,, ).
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7.4: The Extended Huckel Method

It is well known that bonding and antibonding orbitals are formed when a pair of atomic orbitals from neighboring atoms interact.
The energy splitting between the bonding and antibonding orbitals depends on the overlap between the pair of atomic orbitals.
Also, the energy of the antibonding orbital lies higher above the arithmetic mean E,,. = E4 + Ep of the energies of the
constituent atomic orbitals (E4 and Eg) than the bonding orbital lies below E,,.. If overlap is ignored, as in conventional Hiickel
theory (except in parameterizing the geometry dependence of J3, ), the differential destabilization of antibonding orbitals
compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elements in the following overlap-dependent manner:
—h? 5
by = Xl 2_mev + V|Xﬂ> = 0-5K(hu,u + hv,l/)su,m

and explicitly treating the overlaps among the constituent atomic orbitals {cm} in solving the orbital-level Schrodinger equation

—h2
Z>XV| v2 +V|Xu>ciu :EiZ<XV|XN>Ci/u
2me,

b h

Hoffmann introduced the so-called extended Hiickel method. He found that a value for K= 1.75 gave optimal results when using
Slater-type orbitals as a basis (and for calculating the S Jmu,/nu)- The diagonal hy, , elements are given, as in the conventional
Hiickel method, in terms of valence-state IP's and EA's. Cusachs later proposed a variant of this parameterization of the off-
diagonal elements:

By =0.5K (R 1)Su (2 —[Suul)-

For first- and second-row atoms, the 1s or (2s, 2p) or (3s,3p, 3d) valence-state ionization energies (v, s), the number of valence
electrons (#Elec.) as well as the orbital exponents (e,, e, and eq) of Slater-type orbitals used to calculate the overlap matrix
elements Sy, ,, corresponding are given below.

Atom __ # Elec. es=ep ed as(eV) ap(eV) adeV)

H 1 13 -13.6

Li 1 0.650 5.4 3.5

Be 2 0.975 -10.0 -6.0

B 3 1.300 -15.2 -85

C 4 1.625 21.4 -11.4

N 5 1.950 -26.0 -13.4

0 6 2275 323 -14.8

F 7 2425 -40.0 -18.1

Na 1 0.733 5.1 3.0
Mg 2 0.950 9.0 -4.5

Al 3 1.167 -12.3 -6.5

Si 4 1.383 1.383 -17.3 9.2 -6.0
P 5 1.600 1.400 -18.6 -14.0 7.0
S 6 1.817 1.500 -20.0 -13.3 -8.0
Cl 7 2.033 2.033 -30.0 -15.0 -9.0

Table 7.4.1: Insert caption here!

In the Hiickel or extended Hiickel methods no explicit reference is made to electron-electron interactions although such
contributions are absorbed into the V potential, and hence into the o, and 3,,, parameters of Hiickel theory or the h, , and b, ,
parameters of extended Hiickel theory. As electron density flows from one atom to another (due to electronegativity differences),
the electron-electron repulsions in various atomic orbitals changes. To account for such charge-density-dependent coulombic
energies, one must use an approach that includes explicit reference to inter-orbital coulomb and exchange interactions. There exists
a large family of semi-empirical methods that permit explicit treatment of electronic interactions; some of the more commonly used
approaches are discussed in Appendix F.
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CHAPTER OVERVIEW

8: Electronic Configurations

One of the goals of quantum chemistry is to allow practicing chemists to use knowledge of the electronic states of fragments
(atoms, radicals, ions, or molecules) to predict and understand the behavior (i.e., electronic energy levels, geometries, and
reactivities) of larger molecules. In the preceding Section, orbital correlation diagrams were introduced to connect the orbitals of
the fragments along a 'reaction path' leading to the orbitals of the products. In this Section, analogous connections are made among
the fragment and product electronic states, again labeled by appropriate symmetries. To realize such connections, one must first
write down N-electron wavefunctions that possess the appropriate symmetry; this task requires combining symmetries of the
occupied orbitals to obtain the symmetries of the resulting states.

8.1: Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N Electrons Must Be Specified
8.2: Even N-Electron Configurations are Not Mother Nature's True Energy States

8.3: Mean-Field Models

8.4: Configuration Interaction (CI) Describes the Correct Electronic States

8.5: Summary
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8.1: Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N
Electrons Must Be Specified

Knowing the orbitals of a particular species provides one information about the sizes, shapes, directions, symmetries, and energies
of those regions of space that are available to the electrons (i.e., the complete set of orbitals that are available). This knowledge
does not determine into which orbitals the electrons are placed. It is by describing the electronic configurations (i.e., orbital
occupancies such as 1s22s%2p? or 1522s22p'3s') appropriate to the energy range under study that one focuses on how the
electrons occupy the orbitals. Moreover, a given configuration may give rise to several energy levels whose energies differ by
chemically important amounts. for example, the 1s22s22p? configuration of the Carbon atom produces nine degenerate
3 P states, five degenerate ! D states, and a single 1S state. These three energy levels differ in energy by 1.5 eV and 1.2 eV,
respectively.
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8.2: Even N-Electron Configurations are Not Mother Nature's True Energy States

Moreover, even single-configuration descriptions of atomic and molecular structure (e.g., 1522s%2p* for the Oxygen atom) do not
provide fully correct or highly accurate representations of the respective electronic wavefunctions. As will be shown in this Section
and in more detail in Section 6, the picture of N electrons occupying orbitals to form a configuration is based on a so-called "mean
field" description of the coulomb interactions among electrons. In such models, an electron at r is viewed as interacting with an
"averaged" charge density arising from the N-1 remaining electrons:

62
Vinean field —/PN—l(l")Wdr’.

Here py_1(r’) represents the probability density for finding electrons at r’, and is the mutual Coulomb repulsion between

\ ’|
electron density at r and r'. Analogous mean-field models arise in many areas of chemistry and physics, including electrolyte theory
(e.g., the Debye-Hiickel theory), statistical mechanics of dense gases (e.g., where the Mayer-Mayer cluster expansion is used to

improve the ideal-gas mean field model), and chemical dynamics (e.g., the vibrationally averaged potential of interaction).

In each case, the mean-field model forms only a starting point from which one attempts to build a fully correct theory by effecting
systematic corrections (e.g., using perturbation theory) to the mean-field model. The ultimate value of any particular meanfield
model is related to its accuracy in describing experimental phenomena. If predictions of the mean-field model are far from the
experimental observations, then higher-order corrections (which are usually difficult to implement) must be employed to improve
its predictions. In such a case, one is motivated to search for a better model to use as a starting point so that lower-order
perturbative (or other) corrections can be used to achieve chemical accuracy (e.g., + 1 kcal/mole).

In electronic structure theory, the single-configuration picture (e.g., the 1522s%2p* description of the oxygen atom) forms the
mean-field starting point; the configuration interaction (CI) or perturbation theory techniques are then used to systematically
improve this level of description.

The single-configuration mean-field theories of electronic structure neglect correlations among the electrons. That is, in expressing
the interaction of an electron at r with the N-1 other electrons, they use a probability density px_1(r’) that is independent of the
fact that another electron resides at .

The single-configuration mean-field theories of electronic structure neglect correlations
among the electrons.

In fact, the so-called conditional probability density for finding one of N-1 electrons at r', given that an electron is at r certainly
depends on r. As a result, the mean-field coulomb potential felt by a 2p, orbital’s electron in the 15*2s%2p, 2p, single-
configuration description of the Carbon atom is:

meanﬁeld /|13 dl"—l—2/|2$ I"—I—/|2py ﬁdl".

In this example, the density px_1(r’) is the sum of the charge densities of the orbitals occupied by the five other electrons
2|1s(r")|* +2|2s(r*)|> +|2py(r*)|? , and is not dependent on the fact that an electron resides at r.
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8.3: Mean-Field Models

The Mean-Field Model, Which Forms the Basis of Chemists' Pictures of Electronic Structure of Molecules, Is Not Very Accurate

The magnitude and "shape" of such a mean-field potential is shown below for the Beryllium atom. In this figure, the nucleus is at
the origin, and one electron is placed at a distance from the nucleus equal to the maximum of the 1s orbital's radial probability
density (near 0.13 A). The radial coordinate of the second is plotted as the abscissa; this second electron is arbitrarily constrained to
lie on the line connecting the nucleus and the first electron (along this direction, the inter-electronic interactions are largest). On the

ordinate, there are two quantities plotted: (i) the Self-Consistent Field (SCF) mean-field potential [ | 1s(r’)|2 €_dr’, and (ii) the

|r—r’|

interaction potential minus the SCF potential.

2

so-called Fluctuation potential (F), which is the true coulombic |rir’\
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Figure 8.3.1: Insert caption here!

As a function of the inter-electron distance, the fluctuation potential decays to zero more rapidly than does the SCF potential. For
this reason, approaches in which F is treated as a perturbation and corrections to the mean-field picture are computed perturbatively
might be expected to be rapidly convergent (whenever perturbations describing long-range interactions arise, convergence of
perturbation theory is expected to be slow or not successful). However, the magnitude of F is quite large and remains so over an
appreciable range of inter-electron distances. The resultant corrections to

The resultant corrections to the SCF picture are therefore quite large when measured in kcal/mole. For example, the differences
AFE between the true (state-of-the-art quantum chemical calculation) energies of interaction among the four electrons in Be and the
SCF mean-field estimates of these interactions are given in the table shown below in eV (recall that 1 eV = 23.06 kcal/mole).

Orb. Pair 1salsp Isalsa 1sa2sp 15f2sa 1sp2sp 2salsp
AEineV 1.126 0.022 0.058 0.058 0.022 1.234

Table 8.3.1: Insert caption here!

To provide further insight why the SCF mean-field model in electronic structure theory is of limited accuracy, it can be noted that
the average value of the kinetic energy plus the attraction to the Be nucleus plus the SCF interaction potential for one of the 2s
orbitals of Be with the three remaining electrons in the 152252 configuration is:

—hK? 4¢?

(2] V2 - — + Vscr|2s) = —15.4eV;

2me,
the analogous quantity for the 2p orbital in the 1s22s%p configuration is:

—h? v 4¢?

2m, r

(2p| + Vser|2p) = —12.28¢V;

the corresponding value for the 1s orbital is (negative and) of even larger magnitude. The SCF average coulomb interaction
between the two 2s orbitals of 152252 Be is:

2
/ 125(x) | 25(”) P ———dr dr’ — 5, 95¢V..

r—r|
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This data clearly shows that corrections to the SCF model (see the above table) represent significant fractions of the inter-electron
interaction energies (e.g., 1.234 eV compared to 5.95- 1.234 = 4.72 eV for the two 2s electrons of Be), and that the interelectron
interaction energies, in turn, constitute significant fractions of the total energy of each orbital (e.g., 5.95 -1.234 eV = 4.72 eV out of
-15.4 eV for a 2s orbital of Be).

The task of describing the electronic states of atoms and molecules from first principles and in a chemically accurate manner (+ 1
kcal/mole) is clearly quite formidable. The orbital picture and its accompanying SCF potential take care of "most" of the
interactions among the N electrons (which interact via long-range coulomb forces and whose dynamics requires the application of
quantum physics and permutational symmetry). However, the residual fluctuation potential, although of shorter range than the bare
coulomb potential, is large enough to cause significant corrections to the mean-field picture. This, in turn, necessitates the use of
more sophisticated and computationally taxing techniques (e.g., high order perturbation theory or large variational expansion
spaces) to reach the desired chemical accuracy.

Mean-field models are obviously approximations whose accuracy must be determined so scientists can know to what degree they
can be "trusted". For electronic structures of atoms and molecules, they require quite substantial corrections to bring them into line
with experimental fact. Electrons in atoms and molecules undergo dynamical motions in which their coulomb repulsions cause
them to "avoid" one another at every instant of time, not only in the average-repulsion manner that the mean-field models embody.
The inclusion of instantaneous spatial correlations among electrons is necessary to achieve a more accurate description of atomic
and molecular electronic structure.
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8.4: Configuration Interaction (Cl) Describes the Correct Electronic States

The most commonly employed tool for introducing such spatial correlations into electronic wavefunctions is called configuration
interaction (CI); this approach is described briefly later in this Section and in considerable detail in Section 6. Briefly, one employs
the (in principle, complete as shown by P. O. Léwdin, Rev. Mod. Phys. 32, 328 (1960)) set of N-electron configurations that

i. can be formed by placing the N electrons into orbitals of the atom or molecule under study, and that
ii. possess the spatial, spin, and angular momentum symmetry of the electronic state of interest.

This set of functions is then used, in a linear variational function, to achieve, via the CI technique, a more accurate and dynamically
correct description of the electronic structure of that state. For example, to describe the ground 1S state of the Be atom, the 1s22s2
configuration (which yields the mean-field description) is augmented by including other configurations such as
152352, 1522p? , 1523p? , 1522535, 352252 | 2p?252 etc., all of which have overall 1.5 spin and angular momentum symmetry.
The excited 1.5 states are also combinations of all such configurations. Of course, the ground-state wavefunction is dominated by
the |1s22s2| and excited states contain dominant contributions from |1s22s3s|, etc. configurations. The resultant CI wavefunctions
are formed as shown in Section 6 as linear combinations of all such configurations.

To clarify the physical significance of mixing such configurations, it is useful to consider what are found to be the two most
important such configurations for the ground 1S state of the Be atom:

U= C1[1325 - Oy [[15°2p2] + [15°2pj| + [15°2p2]] .

As proven in Chapter 13.1I1, this two-configuration description of Be's electronic structure is equivalent to a description is which
two electrons reside in the 1s orbital (with opposite, o and 3 spins) while the other pair reside in 2s-2p hybrid orbitals (more
correctly, polarized orbitals) in a manner that instantaneously correlates their motions:

U~ %Cl |15 {[(25 —a2p,)a(2s+a2p,)B — (25 — a2p,)B(2s +a2p,)a] (8.4.1)
+[(2s —a2py)a(25+a2p,) B — (25 — a2p,) B(2s +a2py)a] (8.4.2)
+[(2s—a2p,)a(2s+a2p,)B — (2s —a2p,)B(2s+a2p,)al}|, (8.4.3)

where a = 4 /35—?.

The so-called polarized orbital pairs (2s+ a2p; y, or > ) are formed by mixing into the 2s orbital an amount of the 2, 4, or » orbital,
with the mixing amplitude determined by the ratio of C5 to C;. As will be detailed in Section 6, this ratio is proportional to the
magnitude of the coupling (|1s22s%|H|1s22p?|) between the two configurations and inversely proportional to the energy
difference [(|1s225%|H|15%2s2|) — (| 1s?2p?|H|1s22p?|)|for these configurations. So, in general, configurations that have similar
energies (Hamiltonian expectation values) and couple strongly give rise to strongly mixed polarized orbital pairs. The result of
forming such polarized orbital pairs are described pictorially below.

! /Q 2s -a2p,
\ 2s +a2p,
2s and 2p,

Polarized Orbital 2s and 2p ,Pairs

In each of the three equivalent terms in this wavefunction, one of the valence electrons moves in a 2s+a2p orbital polarized in one
direction while the other valence electron moves in the 2s-a2p orbital polarized in the opposite direction. For example, the first
term [(2s—a2p;)a(2s+a2p,)B — (2s —a2p,)B(2s+a2p,)a] describes one electron occupying a 2s—a2p, polarized
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orbital while the other electron occupies the 2s + a2p, orbital. In this picture, the electrons reduce their mutual coulomb repulsion
by occupying different regions of space; in the SCF mean-field picture, both electrons reside in the same 2s region of space. In this
particular example, the electrons undergo angular correlation to "avoid" one another. The fact that equal amounts of x, y, and z
orbital polarization appear in Y is what preserves the ! S symmetry of the wavefunction.

The fact that the CI wavefunction
U= C1|1s%25 C, [|1s22p3] + [15°2p3| + [15°2p2| |

mixes its two configurations with opposite sign is of significance. As will be seen later in Section 6, solution of the Schrédinger
equation using the CI method in which two configurations (e.g., |15%2s%| and |1s22p?|) are employed gives rise to two solutions.
One approximates the ground state wave function; the other approximates an excited state. The former is the one that mixes the two
configurations with opposite sign.

To understand why the latter is of higher energy, it suffices to analyze a function of the form
U =~ C[15°28% + O,y [|1522p§| + |1522p23| + |1322p§|]

in a manner analogous to above. In this case, it can be shown that

U~ %C’ﬂls2 {[(25 —ia2p;)a(2s +1ia2p,)B — (25 —ia2p,)B(25 +ia2p, )a] (8.4.4)
+[(2s —ia2py)a(2s+ia2py) B — (2s —ia2p,)B(2s +ia2p,)a] (8.4.5)
+[(2s —ia2p,)a(2s+1ia2p,)B — (25 —ia2p,)B(2s +ia2p,)a] | }. (8.4.6)

There is a fundamental difference, however, between the polarized orbital pairs introduced earlier ¢ = (25 +a2p, y, or -) and the
corresponding functions ¢, = (2s4%a2p, yor.) appearing here. The probability densities embodied in the former

91> = |25]* +a?||* +-2a(252ps y or -)

describe constructive (for the + case) and destructive (for the - case) superposition of the probabilities of the 2s and 2p orbitals. The
probability densities of ¢/, are

|9/ 1> = (25+£7a2Psy or ) * (25 702Dz y or =) (8.4.7)

= |25|2 Jra2|2pac,yorz|2- (8.4.8)

These densities are identical to one another and do not describe polarized orbital densities. Therefore, the CI wavefunction which
mixes the two configurations with like sign, when analyzed in terms of orbital pairs, places the electrons into orbitals

= (2sj:ia2pz,y, orz) Whose densities do not permit the electrons to avoid one another. Rather, both orbitals have the same
spatial density |2s|2 +a2|2pg,y, or z|2 , which gives rise to higher coulombic interaction energy for this state.
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8.5: Summary

In summary, the dynamical interactions among electrons give rise to instantaneous spatial correlations that must be handled to
arrive at an accurate picture of atomic and molecular structure. The simple, single-configuration picture provided by the mean-field
model is a useful starting point, but improvements are often needed. In Section 6, methods for treating electron correlation will be
discussed in greater detail.

For the remainder of this Section, the primary focus is placed on forming proper Nelectron wavefunctions by occupying the orbitals
available to the system in a manner that guarantees that the resultant N-electron function is an eigenfunction of those operators that
commute with the N-electron Hamiltonian.

For polyatomic molecules, these operators include point-group symmetry operators (which act on all N electrons) and the spin
angular momentumn (S2 and S,) of all of the electrons taken as a whole (this is true in the absence of spin-orbit coupling which is
treated later as a perturbation). For linear molecules, the point group symmetry operations involve rotations R, of all N electrons
about the principal axis, as a result of which the total angular momentum L, of the N electrons (taken as a whole) about this axis
commutes with the Hamiltonian, H. Rotation of all N electrons about the x and y axes does not leave the total coulombic potential
energy unchanged, so L, and L, do not commute with H. Hence for a linear molecule, L., S?, and S, are the operators that
commute with H. For atoms, the corresponding operators are L?, L., S?, and S, (again, in the absence of spin-orbit coupling)
where each operator pertains to the total orbital or spin angular momentum of the N electrons.

To construct N-electron functions that are eigenfunctions of the spatial symmetry or orbital angular momentum operators as well as
the spin angular momentum operators, one has to "couple" the symmetry or angular momentum properties of the individual
spinorbitals used to construct the N-electrons functions. This coupling involves forming direct product symmetries in the case of
polyatomic molecules that belong to finite point groups, it involves vector coupling orbital and spin angular momenta in the case of
atoms, and it involves vector coupling spin angular momenta and axis coupling orbital angular momenta when treating linear
molecules. Much of this Section is devoted to developing the tools needed to carry out these couplings.
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CHAPTER OVERVIEW

9: Symmetry of Electronic Wavefunctions

Electronic wavefuntions must be constructed to have permutational antisymmetry because the N electrons are indistinguishable
Fermions

9.1: Electronic Configurations

9.2: Antisymmetric Wavefunctions
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9.1: Electronic Configurations

Atoms, linear molecules, and non-linear molecules have orbitals which can be labeled either according to the symmetry appropriate
for that isolated species or for the species in an environment which produces lower symmetry. These orbitals should be viewed as
regions of space in which electrons can move, with, of course, at most two electrons (of opposite spin) in each orbital. Specification
of a particular occupancy of the set of orbitals available to the system gives an electronic configuration. For example, 15%2s22p*
is an electronic configuration for the Oxygen atom (and for the F*! ion and the N ! ion); 15%2522p®3p! is another configuration
for O, F*!, or N~!. These configurations represent situations in which the electrons occupy low-energy orbitals of the system
and, as such, are likely to contribute strongly to the true ground and low-lying excited states and to the low-energy states of
molecules formed from these atoms or ions.

Specification of an electronic configuration does not, however, specify a particular electronic state of the system. In the above
15%25%2p* example, there are many ways (fifteen, to be precise) in which the 2p orbitals can be occupied by the four electrons. As
a result, there are a total of fifteen states which cluster into three energetically distinct levels, lying within this single configuration.
The 15%2522p®3p! configuration contains thirty-six states which group into six distinct energy levels (the word level is used to
denote one or more state with the same energy). Not all states which arise from a given electronic configuration have the same
energy because various states occupy the degenerate (e.g., 2p and 3p in the above examples) orbitals differently. That is, some
states have orbital occupancies of the form

2p22py2p,
while others have
2p22p32p°

as a result, the states can have quite different coulombic repulsions among the electrons (the state with two doubly occupied
orbitals would lie higher in energy than that with two singly occupied orbitals). Later in this Section and in Appendix G techniques
for constructing wavefunctions for each state contained within a particular configuration are given in detail. Mastering these tools
is an important aspect of learning the material in this text.

In summary, an atom or molecule has many orbitals (core, bonding, non-bonding, Rydberg, and antibonding) available to it;
occupancy of these orbitals in a particular manner gives rise to a configuration. If some orbitals are partially occupied in this
configuration, more than one state will arise; these states can differ in energy due to differences in how the orbitals are occupied. In
particular, if degenerate orbitals are partially occupied, many states can arise and have energies which differ substantially because
of differences in electron repulsions arising in these states. Systematic procedures for extracting all states from a given
configuration, for labeling the states according to the appropriate symmetry group, for writing the wavefunctions corresponding to
each state and for evaluating the energies corresponding to these wavefunctions are needed. Much of Chapters 10 and 11 are
devoted to developing and illustrating these tools.
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9.2: Antisymmetric Wavefunctions

General Concepts

The total electronic Hamiltonian

N —h? Z,e?
H=2 (TWV?E

where ¢ and j label electrons and a and b label the nuclei (whose charges are denoted Z,), commutes with the operators P;; which permute the

2 ZaZ 2
)+Z%+ZT26

i>7 a>b

names of the electrons ¢ and j. This, in turn, requires eigenfunctions of H to be eigenfunctions of P;;. In fact, the set of such permutation
operators form a group called the symmetric group. In the present text, we will not exploit the full group theoretical nature of these operators;
we will focus on the simple fact that all wavefunctions must be eigenfunctions of the P;; operator.
Because P;; obeys

A% A

P P;=1

the eigenvalues of the Isij operators must be +1 or - 1. Electrons are Fermions (i.e., they have half-integral spin) and they must have
wavefunctions which are odd under permutation of any pair:

Py¥ =¥

Bosons such as photons or deuterium nuclei (i.e., species with integral spin quantum numbers) have wavefunctions, which are even under
permutation and obey

Pyl = 4¥

These permutational symmetries are not only characteristics of the exact eigenfunctions of H belonging to any atom or molecule containing
more than a single electron, but they are also conditions which must be placed on any acceptable model or trial wavefunction (e.g., in a
variational sense) which one constructs.

In particular, within the orbital model of electronic structure (discussed in Section 6), one can not construct trial wavefunctions which are
simple spin-orbital products (i.e., an orbital multiplied by an o or B spin function for each electron) such as

1salsB2sa2sfB2pla2pla.
Such spin-orbital product functions must be made permutationally antisymmetric if the N-electron trial function is to be properly

antisymmetric. This can be accomplished for any such product wavefunction by applying the following antisymmetrizer operator:

1
A= — pspP
2

where N is the number of electrons, P runs over all N! permutations, and s p is +1 or -1 depending on whether the permutation P contains an
even or odd number of pairwise permutations (e.g., 231 can be reached from 123 by two pairwise permutations:

123 —+ 213 — 231

so0 231 would have s p =1). The permutation operator P in A acts on a product wavefunction and permutes the ordering of the spin-orbitals.

For example,
1
Aplp2p3 = % [Plp2¢03 — 1392 — 3201 — P2p1p3 + Y3ple2 + P2¢p3pl]

where the convention is that electronic coordinates r;, 3, and r3 correspond to the orbitals as they appear in the product (e.g., the term @ 3 ¢ 2
@ lrepresents 3 (r1)e2(r2)oe1(r3)).

It turns out that the permutations P can be allowed either to act on the "names" or labels of the electrons, keeping the order of the spin-orbitals
fixed, or to act on the spin- orbitals, keeping the order and identity of the electrons' labels fixed. The resultant wavefunction, which contains N!
terms, is exactly the same regardless of how one allows the permutations to act. Because we wish to use the above convention in which the
order of the electronic labels remains fixed as 1, 2, 3, ... N, we choose to think of the permutations acting on the names of the spin-orbitals. It
should be noted that the effect of A on any spin-orbital product is to produce a function that is a sum of N! terms. In each of these terms the
same spin-orbitals appear, but the order in which they appear differs from term to term.

https://chem.libretexts.org/@go/page/60911


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60911?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/09%3A_Symmetry_of_Electronic_Wavefunctions/9.02%3A_Antisymmetric_Wavefunctions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Symmetry_(Vallance)/01%3A_Chapters/1.03%3A_Symmetry_Classification_of_Molecules-_Point_Groups
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/06%3A_Quantum_Mechanics_in_Reactions

LibreTextsw

Antisymmetrization does not alter the overall orbital occupancy; it simply "scrambles" any

knowledge of which electron is in which spin-orbital.

The antisymmetrized orbital product Ap; @45 is represented by the short hand | ¢_1 ¢_2 ¢_3 | and is referred to as a Slater determinant. The
origin of this notation can be made clear by noting that (1/ v N!) times the determinant of a matrix whose rows are labeled by the index i of the
spin-orbital ¢ i and whose columns are labeled by the index j of the electron at r j is equal to the above function:

Aplp2¢3 = (1/+/3!)det(pi(rj)).
The general structure of such Slater determinants is illustrated below:

L detej(ri) = ——p1(1)p2(1)p3(1). .. k(1) ... ON(1)1(2)92(2)03(2). .. ok(2). ... ON(2)....

VN N
P1(N)p2(N)3(N). . ok(N). . o N(N)

The antisymmetry of many-electron spin-orbital products places constraints on any acceptable model wavefunction, which give rise to
important physical consequences. For example, it is antisymmetry that makes a function of the form | 1s o 1s a | vanish (thereby enforcing the
Pauli exclusion principle) while | 1s « 2s a | does not vanish, except at points r 1 and r 2 where 1s(r;) = 2s(r3), and hence is acceptable. The
Pauli principle is embodied in the fact that if any two or more columns (or rows) of a determinant are identical, the determinant vanishes.
Antisymmetry also enforces indistinguishability of the electrons in that

[1salsB2sa2sf| = —|1salsB2sB2sc|.

That is, two wavefunctions which differ simply by the ordering of their spin-orbitals are equal to within a sign (+/- 1); such an overall sign
difference in a wavefunction has no physical consequence because all physical properties depend on the product ¥ * W , which appears in any
expectation value expression.

The antisymmetry of many-electron spin-orbital products places constraints on any acceptable
model wavefunction.

Physical Consequences of Antisymmetry

Once the rules for evaluating energies of determinental wavefunctions and for forming functions which have proper spin and spatial symmetries
have been put forth (in Chapter 11), it will be clear that antisymmetry and electron spin considerations, in addition to orbital occupancies, play
substantial roles in determining energies and that it is precisely these aspects that are responsible for energy splittings among states arising from
one configuration. A single example may help illustrate this point. Consider the 7! 7*! configuration of ethylene (ignore the other orbitals and
focus on the properties of these two). As will be shown below when spin angular momentum is treated in full, the triplet spin states (e.g.,
S =1) of this configuration are:

|S=1,Ms=1)=|rar"a|
|S=1,Ms =-1) = =" B,
and
1§ =1,Ms = 0) = —[|ma"§| + [vf"al.
V2
The singlet spin state is:

1 * 0| _ *
|§=0,Ms=0) = ﬁ[lmﬂ Bl —|mpr"al].

To understand how the three triplet states have the same energy and why the singlet state has a different energy, and an energy different than the
Mg =0 triplet even though these two states are composed of the same two determinants, we proceed as follows:

o Step 1. We express the bonding 7 and antibonding 7* orbitals in terms of the atomic p-orbitals from which they are formed:

1
and
L
ﬂ—\/i[L R],
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e Step 2. We substitute these expressions into the Slater determinants that form the singlet and triplet states and collect terms and throw out
terms for which the determinants vanish.

o Step 3. This then gives the singlet and triplet states in terms of atomic-orbital occupancies where it is easier to see the energy equivalences
and differences. Let us begin with the triplet states:

1
|rar*a| = §[|LaLa| —|RaRa|+ |RaLa| — |LaRal] (9.2.1)
= |RaLa|' (9.2.2)

~(Iran"g| +|mpn"al] = |ILaLB| —|RaRp| +|RaLB| —|LaRA|+|LALa| — |RARa| + |RBLa| — |LARa|] (9.2.3)

75

Sl

=7[|RaLﬂ|+|RﬁLal] (9.2.4)

1
mBr* Bl = S[ILBLA| — |RBRB| +|RALA| — |LARA|] (9.2.5)
= |R[3L[3|. (9.2.6)

The singlet state can be reduced in like fashion:

1 * _ * _ _ _
ﬁﬂwaﬂ' B|—|nprtal] = \/_2[|LaL6| |RaRB| +|RaLp| —|LaRB| - |LBLa| — |RALa| +|LARa|]  (9.2.7)

= EHLO‘LM —|RBRa|] . (9.2.8)
Notice that all three triplet states involve atomic orbital occupancy in which one electron is on one atom while the other is on the second carbon
atom. In contrast, the singlet state places both electrons on one carbon (it contains two terms; one with the two electrons on the left carbon and
the other with both electrons on the right carbon). In a "valence bond" analysis of the physical content of the singlet and triplet 7' 7*! states, it
is clear that the energy of the triplet states will lie below that of the singlet because the singlet contains "zwitterion" components that can be
denoted C"C~ and C~C™, while the three triplet states are purely "covalent". This case provides an excellent example of how the spin and
permutational symmetries of a state "conspire” to qualitatively affect its energy and even electronic character as represented in its atomic orbital
occupancies. Understanding this should provide ample motivation for learning how to form proper antisymmetric spin (and orbital) angular
momentum eigenfunctions for atoms and molecules.

I The energy of the triplet states will lie below that of the singlet

I — dekiscript —
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10.1: Angular Momentum Symmetry and Strategies for Angular Momentum Coupling

Because the total Hamiltonian of a many-electron atom or molecule forms a mutually commutative set of operators with $2, S,,
and A = (O1/N1)Sp sp P, the exact eigenfunctions of H must be eigenfunctions of these operators. Being an eigenfunction of A
forces the eigenstates to be odd under all P;;. Any acceptable model or trial wavefunction should be constrained to also be an
eigenfunction of these symmetry operators.

If the atom or molecule has additional symmetries (e.g., full rotation symmetry for atoms, axial rotation symmetry for linear
molecules and point group symmetry for nonlinear polyatomics), the trial wavefunctions should also conform to these spatial
symmetries. This Chapter addresses those operators that commute with H, P;;, S 2 and S, and among one another for atoms,
linear, and non-linear molecules. As treated in detail in Appendix G, the full non-relativistic N-electron Hamiltonian of an atom or
molecule

_h2 Za2 2
A=YV X5 )

Jra j<k Tjk
commutes with the following operators:

i. The inversion operator i and the three components of the total orbital angular momentum L, =Y L.(j), Ly, Ly, as well as the
J
components of the total spin angular momentum S, S;, and S, for atoms (but not the individual electrons' L,(j), S,(j), etc).

Hence, L?, L., S?, S, are the operators we need to form eigenfunctions of, and L, M, S, and MS are the "good" quantum
numbers.
ii. L, =Y L,(j), as well as the N-electron S, Sy, and S, for linear molecules (also i, if the molecule has a center of
J

symmetry). Hence, L,, S2, and S, are the operators we need to form eigenfunctions of, and My, S, and Mg are the "good"
quantum numbers; L no longer is! iii.

iii. S;, Sy, and S, as well as all point group operations for non-linear polyatomic molecules. Hence S2, S, and the point group
operations are used to characterize the functions we need to form. When we include spin-orbit coupling into H (this adds
another term to the potential that involves the spin and orbital angular momenta of the electrons), L2, L., S2, S, no longer
commute with H. However, J, = S, + L, and J2 = (L+S)? now do commute with H.
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10.2: Electron Spin Angular Momentum

Individual electrons possess intrinsic spin characterized by angular momentum quantum numbers s and m; for electrons, s = 1/2
and ms = 1/2, or -1/2. The mgs =1/2 spin state of the electron is represented by the symbol « and the m; = —1/2 state is
represented by 3. These spin functions obey:

2 1/1 2
S’a—2 2—|—1 h a,
Sza:lha
2
1/1
2p_ —( = 1 h2
5B 2<2+) B
and

S.8= —%hﬂ.

The o\ (and\ (8 spin functions are connected via lowering S_ and raising S operators, which are defined in terms of the x and y
components of S as follows:

S, =Sz +iSy
and
S_ =8, —1iS,.

In particular S48 =ha,S.a=0,S_a=~hF, and S_5 =0 . These expressions are examples of the more general relations
(these relations are developed in detail in Appendix G) which all angular momentum operators and their eigenstates obey:

J? |.7’ m> = .7(.7+ 1)h2|ja m>

Jiljm) =Ry §(i+1) ~m(m+1) |j,m+1)

and

J-l;m) =hy/ j(i+1) —m(m—1) lj;m 1)

In a many-electron system, one must combine the spin functions of the individual electrons to generate eigenfunctions of the total
S, =>.5.(t) (expressions for S; = > .5, (¢) and S, = S,(¢) also follow from the fact that the total angular momentum of

a collection of particles is the sum of the angular momenta, component-by-component, of the individual angular momenta) and
total S? operators because only these operators commute with the full Hamiltonian, H, and with the permutation operators P;;. No
longer are the individual $?(i) and S, (¢) good quantum numbers; these operators do not commute with P;;.

Spin states which are eigenfunctions of the total S2 and S, can be formed by using angular momentum coupling methods or the
explicit construction methods detailed in Appendix (G). In the latter approach, one forms, consistent with the given electronic
configuration, the spin state having maximum .S, eigenvalue (which is easy to identify as shown below and which corresponds to a
state with S equal to this maximum S, eigenvalue) and then generating states of lower S, values and lower S values using the
angular momentum raising and lowering operators

S = ZS_ (i)and S, = ZS+(i)).

To illustrate, consider a three-electron example with the configuration 1s2s3s. Starting with the determinant | 1sa2sa3sa |, which

% and hence has S :% (this function is denoted | %, %)), apply S_ in the additive form
S_=3"5_(i) to generate the following combination of three determinants:
i

has the maximum M, =

https://chem.libretexts.org/@go/page/60596



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60596?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/10%3A_Angular_Momentum_and_Group_Symmetries_of_Electronic_Wavefunctions/10.02%3A_Electron_Spin_Angular_Momentum

LibreTextsw

h[|1sB2sa3sa| + |1sa2sB3sal+|1sa2sa3sp|],

which, according to the above identities, must equal

3G 3E) 3

So the state |%, %) with § = % and M, = % can be solved for in terms of the three determinants to give
| 31 - 1
2’2" /3

The states with S = % and M, = —71 and _73 can be obtained by further application of S_ to |%, %) (actually, the M, = _73 can

[|1sB2sa3sa|+ |1sa2sB3sal+ |1sa2sa3sf]] .

be identified as the "spin flipped" image of the state with M, = % and the one with M = %1 can be formed by interchanging all
a'sand b's in the M = % state).

Of the eight total spin states (each electron can take on either & or 3 spin and there are three electrons, so the number of states is

23), the above process has identified proper combinations which yield the four states with S = % Doing so consumed the

determinants with M, = % and %3, one combination of the three determinants with Mg = %, and one combination of the three
determinants with Mg = %1 There still remain two combinations of the Mg = % and two combinations of the Mg = =L
determinants to deal with. These functions correspond to two sets of §= l eigenfunctions having Mg = l and < -

Combinations of the determinants must be used in forming the S = func'nons to keep the S= = elgenfunctlons orthogonal to
the above S = % functions (which is required because S? is a herrnltlan operator whose elgenfunctlons belonging to different
eigenvalues must be orthogonal). The two independent S = %, M, = % states an be formed by simply constructing combinations
of the above three determinants with Mg = % which are orthogonal to the S = % combination given above and orthogonal to each

other. For example,

[|1sﬁ2sa3sa| |1sa2sB3sal+0z|1sa2sa3sf|],

[|1sﬁ2sa3sa| +|1sa2sB3sa| — 2z|1sa2sa3sf]|],

are acceptable (as is any Cornbination of these two functions generated by a unitary transformation ). A pair of independent
orthonormal states with S =21 5 and Mg = ; can be generated by applying S_ to each of these two functions ( or by
constructing a pair of orthonorrnal functions which are combinations of the three determinants with

Mg = _Tl and which are orthogonal to the § = %, Mg = _Tl function obtained as detailed above).

The above treatment of a three-electron case shows how to generate quartet (spin states are named in terms of their spin
degeneracies 25+1) and doublet states for a configuration of the form 1s2s3s. Not all three-electron configurations have both
quartet and doublet states; for example, the 1s22s configuration only supports one doublet state. The methods used above to
generate S = 3 and S = l states are valid for any three-electron situation; however, some of the determinental functions vanish if
2, - 3 and |1salsa2sf| and
|1sB1sB2sa| Mg = 5, T determinants vanish because they violate the Pauli principle; only |1sals82sa|and |1salsB2s3]|do

doubly occupled orbitals occur as for 1s?2s. In particular, the |1salsa2sa|and [1s81s82s6| Mg =

not vanish. These two remaining determinants form the S = % , Mg = %, %1 doublet spin functions which pertain to the 1s?2s
configuration. It should be noted that all closed-shell components of a configuration (e.g., the 1s? part of 15%2s or the 15%2522p%
part of 1522522p®3s'3p' ) must involve o and B spin functions for each doubly occupied orbital and, as such, can contribute
nothing to the total Mg value; only the open-shell components need to be treated with the angular momentum operator tools to
arrive at proper total-spin eigenstates.

In summary, proper spin eigenfunctions must be constructed from antisymmetric (i.e., determinental) wavefunctions as
demonstrated above because the total S? and total S, remain valid symmetry operators for many-electron systems. Doing so
results in the spinadapted wavefunctions being expressed as combinations of determinants with coefficients determined via spin
angular momentum techniques as demonstrated above. In configurations with closed-shell components, not all spin functions are
possible because of the antisymmetry of the wavefunction; in particular, any closed-shell parts must involve /3 spin pairings for
each of the doubly occupied orbitals, and, as such, contribute zero to the total M.
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10.3: Coupling of Angular Momenta

Vector Coupling

Given two angular momenta (of any kind) L; and Ly, when one generates states that are eigenstates of their vector sum
L =L+ Ly, one can obtain L values of

Li+Ly,Li+Ly—1,...|Ly — Ly|.

This can apply to two electrons for which the total spin S can be 1 or 0 as illustrated in detail above, or to a p and a d orbital for
which the total orbital angular momentum L can be 3, 2, or 1. Thus for a p'd' electronic configuration,
3SFF3D,! D3 P,and! P energy levels (and corresponding wavefunctions) arise. Here the term symbols are specified as the
spin degeneracy (2S+1) and the letter that is associated with the L-value. If spin-orbit coupling is present, the 3 F" level further splits
into J= 4, 3, and 2 levels which are denoted 3Fy,* F3, and *Fy.

This simple "vector coupling” method applies to any angular momenta. However, if the angular momenta are "equivalent" in the
sense  that they involve indistinguishable  particles that occupy the same  orbital shell (e.g.,
2p® involves 3 equivalent electrons; 2p' 3p'4p' involves 3 non-equivalent electrons; 2p?3p! involves 2 equivalent electrons and
one non-equivalent electron), the Pauli principle eliminates some of the expected term symbols (i.e., when the corresponding
wavefunctions are formed, some vanish because their Slater determinants vanish). Later in this section, techniques for dealing with
the equivalent-angular momenta case are introduced. These techniques involve using the above tools to obtain a list of candidate
term symbols after which Pauli-violating term symbols are eliminated.

Figure 10.3.1: Tllustration of the vector model of orbital angular momentum. Image used with permisison (Public Domain;
Maschen)

Non-Vector Coupling

For linear molecules, one does not vector couple the orbital angular momenta of the individual electrons (because only L, not L?
commutes with H), but one does vector couple the electrons' spin angular momenta. Coupling of the electrons' orbital angular
momenta involves simply considering the various L, eigenvalues that can arise from adding the L, values of the individual
electrons. For example, coupling two p orbitals (each of which can have m = +1) can give

My, =1+1,1-1, -1+1, and -1-1, or 2, 0, 0, and -2.
The level with M}, = +2 is called a D state (much like an orbital with m = +2 is called a d orbital), and the two states with M, = 0
are called S states. States with L, eigenvalues of My and — My, are degenerate because the total energy is independent of which
direction the electrons are moving about the linear molecule's axis (just a 741 and 7_; orbitals are degenerate). Again, if the two
electrons are non-equivalent, all possible couplings arise (e.g., a 77! configuration yields A3 23 2.1 Al S, and'Y states).
In contrast, if the two electrons are equivalent, certain of the term symbols are Pauli forbidden. Again, techniques for dealing with
such cases are treated later in this Chapter.
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Direct Products for Non-Linear Molecules

For non-linear polyatomic molecules, one vector couples the electrons' spin angular momenta but their orbital angular momenta are
not even considered. Instead, their point group symmetries must be combined, by forming direct products, to determine the
symmetries of the resultant spin-orbital product states. For example, the bib% configuration in Cy, symmetry gives rise to
34, and ' Ay term symbols. The ele’l configuration in Cs, symmetry gives 3E,3 Ay,3 A;,! E,! Ay, and "A; term symbols. For
two equivalent electrons such as in the e® configuration, certain of the *E,> A5, A;,' E,' A,, and ' A; term symbols are Pauli
forbidden. Once again, the methods needed to identify which term symbols arise in the equivalent-electron case are treated later.

One needs to learn how to tell which term symbols will be Pauli excluded, and to learn how to write the spin-orbit product
wavefunctions corresponding to each term symbol and to evaluate the corresponding term symbols' energies.
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10.4: Atomic Term Symbols and Wavefunctions

Non-Equivalent Orbital Term Symbols

When coupling non-equivalent angular momenta (e.g., a spin and an orbital angular momenta or two orbital angular momenta of
non-equivalent electrons), one vector couples using the fact that the coupled angular momenta range from the sum of the two
individual angular momenta to the absolute value of their difference. For example, when coupling the spins of two electrons, the
total spin S can be 1 or 0; when coupling a p and a d orbital, the total orbital angular momentum can be 3, 2, or 1. Thus for a p*d?!
electronic configuration, 3F,! F3 D! D3 P, and ' P energy levels (and corresponding wavefunctions) arise. The energy
differences among these levels has to do with the different electron-electron repulsions that occur in these levels; that is, their
wavefunctions involve different occupancy of the p and d orbitals and hence different repulsion energies. If spin-orbit coupling is
present, the L. and S angular momenta are further vector coupled. For example, the 3 F' level splits into J= 4, 3, and 2 levels which
are denoted ®Fy,® Fy, and ®Fy. The energy differences among these J-levels are caused by spin-orbit interactions.

JZ

Figure 10.4.1: Tllustration of L-S coupling. Total angular momentum J is purple, orbital L is blue, and spin S is green.

Equivalent Orbital Term Symbols

If equivalent angular momenta are coupled (e.g., to couple the orbital angular momenta of a p? or d® configuration), one must use
the "box" method to determine which of the term symbols, that would be expected to arise if the angular momenta were
nonequivalent, violate the Pauli principle. To carry out this step, one forms all possible unique (determinental) product states with
non-negative M, and Mg values and arranges them into groups according to their My, and Mg values. For example, the boxes
appropriate to the p? orbital occupancy are shown below:

M, 2 1 0
My 1 Propoa| [praxp-1a|
0 [prapip p1epopl. [poapiBl  [prapaBl
[p-1cp1 Bl
[pocxpof

Figure 10.4.1: Insert caption here!

There is no need to form the corresponding states with negative My, or negative Mg values because they are simply "mirror
images" of those listed above. For example, the state with My, = —1 and Mg = —1 is |p_; Bpy 8|, which can be obtained from the
M =1, Mg =1 state [plapya|by replacing o by 8 and replacing p; by p_1 .

Given the box entries, one can identify those term symbols that arise by applying the following procedure over and over until all
entries have been accounted for:

1. One identifies the highest Mg value (this gives a value of the total spin quantum number that arises, S) in the box. For the
above example, the answer is S = 1.

2. For all product states of this Mg value, one identifies the highest M, value (this gives a value of the total orbital angular
momentum, L, that can arise for this S ). For the above example, the highest
M7, within the Mg =1 statesis My =1 (not My =2), hence L = 1.

3. Knowing an S, L. combination, one knows the first term symbol that arises from this configuration. In the p* example, this is
3p.
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4. Because the level with this L and S quantum numbers contains (2L+1)(2S+1) states with My, and Mg quantum numbers
running from -L to L and from -S to S, respectively, one must remove from the original box this number of product states. To do
so, one simply erases from the box one entry with each such ML and MS value. Actually, since the box need only show those
entries with non-negative ML and MS values, only these entries need be explicitly deleted. In the 3 P example, this amounts to
deleting nine product states with My, Mg values of 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

5. After deleting these entries, one returns to step 1 and carries out the process again. For the p? example, the box after deleting
the first nine product states looks as follows (those that appear in italics should be viewed as already cancelled in counting all of
the 3 P states):

M, 2 1 0
My 1 propon| lprap.jal
o [prapip lprapofil. poapiBl  lprap Bl
[p-1cxp1 Bl

[pocepof

Figure 10.4.2: Insert caption here!

It should be emphasized that the process of deleting or crossing off entries in various M7, Mg boxes involves only counting how
many states there are; by no means do we identify the particular L, .S, My, Ms wavefunctions when we cross out any particular
entry in a box. For example, when the |p; apg 3| product is deleted from the My, =1, Mg =0 box in accounting for the states in
the 3 P level, we do not claim that |p;apof| itself is a member of the 3 P level; the |pyap; 8] product state could just as well been
eliminated when accounting for the 3 P states. As will be shown later, the 3 P state with My =1, Mg = 0 will be a combination of

|p1apo 8| and |poap: B

Returning to the p?> example at hand, after the 3 P term symbol's states have been accounted for, the highest Mg value is 0 (hence
there is an S=0 state), and within this Mg value, the highest M}, value is 2 (hence there is an L=2 state). This means there is a D
level with five states having My, = 2,1,0,-1,-2. Deleting five appropriate entries from the above box (again denoting deletions by
italics) leaves the following box:

M, 2 1 ]
Mg 1 [pieeppen lprap.jal
0 lprapiB lprapoB. lpocpiBl  prapoBl,
lp-1op Bl
[Pocipof

Figure 10.4.3: Insert caption here!

The only remaining entry, which thus has the highest Mg and M, values, has Mg = 0 and My = 0. Thus there is also a 1S level
in the p? configuration.

Thus, unlike the non-equivalent 2p13p1 case, in which *P,' P> D,' D> §, and *§ levels arise, only the *P,! D, and 1S arise in
the p? situation. This "box method" is necessary to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can determine all possible couplings of the equivalent
angular momenta using this method and then use the simpler vector coupling method to add the non-equivalent angular momenta to
each of these coupled angular momenta. For example, the p?d! configuration can be handled by vector coupling (using the
straightforward non-equivalent procedure) L=2 (the d orbital) and S = 1 (the third electron's spin) to each of *P,! D, and 'S.
Theresultis*F,*D*P2F2D2P2G2F2D2P2S, and 2D.
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10.5: Atomic Configuration Wavefunctions

To express, in terms of Slater determinants, the wavefunctions corresponding to each of the states in each of the levels, one
proceeds as follows:

1. For each Mg, M combination for which one can write down only one product function (i.e., in the non-equivalent angular
momentum situation, for each case where only one product function sits at a given box row and column point), that product
function itself is one of the desired states. For the p? example, the |p;apy| and |p;ap_; | (as well as their four other
M7y, and Mg "mirror images") are members of the ® P level (since they have Mg = +1) and |p; ap; 3| and its M, mirror image
are members of the ! D level (since they have My, = +2).

2. After identifying as many such states as possible by inspection, one uses L+ and S to generate states that belong to the same
term symbols as those already identified but which have higher or lower M}, and/or Mg values.

3. If, after applying the above process, there are term symbols for which states have not yet been formed, one may have to
construct such states by forming linear combinations that are orthogonal to all those states that have thus far been found.

To illustrate the use of raising and lowering operators to find the states that can not be identified by inspection, let us again focus on
the p? case. Beginning with three of the 3 P states that are easy to recognize, |p1apoc|, |prap-1c|, and |p_;apoa} we apply S—
to obtain the Mg = 0 functions:

S3P(Mp=1,Ms =1) =[S-(1)+5-(2)||[prapocl

— 5y /1(2)—1(0) P(My =1, Mg = 0)

1/3 1 1
_h\/5(5 5(5)) ‘plﬂp0a| +hﬁ|plap05|a

so,

SP(Mp=1,Ms=0) = [|p1Bpocr| + |prapoc|].

-

2

The same process applied to |p;ap_1a| and |p_; apoa] gives
1
7 [lprap_16] +|p1Bp-1a]
and
1
—2[|p71ﬂpoﬂ| +[p-1Bpoc]]

respectively.

1
The *P(M =1, Ms =0) = E[|p1ﬂpga| +|p1apoB|] function can be acted on with L_ to generate > P(My, = 0, Mg =0) :

L} P(My =1,Ms =0) = [L_(1) + L_(2) %nmpm +prapoB]
— h/1(2) — 1(0) P(Mj =0, Ms —0)
=1/ 21O e+ pmapnsl) + 1y [ 2O 1 5 a4 fprap gl

so,

1
SP(M =0,Mg=0)= —2[|P15P—104| +|prap_16]].
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The ' D term symbol is handled in like fashion. Beginning with the My, = 2 state |p; ap; 3|, one applies L_ to generate the My, =

1 state:
L' DMy, =2,Ms=0)=[L_(1)+L_(1)]|prap:f|
—h,/2(3)—2(1) D(My =1, Ms —0)
=hy/1(2) = 1(0)[|[poap1B| + [prapoBl],
s0,
DMy =1,Ms=0) = %Hpoaplm +[prapoBl]
Applying L_ once more generates the ! D(My, =0, Ms =0) state:
L_ L_
£ DMy, Ms = 0) = LLLEE @ o 514 oy
/2
—1/2(3) — 1(0)D(My, = 0, Ms = 0)
1(2)—-0(—1 1(2)—1(0
= JF2 D 1y s+ ap 181+ iy 22D g + e
S0,

1
'D(Mp =0,Ms=0)= %[ﬂpoapom +|p_1ap1 Bl +|prap_1 6]].

Notice that the My, =0, Mg = 0 states of > P and of ! D are given in terms of the three determinants that appear in the "center" of
the p? box diagram:

L
/6

1
SP(Mp =0,Mg=0)— 1|+ |prap—
(ML, s )ﬁﬂplﬂp 1a| +[prap_1 6]

% [—|p_1ap1B| + [prap-18]].

'D(Mp=0,Ms=0)= [12poapo | + |p-1ap1 8| + [prap-18]],

The only state that has eluded us thus far is the 1.8 state, which also has M}, = 0 and Mg = 0 . To construct this state, which must
also be some combination of the three determinants with M, = 0 and Mg = 0 , we use the fact that the ! § wavefunction must be
orthogonal to the 3P and ' D functions because 'S,3 P, and ' D are eigenfunctions of the hermitian operator L2 having
different eigenvalues. The state that is normalized and is a combination ofpyapof|, |p—1ap18|, and |p1ap_16|is given as
follows:

L
e
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10.6: Inversion Symmetry

One more quantum number, that relating to the inversion (i) symmetry operator can be used in atomic cases because the total
potential energy V is unchanged when all of the electrons have their position vectors subjected to inversion (i.e., ¢r = -r). This
quantum number is straightforward to determine. Because each L, .S, My, Mg, H state discussed previously consists of a few (or,
in the case of configuration interaction several) symmetry adapted combinations of Slater determinant functions, the effect of the
inversion operator on such a wavefunction ¥ can be determined by:

i. applying i to each orbital occupied in ¥ thereby generating a + 1 factor for each orbital (+1 fors, d, g, i, etc orbitals; -1 for p, f,
h, j, etc orbitals),
ii. multiplying these +1 factors to produce an overall sign for the character of ¥ under 7.

When this overall sign is positive, the function ¥ is termed "even" and its term symbol is appended with an "e" superscript (e.g.,
the 3 P level of the O atom, which has 1522s%2p* occupancy is labeled 3 P¢); if the sign is negative ¥ is called "odd" and the term
symbol is so amended (e.g., the 3 P level of 1522s'2p! B* ion is labeled 3 P,).
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10.7: Review of Atomic Cases

The orbitals of an atom are labeled by [ and m; quantum numbers; the orbitals belonging to a given energy and [ value are 2] +1-

fold degenerate. The many-electron Hamiltonian, H, of an atom and the antisymmetrizer operatorA = (, / ﬁ) > s, P commute
P
with total L, =Y L, (%), as in the linear-molecule case. The additional symmetry present in the spherical atom reflects itself in the
i

fact that L,, and L, now also commute with H and A. However, since L, does not commute with L.\ or L,, new quantum
numbers can not be introduced as symmetry labels for these other components of L. A new symmetry label does arise when

L?=L2+L2+L}

is introduced; L? commutes with H, A , and L., so proper eigenstates (and trial wavefunctions) can be labeled with L, My, S, M,,
and H quantum numbers.

To identify the states which arise from a given atomic configuration and to construct properly symmetry-adapted determinental
wave functions corresponding to these symmetries, one must employ L and My, and S and Mg angular momentum tools. One
first identifies those determinants with maximum Mg (this then defines the maximum S value that occurs); within that set of
determinants, one then identifies the determinant(s) with maximum M7, (this identifies the highest L value). This determinant has S
and L equal to its Mg and M}, values (this can be verified, for example for L, by acting on this determinant with Lo in the form

L*=L L, +L?+hL,

and realizing that L, acting on the state must vanish); other members of this L,S energy level can be constructed by sequential
application of S_ and L_ =) L_(¢) . Having exhausted a set of (2L+1)(25S+1) combinations of the determinants belonging to
i

the given configuration, one proceeds to apply the same procedure to the remaining determinants (or combinations thereof). One
identifies the maximum Mg and, within it, the maximum M7, which thereby specifies another S, L label and a new "maximum"
state. The determinental functions corresponding to these L,S (and various My, Mg ) values can be constructed by applying
S_and L_ to this "maximum" state. This process is continued until all of the states and their determinental wave functions are
obtained.

As illustrated above, any p® configuration gives rise to 3P¢,' D¢, and 'S¢ levels which contain nine, five, and one state
respectively. The use of L and S angular momentum algebra tools allows one to identify the wavefunctions corresponding to these
states. As shown in detail in Appendix G, in the event that spin-orbit coupling causes the Hamiltonian, H, not to commute with L
or with S but only with their vector sum J = L + S, then these L?2S?L,S, eigenfunctions must be coupled (i.e., recombined) to
generate J2.J, eigenstates. The steps needed to effect this coupling are developed and illustrated for the above p* configuration
case in Appendix G.

In the case of a pair of non-equivalent p orbitals (e.g., in a 2p*3p' configuration), even more states would arise. They can also be
found using the tools provided above. Their symmetry labels can be obtained by vector coupling (see Appendix G) the spin and
orbital angular momenta of the two subsystems. The orbital angular momentum coupling with1=1and1=1 gives L =2, 1, and 0
or D, P, and S states. The spin angular momentum coupling with s =1/2 and s = 1/2 gives S = 1 and 0, or triplet and singlet states.
So, vector coupling leads to the prediction that 3D¢,! D¢3 P¢1 P¢3 8¢ and 'S¢ states can be formed from a pair of non-
equivalent p orbitals. It is seen that more states arise when non-equivalent orbitals are involved; for equivalent orbitals, some
determinants vanish, thereby decreasing the total number of states that arise.
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11: Evaluating the Matrix Elements of N-electron Wavefunctions

One must be able to evaluate the matrix elements among properly symmetry adapted N-electron configuration functions for any
operator, the electronic Hamiltonian in particular. The Slater-Condon rules provide this capability

11.1: Configuration State Functions can Express the Full N-Electron Wavefunction

11.2: The Slater-Condon Rules Give Expressions for the Operator Matrix Elements Among the CSFs

11.3: The Slater-Condon Rules

11.4: Examples of Applying the Slater-Condon Rules

11.S: Evaluating the Matrix Elements of N-electron Wavefunctions (Summary)
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11.1: Configuration State Functions can Express the Full N-Electron Wavefunction

It has been demonstrated that a given electronic configuration can yield several space- and spin- adapted determinental
wavefunctions; such functions are referred to as configuration state functions (CSFs). These CSF wavefunctions are not the exact
eigenfunctions of the many-electron Hamiltonian, H; they are simply functions which possess the space, spin, and permutational
symmetry of the exact eigenstates. As such, they comprise an acceptable set of functions to use in, for example, a linear variational
treatment of the true states.

In such variational treatments of electronic structure, the N-electron wavefunction ¥ is expanded as a sum over all CSFs that
possess the desired spatial and spin symmetry:

q/:ZCJ@J.
J

Here, the ®; represent the CSFs that are of the correct symmetry, and the C; are their expansion coefficients to be determined in
the variational calculation. If the spin-orbitals used to form the determinants, that in turn form the CSFs {® s}, are orthonormal one
electron functions (i.e., (¢x|¢p;) = Ok, ;), then the CSFs can be shown to be orthonormal functions of N electrons

<¢J|‘I’K> :5J’K.

In fact, the Slater determinants themselves also are orthonormal functions of N electrons whenever orthonormal spin-orbitals are
used to form the determinants.

The above expansion of the full N-electron wavefunction is termed a "configuration-interaction" (CI) expansion. It is, in principle,
a mathematically rigorous approach to expressing ¥ because the set of all determinants that can be formed from a complete set of
spin-orbitals can be shown to be complete. In practice, one is limited to the number of orbitals that can be used and in the number
of CSFs that can be included in the CI expansion. Nevertheless, the CI expansion method forms the basis of the most commonly
used techniques in quantum chemistry.

In general, the optimal variational (or perturbative) wavefunction for any (i.e., the ground or excited) state will include
contributions from spin-and space-symmetry adapted determinants derived from all possible configurations. For example, although
the determinant with L. =1, S = 1, My = 1, Mg =1 arising from the 15%>2s22p? configuration may contribute strongly to the true
ground electronic state of the Carbon atom, there will be contributions from all configurations which can provide these L, S,
My, and Mg values (e.g., the 1522s22p'3p'and?2s?2p? configurations will also contribute, although the
15%2522p'3s! and 15%25'2p?3p* will not because the latter two configurations are odd under inversion symmetry whereas the
state under study is even).

The mixing of CSFs from many configurations to produce an optimal description of the true electronic states is referred to as
configuration interaction (CI). Strong CI (i.e., mixing of CSFs with large amplitudes appearing for more than one dominant CSF)
can occur, for example, when two CSFs from different electronic configurations have nearly the same Hamiltonian expectation
value. For example, the 15?252 and 1522p? 1 S configurations of Be and the analogous n.s? and np? configurations of all alkaline
earth atoms are close in energy because the ns-np orbital energy splitting is small for these elements; the 7% and 72*
configurations of ethylene become equal in energy, and thus undergo strong CI mixing, as the CC 7 bond is twisted by 90° in
which case the 7 and 7" orbitals become degenerate.

Within a variational treatment, the relative contributions of the spin-and space symmetry adapted CSFs are determined by solving a
secular problem for the eigenvalues (E; ) and eigenvectors ( C; ) of the matrix representation H of the full many-electron
Hamiltonian H within this CSF basis:

Z Hg 1Ci =E;Ci k.
T

The eigenvalue E; gives the variational estimate for the energy of the i state, and the entries in the corresponding eigenvector
C; i give the contribution of the K th CSF to the it wavefunction ¥; in the sense that

¥, = Z Ci xk®xk,
173

where ®is the KthC SF.
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11.2: The Slater-Condon Rules Give Expressions for the Operator Matrix Elements
Among the CSFs

To form the Hp ; matrix, one uses the so-called Slater-Condon rules which express all non-vanishing determinental matrix
elements involving either one- or two- electron operators (one-electron operators are additive and appear as

F=>Yf()
i
two-electron operators are pairwise additive and appear as
G= Z g(i, .7)
ij

Because the CSFs are simple linear combinations of determinants with coefficients determined by space and spin symmetry, the
Hj ; matrix in terms of determinants can be used to generate the Hx ; matrix over CSFs.

The Slater-Condon rules give the matrix elements between two determinants

| >=|p123. .. Py

and
!
| >=|¢1 585 .. Pyl

for any quantum mechanical operator that is a sum of one- and two- electron operators (F + G). It expresses these matrix elements
in terms of one-and two-electron integrals involving the spin-orbitals that appear in | > and | "> and the operators f and g.

As a first step in applying these rules, one must examine | > and | "> and determine by how many (if any) spin-orbitals | > and | ">
differ. In so doing, one may have to reorder the spin-orbitals in one of the determinants to achieve maximal coincidence with those
in the other determinant; it is essential to keep track of the number of permutations (V,) that one makes in achieving maximal
coincidence. The results of the Slater-Condon rules given below are then multiplied by (—1)™ to obtain the matrix elements
between the original | > and | >. The final result does not depend on whether one chooses to permute | > or | ">.

Once maximal coincidence has been achieved, the Slater-Condon (SC) rules provide the following prescriptions for evaluating the

matrix elements of any operator F + G containing a one-electron part ' =>_ f(¢) and a two-electron part G = g(¢, ) (the
i ij

Hamiltonian is, of course, a specific example of such an operator; the electric dipole operator Y er; and the electronic kinetic
i

—h? . . .
energy >—— > V2 are examples of one-electron operators (for which one takes g = 0); the electron-electron coulomb interaction
2me 7 7

; % is a two-electron operator (for which one takes f = 0)):

i>]

The Slater—Condon rules express integrals of one- and two-body operators over
wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the
individual orbitals. In doing so, the original integrals involving N-electron wavefunctions
are reduced to sums over integrals involving at most two molecular orbitals, or in other
words, the original 3N dimensional integral is expressed in terms of many three- and six-
dimensional integrals.
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11.3: The Slater-Condon Rules

The Slater—Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants
of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions
are reduced to sums over integrals involving at most two molecular orbitals

i. If |> and |'> are identical, then

(F+Gl) = (dilfldi) + Y [(didslgldior; — (dishslaldioi)]

i i>j
where the sums over i and j run over all spin-orbitals in | >;

ii. If | > and | *> differ by a single spin-orbital mismatch ( (¢, # ¢}, ),
(|F+G') = (bp|F8h) + > [(boilglBpbs) — (pslaldidh)]
J

where the sum over j runs over all spin-orbitals in | > except ¢, ;

iii. If | > and | "> differ by two spin-orbitals (¢, # ¢}, and ( ¢4 # ¢4 ),
(IF+GI') = (bpbal 9l $p¢) — (PpPalgl D))

(note that the F contribution vanishes in this case);
iv. If | > and | "> differ by three or more spin orbitals, then
<|F+G| >=0;

v. For the identity operator I, the matrix elements < |I| "™ = 0 if | > and | "> differ by one or more spin-orbitals (i.e., the Slater
determinants are orthonormal if their spin-orbitals are).

Recall that each of these results is subject to multiplication by a factor of (—1)™r to account for possible ordering differences in the
spin-orbitals in | > and | ">.

In these expressions,
< ¢ilflo; >

is used to denote the one-electron integral
[émr@s e
and < @;#;|g|drPr > (or in short hand notation < i j| k 1>) represents the two-electron integral
[ 401650t o)t drar

The notation <i j | k I> introduced above gives the two-electron integrals for the g(r,r") operator in the so-called Dirac notation, in
which the i and k indices label the spin-orbitals that refer to the coordinates r and the j and 1 indices label the spin-orbitals referring
to coordinates r'. The r and r' denote 7,0, ¢, and ', &', ¢', o' (with o and o’ being the o or B spin functions). The fact that r
and r' are integrated and hence represent 'dummy’' variables introduces index permutational symmetry into this list of integrals. For
example,

. o .o .. * .o *
<ijlkl >=< ji|lk >=< kl|ij > =< lk|ji > ;
the final two equivalences are results of the Hermitian nature of g(r,r").
It is also common to represent these same two-electron integrals in a notation referred to as Mulliken notation in which:

*

/ 61 (1) (1) 9(r, )i (r) () drdr’ = (i ).
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Here, the indices i and k, which label the spin-orbital having variables r are grouped together, and j and 1, which label spin-orbitals
referring to the 1" variables appear together. The above permutational symmetries, when expressed in terms of the Mulliken integral
list read:

. . . . ok . o\ K

(ik|g) = (dllik) = (Ki|lg) = (Lilki) -
If the operators f and g do not contain any electron spin operators, then the spin integrations implicit in these integrals (all of the ¢;
are spin-orbitals, so each ¢ is accompanied by an « or 8 spin function and each ¢>* involves the adjoint of one of the « or 8 spin
functions) can be carried out as < ala >=1,<a|8>=0,< Bla >=0,< |8 >=1, thereby yielding integrals over spatial
orbitals. These spin integration results follow immediately from the general properties of angular momentum eigenfunctions

detailed in Appendix G; in particular, because o and 8 are eigenfunctions of Sz with different eigenvalues, they must be
orthogonal < a|8 >=< Bla >=0.

The essential results of the Slater-Condon rules are:

1. The full N! terms that arise in the N-electron Slater determinants do not have to be treated explicitly, nor do the N!(N! + 1)/2
Hamiltonian matrix elements among the N! terms of one Slater determinant and the N! terms of the same or another Slater
determinant

2. All such matrix elements, for any one- and/or two-electron operator can be expressed in terms of one- or two-electron integrals
over the spin-orbitals that appear in the determinants.

3. The integrals over orbitals are three or six dimensional integrals, regardless of how many electrons N there are.

4. These integrals over mo's can, through the LCAO-MO expansion, ultimately be expressed in terms of one- and two-electron
integrals over the primitive atomic orbitals. It is only these ao-based integrals that can be evaluated explicitly (on high speed
computers for all but the smallest systems).

This page titled 11.3: The Slater-Condon Rules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform.
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11.4: Examples of Applying the Slater-Condon Rules

It is wise to gain some experience using the Slater-Condon rules, so let us consider a few illustrative example problems.

1. What is the contribution to the total energy of the ® P level of Carbon made by the two 2p orbitals alone? Of course, the two 1s
and two 2s spin-orbitals contribute to the total energy, but we artificially ignore all such contributions in this example to
simplify the problem.

Because all nine of the 3 P states have the same energy, we can calculate the energy of any one of them; it is therefore prudent
to choose an "easy" one

SP(Mp =1,Ms=1) = |piapoc|.

The energy of this state is < |p;apoa|H|piapoar| >. The SC rules tell us this equals:

Ipp, +Iop,+ < 2p12p0|2p12po > — < 2p12po|2p02p1 >,

where the short hand notation \(I_j =<j | f | j > is introduced.

If the contributions from the two 1s and two 2s spin-orbitals are now taken into account, one obtains a tetal energy that also
contains 2115 4+ 2L+ < 1s1s|1s1s > +4 < 1525|1525 > —2 < 1525|2515 > + < 2525|2525 > +2 < 1s2p;|182p; > —
< 182p;1|2p11s > +2 < 182py|182pg > — < 182pg|2ppls > 42 < 252p;|252p; > — < 282p1 |2p128 > 42

< 282pg|282py > — < 282pg|2pp2s >.
2. Is the energy of another 3 P state equal to the above state's energy? Of course, but it may prove informative to prove this.
Consider the Mg =0, My, =1 state whose energy is:

1 1
7 < [|prapoB| + [p1Bpoc|]|H| < [|prapoB| + |p1Bpoct|] > 7

1
=3 [Lop, + Iop, + < 2p12p0 |2p12p0 > +1op, + T, + < 2p12p0| 2p12p0 >]

1
5[— < 2p12po|2po2p1 > — < 2p12po|2po2p1 >]

= Iy, + Iop, + < 2p12po|2P12py > — < 2p12po|2p02p1 >.

Which is, indeed, the same as the other 3 P energy obtained above
3. What energy would the singlet state % < [lprapoB| — |p1Bpocx|] have?

The 3PMs = 0 example can be used (changing the sign on the two determinants) to give

E = I, + Ipp,+ < 2p12po|2p12p0 > + < 2p12po|2p02p1 >.

Note, this is the My, = 1 component of the ! D state; it is, of course, not a 1P state because no such state exists for two
equivalent p electrons

4. What is the CI matrix element coupling |1s22s?| and |1s23s%|?
These two determinants differ by two spin-orbitals, so

< |lsalsp2sa2sP|H|1salsf3sadsf| >=< 252s|3s3s >=< 2535|3525 >
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(note, this is an exchange-type integral).
5. What is the CI matrix element coupling |rar(| and |7"ar” 42
These two determinants differ by two spin-orbitals, so

<|ranB|H|x ar B| >=<nr|r n >=<77 |t 7>

(note, again this is an exchange-type integral).
6. What is the Hamiltonian matrix element coupling |mamS]and ﬁ [|ran”B| — |nBm"alp

The first determinant differs from the 2 determinant by one spin-orbital, as does the second (after it is placed into maximal
coincidence by making one permutation), so

1 * *
< || H|— [|mar’ B~ nfr’ o] >

7%

<7|fl7" >+ <wr|n’w >] —(-1) <7lflr* >+ <mn|n’w >}

1 1
7 i

=V2[<a|f|lr" >+ < 7wr|n" T >].

7. What is the element coupling |ra3|and % [|man” B + 7B a2

1 * * 1 * *
< |7ra7r,6’|H|—[|7ra7r B| + |nBr a|] S — [< mlflm’ >+ <wrln’w >]

V2 V2

1 * *
+(—1)—[< 7| flm >+ <7w|w 7r>} =0.

V2

This result should not surprise you because | a7 |is an S=0 singlet state while nan B+ |7r67r*a] is the Mg =0

e
\/2
COInpOIlent Of the S—]. trlplet state.

8. Whatis ther =) er; electric dipole matrix element between |p;ap; 8| and ﬁ [lp1apoB| + |poap: B|]? Is the second
J
function a singlet or triplet? It is a singlet in disguise; by interchanging the pya and p; 8 and thus introducing a (-1), this

function is clearly identified as % [|lp1apoB| — |p1apoa|] which is a singlet.

The first determinant differs from the latter two by one spin orbital in each case, so
1 1 1
< |p1ap1ﬂ|r|$[|p1apoﬂ\ + [poap1 B|] >= $[< p1r|po >+ < pir|po >] = 7 <p1|r|po >.

9. What is the electric dipole matrix elements between the ! A = | a7, 3| state and the 1 3 = % [|miom_y B +|m_1am ]
state?

1
< —=[|man_1 8| +|m_1am f|]|r|Tiam G >

V2

[<m_1|r|m >+ <m_1|r|pi; >]

L
V2

=42 <m_q|r|m >.
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10. As another example of the use of the SC rules, consider the configuration interaction which occurs between the 152252 and
15%2p®' S CSFs in the Be atom.
The CSFs corresponding to these two configurations are as follows:

®; = |1salsp2sa2sp|

and

1
@y = —[[1salsB2pya2p | — [1salsf2pia2p_1 8| —[lsalsf2p_1a2p_1a2p1 fl].

V3

The determinental Hamiltonian matrix elements needed to evaluate the 2x2 H 7, matrix appropriate to these two CSFs are
evaluated via the SC rules. The first such matrix element is:

< |lsalsp2sa2sB|H|1salsf2sa2sPB| >=2his + 2hgs + J1s2s +4J15,25 + J2s 25 — 2 K15 25,

where
—h? 4e?
hi =< ¢| 5 V- —|¢; >,
Me r
o2
Jij =< ¢ipj|l —lip; >,
T12
and
2
Kij =< ¢ipj|—|djpi >
T12

are the orbital-level one-electron, coulomb, and exchange integrals , respectively.

Coulomb integrals J;; describe the coulombic interaction of one charge density ( ¢? above) with another charge density ((,25?

above); exchange integrals K;; describe the interaction of an overlap charge density (i.e., a density of the form ¢;¢; ) with
itself ( ¢;¢; with ¢;¢; in the above).

The spin functions o and 8 which accompany each orbital in |1sa1s82sa2sf|have been eliminated by carrying out the spin
integrations as discussed above. Because H contains no spin operators, this is straightforward and amounts to keeping integrals
< ¢i|fl¢p; > only ¢; and ¢; are of the same spin and integrals

< ¢id;|glpre > only if ¢; and ¢y, are of the same spin and ¢; and ¢; are of the same spin. The physical content of the
above energy (i.e., Hamiltonian expectation value) of the |1sa1s82sa2sf| determinant is clear: 2h;s + 2hsg; is the sum of the
expectation values of the one-electron (i.e., kinetic energy and electron-nuclear coulomb interaction) part of the Hamiltonian for
the four occupied spin-orbitals; Jis 15 +4J1525 + J2s25s —2K152, contains the coulombic repulsions among all pairs of
occupied spin-orbitals minus the exchange interactions among pairs of spin-orbitals with like spin.

The determinental matrix elements linking ®; and ®, are as follows:

< |1salsB2sa2sB|H|1salsB2pya2pef| >=< 2525|2py2py >,

<|1salsB2sa2sB|H|1salsB2pla2p 18| >=< 2s2s|2p12p_1 >,

https://chem.libretexts.org/@go/page/63315
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< |1salsB2sa2sB|H|1salsf2p_1a2p; B| >=< 252s|2p_12p; >,

where the Dirac convention has been introduced as a shorthand notation for the two electron integrals (e.g., < 252s|2pg2py >
represents [ 2s” (r1)2s" (72) <= 2po (1 )2po (rs)drydrs).

T12

The three integrals shown above can be seen to be equal and to be of the exchange integral form by expressing the integrals in
terms of integrals over cartesian functions and recognizing identities due to the equivalence of the 2p,, 2p,, and 2p, orbitals.
For example,

< 282s|2p12p_; >= [< 252s|[2p, +12py|[2ps —2py] >] =

1 2
vz
1 . .

5 [<282s|zz >+ < 282s|yy > +i < 282s|yz > —i < 282s|zy >] =< 2828|zT >= K93

(here the two imaginary terms cancel and the two remaining real integrals are equal);

< 28282p2py >=< 282s|22 >=< 282s|xx >= K>,
this is because Ko, ; = Ko7 = Kos y;

1
< 2825|2p_12p; >= 5[< 252s|[2p, —i2py][2p, +1i2p,] >] =

2
< 282s|zx >= /23*(r1)2s*(r2):—22pz(r1)2pz (r2)dridry = Ko 5.
1

These integrals are clearly of the exchange type because they involve the coulombic interaction of the 2s2p, y o, overlap
charge density with itself.
Moving on, the matrix elements among the three determinants in ®; are given as follows:

< |13a1362p0a2p0,3|H|13a1362p0a2p0ﬂ| >=2hy, + 2h2p + Jls,ls —‘1-4.]13’21, — 2K13’2p

(J1s,2p and K, 9y are independent of whether the 2p orbital is 2p,, 2py, or 2p, );

< |lsalsB2pia2p_1 B|H|1salsfB2pia2p_1 8] >=2hys +2hg, + Jis1s +4J1s2p — 2K1s,2p+ < 2p12p_1|2p12p_1 >;
<|1salsf2p_i102p B|H|1salsf2p_1a2pi B| >=2his+2hop + Jis1s +4J152p — 2K 2p+ < 2p-12p1]2p-12p1 >;

< |1salsB2poa2py Bl H|1salsB2pra2p_1 | >=< 2po2po|2p12p-1 >
< |1salsp2poa2poB|H|1salsB2p 1 a2p; B| >=< 2po2po|2p-12p1 >

< |1salsB2pia2p_16|H|1salsB2p_1a2p B| >=<2p12p_1|2p_12p1 >
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Certain of these integrals can be recast in terms of cartesian integrals for which equivalences are easier to identify as follows:

< 2p2po|2p12p-1 >=< 2po2po|2p-12p1 >=< zz|zx >= K 4;

1
< 2p12p_1|2p_12p; >=< zz|yy > +5[< zz|zx > — < zy|zy >|

1
= Kw,y + E[Jx,x - Jz,y} )

1
<2p12p_1|2p12p_1 >=<2p_12p1|2p_12p1 >= 3 [Joe +Jayl -

Finally, the 2x2 CI matrix corresponding to the CSFs ¥; and ¥, can be formed from the above determinental matrix elements;
this results in:

Hyy =2hys +2hos + J151s +4J1525 + Jas 25 — 2K14 263

_KZS,Z
Hyy = 7;
2
Hyy =2his+2hop 4+ Jis15 +4J1s,2p — 2Ki1s2p +J 2,2 — 3Kzx.

The lowest eigenvalue of this matrix provides this CI calculation's estimate of the groundstate * S energy of Be; its eigenvector
provides the CI amplitudes for ®; and ®, in this ground-state wavefunction. The other root of the 2x2 secular problem gives
an approximation to another 'S state of higher energy, in particular, a state dominated by the

% [|1salsB2poa2pef| —|1salsB2pra2p_1 8| —|1salsB2p_1 a2p; B|CSE.

11. As another example, consider the matrix elements which arise in electric dipole transitions between two singlet electronic
states:
< U |E-> er;|¥; >. Here E- > er; is the one-electron operator describing the interaction of an electric field of magnitude
i i

and polarization E with the instantaneous dipole moment of the electrons (the contribution to the dipole operator arising from

the nuclear charges — > Z,e’R,, does not contribute because, when placed between ¥, and ¥, , this zero-electron operator
a

yields a vanishing integral because ¥; and ¥, are orthogonal).

When the states U3 and ¥y are described as linear combinations of CSFs as introduced earlier (¥; = Y C;x Uk ), these
K

matrix elements can be expressed in terms of CSF-based matrix elements < ¥ x| Y er;| ¥y, >. The fact that the electric dipole
i

operator is a one-electron operator, in combination with the SC rules, guarantees that only states for which the dominant
determinants differ by at most a single spin-orbital (i.e., those which are "singly excited") can be connected via electric dipole

transitions through first order (i.e., in a one-photon transition to which the < ¥;| > er;| ¥, > matrix elements pertain). It is for
i

this reason that light with energy adequate to ionize or excite deep core electrons in atoms or molecules usually causes such
ionization or excitation rather than double ionization or excitation of valence-level electrons; the latter are two-electron events.
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In, for example, the 7 — 7 excitation of an olefin, the ground and excited states are dominated by CSFs of the form (where all
but the "active" 7 and 7 orbitals are not explicitly written) :

Uy =|...manf|

and

D, = [...mar Bl —|...7Bx al].

L

V2

The electric dipole matrix element between these two CSFs can be found, using the SC rules, to be
e

— [< wle|n’ >+ <nwlr|r’| = v2e < 7|r|7" >.

V2

Notice that in evaluating the second determinental integral < |...7amf|er|. .. 76w a| > a sign change occurs when one puts
the two determinants into maximum coincidence; this sign change then makes the minus sign in ®, yield a positive sign in the
final result.

This page titled 11.4: Examples of Applying the Slater-Condon Rules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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11.S: Evaluating the Matrix Elements of N-electron Wavefunctions (Summary)

In all of the examples in Chapter 11, the Slater-Condon rules were used to reduce matrix elements of one- or two- electron
operators between determinental functions to one- or two- electron integrals over the orbitals which appear in the determinants. In
any ab initio electronic structure computer program there must exist the capability to form symmetry-adapted CSFs and to
evaluate, using these SC rules, the Hamiltonian and other operators' matrix elements among these CSFs in terms of integrals over
the Molecular Orbitals that appear in the CSFs. The Slater-Condon rules provide not only the tools to compute quantitative matrix
elements; they allow one to understand in qualitative terms the strengths of interactions among CSFs. In the following section, the
SC rules are used to explain why chemical reactions in which the reactants and products have dominant CSFs that differ by two
spin-orbital occupancies often display activation energies that exceed the reaction endoergicity.

This page titled 11.5: Evaluating the Matrix Elements of N-electron Wavefunctions (Summary) is shared under a CC BY-NC-SA 4.0 license and
was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

12: Quantum Mechanical Picture of Bond Making and Breaking Reactions

Along "reaction paths", configurations can be connected one-to-one according to their symmetries and energies. This is another
part of the Woodward-Hoffmann rules

12.1: Concepts of Configuration and State Energies

12.2: Mixing of Covalent and Ionic Configurations

12.3: Various Types of Configuration Mixing

This page titled 12: Quantum Mechanical Picture of Bond Making and Breaking Reactions is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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12.1: Concepts of Configuration and State Energies

Plots of CSF Energies Give Configuration Correlation Diagrams

The energy of a particular electronic state of an atom or molecule has been expressed in terms of Hamiltonian matrix elements,
using the Slater-Condon rules, over the various spin-and spatially adapted determinants or CSFs which enter into the state
wavefunction.

E=) (&/|H|®,)C/C,.
I,J

The diagonal matrix elements of H in the CSF basis multiplied by the appropriate CI amplitudes (®;|H|®;)CrCf represent the
energy of the I™ CSF weighted by the strength ( CI2 ) of that CSF in the wavefunction. The off-diagonal elements represent the
effects of mixing among the CSFs; mixing is strongest whenever two or more CSFs have nearly the same energy ( i.e.,
< ®7|H|®; >#< ®;|H|®; > ) and there is strong coupling ( i.e., < ®;|H|®; > is large ). Whenever the CSFs are widely
separated in energy, each wavefunction is dominated by a single CSF.

CSFs Interact and Couple to Produce States and State Correlation Diagrams

Just as orbital energies connected according to their symmetries and plotted as functions of geometry constitute an orbital
correlation diagram, plots of the diagonal CSF energies, connected according to symmetry, constitute a configuration correlation
diagram (CCD). If, near regions where energies of CSFs of the same symmetry cross (according to the direct product rule of group
theory discussed in Appendix E, only CSFs of the same symmetry mix because only they have non-vanishing < ®;|H|®; >
matrix elements), CI mixing is allowed to couple the CSFs to give rise to "avoided crossings", then the CCD is converted into a so-
called state correlation diagram ( SCD ).

CSFs that Differ by Two Spin-Orbitals Interact Less Strongly than CSFs that Differ by One Spin-
Orbital

The strengths of the couplings between pairs of CSFs whose energies cross are evaluated through the Slater-Condon rules. CSFs

that differ by more than two spin-orbital occupancies do not couple; the Slater-Condon rules give vanishing Hamiltonian matrix

elements for such pairs. Pairs that differ by two spin-orbitals (e. g. |.. Pq- .. Pp. .. |vS|.. Py .. Py. .. |) have interaction strengths

determined by the two-electron integrals < ab | a'b' > - < ab | b'a"™. Pairs that differ by a single spin-orbital

(e.g.|--aeev-.- |vs|..gren... D are coupled by the one- and  two- electron parts of

H:<a|f]b>+> [<ajlbj>— <aj|jb>]. Usually, couplings among CSFs that differ by two spin-orbitals are much weaker
J

than those among CSFs that differ by one spin-orbital. In the latter case, the full strength of H is brought to bear, whereas in the
former, only the electron-electron coulomb potential is operative.

State Correlation Diagrams

In the SCD, the energies are connected by symmetry but the configurational nature as reflected in the C} coefficients changes as
one passes through geometries where crossings in the CCD occur. The SCD is the ultimate product of an orbital and configuration
symmetry and energy analysis and gives one the most useful information about whether reactions will or will not encounter barriers
on the ground and excited state surfaces.

As an example of the application of CCD's and SCD's, consider the disrotatory closing of 1,3-butadiene to produce cyclobutene.
The OCD given earlier for this proposed reaction path is reproduced below.
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Figure 12.1.1: Insert caption here!

Recall that the symmetry labels e and o refer to the symmetries of the orbitals under reflection through the one C, plane that is
preserved throughout the proposed disrotatory closing. Low-energy configurations (assuming one is interested in the thermal or
low-lying photochemically excited-state reactivity of this system) for the reactant molecule and their overall space and spin
symmetry are as follows:

o 7rf7r§ =1€e%10%,! Even

o mimjmi =1le?lo'2e!,® Odd and 'Odd.

For the product molecule, on the other hand, the low-lying states are
e 0272 =1e22¢2,! Even
o o2rln't =1e%2e'0',? Odd,' Odd.

Notice that although the lowest energy configuration at the reactant geometry w272 = le?10? and the lowest energy configuration

at the product geometry o272 = 1e22e? are both of 1Even symmetry, they are mot the same configurations; they involve
occupancy of different symmetry orbitals.

In constructing the CCD, one must trace the energies of all four of the above CSFs (actually there are more because the singlet and
triplet excited CSFs must be treated independently) along the proposed reaction path. In doing so, one must realize that the 1e2102
CSF has low energy on the reactant side of the CCD because it corresponds to wZp2 orbital occupancy, but on the product side, it
corresponds to %72 orbital occupancy and is thus of very high energy. Likewise, the 1e?2e? CSF has low energy on the product
side where it is o272 but high energy on the reactant side where it corresponds to wfﬂ'g. The low-lying singly excited CSFs are
1e*2e!10! at both reactant and product geometries; in the former case, they correspond to 7rf ﬂ% 7r§ occupancy and at the latter to

o?mlm*! occupancy. Plotting the energies of these CSFs along the disrotatory reaction path results in the CCD shown below.

1e’10°

1e’ze”

Figure 12.1.2: Insert caption here!

If the two ! Even CSFs which cross are allowed to interact (the Slater-Condon rules give their interaction strength in terms of the

exchange integral < |le’10%|H|le?2e?| >=< lolo|2e2e >= K1, 3. ) to produce states which are combinations of the two
1Even CSFs, the following SCD results:
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Figure 12.1.3: Insert caption here!

This SCD predicts that the thermal (i.e., on the ground electronic surface) disrotatory rearrangement of 1,3-butadiene to produce
cyclobutene will experience a symmety-imposed barrier which arises because of the avoided crossing of the two 1Even
configurations; this avoidance occurs because the orbital occupancy pattern (i.e., the configuration) which is best for the ground
state of the reactant is not identical to that of the product molecule. The SCD also predicts that there should be no symmetry-
imposed barrier for the singlet or triplet excited-state rearrangement, although the reaction leading from excited 1,3-butadiene to
excited cyclobutene may be endothermic on the grounds of bond strengths alone.

It is also possible to infer from the SCD that excitation of the lowest singlet 7’ state of 1,3-butadiene would involve a low
quantum yield for producing cyclobutene and would, in fact, produce ground-state butadiene. As the reaction proceeds along the
singlet 77" surface this ' Odd state intersects the ground ' 1Even surface on the reactant side of the diagram; internal conversion (
i.e., quenching from the 1 Odd to the ' Even surfaces induced by using a vibration of odd symmetry to "digest" the excess energy
(much like vibronic borrowing in spectroscopy) can lead to production of ground-state reactant molecules. Some fraction of such
events will lead to the system remaining on the 'Odd surface until, further along the reaction path, the 'Odd surface again
intersects the ! Even surface on the product side at which time quenching to produce ground-state products can occur. Although, in
principle, it is possible for some fraction of the events to follow the *Odd surface beyond this second intersection and to thus lead
to 1Odd product molecules that might fluoresce, quenching is known to be rapid in most polyatomic molecules; as a result,
reactions which are chemiluminescent are rare. An appropriate introduction to the use of OCD's, CCD's, and SCD's as well as the
radiationless processes that can occur in thermal and photochemical reactions is given in the text Energetic Principles of
Chemical Reactions , J. Simons, Jones and Bartlett, Boston (1983).

This page titled 12.1: Concepts of Configuration and State Energies is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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12.2: Mixing of Covalent and lonic Configurations

As chemists, much of our intuition concerning chemical bonds is built on simple models introduced in undergraduate chemistry
courses. The detailed examination of the H2 molecule via the valence bond and molecular orbital approaches forms the basis of our
thinking about bonding when confronted with new systems. Let us examine this model system in further detail to explore the
electronic states that arise by occupying two orbitals (derived from the two 1s orbitals on the two hydrogen atoms) with two
electrons.

In total, there exist six electronic states for all such two-orbital, two-electron systems. The heterolytic fragments X + Y: and X: + Y
produce two singlet states; the homolytic fragments X- + Y- produce one singlet state and a set of three triplet states having Mg =
1, 0, and -1. Understanding the relative energies of these six states , their bonding and antibonding characters, and which molecular
state dissociates to which asymptote are important.

Before proceeding, it is important to clarify the notation (e. g., X-, Y, X, Y :, etc. ), which is designed to be applicable to neutral
as well as charged species. In all cases considered here, only two electrons play active roles in the bond formation. These electrons
are represented by the dots. The symbols X- and Y- are used to denote species in which a single electron is attached to the
respective fragment. By X: , we mean that both electrons are attached to the X- fragment; Y means that neither electron resides on
the Y- fragment. Let us now examine the various bonding situations that can occur; these examples will help illustrate and further
clarify this notation.

The H, Case in Which Homolytic Bond Cleavage is Favored

To consider why the two-orbital two-electron single bond formation case can be more complex than often thought, let us consider
the Hy system in more detail. In the molecular orbital description of Hy, both bonding sg and antibonding su mos appear. There are
two electrons that can both occupy the sg mo to yield the ground electronic state H(1S,", S2); however, they can also occupy
both orbitals to yield 3Su+ (sg'sh) and 'S, +(s}sk), or both can occupy the su mo to give the 1Sg +(su 2) state. As
demonstrated explicitly below, these latter two states dissociate heterolytically to X + Y: = H' + H~, and are sufficiently high in
energy relative to X+ + Y* = H + H that we ordinarily can ignore them. However, their presence and character are important in the
development of a full treatment of the molecular orbital model for Hy and are essential to a proper treatment of cases in which
heterolytic bond cleavage is favored.

Cases in Which Heterolytic Bond Cleavage is Favored
For some systems one or both of the heterolytic bond dissociation asymptotes (e.g., X+ Y: or X: + Y) may be lower in energy than

+ +
the homolytic bond dissociation asymptote. Thus, the states that are analogues of the * 3" (c4ot) and ! 37 (02) states of Hy can no
u g
longer be ignored in understanding the valence states of the XY molecules. This situation arises quite naturally in systems
involving transition metals, where interactions between empty metal or metal ion orbitals and 2-electron donor ligands are

ubiquitous.

Two classes of systems illustrate cases for which heterolytic bond dissociation lies lower than the homolytic products. The first
involves transition metal dimer cations, M; . Especially for metals to the right side of the periodic table, such cations can be
considered to have ground-state electron configurations with o2d™d"*! character, where the d electrons are not heavily involved in
the bonding and the s bond is formed primarily from the metal atom s orbitals. If the o bond is homolytically broken, one forms
X -+Y-=M(s*d™)+ M+ (s'd™). For most metals, this dissociation asymptote lies higher in energy than the heterolytic
products X: + Y = M (s2d™) + M+ (s°d™™), since the latter electron configurations correspond to the ground states for the
neutrals and ions, respectively. A prototypical species which fits this bonding picture is N z;'

The second type of system in which heterolytic cleavage is favored arises with a metal-ligand complex having an atomic metal ion
(with a s°d™*! configuration) and a two electron donor, L: . A prototype is (Ag Cg Hg)™ which was observed to photodissociate to
form X - +Y- = Ag(®S, s'd1%) + CsHg + (?B;) rather than the lower energy (heterolytically cleaved) dissociation limit Y + X:
=Ag" (15, 50d10) + CﬁHﬁ(lAl).
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Analysis of Two-Electron, Two-Orbital, Single-Bond Formation

The resultant family of six electronic states can be described in terms of the six configuration state functions (CSFs) that arise when
one occupies the pair of bonding ¢ and antibonding o molecular orbitals with two electrons. The CSFs are combinations of
Slater determinants formed to generate proper spin- and spatial symmetry- functions.

The spin- and spatial- symmetry adapted N-electron functions referred to as CSFs can be formed from one or more Slater
determinants. For example, to describe the singlet CSF corresponding to the closed-shell o2 orbital occupancy, a single Slater
determinant

%(0) = |oacs| = %[aa(l)aﬂ@) —oB(1)oa(2)

suffices. An analogous expression for the (a* )2 CSF is given by

L — . 1 [« : ) )
>_(0)=lo"a0" 5l = —=[o"a(1)"82) o a(2)0” 6(1)].

This page titled 12.2: Mixing of Covalent and lonic Configurations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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12.3: Various Types of Configuration Mixing

Essential ClI

The above examples of the use of CCD's show that, as motion takes place along the proposed reaction path, geometries may be
encountered at which it is essential to describe the electronic wavefunction in terms of a linear combination of more than one CSF:

U=>"Cr¥
1

where the ®;1 are the CSFs which are undergoing the avoided crossing. Such essential configuration mixing is often referred to as
treating "essential CI".

Dynamical ClI

To achieve reasonable chemical accuracy (e.g., + 5 kcal/mole) in electronic structure calculations it is necessary to use a
multiconfigurational ¥ even in situations where no obvious strong configuration mixing (e.g., crossings of CSF energies) is
present. For example, in describing the 72 bonding electron pair of an olefin or the ns? electron pair in alkaline earth atoms, it is
important to mix in doubly excited CSFs of the form (71'*)2 and np?, respectively. The reasons for introducing such a CI-level
treatment were treated for an alkaline earth atom earlier in this chapter.

Briefly, the physical importance of such doubly-excited CSFs can be made clear by using the identity:

C[l. ¢O[¢)ﬂ . ' —Cz|. .¢’a¢'ﬂ. . |

- %“' (¢—zd)a(p+2d)B..|—|.. (9 —2¢)B(d+z¢)a.. ],

where

This allows one to interpret the combination of two CSFs which differ from one another by a double excitation from one orbital
(¢) to another (¢') as equivalent to a singlet coupling of two different (non-orthogonal) orbitals (¢ —z¢') and (¢ +z¢') . This
picture is closely related to the so-called generalized valence bond (GVB) model that W. A. Goddard and his co-workers have
developed (see W. A. Goddard and L. B. Harding, Annu. Rev. Phys. Chem. 29 , 363 (1978)). In the simplest embodiment of the
GVB model, each electron pair in the atom or molecule is correlated by mixing in a CSF in which that electron pair is "doubly
excited" to a correlating orbital. The direct product of all such pair correlations generates the GVB-type wavefunction. In the GVB
approach, these electron correlations are not specified in terms of double excitations involving CSFs formed from orthonormal spin
orbitals; instead, explicitly non-orthogonal GVB orbitals are used as described above, but the result is the same as one would obtain
using the direct product of doubly excited CSFs.

In the olefin example mentioned above, the two non-orthogonal "polarized orbital pairs" involve mixing the 7 and 7 orbitals to
produce two left-right polarized orbitals as depicted below:

* *
T+ XTT T =Xt

left polarized right polarized

In this case, one says that the 7% electron pair undergoes left-right correlation when the (7r*)2 CSF is mixed into the CI
wavefunction.
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In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the ns and np orbitals (actually, one must mix in
equal amounts of p;, p_1, and py orbitals to preserve overall s symmetry in this case), and give rise to angular correlation of
the electron pair. Use of an (n + 1)s? CSF for the alkaline earth calculation would contribute in-out or radial correlation because,
in this case, the polarized orbital pair formed from the ns and (n+1)s orbitals would be radially polarized.

The use of doubly excited CSFs is thus seen as a mechanism by which ¥ can place electron pairs , which in the single-
configuration picture occupy the same orbital, into different regions of space (i.e., one into a member of the polarized orbital pair)
thereby lowering their mutual coulombic repulsions. Such electron correlation effects are referred to as "dynamical electron
correlation"; they are extremely important to include if one expects to achieve chemically meaningful accuracy (i.e., £ 5
kcal/mole).

This page titled 12.3: Various Types of Configuration Mixing is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

13: Molecular Rotation and Vibration

Treating the full internal nuclear-motion dynamics of a polyatomic molecule is complicated. It is conventional to examine the
rotational movement of a hypothetical "rigid" molecule as well as the vibrational motion of a non-rotating molecule, and to then
treat the rotation-vibration couplings using perturbation theory.

13.1: Rotational Motions of Rigid Molecules

13.2: Vibrational Motion Within the Harmonic Approximation

13.3: Anharmonicity

This page titled 13: Molecular Rotation and Vibration is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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13.1: Rotational Motions of Rigid Molecules

In Chapter 3 and Appendix G the energy levels and wavefunctions that describe the rotation of rigid molecules are described.
Therefore, in this Chapter these results will be summarized briefly and emphasis will be placed on detailing how the corresponding
rotational Schrédinger equations are obtained and the assumptions and limitations underlying them.

Linear Molecules

As given in Chapter 3, the Schrodinger equation for the angular motion of a rigid (i.e., having fixed bond length R) diatomic
molecule is

R’ 1 9 ) 1 9?

— |5l |+ | —— ) =5 |V =F

2 [R2 sing 09 (Sm 60> ( R2 sin’ e) 047 ] ve
or more succinctly in terms of the angular momentum operator as

Ly
2uR?

=By

The Hamiltonian in this problem contains only the kinetic energy of rotation; no potential energy is present because the molecule is
undergoing unhindered "free rotation". The angles 6 and ¢ describe the orientation of the diatomic molecule's axis relative to a

laboratory-fixed coordinate system, and y is the reduced mass of the diatomic molecule
mymsa

mi +mo

The Eigenfunctions and Eigenvalues

The eigenvalues corresponding to each eigenfunction are straightforward to find because H,,; is proportional to the L? operator
whose eigenvalues have already been determined. The resultant rotational energies are given as:

J(J+1)

Ej =h?
! 2uR?)

=BJ(J+1)

and are independent of M. Thus each energy level is labeled by J and is 2J + 1 -fold degenerate (because M ranges from —J to
J). The rotational constant B (defined as k2 / 21R? depends on the molecule's bond length and reduced mass. Spacings between
successive rotational levels (which are of spectroscopic relevance because angular momentum selection rules often restrict AJ to
1,0, and -1) are given by

AE=B(J+1)(J+2)—BJ(J+1) =2B(J+1).

Within this "rigid rotor" model, the absorption spectrum of a rigid diatomic molecule should display a series of peaks, each of
which corresponds to a specific J — J+1 transition. The energies at which these peaks occur should grow linearly with J. An
example of such a progression of rotational lines is shown in the figure below.

-I |‘ ‘l IIIIl.
R

Figure 13.1.1: Insert caption here!

Intensity
T

The energies at which the rotational transitions occur appear to fit the AE =2B(J+1) formula rather well. The intensities of
transitions from level J to level J+1 vary strongly with J primarily because the population of molecules in the absorbing level varies
with J. These populations PJ are given, when the system is at equilibrium at temperature T, in terms of the degeneracy (2J+1) of the
Jt level and the energy of this level B J(J+1) :
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—BJ(J+1)
Pr=Q7'(2J+1)e kT ,
where @ is the rotational partition function:
—BJ(J+1)
Q=) (2J+1)e kT
J

—BJ(J+1)
For low values of J, the degeneracy is low and the e & factor is near unity. As J increases, the degeneracy grows linearly but
~BJ(J+1) BJ(J+1)
the e” @ factor decreases more rapidly. As a result, there is a value of J, given by taking the derivative of (2J+1)e” «

with respect to J and setting it equal to zero,
[2KET
2Jm 1=4/—
ax + B

at which the intensity of the rotational transition is expected to reach its maximum.

The eigenfunctions belonging to these energy levels are the spherical harmonics Y, 57 (6, ¢) which are normalized according to

T 27

//nhm@nmwwmwww=@mww
00

These functions are identical to those that appear in the solution of the angular part of Hydrogen-like atoms. The above energy
levels and eigenfunctions also apply to the rotation of rigid linear polyatomic molecules; the only difference is that the moment of
inertia I entering into the rotational energy expression is given by

1= ZmaRg

where m,, is the mass of the a* atom and R, is its distance from the center of mass of the molecule. This moment of inertia
replaces m R? in the earlier rotational energy level expressions.

Non-Linear Molecules

The rotational kinetic energy operator for a rigid polyatomic molecule is shown in Appendix G to be

2 2 2
Hmt — Jb + J_b + J_c
2I, ' 2I, ' 2I.

where the I}, (k = a, b, c) are the three principal moments of inertia of the molecule (the eigenvalues of the moment of inertia
tensor). This tensor has elements in a Cartesian coordinate system (K, K' = X, Y, Z) whose origin is located at the center of mass of
the molecule that are computed as:

Ik Y m;(R?—R% )(forK=K))
J

I g =— ijRK,jRK/,j( forK # K).
J

The components of the quantum mechanical angular momentum operators along the three principal axes are:

. 0 1 0 o
Jo = —tihcosy [cot@ax ~4np 8(;3] ——zhsmxao

oy 0 1 0 . 1o}
Jp =ihsiny [cot Ga %m0 %} - —zhcosX%
Jo=—in2.
ox
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The angles 0, ¢, and x are the Euler angles needed to specify the orientation of the rigid molecule relative to a laboratory-fixed
coordinate system. The corresponding square of the total angular momentum operator J? can be obtained as

H? 0 1 0? 02 0?
2 _ 12 2 2 _ _ _
JE=Jdi+Jy+JE= 5 cot080 pemy: (8¢2 + o 200308¢6X) ,

and the component along the lab-fixed Z axis Jz is — iha%.

The Eigenfunctions and Eigenvalues for Special Cases

Spherical Tops

When the three principal moment of inertia values are identical, the molecule is termed a spherical top. In this case, the total
rotational energy can be expressed in terms of the total angular momentum operator .J 2

As a result, the eigenfunctions of H,,: are those of J? (and
J, as well as Jz both of which commute with J? and with one another; J is the component of J along the lab-fixed Z-axis
and commutes with J, because J; = fih% and J, = fih% act on different angles). The energies associated with such

eigenfunctions are

J(J+1)

32
B(J,M,K) = h* ==,

for all K (i.e., J, quantum numbers) ranging from -J to J in unit steps and for all M (i.e., Jz quantum numbers) ranging from -J to
J. Each energy level is therefore (2J + 1)2 degenarate because there are 2J + 1 possible K values and 2J + 1 possible M values for
each J.

The eigenfunctions of J2, Jz and J,, |J, M, K) are given in terms of the set of rotation matrices D MK
[2J+1
|J, M,K) = W‘DJ,M’K(Oad’aX)

J2|J7M7K> :h2‘](‘]+1)“]a M7K>7
Jo|J, M, K) = hK|J, M, K),
Tzl J, M, K) = hM|J, M, K).

which obey

Symmetric Tops

Molecules for which two of the three principal moments of inertia are equal are called symmetric tops. Those for which the unique
moment of inertia is smaller than the other two are termed prolate symmetric tops; if the unique moment of inertia is larger than
the others, the molecule is an oblate symmetric top. Again, the rotational kinetic energy, which is the full rotational Hamiltonian,
can be written in terms of the total rotational angular momentum operator J? and the component of angular momentum along the
axis with the unique principal moment of inertia:

J? 1 1]
H = —_— 2 JRE—
ot = o7 T 21, 21|
for prolate tops and
J? [ 1 1]
Hrot:_+Jc2 -
21 121, 21|

for oblate tops.

As a result, the eigenfunctions of H,,;are those of J2 and J, or J, (and of J7) , and the corresponding energy levels are:
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J(J+1)

_$2
B(J,K, M) =R

1 1
h2K2 Sa———
WK |3 o]

for prolate toops

J(J+1) 1 1
E(J,K,M)=h——— +R*’K? | —— — —
(. K, M) oz {21,1 21]’
for oblate tops, again for K and M (i.e., J, or J. and Jz quantum numbers, respectively) ranging from -J to J in unit steps. Since
the energy now depends on K, these levels are only 2J + 1 degenerate due to the 2J + 1 different M values that arise for each J
value. The eigenfunctions |J, M, K) are the same rotation matrix functions as arise for the spherical-top case.

Asymmetric Tops

The rotational eigenfunctions and energy levels of a molecule for which all three principal moments of inertia are distinct (a so-
called asymmetric top) can not easily be expressed in terms of the angular momentum eigenstates and the J, M, and K quantum
numbers. However, given the three principal moments of inertia I,, I, and I., a matrix representation of each of the three
contributions to the rotational Hamiltonian

g2
Hro - =7 e
t= o1, Tor, T oL

can be formed within a basis set of the {|J, M, K>} rotation matrix functions. This matrix will not be diagonal because the |J, M,
K> functions are not eigenfunctions of the asymmetric top H,,;. However, the matrix can be formed in this basis and subsequently
brought to diagonal form by finding its eigenvectors {C, s m x and its eigenvalues {E,}. The vector coefficients express the
asymmetric top eigenstates as

\I/n(o,QZS,X): Z Cn,J,M,K|JaM7K>'
J,M,K

Because the total angular momentum J 2 still commutes with H,,;, each such eigenstate will contain only one J-value, and hence
J,, can also be labeled by a J quantum number:

\I’n’.](e, ¢, X) = Z Cn,J’M’K|J, M, K>
M,K

To form the only non-zero matrix elements of H,, within the |J, M, K) basis, one can use the following properties of the
rotation-matrix functions:

(J,M,K|J2|J,M,K) = (J,M,K|J}J,M,K) = %(J, M,K|J? —J2|J,M,K) = h*[J(J +1) - K?|,
(J,M,K|J2|J,M,K) =h*K?,
(J, M, K|J2|J, M, K +2) = —(J, M, K|J2|J, M, K +2)
:h2\/J(J+ 1) - K(K+1 \/ J(J+1)— (K +1)(K£2)

(J,M,K|J2|J,M,K+2)=0.

1 1

Each of the elements of JZ, JZ, and Jb2 must, of course, be multiplied, respectively, by DTRAETA and 2LIb summed together to form

the matrix representation of H,,;. The diagonalization of this matrix then provides the asymmetric top energies and wavefunctions.

This page titled 13.1: Rotational Motions of Rigid Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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13.2: Vibrational Motion Within the Harmonic Approximation

The simple harmonic motion of a diatomic molecule was treated in Chapter 1, and will not be repeated here. Instead, emphasis is
placed on polyatomic molecules whose electronic energy's dependence on the 3N Cartesian coordinates of its N atoms can be
written (approximately) in terms of a Taylor series expansion about a stable local minimum. We therefore assume that the molecule
of interest exists in an electronic state for which the geometry being considered is stable (i.e., not subject to spontaneous
geometrical distortion).

The Taylor series expansion of the electronic energy is written as:

ov 1
Vigr) =V (0) +Z (@) %ty quHj,kJr. .
ke

gk
where V(0) is the value of the electronic energy at the stable geometry under study, g, is the displacement of the k;, Cartesian

coordinate away from this starting position, (g—;) is the gradient of the electronic energy along this direction, and the Hj ;, are the

3’V
0q;0q;,
stable species, the gradient terms will all vanish (meaning this geometry corresponds to a minimum, maximum, or saddle point),
and the Hessian matrix will possess 3N - 5 (for linear species) or 3N -6 (for non-linear molecules) positive eigenvalues and 5 or 6
zero eigenvalues (corresponding to 3 translational and 2 or 3 rotational motions of the molecule). If the Hessian has one negative
eigenvalue, the geometry corresponds to a transition state (these situations are discussed in detail in Chapter 20).

second derivative or Hessian matrix elements along these directions Hj ; = ( ) . If the starting geometry corresponds to a

From now on, we assume that the geometry under study corresponds to that of a stable minimum about which vibrational motion
occurs. The treatment of unstable geometries is of great importance to chemistry, but this Chapter deals with vibrations of stable
species. For a good treatment of situations under which geometrical instability is expected to occur, see Chapter 2 of the text
Energetic Principles of Chemical Reactions by J. Simons. A discussion of how local minima and transition states are located on
electronic energy surfaces is provided in Chapter 20 of the present text.

The Newton Equations of Motion for Vibration

The Kinetic and Potential Energy Matrices

Truncating the Taylor series at the quadratic terms (assuming these terms dominate because only small displacements from the
equilibrium geometry are of interest), one has the so-called harmeonic potential:

1
Via) =V(0)+5 ]ij 9 Hj g

The classical mechanical equations of motion for the 3N {g;} coordinates can be written in terms of the above potential energy and
the following kinetic energy function:

1 .92

where ¢; denotes the time rate of change of the coordinate g; and m; is the mass of the atom on which the j®* Cartesian coordinate
resides. The Newton equations thus obtained are:

mig;=— Y Hjr
K

where the force along the 5 coordinate is given by minus the derivative of the potential V along this coordinate g—qV =" H; rqk
g k

within the harmonic approximation.

These classical equations can more compactly be expressed in terms of the time evolution of a set of so-called mass weighted
Cartesian coordinates defined as:

Tj = qj\/Mj,

in terms of which the Newton equations become
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. ,
;= va « Tk
k
and the mass-weighted Hessian matrix elements are
1
H, =Hj———.
’ /mjmk
The Harmonic Vibrational Energies and Normal Mode Eigenvectors
Assuming that the z; undergo some form of sinusoidal time evolution:

2;(t) = &;(0)cos(wt),

and substituting this into the Newton equations produces a matrix eigenvalue equation:
2. _ /
Wy =D Hj o
k

in which the eigenvalues are the squares of the so-called normal mode vibrational frequencies and the eigenvectors give the
amplitudes of motion along each of the 3N mass weighted Cartesian coordinates that belong to each mode.

Within this harmonic treatment of vibrational motion, the total vibrational energy of the molecule is given as

3N—-5o0r6 1
E(vl’v27“~‘/3N750r6): Z hw] (U]+§)
j=1

as a product of 3N-5 or 3N-6 harmonic oscillator functions ¥,;(x;) are for each normal mode within this picture, the energy gap
between one vibrational level and another in which one of the v; quantum numbers is increased by unity (the origin of this
"selection rule" is discussed in Chapter 15) is

AEUJ'—>UJ'+1 :hwj

The harmonic model thus predicts that the "fundamental” (v=0 —v=1) and "hot band” (v=1—v=2) transition should
occur at the same energy, and the overtone (v=0 & v=2) transitions should occur at exactly twice this energy.

The Use of Symmetry
Symmetry Adapted Modes

It is often possible to simplify the calculation of the normal mode frequencies and eigenvectors by exploiting molecular point group
symmetry. For molecules that possess symmetry, the electronic potential V'(g;) displays symmetry with respect to displacements of
symmetry equivalent Cartesian coordinates. For example, consider the water molecule at its Cj, equilibrium geometry as
illustrated in the figure below. A very small movement of the H,O molecule's left H atom in the positive x direction (Azy)
produces the same change in V as a correspondingly small displacement of the right H atom in the negative x direction (—Azg).
Similarly, movement of the left H in the positive y direction (Ayz,) produces an energy change identical to movement of the right
H in the positive y direction (Ayg).

Figure 13.2.1: Insert caption here!

The equivalence of the pairs of Cartesian coordinate displacements is a result of the fact that the displacement vectors are
connected by the point group operations of the Cs,, group. In particular, reflection of Azj, through the yz plane produces —Azg,
and reflection of Ayy, through this same plane yields Ayg.

More generally, it is possible to combine sets of Cartesian displacement coordinates {gx} into so-called symmetry adapted
coordinates {Q)Gamma,j}, where the index I' labels the irreducible representation and j labels the particular combination of that
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symmetry. These symmetry adapted coordinates can be formed by applying the point group projection operators to the individual
Cartesian displacement coordinates.

To illustrate, again consider the HO molecule in the coordinate system described above. The 3N = 9 mass weighted Cartesian
displacement coordinates (Xr,Yz, Zr, Xo,Y0, Zo, Xr, YR, Zg) can be symmetry adapted by applying the following four
projection operators:

Py =140y, +0o,+C
P, =1+0y,+o,y—C
P,=1-0y,+0,—C
P,=1-0y,—04+C>

to each of the 9 original coordinates. Of course, one will not obtain 9 x 4 = 36 independent symmetry adapted coordinates in this
manner; many identical combinations will arise, and only 9 will be independent.

The independent combination of \(\textbf{ a_1 symmetry } (normalized to produce vectors of unit length) are
1
Qa,1 = —=[X1 — Xg]

V2

szémfm

Qa1,3 = [YO]

Those of by symmetry are

1
Qb1 = —2[XL + XRg]

Qp, 2= %[YL —Yg]
Qb3 =[X0]
and the combinations
Qb1 = i[ZL + ZR]
ToV2
Qv, 2 =[Z0o]
are of by symmetry, whereas
Qu = =121~ Za]

S

2
is of @y symmetry.
Point Group Symmetry of the Harmonic Potential

These nine Qr ; are expressed as unitary transformations of the original mass weighted Cartessian coordinates:

Q=Y CrjxXs
k

These transformation coefficients {Cr ; 1} can be used to carry out a unitary transformation of the 9x9 mass-weighted Hessian
matrix. In so doing, we need only form blocks

Hr 1

i1 =k Or gy ——
1/ mkmk

within which the symmetries of the two modes are identical. The off-diagonal elements

Crawx
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1
Vmpmy,
vanish because the potential V'(g;) (and the full vibrational Hamiltonian H =T + V) commutes with the C5 point group
symmetry operations.

I _
Hjl —kk CF,j,ka,k’ CI",I,k’

As a result, the 9x9 mass-weighted Hessian eigenvalue problem can be sub divided into two 3x3 matrix problems ( of a; and by
symmetry), one 2x2 matrix of
b1 symmetry and one 1x1 matrix of a; symmetry. For example, the a; symmetry block H J‘.? is formed as follows:

11 11
L L, L L,
2. 2
Vi V2 o 4 v @ Va2
moy s my (my mg)
ax, 2 ax, %y X, 9%
i v 1 a2y ( }-I'Z
11 m m my )t ——— [E
vr_— V,_— 0 Haxpaxy T axz, i dxg axg \,r— —= 0
* v (my mo) 2 “— (my m)y'? Al mlo . *v
8% XL Xy BXp axg?
0001 001

The by, b; and a2 blocks are formed in a similar manner. The eigenvalues of each of these blocks provide the squares of the
harmonic vibrational frequencies, the eigenvectors provide the normal mode displacements as linear combinations of the symmetry
adapted {Q? }.

Regardless of whether symmetry is used to block diagonalize the mass-weighted Hessian, six (for non-linear molecules) or five (for
linear species) of the eigenvalues will equal zero. The eigenvectors belonging to these zero eigenvalues describe the 3 translations
and 2 or 3 rotations of the molecule. For example,

L
V3

1
% [YL +Yzr -‘rYo]

1
E[ZL +ZR+ZO}

are three translation eigenvectors of be, a; and b; symmetry, and

(XL + Xr + Xo]

% (ZL — Zg)

is a rotation (about the Y-axis in the figure shown above) of a; symmetry. This rotation vector can be generated by applying the
as projection operator to Zy, or to Zg. The fact that rotation about the Y-axis is of
as symmetry is indicated in the right-hand column of the Cs,, character table of Appendix E via the symbol Ry (n.b,,
care must be taken to realize that the axis convention used in the above figure is different than that implied in the character table;
the latter has the Z-axis out of the molecular plane, while the figure calls this the X-axis). The other two rotations are of
by and by symmetry (see the Cy, character table of Appendix E) and involve spinning of the molecule about the X- and Z- axes
of the figure drawn above, respectively.

So, of the 9 cartesian displacements, 3 are of a; symmetry, 3 of by, 2 of by, and 1 of ay. Of these, there are three translations
(a1,bs, and by) and three rotations (bs, b1, and az). This leaves two vibrations of a; and one of by symmetry. For the H,O
example treated here, the three non zero eigenvalues of the mass-weighted Hessian are therefore of a;b2, and a; symmetry. They
describe the symmetric and asymmetric stretch vibrations and the bending mode, respectively as illustrated below.

NN

Figure 13.2.2: Insert caption here!

The method of vibrational analysis presented here can work for any polyatomic molecule. One knows the mass-weighted Hessian
and then computes the non-zero eigenvalues which then provide the squares of the normal mode vibrational frequencies. Point
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group symmetry can be used to block diagonalize this Hessian and to label the vibrational modes according to symmetry.

This page titled 13.2: Vibrational Motion Within the Harmonic Approximation is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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13.3: Anharmonicity

The electronic energy of a molecule, ion, or radical at geometries near a stable structure can be expanded in a Taylor series in
powers of displacement coordinates as was done in the preceding section of this Chapter. This expansion leads to a picture of
uncoupled harmonic vibrational energy levels

3N—-b5o0r6 1
E(vi...Vansors) =, hw (v]-+ 5)
j=1

and wavefunctions
U(21...T3N-5or6 :?51’5 o Wyi(x;).
The spacing between energy levels in which one of the normal-mode quantum numbers increases by unity
AE,;=E(...vj+1...)—E(...vj...) = hw,
is predicted to be independent of the quantum number vj . This picture of evenly spaced energy levels

AEy=AE; =AFE;=...

is an incorrect aspect of the harmonic model of vibrational motion, and is a result of the quadratic model for the potential energy
surface V(z;).

1
The Expansion of E(v) in Powers of ('v + 5) .

Experimental evidence clearly indicates that significant deviations from the harmonic oscillator energy expression occur as the
quantum number v; grows. In Chapter 1 these deviations were explained in terms of the diatomic molecule's true potential V(R)
deviating strongly from the harmonic %k(E —E.)? potential at higher energy (and hence larger |R — R,.|) as shown in the
following figure.

0 1 2 3 4
Figure 13.3.1: Insert caption here!

At larger bond lengths, the true potential is "softer" than the harmonic potential, and eventually reaches its asymptote which lies at
the dissociation energy D, above its minimum. This negative deviation of the true V(R) from 2LIC(R—R6)2 causes the true
vibrational energy levels to lie below the harmonic predictions.

It is convention to express the experimentally observed vibrational energy levels, along each of the 3N-5 or 6 independent modes,
as follows:

1 1\’ 1\* 1\*
Blyj)=h|wj(vj+5 )~ (we)j{vi+5 ) +wy)ilvtg) +w)i{v+g) +-.
The first term is the harmonic expression. The next is termed the first anharmonicity; it (usually) produces a negative contribution

2
to E(v;) that varies as (Uj + é) . The spacings between successive v; — v; +1 energy levels is then given by:

AEvj = E()’UJ + 1) — E(UJ)
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A plot of the spacing between neighboring energy levels versus v; should be linear for values of vj where the harmonic and first
overtone terms dominate. The slope of such a plot is expected to be —2h(wz); and the small —v; intercept should be
Rlw; —2(wz);]. Such a plot of experimental data, which clearly can be used to determine the w; and (wz); parameter of the
vibrational mode of study, is shown in the figure below.

=hlw; —2(wz);(v; +1)+...]

8oj
70[
60|
—
> s0[
L
< 40
30}
20}

10

20

Figure 13.3.2: Insert caption here!

The Birge-Sponer Extrapolation

These so-called Birge-Sponer plots can also be used to determine dissociation energies of molecules. By linearly extrapolating the
plot of experimental AE,; values to large vj values, one can find the value of v; at which the spacing between neighboring
vibrational levels goes to zero. This value v;, max specifies the quantum number of the last bound vibrational level for the
particular potential energy function V'(z;) of interest. The dissociation energy D, can then be computed by adding to %hwj (the
zero point energy along this mode) the sum of the spacings between neighboring vibrational energy levels from
v; =0 to v; = v;, max :

v; =0 vj*

1 -
Deghijrv] AR

Since experimental data are not usually available for the entire range of v; values (from 0 to v;,max), this sum must be computed
using the anharmonic expression for AE,, :

5, oo, (o5 1)

Alternatively, the sum can be computed from the Birge-Sponer graph by measuring the area under the straight-line fit to the graph
of AE,,], or v; from v; = 0 to vj; = v}, max -

This completes our introduction to the subject of rotational and vibrational motions of molecules (which applies equally well to
ions and radicals). The information contained in this Section is used again in Section 5 where photon-induced transitions between
pairs of molecular electronic, vibrational, and rotational eigenstates are examined. More advanced treatments of the subject matter
of this Section can be found in the text by Wilson, Decius, and Cross, as well as in Zare's text on angular momentum.

This page titled 13.3: Anharmonicity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via

source content that was edited to the style and standards of the LibreTexts platform.

https://chem.libretexts.org/@go/page/64793


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64793?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/13%3A_Molecular_Rotation_and_Vibration/13.03%3A_Anharmonicity
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/

LibreTextsw
CHAPTER OVERVIEW

14: Time-dependent Quantum Dynamics

The interaction of a molecular species with electromagnetic fields can cause transitions to occur among the available molecular
energy levels (electronic, vibrational, rotational, and nuclear spin). Collisions among molecular species likewise can cause
transitions to occur. Time-dependent perturbation theory and the methods of molecular dynamics can be employed to treat such
transitions.

14.1: Time-Dependent Vector Potentials

14.2: Time-Dependent Perturbation Theory

14.3: Application to Electromagnetic Perturbations

14.4: The "Long-Wavelength" Approximation

14.5: The Kinetics of Photon Absorption and Emission

This page titled 14: Time-dependent Quantum Dynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
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14.1: Time-Dependent Vector Potentials

The full N-electron non-relativistic Hamiltonian H discussed earlier in this text involves the kinetic energies of the electrons and of
the nuclei and the mutual Coulombic interactions among these particles

SR CRE EOLS

a=1,M
When an electromagnetic field is present, this is not the correct Hamiltonian, but it can be modified straightforwardly to obtain the
proper H.

SRS I

j<k Tj.k a<b

The Time-Dependent Vector A (r,t) Potential

The only changes required to achieve the Hamiltonian that describes the same system in the presence of an electromagnetic field
are to replace the momentum operators P, and p; for the nuclei and electrons, respectively, by (P\(_a\) - Z, e/c A(Rq,t)) and (p; -
e/c A(rj ,t)). Here Za e is the charge on the ath nucleus, -e is the charge of the electron, and c is the speed of light.

The vector potential A depends on time t and on the spatial location r of the particle in the following manner:
A(r,t) =2Aqcos(wt —k-r).

The circular frequency of the radiation w (radians per second) and the wave vector k (the magnitude of k is |k| = 2” , where X is the
wavelength of the light) control the temporal and spatial oscillations of the photons. The vector A, characterlzes the strength
(through the magnitude of A.,) of the field as well as the direction of the A potential; the direction of propagation of the photons is
given by the unit vector k/|k|. The factor of 2 in the definition of A allows one to think of A as measuring the strength of both

i(wt—k-r) i(wt—k-r)

ell and el components of the cos(wt —k-r) function.

The Electric E(r,t) and Magnetic H(r,t) Fields
The electric E(r, t) and magnetic H(r,t) fields of the photons are expressed in terms of the vector potential A as
10A w
E(r,t)=———=—Agsin(wt—k-r
() = —3 5 = L Agsin(ut —k-1)
H(r,t)=VxA = kxA,2sin(wt —k-r).

The E field lies parallel to the A, vector, and the H field is perpendicular to A,; both are perpendicular to the direction of
propagation of the light k/k|. E and H have the same phase because they both vary with time and spatial location as
sin(wt —k-r). The relative orientations of these vectors are shown below.

E

Y o
H/ k

Figure 14.1.1: Insert caption here!

The Resulting Hamiltonian

Replacing the nuclear and electronic momenta by the modifications shown above in the kinetic energy terms of the full electronic
and nuclear-motion hamiltonian results in the following additional factors appearing in H:

ieh e 2
Hi"t:Z m—A(r], )'Vj+ Im.c? |A(1'j,t)| +
j e

e

5[ (2 ) Aty o+ (225 ) AR 07

a a
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These so-called interaction perturbations Hj,; are what induces transitions among the various electronic/vibrational/rotational
states of a molecule. The one-electron additive nature of H;,; plays an important role in determining the kind of transitions that
H;y,; can induce. For example, it causes the most intense electronic transitions to involve excitation of a single electron from one
orbital to another (e.g., the Slater-Condon rules).

This page titled 14.1: Time-Dependent Vector Potentials is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.
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14.2: Time-Dependent Perturbation Theory

The mathematical machinery needed to compute the rates of transitions among molecular states induced by such a time-dependent
perturbation is contained in time dependent perturbation theory (TDPT). The development of this theory proceeds as follows. One
first assumes that one has in-hand all of the eigenfunctions {®;} and eigenvalues {E,S} that characterize the Hamiltonian H° of
the molecule in the absence of the external perturbation:

H®), = B®;.

One then writes the time-dependent Schrodinger equation

ov
ih— = (H° + H,,,;)¥
lhé’t ( + mt)

in which the full Hamiltonian is explicitly divided into a part that governs the system in the absence of the radiation field and H;,;
which describes the interaction with the field.

Perturbative Solution

By treating H as of zeroth order (in the field strength |A|), expanding ¥ order-by order in the field-strength parameter:
=040l 9?4 @34

realizing that Hint contains terms that are both first- and second- order in |Ay|

it [(2) a0 o] - (22 i o]

J

0 o T [ e

J

and then collecting together all terms of like power of | Ag|, one obtains the set of time dependent perturbation theory equations.
The lowest order such equations read:

0w’

ih—— = H°%°
ot
ov! 01 1 g0
th—— = (H"Y' +H, 9°)
at m
ov 2
lhw (HO‘I’2 + Hirit\IIO + Hzlnt\:[jl)
The zeroth order equations can easily be solved because H" is independent of time. Assuming that at t = —oo0, ¥ =1); (we use

the index i to denote the initial state), this solution is:

—iEt

‘Ifo = ‘Iqe h

The first-order correction to ¥°, ¥ can be found by (i) expanding ¥' in the complete set of zeroth-order states {® [35
_ 1o_
=D B < ¥ >=3 8,C)
! f

(ii) using the fact that
H'®; = E)%;

>

and (iii) substituting all of this into the equation that Y1 obeys. The resultant equation for the coefficients that appear in the first-
order equation can be written as
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o1 —iE%t
ih—=L =N (BYCLS 4]+ < ®f|HL,|B; >e R
ot - kYEOfk f intl =1 )
or
_+EY
80} 1Bt
Defining
- 720
—zEft

Ci(t) = D}(t)e h
his equation can be cast in terms of an easy-to-solve equation for the D} coefficients:

D! i[EJ? —E)t
F —+5 v
FYR Of|H,, | @i > e h

Assuming that the electromagnetic field A (r,t) is turned on at t=0, and remains on until t = T, this equation for D}, can be

ih

integrated to yield:
T i|E} - EP]Y
1 ——
D.lf(t):@/<@f|Hz}nt|¢i>e h dt'.
0
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14.3: Application to Electromagnetic Perturbations

First-Order Fermi-Wentzel "Golden Rule"

Using the earlier expressions for H! i and for A(r,t)
ieh i1Z4eh
H! = E — | A(r;,t)-V; E —— ) A(R,,t)-
e J [(mec) (7'], ) VJ:|+ [( mecC ) ( a’ ) Va]
and

2A,cos(wt —k-r) = Ay {ei(“’t_k") + e‘i(“’t_k'r)] ,

it is relatively straightforward to carry out the above time integration to achieve a final expression for D} (t), which can then be
—iEQ¢
substituted into C' } )= D} (t)e'" "7 ) to obtain the final expression for the first-order estimate of the probability amplitude for
—iEQ¢
i
the molecule appearing in the state ®ye™*  after being subjected to electromagnetic radiation from t = 0 until t = T. This final

expression reads:

—iE})T ( :
1 ieh i1Z,eh eflwtwr)T _q
1 _ h —ik-r; —ik-R,
o T g [(2) a5 o)
—iE?T

i(—wtws)T _q
)

1 ieh iZqeh eh e —
_ h (ﬁ zkr]A lk REA @
+ihe l f|z l( ) Vi +Z mgcC 0 Val®:) i(—wtwy;
where

0 0
[E f Ei ]
i
is the resonance frequency for the transition between "initial" state ®; and ”final” state ®;

Defining the time-independent parts of the above expression as

€ —ik-r; Zge —ik-
api=(2) l(—m C)e KA V4 ) j(—m C)e kR“AO-Va|<I>Z~),]
j e a a

this result can be written as

s 70
—zEfT

|: eilwtwe)T _ 1 o e—ilw—wi)T 1 :|
afi— o, —————————

5 t(w+wys;) B —j(w—wy,)

The modulus squared |C } (T)|? gives the probability of finding the molecule in the final state ® # at time T, given that it was in ®;

at time t = 0. If the light's frequency w is tuned close to the transition frequency wy ; of a particular transition, the term whose
denominator contains (w—wy;) will dominate the term with (w+wy;) in its denominator. Within this "near-resonance"
condition, the above probability reduces to:

1—cos(w—wy ;)T

Cl? =2|ay|?
| f‘ | f71| (w_wf’i)2
5 sin?(1/2(w—wy,;)T)
—4|Oéf71| 2
(w_wf,i)

This is the final result of the first-order time-dependent perturbation theory treatment of light-induced transitions between states
®; and ®;.
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The so-called sinc-function
8in?(1/2(w—wy;)T)

(w—wy)?

as shown in the figure below is strongly peaked near w = wy ;, and displays secondary maxima (of decreasing amplitudes) near
w=wys;+ 2%, n=1,2,...Inthe T — oo limit, this function becomes narrower and narrower, and the area under it

T sin(1/2(w—wp)T) = T b sin?(1/2(w—wy;)T) T\ T r sin®(z) T
/ (w—wp,)? dw= 2 / 1/4T2 (w—wy ;)2 d(“’z) 2 / m

—00 —00 —00

x? 2

grows with T. Physically, this means that when the molecules are exposed to the light source for long times (large T), the sinc
function emphasizes w values near wy ; (i.e., the on-resonance w values). These properties of the sinc function will play important
roles in what follows.

Intensity

w—p
Figure 14.3.1: Insert caption here!

In most experiments, light sources have a "spread" of frequencies associated with them; that is, they provide photons of various
frequencies. To characterize such sources, it is common to introduce the spectral source function g(w) dw which gives the
probability that the photons from this source have frequency somewhere between w and w + dw . For narrow-band lasers, g(w) is a
sharply peaked function about some "nominal" frequency w,; broader band light sources have much broader g(w) functions.

When such non-monochromatic light sources are used, it is necessary to average the above formula for |C} (T)|2 over the g(w) dw
probability function in computing the probability of finding the molecule in state ®; after time T, given that it was in ®; up until t
= 0, when the light source was turned on. In particular, the proper expression becomes:

sin?(1/2(w—wys;)T)

CHDR, =l [ o) & d

w—wy,;)?

2in%(1/2(w—wy)T) T
1/4T? (w—wy,;)? d(w )

o0
:mme/mm

2

If the light-source function is "tuned" to peak near w=wy; and if g(w) is much broader (in w-space) than the

sin?(1/2(w—wy,)T) . , sin’ (1/2(w—wy,)T)
5 function, g(w) can be replaced by its value at the peak of the 5
(w—wy) (w—wy)

function, yielding:
[o¢]
.2
sin®(x
2y / (z) da
2

o0 . 2(
sin?(1/2(w—wy;)T T
LTy o . ‘2T/ i — =2 ; ;
|Cf( )a’UE g(wfﬂ)‘af77'| 1/4T2(w_wf’l)2 w 9 -g((J‘J.7c77')|C¥fvZ
—o0
= 2mg(wyi)lazl T

The fact that the probability of excitation from ®; to ®; grows linearly with the time T over which the light source is turned on
implies that the rate of transitions between these two states is constant and given by:
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2
R, =2mg(wri)lagl
this is the so-called first-order Fermi-Wentzel "golden rule" expression for such transition rates. It gives the rate as the square of a
transition matrix element between the two states involved, of the first order perturbation multiplied by the light source function
g(w) evaluated at the transition frequency wy ;.
Higher Order Results

Solution of the second-order time-dependent perturbation equations,

2
zh% (H°®? + H2 9" + H! ¥')

int int

which will not be treated in detail here, gives rise to two distinct types of contributions to the transition probabilities between
®; and ®;:

There will be matrix elements of the form

@flzj: {(2

arising when H?2, couples ®; to ®.

=) e 0R] < (2 2 A oF e
There will be matrix elements of the form
Z<<I>f|2[(’eﬁ) A1) ]+Z[(’Z€”')A(Ra,t)-va]|<I>k>
%@[(””’) A1) ]+Z[(’Z‘”"‘) A(Ro,t) V. 2

arising from expanding H! ,¥! =S CLH! |®,) and using the earlier result for the first-order amplitudes C!. Because both
g P g & Hint g p k
k

int

types of second-order terms vary quadratically with the A(r,t) potential, and because A has time dependence of the form
cos(wt —k-r) , these terms contain portions that vary with time as cos(2wt). As a result, transitions between initial and final
states ®; and ®; whose transition frequency is wy; can be induced when 2w = wy;; in this case, one speaks of coherent two-
photon induced transitions in which the electromagnetic field produces a perturbation that has twice the frequency of the "nominal"”
light source frequency w.

This page titled 14.3: Application to Electromagnetic Perturbations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
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14.4: The "Long-Wavelength" Approximation

To make progress in further analyzing the first-order results obtained above, it is useful to consider the wavelength A of the light
used in most visible/ultraviolet, infrared, or microwave spectroscopic experiments. Even the shortest such wavelengths (ultraviolet)
are considerably longer than the spatial extent of all, but the largest molecules (i.e., polymers and biomolecules for which the
approximations we introduce next are not appropriate).

In the definition of the essential coupling matrix element o ;

€ —ik-r; Zqe —ik-
O‘fv":@)f‘z(m c)e ‘ ]Ao'vj+2(m c)e KT Ay Va| i),
j e a a

the factors e~ and e~ R« can be expanded as:
—ik-r; . . 2
e " =14 (—ik-rj)+ = (—ik-rj)"+. ..

e R — 14 (—ik-R,)+ =(—ik-R,)*+

o= N

Because k| = 27/, and the scales of r; and R, are of the dimension of the molecule, k-r; and k- R, are less than unity in
magnitude, within this so-called "long-wavelength" approximation.

Electric Dipole Transitions

Introducing these expansions into the expression for af,i gives rise to terms of various powers in 1 /. The lowest order terms are:

ayi(E1) = «1>f|z< )AO V+Z(Ze)A0 V.|®;)

and are called "electric dipole" terms, and are denoted E1. To see why these matrix elements are termed E1, we use the following
identity (see Chapter 1) between the momentum operator —¢AYV and the corresponding position operator r:

Vi=—(F5) o)

Va=- <h2)[HR]

This derives from the fact that H contains V; and V,, in its kinetic energy operators (as V2 and ij. ). Substituting these

P, , One obtains:

R.12:))

expressions into the above ot ;(E1) equation and using H®; o, ¢ = E?Orf

oy (B1) = (B~ BY) Ao - (8] Y (%) +Z (
=wyiAg- (P Z (%) rj+z (%) R, |®;)

Wi
= () A0 (@lul0),
where  is the electric dipole moment operator for the electrons and nuclei:

w= Zerj +2ZaeRa.
j a

The fact that the E1 approximation to o ; contains matrix elements of the electric dipole operator between the initial and final

states makes it clear why this is called the electric dipole contribution to o ;; within the E1 notation, the E stands for electric
moment and the 1 stands for the first such moment (i.e., the dipole moment).

Within this approximation, the overall rate of transitions is given by:

R; s = 2mg(wy,q)|ay,l’
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Wy 2
2mg(wr) () Ao (@]l

1 0A
Recalling that E(r,t) = T %AO sin (wt—k-r) ,

the magnitude of A can be replaced by that of E, and this rate expression becomes

2m 9
Rig= (37 ) olor)Ba- (Bslul)
This expresses the widely used E1 approximation to the Fermi-Wentzel golden rule.

Magnetic Dipole and Electric Quadrupole Transitions

When E1 predictions for the rates of transitions between states vanish (e.g., for symmetry reasons as discussed below) it is
essential to examine higher order contributions to a7 ;. The next terms in the above long-wavelength expansion vary as + and have
the form:

Za
Oéfz(E2+M1 q’f|2( ) ik-rj]Ao'v]'-i-Z(mi
a a

For reasons soon to be shown, they are called electric quadrupole (E2) and magnetic dipole (M1) terms. Clearly, higher and higher
order terms can be so generated. Within the longwavelength regime, however, successive terms should decrease in magnitude

) [—ik-Ry]Ag -V, |®;).

because of the successively higher powers of % that they contain.

To further analyze the above E2 + M1 factors, let us label the propagation direction of the light as the z-axis (the axis along which
k lies) and the direction of A as the x-axis. These axes are so-called "lab-fixed" axes because their orientation is determined by
the direction of the light source and the direction of polarization of the light source's E field, both of which are specified by
laboratory conditions. The molecule being subjected to this light can be oriented at arbitrary angles relative to these lab axes. With
the x, y, and z axes so defined, the above expression for a ¢ ; (E2+M1) becomes

oy (B2 + M1) = (Am) q>f|z<mc> S +Z<Ze>za—|q>>

a

Now writing (for both z; and z,)

o 10 0. 0, 0
0z  2\%8z %8 oz "0z )

and using

Vj:*(g)[ﬂ,rj]
Va=- (rﬂ)[HR]

the contributions of % (za—az + ac%) (E2+M1) can be rewritten as

(®y] szm] +ZZ 2aZa|P;).

The operator » zT;+ N Z,z,x, that appears above is the z,x element of the electric quadrupole moment operator Q... ; itis for
i a

Ape2rw
ag(E2) = W f’

this reason that this particular component is labeled E2 and denoted the electric quadrupole contribution.

1 0
The remaining 3 (z— —x —— | contribution to oy, (E2+M1) can be rewritten in a form that makes its content more clear by

oz 0z

first noting that
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contains the y-component of the angular momentum operator. Hence, the following contribution to oy ; (E2+M1) arises:
L, L

02me ;i Ya

i3 — + Z, D).

/\ch<f|;me ; ama| i)

The magnetic dipole moment of the electrons about the y axis is

e
My, electrons = % 2m.c Lyﬁ

A
Oéfﬂ‘(MI) = )

that of the nuclei is

Zq€e
My, nuclei = Z ( . ) Lya‘

- 2mgc

The oy, (M1) term thus describes the interaction of the magnetic dipole moments of the electrons and nuclei with the magnetic
field (of strength |H| = Ay k) of the light (which lies along the y axis):
H|

afi (Ml) = T <q)f|uy, electrons T My, nuclei |(I)z> .

The total rate of transitions from ®; to ®; is given, through first-order in perturbation theory, by
2
Ry =2mg(wy,i)l ozl

where ay ; is a sum of its E1, E2, M1, etc. pieces. In the next chapter, molecular symmetry will be shown to be of use in analyzing
these various pieces. It should be kept in mind that the contributions caused by E1 terms will dominate, within the long-wavelength
approximation, unless symmetry causes these terms to vanish. It is primarily under such circumstances that consideration of M1
and E2 transitions is needed.

This page titled 14.4: The "Long-Wavelength" Approximation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.

https://chem.libretexts.org/@go/page/60593



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/60593?pdf
https://chem.libretexts.org/https%3A%2F%2Fchem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/14%3A_Time-dependent_Quantum_Dynamics/14.04%3A_The_%22Long-Wavelength%22_Approximation
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/
http://simons.hec.utah.edu/TheoryPage/BookPDF/

LibreTextsw

14.5: The Kinetics of Photon Absorption and Emission

The Phenomenological Rate Laws

Before closing this chapter, it is important to emphasize the context in which the transition rate expressions obtained here are most
commonly used. The perturbative approach used in the above development gives rise to various contributions to the overall rate
coefficient for transitions from an initial state ®; to a final state ®; ; these contributions include the electric dipole, magnetic
dipole, and electric quadrupole first order terms as well contributions arising from second (and higher) order terms in the
perturbation solution.
In principle, once the rate expression

2

Rij=2mg(wyi)las.l

has been evaluated through some order in perturbation theory and including the dominant electromagnetic interactions, one can
make use of these state-to-state rates , which are computed on a per-molecule basis, to describe the time evolution of the
populations of the various energy levels of the molecule under the influence of the light source's electromagnetic fields.

For example, given two states, denoted i and f, between which transitions can be induced by photons of frequency wf,i, the
following kinetic model is often used to describe the time evolution of the numbers of molecules ni and nf in the respective states:

dn;

(Z = —Ri,fn,--i-Rf,mf
;g R

gr - Tupny R g

Here, R; y and Ry ; are the rates (per molecule) of transitions for the i — fandf — i transitions respectively. As noted above,
these rates are proportional to the intensity of the light source (i.e., the photon intensity) at the resonant frequency and to the square
of a matrix element connecting the respective states. This matrix element square is |a;, f|2 in the former case and |« f,i|2 in the
latter. Because the perturbation operator whose matrix elements are o; r and oy ; is Hermitian (this is true through all orders of
perturbation theory and for all terms in the long-wavelength expansion), these two quantities are complex conjugates of one
another, and, hence |e |* =|a;|*, from which it follows that R; ; = Ry;. This means that the state-to-state absorption and
stimulated emission rate coefficients (i.e., the rate per molecule undergoing the transition) are identical. This result is referred to as

the principle of microscopic reversibility.

Quite often, the states between which transitions occur are members of levels that contain more than a single state. For example, in
rotational spectroscopy a transition between a state in the J = 3 level of a diatomic molecule and a state in the J = 4 level involve
such states; the respective levels are 2J+1 = 7 and 2J+1 = 9 fold degenerate, respectively.

To extend the above kinetic model to this more general case in which degenerate levels occur, one uses the number of molecules in
each level (IV; and N; for the two levels in the above example) as the time dependent variables. The kinetic equations then
governing their time evolution can be obtained by summing the state-to-state equations over all states in each level

S ()
iinlevel 1 dt dt

> (G -4
finlevel F dt dt

and realizing that each state within a given level can undergo transitions to all states within the other level (hence the total rates of
production and consumption must be summed over all states to or from which transitions can occur). This generalization results in
a set of rate laws for the populations of the respective levels:

dN;
E = *ngi’fNi +gin’iNf
dN;
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Here, g; and g7 are the degeneracies of the two levels (i.e., the number of states in each level) and the R; y and Ry ;, which are
equal as described above, are the state-to-state rate coefficients introduced earlier.

Spontaneous and Stimulated Emission

It turns out (the development of this concept is beyond the scope of this text) that the rate at which an excited level can emit
photons and decay to a lower energy level is dependent on two factors:

i. the rate of stimulated photon emission as covered above and
ii. the rate of spontaneous photon emission.

The former rate gyR;; (per molecule) is proportional to the light intensity g(ws;) at the resonance frequency. It is
conventional to separate out this intensity factor by defining an intensity independent rate coefficient B; ; for this process as:

g7 Ri .y = g(wy,i)Bi .

Clearly,  B; s embodies the final-level degeneracy factor g¢,  the  perturbation  matrix  elements, and  the
2r factor in the earlier expression for R; ;. The spontaneous rate of transition from the excited to the lower level is found to be
independent of photon intensity, because it deals with a process that does not require collision with a photon to occur, and is
usually denoted A;;. The rate of photon-stimulated upward transitions from state f to state i
(9iRy,; = giR; ¢ in the present case) is also proportional to g(wy,;), so it is written by convention as:

giRyi = g(wy,i) By,

An important relation between the B; r and By ; parameters exists and is based on the identity R; y = Ry; that connects the state-
to-state rate coefficients:

(Biy) _ (9¢Riy) _ 95

(Bri)  (9:Rps) fi
This relationship will prove useful in the following sections.

Saturated Transitions and Transparency

Returning to the kinetic equations that govern the time evolution of the populations of two levels connected by photon absorption
and emission, and adding in the term needed for spontaneous emission, one finds (with the initial level being of the lower energy):

dN;
o = 9BisNi+(Ari+9Byri) Ny
dNy
~5 = (Arit+9Bri)Ny+9BisNi
where g = g(w) denotes the light intensity at the resonance frequency. At steady state, the populations of these two levels are given
by setting
CATCL
dt  dt
Ny  (9Big)

N (Afi+9gByi)

When the light source's intensity is so large as to render gBy;>> Ay ; (i.e,, when the rate of spontaneous emission is small
compared to the stimulated rate), this population ratio reaches (B; /By ;), which was shown earlier to equal (gs/g;). In this case,
one says that the populations have been saturated by the intense light source. Any further increase in light intensity will result in
zero increase in the rate at which photons are being absorbed. Transitions that have had their populations saturated by the
application of intense light sources are said to display optical transparency because they are unable to absorb (nor emit) any
further photons because of their state of saturation.
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Equilibrium and Relations Between A and B Coefficients

When the molecules in the two levels being discussed reach equilibrium (at which time the % =4 _ 0 also holds) with a

dt
photon source that itself is in equilibrium characterized by a temperature T, we must have:
—(Ef - Ey) hw

9T e —Ykr

Ni g 9i
where gy and g; are the degeneracies of the states labeled f and i. The photon source that is characterized by an equilibrium
temperature T is known as a black body radiator, whose intensity profile g(w) (in erg cm =3 sec) is know to be of the form:

-1
2(hw)?

9W)=—=3 ekT —1

Equating the kinetic result that must hold at equilibrium:

Ny (9Biy)

Ni (Ayi+9By)
to the thermodynamic result:

—hw
Ny 9 T

N g

)

and using the above black body g(w) expression and the identity

Bis _9r
Bsi g

)

one can solve for the A ; rate coefficient in terms of the B ; coefficient. Doing so yields:

2(hw)®
Ari=Bri= 5p,

Summary

In summary, the so-called Einstein A and B rate coefficients connecting a lower-energy initial state ¢ and a final state f are
related by the following conditions:

g
Bis= g_jBf,i

and
2(fw)®
A= ————.
1 nc*h?By;

These phenomenological level-to-level rate coefficients are related to the state-to-state R; ; coefficients derived by applying
perturbation theory to the electromagnetic perturbation through

grRi s = g(wyi)Bi g

The A and B coefficients can be used in a kinetic equation model to follow the time evolution of the populations of the
corresponding levels:

dN;

dtl =—gB; ;N; + (Af,i +ng,i)Nf
dN
d_tf = —(Ay,;+9By,:)Ny +gB; s N;.
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These equations possess steady state solutions

Ny (9Biy)

Ni (Agi+9Byy)
which, for large g(w), produce saturation conditions:
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CHAPTER OVERVIEW

15: Spectroscopy

The tools of time-dependent perturbation theory can be applied to transitions among electronic, vibrational, and rotational states of
molecules.

15.1: Rotational Transitions

15.2: Vibration-Rotation Transitions

15.3: Electronic-Vibration-Rotation Transitions

15.4: Time Correlation Function Expressions for Transition Rates
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