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22.1.5: v. Review Exercise Solutions

Q1 

The general relationships are as follows:
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Q2 

a.

 
 
 
b.

Q3 
a. First determine the eigenvalues: 

Next, determine the eigenvectors. First, the eigenvector associated with eigenvalue -2: 

 
(Note: The second row offers no new information, e.g. 2  
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b. First determine the eigenvalues:

 
From 3a, the solutions then become -2, -2, and 3. Next, determine the eigenvectors. First the eigenvector associated with
eigenvalue 3 (the third root): 

Next, find the pair of eigenvectors associated with the degenerate eigenvalue of -2. First, root one eigenvector one:
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Note: There are now two equations with three unkowns. Second, root two eigenvector two:

 
Note: Again there are now two equations with three unknows. 

 
Now there are five equations with six unknowns. 

 
Therefore the eigenvector matrix becomes: 

Q4 

Show: 

−2 = −2  (no new information from row one)C11 C11

− +2 = −2  (row two)C21 C31 C21

= −2  (again the third row offers no new information)C21 C31

+ + = 1 (from normalization)C 2
11 C 2

21 C 2
31

+(−2 + = 1C 2
11 C31)2 C 2

31

+5 = 1C 2
11 C 2

31

=C11 1 −5C 2
31

− −−−−−−
√

−2 = −2  (no new information from row one)C12 C12

− +2 = −2  (row two)C21 C31 C21

= −2  (again the third row offers no new information)C21 C31

+ + = 1 (from normalization)C 2
11 C 2

21 C 2
31

+(−2 + = 1C 2
12 C32)2 C 2

32

+5 = 1C 2
12 C 2

32

=C12 1 −5C 2
32

− −−−−−−
√

+ + = 0 (from orthogonalization)C11C12 C21C22 C31C32

Arbitrarily choose  = 0C11

= 0 =C11 1 −5C 2
31

− −−−−−−
√

5 = 1C 2
31

=C31 0.2
−−−

√

= −2C21 0.2
−−−

√

+ + = 0 (from orthogonalization)C11C12 C21C22 C31C32

0 +−2 (−2 ) + = 00.2
−−−

√ C32 0.2
−−−

√ C32

5 = 0C32

= 0, = 0, and  = 1C32 C22 C12

⎡

⎣
⎢

0

−2 0.2
−−−

√

0.2
−−−

√

1

0

0

0

0.2
−−−

√

2 0.2
−−−

√

⎤

⎦
⎥

⟨ ⟩ = 1, ⟨ ⟩ = 1, and ⟨ ⟩ = 0ϕ1∣∣ϕ1 ϕ2∣∣ϕ2 ϕ1∣∣ϕ2
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Q5 

Show (for the degenerate eigenvalue;  = -2): 

Q6 

Suppose the solution is of the form x(t) = eat , with a unknown. Inserting this trial solution into the differential equation
results in the following:

 Solutions are of the form  or a combination of both:  
Euler's formula also states that: , so the previous equation for x(t) can also be written as: 
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We can determin these coefficients by making use of the "boundary conditions".

 
 The solution is of the form: 

This page titled 22.1.5: v. Review Exercise Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.

x(t) = [Cos(kt) + iSin(kt)] + [Cos(kt) − iSin(kt)]C1 C2

x(t) = ( + )Cos(kt) +( + ) iSin(kt), or alternativelyC1 C2 C1 C2

x(t) = Cos(kt) + Sin(kt).C3 C4

at t  = 0, x(0) = L

x(0) = Cos(0) + Sin(0) = LC3 C4

= LC3

at t  = 0, = 0
dx(0)

dt

x(t) = ( Cos(kt) + Sin(kt))
d

dt

d

dt
C3 C4

x(t) = − kSin(kt) + kCos(kt)
d

dt
C3 C4

x(0) = 0 = − kSin(0) + kCos(0)
d

dt
C3 C4

k = 0C4

= 0C4

∴ x(t) = LCos(kt)
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