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13.3: Anharmonicity
The electronic energy of a molecule, ion, or radical at geometries near a stable structure can be expanded in a Taylor series in
powers of displacement coordinates as was done in the preceding section of this Chapter. This expansion leads to a picture of
uncoupled harmonic vibrational energy levels

and wavefunctions

The spacing between energy levels in which one of the normal-mode quantum numbers increases by unity

is predicted to be independent of the quantum number vj . This picture of evenly spaced energy levels

is an incorrect aspect of the harmonic model of vibrational motion, and is a result of the quadratic model for the potential energy
surface 

The Expansion of E(v) in Powers of  

Experimental evidence clearly indicates that significant deviations from the harmonic oscillator energy expression occur as the
quantum number  grows. In Chapter 1 these deviations were explained in terms of the diatomic molecule's true potential V(R)
deviating strongly from the harmonic  potential at higher energy (and hence larger  as shown in the
following figure.

Figure 13.3.1: Insert caption here!

At larger bond lengths, the true potential is "softer" than the harmonic potential, and eventually reaches its asymptote which lies at
the dissociation energy  above its minimum. This negative deviation of the true V(R) from  causes the true
vibrational energy levels to lie below the harmonic predictions.

It is convention to express the experimentally observed vibrational energy levels, along each of the 3N-5 or 6 independent modes,
as follows:

The first term is the harmonic expression. The next is termed the first anharmonicity; it (usually) produces a negative contribution

to E  that varies as . The spacings between successive  energy levels is then given by:
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A plot of the spacing between neighboring energy levels versus  should be linear for values of vj where the harmonic and first
overtone terms dominate. The slope of such a plot is expected to be  and the small  intercept should be 

 Such a plot of experimental data, which clearly can be used to determine the  parameter of the
vibrational mode of study, is shown in the figure below.

Figure 13.3.2: Insert caption here!

The Birge-Sponer Extrapolation 
These so-called Birge-Sponer plots can also be used to determine dissociation energies of molecules. By linearly extrapolating the
plot of experimental  values to large vj values, one can find the value of  at which the spacing between neighboring
vibrational levels goes to zero. This value , max specifies the quantum number of the last bound vibrational level for the
particular potential energy function  of interest. The dissociation energy  can then be computed by adding to  (the
zero point energy along this mode) the sum of the spacings between neighboring vibrational energy levels from 

:

Since experimental data are not usually available for the entire range of  values (from 0 to ,max), this sum must be computed
using the anharmonic expression for  :

Alternatively, the sum can be computed from the Birge-Sponer graph by measuring the area under the straight-line fit to the graph
of 

This completes our introduction to the subject of rotational and vibrational motions of molecules (which applies equally well to
ions and radicals). The information contained in this Section is used again in Section 5 where photon-induced transitions between
pairs of molecular electronic, vibrational, and rotational eigenstates are examined. More advanced treatments of the subject matter
of this Section can be found in the text by Wilson, Decius, and Cross, as well as in Zare's text on angular momentum.
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