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13.2: Vibrational Motion Within the Harmonic Approximation
The simple harmonic motion of a diatomic molecule was treated in Chapter 1, and will not be repeated here. Instead, emphasis is
placed on polyatomic molecules whose electronic energy's dependence on the 3N Cartesian coordinates of its N atoms can be
written (approximately) in terms of a Taylor series expansion about a stable local minimum. We therefore assume that the molecule
of interest exists in an electronic state for which the geometry being considered is stable (i.e., not subject to spontaneous
geometrical distortion).

The Taylor series expansion of the electronic energy is written as:

where V(0) is the value of the electronic energy at the stable geometry under study,  is the displacement of the  Cartesian

coordinate away from this starting position,  is the gradient of the electronic energy along this direction, and the  are the

second derivative or Hessian matrix elements along these directions  If the starting geometry corresponds to a

stable species, the gradient terms will all vanish (meaning this geometry corresponds to a minimum, maximum, or saddle point),
and the Hessian matrix will possess 3N - 5 (for linear species) or 3N -6 (for non-linear molecules) positive eigenvalues and 5 or 6
zero eigenvalues (corresponding to 3 translational and 2 or 3 rotational motions of the molecule). If the Hessian has one negative
eigenvalue, the geometry corresponds to a transition state (these situations are discussed in detail in Chapter 20).

From now on, we assume that the geometry under study corresponds to that of a stable minimum about which vibrational motion
occurs. The treatment of unstable geometries is of great importance to chemistry, but this Chapter deals with vibrations of stable
species. For a good treatment of situations under which geometrical instability is expected to occur, see Chapter 2 of the text
Energetic Principles of Chemical Reactions by J. Simons. A discussion of how local minima and transition states are located on
electronic energy surfaces is provided in Chapter 20 of the present text.

The Newton Equations of Motion for Vibration 

The Kinetic and Potential Energy Matrices

Truncating the Taylor series at the quadratic terms (assuming these terms dominate because only small displacements from the
equilibrium geometry are of interest), one has the so-called harmonic potential:

The classical mechanical equations of motion for the 3N { } coordinates can be written in terms of the above potential energy and
the following kinetic energy function:

where  denotes the time rate of change of the coordinate  is the mass of the atom on which the  Cartesian coordinate
resides. The Newton equations thus obtained are:

where the force along the  coordinate is given by minus the derivative of the potential V along this coordinate 

within the harmonic approximation.

These classical equations can more compactly be expressed in terms of the time evolution of a set of so-called mass weighted
Cartesian coordinates defined as:

in terms of which the Newton equations become

V ( ) = V (0) + ( ) + +. . . ,qk ∑
k

∂V

∂qk

qk

1

2
∑
j,k

qjHj,k

qk kth

( )∂V

∂qk
Hj,k

= ( ) .Hj,k
V∂ 2

∂ ∂qj qk

V ( ) = V (0) + .qk

1

2
∑
j,k

qjHj,kqk

qk

T = ,
1

2
∑

j

mjqj̇
2

qj̇  and qj mj jth

= −mjqj̈ ∑
k

Hj,kqk

jth =∂V

∂qj

∑
k

Hj,kqk

= ,xj qj mj
−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64792?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Mechanics__in_Chemistry_(Simons_and_Nichols)/13%3A_Molecular_Rotation_and_Vibration/13.02%3A_Vibrational_Motion_Within_the_Harmonic_Approximation


13.2.2 https://chem.libretexts.org/@go/page/64792

and the mass-weighted Hessian matrix elements are

The Harmonic Vibrational Energies and Normal Mode Eigenvectors

Assuming that the  undergo some form of sinusoidal time evolution:

and substituting this into the Newton equations produces a matrix eigenvalue equation:

in which the eigenvalues are the squares of the so-called normal mode vibrational frequencies and the eigenvectors give the
amplitudes of motion along each of the 3N mass weighted Cartesian coordinates that belong to each mode.

Within this harmonic treatment of vibrational motion, the total vibrational energy of the molecule is given as

as a product of 3N-5 or 3N-6 harmonic oscillator functions  are for each normal mode within this picture, the energy gap
between one vibrational level and another in which one of the  quantum numbers is increased by unity (the origin of this
"selection rule" is discussed in Chapter 15) is

The harmonic model thus predicts that the "fundamental"  transition should
occur at the same energy, and the overtone (v=0 Æ v=2) transitions should occur at exactly twice this energy.

The Use of Symmetry 

Symmetry Adapted Modes

It is often possible to simplify the calculation of the normal mode frequencies and eigenvectors by exploiting molecular point group
symmetry. For molecules that possess symmetry, the electronic potential  displays symmetry with respect to displacements of
symmetry equivalent Cartesian coordinates. For example, consider the water molecule at its  equilibrium geometry as
illustrated in the figure below. A very small movement of the  molecule's left H atom in the positive x direction 
produces the same change in V as a correspondingly small displacement of the right H atom in the negative x direction 
Similarly, movement of the left H in the positive y direction  produces an energy change identical to movement of the right
H in the positive y direction 

Figure 13.2.1: Insert caption here!

The equivalence of the pairs of Cartesian coordinate displacements is a result of the fact that the displacement vectors are
connected by the point group operations of the  group. In particular, reflection of  through the yz plane produces ,
and reflection of  through this same plane yields 

More generally, it is possible to combine sets of Cartesian displacement coordinates { } into so-called symmetry adapted
coordinates { }, where the index  labels the irreducible representation and j labels the particular combination of that
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symmetry. These symmetry adapted coordinates can be formed by applying the point group projection operators to the individual
Cartesian displacement coordinates.

To illustrate, again consider the  molecule in the coordinate system described above. The 3N = 9 mass weighted Cartesian
displacement coordinates  can be symmetry adapted by applying the following four
projection operators:

to each of the 9 original coordinates. Of course, one will not obtain 9 x 4 = 36 independent symmetry adapted coordinates in this
manner; many identical combinations will arise, and only 9 will be independent.

The independent combination of \(\textbf{ a_1 symmetry } (normalized to produce vectors of unit length) are

Those of  symmetry are

and the combinations

are of  symmetry, whereas

is of  symmetry.

Point Group Symmetry of the Harmonic Potential

These nine  are expressed as unitary transformations of the original mass weighted Cartessian coordinates:

These transformation coefficients { } can be used to carry out a unitary transformation of the 9x9 mass-weighted Hessian
matrix. In so doing, we need only form blocks

within which the symmetries of the two modes are identical. The off-diagonal elements
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vanish because the potential  point group
symmetry operations.

As a result, the 9x9 mass-weighted Hessian eigenvalue problem can be sub divided into two 3x3 matrix problems ( of 
symmetry), one 2x2 matrix of 

 is formed as follows:

The  blocks are formed in a similar manner. The eigenvalues of each of these blocks provide the squares of the
harmonic vibrational frequencies, the eigenvectors provide the normal mode displacements as linear combinations of the symmetry
adapted { }.

Regardless of whether symmetry is used to block diagonalize the mass-weighted Hessian, six (for non-linear molecules) or five (for
linear species) of the eigenvalues will equal zero. The eigenvectors belonging to these zero eigenvalues describe the 3 translations
and 2 or 3 rotations of the molecule. For example,

are three translation eigenvectors of  symmetry, and

is a rotation (about the Y-axis in the figure shown above) of  symmetry. This rotation vector can be generated by applying the
 The fact that rotation about the Y-axis is of 

 (n.b.,
care must be taken to realize that the axis convention used in the above figure is different than that implied in the character table;
the latter has the Z-axis out of the molecular plane, while the figure calls this the X-axis). The other two rotations are of 

 character table of Appendix E) and involve spinning of the molecule about the X- and Z- axes
of the figure drawn above, respectively.

So, of the 9 cartesian displacements, 3 are of  Of these, there are three translations 
 and three rotations  This leaves two vibrations of  symmetry. For the 

example treated here, the three non zero eigenvalues of the mass-weighted Hessian are therefore of  symmetry. They
describe the symmetric and asymmetric stretch vibrations and the bending mode, respectively as illustrated below.

Figure 13.2.2: Insert caption here!

The method of vibrational analysis presented here can work for any polyatomic molecule. One knows the mass-weighted Hessian
and then computes the non-zero eigenvalues which then provide the squares of the normal mode vibrational frequencies. Point
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group symmetry can be used to block diagonalize this Hessian and to label the vibrational modes according to symmetry.
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