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10.2: Electron Spin Angular Momentum
Individual electrons possess intrinsic spin characterized by angular momentum quantum numbers  and ; for electrons, s = 1/2
and ms = 1/2, or -1/2. The  spin state of the electron is represented by the symbol  and the  state is
represented by . These spin functions obey:

and

The  spin functions are connected via lowering  and raising  operators, which are defined in terms of the x and y
components of S as follows:

and

In particular . These expressions are examples of the more general relations
(these relations are developed in detail in Appendix G) which all angular momentum operators and their eigenstates obey:

and

In a many-electron system, one must combine the spin functions of the individual electrons to generate eigenfunctions of the total 
 also follow from the fact that the total angular momentum of

a collection of particles is the sum of the angular momenta, component-by-component, of the individual angular momenta) and
total  operators because only these operators commute with the full Hamiltonian, H, and with the permutation operators . No
longer are the individual  good quantum numbers; these operators do not commute with .

Spin states which are eigenfunctions of the total  can be formed by using angular momentum coupling methods or the
explicit construction methods detailed in Appendix (G). In the latter approach, one forms, consistent with the given electronic
configuration, the spin state having maximum  eigenvalue (which is easy to identify as shown below and which corresponds to a
state with S equal to this maximum  eigenvalue) and then generating states of lower  values and lower S values using the
angular momentum raising and lowering operators

To illustrate, consider a three-electron example with the configuration 1s2s3s. Starting with the determinant |  |, which
has the maximum  and hence has  (this function is denoted |  in the additive form 

 to generate the following combination of three determinants:
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which, according to the above identities, must equal

So the state  can be solved for in terms of the three determinants to give

The states with  can be obtained by further application of  to  (actually, the  can
be identified as the "spin flipped" image of the state with  and the one with  can be formed by interchanging all
a's and b's in the  state).

Of the eight total spin states (each electron can take on either  spin and there are three electrons, so the number of states is 
), the above process has identified proper combinations which yield the four states with  Doing so consumed the

determinants with  one combination of the three determinants with  and one combination of the three
determinants with . There still remain two combinations of the  and two combinations of the 
determinants to deal with. These functions correspond to two sets of  eigenfunctions having .
Combinations of the determinants must be used in forming the  functions to keep the  eigenfunctions orthogonal to
the above  functions (which is required because  is a hermitian operator whose eigenfunctions belonging to different
eigenvalues must be orthogonal). The two independent  states an be formed by simply constructing combinations
of the above three determinants with  which are orthogonal to the  combination given above and orthogonal to each
other. For example,

are acceptable (as is any combination of these two functions generated by a unitary transformation ). A pair of independent
orthonormal states with  can be generated by applying  to each of these two functions ( or by
constructing a pair of orthonormal functions which are combinations of the three determinants with 

 function obtained as detailed above).

The above treatment of a three-electron case shows how to generate quartet (spin states are named in terms of their spin
degeneracies 2S+1) and doublet states for a configuration of the form 1s2s3s. Not all three-electron configurations have both
quartet and doublet states; for example, the  configuration only supports one doublet state. The methods used above to
generate  and  states are valid for any three-electron situation; however, some of the determinental functions vanish if
doubly occupied orbitals occur as for  In particular, the  and  and  and

 |  determinants vanish because they violate the Pauli principle; only  and  do
not vanish. These two remaining determinants form the ,  doublet spin functions which pertain to the 
configuration. It should be noted that all closed-shell components of a configuration (e.g., the  part of  or the 
part of  ) must involve  spin functions for each doubly occupied orbital and, as such, can contribute
nothing to the total  value; only the open-shell components need to be treated with the angular momentum operator tools to
arrive at proper total-spin eigenstates.

In summary, proper spin eigenfunctions must be constructed from antisymmetric (i.e., determinental) wavefunctions as
demonstrated above because the total  and total  remain valid symmetry operators for many-electron systems. Doing so
results in the spinadapted wavefunctions being expressed as combinations of determinants with coefficients determined via spin
angular momentum techniques as demonstrated above. In configurations with closed-shell components, not all spin functions are
possible because of the antisymmetry of the wavefunction; in particular, any closed-shell parts must involve  spin pairings for
each of the doubly occupied orbitals, and, as such, contribute zero to the total .
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