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1.7: Harmonic Vibrational Motion
The radial motion of a diatomic molecule in its lowest (J=0) rotational level can be described by the following Schrödinger
equation:

where m is the reduced mass

of the two atoms. By substituting  into this equation, one obtains an equation for F(r) in which the differential operators
appear to be less complicated:

This equation is exactly the same as the equation seen above for the radial motion of the electron in the hydrogen-like atoms except
that the reduced mass  replaces the electron mass  and the potential  is not the Coulomb potential.

If the potential is approximated as a quadratic function of the bond displacement  expanded about the point at which 
is minimum:

the resulting harmonic-oscillator equation can be solved exactly. Because the potential V grows without bound as x approaches 
, only bound-state solutions exist for this model problem; that is, the motion is confined by the nature of the potential, so

no continuum states exist.

This Schrödinger equation forms the basis for our thinking about bond stretching and
angle bending vibrations as well as collective phonon motions in solids

In solving the radial differential equation for this potential (see Chapter 5 of McQuarrie), the large-r behavior is first examined. For
large-r, the equation reads:

where  is the bond displacement away from equilibrium. Defining  as a new scaled radial coordinate allows

the solution of the large-r equation to be written as:

The general solution to the radial equation is then taken to be of the form:

where the C  are coefficients to be determined. Substituting this expression into the full radial equation generates a set of recursion
equations for the  amplitudes. As in the solution of the hydrogen-like radial equation, the series described by these coefficients
is divergent unless the energy E happens to equal specific values. It is this requirement that the wavefunction not diverge so it can
be normalized that yields energy quantization. The energies of the states that arise are given by:
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and the eigenfunctions are given in terms of the so-called Hermite polynomials  as follows:

where . Within this harmonic approximation to the potential, the vibrational energy levels are evenly spaced:

In experimental data such evenly spaced energy level patterns are seldom seen; most commonly, one finds spacings E
that decrease as the quantum number n increases. In such cases, one says that the progression of vibrational levels displays
anharmonicity.

Because the  are odd or even functions of x (depending on whether n is odd or even), the wavefunctions (x) are odd or even.
This splitting of the solutions into two distinct classes is an example of the effect of symmetry; in this case, the symmetry is caused
by the symmetry of the harmonic potential with respect to reflection through the origin along the x-axis. Throughout this text, many
symmetries will arise; in each case, symmetry properties of the potential will cause the solutions of the Schrödinger equation to be
decomposed into various symmetry groupings. Such symmetry decompositions are of great use because they provide additional
quantum numbers (i.e., symmetry labels) by which the wavefunctions and energies can be labeled.

The harmonic oscillator energies and wavefunctions comprise the simplest reasonable model for vibrational motion. Vibrations of a
polyatomic molecule are often characterized in terms of individual bond-stretching and angle-bending motions each of which is, in
turn, approximated harmonically. This results in a total vibrational wavefunction that is written as a product of functions one for
each of the vibrational coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of anharmonicity (i.e., non-uniform energy level
spacings) and lack of bond dissociation, result from the quadratic nature of its potential. By introducing model potentials that allow
for proper bond dissociation (i.e., that do not increase without bound as x ), the major shortcomings of the harmonic oscillator
picture can be overcome. The so-called Morse potential (see the figure below)

is often used in this regard.

Figure 1.7.1: The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic
oscillator potential, which are evenly spaced by ħω, the Morse potential level spacing decreases as the energy approaches the
dissociation energy. The dissociation energy De is larger than the true energy required for dissociation D0 due to the zero point
energy of the lowest (v = 0) vibrational level. (CC-SA-BY-3.0; Somoza).

Here,  is the bond dissociation energy,  is the equilibrium bond length, and a is a constant that characterizes the 'steepness' of
the potential and determines the vibrational frequencies. The advantage of using the Morse potential to improve upon harmonic
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oscillator-level predictions is that its energy levels and wavefunctions are also known exactly. The energies are given in terms of
the parameters of the potential as follows:

where the force constant k is  The Morse potential supports both bound states (those lying below the dissociation
threshold for which vibration is confined by an outer turning point) and continuum states lying above the dissociation threshold. Its

degree of anharmonicity is governed by the ratio of the harmonic energy  to the dissociation energy .
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