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15.1: Rotational Transitions
Within the approximation that the electronic, vibrational, and rotational states of a molecule can be treated as independent, the total
molecular wavefunction of the "initial" state is a product

of an electronic function 

In microwave spectroscopy, the energy of the radiation lies in the range of fractions of a ; such
energies are adequate to excite rotational motions of molecules but are not high enough to excite any but the weakest vibrations
(e.g., those of weakly bound Van der Waals complexes). In rotational transitions, the electronic and vibrational states are thus left
unchanged by the excitation process; hence 

Applying the first-order electric dipole transition rate expressions

obtained in Chapter 14 to this case requires that the E1 approximation

be examined in further detail. Specifically, the electric dipole matrix elements  must be

analyzed for  being of the product form shown above.

The integrations over the electronic coordinates contained in  as well as the integrations over vibrational degrees of
freedom yield "expectation values" of the electric dipole moment operator because the electronic and vibrational components of 

 are identical:

is the dipole moment of the initial electronic state (which is a function of the internal geometrical degrees of freedom of the
molecule, denoted R); and

is the vibrationally averaged dipole moment for the particular vibrational state labeled  mave has components
along various directions and can be viewed as a vector "locked" to the molecule's internal coordinate axis (labeled a, b, c as below).

Figure 15.1.1: Insert caption here!

The rotational part of the integral is not of the expectation value form because the initial rotational function 
. This integral has the form:
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or linear molecules whose initial and final rotational wavefunctions are , respectively, and

for spherical or symmetric top molecules (here,  are the normalized rotational wavefunctions described

in Chapter 13 and in Appendix G). The angles  refer to how the molecule-fixed coordinate system is oriented with
respect to the space-fixed X, Y, Z axis system.

Linear Molecules 

For linear molecules, the vibrationally averaged dipole moment  lies along the molecular axis; hence its orientation in the lab-
fixed coordinate system can be specified in terms of the same angles  that are used to describe the rotational functions 

 Therefore, the three components of the  integral can be written as:

where  is the magnitude of the averaged dipole moment. If the molecule has no dipole moment, all of the above electric dipole
integrals vanish and the intensity of E1 rotational transitions is zero.

The three E1 integrals can be further analyzed by noting that cos
 and using the angular momentum coupling methods

illustrated in Appendix G. In particular, the result given in that appendix:

when multiplied by D , yields:

To use this result in the present linear-molecule case, we note that the  functions are related by:

The normalization factor is now  because the  are no longer functions of , and thus the need to

integrate over  disappears. Likewise, the   disappears for K = 0.

We now use these identities in the three E1 integrals of the form
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with m = 0 being the Z- axis integral, and the Y- and X- axis integrals being combinations of the m = 1 and m = -1 results. Doing so
yields:

The last factor of  is inserted to cancel out the integration over that, because all K-factors in the rotation matrices equal
zero, trivially yields . Now, using the result shown above expressing the integral over three rotation matrices, these E1 integrals
for the linearmolecule case reduce to:

Applied to the z-axis integral (identifying m = 0), this result therefore vanishes unless:

and

Even though angular momentum coupling considerations would allow L = L' (because coupling two angular momenta with j = 1

and j = L' should give L'+1, L', and L'-1), the 3-j symbol  vanishes for the L = L' case since 3-j symbols have the

following symmetry

with respect to the M, M', and m indices. Applied to the  3-j symbol, this means that this particular 3-j element vanishes

for L = L' since L + L' + 1 is odd and hence  is -1.

Applied to the x- and y- axis integrals, which contain m = ± 1 components, this same analysis yields:

which then requires that

and

with L = L' again being forbidden because of the second 3-j symbol.

These results provide so-called "selection rules" because the limit the L and M values of the final rotational state, given the L', M'
values of the initial rotational state. In the figure shown below, the L = L' + 1 absorption spectrum of NO at 120 °K is given. The
intensities of the various peaks are related to the populations of the lower-energy rotational states which are, in turn, proportional to
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 Also included in the intensities are so-called line strength factors that are proportional to the
squares of the quantities:

which appear in the E1 integrals analyzed above (recall that the rate of photon absorption 

involves the squares of these matrix elements). The book by Zare gives an excellent treatment of line strength factors' contributions
to rotation, vibration, and electronic line intensities.

Figure 15.1.2: Insert caption here!

Non-Linear Molecules 

For molecules that are non-linear and whose rotational wavefunctions are given in terms of the spherical or symmetric top
functions , the dipole moment  can have components along any or all three of the molecule's internal coordinates (e.g.,
the three molecule-fixed coordinates that describe the orientation of the principal axes of the moment of inertia tensor). For a
spherical top molecule,  vanishes, so E1 transitions do not occur.

For symmetric top species,  lies along the symmetry axis of the molecule, so the orientation of  can again be described in
terms of , the angles used to locate the orientation of the molecule's symmetry axis relative to the lab-fixed coordinate
system. As a result, the E1 integral again can be decomposed into three pieces:

Using the fact that  and the tools of angular
momentum coupling allows these integrals to be expressed, as above, in terms of products of the following 3-j symbols:

from which the following selection rules are derived:

with m = 0 for the Z-axis integral and m = ± 1 for the X- and Y- axis integrals. In addition, if K = K' = 0, the L = L' transitions are
also forbidden by the second 3-j symbol vanishing.
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