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13.1: Rotational Motions of Rigid Molecules
In Chapter 3 and Appendix G the energy levels and wavefunctions that describe the rotation of rigid molecules are described.
Therefore, in this Chapter these results will be summarized briefly and emphasis will be placed on detailing how the corresponding
rotational Schrödinger equations are obtained and the assumptions and limitations underlying them.

Linear Molecules 
As given in Chapter 3, the Schrödinger equation for the angular motion of a rigid (i.e., having fixed bond length R) diatomic
molecule is

or more succinctly in terms of the angular momentum operator as

The Hamiltonian in this problem contains only the kinetic energy of rotation; no potential energy is present because the molecule is
undergoing unhindered "free rotation". The angles  describe the orientation of the diatomic molecule's axis relative to a
laboratory-fixed coordinate system, and  is the reduced mass of the diatomic molecule

The Eigenfunctions and Eigenvalues 

The eigenvalues corresponding to each eigenfunction are straightforward to find because  is proportional to the  operator
whose eigenvalues have already been determined. The resultant rotational energies are given as:

and are independent of . Thus each energy level is labeled by  and is -fold degenerate (because  ranges from  to 
). The rotational constant B (defined as  depends on the molecule's bond length and reduced mass. Spacings between

successive rotational levels (which are of spectroscopic relevance because angular momentum selection rules often restrict  to
1,0, and -1) are given by

Within this "rigid rotor" model, the absorption spectrum of a rigid diatomic molecule should display a series of peaks, each of
which corresponds to a specific  transition. The energies at which these peaks occur should grow linearly with J. An
example of such a progression of rotational lines is shown in the figure below.

Figure 13.1.1: Insert caption here!

The energies at which the rotational transitions occur appear to fit the  formula rather well. The intensities of
transitions from level J to level J+1 vary strongly with J primarily because the population of molecules in the absorbing level varies
with J. These populations PJ are given, when the system is at equilibrium at temperature T, in terms of the degeneracy (2J+1) of the

 level and the energy of this level B J(J+1) :
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where  is the rotational partition function:

For low values of , the degeneracy is low and the  factor is near unity. As J increases, the degeneracy grows linearly but

the  factor decreases more rapidly. As a result, there is a value of J, given by taking the derivative of 
with respect to J and setting it equal to zero,

at which the intensity of the rotational transition is expected to reach its maximum.

The eigenfunctions belonging to these energy levels are the spherical harmonics  which are normalized according to

These functions are identical to those that appear in the solution of the angular part of Hydrogen-like atoms. The above energy
levels and eigenfunctions also apply to the rotation of rigid linear polyatomic molecules; the only difference is that the moment of
inertia  entering into the rotational energy expression is given by

where  is the mass of the  is its distance from the center of mass of the molecule. This moment of inertia
replaces  in the earlier rotational energy level expressions.

Non-Linear Molecules 
The rotational kinetic energy operator for a rigid polyatomic molecule is shown in Appendix G to be

where the  (k = a, b, c) are the three principal moments of inertia of the molecule (the eigenvalues of the moment of inertia
tensor). This tensor has elements in a Cartesian coordinate system (K, K' = X, Y, Z) whose origin is located at the center of mass of
the molecule that are computed as:

The components of the quantum mechanical angular momentum operators along the three principal axes are:
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The angles  are the Euler angles needed to specify the orientation of the rigid molecule relative to a laboratory-fixed
coordinate system. The corresponding square of the total angular momentum operator  can be obtained as

and the component along the lab-fixed Z axis 

The Eigenfunctions and Eigenvalues for Special Cases 

Spherical Tops 

When the three principal moment of inertia values are identical, the molecule is termed a spherical top. In this case, the total
rotational energy can be expressed in terms of the total angular momentum operator 

As a result, the eigenfunctions of  are those of  (and 
 is the component of J along the lab-fixed Z-axis

and commutes with  act on different angles). The energies associated with such
eigenfunctions are

for all K (i.e.,  quantum numbers) ranging from -J to J in unit steps and for all M (i.e.,  quantum numbers) ranging from -J to
J. Each energy level is therefore  degenarate because there are 2J + 1 possible K values and 2J + 1 possible M values for
each J.

The eigenfunctions of  are given in terms of the set of rotation matrices 

which obey

Symmetric Tops 

Molecules for which two of the three principal moments of inertia are equal are called symmetric tops. Those for which the unique
moment of inertia is smaller than the other two are termed prolate symmetric tops; if the unique moment of inertia is larger than
the others, the molecule is an oblate symmetric top. Again, the rotational kinetic energy, which is the full rotational Hamiltonian,
can be written in terms of the total rotational angular momentum operator  and the component of angular momentum along the
axis with the unique principal moment of inertia:

for prolate tops and

for oblate tops.

As a result, the eigenfunctions of , and the corresponding energy levels are:
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for prolate toops

for oblate tops, again for K and M (i.e.,  quantum numbers, respectively) ranging from -J to J in unit steps. Since
the energy now depends on K, these levels are only 2J + 1 degenerate due to the 2J + 1 different M values that arise for each J
value. The eigenfunctions  are the same rotation matrix functions as arise for the spherical-top case.

Asymmetric Tops 

The rotational eigenfunctions and energy levels of a molecule for which all three principal moments of inertia are distinct (a so-
called asymmetric top) can not easily be expressed in terms of the angular momentum eigenstates and the J, M, and K quantum
numbers. However, given the three principal moments of inertia , a matrix representation of each of the three
contributions to the rotational Hamiltonian

can be formed within a basis set of the {|J, M, K>} rotation matrix functions. This matrix will not be diagonal because the |J, M,
K> functions are not eigenfunctions of the asymmetric top . However, the matrix can be formed in this basis and subsequently
brought to diagonal form by finding its eigenvectors {  and its eigenvalues . The vector coefficients express the
asymmetric top eigenstates as

Because the total angular momentum  still commutes with , each such eigenstate will contain only one J-value, and hence 
 can also be labeled by a J quantum number:

To form the only non-zero matrix elements of  within the  basis, one can use the following properties of the
rotation-matrix functions:

Each of the elements of  must, of course, be multiplied, respectively, by  summed together to form
the matrix representation of  The diagonalization of this matrix then provides the asymmetric top energies and wavefunctions.
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