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2.2: Perturbation Theory
Perturbation theory is the second most widely used approximation method in quantum chemistry. It allows one to estimate the
splittings and shifts in energy levels and changes in wavefunctions that occur when an external field (e.g., an electric or magnetic
field or a field that is due to a surrounding set of 'ligands'- a crystal field) or a field arising when a previously-ignored term in the
Hamiltonian is applied to a species whose 'unperturbed' states are known. These 'perturbations' in energies and wavefunctions are
expressed in terms of the (complete) set of unperturbed eigenstates.

Assuming that all of the wavefunctions  and energies  belonging to the unperturbed Hamiltonian  are known

and given that one wishes to find eigenstates  and  of the perturbed Hamiltonian

perturbation theory expresses  and  as power series in the perturbation strength :

The systematic development of the equations needed to determine the  and the  is presented in Appendix D. Here, we
simply quote the few lowest-order results.

The zeroth-order wavefunctions and energies are given in terms of the solutions of the unperturbed problem as follows:

and

This simply means that one must be willing to identify one of the unperturbed states as the 'best' approximation to the state being
sought. This, of course, implies that one must therefore strive to find an unperturbed model problem, characterized by  that
represents the true system as accurately as possible, so that one of the  will be as close as possible to .

The first-order energy correction is given in terms of the zeroth-order (i.e., unperturbed) wavefunction as:

which is identified as the average value of the perturbation taken with respect to the unperturbed function . The so-called first-
order wavefunction  expressed in terms of the complete set of unperturbed functions { } is:

and the second-order correction to the wavefunction is expressed as

An essential point about perturbation theory is that the energy corrections  and wavefunction corrections  are expressed in
terms of integrals over the unperturbed wavefunctions  involving the perturbation (i.e.,  ) and the unperturbed energies

 Perturbation theory is most useful when one has, in hand, the solutions to an unperturbed Schrödinger equation that is
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reasonably 'close' to the full Schrödinger equation whose solutions are being sought. In such a case, it is likely that low-order
corrections will be adequate to describe the energies and wavefunctions of the full problem.

It is important to stress that although the solutions to the full 'perturbed' Schrödinger equation are expressed, as above, in terms of
sums over all states of the unperturbed Schrödinger equation, it is improper to speak of the perturbation as creating excited-state
species. For example, the polarization of the 1s orbital of the Hydrogen atom caused by the application of a static external electric
field of strength E along the z-axis is described, in first-order perturbation theory, through the sum

over all  orbitals labeled by principal quantum number n. The coefficient multiplying each  orbital depends on the energy
gap corresponding to the 1s-to-np 'excitation' as well as the electric dipole integral  between the 1s orbital and
the  orbital.

This sum describes the polarization of the 1s orbital in terms of functions that have  symmetry; by combining an s orbital and 
orbitals, one can form a 'hybrid-like' orbital that is nothing but a distorted 1s orbital. The appearance of the excited  orbitals has
nothing to do with forming excited states; these  orbitals simply provide a set of functions that can describe the response of the
1s orbital to the applied electric field.

The relative strengths and weaknesses of perturbation theory and the variational method, as applied to studies of the electronic
structure of atoms and molecules, are discussed in Section 6.
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