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11.1: Configuration State Functions can Express the Full N-Electron Wavefunction
It has been demonstrated that a given electronic configuration can yield several space- and spin- adapted determinental
wavefunctions; such functions are referred to as configuration state functions (CSFs). These CSF wavefunctions are not the exact
eigenfunctions of the many-electron Hamiltonian, H; they are simply functions which possess the space, spin, and permutational
symmetry of the exact eigenstates. As such, they comprise an acceptable set of functions to use in, for example, a linear variational
treatment of the true states.

In such variational treatments of electronic structure, the N-electron wavefunction  is expanded as a sum over all CSFs that
possess the desired spatial and spin symmetry:

Here, the  represent the CSFs that are of the correct symmetry, and the  are their expansion coefficients to be determined in
the variational calculation. If the spin-orbitals used to form the determinants, that in turn form the CSFs { }, are orthonormal one
electron functions (i.e., ), then the CSFs can be shown to be orthonormal functions of N electrons

In fact, the Slater determinants themselves also are orthonormal functions of N electrons whenever orthonormal spin-orbitals are
used to form the determinants.

The above expansion of the full N-electron wavefunction is termed a "configuration-interaction" (CI) expansion. It is, in principle,
a mathematically rigorous approach to expressing  because the set of all determinants that can be formed from a complete set of
spin-orbitals can be shown to be complete. In practice, one is limited to the number of orbitals that can be used and in the number
of CSFs that can be included in the CI expansion. Nevertheless, the CI expansion method forms the basis of the most commonly
used techniques in quantum chemistry.

In general, the optimal variational (or perturbative) wavefunction for any (i.e., the ground or excited) state will include
contributions from spin-and space-symmetry adapted determinants derived from all possible configurations. For example, although
the determinant with L =1, S = 1,  arising from the  configuration may contribute strongly to the true
ground electronic state of the Carbon atom, there will be contributions from all configurations which can provide these L, S, 

 values (e.g., the  configurations will also contribute, although the 
 will not because the latter two configurations are odd under inversion symmetry whereas the

state under study is even).

The mixing of CSFs from many configurations to produce an optimal description of the true electronic states is referred to as
configuration interaction (CI). Strong CI (i.e., mixing of CSFs with large amplitudes appearing for more than one dominant CSF)
can occur, for example, when two CSFs from different electronic configurations have nearly the same Hamiltonian expectation
value. For example, the  and   configurations of Be and the analogous  configurations of all alkaline
earth atoms are close in energy because the ns-np orbital energy splitting is small for these elements; the 
configurations of ethylene become equal in energy, and thus undergo strong CI mixing, as the CC  bond is twisted by 90° in
which case the  orbitals become degenerate.

Within a variational treatment, the relative contributions of the spin-and space symmetry adapted CSFs are determined by solving a
secular problem for the eigenvalues (  ) and eigenvectors (  ) of the matrix representation H of the full many-electron
Hamiltonian H within this CSF basis:

The eigenvalue  gives the variational estimate for the energy of the  state, and the entries in the corresponding eigenvector 
 give the contribution of the  CSF to the  wavefunction  in the sense that
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