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18.1: Optimization of the Energy for a Multiconfiguration Wavefunction

The Energy Expression 

The most straightforward way to introduce the concept of optimal molecular orbitals is to consider a trial wavefunction of the form
which was introduced earlier in Chapter 9.2. Consider a multi-electron wavefunction of the multiconfigurational form

where  is a space- and spin-adapted configuration state function (CSF) consisting of determinental wavefunctions of spin-
orbitals ( ):

The expectation value of the Hamiltonian with this wavefunction

can be expanded as:

The spin- and space-symmetry of the  SCFs determine the symmetry of the state  whose energy is to be optimized. In this
form, it is clear that  is a quadratic function of the  amplitudes ; it is a quartic functional of the spin-orbitals because the
Slater-Condon rules express each  CI matrix element in terms of one- and two-electron integrals 

 over these spin-orbitals.

The Fock and Secular Equations 
The variational method can be used to optimize the above expectation value expression for the electronic energy (i.e., to make the
functional stationary) as a function of the CI coefficients  and the LCAO-MO coefficients { } that characterize the spin-
orbitals. However, in doing so the set of { } can not be treated as entirely independent variables. The fact that the spin-orbitals {

} are assumed to be orthonormal imposes a set of constraints on the { }:

These constraints can be enforced within the variational optimization of the energy function mentioned above by introducing a set
of Lagrange multipliers { } , one for each constraint condition, and subsequently differentiating

with respect to each of the  variables.

Upon doing so, the following set of equations is obtained (early references to the derivation of such equations include A. C. Wahl,
J. Chem. Phys. 41,2600 (1964) and F. Grein and T. C. Chang, Chem. Phys. Lett. 12 , 44 (1971) and R. Shepard, p 63, in Adv. in
Chem. Phys. LXIX, K. P. Lawley, Ed., WileyInterscience, New York (1987); the subject is also treated in the textbook Second
Quantization Based Methods in Quantum Chemistry, P. Jørgensen and J. Simons, Academic Press, New York (1981))) :
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where the  are Lagrange multipliers.

The set of equations in Equation  that govern the { } amplitudes are called the CI-secular equations. The set of equations
in Equation  that determine the LCAO-MO coefficients of the spin-orbitals { } are called the Fock equations. The Fock
operator F is given in terms of the one- and two-electron operators in H itself as well as the so-called one- and two-electron density
matrices  which are defined below. These density matrices reflect the averaged occupancies of the various spin
orbitals in the CSFs of . The resultant expression for  is:

where h is the one-electron component of the Hamiltonian (i.e., the kinetic energy operator and the sum of coulombic attractions to
the nuclei). The operator  is defined by:

where the integration denoted d ' is over the spatial and spin coordinates. The so-called spin integration simply means that the 
 spin function associated with  must be the same as the  spin function associated with  or the integral will vanish.

This is a consequence of the orthonormality conditions 

One- and Two- Electron Density Matrices 

The density matrices introduced above can most straightforwardly be expressed in terms of the CI amplitudes and the nature of the
orbital occupancies in the CSFs of  as follows:

1.  is the sum over all CSFs, in which  is occupied, of the square of the CI coefficient of that CSF: 

2.  is the sum over pairs of CSFs which differ by a single spin-orbital occupancy (i.e., one having  occupied where the other
has  occupied after the two are placed into maximal coincidence-the sign factor (sign) arising from bringing the two to
maximal coincidence is attached to the final density matrix element): 

 
The two-electron density matrix elements are given in similar fashion:

3. 

4.  (it can be shown, in general that  is odd under

exchange of i and j, odd under exchange of k and l and even under (i,j) (k,l) exchange; this implies that  vanishes if i = j
or k = l.);

5.  

6.  

These density matrices are themselves quadratic functions of the CI coefficients and they reflect all of the permutational symmetry
of the determinental functions used in constructing ; they are a compact representation of all of the Slater-Condon rules as
applied to the particular CSFs which appear in . They contain all information about the spin-orbital occupancy of the CSFs in .
The one- and two- electron integrals  contain all of the information about the magnitudes of the
kinetic and Coulombic interaction energies.
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