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1.9: The Physical Relevance of Wavefunctions, Operators and Eigenvalues

Quantum mechanics has a set of 'rules' that link operators, wavefunctions, and
eigenvalues to physically measurable properties. These rules have been formulated not in
some arbitrary manner nor by derivation from some higher subject. Rather, the rules were
designed to allow quantum mechanics to mimic the experimentally observed facts as
revealed in mother nature's data. The extent to which these rules seem difficult to
understand usually reflects the presence of experimental observations that do not fit in
with our common experience base.

The structure of quantum mechanics (QM) relates the wavefunction  and operators F to the 'real world' in which experimental
measurements are performed through a set of rules. Some of these rules have already been introduced above. Here, they are
presented in total as follows:

1: The Time Evolution 
The time evolution of the wavefunction  is determined by solving the time-dependent Schrödinger equation (see pp 23-25 of
EWK for a rationalization of how the Schrödinger equation arises from the classical equation governing waves, Einstein's ,
and deBroglie's postulate that )

where H is the Hamiltonian operator corresponding to the total (kinetic plus potential) energy of the system. For an isolated system
(e.g., an atom or molecule not in contact with any external fields), H consists of the kinetic and potential energies of the particles
comprising the system. To describe interactions with an external field (e.g., an electromagnetic field, a static electric field, or the
'crystal field' caused by surrounding ligands), additional terms are added to H to properly account for the system-field interactions.

If H contains no explicit time dependence, then separation of space and time variables can be performed on the above Schrödinger

equation  to give

In such a case, the time dependence of the state is carried in the phase factor ; the spatial dependence appears in .

The so called time independent Schrödinger equation  must be solved to determine the physically measurable energies 
 and wavefunctions  of the system. The most general solution to the full Schrödinger equation

is then given by applying  to the wavefunction at some initial time (t=0)

to obtain

The relative amplitudes  are determined by knowledge of the state at the initial time; this depends on how the system has been
prepared in an earlier experiment. Just as Newton's laws of motion do not fully determine the time evolution of a classical system
(i.e., the coordinates and momenta must be known at some initial time), the Schrödinger equation must be accompanied by initial
conditions to fully determine .
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Using the results of Problem 11 of this chapter to illustrate, the sudden ionization of  in its v=0 vibrational state to generate 
 produces a vibrational wavefunction

that was created by the fast ionization of . Subsequent to ionization, this  function is not an eigenfunction of the new
vibrational Schrödinger equation appropriate to  As a result, this function will time evolve under the influence of the 
Hamiltonian. The time evolved wavefunction, according to this first rule, can be expressed in terms of the vibrational functions
{ } and energies { } of the  ion as

The amplitudes , which reflect the manner in which the wavefunction is prepared (at t=0), are determined by determining
the component of each  in the function  at t=0. To do this, one uses

which is easily obtained by multiplying the above summation by , integrating, and using the orthonormality of the { }
functions.

For the case at hand, this results shows that by forming integrals involving products of the  v=0 function 

As demonstrated in Problem 11, this integral reduces to 0.959. This means that the  v=0 state, subsequent to sudden
ionization, can be represented as containing |0.959|2 = 0.92 fraction of the v=0 state of the  ion.

Example  relates to the well known Franck-Condon principal of spectroscopy in which squares of 'overlaps' between the
initial electronic state's vibrational wavefunction and the final electronic state's vibrational wavefunctions allow one to estimate the
probabilities of populating various final-state vibrational levels.

In addition to initial conditions, solutions to the Schrödinger equation must obey certain other constraints in form. They must be
continuous functions of all of their spatial coordinates and must be single valued; these properties allow  to be interpreted as a
probability density (i.e., the probability of finding a particle at some position can not be multivalued nor can it be 'jerky' or
discontinuous). The derivative of the wavefunction must also be continuous except at points where the potential function undergoes
an infinite jump (e.g., at the wall of an infinitely high and steep potential barrier). This condition relates to the fact that the
momentum must be continuous except at infinitely 'steep' potential barriers where the momentum undergoes a 'sudden' reversal.

2: Measurements are Eigenvalues 
An experimental measurement of any quantity (whose corresponding operator is F) must result in one of the eigenvalues  of the
operator F. These eigenvalues are obtained by solving

where the  are the eigenfunctions of F. Once the measurement of F is made, for that subpopulation of the experimental sample
found to have the particular eigenvalue , the wavefunction becomes .

The equation  is but a special case; it is an especially important case because much of the machinery of modern
experimental chemistry is directed at placing the system in a particular energy quantum state by detecting its energy (e.g., by
spectroscopic means). The reader is strongly urged to also study Appendix C to gain a more detailed and illustrated treatment of
this and subsequent rules of quantum mechanics.
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3: Operators that correspond to Measurables are Hermitian 

The operators F corresponding to all physically measurable quantities are Hermitian; this means that their matrix representations
obey (see Appendix C for a description of the 'bra' | \rangle and 'ket' \langle | notation used below):

in any basis { } of functions appropriate for the action of F (i.e., functions of the variables on which F operates). As expressed
through equality of the first and third elements above, Hermitian operators are often said to 'obey the turn-over rule'. This means
that F can be allowed to operate on the function to its right or on the function to its left if F is Hermitian.

Hermiticity assures that the eigenvalues { } are all real, that eigenfunctions { } having different eigenvalues are orthogonal and
can be normalized  and that eigenfunctions having the same eigenvalues can be made orthonormal (these
statements are proven in Appendix C).

4: Stationary states do not have varying Measurables 

Once a particular value  is observed in a measurement of F, this same value will be observed in all subsequent measurements of F
as long as the system remains undisturbed by measurements of other properties or by interactions with external fields. In fact, once 

 has been observed, the state of the system becomes an eigenstate of F (if it already was, it remains unchanged):

This means that the measurement process itself may interfere with the state of the system and even determines what that state will
be once the measurement has been made.

Again consider the v=0  ionization treated in Problem 11 of this chapter. If, subsequent to ionization, the  ions produced
were probed to determine their internal vibrational state, a fraction of the sample equal to 

 would be detected in the v=0 state of the  ion. For this sub-sample, the
vibrational wavefunction becomes, and remains from then on,

where  is the energy of the  ion in its  state. If, at some later time, this subsample is again probed, all species
will be found to be in the  state.

5: Probability of observed a specific Eigenvalue 
The probability  of observing a particular value  when F is measured, given that the system wavefunction is  prior to the
measurement, is given by expanding  in terms of the complete set of normalized eigenstates of F

and then computing  For the special case in which  is already one of the eigenstates of F (i.e., ), the
probability of observing  reduces to . The set of numbers  are called the expansion coefficients of  in the
basis of the { }. These coefficients, when collected together in all possible products as  form the so-called density
matrix  of the wavefunction  within the { } basis.

If F is the operator for momentum in the x-direction and  is the wave function for x as a function of time t, then the
above expansion corresponds to a Fourier transform of 
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Here  is the normalized eigenfunction of  corresponding to momentum eigenvalue . These momentum

eigenfunctions are orthonormal:

because F is a Hermitian operator. The function  is called the momentum-space transform of  and is
denoted ; it gives, when used as , the probability density for observing momentum values  at time t.

Take the initial  to be a superposition state of the form

where the a and b are amplitudes that describe the admixture of  and  functions in this wavefunction. Then:

a. If  were measured, the value  would be observed with probability , since all of the functions in  are
p-type orbitals. After said measurement, the wavefunction would still be this same  because this entire  is an eigenfunction
of .

b. If  were measured for this

the values  would be observed (because these are the only functions with non-zero  coefficients for the 
operator) with respective probabilities 

c. After  were measured, if the sub-population for which  had been detected were subjected to measurement of  the
value  would certainly be found because the new wavefunction

is still an eigenfunction of  with this eigenvalue.

d. Again after  were measured, if the sub-population for which  had been observed and for which the wavefunction is
now

were subjected to measurement of the energy (through the Hamiltonian operator), two values would be found. With probability
the energy of the  orbital would be observed; with probability , the energy of the 

orbital would be observed.

If  is a function of several variables (e.g., when  describes more than one particle in a composite system), and if F is a
property that depends on a subset of these variables (e.g., when F is a property of one of the particles in the composite system),
then the expansion  is viewed as relating only to 's dependence on the subset of variables related to F. In

this case, the integrals  are carried out over only these variables; thus the probabilities  depend
parametrically on the remaining variables.

Suppose that  describes the radial (r) and angular ( ) motion of a diatomic molecule constrained to move on a planar
surface. If an experiment were performed to measure the component of the rotational angular momentum of the diatomic molecule

perpendicular to the surface , only values equal to (m=0,1,-1,2,-2,3,- 3,...) could be observed, because these are

the eigenvalues of  :
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The quantization of  arises because the eigenfunctions  must be periodic in : 

Such quantization (i.e., constraints on the values that physical properties can realize) will be seen to occur whenever the pertinent
wavefunction is constrained to obey a so-called boundary condition (in this case, the boundary condition is 

Expanding the -dependence of  in terms of the 

allows one to write the probability that  is observed if the angular momentum  is measured as follows:

If one is interested in the probability that  be observed when  is measured regardless of what bond length r is involved, then it
is appropriate to integrate this expression over the r-variable about which one does not care. This, in effect, sums contributions
from all rvalues to obtain a result that is independent of the r variable. As a result, the probability reduces to:

which is simply the above result integrated over r with a volume element r dr for the twodimensional motion treated here. If, on the
other hand, one were able to measure  values when r is equal to some specified bond length (this is only a hypothetical example;
there is no known way to perform such a measurement), then the probability would equal:

6. Commuting Operators 
Two or more properties F, G, J whose corresponding Hermitian operators F, G, J commute

FG-GF=FJ-JF=GJ-JG= 0

have complete sets of simultaneous eigenfunctions (the proof of this is treated in Appendix C). This means that the set of functions
that are eigenfunctions of one of the operators can be formed into a set of functions that are also eigenfunctions of the others:

The  orbitals are eigenfunctions of the  angular momentum operator with eigenvalues equal to 
. Since  commute and act on the same (angle) coordinates, they possess a complete set of

simultaneous eigenfunctions.

Although the  orbitals are not eigenfunctions of , they can be combined to form three new orbitals: 
 that are still eigenfunctions of  but are now eigenfunctions of 

also (with eigenvalues , respectively).

It should be mentioned that if two operators do not commute, they may still have some eigenfunctions in common, but they
will not have a complete set of simultaneous eigenfunctions. For example, the  components of the angular
momentum operator do not commute; however, a wavefunction with L=0 (i.e., an S-state) is an eigenfunction of both
operators.
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The fact that two operators commute is of great importance. It means that once a measurement of one of the properties is
carried out, subsequent measurement of that property or of any of the other properties corresponding to mutually commuting
operators can be made without altering the system's value of the properties measured earlier. Only subsequent measurement of
another property whose operator does not commute with F, G, or J will destroy precise knowledge of the values of the
properties measured earlier.

Assume that an experiment has been carried out on an atom to measure its total angular momentum . According to quantum
mechanics, only values equal to  will be observed. Further assume, for the particular experimental sample
subjected to observation, that values of  equal to  were detected in relative amounts of 64 % and 36 % ,
respectively. This means that the atom's original wavefunction  could be represented as:

where P and S represent the P-state and S-state components of . The squares of the amplitudes 0.8 and 0.6 give the 64 % and
36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular momentum along the lab-fixed z-axis is to be
measured for that sub-population of the original sample found to be in the P-state. For that population, the wavefunction is now
a pure P-function:

However, at this stage we have no information about how much of this ' is of m = 1, 0, or -1, nor do we know how much 2p,
3p, 4p, ... np components this state contains.

Because the property corresponding to the operator  is about to be measured, we express the above  in terms of the
eigenfunctions of 

However, at this stage we have no information about how much of this y' is of m = 1, 0, or -1, nor do we know how much 2p,
3p, 4p, ... np components this state contains.

Because the property corresponding to the operator  is about to be measured, we express the above ' in terms of the
eigenfunctions of 

When the measurement of  is made, the values  will be observed with probabilities given by 
 respectively. For that sub-population found to have, for example,  equal to , the wavefunction

then becomes

At this stage, we do not know how much of  this wavefunction contains. To probe this question
another subsequent measurement of the energy (corresponding to the H operator) could be made. Doing so would allow the
amplitudes in the expansion of the above 

to be found.

The kind of experiment outlined above allows one to find the content of each particular component of an initial sample's
wavefunction. For example, the original wavefunction has  fractional content of the various  functions. It
is analogous to the other examples considered above because all of the operators whose properties are measured commute.
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Let us consider an experiment in which we begin with a sample (with wavefunction ) that is first subjected to measurement
of  and then subjected to measurement of  and then of the energy. In this order, one would first find specific values
(integer multiples of ) of  and one would express \psi as

At this stage, the nature of each \(\m is unknown (e.g., the y1 function can contain np1, n'd1, n''f1, etc. components); all that is
known is that ym has m h as its Lz value

Taking that sub-population  with a particular m  value for  and subjecting it to subsequent measurement
of  requires the current wavefunction  to be expressed as

When  is measured the value L(L+1)  will be observed with probability , and the wavefunction for that particular
sub-population will become

At this stage, we know the value of L and of m, but we do not know the energy of the state. For example, we may know that
the present sub-population has L=1, m=-1, but we have no knowledge (yet) of how much 2p-1, 3p-1, ... np-1 the system
contains.

To further probe the sample, the above sub-population with L=1 and m=-1 can be subjected to measurement of the energy. In
this case, the function  must be expressed as

When the energy measurement is made, the state  will be found  fraction of the time.

The fact that , and H all commute with one another (i.e., are mutually commutative) makes the series of measurements
described in the above examples more straightforward than if these operators did not commute.

In the first experiment, the fact that they are mutually commutative allowed us to expand the 64 % probable  eigenstate with
L=1 in terms of functions that were eigenfunctions of the operator for which measurement was about to be made without
destroying our knowledge of the value of . That is, because  and  can have simultaneous eigenfunctions, the L = 1 function
can be expanded in terms of functions that are eigenfunctions of both  and  This in turn, allowed us to find experimentally
the sub-population that had, for example -1  as its value of  while retaining knowledge that the state remains an eigenstate of 
(the state at this time had L = 1 and m = -1 and was denoted ). Then, when this  state was subjected to energy
measurement, knowledge of the energy of the sub-population could be gained without giving up knowledge of the  and 
information; upon carrying out said measurement, the state became .

We therefore conclude that the act of carrying out an experimental measurement disturbs the system in that it causes the system's
wavefunction to become an eigenfunction of the operator whose property is measured. If two properties whose corresponding
operators commute are measured, the measurement of the second property does not destroy knowledge of the first property's value
gained in the first measurement.

On the other hand, as detailed further in Appendix C, if the two properties (F and G) do not commute, the second measurement
destroys knowledge of the first property's value. After the first measurement,  is an eigenfunction of F; after the second
measurement, it becomes an eigenfunction of G. If the two non-commuting operators' properties are measured in the opposite
order, the wavefunction first is an eigenfunction of G, and subsequently becomes an eigenfunction of F.

It is thus often said that 'measurements for operators that do not commute interfere with one another'. The simultaneous
measurement of the position and momentum along the same axis provides an example of two measurements that are incompatible.
The fact that x = x and  do not commute is straightforward to demonstrate:
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Operators that commute with the Hamiltonian and with one another form a particularly important class because each such operator
permits each of the energy eigenstates of the system to be labelled with a corresponding quantum number. These operators are
called symmetry operators. As will be seen later, they include angular momenta (e.g.,  for atoms) and point group
symmetries (e.g., planes and rotations about axes). Every operator that qualifies as a symmetry operator provides a quantum
number with which the energy levels of the system can be labeled.

7: Expectation Values 
If a property F is measured for a large number of systems all described by the same , the average value of \langle F\rangle for
such a set of measurements can be computed as

Expanding  in terms of the complete set of eigenstates of F allows \langle F\rangle to be rewritten as follows:

which clearly expresses \langle F\rangle as the product of the probability  of obtaining the particular value  when the property
F is measured and the value .of the property in such a measurement. This same result can be expressed in terms of the density
matrix  of the state  defined above as:

Here, DF represents the matrix product of the density matrix  and the matrix representation  of the F operator,
both taken in the { } basis, and Tr represents the matrix trace operation.

As mentioned at the beginning of this Section, this set of rules and their relationships to experimental measurements can be quite
perplexing. The structure of quantum mechanics embodied in the above rules was developed in light of new scientific observations
(e.g., the photoelectric effect, diffraction of electrons) that could not be interpreted within the conventional pictures of classical
mechanics. Throughout its development, these and other experimental observations placed severe constraints on the structure of the
equations of the new quantum mechanics as well as on their interpretations. For example, the observation of discrete lines in the
emission spectra of atoms gave rise to the idea that the atom's electrons could exist with only certain discrete energies and that light
of specific frequencies would be given off as transitions among these quantized energy states took place.

Even with the assurance that quantum mechanics has firm underpinnings in experimental observations, students learning this
subject for the first time often encounter difficulty. Therefore, it is useful to again examine some of the model problems for which
the Schrödinger equation can be exactly solved and to learn how the above rules apply to such concrete examples.

The examples examined earlier in this Chapter and those given in the Exercises and Problems serve as useful models for
chemically important phenomena: electronic motion in polyenes, in solids, and in atoms as well as vibrational and rotational
motions. Their study thus far has served two purposes; it allowed the reader to gain some familiarity with applications of quantum
mechanics and it introduced models that play central roles in much of chemistry. Their study now is designed to illustrate how the
above seven rules of quantum mechanics relate to experimental reality.

An Example Illustrating Several of the Fundamental Rules 

The physical significance of the time independent wavefunctions and energies treated in Section II as well as the meaning of the
seven fundamental points given above can be further illustrated by again considering the simple two-dimensional electronic motion
model.

If the electron were prepared in the eigenstate corresponding to  its total energy would be

[x(−iℏ )−(−iℏ )x]χ = iℏχ ≠ 0.
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If the energy were experimentally measured, this and only this value would be observed, and this same result would hold for all
time as long as the electron is undisturbed.

If an experiment were carried out to measure the momentum of the electron along the y-axis, according to the second postulate

above, only values equal to the eigenvalues of  could be observed. The p  eigenfunctions (i.e., functions that obey p

 are of the form

where the momentum  can achieve any value; the  factor is used to normalize the eigenfunctions over the range 

 It is useful to note that the y-dependence of  as expressed above  is already written in terms of two

such eigenstates of 

Thus, the expansion of  in terms of eigenstates of the property being measured dictated by the fifth postulate above is already
accomplished. The only two terms in this expansion correspond to momenta along the y-axis of  the probabilities of

observing these two momenta are given by the squares of the expansion coefficients of  in terms of the normalized eigenfunctions

of . The functions  are such normalized eigenfunctions; the expansion coefficients of

these functions in  respectively. Thus the momentum  will be observed with probability 

 will be observed with probability  If the momentum along the x-axis were experimentally

measured, again only two values would be found, each with a probability of .

The average value of the momentum along the x-axis can be computed either as the sum of the probabilities multiplied by the
momentum values:

or as the so-called expectation value integral shown in the seventh postulate:

Inserting the full expression for (x,y) and integrating over x and y from 0 to L  respectively, this integral is seen to
vanish. This means that the result of a large number of measurements of p  on electrons each described by the same  will yield
zero net momentum along the x-axis.; half of the measurements will yield positive momenta and half will yield negative momenta
of the same magnitude.

The time evolution of the full wavefunction given above for the n =1, n =2 state is easy to express because this  is an energy
eigenstate:
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If, on the other hand, the electron had been prepared in a state  that is not a pure eigenstate (i.e., cannot be expressed as a
single energy eigenfunction), then the time evolution is more complicated. For example, if at t=0  were of the form

with a and b both real numbers whose squares give the probabilities of finding the system in the respective states, then the time

evolution operator  applied to  would yield the following time dependent function:

where

The probability of finding  if an experiment were carried out to measure energy would be ; the
probability for finding  would be . The spatial probability distribution for finding the electron at points x,y will, in this case,
be given by:

where  is 

and

This spatial distribution is not stationary but evolves in time. So in this case, one has a wavefunction that is not a pure eigenstate of
the Hamiltonian (one says that  is a superposition state or a non-stationary state) whose average energy remains constant 

 but whose spatial distribution changes with time.

Although it might seem that most spectroscopic measurements would be designed to prepare the system in an eigenstate (e.g., by
focusing on the sample light whose frequency matches that of a particular transition), such need not be the case. For example, if
very short laser pulses are employed, the Heisenberg uncertainty broadening  causes the light impinging on the
sample to be very non-monochromatic (e.g., a pulse time of  sec corresponds to a frequency spread of approximately 

). This, in turn, removes any possibility of preparing the system in a particular quantum state with a resolution of better than 
 because the system experiences time oscillating electromagnetic fields whose frequencies range over at least ).

Essentially all of the model problems that have been introduced in this Chapter to illustrate the application of quantum mechanics
constitute widely used, highly successful 'starting-point' models for important chemical phenomena. As such, it is important that
students retain working knowledge of the energy levels, wavefunctions, and symmetries that pertain to these models.
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Thus far, exactly soluble model problems that represent one or more aspects of an atom or molecule's quantum-state structure have
been introduced and solved. For example, electronic motion in polyenes was modeled by a particle-in-a-box. The harmonic
oscillator and rigid rotor were introduced to model vibrational and rotational motion of a diatomic molecule

As chemists, we are used to thinking of electronic, vibrational, rotational, and translational energy levels as being (at least
approximately) separable. On the other hand, we are aware that situations exist in which energy can flow from one such degree of
freedom to another (e.g., electronic-to-vibrational energy flow occurs in radiationless relaxation and vibration-rotation couplings
are important in molecular spectroscopy). It is important to understand how the simplifications that allow us to focus on electronic
or vibrational or rotational motion arise, how they can be obtained from a first-principles derivation, and what their limitations and
range of accuracy are.
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