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1.4: Free-Particle Motion in Two Dimensions

The Schrödinger Equation 

The number of dimensions depends on the number of particles and the number of spatial (and other) dimensions needed to
characterize the position and motion of each particle

Consider an electron of mass m and charge e moving on a two-dimensional surface that defines the x,y plane (perhaps the electron
is constrained to the surface of a solid by a potential that binds it tightly to a narrow region in the z-direction), and assume that the
electron experiences a constant potential  at all points in this plane (on any real atomic or molecular surface, the electron would
experience a potential that varies with position in a manner that reflects the periodic structure of the surface). The pertinent time
independent Schrödinger equation is:

Because there are no terms in this equation that couple motion in the x and y directions (e.g., no terms of the form  or  

or ), separation of variables can be used to write  as a product (x,y)=A(x)B(y). Substitution of this form into the

Schrödinger equation, followed by collecting together all x-dependent and all y-dependent terms, gives;

Since the first term contains no y-dependence and the second contains no x-dependence, both must actually be constant (these two
constants are denoted  and , respectively), which allows two separate Schrödinger equations to be written:

The total energy E can then be expressed in terms of these separate energies  and  as . Solutions to the x-
and y- Schrödinger equations are easily seen to be:

Two independent solutions are obtained for each equation because the x- and y-space Schrödinger equations are both second order
differential equations.

Boundary Conditions 
The boundary conditions, not the Schrödinger equation, determine whether the eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the x,y plane, the energies  and  can assume any value; this means that the
experimenter can 'inject' the electron onto the x,y plane with any total energy E and any components  and  along the two axes
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as long as  +  = E. In such a situation, one speaks of the energies along both coordinates as being 'in the continuum' or 'not
quantized'.

In contrast, if the electron is constrained to remain within a fixed area in the x,y plane (e.g., a rectangular or circular region), then
the situation is qualitatively different. Constraining the electron to any such specified area gives rise to so-called boundary
conditions that impose additional requirements on the above A and B functions. These constraints can arise, for example, if the
potential (x,y) becomes very large for x,y values outside the region, in which case, the probability of finding the electron outside
the region is very small. Such a case might represent, for example, a situation in which the molecular structure of the solid surface
changes outside the enclosed region in a way that is highly repulsive to the electron.

For example, if motion is constrained to take place within a rectangular region defined by 0  x ; 0 , then the
continuity property that all wavefunctions must obey (because of their interpretation as probability densities, which must be
continuous) causes A(x) to vanish at 0 and at L . Likewise, B(y) must vanish at 0 and at L . To implement these constraints for

A(x), one must linearly combine the above two solutions e  and e to achieve a function that vanishes at x=0:

One is allowed to linearly combine solutions of the Schrödinger equation that have the same energy (i.e., are degenerate) because
Schrödinger equations are linear differential equations. An analogous process must be applied to B(y) to achieve a function that
vanishes at y=0:

Further requiring A(x) and B(y) to vanish, respectively, at x=L  and y=L , gives equations that can be obeyed only if  and 
assume particular values:

These equations are equivalent to

Knowing that sin( ) vanishes at , for n=1,2,3,..., (although the sin(n ) function vanishes for n=0, this function vanishes for
all x or y, and is therefore unacceptable because it represents zero probability density at all points in space) one concludes that the
energies  and  can assume only values that obey:
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It is important to stress that it is the imposition of boundary conditions, expressing the fact that the electron is spatially constrained,
that gives rise to quantized energies. In the absence of spatial confinement, or with confinement only at x =0 or L  or only at y =0
or L , quantized energies would not be realized.

In this example, confinement of the electron to a finite interval along both the x and y coordinates yields energies that are quantized
along both axes. If the electron were confined along one coordinate (e.g., between 0  x ) but not along the other (i.e., B(y) is
either restricted to vanish at y=0 or at y=L  or at neither point), then the total energy E lies in the continuum; its  component is
quantized but  is not. Such cases arise, for example, when a linear triatomic molecule has more than enough energy in one of its
bonds to rupture it but not much energy in the other bond; the first bond's energy lies in the continuum, but the second bond's
energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation energy is excited to a level that is not enough to
break it but that is in excess of the dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the strong
bond having high internal energy and the weak bond having low energy ( ), and ii. the strong bond having little energy and the
weak bond having more than enough energy to rupture it ( ). Although an experiment may prepare the molecule in a state that
contains only the former component (i.e., , coupling between the two degenerate functions
(induced by terms in the Hamiltonian H that have been ignored in defining  and ) usually causes the true wavefunction  = e

 to acquire a component of the second function as time evolves. In such a case, one speaks of internal vibrational
energy flow giving rise to unimolecular decomposition of the molecule.

3. Energies and Wavefunctions for Bound States 
For discrete energy levels, the energies are specified functions the depend on quantum numbers, one for each degree of freedom

that is quantized

Returning to the situation in which motion is constrained along both axes, the resultant total energies and wavefunctions (obtained
by inserting the quantum energy levels into the expressions for  are as follows:

and

with  and  = 1,2,3, ... .

The two  factors are included to guarantee that  is normalized:

Normalization allows  to be properly identified as a probability density for finding the electron at a point x, y.

4. Quantized Action Can Also be Used to Derive Energy Levels 

There is another approach that can be used to find energy levels and is especially straightforward to use for systems whose
Schrödinger equations are separable. The socalled classical action (denoted S) of a particle moving with momentum p along a path
leading from initial coordinate  at initial time t  to a final coordinate  at time  is defined by:
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Here, the momentum vector p contains the momenta along all coordinates of the system, and the coordinate vector q likewise
contains the coordinates along all such degrees of freedom. For example, in the two-dimensional particle in a box problem
considered above, q = (x, y) has two components as does p = (p , p ), and the action integral is:

In computing such actions, it is essential to keep in mind the sign of the momentum as the particle moves from its initial to its final
positions. An example will help clarify these matters.

For systems such as the above particle in a box example for which the Hamiltonian is separable, the action integral decomposed
into a sum of such integrals, one for each degree of freedom. In this two-dimensional example, the additivity of H:

means that p  and p  can be independently solved for in terms of the potentials V(x) and V(y) as well as the energies  and 
associated with each separate degree of freedom:

the signs on p  and p  must be chosen to properly reflect the motion that the particle is actually undergoing. Substituting these
expressions into the action integral yields:

The relationship between these classical action integrals and existence of quantized energy levels has been show to involve
equating the classical action for motion on a closed path (i.e., a path that starts and ends at the same place after undergoing motion
away from the starting point but eventually returning to the starting coordinate at a later time) to an integral multiple of Planck's
constant:

Applied to each of the independent coordinates of the two-dimensional particle in a box problem, this expression reads:
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Notice that the sign of the momenta are positive in each of the first integrals appearing above (because the particle is moving from
x = 0 to x = L , and analogously for y-motion, and thus has positive momentum) and negative in each of the second integrals
(because the motion is from x = L  to x = 0 (and analogously for y-motion) and thus with negative momentum). Within the region
bounded by 0  x ; 0  y , the potential vanishes, so V(x) = V(y) = 0. Using this fact, and reversing the upper and
lower limits, and thus the sign, in the second integrals above, one obtains:

Solving for  and , one finds:

These are the same quantized energy levels that arose when the wavefunction boundary conditions were matched at x = 0, x = L
and y = 0, y = L . In this case, one says that the Bohr-Sommerfeld quantization condition:

has been used to obtain the result.
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