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11.4: Examples of Applying the Slater-Condon Rules
It is wise to gain some experience using the Slater-Condon rules, so let us consider a few illustrative example problems.

1. What is the contribution to the total energy of the  level of Carbon made by the two 2p orbitals alone? Of course, the two 1s
and two 2s spin-orbitals contribute to the total energy, but we artificially ignore all such contributions in this example to
simplify the problem. 
 
Because all nine of the  states have the same energy, we can calculate the energy of any one of them; it is therefore prudent
to choose an "easy" one 

 
The energy of this state is . The SC rules tell us this equals: 

 
where the short hand notation \(I_j =< j | f | j > is introduced. 
 
If the contributions from the two 1s and two 2s spin-orbitals are now taken into account, one obtains a total energy that also
contains 

2. Is the energy of another  state equal to the above state's energy? Of course, but it may prove informative to prove this. 
Consider the  state whose energy is: 

 

 

 

 
Which is, indeed, the same as the other  energy obtained above

3. What energy would the singlet state  have? 

The  example can be used (changing the sign on the two determinants) to give 

 
Note, this is the  component of the  state; it is, of course, not a 1P state because no such state exists for two
equivalent p electrons

4. What is the CI matrix element coupling ? 
These two determinants differ by two spin-orbitals, so 
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(note, this is an exchange-type integral).

5. What is the CI matrix element coupling |?
These two determinants differ by two spin-orbitals, so 

 
(note, again this is an exchange-type integral).

6. What is the Hamiltonian matrix element coupling  and ? 

The first determinant differs from the  determinant by one spin-orbital, as does the second (after it is placed into maximal
coincidence by making one permutation), so 

 

 

7. What is the element coupling  and ? 

 
This result should not surprise you because  is an S=0 singlet state while  is the 

component of the S=1 triplet state.
8. What is the  electric dipole matrix element between ? Is the second

function a singlet or triplet? It is a singlet in disguise; by interchanging the  and thus introducing a (-1), this
function is clearly identified as  which is a singlet. 

 
The first determinant differs from the latter two by one spin orbital in each case, so 

9. What is the electric dipole matrix elements between the  state and the 

state? 
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10. As another example of the use of the SC rules, consider the configuration interaction which occurs between the  and 
 CSFs in the Be atom. 

The CSFs corresponding to these two configurations are as follows: 

 
and 

 
The determinental Hamiltonian matrix elements needed to evaluate the 2x2  matrix appropriate to these two CSFs are
evaluated via the SC rules. The first such matrix element is: 

 
where 

 

 
and 

 
are the orbital-level one-electron, coulomb, and exchange integrals , respectively. 
 
Coulomb integrals  describe the coulombic interaction of one charge density (  above) with another charge density (
above); exchange integrals  describe the interaction of an overlap charge density (i.e., a density of the form  ) with
itself (  in the above). 
 
The spin functions  which accompany each orbital in  have been eliminated by carrying out the spin
integrations as discussed above. Because H contains no spin operators, this is straightforward and amounts to keeping integrals 

 only  are of the same spin and integrals 
 are of the same spin. The physical content of the

above energy (i.e., Hamiltonian expectation value) of the  determinant is clear:  is the sum of the
expectation values of the one-electron (i.e., kinetic energy and electron-nuclear coulomb interaction) part of the Hamiltonian for
the four occupied spin-orbitals;  contains the coulombic repulsions among all pairs of
occupied spin-orbitals minus the exchange interactions among pairs of spin-orbitals with like spin. 
 
The determinental matrix elements linking  are as follows: 
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where the Dirac convention has been introduced as a shorthand notation for the two electron integrals (e.g., 
represents . 
 
The three integrals shown above can be seen to be equal and to be of the exchange integral form by expressing the integrals in
terms of integrals over cartesian functions and recognizing identities due to the equivalence of the  orbitals.
For example, 

 

 
(here the two imaginary terms cancel and the two remaining real integrals are equal); 

 
this is because  

 

These integrals are clearly of the exchange type because they involve the coulombic interaction of the  overlap
charge density with itself. 
Moving on, the matrix elements among the three determinants in  are given as follows: 
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Certain of these integrals can be recast in terms of cartesian integrals for which equivalences are easier to identify as follows: 

 

 

 

 
 
Finally, the 2x2 CI matrix corresponding to the CSFs  and  can be formed from the above determinental matrix elements;
this results in:

 

 

 
The lowest eigenvalue of this matrix provides this CI calculation's estimate of the groundstate  energy of Be; its eigenvector
provides the CI amplitudes for  in this ground-state wavefunction. The other root of the 2x2 secular problem gives
an approximation to another  state of higher energy, in particular, a state dominated by the 

 CSF. 

11. As another example, consider the matrix elements which arise in electric dipole transitions between two singlet electronic
states: 

 Here  is the one-electron operator describing the interaction of an electric field of magnitude

and polarization E with the instantaneous dipole moment of the electrons (the contribution to the dipole operator arising from
the nuclear charges  does not contribute because, when placed between , this zero-electron operator

yields a vanishing integral because  are orthogonal). 
 
When the states  are described as linear combinations of CSFs as introduced earlier ( ), these

matrix elements can be expressed in terms of CSF-based matrix elements <  >. The fact that the electric dipole

operator is a one-electron operator, in combination with the SC rules, guarantees that only states for which the dominant
determinants differ by at most a single spin-orbital (i.e., those which are "singly excited") can be connected via electric dipole
transitions through first order (i.e., in a one-photon transition to which the <  > matrix elements pertain). It is for

this reason that light with energy adequate to ionize or excite deep core electrons in atoms or molecules usually causes such
ionization or excitation rather than double ionization or excitation of valence-level electrons; the latter are two-electron events. 
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In, for example, the  excitation of an olefin, the ground and excited states are dominated by CSFs of the form (where all
but the "active"  orbitals are not explicitly written) : 

 
and 

 
The electric dipole matrix element between these two CSFs can be found, using the SC rules, to be

 
Notice that in evaluating the second determinental integral , a sign change occurs when one puts
the two determinants into maximum coincidence; this sign change then makes the minus sign in  yield a positive sign in the
final result.
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