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15.3: Electronic-Vibration-Rotation Transitions

The Electronic Transition Dipole and Use of Point Group Symmetry 

Returning to the expression

for the rate of photon absorption, we realize that the electronic integral now involves

a transition dipole matrix element between the initial  and final  electronic wavefunctions. This element is a function of the
internal vibrational coordinates of the molecule, and again is a vector locked to the molecule's internal axis frame.

Molecular point-group symmetry can often be used to determine whether a particular transition's dipole matrix element will vanish
and, as a result, the electronic transition will be "forbidden" and thus predicted to have zero intensity. If the direct product of the
symmetries of the initial and final electronic states  do not match the symmetry of the electric dipole operator (which
has the symmetry of its x, y, and z components; these symmetries can be read off the right most column of the character tables
given in Appendix E), the matrix element will vanish.

For example, the formaldehyde molecule  has a ground electronic state (see Chapter 11) that has  symmetry in the 
 singlet excited state also has  symmetry because both the  orbitals are of  symmetry.

In contrast, the lowest n  symmetry because the highest energy oxygen centered n orbital is
of  symmetry and the  symmetry, so the Slater determinant in which both the n and  orbitals are singly
occupied has its symmetry dictated by the 

The  transition thus involves ground ( ) and excited ( ) states whose direct product (  symmetry.
This transition thus requires that the electric dipole operator possess a component of  point
group's character table shows that the molecular z-axis is of  symmetry. Thus, if the light's electric field has a non-zero
component along the  symmetry axis (the molecule's z-axis), the  transition is predicted to be allowed. Light polarized
along either of the molecule's other two axes cannot induce this transition.

In contrast, the n  transition has a ground-excited state direct product of  symmetry. The  's point group
character table clearly shows that the electric dipole operator (i.e., its x, y, and z components in the molecule-fixed frame) has no
component of  symmetry; thus, light of no electric field orientation can induce this n  transition. We thus say that the n 

 transition is E1 forbidden (although it is M1 allowed).

Beyond such electronic symmetry analysis, it is also possible to derive vibrational and rotational selection rules for electronic
transitions that are E1 allowed. As was done in the vibrational spectroscopy case, it is conventional to expand  in a power
series about the equilibrium geometry of the initial electronic state (since this geometry is more characteristic of the molecular
structure prior to photon absorption):

The Franck-Condon Factors 

The first term in this expansion, when substituted into the integral over the vibrational coordinates, gives , which
has the form of the electronic transition dipole multiplied by the "overlap integral" between the initial and final vibrational
wavefunctions. The  factor was discussed above; it is the electronic E1 transition integral evaluated at the equilibrium
geometry of the absorbing state. Symmetry can often be used to determine whether this integral vanishes, as a result of which the
E1 transition will be "forbidden".

Unlike the vibration-rotation case, the vibrational overlap integrals  do not necessarily vanish because  are no
longer eigenfunctions of the same vibrational Hamiltonian.  is an eigenfunction whose potential energy is the final electronic
state's energy surface;  has the initial electronic state's energy surface as its potential. The squares of these  integrals,
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which are what eventually enter into the transition rate expression  are called "Franck-

Condon factors". Their relative magnitudes play strong roles in determining the relative intensities of various vibrational "bands"
(i.e., peaks) within a particular electronic transition's spectrum.

Whenever an electronic transition causes a large change in the geometry (bond lengths or angles) of the molecule, the Franck-
Condon factors tend to display the characteristic "broad progression" shown below when considered for one initial-state vibrational
level vi and various final-state vibrational levels vf:

Figure 15.3.1: Insert caption here!

Notice that as one moves to higher vf values, the energy spacing between the states  decreases; this, of course,
reflects the anharmonicity in the excited state vibrational potential. For the above example, the transition to the vf = 2 state has the
largest FranckCondon factor. This means that the overlap of the initial state's vibrational wavefunction 

 function with vf = 2.

As a qualitative rule of thumb, the larger the geometry difference between the initial and final state potentials, the broader will be
the Franck-Condon profile (as shown above) and the larger the vf value for which this profile peaks. Differences in harmonic
frequencies between the two states can also broaden the Franck-Condon profile, although not as significantly as do geometry
differences.

For example, if the initial and final states have very similar geometries and frequencies along the mode that is excited when the
particular electronic excitation is realized, the following type of Franck-Condon profile may result:

Figure 15.3.2: Insert caption here!

In contrast, if the initial and final electronic states have very different geometries and/or vibrational frequencies along some mode,
a very broad Franck-Condon envelope peaked at high-vf will result as shown below:
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Figure 15.3.3: Insert caption here!

Vibronic Effects 

The second term in the above expansion of the transition dipole matrix element  can become important to

analyze when the first term  vanishes (e.g., for reasons of symmetry). This dipole derivative term, when substituted into

the integral over vibrational coordinates gives . Transitions for which  vanishes but for

which  does not for the  vibrational mode are said to derive intensity through "vibronic coupling" with that mode. The

intensities of such modes are dependent on how strongly the electronic dipole integral varies along the mode (i.e, on  ) as

well as on the magnitude of the vibrational integral 

An example of an E1 forbidden but "vibronically allowed" transition is provided by the singlet n  transition of  that
was discussed earlier in this section. As detailed there, the ground electronic state has  symmetry, and the n 

 symmetry, so the E1 transition integral  vanishes for all three (x, y, z) components of the electric
dipole operator . However, vibrations that are of  symmetry (e.g., the H-C-H asymmetric stretch vibration) can induce intensity
in the n  transition as follows: (i) For such vibrations, the  mode's vi = 0 to vf = 1 vibronic integral 
will be non-zero and probably quite substantial (because, for harmonic oscillator functions these "fundamental" transition integrals

are dominant- see earlier); (ii) Along these same  modes, the electronic transition dipole integral derivative  will be non-
zero, even though the integral itself  vanishes when evaluated at the initial state's equilibrium geometry.

To understand why the derivative  can be non-zero for distortions (denoted  symmetry, consider this quantity in
greater detail:

The third integral vanishes because the derivative of the dipole operator itself  with respect to the

coordinates of atomic centers, yields an operator that contains only a sum of scalar quantities (the elementary charge e and the
magnitudes of various atomic charges ); as a result and because the integral over the electronic wavefunctions 
vanishes, this contribution yields zero. The first and second integrals need not vanish by symmetry because the wavefunction

derivatives  do not possess the same symmetry as their respective wavefunctions  In fact, it can be
shown that the symmetry of such a derivative is given by the direct product of the symmetries of its wavefunction and the
symmetry of the vibrational mode that gives rise to the  case at hand, the  mode vibration can induce in the

excited  state a derivative component (i.e.,  ) that is of  symmetry) and this same vibration can induce in the 
ground state a derivative component of  symmetry.

As a result, the contribution  to  arising from vibronic coupling within the excited electronic state can be expected

to be non-zero for components of the dipole operator  that are of  symmetry. Light polarized
along the molecule's x-axis gives such a  component to  (see the  character table in Appendix E). The second contribution 
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 can be non-zero for components of  that are of  =  symmetry; again, light of x-axis
polarization can induce such a transition.

In summary, electronic transitions that are E1 forbidden by symmetry can derive significant (e.g., in  the singlet n 
transition is rather intense) intensity through vibronic coupling. In such coupling, one or more vibrations (either in the initial or the
final state) cause the respective electronic wavefunction to acquire (through ) a symmetry component that is different than that

of  itself. The symmetry of , which is given as the direct product of the symmetry of  and that of the vibration, can then

cause the electric dipole integral  to be non-zero even when is zero. Such vibronically allowed transitions are
said to derive their intensity through vibronic borrowing.

Rotational Selection Rules for Electronic Transitions 

Each vibrational peak within an electronic transition can also display rotational structure (depending on the spacing of the
rotational lines, the resolution of the spectrometer, and the presence or absence of substantial line broadening effects such as those
discussed later in this Chapter). The selection rules for such transitions are derived in a fashion that parallels that given above for
the vibration-rotation case. The major difference between this electronic case and the earlier situation is that the vibrational
transition dipole moment  appropriate to the former is replaced by  for conventional (i.e., nonvibronic) transitions or 

 (for vibronic transitions).

As before, when  lies along the molecular axis of a linear molecule, the transition is denoted  and k = 0
applies; when this vector lies perpendicular to the axis it is called  and k = ±1 pertains. The resultant linear-molecule rotational
selection rules are the same as in the vibration-rotation case:

In the latter case, the L = L' = 0 situation does not arise because a p transition has one unit of angular momentum along the
molecular axis which would preclude both L and L' vanishing.

which applies when  lies along the symmertry axis, and

which applies when  lies perpendicular to the symmetry axis.
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