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14.3: Application to Electromagnetic Perturbations

First-Order Fermi-Wentzel "Golden Rule" 

Using the earlier expressions for  and for A(r,t)

and

it is relatively straightforward to carry out the above time integration to achieve a final expression for , which can then be

substituted into  to obtain the final expression for the first-order estimate of the probability amplitude for

the molecule appearing in the state  after being subjected to electromagnetic radiation from t = 0 until t = T. This final
expression reads:

where

is the resonance frequency for the transition between "initial" state 

Defining the time-independent parts of the above expression as

this result can be written as

The modulus squared  gives the probability of finding the molecule in the final state  at time T, given that it was in 
at time t = 0. If the light's frequency  is tuned close to the transition frequency  of a particular transition, the term whose
denominator contains  will dominate the term with  in its denominator. Within this "near-resonance"
condition, the above probability reduces to:

This is the final result of the first-order time-dependent perturbation theory treatment of light-induced transitions between states 
.
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The so-called sinc-function

as shown in the figure below is strongly peaked near , and displays secondary maxima (of decreasing amplitudes) near 
, ... . In the  limit, this function becomes narrower and narrower, and the area under it

grows with T. Physically, this means that when the molecules are exposed to the light source for long times (large T), the sinc
function emphasizes  values near  (i.e., the on-resonance  values). These properties of the sinc function will play important
roles in what follows.

Figure 14.3.1: Insert caption here!

In most experiments, light sources have a "spread" of frequencies associated with them; that is, they provide photons of various
frequencies. To characterize such sources, it is common to introduce the spectral source function g( ) d  which gives the
probability that the photons from this source have frequency somewhere between . For narrow-band lasers, g(  is a
sharply peaked function about some "nominal" frequency ; broader band light sources have much broader g( ) functions.

When such non-monochromatic light sources are used, it is necessary to average the above formula for  over the g( ) d
probability function in computing the probability of finding the molecule in state  after time T, given that it was in  up until t
= 0, when the light source was turned on. In particular, the proper expression becomes:

If the light-source function is "tuned" to peak near  and if  is much broader (in -space) than the 

 function, g( ) can be replaced by its value at the peak of the  function, yielding:

The fact that the probability of excitation from  grows linearly with the time T over which the light source is turned on
implies that the rate of transitions between these two states is constant and given by:
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this is the so-called first-order Fermi-Wentzel "golden rule" expression for such transition rates. It gives the rate as the square of a
transition matrix element between the two states involved, of the first order perturbation multiplied by the light source function 

 evaluated at the transition frequency .

Higher Order Results 
Solution of the second-order time-dependent perturbation equations,

which will not be treated in detail here, gives rise to two distinct types of contributions to the transition probabilities between 
:

There will be matrix elements of the form

arising when .

There will be matrix elements of the form

arising from expanding  and using the earlier result for the first-order amplitudes . Because both

types of second-order terms vary quadratically with the A(r,t) potential, and because A has time dependence of the form 
, these terms contain portions that vary with time as  As a result, transitions between initial and final

states  whose transition frequency is  can be induced when ; in this case, one speaks of coherent two-
photon induced transitions in which the electromagnetic field produces a perturbation that has twice the frequency of the "nominal"
light source frequency .
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