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1.3: The Schrödinger Equation

The Time-Dependent Schrödinger Equation 

How to extract from  knowledge about momenta is treated, where the structure of quantum mechanics, the use of operators
and wavefunctions to make predictions and interpretations about experimental measurements, and the origin of 'uncertainty
relations' such as the well known Heisenberg uncertainty condition dealing with measurements of coordinates and momenta are
also treated.

Before moving deeper into understanding what quantum mechanics 'means', it is useful to learn how the wavefunctions  are
found by applying the basic equation of quantum mechanics, the Schrödinger equation, to a few exactly soluble model problems.
Knowing the solutions to these 'easy' yet chemically very relevant models will then facilitate learning more of the details about the
structure of quantum mechanics because these model cases can be used as 'concrete examples'.

The Schrödinger equation is a differential equation depending on time and on all of the spatial coordinates necessary to describe the
system at hand (thirty-nine for the H O example cited above). It is usually written

where ,t) is the unknown wavefunction and  is the operator corresponding to the total energy physical property of the
system. This operator is called the Hamiltonian and is formed, as stated above, by first writing down the classical mechanical
expression for the total energy (kinetic plus potential) in Cartesian coordinates and momenta and then replacing all classical

momenta pj by their quantum mechanical operators .

For the H O example used above, the classical mechanical energy of all thirteen particles is

where the indices i and j are used to label the ten electrons whose thirty cartesian coordinates are {q } and a and b label the three
nuclei whose charges are denoted {Z }, and whose nine cartesian coordinates are {q }. The electron and nuclear masses are
denoted me and {m }, respectively.

The corresponding Hamiltonian operator is

Notice that H is a second order differential operator in the space of the thirty-nine Cartesian coordinates that describe the positions
of the ten electrons and three nuclei. It is a second order operator because the momenta appear in the kinetic energy as  and ,

and the quantum mechanical operator for each momentum p =  is of first order.

The Schrödinger equation for the  then reads

If the Hamiltonian operator contains the time variable explicitly, one must solve the time-
dependent Schrödinger equation. If the Hamiltonian operator does not contain the time
variable explicitly, one can solve the time-independent Schrödinger equation
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The Time-Independent Schrödinger Equation 

In cases where the classical energy, and hence the quantum Hamiltonian, do not contain terms that are explicitly time dependent
(e.g., interactions with time varying external electric or magnetic fields would add to the above classical energy expression time
dependent terms discussed later in this text), the separations of variables techniques can be used to reduce the Schrödinger equation
to a time-independent equation.

In such cases, H is not explicitly time dependent, so one can assume that ,t) is of the for

Substituting this 'ansatz' into the time-dependent Schrödinger equation gives

Dividing by F(t) then gives

Since F(t) is only a function of time t, and  ) is only a function of the spatial coordinates { }, and because the left hand and
right hand sides must be equal for all values of t and of { }, both the left and right hand sides must equal a constant. If this
constant is called E, the two equations that are embodied in this separated Schrödinger equation read as follows:

Equation  is called the time-independent Schrödinger Equation; it is a so-called eigenvalue equation in which one is asked to
find functions that yield a constant multiple of themselves when acted on by the Hamiltonian operator. Such functions are called
eigenfunctions of H and the corresponding constants are called eigenvalues of H. For example, if H were of the form

then functions of the form e  would be eigenfunctions because

In this case,  is the eigenvalue.

When the Schrödinger equation can be separated to generate a time-independent equation describing the spatial coordinate
dependence of the wavefunction, the eigenvalue  must be returned to the equation determining  to find the time dependent
part of the wavefunction. By solving

once  is known, one obtains

and the full wavefunction can be written as

and the full wavefunction can be written as
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For the above example, the time dependence is expressed by

Having been introduced to the concepts of operators, wavefunctions, the Hamiltonian and its Schrödinger equation, it is important
to now consider several examples of the applications of these concepts. The examples treated below were chosen to provide the
learner with valuable experience in solving the Schrödinger equation; they were also chosen because the models they embody form
the most elementary chemical models of electronic motions in conjugated molecules and in atoms, rotations of linear molecules,
and vibrations of chemical bonds.

This page titled 1.3: The Schrödinger Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons via source content that was edited to the style and standards of the LibreTexts platform.
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