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20.1: Calculations of Properties Other Than the Energy
There are, of course, properties other than the energy that are of interest to the practicing chemist. Dipole moments, polarizabilities,
transition probabilities among states, and vibrational frequencies all come to mind. Other properties that are of importance involve
operators whose quantum numbers or symmetry indices label the state of interest. Angular momentum and point group symmetries
are examples of the latter properties; for these quantities the properties are precisely specified once the quantum number or
symmetry label is given (e.g., for a  state, the average value of .

Although it may be straightforward to specify what property is to be evaluated, often computational difficulties arise in carrying out
the calculation. For some ab initio methods, these difficulties are less severe than for others. For example, to compute the electric
dipole transition matrix element  between two states , one must evaluate the integral involving the one-
electron dipole operator ; here the first sum runs over the N electrons and the second sum runs over the

nuclei whose charges are denoted . To evaluate such transition matrix elements in terms of the Slater-Condon rules is relatively
straightforward as long as  are expressed in terms of Slater determinants involving a single set of orthonormal spin-
orbitals. If , have been obtained, for example, by carrying out separate MCSCF calculations on the two states in
question, the energy optimized spin-orbitals for one state will not be the same as the optimal spin-orbitals for the second state. As a
result, the determinants in  will involve spin-orbitals that are not orthonormal to one another. Thus, the SC
rules can not immediately be applied. Instead, a transformation of the spin-orbitals of  to a single set of orthonormal
functions must be carried out. This then expresses  in terms of new Slater determinants over this new set of
orthonormal spinorbitals, after which the SC rules can be exploited.

In contrast, if  are obtained by carrying out a CI calculation using a single set of orthonormal spin-orbitals (e.g., with 
 formed from two different eigenvectors of the resulting secular matrix), the SC rules can immediately be used to

evaluate the transition dipole integral.

Formulation of Property Calculations as Responses 
Essentially all experimentally measured properties can be thought of as arising through the response of the system to some
externally applied perturbation or disturbance. In turn, the calculation of such properties can be formulated in terms of the response
of the energy E or wavefunction  to a perturbation. For example, molecular dipole moments  are measured, via electric-field
deflection, in terms of the change in energy

caused by the application of an external electric field E which is spatially inhomogeneous, and thus exerts a force

on the molecule proportional to the dipole moment (good treatments of response properties for a wide variety of wavefunction
types (i.e., SCF, MCSCF, MPPT/MBPT, etc.) are given in Second Quantization Based Methods in Quantum Chemistry , P.
Jørgensen and J. Simons, Academic Press, New York (1981) and in Geometrical Derivatives of Energy Surfaces and Molecular
Properties , P. Jørgensen and J. Simons, Eds., NATO ASI Series, Vol. 166, D. Reidel, Dordrecht (1985)).

To obtain expressions that permit properties other than the energy to be evaluated in terms of the state wavefunction , the
following strategy is used:

1. The perturbation V = H-H  appropriate to the particular property is identified. For dipole moments ( ), polarizabilities ( ), and
hyperpolarizabilities ( ), V is the interaction of the nuclei and electrons with the external electric field

For vibrational frequencies, one needs the derivatives of the energy E with respect to deformation of the bond lengths and
angles of the molecule, so V is the sum of all changes in the electronic Hamiltonian that arise from displacements  of the
atomic centers
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2. A power series expansion of the state energy E, computed in a manner consistent with how  is determined (i.e., as an
expectation value for SCF, MCSCF, and CI wavefunctions or as for MPPT/MBPT or as  for CC
wavefunctions), is carried out in powers of the perturbation V:

In evaluating the terms in this expansion, the dependence of H = H +V and of  (which is expressed as a solution of the SCF,
MCSCF, ..., or CC equations for H not for H ) must be included.

3. The desired physical property must be extracted from the power series expansion of  E in powers of V.

The MCSCF Response Case 

The Dipole Moment 

To illustrate how the above developments are carried out and to demonstrate how the results express the desired quantities in terms
of the original wavefunction, let us consider, for an MCSCF wavefunction, the response to an external electric field. In this case,
the Hamiltonian is given as the conventional one- and two-electron operators H  to which the above one-electron electric dipole
perturbation V is added. The MCSCF wavefunction  and energy E are assumed to have been obtained via the MCSCF procedure
with H=H  can be thought of as a measure of the strength of the applied electric field. The terms in the expansion
of E( ) in powers of :

are obtained by writing the total derivatives of the MCSCF energy functional with respect to  and evaluating these derivatives at 
 (which is indicated by the subscript (..)0 on the above derivatives):

and so on for higher order terms. The factors of 2 in the last three terms come through using the hermiticity of H  to combine terms
in which derivatives of  occur.

The first-order correction can be thought of as arising from the response of the wavefunction (as contained in its LCAO-MO and CI
amplitudes and basis functions ) plus the response of the Hamiltonian to the external field. Because the MCSCF energy
functional has been made stationary with respect to variations in the C  and C  amplitudes, the second and third terms above
vanish:

If, as is common, the atomic orbital bases used to carry out the MCSCF energy optimization are not explicitly dependent on the

external field, the third term also vanishes because  Thus for the MCSCF case, the first-order response is given as the

average value of the perturbation over the wavefunction with :\
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For the external electric field case at hand, this result says that the field-dependence of the state energy will have a linear term equal
to

where e is a unit vector in the direction of the applied electric field (the magnitude of the field  having already been removed in
the power series expansion). Since the dipole moment is determined experimentally as the energy's slope with respect to field
strength, this means that the dipole moment is given as:

The Geometrical Force 

These same techniques can be used to determine the response of the energy to displacements  of the atomic centers. In such a
case, the perturbation is

Here, the one-electron operator  is referred to as 'the HellmannFeynman' force operator; it is the derivative of the

Hamiltonian with respect to displacement of center-a in the x, y, or z direction. The expressions given above for E( =0) and 
can once again be used, but with the Hellmann-Feynman form for V. Once again, for the MCSCF wavefunction, the variational
optimization of the energy gives

However, because the atomic basis orbitals are attached to the centers, and because these centers are displaced in forming V, it is no

longer true that  the variation in the wavefunction caused by movement of the basis functions now contributes to the

firstorder energy response. As a result, one obtains

The first contribution to the force

along the x, y, and z directions for center-a involves the expectation value, with respect to the MCSCF wavefunction with  = 0, of
the Hellmann-Feynman force operator. The second contribution gives the forces due to infinitesimal displacements of the basis
functions on center-a. The evaluation of the latter contributions can be carried out by first realizing that

with

involves the basis orbitals through the LCAO-MO expansion of the s. So the derivatives of the basis orbitals contribute as
follows:
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Each of these factors can be viewed as combinations of CSFs with the same  coefficients as in 
spin-orbital involving basis functions that have been differentiated with respect to displacement of center-a. It turns out that such
derivatives of Gaussian basis orbitals can be carried out analytically (giving rise to new Gaussians with one higher and one lower l-

quantum number). When substituted into , these basis derivative terms yield

whose evaluation via the Slater-Condon rules is straightforward. It is simply the expectation value of H  with respect to  (with
the same density matrix elements that arise in the evaluation of 's energy) but with the one- and two-electron integrals over the
atomic basis orbitals involving one of these differentiated functions:

In summary, the force F  felt by the nuclear framework due to a displacement of center-a along the x, y, or z axis is given as

where the second term is the energy of  but with all atomic integrals replaced by integral derivatives: 

Responses for Other Types of Wavefunctions 
It should be stressed that the MCSCF wavefunction yields especially compact expressions for responses of E with respect to an
external perturbation because of the variational conditions

that apply. The SCF case, which can be viewed as a special case of the MCSCF situation, also admits these simplifications.
However, the CI, CC, and MPPT/MBPT cases involve additional factors that arise because the above variational conditions do not

apply (in the CI case,  still applies, but the orbital condition  does not

because the orbitals are not varied to make the CI energy functional stationary).

Within the CC, CI, and MPPT/MBPT methods, one must evaluate the so-called responses of the C  and C  coefficients 

and  that appear in the full energy response as (see above)

. To do so requires solving a set of response equations

that are obtained by differentiating whatever equations govern the  coefficients in the particular method (e.g., CI, CC,
or MPPT/MBPT) with respect to the external perturbation. In the geometrical derivative case, this amounts to differentiating with
respect to x, y, and z displacements of the atomic centers. These response equations are discussed in Geometrical Derivatives of
Energy Surfaces and Molecular Properties , P. Jørgensen and J. Simons, Eds., NATO ASI Series, Vol. 166, D. Reidel, Dordrecht
(1985). Their treatment is somewhat beyond the scope of this text, so they will not be dealt with further here.

The Use of Geometrical Energy Derivatives 
1. Gradients as Newtonian Forces The first energy derivative is called the gradient g and is the negative of the force F (with

components along the  center denoted ) experienced by the atomic centers F = -g . These forces, as discussed in Chapter
16, can be used to carry out classical trajectory simulations of molecular collisions or other motions of large organic and
biological molecules for which a quantum treatment of the nuclear motion is prohibitive. The second energy derivatives with
respect to the x, y, and z directions of centers a and b (for example, the x, y component for centers a and b is 

 form the Hessian matrix H. The elements of H give the local curvatures of the energy surface along the
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3N cartesian directions. The gradient and Hessian can be used to systematically locate local minima (i.e., stable geometries) and
transition states that connect one local minimum to another. At each of these stationary points, all forces and thus all elements
of the gradient g vanish. At a local minimum, the H matrix has 5 or 6 zero eigenvalues corresponding to translational and
rotational displacements of the molecule (5 for linear molecules; 6 for non-linear species) and 3N-5 or 3N-6 positive
eigenvalues. At a transition state, H has one negative eigenvalue, 5 or 6 zero eigenvalues, and 3N-6 or 3N-7 positive
eigenvalues.

2. Transition State Rate Coefficients The transition state theory of Eyring or its extensions due to Truhlar and coworkers (see, for
example, D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem. 35 , 159 (1984)) allow knowledge of the Hessian matrix at a
transition state to be used to compute a rate coefficient k  appropriate to the chemical reaction for which the transition state
applies. More specifically, the geometry of the molecule at the transition state is used to compute a rotational partition function
Q  in which the principal moments of inertia  (see Chapter 13) are those of the transition state (the  symbol is,
by convention, used to label the transition state):

where k is the Boltzmann constant and T is the temperature in . The eigenvalues { } of the mass weighted Hessian matrix
(see below) are used to compute, for each of the 3N-7 vibrations with real and positive  values, a vibrational partition
function that is combined to produce a transition-state vibrational partition function:

The electronic partition function of the transition state is expressed in terms of the activation energy (the energy of the transition
state relative to the electronic energy of the reactants) E  as:

where  is the degeneracy of the electronic state at the transition state geometry. In the original Eyring version of transition
state theory (TST), the rate coefficient k  is then given by:

where  is the converntional partition function for the reactant materials. For example, in a biomolecular reaction such
as:

the reactant partition function

is written in terms of the translational and electronic (the degeneracy of the P state produces the 2 (3) overall degeneracy
factor) partition functions of the F atom

and the translational, electronic, rotational, and vibrational partition functions of the H  molecule
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The factor of 2 in the denominator of the H2 molecule's rotational partition function is the "symmetry number" that must be
inserted because of the identity of the two H nuclei. The overall rate coefficient k  because this is a rate
per collision pair) can thus be expressed entirely in terms of energetic, geometrical, and vibrational information about the
reactants and the transition state. Even within the extensions to Eyring's original model, such is the case. The primary difference
in the more modern theories is that the transition state is identified not as the point on the potential energy surface at which the
gradient vanishes and there is one negative Hessian eigenvalue. Instead, a so-called variational transition state (see the above
reference by Truhlar and Garrett) is identified. The geometry, energy, and local vibrational frequencies of this transition state
are then used to compute, must like outlined above, k .

3. Harmonic Vibrational Frequencies It is possible (see, for example, J. Nichols, H. L. Taylor, P. Schmidt, and J. Simons, J. Chem.
Phys. 92 , 340 (1990) and references therein) to remove from H the zero eigenvalues that correspond to rotation and translation
and to thereby produce a Hessian matrix whose eigenvalues correspond only to internal motions of the system. After doing so,
the number of negative eigenvalues of H can be used to characterize the nature of the stationary point (local minimum or
transition state), and H can be used to evaluate the local harmonic vibrational frequencies of the system. The relationship
between H and vibrational frequencies can be made clear by recalling the classical equations of motion in the Lagrangian
formulation:

where  denotes, in our case, the 3N cartesian coordinates of the N atoms, and  is the velocity of the corresponding
coordinate. Expressing the Lagrangian L as kinetic energy minus potential energy and writing the potential energy as a local
quadratic expansion about a point where g vanishes, gives

Here, E(0) is the energy at the stationary point, mj is the mass of the atom to which  are the elements
of H along the x, y, and z directions of the various atomic centers. Applying the Lagrangian equations to this form for L gives
the equations of motion of the  coordinates:

To find solutions that correspond to local harmonic motion, one assumes that the coordinates  oscillate in time according to

Substituting this form for q_j(t) into the equations of motion gives

Defining

and introducing this into the above equation of motion yields

where

is the so-called mass-weighted Hessian matrix. The squares of the desired harmonic vibrational frequencies  are thus given
as eigenvalues of the mass-weighted Hessian H':
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The corresponding eigenvector, {q'  gives, when multiplied by , the atomic displacements that accompany that particular

harmonic vibration. At a transition state, one of the  will be negative and 3N-6 or 3N-7 will be positive.
4. Reaction Path Following The Hessian and gradient can also be used to trace out 'streambeds' connecting local minima to

transition states. In doing so, one utilizes a local harmonic description of the potential energy surface

where x represents the (small) step away from the point x = 0 at which the gradient g and Hessian H have been evaluated. By
expressing x and g in terms of the eigenvectors v\(_{\alpha}\) of H

the energy change E(x) - E(0) can be expressed in terms of a sum of independent changes along the eigendirections:

Depending on the signs of g , various choices for the displacements xa will produce increases or decreases in
energy:

1. If  is positive, then a step x  (i.e., one with x  positive) will generate an energy increase. A step 'opposed to' g
 will generate an energy decrease if it is short enough that x  is larger in magnitude than , otherwise the energy will

increase.
2. If } is negative, a step opposed to g  will generate an energy decrease. A step along g  will give an energy increase if it is

short enough for x  to be larger in magnitude than , otherwise the energy will decrease. Thus, to proceed downhill in
all directions (such as one wants to do when searching for local minima), one chooses each x  in opposition to g  and of small
enough length to guarantee that the magnitude of x  exceeds that of  for those modes with  > 0. To proceed uphill
along a mode with ' < 0 and downhill along all other modes with  > 0, one chooses x ' along g ' with x ' short enough to
guarantee that x  g  is larger in magnitude than , and one chooses the other x  opposed to g  and short enough that x

 g  is larger in magnitude than . Such considerations have allowed the development of highly efficient potential energy
surface 'walking' algorithms (see, for example, J. Nichols, H. L. Taylor, P. Schmidt, and J. Simons, J. Chem. Phys. 92 , 340
(1990) and references therein) designed to trace out streambeds and to locate and characterize, via the local harmonic
frequencies, minima and transition states. These algorithms form essential components of most modern ab initio , semi-
empirical, and empirical computational chemistry software packages.
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