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1.1: Introduction
The understanding and prediction of the properties of matter at the atomic level represents one of the great achievements of
twentieth-century science. The theory developed to describe the behavior of electrons, atoms and molecules differs radically from
familiar Newtonian physics, the physics governing the motions of macroscopic bodies and the physical events of our everyday
experiences. The discovery and formulation of the fundamental concepts of atomic physics in the period 1901 to 1926 by such men
as Planck, Einstein, de Broglie and Heisenberg caused what can only be described as a revolution in the then-accepted basic
concepts of physics.

The new theory is called quantum theory or quantum mechanics. As far as we now know this theory is able to account for all
observable behaviour of matter and, with suitable extensions, for the interaction of matter with light. The proper formulation of
quantum mechanics and its application to a specific problem requires a rather elaborate mathematical framework, as do proper
statements and applications of Newtonian physics. We may, however, in this introductory account acquaint ourselves with the
critical experiments which led to the formulation of quantum mechanics and apply the basic concepts of this new mechanics to the
study of electrons.

Specifically the problem we set ourselves is to discover the physical laws governing the behaviour of electrons and then apply these
laws to determine how the electrons are arranged when bound to nuclei to form atoms and molecules. This arrangement of
electrons is termed the electronic structure of the atom or molecule. Furthermore, we shall discuss the relationship between the
electronic structure of an atom and its physical properties, and how the electronic structure is changed during a chemical reaction.

Rutherford's nuclear model for the atom set the stage for the understanding of the structure of atoms and the forces holding them
together.

From Rutherford's alpha-scattering experiments it was clear that the atom consisted of a positively-charged nucleus with
negatively-charged electrons arranged in some fashion around it, the electrons occupying a volume of space many times larger than
that occupied by the nucleus. (The diameters of nuclei fall in the range of l ´ 10-12 ® 1 ´ 10-13 cm, while the diameter of an atom
is typically of the order of magnitude of 1 ´ 10-8 cm.) The forces responsible for binding the atom, and in fact all matter (aside
from the nuclei themselves), are electrostatic in origin: the positively-charged nucleus attracts the negatively-charged electrons.
There are attendant magnetic forces which arise from the motions of the charged particles. These magnetic forces give rise to many
important physical phenomena, but they are smaller in magnitude than are the electrostatic forces and they are not responsible for
the binding found in matter.

During a chemical reaction only the number and arrangement of the electrons are changed, the nucleus remaining unaltered. The
unchanging charge of the atomic nucleus is responsible for retaining the atom's chemical identity through any chemical reaction.
Thus for the purpose of understanding the chemical properties and behaviour of atoms, the nucleus may be regarded as simply a
point charge of constant magnitude for a given element, giving rise to a central field of force which binds the electrons to the atom.

Rutherford proposed his nuclear model of the atom in 1911, some fifteen years before the formulation of quantum mechanics.
Consequently his model, when first proposed, posed a dilemma for classical physics. The nuclear model, based as it was on
experimental observations, had to be essentially correct, yet all attempts to account for the stability of such a system using
Newtonian mechanics ended in failure.

According to Newtonian mechanics we should be able to obtain a complete solution to the problem of the electronic structure of
atoms once the nature of the force between the nucleus and the electron is known. The electrostatic force operative in the atom is
well understood and is described by Coulomb's law, which states that the force between two particles with charges  and 
separated by a distance  is given by:

There is a theorem of electrostatics which states that no stationary arrangement of charged particles can ever be in electrostatic
equilibrium, i.e., be stable to any further change in their position. This means that all the particles in a collection of positively and
negatively charged species will always have resultant forces of attraction or repulsion acting on them no matter how they are
arranged in space. Thus no model of the atom which invokes some stationary arrangement of the electrons around the nucleus is
possible. The electrons must be in motion if electrostatic stability is to be preserved. However, an electron moving in the field of a
nucleus experiences a force and, according to Newton's second law of motion, would be accelerated. The laws of electrodynamics
state that an accelerated charged particle should emit light and thus continuously lose energy. In this dynamical model of the atom,

e1 e2

R

F ∝
e1e2

R2
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all of the electrons would spiral into the nucleus with the emission of light and all matter would collapse to a much smaller volume,
the volume occupied by the nuclei.

No one was able to devise a theoretical model based on Newtonian, or what is now called classical mechanics, which would
explain the electrostatic stability of atoms. The inescapable conclusion was that the classical equations of motion did not apply to
the electron. Indeed, by the early 1900's a number of physical phenomena dealing with light and with events on the atomic level
were found to be inexplicable in terms of classical mechanics. It became increasingly clear that Newtonian mechanics, while
predicting with precision the motions of masses ranging in size from stars to microscopic particles, could not predict the behavior
of particles of the extremely small masses encountered in the atomic domain. The need for a new set of laws was indicated.

This page titled 1.1: Introduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader
via source content that was edited to the style and standards of the LibreTexts platform.
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1.2: Some Important Experiments with Electrons and Light
Certainly the early experiments on the properties of electrons did not suggest that any unusual behaviour was to be expected.
Everything pointed to the electron being a particle of very small mass. The trajectory of the electron can be followed in a device
such as a Wilson cloud chamber. Similarly, a beam of electrons generated by passing a current between two electrodes in a glass
tube from which the air has been partially evacuated will cast the shadow of an obstacle placed in the path of the beam. Finally, the
particle nature of the electron was further evidenced by the determination of its mass and charge.

Just as classical considerations placed electrons in the realm of particles, the same classical considerations placed light in the realm
of waves with equal certainty. How can one explain diffraction effects without invoking wave motion?

In the years from 1905 to 1928 a number of experiments were performed which could be interpreted by classical mechanics only
if it was assumed that electrons possessed a wave motion, and light was composed of a stream of particles! Such dualistic
descriptions, ascribing both wave and particle characteristics to electrons or light, are impossible in a physical sense. The electron
must behave either as a particle or a wave, but not both (assuming it is either). "Particle" and "wave" are both concepts used by
ordinary or classical mechanics and we see the paradox which results when classical concepts are used in an attempt to describe
events on an atomic scale. We shall consider just a few of the important experiments which gave rise to the classical explanation of
dual behaviour for the description of electrons and light, a description which must ultimately be abandoned.

The Photoelectric Effect 
Certain metals emit electrons when they are exposed to a source of light. This is called the photoelectric effect. The pertinent
results of this experiment are

i. The number of electrons released from the surface increases as the intensity of he light is increased, but the energies of the
emitted electrons are independent of the intensity of the light.

ii. No electrons are emitted from the surface of the metal unless the frequency of the light is greater than a certain minimum value.
When electrons are ejected from the surface they exhibit a range of velocities, from zero up to some maximum value. The
energy of the electrons with the maximum velocity is found to increase linearly with an increase in the frequency of the incident
light.

The first result shows that light cannot be a wave motion in the classical sense. As an analogy, consider waves of water striking a
beach and hitting a ball (in place of an electron) at the water's edge. The intensity of a wave is proportional to the square of the
amplitude (or height) of the wave. Certainly, even when the frequency with which the waves strike the beach remains constant, an
increase in the amplitude of the waves will cause much more energy to be released when they strike the beach and hit the ball. Yet
when light "waves" strike a substance only the number of emitted electrons increases as the intensity is increased; the energy of the
most energetic electrons remains constant. This can be explained only if it is assumed that the energy in a beam of light is not
transmitted in the manner characteristic of a wave, but rather that the energy comes in bundles or packets and that the size of the
packet is determined by the frequency of the light. This explanation put forward by Einstein in 1905 relates the energy to the
frequency - and not to the intensity of the light - as required by the experimental results. A packet of light energy is called a photon.
The results of the photoelectric experiment show that the energy e of a photon is directly proportional to the frequency n of the
light, or, calling the constant of proportionality h, we have:

Since the electron is bound to the surface of the metal, the photon must possess a certain minimum amount of energy, i.e., possess a
certain minimum frequency n , just sufficient to free the electron from the metal. When an electron is ejected from the surface by a
photon with a frequency greater than this minimum value, the energy of the photon in excess of the minimum amount appears as
kinetic energy of the electron. Thus:

where hn is the energy of the photon with frequency n, and hn  is the energy of the photon which is just sufficient to free the
electron from the metal. Experimentally we can measure the kinetic energy of the electrons as a function of the frequency n. A plot
of the kinetic energy versus the frequency gives a straight line whose slope is equal to the value of h, the proportionality constant.
The value of h is found to be 6.6 ´ 10  erg sec.

ε = hv (1.2.1)

o

kinetic energy of  electron = hv−hv0 (1.2.2)

o

-27

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64658?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/01%3A_The_Nature_of_the_Problem/1.02%3A_Some_Important_Experiments_with_Electrons_and_Light


1.2.2 https://chem.libretexts.org/@go/page/64658

Equation  is revolutionary. It states that the energy of a given frequency of light cannot be varied continuously, (Click here for
note.) as would be the case classically, but rather that it is fixed and comes in packets of a discrete size. The energy of light is said
to be quantized and a photon is one quantum (or bundle) of energy.

It is tempting at this point, if we desire a classical picture of what is happening, to consider each bundle of light energy, that is, each
photon, to be an actual particle. Then one photon, on striking an individual electron, scatters the electron from the surface of the
metal. The energy originally in the photon is converted into the kinetic energy of the electron (minus the energy required for the
electron to escape from the surface). This picture must not be taken literally, for then the diffraction of light is inexplicable. Nor,
however, can the wave picture for diffraction be taken literally, for then the photoelectric effect is left unexplained. In other words,
light behaves in a different way from ordinary particles and waves and requires a special description.

The constant h determines the size of the light quantum. It is termed Planck's constant in honour of the man who first postulated
that energy is not a continuously variable quantity, but occurs only in packets of a discrete size. Planck proposed this postulate in
1901 as a result of a study of the manner in which energy is distributed as a function of the frequency of the light emitted by an
incandescent body. Planck was forced to assume that the energies of the oscillations of the electrons in the incandescent matter,
which are responsible for the emission of the light, were quantized. Only in this way could he provide a theoretical explanation of
the experimental results. There was a great reluctance on the part of scientists at that time to believe that Planck's revolutionary
postulate was anything more than a mathematical device, or that it represented a result of general applicability in atomic physics.
Einstein's discovery that Planck's hypothesis provided an explanation of the photoelectric effect as well indicated that the
quantization of energy was indeed a concept of great physical significance. Further examples of the quantization of energy were
soon forthcoming, some of which are discussed below.

The Diffraction of Electrons 
Just as we have found dualistic properties for light when its properties are considered in terms of classical mechanics, so we find
the same dualism for electrons. From the early experiments on electrons it was concluded that they were particles. However, a
beam of electrons, when passed through a suitable grating, gives a diffraction pattern entirely analogous to that obtained in
diffraction experiments with light. In other words, not only do electrons and light both appear to behave in completely different and
strange ways when considered in terms of our everyday physics, they both appear to behave in the same way! Actually, the same
strange behaviour can be observed for protons and neutrons. All the fundamental particles and light exhibit behaviour which leads
to conflicting conclusions when classical mechanics is used to interpret the experimental findings.

The diffraction experiment with electrons was carried out at the suggestion of de Broglie. In 1923 de Broglie reasoned that a
relationship should exist between the "particle" and "wave" properties for light. If light is a stream of particles, they must possess
momentum. He applied to the energy of the photon Einstein's equation for the equivalence between mass and energy:

where c is the velocity of light and m is the mass of the photon. Thus the momentum of the photon is mc and:

If light is a wave motion, then of course it possesses a characteristic frequency n and wavelength l which are related by the
equation:

The frequency and wavelength may be related to the energy of the photon by using Einstein's famous relationship:

By equating the two expressions for the energy:

de Broglie obtained the following relationship which bears his name:

1.2.1

ε = mc2

ε = momentum ×c

v =
c

λ

ε = hv =
hc
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However, de Broglie did not stop here. It was he who reasoned that light and electrons might behave in the same way. Thus a beam
of electrons, each of mass m and with a velocity u (and hence a momentum mu) should exhibit diffraction effects with an apparent
wavelength:

Using de Broglie's relationship, we can calculate that an electron with a velocity of 1 ´ 10  cm/sec should have a wavelength of
approximately 1 x 10  cm. This is just the order of magnitude of the spacings between atoms in a crystal lattice. Thus a crystal can
be used as a diffraction grating for electrons. In 1927 Davisson and Germer carried out this very experiment and verified de
Broglie's prediction. (See Problem 1 at the end of this section.)

Line Spectra 

A gas will emit light when an electrical discharge is passed through it. The light may be produced by applying a large voltage
across a glass tube containing a gas at a low pressure and fitted with electrodes at each end. A neon sign is an example of such a
"discharge tube." The electrons flowing through the tube transfer some of their energy to the electrons of the gaseous atoms. When
the atomic electrons lose this extra energy and return to their normal state in the atom the excess energy is emitted in the form of
light. Thus the gaseous atoms serve to transform electrical energy into the energy of light. The puzzling feature of the emitted light
is that when it is passed through a diffraction grating (or a prism) to separate the light according to its wavelength, only certain
wavelengths appear in the spectrum. Each wavelength appears in the spectrum as a single narrow line of coloured light, the line
resulting from the fact that the emitted light is passed through a narrow slit (thus producing a thin "line" of light) before striking the
grating or the prism and being diffracted. Thus a "line" spectrum rather than a continuous spectrum is obtained when atomic
electrons are excited by an electrical discharge.

An example of such a spectrum is given in Fig. 1-1, which illustrates the visible spectrum observed for the hydrogen atom. This
spectrum should be contrasted with the more usual continuous spectrum obtained from a source of white light which consists of a
continuous band of colours ranging from red at the long wavelength end to violet at short wavelengths.

 
Fig. 1-1. The visible spectrum for hydrogen atoms (1Å = 1 Ångstrom = 1 ´ 10  cm)

The energy lost by an electron as it is attracted by the nucleus appears in the form of light. If all energies were possible for an
electron when bound to an atom, all wavelengths or frequencies should appear in its emission spectrum, i.e., a continuous spectrum
should be observed. The fact that only certain lines appear implies that only certain values for the energy of the electron are
possible or allowed. We could describe this by assuming that the energy of an electron bound to an atom is quantized. The electron
can then lose energy only in fixed amounts corresponding to the difference in value between two of the allowed or quantized
energy values of the atom. Since the energy of a photon is given by

and e must correspond to the difference between two of the allowed energy values for the electron, say E and E' {E' > E), then the
value of the corresponding frequency for the photon will be given by

Obviously, if only certain values of E are allowed, only certain values of e or n will be observed, and a line spectrum rather than a
continuous spectrum (which contains all values of n) will be observed.

λ =
h

momentum
(1.2.3)
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Equation  was put forward by Bohr in 1913 and is known as Bohr's frequency condition. It was Bohr who first suggested that
atomic line spectra could be accounted for if we assume that the energy of the electron bound to an atom is quantized. Thus the
parallelism between the properties of light and electrons is complete. Both exhibit the wave-particle dualism and the energies of
both are quantized.

The Compton Effect 

The results of one more experiment will play an important role in our discussions of the nature of electrons bound to an atom. The
experiment concerns the direct interaction of a photon and an electron.

In order to determine the position of an object we must somehow "see" it. This is done by reflecting or scattering light from the
object to the observer's eyes. However, when observing an object as small as the electron we must consider the interaction of an
individual photon with an individual electron. It is found experimentally and this is the Compton effect that when a photon is
scattered by an electron, the frequency of the emergent photon is lower than it was before the scattering. Since e = hn, and nis
observed to decrease, some of the photon's energy has been transmitted to the electron. If the electron was initially free, the loss in
the energy of the photon would appear as kinetic energy of the electron. From the law of conservation of energy,

where n' is the frequency of the photon after collision with the electron. This experiment brings forth a very important effect in the
making of observations on the atomic level. We cannot make an observation on an object without at the same time disturbing the
object. Obviously, the electron receives a kick from the photon during the observation. While it is possible to determine the amount
of energy given to the electron by measuring n and n', we cannot however, predict in advance the final momentum of the electron.
A knowledge of the momentum requires a knowledge of the direction in which the electron is scattered after the collision and while
this can be measured experimentally one cannot predict the outcome of any given encounter. We shall illustrate later, with the aid
of a definite example, that information regarding both the position and the momentum of an electron cannot be obtained with
unlimited accuracy. For the moment, all we wish to draw from this experiment is that we must be prepared to accept a degree of
uncertainty in the events we observe on the atomic level. The interaction of the observer with the system he is observing can be
ignored in classical mechanics where the masses are relatively large. This is not true on the atomic level as here the "tools"
employed to make the observation necessarily have masses and energies comparable to those of the system we are observing.

In 1926 Schrödinger, inspired by the concept of de Broglie's "matter waves," formulated an equation whose role in solving
problems in atomic physic's corresponds to that played by Newton's equation of motion in classical physics. This single equation
will correctly predict all physical behaviour, including, for example, the experiments with electrons and light discussed above.
Quantization follows automatically from this equation, now called Schrödinger's equation, and its solution yields all of the physical
information which can be known about a given system. Schrödinger's equation forms the basis of quantum mechanics and as far as
is known today the solutions to all of the problems of chemistry are contained within the framework of this new mechanics. We
shall in the remainder of this site concern ourselves with the behaviour of electrons in atoms and molecules as predicted and
interpreted by quantum mechanics.

This page titled 1.2: Some Important Experiments with Electrons and Light is shared under a CC BY-NC-SA 4.0 license and was authored,
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1.3: Units of Measurement used in Atomic Physics
The energies of electrons are commonly measured and expressed in terms of a unit called an electron volt. An electron volt (ev) is defined as the energy acquired by an electron when it is accelerated
through a potential difference of one volt.

Imagine an evacuated tube which contains two parallel separate metal plates connected externally to a battery supplying a voltage V. The cathode in this apparatus, the negatively-charged plate, is
assumed to be a photoelectric emitter. Photons from an external light source with a frequency n  upon striking the cathode will supply the electrons with enough energy to just free them from the
surface of the cathode. Once free, the electrons will be attracted by and accelerated towards the positively-charged anode. The electrons, which initially have zero velocity at the cathode surface, will
be accelerated to some velocity u when they reach the anode. Thus the electron acquires a kinetic energy equal to ½ mu  in falling through a potential of V volts. If the charge on the electron is
denoted by e this same energy change in ev is given by the charge multiplied by the voltage V:  

(5)

For a given velocity u in cm/sec, equation (5) also (1.3.1) provides a relationship between the energy unit in the cgs (centimetre, gram, second) system, the erg, and the electron volt. This relationship
is:  

The regular cgs system of units is inconvenient to use on the atomic level as the sizes of the standard units in this system are too large. Instead, a system of units called atomic units, based on atomic
values for energy, length, etc., is employed.

Atomic units are defined in terms of Planck's constant and the mass and charge of the electron:  

Length.  

Force. Force has the dimensions of charge squared divided by distance squared or  

Energy. Energy is force acting through a distance or  

This page titled 1.3: Units of Measurement used in Atomic Physics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via source content that was edited to the
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1.4: Further Reading
Any elementary introductory book on modem physics will describe the details of the experiments discussed in this section as well
as other experiments, such as the Franck-Hertz experiment, which illustrate the quantum behaviour of atoms.
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1.E: Exercises

Q1.1 

Atoms or ions in a crystal are arranged in regular arrays as typified by the simple lattice structure shown in Fig. 1-2. 

  
Fig. 1-2. A two-dimensional display of a simple crystal lattice showing an incoming and a reflected beam of X-rays.

This structure is repeated in the third dimension. X-rays are a form of light with a very short wavelength. Since the spacings between the planes of atoms in a crystal,
denoted by d, are of the same order of magnitude of the wavelength of X-rays (~10  cm), a beam of X-rays reflected from the crystal will exhibit interference
effects. That is, the layers of atoms in the crystal act as a diffraction grating. The reflected beam of X-rays will be in phase if the difference in the path length
followed by waves which strike succeeding layers in the crystal is an integral number of wavelengths. When this occurs the reflected X-rays reinforce one another
and produce a beam of high intensity for that particular glancing angle q. For some other values of the angle q, the difference in path lengths will not be equal to an
integral number of wavelengths. The reflected waves will then be out of phase and the resulting interference will greatly decrease the intensity of the reflected beam.
The difference in path length traversed by waves reflected by adjacent layers is 2dsinq as indicated in the diagram. Therefore,

(6)

with 

which states that the reflected beam will be intense at those angles for which the difference in path length is equal to a whole number of wavelengths. Thus a
diffraction pattern is produced, the intensity of the reflected X-ray beam varying with the glancing angle q.

(a) 

By using X-rays with a known wavelength and observing the angles of maximum intensity for the reflected beam, the spacings between the atoms in a crystal, the
quantity d in equation (1.E.1) also (6), may be determined. For example, X-rays with a wavelength of 1.5420 C produce an intense first-order (n = 1 in equation
(1.E.1) also (6)) reflection at an angle of 21.01° when scattered from a crystal of nickel. Determine the spacings between the planes of nickel atoms.

(b) 

Remarkably, electrons exhibit the same kind of diffraction pattern as do X-rays when reflected from a crystal; this provides a verification of de Broglie's prediction.
The experiment performed by Davisson and Germer employed low energy electrons which do not penetrate the crystal. (High energy electrons do.) In their
experiment the diffraction of the electrons was caused by the nickel atoms in the surface of the crystal. A beam of electrons with an energy of 54 ev was directed at
right angles to a surface of a nickel crystal with d = 2.15 C. Many electrons are reflected back, but an intense sharp reflected beam was observed at an angle of 50°
with respect to the incident beam. 

  
Fig. 1-3. The classic experiment of Davisson and Germer: the scattering of low energy electrons from the surface of a nickel crystal.

As indicated in Fig. 1-3 the condition for reinforcement using a plane reflection grating is

(7)

-8

nλ = 2d sin θ

n = 1, 2, 3...

nλ = d sin θ n = 1, 2, 3, . . .
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using equation (1.E.2) also (7) with  for the intense first-order peak. Observed at 50°, calculate the wavelength of the electrons. Compare this experimental
value for l with that calculated using de Broglie's relationship.

(8)

The momentum mu may be calculated from the kinetic energy of the electrons using equation (5) in the website.

(c) 

Even neutrons and atoms will exhibit diffraction effects when scattered from a crystal. In 1994 Professor Brockhouse of McMaster University shared the Nobel prize
in physics with Professor Shull of MIT for their work on the scattering of neutrons by solids and liquids. Professor Brockhouse demonstrated how the inelastic
scattering of neutrons can be used to gain information about the motions of atoms in solids and liquids. Calculate the velocity of neutrons which will produce a first-
order reflection for q = 30° for a crystal with d = 1.5 ´ 10  cm. Neutrons penetrate a crystal and hence equation (6) also (1.E.1) should be used to determine l. The
mass of the neutron is 1.66 ´ 10  g.

(d) 

The neutrons obtained from an atomic reactor have high velocities. They may be slowed down by allowing them to come into thermal equilibrium with a cold
material. This is usually done by passing them through a block of carbon. The kinetic theory relationship between average kinetic energy and the absolute
temperature,

 

may be applied to the neutrons. Calculate the temperature of the carbon block which will produce an abundant supply of neutrons with velocities in the range
required for the experiment described in (c).
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1

CHAPTER OVERVIEW

2: The New Physics
Now that we have studied some of the properties of electrons and light and have seen that their behavior cannot be described by
classical mechanics, we shall introduce some of the important concepts of the new physics, quantum mechanics, which does predict
their behavior. For the study of chemistry, we are most interested in what the new mechanics has to say about the properties of
electrons whose motions are in some manner confined, for example, the motion of an electron which is bound to an atom by the
attractive force of the nucleus. An atom, even the hydrogen atom, is a relatively complicated system because it involves motion in
three dimensions. We shall consider first an idealized problem in just one dimension, that of an electron whose motion is confined
to a line of finite length. We shall state the results given by quantum mechanics for this simple system and contrast them with the
results given by classical mechanics for a similar system, but for a particle of much larger mass. Later, we shall indicate the manner
in which the quantum mechanical predictions are obtained for a system.

2.1: A Contrast of the Old and New Physics
2.2: Probability Amplitudes
2.3: Further Reading
2.E: Exercises
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2.1: A Contrast of the Old and New Physics
Consider an electron of mass m = 9 ´ 10  g which is confined to move on a line L cm in length. L is set equal to the approximate
diameter of an atom, 1 ´ 10 cm = 1Å. Consider as well a system composed of a mass of 1 g confined to move on a line, say 1
metre in length. We shall apply quantum mechanics to the first of these systems and classical mechanics to the second.

Energy 
As either mass moves from one end of its line to the other, the potential energy (the energy which depends on the position of the
mass) remains constant. We may set the potential energy equal to zero, and all the energy is then kinetic energy (energy of motion).
When the electron reaches the end of the line, we shall assume that it is reflected by some force. Thus at the ends of the line the
potential energy rises abruptly to a very large value, so large that the electron can never "break through." We can plot potential
energy versus position x along the line Fig. 2-1.

Fig. 2-1. Potential energy diagram for a particle moving on a line of lenght L. When the electron is at x = 0 or x = L the potential
energy is infinite and for values of x between these limits (0< x < L ) the potential energy is zero.

We refer to the electron (or the particle of m = 1 g) as being in a potential well and we can imagine the abruptly rising potential at x
= 0 and x = L to be the result of placing a "wall" at each end of the line. First, what are the predictions of classical mechanics
regarding the energy of the mass of 1 g? The total energy is kinetic energy and is simply:

We know from experience that u, the velocity, can have any possible value from zero up to very large values. Since all values for u
are allowed, all values for E are allowed. We conclude that the energy of a classical system may have any one of a continuous
range of values and may be changed by any arbitrary amount. Let us contrast with this conclusion the prediction which quantum
mechanics makes regarding the energy of an electron in a corresponding situation.

The quantum mechanical results are remarkable indeed, although they should not be surprising when we recall Bohr's explanation
of the line spectra which are observed for atoms. Quantum mechanics predicts that there are only certain values of the energy
which the electron confined to move on the line can possess. The energy of the electron is quantized. If this result could be
observed for a massive particle, it would mean that only certain velocities were possible, say u = 1 cm/sec or 10 cm/sec but with no
intermediate values! But then an electron is not really a particle. The expression for the allowed energies as given by quantum
mechanics for this simple system is:

(1)

where again h is Planck's constant and n is an integer which may assume any value from one to infinity. Since only discrete values
for E are possible, the appearance of the index n in equation (1) is necessary. A number such as n which appears in the expression
for the energy is called a quantum number. Each value of the quantum number n fixes a value of E , one of the allowed energy
values. We can indicate the possible values for the energy on an energy diagram. It is clear from equation (1) that for given values
of m and L, E  equals a constant (K = h /8mL ) multiplied by n :

(2)
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Thus we can express the value of E in terms of so many units of K.

Each line, called an energy level, in Fig. 2-2 denotes an allowed energy for the system and the figure is called an energy level
diagram. Each level is identified by its value of n as a subscript. A corresponding diagram for the case of the classical particle
would consist of an infinite number of lines with infinitesimally small spacings between them, indicating that the energy in a
classical system may vary in a continuous manner and may assume any value. The energy continuum of classical mechanics is
replaced by a discrete set of energy levels in quantum mechanics.

Fig. 2-2. Energy level diagram for an electron moving on a line of length L. Only the first few levels are shown.

Suppose we could give the electron sufficient energy to place it in one of the higher (excited) energy levels. Then when it "fell"
back down to the lowest value of E (called the ground level, E ), a photon would be emitted. The energy e of the photon would be
given by the difference in the values of E  and E  and, since e = hv the frequency of the photon would be given by the relationship:

 

which is Bohr's frequency condition (I-4). Thus only certain frequencies would be emitted and the spectrum would consist of a
series of lines.

We can illustrate the change in energy when the electron falls to the lowest energy level by connecting the upper level and the n = 1
level by an arrow in an energy level diagram. The frequency of the photon emitted during the indicated drop in energy is
proportional to the length of the arrow, i.e., to the change in energy (Fig. 2-3). The line directly beneath each arrow represents the
value of the frequency for that drop in energy. Since the differences in the lengths of the arrows increase as n increases, the
separations between the observed frequencies show a corresponding increase. The spectrum, therefore, consists of a series of lines,
with the spacings between the lines increasing as n increases. If the energy was not quantized and all values were possible, all
jumps in energy would be possible and all frequencies would appear. Thus a continuum of possible energy values will produce a
continuous spectrum of frequencies. A line spectrum, on the other hand, is a direct manifestation of the quantization of energy.
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Fig. 2-3. The origin of a line spectra.

In the quantum case, as in the classical case, all of the energy will be in the form of kinetic energy. We may obtain an expression
for the momentum of the electron by equating the total value of the energy E  to p /2m, where p is the momentum 
(= mu) of the electron, (p /2m is another way of expressing 2mu .)

  

This gives:

 

A plus and a minus sign must be placed in front of the number which gives the magnitude of the momentum to indicate that we do
not know and cannot determine the direction of the motion. If the electron moves from left to right the sign will be positive. If it
moves from right to left the sign will be negative. The most we can know about the momentum itself is its average value. This
value will clearly be zero because of the equal probability for motion in either direction. The average value of p , however, is finite.

Since the lowest allowed value of the quantum number n in the quantum mechanical expression for the energy is unity, it is evident
that the energy can never equal zero. A confined electron can never be motionless. The expression for E  also indicates that the
kinetic energy and the momentum increase as the length of the line L is decreased. Thus the kinetic energy and momentum of the
electron increase as its motion becomes more confined. This is both an important and a general result and will be referred to again.

Position
The concept of a trajectory is fundamental to classical mechanics. Given a particular mass with a given initial velocity and a
knowledge of the forces acting on it, we may use classical mechanics to predict the exact position and velocity of the particle at any
future time. Thus we speak of the trajectory of the particle and we may calculate it to any desired degree of accuracy. It is also
possible, within the framework of classical mechanics, to measure the position and velocity of a particle at any given instant of
time. Thus classical mechanics correctly predicts what one can experimentally measure for massive particles.

We have previously mentioned the difficulties which are encountered when we attempt to determine the position of an electron.
The results of the Compton effect indicate that part of the energy of the photon used in making the observation is transferred to the
electron, and we invariably disturb the electron when we attempt to measure its position. Thus it is not surprising to find that
quantum mechanics does not predict the position of an electron exactly. Rather, it provides only a probability as to where the
electron will be found. When we consider the experiments which attempt to define the position of the electron, we shall find that
this is the maximum information that can indeed be obtained even experimentally. The new mechanics again predicts only what can
indeed be measured experimentally. We shall illustrate the probability aspect in terms of the system of an electron confined to
motion along a line of length L. Quantum mechanical probabilities are expressed in terms of a distribution function which in this
particular case we shall label P (x).

Consider the line of length L to be divided into a large number of very small segments, each of length Dx. Then the probability that
the electron is in one particular small segment Dx of the line is given by the product of Dx and the value of the probability
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distribution function P (x) for that interval. For example, the probability distribution function for the electron when it is in the
lowest energy level, n = 1, is given by P (x) (Fig. 2-4).

 

Fig. 2-4. Probability distributions P (x) for an electron confined to move on a line of fixed length in the quantum levels
with n = 1, 2, ..., 6. The area of each rectangle shown in the figure for P (x) equals the probability that the electron is
in the particular segment of the line Dx forming the base of the rectangle. The percentage shown in each rectangle is
the percentage probability that the electron is in a particular segment Dx. The total probability that the electron is
somewhere on the line is given by the total area under the P (x) curve, that is, by the sum of each small element of
area P (x)Dx for each segment Dx. This total area is made to equal unity for every P (x) curve by expressing the
values of P (x) in units of (1/L). Thus by definition a probability of one denotes a certainty.

The probability that the electron will be in the particular small interval Dx indicated in Fig. 2-4 is equal to the shaded area, an area
which in turn is equal to the product of Dx and the average value of P (x) throughout the interval Dx, called P (x'),

  

The curve P (x) may be determined in the following manner. We design an experiment able to determine whether or not the
electron is in one particular segment Dx of the line when it is known to be in the quantum level n = 1. (One way in which this might
be done is described below.) We perform the experiment a large number of times, say one hundred, for each segment and record the
ratio of the number of times the electron is found in a particular segment to the total number of observations made for that segment.
For example, an electron is found to be in the segment marked Dx (of length 0.1 L) in the figure for P (x) in 18 out of 100
observations, or 18% of the time. In the other 82 observations the electron was in one of the other segments. Thus the average value
of P (x) for this segment, called P (x') must be 1.8/L since P (x')Dx = (1.8/L) (0.1 L) = 0.18 or 18%. A similar set of experiments is
made for each of the segments Dx and in each case a rectangle is constructed with Dx as base and with a height equal to P (x) such
that the product P (x)Dx equals the fractional number of times the electron is found in the segment Dx. The limiting case in which
the total length L is divided into a very large number of very small segments (Dx ® dx) would result in the smooth curve shown in
the figure for P (x).

There is a different probability distribution for each value of E , or each quantum level, as shown, for example, by the probability
distributions for the energy levels with n = 2, 3, 4, 5 and 6 (Fig. 2-4). The probability of finding the electron at the positions where
the curve touches the x-axis is zero. Such a zero is termed a node. The number of nodes is always n-1 if we do not count the nodes
at the ends of each P (x) curve.

Let us first contrast these results, particularly that for P (x), with the corresponding classical case. Since a classical analysis allows
us to determine the position of a particle uniquely at any instant, either theoretically or experimentally, the idea of a probability
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distribution is foreign to a classical mechanical analysis. However, we still can determine the classical probability distribution for
the particle confined to motion on a line. Since there are no forces acting on the particle as it traverses the line, it will be equally
likely to be found at any point on the line (Fig 2-5). This probability will be the same regardless of the energy. There is again a
striking difference between the classical and the quantum mechanics results. For the first quantum level, the graph of P (x)
indicates the electron will most likely be found at the midpoint of the line. Furthermore, the form of P (x) changes with every
change in energy. Every allowed value of the of the energy has associated with it a distinct probability distribution for the
electron. Theses are the predictions of quantum mechanics regarding the position of a bound electron. Now let us investigate the
experimental aspect of the problem to gain some physical reason for these predictions.

 

Fig. 2-5. The classical probability distribution for motion on a line.
This is the result obtained when the particle is located a large
number of times at random time intervals. The classical probability
function P (x) is the same for all values of x and equals 1/L, i.e.,
the particle is equally likely to be found at any value of x
between 0 and L

Let us design an experiment in which we attempt to pinpoint the position of an electron within a segment Dx. The experiment is a
hypothetical one in that we imagine that we are to observe the electron through a microscope by reflecting or scattering light from
it. Imagine the lens of a microscope being placed above the line L with the light entering from the side (Fig. 2-6 (a)). The electron,
when illuminated with light, will act as a small source of light and will produce at A an image in the form of a bright disc
surrounded by a group of rings of decreasing intensity. Because of this effect, which is entirely analogous to the diffraction effect
observed for a pinhole source of light, the centre of the image will appear bright even if the electron is not precisely located at the
point marked x. It could equally well have been at any value of x between the points x' and x" and produced an image visible to the
eye at A if the difference in the path lengths Bx' and Cx' (or Bx" and Cx") is less than one half of a wavelength. In other words the
resolving power of a microscope is not unlimited but is instead determined by the wavelength of the light used in making the
observation. The use of the microscope imposes an inherent uncertainty in our observation of the position of the electron. With the
condition that the difference in the path lengths to the outside rim of the lens must be no greater than one half a wavelength and
with the use of some geometry, the magnitude of the uncertainty in the position of the electron, x'' - x' = Dx, is found to be given
approximately by:

(3)

where q is the angle indicated in the diagram.
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Fig. 2-6. An idealized experiment for detecting the position of an electron.

Remembering the Compton effect and bearing in mind that we wish to disturb the electron as little as possible during the
observation, we shall inquire as to the results obtained when a single photon is scattered from the electron. A single photon will not
yield the complete diffraction pattern at A, but will instead produce a single flash of light. A diffraction pattern is the result of many
photons passing through the microscope and represents the probability distribution for the emergent photons when they have been
scattered by an electron lying between x' and x''. A single photon, when scattered from an electron within the length Dx, is however
still diffracted and will produce a flash of light somewhere in one of the areas defined by the probability distribution produced by
many photons passing through the system.

Thus even when we use but a single photon in our apparatus the uncertainty Dx in our experimentally determined position of the
electron will still be given by equation (3). Obviously, if we want to locate an electron which is confined to move on a line to
within a length that is small compared to the length of the line, we must use light which has a wavelength much less than L. This is
exactly what equation (3) states: the shorter the wavelength of the light which is used to observe the electron, the smaller will be
the uncertainty Dx. That being the case, why not do the experiment with light of very short wavelength compared to the length L,
say l = (1/100)L? Then we can hope to find the electron on one small segment of the line, each segment being approximately
(1/100)L in length. Let us calculate the frequency and energy of a photon which has the required wavelength of l = (1/100)L. As
before, we set L equal to a typical atomic dimension of 1 x 10  cm.

  

We are immediately in difficulty, because the energy of the electron in the first quantum level is easily found to be:

  

The energy of the photon is approximately 1 x 10  times greater than the energy of the electron! We know from the Compton effect
that the collision of a photon with an electron imparts energy to the electron. Thus the electron after the collision will certainly not
be in the state n = 1. It will be excited to oneCwe don't know whichCof the excited levels with n = 2 (E = 4K) or n = 3 (E = 9K),
etc. The result is clear. If we demand an intimate knowledge of what the position of the electron is in a given state, we can obtain
this information only at the expense of imparting to the electron an unknown amount of energy which destroys the system, i.e., the
electron is no longer in the n = 1 level but in one of the other excited levels. If this experiment was repeated a large number of
times and a record kept of the number of times an electron was located in each segment of the line (roughly (1/100)L), a probability
plot similar to Fig. 2-4 would be obtained.

We can ask another kind of question regarding the position of the electron: "How much information can be obtained about the
position of the electron in a given quantum level without at the same time destroying that level?" The electron cannot accept energy
in an amount less than that necessary to excite it to the next quantum level, n = 2. The difference in energy between E , and E , is
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3K. Thus if we are to leave the electron in a state of known energy and momentum we must use light whose photons possess an
energy less than 3K.

Let us calculate the wavelength of the light with e = 2K and compare this value with the length L.

  

The wavelength is greater than the length of the line L. From equation (3) it is clear that the uncertainty in the position of the
particle will be of the order of magnitude of, or greater than, L itself. The electron will appear to be blurred over the complete
length of the line in a single experiment! Thus there are two interpretations which can be given to the probability distributions,
depending on the experiment which is performed. The first is that of a true probability of finding the electron in a given small
segment of the line using light of very short l relative to L. This experiment excites the electron, changes the system and leaves the
electron with an unknown amount of energy and momentum. We have destroyed the object of our investigation. We now know
where it was in a given experiment but not where it will be, in terms of energy or position.

Alternatively, we could use light with a l approximately equal to L. This does not excite the electron and leaves it in a known
energy level. However, now the knowledge of the position is very uncertain. The photons are scattered from the system and give us
directly the smeared distribution P  pictured in Fig. 2-4. In a real sense we must accept the fact that when the electron remains in a
given state it is "smeared out" and "looks like" the pictures given for P . Thus we can interpret the P 's as instantaneous pictures of
the electron when it is bound in a known state, and forgot their probability aspect. This "smeared out" distribution is given a special
name; it is called the electron density distribution. There will be a certain fraction of the total electronic charge at each point on the
line, and when we consider a system in three dimensions, there will be a certain fraction of the total electronic charge in every
small volume of space. Hence it is given the name electron density, the amount of charge per unit volume of space. The P 's
represent a charge density distribution which is considered static as long as the electron remains in the nth quantum level. Thus the
P  functions tell us either (a) the fraction of time the electron is at each point on the line for observations employing light of short
wavelength, or (b) they tell us the fraction of the total charge found at each point on the line (the whole of the charge being spread
out) when the observations are made with light of relatively long wavelength.

The electron density distributions of atoms, molecules or ions in a crystal can be determined experimentally by X-ray scattering
experiments since X-rays can be generated with wavelengths of the same order of magnitude as atomic diameters (1 ´ 10 cm). In
X-ray scattering the intensity of the scattered beam and the angle through which it is scattered are measured. The distribution of
negative charge within the crystal scatters the X-rays and determines the intensity and angle of scattering. Thus these experimental
quantities can be used to calculate the form of the electron density distribution.

There is a definite quantum mechanical relationship governing the magnitudes of the uncertainties encountered in measurements on
the atomic level. We can illustrate this relationship for the one-dimensional system. Let us consider the minimum uncertainty in our
observations of the position and the momentum of the electron moving on a line obtained in an experiment which leaves the
particle bound in a given quantum level, say n = 1. This will require the use of light with l ~ L. We have seen that the use of light of
this wavelength limits us to stating that the electron is somewhere on the line of length L. We can say no more than this with
certainty unless we use light of much shorter l , and then we will change the quantum number of the electron. The uncertainty in the
value of the position coordinate, which we shall call Dx, is just L, the length of the line:

  

We have previously shown that the momentum of the electron in the nth quantum level is given by:

 

the plus and minus signs denoting the fact that while we know the magnitude of the momentum we cannot determine whether the
electron is moving from left to right (+nh/2L) or from right to left (-nh/2L). The minimum uncertainty in our knowledge of the
momentum is the difference between these two possibilities, or for n = 1:

  

The product of the uncertainties in the position and the momentum is:
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This result is a particular example of a general relationship governing the product of the uncertainties in the momentum and
position known as Heisenberg's uncertainty principle. In the general case, the equality sign in the above equation is replaced by
the symbol "³" which denotes that the product in the uncertainties DpDx equals or exceeds the value of Planck's contant h, that is,
the general statement is given by DpDx ³ h.

If we endeavour to decrease the uncertainty in the position coordinate (i.e., make D x small) there will be a corresponding increase
in the uncertainty of the momentum of the electron along the same coordinate, such that the product of the two uncertainties is
always equal to Planck's constant. We saw this effect in our experiments wherein we employed light of short l to locate the position
of the electron more precisely. When we did this we excited the electron to one of the other available quantum states, thus making a
knowledge of the energy and hence the momentum uncertain. We might also try to defeat Heisenberg's uncertainty principle by
decreasing the length of the line L. By shortening L, we would decrease the uncertainty as to where the electron is. However, as
was noted previously, the momentum increases as L is decreased and the uncertainty in p is always the same order of magnitude as
p itself; in this case twice the magnitude of p. Thus the decrease in Dx obtained by decreasing L is offset by the increase in Dp
which accompanies the increased confinement of the electron; the product DxD p remains unchanged in value.

We can illustrate the operation of Heisenberg's uncertainty principle for a free particle by referring again to our hypothetical
experiment in which we attempted to locate the position of an electron by using a microscope. We imagine the electron to be free
and travelling with a known momentum in the direction of the x-axis with a photon entering from below along the y-axis. When
the photon is scattered by the electron it may transfer momentum to the electron and continue on a line which makes an angle q' to
the y-axis (Fig. 2-6). The photon, in doing so, will acquire momentum in the direction of the x-axis, a direction in which it initially
had none. Since momentum must be conserved, the electron will receive a recoil momentum, a momentum equal in magnitude but
opposite in direction to that gained by the photon. This is the Compton effect. Thus our act of observing the electron will lead to an
uncertainty in its momentum as the amount of momentum transferred during the collision is uncontrollable. We may, however, set
limits on the amount transferred and in this way determine the uncertainty introduced into the value of the momentum of the
electron.

The momentum of the photon before the collision is all directed along the y-axis and has a magnitude equal to h/l . After colliding
with the electron the photon may be scattered to the left or to the right of the y-axis through any angle q' lying between 0 and q and
still be collected by the lens of the microscope and seen by the observer at A. Thus every photon which passes through the
microscope will have an uncertainty of 2(h/l)sinq in its component of momentum along the x-axis since it may have been scattered
by the maximum amount to the left and acquired a component of -(h/l)sinq or, on the other hand, it may have been scattered by the
maximum amount to the right and acquired a momentum component of +(h/l)sinq. Any x-component of momentum acquired by
the photon must have been lost by the electron and the uncertainty introduced into the momentum of the electron by the
observation is also equal to 2(h/l)sinq .

In addition to the uncertainty induced in the momentum of the electron by the act of measurement, there is also an inherent
uncertainty in its position (equation (3)) because of the limited resolving power of the microscope. The product of the two
uncertainties at the instant of measurement or immediately following it is:

  

Heisenberg's uncertainty relationship is again fulfilled. Our experiment employs only a single photon which, since light itself is
quantized, represents the smallest packet of energy and momentum which we can use in making the observation. Even in this
idealized experiment the act of observation creates an unavoidable disturbance in the system.

Degeneracy 
We may use an extension of our simple system to illustrate another important quantum mechanical result regarding energy levels.
Suppose we allow the electron to move on the x-y plane rather than just along the x-axis. The motions along the x and y directions
will be independent of one another and the total energy of the system will be given by the sum of the energy quantum for the
motion along the x-axis plus the energy quantum for motion along the y-axis. Two quantum numbers will now be necessary, one to
indicate the amount of energy along each coordinate. We shall label these as n  and n . Let us assume that the motion is confined to
a length L along each axis, then:
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Nothing new is encountered when the electron is in the lowest quantum level for which n  = n  = 1. The energy E  simply equals
2h /8mL .

Since two dimensions (x and y) are now required to specify the position of the electron, the probability distribution P (x,y) must
be plotted in the third dimension. We may, however, still display P (x,y) in a two-dimensional diagram in the form of a contour
map (Fig. 2-7). All points in the x-y plane having the same value for the probability distribution P (x,y) are joined by a line, a
contour line. The values of the contours increase from the outermost to the innermost, and the electron, when in the leveln  = n  =
1, is therefore most likely to be found in the central region of the x-y plane.

 

 

Fig. 2-7. Contour maps of the probability distributions P  (x,y) for an electron moving on the x-y plane. The dashed lines
represent the postion of nodes, lines along which the probability is zero. P  (x,y) and P  (x,y) are distributions for one doubly-

degenerate level; P  (x,y) and P  (x,y) are examples of distributions for another degenerate level of still higher energy. The
same contours are shown in each diagram and their values (in units of 4/L ) are indicated in the diagram for P (x,y).

A plot of P (x,y) along either of the axes indicated in Fig. 2-7 (one parallel to the x-axis at y = L/2 and the other parallel to the y-
axis at x = L/2) is similar in appearance to that for P (x) shown in Fig. 2-4. That is, for a fixed value of y, the contribution to
P (x,y) from the motion along the y-axis is constant and

  

Thus, aside from the constant factor, P (x) provides a profile, or if P (x,y) were displayed in three dimensions, a cross section of
the contour map of P (x). A contour map is a display of the probability or density distribution in a plane; a profile is a display of
the density distribution along a line.

Now consider the possibility of n  = 1 and n  = 2. Then
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We could also have the situation in which n  = 2 and n  = 1. This does not change the value of the total energy,

  

but the probability distributions (Fig. 2-7) are different, P (x,y) ¹P  (x,y). When n  = 1 and n  = 2, there must be a node on the y-
axis, i.e., a zero probability of finding the electron at y = L/2. Thus a slice through P (x y) at x = L/2 parallel to the y-axis must be
similar to the figure for P (x), while a slice parallel to the x-axis will still be similar to P (x). Just the reverse is true for the case n
= 2 and n  = 1. In this case, whether or not we can distinguish experimentally between the x- and y-axes, there are two different
arrangements for the distribution of the electron, both of which have the same energy. The energy level is said to be degenerate.
The degeneracy of an energy level is equal to the number of distinct probability distribution for the system, all of which belong
to this same energy level.

The concept of degeneracy in an energy level has important consequences in our study of the electronic structure of atoms.

This page titled 2.1: A Contrast of the Old and New Physics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Probability Amplitudes
In quantum mechanics, Newton's familiar equations of motion are replaced by Schrödinger's equation. We shall not discuss this
equation in any detail, nor indeed even write it down, but one important aspect of it must be mentioned. When Newton's laws of
motion are applied to a system, we obtain both the energy and an equation of motion. The equation of motion allows us to calculate
the position or coordinates of the system at any instant of time. However, when Schrödinger's equation is solved for a given system
we obtain the energy directly, but not the probability distribution functionCthe function which contains the information regarding
the position of the particle. Instead, the solution of Schrödinger's equation gives only the amplitude of the probability distribution
function along with the energy. The probability distribution itself is obtained by squaring the probability amplitude. (Click here for
note.) Thus for every allowed value of the energy, we obtain one or more (the energy value may be degenerate) probability
amplitudes.

The probability amplitudes are functions only of the positional coordinates of the system and are generally denoted by the Greek
letter y (psi). For a bound system the amplitudes as well as the energies are determined by one or more quantum numbers. Thus for
every En we have one or more yn's and by squaring the yn's we may obtain the corresponding Pn's.

Let us look at the forms of the amplitude functions for the simple system of an electron confined to motion on a line. For any
system, y is simply some mathematical function of the positional coordinates. In the present problem which involves only a single
coordinate x, the amplitude functions may be plotted versus the x-coordinate in the form of a graph. The functions yn are
particularly simple in this case as they are sin functions.  

 

The first few yn's are shown plotted in Fig. 2-8.

Fig. 2-8. The first six probability amplitudes yn(x) for an electron moving on a line of length L. Note the yn(x) may be negative in
sign for certain values of x. The yn(x) are squared to obtain the probability distrubrition functions Pn(x), which are, therefore,
positive for all values of x. Wherever yn(x) crosses the x-axis and changes sign, a node appears in the corresponding Pn(x).

Each of these graphs, when squared, yields the corresponding Pn curves shown previously. When n = 1,

 

When x = 0,
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When x = L,

 

When x = L/2,  

 

Thus y equals zero at x = 0 and x = L and is a maximum when x = L/2. When this function is squared, we obtain:

 

and the graph (Fig. 2-4) previously given for P1(x).

As illustrated previously in Fig. 2-4, the value of yn2(x) or Pn(x) multiplied by Dx, yn2(x)Dx, or Pn(x)Dx, is the probability that

the electron will be found in some particular small segment of the line Dx. The constant factor of  which appears in every
yn(x) is to assure that when the value of yn2(x)Dx is summed over each of the small segments Dx, the final value will equal unity.
This implies that the probability that the electron is somewhere on the line is unity, i.e., a certainty. Thus the probability that the
electron is in any one of the small segments Dx (the value of yn2(x)Dx or Pn(x)Dx evaluated at a value of x between 0 and L) is a
fraction of unity, i.e., a probability less than one. (Click here for note.)

Each yn must necessarily go to zero at each end of the line, since the probability of the electron not being on the line is zero. This is
a physical condition which places a mathematical restraint on the yn . Thus the only acceptable yn 's are those which go to zero at
each end of the line. A solution of the form shown in Fig. 2-9 is, therefore, not an acceptable one. Since there is but a single value
of the energy for each of the possible yn functions, it is clear that only certain discrete values of the energy will be allowed. The
physical restraint of confining the motion to a finite length of line results in the quantization of the energy. Indeed, if the line is
made infinitely long (the electron is then free and no longer bound), solutions for any value of n, integer or non-integer, are
possible; correspondingly, all energies are permissible. Thus only the energies of bound systems are quantized.

Fig. 2-9. An unacceptable form for yn(x).

The yn 's have the appearance of a wave in that a given value of yn(x) is repeated as x is increased. They are periodic functions of
x. We may, if we wish, refer to the wavelength of yn. The wavelength of y1 is 2L since only one half of a wave fits on the length L.
The wavelength for y2, is L since one complete wave fits in the length L. Similarly l3, = (2/3)L and l4 = (2/4)L. In general:

 

Because of the wave-like nature of the yn 's , the new physics is sometimes referred to as wave mechanics, and the yn functions are
called wave functions. However, it must be stressed that a wave function itself has no physical reality. All physical properties are
determined by the product of the wave function with itself. It is the product yn(x)yn(x) which yields the physically measurable
probability distribution. Thus yn2 may be observed but not yn itself.
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A yn does not represent the trajectory or path followed by an electron in space. We have seen that the most we can say about the
position of an electron is given by the probability function yn2. We do, however, refer to the wavelengths of electrons, neutrons,
etc. But we must remember that the wavelengths refer only to a property of the amplitude functions and not to the motion of the
particle itself.

A number of interesting properties can be related to the idea of the wavelengths associated with the wave functions or probability
amplitude functions. The wavelengths for our simple system are given by l = 2L/n. Can we identify these wavelengths with the
wavelengths which de Broglie postulated for matter waves and which obeyed the relationship:  

 

The absolute value for the momentum (the magnitude of the momentum independent of its direction) of an electron on the line is
nh/2L. Substituting this into de Broglie's relationship gives:

 

So indeed the wavelengths postulated by de Broglie to be associated with the motions of particles are in reality the wavelengths of
the probability amplitudes or wave functions. There is no need to postulate "matter waves" and the results of the electron
diffraction experiment of Davisson and Germer for example can be interpreted entirely in terms of probabilities rather than in terms
of "matter waves" with a wavelength l = h/p.

It is clear that as n increases, l becomes much less than L. For n = 100, y100and P100 would appear as in Fig. 2-10. When L>>ln,
the nodes in Pn are so close together that the function appears to be a continuous function of x. No experiment could in fact detect
nodes which are so closely spaced, and any observation of the position of the electron would yield a result for P100 similar to that
obtained in the classical case. This is a general result. When l is smaller than the important physical dimensions of the system,
quantum effects disappear and the system behaves in a classical fashion. This will always be true when the system possesses a large
amount of energy, i.e, a high n value. When, however, l is comparable to the physical dimensions of the system, quantum effects
predominate.

  
Fig. 2-10. The wave function and probability distribution for n = 100.

Let us check to see whether or not quantum effects will be evident for electrons bound to nuclei to form atoms. A typical velocity
of an electron bound to an atom is of the order of magnitude of 109 cm/sec. Thus:

 

This is a short wavelength, but it is of the same order of magnitude as an atomic diameter. Electrons bound to atoms will definitely
exhibit quantum effects because the wavelength which determines their probability amplitude is of the same size as the important
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physical dimensionCthe diameter of the atom.

We can also determine the wavelength associated with the motion of the mass of 1 g moving on a line 1 m in length with a velocity
of, say, 1 cm/sec:  

 

This is an incredibly short wavelength, not only relative to the length of the line but absolutely as well. No experiment could detect
the physical implications of such a short wavelength. It is indeed many, many times smaller than the diameter of the mass itself.
For example, to observe a diffraction effect for such particles the spacings in the grating must be of the order of magnitude of 1 ´
10-27 cm. Such a grating cannot be made from ordinary matter since atoms themselves are about 1019 times larger than this. Even
if such a grating could be found, it certainly wouldn't affect the motion of a mass of 1 g as the size of the mass is approximately
1028 times larger than the spacings in the grating! Clearly, quantum effects will not be observed for massive particles. It is also
clear that the factor which determines when quantum effects will be observed and when they will be absent is the magnitude of
Planck's constant h. The very small magnitude of h restricts the observation of quantum effects to the realm of small masses.
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2.3: Further Reading
W. Heisenberg, The Physical Principles of the Quantum Theory, University of Chicago Press, Chicago, Illinois, 1930.  
This reference contains interesting discussions of the basic concepts of quantum mechanics written by a man who participated in
the birth of the new physics.

This page titled 2.3: Further Reading is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W.
Bader via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64667?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/02%3A_The_New_Physics/2.03%3A_Further_Reading
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/02%3A_The_New_Physics/2.03%3A_Further_Reading
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.chemistry.mcmaster.ca/bader/
https://www.chemistry.mcmaster.ca/esam


2.E.1 https://chem.libretexts.org/@go/page/64668

2.E: Exercises

Q.1 

One of the more recent experimental methods of studying the nucleus of an atom is to probe the nucleus with very high energy
electrons. Calculate the order of magnitude of the energy of an electron when it is bound inside a nucleus with a diameter 1 ´ 10
cm. Compare this value with the order of magnitude of the energy of an electron bound to an atom of diameter 1 ´ 10  cm.

Q.2 
Nuclear particles, protons or neutrons have masses approximately 2 ´ 10  times the mass of an electron. Estimate the average
energy of a nuclear particle bound in a nucleus and compare it with the order of magnitude energy for an electron bound to an
atom. This result should indicate that chemical changes which involve changes in the electronic energies of the system do not affect
the nucleus of an atom.

This page titled 2.E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via
source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

3: The Hydrogen Atom
The study of the hydrogen atom is more complicated than our previous example of an electron confined to move on a line. Not only
does the motion of the electron occur in three dimensions but there is also a force acting on the electron. This force, the
electrostatic force of attraction, is responsible for holding the atom together.

3.1: Introduction
3.2: The Quantization of Energy
3.3: The Probability Distribution of the Hydrogen Atom
3.4: Angular Momentum of an Electron in a Hydrogen Atom
3.5: Some Useful Expressions
3.E: Exercises
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3.1: Introduction
The study of the hydrogen atom is more complicated than our previous example of an electron confined to move on a line. Not only
does the motion of the electron occur in three dimensions but there is also a force acting on the electron. This force, the
electrostatic force of attraction, is responsible for holding the atom together. The magnitude of this force is given by the product of
the nuclear and electronic charges divided by the square of the distance between them. In the previous example of an electron
confined to move on a line, the total energy was entirely kinetic in origin since there were no forces acting on the electron. In the
hydrogen atom however, the energy of the electron, because of the force exerted on it by the nucleus, will consist of a potential
energy (one which depends on the position of the electron relative to the nucleus) as well as a kinetic energy. The potential energy 

 arising from the force of attraction between the nucleus and the electron is:

Let us imagine for the moment that the proton and the electron behave classically. Then, if the nucleus is held fixed at the origin
and the electron allowed to move relative to it, the potential energy would vary in the manner indicated in Fig. 3-1. The potential
energy is independent of the direction in space and depends only on the distance r between the electron and the nucleus. Thus Fig.
3-1 refers to any line directed from the nucleus to the electron. The r-axis in the figure may be taken literally as a line through the
nucleus. Whether the electron moves to the right or to the left the potential energy varies in the same manner.

  
Fig. 3-1. The potential energy of interaction between a nucleus (at the origin) and an electron as a function of the distance r
between them.

The potential energy is zero when the two particles are very far apart (r = ¥ ), and equals minus infinity when r equals zero. We
shall take the energy for r = ¥ as our zero of energy. Every energy will be measured relative to this value. When a stable atom is
formed, the electron is attracted to the nucleus, r is less than infinity, and the energy will be negative. A negative value for the
energy implies that energy must be supplied to the system if the electron is to overcome the attractive force of the nucleus and
escape from the atom. The electron has again "fallen into a potential well." However, the shape of the well is no longer a simple
square one as previously considered for an electron confined to move on a line, but has the shape shown in Fig. 3-1. This shape is a
consequence of there being a force acting on the electron and hence a potential energy contribution which depends on the distance
between the two particles. This is the nature of the problem. Now let us see what quantum mechanics predicts for the motion of the
electron in such a situation.

This page titled 3.1: Introduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader
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3.2: The Quantization of Energy
The motion of the electron in the hydrogen atom is not free. The electron is bound to the atom by the attractive force of the nucleus
and consequently quantum mechanics predicts that the total energy of the electron is quantized. The expression for the energy is:

with 

where  is the mass of the electron,  is the magnitude of the electronic charge,  is a quantum number,  is Planck's constant and 
 is the atomic number (the number of positive charges in the nucleus). Equation  applies to any one-electron atom or ion.

For example, He  is a one-electron system for which Z = 2. We can again construct an energy level diagram listing the allowed
energy values (Figure ).

Figure : The energy level diagram for the H atom. Each line denotes an allowed energy for the atom. An energy-level diagram
plots energy vertically and is useful in visualizing the energy states of a system and the transitions between them. This diagram is
for the hydrogen-atom electrons.

These are obtained by substituting all possible values of n into Equation . As in our previous example, we shall represent all
the constants which appear in the expression for  by a constant  and we shall set , i.e., consider only the hydrogen atom.

with 

Since the motion of the electron occurs in three dimensions we might correctly anticipate three quantum numbers for the hydrogen
atom. But the energy depends only on the quantum number  and for this reason it is called the principal quantum number. In this
case, the energy is inversely dependent upon n , and as n is increased the energy becomes less negative with the spacings between
the energy levels decreasing in size. When , then  and the electron is free of the attractive force of the nucleus. The
average distance between the nucleus and the electron (the average value of r) increases as the energy or the value of n increases.
Thus energy must be supplied to pull the electron away from the nucleus.

The parallelism between increasing energy and increasing average value of  is a useful one. In fact, when an electron loses energy,
we refer to it as "falling" from one energy level to a lower one on the energy level diagram. Since the average distance between the
nucleus and the electron also decreases with a decrease in n, then the electron literally does fall in closer to the nucleus when it
"falls" from level to level on the energy level diagram.

The energy difference between  and :

is called the ionization energy and is the energy required to pull the electron completely away from the nucleus and is, therefore,
the energy of the reaction:
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with 

This amount of energy is sufficient to separate the electron from the attractive influence of the nucleus and leave both particles at
rest. If an amount of energy greater than K is supplied to the electron, it will not only escape from the atom but the energy in excess
of K will appear as kinetic energy of the electron. Once the electron is free it may have any energy because all velocities are then
possible. An electron which possesses and energy in this region of the diagram is a free electron and has kinetic energy of motion
only.

The Hydrogen Atom Spectrum 
As mentioned earlier, hydrogen gas emits colored light when a high voltage is applied across a sample of the gas contained in a
glass tube fitted with electrodes. The electrical energy transmitted to the gas causes many of the hydrogen molecules to dissociate
into atoms:

The electrons in the molecules and in the atoms absorb energy and are excited to high energy levels. lonization of the gas also
occurs. When the electron is in a quantum level other than the lowest level (with n = 1) the electron is said to be excited, or to be in
an excited level. The lifetime of such an excited level is very brief, being of the order of magnitude of only 10  sec. The electron
loses the energy of excitation by falling to a lower energy level and at the same time emitting a photon to carry off the excess
energy. We can easily calculate the frequencies which should appear in the emitted light by calculating the difference in energy
between the two levels and making use of Bohr's frequency condition ( ):

with 

Suppose we consider all those frequencies which appear when the electron falls to the lowest level, :

with 

very value of  substituted into Equation  gives a distinct value for v. In Figure  we illustrate the changes in energy
which result when the electron emits a photon by an arrow connecting the excited level (of energy E ) with the ground level (of
energy E ). The frequency resulting from each drop in energy will be directly proportional to the length of the arrow. Just as the
arrows increase in length as n is increased, so v increases. However, the spacings between the lines decrease as n is increased, and
the spectrum will appear as shown directly below the energy level diagram in Figure .
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Figure : The Lyman series of lines is due to transitions from higher-energy orbits to the lowest-energy orbit (n = 1); these
transitions release a great deal of energy, corresponding to radiation in the ultraviolet portion of the electromagnetic spectrum.
The Paschen, Brackett, and Pfund series of lines are due to transitions from higher-energy orbits to orbits with n = 3, 4, and 5,
respectively; these transitions release substantially less energy, corresponding to infrared radiation. (Orbits are not drawn to
scale.)

Each line in the spectrum is placed beneath the arrow which represents the change in energy giving rise to that particular line. Free
electrons with varying amounts of kinetic energy (½mu ) can also fall to the  level.

The energy released in the reversed ionization reaction (electron affinity):

will equal K, the difference between E  and E , plus ½mu , the kinetic energy originally possessed by the electron. Since this latter
energy is not quantized, every energy value greater than K should be possible and every frequency greater than that corresponding
to

should be observed. The line spectrum should, therefore, collapse into a continuous spectrum at its high frequency end. Thus the
energy continuum above E  gives rise to a continuum of frequencies in the emission spectrum. The beginning of the continuum
should be the frequency corresponding to the jump from E  to E , and thus we can determine K, the ionization energy of the
hydrogen atom, from the observation of this frequency. Indeed, the spectroscopic method is one of the most accurate methods of
determining ionization energies.

The hydrogen atom does possess a spectrum identical to that predicted by Equation , and the observed value for K agrees with
the theoretical value. This particular series of lines, called the Lyman series, falls in the ultraviolet region of the spectrum because
of the large energy changes involved in the transitions from the excited levels to the lowest level. The first few members of a
second series of lines, a second line spectrum, falls in the visible portion of the spectrum. It is called the Balmer series and arises
from electrons in excited levels falling to the second quantum level. Since E  equals only one quarter of E , the energy jumps are
smaller and the frequencies are correspondingly lower than those observed in the Lyman series. Four lines can be readily seen in
this series: red, green, blue, and violet. Each color results from the electrons falling from a specific level, to the n = 2 level: red E
® E ; green, E ® E ; blue, E ® E ; and violet E ®E . Other series, arising from electrons falling to the n = 3 and n= 4 levels, can
be found in the infrared (frequencies preceding the red end or long wavelength end of the visible spectrum).

The fact that the hydrogen atom exhibits a line spectrum is visible proof of the quantization of energy on the atomic level.

This page titled 3.2: The Quantization of Energy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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3.3: The Probability Distribution of the Hydrogen Atom

Crude Approximation of Electron Position in a Hydrogen Atom 

To what extent will quantum mechanics permit us to pinpoint the position of an electron when it is bound to an atom? We can
obtain an order of magnitude answer to this question by applying the uncertainty principle

to estimate , which represents the minimum uncertainty in our knowledge of the position of the electron. The momentum of an
electron in an atom is of the order of magnitude of . The uncertainty in the momentum  must
necessarily be of the same order of magnitude. Thus

The uncertainty in the position of the electron is of the same order of magnitude as the diameter of the atom itself. As long as the
electron is bound to the atom, we will not be able to say much more about its position than that it is in the atom. Certainly all
models of the atom which describe the electron as a particle following a definite trajectory or orbit must be discarded.

We can obtain an energy and one or more wavefunctions for every value of , the principal quantum number, by solving
Schrödinger's equation for the hydrogen atom. A knowledge of the wavefunctions, or probability amplitudes , allows us to
calculate the probability distributions for the electron in any given quantum level. When n = 1, the wave function and the derived
probability function are independent of direction and depend only on the distance r between the electron and the nucleus. In Figure 

, we plot both  and  versus , showing the variation in these functions as the electron is moved further and further from
the nucleus in any one direction. (These and all succeeding graphs are plotted in terms of the atomic unit of length, a  = 0.529 ´ 10
 cm.)

  
Figure : The wave function and probability distribution as functions of r for the n = 1 level of the H atom. The functions and
the radius r are in atomic units in this and succeeding figures.

Two interpretations can again be given to the  curve. An experiment designed to detect the position of the electron with an
uncertainty much less than the diameter of the atom itself (using light of short wavelength) will, if repeated a large number of
times, result in Figure  for . That is, the electron will be detected close to the nucleus most frequently and the probability of
observing it at some distance from the nucleus will decrease rapidly with increasing . The atom will be ionized in making each of
these observations because the energy of the photons with a wavelength much less than 10  cm will be greater than , the amount
of energy required to ionize the hydrogen atom. If light with a wavelength comparable to the diameter of the atom is employed in
the experiment, then the electron will not be excited but our knowledge of its position will be correspondingly less precise. In these
experiments, in which the electron's energy is not changed, the electron will appear to be "smeared out" and we may interpret  as
giving the fraction of the total electronic charge to be found in every small volume element of space. (Recall that the addition of the
value of P  for every small volume element over all space adds up to unity, i.e., one electron and one electronic charge.)
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When the electron is in a definite energy level we shall refer to the  distributions as electron density distributions, since they
describe the manner in which the total electronic charge is distributed in space. The electron density is expressed in terms of the
number of electronic charges per unit volume of space, e /V. The volume V is usually expressed in atomic units of length cubed,
and one atomic unit of electron density is then e /a . To give an idea of the order of magnitude of an atomic density unit, 1 au of
charge density e /a = 6.7 electronic charges per cubic Ångstrom. That is, a cube with a length of , if
uniformly filled with an electronic charge density of 1 au, would contain 6.7 electronic charges.

 may be represented in another manner. Rather than considering the amount of electronic charge in one particular small element
of space, we may determine the total amount of charge lying within a thin spherical shell of space. Since the distribution is
independent of direction, consider adding up all the charge density which lies within a volume of space bounded by an inner sphere
of radius r and an outer concentric sphere with a radius only infinitesimally greater, say . The area of the inner sphere is
4pr  and the thickness of the shell is Dr. Thus the volume of the shell is  and the product of this volume and the charge
density P (r), which is the charge or number of electrons per unit volume, is therefore the total amount of electronic charge lying
between the spheres of radius  and . The product  is given a special name, the radial distribution function, which
we shall label .

The reader may wonder why the volume of the shell is not taken as:

the difference in volume between two concentric spheres. When this expression for the volume is expanded, we obtain

and for very small values of  the  and  terms are negligible in comparison with . Thus for small values of 
, the two expressions for the volume of the shell approach one another in value and when  represents an infinitesimal

small increment in  they are identical.

The radial distribution function is plotted in Figure  for the ground state of the hydrogen atom.

Figure : The radial distribution function  for an H atom. The value of this function at some value of r when multiplied
by  gives the number of electronic charges within the thin shell of space lying between spheres of radius  and .

The curve passes through zero at r = 0 since the surface area of a sphere of zero radius is zero. As the radius of the sphere is
increased, the volume of space defined by 4pr Dr increases. However, as shown in Figure :, the absolute value of the electron
density at a given point decreases with r and the resulting curve must pass through a maximum. This maximum occurs at r  = a .
Thus more of the electronic charge is present at a distance a , out from the nucleus than at any other value of r. Since the curve is
unsymmetrical, the average value of r, denoted by , is not equal to r . The average value of r is indicated on the figure by a
dashed line. A "picture" of the electron density distribution for the electron in the  level of the hydrogen atom would be a
spherical ball of charge, dense around the nucleus and becoming increasingly diffuse as the value of r is increased.
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We could also represent the distribution of negative charge in the hydrogen atom in the manner used previously for the electron
confined to move on a plane (Figure ), by displaying the charge density in a plane by means of a contour map. Imagine a
plane through the atom including the nucleus. The density is calculated at every point in this plane. All points having the same
value for the electron density in this plane are joined by a contour line (Figure ). Since the electron density depends only on r,
the distance from the nucleus, and not on the direction in space, the contours will be circular. A contour map is useful as it indicates
the "shape" of the density distribution.

Figure : (a) A contour map of the electron density distribution in a plane containing the nucleus for the  level of the H
atom. The distance between adjacent contours is 1 au. The numbers on the left-hand side on each contour give the electron density
in au. The numbers on the right-hand side give the fraction of the total electronic charge which lies within a sphere of that radius.
Thus 99% of the single electronic charge of the H atom lies within a sphere of radius 4 au (or diameter = ). (b) This
is a profile of the contour map along a line through the nucleus. It is, of course, the same as that given previously in Figure 
for , but now plotted from the nucleus in both directions.

This completes the description of the most stable state of the hydrogen atom, the state for which \(n = 1\). Before proceeding with a
discussion of the excited states of the hydrogen atom we must introduce a new term. When the energy of the electron is increased
to another of the allowed values, corresponding to a new value for ,  and  change as well. The wavefunctions  for the
hydrogen atom are given a special name, atomic orbitals, because they play such an important role in all of our future discussions
of the electronic structure of atoms. In general the word orbital is the name given to a wavefunction which determines the motion
of a single electron. If the one-electron wave function is for an atomic system, it is called an atomic orbital.

Do not confuse the word orbital with the classical word and notion of an orbit. First, an
orbit implies the knowledge of a definite trajectory or path for a particle through space
which in itself is not possible for an electron. Secondly, an orbital, like the wave function,
has no physical reality but is a mathematical function which when squared gives the
physically measurable electron density distribution.

For every value of the energy E , for the hydrogen atom, there is a degeneracy equal to . Therefore, for n = 1, there is but one
atomic orbital and one electron density distribution. However, for n = 2, there are four different atomic orbitals and four different
electron density distributions, all of which possess the same value for the energy, E . Thus for all values of the principal quantum
number n there are n  different ways in which the electronic charge may be distributed in three-dimensional space and still possess
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the same value for the energy. For every value of the principal quantum number, one of the possible atomic orbitals is independent
of direction and gives a spherical electron density distribution which can be represented by circular contours as has been
exemplified above for the case of n = 1. The other atomic orbitals for a given value of n exhibit a directional dependence and
predict density distributions which are not spherical but are concentrated in planes or along certain axes. The angular dependence
of the atomic orbitals for the hydrogen atom and the shapes of the contours of the corresponding electron density distributions are
intimately connected with the angular momentum possessed by the electron.

Angular Momentum 

The physical quantity known as angular momentum plays a dominant role in the understanding of the electronic structure of atoms.
To gain a physical picture and feeling for the angular momentum it is necessary to consider a model system from the classical point
of view. The simplest classical model of the hydrogen atom is one in which the electron moves in a circular orbit with a constant
speed or angular velocity (Figure ). Just as the ordinary momentum  plays a dominant role in the analysis of straight line or
linear motion, so angular momentum plays the central role in the analysis of a system with circular motion as found in the model of
the hydrogen atom.

  
Figure : The angular momentum vector for a classical model of the atom.

In Figure , m is the mass of the electron, v is the linear velocity (the velocity the electron would possess if it continued moving
at a tangent to the orbit as indicated in the figure) and r is the radius of the orbit. The linear velocity v is a vector since it possesses
at any instant both a magnitude and a direction in space. Obviously, as the electron rotates in the orbit the direction of  is
constantly changing, and thus the linear momentum  is not constant for the circular motion. This is so even though the speed of
the electron (i.e, the magnitude of  which is denoted by ) remains unchanged. According to Newton's second law, a force must
be acting on the electron if its momentum changes with time. This is the force which prevents the electron from flying on tangent to
its orbit. In an atom the attractive force which contains the electron is the electrostatic force of attraction between the nucleus and
the electron, directed along the radius r at right angles to the direction of the electron's motion.

The angular momentum, like the linear momentum, is a vector and is defined as follows:

The angular momentum vector  is directed along the axis of rotation. From the definition it is evident that the angular
momentum vector will remain constant as long as the speed of the electron in the orbit is constant (u remains unchanged) and the
plane and radius of the orbit remain unchanged. Thus for a given orbit, the angular momentum is constant as long as the angular
velocity of the particle in the orbit is constant. In an atom the only force on the electron in the orbit is directed along r; it has no
component in the direction of the motion. The force acts in such a way as to change only the linear momentum. Therefore, while
the linear momentum is not constant during the circular motion, the angular momentum is. A force exerted on the particle in the
direction of the vector v would change the angular velocity and the angular momentum. When a force is applied which does change

, a torque is said to be acting on the system. Thus angular momentum and torque are related in the same way as are linear
momentum and force.

The important point of the above discussion is that both the angular momentum and the energy of an atom remain constant if the
atom is left undisturbed. Any physical quantity which is constant in a classical system is both conserved and quantized in a
quantum mechanical system. Thus both the energy and the angular momentum are quantized for an atom.
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Any physical quantity which is constant in a classical system is both conserved and
quantized in a quantum mechanical system.

There is a quantum number, denoted by , which governs the magnitude of the angular momentum, just as the quantum number 
determines the energy. The magnitude of the angular momentum may assume only those values given by:

with 

Furthermore, the value of n limits the maximum value of the angular momentum as the value of l cannot be greater than n - 1. For
the state n = 1 discussed above, l may have the value of zero only. When n = 2, l may equal 0 or 1, and for n = 3, l = 0 or 1 or 2, etc.
When l = 0, it is evident from Equation  that the angular momentum of the electron is zero. The atomic orbitals which describe
these states of zero angular momentum are called s orbitals. The s orbitals are distinguished from one another by stating the value
of n, the principal quantum number. They are referred to as the 1s, 2s, 3s, etc., atomic orbitals.

The preceding discussion referred to the 1s orbital since for the ground state of the hydrogen atom n = 1 and l = 0. This orbital, and
all s orbitals in general, predict spherical density distributions for the electron as exemplified by Figure  for the 1s density.
Figure  shows the radial distribution functions \(Q(r)\) which apply when the electron is in a 2s or 3s orbital to illustrate how
the character of the density distributions change as the value of  is increased.

It is common usage to refer to an electron as being "in" an orbital even though an orbital is, but a mathematical function with
no physical reality. To say an electron is in a particular orbital is meant to imply that the electron is in the quantum state which
is described by that orbital. For example, when the electron is in the 2s orbital the hydrogen atom is in a state for which n = 2
and l = 0.

  
Figure : Radial distribution functions for the 1s, 2s, and 2p density distributions. Notice the number of nodes in each
distribution.

Comparing these results with those for the 1s orbital in Figure  we see that as \(n\) increases the average value of \(r\)
increases. This agrees with the fact that the energy of the electron also increases as \(n\) increases. The increased energy results in
the electron being on the average pulled further away from the attractive force of the nucleus. As in the simple example of an
electron moving on a line, nodes (values of  for which the electron density is zero) appear in the probability distributions. The
number of nodes increases with increasing energy and equals .

When the electron possesses angular momentum the density distributions are no longer spherical. In fact for each value of l, the
electron density distribution assumes a characteristic shape Figure .
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Figure : Contour maps of the 2s, 2p, 3d and 4f atomic orbitals and their charge density distributions for the H atom. The
zero contours shown in the maps for the orbitals define the positions of the nodes. Negative values for the contours of the orbitals
are indicated by dashed lines, positive values by solid lines.

When l = 1, the orbitals are called p orbitals. In this case the orbital and its electron density are concentrated along a line (axis) in
space. The 2p orbital or wave function is positive in value on one side and negative in value on the other side of a plane which is
perpendicular to the axis of the orbital and passes through the nucleus. The orbital has a node in this plane, and consequently an
electron in a 2p orbital does not place any electronic charge density at the nucleus. The electron density of a 1s orbital, on the other
hand, is a maximum at the nucleus. The same diagram for the 2p density distribution is obtained for any plane which contains this
axis. Thus in three dimensions the electron density would appear to be concentrated in two lobes, one on each side of the nucleus,
each lobe being circular in cross section Figure .

  
Figure : The appearance of the 2p electron density distribution in three-dimensional space.

When l = 2, the orbitals are called d orbitals andFigure  shows the contours in a plane for a 3d orbital and its density
distribution. Notice that the density is again zero at the nucleus and that there are now two nodes in the orbital and in its density
distribution. As a final example, Figure  shows the contours of the orbital and electron density distribution obtained for a 4f
atomic orbital which occurs when n = 4 and l = 3. The point to notice is that as the angular momentum of the electron increases, the
density distribution becomes increasingly concentrated along an axis or in a plane in space. Only electrons in s orbitals with zero
angular momentum give spherical density distributions and in addition place charge density at the position of the nucleus.

There seems to be neither rhyme nor reason for the naming of the states corresponding to the different values of \(l\) (s, p, d, f
for l = 0, 1, 2, 3). This set of labels had its origin in the early work of experimental atomic spectroscopy. The letter s stood for
sharp, p for principal, d for diffuse and f for fundamental in characterizing spectral lines. From the letter f onwards the naming
of the orbitals is alphabetical .
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We have not as yet accounted for the full degeneracy of the hydrogen atom orbitals which we stated earlier to be n  for every value
of n. For example, when n = 2, there are four distinct atomic orbitals. The remaining degeneracy is again determined by the angular
momentum of the system. Since angular momentum like linear momentum is a vector quantity, we may refer to the component of
the angular momentum vector which lies along some chosen axis. For reasons we shall investigate, the number of values a
particular component can assume for a given value of l is (2l + 1). Thus when l = 0, there is no angular momentum and there is but
a single orbital, an s orbital. When l = 1, there are three possible values for the component (2´ 1 + 1) of the total angular momentum
which are physically distinguishable from one another. There are, therefore, three p orbitals. Similarly there are five d orbitals, (2 ´
2+1), seven f orbitals, (2 ´ 3 +1), etc. All of the orbitals with the same value of n and l, the three 2porbitals for example, are similar
but differ in their spatial orientations.

To gain a better understanding of this final element of degeneracy, we must consider in more detail what quantum mechanics
predicts concerning the angular momentum of an electron in an atom.

This page titled 3.3: The Probability Distribution of the Hydrogen Atom is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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3.4: Angular Momentum of an Electron in a Hydrogen Atom
The simplest classical model of the hydrogen atom is one in which the electron moves in a circular planar orbit about the nucleus as
previously discussed and as illustrated in Figure 3-7. The angular momentum vector M in this figure is shown at an angle qwith
respect to some arbitrary axis in space. Assuming for the moment that we can somehow physically define such an axis, then in the
classical model of the atom there should be an infinite number of values possible for the component of the angular momentum
vector along this axis. As the angle between the axis and the vector M varies continuously from 0°, through 90° to 180°, the
component of M along the axis would vary correspondingly from M to zero to -M. Thus the quantum mechanical statements
regarding the angular momentum of an electron in an atom differ from the classical predictions in two startling ways. First, the
magnitude of the angular momentum (the length of the vector M) is restricted to only certain values given by:

with 

The magnitude of the angular momentum is quantized. Secondly, quantum mechanics states that the component of M along a given
axis can assume only (\(2l + 1\)) values, rather than the infinite number allowed in the classical model. In terms of the classical
model this would imply that when the magnitude of M is  (the value when l = 1), there are only three allowed values for q,
the angle of inclination of M with respect to a chosen axis.

The angle q is another example of a physical quantity which in a classical system may assume any value, but which in a quantum
system may take on only certain discrete values. You need not accept this result on faith. There is a simple, elegant experiment
which illustrates the "quantization" of q, just as a line spectrum illustrates the quantization of the energy.

If we wish to measure the number of possible values which the component of the angular momentum may exhibit with respect to
some axis we must first find some way in which we can physically define a direction or axis in space. To do this we make use of
the magnetism exhibited by an electron in an atom. The flow of electrons through a loop of wire (an electric current) produces a
magnetic field (Figure ). At a distance from the ring of wire, large compared to the diameter of the ring, the magnetic field
produced by the current appears to be the same as that obtained from a small bar magnet with a north pole and a south pole. Such a
small magnet is called a magnetic dipole, i.e., two poles separated by a small distance.

 
Figure : The magnetic field produced by a current in a loop of wire.

The electron is charged and the motion of the electron in an atom could be thought of as generating a small electric current.
Associated with this current there should be a small magnetic field. The magnitude of this magnetic field is related to the angular
momentum of the electron's motion in roughly the same way that the magnetic field produced by a current in a loop of wire is
proportional to the strength of the current flowing in the wire.

The strength of the atomic magnetic dipole is given by m where:

M = ℏl(l +1)
− −−−−−

√

l = 0, 1, 2, . . .

3.4.1

3.4.1

μ = l(l +1)
− −−−−−

√ βm (3.4.1)
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Just as there is a fundamental unit of negative charge denoted by e  so there is a fundamental unit of magnetism at the atomic level
denoted by b  and called the Bohr magneton. From Equation  we can see that the strength of the magnetic dipole will increase
as the angular momentum of the electron increases. This is analogous to increasing the magnetic field by increasing the strength of
the current through a circular loop of wire The magnetic dipole, since it has a north and a south pole, will define some direction in
space (the magnetic dipole is a vector quantity). The axis of the magnetic dipole in fact coincides with the direction of the angular
momentum vector. Experimentally, a collection of atoms behave as though they were a collection of small bar magnets if the
electrons in these atoms possess angular momentum. In addition, the axis of the magnet lies along the axis of rotation, i.e., along
the angular momentum vector. Thus the magnetism exhibited by the atoms provides an experimental means by which we may
study the direction of the angular momentum vector.

Thus the magnetism exhibited by the atoms provides an experimental means by which we
may study the direction of the angular momentum vector.

If we place the atoms in a magnetic field they will be attracted or repelled by this field, depending on whether or not the atomic
magnets are aligned against or with the applied field. The applied magnetic field will determine a direction in space. By measuring
the deflection of the atoms in this field we can determine the directions of their magnetic moments and hence of their angular
momentum vectors with respect to this applied field. Consider an evacuated tube with a tiny opening at one end through which a
stream of atoms may enter (Figure 3-12). By placing a second small hole in front of the first, inside the tube, we will obtain a
narrow beam of atoms which will pass the length of the tube and strike the opposite end. If the atoms possess magnetic moments
the path of the beam can be deflected by placing a magnetic field across the tube, perpendicular to the path of the atoms. The
magnetic field must be one in which the lines of force diverge thereby exerting an unbalanced force on any magnetic material lying
inside the field. This inhomogeneous magnetic field could be obtained through the use of N and S poles of the kind illustrated in
Figure 3-12. The direction of the magnetic field will be taken as the direction of the z-axis.

  
Figure 3-12. The atomic beam apparatus.

Let us suppose the beam consists of neutral atoms which possess  units of electronic angular momentum (the angular
momentum quantum number l = 1). When no magnetic field is present, the beam of atoms strikes the end wall at a single point in
the middle of the detector. What happens when the magnetic field is present? We must assume that before the beam enters the
magnetic field, the axes of the atomic magnets are randomly oriented with respect to the z-axis. According to the concepts of
classical mechanics, the beam should spread out along the direction of the magnetic field and produce a line rather than a point at
the end of the tube (Figure 3-13a). Actually, the beam is split into three distinct component beams each of equal intensity producing
three spots at the end of the tube (Figure 3-13b).

  
Figure : (a) The result of the atomic beam experiment as predicted by classical mechanics, (b) The observed result of the
atomic beam experiment.
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The startling results of this experiment can be explained only if we assume that while in the magnetic field each atomic magnet
could assume only one of three possible orientations with respect to the applied magnetic field (Figure 3-14).

  
Figure : The three possible orientations for the total magnetic moment with respect to an external magnetic field for an atom
with l =1.

The atomic magnets which are aligned perpendicular to the direction of the field are not deflected and will follow a straight path
through the tube. The atoms which are attracted upwards must have their magnetic moments oriented as shown. From the known
strength of the applied inhomogeneous magnetic field and the measured distance through which the beam has been deflected
upwards, we can determine that the component of the magnetic moment lying along the z-axis is only b  in magnitude rather than
the value of  This latter value would result if the axis of the atomic magnet was parallel to the z-axis, i.e., the angle q = 0°.
Instead q assumes a value such that the component of the total moment lying along the z-axis is just lb . Similarly the
beam which is deflected downwards possesses a magnetic moment along the z-axis of -b  or -lb . The classical prediction for this

experiment assumes that q may equal all values from 0° to 180°, and thus all values (from a maximum of  (q = 0°) to 0 (q

=90°) to  (q = 180°)) for the component of the atomic moment along the z-axis would be possible. Instead, q is found to equal
only those values such that the magnetic moment along the z-axis equals +b , 0 and -b .

The angular momentum of the electron determines the magnitude and the direction of the magnetic dipole. (Recall that the vectors
for both these quantities lie along the same axis.) Thus the number of possible values which the component of the angular
momentum vector may assume along a given axis must equal the number of values observed for the component of the magnetic
dipole along the same axis. In the present example the values of the angular momentum component are +1(h/2p), 0 and -1(h/2p), or
since l = 1 in this case, + l(h/2p), 0 and -l(h/2p). In general, it is found that the number of observed values is always (2l + 1) the
values being:

for the angular momentum and

for the magnetic dipole. The number governing the magnitude of the component of M and , ranges from a maximum value of l
and decreases in steps of unity to a minimum value of -l. This number is the third and final quantum number which determines the
motion of an electron in a hydrogen atom. It is given the symbol m and is called the magnetic quantum number.

In summary, the angular momentum of an electron in the hydrogen atom is quantized and may assume only those values given by:

 

3.4.4

m

m
m m

m m

−lℏ, (−l +1)ℏ, . . . 0, . . . , (l −1)ℏ, lℏ

−l , (l −1) . . . , 0, . . . , (l −1) , lβm βm βm βm
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Furthermore, it is an experimental fact that the component of the angular momentum vector along a given axis is limited to (21 + 1)
different values, and that the magnitude of this component is quantized and governed by the quantum number  which may
assume the values l, l-1, . . .,0, . . .,-l. These facts are illustrated in Figure 3-15 for an electron in a d orbital in which l = 2.

  

 

 
(a)  
(b)

Figure 3-15. Pictorial representation of the quantum mechanical properties of the angular momentum of a d electron for which l =
2. The z-axis can be along any arbitrary direction in space. Figure (a) shows the possible components which the angular

momentum vector (of length ) may exhibit along an arbitrary axis in space. A d electron may possess any one of these
components. There are therefore five states for a d electron, all of which are physically different. Notice that the maximum

magnitude allowed for the component is less then the magnitude of the total angular momentum. Therefore, the angular momentum
vector can never coincide with the axis with respect to which the observations are made. Thus the x and y components of the

angular momentum are not zero. This is illustrated in Figure (b) which shows how the angular momentum vector may be oriented
with respect to the z-axis for the case m = l = 2. When the atom is in a magnetic field, the field exerts a torque on the magnetic

dipole of the atom. This torque causes the magnetic dipole and hence the angular momentum vector to precess or rotate about the
direction of the magnetic field. This effect is analogous to the precession of a child's top which is spinning with its axis (and hence
its angular momentum vector) at an angle to the earth's gravitational field. In this case the gravitational field exerts the torque and
the axis of the top slowly revolves around the perpendicular direction as indicated in the figure. The angle of inclination of M with
respect to the field direction remains constant during the precession. The z-component of M is therefore constant but the x and y

components are continuously changing. Because of the precession, only one component of the electronic angular momentum of an
atom an be determined in a given experiment.

The quantum number m determines the magnitude of the component of the angular momentum along a given axis in space.
Therefore, it is not surprising that this same quantum number determines the axis along which the electron density is concentrated.
When m = 0 for a p electron (regardless of the n value, 2p, 3p, 4p, etc.) the electron density distribution is concentrated along the z-
axis (see Figure 3-10) implying that the classical axis of rotation must lie in the x-y plane. Thus a p electron with m = 0 is most
likely to be found along one axis and has a zero probability of being on the remaining two axes. The effect of the angular

m

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64673?pdf
http://www.chemistry.mcmaster.ca/esam/Chapter_3/section_3.html#Fig_3-15.
http://www.chemistry.mcmaster.ca/esam/Chapter_3/ref-fig3-10.html


3.4.5 https://chem.libretexts.org/@go/page/64673

momentum possessed by the electron is to concentrate density along one axis. When m = 1 or -1 the density distribution of a
pelectron is concentrated in the x-y plane with doughnut-shaped circular contours. The m = 1 and -1 density distributions are
identical in appearance. Classically they differ only in the direction of rotation of the electron around the z-axis; counter-clockwise
for m = +1 and clockwise for m = -1. This explains why they have magnetic moments with their north poles in opposite directions.

We can obtain density diagrams for the m = +1 and -1 cases similar to the m = 0 case by removing the resultant angular momentum
component along the z-axis. We can take combinations of the m = +1 and -1 functions such that one combination is concentrated
along the x-axis and the other along the y-axis, and both are identical to the m = 0 function in their appearance. Thus these
functions are often labelled as p , p  and p  functions rather than by their m values. The m value is, however, the true quantum
number and we are cheating physically by labelling them p , p  and p  . This would correspond to applying the field first in the z
direction, then in the x direction and finally in the y direction and trying to save up the information each time. In reality when the
direction of the field is changed, all the information regarding the previous direction is lost and every atom will again align itself
with one chance out of three of being in one of the possible component states with respect to the new direction.

We should note that the r dependence of the orbitals changes with changes in n or l, but the directional component changes with l
and m only. Thus all s orbitals possess spherical charge distributions and all p orbitals possess dumb-bell shaped charge
distributions regardless of the value of n.

Table 3-1: The Atomic Orbitals for the Hydrogen Atom
E n l m Symbol for orbital

-K 1 0 0  1s  

2 0 0  2s  

2 1 1  2p

2 1 0  2p p , p , p

2 1 -1  2p þ
3 0 0  3s  

3 1 1  3p

3 1 0  3p p , p , p

3 1 -1  3p þ
3 2 2  3d

3 2 1  3d |
3 2 0  3d ý
3 2 -1  3d |
3 2 -2  3d þ

Table 3-1 summarizes the allowed combinations of quantum numbers for an electron in a hydrogen atom for the first few values of
n; the corresponding name (symbol) is given for each orbital. Notice that there are n  orbitals for each value of n, all of which
belong to the same quantum level and have the same energy. There are n - 1 values of l for each value of n and there are (2l + 1)
values of m for each value of l. Notice also that for every increase in the value of n, orbitals of the same l value (same directional
dependence) as found for the preceding value of n are repeated. In addition, a new value of l and a new shape are introduced. Thus
there is a repetition in the shapes of the density distributions along with an increase in their number. We can see evidence of a
periodicity in these functions (a periodic re-occurrence of a given density distribution) which we might hope to relate to the

x y z

x y z

n

+1 ö
0 ý x y z

-1

+1 ö
0 ý x y z

-1

+2 ö

+1

0

-1

-2

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64673?pdf
http://www.chemistry.mcmaster.ca/esam/Chapter_3/section_3.html#Table_3-1.


3.4.6 https://chem.libretexts.org/@go/page/64673

periodicity observed in the chemical and physical properties of the elements. We might store this idea in the back of our minds until
later.

We can summarize what we have found so far regarding the energy and distribution of an electron in a hydrogen atom thus:

i. The energy increases as n increases, and depends only on n, the principal quantum number.
ii. The average value of the distance between the electron and the nucleus increases as n increases.

iii. The number of nodes in the probability distribution increases as n increases.
iv. The electron density becomes concentrated along certain lines (or in planes) as l is increased.

Some words of caution about energies and angular momentum should be added. In passing from the domain of classical mechanics
to that of quantum mechanics we retain as many of the familiar words as possible. Examples are kinetic and potential energies,
momentum, and angular momentum. We must, however, be on guard when we use these familiar concepts in the atomic domain.
All have an altered meaning. Let us make this clear by considering these concepts for the hydrogen atom.

Perhaps the most surprising point about the quantum mechanical expression for the energy is that it does not involve r, the distance
between the nucleus and the electron. If the system were a classical one, then we would expect to be able to write the total energy
E  as:

Both the KE and PE would be functions of r, i.e., both would change in value as r was changed (corresponding to the motion of the
electron). Furthermore, the sum of the PE and KE must always yield the same value of E  which is to remain constant.

  
Figure3-16. The potential energy diagram for an H atom with one of the allowed energy values superimposed on it.

Fig 3-16 is the potential energy diagram for the hydrogen atom and we have superimposed on it one of the possible energy levels
for the atom, E . Consider a classical value for r at the point A". Classically, when the electron is at the point A", its PE is given by
the value of the PE curve at A'. The KE is thus equal to the length of the line A - A' in energy units. Thus the sum of PE + KE adds
up to E .

When the electron is at the point B", its PE would equal E and its KE would be zero. The electron would be motionless.
Classically, for this value of E  the electron could not increase its value of r beyond the point represented by B". If it did, it would
be inside the "potential wall." For example, consider the point C". At this value of r, the PE is given by the value at C' which is
now greater than E  and hence the KE must be equal to the length of the line C - C'. But the KE must now be negative in sign so
that the sum of PE and KE will still add up to E . What does a negative KE mean? It doesn't mean anything as it never occurs in a
classical system. Nor does it occur in a quantum mechanical system. It is true that quantum mechanics does predict a finite
probability for the electron being inside the potential curve and indeed for all values of r out to infinity. However, the quantum
mechanical expression for E  does not allow us to determine the instantaneous values for the PE and KE. Instead, we can determine
only their average values. Thus quantum mechanics does not give Equation  but instead states only that the average potential
and kinetic energies may be known:

n

= KE = P E = m −En
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r
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The bracket denotes the fact that the energy quantity has been averaged over the complete motion (all values of r) of the electron.

Why can r not appear in the quantum mechanical expression for E , and why can we obtain only average values for the KE and
PE? When the electron is in a given energy level its energy is precisely known; it is E . The uncertainty in the value of the
momentum of the electron is thus at a minimum. Under these conditions we have seen that our knowledge of the position of the
electron is very uncertain and for an electron in a given energy level we can say no more about its position than that it is bound to
the atom. Thus if the energy is to remain fixed and known with certainty, we cannot, because of the uncertainty principle, refer to
(or measure) the electron as being at some particular distance r from the nucleus with some instantaneous values for its PEand KE.
Instead, we may have knowledge of these quantities only when they are averaged over all possible positions of the electron. This
discussion again illustrates the pitfalls (e.g., a negative kinetic energy) which arise when a classical picture of an electron as a
particle with a definite instantaneous position is taken literally.

It is important to point out that the classical expressions which we write for the dependence of the potential energy on distance, -
e /r for the hydrogen atom for example, are the expressions employed in the quantum mechanical calculation. However, only the
average value of the PE may be calculated and this is done by calculating the value of -e /r at every point in space, taking into
account the fraction of the total electronic charge at each point in space. The amount of charge at a given point in three-dimensional
space is, of course, determined by the electron density distribution. Thus the value of  for the ground state of the hydrogen atom
is the electrostatic energy of interaction between a nucleus of charge +1e with the surrounding spherical distribution of negative
charge.

The penetration of a potential wall by the electron, into regions of negative kinetic energy, is known as "tunnelling."
Classically a particle must have sufficient energy to surmount a potential barrier. In quantum mechanics, an electron may
tunnel into the barrier (or through it, if it is of finite width). Tunnelling will not occur unless the barrier is of finite height. In
the example of the H atom, the potential well is infinitely deep, but the energy of the electron is such that it is only a distance
E  from the top of the well. In the example of the electron moving on a line we assumed the potential well to be infinitely deep
regardless of the energy of the electron. In this case y  and hence P  must equal zero at the ends of the line and no tunnelling is
possible as the potential wall is infinitely high.

We can say more about the and  for an electron in an atom. Not only are these values constant for a given value of \(n\), but
also for any value of \(n\),  

 

Thus the  is always positive and equal to minus one half of the . Since the total energy E is negative when the electron is
bound to the atom, we can interpret the stability of atoms as being due to the decrease in the  when the electron is attracted by
the nucleus.

The question now arises as to why the electron doesn't "fall all the way" and sit right on the nucleus. When r = 0, the would be
equal to minus infinity, and the , which is positive and thus destabilizing, would be zero. Classically this would certainly be the
situation of lowest energy and thus the most stable one. The reason for the electron not collapsing onto the nucleus is a quantum
mechanical one. If the electron was bound directly to the nucleus with no kinetic energy, its position and momentum would be
known with certainty. This would violate Heisenberg's uncertainty principle. The uncertainty principle always operates through the
kinetic energy causing it to become large and positive as the electron is confined to a smaller region of space. (Recall that in the
example of an electron moving on a line, the  increased as the length of the line decreased.) The smaller the region to which the
electron is confined, the smaller is the uncertainty in its position. There must be a corresponding increase in the uncertainty of its
momentum. This is brought about by the increase in the kinetic energy which increases the magnitude of the momentum and thus
the uncertainty in its value. In other words the bound electron must always possess kinetic energy as a consequence of quantum
mechanics.

The  and have opposite dependences on . The  decreases (becomes more negative) as decreases but the  increases
(making the atom less stable) as decreases. A compromise is reached to make the energy as negative as possible (the atom as

= ⟨P E⟩ = ⟨KE⟩En (3.4.3)
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stable as possible) and the compromise always occurs when . A further decrease in would decrease the  but only at
the expense of a larger increase in the . The reverse is true for an increase in . Thus the reason the electron doesn't fall onto the
nucleus may be summed up by stating that "the electron obeys quantum mechanics, and not classical mechanics."

This page titled 3.4: Angular Momentum of an Electron in a Hydrogen Atom is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64673?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/03%3A_The_Hydrogen_Atom/3.04%3A_Angular_Momentum_of_an_Electron_in_a_Hydrogen_Atom
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.chemistry.mcmaster.ca/bader/
https://www.chemistry.mcmaster.ca/esam


3.5.1 https://chem.libretexts.org/@go/page/64717

3.5: Some Useful Expressions
Listed below are a number of equations which give the dependence of ,  and  on the quantum numbers n, l and m. They refer
not only to the hydrogen atom but also to any one-electron ion in general with a nuclear charge of Z. Thus He  is a one-electron ion
with Z = 2, Li  another example with Z = 3.

The average distance between the electron and the nucleus expressed in atomic units of length is:  

 

Note that  is proportional to n  for l = 0 orbitals, and deviates only slightly from this for l ¹ 0. The value of decreases as Z

increases because the nuclear attractive force is greater. Thus  for He  would be only one half as large as  for H.  

This page titled 3.5: Some Useful Expressions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard
F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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3.E: Exercises

Q1 

In 1913 Niels Bohr proposed a model for the hydrogen atom which gives the correct expression for the energy levels E . His model
was based on an awkward marriage of classical mechanics and, at that time, the new idea of quantization. In the Bohr model of the
hydrogen atom the electron is assumed to move in a circular orbit around the nucleus, as illustrated in Fig. 3-7. The energy of the
electron in such an orbit is: (1)

where u is the tangential velocity of the electron in the orbit. Since the circular orbit is to be a stable one the attractive coulomb
force exerted on the electron by the nucleus must be balanced by a centrifugal force, or: (2)

where w is the circular velocity of the electron. Up until this point the model is completely classical in concept. However, Bohr
now postulated that only those orbits are allowed for which the angular momentum is an integral multiple of (h/2p). In other words,
Bohr postulated that the angular momentum of the electron in the hydrogen atom is quantized. This postulate gives a further
equation: (3)

 
a. Show that by eliminating r and u from these three equations you can obtain the correct expression for E .
b. Show that Bohr's model correctly predicts that the KE = -½PE.
c. Show that the radius of the first Bohr orbit is identical to the maximum value of r for the n = 1 level of the hydrogen atom, ,

as calculated by quantum mechanics.
d. Criticize the Bohr model in the light of the quantum mechanical results for the hydrogen atom.

Q2 
The part of the hydrogen atom spectrum which occurs in the visible region arises from electrons in excited levels falling to the n =
2 level. The quantum mechanical expression for the frequencies in this case, corresponding to equation (3) of the text for the
Lyman series, is: (4)

 

The energy of an emitted photon for a jump from level n to level 2 is: (5)

 

Equation (5) predicts that a plot of the photon energies versus (1/n ) should be a straight line. Furthermore, it predicts that the
intercept of this line with the energy axis, corresponding to the value of 1/n  = 0, i.e., n = ¥, should equal (¼)K where: (6)

The point of this problem is to test these theoretical predictions against the experimental results.

Experimentally we measure the wavelength of the emitted light by means of a diffraction grating. A grating for the diffraction of
visible light may be made by marking a glass plate with parallel, equally spaced lines. There are about 10,000 lines per cm. The
spacings between the lines in the grating d is thus about 1 ´10  cm which is the order of magnitude of the wavelength of visible
light. The diffraction equation is: (7)

 

n

n

2

2
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as previously discussed in Problem I-1. We measure the angle q for different orders n = 1, 2, 3, ... of the diffracted light beam.
Since d is known, l may be calculated. The experimentally measured values for the first four lines in the Balmer series are given
below.

Balmer Series

l(Å) n

6563 3

4861 4

4341 5

4102 6

The value of the principal quantum number n which appears in equation (5) is given for each value of l. (This n is totally unrelated
to the n of equation (7) for the experimental determination of l.) Calculate the energy of each photon from the value of its
wavelength.

Plot the photon energies versus the appropriate value of 1/n . Let the 1/n  axis run from 0 to 0.25 and the energy axis run from 0 to
3.6 ev. Include as a point on your graph e = 0 for 1/n  = 0.25, i.e., when n = 2, the excited level and the level to which the electron
falls coincide.

a. Do the points fall on a straight line as predicted?
b. Determine the value of K by extending the line to intercept the energy axis. This intercept should equal K/4. Read off this value

from your graph.
c. Compare the experimental value for K with that predicted theoretically by equation (5). Use e = 4.803 ´ 10  esu, express m

and h in cgs units and the value of K will be in ergs (1 erg = 6.2420 ´ 10  ev). Recall that K is the ionization potential for the
hydrogen atom. An electron falling from the n = ¥ level to the n = 2 level will fall only (¼)K in energy as is evident from the
energy level diagram shown in Fig. 3-2.

Q3 

A beam of atoms with l = 1 is passed through an atomic beam apparatus with the magnetic field directed along an axis
perpendicular to the direc tion of the beam. The undeflected beam from this experiment enters a second beam apparatus in which
the magnetic field is directed along an axis which is perpendicular to both the path of the beam and the direction of the field in the
first experiment. Will this one component of the original beam be split in the second applied magnetic field? Explain why you think
it will be, if this is indeed your answer.

This page titled 3.E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via
source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

4: Many-Electron Atoms
The hydrogen atom is the only atom for which exact solutions of the Schrödinger equation exist. For any atom that contains two or
more electrons, no solution has yet been discovered (so no solution for the helium atom exists!) and we need to introduce
approximation schemes. The helium atom is a good example of a many-electron atom (that is, an atom which contains more than
one electron). No fundamentally new problems are encountered whether we consider two or ten electrons, but a very important
problem arises in passing from the one-electron to the two-electron case.

4.1: Introduction
4.2: The Atomic Orbital Concept
4.3: The Magnetic Properties of the Electron
4.4: The Electronic Basis of the Periodic Table
4.5: Further Reading
4.E: Exercises

This page titled 4: Many-Electron Atoms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F.
W. Bader via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms/4.01%3A_Introduction
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms/4.02%3A_The_Atomic_Orbital_Concept
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms/4.03%3A_The_Magnetic_Properties_of_the_Electron
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms/4.04%3A_The_Electronic_Basis_of_the_Periodic_Table
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms/4.05%3A_Further_Reading
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms/4.E%3A_Exercises
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.chemistry.mcmaster.ca/bader/
https://www.chemistry.mcmaster.ca/esam


4.1.1 https://chem.libretexts.org/@go/page/64676

4.1: Introduction
The helium atom is a good example of a many-electron atom (that is, an atom which contains more than one electron). No
fundamentally new problems are encountered whether we consider two or ten electrons, but a very important problem arises in
passing from the one-electron to the two-electron case. To see what this problem is, consider all the potential interactions found in a
helium atom. Again, consider the electrons to be point charges and "freeze" them at some instantaneous positions in space (Figure 

).

  
Figure : The potential interactions in an He atom. The electrons are labelled by their charge -e, and the nucleus by its
charge Z = +2e.

The potential energy, the average value of which is to be determined by quantum mechanics, is

for the helium atom with , equation  simplifies to

The first and second terms in Equation  represent the attraction of the helium nucleus for electrons 1 and 2 respectively. The
last term represents the repulsion between the two electrons. It is this last term which makes the problem of the helium atom, and of
all many-electron atoms, difficult to solve. No direct solution to the problem exists, the reason being that there are too many
interactions to consider simultaneously. We must make some approximation in our approach to this problem.

This page titled 4.1: Introduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader
via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: The Atomic Orbital Concept
Since the nuclear charge is twice the electronic charge, the electrostatic energy of repulsion between the electrons will be the smallest of the three terms in the potential energy expression of the
helium atom when the interactions are averaged over all possible positions of the electrons. We could obtain an approximation to the electronic energy of the He atom by neglecting this small term.
This is a good idea for another reason. If we ignore the repulsion between the electrons, then physically we are supposing that neither electron "realizes" the other electron is present. The problem is
thus identical to that of the hydrogen atom, a problem which can be solved exactly, except that the nuclear charge is now +2 rather than +1.

The energy of each electron in the field of a nucleus of charge +2 is determined separately and the total energy is then simply the sum of the two energies. This is the first approximation to the energy.
We will also obtain an approximation to the manner in which the electrons are distributed in space. With this latter knowledge, we can estimate the energy of repulsion between the electrons. That is,
with the knowledge of how the electrons are distributed relative to one another we can pick up the term in the potential energy we originally neglected, the term , and calculate its contribution
to the energy.

This method of calculating the electronic energy of atoms reduces a many-electron problem to many one-electron problems. Each electron (moving in the attractive field of the nucleus) is treated
independently of the others. In addition, since the problem is now a set of one-electron problems, we may carry over and use all of the results obtained for the hydrogen atom.

We pointed out in our discussion of the hydrogen atom that the results we obtained could be applied to any one-electron system by setting  equal to the appropriate value in all of the formulae. The
one-electron energies are easily calculated and are given by

with the Rydberg constant  determined from basic constants:

More important, the concept of atomic orbitals, the one-electron wave functions for the hydrogen atom, may be employed in the many-electron case. When each electron is considered in turn, its
motion and distribution in space will again be determined by an atomic orbital. The atomic orbitals will differ from the case of the hydrogen atom in that they will generally be more contracted In the
previous chapter we pointed out that the average value of the distance between the nucleus and the electron, , decreased as the nuclear charge and hence the attractive force exerted by the nucleus
was increased However, the orbitals will still be determined by the three quantum numbers n, l and m. Increasing  contracts the orbital, but the symmetry of the problem is left unchanged, i.e., the
attraction of the electron by the nucleus is still determined only by the distance between them and does not depend on the direction.

The l and m dependences of the orbitals, which determine the directional properties of the orbital and of the electron density distribution, remain unchanged. Thus we may still refer to "hydrogen-like"
1s, 2s, 2p orbitals For example, the 1s orbital is the most stable orbital (most negative  value) for any value of , and we naturally assume that the most stable form of the helium atom will be
obtained when both electrons are placed in the 1s orbital. This information, telling us in which atomic orbital the electrons have been placed, is called an electron configuration.

An abbreviated notation is used to denote the electron configuration For example, the lowest energy state of helium, in which two electrons are placed in the 1s orbital, is written as 1s . (This is to be
read as one-s-two and not as one-s-squared.) When one of the electrons is placed in an orbital of higher energy, an "excited" configuration is obtained. An example might be 1s 2p  which one electron
is in the 1s orbital and one electron is in the 2p orbital. It should be emphasized that the concept of assigning an electronto an atomic orbital is a rigorous and exact concept only for the hydrogen
atom; for the many-electron case it is an approximation.

The atomic orbital approximation may be tested by applying it to the helium atom. We have seen that the energy of a single electron moving in the attractive field of a nucleus of charge  is

with 

The energy of the two electrons in the helium atom, each considered to be independent of the other (this is a gross approximation, by the way), is simply

for the 1s  electron configuration. To this energy value must be added the energy of repulsion between the two electrons. Since both electrons have been placed in a 1s atomic orbital, we know that the
charge distribution for each electron must be spherical and centered on the helium nucleus. The two charge distributions will be completely intermingled and we must calculate the energy of repulsion
between every small element of charge density of the one distribution with every small charge element of the second distribution. This calculation can be readily done by the methods of integral
calculus and the value of the average energy repulsion is found to be

with .

We label this energy  as it is a correction to our first approximation to the energy. Notice from Equation  that in general  depends directly on the value of . This makes physical sense, for
the greater the value of , the more contracted and superimposed are the two charge distributions, and the greater is the energy of repulsion between them. Note as well that the correction  is
indeed smaller than , an assumption we made in developing this method of approximating the electronic energy.

The estimate of the total electronic energy of helium atom is

This total energy is called the electronic binding energy as it is the energy released when two initially free electrons are bound to the helium nucleus. Recall that -K represents the binding energy of the
most stable state of the hydrogen atom; thus the helium atom is five and one half times more stable than the hydrogen atom. This is not really a fair comparison because the value (11/2)K is the energy
required to remove both electrons from the helium atom (a double ionization)

with

It is more interesting to compare the energy required to remove a single electron from helium with the energy required to remove the single electron in hydrogen. The energy of the reaction (i.e., the
energy required to ionize an atom once) will be denoted by the letter .

with
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/e2 r12

Z

= −En

RZ2

n2

R

R = = 13.6 eV
mee4

8ε2
0h2

⟨r⟩

Z

E Z

2

1 1

+Ze

= = − REn

−2 mπ2 e4Z2

n2h2

Z2

n2
(4.2.1)

n = 1, 2, 3, 4...

= −( )R −( )R = −8RE1
22

1

22

1

2

= ZR = REc

5

4

5

2
(4.2.2)

= 2ZHe

Ec 4.2.2 Ec Z

Z Ec

E1

= + = −8R + R = REHe E1 Ec

5

2

11

2

He → H +2e+2 e−

ΔE = R
11

2

I1

He → H +e+ e−

ΔE = I

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64677?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms/4.02%3A_The_Atomic_Orbital_Concept
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/04%3A_Many-Electron_Atoms/4.01%3A_Introduction#Eq1


4.2.2 https://chem.libretexts.org/@go/page/64677

The energy of the  ion using Equation  with n = 1 and Z = 2, is

as there is but a single electron left. The energy of the ionized electron  is set equal to zero as it is assumed to be at rest infinitely far away from the ion and

Thus , the first ionization potential of helium, is equal to , or one and one half times larger than the energy required to ionize a hydrogen atom.

How well do our calculated values for the ionization potential and total energy agree with the experimental results? The energy required for the removal of both electrons is 78.98 eV. Since R = 13.61
eV, the calculated value is (11/2)13.61 = 74.86 eV. This is an encouraging result as the error is only about 5%. The experimental value for  is 24.58 eV and our calculated value is (1.5)13.61 = 20.42
ev. The percentage error is larger for the latter case because the actual error is the same in both calculations but  is smaller than . However, the method seems promising. We have indeed
predicted that it requires almost twice as much energy to remove an electron from helium as it does to remove one from hydrogen.

Effective Nuclear Charge Diagram. (Public Domain)

Effective Nuclear Charge 

The calculations outlined above may be improved by introducing the concept of an effective nuclear charge. Since there are two electrons present in the helium atom, neither electron experiences the
full attractive force of the two positive charges on the helium nucleus. Each electron partially screens the nuclear charge from the other. We saw previously that the average value of the distance
between an electron and the nucleus for a strictly hydrogen-like orbital varied as (1/Z). Thus by assuming that each electron moves in the field of the full nuclear charge of helium, we consider it to be
in a 1s orbital with exactly one half the value of  as that found for a hydrogen 1s orbital. Since the electron on the average experiences a reduced nuclear charge (i.e., the effective nuclear charge)
because of the screening effect of the second electron, we should place it in a 1s orbital which possesses an  value somewhere between that found for an orbital for the cases  = 1 and . In
other words, the size of the orbital should be determined by an effective nuclear charge, rather than by the actual nuclear charge. This lowered value for  will obviously decrease the value of the
average repulsion energy between the electrons as the two charge clouds will be more expanded and the average distance between the charge points in each distribution will increase. An increased
value of  will also decrease the average kinetic energy of the electrons and thus again lead to an increase in the stability of the atom. On the other hand, an increase in  will lead to a less negative
potential energy as the electrons will on the average be further away from the nucleus. Thus there is some best value for the effective nuclear charge and for , the value which gives the most stable
description of the atom. For helium this "best" value for the effective nuclear charge is found to be 1.687 and the total energy of He is now calculated to be 77.48 ev. The error has been reduced to
approximately 2%.

The effective nuclear charge value cannot be inserted into Equation  to determine the energy of the electron. The Z in Equation  refers to the actual nuclear charge, while the effective
nuclear charge is a number, always less than the actual . which determines the optimum size of the orbital when other electrons are present. The value of  appearing in the equate for  will be the
effective nuclear charge value. The value of  is indeed determined solely by the degree to which the two electron distributions are contracted and this is governed by the effective nuclear charge. It
should be pointed out that the concept of an effective nuclear charge will be paramount in our future discussions concerning the electronic structures and properties of many-electron atoms.

Excited States of the helium Atom 

Just as the single electron in the hydrogen atom can be excited to higher quantum levels, so it should be possible to excite one of the electrons in the He atom to energy levels with quantum numbers
greater than one. This will change the electron configuration from 1s  to say, 1s 2s  or 1s 2p  etc. The excited electron may again lose the excitation energy in the form of light and fall back to the 1s
level, giving the ground electronic configuration 1s

Thus the helium atom should emit a line spectrum when it is excited in an electrical discharge tube. Since only a single electron is excited at a given time although if is possible with the use of a laser
to excite two electrons simultaneously, the spectrum for helium should be formally the same as that observed for hydrogen. However, since the nuclear charge experienced by the electron will always
be greater than one, the lines in the helium spectrum should be observed at higher frequencies (shorter wavelengths) than those for hydrogen.

Table : The Wavelengths for the Balmer Series in H and the Wavelengths for the Corresponding One-Electron Transitions in He

H He

n l (Å)  n

3 6563  6

4 4861  4

5 4340  5

6 4101  6

In Table , we compare two corresponding line spectra, one for hydrogen and one from helium. In both cases the excited electron fall from an upper p energy level to the 2s energy level. In
hydrogen the frequencies of the lines in the spectrum are determined by the energy differences between the configuration.

with 

This series of jumps from E  (n = 3, 4, 5, 6, . . . ) to E  level generates the Balmer series of lines which we discussed earlier. We are now being more specific in stating that in this particular examples
the excited electrons in in an np orbital. The helium spectrum we wish to compare with this one arises from the transition between configurations

with 

Qualitatively the two spectra are the same, as our model predicted. In addition, the helium lines occur at shorter wavelengths (higher energies) than for hydrogen. In fact, for every series of lines
(Lyman, Balmer, etc.) found for hydrogen, there is a corresponding series found at shorter wavelengths for helium. Our model, which uses hydrogen-like atomic orbitals to describe many-electron
atoms, looks promising indeed. However, it is in the study of the spectrum of helium that we encounter the first shortcoming of this simple approach; there are two series of lines observed for helium
for every single series of lines observed for hydrogen. Not only does helium possess the "Balmer" series, it has a second "Balmer"series starting at l = 3889A. That is, the whole series is repeated at
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shorter wavelengths. Rather than abandon the atomic orbital approach for the many-electron atom, let us keep the above failure of the method in mind and proceed with an application to the lithium
atom.

The Lithium Atom 

There are three electrons in the lithium atom (Z = 3) but the total repulsion energy between the electrons is still determined by considering the repulsions between a pair of electrons at a time. For this
reason, three electrons are fundamentally no more difficult to treat than two electrons. There are simply more possible pairs and hence more repulsive interactions to consider than in the two-electron
case. The dependence of the potential energy on the distances between the electrons and between the electrons and the nucleus is

where , is the distance between electrons 1 and 2,  the distance between electrons 1 and 3, and  the distance between electrons 2 and 3.

It is natural to assume that, as in the case of hydrogen or helium, the most stable energy of the lithium atom will be obtained when all three electrons are placed in the 1s atomic orbital giving the
electronic configuration 1s . Proceeding as in the case of helium we calculate the first approximation to the energy to be (using Equation )

This represents the sum of the energies obtained when each electron is considered to move independently in the field of the nucleus of charge +3 in an orbital with n = 1. To this must be added the
energy of repulsion between the electrons. The average repulsion energy between a pair of electrons is again given by . In lithium we must consider the repulsion between electrons 1 and 2,
between electrons 1 and 3, and between electrons 2 and 3. Therefore the total repulsion energy which represents the correction to  is estimated at (from Equation ):

and the total electronic energy of the lithium atom is predicted to be

Thus it should require 214.4 eV to remove all three electrons from the lithium atom. We can also calculate the energy required to remove a single electron from a lithium atom (the first ionization
potential)

with

When the predicted values for lithium are compared with the corresponding experimental values, they are found to be in serious error. The lithium atom is not as stable as the calculations would
suggest. Experimentally it requires 202.5 eV to remove all three electrons from lithium, and only 5.4 eV to remove one electron. Experimentally it requires less energy to ionize lithium than it does to
ionize hydrogen, yet our calculation predicts an ionization energy one and one half times larger. The error in  is 300%! We should expect a realistic model to do better than this. More serious than
this, however, is that the kind of calculation we are doing should never predict the system to be more stable than it actually is. The method should always predict an energy less negative than is
actually observed. If this is not found to be the case, then it means that an incorrect assumption has been made or that some physical principle has been ignored. It is also clear that if we were to
continue this scheme of placing each succeeding electron in the 1s orbital as we increased the nuclear charge by unity we would never predict the most striking property of the elements: the property
of periodicity.

We might recall at this point that there is a periodicity in the types of atomic orbitals found for the hydrogen atom. With every increase in n, all the preceding values of  are repeated, and a new 
value is introduced. If we could discover a physical reason for not placing all of the electrons in the 1s orbital, but instead place succeeding electrons in the orbitals with higher n values, we could
expect to obtain a periodicity in our predicted electronic structures for the atoms. This periodicity in electronic structure would then explain the observed periodicity in their properties. There must be
another factor governing the behavior of electrons and this factor must be one which determines the number of electrons that may be accommodated in a given orbital. To discover what this missing
factor is and to find the physical basis for it, we must investigate further the magnetic properties of electrons.

This page titled 4.2: The Atomic Orbital Concept is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via source content that was edited to the style and standards
of the LibreTexts platform.
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4.3: The Magnetic Properties of the Electron
So far, the only motion we have considered for the electron is a motion in three-dimensional space. Since this motion is ultimately
described in terms of an orbital wave function, we term this the orbital motion of the electron. However, the electron may possess
an internal motion of some kind, one which is independent of its motion through space. Since the electron bears a charge, such an
internal motion, if it does exist, might be expected to generate a magnetic moment. We have previously pointed out that when an
electron is in an atomic orbital for which l is not equal to zero, the resultant angular motion of the electron gives rise to a magnetic
moment. We would anticipate then that an electron in an s orbital (l = 0) should not exhibit any magnetic effects as its angular
momentum is zero. If an electron in these circumstances did exhibit a magnetic effect, it would indicate that another type of motion
was possible, presumably an internal one. Whether or not an electron in an s orbital does possess a magnetic moment may be
determined by means of an atomic beam experiment described below.

Ground-state Hydrogen atoms travel through an inhomogeneous magnetic field and are deflected up or down depending on their
spin (which is based on the electron spin). (1) the hydrogen atom source, (2) collimated atomic beam, (3) inhomogeneous magnetic
field, (4) the observed bifurcation of the beam (5) the predicted spread for a classical atom with no intrinsic electron spin. (CC SA-

BY 4.0; Tatoute).

In the present experiment a beam of hydrogen atoms is passed through the apparatus. All of the hydrogen atoms in the beam will be
in their ground state with l = 0 and hence they will not possess an orbital magnetic moment. However, when the magnetic field is
applied, something does happen to the beam of atoms. It is split into two distinct beams, one of which is deflected to the N pole of
the magnet and the other to the S pole. Thus even when atoms possess no magnetic moment because of the orbital motion of the
electrons, they may still exhibit magnetic effects! As striking as the behaviour of the atoms as small magnets is the splitting of the
beam into two distinct components. Let us consider first the origin of the magnetic effect, and second, the splitting of the beam into
two distinct beams.

The observed magnetism of the hydrogen atoms must be due to some motion of the electrons. The nucleus of a hydrogen atom does
possess a magnetic moment but its magnitude is too small, by a factor of roughly a thousand, to account for the deflections
observed in this experiment. A magnetic moment will be observed only when the charged particle possesses angular momentum.
Since the orbital angular momentum for an electron in the ground state of hydrogen is zero, we are forced to assume that the
electron possesses some internal motion which has associated with it an angular momentum. A classical analogue of the internal
angular momentum would be a spinning motion of the electron about its own axis. For this reason it is referred to as a spin angular
momentum and the associated magnetic effect as a spin magnetic moment. These effects are separate from, and in addition to, the
orbital angular momentum of the electron (classically, the rotation of the electron around the nucleus) and its associated magnetic
effects.

We are familiar enough with the predictions of quantum mechanics to anticipate that the spin angular momentum and its
component along some axis will be quantized. As in the case of orbital angular momentum, the effect of the quantization will be to
limit the number of values which the component of the spin magnetic moment may have along any given axis. The magnitude of
the spin angular momentum will determine the number of possible values its component may have along a given axis. Each of the
possible values will in turn cause some fraction of the total spin magnetic moment to be aligned along the same axis. In the case of
the electron's orbital motion, we found that as l and hence the orbital angular momentum was increased, the number of possible
values for the component of the orbital magnetic moment along a given axis was increased, the number being equal to (2l + 1).
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We can use a magnetic field to inquire into the nature of the spin angular momentum as well. In fact, we have already discussed the
pertinent experiment. The beam of hydrogen atoms was split into just two components in the atomic beam experiment. This means
that the component of the electron's spin magnetic moment (and spin angular momentum) along a given axis may have only one of
two possible values; the component may be aligned with the field and hence be attracted, or it may be opposed to the field and be
repelled. The electron's spin magnetic moment has been detected in many different kinds of experiments and the results are
remarkable in that only two components of constant magnitude are ever observed. The electron is always either repelled by the
field or attracted to it. This implies that the magnitude of the spin angular momentum for a single electron may have only one
possible value. Since the number of possible values for the component of a given amount of angular momentum of any type in
quantum mechanics is (2l + 1), l must equal ½ and only ½ for the spin angular momentum, and the values of m for the electron
spin, which assume values from a maximum of l to a minimum of -l in steps of unity, must equal +½ and -½. In this respect the
spin angular momentum of the electron is quite different from its orbital angular momentum, which may have many possible
values, as the value of l for the orbital motion is restricted only in that it must equal zero or an integer.

It should be stressed that the splitting of the beam of hydrogen atoms into only two components is again evidence of quantization.
If the atomic magnets (the hydrogen atoms) behaved according to classical mechanics, then the effect of the magnetic field would
be simply to broaden the beam. The orientations of the atomic magnets would be random when they first entered the field of the
magnet and classically the individual atomic magnets could be aligned at any and all angles with respect to the field, giving all
possible components of the spin magnetic moment along the direction of the field. The inhomogeneous field would then exert a
force proportional to the magnitude of the component, and the beam would broaden but not split.

Since the spin magnetic moment is an intrinsic property of the electron, even a beam of free electrons should be split into two
components in a magnetic field. However, the charge possessed by the free electron also interacts with the magnetic field and the
much smaller magnetic-magnetic interaction is masked by the usual deflection of a charge species in a magnetic field. By
employing a neutral atom, the complications of the electronic charge may be avoided. The original experiment was performed on a
beam of silver atoms by Stern and Gerlach in 1921. (We shall see shortly that the electrons in a silver atom do not possess any
orbital angular momentum.)

Let us summarize what we have learned about this new property of the electron. Since an electron may exhibit a magnetic moment
even when it does not possess orbital angular momentum, it must possess some internal motion. We call this motion the electron
spin and treat it quantum mechanically as another kind of angular momentum. Experimentally, however, all we know is that the
electron possesses an intrinsic magnetic moment. The remarkable feature of this intrinsic magnetic moment is that its magnitude
and the number of components along a given axis are fixed. A given electron may exhibit only one of two possible components; it
may be aligned with the field or against it. Experimentally, or theoretically, this is all we can know about the spin magnetic moment
and the spin angular momentum. Hence only one quantum number is required to describe completely the spin properties of a single
electron. We shall denote the value of this quantum number by   or ¯, the upwards-pointing arrow signifying that the component of
the magnetic moment is aligned with the field and the downwards-pointing arrow that this component is opposed to the field.

A total of four quantum numbers is required to specify completely the state of an electron when it is bound to an atom. The
quantum numbers n, l and m determine its energy, orbital angular momentum and its component of orbital angular momentum. The
fourth quantum number, the spin quantum number, summarizes all that can be known about the spin angular momentum of the
electron. This final quantum number may have only one of two possible values corresponding to the magnetic moment component
being (a) aligned with the field or (b) opposed to it.

The Pauli Exclusion Principle 
The consequences of the spin quantum number, when applied to the problem of the electronic structure of atoms, are not
immediately obvious. The small magnitude of the electron's magnetic moment does not directly affect the energy of the electron to
any significant degree. To see just how the spin of the electron does influence the problem, let us reconsider our atomic orbital
model in the light of this new degree of freedom for the electron. In particular let us reconsider those instances in which our model
failed to account for the observations.

If a beam of helium atoms is passed through a magnetic field, no splitting and no deflection is observed. The helium atom, unlike
the hydrogen atom is not magnetic. We could account for the absence of a magnetic moment for helium if we assumed that of the
two electrons in the helium 1s orbital, one had its magnetic moment component up ( ↑) and the other down (¯). The two
components would then cancel and there would be no resultant magnetic effect. Our complete description of the electronic
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configuration of the helium atom would be 1s ( ̄ ), i.e., both electrons have n = 1, l = 0, m = 0 and one has a spin ( ↑) and the other a
spin (↓).

You may wonder why the states of helium corresponding to the configurations 1s (  ↑↑) or 1s (↓↓) are not observed. These states
should exhibit twice the magnetism possessed by a hydrogen atom. They are, however not found to occur. What about the excited
states of the helium atom? An excited state results when one electron is raised in energy to an orbital with a higher n value. The
electrons are thus in different orbitals. The spin assignments for an excited configuration can be made in more than one way and
are such as to predict the occurrence of both magnetic and non-magnetic helium. For example, the configuration 1s 2s  could be
1s (↑ )2s (↓) and be nonmagnetic or it could equally well be 1s (↓ )2s ( ↓) or 1s (↑ )2s ( ↑) and be magnetic.

Care must be exercised in the use of the abbreviated notation 1s ( ↑)2s (↓) to indicate the configuration and spin of a many-
electron atom. In the present example, all we mean to imply is that the total component of the spin is zero. We do not imply
that the electron in the 1s orbital necessarily has a spin "up" and that in the 2s orbital a spin "down." The situation could
equally well be described by the notation 1s (↓)2s (↑ ). There is no experimental method by which we can distinguish between
electrons in an atom, or, for that matter, determine any property of an individual electron in a many-electron system. Only the
total magnetic moment, or total angular momentum, may be determined experimentally.

Both the magnetic and non-magnetic forms are indeed found to occur for helium in an excited state. There are in fact two kinds of
excited helium atoms, those which are non-magnetic and those which are magnetic. If the two forms of helium possess different
energies even though they have the same orbital configuration (we shall see why this should be so later) then we have an
explanation for the previously noted discrepancy that helium exhibits twice the number of line spectra as does hydrogen. For every
set of lines in the spectrum which arises from the transition of the electron from the configurations 1s ( ↑)np (¯) to the
configuration 1s (↑ )2s (¯) for example, there will be another set of lines due to transitions from 1s ( ↑)np ( ̄ ) to 1s ( ↑)2s (¯ ).

The study of the magnetic properties of the ground and excited states of helium is sufficient to point out a general principle. For the
ground state of helium, in which both electrons are in the same atomic orbital, only the non-magnetic form exists. This would
imply that when two electrons are in the same atomic orbital their spins must be paired, that is, one up (↑) and one down (¯). This is
an experimental fact because helium is never found to be magnetic when it is in its electronic ground state. When the electrons are
in different orbitals, then it is again an experimental fact that their spins may now be either paired (¯ ↑) or unpaired, e.g., (  ↑). Thus
when two electrons are in the same orbital (i.e., they possess the same n, l and m values) their spins must be paired. When they are
in different orbitals (one or more of their n, l and m values are different) then their spins may be paired or unpaired. We could
generalize these observations by stating that "no two electrons in the same atom may have all four quantum numbers the same."
Stated in this way we see immediately that any given orbital may hold no more than two electrons. Since two electrons in the same
orbital have the same values of n, l and m, they can differ only through their spin quantum number. However, the spin quantum
number may have only one of two possible values, and these possibilities are given by (n, l, m, ↑  ) or (n, l, m, ¯).

We have indeed found the principle we were seeking, one which limits the occupation of an atomic orbital. This principle is known
as the Pauli exclusion principle. One form of it, suitable for use within the framework of the orbital approximation, is the
statement given in quotation marks above. The Pauli principle cannot be derived from, nor is it predicted by, quantum mechanics. It
is a law of nature which must be taken into account along with quantum mechanics if the properties of matter are to be correctly
described. The concept of atomic orbitals, as derived from quantum mechanics, together with the Pauli exclusion principle which
limits the occupation of a given orbital, provides an understanding of the electronic structure of many-electron atoms. We shall
demonstrate this by "predicting" the existence of the periodic table.

This page titled 4.3: The Magnetic Properties of the Electron is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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4.4: The Electronic Basis of the Periodic Table
The hydrogen-like orbitals for a many-electron atom are listed in order of increasing energy in Fig. 4-2. This energy level diagram
differs from the corresponding diagram for the hydrogen atom, a one-electron system. In the many-electron atom all orbitals with
the same value of the principal quantum number n do not have the same energy as they do in the case of hydrogen. For the many-
electron atoms, the energy of an orbital depends on both n and l, the energy increasing as l increases even when n is constant. For
example, from Fig. 4-2 it is evident that the 3d orbital possesses a higher energy than does the 3p orbital which in turn has a higher
energy than does the 3p orbital. The reason for this difference between the one- and the many-electron case will be discussed
below. The energy of the orbital is still independent of the magnetic quantum number m. Thus when l = 1, there are three p orbitals
which are still degenerate (all possess the same energy) and this is indicated by the three open circles which are superimposed on
each of the p levels. The open circles thus represent the number of available orbitals or the degeneracy of each orbital energy level.

Fig. 4.2. An orbital energy level diagram for a many-electron atom.

With the aid of this energy level scheme and the Pauli principle we may proceed to build up the electronic structures of all the
atoms. We do this by asssigning electrons one at a time to the vacant orbital which possesses the lowest energy. An orbital is
"filled" when it contains two electrons with their spins paired.

Hydrogen. The nuclear charge is 1 and the single electron is placed in the 1s orbital. The electronic configuration is 1s .

Helium. The nuclear charge is increased by one unit to 2 and the extra electron is again placed in the 1s orbital, with its spin
opposed to that of the electron already present. The electronic configuration is 1s .

Lithium. The nuclear charge is 3 and the third electron, because of the Pauli principle, must be placed in the 2s orbital as the 1s
orbital is doubly occupied. The electronic configuration of lithium is therefore 1s 2s .

We can now answer the question as to why the 2s orbital is more stable than the 2p orbital, i.e., why Li is described as 1s 2s  and
not as 1s 2p . The two inner electrons of lithium (those in the 1s orbital) partially shield the nuclear charge from the outer elctron.
Recall that as n increases, the average distance between the electron and the nucleus increases. Thus most of tthe electron density
of the electron with n = 2 will lie outside of the charge density of the two inner electrons which have n = 1. When the outer electron
is at large distances from the nucleus and thus essentially outside of the inner shell of electron density it will experience a force
from only one of the three positive charges on the lithium nucleus. However, as the outer electron does have a small but finite
probability of being close to the nucleus, it will penetrate to some extent the tightly bound electron density of the two 1s electrons.
In doing so it will "see" much more of the total nuclear charge and be more tightly bound. The closer the outer electron can get to
the nucleus, that is, the more it can penetrate the density distribution of the inner shell electrons, the more tightly bound it will be.

An electron in an s orbital has a finite probability of being found right at the nucleus. An electron in a p orbital on the other hand
has a node in its density distribution at the nucleus. Thus an s electron penetrates the inner shell density more effectively than does
a p electron and is consequently more tightly bound to the atom. In a hydrogen atom, there are no inner electrons and both a 2s and
2p electron always experience the full nuclear charge and have the same energy. The crux of this penetration effect on the energy is
that the inner shell electron density does possess a finite extension in space. Thus an outer electron can penetrate inner shell density
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and the screening effect is reduced. If the inner shell density was contracted right onto the nucleus, then no matter how close the
outer electron came to the lithium nucleus, it would always experience only a charge of +1. This dependence of the orbital energies
on their l value is aptly called the penetration effect.

The electron density of a d electron is concentrated even further away from the nucleus than is that of a p electron. Consequently,
the orbital energy of a d electron is even less stable than that of a p electron. In some atoms the penetration of the inner shell
density by a d electron is so slight that its energy is raised even over that of the s electron with the next highest n value. For
example, a 3d electron possesses a higher energy than does a 4s electron in the atoms Sc to Zn with the exceptions of Cr and Cu.
The penetration effect in these elements overrides the principal quantum number for d electrons in determining their relative
energies.

Notice that the configuration 1s 2s  for lithium overcomes the difficulties of our earlier attempts to describe the electronic structure
of this atom. The Pauli principle, of which we were ignorant in our previous attempt, forces the third electron to occupy the 2s
orbital and forces in turn the beginning of a new quantum shell, that is, a new value of n. Thus lithium, like hydrogen, possesses
one outer electron in an s orbital. Since it is only the outer electron density which in general is involved in a chemical change,
lithium and hydrogen should have some chemical properties in common, as indeed they do. Hydrogen is the beginning of the first
period (n = 1) and lithium marks the beginning of the second period (n = 2).

Beryllium. The nuclear charge is 4 and the electronic configuration is 1s 2s .

Boron. Z = 5 and the electron configuration is 1s 2s 2p .

Carbon. Z = 6. The placing of the sixth electron of carbon requires some comment. It will obviously go into a 2p orbital. But in
which of the three should it be placed? Should it be placed in the 2p orbital which already possesses one electron, or should it be
placed in one of the vacant 2p orbitals? If it is placed in the occupied 2p orbital its spin must be paired with that of the electron
already present and the result would be a nonmagnetic carbon atom. If, however, it is placed in one of the vacant 2p orbitals it may
be assigned a spin parallel to the first electron. The question is decided on the grounds of which situation gives the lowest energy.
As a result of the Pauli principle, two electrons with parallel spins (both up or both down) have only a very small probability of
being close to one another. In fact the wave function which describes the two-electron case for parallel spins vanishes when both
electrons approach one another. When the wave function vanishes, the corresponding probability distribution goes to zero. On the
average, then, electrons with parallel spins tend to keep out of each other's way. Two electrons with paired spins, whether in the
same or different orbitals are not prevented by the Pauli principle from being close to one another. The wave function for this
situation is finite even when they are on top of one another! Obviously, two electrons with parallel spins will have a smaller value
for the electrostatic energy of repulsion between them than will two electrons with paired spins. This is a general result which holds
almost without exception in the orbital approximation. It is known as one of Hund's rules as he was the first to state it. Thus the
most stable electronic configuration of the carbon atom is 1s 2s 2p (  ) where we have emphasized the fact that the two 2p electrons
have parallel spins and hence must be in different 2p orbitals.

Nitrogen. Z = 7. Because of Hund's rule the electronic configuration is

1s 2s 2p (   )

i.e., one electron in each of the 2p orbitals. The configuration with the largest possible component of the spin magnetic moment
will be the most stable.

Oxygen. Z = 8. One of the 2p electrons must now be paired with the added electron, but the other 2p electrons will be left unpaired.

1s 2s 2p (  )

(Only the number of unpaired electrons is indicated by the arrows.)

Fluorine. Z = 9. The configuration will be

1s 2s 2p ( )

Neon. Z = 10. The tenth electron will occupy the last remaining vacancy in the second quantum shell (the set of orbitals with n =
2).

1s 2s 2p

Thus neon represents the end of the second period and all the electrons have paired spins.
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When all the orbitals in a given shell are doubly occupied, the resulting configuration is called a "closed shell." Helium and neon
are similar in that they both possess closed shell configurations. Because neither of these elements possesses a vacancy in its outer
shell of orbitals both are endowed with similar chemical properties. When the orbitals belonging to a given l value contain either
one electron each (are half-filled) or are completely filled, the resulting density distribution is spherical in shape. Thus the electron
density distributions of nitrogen and neon, for example, will be spherical.

Reference to Fig. 4-2 indicates that the next element, sodium, will have its outer electron placed in the 3s orbital and it will be the
first element in the third period. Since its outer electronic structure is similar to that of the preceding elements, lithium and
hydrogen, it is placed beneath them in the periodic table. It is obvious that in passing from sodium to argon, all of the preceding
outer electronic configurations found in the second period (n = 2) will be duplicated by the elements of the third period by filling
the 3s and 3p orbitals. For example, the electronic structure of phosphorus (Z = 15) will be

1s 2s 2p 3s 3p (   )

and thus resemble nitrogen.

Argon. Z = 18. Argon will have filled 3s and 3p orbitals and will represent the end of a period. Argon, like helium and neon,
possesses a closed shell structure and is placed beneath these two elements in the periodic table.

The Transition Elements 
The beginning of the fourth period will be marked by the single and double occupation of the 4s orbital to give potassium and
calcium respectively. However, reference to the orbital energy level diagram indicates that the 3dorbital is more stable than the 4p
orbital. Since there are five d orbitals they may hold a total of ten electrons. Thus the ten elements beginning with scandium (Z =
21) will possess electronic structures which differ from any preceding them as they are the first elements to fill the d orbitals. A
typical electronic configuration of one of these elements is that of manganese: [Ar]4s 3d . The symbol [Ar] is an abbreviated way
of indicating that the inner shells of electrons on manganese possess the same orbital configuration as those of argon. In addition,
the symbol 3d  indicates that there are five electrons in the 3d orbitals, no distinction being made between the five different d
orbitals. This series of elements in which the 3d orbitals are filled is called the first transition series. The element zinc with a
configuration [Ar]4s 3d  marks the end of this series. The six elements from gallium to krypton mark the filling of the 4p orbitals
and the closing, with krypton, of the fourth quantum shell and the fourth period of the table.

While the 3d orbitals are less stable than the 4s orbitals in the neutral atom (with the exceptions of Cr and Cu) and are filled only
after the 4s orbitals are filled, the relative stability of the 4s and 3d orbitals is reversed in the ionic forms of the transition metals.
For example, the configuration of the ion which results when the manganese atom loses two electrons is Mn  [Ar]3d  and not
[Ar]4s 3d . This is a general result. The d orbitals of quantum number n are filled only after the s orbital of quantum number (n +
1) is filled in the neutral atom, but the nd orbital is more stable than the (n + l)s orbital in the corresponding ion.

The fifth period begins with the filling of the 5s orbital, followed by the filling of the 4d orbitals, which generates the second
transition series of elements. The period closes with the filling of the 5p orbitals and ends with xenon.

The lanthanide and actinide elements 

The sixth period is started by the filling of the 6s orbital. The next element, lanthanum, has the electronic configuration [Xe]6s 5d .
However, the next fourteen elements represent the beginning of another new series as the filling of the 4f orbitals is now
energetically favoured over a continued increase in the population of the 5d orbitals. Note that the very small penetration effect
possessed by the 4f orbitals (n = 4) delays their appearance until the sixth quantum shell has been partially filled. There are fourteen
elements in this series, called the lanthanide series, since there are seven 4f orbitals (l = 3 and 2 ´ 3+1 = 7).

The third transition series follows the lanthanide elements as the occupation of the 5d orbitals is completed. This in turn is followed
by the filling of the 6p orbitals. The final period begins with the filling of the 7s orbital and continues with the filling of the 5f
orbitals. This second series of elements with electrons in f orbitals is called the actinide series.

The concept of atomic orbitals in conjunction with the Pauli principle has indeed predicted a periodicity in the electronic
structures of the elements. The form of this periodicity duplicates exactly that found in the periodic table of the elements in which
the periodicity is founded on the observed chemical and physical properties of the elements. Our next task will be to determine
whether or not our proposed electronic structures will properly predict and explain the observed variations in the chemical and
physical properties of the elements.
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4.5: Further Reading
R.M. Hochstrasser, Behaviour of Electrons in Atoms, W. A. Benjamin Inc., New York, N.Y., 1964.

The magnitude of the total angular momentum in a many-electron atom is governed by the same rules of quantization as apply to
the motions of the individual electrons. Because of this, the addition of the angular momentum vectors of the individual electrons in
an atom to give the total angular momentum quantum number denoted by J is not arbitrary but must be carried out in such a way

that the magnitude of the resultant vector is expressible in the form  with J = 0, 1, 2, 3 ... An elementary discussion of
the manner in which the total angular momentum of an atom is determined by quantum mechanics is given in the above reference.
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4.E: Exercises

Problems  

1.
Would you expect the spectrum of magnesium (Z = 12) to resemble that of He? Explain
your answer.

2.

The boron atom has the electronic configuration 1s 2s 2p . The single unpaired electron
in the 2p orbital will possess both orbital and spin angular momentum. Into how many
distinct beams will a beam of boron atoms be split when it is passed through an atomic
beam apparatus with an inhomogeneous magnetic field directed perpendicular to the
direction of travel of the atoms?

3.

When a test tube containing an aqueous solution of Fe  ions is placed near the poles of a
strong magnet, the test tube is attracted and pulled into the magnetic field. When a test
tube containing a solution of Zn  ions is placed near the magnetic field, it is not attracted
into the field. Use the atomic orbital theory to account for the fact that the Fe  solution is
magnetic while the Zn  solution is not. The atomic number of Fe is 26 and of Zn is 30.
(Recall that the 3d orbitals are more stable than are the 4s orbitals in the ionic forms of
the transition elements.)

4.

Suppose you lived in a universe where all of the laws of quantum mechanics applied as
they do in ours, but where the spin angular momentum quantum number of the electron
had increased from ½ to some larger value. The new value must also be half-integer if the
Pauli principle is to apply. Rather than use the general symbol "l"to denote an angular
momentum quantum number, we shall reserve this symbol for orbital angular momentum
and introduce a new symbol "s" to denote the spin angular momentum quantum number.
In our universe, a beam of hydrogen atoms in their ground state (with l = 0) is split in two
in an atomic beam apparatus when a magnetic field is applied. The number of quantized
components of angular momentum is related to the angular momentum quantum number
by the expression (2l + 1) for orbital momentum or (2s + 1) for spin momentum. Thus,
since two components are observed, the value of the spin quantum number s in our
universe is ½. Recall that the magnetic quantum number m governing the components of
angular momentum assumes values from l to � l in steps of unity or from s to � s in the
case of spin angular momentum. If we use m and m to denote the orbital and spin
magnetic quantum numbers respectively, then the values of m are + ½ and � ½ in our
universe.
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(a)

When a beam of hydrogen atoms with l = 0
is passed through an atomic beam apparatus
in the new universe, the magnetic field
causes the beam to split into four (4)
separate beams. What is the value of the
spin quantum number s in the new universe
and what are the possible values for the
spin magnetic quantum number m  ? Since
only the spin quantum number has
undergone a change in the new universe,
the atomic orbital model of electronic
structure should still apply and each
electron will be assigned to an orbital with
some value of n, l and m  and a given spin
quantum number m . The statement of the
Pauli principle as it applies to the orbital
model is "no two electrons in the same
atom may have all four quantum numbers
the same." How many electrons may
occupy an orbital with given values of n, l
and m in the new universe?

(b)

Clearly, the periodic table of the elements in
the new universe will have a different
structure from that in ours. State how many
elements would appear in the first, second,
third and fourth rows of the new table.
What would be the ground state
configurations of the elements with atomic
numbers Z = 7 and 10 and what would their
valencies be? Which element would be the
first of the noble gases in the new universe?

5.

When a transition metal ion is place in solution, its magnetic moment generally changes
from the value it had in the gas phase, indicating that the number of unpaired electron
spins is different in the gas and solution phases. Transition metal ions M  form a six-
coordinated octahedral complex with CN  ions when placed in solution containing this
ligand. The formation of the complex perturbs the d orbitals, changes their energy and
partiallly removes their degeneracy. That is, the d-level which is five-fold degenerate in
the gas phase is split into two or more levels with different energies. The new sets of
levels can be dgenerate, but their degeneracies will necessarily be less than five.
By measuring the magnetic moment of solution of the complexes M(CN)  for various
metal ions M , one can determine the number of unpaired d electrons in the complex.
With this information, use the orbital model to determine the number of levels into which
the d-level is split and the degeneracy of each of the new levels. The solution of the Fe
ion showed that no permanent magnetic moment was present - the solution was
diamagnetic. The V  and Ni  solutions gave moments indicating the presence of three
and two unpaired electrons respectively. The atomic numbers of the metal atoms are V:23,
Fe:26 and Ni:28. You must show how your final answer is arrived.

This page titled 4.E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via
source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

5: Electronic Basis for the Properties of the Elements
We shall now present an interpretation of the physical and chemical properties of the elements based on the atomic orbital
description of their electronic structures. Our discussion of the properties of the atoms will be a qualitative one, but it should be
pointed out that many of the properties of atoms can now be accurately predicted by quantum mechanical calculations employing a
very extended version of the atomic orbital concept.
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5.4: Some Chemical Implications
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5.1: Introduction
We shall now present an interpretation of the physical and chemical properties of the elements based on the atomic orbital
description of their electronic structures. Our discussion of the properties of the atoms will be a qualitative one, but it should be
pointed out that many of the properties of atoms can now be accurately predicted by quantum mechanical calculations employing a
very extended version of the atomic orbital concept.
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5.2: Horizontal Variations
The experimental values of the atomic radii and the first and second ionization potentials of the elements (labelled as I  and I
respectively) in the third row of the periodic table are listed in Table 5-1. A study of these values will indicate the basic trends
observed as the number of electrons is increased one at a time until all the orbitals with a given value of n are fully occupied.

Table 5-1:The Atomic Radii and Ionization Potentials* of Third Row Elements
Element Na Mg Al Si P S Cl Ar

Radius (Å) 1.86 1.60 1.48 1.17 1.0 1.06 0.97  

I  (ev) 5.14 7.64 5.98 8.15 11.0 10.4 13.0 15.8

I  (ev) 47.3 15.0 18.8 16.3 19.7 23.4 23.8 27.6

*The values for I  and I  are taken from C. E. Moore, Atomic Energy Levels, Vol. 1, N.B.S. Circular 467, Washington, D.C. (1949).
I  is the energy required to remove an electron from the singly-charged ion, i.e., the energy required to ionize a second electron.

Atomic radii 

The diameter of an atom is difficult to define precisely as the density distribution tails off at large distances. However, there is a
limit as to how close two atoms can be pushed together in a solid material. We shall take one half of the distance between the nuclei
of two atoms in an elemental solid as a rough measure of the atomic radius. Any consistent method of defining the radius leads to
the same trend we see in Table 5-1. The size of the atom in general decreases as the number of electrons in the quantum shell is
increased. This observation, which at first sight might appear surprising, finds a ready explanation through the concept of an
effective nuclear charge.

The electric field and hence the attractive force exerted by the nucleus on an electron in the outer quantum shell is reduced because
of the screening effect of the other electrons which are present in the atom. An outer electron does not penetrate to any great extent
the tightly bound density distribution of the inner shell electrons. Consequently each inner electron (an electron with an n value less
than the n value of the electron in question) reduces the value of the nuclear charge experienced by the outer electron by almost one
unit. The remaining outer electrons on the other hand are, on the average, all at the same distance away from the nucleus as is the
electron under consideration. Consequently each outer electron screens considerably less than one nuclear charge from the other
outer electrons. Thus the higher the ratio of outer shell to inner shell electrons, the larger will be the "effective nuclear charge"
which is experienced by an electron in the outer shell.

All of the elements in a given row of the periodic table possess the same number of inner shell electrons. For example, the elements
in the third row have the inner shell configuration of 1s 2s 2p . As we move across the periodic table from left to right the nuclear
charge increases, and each added electron is placed in the outer shell until a total of eight is reached and the quantum shell is full.
The number of outer shell electrons increases along a given period, but the number of inner shell electrons remains fixed. Thus the
effective nuclear charge increases from a minimum value for sodium, where the ratio of outer shell to inner shell electrons is 1:10,
to a maximum value for argon where the same ratio is 8:10. The atomic radius undergoes a gradual decrease since the outer
electrons become more tightly bound as the effective nuclear charge increases.

These features of the atomic density distributions are clearly evident in a graph of the radial distribution function, Q(r). This
function, it will be recalled, gives the number of electronic charges within a thin shell of space lying between two concentric
spheres, one of radius r and the other with a radius only slightly larger. The radial distribution functions for atoms may be
determined experimentally by X-ray or electron diffraction techniques.

Plots of Q(r) versus r for sodium and argon (Fig. 5-1), the first and last members of the third row of the periodic table, clearly
reveal the persistence of a "shell structure" in the many-electron atoms.
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Fig. 5-1. The radial distribution functions Q(r) for the Na and Ar atoms.

There are three peaks in the density distribution corresponding to the presence of three principal quantum shells in the orbital
model of the electronic structure of sodium and argon. The peak closest to the nucleus may be identified with the charge density in
the 1s orbital, the middle peak with that in the 2s and 2p orbitals and the outer peak with the charge density in the 3s orbital in
sodium and in the 3s and 3p orbitals in argon. The maxima in Q(r) occur at smaller values of r for argon than for sodium as
expected on the basis of a larger effective nuclear charge for argon than for sodium. Most of the 1s charge density is found within a
very thin shell close to the nucleus in both cases as the inner shell density experiences the field of the full nuclear charge, Z = 11
and Z  = 18. The charge density in the n = 2 orbitals is confined to a shell which is narrower and closer to the nucleus in argon
than in sodium. The electrons in this second shell experience a nuclear charge of approximately sixteen in argon but of only nine in
sodium.

The most dramatic effect of the difference in the effective nuclear charges of argon and sodium is evidenced by the appearance of
the electron density in the valence shell. In sodium this shell is broad and diffuse as there are ten inner electrons shielding eleven
nuclear charges. In argon where there are ten inner electrons to shield eighteen nuclear charges the valence shell is more contracted
and it peaks at roughly one third of the corresponding distance in sodium. The valence shell density is clearly more tightly bound in
argon than in sodium.

Figure 5-2 shows the effect of an increase in the nuclear charge on the individual atomic orbital densities for elements in the same
row of the periodic table, in this case sodium and chlorine. The total density distribution for the atom is obtained by summing the
individual orbital densities. The summation of just the 1s, 2s and three 2p densities yields the spherical inner shell densities
indicated on the diagram as "core densities." It is the core density which shields the nuclear charge from the valence electrons. The
outer density contour indicated for the inner shell or core densities defines a volume in space containing over 99% of the electronic
charge of the inner shell electrons. Thus the effective nuclear charge experienced by the valence density beyond the indicated radii
of the core densities is Z  - 10 = 1 for sodium and Z  - 10 = 7 for chlorine. Notice that the radius of the core density is smaller for
chlorine than it is for sodium and thus the attractive force exerted on the valence electrons by each of the unscreened nuclear
charges will be greater in chlorine than in sodium.  
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Fig. 5-2. Atomic orbital charge densities for the Na and Cl atoms. Only one member of a 2p or 3p set of orbitals is shown. The
nodes are indicated by dashed lines. The inner node of the 3s orbital is too close to the nucleus to be indicated in the diagram.
When two neighbouring contours have the same value, as for example the two outermost contours in the 3s density of Na, the

charge density passes through some maximum value between the two contours, decreasing to zero at the nodal line. In terms of the
outermost contour shown in the total density plots (0.002 au) the Cl atom appears to be larger than the Na atom. The outer charge

density of Na is, however, very diffuse (as shown by the plot of Q(r) in Fig. 5-1) and in terms of density contours of value less than
0.002 au the Na atom is indeed larger than the Cl atom. The values of contours not indicated in the figure may be obtained by

referring to the Table of Contour Values.

There is one exception to the trend of a decrease in diameter across a given row in that phosphorus has an atomic radius slightly
smaller than that of sulphur which follows it in the table. The configuration of the outer electrons in phosphorus is 3s 3p (   ). Each
of the p orbitals contains a single electron and according to Hund's rule all will have the same spin quantum number. Electrons with
identical spins have smaller electron-electron repulsion energies than do electrons with paired spins, for reasons we have previously
mentioned. Therefore, the larger the number of parallel spins in an atom, the smaller will be the average energy of repulsion
between the electrons. Three is the maximum number of unpaired spins possible in any of the short periods as this corresponds to a
half-filled set of p orbitals. The stabilizing effect of the decreased energy of repulsion between the electrons is comparable to the
effect obtained by increasing the effective nuclear charge by approximately one. This can be seen by comparing phosphorus with
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sulphur. Sulphur has an increased nuclear charge but the added electron must be paired up with one of the electrons in the p
orbitals. The number of unpaired electrons with parallel spins is thus reduced to two, the average energy of repulsion between the
electrons is increased, and the sulphur atom is slightly larger than the phosphorus atom.

The decrease in energy which is obtained by maximizing the number of parallel spins is not sufficient to change the most stable
outer configuration actually found for silicon, 3s ( ̄ )3p (  ), to that in which all four outer electrons have parallel spins, 3s ( )3p (   ).
This latter configuration could be obtained only by promoting an electron from a 3s orbital to a 3p orbital. The 3s orbital is more
stable than a 3p orbital because of the penetration effect, and the energy increase caused by the promotion of an electron from the
3s to a 3p orbital would not be offset by the energy decrease obtained by maximizing the number of parallel spins. It is interesting
to note, however, that the reverse of this is true for some of the elements in the transition series. In these elements the 4s and 3d (or
in general the ns and (n - l)d) orbitals are the outer orbitals. The energy difference between an ns and an (n - 1)d orbital is much less
than that between an ns and an np orbital. Thus the effect of maximizing the number of parallel spins can be overriding in these
cases. The outer electronic structure of vanadium is 4s 3d . (Recall that there are five d orbitals and hence the configuration d  will
represent five electrons with parallel spins.) We would expect the outer electronic configuration of the next element, chromium, to
be 4s 3d  with four parallel spins. Instead, the configuration is actually 4s 3d  resulting in a total of six parallel spins and a
reduction in the energy of repulsion between the electrons.

The Ionization Potentials 
Reference to Table 5-1 indicates that in general the amount of energy required to remove one of the outer electrons increases as the
effective nuclear charge increases. The increase in I  from approximately 5 ev for sodium to approximately 16 ev for argon
dramatically illustrates the increase in the force which the nucleus exerts on the outer electrons as the nuclear charge and the
number of outer electrons is increased. The effect of the half-filled set of p orbitals is again evident as I  is slightly larger for
phosphorus than for sulphur. There is an apparent discrepancy in the value for I  observed for magnesium. The outer electronic
configuration of magnesium is 3s  and for aluminum is 3s 3p . The value of 7.64 ev observed for magnesium is the energy
required to remove a 3s electron, while the value quoted for aluminum is the energy required to remove a 3p electron. An s orbital
is more stable than a p orbital because of its greater penetration of the inner core of electron density. Thus the penetration effect
overrides the increase in the effective nuclear charge. We can test the validity of this explanation by comparing the energies
required to remove a second electron (I ) from the magnesium and aluminium atoms. The outer electronic configurations of the
singly-charged magnesium and aluminum ions are 3s  and 3s . Thus a comparison of the second ionization potentials (I ) will be
free of the complication due to the penetration effect because we will be comparing the amount of energy required to remove an s
electron in each case The values in Table 5-1 indicate that the removal of an s electron requires more energy in aluminum than in
magnesium, a result which is consistent with the greater effective nuclear charge for aluminium than for magnesium. What
explanation can be given to the second ionization potential of sulfur being almost equal to that for chlorine?

It is worthwhile noting the large value of the second ionization potential observed for sodium. The sodium ion has the electron
configuration 1s 2s 2p , i.e., there are no remaining outer electrons. The second ionization potential for sodium is, therefore, a
measure of the amount of energy required to remove one of what were initially inner shell electrons in the neutral atom. The
effective nuclear charge experienced by a 2p electron in the sodium ion will be very large indeed, because the number of inner shell
electrons for an n = 2 electron is only two. That is, only the two electrons in the 1s orbital exert a large screening effect. Therefore,
coupled to the fact that the ion bears a net positive charge, is the fact that the ratio of outer to inner shell electrons is 8:2, which is
even more favourable than that obtained for argon. (Recall that in the neutral sodium atom the ratio is 1:10.) The value of I , for
sodium again emphasizes the electronic stability of a closed shell, a stability which is a direct reflection of the large value of the
effective nuclear charge operative in such cases.

This page titled 5.2: Horizontal Variations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F.
W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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5.3: Vertical Relationships
Table 5-2 lists the atomic radii and the ionization potentials of the elements found in the first column of the periodic table, the
group I elements.

Table 5-2: Atomic Radii and Ionization Potentials of Group I Elements

Element Li Na K Rb Cs

Radius (Å) 1.50 1.86 2.27 2.43 2.62

I  (ev) 5.4 5.1 4.3 4.2 3.9

The average value of the distance between the electron and the nucleus increases as the value of the principal quantum number is
increased. The increase in the atomic diameters down a given group in the periodic table is thus understandable. Each of the group I
elements represents the beginning of a new quantum shell. There will be a very sharp decrease in the effective nuclear charge on
passing from the preceding closed shell element to a member of group I, as the number of the inner shell electrons is increased by
eight. This large sudden reduction in the effective nuclear charge and the fact that the electron, because of the Pauli exclusion
principle, must enter a new quantum shell, causes the group I elements to be larger in size and much more readily ionized than the
preceding noble gas elements. The decrease in the effective nuclear charge and the increase in the principal quantum number down
a given family bring about a steady decrease in the observed ionization potentials. Thus the outer 6s electron in cesium is on the
average, further from the nucleus than is the outer 2s electron in lithium. It is also more readily removed.

So far we have considered the periodic variations in the energy required to remove an electron from an atom:  

In some favourable cases it is possible to determine the energy released when an electron is added to an atom:  

The magnitude of the energy released when an atom captures an extra electron is a measure of the atom's electron affinity.

It might at first seem surprising that a neutral atom may attract an extra electron. Indeed many elements do not have a detectable
electron affinity. However, consider the outer electronic configuration of the group VII elements, the halogens:

ns np
There is a single vacancy in the outer set of orbitals and the effective nuclear charge experienced by the valence electrons in a
halogen atom is almost the maximum value possible for any given row. Because of the incomplete screening of the nuclear charge
by the outer electrons, the remaining vacancy in the outer shell will, in effect, exert an attractive force on a free electron large
enough to bind it to the atom.

The electron affinities for the rare gas atoms will be effectively zero even though the effective nuclear charge is a maximum for this
group of elements there are no vacancies in the outer set of orbitals in a rare gas atom and as a result of the Pauli principle, an extra
electron would have to enter an orbital in the next quantum shell. The electron in this orbital will experience only a very small
effective nuclear charge as all of the electrons originally present in the atom will be in inner shells with respect to it. Elements to
the left of the periodic table, the alkali metals for example, do have vacancies in their outer quantum shell but their effective
nuclear charges are very small in magnitude. Thus these elements do not exhibit a measurable electron affinity. The electron
affinity increases across a given row of the periodic table and reaches a maximum value with the group VII elements. This is a
direct reflection of the variation in the effective nuclear charge.

The orbital vacancy in which the extra electron is placed is found at larger distances from the nucleus when the principal quantum
number is increased. Thus the electron affinity should decrease down any given family of elements in the periodic table. For
example, the electron affinities for the halogens should decrease in the order F > Cl > Br > I. (Click here for note.)

The variation in the ionization potentials across a given row is reflected in the values shown in the atomic orbital energy level
diagram for the elements from hydrogen through to neon (Fig. 5-3).
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Fig. 5-3. An orbital energy level diagram for the elements H to Ne

(Note that the energy scale used for the 1s orbital differs by a factor of ten from that for the 2s and 1p orbitals.) The orbital energies
show a uniform decrease when the nuclear charge is increased, reflecting an increase in the binding of the electrons. The total
energy of a many-electron atom is not simply the sum of the orbital energies. Summing the orbital energies does not take proper
account of the repulsions between the electrons. The orbital energies do, however, provide approximate estimates of the ionization
potentials. The ionization potential is the energy required to remove one electron from an atom, and an orbital energy is a measure
of the binding of a single electron in a given orbital. Thus the ionization potential should be approximately equal to minus the
orbital energy. For example, the ionization potential of lithium is 5.39 ev and the 2s orbital energy is -5.34 ev. Similarly I , for neon
is 21.56 ev and the 2p orbital energy is -23.14 ev.

Shell structure is also evident in the ionization potentials and orbital energies of atoms. By exposing the atom to light of very short
wavelength (in the X-ray region of the spectrum), it is possible to ionize one of the inner shell electrons, rather than a valence
electron. That is, the energy of an X-ray photon is comparable to the binding energy of an inner shell electron. The resulting ion is
in a very unstable configuration and after a very brief period of time an electron from the outer shell "falls" into the vacancy in the
inner shell. In falling from an outer to an inner shell the binding of the electron is greatly increased and a photon is emitted. The
energy of this photon should be approximately equal to the difference in energies of the outer shell and inner shell orbitals. For
example, the photon emitted when neon loses an inner shell electron has an energy of 849 ev. The difference in energy between the
2p and 1s orbitals of neon is 869 ev. Photons with energies in this range occur in the X-ray region of the spectrum. It is apparent
from the variation in the 1s orbital energies shown in Fig. 5-3 that the energies and hence the frequencies of the X-ray photons will
increase as the nuclear charge is increased. It was from a study of the X-ray photons emitted by the elements that Moseley was first
able to determine the nuclear charges (the atomic numbers) of the elements.

This page titled 5.3: Vertical Relationships is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F.
W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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5.4: Some Chemical Implications
A detailed study of the chemical implications of the orbital theory of electronic structure must await our discussion of the chemical
bond. However, we can at this point correlate the gross chemical behaviour of the elements with the general results of the orbital
theory.

The effective nuclear charge is a minimum for the group I elements in any given row of the periodic table. Therefore, it requires
less energy to remove an outer electron from one of these elements than from any other element in the periodic table. The strong
reducing ability of these elements is readily accounted for. The variation in the relative reducing power of the elements across a
given period or within a given group will be determined by the variation in the effective nuclear charge. The ability of the elements
in a given row of the periodic table to act as reducing agents should undergo a continuous decrease from group I to group VII, since
the effective nuclear charge increases across a given row. Similarly, the reducing ability should increase down a given column
(group) in the table since the effective nuclear charge decreases as the principal quantum number is increased. Anticipating the fact
that electrons can be transferred from one atom (the reducing agent) to another (the oxidizing agent) during a chemical reaction, we
expect the elements to the left of the periodic table to exhibit a strong tendency to form positively charged ions.

The ability of the elements to act as oxidizing agents should parallel directly the variations in the effective nuclear charge. Thus the
oxidizing ability should increase across a given row (from group I to group VII) and decrease down a given family. These trends
are, of course, just the opposite of those noted for the reducing ability. We can also relate the chemical terms "reducing ability" and
"oxidizing ability" to the experimentally determined energy quantities, "ionization potential" and "electron affinity." The reducing
ability should vary inversely with the ionization potential, and the oxidizing ability should vary directly with the electron affinity.
The elements in groups VI and VII should exhibit a strong tendency for accepting electrons in chemical reactions to form
negatively charged ions. Francium, which possesses a single outer electron in the 7s orbital, should be the strongest chemical
reducing agent and fluorine, with an orbital vacancy in the 2p subshell, should be the strongest oxidizing agent. (Click here for
note.)

A great deal of chemistry can now be directly related to the electronic structure of the elements. For example, the reaction  

 

is explained chemically by stating that Cl  is a stronger oxidizing agent than Br . The electronic interpretation is that the orbital
vacancy in Cl is in a 3p orbital and closer to the nucleus than the 4p orbital vacancy in Br. Thus the effective nuclear charge which
attracts the extra electron is larger for the Cl atom than for the Br atom. We could of course interpret this same reaction by stating
that the Br  ion is a stronger reducing agent than is the Cl  ion. In other words the extra electron in the Br  ion is less tightly held
than is the extra electron in the Cl  ion. The explanation in terms of the relative effective nuclear charges is the same as that given
above.

The decrease in the effective nuclear charge down the halogen family of elements leads to some interesting differences in their
chemistry. For example, hydrogen chloride may be prepared from sodium chloride and sulphuric acid:  

(1)

However, the same method cannot be employed in the preparation of hydrogen bromide or hydrogen iodide. In the preparation of
hydrogen bromide from sodium bromide,  

(2)

some of the HBr reacts further,  

(3)

and the HBr is thus contaminated. In preparation of hydrogen iodide a further reaction again occurs: 

(4)
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Reactions (3) and (4) are clearly redox reactions in which the halide ions reduce the sulphur in the SO  anion to a lower oxidation
state. Since Cl has the highest effective nuclear charge, the Cl  ion should be the weakest reducing agent of the three halide ions.
Indeed, the Cl  ion is not a strong enough reducing agent to change the oxidation state of S in SO . The Br ion possesses an
intermediate value for the effective nuclear charge and thus it is a stronger reducing agent than the Cl  ion. The Br  ion reduces the
oxidation number of sulphur from (+6) to (+4). Since the I  ion binds the extra electron least of all (the electron is in an n = 5 orbital
and the effective nuclear charge of iodine is the smallest of the three), it should be the strongest reducing agent of the three halide
ions. The I  ion in fact reduces the sulphur from (+6) to (-2).

A word about oxidation numbers and electron density distributions is appropriate at this point. An oxidation number does not, in
general, represent the formal charge present on a species. Thus S is not S  in the SO  ion, nor is it S  in the H S molecule.
However, the average electron density in the direct vicinity of the sulphur atom does increase on passing from SO  to H S. From
their relative positions in the periodic table it is clear that oxygen will have a greater affinity for electrons than sulphur. Thus when
sulphur is chemically bonded to oxygen the electron density in the vicinity of the sulphur atom is decreased over what it was in the
free atom and increased in the region of each oxygen atom. Again it is clear from the relative positions of H and S in the periodic
table that sulphur has a greater affinity for electrons than does hydrogen. Thus in the molecule H S, the electron density in the
vicinity of the sulphur atom is increased over that found in the free atom. In changing the immediate chemical environment of the
sulphur atom from that of four oxygen atoms to two hydrogen atoms, the electron density (i.e., the average number of electrons) in
the vicinity of the sulphur atom has increased. The assignment of actual oxidation numbers is simply a bookkeeping device to keep
track of the number of electrons, but the sign of the oxidation number does indicate the direction of the flow of electron density.
Thus sulphur has a positive oxidation number when combined with oxygen (the sulphur atom has lost electron density) and a
negative one when combined with hydrogen (the electron density around sulphur is now greater than in the sulphur atom).

The above are only a few examples of how a knowledge of the electronic structure of atoms may be used to understand and
correlate a large amount of chemical information. It should be remembered, however, that chemistry is a study of very complex
interactions and the few simple concepts advanced here cannot begin to account for the incredible variety of phenomena actually
observed. Our discussion has been based solely on energy, and energy alone never determines completely the course of a reaction
on a macroscopic level, i.e., when many molecules undergo the reaction. There are statistical factors, determined by the changes in
the number of molecules and in the molecular dimensions, which must also be considered. Even so, the energy effect can often be
overriding.

In the long form of the periodic table, families are labelled by both a number and by the letter A or B. Thus there is a IA family and
a IB family. It will be noted that the elements in a B family all occur in the series of transition elements in which the dorbitals are
being filled. In the A families, however, the d orbitals are either absent or are present as closed inner shells. For example, consider
the electronic configurations of K (IA) andCu (IB):  

Note that the most stable configuration for Cu is not [Ar] 3d 4s  as expected. By transferring one of the 4s electrons to the 3d
vacancy, the d subshell is filled and the electronic energy is lowered. The electron density distribution of the Cu atom is therefore a
spherical one. Both K and Cu have one outer electron with a spherical charge distribution. They should have some properties in
common, such as a tendency to lose one electron and form a positive ion. For this reason both families are labelled I. However, the
shell underlying the outer electron in the K atom possesses a rare gas configuration, while in the Cu atom it is a set of filled d
orbitals. This difference in electronic structure is sufficient to cause considerable differences in their chemistry, hence the further
labels A and B.

A rare gas configuration is always one of great stability, particularly when it occurs in a positive ion. (Recall that I  = 47.3 ev for
sodium.) The species K  is never observed in solution chemistry, and could be produced in the gas phase only by an expenditure
of energy far in excess of that observed in ordinary chemical reactions. The Cu  ion, on the other hand, very readily loses a second
electron to form the Cu  ion. Indeed, Cu  is the more common ionic form of copper. Thus the d  closed shell structure is more
easily broken than a rare gas configuration, giving to Cu a variable valency of one or two.

This page titled 5.4: Some Chemical Implications is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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5.E: Exercises
1
.

Estimate the wavelength of the photon which is emitted when a 3p electron falls to a vacancy in the 1s orbital in a chlorine ion. The
energies of the 1s and 3p orbitals in chlorine are -2.854 ´ 10  ev and -13.77 ev respectively.

2
.

In his investigation of the X-ray spectra of the elements, Moseley found that the frequencies of the lines of shortest wavelength
could be expressed as a function of the atomic number Z as

 

where a and s are constants. Account for the general form of the relationship. What is the significance of the factor s?

3
.

(a)
On the basis of your knowledge of the electronic structure of the
elements arrange the following substances in the order of their
increasing ability to act as oxidizing agents. He , Cl, P, Na, F

(b)
Arrange the following substances in the order of their increasing
ability to act as reducing agents. Cs, Li, C, S, Cl

4
.

Rationalize the following observations on the basis of the electronic structures of the halogen atoms and their ions. Iodide ions can
be oxidized to elemental iodine by molecular oxygen 4HI + O  ® 2Li + 2H 0 but the corresponding reaction does not occur with
HCl HCl + O  ® no reaction

5
.

Account for the fact that the second ionization potential for oxygen is greater than that for fluorine. (I  for 0 is 35.15 ev and I  for F
is 34.98 ev.)

6
.

Which atom or ion in the following pairs has the highest ionization potential?

(a) N, P 
(b) Mg, Sr 
(c) Ge, As 
(d) Ar, K

7
.

Of the following substances: F , F , I , I

(a) Which is the best oxidizing agent?

(b) Which is the best reducing agent?

(c)
Write one chemical equation for a reaction which will illustrate
your answers to parts (a) and (b).

This page titled 5.E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via
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6.1: Introduction
With our knowledge of the electronic structure of atoms we are now in a position to understand the existence of molecules. Clearly,
the force which binds the atoms together to form a molecule will, as in the atomic case, be the electrostatic force of attraction
between the nuclei and electrons. In a molecule, however, we encounter a force of repulsion between the nuclei in addition to that
between the electrons. To account for the existence of molecules we must account for the predominance of the attractive
interactions. We shall give general arguments to show that this is so, first in terms of the energy of a molecule, relative to the
energies of the constituent atoms, and secondly, in terms of the forces acting on the nuclei in a molecule.

In order to determine what attractive and repulsive interactions are possible in a molecule, consider an instantaneous configuration
of the nuclei and electrons in a hydrogen molecule (Figure ). When the two atoms are initially far apart (the distance R is very
large) the only potential interactions are the attraction of nucleus A for electron number (1) and the attraction of nucleus B for
electron number (2). When R is comparable to the diameter of an atom (A and B are close enough to form a molecule) then new
interactions appear. Nucleus A will now attract electron (2) as well as (1) and similarly nucleus B will attract electron (1) as well as
(2). These interactions are indicated by the four solid lines in Figure  connecting pairs of particles which attract one another.

 
Figure : One possible set of the instantaneous relative positions of the electrons and nuclei in an , molecule. The dashed
lines represent the repulsive interactions between like charges and the solid lines indicate the attractive interactions between
opposite charges.

The number of attractive interactions has been doubled from what it was when the atoms were far apart. However, the reduction in
R introduces two repulsive interactions as well, indicated by the dashed lines joining charges of like sign in Figure . The two
electrons now repel one another as do the two nuclei. If the two atoms are to remain together to form a molecule, the attractive
interactions must exceed the repulsive ones. It is clear from Figure  that the new attractive interactions, nucleus A attracting
electron (2) and nucleus B attracting electron (1), will be large only if there is a high probability of both electrons being found in
the region between the nuclei. When in this region, both electrons are strongly attracted by both nuclei, rather than by just one
nucleus as is the case when the atoms are far apart.

When the average potential energy is calculated by quantum mechanics, the attractive interactions are found to predominate over
the repulsive ones because quantum mechanics does indeed predict a high probability for each electron being in the region between
the nuclei. This general consideration of the energy demonstrates that electron density must be concentrated between the nuclei if a
stable molecule is to be formed, for only in this way can the attractive interaction be maximized. We can be much more specific in
our analysis of this problem if we discuss a molecule from the point of view of the forces acting on the nuclei. However, we must
first state some general conclusions of quantum mechanics regarding molecular systems.

In the atomic case we could fix the position of the nucleus in space and consider only the motion of the electrons relative to the
nucleus. In molecules, the nuclei may also change positions relative to one another. This complication can, however, be removed.
The nuclei are very massive compared to the electrons and their average velocities are consequently much smaller than those
possessed by the electrons. In a classical picture of the molecule we would see a slow, lumbering motion of the nuclei accompanied
by a very rapid motion of the electrons. The physical implication of this large disparity in the two sets of velocities is that the
electrons can immediately adjust to any change in the position of the nuclei. The positions of the nuclei determine the potential
field in which the electrons move. However, as the nuclei change their positions and hence the potential field, the electrons can
immediately adjust to the new positions. Thus the motion of the electrons is determined by where the nuclei are but not by how fast
the nuclei are moving. We may, because of this fact, discuss the motions of the electrons and of the nuclei separately.
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Thus the motion of the electrons is determined by where the nuclei are but not by how fast
the nuclei are moving.

For a given distance between the nuclei we obtain the energy, the wave function and the electron density distribution of the
electrons, the nuclei being held in fixed positions. Then the distance between the nuclei is changed to a new value, and the
calculation of the energy, wave function and electron density distribution of the electrons is performed again. This process, repeated
for every possible internuclear distance, allows us to determine how the energy of the electrons changes as the distance between the
nuclei is changed. More important for our present discussion, we may concern ourselves only with the motion of the electrons and
hold the nuclei stationary at some particular value for the internuclear distance R.

The energy of the electrons in a molecule is quantized, as it is in atoms. When the nuclei are held stationary at some fixed value of
R, there are a number of allowed energy levels for the electrons. There are, however, no simple expressions for the energy levels of
a molecule in terms of a set of quantum numbers such as we found for the hydrogen atom. In any event we shall be concerned here
only with the first or lowest of the energy levels for a molecule. As in the case of atoms, there is a wave function which governs the
motion of all the electrons for each of the allowed energy levels. Each wave function again determines the manner in which the
electronic charge is distributed in three-dimensional space.

The electron density distribution for a molecule is best illustrated by means of a contour map, of the kind introduced earlier in the
discussion of the hydrogen atom. Figure  shows a contour map of the charge distribution for the lowest, or most stable state of
the hydrogen molecule. Imagine a hydrogen molecule to be cut in half by a plane which contains the nuclei.The amount of
electronic charge at every point in space is determined, and all points having the same value for the electron density in the plane are
joined by a line, a contour line. Also shown is a profile of the contour map along the internuclear axis. A profile illustrates the
variation in the charge density along a single axis.

  

Figure : A contour map of the electron density distribution (or the molecular charge distribution) for H2 in a plane
containing the nuclei. Also shown is a profile of the density distribution along the internuclear axis. The internuclear separation is
1.4 au. The values of the contours increase in magnitude from the outermost one inwards towards the nuclei. The values of the
contours in this and all succeeding diagrams are given in au; 1 au = e/a  = 6.749 e/Å .

The electron density contours of highest value are in the region of each nucleus. Thus the negative charge is concentrated in the
region of the nuclei in a molecule as well as in an atom. The next highest concentration of negative charge is found in the region
between the nuclei. It is the negative charge in this region which is strongly attracted by both nuclei and which results in the
attractive interactions exceeding the repulsive ones in the formation of the molecule from the atoms. Most of the density contours
envelope both nuclei. The density distributions of the two atoms have been merged together in the formation of the molecule.

The same contour map would be obtained for any plane through the nuclei. Therefore, in three-dimensional space the hydrogen
molecule would appear to be an ellipsoidal distribution of negative charge. Most of the electronic charge is concentrated along the
internuclear axis and becomes progressively more diffuse at large distances from the centre of the molecule. Recall that the
addition of all the charge in every small volume element of space equals the total number of electrons which in the case of the
hydrogen molecule is two. The volume of space enclosed by the outer contour in Figure  contains over 99% of the total
electronic charge of the hydrogen molecule.

This page titled 6.1: Introduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader
via source content that was edited to the style and standards of the LibreTexts platform.
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6.2: An Electrostatic Interpretation of the Chemical Bond

An Electrostatic Interpretation of the Chemical Bond 

In the light of the above discussion of a molecular electron density distribution, we may regard a molecule as two or more nuclei
imbedded in a rigid three-dimensional distribution of negative charge. There is a theorem of quantum mechanics which allows us to
make direct use of this picture of a molecule. This theorem states that the force acting on a nucleus in a molecule may be
determined by the methods of classical electrostatics. The nuclei in a molecule repel one another, since they are of like charge. This
force of repulsion, if unbalanced, would push the nuclei apart and the molecule would separate into atoms. In a stable molecule,
however, the nuclear force of repulsion is balanced by an attractive force exerted by the negatively-charged electron density
distribution. The usefulness of this approach lies in the fact that we may account for and discuss the stability of molecules in terms
of the classical concept of a balance between the electrostatic forces of attraction and repulsion. We can illustrate this method and
arrive at some results of a general nature by considering in detail the forces acting on the nuclei in the hydrogen molecule.

The charge on a hydrogen nucleus is +e and the force of repulsion acting on either nucleus is  

 

where R is the internuclear distance. This force obviously acts to push the two nuclei apart (Fig. 6-3).

  
Fig. 6-3. The forces acting on the nuclei in H . Only one outer contour of the electron density distribution is shown. Over 99% of

the total electronic charge is contained within this contour.

The attractive force which balances this force of repulsion and draws the nuclei together is exerted by the negatively-charged
electron density distribution. The density distribution is treated as a rigid distribution of negative charge in space. Each small
element of this charge distribution exerts a force on the nuclei, illustrated in Fig. 6-3 for one such small charge point. The forces it
exerts on the nuclei are labelled F  and F . The total amount of negative charge in the electron density distribution must
correspond to some integral number of electrons. However, the amount of negative charge in each small region of space will in
general correspond to some fraction of one electronic charge.

The electronic force of attraction F  or F  may be equated to two components, one along the bond, and one perpendicular to it.
The density distribution is symmetric with respect to the internuclear axis, i.e., for every charge point above the axis there must, by
symmetry, be another point of equal charge at the corresponding place beneath the internuclear axis. The symmetrically related
charge point will exert the same force along the bond, but the component perpendicular to the bond will be in the opposite
direction. Thus the perpendicular forces of attraction exerted on the nuclei are zero (Fig. 6-4) and we may confine our attention to
the components of the attractive force along the bond.
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Fig. 6-4. The two components of force along the bond add together while the two perpendicular components cancel at both A and
B.

It is obvious that all of the charge elements which are in the general region between the two nuclei will exert forces which draw the
two nuclei together. The force exerted by the density in this region acts in opposition to the force of nuclear repulsion and binds the
two nuclei together. It is also clear that a charge element in the region behind either nucleus will exert a force which tends to
increase the distance between the nuclei (Fig. 6-5).

  
Fig. 6-5. The component of F along the bond is greater than the corresponding component of F .

Since the charge element is closer to nucleus A than it is to nucleus B, the component of the force on A along the bond will be
greater than the component of the force on B along the bond. Thus the effect of density in this region will be to separate the
molecule into atoms.

There must also be a line on which the density exerts the same force on both nuclei and thus neither increases nor decreases R
because the charge density in one region draws the nuclei together and in another draws them apart. The charge element shown in
Fig. 6-6 exerts the same force along the bond on both A and B even though it is closer to B than it is to A. Although the total force
F  is much larger than F , F  is directed almost perpendicular to the bond axis and thus its component along the bond is quite
small and equal to the component of F  along the bond. Charge density on either of the two curves shown in Fig. 6-6 exerts equal
forces on both of the nuclei along the bond, and such charge density will not tend to increase or decrease the distance between the
nuclei. Thus these two curves (surfaces in three dimensions) divide the space in a molecule into a binding region and an antibinding
region. Any charge density between the two boundary curves, in the binding region, draws the two nuclei together while any
charge density in the hatched region behind either curve, the antibinding region, exerts unequal forces on the nuclei and separates
the molecule into atoms.
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Fig. 6-6. The boundary curves which separate the binding from the antibinding regions in a homonuclear diatomic molecule.

A chemical bond is thus the result of the accumulation of negative charge density in the region between the nuclei to an extent
sufficient to balance the nuclear forces of repulsion. This corresponds to a state of electrostatic equilibrium as the net force acting
on each nucleus is zero for this one particular value of the internuclear distance. If the distance between the nuclei is increased from
the equilibrium value, the nuclear force of repulsion is decreased. At the same time the force of attraction exerted by the electron
density distribution is increased as the binding region is increased in size. Thus when R is increased from its equilibrium value
there are net forces of attraction acting on the nuclei which pull the two nuclei together again. A definite force would have to be
applied to overcome the force of attraction exerted by the electron density distribution and separate the molecule into atoms.
Similarly, if the value of R is decreased from its equilibrium value, the force of nuclear repulsion is increased over its equilibrium
value. At the same time, the attractive force exerted by the electron density is decreased, because the binding region is decreased in
size. In this case there will be a net force of repulsion pushing the two nuclei apart and back to their equilibrium separation. There
is thus one value of R for which the forces on the nuclei are zero and the whole molecule is in a state of electrostatic equilibrium.

The division of the space around a molecule into a binding and an antibinding region shows where charge density must be
concentrated in order to obtain a stable chemical bond. The next question which must be answered is, "How much charge must be
placed in the binding region to achieve electrostatic equilibrium?" For example, we might consider the possibility of forming a
molecule by bringing together two atoms, each with its own atomic distribution of charge, and simply allow the two atomic charge
distributions to overlap without deforming in any way. This would result in the accumulation of approximately twice as much
charge density in the binding region as in either of the antibinding regions behind the nuclei. Would this doubling of the charge
density in the region between the nuclei be sufficient to balance the nuclear forces of repulsion? Let us answer this question for the
simple case of two hydrogen atoms forming molecular hydrogen, but again the result will be general.

The most stable state of the hydrogen molecule is obtained when two hydrogen atoms, each in its most stable atomic state,
approach one another. The ground state of a hydrogen atom is obtained when the electron is in the 1s orbital. The density
distribution around each hydrogren nucleus is the spherical one which we discussed previously in some detail. We shall first
calculate the force on one of the hydrogen nuclei resulting when the two atoms are very far apart. The situation is represented in
Fig. 6-7 where each atomic charge distribution is represented by a single outer circular contour. This contour is to define a sphere
which in three-dimensions contains essentially all of the electronic charge of each atom.

  
Fig. 6-7. The forces acting on nucleus A at a large internucleus distances, R.

Consider the forces exerted on nucleus A. The force of nuclear repulsion is just
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The atomic charge density centred on nucleus A exerts no net force on this nucleus as it pulls equally in every direction because of
its spherical symmetry. There is, however, a net force of attraction due to the single electronic charge dispersed in the atomic
distribution of B. A theorem of classical electrostatics states that the force exerted by a spherical charge distribution on a point
charge lying outside of the charge distribution is equal to the force which would be obtained if all the charge in the distribution
were concentrated at its centre. Nucleus A is a point charge which lies outside of the spherical charge distribution centred on B.
Thus the force exerted on nucleus A by this charge distribution is just

 

as the total amount of charge contained in the distribution is that of one electron. The total force acting on nucleus A is  

 

A zero force is the expected answer when the two atoms are very far apart.

Can we again balance the forces for a value of R which is of the order of magnitude of an atomic diameter, i.e., typical of the values
of R found in molecules? At this value of R, each nucleus will have penetrated the charge density surrounding the other nucleus.
Recall that in this calculation we insist upon the atomic charge densities remaining spherical and our molecular charge density is
obtained by allowing the two rigid atomic charge distributions to overlap one another (Fig. 6-8).

Fig. 6-8. The forces exterted on the nucleus A for the overlap of
rigid atomic charge distributions. Only the charge density on B
which is contained in the sphere of radius R exerted a force on
nucleus A.

The force of nuclear repulsion in this case is still given by  

 

where the value of R is much less than in the previous calculation. Since the charge distribution on A is still spherical in shape, it
exerts no net force on nucleus A. The force exerted on nucleus A by the charge density on B can again be calculated by the theorem
referred to previously. However, nucleus A no longer lies outside of all the charge density on B. The value of R is significantly less
than the radius of the charge distribution on B. All the charge density on B which lies within the sphere defined by the bond length
R again exerts a force on nucleus A, equal to that obtained if all this density were situated at the B nucleus. The theorem referred to
previously shows that the density on B which lies outside of this sphere defined by R exerts no net force on nucleus A.

Since R is less than the diameter of the charge distribution, the amount of negative charge contained in a sphere of radius R will be
less than that of one electron. The observed value of R for the hydrogen molecule is 1.4 au and reference to the data given
previously for the 1s orbital density for the hydrogen atom shows that a sphere of radius 1.4 would contain approximately one half
of an electronic charge. The electrostatic force of attraction exerted on nucleus A is, therefore,  
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The net force on nucleus A is  

 

There is a net force of repulsion exerted on nucleus A under these conditions. If R were decreased still further, nucleus A would
penetrate the charge density around B to an even greater extent and "see" even more of the nuclear charge on B. The force on the
nuclei will thus be repulsive for all finite values of R.

This is an important result as it shows that the density distribution in a molecule cannot be considered as the simple sum of the two
atomic charge densities. The overlap of rigid atomic densities does not place sufficient charge density in the binding region to
overcome the nuclear force of repulsion. We conclude that the original atomic charge distributions must be distorted in the
formation of a molecule, and the distortion is such that charge density is concentrated in the binding region between the nuclei. A
quantum mechanical calculation predicts this very result. The calculation shows that there is a continuous distortion of the original
atomic density distributions, a distortion which increases as the internuclear distance decreases. This is illustrated in Fig. 6-9for the
approach of two hydrogen atoms to form the hydrogen molecule.

  

  

Fig. 6-9. A series of electron density contour maps illustrating the changes in the electron charge distribution during the approach
of two H atoms to form H . The internuclear distance R in units of au is indicated beneath each map. At R = 8 the atomic densities
appear to be undistorted. At R = 6 the densities are distorted but still essentially separate. As R is further decreased, charge density
contours of increasing value envelope both nuclei, and charge density is accumulated at the positions of the nuclei and in the
internuclear region. The values of the contours in au increase from the outermost to the innermost one in the order 2 ´ 10 , 4 ´ 10 ,
8 ´ 10 , for decreasing values of n beginning with n = 3. Thus the outermost contour in each case is 0.002 au and the value of the
innermost contour for R = 1.0 au, for example, is 0.4.

The changes in the original atomic density distributions caused by the formation of the chemical bond may be isolated and studied
directly by the construction of a density difference distribution. Such a distribution is obtained by subtracting the density obtained
from the overlap of the undistorted atomic densities separated by a distance R, from the molecular charge distribution evaluated at
the same value of R. Wherever this density difference is positive in value it means that the electron density in the molecule is
greater than that obtained from the simple overlap of the original atomic densities. Where the density difference is negative, it
means that there is less density at this point in space in the molecule than in the distribution obtained from the overlap of the
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original atomic distributions. Such a density difference map thus provides a detailed picture of the net reorganization of the
charge density of the separated atoms accompanying the formation of a molecule.

We have just proven that the density distribution resulting from the overlap of the undistorted atomic densities does not place
sufficient charge density in the binding region to balance the forces of nuclear repulsion. The regions of charge increase in the
density difference maps are, therefore, the regions to which charge is transferred relative to the separated atoms to obtain a
state of electrostatic equilibrium and hence a chemical bond. From this point of view a density difference map provides us with a
picture of the "bond density."

Figure 6-10 shows a set of density difference or bond density maps for the approach of two hydrogen atoms to form the hydrogen
molecule. At very large separations, for example at 8 au, the density distribution on each atom is polarized in the direction of the
approaching atom. Charge density has been transferred from the antibinding region behind each nucleus to the binding region
immediately in front of each nucleus. Thus even at large separations the atomic density distributions are no longer spherical. We
noted in our discussion of the approach of two rigid hydrogen atoms that a spherical charge distribution does not exert a net force
on the nucleus on which it is centred. Each polarized atomic charge distribution does, however, exert an attractive force on its
nucleus. The polarized densities place more charge on the binding side of each nucleus than on the antibinding side. These long-
range attractive forces, called van der Waals' or dispersion forces, could be aptly described as a "bootstrap effect" as each nucleus is
pulled by its own charge density. All pairs of neutral molecules undergo this type of polarization as a result of the long-range
interactions between them, and there are attractive forces operative between all pairs of molecules out to very large distances.
Although the long-range polarizations and the resulting forces of attraction are very weak, they are of extreme importance. They
are commonly referred to as van der Waals forces and are solely responsible for the binding observed in certain kinds of solids,
solid helium for example. This will be discussed more fully later.

  

  

Fig. 6-10. Density difference distribution (molecular minus atomic) for the approach of two H atoms. These maps indicate the
changes in the atomic densities caused by the formation of a molecule. The solid contours represent an increase in charge density
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over the atomic case, while the dashed contours denote a decrease in the charge density relative to the atomic densities. Since the
changes in the charge density are much smaller for large values of R than for small values of R two different scales are used. The
solid and dashed contours increase (+) or decrease (-) respectively from the zero contour in the order ±2 ´ 10 , ±4 ´ 10 , ±8 ´ 10
au for decreasing values of n. The maps for R = 8.0, 6.0 and 4.0 au begin with n = 5 and those for R = 2.0, 1.4 and 1.0 au begin
with n = 3. The zero contour and the value of the innermost positive contour are indicated in each case. Note the continuous
increase in charge density in the region between the nuclei as R is decreased.

At 6.0 au the density increase in the binding region is common to both nuclei, and for distances less than 6.0 au the system can no
longer be described as two polarized hydrogen atoms. The distortions of the original densities caused by the transfer of charge to
the binding region is so great that the individual character of the atomic densities is no longer discernible. The magnitude of the
attractive force (which is negative in sign) exerted on the nuclei by this accumulation of charge density in the binding region
increases rapidly for distances less than 4.5 au (Fig. 6-11).

Fig. 6-11. The force on an H nucleus in H  as a function of the
internuclear separation. An attractive force is negative in sign;
a replusive one, positive.

The attractive force reaches a maximum at 2.1 au. The density difference diagrams indicate that for distances as small as 2.0 au, the
density increase is confined to the region between the nuclei. For separations smaller than 2.0 au an increasing amount of charge
density is transferred to the anti-binding regions behind each nucleus. Because of this, the attractive force on the nuclei decreases
rapidly with a further decrease in R until at R = 1.4 au, the net attractive force exerted by the charge density just balances the force
of nuclear repulsion (Fig. 6-11). A state of electrostatic equilibrium is reached, and a chemical bond is formed. A further decrease
in R leads to a force of repulsion. More charge density is transferred to the antibinding regions, and the force exerted by this charge
density, acting in concert with the increase in the force of nuclear repulsion, outweighs the attractive force exerted by the charge
density in the binding region.

The same changes in density are depicted in Fig. 6-12, which is a series of profiles along the internuclear axis of the density
difference maps shown in Fig. 6-10. The profile maps illustrate in a striking fashion the build-up of charge density in the region
between the nuclei.

-n -n -n

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64689?pdf
http://www.chemistry.mcmaster.ca/esam/Chapter_6/section_1.html#Fig_6-11
http://www.chemistry.mcmaster.ca/esam/Chapter_6/section_1.html#Fig_6-11
http://www.chemistry.mcmaster.ca/esam/Chapter_6/section_1.html#Fig_6-12
http://www.chemistry.mcmaster.ca/esam/Chapter_6/section_1.html#Fig_6-10


6.2.8 https://chem.libretexts.org/@go/page/64689

Fig. 6-12. Profiles of the density difference along the internuclear
axis for H at a series of internuclear separations. One nucleus
is held fixed, and the other is moved relative to it. The
separations are indicated on the diagram.

The formation of any chemical bond is qualitatively similar to the changes in the charge distribution and in the forces exerted on
the nuclei as found for the hydrogen molecule. We must now inquire into the conditions which determine whether or not sufficient
charge density can be accumulated in the binding region to yield a stable molecule. Since not all atoms form chemical bonds,
clearly such conditions must exist.

This page titled 6.2: An Electrostatic Interpretation of the Chemical Bond is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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6.3: The Effect of the Pauli Principle on Chemical Binding
The Pauli exclusion principle plays as important a role in the understanding of the electronic structure of molecules as it does in the
case of atoms. The end result of the Pauli principle is to limit the amount of electronic charge density that can be placed at any one
point in space. For example, the Pauli principle prevents the 1s orbital in an atom from containing more than two electrons. Since
the 1s orbital places most of its charge density in regions close to the nucleus, the Pauli principle, by limiting the occupation of the
1s orbital, limits the amount of density close to the nucleus. Any remaining electrons must be placed in orbitals which concentrate
their charge density further from the nucleus.

In an earlier discussion we pointed out that the reason the electron doesn't fall onto the nucleus is because it must possess kinetic
energy if Heisenberg's uncertainty principle is not to be violated. This is one reason why matter doesn't collapse. The Pauli
principle is equally important in this regard. The electron density of the outer electrons in an atom cannot collapse and move closer
to the nucleus since it can do so only if the electrons occupy an orbital with a lower n value. If, however, the inner orbital contains
two electrons, then the Pauli principle states that the collapse cannot occur. We must be careful in our interpretation of this aspect
of the Pauli principle. The density from a 2s orbital has a small but finite probability of being found well within the density of the
1s orbital. Do not interpret the Pauli principle as implying that the density from an occupied orbital has a clearly defined and
distinct region in real space all to its own. This is not the case. The operation of the Pauli principle is more subtle than this. In some
simple cases, such as the ones we wish to discuss below, the limiting effect of the Pauli principle on the density distribution can,
however, be calculated and pictured in a very direct manner.

The Pauli principle demands that when two electrons are placed in the same orbital their spins must be paired. What restriction is
placed on the spins of the electrons during the formation of a molecule, when two orbitals, each on a different atom, overlap one
another? For example, consider the approach of two hydrogen atoms to form a hydrogen molecule. Consider atom A to have the
configuration  and atom B the configuration . Even when the atoms approach
very close to one another the Pauli principle would be satisfied as the spins of the two electrons are opposed. This is the situation
we have tacitly assumed in our previous discussion of the hydrogen molecule. However, what would occur if two hydrogen atoms
approached one another and both had the same configuration and spin, say ? When two atoms are
relatively close together the electrons become indistinguishable. It is no longer possible to say which electron is associated with
which atom as both electrons move in the vicinity of both nuclei. Indeed this is the effect which gives rise to the chemical bond. In
so far as we can still regard the region around each atom to be governed by its own atomic orbital, distorted as it may be, two
electrons with the same spin will not be able to concentrate their density in the binding region. This region is common to the
orbitals on both atoms, and since the electrons possess the same spin they cannot both be there simultaneously. In the region of
greatest overlap of the orbitals, the binding region, the presence of one electron will tend to exclude the presence of the other if
their spins are parallel. Instead of density accumulating in the binding region as two atoms approach, electron density is removed
from this region and placed in the antibonding region behind each nucleus where the overlap of the orbitals is much smaller. Thus
the approach of two hydrogen atoms with parallel spins does not result in the formation of a stable molecule. This repulsive state of
the hydrogen molecule, in which both electrons have the same spin and atomic orbital quantum numbers, can be detected
spectroscopically.

We can now give the general requirements for the formation of a chemical bond. Electron density must be accumulated in the
region between the nuclei to an extent greater than that obtained by allowing the original atomic density distributions to overlap. In
general, the increase in charge density necessary to balance the nuclear force of repulsion requires the presence of two electrons.

There are a few examples of "one-electron" bonds. An example is the  molecule-ion. This ion contains
only one electron and is indeed a stable entity in the gas phase. It cannot, however, be isolated or stored in any way.

In the atomic orbital approximation we picture the bond as resulting from the overlap of two distorted atomic orbitals, one centered
on each nucleus. When the orbitals overlap, both electrons may move in the field of either nuclear charge as the electrons may now
exchange orbitals. Finally, the pair of electrons must possess opposed spins. When their spins are parallel, the charge density from
each electron is accumulated in the antibinding rather than in the binding region. We shall now apply these principles to a number
of examples and in doing so obtain a quantum mechanical definition of valency.

This page titled 6.3: The Effect of the Pauli Principle on Chemical Binding is shared under a CC BY-NC-SA 4.0 license and was authored,
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6.4: The Quantum Mechanical Explanation of Valency
Helium atoms in their ground state do not form a stable diatomic molecule. In fact, helium does not combine with any neutral atom.
Its valency, that is, its ability to form chemical bonds with other atoms, is zero. The electronic configuration of the helium atom is
1s ( ↓↑), a closed shell configuration.When two helium atoms are in contact, each electron on one atom encounters an electron on
the other atom with a parallel spin. Because of the Pauli principle, neither electron on either atom can concentrate its density in the
region they have in common, the region between the nuclei. Instead, the density is transferred to the antibinding regions behind
each nucleus where the overlap of the two atomic density distributions is least. This is the same effect noted earlier for the
approach of two hydrogen atoms with parallel spins.

Comparison of a series of density difference maps for the approach of two helium atoms (Figure ) with
those given previously for H  (Fig. 6-10) reveals that one set is the opposite of the other. The regions of charge build-up and charge
depletion are reversed in the two cases. The density difference diagrams are obtained by subtracting the distribution obtained by the
overlap of the atomic charge densities from the molecular charge distribution. The former distribution, it will be recalled, does not
place sufficient charge density in the binding region to balance the force of nuclear repulsion. Thus it is clear from Figure 

 that He  will be unstable because the molecular distribution places less charge density in the binding region than
does the one obtained from the overlap of the atomic densities. The charge density in He  is transferred to the antibinding region
where it exerts a force which, acting in the same direction as the nuclear force of repulsion, pulls the two nuclei apart. Repulsive
forces will dominate in He  and no stable molecule is possible.

Figure : Contour maps of the total molecular charge density and of the density difference for two He
atoms at internuclear separations of 4.0 au and 2.0 au. The scale of contour values for the total density maps are the same as used
in Fig 6-9 for H2. The outermost contour is 0.002 au and the innermost one is 2.0 au for R = 4.0 and R = 2.0 au. The scale used in
the density difference plots is the same as that given in Fig. 6-10 beginning with n = 5 for R = 4.0 au and with n = 3 for R = 2.0 au.
Note the increase in the amount of charge density transferred from the binding to the antibinding regions as the separation between

the two atoms is decreased.

A comparison of the density diiference profiles for He (Figure ) and H (Fig. 6-12) provides a striking
contrast of the difference between the charge redistributions which result in the formation of unstable and stable molecules.

Figure : Profiles of the density difference maps along the internuclear axis for the approach of two He
atoms. One nucleus is held stationary. This figure should be contrasted with Fig. 6-12, the corresponding one for H2.
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The force on a helium nucleus in He  as a function of the internuclear separation is repulsive for the range of R values indicated in
Figure .

Figure : Force an a  nucleus in  as a function of the
internuclear separation. The general form of this curve is characturistic of an unstabe molecular species.

Unlike the force curve for H , there is no deep minimum in the curve which represents a range of \(R\) values for which the force is
attractive. The force curve for  does cross the \(R\) axis at approximately 6 au (not indicated in Figure

) and becomes very slightly attractive for values of R greater than this value. This weak attractive force
has its origin in the long-range mutual polarization of the atomic density distributions which was discussed in detail for the
approach of two hydrogen atoms. For large internuclear separations, where there is no significant overlap of the atomic orbitals and
hence no need to invoke the Pauli exclusion principle, the atomic charge distributions of two approaching helium atoms are
polarized in the same way as are the charge distributions for two approaching hydrogen atoms, and the force is attractive. At
smaller internuclear separations, however, where the overlap of the orbitals is significant and the Pauli exclusion principle is
operative, the direction of the charge transfer in He is reversed and the force is rapidly transformed into one of repulsion. Were it
not for the weak long-range attractive forces - the van der Waals forces - gaseous helium could not be condensed into a liquid or a
solid phase. As it is, the force of attraction between two helium atoms is so weak that at a temperature of only 4.2°K they have
sufficient kinetic energy to overcome the forces of attraction between them and escape into the gas phase.

The force of attraction between two helium atoms is so weak that at a temperature of only
4.2°K they have sufficient kinetic energy to overcome the forces of attraction between
them.

If it was not necessary to satisfy the demands of the Pauli principle, electron density would accumulate in the binding region of
He , even for small values of R, as this region is of lower potential energy than is the antibinding region. However, when each
electron detects another of like spin (when the orbitals overlap) they cannot concentrate their charge density in the region they have
in common, the binding region. That it is indeed the Pauli principle which prevents the formation of He  is evident from the fact
that He , which possesses one less electron, is stable! When a helium atom approaches a helium ion, an orbital vacancy is present
and the density from one pair of electrons (those with opposed spins) can be concentrated in the binding region.

All the rare gas atoms possess a closed shell structure and this accounts for their inertness in chemical reactions. No homonuclear
diatomic molecules are found in this group of elements; all occur naturally in the atomic state. Compounds of Kr and Xe have been
formed with fluorine, for the same reason that the formation of He  is possible. Fluorine has a very high electron affinity and a
single vacancy in its outer quantum shell. Thus one of the electrons in the closed shell structure of Xe can be pulled into the orbital
vacancy of the fluorine atom and density concentrated in the region between the nuclei.

Only an atom with a very high affinity for electrons will bond with a rare gas atom. The only species found with sufficient electron
affinity to bind a helium atom (which holds its electrons the most tightly of all atoms) is a He  ion. If the helium atom has the
highest ionization potential of all the elements, then the singly-charged He  ion must possess the highest electron affinity of all the
neutral or singly-charged atoms.

Second Row Elements 
Let us now attempt to explain the variation in the valency exhibited by the elements in the second row of the periodic table. The
hydrides of these elements are LiH, BeH , BH , CH , NH , OH and FH. The valency of the hydrogen atom is unity as it possesses
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one unpaired electron and one orbital vacancy. It can form one electron pair bond. Therefore, the valencies exhibited in the above
hydrides must be 1, 2, 3, 4, 3, 2, 1, as this is the number of hydrogens bound in each case. (By the way, while the BH  molecule is
predicted to be stable with respect to the separated boron and hydrogen atoms it cannot be isolated as such, but only in the form of
its dimer B H ).

We will consider HF first.

Fluorine: The electron configuration of F is ls 2s 2p ( ). Only one of the electrons in the 2p orbitals is unpaired. The 2p atomic
orbital with the vacancy may overlap with the 1s atomic orbital of hydrogen, and if the spin of the electron on H is paired with the
spin of the electron on F, all the requirements for the formation of a stable chemical bond will be met. The valency of F will be one
as it possesses one unpaired electron and can form one electron pair bond.

Oxygen: The electronic configuration of oxygen is ls 2s 2p (  ). Oxygen has two unpaired electrons, both of which may pair up
with an electron on a hydrogen atom. The valency of oxygen should be two as is observed. It is obvious that all the requirements
for a chemical bond can be met for every unpaired electron present in the outer or "valency" shell of an atom. Thus valency may be
defined as being equal to the number of unpaired electrons present in the atom.

Nitrogen: The configuration of nitrogen is ls 2s 2p (   ), and its hydride should be NH  as is indeed the case.

Carbon: Since the most stable electron configuration of carbon is 1s 2s 2p (  ) we predict its valency to be two. The molecule CH
(called methylene) is indeed known. However, CH is very reactive and its products are not stable until four chemical bonds are
formed to carbon as in the case of CH . Four, not two, is the common valency for carbon. How can our theory account for this fact?
The energy of a 2p orbital is not much greater than that of a 2s orbital. Because of this, relatively little energy is required to
promote an electron from the 2s orbital on carbon to the vacant 2p orbital:

C: ls 2s 2p (  ) ® C* ls 2s ( )2p (   )

Carbon in the promoted state possesses four unpaired electrons and can now combine with four hydrogen atoms. Every bond to a
hydrogen atom releases a large amount of energy. The energy required to unpair the 2s electrons and promote one of them to a 2p
orbital is more than compensated for by the fact that two new C�H bonds are obtained.

Boron: Boron has the electronic configuration ls 2s 2p ( ). Its valency should be one and BH is known to exist. However, again
through the mechanism of promotion, the valency of boron can be increased to three:

B*: ls 2s ( )2p (  )

We might wonder why, with a 2p orbital still vacant, one of the 1s electrons is not promoted and thus give boron a valency of five.
This does not happen because of the large difference in energy between the 1s and 2p orbitals as shown in the orbital energy level
diagram (Fig. 5-3).

Beryllium: Beryllium has the configuration ls 2s  and should exhibit a valency of zero. The outer electron configuration of Be is
similar to that of He, a closed shell of s electrons. Indeed, the molecule Be  exists only as a weakly bound van der Waals molecule.
However, Be differs from He in that there are vacant orbitals available in its valency shell. The observed valency of two in the
molecule BeH  can be explained by a promotion to the configuration ls 2s ( )2p ( ).

Lithium. Lithium, with the configuration ls 2s ( ), should exhibit only a valency of one.

Thus valency may be defined as being equal to the number of unpaired electrons present
in the atom.

Lewis Structures 
The concept of an electron pair bond is not restricted to bonds with hydrogen. The only requirements are an unpaired electron on
each atom (which is another way of saying there is an orbital vacancy on each atom) with their spins opposed. Thus two fluorine
atoms may combine to form the fluorine molecule F through the overlap of the singly-occupied 2p orbital on one atom with a
similar orbital on the other. This will result in F being described as F�F where the single line denotes that one pair of electrons
forms the bond between the two atoms. Similarly, the three singly-occupied 2p orbitals on one nitrogen atom may overlap with
those on another to form the N  molecule. Since three pairs of electrons are shared between the nuclei in this case, we represent the
molecule by the symbol NºN. The electrons in the valence shell of an atom which are not involved in the formation of a chemical
bond (as they are already paired in an orbital on the atom) may also be indicated and the resulting symbols are called Lewis
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structures. Thus the three pairs of valency electrons on each F, (2s 2p ), not involved in the bonding are often indicated by dots.
For example,

(Lithium has only one outer electron and it is shared in the bond.) In compounds with nitrogen we may indicate the 2s pair of
electrons:

 and 

Recall that each line, since it denoted a bond in these diagrams, represents a pair of electrons shared between the two atoms joined
by the line. If we add up the lines joined to each atom, multiply by two (to obtain the number of electrons) and add to this the
number of dots which represents the remaining valence electrons, the number eight is obtained in many cases, particularly for the
second-row elements (n = 2 valence orbitals). This so-called octet rule results from many elements having four outer orbitals
(nsnp np np ) which together may contain a total of eight electrons. Not all eight electrons belong to either atom in general as the
electrons in a bond are shared (not necessarily equally as we shall see) between two atoms. Each bond contains two electrons with
paired spins. Thus the orbital from one atom used to form the bond is, in a sense, filled as both spin possibilities are now accounted
for.

The presence of an unshared pair of electrons in the valency shell of an atom can lead to the formation of another chemical bond.
For example, the unshared pair of electrons in the 2s orbital on nitrogen in ammonia may attract and bind to the molecule another
proton:

H N: + H  ® NH

A similar reaction occurs for the water molecule which possesses two unshared pairs of electrons:

 + H ® 

We must modify our previous rule regarding the requirements for the formation of an electron pair bond. Rather than both orbitals
being half-filled, an orbital on one of the atoms may be filled if the orbital on the other atom is completely vacant. Molecules
possessing an unshared pair of electrons, which may be used to bond another atom, are called Lewis bases. Only elements in
groups V, VI and VII will exhibit this property. The elements in groups I to IV do not possess unshared pairs. Instead, the chemistry
of the elements in groups II and III is largely characterized by the orbital vacancies which they possess in their valency shell.

The compound boron trifluoride represents the pairing of the three valence electrons of boron with the unpaired electrons on three
F atoms. The boron is considered to be in the promoted configuration ls 2s ( )2p (  )and BF is represented as

A 2p orbital on boron is vacant. It is not surprising to find that BF  may form another bond with a species which has an unshared
pair of electrons, i.e., a Lewis base. For example,

Since BF  accepts the electron pair it is termed a Lewis acid. Further examples from Group 3 are

and from Group 2 (which have two orbital vacancies):

This page titled 6.4: The Quantum Mechanical Explanation of Valency is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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6.5: Molecular Geometry
The theory of valency which we have been developing is known as valence bond theory. One further feature of this theory is that it
may be used to predict (or in some cases, rationalize) the observed geometries of molecules By the geometry of a molecule we
mean the relative arrangement of the nuclei in three-dimensional space. For example, assuming the two O-H bonds in the water
molecule to be similar and hence of the same length, the angle formed by the two O-H bonds (the HOH angle could conceivably
posess any angle from 180° to some relatively small value. All we demand of our simple theory is that it correctly predict whether
the water molecule is linear (bond angle = 180°) or bent (bond angle less than 180°) Or as another example, it should predict
whether the ammonia molecule is planar (a) or pyramidal (b).

The observed geometry of a molecule is that which makes the energy of the system a minimum. Thus those geometries will be
favoured which (i) concentrate the largest amount of charge density in the binding region and thus give the strongest individual
bonds, and (ii) keep the nuclei as far apart as possible (consistent with (i)), and hence reduce the nuclear replusions. Consider again
the two possibilities for the water molecule It is clear that the linear form (a) will have a smaller energy of nuclear repulsion from
the hydrogens than will the bent form (b).

If the amount of electron density which could be concentrated in the regions between the nuclei in each 
bond (i.e., the strength of each  bond) was independent of the bond angle, then clearly the linear form of
the water molecule would be the most stable. This would be the situation if all the atomic orbitals which describe the motions of the
electrons were rigidly spherical and centred on the nuclei. But this is not the case. As was stressed earlier in our discussion of
atomic orbitals, the motion of electrons possessing angular momentum because they occupy orbitals with l ¹ 0 is concentrated along
certain axes or planes in space. In particular the three p orbitals are a maximum along the three perpendicular axes in space. The
valence bond theory of the water molecule describes the two O-H bonds as resulting from the overlap of the H 1s orbitals with the
two half-filled 2p orbitals of the oxygen atom. Since the two 2p orbitals are at right angles to one another, valence bond theory
predicts a bent geometry for the water molecule with a bond angle of 90°.

The overlap of the orbitals is shown schematically in Fig. 6-16.

 
Fig. 6-16. A pictorial representation of the overlap of  and  orbitals on the oxygen
with the 1s orbitals of two H atoms.
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The actual bond angle in the water molecule is 104.5°. The opening of the angle to a value greater than the predicted one of 90° can
be accounted for in terms of a lessening of the repulsion between the hydrogen nuclei. The assumption we have made is that the
maximum amount of electron density will be transferred to the binding region and hence yield the strongest possible bond when the
hydrogen and oxygen nuclei lie on the axis which is defined by the direction of the 2p orbital. For a given internuclear separation,
this will result in the maximum overlap of the orbitals. Because an orbital with l ¹ 0 restricts the motion of the electron to certain
preferred directions in space, bond angles and molecular geometry will be determined, to a first rough approximation, by the inter-
orbital angles.

In the valence bond description of ammonia, each N-H bond results from the overlap of an H 1s orbital with a 2p orbital on N. All
three 2p orbitals on N have a vacancy and thus three bonds should be formed and each HNH angle should be 90°, i.e., ammonia
should be a pyramidal and not a planar molecule. The NH  molecule is indeed pyramidal and the observed HNH angle is 107.3°.
The actual bond angle is again larger than that predicted by the theory.

It might be argued that since the N atom possesses a half-filled 2p shell (its electronic configuration is 1s 2s 2p ), its density
distribution is spherical and hence the N atom should not exhibit any directional preferences in its bonding. This argument is
incorrect for the following reason. The density distribution is obtained by squaring the wave function. The wave function which
properly describes the system must be obtained first, then squared to obtain the density. The wave function which describes the
ammonia molecule consists of products of hydrogen 1s orbital functions with the nitrogen 2p orbital functions. (A product of
orbitals is the mathematical statement of the phrase "overlap of orbitals" in valence bond theory.) The density distribution obtained
by squaring the product of two orbitals is not the same as that obtained from the sum of the squares of the individual orbitals. Thus
in the valence bond theory of molecular electronic structure the directional properties of the valence orbitals play an important role.
By assuming that the most stable bond results when the two nuclei joined by the bond lie along the axis defined by the orbitals and
considering the bonds to a first approximation to be independent of one another, we can predict the geometries of molecules.

Hybridization 
The BeH  molecule is linear and the two Be-H bonds are equivalent. The valence bond description of BeH  accounted for the two-
fold valency of Be (which has the ground state configuration 1s 2s ) by assuming the bonding to occur with a promoted
configuration of Be:

Be* 1s 2s( )2p( )

At first sight this suggests that the two Be-H bonds should be dissimilar and not necessarily 180° apart because one bond results
from the overlap with a 2s orbital and the other with a 2p orbital on Be. We can, however, account for the equivalence of the two
Be-H bonds and for the linearity of the molecule within the framework of the theory. There is no a priori reason for assuming that
the one bond will result from the overlap with a 2s orbital and the other from the overlap with a 2p orbital. In the most general
treatment of the problem, each bond to a hydrogen could involve both the 2s and the 2p orbitals. That is, we can "mix" or hybridize
the valence orbitals on the Be atom. In fact, by taking each valence orbital on Be to be an equal part of 2s and 2p, we can obtain
two equivalent hybrid orbitals which are directed 180° apart. The two hybrid orbitals will form two equivalent bonds with the H 1s
orbitals whose total bond strength will be larger than that obtained by forming one bond with a 2p and the other with a 2s orbital on
Be.

The construction of the hybrid orbitals is accomplished by taking the sum and the difference of the 2s orbital and one of the 2p
orbitals, say the 2p  orbital, both orbitals being centred on the Be nucleus. This is illustrated in Fig. 6-17.
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Fig. 6-17. The construction of sp hybrid orbitals from a 2s and 2p atomic orbital on Be.

Since the 2p orbital has a node at the nucleus the 2p orbital wave function has opposite signs on each side of the nodal plane
indicated in the figure. Both orbitals are positive on one side and the orbital functions add at each point in space. On the other side
of the nodal plane, the orbitals are of opposite sign and their sum yields the difference between the two functions at every point in
space. The addition of a 2s and 2p  orbital concentrates the wave function and hence the charge density on the positive side of the
x-axis. Obviously the combination (2s - 2p ) will be similar in appearance but concentrated on the negative side of the x-axis. These
combinations of the 2s and 2p orbitals yield two hybrid orbitals which are equivalent and oppositely directed. Since each of the
hybrid orbitals is constructed from equal amounts of the 2s and 2p orbitals they are termed "sp hybrid" orbitals.

The linear nature of BeH  can be explained if it is assumed (as is true) that the best overlap with both H 1s orbitals will result when
the valence orbitals on the Be are sp hybrids (Fig. 6-18).

Fig 6-18. A pictorial representation of the overlap of two sp hybrid orbitals on Be with H 1s orbitals to form BeH2.

The three B-H bonds in BH  are equivalent and the molecule is planar and symmetrical:

The promoted configuration of boron with three unpaired electrons is

B* 1s 2s( )2p ( )2p ( )

In this case we must construct three equivalent hybrid orbitals from the three atomic orbitals 2s, 2p , and 2p , on boron. The 2p
and 2p  orbitals define a plane in space and the three hybrid orbitals constructed from them will be projected in this same plane.
Since the hybrid orbitals are to be equivalent, each must contain one part 2s and two parts 2p. They will be called "sp " hybrid
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orbitals. The three orbital combinations which have the above properties are indeed directed at 120° to one another. The planar,
symmetrical geometry of BH  can be accounted for in terms of sp  hybridization of the orbitals on boron.

The four C-H bonds in CH  are equivalent and the molecule possesses a tetrahedral geometry:

The promoted configuration of carbon with four unpaired spins is

C* 1s 2s( )2p ( )2p ( )2p ( )

Four equivalent hybrid orbitals can be constructed from the 2s and the three 2p orbitals on carbon. Each orbital will contain one
part 2s and three parts 2p, and the hybrids are termed sp  hybrids. Only one such set of orbitals is possible and the angle between
the orbitals is 109°28', the tetrahedral angle. The tetrahedral geometry of CH  is described as resulting from the sp hybridization
of the valence orbitals on the carbon atom.

The three hybridization schemes which have been presented are sufficient to account for the geometries of all the compounds
formed from elements of the first two rows of the periodic table (those with n= 1 or n = 2 valence orbitals). Consider, for example,
the unsaturated hydrocarbons. The ethylene molecule, C H , possesses the planar geometry indicated here,

where the bond angles around each carbon nucleus are approximately 120°. Three bonds in a plane with 120° bond angles suggests
sp  hybridization for the carbon atoms. Two of the sp  hybrids from each carbon may overlap with H 1s orbitals forming the four
C-H bonds. The remaining sp hybrids on each carbon may overlap with one another to form a bond between the carbons:

The sp  hybrids are denoted by arrows in the above diagram to indicate their directional dependence. If these bonds are formed in
the x-y plane, using the 2p  and 2p  orbitals of the carbon atoms, a singly-occupied 2p orbital will remain on each carbon. They
will be directed in a plane perpendicular to the plane of the molecule:
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The overlap of the two 2p  orbitals above and below the plane of the molecule will result in a second electron pair bond between
the carbon atoms. The bonds formed in the plane of the molecule are called s (sigma) bonds, while those perpendicular to the plane
are called p bonds. Since the overlap of the orbitals to form a p bond is not as great as the overlap obtained from s bonds (which are
directed along the bond axis), p bonds in general are weaker than s bonds. A Lewis structure for the C H  molecule is expressed as

indicating that there is a double bond between the carbon atoms, i.e., the density from two pairs of electrons binds the carbon
atoms.

The energy required to break the carbon-carbon double bond in ethylene is indeed greater than that required to break the carbon-
carbon single bond in the ethane molecule, H C-CH . Furthermore, the chemical behaviour of ethylene is readily accounted for in
terms of a model which places a large concentration of negative charge density in the region between the carbon atoms. The
physical evidence thus verifies the valence bond description of the bonding between the carbons in ethylene.

Our final example concerns another important possible hybridization for the carbon atom. The acetylene molecule, C H , is a linear
symmetric molecule: H-C-C-H. The linear structure suggests we try sp hybridization for each carbon, one hybrid overlapping with
a hydrogen and the other with a similar hybrid from the second carbon atom. This will produce a linear s bond framework for the
molecule:

The sp hybrids are denoted by arrows in the above diagram. If the sp hybrids are assumed to be directed along the x-axis, then the
remaining singly-occupied 2p  and 2p  orbitals on each carbon may form p bonds. The 2p  orbitals on each carbon may overlap to
form a p bond whose density is concentrated in the x-y plane, with a node in the x-z plane. Similarly the 2p  orbitals may form a
second p bond concentrated in the x-z plane, with a node in the x-y plane. Acetylene will possess a triple bond, one involving three
pairs of electrons, between the carbon atoms. The Lewis structure is drawn as

where it is understood that one of the C-C bonds is a s bond while the other two are of the p-type. The chemistry and properties of
acetylene are consistent with a model which places a large amount of charge density in the region of the C-C bond.

Hybridization schemes involving d orbitals are also possible. They are important for elements in the third and succeeding rows of
the periodic table. Although the elements of the third row do not possess occupied 3d orbitals in their ground electronic
configurations, the 3d orbitals of phosphorus, sulphur and chlorine are low enough in energy that promoted configurations
involving the 3d orbitals may be reasonably postulated to account for the binding in compounds of these elements. One
consequence of the "availability" of the 3d orbitals is that there are many exceptions to the octet rule in compounds of the third row
elements. For example, in PCl there are ten valence electrons involved in the bonding of the five chlorines to the phosphorus. A
hybridization scheme based on the promotion of one 3s electron of phosphorus to a 3d orbital to yield five "dsp " hybrid orbitals
correctly predicts the trigonal bypyramidal structure of PCl :
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As a final example consider the molecule SF  in which all six S-F bonds are equivalent and the geometry is that of a regular
octahedron (one F atom centred in each face of a regular cube):

This geometry and number of bonds can be accounted for by assuming the promotion of one 3s and one 3p electron to two of the
3d orbitals on the sulphur atom. This hybridization yields six equivalent "d sp " hybrid bonds which are indeed directed as
indicated in the structure for SF .

This page titled 6.5: Molecular Geometry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F.
W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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6.6: Literature References

Literature references 

1.

The electrostatic method used in this book for the interpretation of
chemical binding is based on the Hellmann-Feynman theorem. The
theorem was proposed independently by both H. Hellmann and R.
P. Feynman. Feynman's account of the theorem anticipates many
of the applications to chemistry including the electrostatic
interpretation of van der Waals forces. R. P. Feynman, Phys. Rev.
56, 340 (1939).

2.

The wave functions used in the calculation of the density
distributions for H  were determined by G. Das and A. C. Wahl, J.
Chem. Phys. 44, 87 (1966). These wave functions include
configuration interaction and hence provide suitable descriptions
for the H  systems for large values of the internuclear separation.
The wave functions for He  are from N. R. Kestner, J. Chem.
Phys. 48, 252 (1968).
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6.E: Exercises

Q6.1 

The element beryllium has an atomic number of four. Rationalize the following observations in terms of the valence bond theory of
molecular structure.

a.  does not exist except as a weakly bound van der Waals molecule.
b.  can exhibit a valency of two in combination with a halogen, for example, BeF .
c.  can undergo a further reaction with an excess of F  ions to give  In addition

to explaining why this reaction occurs, predict the geometrical shape of the  ion.

Q6.2 
a. Use valence bond theory to predict the molecular formula and geometrical structure of the most stable electrically neutral

hydride of phosphorus.
b. The hydride of phosphorus can react with HI to form an ionic crystal which contains the I  ion. Explain why this reaction can

occur and give the formula and geometrical structure of the positive ion which contains phosphorus and hydrogen.

Q6.3 
The atomic number of silicon is fourteen. What is the electronic structure of Si in its ground state? Predict the molecular formula
and geometrical shape of the most stable silicon-hydrogen compound using valence bond theory.

Q6.4 

The element vanadium (Z = 23) forms the compound VCl . Would a beam of VCl  molecules be deflected in an inhomogeneous
magnetic field? Explain the reasoning behind your answer. 5. The CH  molecule may exist in two distinct forms. In the one case all
the electrons are paired and the molecule does not possess a magnetic moment. In the second form the molecule exhibits a
magnetism which can be shown to arise from the presence of two unpaired electrons. One of the forms of CH  is linear. Use
valence bond theory to describe the electronic structures and geometries of both forms of CH . Which of the two will possess the
lower electronic energy?

Q6.6 
a. Write Lewis structures (structures in which each electron pair bond is designated by a line joining the nuclei and dots are used

to designate unshared electrons in the valency shell) for H O, CH , CO , HF, NH , H O .
b. Give a discussion of the bonding of the molecules listed in part (a) in terms of valence bond theory. Denote the use of hybrid

orbitals by arrows and a label as to whether they are sp, sp , or sp  hybrids. You should predict that H O and H O  are bent
molecules, that CH  and NH  are tetrahedral and that CO  is linear.

Q6.7 
Sometimes it is possible to write a number of equivalent Lewis structures for a single species. For example, the bonding in the
NO  ion can be described by:

Each atom in these structures is surrounded by four pairs of electrons, the first cardinal rule in writing a Lewis structure. On the
average, one electron of the pair in each bond belongs to one atom. Since there are only four bonds to N and no unshared valence
pairs, N on the average has but four valence electrons in these three structures. The N atom initially possessed five electrons, and a
plus sign is placed at N to denote that it has, on the average, one less electron in the NO ion. The two singly-bonded oxygens have
on the average seven electrons in each structure, one more than a neutral oxygen atom. This is denoted by a minus sign. The
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doubly-bonded O has on the average six electrons. Notice that the sum of these formal charges is minus one, the correct charge for
the NO  ion.

The structure of the NO  ion is in reality planar and symmetrical, all of the NO bonds being of equal length. This could be
indicated in a single Lewis structure by indicating that the final pair of electrons in the p bond between N and one O is actually
spread over all three NO bonds simultaneously:

When one or more pairs of electrons are delocalized over more than two atoms, the Lewis method or the valence bond method of
writing valence structures with bonds between pairs of atoms runs into difficulties. The compromise structure above correctly
indicates that each NO bond in NO  is stronger and shorter than a N�O single bond, but not as strong as an N=O double bond.

a. Use the valence bond theory to account for the bonding and planar structure of the NO  ion.
b. Write Lewis structures and the corresponding valence bond structures for the CO  ion and SO . Are there full S=O or C=O

double bonds in either of these molecules?

Q6.8 
Draw valence bond structures for benzene, C H . This molecule has a planar hexagonal geometry:

Are there any delocalized electron pairs in the benzene molecule?

Q6.9 
The carbon monoxide molecule forms stable complexes with many transition metal elements. Examples are (from the first
transition metal series)

Cr(CO) , (CO) Mn�Mn(CO) , Fe(CO) , Ni(CO)

In each case the bond is formed between the metal and the unshared pair of electrons on the carbon end of carbon monoxide. The
metal atom in these complexes obviously violates the octet rule, but can the electronic structures for the carbon monoxide
complexes be rationalized on the basis of an expanded valency shell for the metal?

This page titled 6.E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via
source content that was edited to the style and standards of the LibreTexts platform.
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7.1: Introduction

Ionic and Covalent Binding 

The distribution of negative charge in a molecule will exhibit varying degrees of asymmetry depending on the relative abilities of
the nuclei in the molecule to attract and bind the electronic charge density. The symmetry or asymmetry of the charge distribution
plays a fundamental role in determining the chemical properties of the molecule and consequently this property of the charge
distribution is used as a basis for the classification of chemical bonds.

We can envisage two extremes for the distribution of the valence charge density. An example of one of the extremes is obtained
when a bond is formed between two identical atoms. The charge density of the valence electrons will in this case necessarily be
delocalized equally over corresponding regions of each nucleus since both nuclei will attract the electron density with equal force.
Such an equal sharing of the charge density is an example of covalent binding and is exemplified by the molecular charge
distribution of N (Fig. 7-1).

  
Fig. 7-1. Contour maps of the molecular charge distributions of N2 and LiF at their equilibrium internuclear separations. The
space to the right of the dashed line through the Li nucleus denotes the region of nonbonded charge density. The values of the
contours increase from the outermost one to the innermost one. The specific values of the contours appearing in this and the

following contour maps can be obtained by referring to the Table of Contour Values.

The charge distribution of LiF (Fig. 7-1) provides an example of the other extreme, termed ionic binding, obtained when a bond is
formed between two atoms with very different affinities for the electronic charge density. The very unsymmetrical distribution of
charge in LiF is not simply a reflection of the fluorine atom possessing seven valence electrons to lithium's one. Instead the
formation of the bond in LiF corresponds to the nearly complete transfer of the valence charge density of lithium to fluorine
resulting in a molecule best described as Li F . We need only recall that initially a lithium atom is considerably larger than a
fluorine atom to realize that a considerable transfer of charge has occurred in the formation of the LiF molecule.

In N  the valence charge density is delocalized over the whole molecule. The electronic charge is heavily concentrated in the
internuclear region where it forms a bridge of high density between the two nuclei. Only the density of the 1s inner shell or "core"
orbitals is strongly localized in the regions of the nuclei. In contrast to this, practically all of the charge density in the lithium
fluoride molecule is localized in nearly spherical contours on the two nuclei in the manner characteristic of two separate closed-
shell distributions. Only contours of very small value encompass both nuclei and the bridge of charge density joining the two
spherical distributions is very low in value, being approximately one tenth of the value observed for N .

We may determine the total amount of electronic charge in an arbitrary region of space by summing the density in each small
volume element within the region of interest (i.e., integrating the charge distribution over some particular volume of space):  

 

A useful measure of the extent of charge transfer occurring on bond formation is obtained by determining the nonbonded charge on
each nucleus. The nonbonded charge for a nucleus in a molecule is defined as occupying the volume of space on the nonbonded
side of a plane perpendicular to the bond axis and through the nucleus in question. This is indicated by a dashed line for the Li
nucleus in LiF (Fig. 7-1).

The nonbonded charge density of the lithium nucleus in LiF is 1.07 e compared to 1.5 e  in the Li atom (i.e., one half of the total
number of electronic charges in a Li atom). The nonbonded charge density of the F nucleus, on the other hand, is increased above
its atomic value, being 5.0 e as compared to 4.5 e  in the fluorine atom. Since the distributions centred on the nuclei in LiF are
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nearly spherical, the total charge contained in each distribution will be approximately twice the value of the corresponding
nonbonded charge. The total distribution of charge in LiF is, therefore, consistent with the ionic model Li F  corresponding to the
transfer of the single 2s valence electron of lithium to the fluorine. The radii of the nonbonded charge distributions (the distance
measured along the bond axis from a nucleus to the outermost contour of its nonbonded density) are also consistent with the ionic
model. The radius of the nonbonded charge density on lithium is 1.7 a , a value almost identical to the radius of a Li ion (1.8 a )
but much less than the radius of a Li atom (3.3 a ). The value of 3.0 a  for the radius of the nonbonded charge density on fluorine is
consistent with that of a fluoride ion distribution as it represents a slight increase over the atomic value for fluorine of 2.8 a .

By way of comparison, the nonbonded charge on the nitrogen nuclei in N  is increased above the atomic value of 3.5 e  to 3.68 e .
This transfer of charge density to the nonbonded regions on bond formation is somewhat surprising when it is recalled that charge
density must be accumulated in the binding region, the region between the nuclei, to achieve a chemical bond. We require a more
detailed picture of the charge reorganization accompanying the formation of a bond to understand fully the distribution of the
charge density in a molecule. In addition, many chemical bonds possess charge distributions which lie between the extreme of the
perfect sharing of the valence charge density found in N and its complete localization on one nucleus in LiF.

We consider next a method of classification of bonding in molecules, a classification which provides at the same time an
understanding of the mechanism of the two binding situations in terms of the forces exerted on the nuclei.

This page titled 7.1: Introduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader
via source content that was edited to the style and standards of the LibreTexts platform.
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7.2: Classification of Chemical Bonds
To make a quantitative assessment of the type of binding present in a particular molecule it is necessary to have a measue of the
extent of charge transfer present in the molecule relative to the charge distributions of the separated atoms. This information is
contained in the density difference or bond density distribution, the distribution obtained by subtracting the atomic densities from
the molecular charge distribution. Such a distribution provides a detailed measure of the net reorganization of the charge densities
of the separated atoms accompanying the formation of the molecule.

The density distribution resulting from the overlap of the undistorted atomic densities (the distribution which is subtracted from the
molecular distribution) does not place sufficient charge density in the binding region to balance the nuclear forces of repulsion. The
regions of charge increase in a bond density map are, therefore, the regions to which charge is transferred relative to the separated
atoms to obtain a state of electrostatic equilibrium and hence a chemical bond. Thus we may use the location of this charge increase
relative to the positions of the nuclei to characterize the bond and to obtain an explanation for its electrostatic stability.

In covalent binding we shall find that the forces binding the nuclei are exerted by an increase in the charge density which is shared
mutually between them. In ionic binding both nuclei are bound by a charge increase which is localized in the region of a single
nucleus.

Covalent Binding 
The bond density map of the nitrogen molecule (Fig. 7-2) is illustrative of the characteristics of covalent binding.

  

  
Fig. 7-2. Bond density (or density difference) maps and their profiles along the internuclear axis for N2 and LiF. The solid and
dashed lines represent an increase and a decrease respectively in the molecular charge density relative to the overlapped atomic
distributions. These maps contrast the two possible extremes of the manner in which the original atomic charge densities may be
redistributed to obtain a chemical bond. Click here for contour values.

The principal feature of this map is a large accumulation of charge density in the binding region, corresponding in this case to a
total increase of one quarter of an electronic charge. As noted in the study of the total charge distribution, charge density is also
transferred to the antibinding regions of the nuclei but the amount transferred to either region, 0.13 e , is less than is accumulated in
the binding region. The charge density of the original atoms is decreased in regions perpendicular to the bond at the positions of the
nuclei. In three dimensions, the regions of charge deficit correspond to two continuous rings or roughly doughnut-shaped regions
encircling the bond axis.

The increase in charge density in the antibinding regions and the removal of charge density from the immediate regions of the
nuclei result in an increase in the forces of repulsion exerted on the nuclei, forces resulting from the close approach of the two
atoms and from the partial overlap of their density distributions. The repulsive forces are obviously balanced by the forces exerted
on the nuclei by the shared increase in charge density located in the binding region.
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A bond is classified as covalent when the bond density distribution indicates that the charge increase responsible for the binding of
the nuclei is shared by both nuclei. It is not necessary for covalent binding that the density increase in the binding region be shared
equally as in the completely symmetrical case of N . We shall encounter heteronuclear molecules (molecules with different nuclei)
in which the net force binding the nuclei is exerted by a density increase which, while shared, is not shared equally between the two
nuclei.

The pattern of charge rearrangement in the bond density map for N  is, aside from the accumulation of charge density in the
binding region, quite distinct from that found for H  (Fig. 6-10), another but simpler example of covalent binding. The pattern
observed for nitrogen, a charge increase concentrated along the bond axis in both the binding and antibinding regions and a
removal of charge density from a region perpendicular to the axis, is characteristic of atoms which in the orbital model of bonding
employ p atomic orbitals in forming the bond. Since a p orbital concentrates charge density on opposite sides of a nucleus, the large
buildup of charge density in the antibinding regions is to be expected.

In the orbital theory of the hydrogen molecule, the bond is the result of the overlap of s orbitals. The bond density map in this case
is characterized by a simple transfer of charge from the antibinding to the binding region since s orbitals do not possess the strong
directional or nodal properties of p orbitals. Further examples of both types of charge rearrangements or polarizations will be
illustrated below.

Ionic Binding 
We shall preface our discussion of the bond density map for ionic binding with a calculation of the change in energy associated
with the formation of the bond in LiF. While the calculation will be relatively crude and based on a very simple model, it will
illustrate that the complete transfer of valence charge density from one atom to another in forming a molecule is in certain cases
energetically possible.

Lithium possesses the electronic configuration 1s 2s  and is from group IA of the periodic table. It possesses a very low ionization
potential and an electron affinity which is zero for all practical purposes. Fluorine is from group VIIA and has a configuration
1s 2s 2p . It possesses a high ionization potential and a high electron affinity. The following calculation will illustrate that the 2s
electron of Li could conceivably be transferred completely to the 2p shell of orbitals on F in which there is a single vacancy. This
would result in the formation of a molecule best described as Li F , and in the electron configurations 1s for Li  and 1s 2s 2p  for
F .

We can calculate the energy change for the reaction

in stages. The energy which must be supplied to ionize the 1s electron on the Li atom is:

with .

The energy released when an electron combines with an F atom is given by the electron affinity of F:

with .

The two ions are oppositely charged and will attract one another. The energy released when the two ions approach one another
from infinity to form the LiF molecule is easily estimated. To a first approximation it is simply -e /R where  is the final
equilibrium distance between the two ions in the molecule:

with .

The sum of these three reactions gives

2

2

2

2 1

2 2 5

+ - 2 + 2 2 6

-

Li +F → Li
+

R
−

Li → Li
+

e
− (7.2.1)

= = 5.4 eVE1 I1

F + → F −e
− (7.2.2)

= −3.7 eVE2

2
R

→L +i
+

F
−

  
large distance apart

Li
+

F
−

  
at R

≈ −4 eVE3

Li +F → Li
+

F
−

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64702?pdf
http://www.chemistry.mcmaster.ca/esam/Chapter_6/ref-fig6-10.html


7.2.3 https://chem.libretexts.org/@go/page/64702

and the overall change in energy is the sum of the three energy changes, or approximately -2 ev. The species Li F  possesses a
lower energy than the separated Li and F atoms and should therefore be a stable molecule.

The transfer of charge density from lithium to fluorine is very evident in the bond density map for LiF (Fig. 7-2). The charge
density of the 2s electron on the lithium atom is a very diffuse distribution and consequently the negative contours in the bond
density map denoting its removal are of large spatial extent but small in magnitude. The principal charge increase is nearly
symmetrically arranged about the fluorine nucleus and is completely encompassed by a single nodal surface. The total charge
increase on fluorine amounts to approximately one electronic charge. The charge increase in the antibinding region of the lithium
nucleus corresponds to only 0.01 electronic charges. (The great disparity in the magnitudes of the charge increases on lithium and
fluorine are most strikingly portrayed in the profile of the bond density map, also shown in Fig. 7-2) It is equally important to
realize that the charge increase on lithium occurs within the region of the 1s inner shell or core density and not in the region of the
valence density. Thus the slight charge increase on lithium is primarily a result of a polarization of its core density and not of an
accumulation of valence density.

The pattern of charge increase and charge removal in the region of the fluorine, while similar to that for a nitrogen nucleus in N , is
much more symmetrical, and the charge density corresponds very closely to the distribution obtained from a single 2pselectron.
Thus the simple orbital model of the bond in LiF which describes the bond as a transfer of the 2s electron on lithium to the single
2ps vacancy on fluorine is a remarkably good one.

While the bond density map for LiF substantiates the concept of charge transfer and the formation of Li  and F  ions it also
indicates that the charge distributions of both ions are polarized. The charge increase in the binding region of fluorine exceeds
slightly that in its antibinding region (the F  ion is polarized towards the Li  ion) and the charge distribution of the Li  ion is
polarized away from the fluorine. A consideration of the forces exerted on the nuclei in this case will demonstrate that these
polarizations are a necessary requirement for the attainment of electrostatic equilibrium in the face of a complete charge transfer
from lithium to fluorine.

Consider first the forces acting on the nuclei in the simple model of the ionic bond, the model which ignores the polarizations of the
ions and pictures the molecule as two closed-shell spherical ions in mutual contact. If the charge density of the Li  ion is spherical
it will exert no net force on the lithium nucleus. The F  ion possesses ten electrons and, since the charge density on the F  ion is also
considered to be spherical, the attractive force this density exerts on the Li nucleus is the same as that obtained for all ten electrons
concentrated at the fluorine nucleus. Nine of these electrons will screen the nine positive nuclear charges on fluorine from the
lithium nucleus. The net force on the lithium nucleus is, therefore, one of attraction because of the one excess negative charge on F.

For the molecule to be stable, the final force on the lithium nucleus must be zero. This can be achieved by a distortion of the
spherical charge distribution of the Li  ion. If a small amount of the 1s charge density on lithium is removed from the region
adjacent to fluorine and placed on the side of the lithium nucleus away from the fluorine, i.e., the charge distribution is polarized
away from the fluorine, it will exert a force on the lithium nucleus in a direction away from the fluorine. Thus the force on the
lithium nucleus in an ionic bond can be zero only if the charge density of the Li  ion is polarized away from the negative end of the
molecule.

A similar consideration of the forces exerted on the fluorine nucleus demonstrates that the F  ion density must also be polarized.
The fluorine nucleus experiences a net force of repulsion because of the presence of the lithium ion. The two negative charges
centred on lithium screen only two of its three nuclear charges. Therefore, the charge density of the F  ion must be polarized
towards the lithium in order to exert an attractive force on the fluorine nucleus which will balance the repulsive force arising from
the presence of the Li  ion. Thus both nuclei in the LiF molecule are bound by the increase in charge density localized in the region
of the fluorine.

The charge distribution of a molecule with an ionic bond will necessarily be characterized not only by the transfer of electronic
charge from one atom to another, but also by a polarization of each of the resulting ions in a direction counter to the transfer of
charge, as indicated in the bond density map for LiF.

In a covalent bond the increase in charge density which binds both nuclei is shared
between them. In an ionic bond both nuclei are bound by the forces exerted by the charge
density localized on a single nucleus.

The bond density maps for N  and LiF are shown side by side to provide a contrast of the changes in the atomic charge densities
responsible for the two extremes of chemical binding. In a covalent bond the increase in charge density which binds both nuclei
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is shared between them. In an ionic bond both nuclei are bound by the forces exerted by the charge density localized on a single
nucleus. It must be stressed that there is no fundamental difference between the forces responsible for a covalent or an ionic bond.
They are electrostatic in each case.

This page titled 7.2: Classification of Chemical Bonds is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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7.3: Molecular Charge Distribution of Homonuclear Diatomic Molecules
Contour maps of the charge distributions for the stable homonuclear diatomic molecules formed from the second-row atoms (Figure ) provide further examples of covalent binding. The maps
illustrate the relative tightness of binding of the density distributions, the density in Li  for example being much more diffuse than that in N . Two important physical dimensions for a molecule are the
bond length and the molecular size. The bond length of a molecule may be directly determined (by X-ray diffraction techniques or by spectroscopic methods) but the size of a molecule cannot be as
precisely defined or measured. However, molecular diameters may be inferred from measurements of the viscosity of gas phase molecules and from X-ray crystallographic studies on the structures of
molecular crystals such as solid N  and O .

Figure : Contour maps of the molecular charge distribution for the stable homonuclear diatomic molecules  to . Click here for contour values.

In general over 95% of the molecular charge lies within the 0.002 contour (the outermost contour illustrated in the density maps) and it has been found that the dimensions of this contour agree well
with the experimental estimates of molecular sizes. The length and width of each molecule, defined respectively as the distance between the intercepts of the 0.002 contour on the molecular axis and
on a line perpendicular to the axis and passing through its mid-point, are given in Table  along with the experimental bond lengths R

Table : Properties of the Total Charge Distributions*

A R Length Width Nonbonded Ra

    Molecule

Li 5.051 8.7 7.8 1.8

B 3.005 9.8 7.2 3.4

C 2.3481 8.5 7.0 3.1

N 2.068 8.2 6.4 3.1

O 2.282 7.9 6.0 2.8

F 2.68 7.9 5.4 2.6

*All distances are given in units of a  = 0.52917 Å.

There is only a rough correlation between the bond length and the overall length of the molecule. Thus the lengths of N  and O  are in the reverse order of their bond lengths, as is also roughly true
experimentally. The lithium molecule has the largest bond length but a molecular length only slightly larger than that of C . There are two factors which must be considered in understanding the
length of a molecule, the bond length and the rate at which the density falls off from the nucleus on the side away from the bond. Table  lists the distance from the nucleus to the 0.002 contour in
the molecule, i.e., the radius of the nonbonded charge density, and the radius of the same contour in the isolated atom. With the exception of Li , this distance in the molecule is almost identical to the
value in the isolated atom. Thus the contribution of the two end lengths, beyond the nuclear separation, to the overall length of a molecule is largely determined by how tightly the density is bound in
the unperturbed atom.

The binding of the atomic densities increases from Li across to F, so that Li and Be are large and diffuse and N, 0, and F progressively tighter and more compact. Therefore F  is smaller in size than
N  or C even though it possesses a greater bond length because the density in the F atom is more tightly bound than that in the C or N atoms. The Li molecule differs from the others in that its length
is considerably less than expected considering the diffuse nature of its atomic density. In this case the molecular length is not approximately equal to the sum of R  and twice the "atomic" radius. This
is, however, easily understood since in the Li atom only one valence-shell electron is present and in the molecule the charge density of this electron is concentrated almost exclusively in the binding
region. This is further illustrated by using instead of the 0.002 contour of Li the 0.002 contour of the 1s  shell of Li , which is in fact equal to the value listed in Table  for the Li molecule.

An estimate of the size of a peripheral atom in a molecule can thus be obtained by taking the sum of ½R  from a suitable source and the atomic radius as defined by the 0.002 contour of the atom
(except for Li, Na, etc., where the core radius should be used). The bond density maps for the second-row homonuclear diatomic molecules (Figure ) indicate that the original atomic densities are
distorted so as to place charge in the antibinding as well as in the binding regions.

  
Figure : Bond density maps for the homonuclear diatomic molecules. Click here for contour values

Apart from Li  the pattern of charge increase and charge removal in these molecules is similar to that discussed previously for N , a pattern ascribed to the participation of 2ps orbitals in the formation
of the bond. Only Li  approximates the simple picture found for H  of removal of charge from the antibinding region and a buildup in the binding region. For the remaining molecules charge density
is increasingly accumulated along the bond axis in both the binding and antibinding regions.

The total accumulation of electronic charge represented by the regions of positive contours in the binding and antibinding regions of the bond density maps are listed in Table .

Table : Charge Contained in the Regions of Increase in Bond Density Maps

7.3.1

2 2

2 2

7.3.1 Li2 F2

7.3.1 e

7.3.1

2 e

2

2

2

2

2

2

o

2 2

2
7.3.1

2

2

2 2 

e

2 +
7.3.1 2 

e
7.3.2

7.3.2

2 2

2 2

7.3.1

7.3.2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64703?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/An_Introduction_to_the_Electronic_Structure_of_Atoms_and_Molecules_(Bader)/07%3A_Ionic_and_Covalent_Bonding/7.03%3A_Molecular_Charge_Distribution_of_Homonuclear_Diatomic_Molecules
http://www.chemistry.mcmaster.ca/esam/contour_values.html
http://www.chemistry.mcmaster.ca/esam/contour_values.html


7.3.2 https://chem.libretexts.org/@go/page/64703

A Binding Region Antibinding Region

Li 0.41 0.01

B 0.30 0.05

C 0.50 0.06

N 0.25 0.13

O 0.10 0.14

F 0.08 0.10

These figures show that in O  and F  a greater amount of charge is transferred to the antibinding region of a single nucleus than to the binding region. It is evident, however, from the shapes of the
contours that the charge increase in the binding region is concentrated along the bond axis where it exerts a maximum force of attraction on the nuclei while the buildup in the antibinding region is
more diffuse.

The net forces on the nuclei are zero for each molecule. Therefore, the force exerted by the charge density in the binding region balances not only the force of nuclear repulsion but the force exerted
by the charge buildup in the antibinding region as well. The nuclei are in each case bound by the charge increase which is shared equally by both nuclei.

An important physical property of a molecule is its bond energy, the amount of energy required to break the bond or bonds in a molecule and change it back into its constituent atoms. The bond
energies of the second-row homonuclear diatomic molecules increase from either Li  or F  to a maximum value for the central member of the series, N  (Table ).

Table : Bond Energies for Homonuclear Diatomic Molecules

Molecule Bond Energy (ev) Number of electron pair bonds

Li 1.12 1

B 3.0 1

C 6.36 2

N 9.90 3

O 5.21 2

F 1.65 1

We may rationalize the variation in the bond energies and the differences in the bond density maps in terms of the orbital theory of bonding. The simple bonding theory proposed in the preceding
chapter equated the valency of an atom to its number of unpaired electrons. Thus the number of electron pair bonds formed between atoms in this series of molecules is predicted to be one for Li , B
and F , two for C  and O , and three for N . Reference to Table  reveals a parallelism between the bond energy and the number of electron pair bonds present in each molecule.

The detailed variation in bond energy through the series can be accounted for in terms of the type of bond (whether it is formed for s or p orbitals) present in each molecule, a feature which is clearly
reflected in the bond density maps, and even more strikingly portrayed in their profiles (Figure ).

  
Figure : Profiles of the bond density maps for the homonuclear diatomic molecules.

The bond in Li  is formed primarily from the overlap of 2s atomic orbitals on each lithium atom. The 2s atomic density of lithium is a diffuse spherical distribution. These same characteristics are
evident in the total charge distribution for Li  and particularly in its bond density map. The charge increase in the binding region, while large in amount (Table ), is very diffuse and the bond
density profile shows that relative to the other molecules, the charge increase is not concentrated along the bond axis. These are the very features expected for a bond resulting from the overlap of
distorted, nondirectional s orbitals.

B  and F  also have but a single pair bond. However, the bonds in these two molecules are formed primarily from the overlap of 2ps orbitals. Since a ps orbital is directed along the bond axis, it is
more effective than an s orbital at concentrating charge density along this same axis. This is particularly evident when we compare the profiles of the bond densities for F  and B  with the profile for
Li . Similarly, the presence of two electron pair bonds and the still larger bond energies found for C and O  are reflected in the larger increases in the charge densities along the internuclear axis in the
binding region. Notice that while B  concentrates three times as much charge as O  in the binding region, it is not concentrated along the bond axis to as great an extent as in O , and consequently its
bond energy is the smaller of the two.

The nitrogen molecule possesses three electron pair bonds and the largest bond energy of the molecules in this series. The charge increase in the binding region is concentrated along the bond axis to a
far greater extent in this molecule than in any of the other molecules in the series. This concentration of the charge density gives N  a stronger bond than C  even though the total charge increase in its
binding region is only one half as great as that for C .

The comparison of the bond energies in this series of molecules clearly illustrates that the strength of a bond is not simply related to the number of electronic charges in the binding region. As
important as the amount of charge is the exact disposition of the charge density in the molecule, whether it is diffuse or concentrated.
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7.4: Dipole Moments and Polar Bonds
Any chemical bond results from the accumulation of charge density in the binding region to an extent sufficient to balance the
forces of repulsion. Ionic and covalent binding represent the two possible extremes of reaching this state of electrostatic
equilibrium and there is a complete spectrum of bond densities lying between these two extremes. Since covalent and ionic charge
distributions exhibit radically different chemical and physical properties, it is important, if we are to understand and predict the
bulk properties of matter, to know which of the two extremes of binding a given molecule most closely approximates.

We can obtain an experimental measure of the extent to which the charge density is unequally shared by the nuclei in a molecule.
The physical property which determines the asymmetry of a charge distribution is called the dipole moment. To illustrate the
definition of the dipole moment we shall determine this property for the LiF molecule assuming that one electron is transferred
from Li to F and that the charge distributions of the resulting ions are spherical.

The dipole moment is defined as the product of the total amount of positive or negative charge and the distance between their
centroids The centroids of the positive and negative charges in a molecule are determined in a manner similar to that used to
determine the center of mass of a system.

  
Figure : diagram for the calculation of the centroids of positive and negative charge in LiF.

With reference to Figure  the "center of gravity" of the positive charge in LiF is easily found from the following equations:

 

Eliminating b from these equations and solving for a we find that  

 

Thus all the positive charge in the LiF molecule can be considered to be at a point one quarter of the bond length away from the
fluorine nucleus. Similarly the centroid of negative charge, remembering that one electron has been transferred from Li to F, is
found to lie at a point one sixth of the bond length away from the F nucleus. The centroids of positive and negative charge do not
coincide, the negative centroid being closer to the F nucleus than the positive centroid. While the molecule is electrically neutral,
there is a separation of charge within the molecule. Let us denote the distance between the centroids of charge by l :  

 

and since there are twelve electrons in LiF, the dipole moment denoted by m is  

 

Thus, not surprisingly, the dipole moment in this case is numerically equal to one excess positive charge at the Li nucleus and one
excess negative charge at the F nucleus, or one pair of opposite charges separated by the bond length.

We can easily calculate the value of the dipole moment. The value of R for LiF is 1.53 ´ 10  cm and the charge on the electron is
4.80 ´ 10 esu. Thus

 

or
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where 1 debye = 1 ´ 10  esu cm. (The fundamental unit for dipole moments is called a debye in honour of P. Debye who was
responsible for formulating the theory and method of measurement of this important physical quantity.) The experimental value of
m for LiF is slightly smaller than the calculated value, being 6.28 debyes. The reason for the discrepancy is easily traced to the
assumption made in the calculation that the charge distributions of the Li  and F  ions are spherical. We have previously indicated
that the charge distributions of both the F  and Li  ions are polarized in a direction counter to the direction of transfer of the
electron in order to balance the forces on the nuclei. The centroid of the ten negative charges on F is not at the F nucleus, but
shifted slightly towards the Li, and the centroid of the charge density on Li  is correspondingly shifted slightly off the Li nucleus
away from the F. Thus the centroid of negative charge for the whole molecule is not as close to the F nucleus as our simple
calculation indicated and the dipole moment is correspondingly less.

Obviously from this discussion the dipole moment of a molecule with a covalent bond will be zero since the symmetry of the
charge distribution will dictate that the positive and negative charge centroids coincide. Thus dipole moments can conceivably
possess values which lie between the covalent limit of zero and the ionic extreme which approaches  in value (n being the
number of electrons transferred in the formation of the ionic bond).

The series of diatomic molecules formed by the union of a single hydrogen atom with each of the elements in the second row of the
periodic table exemplifies both the extreme and intermediate types of binding, and hence of dipole moments. Table  lists the
dipole moments and the values of eR for the ionic extreme (assuming spherical ions) for the second-row diatomic hydride
molecules.

Table : Dipole Moments and Bond Lengths of Second-row Hydrides

AH m*(debyes) eR(debyes) R(Å)

LiH -6.002 -7.661 1.595

BeH -0.282 -6.450 1.343

BH 1.733 5.936 1.236

CH 1.570 5.398 1.124

NH 1.627 4.985 1.038

OH 1.780 4.661 0.9705

FH 1.942 4.405 0.9171

*The negative or positive signs for m imply that H is the negative or positive end of the dipole respectively.

All of these molecules exist as stable, independent species in the gas phase at low pressures and may be studied by spectroscopic
methods or by molecular beam techniques. Only LiH and HF, however, are stable under normal conditions; LiH is a solid and HF a
gas at room temperature. The remaining diatomic hydrides are very reactive since they are all capable of forming one or more
additional bonds.

The variation of the dipole moment in this series of molecules provides a measure of the relative abilities of H and of each of the
second-row elements to attract electrons. For example, the dipole moment for LiH illustrates that electron density is transferred
from Li to H in the formation of this molecule. In HF, on the other hand, charge density is transferred from H to F. With the
exception of BH, there is a steady increase in m from -6.0 debyes for LiH to +1.9 debyes for HF. Only LiH approaches the ionic
limit of Li H . BeH appears to possess a close to equal sharing of the valence electrons. The remaining molecules, while exhibiting
some degree of charge removal from H, are all far removed from the ionic extreme. They represent cases of molecular binding
which lie between the two extremes, ionic and covalent. They are referred to as polar molecules.

We can best illustrate the variation in the chemical binding in this series of molecules by considering the properties of the
molecular charge and bond density distributions (Figure 7-7 and 7-8). In LiH almost all of the molecular charge density is centerd
on the two nuclei in nearly spherical distributions.
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Figure . Contour maps of the molecular charge distrubution of the diatomic hydride molecules LiH to HF. The proton is the
nucleus on the right-hand side in each case. Click here for contour values.
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Figure . Bond density maps for the diatiomic hydride molecules LiH to HF. The proton is on the right-hand side in each case.
Click here for contour values.

The nonbonded charge and radius for lithium, 1.09 e  and 1.7 a  respectively, are characteristic of the 1s  inner shell distribution of
Li . Thus the molecular charge distribution for LiH indicates that the single valence electron of lithium is transferred to hydrogen
and that the bond is ionic. (Recall that initially the Li atom is much larger than an H atom. The density map for LiH should be
compared to that given previously for LiF, Figure 7-1.)

In BeH, the valence density has the appearance of being equally shared by the two nuclei. From BH through to HF a decreasing
amount of density is centerd on the proton to the extent that the charge distribution of HF could be approximately described as an
F  ion distribution polarized by an imbedded proton.

The increase of the effective nuclear charge across a row of the periodic table is reflected not only in the amount of charge
transferred to or from the hydrogen, but also in the relative sizes of the molecules. In BeH the density is diffuse and the molecule is
correspondingly large. In HF the density is more compact and the molecule is the smallest in the series. The decrease in the size of
the molecule from BH to HF parallels the decrease in the size of the atoms B to F. The intermediate size of LiH is a consequence of
the one and only valence electron of lithium being transferred to hydrogen, and thus the size of LiH is a reflection of the size of the
Li  ion and not of the Li atom.

In general terms, the bond density maps provide a striking confirmation of the transfer of charge predicted by the relative electron
affinities or by the relative effective nuclear charges of hydrogen and the second-row elements Li ® F. We may again employ the
position of the charge increase in the bond density map to characterize the type of binding present in the molecule. The map for
LiH exhibits the same characteristics as does the one for LiF (Figure 7-2), the contours in the region of the Li nucleus being
remarkably similar in the two cases. The valence density is clearly localized about the proton just as it is about the fluorine nucleus
in LiF. The 1s core density remaining on lithium is clearly polarized away from the proton, and the density increase localized on
the proton is polarized towards the lithium as required in ionic binding.

The one principal difference between the LiH and LiF bond density maps concerns the shape of the contours representing the
density increase on the proton and fluorine nucleus. In LiF the contours on fluorine are similar in shape to those obtained for a 2ps
orbital density. In LiH the contours on the proton are nearly spherical. In terms of a simple orbital model we imagine the 2s
electron of Li to be transferred to the 1s orbital of hydrogen in LiH and to the 2ps orbital of fluorine in LiF. The spherical and
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double-lobed appearance of the density increases found for hydrogen and fluorine respectively show these orbital models of the
binding to be reasonable ones.

From BeH through the rest of the series, the bond density maps show an increase in the amount of charge removed from the proton
and transferred to the region of the other nucleus. This is evident from the increase in the number and diameter of the dashed
contours in the nonbonded region of the proton. The pattern of charge increase and charge removal in the regions of the Be, B, C,
N, O and F nuclei is similar to that found for these nuclei in their homonuclear diatomic molecules, and is characteristic of the
participation of a ps orbital in the formation of the bond. The polarization of the density in the region of the hydrogen is of the
simple dipolar type characteristic of a dominant s orbital contribution. As previously discussed, the double-lobed appearance of the
density increase in the region of fluorine in the bond density map for LiF can be viewed as characteristic of the ionic case when a
2ps orbital vacancy is filled in forming the bond. This limiting pattern is most closely approached in the hydride series by HF, the
molecule exhibiting the largest degree of charge transfer from hydrogen. HF, of all the hydrides, is most likely to approach the
limiting ionic extreme of H F . However, the charge increase in the region of fluorine in HF is not as symmetrical as that found for
F in the LiF molecule. The proton in HF, unlike the Li  ion in LiF, is imbedded in one lobe of the density increase on F and distorts
it. Thus, unlike the ionic extreme of LiF, the charge increase on F in HF is shared by both nuclei in the molecule.

Another important difference between the charge distributions of HF and LiF concerns the polarizations of the charge density in the
immediate vicinities of the nuclei. In LiF (or LiH) the localized charge distributions are both polarized in a direction opposite to the
direction of charge transfer Li ® F (or Li ® H). These polarizations are a consequence of the extreme charge transfer from lithium
to fluorine, a transfer resulting in a force of attraction on the lithium nucleus and one of repulsion on the fluorine nucleus. In HF the
charge density in the regions of the proton and the fluorine nucleus is polarized in the same direction as the direction of charge
transfer from H ® F. Thus the amount of charge transferred to the vicinity of the fluorine in HF is not, unlike the situation in LiF,
sufficient to screen the nuclear charge of fluorine and hence exert a net attractive force on the proton. Instead, the fluorine nucleus
and its associated charge density exert a net repulsive force on the proton, one which is balanced by the inwards polarization of the
charge density in the region of the proton.

The polarization of the charge density on the proton adds to and is contiguous with the charge increase in the binding region. Thus
in HF and in the molecules BeH to OH for which the charge transfer is less extreme, the nuclei are bound by a shared density
increase and the binding is covalent. From BeH through the series of molecules the sharing of the charge increase in the binding
region becomes increasingly unequal and favours the heavy nucleus over the proton. The latter molecules in the series, NH, OH
and HF, provide examples of polar binding which are intermediate between the extremes of perfect covalent and ionic binding as
exhibited by the homo nuclear diatomics and LiF respectively.

In general, chemical bonds between identical atoms or between atoms from the same family in the periodic table will exhibit equal
or close to equal sharing of the bond density and be covalent in character. Compounds formed by the union of elements in columns
I or II with elements in columns VIA or VIIA will be ionic, as exemplified by LiF or BeO. We find a continuous change from
covalent to ionic binding as the atoms joined by a chemical bond come from columns in the periodic table which are progressively
further removed from one another. This is illustrated by the variation in the molecular charge distributions through the series of
molecules shown in Figure .
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Figure . Molecular charge distributions for the 12-electron isoelectronic series , BN, BeO and LiF. Click here for contour
values.

This series of molecules is formed (in an imaginary process) by the successive transfer of one nuclear charge from the nucleus on
the left to the nucleus on the right, starting with the central symmetrical molecule C .

The molecules are said to form an isoelectronic series since they all contain the same number of electrons, twelve. The molecular
charge distributions in this series illustrate how the charge distribution and binding for a constant number of electrons changes as
the nuclear potential field in which the electrons move is made increasingly unsymmetrical.

In C  the nuclear charges are, of course, equal and the charge distribution is symmetrically shared by both nuclei in the manner
characteristic of covalent binding. In the remaining molecules the valence charge density is increasingly localized in the region of
the left-hand nucleus. This is particularly evident in the bond density maps and their profiles (Figure ) which show the
increasing extent to which charge density is transferred from the region of the nucleus on the right (B, Be, Li) to its partner on the
left (N, 0, F).
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Figure . Bond density maps and profiles along the internuclear axes for the 12-electron sequence of molecules , BN, BeO
and LiF. Click here for contour values.

The charge distribution of BN (with nuclear charges of five for boron and seven for nitrogen) is similar to that for C  in that charge
is accumulated in the nonbonded regions of both nuclei as well as in the region between the nuclei. However, the buildup of charge
behind the boron nucleus is smaller than that behind the nitrogen nucleus and the charge density shared between the nuclei is
heavily shifted towards the nitrogen nucleus. Thus the binding in BN is predominantly covalent, but the bond density is polarized
towards the nitrogen.
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The charge transfer in BeO and LiF is much more extreme and the bond density maps show a considerable loss of charge from the
nonbonded regions of both the Be and Li nuclei. Notice that except for contours of very low value the charge density in BeO, as in
LiF, is localized in nearly spherical distributions on the nuclei, distributions which are characteristic of Be  and O  ions. A count
of the number of electronic charges contamed within the spherical or nearly spherical contours centerd on the nuclei in BeO and
LiF indicates that the charge distributions correspond to the formulae Be O  and Li F . That is, the binding is ionic and
corresponds to the transfer of approximately one charge from Li to F and of one and one half charges from Be to O. Thus while the
binding in LiF is close to the simple orbital model of Li (1s )F (1s 2s 2p ) as noted before, the binding in BeO falls somewhat
short of the description Be (1s )O (1s 2s 2p ). Notice that the density contours on oxygen in BeO are more distorted towards the
Be than the contours on F are towards Li in LiF. This illustrates that the oxygen anion is more polarizable than is the fluoride anion.

The radius of the charge distribution on the nonbonded side of the Be nucleus as measured along the bond axis is identical to that
found for an isolated Be  ion. (Recall that the radius of an atomic or orbital density decreases as the nuclear charge increases. Thus
the Li  ion is larger than the Be  ion as indicated in Figure 7-9.) However, the radius of the Be charge density perpendicular to
the bond axis is much greater than that for a Be  ion. This shows, as does the actual electron count given above, that the two
valence electrons of boron are not completely transferred to oxygen in the formation of the BeO molecule.

Hydrogen is an exception to the above set of generalizations regarding an element's position in the periodic table and the ionic-
covalent nature of the bond it forms with other elements. It does not behave in a manner typical of family IA. The bond formed
between hydrogen and another member of group IA, as exemplified by LiH, is ionic and not covalent. Here hydrogen accepts a
single electron to fill the vacancy in its 1s shell and thus resembles the members of family VIIA, the halogens. The bond in HF,
however, is more polar than would be expected for the union of two adjacent members of the same family, and hydrogen is
therefore not a typical member of family VIIA. This intermediate behaviour for H is understandable in that the values of its
ionization potential and electron affinity are considerably greater than those observed for the alkali metals (IA) but are considerably
less than those found for the halogens (VIIA).

This page titled 7.4: Dipole Moments and Polar Bonds is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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7.5: Electronegativity
It is important that we be able to predict the extent to which electronic charge will be transferred from one atom to another in the
formation of a chemical bond, that is, to predict its polarity. The very detailed results given previously for the charge distributions
of the diatomic hydrides are not generally available and there is a need for an empirical method which will allow us to estimate the
polarity of any chemical bond. It is possible to define for an element a property known as its electronegativity, which provides a
qualitative estimate of the degree of polarity of a bond. Electronegativity is defined as the ability of an atom in a molecule to attract
electrons to itself. The concept of an electronegativity scale for the elements was proposed by Pauling.

The electron affinity of an atom provides a direct measure of the ability of an atom to attract and bind an electron:

with 

here A  denotes the electron affinity of atom . For the reactions of two elements,  and , with free electrons, the relative values
of the electron affinities A  and A  provide a measure of the relative independent tendencies of X and Y to change into  and 

. However, we are interested in the reaction of X with Y and in being able to predict whether the  bond will be polar in
the sense  or . The electron which is to be partially or wholly gained by  or  is not a free electron but is bound to
the atom Y or X respectively. Consequently we are interested in the relative energies of the following two processes:

with

and

with

For reaction  to be favored over reaction , not only must  have a high electron affinity, it is also necessary that X have a
low ionization potential. We would expect the bonding electrons to be approximately equally shared in the  bond, if DE  =
DE , as neither extreme structure is favored over the other. Thus the condition for a non-polar covalent bond is

or, collecting quantities for a given atom on one side of the equation,

Equation  states that a non-polar bond will result when the difference between the ionization potential and the electron affinity
is the same for both atoms joined by the bond. If the quantity I  - A  is greater than I  - A , then the product X Y  will be
energetically favoured over X Y . Thus the quantity (I - A) provides a measure of the ability of an atom to attract electrons (or
electronic charge density) to itself relative to some other atom. The electronegativity, denoted by the symbol , is defined to be
proportional to this quantity:

The electronegativities of the elements in the first few rows of the periodic table are given in Table .

Thus the quantity (I - A) provides a measure of the ability of an atom to attract electrons
(or electronic charge density) to itself relative to some other atom.

Table : Some Electronegativity Values
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H

Li Be B C N O P

1.0 1.5 2.0 2.5 3.0 6.5 4.0

Na Mg Al Si P S Cl

0.9 1.2 1.5 1.8 2.1 2.5 3.0

K Ca     Br

0.8 1.0     2.8

As expected, the electronegativity increases from left to right across a given row of the periodic table and decreases down a given
column. The greater the difference in the electronegativity values for two atoms, the greater should be the disparity in the extent to
which the bond density is shared between the two atoms. Pauling has given empirical expressions which relate the electronegativity
difference between two elements to the dipole moment and to the strength of the bond.
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7.6: Interaction Between Molecules
The properties observed for matter on the macroscopic level are determined by the properties of the constituent molecules and the interactions between them. The polar or non-polar character of a
molecule will clearly be important in determining the nature of its interactions with other molecules. There will be relatively strong forces of attraction acting between molecules with large dipole
moments. To a first approximation, the energy of interaction between dipolar molecules can be considered as completely electrostatic in origin, the negative end of one molecule attracting the positive
end of another.

The presence of intermolecular forces accounts for the existence of solids and liquids. A molecule in a condensed phase is in a region of low potential energy, a potential well, as a result of the
attractive forces which the neighboring molecules exert on it. By supplying energy in the form of heat, a molecule in a solid or liquid phase can acquire sufficient kinetic energy to overcome the
potential energy of attraction and escape into the vapor phase. The vapor pressure (the pressure of the vapor in equilibrium with a solid or liquid at a given temperature) provides a measure of the
tendency of a molecule in a condensed phase to escape into the vapor; the larger the vapor pressure, the greater the escaping tendency. The average kinetic energy of the molecule in the vapor is
directly proportional to the absolute temperature. Thus the observation of a large vapor pressure at a low temperature implies that relatively little kinetic energy is required to overcome the potential
interactions between the molecules in the condensed phase.

By supplying energy in the form of heat, a molecule in a solid or liquid phase can acquire sufficient kinetic energy to overcome the potential
energy of attraction and escape into the vapor phase.

The only potential interactions possible between non-polar, covalently bonded molecules are of the van der Waals' type as previously discussed for the interaction between two helium atoms at large
internuclear separations. Molecules such as H  and N have closed shell electronic structures in the same sense that helium does; all of the valence electrons are paired and no further chemical bonding
may occur. The small polarizations of the charge densities induced by the long-range interactions of closed shell atoms or molecules result in only weak forces of attraction. The low boiling points
(the temperature at which the vapor pressure above the liquid phase equals one atmosphere) observed for substances composed of molecules which can interact only through a van der Waals' type
force are, therefore, understandable. Table  lists the normal boiling points for a number of representative compounds.

Table : Normal Boiling Points (°K)

S
u
b
s
t
a
n
c
e

BP Substance BP Substance BP

H
e
4.2  NH 240  NaCl 1686

H
20.4  HF 292  LiF 1949

N
77.4  H O 373  BeO 4100

A
r
87.4       

An argon atom is larger than a helium atom and its outer charge density is not bound as tightly as that in helium. (Recall that the ionization potential for argon is less than that for helium.)
Consequently, the charge density of argon is more polarizable than that of helium and the forces of attraction between argon atoms and hence its normal boiling point are correspondingly greater.
These same forces do, of course, operate in the gas phase as well and are the cause of the observed deviations from ideal gas behaviour.

The interactions between polar molecules such as HF and H O will be much larger and their normal boiling points greater than those observed for the non-polar molecules. When hydrogen is present
at the positive end of a polar bond, the dipolar interactions are particularly strong and are given a special name, hydrogen-bonded interactions. The hydrogen bond increases in strength as the
electronegativity of the atom to which the H is chemically bonded increases. (We noted previously that the dipole moment in the HA molecules increased as A was made more electronegative.) Liquid
hydrogen fluoride consists of chains of molecules joined end to end; each hydrogen of one molecule is attracted to the fluorine of the next. In liquid water, each water molecule is hydrogen bonded to
four other water molecules. This accounts for what appears to be an anomalously high boiling point for water when compared with the values observed for the neighboring hydride molecules NH  and
HF.

The condensed phases so far considered are called molecular solids or molecular liquids because the identity of the individual molecule is largely retained. As the forces between the molecules
become larger, the point of view of regarding a solid as a collection of individual, interacting molecules becomes less satisfactory. In the limiting case of the strong interactions which exist between
the ions in an ionic crystal, the concept of a discrete molecule in the solid phase ceases to exist. In solid KCl, for example, the potassium and chloride ions exist as separate entities; each potassium ion
is in contact with six chloride ions, which in turn are each in contact with six potassium ions. Each ion attracts its six neighboring ions equally and thus the structure is symmetrical and therefore
cubic; six ions of one sign occupy the centers of the faces of a regular cube with an ion of opposite sign at its center.

The number of nearest neighbors a given ion has in an ionic crystal is determined by the relative sizes of the positive and negative species. The Be  ion is considerably smaller than O  and the basic
structure of BeO is tetrahedral, each ion surrounded by four ions of opposite charge. The strong electrostatic forces between the ions in a crystal are reflected in the high boiling points recorded in
Table  for the ionic compounds.
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7.7: Literature References
More detailed discussions of the molecular charge distributions and the forces exerted on the nuclei will be found in the references
given below. The sources of the wave functions used in the calculation of the density distributions are also given in these
references.  

1. R. F. W. Bader, W. H. Henneker and P. E. Cade, J. Chem. Phys. 46, 3341 (1967). (Homonuclear diatomic molecules.)

2. R. F. W. Bader, I. Keaveny and P. E. Cade, J. Chem. Phys. 47, 3381 (1967). (The second-row diatomic hydrides, LiH ® HF.)

3.
R. F. W. Bader and A. D. Bandrauk, J. Chem. Phys. 49, 1653 (1968). (The 12- and 14-electron isoelectron series, C , BeO, LiF
and No CO BF.)

4.
P. E. Cade, R. F. W. Bader, I. Keaveny and W. H. Henneker, J. Chem. Phys. 50, 5313 (1969). (The third-row diatomic hydrides
NaH ® HC1.)
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7.8: Further Reading
L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, N. Y., 1960, third edition.
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7.A: Appendix

A QUANTITATIVE DEFINITION OF ATOMIC CHARGE 

Since the publication of this book in 1970, a theory of atoms in molecules (AIM) has been developed that enables one to define an
atom in a molecule and all of its properties. The theoretical definition of an atom is based on the properties of the experimentally
observable charge density. This theory is described elsewhere in this web site, but we present here a brief introduction to enable a
quantitative definition of the charge on atom in a molecule. The theory is fully described and developed in the book "Atoms in
molecules: a quantum theory", published by the University of Oxford Press, 1990.

A molecule, or a crystal, is partitioned into individual atoms in terms of surfaces that satisfy a particular condition on the electron
density. The partitioning is a direct result of the density exhibiting a maximum at the position of each nucleus. As a consequence,
the density passes through some minimum value before again attaining some maximum value at a neighbouring nucleus, as
illustrated in the displays of the molecular density distributions shown in this book. This fundamental property of a charge
distribution is illustrated in the accompanying figure, Fig. A1 which displays the electron density in a plane of the nuclei for the
LiF molecule. The distribution is dominated by the two nuclear maxima. The point of minimum density along the line linking the
two nuclei � the saddle point in the density � is a starting point for two paths of steepest descent away from this point, paths that
define the boundary separating the atoms in this plane. The collection of such paths for all planes obtained by rotation about the
axis defines the interatomic surface. The interatomic surfaces defined in this manner yield a �natural partitioning� of a molecule
into atoms, as illustrated in Fig. A1 for LiF and in Figures A2a and A2b for the second- and third-row diatomic hydrides.

The properties of the atoms defined by these �natural� surfaces are determined by quantum mechanics. Thus, not only does
quantum mechanics predict the properties of a molecule, it also predicts the properties of its individual constituent atoms. The
theory of atoms in molecules (AIM) equates every property of a molecule to the sum of its atomic contributions. Among the
properties of immediate interest is the charge on an atom. The electron population of an atom A - its average number of electrons -
a quantity denoted by N(A), is obtained by integrating the electron density over the space of the atom up to its atomic boundaries,
as given in equation A-1 where the electron density at a point denoted by the position vector r is denoted by r (r)  

A-1

The subscript A on the integral means that the integration is carried out over the space of the atom A up to its atomic boundary, that
is, its interatomic surface. The charge on the atom, q(A), is the difference between the nuclear charge Z  and its electron
population, as given in equation A-2  

A-2

Another useful property determined by the electron density is the atomic polarization. In a free atom the centroid of negative
charge coincides with the nucleus and there is no dipole moment, that is, no separation of charge. When an atom is in chemical
combination, its density becomes polarized, either towards or away from a neighbouring atom, as discussed and illustrated in this
chapter. One can easily determine the displacement of the centroid of negative charge from the position of the nucleus by
determining the average (vector) distance of every element of the electron density from the nucleus of the atom. This corresponds
to integrating the product of the density at each position r, with the vector distance of this point from the nucleus, a distance
denoted by the vector r  to obtain the atomic moment M(A). Its definition is given in equation A-3.  

A-3

The atomic moment is a vector because it has a direction as well as a magnitude.

The dipole moment m of a diatomic molecule A-B, when expressed in terms of atomic contributions, is given by a charge transfer
term, equal to the charge on atom B multiplied by R, the vector distance from the nucleus of A and to that of B, and a polarization
term given by the sum of the two atomic moments. The dipole moment of A-B is therefore given as in equation A-4  

A-4

A

A
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where all three terms are directed along the internuclear axis. The sign of the charge transfer term q(B)R is determined by the sign
of q(B) = -q(A). The model expression for m given for LiF in the text assumes the complete transfer of one electron from Li to F
and equates the dipole moment to the charge transfer term alone, that is, to the first term of equation A-4. We can use the molecular
density distribution for LiF displayed in Fig. 7-9 or Fig. A1 to calculate the charges on the atoms and determine the atomic
polarizations to illustrate how the atomic contributions determine the molecular dipole. The charge on F is q(F) = -0.938e, close to
the value of -1e assumed in the model calculation. As already discussed, the atoms are in general polarized in a direction counter to
the direction of the charge transfer. In LiF the charge transfer is from Li ® F and hence the fluorine atom is polarized towards the
lithium atom which in turn is polarized away from the fluorine atom. The length of the vector R in LiF is 1.564 Å and expressing
the charge on the fluorine atom in esu, the charge transfer contribution to the dipole moment is � 7.05 debyes. The atomic
polarizations are M(F) = +0.714 and M(Li) = +0.043 debyes to yield a dipole moment with a magnitude of 6.29 debyes, the
experimental value being 6.28 debyes.

Fig. A1. Top diagram is a contour map of the electron density for the LiF molecule in a plane containing the nuclei. The outer
contour has the value 0.001 au and the remaining contours increase in value as previously given. The boundary separating the basin
of the F atom on the left, from the Li aton on the right, is also indicated. It is defined by the path of steepest descent from the point
of minimum density along the Li-F internuclear axis indicated in the relief map of the density shown in the lower diagram.

Properties Determined by the Electronic Charge Density 
Pauling (1960) defined electronegativity to be 'the power of an atom in a molecule to attract electrons to itself.' This concept has
proved to be extremely useful and it is reflected in the net charges on the atoms found in diatomic molecules, as determined by the
theory of atoms in molecules. The atomic charges in a diatomic molecule are a direct measure of the relative abilities of the two
atoms to attract and bind electronic charge within their basins. The variation in the charge on atom A in AB where A and B vary
across the second row of the periodic table, Li ® F and including hydrogen are displayed in Fig. A2  

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64748?pdf
http://www.chemistry.mcmaster.ca/esam/Chapter_7/appendix.html#Fig_A1
http://www.chemistry.mcmaster.ca/esam/Chapter_7/appendix.html#Fig_A2


7.A.3 https://chem.libretexts.org/@go/page/64748

  

  

  

  

Fig. A2. (a) Bar graphs of the charges on the atoms in the ground states of the diatomic molecules AB where both A and B = Li,
Be, B, C, H, N, O, F. This is the ordering of increasing electronegativity as determined by theory�all charges to the left of the
position of the reference atom are negative, all those to its right are positive. (b) Bar graphs of the charge on hydrogen q(H), for the
second- and third-row diatomic hydrides.

Each atom withdraws charge from elements to the left of it and donates charge to those on its right, with H appearing between C
and N. The orderings are as anticipated with C and H possessing almost equal electronegativities. The electronegativity of C
relative to H increases with the degree of unsaturation and with the extent of geometric strain. This result is anticipated on the basis
of the orbital model which predicts the electronegativity of C to increase as the s character of its hybrid bonds to H increases. Most
of the secondary variation in charges across the table are explicable in terms of the extent of charge transfer being limited by either
the number of valence electrons on the donor or vacancies on the acceptor. The charges on the third-row elements Na ® Cl are also
given relative to H in their hydrides and, as anticipated, H advances towards the electronegative end of the scale in this row relative
to its position vis-à-vis the second-row elements. Unexpectedly, sodium and magnesium are slightly less electropositive than their
second-row congeners.

The charge distributions of the second- and third-row hydrides are illustrated in Fig. A3a and b in the form of contour maps.

(a)
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Fig. A3. Contour maps of the ground-state electronic charge distributions for the second- and third-row diatomic hydrides showing
the positions of the interatomic surfaces. The first set of diagrams (a) also include a plot for the ground state of the H  molecule.
The outer density contour in these plots is 0.001 au. The remaining contours increase in value according to the scale given in the
table A1. (a) The left-hand side H , LiH, BeH , BH; right-hand side CH, NH, OH, HF. (b) The left-hand side: NaH, MgH, AlH,
SiH; right-hand side PH, SH, HCl.

The extent and direction of charge transfer and its effect on the charge distribution are reflected in the behaviour of the interatomic
surface which is indicated for each molecule. In LiH the surface envelops what is essentially a Li ion while in HF the total charge
distribution is dominated by the forces exerted by the F nucleus. The charges q(H) of AH are also characteristic of the stable
polyatomic species AH  the two values usually differing by less than 0.05 e, and they reflect the chemical behaviour of the
hydrides. The hydrides of Li, Be, and B, for example, are all hydridic, expelling molecular hydrogen from water and, for all of
these, q(H) < 0. There is a sharp break in the value of q(H) for methane for which q(H) » 0 and this is a faithful reflection of the
non-polar nature of this molecule. It has a low solubility in water and does not dissociate. The remaining hydrides, NH , H O, and
HF, are all increasingly polar with q(H) > 0 and the ordering of the charges accounts for the aqueous solution of ammonia being
basic and that of HF being acidic.

The ability to determine the charge on an atom in a molecule removes the necessity of defining a numerical electronegativity scale.
The concept, however, remains useful and one may use the atomic populations to demonstrate that they recover the basic idea
underlying electronegativity�to predict the degree of charge transfer between two atoms. Since hydrogen can either donate or
accept but a single electron, the electron population of hydrogen in AH may be used to define an electronegativity per electron of A
relative to hydrogen. This electronegativity is given by X(A) = 1 - N(H) , where N(H)  is the population of H in AH. A positive
or negative value for X(A) implies that A has a greater or lesser bonding electron affinity than does hydrogen, respectively. If the
X(A) are meaningful, then the difference |X(A) - X(B)| should determine the charge transfer per valence electron in AB. Using this
concept, the population of A in AB is predicted to be  

 

where v is the number of valence electrons on the donor A or the number of vacancies on the acceptor B, whichever value is
limiting. N(A)  is the electron population of the isolated A atom. Examples of predicted and actual atomic populations for A are:
NF, 6.56 (6.56); NO, 6.46 (6.50); CF, 5.21 (5.22); CO, 4.78 (4.65); CN, 4.94 (4.88); LiC, 2.12 (2.12). With the added stipulation
that the charge transferred per vacancy, |X(A) - X(B)|, cannot exceed v, then all diatomic fluoride populations are predicted to
within a maximum error of 0.08 electrons. This method of predicting the charge transfer between atoms yields significantly larger
errors only for some compounds of the elements Be and B.

The charge distributions of the diatomic hydrides illustrate a general phenomenon�that a significant degree of interatomic charge
transfer is accompanied by a polarization of the valence densities of the atoms in a direction counter to that of the charge transfer.
The polarizations are in response to the electric field created by the charge transfer, the acceptor atom polarizing towards the
positively charged donor atom which is itself polarized away from the negatively charged acceptor. This polarization of the donor
atom is particularly pronounced when it possesses a greater number of valence electrons than there are vacancies on the acceptor
atom, as illustrated by the data for the diatomic hydrides given in Table A2. This Table lists the atomic quantities that determine the
molecular dipole moment, as given in equation A-4; the charges on the atoms (equation A-2 for q(A)), the atomic polarizations
(equation A-3 for M(A)), the charge transfer contribution to the molecular dipole moment under the headingm(CT) = q(H)R = -
q(A)R, the dipole moment for each molecule m(AH) and the nonbonded radius of the A atom, r (A).

In general, the magnitude of the molecular dipole is less than that m(CT), the charge transfer contribution, because of the opposing
atomic polarizations. The polarizations of Li and Na in their hydrides are quite small as they correspond to tightly bound core
densities. However, in some instances such as BH, the atomic polarizations determine the direction of the molecular moment. For
the second row, the atomic polarizations are largest for the diffuse valence density on Be and B. They are larger still for their third-
row congeners and Si where, because of the larger, 10-electron K-L core, the valence density is less tightly bound and more
polarizable.

Attempts to assign atomic charges on the basis of measured dipole moments are unrealistic as such a procedure ignores the
polarizations of the atomic densities. Such an attempt corresponds to assuming the molecular charge distribution to be composed of
a set of spherically symmetric atomic densities, each centred on its own nucleus, a physically unacceptable model even in the limit
of an ionic system. It should be evident from a comparison of the charge distribution in the non-bonded region of the A atoms that

2

2

n

3 2

AH AH

a

n

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64748?pdf
http://www.chemistry.mcmaster.ca/esam/Chapter_7/tables.html#Table_A1
http://www.chemistry.mcmaster.ca/esam/Chapter_7/tables.html#Table_A2


7.A.6 https://chem.libretexts.org/@go/page/64748

the reduction in magnitude or reversal in sign of the dipole moment, which occurs after LiH in the second-row and after Na in the
third-row, is a consequence of an atomic polarization and is not indicative of a sudden increase in the electronegativity of the A
atom. The extent of the physical distortion of those atoms for which the atomic polarizations are greatest is reflected in the values
of their non-bonded radii. A non-bonded radius, r (W), is defined as the axial distance from a nucleus to an outer contour of the
charge density on its non-bonded side. The 0.001au contour is chosen since the corresponding density envelopes provide good
approximations to the experimentally determined van der Waals sizes and corresponding radii for molecules in the gas phase. The
non-bonded radii for Li and Na are close to the values for the corresponding singly-charged ions while those for the strongly back-
polarized atoms are all considerably greater than are their values in the free atomic state.

The presence of such a large and diffuse (weakly bound) charge distribution has important chemical consequences, imparting to the
molecule the characteristics of a strong Lewis base. A classic example of this behaviour is the carbon atom in the CO molecule.
This molecule has a near-zero dipole moment because of very pronounced polarizations of the atomic densities, particularly that of
carbon, which oppose the considerable charge transfer moment. The charge on oxygen is - 1.33 e and the magnitudes of the
opposing atomic dipoles are |M(O)| = 0.98 au and |M(C)| = 1.72 au with the non-bonded radius on carbon exceeding its free atomic
value by 0.15 au. The physical importance of the atomic polarization of carbon is reflected in the ability of CO to act as a Lewis
base, particularly in the formation of metal carbonyls. The considerable difference in the electronegativities of C and O is reflected
in the relatively large dipole moment, |m| = 1.11 au, of the formaldehyde molecule, H C=O. The charge transfer from C to O in
formaldehyde where q(O) = - 1.24 e, is only slightly less than it is in CO. Unlike CO, however, the charge transfer contribution
dominates the final moment in formaldehyde because of the close to halving of the atomic dipole on carbon which results from the
use of its non-bonded density in the formation of non-polar bonds to the hydrogen atoms.

Table of Contour Values 
This table lists the values of the contours appearing in molecular density maps and bond density maps for those cases where the
values are not given in the figure. In charge density maps the contours increase in value from the outermost one to the innermost
one in the order indicated below. As an example, the reader may refer to Fig. 6-2, a contour map of the charge density for H  with
the contours labelled in the order indicated by the table. In the bond density difference maps the contour values increase (solid
lines) or decrease (dashed lines) from the zero lines indicated on cach contour map.  

Key to Charge Density Maps Key to Density Difference or Bond Density Maps

Value of Contour

Contour number
beginning with
outermost one

Value of contour in au
Contour number (from
zero contour)

increase (solid contour)
decrease (dashed
contour)

1 0.002 1 +0.002 -0.002

2 0.004 2 +0.004 -0.004

3 0.008 3 +0.008 -0.008

4 0.02 4 +0.02 -0.02

5 0.04 5 +0.04 -0.04

6 0.08 6 +0.08 -0.08

7 0.2 7 +0.2 -0.2

8 0.4 8 +0.4 -0.4

9 0.8 9 +0.8 -0.8

10 2

11 4

12 8

13 20

n

2

2
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7.E: Exercises

1.
Arrange the following compounds in the order of the increasing polarity of their bonds: 
CO, HF, NaCI, O

2.

Pauling introduced the idea of defining the percent ionic character possessed by a chemical bond. A covalent bond with equal
sharing of the charge density has 0% ionic character, and a perfect ionic bond would of course have 100% ionic character. One
method of estimating the percent ionic character is to set it equal to the ratio of the observed dipole moment to the value of eR,

all multiplied by 100. 
The value of eR is, it will be recalled, the value of the dipole moment when one charge is completely transferred in the formation
of the bond and the resulting ions are spherical.
Use this method to determine the percent ionic character of the bonds in the diatomic hydrides, LiH to HF. Could any real
molecule ever exhibit 100% ionic character according to this definition? 

3.

Pauling has proposed an empirical relationship which relates the percent ionic character in a bond to the electronegativity

difference. 
From the electronegativity values given in Table 7-2, it is seen that the difference (c  - c ) is greater than the value (c  - c ).
Using the above relationship, we can calculate that the bond in HF should be 59% ionic while that in LiH should be only 26%
ionic. Does the estimate of the relative ionic character in HF and LiH based on the electronegativity difference agree with that
obtained by a comparison of the molecular charge density and density difference maps for these two molecules?

This page titled 7.E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via
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8.1: Introduction
There is a second major theory of chemical bonding whose basic ideas are distinct from those employed in valence bond theory.
This alternative approach to the study of the electronic structure of molecules is called molecular orbital theory. The theory applies
the orbital concept, which was found to provide the key to the understanding of the electronic structure of atoms, to molecular
systems.

The concept of an orbital, whether it is applied to the study of electrons in atoms or molecules, reduces a many-body problem to the
same number of one-body problems. In essence an orbital is the quantum mechanical description (wave function) of the motion of
a single electron moving in the average potential field of the nuclei and of the other electrons which are present in the system. An
orbital theory is an approximation because it replaces the instantaneous repulsions between the electrons by some average value.
The difficulty in obtaining an accurate description of an orbital is the difficulty in determining the average potential field of the
other electrons. For example, the 2s orbital in the lithium atom is a function which determines the motion of an electron in the
potential field of the nucleus and in the average field of the two electrons in the 1s orbital. However, the 1s orbital is itself
determined by the nuclear potential field and by the average potential field exerted by the electron in the 2s orbital. Each orbital is
dependent upon and determined by all the other orbitals of the system. To know the form of one orbital we must know the forms of
all of them. This problem has a mathematical solution; the exploitation of this solution has proved to be one of the most powerful
and widely used methods to obtain information on the electronic structure of matter.

A molecular orbital differs from the atomic case only in that the orbital must describe the motion of an electron in the field of more
than one nucleus, as well as in the average field of the other electrons. A molecular orbital will in general, therefore, encompass all
the nuclei in the molecule, rather than being centred on a single nucleus as in the atomic case. Once the forms and properties of the
molecular orbitals are known, the electronic configuration and properties of the molecule are again determined by assigning
electrons to the molecular orbitals in the order of increasing energy and in accordance with the Pauli exclusion principle.

In valence bond theory, a single electron pair bond between two atoms is described in terms of the overlap of atomic orbitals (or in
the mathematical formulation of the theory, the product of atomic orbitals) which are centred on the nuclei joined by the bond. In
molecular orbital theory the bond is described in terms of a single orbital which is determined by the field of both nuclei. The two
theories provide only a first approximation to the chemical bond.

We shall begin our discussion of molecular orbital theory by applying the theory to the discussion of the bonding in the
homonuclear diatomic molecules.
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8.2: Angular Momentum in Diatomic Molecules
The spatial symmetries of atomic orbitals and the number of each symmetry type are determined by the angular momentum of the
electron. The orbitals are in fact labelled by the angular momentum quantum numbers, l and m, which along with the principal
quantum number n, completely specify the orbital. Angular momentum plays a similar role in determining the symmetries and
number of orbitals of each symmetry species in the molecular case.

In an atom all of the angular momentum is electronic in origin. In the molecular case, the molecule as a whole rotates in space and
the nuclei contribute to the total angular momentum of the system. The nuclei and the electrons of a diatomic molecule can rotate
about both of the axes which are perpendicular to the bond axis (Fig. 8-1).

  
Fig. 8-1. Two rotational axis for a diatomic molecule.

In a classical analogue the electrons and the nuclei exchange angular momentum during these rotations and the angular momentum
of the electrons is not separately conserved. Thus the magnitude of the total electronic angular momentum in a diatomic molecule,
unlike the atomic case, is not quantized. Instead, the magnitude of the total angular momentum, nuclei and electrons, is quantized.
Only the electrons, however, may rotate about the internuclear axis and this component of the angular momentum is entirely
electronic in origin. As long as the molecule is left undisturbed, this one component of the angular momentum remains fixed in
value and its magnitude, is, therefore, quantized.

The angular momentum vector for rotation about the bond will lie along the bond axis. This vector represents the component of the
total angular momentum vector along the internuclear axis. As in the atomic case, quantum mechanics restricts the values of the
component of the total angular momentum vector along a given axis to integral multiples of (h/2p). The quantum number in this
case is denoted by the Greek letter l (lambda). It is analogous to the quantum number m in the atomic case. The possible values for
l are

Since the rotation may occur in the clockwise or anticlockwise sense about the axis, the angular momentum vector component may
be pointed in either direction along the bond (Fig. 8-2).

Fig. 8-2. The two directions for the orbital angular momentum vector l for the rotation of an electron about the internuclear axis of
a diatomic molecule.

Correspondingly, the allowed values of the angular momentum about the internuclear axis are 0, ±1 (h/2p), ±2(h/2p), etc., or in
general, ±l(h/2p). Thus when l is different from zero, each energy level is doubly degenerate corresponding to the two possible
directions for the component l along the bond axis.

λ = 0, 1, 2, 3, . . .
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The molecular orbitals are labelled according to the values of the quantum number l. When l = 0, they are called s orbitals; when l
= 1, p orbitals; when l = 2, d orbitals, etc. This is analogous to the labelling of the atomic orbitals as s, p, d, . . . , as determined by
their l value.

We know less about the angular momentum of an electron in a diatomic molecule than in an atom. In the atomic case it is possible
to determine the magnitude of the total angular momentum, as given by the quantum number l, and the magnitude of one of its
components, as given by the quantum number m. In a linear molecule our knowledge is more restricted and we are limited to a
single quantum number l, which determines only the component of angular momentum about the bond axis.

This page titled 8.2: Angular Momentum in Diatomic Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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8.3: Symmetry Considerations
The potential field of a nucleus in an atom is spherically symmetric, depending only on the distance between the nucleus and the
electron. Consequently the spatial symmetries of atomic orbitals are completely determined by the angular momentum quantum
numbers l and m. When spherical polar coordinates rather than cartesian coordinates are used to describe the orbitals (Fig. 8-3) the
dependence of the orbitals on the angles q and f is determined by their angular momentum quantum numbers.

Fig. 8-3. The relationships of spherical polar and cylindrical polar coordinate systems to the Cartesian axes x, y and z. The
inversion operation transforms the point (x,y,z) into the point (-x,-y,-z).

Only the radial dependence (the dependence of the orbital on the coordinate r, the distance between the nucleus and the electron)
differs between orbitals with the same l and m values but different values of n.

The potential field of the nuclei in a linear molecule possesses cylindrical symmetry. In terms of a cylindrical coordinate system
(Fig. 8-3) the single angular momentum quantum number l determines the dependence of the molecular orbitals on the anglef, a
dependence determining the symmetry of the orbital for a rotation about the internuclear axis. The dependence of the molecular
orbitals on r and z is left undetermined.

The forms of the orbitals are not as fully determined by the angular momentum quantum numbers in a molecule as in an atom.
However, we may further characterize and label the orbitals for a molecular system by taking advantage of the symmetry possessed
by the molecule. The symmetry of the potential field in which an electron moves places very severe restrictions on the possible
forms of the orbitals. This is a very general and powerful result. Indeed, the angular dependence of orbitals and wave functions and
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their angular momentum quantum numbers may be completely determined solely by a consideration of the rotational symmetry of
a system.

We may illustrate the role which symmetry plays in determining the form of an orbital by considering the symmetry properties of
the orbitals obtained in Section 2 for the case of an electron restrained to move on a line of fixed length. Let us shift the origin of
the x-axis in the plots of the orbitals (Fig. 2-8) to the mid-point of the line, thereby changing the values of the coordinates of the
two end points from 0 and L to -L/2 and +L/2 respectively. Next let us denote by the symbol R the operation of reflection through
the origin, an operation which replaces each value of x by -x. For example, the end points x = -L/2 and x = +L/2 are interchanged by
the reflection operator R.

The first point to note about the operation of reflection is that its application leaves the physical system itself unchanged. The
potential in which the electron moves is assumed to be of constant value along the x-axis. The reflection operator simply
interchanges the two halves of the line leaving the system unchanged. The potential is said to be invariant to the operation of
reflection through the origin.

What is the effect of R on the wave functions or orbitals? When R operates on y (x) (that is, when y (x) is reflected through the
origin) the result is obviously to change y (x) into itself:

The reflected function y (-x) is indistinguishable from y (x).

The result of operating on y (x) with the operator R is to leave the function unchanged. y (x) is said to be symmetric with respect
to a reflection through the origin. The operation of R on y (x) yields a different result:

It is obvious from Fig. 2-8 that the reflection of y (x) through the mid-point changes its sign, the reflected function y (-x) is the
negative of the unreflected function y (x). Such a function is said to be antisymmetric with respect to a reflection at the origin.
Every orbital for this system is either symmetric (those with odd n values) or antisymmetric (those with even n values) with respect
to the symmetry operation of reflection.

Any orbital which was neither symmetric nor antisymmetric but was instead simply unsymmetrical with respect to reflection would
when squared yield an unsymmetrical probability distribution. An unsymmetrical probability distribution implies that the electron
is more likely to be found on one half of the x-axis than on the other. This is a physically unacceptable result since there are no
forces acting on the electron which would favour one end of the line over the other. Only orbitals which are either symmetric or
antisymmetric yield density distributions which properly reflect the symmetry of the system (Fig. 2-4), that is, density distributions
which are themselves symmetrical with respect to reflection at the mid-point of the line.

Thus we conclude that the only wave functions resulting in physically acceptable probability distributions are those which are
either symmetrical or antisymmetrical with respect to any symmetry operation which changes the physical system into itself. This
statement is always true for non-degenerate wave functions, but must be amended somewhat for the action of some symmetry
operations on a degenerate set of wave functions.

We shall use only one of the many symmetry elements possessed by a homonuclear diatomic molecule to further characterize and
classify the molecular orbitals. A homonuclear diatomic molecule possesses a centre of symmetry and the corresponding operator
is called the inversion operator. The action of this operator, denoted by the symbol i, is to replace the x, y, z coordinates of every
point in space by their negatives -x, -y, -z. This corresponds to an inversion (or reflection) of every point through the origin or
centre of symmetry of the molecule (Fig. 8-3).

The action of the inversion operator on the nuclear coordinates simply interchanges one nucleus for the other. Since the nuclei
possess identical charges, the nuclear framework is left unchanged and the potential exerted by the nuclei is invariant to the
operation of inversion. Thus every molecular orbital for a homonuclear molecule must be either symmetric or antisymmetric with
respect to the inversion operator. Orbitals which are left unchanged by the operation of inversion (are symmetric) are labelled with
a subscript g, while those which undergo a change in sign (are antisymmetric) are labelled u. The symbols g and u come from the
German words "gerade" and "ungerade" meaning "even" and "odd" respectively.

This page titled 8.3: Symmetry Considerations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard
F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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8.4: Molecular Orbitals for Homonuclear Diatomics
While the specific forms of the molecular orbitals (their dependence on r and z in a cylindrical coordinate system) are different for
each molecule, their dependence on the angle f as denoted by the quantum number l and their g or u behaviour with respect to
inversion are completely determined by the symmetry of the system. These properties are common to all of the molecular orbitals
for homonuclear diatomic molecules. In addition, the relative ordering of the orbital energies is the same for nearly all of the
homonuclear diatomic molecules. Thus we may construct a molecular orbital energy level diagram, similar to the one used to build
up the electronic configurations of the atoms in the periodic table. The molecular orbital energy level diagram (Figure ) is as
fundamental to the understanding of the electronic structure of diatomic molecules as the corresponding atomic orbital diagram is
to the understanding of atoms.

Figure : Molecular orbital energy level diagram for homonuclear diatomic molecules showing the correlation of the molecular
orbitals with the atomic orbitals of the separated atoms. The schematic representation of the molecular orbitals is to illustrate their
general forms and nodal properties (the nodes are indicated by dashed lines). Only one component of the degenerate 1pu and 1pg
orbitals is shown. The second component is identical in form in each case but rotated 90° out of the plane. The ordering of the
orbital energy levels shown in the figure holds generally for all homonuclear diatomic molecules with the exception of the levels
for the 1pu and 3sg orbitals, whose relative order is reversed for the molecules after .

Molecular orbitals exhibit the same general properties as atomic orbitals, including a nodal structure. The nodal properties of the
orbitals are indicated inFigure . Notice that the nodal properties correctly reflect the g and u character of the orbitals.
Inversion of a g orbital interchanges regions of like sign and the orbital is left unchanged. Inversion of a u orbital interchanges the
positive regions with the negative regions and the orbital is changed in sign.

An orbital of a particular symmetry may appear more than once. When this occurs a number is added as a prefix to the symbol.
Thus there are 1s , 2s , 3s , etc. molecular orbitals just as there are 1s, 2s, 3s, etc. atomic orbitals. The numerical prefix is similar to
the principal quantum number n in the atomic case. As n increases through a given symmetry set, for example, 1s , 2s , 3s , the
orbital energy increases, the orbital increases in size and consequently concentrates charge density further from the nuclei, and
finally the number of nodes increases as n increases. All these properties are common to atomic orbitals as well.

We may obtain a qualitative understanding of the molecular orbital energy level diagram by considering the behaviour of the
orbitals under certain limiting conditions. The molecular orbital must describe the motion of the electron for all values of the
internuclear separation; from R = ¥ for the separated atoms, through R = R , the equilibrium state of the molecule, to R = 0, the
united atom obtained when the two nuclei in the molecule coalesce (in a hypothetical reaction) to give a single nucleus. Hence a
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molecular orbital must undergo a continuous change in form. At the limit of large R it must reduce to some combination of atomic
orbitals giving the proper orbital description of the separated atoms and for R = 0 it must reduce to a single atomic orbital on the
united nucleus.

Consider, for example, the limiting behaviour of the 1s  orbital in the case of the hydrogen molecule. The most stable state of H  is
obtained when both electrons are placed in this orbital with paired spins giving the electronic configuration 1s . For large values of
the internuclear separation, the hydrogen molecule dissociates into two hydrogen atoms. Thus the limiting form of the 1s
molecular orbital for an infinite separation between the nuclei should be a sum of 1s orbitals, one centred on each of the nuclei. If
we label the two nuclei as A and B we can express the limiting form of the  orbital as

where ls  is a 1s orbital centered on nucleus A, and ls  is a ls orbital centered on nucleus B. This form for the 1s  orbital predicts
the correct density distribution for the system at large values of R. Squaring the function (1s  + 1s ) we obtain for the density

The first two terms denote that one electron is on atom A and one on atom B, both with 1s atomic density distributions. The cross
term 2 ´ ls  ´ ls obtained in the product is zero since the distance between the two nuclei is so great that the overlap of the orbitals
vanishes. Notice as well that the function (ls  + ls ) has the same symmetry properties as does the 1s molecular orbital; it is
symmetric with respect to both a rotation about the line joining the nuclei and to an inversion of the coordinates at the mid-point
between the nuclei. The 1s  orbital for the molecule is said to correlate with the sum of 1s orbitals, one on each nucleus, for the
separated atom case.

Consider next the limiting case of the separated atoms for the helium molecule. Of the four electrons present in He  two are placed
in the 1s orbital and the remaining two must, by the Pauli exclusion principle, be placed in the next vacant orbital of lowest energy,
the1s  orbital. The electronic configuration of He is thus 1s 1s . The 1s  orbital will correlate with the sum of the 1s orbitals for
the separated helium atoms. Of the two electrons in the1s  molecular orbital one will correlate with the 1sorbital on atom A and the
other with the 1s orbital on atom B. Since each helium atom possesses two 1s electrons, the 1s  orbital must also correlate its
electrons with 1s atomic functions on A and B. In addition, the correlated function in this case must be of u symmetry. A function
with these properties is

The limiting density distribution obtained by squaring this function places one electron in a 1s atomic distribution on A, the other
in a 1s atomic distribution on B. The sum of the limiting charge densities for the 1s  and 1s molecular orbitals places two electrons
in 1s atomic charge distributions on each atom, the proper description of two isolated helium atoms.

Every diatomic homonuclear molecular orbital may be correlated with either the sum (for s  and p  orbitals) or the difference (for
s  and p  orbitals) of like orbitals on both separated atoms. By carrying out this correlation procedure for every orbital we may
construct a molecular orbital correlation diagram (Figure ) which relates each of the orbital energy levels in the molecule with
the correlated energy levels in the separated atoms. It is important to note that the symmetry of each orbital is preserved in the
construction of this diagram. Consider, for example the molecular orbitals which correlate with the 2p atomic orbitals. The
direction of approach of the two atoms defines a new axis of quantization for the atomic orbitals. The 2p orbital which lies along
this axis is of s symmetry while the remaining two 2p orbitals form a degenerate set of p symmetry with respect to this axis. The
sum and difference of the 2ps orbitals on each center correlate with the 3s  and 3s  orbitals respectively, while the sum and the
difference of the 2pp orbitals correlate with the p  and p  orbitals (Figure ).
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Figure : The correlated separated atom forms of the 3s , 3s , 1p  and 1p  molecular orbitals. The nodal planes
are indicated by dashed lines. Only one component of each p orbital is shown.

For large values of the internuclear distance, each molecular orbital is thus represented by a sum or a difference of atomic orbitals
centered on the two interacting atoms. As the atoms approach one another the orbitals on each atom are distorted by polarization
and overlap effects. In general, the limiting correlated forms of the molecular orbitals are not suitable descriptions of the molecular
orbitals for finite internuclear separations.

We are now in a position to build up and determine the electronic configurations of the homonuclear diatomic molecules by adding
electrons two at a time to the molecular orbitals with the spins of the electrons paired, always filling the orbitals of lowest energy
first. We shall, at the same time, discuss the effectiveness of each orbital in binding the nuclei and make qualitative predictions
regarding the stability of each molecular configuration.

Hydrogen. The two electrons in the hydrogen molecule may both be accommodated in the 1s  orbital if their spins are paired and
the molecular orbital configuration for H is 1s . Since the 1s  orbital is the only occupied orbital in the ground state of H , the
density distribution shown previously in Figure  for H  is also the density distribution for the 1s  orbital when occupied by
two electrons. The remarks made previously regarding the binding of the nuclei in H  by the molecular charge distribution apply
directly to the properties of the 1s  charge density. Because it concentrates charge in the binding region and exerts an attractive
force on the nuclei the 1s  orbital is classified as a bonding orbital.

Excited electronic configurations for molecules may be described and predicted with the same ease within the framework of
molecular orbital theory as are the excited configurations of atoms in the corresponding atomic orbital theory. For example, an
electron in H may be excited to any of the vacant orbitals of higher energy indicated in the energy level diagram. The excited
molecule may return to its ground configuration with the emission of a photon. The energy of the photon will be given
approximately by the difference in the energies of the excited orbital and the 1s  ground state orbital. Thus molecules as well as
atoms will exhibit a line spectrum. The electronic line spectrum obtained from a molecule is, however, complicated by the
appearance of many accompanying side bands. These have their origin in changes in the vibrational energy of the molecule which
accompany the change in electronic energy.

Helium. The electronic configuration of He is 1s  1s . A s  orbital, unlike a s orbital, possesses a node in the plane midway
between the nuclei and perpendicular to the bond axis. The 1s  orbital and all s  orbitals in general, because of this nodal property,
cannot concentrate charge density in the binding region. It is instead concentrated in the antibinding region behind each nucleus
(Figure ).
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Figure : Contour maps of the doubly-occupied  and  molecular orbital charge densities and of the total molecular
charge distribution of  at R = 2.0 au. A profile of the total charge distribution along the internuclear axis is also shown. Click

here for contour values.

The s  orbitals are therefore classified as antibonding. It is evident from the form of density distribution for the 1s orbital that the
charge density in this orbital pulls the nuclei apart rather than drawing them together. Generally, the occupation of an equal number
of s and s  orbitals results in an unstable molecule. The attractive force exerted on the nuclei by the charge density in the s orbitals
is not sufficient to balance both the nuclear force of repulsion and the antibinding force exerted by the density in the s orbitals.
Thus molecular orbital theory ascribes the instability of He  to the equal occupation of bonding and antibonding orbitals. Notice
that the Pauli exclusion principle is still the basic cause of the instability. If it were not for the Pauli principle, all four electrons
could occupy a s -type orbital and concentrate their charge density in the region of low potential energy between the nuclei. It is the
Pauli principle, and not a question of energetics, which forces the occupation of the 1s antibonding orbital.

The total molecular charge distribution is obtained by summing the individual molecular orbital densities for single or double
occupation numbers as determined by the electronic configuration of the molecule. Thus the total charge distribution for He
(Figure ) is given by the sum of the 1s and 1s  orbital densities for double occupation of both orbitals. The adverse effect
which the nodal property of the 1s  orbital has on the stability of He is very evident in the total charge distribution. Very little
charge density is accumulated in the central portion of the binding region. The value of the charge density at the mid-point of the
bond in He  is only 0.164 au compared to a value of 0.268 au for H .

We should reconsider in the light of molecular orbital theory the stability of He  and the instability of the hydrogen molecule with
parallel spins, cases discussed previously in terms of valence bond theory. He  will have the configuration 1s  1s . Since the 1s
orbital is only singly occupied in He , less charge density is accumulated in the antibinding regions than is accumulated in these
same regions in the neutral molecule. Thus the binding forces of the doubly-occupied 1s  density predominate and He  is stable.
The electron configuration of H  is 1s ( )1s ( ) when the electronic spins are parallel. The electrons must occupy separate orbitals
because of the Pauli exclusion principle. With equal occupation of bonding and antibonding orbitals, the H (  )species is predicted
to be unstable.

Lithium. The Li  molecule with the configuration 1s 1s 2s  marks the beginning of what can be called the second quantum
shell in analogy with the atomic case. Since the 1s  antibonding orbital approximately cancels the binding obtained from the 1s
bonding orbital, the bonding in Li  can be described as arising from the single pair of electrons in the 2s orbital. Valence bond
theory, or a Lewis model for Li , also describes the bonding in Li as resulting from a single electron pair bond. This is a general
result. The number of bonds predicted in a simple Lewis structure is often found to equal the difference between the number of
occupied bonding and antibonding orbitals of molecular orbital theory.

The forms of the orbital density distributions for Li Figure ) bear out the prediction that a single electron pair bond is
responsible for the binding in this molecule.
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Figure : Contour maps of the doubly-occupied 1s , 1s  and 2s  molecular orbital charge densities for Li  at R = 5.051 au, the
equilibrium internuclear separation. Click here for contour values. The total molecular charge distribution for Li  is shown in Fig.

7-3.

The 1s  and 1s  density distributions are both strongly localized in the regions of the nuclei with spherical contours characteristic of
1s atomic distributions. The addition of just the doubly-occupied 1s  and 1s  orbital densities in Li  will yield a distribution which
resembles very closely and may be identified with the doubly-occupied 1s or inner shell atomic densities on each lithium nucleus.
Only the charge density of the pair of valence electrons in the 2s  orbital is delocalized over the whole of the molecule and
accumulated to any extent in the binding region.

Thus there are cases where the molecular orbitals even at the equilibrium bond length resemble closely their limiting atomic forms.
This occurs for inner shell molecular orbitals which correlate with the inner shell atomic orbitals on the separated atoms. Inner shell
1s electrons are bound very tightly to the nucleus as they experience almost the full nuclear charge and the effective radii of the 1s
density distributions are less than the molecular bond lengths. Because of their tight binding and restricted extension in space, the
inner electrons do not participate to any large extent in the binding of a molecule. Thus with the exception of H  and He  and their
molecular ions, the 1s  and 1s  molecular orbitals degenerate into non-overlapping atomic-like orbitals centred on the two nuclei
and are classed as nonbonding orbitals.

Beryllium. The configuration of Be  is 1s 1s 2s 2s  and the molecule is predicted to form a weakly bound van der Waals
molecule like the helium dimer.

Oxygen. Since the method of determining electronic configurations is clear from the above examples, we shall consider just one
more molecule in detail, the oxygen molecule. Filling the orbitals in order of increasing energy the sixteen electrons of O  are
described by the configuration 1s 1s 2s 2s 3s 1p 1p . The orbital densities are illustrated in Figure .
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Figure : Contour maps of the molecular orbital charge densities for  at the equilibrium internuclear distance of 2.282 au.
Only one component of the Ipg and 1pu orbitals is shown. All the maps are for doubly-occupied orbitals with the exception of that
for 1pg for which each component of the doubly-degenerate orbital contains a single electron. The nodes are indicated by dashed
lines. Click here for contour values.

The molecular orbitals of p symmetry are doubly degenerate and a filled set of p orbitals will contain four electrons. The node in a
p  orbital is in the plane which contains the internuclear axis and is not perpendicular to this axis as is the node in a s orbital. (The
nodal properties of the orbitals are indicated in Figure ) The p  orbital is therefore bonding. A p  orbital, on the other hand, is
antibonding because it has, in addition to the node in the plane of the bond axis, another at the bond mid-point perpendicular to the
axis. The bonding and antibonding characters of the p orbitals have just the opposite relationship to their g and u dependence as
have the s orbitals.

The 1s  and 1s  orbital densities have, as in the case of Li , degenerated into localized atomic distributions with the characteristics
of 1s core densities and are nonbonding. The valence electrons of O are contained in the remaining orbitals, a feature reflected in
the extent to which their density distributions are delocalized over the entire molecule. Aside from the inner nodes encircling the
nuclei, the 2s  and 2s orbital densities resemble the 1s  and 1s  valence density distributions of H  and He . A quantitative
discussion of the relative binding abilities of the 2s  , 3s  and 1p orbital densities is presented in the following section.

One interesting feature of the electronic configuration of O  is that its outer orbital is not fully occupied. The two p  electrons could
both occupy one of the p  orbitals with paired spins or they could be assigned one to each of the p  orbitals and have parallel spins.
Hund's principle applies to molecules as well as to atoms and the configuration with single occupation of both p  orbitals with
parallel spins is thus predicted to be the most stable. This prediction of molecular orbital theory regarding the electronic structure of
O  has an interesting consequence. The oxygen molecule should be magnetic because of the resultant spin angular momentum
possessed by the electrons. The magnetism of O  can be demonstrated experimentally in many ways, one of the simplest being the
observation that liquid oxygen is attracted to the poles of a strong magnet.

This page titled 8.4: Molecular Orbitals for Homonuclear Diatomics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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8.5: The Relative Binding Ability of Molecular Orbitals
We may determine the relative importance of each orbital density in the overall binding of the nuclei in a molecule through a
comparison of the forces which the various molecular orbital charge distributions exert on the nuclei. In molecular orbital theory,
the total charge density is given by the sum of the orbital charge densities. Thus the total force exerted on the nuclei by the
electronic charge distribution will be equal to the sum of the forces exerted by the charge density in each of the molecular orbitals.
It is of interest to compare the effectiveness of each orbital charge density in binding the nuclei with some standard case in which
they all exhibit the same ability. The limiting forms of the molecular orbitals for the case of the separated atoms have this desired
property. In addition, the properties of the separated atoms form a useful basis for the discussion of any molecular property from
the point of view of determining the changes which have been brought about by the formation of the chemical bond.

Suppose we label the two nuclei of a homonuclear diatomic molecule as A and B and consider the forces exerted on the A nucleus
by the pair of electrons in a molecular orbital when the orbital has assumed its limiting form for the separated atoms. At this limit,
one electron correlates with an atomic orbital on nucleus A and the other with an identical orbital on nucleus B. The discussion of
the forces exerted on the nuclei by such a limiting charge distribution is similar to the discussion given previously in Section 6 for
the case of two separated hydrogen atoms. The charge density in the orbital on the A nucleus will not exert a force on that nucleus
since an undistorted atomic orbital is centrosymmetric with respect to its nucleus. The charge density of the electron which
correlates with the B nucleus will exert a force on the A nucleus equivalent to that obtained by concentrating the charge density to a
point at the position of the B nucleus. The electron which correlates with the B nucleus will screen one of the nuclear charges of B
from the A nucleus. Thus the force exerted on one of the nuclei by the pair of electrons in a molecular orbital for the limiting state
of the separated atoms is equivalent to that obtained by placing one negative charge at the position of the second nucleus. Of the
pair of electrons in a given homonuclear molecular orbital, only one is effective in binding either nucleus in the limit of the
separated atoms.

If there are a total of N electrons in the molecule, there will be N/2 occupied molecular orbitals since each molecular orbital
contains a pair of electrons. Therefore, a total of N/2 electrons will correlate with each nucleus. The molecule dissociates into two
neutral atoms each with a nuclear charge Z = N/2. Thus the N/2 electrons which correlate with each nucleus will exactly cancel the
nuclear charge of both nuclei; the final force on the nuclei will be zero.

The limiting force exerted on the A nucleus by the pair of electrons in a molecular orbital is (Z e /R )(-1), that is, the force is
equivalent to placing one negative charge at the position of the B nucleus. Thus we may express the total limiting force on
nucleus A as the product of (Z e /R ) with the difference between the number of positive charges on the B nucleus (Z ) and the
number of electronic charges which are effective in exerting a force on the A nucleus, (N/2):  

 

The quantity N/2 is the charge equivalent of the electronic force, the number of charges which when placed at the position of one
nucleus exerts the same force on the second nucleus as does the actual charge distribution. The zero force between the separated
atoms may be viewed as a result of each electron screening one nuclear charge on one nucleus from the nuclear charge of the other
atom.

As the atoms approach one another to form a chemical bond, the atomic distributions on each atom become increasingly distorted
and charge density is transferred to the binding region between the nuclei. There is a net force of attraction on the nuclei. We may
again express the electronic force on the A nucleus in terms of its charge equivalent by multiplying the electronic force of attraction
by R /Z e . Because of the distortion of the atomic orbital densities and the formation of molecular orbitals concentrating charge
density in the region between the nuclei, the charge density of more than just one electron in each molecular orbital is effective in
binding the nuclei. Thus at intermediate R values the charge equivalent of the electronic force exceeds its limiting value of N/2
required to screen the nuclear charge and the result is a force of attraction drawing the nuclei together.

When the distance between the nuclei is further decreased to its equilibrium value the force on the nuclei is again equal to zero. At
this point, as when R equals infinity, the charge equivalent of the electronic force equals the nuclear charge. However, the state of
electrostatic equilibrium in the molecule does not correspond to the charge density in each molecular orbital effectively screening
one nuclear charge as it did in the separated atoms. Instead the charge equivalent of the density in each molecular orbital may be
less than, equal to, or greater than the limiting value of unity observed for the separated atoms.
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An orbital which concentrates charge density in the binding region will exert a force on the nuclei with a charge equivalent greater
than unity. Such an orbital is called binding as it does more than simply screen one unit of positive charge on each nucleus. The
charge equivalent of an orbital which concentrates density in the antibinding regions will be less than the separated atom value of
unity. Such an orbital is termed antibinding as the charge density does not screen one unit of positive charge on each nucleus.
When the charge equivalent of the force equals unity, it implies that the orbital charge density plays the same role in the molecule
as in the separated atoms, that of screening one nuclear charge on B from nucleus A. An orbital with this property is termed
nonbinding.

Thus, by comparing the charge equivalent of the force exerted by the density in each molecular orbital with its separated atom
value of unity, we may classify the orbitals as binding, antibinding or nonbinding:

Binding orbital � charge equivalent > unity

Nonbinding orbital � charge equivalent ~ unity

Antibinding orbital � charge equivalent < unity

Table 8-1. Charge Equivalents of the Orbital Forces in Homonuclear Diatomic Molecules

Molecule 1s 1s 2s 2s 1p 3s 1p Sum = Z R  (au)

He 1.78 -0.42 1.36* (1.750)*

Li 0.70 0.68 1.62 3.00 5.051

Be 1.05 1.08 2.00 -0.40 3.68* (3.500)*

B 0.98 0.98 2.32 -0.48 1.20 5.00 3.005

C 0.97 0.95 2.25 -0.43 1.13� 6.00 2.348

N 1.15 1.08 2.67 -0.47 1.21� 0.15 7.00 2.068

O 1.23 1.14 2.94 -0.52 1.30� 0.18 0.43 8.00 2.282

F 1.24 1.12 2.45 -0.16 1.24� 0.52 0.67� 9.00 2.680

*He  and Be  form only weakly bound van der Waals molecules for relatively large internuclear seperations. The values of R
quoted for these molecules are the internuclear distances used in the calculation of the charge equivalents listed in the table.

�All of the values are quoted for double occupation of the orbitals for comparative purposes. The values marked by �are to be
doubled to obtain the total electronic force as they refer to filled p orbitals.

The charge equivalents of the orbital forces for some homonuclear diatomic molecules are given in Table 8-1. Except for He  and
Be  the sum of the charge equivalents equals the nuclear charge in each case as required for electrostatic equilibrium and the
formation of a stable molecule. The charge equivalents of the orbital forces provide a quantitative measure of the role each orbital
density plays in the binding of the nuclei in the molecule.

The 1s  orbital in He  is binding. Of the two electronic charges in the 1s  orbital, 1.78 of them are effective in binding the nuclei
when R = 1.75 a  as opposed to the one electronic charge which exerts a force when R = ¥. The 1s  charge density, however, is
strongly antibinding. The transfer of charge density to the antibinding regions in the formation of the 1s  orbital in He  is so great
that the charge equivalent is negative in sign. The antibinding nature of this orbital is very evident in the form of its charge
distribution (Fig. 8-6). Not only does the charge density in this orbital no longer screen a positive charge on one nucleus from the
other, it actually exerts a repulsive force on the nuclei, one which pulls the nuclei further apart from one another. The total eletronic
force exerted on a nucleus in He  at R = 1.75 a  is equivalent to placing (1.78 - 0.42) = 1.36 negative charges at the position of the
second nucleus. Since the nuclear charge on helium is 2.00, a total of (2.00 - 1.36) = 0.64 positive charges on the second nucleus
are left unscreened by the charge density. The net force on the nuclei is thus a repulsive one.

The 1s  and 1s molecular orbitals are inner shell orbitals in the remaining molecules, Li to F . An idealized inner shell molecular
orbital has a charge equivalent of unity, the same as the separated atom value. Each electron should be localized in an atomic-like
distribution and screen one nuclear charge. This is illustrated by the 1s  and 1s  charge density maps for the O  molecule (Fig. 8-8).
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The charge equivalents of the 1s  and 1s orbital densities for Li  (Fig. 8-7) are significantly less than unity. While these orbitals are
not as contracted around the nuclei in Li  as they are in O  (the nuclear charge for lithium is three compared to eight for oxygen),
they are still atomic-like with no effective overlap between the two centres. The charge equivalents are less than the screening
value of unity because each of the atomic-like distributions is polarized into the antibinding region and exerts an antibinding force
on the nucleus on which it is centred. The charge equivalents for the 1s  and 1s  density distributions in the remaining molecules
are close to unity indicating that they are essentially nonbinding inner shell orbitals. The slight binding character of the 1s  charge
density in O  and F  is the result of small inward polarizations of the atomic-like distributions.

The 2s  molecular charge density is binding in every molecule. A comparison of the charge equivalents shows that the 2s  charge
density is the most binding of all the molecular orbitals in this series of molecules. The charge equivalent of the force exerted by
the 2s  density in O  is almost three times greater than it is for the separated oxygen atoms. This is a result of the large amount of
charge density accumulated in the binding region by this orbital (Fig. 8-8).

The 2s  orbital is uniformly strongly antibinding. The extreme concentration of charge density in the antibinding regions observed
for the 2s  orbital is typified by the 2s  density plot for O  (Fig. 8-8). It is obvious that the density in this orbital, as that in the 1s
orbital of He  will pull the nuclei away from one another rather than bind them together. Notice that Be  is analogous to He  except
that the 2s  and 2s  orbitals rather than the 1s and 1s  orbital densities are involved. In Be  the 1s  and 1s densities are nonbinding
and together simply screen two nuclear charges on each atom. The 2s  density exerts a binding force equivalent to one electronic
charge in excess of the simple screening effect. The 2s  orbital density, however, leaves a single nuclear charge unscreened which
cancels the net attractive force of the 2s density and in addition exerts an antibinding force equivalent to increasing the nuclear
charge by 0.40 units. The beryllium molecule is therefore unstable at this value of R.

The 1p  orbital density is binding in each case, but only weakly so. The charge density of a p  molecular orbital is concentrated
around the internuclear axis rather than along it as in a s  molecular orbital. Consequently the 1p  density distributions exert only
weak binding forces on the nuclei. In fact, the inner shell 1s  charge density in F  exerts as large a binding force on the nuclei as
does a pair of electrons in the1p  orbital.

The charge equivalent of the 3s orbital density is less than unity in the three cases where it is occupied. Thus it is an antibinding
orbital even though it is of s  symmetry. The charge density contours for this orbital in O (Fig. 8-8) show that charge density is
accumulated in the region between the nuclei as expected for an orbital of s  symmetry. However, the 3s orbital correlates with a
2ps atomic orbital on each nucleus. The strong participation of the 2ps orbitals in the molecular orbital is evidenced by the node at
each nucleus and by the concentration of charge density on both sides of each nucleus. The concentration of charge in the
antibinding regions nullifies the binding effect arising from the accumulation of charge density in the region between the nuclei.
The net result is an attractive force considerably less than that required to screen one positive charge on each nucleus.

The 1p  orbital density is only weakly antibinding just as the 1p  density is only weakly binding. The formation of the 1p  orbital
results in the removal of charge density from the binding region, not from along the internuclear axis but instead from regions
around the axis. Notice that unlike the 2s  orbital densities, the 1p charge density is antibinding only in the sense that it does not
screen its share of nuclear charge, not because it exerts a force which draws the nuclei apart.

This page titled 8.5: The Relative Binding Ability of Molecular Orbitals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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8.6: Molecular Orbitals for Heteronuclear Molecules
The molecular orbitals which describe the motion of a single electron in a molecule containing two unequal nuclear charges will
not exhibit the g and u symmetry properties of the homonuclear diatomic case. The molecular orbitals in the heteronuclear case will
in general be concentrated more around one nucleus than the other. The orbitals may still be classified as s, p, d, etc. because the
molecular axis is still an axis of symmetry.

In simple numerical calculations the molecular orbitals are sometimes approximated by the sum and difference of single atomic
orbitals on each centre, their limiting form. The molecular orbital is said to be approximated mathematically by a linear
combination of atomic orbitals and the technique is known as the LCAO-MO method. It must be understood that the LCAO-MO
method using a limited number of atomic orbitals provides only an approximation to the true molecular orbital. The concept of a
molecular orbital is completely independent of the additional concept of approximating it in terms of atomic orbitals, except for the
case of the separated atoms. However, by using a large number of atomic orbitals centred on each nucleus in the construction of a
single molecular orbital sufficient mathematical flexibility can be achieved to approximate the exact form of the molecular orbital
very closely.

While the LCAO approximation using a limited number of atomic orbitals is in general a poor one for quantitative purposes, it does
provide a useful guide for the prediction of the qualitative features of the molecular orbital. There are two simple conditions which
must be met if atomic orbitals on different centres are to interact significantly and form a molecular orbital which is delocalized
over the whole molecule. Both atomic orbitals must have approximately the same orbital energy and they must possess the same
symmetry characteristics with respect to the internuclear axis. We shall consider the molecular orbitals in LiH, CH and HF to
illustrate how molecular orbital theory describes the bonding in heteronuclear molecules, and to see how well the forms of the
orbitals in these molecules can be rationalized in terms of the symmetry and energy criteria set out above.

The 1s and 2s atomic orbitals and the 2p orbital which is directed along the bond axis are all left unchanged by a rotation about the
symmetry axis. They may therefore form molecular orbitals of s symmetry in the diatomic hydride molecules. The 2porbitals which
are perpendicular to the bond axis will be of p symmetry and may form molecular orbitals with this same symmetry. The energies
and symmetry properties of the relevant atomic orbitals and the electronic configurations of the atoms and molecules are given in
Table 8-2.

Table 8-2.  
Atomic Orbital Energies and Symmetry Properties

Energy (au) Symmetry

H Li C F

1s -0.5 -2.48 -11.33 -26.38 s

2s -0.20 -0.71 -1.57 s

2p -0.43 -0.73 s and p

Atomic Configurations Molecular Configurations

Li 1s 2s LiH 1s 2s

C 1s 2s 2p CH 1s 2s 3s 1p

F 1s 2s 2p HF 1s 2s 3s 1p

Density diagrams of the molecular orbitals for the LiH, CH, and HF molecules are illustrated in Fig. 8-9.
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Fig. 8-9. Contour maps of the molecular orbital charge densities
of the LiH, CH, HF diatomic hydrides. The nodes are indicated by
dashed lines. Click here to see countour values.

The 1s orbital energies of Li, C and F all lie well below that of the H 1s orbital. The charge densities of these inner shell orbitals are
tightly bound to their respective nuclei. They should not, therefore, be much affected by the field of the proton or interact
significantly with the H 1s orbital. The molecular orbital of lowest energy in these molecules, the ls molecular orbital, should be
essentially nonbinding and resemble the doubly-occupied 1s atomic orbital on Li, C and F respectively. These predictions are borne
out by the ls orbital density distributions (Fig. 8-9). They consist of nearly spherical contours centred on the Li, C and F nuclei, the
radius of the outer contour being less than the bond length in each case. The forces exerted on the proton by the lscharge
distributions are equivalent to placing two negative charges at the position of the heavy nucleus in each case. The charge density in
the ls molecular orbital simply screens two of the nuclear charges on the heavy nucleus from the proton. This same screening effect
is obtained for the 1s  charge distribution when the molecules dissociate into atoms. Thus the 1s atomic orbitals of Li, C and F are
not much affected by the formation of the molecule and the ls charge density is nonbinding as far as the proton is concerned. The ls
atomic-like distributions are slightly polarized. In LiH the ls density is polarized away from the proton to a significant extent while
in CH and HF it is slightly polarized towards the proton. Thus the 1s charge density exerts an antibinding force on the Li nucleus
and a small binding force on the C and F nuclei.

The energies of the 2s atomic orbitals decrease (the electron is more tightly bound) from Li to F as expected on the basis of the
increase in the effective nuclear charge from Li to F. The 2s orbital on Li is large and diffuse and will overlap extensively with the
1s orbital on H. However, the 2s electron on Li is considerably less tightly bound than is the 1s electron on H. Thus the charge
density of the 2s molecular orbital in LiH will be localized in the region of the proton corresponding to the transfer of the
2selectron on Li to the region of lower potential energy offered by the 1s orbital on H. This is approximately correct as shown by
the almost complete concentration of the charge density in the region of the proton in the 2s orbital density map for LiH. The small
amount of density which does remain around the Li nucleus is polarized away from the proton. The 1s and 2s densities are
polarized in a direction counter to the direction of charge transfer as required in ionic binding. The inwardly polarized
accumulation of 2s charge density centred on the proton binds both nuclei.
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The 1s molecular orbital in LiH is to a good approximation a polarized doubly-occupied 1s orbital on Li, and the 2s molecular
orbital is, to a somewhat poorer approximation, a doubly-occupied and polarized 1s orbital on H. Our previous discussion of the
bonding in LiH indicated that the binding is ionic, corresponding to the description Li (1s )H (1s ). The molecular orbital
description of an ionic bond is similar in that the molecular orbitals in the ionic extreme are localized in the regions of the
individual nuclei, rather than being delocalized over both nuclei as they are for a covalent bond.

The matching of the 2s orbital energy with the H 1s orbital energy is closer in the case of C than it is for Li. Correspondingly, the 2s
charge density in CH is delocalized over both nuclei rather than concentrated in the region of just one nucleus as it is in the LiH
molecule. There is a considerable buildup of charge density in the binding region which is shared by both nuclei. The 2s charge
density exerts a large binding force on both the H and C nuclei. This is the molecular orbital description of an interaction  
which is essentially covalent in character.

The 2s orbital energy of F is considerably lower than that of the H 1s orbital. The 2s orbital charge density in HF, therefore,
approximately resembles a localized 2s orbital on F. It is strongly polarized and distorted by the proton, but the amount of charge
transferred to the region between the nuclei is not as large as in CH. The 2s orbital in HF plays a less important role in binding the
proton than it does in CH.

The 3s molecular orbital in CH and HF will result primarily from the overlap of the 2ps orbital on C and F, with the 1s orbital on H.
The 2p-like character of the 3s molecular orbital in both CH and HF is evident in the density diagrams (Fig. 8-9). In CH the 1s
orbital of H interacts strongly with both the 2s and 2ps orbitals on C. In terms of the forces exerted on the nuclei, the 2s charge
density is strongly binding for both C and H, while the 3s charge density is only very weakly binding for H and is actually
antibinding for the C. This antibinding effect is a result of the large accumulation of charge density in the region behind the C
nucleus.

In HF, the H 1s orbital interacts only slightly with the 2s orbital on F, but it interacts very strongly with the 2ps orbital in the
formation of the 3s molecular orbital. The 3s charge density exerts a large binding force on the proton. Thus the proton is bound
primarily by the 2s charge density in CH and by the 3s charge density in HF. The 3s charge density in HF is primarily centred on
the F nucleus and roughly resembles a 2ps orbital. Although no density contours are actually centred on the proton, the proton is
embedded well within the orbital density distribution. This is a molecular orbital description of a highly polar bond.

The 3s orbital charge density exerts a force on the F and C nuclei in a direction away from the proton. The molecular orbitals which
involve ps orbitals are characteristically strongly polarized in a direction away from the bond in the region of the nucleus on which
the p orbital is centred. Compare, for example, the 3s orbitals of CH and HF with the 3s  molecular orbital of the homonuclear
diatomic molecules.

When the C and H atoms are widely separated, we can consider the carbon atom to have one 2p electron in the 2ps orbital which
lies along the bond axis, and the second 2p electron in one of the 2pp orbitals which are perpendicular to the bond. The F atom has
five 2p electrons and of these one may be placed in the 2ps orbital; the remaining four 2p electrons will then completely occupy the
2pp orbitals. The singly-occupied 2ps orbitals on F and C eventually interact with the singly-occupied 1s orbital on H to form the
doubly-occupied 3s molecular orbital in HF and CH. The remaining 2p electrons, those of p symmetry, will occupy the 1p
molecular orbital. The H atom does not possess an orbital of p symmetry in its valence shell and the vacant 2pporbital on H is too
high in energy (-0.125 au) to interact significantly with the 2pp orbitals on C and F. Thus the 1p molecular orbital is atomic-like,
centred on the F and C nuclei and is essentially nonbinding (Fig. 8-9). The 1p molecular orbital resembles a 2pp atomic orbital in
each case, but one which is polarized in the direction of the proton.

The 1p orbitals of CH and HF illustrate an interesting and general result. In the formation of a bond between different atoms, the
charge density in the s orbitals is transferred from the least to the most electronegative atom. However, the charge density of p
symmetry, if any is present, is invariably transferred, or at least polarized, in the opposite direction, towards the least
electronegative atom. Although the amount of charge density transferred is less in the formation of the p orbitals than in the s
orbitals, one effect increases with the other. Thus the polarization is more pronounced in HF than in CH.

The three examples considered above demonstrate the essential points of a molecular orbital description of the complete range of
chemical bonding. In the ionic extreme of LiH the charge density of the bonding molecular orbital is localized around the proton.
In CH the valence charge density is more evenly shared by both nuclei and the bond is covalent. The motions of the electrons in HF
are governed largely by the potential field of the F nucleus. This is evidenced by the appearance of the molecular orbital charge
distributions. The proton is, however, encompassed by the valence charge density and the result is a polar bond.
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8.7: Molecular Orbitals for Polyatomic Molecules
The concept of a molecular orbital is readily extended to provide a description of the electronic structure of a polyatomic molecule.
Indeed molecular orbital theory forms the basis for most of the quantitative theoretical investigations of the properties of large
molecules.

In general a molecular orbital in a polyatomic system extends over all the nuclei in a molecule and it is essential, if we are to
understand and predict the spatial properties of the orbitals, that we make use of the symmetry properties possessed by the nuclear
framework. An analysis of the molecular orbitals for the water molecule provides a good introduction to the way in which the
symmetry of a molecule determines the forms of the molecular orbitals in a polyatomic system.

There are three symmetry operations which transform the nuclear framework of the water molecule into itself and hence leave the
nuclear potential field in which the electrons move unchanged (Fig. 8-10).

  
Fig. 8-10. Symmetry elements for H O. The bottom two diagrams illustrate the transformations of the 2p  orbital on oxygen
under the C  and s  symmetry operations.

For each symmetry operation there is a corresponding symmetry element. The symmetry elements for the water molecule are a
two-fold axis of rotation C  and two planes of symmetry s  and s  (Fig. 8-10). A rotation of 180° about the C  axis leaves the
oxygen nucleus unchanged and interchanges the two hydrogen nuclei. A reflection through the plane labelled s  leaves all the
nuclear positions unchanged while a reflection through s  interchanges the two protons. The symmetry operations associated with
the three symmetry elements either leave the nuclear positions unchanged or interchange symmetrically equivalent (and hence
indistinguishable) nuclei. Every molecular orbital for the water molecule must, under the same symmetry operations, be left
unchanged or undergo a change in sign.

Similarly we may use the symmetry transformation properties of the atomic orbitals on oxygen and hydrogen together with their
relative orbital energy values to determine the primary atomic components of each molecular orbital in a simple LCAO
approximation to the exact molecular orbitals. Only atomic orbitals which transform in the same way under the symmetry
operations may be combined to form a molecular orbital of a given symmetry. The symmetry transformation properties of the
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atomic orbitals on oxygen and hydrogen are given in Table 8-3. A value of +1 or -1 opposite a given orbital in the table indicates
that the orbital is unchanged or changed in sign respectively by a particular symmetry operation.

Table 8-3: Symmetry Properties and Orbital Energies for the Water Molecule

Atomic Orbitals 
on Oxygen

Symmetry Behaviour Under
Symmetry 
Classification

Orbital Energy
(au)

s s s

1s +1 +1 +1 a -20.669

2s +1 +1 +1 a -1.244

2p +1 +1 +1 a

} -0.6322p -1 +1 -1 b

2p -1 -1 +1 b

Atomic Orbitals
on Hydrogen

(1s  + 1s ) +1 +1 +1 a

} -0.500
(1s  - 1s ) -1 +1 -1 b

Molecular Orbital Energies for H O (au)

1a 2a 1b 3a 1b

-20.565 -1.339 -0.728 -0.595 -0.521

The 1s, 2s and 2p  orbitals of oxygen are symmetric (i.e., unchanged) with respect to all three symmetry operations. They are given
the symmetry classification a . The 2p  orbital, since it possesses a node in the s  plane (and hence is of different sign on each side
of the plane) changes sign when reflected through the s  plane or when rotated by 180° about the C  axis. It is classified as a b
orbital. The 2p  orbital is antisymmetric with respect to the rotation operator and to a reflection through the s  plane. It is labelled
b .

The hydrogen 1s orbitals when considered separately are neither unchanged nor changed in sign by the rotation operator or by a
reflection through the s  plane. Instead both these operations interchange these orbitals. The hydrogen orbitals are said to be
symmetrically equivalent and when considered individually they do not reflect the symmetry properties of the molecule. However,
the two linear combinations (1s  + 1s ) and (1s  - 1s ) do behave in the required manner. The former is symmetric  
under all three operations and is of a symmetry while the latter is antisymmetric with respect to the rotation operator and to a
reflection through the plane s  and is of b symmetry.

The molecular orbitals in the water molecule are classified as a , b  or b orbitals, as determined by their symmetry properties. This
labelling of the orbitals is analogous to the use of the s-p and g-u classification in linear molecules. In addition to the symmetry
properties of the atomic orbitals we must consider their relative energies to determine which orbitals will overlap significantly and
form delocalized molecular orbitals.

The 1s atomic orbital on oxygen possesses a much lower energy than any of the other orbitals of a  symmetry and should not
interact significantly with them. The molecular orbital of lowest energy in H O should therefore correspond to an inner shell
1satomic-like orbital centred on the oxygen. This is the first orbital of a  symmetry and it is labelled la . Reference to the forms of
the charge density contours for the la, molecular orbital (Fig. 8-11) substantiates the above remarks regarding the properties of this
orbital.
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Fig. 8-11. Contour maps of the molecular orbital charge densities for H O. The maps for the la , 2a , 3a and 1b  orbitals (all
doubly-occupied) are shown in the plane of the nuclei. The lb  orbital has a node in this plane and hence the contour map for the
1b  orbital is shown in the plane perpendicular to the molecular plane. The total molecular charge density for H O is also
illustrated. The density distributions were calculated from the wave function determined by R. M. Pitzer, S. Aung and S. I. Chan,
J. Chem. Phys. 49, 2071 (1968). Click here for contour values.

Notice that the orbital energy of the la  molecular orbital is very similar to that for the 1s atomic orbital on oxygen. The 1a orbital
in H O is, therefore, similar to the ls inner shell molecular orbitals of the diatomic hydrides.

The atomic orbital of next lowest energy in this system is the 2s orbital of a  symmetry on oxygen. We might anticipate that the
extent to which this orbital will overlap with the (1s  + 1s ) combination of orbitals on the hydrogen atoms to form the
2a molecular orbital will be intermediate between that found for the 2s molecular orbitals in the diatomic hydrides CH and HF
(Fig. 8-9). The 2s orbital in CH results from a strong mixing of the 2s orbital on carbon and the hydrogen 1s orbital. In HF the
participation of the hydrogen orbital in the 2s orbital is greatly reduced, a result of the lower energy of the 2s atomic orbital on
fluorine as compared to that of the 2s orbital on carbon.

Aside from the presence of the second proton, the general form and nodal structure of the 2a  density distribution in the water
molecule is remarkably similar to the 2s distributions in CH and HF, and particularly to the latter. The charge density accumulated
on the bonded side of the oxygen nucleus in the 2a  orbital is localized near this nucleus as the corresponding charge increase in the
2s orbital of HF is localized near the fluorine. The charge density of the 2a  molecular orbital accumulated in the region between
the three nuclei will exert a force drawing all three nuclei together. The 2a  orbital is a binding orbital.

Although the three 2p atomic orbitals are degenerate in the oxygen atom the presence of the two protons results in each 2p orbital
experiencing a different potential field in the water molecule. The nonequivalence of the 2p orbitals in the water molecule is
evidenced by all three possessing different symmetry properties. The three 2p orbitals will interact to different extents with the
protons and their energies will differ.

The 2p orbital interacts most strongly with the protons and forms an orbital of b symmetry by overlapping with the (1s  - 1s )
combination of 1s orbitals on the hydrogens. The charge density contours for the lb orbital indicate that this simple LCAO
description accounts for the principal features of this molecular orbital. The lb  orbital concentrates charge density along each O-H
bond axis and draws the nuclei together. The charge density of the 1b  orbital binds all three nuclei. In terms of the forces exerted
on the nuclei the 2a  and lb  molecular orbitals are about equally effective in binding the protons in the water molecule.

The 2p  orbital may also overlap with the hydrogen 1s orbitals, the (1s  + 1s ) a  combination, and the result is the 3a molecular
orbital. This orbital is concentrated along the z-axis and charge density is accumulated in both the bonded and nonbonded sides of
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the oxygen nucleus. It exerts a binding force on the protons and an antibinding force on the oxygen nucleus, a behaviour similar to
that noted before for the 3s orbitals in CH and HF.

The 2p  orbital is not of the correct symmetry to overlap with the hydrogen 1s orbitals. To a first approximation the 1b  molecular
orbital will be simply a 2p  atomic orbital on the oxygen, perpendicular to the plane of the molecule. Reference to Fig. 8-
11indicates that the 1b  orbital does resemble a 2p atomic orbital on oxygen but one which is polarized into the molecule by the
field of the protons. The 1b  molecular orbital of H O thus resembles a single component of the 1p molecular orbitals of the
diatomic hydrides. The 1b  and the 1p orbitals are essentially nonbinding. They exert a small binding force on the heavy nuclei
because of the slight polarization. The force exerted on the protons by the pair of electrons in the 1b  orbital is slightly less than
that required to balance the force of repulsion exerted by two of the nuclear charges on the oxygen nucleus. The 1b  and 1p
electrons basically do no more than partially screen nuclear charge on the heavy nuclei from the protons.

In summary, the electronic configuration of the water molecule as determined by molecular orbital theory is

1a 2a 1b 3a 1b

The la  orbital is a nonbinding inner shell orbital. The pair of electrons in the la  orbital simply screen two of the nuclear charges
on the oxygen from the protons. The 2a , 1b  and 3a  orbitals accumulate charge density in the region between the nuclei and the
charge densities in these orbitals are responsible for binding the protons in the water molecule. Aside from being polarized by the
presence of the protons, the lb  orbital is a non-interacting 2p orbital on the oxygen and is essentially nonbinding.

Before closing this introductory account of molecular orbital theory, brief mention should be made of the very particular success
which the application of this theory has had in the understanding of the chemistry of a class of organic molecules called conjugated
systems. Conjugated molecules are planar organic molecules consisting of a framework of carbon atoms joined in chains or rings
by alternating single and double bonds. Some examples are

In the structural formulae for the cyclic molecules, e.g., benzene and naphthalene, it is usual not to label the positions of the carbon
and hydrogen atoms by their symbols. A carbon atom joined to just two other carbon atoms is in addition bonded to a hydrogen
atom, the C�H bond axis being projected out of the ring in the plane of the carbon framework and bisecting the CCC bond angle.

The notion of these molecules possessing alternating single and double bonds is a result of our attempt to describe the bonding in
terms of conventional chemical structures. In reality all six C�C bonds in benzene are identical and the C�C bonds in the other
two examples possess properties intermediate between those for single and double bonds. In other words, the pairs of electrons
forming the second or p bonds are not localized between specific carbon atoms but are delocalized over the whole network of
carbon atoms, a situation ideally suited for a molecular orbital description.

We may consider each carbon atom in a conjugated molecule to be sp hybridized and bonded through these hybrid orbitals to three
other atoms in the plane. This accounts for the bonding of the hydrogens and for the formation of the singly-bonded carbon
network. The electrons forming these bonds are called s electrons. The axis of the remaining 2p orbital on each carbon atom is
directed perpendicular to the plane of the molecule and contains a single electron, called a p electron. A simple adaptation of
molecular orbital theory, called Hückel theory, which takes the s bonds for granted and approximates the molecular orbitals of the p
electrons in terms of linear combinations of the 2pp atomic orbitals on each carbon atom, provides a remarkably good explanation
of the properties of conjugated molecules. Hückel molecular orbital theory and its applications are treated in a number of books,
some of which are referred to at the end of this chapter.

This page titled 8.7: Molecular Orbitals for Polyatomic Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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8.8: Further Reading
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3.
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8.E: Exercises

1.

(
a
)
Give the molecular orbital electronic configurations of the N  and Ne  molecules.

(
b
)

Does the difference in the number of occupied bonding and anti-bonding orbitals agree with the number of electron pair bonds
which a Lewis structure would predict for these two molecules?

2.

Complete the correlation diagram (Fig. 8-4) for the homonuclear diatomic molecular orbitals by correlating each molecular
orbital with an atomic orbital of the united atom. The symmetry and nodal property of each orbital must be conserved in the
correlation. Starting with the molecular orbital of lowest energy each molecular orbital will in turn correlate with the atomic
orbital of lowest energy which possesses the same symmetry. All atomic orbitals with even l values are of gsymmetry and those
with odd l values are of u symmetry.

2 2
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3.

The total and molecular orbital charge distributions of the bifluoride ion (FHF)  are shown in Fig. 8-12. 

Fig. 8-12. Contour maps of the total molecular charge distribution and the molecular orbital densities for the (FHF)  ion, which
has the electronic configuration
ls ls 2s 2s 3s lp  lp  3s . Note that this electron configuration is formally identical to that for the unstable Ne
molecule. The binding properties of the orbitals in (FHF)  are considerably altered from the homonuclear diatomic case
by the presence of the proton, and the ion is a stable species. (The ls  and ls densities are not shown.) (Click here for
enlarged picture.)
This negatively-charged molecule results from the reaction of a fluoride ion with a hydrogen fluoride molecule. The molecule
has a linear, symmetric structure with the proton forming a bond between the fluorines. The molecular orbitals thus have the
same symmetry classification (s or p and g or u) as do the orbitals for the homonuclear diatomic molecules.

(
a
)

Give a qualitative comparison of the forms and binding properties of the molecular orbitals for (FHF)  with those for the
homonuclear diatomic molecule F . (The molecular orbitals for F  are very similar to those shown in Fig. 8-8 for O . The 3s
orbital is not occupied in the ground state of F .) The 1s  and 1s  molecular orbital densities for (FHF)  are not illustrated since
they, like the corresponding orbitals in the homonuclear diatomics, are simply inner shell 1satomic-like distributions centred on
the fluorine atom.

(
b
)

Account for the general forms and the primary atomic orbital components of the molecular orbitals in (FHF)  in terms of the
simple LCAO approximation using symmetry properties and the relative energies of the orbitals on H and F.
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4.

The CO  molecule is another linear symmetric triatomic molecule possessing the same symmetry properties as do the
homonuclear diatomic molecules. The molecular orbitals will be of s or p and g or u symmetry. From a knowledge of the
symmetries of the 1s, 2s and 2p atomic orbitals and their relative energies as given for C and O in Fig. 5-3 predict the electronic
configuration of the CO  molecule in terms of molecular orbitals.

5.

The CO molecule is isoelectronic with the N  molecule and can be thought of as being derived from N  by transferring one
proton from one N nucleus to the other. The molecular orbitals of CO will be of s or p symmetry but will not exhibit any g or u
dependence since the centre of symmetry has been lost. Derive the electronic configuration of CO by considering how each
molecular orbital of N  will be changed as one N nuclear charge is increased by one unit and the other is decreased by one unit.
As a hint, the 1s  orbital of N  will become the 1s orbital of CO. Reference to Fig. 5-3 shows the 1s orbital of O to be
considerably more stable than the 1s orbital of C. Thus the 1s  orbital of N  which is concentrated equally in ls-like atomic
orbitals on both N nuclei, becomes a 1s-like atomic orbital on O. Similarly the 1s  orbital of N  becomes a 1s-like orbital on C.

6.
Using the 1s, 2s, 2ps and 2pp atomic orbitals on C and the 1s orbital on H discuss the simple LCAO forms expected for the
molecular orbitals of the linear form of methylene, CH . One can consider this problem from the point of view of how the
molecular orbitals of CH given in the text would change if a second proton was brought up to the nonbonded side of the C atom.

7.

Construct a correlation diagram for the HF molecule which relates the molecular orbitals with the orbitals of the separated atoms.
Arrange the atomic orbitals of H and F on the right hand side of the diagram in order of increasing energy. The energies of the 1s,
2s, 3s, and 1p molecular orbitals in the HF molecule are -26.29 au, -1.60 au, -0.77 au and -0.65 au respectively. Is the energy of
the 1s orbital on F much affected by the formation of the chemical bond with H?

8.

Construct a correlation diagram for the CO molecule which relates the molecular orbitals with those of the separated atoms.
Arrange the atomic orbitals of both C and O on the right hand side of the diagram in the order of increasing energy. Only atomic
orbitals of the same symmetry can interact to form a molecular orbital and the resulting molecular orbital will have this same
symmetry. The energies of the molecular orbitals in CO in au are 1s(-20.67), 2s(-11.37), 3s(-1.53) 4s(-0.81), 5s(-0.56), 1p(-0.65).
Recall that the 2p atomic orbitals on C and O may form molecular orbitals of both s and p symmetry.

9.

The correlation diagram in Problem 7 correlates the separated atom orbitals for R = ¥ with the molecular orbitals at R , the
equilibrium internuclear distance in the molecule. Continue the correlation of the orbitals to the limiting case of R = 0, the united
atom. When the distance between the F nucleus and the proton is decreased to zero the result is a neon nucleus and a neon atom.
The electronic energy of each molecular orbital should correlate smoothly with an atomic energy level of the united atom, the
symmetry again being conserved. For example, the 1s molecular orbital will correlate with the 1s atomic orbital of the Ne atom. 
Do the spacings between the energy levels for HF resemble those for the united or separated atoms more closely? That is, is the
electronic structure of the HF best compared to that of the Ne atom or to that of perturbed energy levels of the F and H atoms?

This page titled 8.E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard F. W. Bader via
source content that was edited to the style and standards of the LibreTexts platform.
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9: Preface to Calculations
The beginning student of chemistry must have a knowledge of the theory which forms the basis for our understanding of chemistry
and he must acquire this knowledge before he has the mathematical background required for a rigorous course of study in quantum
mechanics. The present approach is designed to meet this need by stressing the physical or observable aspects of the theory through
an extensive use of the electronic charge density.

The manner in which the negative charge of an atom or a molecule is arranged in three-dimensional space is determined by the
electronic charge density distribution. Thus, it determines directly the sizes and shapes of molecules, their electrical moments and,
indeed, all of their chemical and physical properties.

Since the charge density describes the distribution of negative charge in real space, it is a physically measurable quantity.
Consequently, when used as a basis for the discussion of chemistry, the charge density allows for a direct physical picture and
interpretation.

In particular, the forces exerted on a nucleus in a molecule by the other nuclei and by the electronic charge density may be
rigorously calculated and interpreted in terms of classical electrostatics. Thus, given the molecular charge distribution, the stability
of a chemical bond may be discussed in terms of the electrostatic requirement of achieving a zero force on the nuclei in the
molecule. A chemical bond is the result of the accumulation of negative charge density in the region between any pair of nuclei to
an extent sufficient to balance the forces of repulsion. This is true of any chemical bond, ionic or covalent, and even of the shallow
minimum in the potential curves arising from van der Waals' forces.

In this treatment, the classifications of bonding, ionic or covalent, are retained, but they are given physical definitions in terms of
the actual distribution of charge within the molecule. In covalent bonding the valence charge density is distributed over the whole
molecule and the attractive forces responsible for binding the nuclei are exerted by the charge density equally shared between them
in the internuclear region. In ionic bonding, the valence charge density is localized in the region of a single nucleus and in this
extreme of binding the charge density localized on a single nucleus exerts the attractive force which binds both nuclei.

This web page begins with a discussion of the need for a new mechanics to describe the events at the atomic level. This is
illustrated through a discussion of experiments with electrons and light, which are found to be inexplicable in terms of the
mechanics of Newton. The basic concepts of the quantum description of a bound electron, such as quantization, degeneracy and its
probabilistic aspect, are introduced by contrasting the quantum and classical results for similar one-dimensional systems. The
atomic orbital description of the many-electron atom and the Pauli exclusion principle are considered in some detail, and the
experimental consequences of their predictions regarding the energy, angular momentum and magnetic properties of atoms are
illustrated. The alternative interpretation of the probability distribution (for a stationary state of an atom) as a representation of a
static distribution of electronic charge in real space is stressed, in preparation for the discussion of the chemical bond.

Chemical binding is discussed in terms of the molecular charge distribution and the forces which it exerts on the nuclei, an
approach which may be rigorously presented using electrostatic concepts. The discussion is enhanced through the extensive use of
diagrams to illustrate both the molecular charge distributions and the changes in the atomic charge distributions accompanying the
formation of a chemical bond.

The above topics are covered in the first seven sections of this web page. The final section is for the reader interested in the
extension of the orbital concept to the molecular cases. An elementary account of the use of symmetry in predicting the electronic
structure of molecules is given in this section.

Hamilton, 1970
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