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2.1: A Contrast of the Old and New Physics

Consider an electron of mass m =9 ~ 10728 g which is confined to move on a line L cm in length. L is set equal to the approximate
diameter of an atom, 1 ~ 108cm = 1A. Consider as well a system composed of a mass of 1 g confined to move on a line, say 1
metre in length. We shall apply quantum mechanics to the first of these systems and classical mechanics to the second.

Energy

As either mass moves from one end of its line to the other, the potential energy (the energy which depends on the position of the
mass) remains constant. We may set the potential energy equal to zero, and all the energy is then kinetic energy (energy of motion).
When the electron reaches the end of the line, we shall assume that it is reflected by some force. Thus at the ends of the line the
potential energy rises abruptly to a very large value, so large that the electron can never "break through." We can plot potential
energy versus position x along the line Fig. 2-1.

INCREASING ENERGY
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Fig. 2-1. Potential energy diagram for a particle moving on a line of lenght L. When the electron is at x = 0 or x = L the potential
energy is infinite and for values of x between these limits (0< x < L) the potential energy is zero.
We refer to the electron (or the particle of m = 1 g) as being in a potential well and we can imagine the abruptly rising potential at x
=0 and x = L to be the result of placing a "wall" at each end of the line. First, what are the predictions of classical mechanics
regarding the energy of the mass of 1 g? The total energy is kinetic energy and is simply:

E=KFE= %mv2

We know from experience that u, the velocity, can have any possible value from zero up to very large values. Since all values for u
are allowed, all values for E are allowed. We conclude that the energy of a classical system may have any one of a continuous
range of values and may be changed by any arbitrary amount. Let us contrast with this conclusion the prediction which quantum
mechanics makes regarding the energy of an electron in a corresponding situation.

The quantum mechanical results are remarkable indeed, although they should not be surprising when we recall Bohr's explanation
of the line spectra which are observed for atoms. Quantum mechanics predicts that there are only certain values of the energy
which the electron confined to move on the line can possess. The energy of the electron is quantized. If this result could be
observed for a massive particle, it would mean that only certain velocities were possible, say u = 1 cm/sec or 10 cm/sec but with no
intermediate values! But then an electron is not really a particle. The expression for the allowed energies as given by quantum
mechanics for this simple system is:

h2 2
(1) E":8—T£2 n=1234,....
mn.

where again h is Planck's constant and n is an integer which may assume any value from one to infinity. Since only discrete values
for E are possible, the appearance of the index n in equation (1) is necessary. A number such as n which appears in the expression
for the energy is called a quantum number. Each value of the quantum number n fixes a value of E,, one of the allowed energy
values. We can indicate the possible values for the energy on an energy diagram. It is clear from equation (1) that for given values
of m and L, E,, equals a constant (K = h*/8mL?) multiplied by n’:

) E, = Kn? n=1234,....
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Thus we can express the value of E,in terms of so many units of K.

Each line, called an energy level, in Fig. 2-2 denotes an allowed energy for the system and the figure is called an energy level
diagram. Each level is identified by its value of n as a subscript. A corresponding diagram for the case of the classical particle
would consist of an infinite number of lines with infinitesimally small spacings between them, indicating that the energy in a
classical system may vary in a continuous manner and may assume any value. The energy continuum of classical mechanics is
replaced by a discrete set of energy levels in quantum mechanics.
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Fig. 2-2. Energy level diagram for an electron moving on a line of length L. Only the first few levels are shown.

Suppose we could give the electron sufficient energy to place it in one of the higher (excited) energy levels. Then when it "fell"
back down to the lowest value of E (called the ground level, E;), a photon would be emitted. The energy e of the photon would be
given by the difference in the values of E, and E; and, since e = hv the frequency of the photon would be given by the relationship:

V= — n=2345,...

which is Bohr's frequency condition (I-4). Thus only certain frequencies would be emitted and the spectrum would consist of a
series of lines.

We can illustrate the change in energy when the electron falls to the lowest energy level by connecting the upper level and then =1
level by an arrow in an energy level diagram. The frequency of the photon emitted during the indicated drop in energy is
proportional to the length of the arrow, i.e., to the change in energy (Fig. 2-3). The line directly beneath each arrow represents the
value of the frequency for that drop in energy. Since the differences in the lengths of the arrows increase as n increases, the
separations between the observed frequencies show a corresponding increase. The spectrum, therefore, consists of a series of lines,
with the spacings between the lines increasing as n increases. If the energy was not quantized and all values were possible, all
jumps in energy would be possible and all frequencies would appear. Thus a continuum of possible energy values will produce a
continuous spectrum of frequencies. A line spectrum, on the other hand, is a direct manifestation of the quantization of energy.
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S Fig. 2-3. The origin of a line spectra.

INCREASING ENERGY
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In the quantum case, as in the classical case, all of the energy will be in the form of kinetic energy. We may obtain an expression
for the momentum of the electron by equating the total value of the energy E,, to p?/2m, where p is the momentum
(= mu) of the electron, (p?/2m is another way of expressing 2mu°.)

_m _ 1.9 _ P
E”_smﬁ =ymu° =5
This gives:
=400 =1,2,3,4
pi 2L ni 9 b b AR

A plus and a minus sign must be placed in front of the number which gives the magnitude of the momentum to indicate that we do
not know and cannot determine the direction of the motion. If the electron moves from left to right the sign will be positive. If it
moves from right to left the sign will be negative. The most we can know about the momentum itself is its average value. This
value will clearly be zero because of the equal probability for motion in either direction. The average value of p%, however, is finite.

Since the lowest allowed value of the quantum number n in the quantum mechanical expression for the energy is unity, it is evident
that the energy can never equal zero. A confined electron can never be motionless. The expression for E, also indicates that the
kinetic energy and the momentum increase as the length of the line L is decreased. Thus the kinetic energy and momentum of the
electron increase as its motion becomes more confined. This is both an important and a general result and will be referred to again.

Position

The concept of a trajectory is fundamental to classical mechanics. Given a particular mass with a given initial velocity and a
knowledge of the forces acting on it, we may use classical mechanics to predict the exact position and velocity of the particle at any
future time. Thus we speak of the trajectory of the particle and we may calculate it to any desired degree of accuracy. It is also
possible, within the framework of classical mechanics, to measure the position and velocity of a particle at any given instant of
time. Thus classical mechanics correctly predicts what one can experimentally measure for massive particles.

We have previously mentioned the difficulties which are encountered when we attempt to determine the position of an electron.
The results of the Compton effect indicate that part of the energy of the photon used in making the observation is transferred to the
electron, and we invariably disturb the electron when we attempt to measure its position. Thus it is not surprising to find that
quantum mechanics does not predict the position of an electron exactly. Rather, it provides only a probability as to where the
electron will be found. When we consider the experiments which attempt to define the position of the electron, we shall find that
this is the maximum information that can indeed be obtained even experimentally. The new mechanics again predicts only what can
indeed be measured experimentally. We shall illustrate the probability aspect in terms of the system of an electron confined to
motion along a line of length L. Quantum mechanical probabilities are expressed in terms of a distribution function which in this
particular case we shall label Pp(x).

Consider the line of length L to be divided into a large number of very small segments, each of length Dx. Then the probability that
the electron is in one particular small segment Dx of the line is given by the product of Dx and the value of the probability
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distribution function P,(x) for that interval. For example, the probability distribution function for the electron when it is in the
lowest energy level, n = 1, is given by P;(x) (Fig. 2-4).

P (x Py (x)

P (x) P, (x)

X X

Fig. 2-4. Probability distributions Pp(x) for an electron confined to move on a line of fixed length in the quantum levels
withn =1, 2, ..., 6. The area of each rectangle shown in the figure for P;(x) equals the probability that the electron is
in the particular segment of the line Dx forming the base of the rectangle. The percentage shown in each rectangle is
the percentage probability that the electron is in a particular segment Dx. The total probability that the electron is
somewhere on the line is given by the total area under the P;(x) curve, that is, by the sum of each small element of
area P;(x)Dx for each segment Dx. This total area is made to equal unity for every P,(x) curve by expressing the
values of P,(x) in units of (1/L). Thus by definition a probability of one denotes a certainty.
The probability that the electron will be in the particular small interval Dx indicated in Fig. 2-4 is equal to the shaded area, an area
which in turn is equal to the product of Dx and the average value of P;(x) throughout the interval Dx, called P;(x'),

probability that electron is in segmentAz = P, (z') Az

The curve P;(x) may be determined in the following manner. We design an experiment able to determine whether or not the
electron is in one particular segment Dx of the line when it is known to be in the quantum level n = 1. (One way in which this might
be done is described below.) We perform the experiment a large number of times, say one hundred, for each segment and record the
ratio of the number of times the electron is found in a particular segment to the total number of observations made for that segment.
For example, an electron is found to be in the segment marked Dx (of length 0.1 L) in the figure for P;(x) in 18 out of 100
observations, or 18% of the time. In the other 82 observations the electron was in one of the other segments. Thus the average value
of P;(x) for this segment, called P;(x') must be 1.8/L since P;(x')Dx = (1.8/L) (0.1 L) = 0.18 or 18%. A similar set of experiments is
made for each of the segments Dx and in each case a rectangle is constructed with Dx as base and with a height equal to P;(x) such
that the product P;(x)Dx equals the fractional number of times the electron is found in the segment Dx. The limiting case in which
the total length L is divided into a very large number of very small segments (Dx ® dx) would result in the smooth curve shown in
the figure for P;(x).

There is a different probability distribution for each value of E,, or each quantum level, as shown, for example, by the probability
distributions for the energy levels with n = 2, 3, 4, 5 and 6 (Fig. 2-4). The probability of finding the electron at the positions where
the curve touches the x-axis is zero. Such a zero is termed a node. The number of nodes is always n-1 if we do not count the nodes
at the ends of each P,(x) curve.

Let us first contrast these results, particularly that for P;(x), with the corresponding classical case. Since a classical analysis allows
us to determine the position of a particle uniquely at any instant, either theoretically or experimentally, the idea of a probability
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distribution is foreign to a classical mechanical analysis. However, we still can determine the classical probability distribution for
the particle confined to motion on a line. Since there are no forces acting on the particle as it traverses the line, it will be equally
likely to be found at any point on the line (Fig 2-5). This probability will be the same regardless of the energy. There is again a
striking difference between the classical and the quantum mechanics results. For the first quantum level, the graph of Pj(x)
indicates the electron will most likely be found at the midpoint of the line. Furthermore, the form of P,(x) changes with every
change in energy. Every allowed value of the of the energy has associated with it a distinct probability distribution for the
electron. Theses are the predictions of quantum mechanics regarding the position of a bound electron. Now let us investigate the
experimental aspect of the problem to gain some physical reason for these predictions.

Fig. 2-5. The classical probability distribution for motion on a line.

Po() This is the result obtained when the particle is located a large
number of times at random time intervals. The classical probability
function P(x) is the same for all values of x and equals 1/L, i.e.,
the particle is equally likely to be found at any value of x

between 0 and L

Let us design an experiment in which we attempt to pinpoint the position of an electron within a segment Dx. The experiment is a
hypothetical one in that we imagine that we are to observe the electron through a microscope by reflecting or scattering light from
it. Imagine the lens of a microscope being placed above the line L with the light entering from the side (Fig. 2-6 (a)). The electron,
when illuminated with light, will act as a small source of light and will produce at A an image in the form of a bright disc
surrounded by a group of rings of decreasing intensity. Because of this effect, which is entirely analogous to the diffraction effect
observed for a pinhole source of light, the centre of the image will appear bright even if the electron is not precisely located at the
point marked x. It could equally well have been at any value of x between the points x' and x" and produced an image visible to the
eye at A if the difference in the path lengths Bx' and Cx' (or Bx" and Cx") is less than one half of a wavelength. In other words the
resolving power of a microscope is not unlimited but is instead determined by the wavelength of the light used in making the
observation. The use of the microscope imposes an inherent uncertainty in our observation of the position of the electron. With the
condition that the difference in the path lengths to the outside rim of the lens must be no greater than one half a wavelength and
with the use of some geometry, the magnitude of the uncertainty in the position of the electron, x" - x' = Dx, is found to be given
approximately by:

A
2sin 6

3) Az

where q is the angle indicated in the diagram.
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Fig. 2-6. An idealized experiment for detecting the position of an electron.

Remembering the Compton effect and bearing in mind that we wish to disturb the electron as little as possible during the
observation, we shall inquire as to the results obtained when a single photon is scattered from the electron. A single photon will not
yield the complete diffraction pattern at A, but will instead produce a single flash of light. A diffraction pattern is the result of many
photons passing through the microscope and represents the probability distribution for the emergent photons when they have been
scattered by an electron lying between x' and x". A single photon, when scattered from an electron within the length Dx, is however
still diffracted and will produce a flash of light somewhere in one of the areas defined by the probability distribution produced by
many photons passing through the system.

Thus even when we use but a single photon in our apparatus the uncertainty Dx in our experimentally determined position of the
electron will still be given by equation (3). Obviously, if we want to locate an electron which is confined to move on a line to
within a length that is small compared to the length of the line, we must use light which has a wavelength much less than L. This is
exactly what equation (3) states: the shorter the wavelength of the light which is used to observe the electron, the smaller will be
the uncertainty Dx. That being the case, why not do the experiment with light of very short wavelength compared to the length L,
say | = (1/100)L? Then we can hope to find the electron on one small segment of the line, each segment being approximately
(1/100)L in length. Let us calculate the frequency and energy of a photon which has the required wavelength of 1 = (1/100)L. As
before, we set L equal to a typical atomic dimension of 1 x 10 cm.

We are immediately in difficulty, because the energy of the electron in the first quantum level is easily found to be:

272

E = % =6.0x10Mergs =K

The energy of the photon is approximately 1 x 10* times greater than the energy of the electron! We know from the Compton effect
that the collision of a photon with an electron imparts energy to the electron. Thus the electron after the collision will certainly not
be in the state n = 1. It will be excited to oneCwe don't know whichCof the excited levels with n =2 (E = 4K) or n = 3 (E = 9K),
etc. The result is clear. If we demand an intimate knowledge of what the position of the electron is in a given state, we can obtain
this information only at the expense of imparting to the electron an unknown amount of energy which destroys the system, i.e., the
electron is no longer in the n = 1 level but in one of the other excited levels. If this experiment was repeated a large number of
times and a record kept of the number of times an electron was located in each segment of the line (roughly (1/100)L), a probability

plot similar to Fig. 2-4 would be obtained.

We can ask another kind of question regarding the position of the electron: "How much information can be obtained about the
position of the electron in a given quantum level without at the same time destroying that level?" The electron cannot accept energy
in an amount less than that necessary to excite it to the next quantum level, n = 2. The difference in energy between E,, and E, is
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3K. Thus if we are to leave the electron in a state of known energy and momentum we must use light whose photons possess an
energy less than 3K.

Let us calculate the wavelength of the light with e = 2K and compare this value with the length L.

—27 10
A= he __ 6.6x107"x3.0x10" __ 1.7 % 10760m
€ 12x10°1

The wavelength is greater than the length of the line L. From equation (3) it is clear that the uncertainty in the position of the
particle will be of the order of magnitude of, or greater than, L itself. The electron will appear to be blurred over the complete
length of the line in a single experiment! Thus there are two interpretations which can be given to the probability distributions,
depending on the experiment which is performed. The first is that of a true probability of finding the electron in a given small
segment of the line using light of very short 1 relative to L. This experiment excites the electron, changes the system and leaves the
electron with an unknown amount of energy and momentum. We have destroyed the object of our investigation. We now know
where it was in a given experiment but not where it will be, in terms of energy or position.

Alternatively, we could use light with a | approximately equal to L. This does not excite the electron and leaves it in a known
energy level. However, now the knowledge of the position is very uncertain. The photons are scattered from the system and give us
directly the smeared distribution P; pictured in Fig. 2-4. In a real sense we must accept the fact that when the electron remains in a
given state it is "smeared out" and "looks like" the pictures given for P,. Thus we can interpret the Py's as instantaneous pictures of
the electron when it is bound in a known state, and forgot their probability aspect. This "smeared out" distribution is given a special
name; it is called the electron density distribution. There will be a certain fraction of the total electronic charge at each point on the
line, and when we consider a system in three dimensions, there will be a certain fraction of the total electronic charge in every
small volume of space. Hence it is given the name electron density, the amount of charge per unit volume of space. The Pj's
represent a charge density distribution which is considered static as long as the electron remains in the nth quantum level. Thus the
Py, functions tell us either (a) the fraction of time the electron is at each point on the line for observations employing light of short
wavelength, or (b) they tell us the fraction of the total charge found at each point on the line (the whole of the charge being spread
out) when the observations are made with light of relatively long wavelength.

The electron density distributions of atoms, molecules or ions in a crystal can be determined experimentally by X-ray scattering
experiments since X-rays can be generated with wavelengths of the same order of magnitude as atomic diameters (1 ~ 10-8cm). In
X-ray scattering the intensity of the scattered beam and the angle through which it is scattered are measured. The distribution of
negative charge within the crystal scatters the X-rays and determines the intensity and angle of scattering. Thus these experimental
quantities can be used to calculate the form of the electron density distribution.

There is a definite quantum mechanical relationship governing the magnitudes of the uncertainties encountered in measurements on
the atomic level. We can illustrate this relationship for the one-dimensional system. Let us consider the minimum uncertainty in our
observations of the position and the momentum of the electron moving on a line obtained in an experiment which leaves the
particle bound in a given quantum level, say n = 1. This will require the use of light with I ~ L. We have seen that the use of light of
this wavelength limits us to stating that the electron is somewhere on the line of length L. We can say no more than this with
certainty unless we use light of much shorter 1, and then we will change the quantum number of the electron. The uncertainty in the
value of the position coordinate, which we shall call Dx, is just L, the length of the line:

Az =1L

We have previously shown that the momentum of the electron in the nth quantum level is given by:

Po=E02 n=1,23,...

the plus and minus signs denoting the fact that while we know the magnitude of the momentum we cannot determine whether the
electron is moving from left to right (+nh/2L) or from right to left (-nh/2L). The minimum uncertainty in our knowledge of the
momentum is the difference between these two possibilities, or for n = 1:

_ h —h H
Ap=+5;—(3p)=7T

The product of the uncertainties in the position and the momentum is:

ApAz=LE =h
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This result is a particular example of a general relationship governing the product of the uncertainties in the momentum and
position known as Heisenberg's uncertainty principle. In the general case, the equality sign in the above equation is replaced by
the symbol "3" which denotes that the product in the uncertainties DpDx equals or exceeds the value of Planck's contant h, that is,
the general statement is given by DpDx 3 h.

If we endeavour to decrease the uncertainty in the position coordinate (i.e., make D x small) there will be a corresponding increase
in the uncertainty of the momentum of the electron along the same coordinate, such that the product of the two uncertainties is
always equal to Planck’s constant. We saw this effect in our experiments wherein we employed light of short 1 to locate the position
of the electron more precisely. When we did this we excited the electron to one of the other available quantum states, thus making a
knowledge of the energy and hence the momentum uncertain. We might also try to defeat Heisenberg's uncertainty principle by
decreasing the length of the line L. By shortening L, we would decrease the uncertainty as to where the electron is. However, as
was noted previously, the momentum increases as L is decreased and the uncertainty in p is always the same order of magnitude as
p itself; in this case twice the magnitude of p. Thus the decrease in Dx obtained by decreasing L is offset by the increase in Dp
which accompanies the increased confinement of the electron; the product DxD p remains unchanged in value.

We can illustrate the operation of Heisenberg's uncertainty principle for a free particle by referring again to our hypothetical
experiment in which we attempted to locate the position of an electron by using a microscope. We imagine the electron to be free
and travelling with a known momentum in the direction of the x-axis with a photon entering from below along the y-axis. When
the photon is scattered by the electron it may transfer momentum to the electron and continue on a line which makes an angle q' to
the y-axis (Fig. 2-6). The photon, in doing so, will acquire momentum in the direction of the x-axis, a direction in which it initially
had none. Since momentum must be conserved, the electron will receive a recoil momentum, a momentum equal in magnitude but
opposite in direction to that gained by the photon. This is the Compton effect. Thus our act of observing the electron will lead to an
uncertainty in its momentum as the amount of momentum transferred during the collision is uncontrollable. We may, however, set
limits on the amount transferred and in this way determine the uncertainty introduced into the value of the momentum of the
electron.

The momentum of the photon before the collision is all directed along the y-axis and has a magnitude equal to h/l . After colliding
with the electron the photon may be scattered to the left or to the right of the y-axis through any angle q' lying between 0 and q and
still be collected by the lens of the microscope and seen by the observer at A. Thus every photon which passes through the
microscope will have an uncertainty of 2(h/1)sinq in its component of momentum along the x-axis since it may have been scattered
by the maximum amount to the left and acquired a component of -(h/1)sing or, on the other hand, it may have been scattered by the
maximum amount to the right and acquired a momentum component of +(h/l)sing. Any x-component of momentum acquired by
the photon must have been lost by the electron and the uncertainty introduced into the momentum of the electron by the
observation is also equal to 2(h/l)sinq .

In addition to the uncertainty induced in the momentum of the electron by the act of measurement, there is also an inherent
uncertainty in its position (equation (3)) because of the limited resolving power of the microscope. The product of the two
uncertainties at the instant of measurement or immediately following it is:

B A
ApAz ~23sinfx 55— =h

Heisenberg's uncertainty relationship is again fulfilled. Our experiment employs only a single photon which, since light itself is
quantized, represents the smallest packet of energy and momentum which we can use in making the observation. Even in this
idealized experiment the act of observation creates an unavoidable disturbance in the system.

Degeneracy

We may use an extension of our simple system to illustrate another important quantum mechanical result regarding energy levels.
Suppose we allow the electron to move on the x-y plane rather than just along the x-axis. The motions along the x and y directions
will be independent of one another and the total energy of the system will be given by the sum of the energy quantum for the
motion along the x-axis plus the energy quantum for motion along the y-axis. Two quantum numbers will now be necessary, one to
indicate the amount of energy along each coordinate. We shall label these as n, and n,. Let us assume that the motion is confined to
a length L along each axis, then:

_ W o R o _ W o2 2
Enz,ny - SmL? ny + Sm.L2 ny - Sm L2 (nw+ny) Ney = 1a2u 3) e

https://chem.libretexts.org/@go/page/64665


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/64665?pdf

LibreTextsm

Nothing new is encountered when the electron is in the lowest quantum level for which ny = ny, = 1. The energy E; ; simply equals
2h?/8mL?.

Since two dimensions (x and y) are now required to specify the position of the electron, the probability distribution P; ;(x,y) must
be plotted in the third dimension. We may, however, still display P; ;(x,y) in a two-dimensional diagram in the form of a contour
map (Fig. 2-7). All points in the x-y plane having the same value for the probability distribution P; ;(x,y) are joined by a line, a
contour line. The values of the contours increase from the outermost to the innermost, and the electron, when in the leveln, = n, =
1, is therefore most likely to be found in the central region of the x-y plane.

X —
Pa,alxy) Psa(xy)

Fig. 2-7. Contour maps of the probability distributions Py, ,, (x,y) for an electron moving on the x-y plane. The dashed lines
represent the postion of nodes, lines along which the probability is zero. P; ; (x,y) and P, ; (x,y) are distributions for one doubly-
degenerate level; P, 3 (x,y) and Pj3 ; (x,y) are examples of distributions for another degenerate level of still higher energy. The
same contours are shown in each diagram and their values (in units of 4/L2) are indicated in the diagram for Py 1(x,y).

A plot of Py ;(x,y) along either of the axes indicated in Fig. 2-7 (one parallel to the x-axis at y = L/2 and the other parallel to the y-
axis at x = L/2) is similar in appearance to that for P;(x) shown in Fig. 2-4. That is, for a fixed value of y, the contribution to
Pj1,1(x,y) from the motion along the y-axis is constant and

P, i(z,L/2) = constant x P (z)
Thus, aside from the constant factor, P;(x) provides a profile, or if P; ;(x,y) were displayed in three dimensions, a cross section of

the contour map of P; ;(x). A contour map is a display of the probability or density distribution in a plane; a profile is a display of
the density distribution along a line.

Now consider the possibility of ny = 1 and n, = 2. Then
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We could also have the situation in which n, = 2 and n, = 1. This does not change the value of the total energy,

2
By =FE,=-5%
2,1 1,2 SmL?

but the probability distributions (Fig. 2-7) are different, P; ;(x,y) P2 1 (x,y). When ny = 1 and n, = 2, there must be a node on the y-
axis, i.e., a zero probability of finding the electron at y = L/2. Thus a slice through P; »(x y) at x = L/2 parallel to the y-axis must be
similar to the figure for P»(x), while a slice parallel to the x-axis will still be similar to P;(x). Just the reverse is true for the case ny
=2 and n, = 1. In this case, whether or not we can distinguish experimentally between the x- and y-axes, there are two different
arrangements for the distribution of the electron, both of which have the same energy. The energy level is said to be degenerate.
The degeneracy of an energy level is equal to the number of distinct probability distribution for the system, all of which belong
to this same energy level.

The concept of degeneracy in an energy level has important consequences in our study of the electronic structure of atoms.

This page titled 2.1: A Contrast of the Old and New Physics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Richard F. W. Bader via source content that was edited to the style and standards of the LibreTexts platform.
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