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17: Equilibrium and the Second Law of Thermodynamics

Foundation

We have observed and defined phase transitions and phase equilibrium. We have also observed equilibrium in a variety of reaction
systems. We will assume an understanding of the postulates of the Kinetic Molecular Theory and of the energetics of chemical
reactions.

Goals

We have developed an understanding of the concept of equilibrium, both for phase equilibrium and reaction equilibrium. As an
illustration, at normal atmospheric pressure, we expect to find H, O in solid form below 0°C, in liquid form below 100°C, and in
gaseous form above 100°C. What changes as we move from low temperature to high temperature cause these transitions in which
phase is observed? Viewed differently, if a sample of gaseous water at 120°C is cooled to below 100°C, virtually all of the water
vapor spontaneously condenses to form the liquid:

H,0(g) —» H,0 () spontaneous below 100°C (17.1)
By contrast, very little of liquid water at \(80A\text{o} \text{C} spontaneously converts to gaseous water:
H,0 () - H,0(g) not spontaneous below 100°C (17.2)

We can thus rephrase our question as, what determines which processes are spontaneous and which are not? What factors
determine what phase is "stable"?

As we know, at certain temperatures and pressures, more than one phase can be stable. For example, at 1 atm pressure and 0°C,
H,0(s) = H,0(l) equilibrium at 0°C (17.3)

Small variations in the amount of heat applied or extracted to the liquid-solid equilibrium cause shifts towards liquid or solid
without changing the temperature of the two phases at equilibrium. Therefore, when the two phases are at equilibrium, neither
direction of the phase transition is spontaneous at 0°C. We therefore need to understand what factors determine when two or more
phases can coexist at equilibrium.

This analysis leaves unanswered a series of questions regarding the differences between liquids and gases. The concept of a gas
phase or a liquid phase is not a characteristic of an individual molecule. In fact, it does not make any sense to refer to the "phase" of
an individual molecule. The phase is a collective property of large numbers of molecules. Although we can discuss the importance
of molecular properties regarding liquid and gas phases, we have not discussed the factors which determine whether the gas phase
or the liquid phase is most stable at a given temperature and pressure.

These same questions can be applied to reaction equilibrium. When a mixture of reactants and products is not at equilibrium, the
reaction will occur spontaneously in one direction or the other until the reaction achieves equilibrium. What determines the
direction of spontaneity? What is the driving force towards equilibrium? How does the system know that equilibrium has been
achieved? Our goal will be to understand the driving forces behind spontaneous processes and the determination of the equilibrium
point, both for phase equilibrium and reaction equilibrium.

Observation 1: Spontaneous Mixing

We begin by examining common characteristics of spontaneous processes, and for simplicity, we focus on processes not involving
phase transitions or chemical reactions. A very clear example of such a process is mixing. Imagine putting a drop of blue ink in a
glass of water. At first, the blue dye in the ink is highly concentrated. Therefore, the molecules of the dye are closely congregated.
Slowly but steadily, the dye begins to diffuse throughout the entire glass of water, so that eventually the water appears as a uniform
blue color. This occurs more readily with agitation or stirring but occurs spontaneously even without such effort. Careful
measurements shows that this process occurs without a change in temperature, so there is no energy input or release during the
mixing.

We conclude that, although there is no energetic advantage to the dye molecules dispersing themselves, they do so spontaneously.
Furthermore, this process is irreversible in the sense that, without considerable effort on our part, the dye molecules will never
return to form a single localized drop. We now seek an understanding of how and why this mixing occurs.
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Consider the following rather abstract model for the dye molecules in the water. For the glass, we take a row of ten small boxes,
each one of which represents a possible location for a molecule, either of water or of dye. For the molecules, we take marbles, clear
for water and red for ink. Each box will accommodate only a single marble, since two molecules cannot be in the same place at the
same time. Since we see a drop of dye when the molecules are congregated, we model a "drop" as three red marbles in consecutive
boxes. Notice that there are only eight ways to have a "drop" of dye, assuming that the three dye "molecules" are indistinguishable
from one another. Two possibilities are shown in Figure 17.1a and Figure 17.1b. It is not difficult to find the other six.

a. e
b.
C. e
d.

Figure 17.1: Arrangement of Three Ink Molecules. (a) An unmixed state. (b) Another unmixed state. (c) A mixed state. (d) Another
mixed state.

By contrast, there are many more ways to arrange the dye molecules so that they do not form a drop, i.e., so that the three
molecules are not together. Two possibilities are shown in Figure 17.1c and Figure 17.1d. The total number of such possibilities is
112. (The total number of all possible arrangements can be calculated as follows: there are 10 possible locations for the first red
marble, 9 for the second, and 8 for the third. This gives 720 possible arrangements, but many of these are identical, since the
marbles are indistinguishable. The number of duplicates for each arrangement is 6, calculated from three choices for the first
marble, two for the second, and one for the third. The total number of non-identical arrangements of the molecules is % =120.)
We conclude that, if we randomly place the 3 marbles in the tray of 10 boxes, the chances are only 8 out of 120 (or 1 out of 15) of
observing a drop of ink.

Now, in a real experiment, there are many, many times more ink molecules and many, many times more possible positions for each
molecule. To see how this comes into play, consider a row of 500 boxes and 5 blue marbles. (The mole fraction of ink is thus
0.01.) The total number of distinct configurations of the red marbles in these boxes is approximately 2 x 10! . The number of
these configurations which have all five ink marbles together in a drop is 496. If the arrangements are sampled randomly, the
chances of observing a drop of ink with all five molecules together are thus about one in 500 million. The possibilities are remote
even for observing a partial "droplet" consisting of fewer than all five dye molecules. The chance for four of the molecules to be
found together is about one in 800,000. Even if we define a droplet to be only three molecules together, the chances of observing
one are less than one in 1600.

We could, with some difficulty, calculate the probability for observing a drop of ink when there are 10?3 molecules. However, it is
reasonably deduced from our small calculations that the probability is essentially zero for the ink molecules, randomly distributed
into the water molecules, to be found together. We conclude from this that the reason why we observe ink to disperse in water is
that the probability is infinitesimally small for randomly distributed dye molecules to be congregated in a drop.

Interestingly, however, when we set up the real ink and water experiment, we did not randomly distribute the ink molecules. Rather,
we began initially with a drop of ink in which the dye molecules were already congregated. We know that, according to our kinetic
theory, the molecules are in constant random motion. Therefore, they must be constantly rearranging themselves. Since these
random motions do not energetically favor any one arrangement over any other one arrangement, we can assume that all possible
arrangements are equally probable. Since most of the arrangements do not correspond to a drop of ink, then most of the time we
will not observe a drop. In the case above with five red marbles in 500 boxes, we expect to see a drop only once in every 500
million times we look at the "glass". In a real glass of water with a real drop of ink, the chances are very much smaller than this.

We draw two very important conclusions from our model. First, the random motions of molecules make every possible
arrangement of these molecules equally probable. Second, mixing occurs spontaneously simply because there are vastly many more
arrangements which are mixed than which are not. The first conclusion tells us "how" mixing occurs, and the second tells us
"why". On the basis of these observations, we deduce the following preliminary generalization: a spontaneous process occurs
because it produces the most probable final state.

Probability and Entropy

There is a subtlety in our conclusion to be considered in more detail. We have concluded that all possible arrangements of
molecules are equally probable. We have further concluded that mixing occurs because the final mixed state is overwhelmingly
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probable. Placed together, these statements appear to be openly contradictory. To see why they are not, we must analyze the
statements carefully. By an "arrangement" of the molecules, we mean a specification of the location of each and every molecule.
We have assumed that, due to random molecular motion, each such arrangement is equally probable. In what sense, then, is the
final state "overwhelmingly probable"?

Recall the system illustrated in Figure 17.1, where we placed three identical red marbles into ten spaces. We calculated before that

there are 120 unique ways to do this. If we ask for the probability of the arrangement in Figure 17.1a, the answer is thus ﬁ. This

is also the probability for each of the other possible arrangements, according to our model. However, if we now ask instead for the

probability of observing a "mixed" state (with no drop), the answer is }—;g, whereas the probability of observing an "unmixed" state
(with a drop) is only 1%0. Clearly, the probabilities are not the same when considering the less specific characteristics "mixed" and

"unmixed".

In chemistry, we are virtually never concerned with microscopic details, such as the locations of specific individual molecules.
Rather, we are interested in more general characteristics, such as whether a system is mixed or not, or what the temperature or
pressure is. These properties of interest to us are macroscopic. As such, we refer to a specific arrangement of the molecules as a
microstate, and each general state (mixed or unmixed, for example) as a macrostate. All microstates have the same probability of
occurring, according to our model. As such, the macrostates have widely differing probabilities.

We come to an important result: the probability of observing a particular macrostate (e.g., a mixed state) is proportional to the
number of microstates with that macroscopic property. For example, from Figure 17.1, there are 112 arrangements (microstates)
with the "mixed" macroscopic property. As we have discussed, the probability of observing a mixed state is %2), which is
obviously proportional to 112. Thus, one way to measure the relative probability of a particular macrostate is by the number of
microstates W corresponding to that macrostate. W stands for "ways", i.e., there are 112 "ways" to get a mixed state in Figure

17.1.

Now we recall our conclusion that a spontaneous process always produces the outcome with greatest probability. Since W
measures this probability for any substance or system of interest, we could predict, using W, whether the process leading from a
given initial state to a given final state was spontaneous by simply comparing probabilities for the initial and final states. For
reasons described below, we instead define a function of W,

S(W) = kln (W) (17.4)

called the entropy, which can be used to make such predictions about spontaneity. (The k is a proportionality constant which gives
S appropriate units for our calculations.) Notice that the more microstates there are, the greater the entropy is. Therefore, a
macrostate with a high probability (e.g. a mixed state) has a large entropy. We now modify our previous deduction to say that a
spontaneous process produces the final state of greatest entropy. (Following modifications added below, this statement forms the
Second Law of Thermodynamics.)

It would seem that we could use W for our calculations and that the definition of the new function S is unnecessary. However, the
following reasoning shows that W is not a convenient function for calculations. We consider two identical glasses of water at the
same temperature. We expect that the value of any physical property for the water in two glasses is twice the value of that property
for a single glass. For example, if the enthalpy of the water in each glass is Hj, then it follows that the total enthalpy of the water in
the two glasses together is Hyoa) = 2.H7 . Thus, the enthalpy of a system is proportional to the quantity of material in the system: if
we double the amount of water, we double the enthalpy. In direct contrast, we consider the calculation involving W for these two
glasses of water. The number of microstates of the macroscopic state of one glass of water is Wi, and likewise the number of
microstates in the second glass of water is W;. However, if we combine the two glasses of water, the number of microstates of the
total system is found from the product W;oa1 = W1 X W7 , which does not equal 2W;. In other words, W is not proportional to
the quantity of material in the system. This is inconvenient, since the value of W thus depends on whether the two systems are
combined or not. (If it is not clear that we should multiply the W values, consider the simple example of rolling dice. The number
of states for a single die is 6, but for two dice the number is 6 x 6 =36, not6+6 =12.)

We therefore need a new function S (W), so that, when we combine the two glasses of water, Siota1 = S1+S1 . Since
Stotal = S (Whiotal) » S1 = S (W1), and Wyoa1 = Wy X Wy, then our new function S must satisfy the equation

S(Wy xWy)=8(Wy)+S (W) (17.5)

The only function S which will satisfy this equation is the logarithm function, which has the property that
In(z xy) =In(z)+1n(y) . We conclude that an appropriate state function which measures the number of microstates in a
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particular macrostate the entropy equation stated previously.

Observation 2: Absolute Entropies

It is possible, though exceedingly difficult, to calculate the entropy of any system under any conditions of interest from the
equation S = kln (W). It is also possible, using more advanced theoretical thermodynamics, to determine S experimentally by
measuring heat capacities and enthalpies of phase transitions. Values of S determined experimentally, often referred to as
"absolute" entropies, have been tabulated for many materials at many temperatures, and a few examples are given in Table 17.1.
We treat these values as observations and attempt to understand these in the context of the entropy equation.

Table 17.1: Absolute Entropies of Specific Substances

T (°C) S ()
H,0 (g) 25 188.8
H,0 (1) 25 69.9
H,0 (1) 0 63.3
H,0 (s) 0 413
NH, (g) 25 192.4
HN, (1) 25 140.6
HN, (g) 25 239.0
0, (9) 25 205.1
0, (9) 50 207.4
0, (9) 100 2117
CO (g) 25 197.7
CO (g) 50 200.0
Co, (9) 24 213.7
o0, (g) 50 216.9
Br, (1) 25 152.2
Br, (g) 25 2455
I, (s) 25 116.1
1, (9) 25 260.7
CaF, (s) 25 68.9
CaCl, (s) 25 104.6
CaBr, (s) 25 130
CeHy (5) 25 361.1

There are several interesting generalities observed in Table 17.1. First, in comparing the entropy of the gaseous form of a substance
to either its liquid or solid form at the same temperature, we find that the gas always has a substantially greater entropy. This is easy
to understand from the entropy equation: the molecules in the gas phase occupy a very much larger volume. There are very many
more possible locations for each gas molecule and thus very many more arrangements of the molecules in the gas. It is intuitively
clear that W should be larger for a gas, and therefore the entropy of a gas is greater than that of the corresponding liquid or solid.

Second, we observe that the entropy of a liquid is always greater than that of the corresponding solid. This is understandable from
our kinetic molecular view of liquids and solids. Although the molecules in the liquid occupy a comparable volume to that of the
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molecules in the solid, each molecule in the liquid is free to move through this entire volume. The molecules in the solid are
relatively fixed in location. Therefore, the number of arrangements of molecules in the liquid is significantly greater than that in the
solid, so the liquid has greater entropy by the entropy equation.

Third, the entropy of a substance increases with increasing temperature. The temperature is, of course, a measure of the average
kinetic energy of the molecules. In a solid or liquid, then, increasing the temperature increases the total kinetic energy available to
the molecules. The greater the energy, the more ways there are to distribute this energy amongst the molecules. Although we have
previously only referred to the range of positions for a molecule as affecting W, the range of energies available for each molecule
similarly affects W. As a result, as we increase the total energy of a substance, we increase W and thus the entropy.

Fourth, the entropy of a substance whose molecules contain many atoms is greater than that of a substance composed of smaller
molecules. The more atoms there are in a molecule, the more ways there are to arrange those atoms. With greater internal
flexibility, W is larger when there are more atoms, so the entropy is greater.

Fifth, the entropy of a substance with a high molecular weight is greater than that of a substance with a low molecular weight. This
result is harder to understand, as it arises from the distribution of the momenta of the molecules rather than the positions and
energies of the molecules. It is intuitively clear that the number of arrangements of the molecules is not affected by the mass of the
molecules. However, even at the same temperature, the range of momenta available for a heavier molecule is greater than for a

2
mu? P

2 " 2m
Therefore, the maximum momentum available at a fixed total kinetic energy KF is p = v2mKE. Since this is larger for larger
mass molecules, the range of momenta is greater for heavier particle, thus increasing W and the entropy.

lighter one. To see why, recall that the momentum of a molecule is p =muv and the kinetic energy is KFE =

Observation 3: Condensation and Freezing

We have concluded from our observations of spontaneous mixing that a spontaneous process always produces the final state of
greatest probability. A few simple observations reveal that our deduction needs some thoughtful refinement. For example, we have
observed that the entropy of liquid water is greater than that of solid water. This makes sense in the context of the entropy equation,
since the kinetic theory indicates that liquid water has a greater value of W. Nevertheless, we observe that liquid water
spontaneously freezes at temperatures below 0°C. This process clearly displays a decrease in entropy and therefore evidently a
shift from a more probable state to a less probable state. This appears to contradict directly our conclusion.

Similarly, we expect to find condensation of water droplets from steam when steam is cooled. On days of high humidity, water
spontaneously liquefies from the air on cold surfaces such as the outside of a glass of ice water or the window of an air conditioned
building. In these cases, the transition from gas to liquid is clearly from a higher entropy phase to a lower entropy phase, which
does not seem to follow our reasoning thus far.

Our previous conclusions concerning entropy and probability increases were compelling, however, and we should be reluctant to
abandon them. What we have failed to take into consideration is that these phase transitions involve changes of energy and thus
heat flow. Condensation of gas to liquid and freezing of liquid to solid both involve evolution of heat. This heat flow is of
consequence because our observations also revealed that the entropy of a substance can be increased significantly by heating. One
way to preserve our conclusions about spontaneity and entropy is to place a condition on their validity: a spontaneous process
produces the final state of greatest probability and entropy provided that the process does not involve evolution of heat. This is an
unsatisfying result, however, since most physical and chemical processes involve heat transfer. As an alternative, we can force the
process not to evolve heat by isolating the system undergoing the process: no heat can be released if there is no sink to receive the
heat, and no heat can be absorbed if there is no source of heat. Therefore, we conclude from our observations that a spontaneous
process in an isolated system produces the final state of greatest probability and entropy. This is one statement of the Second Law
of Thermodynamics.

Free Energy

How can the Second Law be applied to a process in a system that is not isolated? One way to view the lessons of the previous
observations is as follows: in analyzing a process to understand why it is or is not spontaneous, we must consider both the change
in entropy of the system undergoing the process and the effect of heat released or absorbed during the process on the entropy of the
surroundings. Although we cannot prove it here, the entropy increase of a substance due to heat ¢ at temperature 7" is given by
AS = %. From another study, we can calculate the heat transfer for a process occurring under constant pressure from the enthalpy
change, AH. By conservation of energy, the heat flow into the surroundings must be —A H. Therefore, the increase in the entropy

of the surroundings due to heat transfer must be ASgy, = —A—TH. Notice that, if the reaction is exothermic, AH <0 so
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ASsur > 0. According to our statement of the Second Law, a spontaneous process in an isolated system is always accompanied by
an increase in the entropy of the system. If we want to apply this statement to a non-isolated system, we must include the
surroundings in our entropy calculation. We can say then that, for a spontaneous process,

AStotal = ASsys =+ ASsurr >0 (1 76)
Since ASgyr = —ATH , then we can write that AS — ATH > 0 . This is easily rewritten to state that, for a spontaneous process:
AH-TAS<O0 (17.7)

This equation is really just a different form of the Second Law of Thermodynamics. However, this form has the advantage that it
takes into account the effects on both the system undergoing the process and the surroundings. Thus, this new form can be applied
to non-isolated systems.

This equation reveals why the temperature affects the spontaneity of processes. Recall that the condensation of water vapor occurs
spontaneously at temperature below 100°C but not above. Condensation is an exothermic process; to see this, consider that the
reverse process, evaporation, obviously requires heat input. Therefore AH < 0 for condensation. However, condensation clearly
results in a decrease in entropy, therefore AS < 0 also. Examining the above equation, we can conclude that AH —TAS <0
will be less than zero for condensation only if the temperature is not too high. At high temperature, the term —A.S, which is
positive, becomes larger than AH, so AH —TAS >0 for condensation at high temperatures. Therefore, condensation only
occurs at lower temperatures.

Because of the considerable practical utility of the above equation in predicting the spontaneity of physical and chemical processes,
it is desirable to simplify the calculation of the quantity on the left side of the inequality. One way to do this is to define a new
quantity G=H — TS, called the free energy. If we calculate from this definition the change in the free energy which occurs
during a process at constant temperature, we get

AG = Gﬁnal - C"Yin_itial = Hﬁnal - TSﬁnal - (Hinjtial - TSim'tial) =AH - TAS (178)
and therefore a simplified statement of the Second Law of Thermodynamics is that

AG<0 (17.9)

for any spontaneous process. Thus, in any spontaneous process, the free energy of the system decreases. Note that G is a state
function, since it is defined in terms of H, T', and S, all of which are state functions. Since G is a state function, then AG can be
calculated along any convenient path. As such, the methods used to calculate AH in another study can be used just as well to
calculate AG.

Thermodynamic Description of Phase Equilibrium

As we recall, the entropy of vapor is much greater than the entropy of the corresponding amount of liquid. A look back at Table
17.1 shows that, at 25°C, the entropy of one mole of liquid water is 69.9 %, whereas the entropy of one mole of water vapor is
188.8 % Our first thought, based on our understanding of spontaneous processes and entropy, might well be that a mole of liquid
water at 25°C should spontaneously convert into a mole of water vapor, since this process would greatly increase the entropy of the
water. We know, however, that this does not happen. Liquid water will exist in a closed container at 25°C without spontaneously
converting entirely to vapor. What have we left out?

The answer, based on our discussion of free energy, is the energy associated with evaporation. The conversion of one mole of liquid
water into one mole of water vapor results in absorption of 44.0 kJ of energy from the surroundings. Recall that this loss of energy
from the surroundings results in a significant decrease in entropy of the surroundings. We can calculate the amount of entropy

;;1;.10512 = —147.57 % for a single mole. This

entropy decrease is greater than the entropy increase of the water, 188.8 % —69.9 % =118.9 % Therefore, the entropy of the

decrease in the surroundings from ASgy, = fATH . At 25°C, this gives ASgyr =

universe decreases when one mole of liquid water converts to one mole of water vapor at 25°C. We can repeat this calculation in
terms of the free energy change:
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AG =AH-TAS (17.10)
J J
=44000 m—(298.15 K) (118.9 m) (17.11)
k.
=8.55 —J >0 (17.12)
mol

Since the free energy increases in the transformation of one mole of liquid water to one mole of water vapor, we predict that the
transformation will not occur spontaneously. This is something of a relief, because we have correctly predicted that the mole of
liquid water is stable at 25°C relative to the mole of water vapor.

We are still faced with our perplexing question, however. Why does any water evaporate at 25° C? How can this be a spontaneous
process?

The answer is that we have to be careful about interpreting our prediction. The entropy of one mole of water at 25°C and
1.00 atm pressure is 188.8 % We should clarify our prediction to say that one mole of liquid water will not spontaneously
evaporate to form one mole of water vapor at 25°C and 1.00 atm pressure. This prediction is in agreement with our observation,

because we have found that the water vapor formed spontaneously above liquid water at 25°C has pressure 23.8 torr, well below
1.00 atm

Assuming that our reasoning is correct, then the spontaneous evaporation of water at 25°C when ne water vapor is present initially
must have AG < 0. And, indeed, as water vapor forms and the pressure of the water vapor increases, evaporation must continue as
long as AG < 0. Eventually, evaporation stops in a closed system when we reach the vapor pressure, so we must reach a point
where AG is no longer less than zero, that is, evaporation stops when AG = 0. This is the point where we have equilibrium
between liquid and vapor.

We can actually determine the conditions under which this is true. Since AG = AH —TAS, then when AG =0, AH =TAS.
We already know that AH = 44.0 kJ for the evaporation of one mole of water. Therefore, the pressure of water vapor at which
AG =0 at 25°C is the pressure at which AS = ATH =147.6 % for a single mole of water evaporating. This is larger than the
value of AS for one mole and 1.00 atm pressure of water vapor, which as we calculated was 118.9 % Evidently, AS for
evaporation changes as the pressure of the water vapor changes. We therefore need to understand why the entropy of the water
vapor depends on the pressure of the water vapor.

Recall that 1 mole of water vapor occupies a much smaller volume at 1.00 atm of pressure than it does at the considerably lower
vapor pressure of 23.8 torr. In the larger volume at lower pressure, the water molecules have a much larger space to move in, and
therefore the number of microstates for the water molecules must be larger in a larger volume. Therefore, the entropy of one mole
of water vapor is larger in a larger volume at lower pressure. The entropy change for evaporation of one mole of water is thus
greater when the evaporation occurs to a lower pressure. With a greater entropy change to offset the entropy loss of the
surroundings, it is possible for the evaporation to be spontaneous at lower pressure. And this is exactly what we observe.

To find out how much the entropy of a gas changes as we decrease the pressure, we assume that the number of microstates W for
the gas molecule is proportional to the volume V. This would make sense, because the larger the volume, the more places there are
for the molecules to be. Since the entropy is given by S = kln (W), then S must also be proportional to In (V). Therefore, we can
say that

S(Va)~§(Vi) = RIn(Va) - RIn(V}) (17.13)
Vs

=RIn (ﬁ) (17.14)

We are interested in the variation of S with pressure, and we remember from Boyle's Law that, for a fixed temperature, volume is
inversely related to pressure. Thus, we find that

S(P)—S(P) =Rln (%) (17.15)

=_ <Rln (%)) (17.16)

For water vapor, we know that the entropy at 1.00 atm pressure is 188.8 % for one mole. We can use this and the equation above
to determine the entropy at any other pressure. For a pressure of 23.8 torr = 0.0313 atm this equation gives that S (23.8 torr) is
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217.6 % for one mole of water vapor. Therefore, at this pressure, the AS for evaporation of one mole of water vapor is
217.6 % —69.9 % =147.6 % We can use this to calculate that for evaporation of one mole of water at 25°C and water vapor
pressure of 23.8 torris AG = AH —TAS = 44.0 kJ — (298.15 K) (147.6 ) = 0.00 kJ. This is the condition we expected for
equilibrium.

We can conclude that the evaporation of water when no vapor is present initially is a spontaneous process with AG < 0, and the
evaporation continues until the water vapor has reached its equilibrium vapor pressure, at which point AG =0.

Thermodynamic description of reaction equilibrium

Having developed a thermodynamic understanding of phase equilibrium, it proves to be even more useful to examine the
thermodynamic description of reaction equilibrium to understand why the reactants and products come to equilibrium at the
specific values that are observed.

Recall that AG=AH —TAS <0 for a spontaneous process, and AG =AH —TAS =0 at equilibrium. From these relations,
we would predict that most (but not all) exothermic processes with AH < 0 are spontaneous, because all such processes increase
the entropy of the surroundings when they occur. Similarly, we would predict that most (but not all) processes with AS >0 are
spontaneous.

We try applying these conclusions to the synthesis of ammonia
N, (g) +3H, (9) — 2NH, (g) (17.17)

at 298 K, for which we find that AS? = —198 ﬁ Note that AS? < 0 because the reaction reduces the total number of gas
molecules during ammonia synthesis, thus reducing W, the number of ways of arranging the atoms in these molecules. AS? < 0
suggests that ammonia synthesis should not occur at all. However, AH? = —92.2 ﬁ Overall, we find that AG? = —33.0 ﬁ
at 298 K, which suggests that the synthesis of ammonia is spontaneous.

Given this analysis, we are now pressured to ask, if ammonia synthesis is predicted to be spontaneous, why does the reaction come
to equilibrium without fully consuming all of the reactants? The answer lies in a more careful examination of the values given:
ASY, AH®, and AGP are the values for this reaction at standard conditions, which means that all of the gases in the reactants
and products are taken to be at 1 atm pressure. Thus, the fact that AG < 0 for the synthesis of ammonia at standard conditions
means that, if all three gases are present at 1 atm pressure, the reaction will spontaneously produce an increase in the amount of
NH,. Note that this will reduce the pressure of the N, and H, and increase the pressure of the NH,. This changes the value of AS
and thus of AG, because as we already know the entropies of all three gases depend on their pressures. As the pressure of NH,
increases, its entropy decreases, and as the pressures of the reactant gases decrease, their entropies increase. The result is that AS
becomes increasingly negative. The reaction creates more NH; until the value of AS is sufficiently negative that
AG=AH-TAS=0.

From this analysis, we can say by looking at AS?, AH?, and AG? that, since AG <0 for ammonia synthesis, reaction
equilibrium results in production of more product and less reactant than at standard conditions. Moreover, the more negative AG’
is, the more strongly favored are the products over the reactants at equilibrium. By contrast, the more positive AG? is, the more
strongly favored are the reactants over the products at equilibrium.

Thermodynamic Description of the Equilibrium Constant

Thermodynamics can also provide a quantitative understanding of the equilibrium constant. Recall that the condition for
equilibrium is that AG = 0. As noted before, AG depends on the pressures of the gases in the reaction mixture, because AS
depends on these pressures. Though we will not prove it here, it can be shown by application of the relationship between entropy
and pressure to a reaction that the relationship between AG and the pressures of the gases is given by the following equation:

AG = AG° + RTIn(Q) (17.18)

(Recall again that the superscript ° refers to standard pressure of 1 atm. AG? is the difference between the free energies of the
products and reactants when all gases are at 1 atm pressure.) In this equation, @ is a quotient of partial pressures of the gases in the
reaction mixture. In this quotient, each product gas appears in the numerator with an exponent equal to its stoichiometric
coefficient, and each reactant gas appears in the denominator also with its corresponding exponent. For example, for the reaction

H, (9) +1, (9) — 2HI(g) (17.19)
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However, if the pressures in () are the equilibrium partial pressures, then @) has the same value as K, the equilibrium constant, by
definition. Moreover, if the pressures are at equilibrium, we know that AG = 0. If we look back at the definition of AG, we can
conclude that

AG° = — (RTIn(K))) (17.21)

This is an exceptionally important relationship, because it relates two very different observations. To understand this significance,
consider first the case where AG? < 0. We have previously reasoned that, in this case, the reaction equilibrium will favor the
products. From the above equation we can note that, if AG® < 0, it must be that K, > 1. Furthermore, if AGY is a large negative
number, K, is a very large number. By contrast, if AG? is a large positive number, K, will be a very small (though positive)
number much less than 1. In this case, the reactants will be strongly favored at equilibrium.

Note that the thermodynamic description of equilibrium and the dynamic description of equilibrium are complementary. Both
predict the same equilibrium. In general, the thermodynamic arguments give us an understanding of the conditions under which
equilibrium occurs, and the dynamic arguments help us understand how the equilibrium conditions are achieved.

Review and Discussion Questions

Each possible sequence of the 52 cards in a deck is equally probable. However, when you shuffle a deck and then examine the
sequence, the deck is never ordered. Explain why in terms of microstates, macrostates, and entropy.

Assess the validity of the statement, "In all spontaneous processes, the system moves toward a state of lowest energy." Correct any
errors you identify.

In each case, determine whether spontaneity is expected at low temperature, high temperature, any temperature, or no temperature:

AH? >0,A8°>0

AH" <0,AS8°>0

AH°>0,AS8°<0

AH® <0,AS8°<0

Using thermodynamic equilibrium arguments, explain why a substance with weaker intermolecular forces has a greater vapor
pressure than one with stronger intermolecular forces.

Why does the entropy of a gas increase as the volume of the gas increases? Why does the entropy decrease as the pressure
increases?

For each of the following reactions, calculate the value of AS®, AH?, and AG? at T =298 K and use these to predict whether
equilibrium will favor products or reactants at 7' = 298 K. Also calculate K.

2C0O(g9)+0, (g) —2CO, (9)
0, (9) +NO (g) = NO, (9) + 0, (9)
20, (9) — 30, (9)

Predict the sign of the entropy for the reaction
2H, (9) + 0, (9) — 2H,0 (g) (17.22)

Give an explanation, based on entropy and the Second Law, of why this reaction occurs spontaneously.

For the reaction H, (g) — 2H(g), predict the sign of both AH® and AS°. Should this reaction be spontaneous at high
temperature or at low temperature? Explain.

For each of the reactions listed above, predict whether increases in temperature will shift the reaction equilibrium more towards
products or more towards reactants.

Using the general definition of AG and the definition of @, show that for a given set of initial partial pressures where @ is larger
than K, the reaction will spontaneously create more reactants. Also show that if @ is smaller than K, the reaction will
spontaneously create more products.
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