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3.3: Reversible and Irreversible Pathways
The most common example of work in the systems discussed in this book is the work of expansion. It is also convenient to use the
work of expansion to exemplify the difference between work that is done reversibly and that which is done irreversibly. The
example of expansion against a constant external pressure is an example of an irreversible pathway. It does not mean that the gas
cannot be re-compressed. It does, however, mean that there is a definite direction of spontaneous change at all points along the
expansion.

Imagine instead a case where the expansion has no spontaneous direction of change as there is no net force push the gas to seek a
larger or smaller volume. The only way this is possible is if the pressure of the expanding gas is the same as the external pressure
resisting the expansion at all points along the expansion. With no net force pushing the change in one direction or the other, the
change is said to be reversible or to occur reversibly. The work of a reversible expansion of an ideal gas is fairly easy to calculate.

If the gas expands reversibly, the external pressure ( ) can be replaced by a single value ( ) which represents both the pressure
of the gas and the external pressure.

or

But now that the external pressure is not constant,  cannot be extracted from the integral. Fortunately, however, there is a simple
relationship that tells us how  changes with changing  – the equation of state! If the gas is assumed to be an ideal gas

And if the temperature is held constant (so that the expansion follows an isothermal pathway) the nRT term can be extracted from
the integral.

Equation  is derived for ideal gases only; a van der Waal gas would result in a different version.

What is the work done by 1.00 mol an ideal gas expanding reversibly from a volume of 22.4 L to a volume of 44.8 L at a
constant temperature of 273 K?

Solution
Using Equation  to calculate this

Note: A reversible expansion will always require more work than an irreversible expansion (such as an expansion against a
constant external pressure) when the final states of the two expansions are the same!
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 Example : Gas Expansion3.3.1

3.3.1

w = −(1.00 )(8.314 ) (273 ) ln( )mol
J

mol K
K

44.8 L

22.4 L

= −1570 J = 1.57 kJ
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The work of expansion can be depicted graphically as the area under the p-V curve depicting the expansion. Comparing examples 
 and , for which the initial and final volumes were the same, and the constant external pressure of the irreversible

expansion was the same as the final pressure of the reversible expansion, such a graph looks as follows.

The work is depicted as the shaded portion of the graph. It is clear to see that the reversible expansion (the work for which is
shaded in both light and dark gray) exceeds that of the irreversible expansion (shaded in dark gray only) due to the changing
pressure of the reversible expansion. In general, it will always be the case that the work generated by a reversible pathway
connecting initial and final states will be the maximum work possible for the expansion.

It should be noted (although it will be proven in a later chapter) that  for an isothermal reversible process involving only p-V
work is 0 for an ideal gas. This is true because the internal energy, U, is a measure of a system’s capacity to convert energy into
work. In order to do this, the system must somehow store that energy. The only mode in which an ideal gas can store this energy is
in the translational kinetic energy of the molecules (otherwise, molecular collisions would not need to be elastic, which as you
recall, was a postulate of the kinetic molecular theory!) And since the average kinetic energy is a function only of the temperature,
it (and therefore ) can only change if there is a change in temperature. Hence, for any isothermal process for an ideal gas, 

. And, perhaps just as usefully, for an isothermal process involving an ideal gas, , as any energy that is expended
by doing work must be replaced with heat, lest the system temperature drop.

Constant Volume Pathways 
One common pathway which processes can follow is that of constant volume. This will happen if the volume of a sample is
constrained by a great enough force that it simply cannot change. It is not uncommon to encounter such conditions with gases
(since they are highly compressible anyhow) and also in geological formations, where the tremendous weight of a large mountain
may force any processes occurring under it to happen at constant volume.

If reversible changes in which the only work that can be done is that of expansion (so-called p-V work) are considered, the
following important result is obtained:

However,  since the volume is constant! As such,  can be expressed only in terms of the heat that flows into or out of
the system at constant volume

Recall that  can be found by

This suggests an important definition for the constant volume heat capacity ( ) which is

When Equation  is integrated the

3.3.1 3.1.2
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Consider 1.00 mol of an ideal gas with  that undergoes a temperature change from 125 K to 255 K at a constant
volume of 10.0 L. Calculate , , and  for this change.

Solution
Since this is a constant volume process

Equation  is applicable for an isochoric process,

Assuming  is independent of temperature:

Since this a constant volume pathway,

Constant Pressure Pathways 

Most laboratory-based chemistry occurs at constant pressure. Specifically, it is exposed to the constant air pressure of the
laboratory, glove box, or other container in which reactions are taking place. For constant pressure changes, it is convenient to
define a new thermodynamic quantity called enthalpy.

or

For reversible changes at constant pressure ( ) for which only p-V work is done

And just as in the case of constant volume changes, this implies an important definition for the constant pressure heat capacity

q = n dt∫
T2

T1

CV (3.3.3)

 Example : Isochoric Pathway3.3.2

= 3/2RCV

ΔU q w

w = 0

3.3.3

q = n dt∫
T2
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CV

CV

q = n dtCV ∫
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= n ( − )CV T2 T1

= (1.00 mol)( 8.314 ) (255 K−125 K)
3

2

J

molK

= 1620 J = 1.62 kJ

ΔU = q+ w

= 1.62 kJ

H ≡ U +pV

dH ≡ dU +d(pV )

= dU +pdV +V dp

dp = 0

dH = dq+dw+pdV +V dp

= dq− + +pdV pdV V dp
0

= dq

(3.3.4)
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Consider 1.00 mol of an ideal gas with  that changes temperature change from 125 K to 255 K at a constant
pressure of 10.0 atm. Calculate , , , and  for this change.

Solution

assuming  is independent of temperature:

So via Equation  (specifically the integrated version of it using differences instead of differentials)

Now that  and  are determined, then work can be calculated

It makes sense that  is negative since this process is an gas expansion.

Calculate , , , and  for 1.00 mol of an ideal gas expanding reversibly and isothermally at 273 K from a volume of
22.4 L and a pressure of 1.00 atm to a volume of 44.8 L and a pressure of 0.500 atm.

Solution
Since this is an isothermal expansion, Equation  is applicable

Since this is an isothermal expansion

where  due to Boyle’s Law!

 Example : Isobaric Gas Expansion3.3.3

= 5/2RCp
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q = n dTCp ∫
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= n ( − )Cp T2 T1

= (1.00 mol)( 8.314 ) (255 K−125 K) = 2700 J = 1.62 kJ
5

2

J
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3.3.6

ΔH = q = 1.62 kJ

ΔU = ΔH −Δ(pV )

= ΔH −nRΔT

= 2700 J −(1.00 mol)(8.314 ) (255 K−125 K)
J

molK

= 1620 J = 1.62 kJ

ΔU q

w = ΔU −q

= 1.62 kJ −2.70 kJ = −1.08 kJ

w

 Example : Isothermal Gas Expansion3.3.4

q w ΔU ΔH

3.3.1

w

ΔU

q

= −nRT ln
V2

V1

= (1.00 mol)(8.314 ) (255 K) ln( )
J

molK

44.8 L

22.4 L

= 1572 J = 1.57 kJ

= q+w

= q+1.57 KJ

= 0

= −1.57 kJ

ΔH = ΔU +Δ(pV ) = 0 +0

Δ(pV ) = 0
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Adiabatic Pathways 

An adiabatic pathway is defined as one in which no heat is transferred ( ). Under these circumstances, if an ideal gas expands,
it is doing work ( ) against the surroundings (provided the external pressure is not zero!) and as such the internal energy must
drop ( ). And since  is negative, there must also be a decrease in the temperature ( ). How big will the decrease
in temperature be and on what will it depend? The key to answering these questions comes in the solution to how we calculate the
work done.

If the adiabatic expansion is reversible and done on an ideal gas,

and

Equating these two terms yields

Using the ideal gas law for an expression for  ( )

And rearranging to gather the temperature terms on the right and volume terms on the left yields

This expression can be integrated on the left between  and  and on the right between  and . Assuming that  is
independent of temperature over the range of integration, it can be pulled from the integrand in the term on the right.

The result is

or

or

or

Once  is known, it is easy to calculate ,  and .

1.00 mol of an ideal gas (C  = 3/2 R) initially occupies 22.4 L at 273 K. The gas expands adiabatically and reversibly to a final
volume of 44.8 L. Calculate , , , , and  for the expansion.

Solution

q = 0

w < 0

ΔU < 0 ΔU ΔT < 0

dw = −pdV

dw = n dTCv (3.3.7)
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ΔT w ΔU ΔH

 Example :3.3.5

V
ΔT q w ΔU ΔH

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/84304?pdf


3.3.6 https://chem.libretexts.org/@go/page/84304

Since the pathway is adiabatic:

Using Equation 

So

For calculating work, we integrate Equation  to get

The following table shows recipes for calculating , , , and  for an ideal gas undergoing a reversible change along the
specified pathway.

Table 3.2.1: Thermodynamics Properties for a Reversible Expansion or Compression

Pathway

Isothermal 0 0

Isochoric 0

Isobaric

adiabatic 0

This page titled 3.3: Reversible and Irreversible Pathways is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Patrick Fleming.

q = 0

3.3.8

T2 = T1( )
V1

V2

−
R

C
V

= (273 K)( )
22.4 L

44.8 L

2/3

= 172 K

ΔT = 172 K−273 K = −101 K

3.3.7

w = ΔU = n ΔTCv

= (1.00 mol)( 8.314 ) (−101 K)
3

2

J

molK

= 1.260 kJ

ΔH = ΔU +nRΔT

= −1260 J +(1.00 mol)( 8.314 ) (−101 K)
3

2

J

molK

= −2100 J

q w ΔU ΔH

q w ΔU ΔH

nRT ln( / )V2 V1 −nRT ln( / )V2 V1

ΔTCV ΔTCV ΔT +VΔpCV

ΔTCp −pΔV ΔT − pΔVCp ΔTCp

ΔTCV ΔTCV ΔTCp
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