
2.3.1 https://chem.libretexts.org/@go/page/84297

2.3: The Kinetic Molecular Theory of Gases
Theoretical models attempting to describe the nature of gases date back to the earliest scientific inquiries into the nature of matter
and even earlier! In about 50 BC, Lucretius, a Roman philosopher, proposed that macroscopic bodies were composed of atoms that
continually collide with one another and are in constant motion, despite the observable reality that the body itself is as rest.
However, Lucretius’ ideas went largely ignored as they deviated from those of Aristotle, whose views were more widely accepted
at the time.

In 1738, Daniel Bernoulli (Bernoulli, 1738) published a model that contains the basic framework for the modern Kinetic Molecular
theory. Rudolf Clausius furthered the model in 1857 by (among other things) introducing the concept of mean free path (Clausius,
1857). These ideas were further developed by Maxwell (Maxwell, Molecules, 1873). But, because atomic theory was not fully
embraced in the early 20  century, it was not until Albert Einstein published one of his seminal works describing Brownian motion
(Einstein, 1905) in which he modeled matter using a kinetic theory of molecules that the idea of an atomic (or molecular) picture
really took hold in the scientific community.

In its modern form, the Kinetic Molecular Theory of gasses is based on five basic postulates.

1. Gas particles obey Newton’s laws of motion and travel in straight lines unless they collide with other particles or the walls of
the container.

2. Gas particles are very small compared to the averages of the distances between them.
3. Molecular collisions are perfectly elastic so that kinetic energy is conserved.
4. Gas particles so not interact with other particles except through collisions. There are no attractive or repulsive forces between

particles.
5. The average kinetic energy of the particles in a sample of gas is proportional to the temperature.

Qualitatively, this model predicts the form of the ideal gas law.

1. More particles means more collisions with the wall (\(p \propto n\))
2. Smaller volume means more frequent collisions with the wall (\(p \propto 1/V\))
3. Higher molecular speeds means more frequent collisions with the walls (\(p \propto T\))

Putting all of these together yields

which is exactly the form of the ideal gas law! The remainder of the job is to derive a value for the constant of proportionality ( )
that is consistent with experimental observation.

For simplicity, imagine a collection of gas particles in a fixed-volume container with all of the particles traveling at the same
velocity. What implications would the kinetic molecular theory have on such a sample? One approach to answering this question is
to derive an expression for the pressure of the gas.

The pressure is going to be determined by considering the collisions of gas molecules with the wall of the container. Each collision
will impart some force. So the greater the number of collisions, the greater the pressure will be. Also, the larger force imparted per
collision, the greater the pressure will be. And finally, the larger the area over which collisions are spread, the smaller the pressure
will be.
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Figure : The "collision volume" is the subset of the total volume that contains molecules that will actually collide with area 
in the time interval .

First off, the pressure that the gas exerts on the walls of the container would be due entirely to the force imparted each time a
molecule collides with the interior surface of the container. This force will be scaled by the number of molecules that hit the area of
the wall in a given time. For this reason, it is convenient to define a “collision volume”.

where  is the speed the molecules are traveling in the x direction, \(\Delta t\) is the time interval (the product of  gives
the length to the collision volume box) and A is the area of the wall with which the molecules will collide. Half of the molecules
within this volume will collide with the wall since half will be traveling toward it and half will be traveling away from it. The
number of molecules in this collision volume will be given by the total number of molecules in the sample and the fraction of the
total volume that is the collision volume. And thus, the number of molecules that will collide with the wall is given by

And thus the number of molecules colliding with the wall will be

The magnitude of that force imparted per collision will be determined by the time-rate of change in momentum of each particle as
it hits the surface. It can be calculated by determining the total momentum change and dividing by the total time required for the
event. Since each colliding molecule will change its velocity from v  to –v , the magnitude of the momentum change is 2(mv ).
Thus the force imparted per collision is given by

and the total force imparted is

Since the pressure is given as the total force exerted per unit area, the pressure is given by

The question then becomes how to deal with the velocity term. Initially, it was assumed that all of the molecules had the same
velocity, and so the magnitude of the velocity in the x-direction was merely a function of the trajectory. However, real samples of
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gases comprise molecules with an entire distribution of molecular speeds and trajectories. To deal with this distribution of values,
we replace ( ) with the squared average of velocity in the x direction .

The distribution function for velocities in the x direction, known as the Maxwell-Boltzmann distribution, is given by:

This function has two parts: a normalization constant and an exponential term. The normalization constant is derived by noting
that

The Maxwell-Boltzmann distribution has to be normalized because it is a continuous probability distribution. As such, the sum
of the probabilities for all possible values of v  must be unity. And since  can take any value between -∞ and ∞, then
Equation  must be true. So if the form of  is assumed to be

The normalization constant  can be found from

The expression can be simplified by letting . It is then more simply written

A table of definite integrals says that

So

And thus the normalized distribution function is given by

Calculating an average for a finite set of data is fairly easy. The average is calculated by

But how does one proceed when the set of data is infinite? Or how does one proceed when all one knows are the probabilities
for each possible measured outcome? It turns out that that is fairly simple too!
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 Normalizing the Maxwell-Boltzmann Distribution
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 Calculating an Average from a Probability Distribution
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where  is the probability of measuring the value . This can also be extended to problems where the measurable properties
are not discrete (like the numbers that result from rolling a pair of dice) but rather come from a continuous parent population.
In this case, if the probability is of measuring a specific outcome, the average value can then be determined by

where  is the function describing the probability distribution, and with the integration taking place across all possible
values that x can take.

A value that is useful (and will be used in further developments) is the average velocity in the x direction. This can be derived
using the probability distribution, as shown in the mathematical development box above. The average value of  is given by

This integral will, by necessity, be zero. This must be the case as the distribution is symmetric, so that half of the molecules are
traveling in the +x direction, and half in the –x direction. These motions will have to cancel. So, a more satisfying result will be
given by considering the magnitude of , which gives the speed in the x direction. Since this cannot be negative, and given
the symmetry of the distribution, the problem becomes

In other words, we will consider only half of the distribution, and then double the result to account for the half we ignored.

For simplicity, we will write the distribution function as

where

and

A table of definite integrals shows

so

Substituting our definitions for  and  produces

This expression indicates the average speed for motion of in one direction.
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However, real gas samples have molecules not only with a distribution of molecular speeds and but also a random distribution of
directions. Using normal vector magnitude properties (or simply using the Pythagorean Theorem), it can be seen that

Since the direction of travel is random, the velocity can have any component in x, y, or z directions with equal probability. As such,
the average value of the x, y, or z components of velocity should be the same. And so

Substituting this into the expression for pressure (Equation ) yields

All that remains is to determine the form of the distribution of velocity magnitudes the gas molecules can take. One of the first
people to address this distribution was James Clerk Maxwell (1831-1879). In his 1860 paper (Maxwell, Illustrations of the
dynamical theory of gases. Part 1. On the motions and collisions of perfectly elastic spheres, 1860), proposed a form for this
distribution of speeds which proved to be consistent with observed properties of gases (such as their viscosities). He derived this
expression based on a transformation of coordinate system from Cartesian coordinates ( , , ) to spherical polar coordinates ( , ,

). In this new coordinate system, v represents the magnitude of the velocity (or the speed) and all of the directional data is carried
in the angles  and . The infinitesimal volume unit becomes

Applying this transformation of coordinates, and ignoring the angular part (since he was interested only in the speed) Maxwell’s
distribution (Equation ) took the following form

This function has three basic parts to it: a normalization constant ( ), a velocity dependence ( ), and an exponential term that
contains the kinetic energy ( ). Since the function represents the fraction of molecules with the speed , the sum of the
fractions for all possible velocities must be unity. This sum can be calculated as an integral. The normalization constant ensures that

Choosing the normalization constant as

yields the final form of the Maxwell distribution of molecular speeds.

At low velocities, the  term causes the function to increase with increasing , but then at larger values of , the exponential term
causes it to drop back down asymptotically to zero. The distribution will spread over a larger range of speed at higher temperatures,
but collapse to a smaller range of values at lower temperatures (Table 2.3.1).
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Figure 2.3.1: Maxwell Distribution of speeds for hydrogen molecules at differing temperatures.

Using the Maxwell distribution as a distribution of probabilities, the average molecular speed in a sample of gas molecules can
be determined.

The following can be found in a table of integrals:

So

Which simplifies to

Note: the value of  is twice that of  which was derived in an earlier example!

What is the average value of the squared speed according to the Maxwell distribution law?
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A table of integrals indicates that

Substitution (noting that ) yields

which simplifies to

Note: The square root of this average squared speed is called the root mean square (RMS) speed, and has the value

The entire distribution is also affected by molecular mass. For lighter molecules, the distribution is spread across a broader range of
speeds at a given temperature, but collapses to a smaller range for heavier molecules (Table 2.3.2).

Figure 2.3.2: Maxwell Distribution of speeds at 800 K for different gasses of differing molecular masses.

The probability distribution function can also be used to derive an expression for the most probable speed ( ), the average ( ),
and the root-mean-square ( ) speeds as a function of the temperature and masses of the molecules in the sample. The most
probable speed is the one with the maximum probability. That will be the speed that yields the maximum value of . It is
found by solving the expression
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for the value of  that makes it true. This will be the value that gives the maximum value of  for the given temperature.
Similarly, the average value can be found using the distribution in the following fashion

and the root-mean-square (RMS) speed by finding the square root of the average value of . Both demonstrated above.

This page titled 2.3: The Kinetic Molecular Theory of Gases is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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