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6.4: Volume Dependence of Helmholtz Energy
If one needs to know how the Helmholtz function changes with changing volume at constant temperature, the following expression
can be used:

But how does one derive an expression for the partial derivative in Equation ? This is a fairly straight forward process that
begins with the definition of :

Differentiating (and using the chain rule to evaluate  yields

Now, it is convenient to use the combined first and second laws

which assumes:

1. a reversible change and
2. only  work is being done.

Substituting Equation  into Equation  yields

Canceling the  terms gives the important result

The natural variables of  are therefore  and ! So the total differential of  is conveniently expressed as

and by simple comparison of Equations  and , it is clear that

And so, one can evaluate Equation  as

If the pressure is independent of the temperature, it can be pulled out of the integral.

Otherwise, the temperature dependence of the pressure must be included.

Fortunately, this is easy if the substance is an ideal gas (or if some other equation of state can be used, such as the van der Waals
equation.)
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Calculate  for the isothermal expansion of 1.00 mol of an ideal gas from 10.0 L to 25.0 L at 298 K.

Solution
For an ideal gas,

So

becomes

And so (Equation )

becomes

or

Substituting the values from the problem

But further, it is easy to show that the Maxwell relation that arises from the simplified expression for the total differential of  is

This particular Maxwell relation is exceedingly useful since one of the terms depends only on , , and . As such it can be
expressed in terms of our old friends,  and !
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