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7.8: Non-ideality in Solutions - Activity
The bulk of the discussion in this chapter dealt with ideal solutions. However, real solutions will deviate from this kind of behavior.
So much as in the case of gases, where fugacity was introduced to allow us to use the ideal models, activity is used to allow for the
deviation of real solutes from limiting ideal behavior. The activity of a solute is related to its concentration by

where  is the activity coefficient,  is the molaliy of the solute, and  is unit molality. The activity coefficient is unitless in
this definition, and so the activity itself is also unitless. Furthermore, the activity coefficient approaches unity as the molality of the
solute approaches zero, insuring that dilute solutions behave ideally. The use of activity to describe the solute allows us to use the
simple model for chemical potential by inserting the activity of a solute in place of its mole fraction:

The problem that then remains is the measurement of the activity coefficients themselves, which may depend on temperature,
pressure, and even concentration.

Activity Coefficients for Ionic Solutes 

For an ionic substance that dissociates upon dissolving

the chemical potential of the cation can be denoted  and that of the anion as . For a solution, the total molar Gibbs function of
the solutes is given by

where

where \(\mu^*\) denotes the chemical potential of an ideal solution, and  is the activity of the solute. Substituting his into the
above relationship yields

Using a molal definition for the activity coefficient

The expression for the total molar Gibbs function of the solutes becomes

This expression can be rearranged to yield

where all of the deviation from ideal behavior comes from the last term. Unfortunately, it impossible to experimentally deconvolute
the term into the specific contributions of the two ions. So instead, we use a geometric average to define the mean activity
coefficient, .

For a substance that dissociates according to the general process

the expression for the mean activity coefficient is given by
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Debeye-Hückel Law 

In 1923, Debeye and Hückel (Debye & Hückel, 1923) suggested a means of calculating the mean activity coefficients from
experimental data. Briefly, they suggest that

where  is the dielectric constant of the solvent,  is the temperature in K,  and  are the charges on the ions, and  is the ionic
strength of the solution.  is given by

For a solution in water at 25 C,
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