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6.8: The Difference between Cp and Cv
Constant volume and constant pressure heat capacities are very important in the calculation of many changes. The ratio 

 appears in many expressions as well (such as the relationship between pressure and volume along an adiabatic
expansion.) It would be useful to derive an expression for the difference  as well. As it turns out, this difference is
expressible in terms of measureable physical properties of a substance, such as , , , , and .

In order to derive an expression, let’s start from the definitions.

and

The difference is thus

In order to evaluate this difference, consider the definition of enthalpy:

Differentiating this yields

Dividing this expression by  and constraining to constant  gives

The last term is kind enough to vanish (since  at constant pressure). After converting the remaining terms to partial
derivatives:

This expression is starting to show some of the players. For example,

and

So Equation  becomes

In order to evaluate the partial derivative above, first consider . Then the total differential  can be expressed

Dividing by  and constraining to constant  will generate the partial derivative we wish to evaluate:
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The last term will become unity, so after converting to partial derivatives, we see that

(This, incidentally, is an example of partial derivative transformation type III.) Now we are getting somewhere!

and

So the Equation  can be rewritten

If we can find an expression for

we are almost home free! Fortunately, that is an easy expression to derive. Begin with the combined expression of the first and
second laws:

Now, divide both sides by  and constrain to constant .

The last term is unity, so after conversion to partial derivatives, we see

A Maxwell relation (specifically the Maxwell relation on ) can be used

Substituting this into Equation  yields

and since

then

Now, substituting this into the expression into Equation  to get
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This can now be substituted into the Equation  yields

The  terms will cancel. And subtracting  from both sides gives the desired result:

And this is a completely general result since the only assumptions made were those that allowed us to use the combined first and
second laws in the form

That means that this expression can be applied to any substance whether gas, liquid, animal, vegetable, or mineral. But what is the
result for an ideal gas?

Since we know that for an ideal gas

and

Substitution back into Equation  yields

So for an ideal gas, . That is good to know, no?

Derive the expression for the difference between  and   by beginning with the definition of , differentiating, dividing by
 (to generate the partial derivative definition of ). In this approach, you will need to find expressions for

and

and also utilize the Maxwell-Relation on .
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Begin with the definition of enthalpy.

Differentiate the expression.

Now, divide by  and constrain to constant  (as described in the instructions) to generate the partial derivative definition of 

Now what is needed is an expression for

This can be derived from the total differential for  by dividing by  and constraining to constant .

This again is an example of partial derivative transformation type III. To continue, we need an expression for

This can be quickly generated by considering the total differential of , its natural variables:

Dividing by  and constraining to constant  yields

Using the Maxwell Relation on , we can substitute

So Equation  becomes

Now, substitute this back into the expression for (Equation ):
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This can now substituted for the right-hand side of the initial expression for  back into Equation :

Several terms cancel one another. Equation  can then be rearranged to yield

or

which might look familiar (Equation )!
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