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1.1: Blackbody Radiation Cannot Be Explained Classically

One experimental phenomenon that could not be adequately explained by classical physics was blackbody radiation.
Objectives for this section include

Be familiar with black-body radiators
Apply Stefan-Boltzmann’s Law to estimate total light output from a radiator
Apply Wien’s Displacement Law to estimate the peak wavelength (or frequency) of the output from a black body radiator
Understand the Rayleigh-Jeans Law and how it fails to properly model black-body radiation

All normal matter at temperatures above absolute zero emits electromagnetic radiation, which represents a conversion of a body's
internal thermal energy into electromagnetic energy, and is therefore called thermal radiation. Conversely, all normal matter
absorbs electromagnetic radiation to some degree. An object that absorbs ALL radiation falling on it, at all wavelengths, is called a
blackbody. When a blackbody is at a uniform temperature, its emission has a characteristic frequency distribution that depends on
the temperature. This emission is called blackbody radiation.

A room temperature blackbody appears black, as most of the energy it radiates is infra-red and cannot be perceived by the human
eye. Because the human eye cannot perceive light waves at lower frequencies, a black body, viewed in the dark at the lowest just
faintly visible temperature, subjectively appears grey, even though its objective physical spectrum peaks in the infrared range.
When it becomes a little hotter, it appears dull red. As its temperature increases further it becomes yellow, white, and ultimately
blue-white.

Figure 1.1.1 : Blackbody Radiation. When heated, all objects emit electromagnetic radiation whose wavelength (and color) depends
on the temperature of the object. A relatively low-temperature object, such as a horseshoe forged by a blacksmith, appears red,
whereas a higher-temperature object, such as the surface of the sun, appears yellow or white. Images used with permission from
Wikipedia.

Blackbody radiation has a characteristic, continuous frequency spectrum that experimentally depends only on the body's
temperature. In fact, we can be much more precise:

A body emits radiation at a given temperature and frequency exactly as well as it absorbs
the same radiation.

This statement was proved by Gustav Kirchhoff: the essential point is that if we instead suppose a particular body can absorb better
than it emits, then in a room full of objects all at the same temperature, it will absorb radiation from the other bodies better than it
radiates energy back to them. This means it will get hotter, and the rest of the room will grow colder, contradicting the second law
of thermodynamics. Thus, a body must emit radiation exactly as well as it absorbs the same radiation at a given temperature and
frequency in order to not violate the second law of thermodynamics.

Any body at any temperature above absolute zero will radiate to some extent, the intensity and frequency distribution of the
radiation depending on the detailed structure of the body. To begin analyzing heat radiation, we need to be specific about the body
doing the radiating: the simplest possible case is an idealized body which is a perfect absorber, and therefore also (from the above
argument) a perfect emitter. So how do we construct a perfect absorber in the laboratory? In 1859 Kirchhoff had a good idea: a
small hole in the side of a large box is an excellent absorber, since any radiation that goes through the hole bounces around inside, a
lot getting absorbed on each bounce, and has little chance of ever getting out again. So, we can do this in reverse: have an oven
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with a tiny hole in the side, and presumably the radiation coming out the hole is as good a representation of a perfect emitter as
we’re going to find (Figure 1.1.2 ).

All incident radiation is absorbed

Blackbody Radiator

Emitted radiation is only a function of 
radiator's temperature (T)

Figure 1.1.2 : Blackbody radiator is any object that is a perfect emitter and a perfect absorber of radiation. (CC BY-NC; Ümit Kaya
via LibreTexts)

By the 1890’s, experimental techniques had improved sufficiently that it was possible to make fairly precise measurements of the
energy distribution of blackbody radiation. In 1895, at the University of Berlin, Wien and Lummer punched a small hole in the side
of an otherwise completely closed oven, and began to measure the radiation coming out. The beam coming out of the hole was
passed through a diffraction grating, which sent the different wavelengths/frequencies in different directions, all towards a screen.
A detector was moved up and down along the screen to find how much radiant energy was being emitted in each frequency range.
They found a radiation intensity/frequency curve close to the distributions in Figure 1.1.3 .

Figure 1.1.3 : Graphic representation of spectral distribution of blackbody radiation at different temperatures. The Stefan-
Boltzmann’s Law is observed as the increase in the emission amplitude with increasing temperature and the Wien’s Displacement
Law is observed as the shift to smaller wavelength with increasing temperature. (CC-BY 4.0; OpenStax)

By measuring the blackbody emission curves at different temperatures (Figure 1.1.3 ), they were also able to construct two
important phenomenological Laws (i.e., formulated from experimental observations, not from basic principles of nature): Stefan-
Boltzmann’s Law and Wien’s Displacement Law.

The radiation of a blackbody radiator is produced by the thermal activity of the material, not the nature of the material, nor how
it got thermally excited. Some examples of blackbodies include incandescent light bulbs, stars, and hot stove tops. The
emission appears as a continuous spectrum (Figure 1.1.3 ) with multiple coexisting colors. However, not every radiator is a
blackbody radiator. For example, the emission of a fluorescence bulb is not one. The following spectrum show the distribution
of light from a fluoresce light tube and is a mixture of discrete bands at different wavelengths of light in contrast to the
continuous spectra in Figure 1.1.3 for blackbody radiators.

 Not all radiators are blackbody radiators
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Fluorescent lighting spectrum with emission peaks. Graph of Intensity (counts) vs. Wavelength (nm) in the visible spectrum.
(CC BY-NC; Ümit Kaya via LibreTexts).

Fluorescent light bulbs contain a mixture of inert gases (usually argon and neon) together with a drop of mercury at low
pressure. A different mix of visible colors blend to produce a light that appears to us white with different shadings.

The Stefan-Boltzmann Law 

The first quantitative conjecture based on experimental observations was the Stefan-Boltzmann Law (1879) which states the total
power (i.e., integrated over all emitting frequencies in Figure 1.1.3 ) radiated from one square meter of black surface goes as the
fourth power of the absolute temperature (Figure 1.1.4 ):

where

 is the total amount of radiation emitted by an object per square meter ( )
 is a constant called the Stefan-Boltzman constant ( )
 is the absolute temperature of the object (in K)

The Stefan-Boltzmann Law is easily observed by comparing the integrated value (i.e., under the curves) of the experimental black-
body radiation distribution in Figure 1.1.3 at different temperatures. In 1884, Boltzmann derived this  behavior from theory by
applying classical thermodynamic reasoning to a box filled with electromagnetic radiation, using Maxwell’s equations to relate
pressure to energy density. That is, the tiny amount of energy coming out of the hole (Figure 1.1.2 ) would of course have the same
temperature dependence as the radiation intensity inside.

Figure 1.1.4 : Graph of a function of total emitted energy of a blackbody proportional to the fourth power of its thermodynamic
temperature  according to the Stefan–Boltzmann law. (CC BY-SA 4.0; Nicoguaro)

P = σT 4 (1.1.1)

P Watts/m2

σ 5.67 × Watts10−8 m−2K−4

T

T 4

T
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The sun’s surface temperature is 5700 K.

a. How much power is radiated by the sun?
b. Given that the distance to earth is about 200 sun radii, what is the maximum power possible from a one square kilometer

solar energy installation?

Solution
(a) First, we calculate the area of the sun followed by the flux (power). The sun has a radius of 

The area of the sun is .

The power radiated from the sun (via Stefan-Boltzmann Law) is  (Equation ).

This value is per square meter.

(b) To calculate the total power radiated by the sun is thus:

Wien’s Displacement Law 
The second phenomenological observation from experiment was Wien’s Displacement Law. Wien's law identifies the dominant
(peak) wavelength, or color, of light coming from a body at a given temperature. As the oven temperature varies, so does the
frequency at which the emitted radiation is most intense (Figure 1.1.3 ). In fact, that frequency is directly proportional to the
absolute temperature:

where the proportionality constant is .

Wien himself deduced this law theoretically in 1893, following Boltzmann’s thermodynamic reasoning. It had previously been
observed, at least semi-quantitatively, by an American astronomer, Langley. This upward shift in  with  is familiar to
everyone—when an iron is heated in a fire (Figure 1.1.1 ), the first visible radiation (at around 900 K) is deep red, the lowest
frequency visible light. Further increase in  causes the color to change to orange then yellow, and finally blue at very high
temperatures (10,000 K or more) for which the peak in radiation intensity has moved beyond the visible into the ultraviolet.

Another representation of Wien's Law (Equation ) in terms of the peak wavelength of light is

where  is the absolute temperature in kelvin and  is a constant of proportionality called Wien's displacement constant, equal to 
, or more conveniently to obtain wavelength in micrometers, . This is an inverse relationship

between wavelength and temperature. So the higher the temperature, the shorter or smaller the wavelength of the thermal radiation.
The lower the temperature, the longer or larger the wavelength of the thermal radiation. For visible radiation, hot objects emit bluer
light than cool objects.

If surface body temperature is 90 °F.

a. How much radiant energy in  would your body emit?
b. What is the peak wavelength of emitted radiation?

6.96 × m108

A = 4πR2

A = 4(3.1416)(6.96 × m108 )2

= 6.08 ×1018m2

P = σT 4 1.1.1

P = (5.67 × Watts )(5700K10−8 m−2K−4 )4

= 5.98 × Watts/107 m2

Ptotal = PA = (5.98 × Watts/ )(6.08 × )107 m2 1018m2

= 3.6 × Watts1026

∝ Tνmax (1.1.2)

5.879 × Hz/K1010

νmax T

T

1.1.2

=λmax

b

T
(1.1.3)

T b

2.89 × mK10−3 b ≈ 2900 μm ⋅K

 Example 1.1.2
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c. What is the total radiant energy emitted by your body in Watts? Note: The average adult human male has a body surface
area of about 1.9  and the average body surface area for a woman is about 1.6 .

Solution
(a) 90 °F is 305 K. We use Stefan-Boltzmann Law (Equation ). The total amount of radiation emitted will be .

The peak wavelength of emitted radiation is found using Wien's Law:

The total radiant energy density in Watts is :

For example, if the Sun has a surface temperature of 5700 K, what is the wavelength of maximum intensity of solar radiation?

Solution
If we substitute 5700 K for  in Equation , we have

Knowing that violet light has a wavelength of about  meters, yellow about  meters, and red about 
 meters, what can we say about the color of the Sun's peak radiation? The peak wavelength of the Sun's radiation is

at a slightly shorter wavelength than the color yellow, so it is a slightly greenish yellow. To see this greenish tinge to the Sun,
you would have to look at it from space. It turns out that the Earth's atmosphere scatters some of the shorter waves of sunlight,
which shifts its peak wavelength to pure yellow.

Remember that thermal radiation always spans a wide range of wavelengths (Figure 1.1.2 ) and Equation  only specifies the
single wavelength that is the peak of the spectrum. So although the Sun appears yellowish-white, when you disperse sunlight with
a prism you see radiation with all the colors of the rainbow. Yellow just represents a characteristic wavelength of the emission.

a. At what wavelength does the sun emit most of its radiation if it has a temperature of 5,778 K?
b. At what wavelength does the earth emit most of its radiation if it has a temperature of 288 K?

Answer a

500 nm

Answer b

10.0 microns

m2 m2

1.1.1 P = σT 4

P = (5.67 × Watts )(305K10−8 m−2K−4 )4

= 491W m−2

λmax =
2.898 × m ⋅K10−3

T

=
2.898 × m ⋅K10−3

305K

= 9.5 × m = 9.5μm10−6

Energymale

Energyfemale

= (491W )(1.9 ) = 933Wm−2 m2

= (491W )(1.6 ) = 786Wm−2 m2

 Example 1.1.3 : The Temperature of the Sun

T 1.1.3

λmax =
0.0029

5700

= 5.1 × m10−7

4.0 ×10−7 5.6 ×10−7

6.6 ×10−7

1.1.3

 Exercise 1.1.1
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The Rayleigh-Jeans Law 

Lord Rayleigh and J. H. Jeans developed an equation which explained blackbody radiation at low frequencies. The equation which
seemed to express blackbody radiation was built upon all the known assumptions of physics at the time. The big assumption which
Rayleigh and Jean implied was that infinitesimal amounts of energy were continuously added to the system when the frequency was
increased. Classical physics assumed that energy emitted by atomic oscillations could have any continuous value. This was true for
anything that had been studied up until that point, including things like acceleration, position, or energy. Their resulting Rayleigh-
Jeans Law was

Experimental data performed on the black box showed slightly different results than what was expected by the Rayleigh-Jeans law
(Figure 1.1.5 ). The law had been studied and widely accepted by many physicists of the day, but the experimental results did not
lie, something was different between what was theorized and what actually happens. The experimental results showed a bell type of
curve, but according to the Rayleigh-Jeans law the frequency diverged as it neared the ultraviolet region (Equation ).
Ehrenfest later dubbed this the "ultraviolet catastrophe". It is important to emphasizing that Equation  is a classical result: the
only inputs are classical dynamics and Maxwell’s electromagnetic theory.

Figure 1.1.5 : Relationship between the temperature of an object and the spectrum of blackbody radiation it emits. At relatively low
temperatures, most radiation is emitted at wavelengths longer than 700 nm, which is in the infrared portion of the spectrum. The
dull red glow of the hot metalwork in Figure 1.1.5 is due to the small amount of radiation emitted at wavelengths less than 700 nm,
which the eye can detect. As the temperature of the object increases, the maximum intensity shifts to shorter wavelengths,
successively resulting in orange, yellow, and finally white light. At high temperatures, all wavelengths of visible light are emitted
with approximately equal intensities. (CC BY-SA-NC; anonymous)

Radiation is understood as a continuous distribution of amplitude vs. wavelength or, equivalently, amplitude vs. frequency
(Figure 1.1.5 ). According to Rayleigh-Jeans law, the intensity at a specific frequency  and temperature is

However, in practice, we are more interested in frequency intervals. An exact frequency is the limit of a sequence of smaller
and smaller intervals. If we make the assumption that, for a sufficiently small interval,  does not vary, we get your
definition for the differential  in Equation :

dρ (ν,T ) = (T )dνρν

= dν
8π TkB

c3
ν2

(1.1.4)

(1.1.5)

1.1.5

1.1.5

 Differential vs. Integral Representation of the Distribution

ν

ρ(ν,T ) = .
8π Tkb ν2

c3

ρ(ν,T )

dρ(ν,T ) 1.1.5
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The assumption is fair due to the continuity of . This is the approximation of an integral on a very small interval  by

the height of a point inside this interval ( ) times its length ( ). So, if we sum an infinite amount of small intervals like
the one above we get an integral. The total radiation between  and  will be:

Observe that  is quadratic in .

What is the total spectral radiance of a radiator that follows the Rayleigh-Jeans law for its emission spectrum?

Solution
The total spectral radiance  is the combined emission over all possible wavelengths (or equivalently, frequencies),
which is an integral over the relevant distribution (Equation  for the Rayleigh-Jeans Law).

but the integral

does not converge. Worse, it is infinite,

Hence, the classically derived Rayleigh-Jeans law predicts that the radiance of a blackbody is infinite. Since radiance is power
per angle and unit area, this also implies that the total power and hence the energy a blackbody emitter gives off is infinite,
which is patently absurd. This is called the ultraviolet catastrophe because the absurd prediction is caused by the classical law
not predicting the behavior at high frequencies/small wavelengths correctly (Figure 1.1.5 ).
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 Example 1.1.4 : The Ultraviolet Catastrophe

(T )ρtot
1.1.5

(T )ρtot = dρ (ν,T )∫
∞

0

= dν∫
∞

0
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