
6.7.1 https://chem.libretexts.org/@go/page/13432

6.7: The Helium Atom Cannot Be Solved Exactly

Adding electrons to the quantum hydrogen atom results in analytically unsolvable Schrödinger Equations (they exist, we just do not have
analytical forms for them)
A basic aspect of the corresponding multi-electron Hamiltonians is that they are NOT separable with respect to the spatial coordinate of each
electron
The solutions to multi-electron Schrödinger Equations are called multi-electron wavefunctions and they are often approximated as a product of
single-electron wavefunctions (called the orbital approximation).

Multi-electron Hamiltonians 
The second element in the periodic table provides our first example of a quantum-mechanical problem which cannot be solved exactly. Nevertheless, as
we will show, approximation methods applied to helium can give accurate solutions in perfect agreement with experimental results. In this sense, it can
be concluded that quantum mechanics is correct for atoms more complicated than hydrogen. By contrast, the Bohr theory failed miserably in attempts to
apply it beyond the hydrogen atom.

Figure 6.7.1 shows a schematic representation of a helium atom with two electrons whose coordinates are given by the vectors  and . The electrons
are separated by a distance . The origin of the coordinate system is fixed at the nucleus. As with the hydrogen atom, the nuclei for multi-
electron atoms are so much heavier than an electron that the nucleus is assumed to be the center of mass. Fixing the origin of the coordinate system at
the nucleus allows us to exclude translational motion of the center of mass from our quantum mechanical treatment.

Figure 6.7.1 : (a) The nucleus (++) and electrons (e-) of the helium atom. (b) Equivalent reduced particles with the center of mass (approximately
located at the nucleus) at the origin of the coordinate system. Note that  and .

The Hamiltonian operator for the hydrogen atom serves as a reference point for writing the Hamiltonian operator for atoms with more than one electron.
Start with the same general form we used for the hydrogen atom Hamiltonian

Include a kinetic energy term for each electron and a potential energy term for the attraction of each negatively charged electron for the positively
charged nucleus and a potential energy term for the mutual repulsion of each pair of negatively charged electrons. The He atom Hamiltonian is

where

The two-electron Hamiltonian in Equation  can be extended to any atom or ion by replacing the He nuclear charge of +2 with a general charge ;
e.g.

and including terms for the additional electrons. The subsequent multi-electron atom with  electron is
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This multi-electron Hamiltonian is qualitatively similar to the 2-electron Hamiltonian (Equation ) with each electron having its own kinetic energy
and nuclear potential energy terms (Equations  and ). The other big difference between single electron systems and multi-electron systems is
the presence of the  terms which contain , where  is the distance between electrons  and . These terms account for the electron-electron
repulsion that we expect between like-charged particles.

For the generalized multi-electron atom Hamiltonian (Equation ):

a. Explain the origin of each of the three summations.
b. What do these summations over (i.e., what is the origin of the summing index)?
c. Write expressions for  and .

Boron is the fifth element of the periodic table (Z=5) and is located in Group 13.

a. Write the multi-electron Hamiltonian for a  atom.
b. Would it be any different for a  ion?
c. Would it be any different for a  atom?

Answer

a.

which expands to 20 terms

b. Yes,  has one less electron than . Its Hamiltonian is

or expanded to 14 terms

c. No effect. Changing the number of neutrons in the nucleus does not affect kinetic nor potential energies of the electrons. The Hamilitonian for 
 is identical to . This is technically correct for this level of discussion, but as we we will see in later, if we expand the Hamiltonian with

hyperfine structure the number of neutrons can play a role.

Multi-electron Wavefunctions and the Orbital Approximation 
Given what we have learned from the previous quantum mechanical systems we’ve studied, we predict that exact solutions to the multi-electron
Schrödinger equation in Equation  would consist of a family of multi-electron wavefunctions, each with an associated energy eigenvalue. These
wavefunctions and energies would describe the ground and excited states of the multi-electron atom, just as the hydrogen wavefunctions and their
associated energies describe the ground and excited states of the hydrogen atom. We would predict quantum numbers to be involved, as well.

The fact that electrons interact through their Coulomb repulsion means that an exact wavefunction for a multi-electron system would be a single
function that depends simultaneously upon the coordinates of all the electrons; i.e., a multi-electron wavefunction,
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( , , , ) = − + +ĤB+ r ⃗ 1 r ⃗ 2 r ⃗ 3 r ⃗ 4
ℏ2

2me

∑
i

4

∇2
i ∑

i

4 −5e2

4πϵ0ri
∑
i≠j

4,4
e2

4πϵ0rij
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The modulus squared of such a wavefunction would describe the probability of finding the electrons (though not specific ones) at a designated volume (
) in the atom.

All of the electrons are described simultaneously by a multi-electron wavefunction, so the total amount of electron density represented by the
wavefunction equals the number of electrons in the atom.

Unfortunately, the Coulomb repulsion terms (Equation ) make it impossible to find an exact solution to the Schrödinger equation for many-electron
atoms and molecules even for two electrons atoms. We have to rely on approximations and the orbital approximation is central to basic chemistry
concepts.

The most basic approximations to the exact solutions to a multi-electron atom Hamiltonian, , (Equation ) involve writing a multi-electron
wavefunction ( ) as a simple product of single-electron wavefunctions (  ):

or in Dirac notation

The energy of the atom in the state associated with a specific multi-electron wavefunction ( ) is obtained from the multi-electron Schrödinger
Equation

Within the approximation in Equation ,  can be expressed sum of the energies of the one-electron components ( ).

This is called the orbital approximation.

By writing the multi-electron wavefunction as a product of single-electron functions (Equations  or ), we conceptually transform a multi-
electron atom into a collection of individual electrons located in individual orbitals whose spatial characteristics and energies can be separately
identified. For atoms, these single-electron wavefunctions are called atomic orbitals and resemble the wavefunctions for hydrogen-like atoms. For
molecules, as we will see in the following chapters, these are called molecular orbitals. While a great deal can be learned from such an analysis, it is
important to keep in mind that such a discrete, compartmentalized picture of the electrons is an approximation, albeit a powerful one.
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 The Orbital Approximation
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