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17.2: The Boltzmann Distribution represents a Thermally Equilibrated Distribution
Consider a N-particle ensemble. The particles are not necessarily indistinguishable and possibly have mutual potential energy.
Since this is a large system, there are many different ways to arrange its particles and yet yield the same thermodynamic state. Only
one arrangement can occur at a time. The sum of the probabilities of each separate arrangement equals the total number of separate
arrangements. Then the probability of a system is:

where  is the probability of the system,  is the total number of different possible arrangements of the N particles in the
system, and  is the probability of each separate arrangement. Heisenberg's uncertainty principle states that it is impossible to
simultaneously know the momentum and the position of an object with complete precision. In agreement with the uncertainty
principle, the total possible number of combinations can be defined as the total number of distinguishable rearrangements of the N
particles.

The most practical ensemble is the canonical ensemble with , , and  fixed. We can imagine a collection of boxes with equal
volumes and number of particles with the entire collection kept in thermal equilibrium. Based on the Boltzmann factor, we know
that for a system that has states with energies ..., the probability  that the system will be in the state  with energy  is
exponentially proportional to the energy of state . The partition functions of the state places a very important role in calculating
the properties of a system, for example, it can be used to calculate the probability, as well as the energy, heat capacity, and pressure.

The Boltzmann Distribution 

We are ultimately interested in the probability that a given distribution will occur. The reason for this is that we must have this
information in order to obtain useful thermodynamic averages. Let's consider an ensemble of  systems. We will define  as the
number of systems in the ensemble that are in the quantum state . For example,  represents the number of systems in the
quantum state 1. The total number of possible microstates is:

The overall probability that  that a system is in the j  quantum state is obtained by averaging  over all the allowed
distributions. Thus,  is given by:

where the angle brackets indicate an ensemble average. Using this definition we can calculate any average property (i.e. any
thermodynamic property):

The method of the most probable distribution is based on the idea that the average over  is identical to the most probable
distribution. Physically, this results from the fact that we have so many particles in a typical system that the fluctuations from the
mean are extremely (immeasurably) small. The equivalence of the average probability of an occupation number and the most
probable distribution is expressed as follows:

The probability function is subject to the following constraints:

Constraint 1: Conservation of energy requires:
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where  is the energy of the jth quantum state.
Constraint 2: Conservation of mass requires:

which says only that the total number of all of the systems in the ensemble is .

As we will learn in later chapters, the system will tend towards the distribution of  that maximizes the total number of
microstates. This can be expressed as:

Our constraints becomes:

The method of Lagrange multipliers (named after Joseph Louis Lagrange is a strategy for finding the local maxima and minima of
a function subject to equality constraints. Using the method of LaGrange undetermined multipliers we have:

We can use Stirling's approximation:

to evaluate:

to get:

as outlined below.

Application of Stirling's Approximation 
First step is to note that:

Since (from Equation ):

these two cancel to give:
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The derivative is:

Therefore we have:

These latter derivatives result from the fact that:

The simple expression that results from these manipulations is:

The most probable distribution is:

Now we need to find the undetermined multipliers  and .

The left hand side of Equation  is 1. Thus, we have:

This determines  and defines the Boltzmann distribution. We will show that  from the optimization procedure of method of
Lagrange multipliers is:

This identification will show the importance of temperature in the Boltzmann distribution. The distribution represents a thermally
equilibrated most probable distribution over all energy levels (Figure 17.2.1 ).
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Figure 17.2.1 : At lower temperatures, the lower energy states are more greatly populated. At higher temperatures, there are more
higher energy states populated, but each is populated less.  at 300 K. (CC SA-BY 3.0;
Mysterioso via Wikiversity).

The Boltzmann distribution represents a thermally equilibrated most probable distribution over all energy levels. There is
always a higher population in a state of lower energy than in one of higher energy.

Once we know the probability distribution for energy, we can calculate thermodynamic properties like the energy, entropy, free
energies and heat capacities, which are all average quantities (Equation ). To calculate , we need the energy levels of a
system (i.e., ). The energy ("levels") of a system can be built up from the quantum energy levels

It must always be remembered that no matter how large the energy spacing is, there is
always a non-zero probability of the upper level being populated. The only exception is a
system that is at absolute zero. This situation is however hypothetical as absolute zero can
be approached but not reached.

Partition Function 

The sum over all factors  is given a name. It is called the molecular partition function, :

The molecular partition function  gives an indication of the average number of states that are thermally accessible to a molecule at
the temperature of the system. The partition function is a sum over states (of course with the Boltzmann factor  multiplying the
energy in the exponent) and is a number. Larger the value of , larger the number of states which are available for the molecular
system to occupy (Figure 17.2.2 ).
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Figure 17.2.2 : At lower temperatures, the lower energy states are more greatly populated. At higher temperatures, there are more
higher energy states populated, but each is populated less. (CC SA-BY 3.0; Mysterioso via Wikiversity).

We distinguish here between the partition function of the ensemble,  and that of an individual molecule, . Since  represents a
sum over all states accessible to the system it can written as:

where the indices  represent energy levels of different particles.

Regardless of the type of particle the molecular partition function,  represents the energy levels of one individual molecule. We
can rewrite the above sum as:

or:

for  particles. Note that  means a sum over states or energy levels accessible to molecule  and  means the same for molecule 
. The molecular partition function,  counts the energy levels accessible to molecule  only.  counts not only the states of all of

the molecules, but all of the possible combinations of occupations of those states. However, if the particles are not distinguishable
then we will have counted  states too many. The factor of  is exactly how many times we can swap the indices in 

 and get the same value (again provided that the particles are not distinguishable). See this video for more information.
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Problems 
1. Complete the justification of Boltzmann's distribution law by computing the proportionality constant .
2. A system contains two energy levels . Using Boltzmann statistics, express the average energy of the system in terms of 

.
3. Consider a system contains N energy levels. Redo problem #2.
4. Use the property of exponential function, derive equation (17.9).
5. What are the uses of partition functions?

17.2: The Boltzmann Distribution represents a Thermally Equilibrated Distribution is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Jerry LaRue.
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