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9.4: Chemical Bond Stability

Identify the nature of the energy of molecular orbitals of a diatomic as a function of intermolecular distance
Identify the three integrals involved in calculation the total Molecular Orbital Energy: coulomb Integral, exchange integral,
and overlap integral

As shown previously, we can construct two molecular orbitals for the  system using the LCAO approximation with a basis set
of two 1s atomic orbitals (i.e., the  orbitals on hydrogen  ( ) and hydrogen  ( ):

The energy of these two molecular orbitals can be calculated from the expectation value integral of the Hamiltonian,

which can be expanded using the expanded molecular orbital wavefunctions in Equations  to give

where  is the overlap integral between the two atomic orbitals of the basis. The four integrals in Equation  can be
represented by , , , and , respectively.

Show that Equation  expands to give Equation  within the LCAO approximation that uses a basis set of only two 1s
atomic orbitals.

Answer

Here we have the wavefunction within the LCAO approximation that uses a basis set of only two 1s atomic orbitals
(Equation ).

And our LCAO approximation is equivalent to this if we plug in the wavefunction directly.

We can see form above that the normalization constant squared results in:

We now FOIL the mulitple (i.e., expaned term by term):

Now we can see this is now equivalent to Equation  if the equation above is inserted (and adding a subscript to
emphasize this only applies to the electronic wavefunction):
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Notice that  and  appear equivalently in the Hamiltonian operator for . This equivalence means that integrals involving 
must be the same as corresponding integrals involving , i.e.

and since the wavefunctions are real

so

These two equalities simplify Equation :

Now examine the details of  after inserting the Hamiltonian operator for  (Equation 9.2.1):

The first term is just the integral for the energy of the hydrogen atom of the 1s orbital, .
The second integral is equal to 1 by normalization; the prefactor is just the Coulomb repulsion of the two protons.
The last integral, including the minus sign, is represented by  and is called the Coulomb integral.

Physically  is the potential energy of interaction of the electron located around proton  with proton . It is negative because
it is an attractive interaction. It is the average interaction energy of an electron described by the  function with proton .

The Coulomb Integral is the potential energy of electrostatic repulsion between the electron with the electron density in 
and the the electron with the electron density function 

Now consider .

In the first integral we have the hydrogen atom Hamiltonian and the H atom function 1s . The function 1s  is an eigenfunction
of the operator with eigenvalue . Since  is a constant it factors out of the integral, which then becomes the overlap
integral, . The first integral therefore reduces to .
The second term is just the Coulombic energy of the two protons times the overlap integral.
The third term, including the minus sign, is given the symbol  and is called the exchange integral because the electron is
described by the 1s  orbital on one side and by the 1s  orbital on the other side of the operator. The electron changes or
exchanges position in the molecule.

In a coulomb integral, the electron always is in the same orbital; whereas, in an Exchange Integral, the electron is in one
orbital on one side of the operator and in a different orbital on the other side.
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Using the expressions for  (Equation ) and  (Equation ) and substituting into Equation  produces:

Equation  tells us that the energy of the  molecule is the energy of a hydrogen atom plus the repulsive energy of two
protons plus some additional electrostatic interactions of the electron with the protons. These additional interactions are given by
the last term

If the protons are infinitely far apart then only  is nonzero, which we can set to zero by subtracting off:

To get a chemical bond and a stable  molecule  must be less than zero and have a minimum, i.e.  must be

sufficiently negative to overcome the positive repulsive energy of the two protons  for some value of . For large , these

terms are zero, and for small , the Coulomb repulsion of the protons rises to infinity.

Show that Equation 9.2.1 follows from Equation 

The Coulomb and Exchange Integrals 
We will examine more closely how the Coulomb repulsion term and the integrals , , and  depend on the separation of the
protons, but first we want to discuss the physical significance of , the Coulomb integral, and , the exchange integral.  and 
have been defined as

Figure 9.4.2 shows graphs of the four terms contributing to the energy of  (Equation ). In Figure 9.4.2 , you can see that
as the internuclear distance  approaches zero,

the Coulomb repulsion of the two protons goes from near zero to a large positive number,
the overlap integral goes for zero to one, and

 and  become increasingly negative.
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Figure 9.4.2 : (a) The electrostatic energy (in hartrees, 27.2 eV) of two protons separated by a distance  in units of the Bohr radius
(52.92 pm). (b) The overlap ( ), Coulomb ( ), and exchange (K) integrals at different proton separations. The units for  and 
are hartrees;  has no units. (CC BY-SA-NC; David M. Hanson, Erica Harvey, Robert Sweeney, Theresa Julia Zielinski via
ChemEdDL)

Note that both  and  integrals are negative since all quantities in the integrands of Equation  and  are positive. In
the Coulomb integral,  is the charge density of the electron around proton A, since r represents the coordinates of
the electron relative to proton A. Since r  is the distance of this electron to proton B, the Coulomb integral gives the potential
energy of the charge density around proton A interacting with proton B.  can be interpreted as an average potential energy of this

interaction because  is the probability density for the electron at point , and  is the potential energy of the

electron at that point due to the interaction with proton B. Essentially, J accounts for the attraction of proton B to the electron
density of hydrogen atom A. As the two protons get further apart, this integral goes to zero because all values for r  become very
large and all values for 1/r  become very small.

In the exchange integral, , the product of the two functions is nonzero only in the regions of space where the two functions
overlap. If one function is zero or very small at some point then the product will be zero or small. The exchange integral also
approaches zero as internuclear distances increase because the both the overlap and the  values become zero. The product 

 is called the overlap charge density. Since the overlap charge density is significant in the region of space between
the two nuclei, it makes an important contribution to the chemical bond. The exchange integral, , is the potential energy due to
the interaction of the overlap charge density with one of the protons. While  accounts for the attraction of proton  to the electron
density of hydrogen atom ,  accounts for the added attraction of the proton due the build-up of electron charge density between
the two protons.

Write a paragraph describing in your own words the physical significance of the Coulomb and exchange integrals for .

Figure 9.4.3 shows the energy of H  relative to the energy of a separated hydrogen atom and a proton as given by Equation .
For the electron in the  orbital, the energy of the molecule, , always is greater than the energy of the separated atom and
proton.
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Figure 9.4.3 : Energy of the  bonding molecular orbital  and the molecular orbital , relative to the energy of a
separated hydrogen atom and proton.

For the electron in the  orbital, you can see that the big effect for the energy of the bonding orbital, , is the balance

between the repulsion of the two protons  and J and K, which are both negative. J and K manage to compensate for the

repulsion of the two protons until their separation is less than 100 pm (i.e the energy is negative up until this point), and a minimum
in the energy is produced at 134 pm. This minimum represents the formation of a chemical bond. The effect of S is small. It only
causes the denominator in Equation  to increase from 1 to 2 as R approaches 0.

For the antibonding orbital,  is a positive quantity and essentially cancels J so there is not sufficient compensation for the
Coulomb repulsion of the protons. The effect of the -K in the expression, Equation , for  is to account for the absence of
overlap charge density and the enhanced repulsion because the charge density between the protons for  is even lower than that
given by the atomic orbitals.
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