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32.11: The Binomial Distribution and Stirling's Appromixation
Stirling's approximation is named after the Scottish mathematician James Stirling (1692-1770). In confronting statistical problems
we often encounter factorials of very large numbers. The factorial  is a product . Therefore, 
is a sum

where we have used the property of logarithms that . The sum is shown in figure below.

Using Euler-MacLaurin formula one has

where B  = −1/2, B  = 1/6, B  = 0, B  = −1/30, B  = 0, B  = 1/42, B  = 0, B  = −1/30, ... are the Bernoulli numbers, and \(R\) is an
error term which is normally small for suitable values of \(p\).

Then, for large ,

after some further manipulation one arrives at (apparently Stirling's contribution was the prefactor of 

where

The sum of the area under the blue rectangles shown below up to  is . As you can see the rectangles begin to closely
approximate the red curve as  gets larger. The area under the curve is given the integral of .

To solve the integral use integration by parts

Here we let  and . Then  and .

Notice that  in the last integral and  is 0 when evaluated at zero, so we have
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∫ u dv= uv−∫ vdy (32.11.7)
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x/x = 1 x lnx
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Which gives us Stirling’s approximation: . As is clear from the figure above Stirling’s approximation gets
better as the number N gets larger (Table ).

Table : Evaluation of Approximation with absolute values

N N! ln N! N ln N – N Error

10 3.63 x 10 15.1 13.02 13.8%

50 3.04 x 10 148.4 145.6 1.88%

100 9.33 x 10 363.7 360.5 0.88%

150 5.71 x 10 605.0 601.6 0.56%

Calculators often overheat at 200!, which is all right since clearly result are converging. In thermodynamics, we are often dealing
very large N (i.e., of the order of Avagadro’s number) and for these values Stirling’s approximation is excellent.
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