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3.5: The Energy of a Particle in a Box is Quantized

Solve the particle-in-a-box model used to describing a trapped particle in 1 D well
Characterize the particle-in-a-box eigenstates (i.e., wavefunctions) and the eigenenergies as a function of the quantum
number
Demonstrate that the eigenstates are orthogonal

The particle in the box model system is the simplest non-trivial application of the Schrödinger equation, but one which illustrates
many of the fundamental concepts of quantum mechanics. For a particle moving in one dimension (again along the x- axis), the
Schrödinger equation can be written

Assume that the particle can move freely between two endpoints  and , but cannot penetrate past either end. This is
equivalent to a potential energy dependent on  with

This potential is represented in Figure 3.5.1 . The infinite potential energy constitutes an impenetrable barrier since the particle
would have an infinite potential energy if found there, which is clearly impossible.

Figure 3.5.1 : The barriers outside a one-dimensional box have infinitely large potential, while the interior of the box has a
constant, zero potential. (CC-BY 4.0; OpenStax).

The particle is thus bound to a "potential well" since the particle cannot penetrate beyond  or 

By the requirement that the wavefunction be continuous, it must be true as well that

which constitutes a pair of boundary conditions on the wavefunction within the box. Inside the box, , so the Schrödinger
equation reduces to the free-particle form:

with .

We again have the differential equation

with
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The general solution can be written

where  and  are constants to be determined by the boundary conditions in Equation . By the first condition, we find

The second boundary condition at  then implies

It is assumed that , for otherwise  would be zero everywhere and the particle would disappear (i.e., the trivial solution).
The condition that  implies that

where  is a integer, positive, negative or zero. The case  must be excluded, for then  and again  would vanish
everywhere. Eliminating  between Equation  and , we obtain

with .

These are the only values of the energy which allows solutions of the Schrö dinger Equation  consistent with the boundary
conditions in Equation . The integer , called a quantum number, is appended as a subscript on  to label the allowed
energy levels. Negative values of  add nothing new because the energies in Equation  depends on .

Figure 3.5.2 : A plot of  for the first four wavefunctions. (CC-BY 4.0; OpenStax).

Figure 3.5.2 shows part of the energy-level diagram for the particle in a box. The occurrence of discrete or quantized energy levels
is characteristic of a bound system, that is, one confined to a finite region in space. For the free particle, the absence of confinement
allowed an energy continuum. Note that, in both cases, the number of energy levels is infinite-denumerably infinite for the particle
in a box, but nondenumerably infinite for the free particle.

The particle in a box assumes its lowest possible energy when , namely

The state of lowest energy for a quantum system is termed its ground state.

=k2 2mE

ℏ2
(3.5.5)

ψ(x) = A sin kx + B cos kx (3.5.6)
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 Zero Point Energy
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An interesting point is that , whereas the corresponding classical system would have a minimum energy of zero. This is
a recurrent phenomenon in quantum mechanics. The residual energy of the ground state, that is, the energy in excess of the
classical minimum, is known as zero point energy. In effect, the kinetic energy, hence the momentum, of a bound particle
cannot be reduced to zero. The minimum value of momentum is found by equating  to , giving  = . This
can be expressed as an uncertainty in momentum given by . Coupling this with the uncertainty in position, 

, from the size of the box, we can write

This is in accord with the Heisenberg uncertainty principle.

The particle-in-a-box eigenfunctions are given by Equation , with  and , in accordance with Equation 

with .

These, like the energies, can be labeled by the quantum number . The constant , thus far arbitrary, can be adjusted so that 
is normalized. The normalization condition is, in this case,

the integration running over the domain of the particle . Substituting Equation  into Equation ,

We have made the substitution  and used the fact that the average value of  over an integral number of half
wavelengths equals 1/2 (alternatively, one could refer to standard integral tables). From Equation , we can identify the
general normalization constant

for all values of . Finally we can write the normalized eigenfunctions:

with .

The first few eigenfunctions and the corresponding probability distributions are plotted in Figure 3.5.3 . There is a close analogy
between the states of this quantum system and the modes of vibration of a violin string. The patterns of standing waves on the
string are, in fact, identical in form with the wavefunctions in Equation .
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Figure 3.5.3 : The probability density distribution  for a quantum particle in a box for: (a) the ground state, ; (b) the
first excited state, ; and, (c) the nineteenth excited state, . (CC-BY 4.0; OpenStax).

A significant feature of the particle-in-a-box quantum states is the occurrence of nodes. These are points, other than the two
end points (which are fixed by the boundary conditions), at which the wavefunction vanishes. At a node there is exactly zero
probability of finding the particle. The nth quantum state has, in fact,  nodes. It is generally true that the number of nodes
increases with the energy of the quantum state, which can be rationalized by the following qualitative argument. As the number
of nodes increases, so does the number and the steepness of the 'wiggles' in the wavefunction. It's like skiing down a slalom
course. Accordingly, the average curvature, given by the second derivative, must increase. But the second derivative is
proportional to the kinetic energy operator. Therefore, the more nodes, the higher the energy. This will prove to be an
invaluable guide in more complex quantum systems.

For a particle in a one-dimensional box of length , the second excited state wavefunction ( ) is

a. What is the probability that the particle is in the left half of the box?
b. What is the probability that the particle is in the middle third of the box?

Strategy
Probability that the particle will be found between  and  is

For this problem,

therefore,

| (x)ψn |2 n = 1
n = 2 n = 20

 Nodes and Curvature

n−1

 Example 3.5.1 : Excited State Probabilities
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Solution a
The probability that the particle is in the left half of the box is

Solution b
The probability that the particle is in the middle third of the box

For a particle in a one-dimensional box, the ground state wavefunction is

What is the probability that the particle is in the left half of the box in the ground state?

Answer

This is the same answer as for the  state in Example 3.5.1 . This is because the eigenstate squared (.e., probability
density) for the particle in a 1D box will always be symmetric around the center of the box. So there will be equal
probability to be on either side (i.e., no side is favored).
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= sinψ1
2

L

−−
√

xπ

L

P (0, )
L

2
= dx

2

L
∫

L

2

0

sin2 xπ

L

=
2

L

+sin0 +sin
Lπ

L

Lπ

L

4π

L

=
1

2

ψ3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13395?pdf


3.5.6 https://chem.libretexts.org/@go/page/13395

Recall that the time-dependence of the wavefunction with time-independent potential was discussed in Section 3.1 and is
expressed as

so for the particle in a box, these are

with  given by Equation .

The phase part of Equation  can be expanded into a real part and a complex components. So the total wavefunction for a
particle in a box is

which can be simplified (slightly) to

As discussed previously, the imaginary part of the total wavefunction oscillates out of phase by  with respect to the real
part (we call this "out of phase"). This is demonstrated in the time-dependent behavior of the first three eigenfunctions in
Figure 3.5.4 .

Figure 3.5.4 : Some trajectories of a particle in a box according to Newton's laws of classical mechanics (A), and according to
the Schrödinger equation of quantum mechanics (B-D). In (B-D), the horizontal axis is position, and the vertical axis is the real
part (blue) and imaginary part (red) of the wavefunction. The states (B, C, D) are energy eigenstates. (Public Domain;
Sbyrnes321 via Wikipedia).

Note that as  increased, the energy of the wavefunction increases (Equation ) and both the number of nodes and
antinodes increase and the frequency of oscillation of the wavefunction increases.

It is generally true in quantum systems (not just for particles in boxes) that the number of
nodes in a wavefunction increases with the energy of the quantum state.

Orthonormality of the Eigenstates 
Another important property of the eigenfunctions in Equation  applies to the integral over a product of two different
eigenfunctions (Equation ). It is easy to see from Figure 3.5.5 that the integral

The integral in Equation  is zero when the two eignestates differ and when integrated over the entire range of the system
(from  to  for a 1-D particle in the box, but this can be a narrow region of  to  since the eigenstates are zero outside of the
box).

 Time Dependence and Complex Nature of Wavefunctions
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Figure 3.5.5 : (Top Row): Select plots of the  (red curves),  (purple curves),  (green curves), and  (blue
curves) eigenfunctions. (Bottom Row): Product of different eigenstates with positive (tan) and negative (cyan) areas emphasized.
Note that the negative and positive areas perfectly cancel when added together. Created via fooplot (CC BY-NC; Ümit Kaya via
LibreTexts)

To prove Equation  for a particle in a box model, we can use the trigonometric identity

to show that

This property is called orthogonality . We will show in the next chapter, that this is a general result from quantum-mechanical
eigenfunctions. The normalization (Equation ) together with the orthogonality (Equation ) can be combined into a
single relationship

In terms of the Kronecker delta

A set of functions  which obeys Equation  is called orthonormal.

Evaluate

a. 
b. 
c. 
d. 

for the normalized wavefunctions:

and

n = 1 n = 2 n = 3 n = 4
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Strategy
These are four different integrals and we can solve them directly or use orthonormality (Equation ) to evaluate.

Solution a

This is an integration over an even function, so it cannot be tossed out via symmetry. We can use the Trigonometry relationship
in Equation  to get

and we can continue the fun. However, there is no need. Since the we can recognize that  is 1 by the normalization
criteria which is folded into the orthonormal criteria (Equation ).

Therefore .

Solution b

We can expand and solve, but again there is no need. The wavefunctions are normalized therefore .

Solution c

We can expand this integral and evaluate, but since the integrand is odd (and even function times an odd), this integral is zero.
Alternatively, we can use the orthogonality criteria into the greater orthonormal criteria (Equation ).

Solution d

We can expand this integral and evaluate, but since the integrand is odd (and even function times an odd function), this integral
is zero. Alternatively, we can use the orthogonality criteria into the greater orthonormal criteria (Equation ).

However, since the wavefunctions are real, then

which also means
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from the results of section c.
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