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3.7: The Average Momentum of a Particle in a Box is Zero

Calculate the expectation value for a measurement
Apply the expectation value concept to calculate average properties of a participle in a box model
Understand the origin of a zero-point energy/zero-point motion.
Extend the concept of orthogonality from vectors to mathematical functions (and wavefunctions).

Now that we have mathematical expressions for the wavefunctions and energies for the particle-in-a-box, we can answer a number
of interesting questions. The answers to these questions use quantum mechanics to predict some important and general properties
for electrons, atoms, molecules, gases, liquids, and solids. Key to addressing these questions is the formulation and use of
expectation values. This is demonstrated below and used in the context of evaluating average properties (momentum of the particle
in a box for the case below).

Classical Expectation Values 

The expectation value is the probabilistic expected value of the result (measurement) of an experiment. It is not the most probable
value of a measurement; indeed the expectation value may even have zero probability of occurring. The expected value (or
expectation, mathematical expectation, mean, or first moment) refers to the value of a variable one would "expect" to find if one
could repeat the random variable process an infinite number of times and take the average of the values obtained. More formally,
the expected value is a weighted average of all possible values.

A classical example is calculating the expectation value (i.e. average) of the exam grades in the class. For example if the class
scores for an exam were

65 67 94 43 67 76 94 67

The discrete way is to sum up all scores and divide by the number of students:

which of this example of scores is

Notice that the average is not an allowable score on an individual exam. Equation  can be rewritten with "probability" or
"probability weights"

where  is the probability of observing a score of . This is just the number of times it occurs in a dataset divided by the
number of elements in that data set. Applying Equation  to the set of scores, we need to calculate these weights:

Score 65 67 94 43 76

1/8 3/8 2/8 1/8 1/8

As with all probabilities, the sum of all probabilities possible must be one. These confirm that for the weights here:

 Learning Objectives

 Example 3.7.1 : Classical Expectation Value of Exam Scores (a discretized example)

⟨s⟩ =

s(i)∑
i

N

N
(3.7.1)

⟨s⟩ =
65 +67 +94 +43 +67 +76 +94 +76

8

= 71.625
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This is the discretized "normalization" criterion (the same as why we normalize wavefunctions).

So, now we can use Equation  properly

Hence, Equation  gives the same result, as expected, from Equation .

Quantum Expectation Values 
The extension of the classical expectation (average) approach in Example 3.7.1 using Equation  to evaluating quantum
mechanical expectation values requires three small changes:

1. Switch from descretized to continuous variables
2. Substitute the wavefunction squared for the probability weights (i.e., the probability distribution)
3. Use an operator instead of the scalar

Hence, the quantum mechanical expectation value  for an observable, , associated with an operator, , is given by

where  is the range of space that is integrated over (i.e., an integration over all possible probabilities). The expectation value
changes as the wavefunction changes and the operator used (i.e, which observable you are averaging over).

In general, changing the wavefunction changes the expectation value for that operator for
a state defined by that wavefunction.

Average Energy of a Particle in a Box 
If we generalize this conclusion, such integrals give the average value for any physical quantity by using the operator
corresponding to that physical observable in the integral in Equation . In the equation below, the symbol  is used to denote
the average value for the total energy.

The Hamiltonian operator consists of a kinetic energy term and a potential energy term. The kinetic energy operator involves
differentiation of the wavefunction to the right of it. This step must be completed before multiplying by the complex conjugate of
the wavefunction. The potential energy, however, usually depends only on position and not momentum (i.e., it involves
conservative forces). The potential energy operator therefore only involves the coordinates of a particle and does not involve
differentiation. For this reason we do not need to use a caret over  in Equation .

Equation  can be simplified
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⟨s⟩ = 65 × +67 × +94 × +43 × +76 ×
1

8
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= 71.625

3.7.2 3.7.1

3.7.2

⟨o⟩ o Ô

⟨o⟩ = ψ dx∫
+∞

−∞

ψ∗Ô (3.7.3)

x

3.7.3 ⟨H⟩

⟨H⟩ = (x) ψ(x)dx∫

−∞

∞

ψ∗ Ĥ

= (x) ψ(x)dx+ (x) ψ(x)dx∫

−∞

∞

ψ∗ KÊ ∫

−∞

∞

ψ∗ V̂

= +(x)( ) ψ(x)dx∫

−∞

∞

ψ∗ −ℏ2

2m

∂2

∂x2

average kinetic energy

(x) (x)ψ(x)dx∫

−∞

∞

ψ∗ V̂

average potential energy

(3.7.4)

(3.7.5)

(3.7.6)

V 3.7.6

3.7.6

⟨H⟩ = ⟨KE⟩+ ⟨V ⟩ (3.7.7)
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The potential energy integral then involves only products of functions, and the order of multiplication does not affect the result, e.g.
6×4 = 4×6 = 24. This property is called the commutative property. The average potential energy therefore can be written as

This integral is telling us to take the probability that the particle is in the interval  at , which is , multiply this
probability by the potential energy at , and sum (i.e., integrate) over all possible values of . This procedure is just the way to
calculate the average potential energy  of the particle.

Evaluate the two integrals in Equation  for the PIB wavefunction  with the potential function 

 from 0 to the length of a box  with .

Solution
The average kinetic energy is

We can solve this intergral using the standard half-angle representation from an integral table. Or we can recognize that we
already did this integral when we normalized the PIB wavefunction by rewriting this integral:

Thus, the average value for the total energy of this particular system is

⟨V ⟩ = V (x) (x)ψ(x)dx∫

−∞

∞

ψ∗ (3.7.8)

dx x (x)ψ(x)dxψ∗

x x

⟨V ⟩

 Exercise 3.7.2 : Particle in Box

3.7.6 ψ(x) = sin(kx)
2

L

−−
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V (x) = 0 L k =
π

L
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Hence, the average kinetic energy of the wavefunction is dependent on the  quantum number

The average potential energy is

Thus, the average potential energy of the PIB is 0 irrespective of the wavefunction.

Hence via Equation  for this system and set of wavefunctions

This is the same result obtained from solving the eigenvalue equation for the PIB. However, if the wavefunctions used were
NOT eigenstates of energy, then we cannot use the eigenvalue approach and need to rely on the expectation values to describe
the energy of the system.

What is the lowest energy for a particle in a box? The lowest energy level is , and it is important to recognize that this lowest
energy of a particle in a box is not zero. This finite energy is called the zero-point energy, and the motion associated with this
energy is called the zero-point motion. Any system that is restricted to some region of space is said to be bound. The zero-point
energy and motion are manifestations of the wave properties and the Heisenberg Uncertainty Principle, and are general properties
of bound quantum mechanical systems.

What happens to the energy level spacing for a particle-in-a-box when  becomes much larger than ? What does this
result imply about the relevance of quantization of energy to baseballs in a box between the pitching mound and home plate?
What implications does quantum mechanics have for the game of baseball in a world where  is so large that baseballs exhibit
quantum effects?

Answer

As  becomes much larger than , as everyday objects are, the spacing between energy levels becomes much smaller.
This shows how the quantizations of energy levels become irrelevant for an everyday object, as the quantizations of the
energy of baseballs in a box between the pitching mound and home plate would appear particularly continuous for such a
relatively large mass and box length. If h were so large that a baseball experiences quantum effects then a game of baseball
would be far less predictable, in a classical world the position of a baseball can be easily predicted by the everyday
understanding of projectile motion, however, in such a quantum world the baseball would not behave with expected
projectile motion but instead behave wave-like with a probability of being in a certain position.

The first derivative of a function is the rate of change of the function, and the second derivative is the rate of change in the rate of
change, also known as the curvature. A function with a large second derivative is changing very rapidly. Since the second
derivative of the wavefunction occurs in the Hamiltonian operator that is used to calculate the energy by using the Schrödinger
equation, a wavefunction that has sharper curvatures than another, i.e. larger second derivatives, should correspond to a state
having a higher energy. A wavefunction with more nodes than another over the same region of space must have sharper curvatures
and larger second derivatives, and therefore should correspond to a higher energy state.

Identify a relationship between the number of nodes in a wavefunction and its energy by examining the graphs you made
above. A node is the point where the amplitude passes through zero. What does the presence of many nodes mean about the
shape of the wavefunction?

n

⟨V ⟩ = sin(kx)0 sin(kx)dx = 0∫

−∞

∞

3.7.7

⟨H⟩ =
π2ℏ2

2mL2

E1

 Exercise 3.7.2 : Progressing to the Classical Limit

mL2 h2

h

mL2 h2

 Exercise 3.7.3 : Nodes and Energies
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Average Position of a Particle in a Box 

We can calculate the most probable position of the particle from knowledge of probability distribution, . For the ground-state
particle in a box wavefunction with  (Figure )

This state has the following probability distribution (Figure ):

Figure 3.7.1 : (left) The ground-state ( ) wavefunction for a particle in a box. (right) The ground-state ( ) probability for
a particle in a box.

The expectation value for position with the  operation for any wavefunction (Equation ) is

which for the ground-state wavefunction (Equation ) shown in Figure 3.7.1 is

Without even having to evaluate Equation , we can get the expectation value from simply inspecting  in
(Figure ). This is a symmetric distribution around the center of the box ( ) so it is just as likely to be found in
the left half than the right half. Moreover, specifically at any point a fixed distance away from the mean, i.e.

Therefore, the particle is most likely to be found at the center of the box. So

Use the general form of the particle-in-a-box wavefunction for any  to find the mathematical expression for the position
expectation value  for a box of length L. How does  depend on ?

Average Momentum of a Particle in a Box 
What is the average momentum of a particle in the box? We start with Equation  and use the momentum operator

ψψ∗

n = 1 3.7.1a

= sin( )ψn=1
2

L

−−
√

πx

L
(3.7.9)

3.7.1b

= ( )ψ∗
n=1ψn=1

2

L
sin2 πx

L

n = 1 n = 1

= xx̂ 3.7.3

⟨x⟩ = xψ dx∫
+∞

−∞

ψ∗

3.7.9

⟨x⟩ = sin( )x sin( ) dx∫
+∞

−∞

2

L

−−
√

πx

L

2

L

−−
√

πx

L

= x ( )
2

L
∫

+∞

−∞

sin2 πx

L

(3.7.10)

(3.7.11)

 Solution by Inspection

3.7.11 ψ∗
n=1ψn=1

3.7.1; right L/2

(L/2 +Δx) = (L/2 −Δx)ψ∗
n=1ψn=1 ψ∗

n=1ψn=1

⟨x⟩ =
L

2

 Exercise 3.7.4

n

⟨x⟩ ⟨x⟩ n
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We note that the particle-in-a-box wavefunctions are not eigenfunctions of the momentum operator (Exercise 3.7.4 ). However, this
does not mean that Equation  is inapplicable as Example 3.7.2 demonstrates.

Even though the wavefunctions are not momentum eigenfunctions, we can calculate the expectation value for the momentum.
Show that the expectation or average value for the momentum of an electron in the box is zero in every state (i.e., arbitrary
values of ).

Strategy
First write the expectation value integral (Equation ) with the momentum operator. Then insert the expression for the
wavefunction and evaluate the integral as shown here.

Solution

Note that this makes sense since the particles spends an equal amount of time traveling in the  and  direction.

Interpretation
It may seem that this means the particle in a box does not have any momentum, which is incorrect because we know the energy
is never zero. In fact, the energy that we obtained for the particle-in-a-box is entirely kinetic energy because we set the
potential energy at 0. Since the kinetic energy is the momentum squared divided by twice the mass, it is easy to understand
how the average momentum can be zero and the kinetic energy finite

Show that the particle-in-a-box wavefunctions are not eigenfunctions of the momentum operator (Equation ).

Answer

The easiest way to address this question is asking if the PIB wavefunction also satisfies the eigenvalue equation using the
momentum operation instead of the Hamiltonian operator (3rd postulate of QM). That is

with the following PIB wavefunctions

and

= −iℏp̂x
∂

∂x
(3.7.12)

3.7.3

 Example 3.7.3 : The Average Momentum of a Particle in a Box is Zero

n

3.7.3

⟨p⟩ = (x)(−iℏ ) (x)dx∫

0
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dx
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L
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2

L
∫
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L

= −iℏ( )( ) sin( ) cos( )dx
2

L
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L
∫
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L
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L

= 0

+x – x

 Exercise 3.7.5

3.7.12

ψ(n) = pψ(n)p̂x

= sin( )ψn

2

L

−−
√

nπx

L
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and  is a real scalar (since it is a measurable).

Hence, the PIB wavefunctions are NOT eigenfunctions of the momentum operator.

Alternative Solution

An alternative, albeit more complicated, approach is to recognize that the uncertainty of  must be zero if the wavefunction
is an eigenstate of the momentum operator. Hence

This requires calculating the  and  expectation values:

This integral is zero via orthonormality of the sine and cosine functions (although you can expand the integrand and
confirm this).

Now the integral above is 1 using orthonormality (although you can expand the integrand and confirm this). Now we
calculate the uncertainty in momentum in the PIB wavefunctions:

Since the uncertainty is not 0, different measurements (experiments) will results in different values of momentum being
quantified. Hence, the PIB wavefunctions are not eigenfunctions of the momentum operator.

= −iℏp̂
d

dx

p

p̂xψn = −iℏ [ sin( )]
d

dx
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It must be equally likely for the particle-in-a-box to have a momentum  as . The average of  and  is zero, yet 
 and the average of  are not zero. The information that the particle is equally likely to have a momentum of  or 

is contained in the wavefunction. In fact, the sine function is a representation of the two momentum eigenfunctions 
and  (Figure 3.7.2 ).

Write the particle-in-a-box wavefunction as a normalized linear combination of the momentum eigenfunctions  and 
by using Euler’s formula. Show that the momentum eigenvalues for these two functions are  and .

The interpretation of the results of Exercise 3.7.6 is physically interesting. The exponential wavefunctions in the linear combination
for the sine function represent the two opposite directions in which the electron can move. One exponential term represents
movement to the left and the other term represents movement to the right (Figure 3.7.2 ).

Figure 3.7.2 : Two waves traveling in opposite directions across the same medium combine linearly. In this animation, both waves
have the same wavelength and the sum of amplitudes results in a standing wave. (Public Domain; LucasVB).

The electrons are moving, they have kinetic energy and momentum, yet the average
momentum is zero.

Does the fact that the average momentum of an electron is zero and the average position is  violate the Heisenberg
Uncertainty Principle? No, because the Heisenberg Uncertainty Principle pertains to the uncertainty in the momentum and in
the position, not to the average values. Quantitative values for these uncertainties can be obtained to compare with the limit set
by the Heisenberg Uncertainty Principle for the product of the uncertainties in the momentum and position. However, to do this
we need a quantitative definition of uncertainty, which is discussed in the following Section.

Orthogonality 
In vector calculus, orthogonality is the relation of two lines at right angles to one another (i.e., perpendicularity), but is generalized
into  dimensions via zero amplitude "dot products" or "inner products." Hence, orthogonality is thought of as describing non-
overlapping, uncorrelated, or independent objects of some kind. The concept of orthogonality extends to functions
(wavefunctions or otherwise) too. Two functions  and  are said to be orthogonal if

In general, eigenfunctions of a quantum mechanical operator with different eigenvalues are orthogonal. Are the eigenfunctions of
the particle-in-a-box Hamiltonian orthogonal?

Evaluate the integral  for all possible pairs of particle-in-a-box eigenfunctions from  to  (use symmetry
arguments whenever possible) and explain what the results say about orthogonality of the functions.

−p +p +p – p

p2 p2 +p – p

e+ikx

e−ikx

 Exercise 3.7.6

eikx e−ikx

p = +ħk −ħk

 Did we just Violate the Uncertainty Principle?

L/2

n

ψA ψB

dτ = 0∫

allspace

ψ∗
A
ψB (3.7.13)

 Exercise 3.7.7

∫ dxψ∗
1ψ3 n = 1 n = 3
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