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5.2: The Equation for a Harmonic-Oscillator Model of a Diatomic Molecule Contains
the Reduced Mass of the Molecule
For studying the energetics of molecular vibration we take the simplest example, a diatomic heteronuclear molecule . Let the
respective masses of atoms  and  be  and . For diatomic molecules, we define the reduced mass  by:

Reduced mass is the representation of a two-body system as a single-body one. When the motion (displacement, vibrational,
rotational) of two bodies are only under mutual interactions, the inertial mass of the moving body with respect to the body at rest
can be simplified to a reduced mass.

Reduced Mass 
Viewing the multi-body system as a single particle allows the separation of the motion: vibration and rotation, of the particle from
the displacement of the center of mass. This approach greatly simplifies many calculations and problems.
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Figure 5.2.1 : a) the individual vectors to the particles  and  in the coordinate space and the resultant vector. b) center of
mass. c) reduced mass. (CC BY-NC; Ümit Kaya via LibreTexts)

This concept is readily used in the general motion of diatomics, i.e. simple harmonic oscillator (vibrational displacement between
two bodies, following Hooke's Law), the rigid rotor approximation (the moment of inertia about the center of mass of a two-body
system), spectroscopy, and many other applications.

Determine the reduced mass of the two body system of a proton and electron with  and 
).
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 Example 5.2.1 : Reduced Mass

= 1.6727 × kgmproton 10−27

= 9.110 × kgmelectron 10−31
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The Quantum Harmonic Oscillator 
The classical Harmonic Oscillator approximation is a simple yet powerful representation of the energetics of an oscillating spring
system. Central to this model is the formulation of the quadratic potential energy

One problem with this classical formulation is that it is not general. We cannot use it, for example, to describe vibrations of
diatomic molecules, where quantum effects are important. This require the formulation for Schrödinger Equation using Equation 

.

Solving this quantum harmonic oscillator is appreciably harder than solving the Schrödinger Equation for the simpler particle-in-
the-box model and is outside the scope of this text. However, as with most quantum modules (and in contrast to the classical
harmonic oscillator), the energies are quantized in terms of a quantum number (  in this case):

with the natural vibrational frequency of the system given as

and the mass, , is the reduced mass of the system (Equation ).

Be careful to distinguish , the symbol for the natural frequency (as a Greek nu) from  the quantum harmonic oscillator
quantum number (Latin ).

The vibrational frequencies given by Equation  depend on the force constants ( ) and the atomic masses of the vibrating
nuclei via the reduced mass ( ). It should be clear that the substitution of one isotope of an atom in a molecule for another
isotope will affect the atomic masses and therefore the reduced mass (via Equation ) and therefore the vibrational
frequencies (via Equation ).

It is important to remember that the Periodic Table gives only atomic weights of elements, which are scaled averages of atoms
normally encountered in the laboratory (Table 5.2.1). To properly discuss vibrational frequencies of molecules, we need to
know (or denote) the specific isotopes in the molecule. Check Table A4 for that information.

Table 5.2.1: Atomic Mass and Isotope Composition. Consult Table A4 for more extensive table.

isotope atomic mass (in amu) isotopic abundance (%)

H 1.007825 99.985

H 2.0140 0.015

μpe =
(1.6727 × )(9.110 × )10−27 10−31

1.6727 × +9.110 ×10−27 10−31

= 9.105 × kg10−31
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isotope atomic mass (in amu) isotopic abundance (%)

Cl 35.968852 75.77

Cl 36.965903 24.23

Br 78.918336 50.69

Br 80.916289 49.31

What are the reduced mass for  and ? If the spring constants for vibrations of both molecules are equal and
estimated at , what are the natural vibrational frequencies of these two molecules?

Solution
The periodic table gives an atomic weight of 35.45 amu for chlorine, but remember this is the the average of the natural
abundances of different chlorine isotopes which is dictated primary by two isotopes:  and . For this problem, we need
the exact mass of the , , and  isotopes. Check Table A4 for that information.

For :

or when converted into kg is .

For :

or when converted into kg is . This is only 0.29% bigger.

Equation  is used to predict the respective vibrational frequencies of these two molecules.
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 Example 5.2.1 : Isotope Effect

ClH351 ClH371

478 N/m

Cl35 Cl37

H1 Cl35 Cl37

ClH351

Reduced mass =
m1m2

+m1 m2

=
mHm Cl35

+mH m Cl35

= amu
(1.0078)(34.9688)

1.0078 +34.9688)

= 0.9796 amu

1.629 × kg10−27

ClH371

Reduced mass =
m1m2

+m1 m2

=
mHm Cl37

+mH m Cl37

= amu
(1.0078)(36.965)

1.0078 +36.965)

= 0.9810 amu

1.6291 × kg10−27

5.2.5
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= 8.6394 ×1013s−1
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As with the differences in the reduced masses, the differences in the vibrational frequencies of these two molecules is quite
small. However, high resolution IR spectroscopy can easily distinguish the vibrations between these two molecules. Exercise
5.2.1 will demonstrate that this "isotope effect" is not always a small effect.

The force constant is weakly sensitive to the specific isotopes in a molecule (and we typically assume it is isotope
independent). If the  for both  and . What are the vibration frequencies in these two diatomic
molecules.

Answer

: 2886 cm

: 2081 cm

5.2: The Equation for a Harmonic-Oscillator Model of a Diatomic Molecule Contains the Reduced Mass of the Molecule is shared under a CC
BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Eugene Lee.
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478 N/m

1.629 × kg10−27

− −−−−−−−−−−−−−

√

= 8.621 ×1013s−1

 Exercise 5.2.1 : Hydrogen Chloride

k = 478 N/m ClH35 ClH37

ClH35 -1

ClD35 -1
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