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3.1: The Schrödinger Equation

To be introduced to the general properties of the Schrödinger equation and its solutions.

De Broglie’s doctoral thesis, defended at the end of 1924, created a lot of excitement in European physics circles. Shortly after it
was published in the fall of 1925 Pieter Debye, Professor of Theoretical Physics at Zurich and Einstein's successor, suggested to
Erwin Schrödinger that he give a seminar on de Broglie’s work. Schrödinger gave a polished presentation, but at the end Debye
remarked that he considered the whole theory rather childish: why should a wave confine itself to a circle in space? It wasn’t as if
the circle was a waving circular string, real waves in space diffracted and diffused, in fact they obeyed three-dimensional wave
equations, and that was what was needed. This was a direct challenge to Schrödinger, who spent some weeks in the Swiss
mountains working on the problem and constructing his equation. There is no rigorous derivation of Schrödinger’s equation from
previously established theory, but it can be made very plausible by thinking about the connection between light waves and photons,
and construction an analogous structure for de Broglie’s waves and electrons (and, later, other particles).

The Schrödinger Equation: A Better Approach 

While the Bohr model is able to predict the allowed energies of any single-electron atom or cation, it by no means, a general
approach. Moreover, it relies heavily on classical ideas, clumsily grafting quantization onto an essentially classical picture, and
therefore, provides no real insights into the true quantum nature of the atom. Any rule that might be capable of predicting the
allowed energies of a quantum system must also account for the wave-particle duality and implicitly include a wave-like
description for particles. Nonetheless, we will attempt a heuristic argument to make the result at least plausible. In classical
electromagnetic theory, it follows from Maxwell's equations that each component of the electric and magnetic fields in vacuum is a
solution of the 3-D wave equation for electronmagnetic waves:

The wave equation in Equation  is the three-dimensional analog to the wave equation presented earlier (Equation 2.1.1) with

the velocity fixed to the known speed of light: . Instead of a partial derivative  in one dimension, the Laplacian (or "del-

squared") operator is introduced:

Corresponding, the solution to this 3D equation wave equation is a function of four independent variables: , , , and  and is
generally called the wavefunction .

We will attempt now to create an analogous equation for de Broglie's matter waves. Accordingly, let us consider a only 1-
dimensional wave motion propagating in the x-direction. At a given instant of time, the form of a wave might be represented by a
function such as

where  represents a sinusoidal function such as , , ,  or some linear combination of these. The most suggestive
form will turn out to be the complex exponential, which is related to the sine and cosine by Euler's formula

Each of the above is a periodic function, its value repeating every time its argument increases by . This happens whenever 
increases by one wavelength . At a fixed point in space, the time-dependence of the wave has an analogous structure:

where  gives the number of cycles of the wave per unit time. Taking into account both  and  dependence, we consider a
wavefunction of the form
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representing waves traveling from left to right. Now we make use of the Planck formula ( ) and de Broglie formulas (
) to replace  and  by their particle analogs. This gives

where

Since Planck's constant occurs in most formulas with the denominator , the  symbol was introduced by Paul Dirac. Equation 
 represents in some way the wavelike nature of a particle with energy  and momentum . The time derivative of Equation 
 gives

Thus from a simple comparison of Equations  and 

or analogously differentiation of Equation  with respect to 

and then the second derivative

The energy and momentum for a nonrelativistic free particle (i.e., all energy is kinetic with no potential energy involved) are
related by

Substituting Equations  and  into Equation  shows that  satisfies the following partial differential
equation

Equation  is the applicable differential equation describing the wavefunction of a free particle that is not bound by any
external forces or equivalently not in a region where its potential energy  varies.

For a particle with a non-zero potential energy , the total energy  is then a sum of kinetics and potential energies

we postulate that Equation  for matter waves can be generalized to

For matter waves in three dimensions, Equation  is then expanded
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Here the potential energy and the wavefunctions  depend on the three space coordinates , , , which we write for brevity as .
Notice that the potential energy is assumed to depend on position only and not time (i.e., particle motion). This is applicable for
conservative forces that a potential energy function  can be formulated.

The three second derivatives in parentheses together are called the Laplacian operator, or del-squared,

with the del operator,

Remember from basic calculus that when the del operator is direclty operates on a field (e.g, , it denotes the
gradient (i.e, the locally steepest slope) of the field. The symbols with arrows in Equation  are unit vectors.

Equation  is the time-dependent Schrödinger equation describing the wavefunction amplitude  of matter waves
associated with the particle within a specified potential . Its formulation in 1926 represents the start of modern quantum
mechanics (Heisenberg in 1925 proposed another version known as matrix mechanics).

For conservative systems, the energy is a constant, and the time-dependent factor from Equation  can be separated from the
space-only factor (via the Separation of Variables technique discussed in Section 2.2)

where  is a wavefunction dependent (or time-independent) wavefuction that only depends on space coordinates. Putting
Equation  into Equation  and cancelling the exponential factors, we obtain the time-independent Schrödinger equation:

The overall form of the Equation  is not unusual or unexpected as it uses the principle of the conservation of energy. Most
of our applications of quantum mechanics to chemistry will be based on this equation (with the exception of spectroscopy). The
terms of the time-independent Schrödinger equation can then be interpreted as total energy of the system, equal to the system
kinetic energy plus the system potential energy. In this respect, it is just the same as in classical physics.

Notice that the wavefunctions used with the time-independent Schrödinger equation (i.e., ) do not have explicit 
dependences like the wavefunctions of time-dependent analog in Equation  (i.e., ). That does not imply that there
is no time dependence to the wavefunction. Equation  argues that the time-dependent (i.e., full spatial and temporal)
wavefunction ( ) differs from from the time-independent (i.e., spatial only) wavefunction  by a "phase factor" of
constant magnitude. Using the Euler relationship in Equation , the total wavefunction above can be expanded

This means the total wavefunction has a complex behavior with a real part and an imaginary part. Moreover, using the
trigonometry identity  Equation  can further simplified to

iℏ Ψ( , t) = [− +V ( )]Ψ( , t)
∂

∂t
r ⃗ 

ℏ2

2m
∇2 r ⃗  r ⃗ 

  

time-dependent Schrödinger equation in 3D

(3.1.17)

Ψ x y z r ⃗ 

V ( )r ⃗ 

 The Laplacian Operator

∇2 = ∇ ⋅ ∇

=( + + )
∂2

∂x2

∂2

∂y2

∂2

∂z2
(3.1.18)

∇ =( + + )x⃗ 
∂

∂x
y ⃗ 

∂

∂y
z ⃗ 

∂

∂z
(3.1.19)

∇f(x, y, x)

3.1.19

3.1.17 Ψ( , t)r ⃗ 

V ( )r ⃗ 

3.1.7

Ψ( , t) = ψ( )r ⃗  r ⃗ e−iEt/ℏ (3.1.20)

ψ( )r ⃗ 

3.1.20 3.1.17

[− +V ( )]ψ( ) = Eψ( )
ℏ2

2m
∇2 r ⃗  r ⃗  r ⃗ 

  

time-independent Schrödinger equation

(3.1.21)

3.1.21

 Time Dependence to the Wavefunctions

ψ( )r ⃗  t

3.1.17 Ψ( , t)r ⃗ 

3.1.20

Ψ( , t)r ⃗  ψ( )r ⃗ 

3.1.4

Ψ( , t) = ψ( )(cos − i sin )r ⃗  r ⃗ 
Et

ℏ

Et

ℏ
(3.1.22)

sin(θ) = cos(θ −π/2) 3.1.22

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13391?pdf
https://phys.libretexts.org/TextMaps/General_Physics_TextMaps/Map%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_I_(OpenStax)/8%3A_Potential_Energy_and_Conservation_of_Energy/8.2%3A_Conservative_and_Non-Conservative_Forces
https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Vector_Calculus/1%3A_Vector_Basics/2%3A_The_Gradient


3.1.4 https://chem.libretexts.org/@go/page/13391

This shows that both the real and the imaginary components of the total wavefunction oscillate, the imaginary part of the total
wavefunction oscillates out of phase by  with respect to the real part.

Note that while all wavefunctions have a time-dependence, that dependence may not impact in simple quantum problems as
the next sections discuss and can often be ignored.

Before we embark on this, however, let us pause to comment on the validity of quantum mechanics. Despite its weirdness, its
abstractness, and its strange view of the universe as a place of randomness and unpredictability, quantum theory has been subject to
intense experimental scrutiny. It has been found to agree with experiments to better than  for all cases studied so far. When
the Schrödinger Equation is combined with a quantum description of the electromagnetic field, a theory known as quantum
electrodynamics, the result is one of the most accurate theories of matter that has ever been put forth. Keeping this in mind, let us
forge ahead in our discussion of the quantum universe and how to apply quantum theory to both model and real situations.

This page titled 3.1: The Schrödinger Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Michael Fowler.
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