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32.6: Matrices

Learn the nomenclature used in linear algebra to describe matrices (rows, columns, triangular matrices, diagonal matrices,
trace, transpose, singularity, etc).
Learn how to add, subtract and multiply matrices.
Learn the concept of inverse.
Understand the use of matrices as symmetry operators.
Understand the concept of orthogonality.
Understand how to calculate the eigenvalues and normalized eigenvectors of a 2 × 2 matrix.
Understand the concept of Hermitian matrix

Definitions
An  matrix is a two dimensional array of numbers with  rows and  columns. The integers  and  are called the
dimensions of the matrix. If  then the matrix is square. The numbers in the matrix are known as matrix elements (or just
elements) and are usually given subscripts to signify their position in the matrix e.g. an element  would occupy the row and 

column of the matrix. For example:

is a  matrix with , , ,  etc

In a square matrix, diagonal elements are those for which =  (the numbers , , and  in the above example). Off-diagonal
elements are those for which  ( , , , , , and  in the above example). If all the off-diagonal elements are equal to zero
then we have a diagonal matrix. We will see later that diagonal matrices are of considerable importance in group theory.

A unit matrix or identity matrix (usually given the symbol ) is a diagonal matrix in which all the diagonal elements are equal to .
A unit matrix acting on another matrix has no effect – it is the same as the identity operation in group theory and is analogous to
multiplying a number by  in everyday arithmetic.

The transpose of a matrix  is the matrix that results from interchanging all the rows and columns. A symmetric matrix is the
same as its transpose (  i.e.  for all values of  and ). The transpose of matrix  above (which is not symmetric)
is

The sum of the diagonal elements in a square matrix is called the trace (or character) of the matrix (for the above matrix, the trace
is ). The traces of matrices representing symmetry operations will turn out to be of great importance in group
theory.

A vector is just a special case of a matrix in which one of the dimensions is equal to . An  matrix is a column vector; a 
 matrix is a row vector. The components of a vector are usually only labeled with one index. A unit vector has one element

equal to  and the others equal to zero (it is the same as one row or column of an identity matrix). We can extend the idea further to
say that a single number is a matrix (or vector) of dimension .

Matrix Algebra
i. Two matrices with the same dimensions may be added or subtracted by adding or subtracting the elements occupying the same

position in each matrix. e.g.
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ii. A matrix may be multiplied by a constant by multiplying each element by the constant.

iii. Two matrices may be multiplied together provided that the number of columns of the first matrix is the same as the number of
rows of the second matrix i.e. an  matrix may be multiplied by an  matrix. The resulting matrix will have
dimensions . To find the element  in the product matrix, we take the dot product of row  of the first matrix and column 
 of the second matrix (i.e. we multiply consecutive elements together from row  of the first matrix and column  of the second

matrix and add them together i.e.  =   e.g. in the  matrices  and  used in the above examples, the first
element in the product matrix  is  =  +  + 

An example of a matrix multiplying a vector is

Matrix multiplication is not generally commutative, a property that mirrors the behavior
found earlier for symmetry operations within a point group.

Direct Products
The direct product of two matrices (given the symbol ) is a special type of matrix product that generates a matrix of higher
dimensionality if both matrices have dimension greater than one. The easiest way to demonstrate how to construct a direct product
of two matrices  and  is by an example:
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Though this may seem like a somewhat strange operation to carry out, direct products crop up a great deal in group theory.

Inverse Matrices and Determinants

If two square matrices  and  multiply together to give the identity matrix I (i.e. ) then  is said to be the inverse of 
(written ). If  is the inverse of  then  is also the inverse of . Recall that one of the conditions imposed upon the
symmetry operations in a group is that each operation must have an inverse. It follows by analogy that any matrices we use to
represent symmetry elements must also have inverses. It turns out that a square matrix only has an inverse if its determinant is non-
zero. For this reason (and others which will become apparent later on when we need to solve equations involving matrices) we need
to learn a little about matrix determinants and their properties.

For every square matrix, there is a unique function of all the elements that yields a single number called the determinant. Initially it
probably won’t be particularly obvious why this number should be useful, but matrix determinants are of great importance both in
pure mathematics and in a number of areas of science. Historically, determinants were actually around before matrices. They arose
originally as a property of a system of linear equations that ‘determined’ whether the system had a unique solution. As we shall see
later, when such a system of equations is recast as a matrix equation this property carries over into the matrix determinant.

There are two different definitions of a determinant, one geometric and one algebraic. In the geometric interpretation, we consider
the numbers across each row of an  matrix as coordinates in -dimensional space. In a one-dimensional matrix (i.e. a
number), there is only one coordinate, and the determinant can be interpreted as the (signed) length of a vector from the origin to
this point. For a  matrix we have two coordinates in a plane, and the determinant is the (signed) area of the parallelogram that
includes these two points and the origin. For a  matrix the determinant is the (signed) volume of the parallelepiped that
includes the three points (in three-dimensional space) defined by the matrix and the origin. This is illustrated below. The idea
extends up to higher dimensions in a similar way. In some sense then, the determinant is therefore related to the size of a matrix.

The algebraic definition of the determinant of an  matrix is a sum over all the possible products (permutations) of n elements
taken from different rows and columns. The number of terms in the sum is , the number of possible permutations of  values (i.e.

 for a  matrix,  for a  matrix etc). Each term in the sum is given a positive or a negative sign depending on whether
the number of permutation inversions in the product is even or odd. A permutation inversion is just a pair of elements that are out
of order when described by their indices. For example, for a set of four elements , the permutation  has
all the elements in their correct order (i.e. in order of increasing index). However, the permutation  contains the
permutation inversions , , .

For example, for a two-dimensional matrix

where the subscripts label the row and column positions of the elements, there are  possible products/permutations involving
elements from different rows and column,  and . In the second term, there is a permutation inversion involving the

A⊗B =( )⊗( )
a11

a21

a12

a22

b11

b21

b12

b22

=( )
Ba11

Ba21

Ba12

Ba22

=

⎛

⎝

⎜⎜⎜

a11b11

a11b21

a21b11

a21b21

a11b12

a11b22

a21b12

a21b22

a12b11

a12b21

a22b11

a22b21

a12b12

a12b22

a22b21

a22b22

⎞

⎠

⎟⎟⎟

(32.6.11)

(32.6.12)

(32.6.13)

A B AB = I B A

A−1 B A A B

n×n n

2 ×2

3 ×3

nxn

n! n

2 2 ×2 6 3 ×3

( ), , ,a1 a2 a3 a4 a1a2a3a4

a2a4a1a3

a2a1 a4a1 a4a3

( )
a11

a21

a12

a22

(32.6.14)

2

a11a22 a12a21

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/38829?pdf


32.6.4 https://chem.libretexts.org/@go/page/38829

column indices  and  (permutation inversions involving the row and column indices should be looked for separately) so this
term takes a negative sign, and the determinant is  - .

For a  matrix

the possible combinations of elements from different rows and columns, together with the sign from the number of permutations
required to put their indices in numerical order are:

and the determinant is simply the sum of these terms.

This may all seem a little complicated, but in practice there is a fairly systematic procedure for calculating determinants. The
determinant of a matrix  is usually written det( ) or | |.

For a  matrix

For a  matrix

For a  matrix

and so on in higher dimensions. Note that the submatrices in the  example above are just the matrices formed from the
original matrix  that don’t include any elements from the same row or column as the premultiplying factors from the first row.

Matrix determinants have a number of important properties:

i. The determinant of the identity matrix is .

ii. The determinant of a matrix is the same as the determinant of its transpose i.e. det( ) = det( )

iii. The determinant changes sign when any two rows or any two columns are interchanged
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B = ; det(B) = a −b +c
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4x4

C = ; det(C) = a −b +c −d
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iv. The determinant is zero if any row or column is entirely zero, or if any two rows or columns are equal or a multiple of one
another.

v. The determinant is unchanged by adding any linear combination of rows (or columns) to another row (or column).
vi. The determinant of the product of two matrices is the same as the product of the determinants of the two matrices i.e. det( )

= det( )det( ).

The requirement that in order for a matrix to have an inverse it must have a non-zero determinant follows from property vi). As
mentioned previously, the product of a matrix and its inverse yields the identity matrix I. We therefore have:

It follows that a matrix  can only have an inverse if its determinant is non-zero, otherwise the determinant of its inverse would be
undefined.
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