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5.6: The Harmonic Oscillator Wavefunctions involve Hermite Polynomials

The Equation for a Harmonic-Oscillator Model of a Diatomic Molecule Contains the Reduced Mass of the Molecule

For a diatomic molecule, there is only one vibrational mode, so there will be only a single set of vibrational wavefunctions with
associated energies for this system. For polytatomic molecules, there will be a set of wavefunctions with associated energy
associated with each vibrational mode.

The Hamiltonian operator, the general quantum mechanical operator for energy, includes both a kinetic energy term, , and a
potential energy term, .

For the free particle and the particle in a box, the potential energy term used in the Hamiltonian was zero. As shown in Equation 
, the classical expression for the energy of a harmonic oscillator includes both a kinetic energy term and the harmonic

potential energy term. Transforming this equation into the corresponding Hamiltonian operator gives,

where  is the operator for the length of the normal coordinate, and  is the momentum operator associated with the normal
coordinate.  is an effective (reduced) mass, and  is an effective force constant, and these quantities will be different for each of
the normal modes (vibrations).

Substituting the definitions for the operators yields

since the operator for position or displacement is just the position or displacement. The time-independent Schrödinger Equation
then becomes

or upon rearranging

This differential equation is not straightforward to solve. Rather than fully develop the details of the solution, we will outline the
method used because it represents a common strategy for solving differential equations. The steps taken to solve Equation  are
to simplify the equation by collecting constants in the parameter 

and then changing the variable from  to  where

so that

After substituting Equations  and  into Equation , the differential equation for the harmonic oscillator becomes
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Make the substitutions given in Equations  and  into Equation  to get Equation .

Solving for the Quantum Wavefunctions 

A common strategy for solving differential equations, which is employed here, is to find a solution that is valid for large values of
the variable and then develop the complete solution as a product of this asymptotic solution and a power series. Since the potential
energy approaches infinity as  and the coordinate  approach infinity, the wavefunctions must approach zero (this is, the
wavefunctions must converge to zero):

The function that has this property and satisfies the differential equation for large values of  is the exponential function, i.e.,

where the wavefunctions are

The general expression for a power series of  is

which can be truncated after the first term, after the second term, after the third term, etc. to produce a set of polynomials. There is
one polynomial for each value of  where  can be equal to any integer value including zero.

Each of the truncations of the power series in Equation  can be multiplied by the exponential function in Equation  to
create a family of valid solutions to the differential equation in Equation .

Write the first four polynomials,  to , , ,  for Equation  and use suitable software to
prepare plots of these polynomials. Identify the curves in the plots.

Confirm that the wavefunction given by Equation  is a solution to the harmonic oscillator Schrödinger Equation in
Equation  for  and .

Hermite Polynomials 

While polynomials in general approach  (or ) as  approaches , the decreasing exponential term overpowers the
polynomial term so that the overall wavefunction exhibits the desired approach to zero at large values of  or . The exact forms
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of polynomials that solve Equation  are the Hermite polynomials, which are standard mathematical functions known from
the work of Charles Hermite. The first eight Hermite polynomials, , are given below.

The first six Hermite polynomials are plotted in Figure 5.6.1 . Hermite polynomials will be discussed in more detail in the
following Section.
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Figure 5.6.1 : The first six Hermite polynomials . (CC BY-SA 3.0 Unported; Alessio Damato, Vulpecula and others via
Wikipedia)

Determine the units of  and the units of  in the Hermite polynomials.

Because of the association of the wavefunction with a probability density, it is necessary for the wavefunction to include a
normalization constant, .

The final form of the harmonic oscillator wavefunctions is thus

The harmonic oscillator wavefunctions are often written in terms of , the unscaled displacement coordinate (Equation )
and a different constant :

so Equation  becomes
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with a slightly different normalization constant

Compute the normalization factor for  where  and . What is the purpose of ?

The energy eigenvalues for a quantum mechanical oscillator also are obtained by solving the Schrödinger equation. The energies
are restricted to discrete values

with .

The energies depend both on the quantum number, , and the oscillator frequency

which in turn depends on the spring constant  and the reduced mass of the vibration .

Determine the energy for the first ten harmonic oscillator energy levels in terms of . Sketch an energy level diagram of these
energies.

1. What insights do you gain from Equation , your calculations, and your diagram?
2. Is it possible to have a molecule that is not vibrating?
3. In terms of , what is the energy of the photon required to cause a transition from one vibrational state to the next higher

one?
4. If a transition from energy level  to  were observed in a spectrum, where would that spectral line appear

relative to the one for the transition from level  to ?
5. If a vibrational transition is observed at 3000 cm-1 in an infrared spectrum, what is the value of  for the normal mode?
6. Identify all the possible meanings of  and the definition of the frequency, , in each case.

The normalized wavefunctions for the first four states of the harmonic oscillator are shown in Figure 5.6.2 , and the corresponding
probability densities are shown in Figure 5.6.3 . You should remember the mathematical and graphical forms of the first few
harmonic oscillator wavefunctions, and the correlation of  with . The number of nodes in the wavefunction will help you to
remember these characteristics. Also note that the functions fall off exponentially and that the symmetry alternates. For  equal to
an even number,  is gerade; for  equal to an odd number,  is ungerade.
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Figure 5.6.2 : The harmonic oscillator wavefunctions describing the four lowest energy states.
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Write a few sentences describing and comparing the plots in Figure 5.6.2 . How many nodes are there as a function of ? Do
the wavefunctions converge at extreme displacement? Where is the most likely displacements for the oscillator to be found?
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Figure 5.6.3 : The probability densities for the four lowest energy states of the harmonic oscillator.

Explain how Figure 5.6.3 is related to Figure 5.6.2 . Explain the physical significance of the plots in Figure 5.6.3 in terms of
the magnitude of the normal coordinate . Couch your discussion in terms of the  molecule. How would you describe the
location of the atoms in each of the states? How does the oscillator position correspond to the energy of a particular level?

Answer

Figure 5.6.2 is simply the wavefunction in Figure 5.6.1 squared. The normal coordinate is the linear combination of the
atomic cartesian coordinates. As Q is often in relation to the energy (kinetic and potential), they would be displaced by a
certain amount dependent on Q (energy) along with an increase in nodes. This displacement is apparent when comparing
the ascending energy levels of each of the wavefunctions. In the n=0 (first) energy state, it is most probable to be found
between -2, 2. (in a range of -4, 4) In the second energy state, it is likely to be between -2.5, 2.5 (range -5, 5), third level:
(-3,3) (range -6,6), fourth level (-4,4) (range -6,6).

Plot the probability density for energy level 10 of the harmonic oscillator. How many nodes are present? Plot the probability
density for energy level 20. Compare the plot for level 20 with that of level 10 and level 1. Compare these quantum mechanical
probability distributions to those expected for a classical oscillator. What conclusion can you draw about the probability of the
location of the oscillator and the length of a chemical bond in a vibrating molecule? Extend your analysis to include a very
high level, like level 50.

In completing Exercise 5.6.9 , you should have noticed that as the quantum number increases and becomes very large, the
probability distribution approaches that of a classical oscillator. This observation is very general. It was first noticed by Bohr, and is
called the Bohr Correspondence Principle. This principle states that classical behavior is approached in the limit of large values for
a quantum number. A classical oscillator is most likely to be found in the region of space where its velocity is the smallest. This
situation is similar to walking through one room and running through another. In which room do you spend more time? Where is it
more likely that you will be found?

Examination of the quantum mechanical wavefunction for the lowest-energy state reveals that the wavefunction  extends
beyond the classical limit (i.e., outside of the harmonic oscillator well, albeit slightly). Higher energy states have higher total
energies, so the classical limits to the amplitude of the displacement will be larger for these states.

Tunneling in the Quantum Harmonic Oscillator 
The observation that the wavefunctions are not zero at the classical limit means that the quantum mechanical oscillator has a finite
probability of having a displacement that is larger than what is classically possible. The oscillator can be in a region of space where
the potential energy is greater than the total energy. Classically, when the potential energy equals the total energy, the kinetic energy
and the velocity are zero, and the oscillator cannot pass this point. A quantum mechanical oscillator, however, has a finite
probability of passing this point. For a molecular vibration, this property means that the amplitude of the vibration is larger than

v
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what it would be in a classical picture. In some situations, a larger amplitude vibration could enhance the chemical reactivity of a
molecule.

Plot the probability density for  and  states. Mark the classical limits on each of the plots, since the limits are
different because the total energy is different for  and . Shade in the regions of the probability densities that extend
beyond the classical limit.

We should be able to calculate the probability that the quantum mechanical harmonic oscillator is in the classically forbidden
region for the lowest energy state of the harmonic oscillator, the state with . The classically forbidden region is shown by the
shading of the regions beyond  in the graph you constructed for Exercise 5.6.3 . The area of this shaded region gives the
probability that the bond oscillation will extend into the forbidden region (Figure 5.6.3 ). To calculate this probability, we use

because the integral from 0 to  for the allowed region can be found in integral tables and the integral from  to  cannot. The
form of the integral, , to evaluate is

The factor 2 appears in Equation  from the chancing the limits of integration from  to  into  to ; we can do
this since the integrand is an even function, i. e., . To evaluate the integral in Equation , use the wavefunction
and do the integration in terms of . Recall that for ,  corresponds to . Including the normalization constant,
Equation  produces

The integral in Equation  is called an error function (ERF) and can only be evaluated numerically. Values can be found in
books of mathematical tables. When the limit of integration is 1, ERF(l) = 0.843 and P[forbidden] = 0.157. This result means that
the quantum mechanical oscillator can be found in the forbidden region 16% of the time. This effect is substantial and leads to the
phenomenon called quantum mechanical tunneling.

Numerically verify that  in Equation  equals 0.843. To obtain a value for the integral do not use symbolic
integration or symbolic equals.
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