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32.4: Spherical Coordinates

Understand the concept of area and volume elements in cartesian, polar and spherical coordinates.
Be able to integrate functions expressed in polar or spherical coordinates.
Understand how to normalize orbitals expressed in spherical coordinates, and perform calculations involving triple
integrals.

Coordinate Systems 
The simplest coordinate system consists of coordinate axes oriented perpendicularly to each other. These coordinates are known as
cartesian coordinates or rectangular coordinates, and you are already familiar with their two-dimensional and three-dimensional
representation. In the plane, any point  can be represented by two signed numbers, usually written as , where the coordinate 

 is the distance perpendicular to the  axis, and the coordinate  is the distance perpendicular to the  axis (Figure , left). In
space, a point is represented by three signed numbers, usually written as  (Figure , right).

Often, positions are represented by a vector, , shown in red in Figure . In three dimensions, this vector can be expressed in
terms of the coordinate values as , where ,  and  are the so-called unit
vectors.

Figure : Cartesian coordinates (CC BY-NC-SA; Marcia Levitus)

We already know that often the symmetry of a problem makes it natural (and easier!) to use other coordinate systems. In two
dimensions, the polar coordinate system defines a point in the plane by two numbers: the distance  to the origin, and the angle 
that the position vector forms with the -axis. Notice the difference between , a vector, and , the distance to the origin (and
therefore the modulus of the vector). Vectors are often denoted in bold face (e.g. r) without the arrow on top, so be careful not to
confuse it with , which is a scalar.

Figure : Plane polar coordinates (CC BY-NC-SA; Marcia Levitus)

While in cartesian coordinates ,  (and  in three-dimensions) can take values from  to , in polar coordinates  is a positive
value (consistent with a distance), and  can take values in the range .

The relationship between the cartesian and polar coordinates in two dimensions can be summarized as:
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In three dimensions, the spherical coordinate system defines a point in space by three numbers: the distance  to the origin, a polar
angle  that measures the angle between the positive -axis and the line from the origin to the point  projected onto the -plane,
and the angle  defined as the is the angle between the -axis and the line from the origin to the point :

Figure : Spherical coordinates (CC BY-NC-SA; Marcia Levitus)

Before we move on, it is important to mention that depending on the field, you may see the Greek letter  (instead of ) used for
the angle between the positive -axis and the line from the origin to the point  projected onto the -plane. That is,  and  may
appear interchanged. This can be very confusing, so you will have to be careful. When using spherical coordinates, it is important
that you see how these two angles are defined so you can identify which is which.

Spherical coordinates are useful in analyzing systems that are symmetrical about a point. For example a sphere that has the
cartesian equation  has the very simple equation  in spherical coordinates. Spherical coordinates are the
natural coordinates for physical situations where there is spherical symmetry (e.g. atoms). The relationship between the cartesian
coordinates and the spherical coordinates can be summarized as:

These relationships are not hard to derive if one considers the triangles shown in Figure :

Figure : Spherical coordinates (CC BY-NC-SA; Marcia Levitus)

Area and Volume Elements 

In any coordinate system it is useful to define a differential area and a differential volume element. In cartesian coordinates the
differential area element is simply  (Figure ), and the volume element is simply .
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Figure : Area and volume elements in cartesian coordinates (CC BY-NC-SA; Marcia Levitus)

We already performed double and triple integrals in cartesian coordinates, and used the area and volume elements without paying
any special attention. For example, in example [c2v:c2vex1], we were required to integrate the function  over all
space, and without thinking too much we used the volume element  (see page ). We also knew that “all space” meant 

,  and , and therefore we wrote:

But what if we had to integrate a function that is expressed in spherical coordinates? Would we just replace  by 
? The answer is no, because the volume element in spherical coordinates depends also on the actual position of the point.

This will make more sense in a minute. Coming back to coordinates in two dimensions, it is intuitive to understand why the area
element in cartesian coordinates is  independently of the values of  and . This is shown in the left side of Figure 

. However, in polar coordinates, we see that the areas of the gray sections, which are both constructed by increasing  by ,
and by increasing  by , depend on the actual value of . Notice that the area highlighted in gray increases as we move away
from the origin.

Figure : Differential of area in cartesian and polar coordinates (CC BY-NC-SA; Marcia Levitus)

The area shown in gray can be calculated from geometrical arguments as

Because , we can neglect the term , and  (see Figure ).

Figure : Differential of area in polar coordinates (CC BY-NC-SA; Marcia Levitus)

Let’s see how this affects a double integral with an example from quantum mechanics. The wave function of the ground state of a
two dimensional harmonic oscillator is: . We know that the quantity  represents a probability density,
and as such, needs to be normalized:
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This statement is true regardless of whether the function is expressed in polar or cartesian coordinates. However, the limits of
integration, and the expression used for , will depend on the coordinate system used in the integration.

In cartesian coordinates, “all space” means  and . The differential of area is :

In polar coordinates, “all space” means  and . The differential of area is . The function 
 can be expressed in polar coordinates as: 

Both versions of the double integral are equivalent, and both can be solved to find the value of the normalization constant ( ) that
makes the double integral equal to 1. In polar coordinates:

Therefore , . The same value is of course obtained by integrating in cartesian coordinates.

It is now time to turn our attention to triple integrals in spherical coordinates. In cartesian coordinates, the differential volume
element is simply , regardless of the values of  and . Using the same arguments we used for polar coordinates
in the plane, we will see that the differential of volume in spherical coordinates is not . The geometrical derivation
of the volume is a little bit more complicated, but from Figure  you should be able to see that  depends on  and , but not
on . The volume of the shaded region is

Figure : Differential of volume in spherical coordinates (CC BY-NC-SA; Marcia Levitus)

We will exemplify the use of triple integrals in spherical coordinates with some problems from quantum mechanics. We already
introduced the Schrödinger equation, and even solved it for a simple system in Section 5.4. We also mentioned that spherical
coordinates are the obvious choice when writing this and other equations for systems such as atoms, which are symmetric around a
point.

As we saw in the case of the particle in the box (Section 5.4), the solution of the Schrödinger equation has an arbitrary
multiplicative constant. Because of the probabilistic interpretation of wave functions, we determine this constant by normalization.
The same situation arises in three dimensions when we solve the Schrödinger equation to obtain the expressions that describe the
possible states of the electron in the hydrogen atom (i.e. the orbitals of the atom). The Schrödinger equation is a partial differential
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equation in three dimensions, and the solutions will be wave functions that are functions of  and . The lowest energy state,
which in chemistry we call the 1s orbital, turns out to be:

This particular orbital depends on  only, which should not surprise a chemist given that the electron density in all -orbitals is
spherically symmetric. We will see that  and  orbitals depend on the angles as well. Regardless of the orbital, and the coordinate
system, the normalization condition states that:

For a wave function expressed in cartesian coordinates,

where we used the fact that .

In spherical coordinates, “all space” means ,  and . The differential  is 
, so

Let’s see how we can normalize orbitals using triple integrals in spherical coordinates.

When solving the Schrödinger equation for the hydrogen atom, we obtain , where  is an arbitrary constant
that needs to be determined by normalization. Find .

Solution
In spherical coordinates,

because this orbital is a real function, . In this case, .

Therefore,
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From the formula sheet:

where  and  is a positive integer.

In this case,  and , so:

Putting the three pieces together:

The normalized 1s orbital is, therefore:
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