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11.2: Gaussian Basis Sets
A basis set in theoretical and computational chemistry is a set of functions (called basis functions) which are combined in linear
combinations (generally as part of a quantum chemical calculation) to create molecular orbitals. For convenience these functions
are typically atomic orbitals centered on atoms, but can theoretically be any function; plane waves are frequently used in materials
calculations.

The Variational Method and Basis Sets 
To describe the electronic states of molecules, we construct wavefunctions for the electronic states by using molecular orbitals.
These wavefunctions are approximate solutions to the Schrödinger equation. A mathematical function for a molecular orbital is
constructed, , as a linear combination of other functions, , which are called basis functions because they provide the basis for
representing the molecular orbital.

The linear variational method is used to find values for parameters in the basis functions and for the constant coefficients in the
linear combination that optimize these functions, i.e. make them as good as possible. The criterion for quality in the variational
method is making the ground state energy of the molecule as low as possible. Here and in the rest of this chapter, the following
notation is used:  is a general spin function (can be either  or ),  is the basis function (this usually represents an atomic
orbital),  is a molecular orbital, and  is the electronic state wavefunction (representing a single Slater determinant or linear
combination of Slater determinants).

The ultimate goal is a mathematical description of electrons in molecules that enables chemists and other scientists to develop a
deep understanding of chemical bonding and reactivity, to calculate properties of molecules, and to make predictions based on
these calculations. For example, an active area of research in industry involves calculating changes in chemical properties of
pharmaceutical drugs as a result of changes in chemical structure.

Selecting the ab initio model for a chemical system is almost always involves a trade-off
between accuracy and computational cost. More accurate methods and larger basis sets
make jobs run longer.

In modern computational chemistry, quantum chemical calculations are typically performed using a finite set of basis functions. In
these cases, the wavefunctions of the system in question are represented as vectors, the components of which correspond to
coefficients in a linear combination of the basis functions in the basis set used.

The molecular spin-orbitals that are used in the Slater determinant usually are expressed as a linear combination of some chosen
functions, which are called basis functions. This set of functions is called the basis set. The fact that one function can be
represented by a linear combination of other functions is a general property. All that is necessary is that the basis functions span-
the-space, which means that the functions must form a complete set and must be describing the same thing. For example, spherical
harmonics cannot be used to describe a hydrogen atom radial function because they do not involve the distance r, but they can be
used to describe the angular properties of anything in three-dimensional space.

This span-the-space property of functions is just like the corresponding property of vectors. The unit vectors  describe
points in space and form a complete set since any position in space can be specified by a linear combination of these three unit
vectors. These unit vectors also could be called basis vectors.

Explain why the unit vectors  do not form a complete set to describe your (three-dimensional) classroom.

Just as we discussed for atoms, parameters in the basis functions and the coefficients in the linear combination can be optimized in
accord with the Variational Principle to produce a self-consistent field (SCF) for the electrons. This optimization means that the
ground state energy calculated with the wavefunction is minimized with respect to variation of the parameters and coefficients
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defining the function. As a result, that ground state energy is larger than the exact energy, but is the best value that can be obtained
with that wavefunction.

Slater Type Orbitals (STOs) 

Intuitively one might select hydrogenic atomic orbitals as the basis set for molecular orbitals. After all, molecules are composed of
atoms, and hydrogenic orbitals describe atoms exactly if the electron-electron interactions are neglected. At a better level of
approximation, the nuclear charge that appears in these functions can be used as a variational parameter to account for the shielding
effects due to the electron-electron interactions. Also, the use of atomic orbitals allows us to interpret molecular properties and
charge distributions in terms of atomic properties and charges, which is very appealing since we picture molecules as composed of
atoms. As described in the previous chapter, calculations with hydrogenic functions were not very efficient so other basis functions,
Slater-type atomic orbitals (STOs), were invented.

A minimal basis set of STOs for a molecule includes only those STOs that would be occupied by electrons in the atoms forming the
molecule. As with most variational method calculations, a larger basis set improves the accuracy of the calculations by providing
more variable parameters to produce a better approximate wavefunction. However, this is at the expense of increased
computational time (i.e., calculation "cost" or "expense"). STOs have the following radial part (the spherical harmonic functions
are used to describe the angular part)

where

 is a natural number that plays the role of principal quantum number, 
 is a normalizing constant,

 is the distance of the electron from the atomic nucleus, and  is a constant related to the effective charge of the nucleus, the
nuclear charge being partly shielded by electrons. Historically, the effective nuclear charge was estimated by Slater's rules.

Double-zeta basis Sets 

One can use more than one STO to represent one atomic orbital, as shown in Equation , and rather than doing a nonlinear
variational calculation to optimize each  value, use two STOs with different  variables. The linear variation calculation then will
produce the coefficients (  and ) for these two functions in the linear combination that best describes the charge distribution in
the molecule (for the ground state). The function with the large zeta accounts for charge near the nucleus, while the function with
the smaller zeta accounts for the charge distribution at larger values of the distance from the nucleus. This expanded basis set is
called a double-zeta basis set.

The use of double zeta functions in basis sets is especially important because without them orbitals of the same type are constrained
to be identical even though in the molecule they may be chemically inequivalent. For example, in acetylene the  orbital along the
internuclear axis is in a quite different chemical environment and is being used to account for quite different bonding than the 
and  orbitals. With a double zeta basis set the  orbital is not constrained to be the same size as the  and  orbitals.

Explain why the , , and  orbitals in a molecule might be constrained to be the same in a single-zeta basis set calculation,
and how the use of a double-zeta basis set would allow the , , and  orbitals to differ.

Gaussian Orbitals 
Although any basis set that sufficiently spans the space of electron distribution could be used, the concept of Molecular Orbitals as
Linear Combinations of Atomic Orbitals (LCAO) suggests a very natural set of basis functions: AO-type functions centered on
each nuclei. One obvious choice are the exact hydrogen AO's, known as Slater-type orbitals (STO) -describing the radial
component of the functions. However, the computation of the integrals is greatly simplified by using Gaussian-type orbitals
(GTO) for basis functions.

While the STO basis set was an improvement over hydrogenic orbitals in terms of computational efficiency, representing the STOs
with Gaussian functions produced further improvements that were needed to accurately describe molecules. A Gaussian basis
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function has the form shown in Equation . Note that in all the basis sets, only the radial part of the orbital changes, and the
spherical harmonic functions are used in all of them to describe the angular part of the orbital.

Unfortunately Gaussian functions do not match the shape of an atomic orbital very well. In particular, they are flat rather than steep
near the atomic nucleus at , and they fall off more rapidly at large values of  (Figure 11.2.1 ).

Figure 11.2.1 : Radial Dependence of Slater and Gaussian Basis Functions. (CC BY 4.0; Ümit Kaya via LibreTexts)

To compensate for this problem, each STO is replaced with a number of Gaussian functions with different values for the
exponential parameter. These Gaussian functions form a primitive Gaussian basis set. Linear combinations of the primitive
Gaussians are formed to approximate the radial part of an STO. This linear combination is not optimized further in the energy
variational calculation, but rather is frozen and treated as a single function. The linear combination of primitive Gaussian
functions is called a contracted Gaussian function. Although more functions and more integrals now are part of the calculation,
the integrals involving Gaussian functions are quicker to compute than those involving exponentials, so there is a net gain in the
efficiency of the calculation.

Figure 11.2.2 : To better represent the cusp in the electron density at the nuclei, GTO basis sets are constructed from fixed linear-
combinations of Gaussian functions, contracted GTOs (CGTO). The earliest CGTO basis sets, where constructed from N GTOs
that best fit the desired STO. These are called STO-NG basis sets.  (CC BY 4.0; Ümit Kaya via LibreTexts)

Gaussian basis sets are identified by abbreviations such as N-MPG . N is the number of Gaussian primitives used for each inner-
shell orbital. The hyphen indicates a split-basis set where the valence orbitals are double zeta. The M indicates the number of
primitives that form the large zeta function (for the inner valence region), and P indicates the number that form the small zeta
function (for the outer valence region). G identifies the set a being Gaussian. The addition of an asterisk to this notation means that
a single set of Gaussian 3d polarization functions (discussed elsewhere) is included. A double asterisk means that a single set of
Gaussian 2p functions is included for each hydrogen atom.

For example, 3G means each STO is represented by a linear combination of three primitive Gaussian functions. 6-31G means each
inner shell (1s orbital) STO is a linear combination of 6 primitives and each valence shell STO is split into an inner and outer part
(double zeta) using 3 and 1 primitive Gaussians, respectively (see Table 11.2.1 for other examples).

Basis set # functions  Basis set # functions  Basis set # functions

Table 11.2.1 : Different Gaussian Basis sets
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Basis set # functions  Basis set # functions  Basis set # functions

STO-3G 5  6-31G 9  6-311G 13

3-21G 9  6-31G* 15  6-311G* 18*

4-31G 9  6-31+G* 19  6-311+G* 22*

The 1s Slater-type orbital  with  is represented as a sum of three primitive Gaussian functions,

This sum is the contracted Gaussian function for the STO.

a. Make plots of the STO and the contracted Gaussian function on the same graph so they can be compared easily. All
distances should be in units of the Bohr radius. Use the following values for the coefficients, C, and the exponential
parameters, .

index j

1 0.1688 0.4

2 0.6239 0.7

3 3.425 1.3

b. Change the values of the coefficients and exponential parameters to see if a better fit can be obtained.
c. Comment on the ability of a linear combination of Gaussian functions to accurately describe a STO.

Summary 

When molecular calculations are performed, it is common to use a basis composed of a finite number of atomic orbitals (Equation 
), centered at each atomic nucleus within the molecule (linear combination of atomic orbitals ansatz). These atomic orbitals

are well described with Slater-type orbitals (STOs), as STOs decay exponentially with distance from the nuclei, accurately
describing the long-range overlap between atoms, and reach a maximum at zero, well describing the charge and spin at the nucleus.
STOs are computationally difficult and it was later realized by Frank Boys that these Slater-type orbitals could in turn be
approximated as linear combinations of Gaussian orbitals instead. Because it is easier to calculate overlap and other integrals with
Gaussian basis functions, this led to huge computational savings

This page titled 11.2: Gaussian Basis Sets is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David M.
Hanson, Erica Harvey, Robert Sweeney, Theresa Julia Zielinski.
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