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5.8: The Energy Levels of a Rigid Rotor

Compare the classical and quantum rigid rotor in three dimensions
Demonstrate how to use the Separation of Variable technique to solve the 3D rigid rotor Schrödinger Equation
Identify and interpret the two quantum numbers for a 3D quantum rigid rotor including the range of allowed values
Describe the wavefunctions of the 3D quantum rigid rotor in terms of nodes, average displacements and most probable
displacements
Describe the energies of the 3D quantum rigid rotor in terms of values and degeneracies

Rigid rotor means when the distance between particles do not change as they rotate. A rigid rotor only approximates a rotating
diatomic molecular if vibration is ignored.

The Classical Rigid Rotor in 3D 

The rigid rotor is a mechanical model that is used to explain rotating systems. The linear rigid rotor model consists of two point
masses located at fixed distances from their center of mass. The fixed distance between the two masses and the values of the
masses are the only characteristics of the rigid model. However, for many actual diatomics this model is too restrictive since
distances are usually not completely fixed and corrections on the rigid model can be made to compensate for small variations in the
distance. Even in such a case the rigid rotor model is a useful model system to master.

For a rigid rotor, the total energy is the sum of kinetic ( ) and potential ( ) energies

The potential energy, , is set to  because the distance between particles does not change within the rigid rotor approximation.
However, In reality,  because even though the average distance between particles does not change, the particles still vibrate.
The rigid rotor approximation greatly simplifys our discussion.

Since  then  and we can also say that:

However, we have to determine  in terms of rotation since we are dealing with rotation motion. Since,

where  is the angular velocity, we can say that:

Thus we can rewrite Equation  as:

Since  is a scalar constant, we can rewrite Equation  as:

where  is the angular momentum of the i  particle, and  is the angular momentum of the entire system. Also, we know from
physics that,

where  is the moment of inertia of the rigid body relative to the axis of rotation. We can rewrite Equation  as
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Equation  shows that the energy of the rigid rotor scales with increasing angular frequency (i.e., the faster is rotates) and with
increasing moment of inertia (i.e, the inertial resistance to rotation). Also, as expected, the classical rotational energy is not
quantized (i.e., all possible rotational frequencies are possible).

The Quantum Rigid Rotor in 3D 

It is convenient to discuss rotation with in the spherical coordinate system rather than the Cartesian system (Figure 5.8.1 ).

Figure 5.8.1 : The spherical coordinate system in terms of the Cartesian system. (Public Domain; Andeggs via Wikipedia).

To solve the Schrödinger equation for the rigid rotor, we will separate the variables and form single-variable equations that can be
solved independently. Only two variables  and  are required in the rigid rotor model because the bond length, , is taken to be
the constant . We first write the rigid rotor wavefunctions as the product of a theta-function depending only on  and a phi-
function depending only on 

We then substitute the product wavefunction and the Hamiltonian written in spherical coordinates into the Schrödinger Equation 

to obtain

Since  is constant for the rigid rotor and does not appear as a variable in the functions, the partial derivatives with respect to
 are zero; i.e. the functions do not change with respect to . We also can substitute the symbol  for the moment of inertia,  in

the denominator of the left hand side of Equation , to give

To begin the process of the Separating of Variables technique, multiply each side of Equation  by  and  to

give

Simplify the appearance of the right-hand side of Equation  by defining a parameter :

Note that this  has no connection to a wavelength; it is merely being used as an algebraic symbol for the combination of constants
shown in Equation .
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Inserting , evaluating partial derivatives, and rearranging Equation  produces

Carry out the steps leading from Equation  to Equation . Keep in mind that, if  is not a function of ,

Equation  says that the function on the left, depending only on the variable , always equals the function on the right,
depending only on the variable , for all values of  and . The only way two different functions of independent variables can be
equal for all values of the variables is if both functions are equal to a constant (review separation of variables). We call this constant

 because soon we will need the square root of it. The two differential equations to solve are the -equation

and the -equation

The partial derivatives have been replaced by total derivatives because only a single variable is involved in each equation.

Often  is referred to as just  for convenience.

Show how Equations  and  are obtained from Equation .

Solving the  Equation 

The -equation is similar to the Schrödinger Equation for the free particle. Since we already solved this previously, we
immediately write the solutions:

where we introduce the number  to track how many wavelengths of the wavefunction occur around one rotation (similar to the
wavelength description of the Bohr atom).

Substitute Equation  into Equation  to show that it is a solution to that differential equation.
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Thus

is a solution to the differential equations.

The normalization condition, Equation  is used to find a value for  that satisfies Equation .

The range of the integral is only from  to  because the angle  specifies the position of the internuclear axis relative to the x-
axis of the coordinate system and angles greater than  do not specify additional new positions.

Use the normalization condition in Equation  to demonstrate that .

Answer

We need to evaluate Equation  with 

Values for  are found by using a cyclic boundary condition. The cyclic boundary condition means that since  and  refer
to the same point in three-dimensional space,  must equal , i.e.

For the equality in Equation  to hold,  must equal 1, which is true only when

In other words  can equal any positive or negative integer or zero.

Use Euler’s Formula to show that  equals 1 for  equal to zero or any positive or negative integer.
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with

Solving the  Equation 

Finding the  functions that are solutions to the -equation (Equation ) is a more complicated process. Solutions are
found to be a set of power series called Associated Legendre Functions (Table M2), which are power series of trigonometric
functions, i.e., products and powers of sine and cosine functions. The  functions, along with their normalization constants, are
shown in the third column of Table 5.8.1 .

Table 5.8.1 : Spherical Harmonic Wavefunctions

0 0

0 1

1 1

-1 1

0 2

1 2

-1 2

2 2

-2 2

The solution to the -equation requires that  in Equation  be given by

where

 can be 0 or any positive integer greater than or equal to . Each pair of values for the quantum numbers,  and , identifies a
rotational state with a wavefunction (Equation ) and energy (below). Equation  means that  controls the allowed
values of .

Each pair of values for the quantum numbers,  and , identifies a rotational state and
hence a specific wavefunction with associated energy.

The combination of Equations  and  reveals that the energy of this system is quantized.

Using Equation , you can construct a rotational energy level diagram (Figure 5.8.2 ). For simplicity, use energy units of .
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: The lowest energy state has  and . This state has an energy . There is only one state with this
energy, i.e. one set of quantum numbers, one wavefunction, and one set of properties for the molecule.

: The next energy level is  with energy . There are three states with this energy because  can equal +1, 0,

or ‑1. These different states correspond to different orientations of the rotating molecule in space. States with the same energy
are said to be degenerate. The degeneracy of an energy level is the number of states with that energy. The degeneracy of the 

 energy level is 3 because there are three states with the energy .

: The next energy level is for . The energy is , and there are five states with this energy corresponding to 

. The energy level degeneracy is five. Note that the spacing between energy levels increases as J
increases. Also note that the degeneracy increases. The degeneracy is always  because  ranges from  to  in
integer steps, including 0.

Figure 5.8.2 : Energy spacing for a rigid rotor (in 3D). Notice the energy depends only on  and not depend on . That is, the
energy of the rotor is not affected by its orientation.

Each allowed energy of rigid rotor is -fold degenerate. Hence, there exist 
 different wavefunctions with that energy.

Compute the energy levels for a rotating molecule for  to  using units of .

Answer

This rotating molecule can be assumed to be a rigid rotor molecule. From solving the Schrödinger equation for a rigid rotor
we have the relationship for energies of each rotational eigenstate (Equation ):

Using this equation, we can plug in the different values of the  quantum number so that

For J=0,  For J=1, 
This shows that as  increases, the energy levels get farther apart (Figure 5.8.2 ).

For J=2, 
For J=3, 
For J=4, 
For J=5, 

For  to , identify the degeneracy of each energy level and the values of the  quantum number that go with each
value of the  quantum number. Construct a rotational energy level diagram including  through . Label each level
with the appropriate values for the quantum numbers  and . Describe how the spacing between levels varies with
increasing .
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Answer

This rotating molecule can be assumed to be a rigid rotor molecule. From solving the Schrödinger equation for a rigid rotor,
we have:

Where λ is an arbitrary parameter not related to wavelength. Additionally, λ is assigned a quantum relation so that

Thus, combining the two equations and solving for E yields

Using this equation, we can plug in the different values of J so that

For J=0, 
For J=1, 
For J=2, 
For J=3, 
For J=4, 
For J=5, 

This shows that as  increases, the energy levels get closer and closer together.

The  quantum number reflects the component of the angular momentum along the    direction (and hence is sometimes
called the azimuthal quantum number). For a fixed value of , the different values of  reflect the different directions the
angular momentum vector could be pointing – for large, positive  the angular momentum is mostly along +z; if  is zero
the angular momentum is orthogonal to . Physically, the energy of the rotation does not depend on the direction, which is
reflected in the fact that the energy depends only on  (Equation ), which measures the length of the vector, not its
direction given mb .

Calculate  to  rotational transition of the  molecule with a bond length of 121 pm.

Solution

convert from atomic units to kilogram using the conversion: 1 au = 1.66 x 10  kg. Plug and chug.

Spherical Harmonics 

A wavefunction that is a solution to the rigid rotor Schrödinger Equation (Equation ) can be written as a single function 
, which is called a spherical harmonic function.

The spherical harmonic wavefunction is labeled with  and  because its functional form depends on both of these quantum
numbers. These functions are tabulated above for  through  and for  in the Spherical Harmonics Table (M4)
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Polar plots of some of the -functions are shown in Figure 5.8.3 .

Figure 5.8.3 : Polar plots in which the distance from the center gives the value of the function  for the indicated angle .

The two-dimensional space for a rigid rotor is defined as the surface of a sphere of radius , as shown in Figure 5.8.2 .

Figure 5.8.4 : Space for a rigid rotor is restricted to the surface of a sphere of radius . The only degrees of freedom are motions
along  or  on the surface of the sphere.

The probability of finding the internuclear axis at specific coordinates  and  within an infinitesimal area  on this curved
surface is given by

where the area element  is centered at  and .

Within the Copenhagen interpretation of wavefunctions, the absolute square (or modulus squared) of the rigid rotor wavefunction 
 gives the probability density for finding the internuclear axis oriented at  to the z-axis and  to the x-axis.

In spherical coordinates the area element used for integrating  and  is

Use calculus to evaluate the probability of finding the internuclear axis of a molecule described by the , 
wavefunction somewhere in the region defined by a range in  of 0° to 45°, and a range in of 0° to 90°. Note that a double
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integral will be needed. Sketch this region as a shaded area on Figure 5.8.1 .

Consider the significance of the probability density function by examining the ,  wavefunction. The Spherical
Harmonic for this case is

The polar plot of  is shown in Figure 5.8.1 . For  and , the probability of finding the internuclear axis is
independent of the angle  from the x-axis, and greatest for finding the internuclear axis along the z‑axis, but there also is a
probability for finding it at other values of  as well. So, although the internuclear axis is not always aligned with the z-axis, the
probability is highest for this alignment. Also, since the probability is independent of the angle , the internuclear axis can be
found in any plane containing the z-axis with equal probability.

The ,  function is 0 when  = 90°. Therefore, the entire xy-plane is a node. This fact means the probability of finding
the internuclear axis in this particular horizontal plane is 0 in contradiction to our classical picture of a rotating molecule. In the
classical picture, a molecule rotating in a plane perpendicular to the xy‑plane must have the internuclear axis lie in the xy‑plane
twice every revolution, but the quantum mechanical description says that the probability of being in the xy-plane is zero. This
conclusion means that molecules are not rotating in the classical sense, but they still have some, but not all, of the properties
associated with classical rotation. The properties they retain are associated with angular momentum.

For each state with  and , use the function form of the  spherical harmonics and Figure 5.8.1 to determine the
most probable orientation of the internuclear axis in a diatomic molecule, i.e., the most probable values for  and .

Write a paragraph describing the information about a rotating molecule that is provided in the polar plot of  for the 
,  state in Figure 5.8.1 . Compare this information to the classical picture of a rotating object.

Summary 

There are two quantum numbers that describe the quantum behavior of a rigid rotor in three-deminesions:  is the total angular
momentum quantum number and  is the z-component of the angular momentum. The spherical harmonics called  are
functions whose probability  has the well known shapes of the s, p and d orbitals etc learned in general chemistry.
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