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16.3: A Cubic Equation of State

Isotherms 

Isotherms are plots of the pressure of a gas as a function of volume at a fixed constant temperature. The isotherms for an ideal gas
are hypberbolas:

where  is the molar volume . We know that at sufficiently low temperatures, any real gas, when compressed, must undergo a
transition from gas to liquid. The signature of such a transition is a discontinuous change in the volume, signifying the
condensation of the gas into a liquid that occupies a significantly lower volume.

Figure 16.3.1 : Ideal gas isotherms for one mole of the gas and at select temperatures. (public domain).

CO  isotherms for the van der Waals Equation of state are shown in Figure 16.3.2 . At sufficiently high temperatures, the isotherms
approach those of an ideal gas. At lower temperatures, the fluid obeys approximately the ideal gas law  at large
volumes when the pressures are low. If we decrease the volume (go to the left in the figure along an isotherm), the pressure rises.
Consider the (blue) isotherm of 10 °C, which is below the critical temperature. Decrease the volume until we reach the point ,
where condensation (formation of liquid CO ) starts. At this point the van der Waals curve is no longer physical (excluding the
possibility of the occurrence of an oversaturated, metastable gas) because  and  increase together. It should be clear that many
approximations and assumptions go into the derivation of the van der Waals equation so that some of the important physics is
missing from the model. Hence, we should not be surprised if the van der Waals equation has some unphysical behavior buried in
it. In reality, the pressure stays constant between the region  and  and the real physical behavior is given by the dashed blue
line, called the tie line. This lines represents the gas-liquid coexistence and the pressure is equal to the vapor pressure of the liquid.
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Figure 16.3.2 : Different isotherms (curves of constant temperature) of the van der Waals equation of state using parameters  and 
 computed for carbon dioxide. The dashed line from A to B is drawn in accordance with Maxwell's equal area rule. The carbon

dioxide molecule (CO ) has p  = 7.37 MPa and T  = 304.1 K = 31 ˚C , which gives a = 0.366 m  Pa and b = 42.9 10  m . The
critical pressure is at 73.7 bar = 7370 kPa.

The tie line must be added in ad hoc by drawing a horizontal line through the isotherm (Figure 16.3.2 ). The vertical position of the
line is chosen so that the area above the line (between the line and the isotherm) and below the line (again between the line and the
isotherm) is exactly the same. This is known as Maxwell's construction. In this way, we entirely remove the artifact of the
unphysical increase of  with  when we compute the compressional work on the gas from , to be discussed in our
section on thermodynamics. Although the van der Waals curves have regions where they are not physical, the equation for these
curves, derived by van der Waals in 1873, was a great scientific achievement.

Even today it is not possible to give a single equation that describes correctly the gas-liquid phase transition.

Critical Point 

Looking to the left of point  on the 10 °C isotherm (blue curve), the system is in the liquid state. Increasing the volume to point 
leads to a rapid drop in the pressure of the system because the compressibility of a liquid is considerable smaller than that of a gas.
The system is still in the liquid state at point , but as we increase the volume further, we enter the gas-liquid coexistence line and
the liquid begins to transition to gas. As we move along this line to the right, there is less liquid and more gas in the system until we
reach point , at which point the system will be completely in the gas phase. The areas, bounded by the 10 °C isotherm (blue
curve) below and above the coexistence line are equal. Any further increase in the volume will lead to an expansion of the
gas.There is exactly one isotherm along which the van der Waals equation correctly predicts the gas-to-liquid phase transition. If
one follows the 31 °C isotherm (green curve in Figure 16.3.2 ) of critical temperature, the volume discontinuity captured by the tie
line is shrunken down to a single point (so that there is no possibility of an increase of  with !). This point is called the critical
point and it exists at only one temperature, called the critical temperature, denoted . The critical isotherm at the critical
temperature corresponds to the highest possible temperature at which a gas-liquid transition can occur. Isotherms at higher
temperatures have no liquid-gas phase transitions. Along those isotherms, the higher pressure fluid, called a supercritical fluid,
resembles a liquid, while at lower pressures the fluid is more gas-like.

The critical point exists at an inflection where the first and second derivatives of  with respect to  are zero:
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Substituting the van der Waals equation into these two conditions, we find the following:

Hence, we have two equations in two unknowns  and  for the critical temperature and critical volume. Once these are
determined, the van der Waals equation, itself, allows us to determine the critical pressure, . To solve the equations, first divide
one by the other. This gives us a simple condition for the volume:

This is the critical volume. Now use either of the two conditions to obtain the critical temperature, . If we use the first one, we
find:

Finally, plugging the critical temperature and volume into the van der Waals equation, we obtain the critical pressure:

It comes as no surprise that cubic equations of state like the van der Waals (and Redlich-Kwong) equations of state yield three
different roots for volume and compressibility factor. This is simply because they are algebraic equations, and any nth order
algebraic equation will always yield “n” roots. However, those “n” roots are not required to be distinct, and that is not all: they are
not required be real numbers, either. A quadratic expression (n = 2) may have zero real roots (e.g., ); this is because
those roots are complex numbers. In the case of cubic expressions (n = 3), we will either have one or three real roots; this is
because complex roots always show up in pairs (i.e., once you have a complex root, its conjugate must also be a solution). In our
case, and because we are dealing with physical quantities (densities, volumes, compressibility factors), only real roots are of
interest. More specifically, we look for real, positive roots such that  in the case of molar volume and  in the case of
compressibility factor.

In a cubic equation of state, the possibility of three real roots is restricted to the case of sub-critical conditions ( ), because
the S-shaped behavior, which represents the vapor-liquid transition, takes place only at temperatures below critical. This restriction
is mathematically imposed by the criticality conditions. Anywhere else, beyond the S-shaped curve, we will only get one real root
of the type . Figure 16.3.3 illustrates this point.
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Figure 16.3.3 : Multiple Roots in Cubic EOS

The shape of the critical isotherm at the critical point allows us to determine the exact temperature, pressure, and volume at which
the phase transitions from gas to liquid will occur. If we draw a curve through the isotherms joining all points of these isotherms at
which the tie lines begin, continue the curve up to the critical isotherm, and down the other side where the tie lines end, this curve
reaches a maximum at the critical point. The region inside this curve is when the gas and liquid phases coexist.

Let us summarize the three cases presented in Figure 16.3.3 :

1. Supercritical isotherms ( : At temperatures beyond critical, the cubic equation will have only one real root (the other two
are imaginary complex conjugates). In this case, there is no ambiguity in the assignment of the volume root since we have
single-phase conditions. The occurrence of a unique real root remains valid at any pressure: any horizontal (isobaric) line cuts
the supercritical isotherm just once in Figure 16.3.3 .

2. Critical isotherm ( ): At the critical point ( ), vapor and liquid properties are the same. Consequently, the cubic
equation predicts three real and equal roots at this special and particular point. However, for any other pressure along the critical
isotherm (  or ,) the cubic equation gives a unique real root with two complex conjugates.

3. Subcritical isotherm ( ): Predictions for pressures within the pressure range for metastability ( ) or for the
saturation condition ( ) will always yield three real, different roots. In fact, this is the only region where an isobar cuts
the same isotherm more than once. The smallest root is taken as the specific volume of the liquid phase; the largest is the
specific volume of the vapor phase; the intermediate root is not computed as it is physically meaningless. However, do not get
carried away. Subcritical conditions will not always yield three real roots of the type . If the pressure is higher than the
maximum of the S-shaped curve, , we will only have one (liquid) real root that satisfies . By the same token, pressures
between  yield only one (vapor) root. In the case of  being a negative number, three real roots are to be found
even for very low pressures when the ideal gas law applies. The largest root is always the correct choice for the gas phase molar
volume of pure components.

Most of these considerations apply to the cubic equation of state in  (compressibility factor). The most common graphical
representation of compressibility factor is the well-known chart of Standing and Katz, where compressibility, , is plotted against
pressure (Figure 16.3.4 ). Standing and Katz presented their chart for the compressibility factor of sweet natural gases in 1942. This
chart was based on experimental data. Graphical determination of properties was widespread until the advent of computers, and
thus the Standing and Katz Z-chart became very popular in the natural gas industry. Typical Standing and Katz charts are given for
high temperature conditions (  or ).
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Figure 16.3.4 : Compressibility Factor versus Pressure
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