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5.3: The Harmonic Oscillator Approximates Molecular Vibrations

Understand the utility and limits of using the quantum harmonic oscillator as a model for molecular vibrations

The quantum harmonic oscillator is one of the most important model systems in quantum mechanics. This is due in partially to the
fact that an arbitrary potential curve  can usually be approximated as a harmonic potential at the vicinity of a stable
equilibrium point. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution exists.
Solving other potentials typically require either approximations or numerical approaches to identify the corresponding eigenstates
and eigenvalues (i.e., wavefunctions and energies).

A general potential energy ( ) curve for a molecular vibration can be expanded as a Taylor series

It is important to note that this approximation is only good for  near , and that  stands for the equilibrium bond distance. 
 is often (but not always) shortened to the cubic term and can be rewritten as

where ,  is the harmonic force constant (harmonic term), and  is the first anharmonic term (i.e., cubic). As Figure
5.3.2 demonstrates, the harmonic oscillator (red curve) is a good approximation for the exact potential energy of a vibration (blue
curve).

Figure 5.3.1 : The vibration of the  molecule is really an anharmonic oscillator, but can be approximated as a harmonic
oscillator at low energies. In this animation,  is vibrating at the  energy level.  is dissociation energy here,  bond
length,  potential energy. Energy is expressed in wavenumbers. The hydrogen chloride molecule is attached to the coordinate
system to show bond length changes on the curve. (CC BY-SA 3.0; Darekk2 via Wikipedia).

Adding anharmonic perturbations to the harmonic oscillator (Equation ) better describes molecular vibrations. Anharmonic
oscillation is defined as the deviation of a system from harmonic oscillation, or an oscillator not oscillating in simple harmonic
motion. Anharmonic oscillation is described as the restoring force is no longer proportional to the displacement. Adding the cubic
term (Figure 5.3.2 ; green curve) improves the harmonic oscillation approximation especially under greater displacement from
equilibrium.
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Figure 5.3.2 : (left) Deviation from simple harmonic potential approximation (red curve) of true/exact potential (blue curve) with
cubic term (green). (right) Expansion with positive or negative quartic terms. (CC BY-NC; Ümit Kaya via LibreTexts)

Naturally, adding higher order anharmonic terms, like quartic terms (Figure ) improve the approximation. Almost all
diatomics have experimentally determined potentials for their lowest energy states. , , , , and  with terms up to 

 determined of Equation .

Figure 5.3.1 shows the the general potential with (numerically) calculated energy levels ( ,  etc.).  is the dissociation
energy, which is different from the well depth . These vibrational energy levels of this plot can be calculated using the harmonic
oscillator model (i.e., Equation 5.3.1 with the Schrödinger equation) and have the general form

where  is the vibrational quantum number and  and  are the first and second anharmonicity constants, respectively.

The  level is the vibrational ground state. Because this potential is less confining than a parabola used in the harmonic
oscillator, the energy levels become less widely spaced at high excitation (Figure 5.3.1 ; top of potential).

The harmonic oscillation is a great approximation of a molecular vibration, but has key limitations:

Due to equal spacing of energy, all transitions occur at the same frequency (i.e. single line spectrum). However
experimentally many lines are often observed (called overtones).
The harmonic oscillator does not predict bond dissociation; you cannot break it no matter how much energy is introduced.

A more powerful approach than just "patching up" the harmonic oscillator solution with anharmonic corrections is to adopt a
different potential ( ). One such approach is the Morse potential, named after physicist Philip M. Morse, and a better
approximation for the vibrational structure of the molecule than the harmonic oscillator because it explicitly includes the
effects of bond breaking and accounts for the anharmonicity of real bonds (Figure 5.3.4 ).
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 Limitations of the Harmonic Oscillator Model for Molecular Vibrations

 Morse Potentials are better Approximations of Vibrational Motion
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Figure 5.3.4 : The Morse potential (blue) and harmonic oscillator potential (green). Unlike the energy levels of the harmonic
oscillator potential, which are evenly spaced by ħω, the Morse potential level spacing decreases as the energy approaches the
dissociation energy. The dissociation energy  is larger than the true energy required for dissociation  due to the zero point
energy of the lowest ( ) vibrational level. from Wikipedia.

The Morse Potential is a good approximation to  and is best when looking for a general formula for all  from 0 to , not
just applicable for the local region around the :

with  and .

The Morse Potential (Figure 5.3.4 ) approaches zero at infinite  and equals  at its minimum (i.e. ). It clearly
shows that the Morse potential is the combination of a short-range repulsion term (small  values) and a long-range attractive
term (large  values).

Solving the Schrödinger Equation with the Morse Potential (Equation ) is not trivial, but can be done analytically.

with

The solutions and energies for the Morse potential will not be used in this course and will not be discussed in more detail.

5.3: The Harmonic Oscillator Approximates Molecular Vibrations is shared under a CC BY license and was authored, remixed, and/or curated by
Peter Kelly.
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