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12.8: Using Symmetry to Solve Secular Determinants
As we continue with this course, we will discover that there are many times when we would like to know whether a particular
integral is necessarily zero, or whether there is a chance that it may be non-zero. We can often use group theory to differentiate
these two cases.

You will have already used symmetry properties of functions to determine whether or not a one-dimensional integral is zero. For
example, cos(x) is an ‘even’ function (symmetric with respect to reflection through the origin), and it follows from this that

In general integral between these limits for any other even function will be also be zero.

In the general case we may have an integral of more than one dimension. The key to determining whether a general integral is
necessarily zero lies in the fact that because an integral is just a number, it must be invariant to any symmetry operation. For
example, bonding in a diatomic (see next section) depends on the presence of a non-zero overlap between atomic orbitals on
adjacent atoms, which may be quantified by an overlap integral. You would not expect the bonding in a molecule to change if you
rotated the molecule through some angle , so the integral must be invariant to rotation, and indeed to any other symmetry
operation.

In group theoretical terms, for an integral to be non-zero, the integrand must transform as the totally symmetric irreducible
representation in the appropriate point group. In practice, the integrand may not transform as a single irreducible representation,
but it must include the totally symmetric irreducible representation. These ideas should become more clear in the next section.

It should be noted that even when the irreducible representations spanned by the integrand do include the totally symmetric
irreducible representation, it is still possible for the integral to be zero. All group theory allows us to do is identify integrals
that are necessarily zero based on the symmetry (or lack thereof) of the integrand.

Secular Equations 
As we have seen already, any set of linear equations may be rewritten as a matrix equation  = . Linear equations are classified
as simultaneous linear equations or homogeneous linear equations, depending on whether the vector  is non-zero or zero. For a
set of simultaneous linear equations (non-zero ) it is fairly apparent that if a unique solution exists, it can be found by multiplying
both sides by the inverse matrix  (since  on the left hand side is equal to the identity matrix, which has no effect on the
vector )

In practice, there are easier matrix methods for solving simultaneous equations than finding the inverse matrix, but these need not
concern us here. We previously argued that in order for a matrix to have an inverse, it must have a non-zero determinant. Since 

 must exist in order for a set of simultaneous linear equations to have a solution, this means that the determinant of the matrix
 must be non-zero for the equations to be solvable.

For a matrix to have an inverse, it must have a non-zero determinant.
The reverse is true for homogeneous linear equations. In this case the set of equations only has a solution if the determinant of  is
equal to zero. The secular equations we want to solve are homogeneous equations, and we will use this property of the determinant
to determine the molecular orbital energies. An important property of homogeneous equations is that if a vector  is a solution, so
is any multiple of , meaning that the solutions (the molecular orbitals) can be normalized without causing any problems.

Solving for the orbital energies and expansion coefficients 
Recall the secular equations for the  orbitals of  derived in the previous section
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where  and  are the coefficients in the linear combination of the SALCs  =  and  =  used to

construct the molecular orbital. Writing this set of homogeneous linear equations in matrix form gives

In order for the equations to have a solution, the determinant of the matrix must be equal to zero. Writing out the determinant will
give us a polynomial equation in  that we can solve to obtain the orbital energies in terms of the Hamiltonian matrix elements 
and overlap integrals . The number of energies obtained by ‘solving the secular determinant’ in this way is equal to the order of
the matrix, in this case two.

The secular determinant for Equation (21.3) is (noting that  =  since the SALCs are normalized)

Expanding and collecting terms in  gives

which can be solved using the quadratic formula to give the energies of the two molecular orbitals.

To obtain numerical values for the energies, we need to evaluate the integrals , , , and . This would be quite a
challenge to do analytically, but luckily there are a number of computer programs that can be used to calculate the integrals. One
such program gives the following values.

When we substitute these into our equation for the energy levels, we get:

We now have the orbital energies and the next step is to find the orbital coefficients. The coefficients for an orbital of energy  are
found by substituting the energy into the secular equations and solving for the coefficients . Since the two secular equations are
not linearly independent (i.e. they are effectively only one equation), when we solve them to find the coefficients what we will end
up with is the relative values of the coefficients. This is true in general: in a system with  coefficients, solving the secular
equations will allow all  of the coefficients  to be obtained in terms of, say, . The absolute values of the coefficients are found
by normalizing the wavefunction.

Since the secular equations for the orbitals of energy  and  are not linearly independent, we can choose to solve either one of
them to find the orbital coefficients. We will choose the first.

For the orbital with energy  = -31.0063 eV, substituting numerical values into this equation gives

The molecular orbital is therefore
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Normalizing to find the constant  (by requiring  = 1) gives

For the second orbital, with energy  = 29.8336 eV, the secular equation is

giving

These two  molecular orbitals  and , one bonding and one antibonding, are shown below.

The remaining two SALCs arising from the  orbitals of  (  and ), form an

orthogonal pair of molecula r orbitals of  symmetry. We can show this by solving the secular determinant to find the orbital
energies. The secular equations in this case are:

Solving the secular determinant gives

The integrals required are

Using the fact that  = , the expression for the energies reduces to

giving  =  = -9.2892 eV and  =  = -9.2892 eV. Each SALC therefore forms a molecular orbital by itself, and the two
orbitals have the same energy; the two SALCs form an orthogonal pair of degenerate orbitals. These two molecular orbitals of 
symmetry are shown below.
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1. Choose a basis set of functions  consisting of the valence atomic orbitals on each atom in the system, or some chosen
subset of these orbitals.

2. With the help of the appropriate character table, determine which irreducible representations are spanned by the basis set
using Equation (15.20) to determine the number of times  that the  irreducible representation appears in the
representation.

3. Construct the SALCs  that transform as each irreducible representation using Equation 16.1

4. Write down expressions for the molecular orbitals by taking linear combinations of all the irreducible representations of the
same symmetry species.

5. Write down the secular equations for the system.
6. Solve the secular determinant to obtain the energies of the molecular orbitals.
7. Substitute each energy in turn back into the secular equations and solve to obtain the coefficients appearing in your

molecular orbital expressions in step 4.
8. Normalize the orbitals.

12.8: Using Symmetry to Solve Secular Determinants is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
LibreTexts.

1.21: Solving the Secular Equations by Claire Vallance is licensed CC BY 4.0. Original source:
http://vallance.chem.ox.ac.uk/pdfs/SymmetryLectureNotes.pdf.

 Summary of the steps involved in constructing molecular orbitals
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