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4.E: Postulates and Principles of Quantum Mechanics (Exercises)
Solutions to select questions can be found online.

4.3
The function  has to be real, nonnegative, finite, and of definite value everywhere. Why?

Solution

If we follow the Born interpretation of wavefuntions, then  is a probability density and hence must follow standard probability properties
including being non-negative, finite and of a definite value at any relevant point in the space of the wavefunction. Moreover, the integral of 

 over all this space must be equal to 1.

4.5
Why are the following functions not acceptable wave functions for a 1D particle in a box with length  ?  is a normalization constant.

a. 

b. 

c. 

Solution

The boundary conditions that need to be met are . This does not meet them. The proposed wavefunction blows up to

infinity at  and  Tan is not defined for 

ψψ∗

ψψ∗

ψψ∗

a N

ψ = Ncos  
nπx

L

ψ =
N

sin  
nπx

a

ψ = Ntan  
πx

a

ψ (0) = ψ (a) = 0

x = 0 x = a x =
a

2
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4.12

Show that the sets of functions:  where  = 1,2,3... is orthonormal.

Solution

Let

Because  and is real, then

Letting 

Letting 

and thus  (n=1, 2, 3, ...) are orthonormal.

4.13
Show that 

when 

sin( )
2

L

−−
√

nπx

L
n

ψ = sin( )
2

L

−−
√

nπx

L

= ψψ∗

ψdx = sin( ) sin( )dx∫
L

0

ψ∗ ∫
L

0

2

L

−−
√

nπx

L

2

L

−−
√

mπx

L

n = m

ψdx∫
L

0

ψ∗ = sin( ) sin( )dx
2

L
∫

L

0

nπx

L

nπx

L

= ( )dx
2

L
∫

L

0
sin2 nπx

L

( )dx = 1
2

L
∫

L

0

sin2 nπx

L

n ≠ m

ψdx∫
L

0

ψ∗ = sin( ) sin( )dx
2

L
∫

L

0

nπx

L

mπx

L

= [cos( )− cos( )]dx
2

L

1

2
∫

L

0

(n−m)πx

L

(n+m)πx

L

= [ [sin( )− sin( )]− [sin( )− sin( )]] = 0
1

L

L

(n−m)π

(n−m)πL

L

(n−m)π0

L

L

(n+m)π

(n+m)πL

L

(n+m)π0

L

sin( )
2

L

−−

√
nπx

L

a ⋅ b ⋅ c = ∑ik aibickek

⋅ ⋅ =∑
i

aiei ∑
j

bjej ∑
k

ckek ∑
ik

aibickek

( ⋅ ) ⋅ =∑
i

∑
j

aibj ei ej ∑
k

ckek ∑
ik

aibickek

⋅ = = 1ei ej δij

i = j

⋅ =∑
i

aibi ∑
k

ckek ∑
ik

aibickek

=∑
ik

aibickek ∑
ik

aibickek
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4.14
Determine if the following operators commute

and

Solution

We must solve , by solving for  and  for a wavefunction  and see if they are equal.

since

The two operators do not commute.

=B̂
d

dx

=Ĉ x5

[ , ]B̂ Ĉ { f(x)}B̂ Ĉ { f(x)}Ĉ B̂ f(x)

{ f(x)} = { f(x)} = { f(x)} = 5xf(x) + (x)B̂ Ĉ B̂ x5 d

dx
x5 x5f ′

{ f(x)} = { (x)} = (x)Ĉ B̂ Ĉ f ′ x5f ′

[ , ] = 5xf(x) + (x) − (x) = 5xf(x) ≠ 0B̂ Ĉ x5f ′ x2f ′
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4.15
Do the following combinations of angular momentum operators commute? Show work to the justify the answer (do not just write "yes" or no").

a.  and 
b.  and 
c.  and 

with

Estimate the answer to Part C based on the pattern gathered from parts A and B; no work necessary for Part C.

Solution

a.

Does not commute, i.e., is not zero.

b.

Does not commute, i.e., is not zero.

c. This part only requires that we notice the rotation of variables and consistency of format/equations. In doing so, we better understand the
relation between the parts of the angular momentum operator. The work below does not need to be shown for credit, but it may clarify things
or make the solution clearer if you are still having trouble assessing and using the pattern.

Does not commute, i.e., is not zero.

These calculations show that you can have only one well-defined component of the angular momentum because of the uncertainty principle
says the others will not be known (since they do not commute).

4.17

For two operators to commute, what property must hold? Use the operators  and  as an example to show that this property holds.

Solution

The commuters when applied to a wavefunction must equal the 0 eigenfunction.

Lx Ly

Ly Lz

Lz Lx

= −i ℏ(y − z )Lx

∂

∂z

∂

∂y

= −i ℏ(z −x )Ly

∂

∂x

∂

∂z

= −i ℏ(x −y )Lz

∂

∂y

∂

∂x

[ , ] = (y − z )(z −x )Ψ − (z −x )(y − z )Ψ,Lx Ly pz py px pz px pz pz py

= (z y − −xy −xz )Ψ − (y z −yx + + zx )Ψpx pz z2pxpy pzpz pypz pz px pzpz z2pypx pzpy

[ , ] = iℏ ,Lx Ly Lz

[ , ] = (z −x )(x −y )Ψ − (x −y )(z −x )ΨLy Lz px pz py px py px px pz

= (x z − −yz −yx )Ψ − (z x − zy + +xy )Ψpy px x2pypz pxpx pzpx px py pxpx x2pzpy pxpz

[ , ] = iℏ ,Ly Lz Lx

[ , ] = (x −y )(y − z )Ψ − (y − z )(x −y )ΨLz Lx py px pz py pz py py px

= (y x − − zx − zy )Ψ − (x y −xz + +yz )Ψpz py y2pzpx pypy pxpy py pz pypy y2pxpz pypx

[ , ] = iℏ ,Lz Lx Ly

L2̂ Lẑ

ψ(x) − ψ(x) = 0L2̂Lz
^ Lz

^ L2̂

− ψ(x) = ψ(x)L2̂Lz
^ Lz

^ L2̂ 0̂

− = 0L2̂Lẑ LẑL2̂
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4.21
Show that the angular momentum and kinetic energy operators commute and therefore can be measured simultaneously to arbitrary precision.

Solution

Show that

where the operators can be broken up into 3 components

and  . The same can be written for  in the y and z directions.

For the x-direction

The process can be repeated for the y and z directions and following the same steps the commutations turn out to be 0. Therefore, kinetic
energy and angular momentum commute.

4.22
Show that the position and angular momentum operator commutes. Can the position and angular momentum be measured simultaneously to a
arbitrary precision?

Solution

First, we must prove that the position operator, , and the angular momentum operator , commute.

In order to prove the commutation,

where we have used the fact that

and

Now that we have proved that the two operators commute, the relationship of commutation means that the position and total angular
momentum of any electrons can be measured simultaneously to arbitrary precision.

[ , ]  =  0K̂ L̂

= −i ℏ(y − z )Lx

∂

∂z

∂

∂y

= −i ℏ(z −x )Ly
∂

∂x

∂

∂z

= −i ℏ(x −y )Lz

∂

∂y

∂

∂x

  =  Kx
^ −ℏ2

2m

∂2

∂x2
K̂

[ , ] = [ , ] + [ , ] + [ , ]K̂ L̂ Kx̂ Lx̂ Ky
^ Lŷ Kz

^ Lẑ

[ , ] = [ , −iℏ(y − z ))]Kx
^ Lx

^ −ℏ2

2m

∂2

∂x2

d

dz

d

dy

(− iℏ(y − z ))− −iℏ(y − z ))
−ℏ2

2m

d2

dx2

d

dz

d

dy

d

dz

d

dy

−ℏ2

2m

d2

dx2

(y − z )− (y − z )  =  0
iℏ3

2m

d3

d dzx2

d3

d dyx2

iℏ3

2m

d3

d dzx2

d3

d dyx2

= i + j + kR̂ x̂ ŷ ẑ = i + j + kL̂ Lx
^ Ly

^ Lz
^

[ , ] = [i + j + k , i + j + k ]R̂ L̂ x̂ ŷ ẑ Lx̂ Lŷ Lẑ

=  [ , ]  +  [ , ]  +  [ , ]x̂ Lx
^ ŷ Ly

^ ẑ Lz
^

  =  0

i ⋅ i = j ⋅ j = k ⋅ k = 1

i ⋅ j = j ⋅ k = k ⋅ i = 0
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4.25
If both  and  satisfy the time-independent Schrödinger Equation (these are called stationary states)

and

show that any linear superposition of the two wavefunctions

also satisfies the time-dependent Schrödinger Equation.

Solution

The time-dependent Schrödinger Equation is

\[\hat{H}Ψ(x,t) =iћ ∂Ψ(x,y)/∂t\nonumber \]

Plug Ψ(x,t) into the time-dependent equation.

\[\hat{H}c Ψ (x)e  + c Ψ (x)e = iћ ∂/∂tc Ψ (x)e  + c Ψ (x)e \nonumber \]

\[\hat{H}c Ψ (x)e  + c Ψ (x)e = E c Ψ (x)e + E c Ψ (x)e \nonumber \]

\[∂/∂tc Ψ (x)e  + c Ψ (x)e  = -[(iE c e Ψ (x))/ћ]-[(iE c e Ψ (x))/ћ]\nonumber \]

combine all the constants (except for E) into c  and c

\[iћ [-[(ic e Ψ (x))/ћ]-[(ic e Ψ (x))/ћ]]=E c Ψ (x)e + E c Ψ (x)e \nonumber \]

\[Since \hat{H}Ψ(x,t) and iћ ∂Ψ(x,y)/∂t are equal, they satisfy the time-dependent equation. \nonumber \]

4.26
Starting with

and the time-independent Schrödinger equation, demonstrate that

Given that

show that

| ⟩Ψn | ⟩Ψm

| (x, t)⟩ = (x)Ψn Ψn e−i t/ℏEn

| (x, t)⟩ = (x)Ψm Ψm e−i t/ℏEm

|Ψ(x, t)⟩ = | (x, t)⟩ + | (x, t)⟩cn Ψn cm Ψm

n n
-iE t/ ћn m m

-iE t/ ћ m n n
-iE t/ ћn m m

-iE t/ ћ m

n n
-iE t/ ћn m m

-iE t/ ћ m n n n
-iE t/ ћ n m m m

-iE t/ ћm

n n
-iE t/ ћn m m

-iE t/ ћm m m
-iE t/ ћm m n n -iEnt/ ћ

n

n m

m
-iE t/ ћm m n -iEnt/ћ 

n n n n
-iE t/ ћ n m m m

-iE t/ ћm

⟨x⟩ = ∫ (x, t)xψ(x, t)dxψ∗

= ∫ ( x−x )ψdx
d⟨x⟩

dt
ψ∗ i

ℏ
Ĥ Ĥ

= +V (x)Ĥ
−ℏ2

2m

d2

dx2

x−x = −2 = − = −Ĥ Ĥ
ℏ2

2m

d

dx

ℏ2

m

i

ℏ
P̂ x

ih

m
P̂ x
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4.28
Derive the condition on operators that arises from forcing eigenvalues to be real with complex conjugates.

Solution

Starting with an eigenvalue problem with a  as our operator we recognize

Solving for our eigenvalue we must multiply by our complex conjugate wavefunction and integrate both sides to see

We can repeat this calculation but with a complex conjugate of our initial eigenvalue problem

Solving for our eigenvalue we multiply  and integrate both sides to find that

Since we restricted  to be real both eigenvalue problems return the same eigenvalue. We can then relate the operator side of both equations to
know that

4.31
Prove that the position operator is Hermitian.

Solution

We must see if the operator satisfies the following requirement to be in Hermitian:

Substitute  for  into the above equation:

Since :

Therefore the Position Operator is Hermitian.

Ĝ

ψ = λψĜ

∫ ψdτ = ∫ λψdτ = λ ∫ ψdτ = λψ∗Ĝ ψ∗ ψ∗

=Ĝ
∗
ψ∗ λ∗ψ∗

ψ

∫ ψ dτ = ∫ ψ dτ = ∫ ψ dτ = λĜ
∗
ψ∗ λ∗ψ∗ λ∗ ψ∗

λ

∫ ψdτ = ∫ ψ dτψ∗Ĝ Ĝ
∗
ψ∗

( )ψ dx = ψ dx∫
∞

−∞
Âψ∗ ∫

∞

−∞
ψ∗Â

X̂ Â

( )ψ dx = ψ dx∫
∞

−∞

Âψ∗ ∫
∞

−∞

ψ∗Â

( )ψ dx = ψ dx∫
∞

−∞

X̂ψ∗ ∫
∞

−∞

ψ∗X̂

( ψ ψ dx = ψ dx∫
∞

−∞

X̂ )∗ ∫
∞

−∞

ψ∗X̂

ψ dx = ψ dx∫
∞

−∞
ψ∗X̂

∗
∫

∞

−∞
ψ∗X̂

≡X̂
∗

X̂

ψ dx = ψ dx∫
∞

−∞

ψ∗X̂ ∫
∞

−∞

ψ∗X̂
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4.31
Prove that the momentum operator is a Hermitian

Solution

Hermitian: 

Momentum Operator: 

We will first start by showing you

 = i

Using integration by parts with u = \psi_{j}*\ and dv = d\psi_{i}

We can notice now that for a confined particle the product \psi_{j}^{*}\psi_{i} will go to zero at each of the endpoints

We get in the end  =  → momentum operator

∫ dxψ∗
j
Ĥψi

= −iℏP̂
d

dx

(−iℏ )ps dx∫
∞

−∞

ψj

d

dx
ii

dx = d
dψi

dx
ψi

(−iℏ )ps dx∫ ∞
−∞ ψj

d

dx
ii ℏ ps d∫ ∞

−∞ ij ψi

−iℏ
d

dx
−iℏ

d

dx
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4.32
Which of the following operators are Hermitian:

a. ,
b. 
c. 
d. 

Solution

A Hermitian Operator  satisfies

x

where .

Operator  is Hermitian

d/dx

Here we can use Integration by Parts \int vdu = uv + \int udv with v=Ψ* and dv = dΨ

[Ψ*Ψ] evaluated at infinity and negative infinity is 0, because of the assumption that this wavefunction approaches 0 as one extends to infinity
in both directions

Here we inserted dx/dx into the integral

d/dx* = d/dx, not -d/dx,so this operator is not Hermitian.

 

hd /dx

Here we can use Integration by Parts \int vdu = uv + \int udv with u=Ψ* and dv=d(dΨ/dx)

[Ψ*dΨ/dx] evaluated at infinity and negative infinity is 0, because of the assumption that this wavefunction approaches 0 as one extends to
infinity in both directions. This implies that that dΨ/dx, for example, also approach 0.

x

d/dx

h /dd2 x2

i /dd2 x2

Â

< |A|Ψ >=< Ψ| |Ψ∗ >Ψ∗ A∗

∫ Ψ ∗xΨdx = ∫ ΨxΨ ∗ dx

= xx∗

x

∫ Ψ ∗ d/dxΨdx

= ∫ Ψ ∗ dΨ

= [Ψ ∗ Ψ] −∫ ΨdΨ∗

= −∫ Ψd/dxΨ ∗ dx

= ∫ Ψ(−d/dx)Ψ ∗ dx

2 2

∫ Ψ ∗h( /d )Ψdxd2 x2

= h ∫ Ψ ∗ ( /dx)Ψd2

= h[Ψ ∗ dΨ/dx] −∫ (dΨ/dx)dΨ∗

= h[Ψ ∗ dΨ/dx] −∫ (dΨ ∗ /dx)dΨ

= −h ∫ (dΨ ∗ /dx)dΨ
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Here we can use Integration by Parts \int vdu = uv + \int udv with u=dΨ*/dx and dv=dΨ

[Ψ*dΨ/dx] evaluated at infinity and negative infinity is 0, because of the assumption that this wavefunction approaches 0 as one extends to
infinity in both directions. This implies that that dΨ*/dx, for example, also approaches 0.

h(d /dx )* = h(d /dx ), so this operator is Hermitian

 

id /dx

Here we can use Integration by Parts

with u=Ψ* and dv=d(dΨ/dx)

[Ψ*dΨ/dx] evaluated at infinity and negative infinity is 0, because of the assumption that this wavefunction approaches 0 as one extends to
infinity in both directions. This implies that that dΨ/dx, for example, also approach 0.

Here we can use Integration by Parts \int vdu = uv + \int udv with u=dΨ*/dx and dv=dΨ

[Ψ*dΨ/dx] evaluated at infinity and negative infinity is 0, because of the assumption that this wavefunction approaches 0 as one extends to
infinity in both directions. This implies that that dΨ*/dx, for example, also approach 0.

so this operator is NOT Hermitian

= −h([ΨdΨ ∗ /dx] −∫ Ψ Ψ ∗ /dxd2

= h ∫ Ψ( Ψ ∗ /dx)d2

= h ∫ Ψ( Ψ ∗ /d )dxd2 x2

= ∫ Ψh( /d )Ψ ∗ dxd2 x2

2 2 2 2

2 2

∫ Ψ ∗ i( /d )Ψdxd2 x2

= i∫ Ψ ∗ ( /dx)Ψd2

∫ vdu = uv+∫ udv

= i[Ψ ∗ dΨ/dx] −∫ (dΨ/dx)dΨ∗

= i[Ψ ∗ dΨ/dx] −∫ (dΨ ∗ /dx)dΨ

= −i∫ (dΨ ∗ /dx)dΨ

= −i([ΨdΨ ∗ /dx] −∫ Ψ Ψ ∗ /dxd2

= i∫ Ψ( Ψ ∗ /dx)d2

= i∫ Ψ( Ψ ∗ /d )dxd2 x2

= ∫ Ψi( /d )Ψ ∗ dxd2 x2

i( /d )∗ = −i( /d )d2 x2 d2 x2
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4.32
Determine whether the following operators are Hermitian and whether they commute:

and

Given that - <x<  and the operators functions are well behaved.

Solution

If the operator satisfies this condition it is Hermitian

A)

This operator is Hermitian

B)

This operator is not Hermitian

If the operators commute they have to satisfy this condition

This pair of operators commutes.

= iÂ
d

dx

= iB̂
d2

dx2

∞ ∞

(x) f (x) dx = f (x) (x) dx∫
∞

−∞

f ∗ Â ∫
∞

−∞

Âf ∗

(i ) dx = i dx = i( f] − f dx)∫
∞

−∞

f ∗ df

dx
∫

∞

−∞

f ∗ df

dx
[∞−∞f ∗ ∫

∞

−∞

df ∗

dx

= −i f dx = f (−i ) dx∫
∞

−∞

df ∗

dx
∫

∞

−∞

d

dx
f ∗

f dx∫
∞

−∞

(i )
d

dx

∗

f ∗

(i ) dx = i ] − dx∫
∞

−∞

f ∗ fd2

dx2
[∞−∞f ∗ df

dx
∫

∞

−∞

df ∗

dx

df

dx

= −i f ] + i f dx[∞−∞

df ∗

dx
∫

∞

−∞

d2f ∗

dx2

= − f dx∫
∞

−∞

id2

dx2

∗

f ∗

f = fÂB̂ B̂Â

f = ( ) =ÂB̂
id

dx

fd2

dx2

i fd3

dx3

f = ( ) =B̂Â
id2

dx2

df

dx

i fd3

dx3
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4.34
Consider two wavefunctions

and

Given the boundary conditions are:

and

and given a expression of

Derive the simplest expression of  based on the terms from the boundary conditions provided above.

Solution

Since

,

Thus,

(x) = A sin( x) +B cos( x)ψ1 k1 k1 (4.E.1)

(x) = C sin( x) +D cos( x)ψ2 k2 k2

ψ(0) = 0

= atx = 0
dψ1

dx

dψ2

dx

A+B = C, (A−B) = Ck1 k2

R =
B2

A2
(4.E.2)

R

A+B = C, (A−B) = Ck1 k2 (4.E.3)

(A−B) = (A+B)k1 k2 (4.E.4)

A− B = A+ Bk1 k1 k2 k2 (4.E.5)

( − )A = ( + )Bk1 k2 k1 k2 (4.E.6)

=
B

A

−k1 k2

+k1 k2

(4.E.7)

R = = =
B2

A2
( )
B

A

2

( )
−k2k1

+k1 k2

2

(4.E.8)
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4.34
A particle is moving in a field. Half-way through the field, there is a line that represents potential energy. To the left of the line, the potential
energy is

and to the right of the line the potential energy is

. If the particle's energy is less than the potential energy line will the particle reflect when the its energy is greater than the Potential energy barrier
height?

Solution

When

the Schrödinger equation is as followed:

and the solution to this equation is:

where

Region Two where :

and the solution to the equation is:

and

Notice the difference between the two Schrödinger equations. Equation one does not have a potential energy component because it is before
the potential energy field hence have zero potential energy. After the potential energy field, the Schrödinger equation has a potential energy
component because the particle has potential energy at this moment.

When you solve the differential solutions to the Schrödinger equations you find that the amount that is reflected back of a particle by the line
is equal to the amount that is transmitted after the line. This is all we can find out for the information given. However, if we solve this solution
for when the Energy of the particle is greater than the potential energy line and compare the differential solutions to all four wave functions
then we find that all particles will be reflected by the barrier.
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