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6.5: s-orbitals are Spherically Symmetric
The hydrogen atom wavefunctions, , are called atomic orbitals. An atomic orbital is a function that describes one electron
in an atom. The wavefunction with ,  = 0 is called the 1s orbital, and an electron that is described by this function is said to
be “in” the ls orbital, i.e. have a 1s orbital state. The constraints on n, , and  that are imposed during the solution of the
hydrogen atom Schrödinger equation explain why there is a single 1s orbital, why there are three 2p orbitals, five 3d orbitals, etc.
We will see when we consider multi-electron atoms, these constraints explain the features of the Periodic Table. In other words, the
Periodic Table is a manifestation of the Schrödinger model and the physical constraints imposed to obtain the solutions to the
Schrödinger equation for the hydrogen atom.

Visualizing the variation of an electronic wavefunction with r, , and  is important because the absolute square of the
wavefunction depicts the charge distribution (electron probability density) in an atom or molecule. The charge distribution is
central to chemistry because it is related to chemical reactivity. For example, an electron deficient part of one molecule is attracted
to an electron rich region of another molecule, and such interactions play a major role in chemical interactions ranging from
substitution and addition reactions to protein folding and the interaction of substrates with enzymes.

We can obtain an energy and one or more wavefunctions for every value of , the principal quantum number, by solving
Schrödinger's equation for the hydrogen atom. A knowledge of the wavefunctions, or probability amplitudes , allows us to
calculate the probability distributions for the electron in any given quantum level. When n = 1, the wavefunction and the derived
probability function are independent of direction and depend only on the distance r between the electron and the nucleus. In Figure
6.5.1 , we plot both  and  versus , showing the variation in these functions as the electron is moved further and further from
the nucleus in any one direction. (These and all succeeding graphs are plotted in terms of the atomic unit of length, 

.)

Figure 6.5.1 : The wavefunction and probability distribution as functions of  for the  level of the H atom. The functions and
the radius r are in atomic units in this and succeeding figures.

Two interpretations can again be given to the  curve. An experiment designed to detect the position of the electron with an
uncertainty much less than the diameter of the atom itself (using light of short wavelength) will, if repeated a large number of
times, result in Figure 6.5.1 for . That is, the electron will be detected close to the nucleus most frequently and the probability of
observing it at some distance from the nucleus will decrease rapidly with increasing . The atom will be ionized in making each of
these observations because the energy of the photons with a wavelength much less than 10  cm will be greater than , the amount
of energy required to ionize the hydrogen atom. If light with a wavelength comparable to the diameter of the atom is employed in
the experiment, then the electron will not be excited but our knowledge of its position will be correspondingly less precise. In these
experiments, in which the electron's energy is not changed, the electron will appear to be "smeared out" and we may interpret  as
giving the fraction of the total electronic charge to be found in every small volume element of space. (Recall that the addition of the
value of P  for every small volume element over all space adds up to unity, i.e., one electron and one electronic charge.)

Visualizing wavefunctions and charge distributions is challenging because it requires examining the behavior of a function of three
variables in three-dimensional space. This visualization is made easier by considering the radial and angular parts separately, but
plotting the radial and angular parts separately does not reveal the shape of an orbital very well. The shape can be revealed better in
a probability density plot. To make such a three-dimensional plot, divide space up into small volume elements, calculate  at the
center of each volume element, and then shade, stipple or color that volume element in proportion to the magnitude of .
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We could also represent the distribution of negative charge in the hydrogen atom in the manner used previously for the electron
confined to move on a plane (Figure 6.5.2 ), by displaying the charge density in a plane by means of a contour map. Imagine a
plane through the atom including the nucleus. The density is calculated at every point in this plane. All points having the same
value for the electron density in this plane are joined by a contour line (Figure 6.5.2 ). Since the electron density depends only on r,
the distance from the nucleus, and not on the direction in space, the contours will be circular. A contour map is useful as it indicates
the "shape" of the density distribution.

Figure 6.5.2 : (a) A contour map of the electron density distribution in a plane containing the nucleus for the  level of the H
atom. The distance between adjacent contours is 1 au. The numbers on the left-hand side on each contour give the electron density
in au. The numbers on the right-hand side give the fraction of the total electronic charge which lies within a sphere of that radius.
Thus 99% of the single electronic charge of the H atom lies within a sphere of radius 4 au (or diameter = ). (b) This
is a profile of the contour map along a line through the nucleus. It is, of course, the same as that given previously in Figure 6.5.1 for

, but now plotted from the nucleus in both directions.

When the electron is in a definite energy level we shall refer to the  distributions as electron density distributions, since they
describe the manner in which the total electronic charge is distributed in space. The electron density is expressed in terms of the
number of electronic charges per unit volume of space, e /V. The volume V is usually expressed in atomic units of length cubed,
and one atomic unit of electron density is then e /a . To give an idea of the order of magnitude of an atomic density unit, 1 au of
charge density e /a = 6.7 electronic charges per cubic Ångstrom. That is, a cube with a length of , if
uniformly filled with an electronic charge density of 1 au, would contain 6.7 electronic charges.

For every value of the energy E , for the hydrogen atom, there is a degeneracy equal to . Therefore, for n = 1, there is but one
atomic orbital and one electron density distribution. However, for n = 2, there are four different atomic orbitals and four different
electron density distributions, all of which possess the same value for the energy, E . Thus for all values of the principal quantum
number n there are n  different ways in which the electronic charge may be distributed in three-dimensional space and still possess
the same value for the energy. For every value of the principal quantum number, one of the possible atomic orbitals is independent
of direction and gives a spherical electron density distribution which can be represented by circular contours as has been
exemplified above for the case of n = 1. The other atomic orbitals for a given value of n exhibit a directional dependence and
predict density distributions which are not spherical but are concentrated in planes or along certain axes. The angular dependence
of the atomic orbitals for the hydrogen atom and the shapes of the contours of the corresponding electron density distributions are
intimately connected with the angular momentum possessed by the electron.
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Methods for separately examining the radial portions of atomic orbitals provide useful information about the distribution of charge
density within the orbitals. Graphs of the radial functions, , for the 1s and 2s orbitals plotted in Figure 6.5.3 . The 1s function
in Figure  starts with a high positive value at the nucleus and exponentially decays to essentially zero after 5 Bohr radii.
The high value at the nucleus may be surprising, but as we shall see later, the probability of finding an electron at the nucleus is
vanishingly small.

Figure 6.5.3 : Radial function, , for the 1s and 2s orbitals. For an interactive graph click here.

Next notice how the radial function for the 2s orbital, Figure , goes to zero and becomes negative. This behavior
reveals the presence of a radial node in the function. A radial node occurs when the radial function equals zero other than at 
or . Nodes and limiting behaviors of atomic orbital functions are both useful in identifying which orbital is being described
by which wavefunction. For example, all of the s functions have non-zero wavefunction values at .

Examine the mathematical forms of the radial wavefunctions. What feature in the functions causes some of them to go to zero
at the origin while the s functions do not go to zero at the origin?

What mathematical feature of each of the radial functions controls the number of radial nodes?

At what value of  does the 2s radial node occur?

Make a table that provides the energy, number of radial nodes, and the number of angular nodes and total number of nodes for
each function with , , and . Identify the relationship between the energy and the number of nodes. Identify
the relationship between the number of radial nodes and the number of angular nodes.

Answer

Energy
1.Particle in a Box
(h n /8m L )
2.Harmonic
Oscillator((n+0.5)ℏω)
3.Hydrogen
(-13.6eV/n )

Number of Radial
Nodes
(n-l-1)

Number of Angular
Nodes
l = (n-1)
l : s =0
p = 1
d = 2

Total Number of Nodes

n = 1
1. 6.02 *10 J/L
2. 1.5ℏω
3. -13.6 eV
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Energy
1.Particle in a Box
(h n /8m L )
2.Harmonic
Oscillator((n+0.5)ℏω)
3.Hydrogen
(-13.6eV/n )

Number of Radial
Nodes
(n-l-1)

Number of Angular
Nodes
l = (n-1)
l : s =0
p = 1
d = 2

Total Number of Nodes

n = 2
1. 6.02 *10 J/L
2. 2.5ℏω
3. -3.4 eV

for s: 1
for p: 0

for s: 0
for p: 1

1

n = 3
1. 6.02 *10 J/L
2. 3.5ℏω
3. 1.51 eV

for s: 2
for p: 1
for d: 0

for s: 0
for p:1
for d: 2

2

For a particle in a box the energy is equivalent to  where  is any value greater than and not equal
to 0 and L is the length of the box.

Radial probability densities for the 1s and 2s atomic orbitals are plotted in Figure 6.5.4 .

Figure 6.5.4 : Radial densities ( ) for the 1s and 2s orbitals.

Radial Distribution Functions 
Rather than considering the amount of electronic charge in one particular small element of space, we may determine the total
amount of charge lying within a thin spherical shell of space. Since the distribution is independent of direction, consider adding up
all the charge density which lies within a volume of space bounded by an inner sphere of radius  and an outer concentric sphere
with a radius only infinitesimally greater, say . The area of the inner sphere is  and the thickness of the shell is .
Thus the volume of the shell is  and the product of this volume and the charge density P (r), which is the charge or number
of electrons per unit volume, is therefore the total amount of electronic charge lying between the spheres of radius  and .
The product  is given a special name, the radial distribution function.

The reader may wonder why the volume of the shell is not taken as:

the difference in volume between two concentric spheres. When this expression for the volume is expanded, we obtain

and for very small values of  the  and  terms are negligible in comparison with . Thus for small values of 
, the two expressions for the volume of the shell approach one another in value and when  represents an infinitesimal
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small increment in  they are identical.

The volume element of a box in spherical coordinates. (CC BY; OpenStax).

The radial distribution function is plotted in Figure 6.5.5 for the ground state of the hydrogen atom.

Figure 6.5.5 : The radial distribution function for an H atom. The value of this function at some value of r when multiplied by 
gives the number of electronic charges within the thin shell of space lying between spheres of radius  and .

The curve passes through zero at  since the surface area of a sphere of zero radius is zero. As the radius of the sphere is
increased, the volume of space defined by  increases. However, as shown in Figure 6.5.4 , the absolute value of the electron
density at a given point decreases with  and the resulting curve must pass through a maximum. This maximum occurs at 

. Thus more of the electronic charge is present at a distance , out from the nucleus than at any other value of . Since
the curve is unsymmetrical, the average value of , denoted by , is not equal to . The average value of  is indicated on the
figure by a dashed line. A "picture" of the electron density distribution for the electron in the  level of the hydrogen atom
would be a spherical ball of charge, dense around the nucleus and becoming increasingly diffuse as the value of  is increased.

The radial distribution function gives the probability density for an electron to be found
anywhere on the surface of a sphere located a distance  from the proton. Since the area
of a spherical surface is , the radial distribution function is given by 

.

Radial distribution functions are shown in Figure 6.5.6 . At small values of , the radial distribution function is low because the
small surface area for small radii modulates the high value of the radial probability density function near the nucleus. As we
increase , the surface area associated with a given value of  increases, and the  term causes the radial distribution function to
increase even though the radial probability density is beginning to decrease. At large values of , the exponential decay of the radial
function outweighs the increase caused by the  term and the radial distribution function decreases.
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Figure 6.5.6 : The radial distribution function ( ) for the 1s and 2s orbitals. Compare to the radial functions in
Figure 6.5.3 or the radial densities in Figure 6.5.4 . For an interactive graph click here.

Calculate the probability of finding a 1s hydrogen electron being found within distance  from the nucleus.

Solution

Note the wavefunction of hydrogen 1s orbital which is

with .

The probability of finding the electron within  distance from the nucleus will be:

Since  and , we have

There is a 76.2% probability that the electrons will be within  of the nucleus in the 1s eigenstate.
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Summary 

This completes the description of the most stable state of the hydrogen atom, the state for which . Before proceeding with a
discussion of the excited states of the hydrogen atom we must introduce a new term. When the energy of the electron is increased
to another of the allowed values, corresponding to a new value for ,  and  change as well. The wavefunctions  for the
hydrogen atom are given a special name, atomic orbitals, because they play such an important role in all of our future discussions
of the electronic structure of atoms. In general the word orbital is the name given to a wavefunction which determines the motion
of a single electron. If the one-electron wavefunction is for an atomic system, it is called an atomic orbital.

Do not confuse the word orbital with the classical word and notion of an orbit. First, an orbit implies the knowledge of a definite
trajectory or path for a particle through space which in itself is not possible for an electron. Secondly, an orbital, like the
wavefunction, has no physical reality but is a mathematical function which when squared gives the physically measurable electron
density distribution.
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