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12.15: Molecular Orbitals can be Constructed on the Basis of Symmetry

Bonding in Diatomics 

You will already be familiar with the idea of constructing molecular orbitals from linear
combinations of atomic orbitals from previous courses covering bonding in diatomic
molecules. By considering the symmetries of  and  orbitals on two atoms, we can form
bonding and antibonding combinations labeled as having either  or  symmetry
depending on whether they resemble  or  orbitals when viewed along the bond axis (see
diagram below). In all of the cases shown, only atomic orbitals that have the same
symmetry when viewed along the bond axis  can form a chemical bond e.g. two 
orbitals, two  orbitals , or an  and a  can form a bond, but a  and a  or an  and a

 or a  cannot. It turns out that the rule that determines whether or not two atomic
orbitals can bond is that they must belong to the same symmetry species within the point
group of the molecule.

We can prove this mathematically for two atomic orbitals and  by looking at the
overlap integral between the two orbitals.

In order for bonding to be possible, this integral must be non-zero. The product of the two
functions  and  transforms as the direct product of their symmetry species i.e.  = 

. As explained above, for the overlap integral to be non-zero,  must contain the totally symmetric irreducible
representation (  for a homonuclear diatomic, which belongs to the point group ). As it happens, this is only possible if 
and  belong to the same irreducible representation. These ideas are summarized for a diatomic in the table below.

Bonding in Polyatomics- Constructing Molecular Orbitals from SALCs 

In the previous section we showed how to use symmetry to determine whether two atomic orbitals can form a chemical bond. How
do we carry out the same procedure for a polyatomic molecule, in which many atomic orbitals may combine to form a bond? Any
SALCs of the same symmetry could potentially form a bond, so all we need to do to construct a molecular orbital is take a linear
combination of all the SALCs of the same symmetry species. The general procedure is:

1. Use a basis set consisting of valence atomic orbitals on each atom in the system.
2. Determine which irreducible representations are spanned by the basis set and construct the SALCs that transform as each

irreducible representation.
3. Take linear combinations of irreducible representations of the same symmetry species to form the molecular orbitals. E.g. in our

 example we could form a molecular orbital of  symmetry from the two SALCs that transform as ,

Unfortunately, this is as far as group theory can take us. It can give us the functional form of the molecular orbitals but it cannot
determine the coefficients  and . To go further and obtain the expansion coefficients and orbital energies, we must turn to
quantum mechanics. The material we are about to cover will be repeated in greater detail in later courses on quantum mechanics
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and valence, but they are included here to provide you with a complete reference on how to construct molecular orbitals and
determine their energies.

Summary of the Steps Involved in Constructing Molecular Orbitals 
1. Choose a basis set of functions  consisting of the valence atomic orbitals on each atom in the system, or some chosen subset

of these orbitals.
2. With the help of the appropriate character table, determine which irreducible representations are spanned by the basis set using

Equation (15.20) to determine the number of times  that the  irreducible representation appears in the representation.

3. Construct the SALCs  that transform as each irreducible representation using Equation 16.1

4. Write down expressions for the molecular orbitals by taking linear combinations of all the irreducible representations of the
same symmetry species.

5. Write down the secular equations for the system.
6. Solve the secular determinant to obtain the energies of the molecular orbitals.
7. Substitute each energy in turn back into the secular equations and solve to obtain the coefficients appearing in your molecular

orbital expressions in step 4.
8. Normalize the orbitals.

A more complicated bonding example 

As another example, we will use group theory to construct the molecular orbitals of  (point group ) using a basis set
consisting of all the valence orbitals. The valence orbitals are a  orbital on each hydrogen, which we will label  and , and a 

 and three  orbitals on the oxygen, which we will label , , ,  giving a complete basis .

The first thing to do is to determine how each orbital transforms under the symmetry operations of the  point group ( , , 
and ), construct a matrix representation and determine the characters of each operation. The symmetry operations and axis
system we will be using are shown below.

The orbitals transform in the following way

A short aside on constructing matrix representatives 

After a little practice, you will probably be able to write matrix representatives straight away just by looking at the effect of the
symmetry operations on the basis. However, if you are struggling a little the following procedure might help.

Remember that the matrix representatives are just the matrices we would have to multiply the left hand side of the above equations
by to give the right hand side. In most cases they are very easy to work out. Probably the most straightforward way to think about it
is that each column of the matrix shows where one of the original basis functions ends up. For example, the first column transforms

fi

ak kth

= χ(g) (g)ak
1

h
∑
C

nC χk (12.15.1)

ϕi

= (g)gϕi ∑
g

χk fi (12.15.2)

OH2 C2v

1s sH s′
H

2s 2p sO px py pz ( ), , , , ,sH s′
H sO px py pz

C2v E C2 σv
σ′
v

E

C2

(xz)σv

(yz)σ′
v

( ), , , , ,sH s′
H sO px py pz

( ), , , , ,sH s′
H sO px py pz

( ), , , , ,sH s′
H sO px py pz

( ), , , , ,sH s′
H sO px py pz

→

→

→

→

( ), , , , ,sH s′
H sO px py pz

( ), , , − , − ,s′
H sH sO px py pz

( ), , , , − ,sH s′
H sO px py pz

( ), , , − , ,s′
H sH sO px py pz

(12.15.3)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/433985?pdf


12.15.3 https://chem.libretexts.org/@go/page/433985

the basis function  to its new position. The first column of the matrix can be found by taking the result on the right hand side of
the above expressions, replacing every function that isn’t  with a zero, putting the coefficient of  (  or  in this example) in
the position at which it occurs, and taking the transpose to give a column vector.

Consider the representative for the  operation. The original basis  transforms into 
. The first column of the matrix therefore transforms into . Taking the result and replacing

all the other functions with zeroes gives . The coefficient of  is , so the first column of the  matrix
representative is

Matrix representation, characters and SALCs 
The matrix representatives and their characters are

Now we are ready to work out which irreducible representations are spanned by the basis we have chosen. The character table for 
is:

As before, we use Equation (15.20) to find out the number of times each irreducible representation appears.

We have

so the basis spans . Now we use the projection operators applied to each basis function  in turn to determine the
SALCs 
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The SALCs of  symmetry are:

The SALCs of  symmetry are:

The SALCs of  symmetry are:

After normalization, our SALCs are therefore:

A  symmetry

B  symmetry

B  symmetry

Note that we only take one of the first two SALCs generated by the  projection operator since one is a simple multiple of the
other (i.e. they are not linearly independent). We can therefore construct three molecular orbitals of  symmetry, with the general
form

two molecular orbitals of  symmetry, of the form
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and one molecular orbital of  symmetry

To work out the coefficients  -  and determine the orbital energies, we
would have to solve the secular equations for each set of orbitals in turn. We
are not dealing with a conjugated  system, so in this case Hückel theory
cannot be used and the various  and  integrals would have to be
calculated numerically and substituted into the secular equations. This involves
a lot of tedious algebra, which we will leave out for the moment. The LCAO
orbitals determined above are an approximation of the true molecular orbitals
of water, which are shown on the right. As we have shown using group theory,
the  molecular orbitals involve the oxygen  and  atomic orbitals and
the sum  of the hydrogen  orbitals. The  molecular orbitals
involve the oxygen  orbital and the difference  of the two
hydrogen  orbitals, and the  molecular orbital is essentially an oxygen 
atomic orbital.

Electronic transitions in molecules 

When an electron is excited from one electronic state to another, this is what is called an electronic transition. A clear example of
this is part C in the energy level diagram shown above. Just as in a vibrational transition the selection rules for electronic transitions
are dictated by the transition moment integral. However we now must consider both the electronic state symmetries and the
vibration state symmetries since the electron will still be coupled between two vibrational states that are between two electronic
states. This gives us this modified transition moment integral:

Where you can see that the symmetry of the initial electronic state & vibrational state are in the Bra and the final electronic and
vibrational states are in the Ket. Though this appears to be a modified version of the transition moment integral, the same equation
holds true for a vibrational transition. The only difference would be the electronic state would be the same in both the initial and
final states. Which the dot product of yields the totally symmetric representation, making the electronic state irrelevant for purely
vibrational spectroscopy.

Raman 

In Resonance Raman spectroscopy transition that occurs is the excitation from one electronic state to another and the selection
rules are dictated by the transition moment integral discussed in the electronic spectroscopy segment. However mechanically
Raman does produce a vibration like IR, but the selection rules for Raman state there must be a change in the polarization, that is
the volume occupied by the molecule must change. But as far as group theory to determine whether or not a transition is allowed
one can use the transition moment integral presented in the electronic transition portion. Where one enters the starting electronic
state symmetry and vibrational symmetry and final electronic state symmetry and vibrational state, perform the direct product with
the different M's or polarizing operators For more information about this topic please explore the Raman spectroscopy portion of
the Chemwiki

Fluorescence 

For the purposes of Group Theory Raman and Fluorescence are indistinguishable. They can be treated as the same process and in
reality they are quantum mechanically but differ only in how Raman photons scatter versus those of fluorescence.

Phosphorescence 

Phosphorescence is the same as fluorescence except upon excitation to a singlet state there is an interconversion step that converts
the initial singlet state to a triplet state upon relaxation. This process is longer than fluorescence and can last microseconds to
several minutes. However despite the singlet to triplet conversion the transition moment integral still holds true and the symmetry
of ground state and final state still need to contain the totally symmetric representation.
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Symmetry 

Assume that we have a molecule in some initial state . We want to determine which final states  can be accessed by
absorption of a photon. Recall that for an integral to be non-zero, the representation for the integrand must contain the totally
symmetric irreducible representation. The integral we want to evaluate is

so we need to determine the symmetry of the function . As we learned in Section , the product of two functions
transforms as the direct product of their symmetry species, so all we need to do to see if a transition between two chosen states is
allowed is work out the symmetry species of ,  and  , take their direct product, and see if it contains the totally symmetric
irreducible representation for the point group of interest. Equivalently (as explained in Section ), we can take the direct product
of the irreducible representations for  and  and see if it contains the irreducible representation for . This is best illustrated
using a couple of examples.

Earlier in the course, we learned how to determine the symmetry molecular orbitals. The symmetry of an electronic state is found
by identifying any unpaired electrons and taking the direct product of the irreducible representations of the molecular orbitals in
which they are located. The ground state of a closed-shell molecule, in which all electrons are paired, always belongs to the totally
symmetric irreducible representation . As an example, the electronic ground state of , which belongs to the  point group,
has  symmetry. To find out which electronic states may be accessed by absorption of a photon, we need to determine the
irreducible representations for the electric dipole operator . Light that is linearly polarized along the , , and  axes transforms
in the same way as the functions , , and  in the character table . From the  character table, we see that - and -polarized
light transforms as , while -polarized light transforms as . Therefore:

i. For - or -polarized light,  transforms as . This means that absorption of - or -polarized light by
ground-state  (see figure below left) will excite the molecule to a state of  symmetry.

ii. For -polarized light,  transforms as . Absorption of -polarized light by ground state  (see
figure below right) will excite the molecule to a state of  symmetry.

Of course, the photons must also have the appropriate energy, in addition to having the correct polarization to induce a transition.

We can carry out the same analysis for , which belongs to the  point group. We showed previously that  has three
molecular orbitals of symmetry, two of  symmetry, and one of  symmetry, with the ground state having  symmetry. In
the  point group, -polarized light has  symmetry, and can therefore be used to excite electronic states of this symmetry; -
polarized light has  symmetry, and may be used to access the  excited state; and -polarized light has  symmetry, and may
be used to access higher lying  states. Consider our previous molecular orbital diagram for .

The electronic ground state has two electrons in a  orbital, giving a state of  symmetry ( ). The first excited
electronic state has the configuration  and its symmetry is . It may be accessed from the ground state
by a -polarized photon. The second excited state is accessed from the ground state by exciting an electron to the  orbital. It
has the configuration , its symmetry is . Since neither -, - or -polarized light transforms as ,
this state may not be excited from the ground state by absorption of a single photon.
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