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4.3: Observable Quantities Must Be Eigenvalues of Quantum Mechanical Operators

To be introduced to the role of eigenvalue equations in obtaining observables from a system
Understand how expectation values are calculated if the wavefunctions is not an eigenstate of the operator for the
observable.

Recall, that we can identify the total energy operator, which is called the Hamiltonian operator, , as consisting of the kinetic
energy operator plus the potential energy operator.

Using this notation, we write the Schrödinger Equation as

Equation  says that the Hamiltonian operator operates on the wavefunction to produce the energy, which is a number, (a
quantity of Joules), times the wavefunction. Such an equation, where the operator, operating on a function, produces a constant
times the function, is called an eigenvalue equation. The function is called an eigenfunction, and the resulting numerical value is
called the eigenvalue. Eigen here is the German word meaning self or own.

It is a general principle of Quantum Mechanics that there is an operator for every physical observable. A physical observable is
anything that can be measured. If the wavefunction that describes a system is an eigenfunction of an operator, then the value of the
associated observable is extracted from the eigenfunction by operating on the eigenfunction with the appropriate operator. The
value of the observable for the system is the eigenvalue, and the system is said to be in an eigenstate. Equation  states this
principle mathematically for the case of energy as the observable.

If a system is described by the eigenfunction  of an operator  then the value measured for the observable property
corresponding to  will always be the eigenvalue , which can be calculated from the eigenvalue equation.

Consider a general real-space operator . When this operator acts on a general wavefunction  the result is usually a
wavefunction with a completely different shape. However, there are certain special wavefunctions which are such that when  acts
on them the result is just a multiple of the original wavefunction. These special wavefunctions are called eigenstates, and the
multiples are called eigenvalues. Thus, if

where  is a complex number, then  is called an eigenstate of  corresponding to the eigenvalue .

Suppose that  is an operator corresponding to some physical dynamical variable. Consider a particle whose wavefunction is .
The expectation of value  in this state is simply

where use has been made of Equation  and the normalization condition. Moreover,
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 Postulate III: Obtaining Observables Requires Solving Eigenvalue Problems
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Â a

|Ψ⟩ = a|Ψ⟩Â (4.3.3)
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So the variance of  is

The fact that the variance is zero implies that every measurement of  is bound to yield the same result: namely, . Thus, the
eigenstate  is a state which is associated with a unique value of the dynamical variable corresponding to . This unique value is
simply the associated eigenvalue determined by Equation .

Expectation Values 

We have seen that  is the probability density of a measurement of a particle's displacement yielding the value  at time .
Suppose that we made a large number of independent measurements of the displacement on an equally large number of identical
quantum systems. In general, measurements made on different systems will yield different results. However, from the definition of
probability, the mean of all these results is simply

Here,  is called the expectation value of . Similarly the expectation value of any function of  is

The average value of an observable measurement of a state in (normalized) wavefunction  with operator  is given by the
expectation value :

If an unnormalized wavefunction where used, then Equation  changes to

The denominator is just the normalization requirement discussed earlier. In general, the results of the various different
measurements of  will be scattered around the expectation value . The degree of scatter is parameterized by the quantity
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which is known as the variance of . The square-root of this quantity, , is called the standard deviation of . We generally
expect the results of measurements of  to lie within a few standard deviations of the expectation value (Figure 4.3.1 ).

Figure 4.3.1 : A plot of a normal distribution (or bell-shaped curve) where each band has a width of 1 standard deviation. image usd
with permission from Wikipedia.

For a particle in a box in its ground state, calculate the expectation value of the

a. position,
b. the linear momentum,
c. the kinetic energy, and
d. the total energy

Solution
First the wavefunction needs to be defined. From the particle in the box solutions, the ground state wavefunction ( ) is

We can confirm that the wavefunction is normalized.

Hence, the Equation  is the relevant equation to use.

Solution a
The expectation value of the position is:

Solution b
The expectation value of the momentum is:
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Solution c
The expectation value of the kinetic energy is:

A position "on average" is in the middle of the box ( ). It has equal probability of traveling towards the left or right, so the
average momentum and velocity must be zero.

Solution d
The average kinetic energy must be equal to the total energy of the ground state of the particle in the box, as there is no other
energy component (i.e, ).

Expanding the Wavefunction 
It is also possible to demonstrate that the eigenstates of an operator attributed to a observable form a complete set (i.e., that any
general wavefunction can be written as a linear combination of these eigenstates). However, the proof is quite difficult, and we
shall not attempt it here.

In summary, given an operator , any general wavefunction, , can be written

where the  are complex weights, and the  are the properly normalized (and mutually orthogonal) eigenstates of : i.e.,

where  is the eigenvalue corresponding to the eigenstate , and

Here,  is called the Kronecker delta-function, and takes the value unity when its two indices are equal, and zero otherwise. It
follows from Equations  and  that

Thus, the expansion coefficients in Equation  are easily determined, given the wavefunction  and the eigenstates .
Moreover, if  is a properly normalized wavefunction then Equations  and  yield
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A =ϕi aiϕi

ai ϕi

dx = .∫
∞

−∞

ϕ∗
i ϕj δij (4.3.13)

δij
4.3.10 4.3.13

= ψdx.ci ∫
∞

−∞

ϕ∗
i (4.3.14)

4.3.14 ψ ϕi

ψ 4.3.10 4.3.13

| = 1.∑
i

ci|
2

 Collapsing the Wavefunction
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Wavefunction collapse is said to occur when a wavefunction—initially in a superposition of several eigenstates—appears to
reduce to a single eigenstate (by "observation"). A particle (or a system in general) can be found in a given state .
Suppose now a measurement is performed on the wavefuction to characterize a specific property of the system.

The measurement of position (with the position operator) effectively collapses this wavefunction that is a superposition of
position eigenstates, which are delta-functions and are continuous - i.e. not quantized. Using a different measurement operation
may in quantized values (CC BY-NC 4.0; Ümit Kaya via LibreTexts)

Mathematically, an operator  is associated with this measurement process, which you suppose has a complete orthonormal
set of eigenvalues:  that is typically an infinite set of functionals that depend on quantum number . The wavefunction 
can be expand and a set of basis functions can be selected to specifies the wavefunction is the coefficients  of the
expansion. Therefore, if the system is perturbed, then your wavefunction will have another set of coefficients .
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The measurement of position (with the position operator) does not collapse this wavefunction since it is in a position eigenstate
in contrast to the wavefunction above. Using a different measurement operation (e.g., kinetic energy) may "collapse" the
wavefunction into a different eigenstate (CC BY-NC 4.0; Ümit Kaya via LibreTexts)

If you wavefunction is in the eigenstate of the operator, then each measurement via that operator will give the same result.
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