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7.4: Perturbation Theory Expresses the Solutions in Terms of Solved Problems

Use perturbation theory to approximate the energies of systems as a series of perturbation of a solved system.
Use perturbation theory to approximate the wavefunctions of systems as a series of perturbation of a solved system.

It is easier to compute the changes in the energy levels and wavefunctions with a scheme of successive corrections to the zero-field
values. This method, termed perturbation theory, is the single most important method of solving problems in quantum mechanics
and is widely used in atomic physics, condensed matter and particle physics. Perturbation theory is another approach to finding
approximate solutions to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the
technique is a middle step that breaks the problem into "solvable" and "perturbation" parts. Perturbation theory is applicable if the
problem at hand cannot be solved exactly, but can be formulated by adding a "small" term to the mathematical description of the
exactly solvable problem.

Figure 7.4.1 : Perturbed Energy Spectrum. (CC BY-SA 2.0, Frontier via Wikipedia)

We begin with a Hamiltonian  having known eigenstates and eigenenergies:

The task is to find how these eigenstates and eigenenergies change if a small term  (an external field, for example) is added to
the Hamiltonian, so:

That is to say, on switching on  changes the wavefunctions:

and energies (Figure 7.4.1 ):

The basic assumption in perturbation theory is that  is sufficiently small that the
leading corrections are the same order of magnitude as  itself, and the true energies
can be better and better approximated by a successive series of corrections, each of order 

 compared with the previous one.

The strategy is to expand the true wavefunction and corresponding eigenenergy as series in . These series are then fed into

Equation , and terms of the same order of magnitude in  on the two sides are set equal. The equations thus generated
are solved one by one to give progressively more accurate results.

To make it easier to identify terms of the same order in  on the two sides of the equation, it is convenient to introduce a

dimensionless parameter  which always goes with , and then expand both eigenstates and eigenenergies as power series in ,
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where  is how many terms in the expansion we are considering. The ket  is multiplied by  and is therefore of order 
.

 is purely a bookkeeping device: we will set it equal to 1 when we are through! It’s just
there to keep track of the orders of magnitudes of the various terms.

For example, in first order perturbation theory, Equations  are truncated at  (and setting ):

However, let's consider the general case for now. Adding the full expansions for the eigenstate (Equation ) and energies
(Equation ) into the Schrödinger equation for the perturbation Equation  in

we have

We’re now ready to match the two sides term by term in powers of . Note that the zeroth-order term, of course, just gives back the
unperturbed Schrödinger Equation (Equation ).

Let's look at Equation  with the first few terms of the expansion:

Collecting terms in order of  and coloring to indicate different orders

If we expanded Equation  further we could express the energies and wavefunctions in higher order components.

Zero-Order Terms ( ) 
Collecting the zero order terms in the expansion (black terms in Equation ) results in just the Schrödinger Equation for the
unperturbed system

First-Order Expression of Energy ( ) 
The summations in Equations , , and  can be truncated at any order of . For example, the first order perturbation
theory has the truncation at . Matching the terms that linear in  (red terms in Equation ) and setting  on both
sides of Equation :

Equation  is the key to finding the first-order change in energy . Taking the inner product of both sides with :

|n⟩

En

= | ⟩∑
i

m

λi ni

=∑
i=0

m

λiE i
n

(7.4.5)

(7.4.6)

m | ⟩ni λi

( /H 1 H o)i

λ

7.4.5 m = 1 λ = 1

|n⟩

En

≈ | ⟩+| ⟩no n1

≈ +Eo
n E1

n

(7.4.7)

(7.4.8)

7.4.5
7.4.6 7.4.2

( +λ )|n⟩ = |n⟩Ĥ
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o
no Eo

n no (7.4.14)

λ = 1

7.4.5 7.4.6 7.4.10 λ

λ = 1 λ 7.4.13 λ = 1
7.4.13

| ⟩+ | ⟩ = | ⟩+ | ⟩Ĥ
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since operating the zero-order Hamiltonian on the bra wavefunction (this is just the Schrödinger equation; Equation ) is

and via the orthonormality of the unperturbed  wavefunctions both

and Equation  can be simplified

since the unperturbed set of eigenstates are orthogonal (Equation ) and we can cancel the other term on each side of the
equation, we find that

The first-order change in the energy of a state resulting from adding a perturbing term 
 to the Hamiltonian is just the expectation value of  in the unperturbed

wavefunctions.

That is, the first order energies (Equation ) are given by

Estimate the energy of the ground-state and first excited-state wavefunction within first-order perturbation theory of a system
with the following potential energy

Solution
The first step in any perturbation problem is to write the Hamiltonian in terms of a unperturbed component that the solutions
(both eigenstates and energy) are known and a perturbation component (Equation ). For this system, the unperturbed
Hamilonian and solutions is the particle in an infiinitely high box and the perturbation is a shift of the potential within the box
by .

Using Equation  for the first-order term in the energy of the ground-state

with the wavefunctions known from the particle in the box problem

At this stage we can do two problems independently (i.e., the ground-state with  and the first excited-state ). However, in
this case, the first-order perturbation to any particle-in-the-box state can be easily derived.

or better yet, instead of evaluating this integrals we can simplify the expression
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so via Equation , the energy of each perturbed eigenstate is

While this is the first order perturbation to the energy, it is also the exact value.

Estimate the energy of the ground-state wavefunction within first-order perturbation theory of a system with the following
potential energy

Solution
As with Example 7.4.1 , we recognize that unperturbed component of the problem (Equation ) is the particle in an
infinitely high well. For this system, the unperturbed Hamiltonian and solution is the particle in an infinitely high box and the
perturbation is a shift of the potential within half a box by . This is essentially a step function.

Using Equation  for the first-order term in the energy of the any state

The second integral is zero and the first integral is simplified to

this is evaluated to

The energy of each perturbed eigenstate, via Equation , is

First-Order Expression of Wavefunction ( ) 

The general expression for the first-order change in the wavefunction is found by taking the inner product of the first-order
expansion (Equation ) with the bra  with ,

Last term on right side of Equation 
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The last integral on the right hand side of Equation  is zero, since  so

and

First term on right side of Equation 

The first integral is more complicated and can be expanded back into the 

since

so

and therefore the wavefunction corrected to first order is:

Equation  is essentially is an expansion of the unknown wavefunction correction as a linear combination of known
unperturbed wavefunctions :

with the expansion coefficients determined by

This is justified since the set of original zero-order wavefunctions forms a complete basis set that can describe any function.
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Figure 7.4.2 : The first order perturbation of the ground-state wavefunction for a perturbed (left potential) can be expressed as a
linear combination of all excited-state wavefunctions of the unperturbed potential (Equation ), shown as a harmonic
oscillator in this example (right potential). Note that the ground-state harmonic oscillator wavefunction is not part of this
expression and all wavefunctions need to be included in the expression, not just the first eight wavefunctions shown here. (CC BY
4.0; Delmar Larsen)

Calculating the first order perturbation to the wavefunctions is in general an infinite sum of off diagonal matrix elements of 
(Figure 7.4.2 ).

However, the denominator argues that terms in this sum will be weighted by states that are of comparable energy. That means
in principle, these sum can be truncated easily based off of some criterion.
Another point to consider is that many of these matrix elements will equal zero depending on the symmetry of the  basis
and  (e.g., some  integrals in Equation  could be zero due to the integrand having an odd symmetry; see
Example 7.4.3 ).

The denominators in Equation  argues that terms in this sum will be preferentially
dictated by states that are of comparable energy. That is, eigenstates that have energies
significantly greater or lower than the unperturbed eigenstate will weakly contribute to
the perturbed wavefunction.

Estimate the energy of the ground-state wavefunction associated with the Hamiltonian using perturbation theory

Solution
The first step in a perturbation theory problem is to identify the reference system with the known eigenstates and energies. For
this example, this is clearly the harmonic oscillator model.

Energy

The first steps in flowchart for applying perturbation theory (Figure 7.4.1 ) is to separate the Hamiltonian of the difficult (or
unsolvable) problem into a solvable one with a perturbation. For this case, we can rewrite the Hamiltonian as

where

 is the Hamitonian for the standard Harmonic Oscillator with known eigenstates and eigenenergies
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 is the pertubtiation

The first order perturbation is given by Equation , which for this problem is

Notice that the integrand has an odd symmetry (i.e., ) with the perturbation Hamiltonian being odd and the
ground state harmonic oscillator wavefunctions being even. So

This means to first order pertubation theory, this cubic terms does not alter the ground state energy (via Equation .
However, this is not the case if second-order perturbation theory were used, which is more accurate (not shown).

Wavefunction

Calculating the first order perturbation to the wavefunctions (Equation ) is more difficult than energy since multiple
integrals must be evaluated (an infinite number if symmetry arguments are not applicable). The harmonic oscillator
wavefunctions are often written in terms of , the unscaled displacement coordinate:

with 

and

Let's consider only the first six wavefunctions that use these Hermite polynomials :

The first order perturbation to the ground-state wavefunction (Equation )

given these truncated wavefunctions (we should technically use the infinite sum) and that we are considering only the ground
state with :

We can use symmetry of the perturbation and unperturbed wavefunctions to solve the integrals above. We know that the
unperturbed harmonic oscillator wavefunctions  alternate between even (when  is even) and odd (when  is odd) as
shown previously. Since the perturbation is an odd function, only when  with  would these integrals be
non-zero (i.e., for ).
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So of the original five unperturbed wavefunctions, only , , and  mix to make the first-order perturbed
ground-state wavefunction so

At this stage, the integrals have to be manually calculated using the defined wavefuctions above, which is left as an exercise.
Notice that each unperturbed wavefunction that can "mix" to generate the perturbed wavefunction will have a reciprocally
decreasing contribution (w.r.t. energy) due to the growing denominator in Equation .

Use perturbation theory to estimate the energy of the ground-state wavefunction associated with this Hamiltonian

Answer

The model that we are using is the harmonic oscillator model which has a Hamiltonian

Making the perturbed Hamiltonian

To find the perturbed energy we approximate it using Equation 

where is the wavefunction of the ground state harmonic oscillator

When we substitute in the Hamiltonian and the wavefunction we get

Changing this into integral form, and combining the wavefunctions,

Now we use the integral table value

Where we plug in  and  for our integral
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 Exercise 7.4.3 : Harmonic Oscillator with a Quartic Perturbation
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This is our perturbed energy.

Now we have to find our ground state energy using the formula for the energy of a harmonic oscillator that we already
know,

Where in the ground state  so the energy for the ground state of the quantum harmonic oscillator is

Putting both of our energy terms together gives us the ground state energy of the wavefunction of the given Hamiltonian,

Second-Order Terms ( ) 

There are higher energy terms in the expansion of Equation  (e.g., the blue terms in Equation ), but are not discussed
further here other than noting the whole perturbation process is an infinite series of corrections that ideally converge to the correct
answer. It is truncating this series as a finite number of steps that is the approximation. The general approach to perturbation theory
applications is giving in the flowchart in Figure 7.4.1 .

Figure 7.4.1 : Simplified algorithmic flowchart of the Perturbation Theory approximation showing the first two perturbation orders.
The process can be continued to third and higher orders. (CC BY 4.0; Delmar Larsen)

It should be noted that there are problems that cannot be solved using perturbation theory, even when the perturbation is very
weak, although such problems are the exception rather than the rule. One such case is the one-dimensional problem of free
particles perturbed by a localized potential of strength . Switching on an arbitrarily weak attractive potential causes the 
free particle wavefunction to drop below the continuum of plane wave energies and become a localized bound state with
binding energy of order . However, changing the sign of  to give a repulsive potential there is no bound state, the lowest
energy plane wave state stays at energy zero. Therefore the energy shift on switching on the perturbation cannot be represented
as a power series in , the strength of the perturbation.
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