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32.9: Series and Limits

Maclaurin Series 

A function  can be expressed as a series in powers of  as long as  and all its derivatives are finite at . For example,

we will prove shortly that the function  can be expressed as the following infinite sum:

We can write this statement in this more elegant way:

If you are not familiar with this notation, the right side of the equation reads “sum from  to  of ” When , 
, when , , when , , etc (compare with Equation ). The term “series in powers of ” means

a sum in which each summand is a power of the variable . Note that the number 1 is a power of  as well ( ). Also, note
that both Equations  and  are exact, they are not approximations.

Similarly, we will see shortly that the function  can be expressed as another infinite sum in powers of  (i.e. a Maclaurin series)
as:

Or, more elegantly:

where  is read “n factorial” and represents the product . If you are not familiar with factorials, be sure you
understand why . Also, remember that by definition , not zero.

At this point you should have two questions: 1) how do I construct the Maclaurin series of a given function, and 2) why on earth

would I want to do this if  and  are fine-looking functions as they are. The answer to the first question is easy, and

although you should know this from your calculus classes we will review it again in a moment. The answer to the second question
is trickier, and it is what most students find confusing about this topic. We will discuss different examples that aim to show a
variety of situations in which expressing functions in this way is helpful.

How to obtain the Maclaurin Series of a Function

In general, a well-behaved function (  and all its derivatives are finite at ) will be expressed as an infinite sum of powers
of  like this:

Be sure you understand why the two expressions in Equation  are identical ways of expressing an infinite sum. The terms 
are called the coefficients, and are constants (that is, they are NOT functions of ). If you end up with the variable  in one of your
coefficients go back and check what you did wrong! For example, in the case of  (Equation ), 

. In the example of Equation , all the coefficients equal 1. We just saw that two

very different functions can be expressed using the same set of functions (the powers of ). What makes  different from 

are the coefficients . As we will see shortly, the coefficients can be negative, positive, or zero.

How do we calculate the coefficients? Each coefficient is calculated as:
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That is, the -th coefficient equals one over the factorial of  multiplied by the -th derivative of the function  evaluated at

zero. For example, if we want to calculate  for the function , we need to get the second derivative of ,

evaluate it at , and divide the result by . Do it yourself and verify that . In the case of  we need the zeroth-order

derivative, which equals the function itself (that is, , because ). It is important to stress that although the

derivatives are usually functions of , the coefficients are constants because they are expressed in terms of the derivatives
evaluated at .

Note that in order to obtain a Maclaurin series we evaluate the function and its derivatives at . This procedure is also called
the expansion of the function around (or about) zero. We can expand functions around other numbers, and these series are called
Taylor series (see Section 3).

Obtain the Maclaurin series of .

Solution
We need to obtain all the coefficients ( ). Because there are infinitely many coefficients, we will calculate a few
and we will find a general pattern to express the rest. We will need several derivatives of , so let’s make a table:

0 0

1 1

2 0

3 -1

4 0

5 1

Remember that each coefficient equals  divided by , therefore:

0 1 0

1 1 1

2 2 0

3

4 0

5

This is enough information to see the pattern (you can go to higher values of  if you don’t see it yet):

1. the coefficients for even values of  equal zero.
2. the coefficients for  equal 
3. the coefficients for  equal .
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Recall that the general expression for a Maclaurin series is , and replace  by the coefficients
we just found:

This is a correct way of writing the series, but in the next example we will see how to write it more elegantly as a sum.

Express the Maclaurin series of  as a sum.

Solution
In the previous example we found that:

We want to express this as a sum:

The key here is to express the coefficients  in terms of . We just concluded that 1) the coefficients for even values of 
equal zero, 2) the coefficients for  equal  and 3) the coefficients for  equal . How
do we put all this information together in a unique expression? Here are three possible (and equally good) answers:

This may look impossibly hard to figure out, but let me share a few tricks with you. First, we notice that the sign in Equation 
 alternates, starting with a “+”. A mathematical way of doing this is with a term  if your sum starts with , or 

 if you sum starts with . Note that  does the same trick.

0 1 -1 1

1 -1 1 -1

2 1 -1 1

3 -1 1 -1

We have the correct sign for each term, but we need to generate the numbers  Notice that the number “1” can

be expressed as . To do this, we introduce the second trick of the day: we will use the expression  to generate odd

numbers (if you start your sum with ) or  (if you start at ). Therefore, the expression  gives 

, which is what we need in the first and third examples (when the sum starts at zero).

Lastly, we need to use only odd powers of . The expression  generates the terms  when you start at ,
and  achieves the same when you start your series at .
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Confused about writing sums using the sum operator ? This video will help: http://tinyurl.com/lvwd36q

Need help? The links below contain solved examples.

External links:

Finding the maclaurin series of a function I: http://patrickjmt.com/taylor-and-maclaurin-series-example-1/

Finding the maclaurin series of a function II: http://www.youtube.com/watch?v= dp2ovDuWhro

Finding the maclaurin series of a function III: http://www.youtube.com/watch?v= WWe7pZjc4s8

Graphical Representation

From Equation  and the examples we discussed above, it should be clear at this point that any function whose derivatives are
finite at  can be expressed by using the same set of functions: the powers of . We will call these functions the basis set. A
basis set is a collection of linearly independent functions that can represent other functions when used in a linear combination.

Figure : Some of the functions of the basis set for a Maclaurin expansion (CC BY-NC-SA; Marcia Levitus)

Figure  is a graphic representation of the first four functions of this basis set. To be fair, the first function of the set is ,
so these would be the second, third, fourth and fifth. The full basis set is of course infinite in length. If we mix all the functions of
the set with equal weights (we put the same amount of  than we put  or ), we obtain  (Equation . If we
use only the odd terms, alternate the sign starting with a ‘+’, and weigh each term less and less using the expression 
for the  term, we obtain  (Equation ). This is illustrated in Figure , where we multiply the even powers of 

 by zero, and use different weights for the rest. Note that the ‘etcetera’ is crucial, as we would need to include an infinite number
of functions to obtain the function  exactly.
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Figure : Construction of  using the powers of  as the basis set. (CC BY-NC-SA; Marcia Levitus)

Although we need an infinite number of terms to express a function exactly (unless the function is a polynomial, of course), in
many cases we will observe that the weight (the coefficient) of each power of  gets smaller and smaller as we increase the power.
For example, in the case of , the contribution of  is  of the contribution of  (in absolute terms), and the contribution
of  is . This tells you that the first terms are much more important than the rest, although all are needed if we want the
sum to represent  exactly. What if we are happy with a ‘pretty good’ approximation of ? Let’s see what happens if we use
up to  and drop the higher terms. The result is plotted in blue in Figure  together with  in red. We can see that the
function  is a very good approximation of  as long as we stay close to . As we move further away from the
origin the approximation gets worse and worse, and we would need to include higher powers of  to get it better. This should be
clear from eq. [series:sin], since the terms  get smaller and smaller with increasing  if  is a small number. Therefore, if  is

small, we could write , where the symbol  means approximately equal.
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Figure : Approximation of  up to the third power of . The curve in blue is the function , and the curve in
red is  (CC BY-NC-SA; Marcia Levitus)

But why stopping at  and not  or 5? The above argument suggests that the function  might be a good approximation of
 around , when the term  is much smaller than the term . This is in fact this is the case, as shown in Figure .

We have seen that we can get good approximations of a function by truncating the series (i.e. not using the infinite terms).
Students usually get frustrated and want to know how many terms are ‘correct’. It takes a little bit of practice to realize there is no
universal answer to this question. We would need some context to analyze how good of an approximation we are happy with. For
example, are we satisfied with the small error we see at  in Figure ? It all depends on the context. Maybe we are
performing experiments where we have other sources of error that are much worse than this, so using an extra term will not
improve the overall situation anyway. Maybe we are performing very precise experiments where this difference is significant. As
you see, discussing how many terms are needed in an approximation out of context is not very useful. We will discuss this
particular approximation when we learn about second order differential equations and analyze the problem of the pendulum, so
hopefully things will make more sense then.

Figure : Approximation of  up to the first power of . The curve in blue is the function , and the curve in red is 
(CC BY-NC-SA; Marcia Levitus)
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Linear Approximations 

If you take a look at Equation  you will see that we can always approximate a function as  as long as  is small.
When we say ‘any function’ we of course imply that the function and all its derivatives need to be finite at . Looking at the
definitions of the coefficients, we can write:

We call this a linear approximation because Equation  is the equation of a straight line. The slope of this line is  and the
-intercept is .

A fair question at this point is ‘why are we even talking about approximations?’ What is so complicated about the functions , 
 or  that we need to look for an approximation? Are we getting too lazy? To illustrate this issue, let’s consider the

problem of the pendulum, which we will solve in detail in the chapter devoted to differential equations. The problem is illustrated
in Figure , and those of you who took a physics course will recognize the equation below, which represents the law of
motion of a simple pendulum. The second derivative refers to the acceleration, and the  term is due to the component of the net
force along the direction of motion. We will discuss this in more detail later in this semester, so for now just accept the fact that, for
this system, Newton’s law can be written as:

Figure : A rigid pendulum with massless and inextensible cord of length . The motion is assumed to occur in two
dimensions, and the friction is assumed to be negligible. The mass of the object is , and  is the acceleration due to gravity. (CC
BY-NC-SA; Marcia Levitus)

This equation should be easy to solve, right? It has only a few terms, nothing too fancy other than an innocent sine function...How
difficult can it be to obtain ? Unfortunately, this differential equation does not have an analytical solution! An analytical
solution means that the solution can be expressed in terms of a finite number of elementary functions (such as sine, cosine,
exponentials, etc). Differential equations are sometimes deceiving in this way: they look simple, but they might be incredibly hard
to solve, or even impossible! The fact that we cannot write down an analytical solution does not mean there is no solution to the
problem. You can swing a pendulum and measure  and create a table of numbers, and in principle you can be as precise as you
want to be. Yet, you will not be able to create a function that reflects your numeric results. We will see that we can solve equations
like this numerically, but not analytically. Disappointing, isn’t it? Well... don’t be. A lot of what we know about molecules and
chemical reactions came from the work of physical chemists, who know how to solve problems using numerical methods. The fact
that we cannot obtain an analytical expression that describes a particular physical or chemical system does not mean we cannot
solve the problem numerically and learn a lot anyway!

But what if we are interested in small displacements only (that is, the pendulum swings close to the vertical axis at all times)? In
this case, , and as we saw  (see Figure ). If this is the case, we have now:

As it turns out, and as we will see in Chapter 2, in this case it is very easy to obtain the solution we are looking for:

This solution is the familiar ‘back and forth’ oscillatory motion of the pendulum you are familiar with. What you might have not
known until today is that this solution assumes  and is therefore valid only if !

There are lots of ‘hidden’ linear approximations in the equations you have learned in your physics and chemistry courses. You may
recall your teachers telling you that a give equation is valid only at low concentrations, or low pressures, or low... you hopefully get
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the point. A pendulum is of course not particularly interesting when it comes to chemistry, but as we will see through many
examples during the semester, oscillations, generally speaking, are. The example below illustrates the use of series to a problem
involving diatomic molecules, but before discussing it we need to provide some background.

The vibrations of a diatomic molecule are often modeled in terms of the so-called Morse potential. This equation does not provide
an exact description of the vibrations of the molecule under any condition, but it does a pretty good job for many purposes.

Here,  is the distance between the nuclei of the two atoms,  is the distance at equilibrium (i.e. the equilibrium bond length), 
is the dissociation energy of the molecule,  is a constant that measures the strength of the bond, and  is the potential energy.
Note that  is the distance at which the potential energy is a minimum, and that is why we call this the equilibrium distance. We
would need to apply energy to separate the atoms even more, or to push them closer (Figure ).

At room temperature, there is enough thermal energy to induce small vibrations that displace the atoms from their equilibrium
positions, but for stable molecules, the displacement is very small: . In the next example we will prove that under
these conditions, the potential looks like a parabola, or in mathematical terms,  is proportional to the square of the
displacement. This type of potential is called a ’harmonic potential’. A vibration is said to be simple harmonic if the potential is
proportional to the square of the displacement (as in the simple spring problems you may have studied in physics).

Figure : The Morse potential (CC BY-NC-SA; Marcia Levitus)

Expand the Morse potential as a power series and prove that the vibrations of the molecule are approximately simple harmonic
if the displacement  is small.

Solution
The relevant variable in this problem is the displacement , not the actual distance . Let’s call the displacement 

, and let’s rewrite Equation  as

The goal is to prove that  (i.e. the potential is proportional to the square of the displacement) when . The
constant  is the proportionality constant. We can approach this in two different ways. One option is to expand the function
shown in Equation  around zero. This would be correct, but it but involve some unnecessary work. The variable 
appears only in the exponential term, so a simpler option is to expand the exponential function, and plug the result of this
expansion back in Equation . Let’s see how this works:

We want to expand  as , and we know that the coefficients are  

The coefficient  is . The first three derivatives of  are

When evaluated at  we obtain, 
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and therefore  for .

Therefore,

and

From the last result, when , we know that the terms in  will be increasingly smaller, so  and 
.

Plugging this result in Equation  we obtain , so we demonstrated that the potential is proportional to
the square of the displacement when the displacement is small (the proportionality constant is ). Therefore, stable
diatomic molecules at room temperatures behave pretty much like a spring! (Don’t take this too literally. As we will discuss
later, microscopic springs do not behave like macroscopic springs at all).

Taylor Series 

Before discussing more applications of Maclaurin series, let’s expand our discussion to the more general case where we expand a
function around values different from zero. Let’s say that we want to expand a function around the number . If , we call the
series a Maclaurin series, and if  we call the series a Taylor series. Because Maclaurin series are a special case of the more
general case, we can call all the series Taylor series and omit the distinction. The following is true for a function  as long as the
function and all its derivatives are finite at :

The coefficients are calculated as

Notice that instead of evaluating the function and its derivatives at  we now evaluate them at , and that the basis set is
now  instead of . A Taylor series will be a good approximation of the function
at values of  close to , in the same way Maclaurin series provide good approximations close to zero.

To see how this works let’s go back to the exponential function. Recall that the Maclaurin expansion of  is shown in Equation 
. We know what happens if we expand around zero, so to practice, let’s expand around . The coefficient  is 

. All the derivatives are , so  Therefore,  and the series is therefore

We can use the same arguments we used before to conclude that  if . If , , and the terms 
 will be smaller and smaller and will contribute less and less to the sum. Therefore,

This is the equation of a straight line with slope  and -intercept 0. In fact, from Equation  we can see that all functions will
look linear at values close to . This is illustrated in Figure , which shows the exponential function (red) together with the
functions  (magenta) and  (blue). Not surprisingly, the function  provides a good approximation of  at values close
to zero (see Equation ) and the function  provides a good approximation around  (Equation ).
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Figure : Two linear approximations of the exponential function. The function  is plotted in red together with the function 
 (magenta) and  (blue). (CC BY-NC-SA; Marcia Levitus)

Expand  about 

Solution

The derivatives of  are:

and therefore,

To calculate the coefficients, we need to divide by :

The series is therefore:

Note that we start the sum at  because , so the term for  does not have any contribution.

Need help? The links below contain solved examples.

External links:

Finding the Taylor series of a function I: http://patrickjmt.com/taylor-and-maclaurin-series-example-2/

32.9.1 ex

y = 1 +x y = ex

 Example :32.9.1

f(x) = lnx x = 1

f(x) = + (x−h) + (x−h +. . . + (x−h , =a0 a1 a2 )2 an )n an
1

n!
( )

fdn

dxn h

= f(1) = ln(1) = 0a0

lnx

(x) = 1/x, (x) = −1/ , (x) = 2/ , (x) = −6/ , (x) = 24/ . . .f ′ f ′′ x2 f ′′′ x3 f (4) x4 f (5) x5

(1) = 1, (1) = −1, (1) = 2, (1) = −6, (1) = 24....f ′ f ′′ f ′′′ f (4) f (5)

n!

= (1)/1! = 1a1 f ′

= (1)/2! = −1/2a2 f ′′

= (1)/3! = 2/3! = 1/3a3 f ′′′

= (1)/4! = −6/4! = −1/4a4 f (4)

= (−1 /nan )n+1

f(x) = 0 +1(x−1) −1/2(x−1 +1/3(x−1 . . . = (x−1)2 )3 ∑
n=1

∞ (−1)n+1

n
)n

n = 1 = 0a0 n = 0
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Other Applications of Mclaurin and Taylor series 

So far we have discussed how we can use power series to approximate more complex functions around a particular value. This is
very common in physical chemistry, and you will apply it frequently in future courses. There are other useful applications of Taylor
series in the physical sciences. Sometimes, we may use relationships to derive equations or prove relationships. Example 
illustrates this last point.

Calculate the following sum (  is a positive constant)

Solution
Let’s ‘spell out’ the sum:

The sum within the brackets is exactly . This is exact, and not an approximation, because we have all infinite terms.

Therefore,

This would require that you recognize the term within brackets as the Maclaurin series of the exponential function. One
simpler version of the problem would be to ask you to prove that the sum equals 1.

There are more ways we can use Taylor series in the physical sciences. We will see another type of application when we study
differential equations. In fact, power series are extremely important in finding the solutions of a large number of equations that
arise in quantum mechanics. The description of atomic orbitals, for example, require that we solve differential equations that
involve expressing functions as power series.
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λ

∑
k=0

∞ λke−λ

k!

= [1 + + + . . . ]∑
k=0

∞ λke−λ

k!
e−λ λ1

1!

λ2

2!

λ3

3!

eλ

= = 1∑
k=0

∞ λke−λ

k!
e−λeλ
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