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3.2: Linear Operators in Quantum Mechanics

Classical-Mechanical quantities are represented by linear operators in Quantum Mechanics
Understand that "algebra" of scalars and functions do not always to operators (specifically the commutative property)

The bracketed object in the time-independent Schrödinger Equation (in 1D)

is called an operator. An operator is a generalization of the concept of a function applied to a function. Whereas a function is a rule
for turning one number into another, an operator is a rule for turning one function into another. For the time-independent
Schrödinger Equation, the operator of relevance is the Hamiltonian operator (often just called the Hamiltonian) and is the most
ubiquitous operator in quantum mechanics.

We often (but not always) indicate that an object is an operator by placing a 'hat' over it, eg, . So time-independent Schrödinger
Equation can then be simplified from Equation  to

Equation  says that the Hamiltonian operator operates on the wavefunction to produce the energy, which is a scalar (i.e., a
number, a quantity and observable) times the wavefunction. Such an equation, where the operator, operating on a function,
produces a constant times the function, is called an eigenvalue equation. The function is called an eigenfunction, and the resulting
numerical value is called the eigenvalue. Eigen here is the German word meaning self or own. We will discuss this in detail in later
Sections.

Fundamental Properties of Operators 

Most properties of operators are straightforward, but they are summarized below for completeness.

1. The sum and difference of two operators  and  are given by

2. The product of two operators is defined by

3. Two operators are equal if

for all functions .
4. The identity operator  does nothing (or multiplies by 1)

5. The -th power of an operator  is defined as  successive applications of the operator, e.g.

6. The associative law holds for operators

7. The commutative law does not generally hold for operators. In general, but not always,
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To help identify if the inequality in Equation  holds for any two specific operators, we define the commutator.

It is convenient to define the commutator of  and 

If  and  commute, then

If the commutator is not zero, the order of operating matters and the operators are said to "not commute." Moreover, this property
applies

Linear Operators 
The action of an operator that turns the function  into the function  is represented by

The most common kind of operator encountered are linear operators which satisfies the following two conditions:

and

where

 is a linear operator,
 is a constant that can be a complex number ( ), and

 and  are functions of 

If an operator fails to satisfy either Equations  or  then it is not a linear operator.

Is this operator  linear?

Solution
To confirm is an operator is linear, both conditions in Equation  must be demonstrated.

Condition A (Equation ):

From basic calculus, we know that we can use the sum rule for differentiation

Condition A is confirmed. Does Condition B (Equation ) hold?

≠ .ÂB̂ B̂Â (3.2.3)
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Condition B

(3.2.6)

Ô
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Also from basic calculus, this can be factored out of the derivative

Yes. This operator is a linear operator (this is the linear momentum operator).

Confirm if the square root operator  linear or not?

Answer

To confirm is an operator is linear, both conditions in Equations  and  must be demonstrated. Let's look first at
Condition B.

Does Condition B (Equation ) hold?

Condition B does not hold, therefore the square root operator is not linear.

The most operators encountered in quantum mechanics are linear operators.

Hermitian Operators 
An important property of operators is suggested by considering the Hamiltonian for the particle in a box:

Let  and  be arbitrary functions which obey the same boundary values as the eigenfunctions of  (e.g., they vanish at 
 and ). Consider the integral

Now, using integration by parts,

The boundary terms vanish by the assumed conditions on  and . A second integration by parts transforms Equation  to

It follows therefore that

An obvious generalization for complex functions will read

cf(x) = −iℏ cf(x)Ô
d
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cf(x)Ô = −ciℏ f(x)
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In mathematical terminology, an operator  for which

for all functions  and  which obey specified boundary conditions is classified as Hermitian or self-adjoint. Evidently, the
Hamiltonian is a Hermitian operator. It is postulated that all quantum-mechanical operators that represent dynamical variables are
Hermitian. The term is also used for specific times of matrices in linear algebra courses.

All quantum-mechanical operators that represent dynamical variables are Hermitian.

This page titled 3.2: Linear Operators in Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by S. M. Blinder.
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