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5.4: The Harmonic Oscillator Energy Levels
For a classical oscillator, we know exactly the position, velocity, and momentum as a function of time. The frequency of the
oscillator (or normal mode) is determined by the reduced mass  and the effective force constant  of the oscillating system and
does not change unless one of these quantities is changed. There are no restrictions on the energy of the oscillator, and changes in
the energy of the oscillator produce changes in the amplitude of the vibrations experienced by the oscillator.
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Figure 5.4.1 : Potential energy function and first few energy levels for harmonic oscillator. (CC BY-NC 4.0; Ümit Kaya via
LibreTexts)

For the quantum mechanical oscillator, the oscillation frequency of a given normal mode is still controlled by the mass and the
force constant (or, equivalently, by the associated potential energy function). However, the energy of the oscillator is limited to
certain values. The allowed quantized energy levels are equally spaced and are related to the oscillator frequencies as given by
Equation  and Figure 5.4.1 .
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In a quantum mechanical oscillator, we cannot specify the position of the oscillator (the exact displacement from the equilibrium
position) or its velocity as a function of time; we can only talk about the probability of the oscillator being displaced from
equilibrium by a certain amount. This probability is given by

We can, however, calculate the average displacement and the mean square displacement of the atoms relative to their equilibrium
positions. This average is just , the expectation value for , and the mean square displacement is , the expectation value

for . Similarly we can calculate the average momentum , and the mean square momentum , but we cannot specify

the momentum as a function of time.

Physically what do we expect to find for the average displacement and the average momentum? Since the potential energy function
is symmetric around , we expect values of  to be equally as likely as . The average value of  therefore should
be zero.
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These results for the average displacement and average momentum do not mean that the harmonic oscillator is sitting still. As for
the particle-in-a-box case, we can imagine the quantum mechanical harmonic oscillator as moving back and forth and therefore

having an average momentum of zero. Since the lowest allowed harmonic oscillator energy, , is  and not 0, the atoms in a

molecule must be moving even in the lowest vibrational energy state. This phenomenon is called the zero-point energy or the zero-
point motion, and it stands in direct contrast to the classical picture of a vibrating molecule. Classically, the lowest energy available
to an oscillator is zero, which means the momentum also is zero, and the oscillator is not moving.

Compare the quantum mechanical harmonic oscillator to the classical harmonic oscillator at  and .

Answer

At v=1 the classical harmonic oscillator poorly predicts the results of quantum mechanical harmonic oscillator, and
therefore reality. At v=1 the particle will be near the ground state and the classical model will predict the particle to spend
most it's time on the outer edges when the KE goes to zero and PE is at a maximum, while the quantum model says the
opposite and that the particle will be more likely to be found in the center. At v=50 the quantum model will begin to match
the classical much more closely, with the particle most likely to be found at the edges. The quantum model looking more
like the classical at higher quantum numbers can be referred to as the correspondence principle.

Since the average values of the displacement and momentum are all zero and do not facilitate comparisons among the various
normal modes and energy levels, we need to find other quantities that can be used for this purpose. We can use the root mean
square deviation (see also root-mean-square displacement) (also known as the standard deviation of the displacement) and the root-
mean-square momentum as measures of the uncertainty in the oscillator's position and momentum.

For a molecular vibration, these quantities represent the standard deviation in the bond length and the standard deviation in the
momentum of the atoms from the average values of zero, so they provide us with a measure of the relative displacement and the
momentum associated with each normal mode in all its allowed energy levels. These are important quantities to determine because
vibrational excitation changes the size and symmetry (or shape) of molecules. Such changes affect chemical reactivity, the
absorption and emission of radiation, and the dissipation of energy in radiationless transitions.

The harmonic oscillator wavefunctions form an orthonormal set; this means that all functions in the set are normalized individually

and are orthogonal to each other.

The fact that a family of wavefunctions forms an orthonormal set is often helpful in simplifying complicated integrals. We will use
these properties when we determine the harmonic oscillator selection rules for vibrational transitions in a molecule and calculate
the absorption coefficients for the absorption of infrared radiation.

Finally, we can calculate the probability that a harmonic oscillator is in the classically forbidden region. What does this tantalizing
statement mean? Classically, the maximum extension of an oscillator is obtained by equating the total energy of the oscillator to the
potential energy, because at the maximum extension all the energy is in the form of potential energy. If all the energy weren't in the
form of potential energy at this point, the oscillator would have kinetic energy and momentum and could continue to extend further
away from its rest position. Interestingly, as we show below, the wavefunctions of the quantum mechanical oscillator extend
beyond the classical limit, i.e. beyond where the particle can be according to classical mechanics.

The lowest allowed energy for the quantum mechanical oscillator is called the zero-point energy, . Using the classical

picture described in the preceding paragraph, this total energy must equal the potential energy of the oscillator at its maximum
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extension. We define this classical limit of the amplitude of the oscillator displacement as . When we equate the zero-point
energy for a particular normal mode to the potential energy of the oscillator in that normal mode, we obtain

The zero-point energy is the lowest possible energy that a quantum mechanical physical
system may have. Hence, it is the energy of its ground state.

Recall that  is the effective force constant of the oscillator in a particular normal mode and that the frequency of the normal mode
is given by Equation  which is
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