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4.4: The Time-Dependent Schrödinger Equation

Recognize the differences between the time-dependent and the time-independent Schrödinger equations
To distinguish between stationary and non-stationary wavefunctions

There are two "flavors" of Schrödinger equations: the time-dependent and the time-independent versions. While the time-
dependent Schrödinger equation predicts that wavefunctions can form standing waves (called stationary states), that if classified
and understood, then it becomes easier to solve the time-dependent Schrödinger equation for any state. Stationary states can also be
described by the time-independent Schrödinger equation (used only when the Hamiltonian is not explicitly time dependent).
However, it should be noted that the solutions to the time-independent Schrödinger equation still have time dependencies.

Time-Dependent Wavefunctions 

Recall that the time-independent Schrödinger equation

yields the allowed energies and corresponding wavefunctions. However, it does not tell us how the system evolves in time. It would
seem that something is missing, since, after all, classical mechanics tells us how the positions and velocities of a classical system
evolve in time. The time dependence is given by solving Newton's second law

But where is  in quantum mechanics? First of all, what is it that must evolve in time? The answer is that the wavefunction (and
associated probability density) must evolve. Suppose, therefore, that we prepare a system at  according to a particular
probability density  related to an amplitude  by

How will this initial amplitude  look at time  later? Note, by the way, that  does not necessarily need to be one of
the eigenstates . To address this, we refer to the time-dependent Schrödinger equation that tells us how  will evolve
starting from the initial condition :

It is important to know how it works physically and when it is sufficient to work with the time-independent version of the
Schrödinger equation (Equation ).

The time dependence of wavefunctions is governed by the Time-Dependent Schrödinger Equation (Equation ).

Stationary States 

Suppose that we are lucky enough to choose

with corresponding probability density

We will show that

From the time-dependent Schrödinger equation
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Similarly

Hence  satisfies the Time-Dependent Schrödinger Equation (Equation ).

Consider the probability density for this wavefunction: 

the probability does not change in time and for this reason,  is called a stationary state. In such a state, the energy remains
fixed at the well-defined value .

Nonstationary States 
Suppose, however, that we had chosen  to be some arbitrary linear combination of the two lowest energy states:

for example

as in the previous example. Then, the probability density at time 

For such a mixture to be possible, there must be sufficient energy in the system that there is some probability of measuring the
particle to be in its excited state.

Finally, suppose we start with a state

and we let this state evolve in time. At any point in time, the state  will be some mixture of  and , and this
mixture changes with time. Now, at some specific instance in time , we measure the energy and obtain a value . What is the
state of the system just after the measurement is made? Once we make the measurement, then we know with 100% certainty that
the energy is . From the above discussion, there is only one possibility for the state of the system, and that has to be the
wavefunction , since in this state we know with 100% certainty that the energy is . Hence, just after the measurement, the
state must be , which means that because of the measurement, any further dependence on  drops out, and for all time
thereafter, there is no dependence on . Consequently, any subsequent measurement of the energy would yield the value 
with 100% certainty. This discontinuous change in the quantum state of the system as a result of the measurement is known as the
collapse of the wavefunction. The idea that the evolution of a system can change as a result of a measurement is one of the topics
that is currently debated among quantum theorists.

The fact that measuring a quantum system changes its time evolution means that the experimenter is now coupled to the
quantum system. This observer effect means that the act of observing will influence the phenomenon being observed. In
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 The Quantum Observer Effect
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classical mechanics, this coupling does not exist. A classical system will evolve according to Newton's laws of motion
independent of whether or not we observe it. This is not true for quantum systems. The very act of observing the system
changes how it evolves in time.

Put another way, by simply observing a system, we change it!
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