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7.2: Linear Variational Method and the Secular Determinant

Understand how the variational method can be expanded to include trial wavefunctions that are a linear combination of
functions with coefficients that are the parameters to be varied.
To be able to construct secular equations to solve the minimization procedure intrinsic to the variational method approach.
To map the secular equations into the secular determinant
To understand how the Linear Combination of Atomic Orbital (LCAO) approximation is a specific application of the linear
variational method.

A special type of variation widely used in the study of molecules is the so-called linear variation function, where the trial
wavefunction is a linear combination of  linearly independent functions (often atomic orbitals) that not the eigenvalues of the
Hamiltonian (since they are not known). For example

and

In these cases, one says that a 'linear variational' calculation is being performed.

The set of functions { } are called the 'linear variational' basis functions and are nothing more than members of a set of
functions that are convenient to deal with. However, they are typically not arbitrary and are usually selected to address specific
properties of the system:

to obey all of the boundary conditions that the exact state  obeys,
to be functions of the the same coordinates as ,
to be of the same symmetry as , and
to be convenient to evaluate Hamiltonian terms elements .

Beyond these conditions, nothing other than effort can limit the selection and number of such basis functions in the expansions
in Equations  and .

As discussed in Section 7.1, the variational energy for a generalized trial wavefunction is

Substituting Equations  and  into Equation  involves addressing the numerator and denominator individually. For
the numerator, the integral can be expanded thusly:

We can rewrite the following integral in Equation  as a function of the basis elements (not the trial wavefunction) as
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So the numerator of the right side of Equation  becomes

Similarly, the denominator of the right side of Equation  can be expanded

We often simplify the integrals on the right side of Equation  as

where  are overlap integrals between the different { } basis functions. Equation  is thus expressed as

There is no explicit rule that the { } functions have to be orthogonal or normalized functions, although they often are
selected that way for convenience. Therefore, a priori,  does not have to be .

Substituting Equations  and  into the variational energy formula (Equation ) results in

For such a trial wavefunction as Equation , the variational energy depends quadratically on the 'linear variational' 
coefficients. These coefficients can be varied just like the parameters in the trial functions of Section 7.1 to find the optimized trial
wavefunction ( ) that approximates the true wavefunction ( ) that we cannot analytically solve for.

Minimizing the Variational Energy 
The expression for variational energy (Equation ) can be rearranged

The optimum coefficients are found by searching for minima in the variational energy landscape spanned by varying the 
coefficients (Figure 7.2.1 ).
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Figure 7.2.1 : Linear Variational Principle in action. Two (or more) wavefunctions are mixed by linear combination. The
coefficients ,  determine the weight each of them is given. The optimum coefficients are found by searching for minima in the
potential landscape spanned by  and . (CC BY-SA-NC; Rudolf Winter; Aberystwyth University).

We want to minimize the energy with respect to the linear coefficients , which requires that

for all .

Differentiating both sides of Equation  for the  coefficient gives,

Since the coefficients are independent

and

and also since the Hamiltonian is a Hermitian Operator (see below)

then Equation  simplifies to

At the minimum variational energy, when

then Equation  gives

for all . The equations in  are called the Secular Equations.

Hermitian operators are operators that satisfy the general formula
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If that condition is met, then  is a Hermitian operator. For any operator that generates a real eigenvalue (e.g., observables),
then that operator is Hermitian. The Hamiltonian  meets the condition of a Hermitian operator. Equation  can be
rewriten as

where

and

Therefore, when applied to the Hamiltonian operator

If the functions  are orthonormal, then the overlap matrix  reduces to the unit matrix (one on the diagonal and zero every
where else) and the Secular Equations in Equation  reduces to the more familiar Eigenvalue form:

Hence, the secular equation, in either form, have as many eigenvalues  and eigenvectors { } as the dimension of the 
matrix as the functions in  (Example ). It can also be shown that between successive pairs of the eigenvalues obtained
by solving the secular problem at least one exact eigenvalue must occur (i.e., , for all i). This observation is
referred to as 'the bracketing theorem'.

Figure 7.2.2 : Simplified algorithmic flowchart of the linear Variational Method approximation. Compared to the similar
algorithmic flowchart for the "normal" Variational Method approximation.
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Ĥ 7.2.14

=Aij A∗
ji

= ⟨ | | ⟩Aij ϕi Â ϕj
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Variational methods, in particular the linear variational method, are the most widely used approximation techniques in quantum
chemistry. To implement such a method one needs to know the Hamiltonian  whose energy levels are sought and one needs to
construct a trial wavefunction in which some 'flexibility' exists (e.g., as in the linear variational method where the  coefficients
can be varied). This tool will be used to develop several of the most commonly used and powerful molecular orbital methods in
chemistry.

The Secular Determinant 

From the secular equations with an orthonormal functions (Equation ), we have  simultaneous secular equations in 
unknowns. These equations can also be written in matrix notation, and for a non-trivial solution (i.e.  for all ), the
determinant of the secular matrix must be equal to zero.

The determinant is a real number, it is not a matrix.
The determinant can be a negative number.
It is not associated with absolute value at all except that they both use vertical lines.
The determinant only exists for square matrices ( , , ..., ). The determinant of a  matrix is that single
value in the determinant.
The inverse of a matrix will exist only if the determinant is not zero.

The determinant can be evaluated using an expansion method involving minors and cofactors. Before we can use them, we
need to define them. It is the product of the elements on the main diagonal minus the product of the elements off the main
diagonal. In the case of a  matrix, the specific formula for the determinant is

Similarly, suppose we have a  matrix , and we want the specific formula for its determinant :

To solve Equation , the determinate should be expanded and then set to zero. That generates a polynomial (called a
characteristic equation) that can be directly solved with linear algebra methods or numerically.

If  is a linear combination of two functions. In math terms,

then the secular determinant (Equation ), in matrix formulation would look like this

Solution
Solving the secular equations is done by finding  and putting the value into the expansion of the secular determinant
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 Example 7.2.1 : A Simple Two Component Basis Set
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and

Equation  can be solved to obtain the energies . When arranged in order of increasing energy, these provide approximations
to the energies of the first  states (each having an energy higher than the true energy of the state by virtue of the variation
theorem). To find the energies of a larger number of states we simply use a greater number of basis functions  in the trial
wavefunction (Example ). To obtain the approximate wavefunction for a particular state, we substitute the appropriate energy
into the secular equations and solve for the coefficients .

Using this method it is possible to find all the coefficients  in terms of one coefficient; normalizing the wavefunction
provides the absolute values for the coefficients.

Trial wavefunctions that consist of linear combinations of simple functions

form the basis of the Linear Combination of Atomic Orbitals (LCAO) method introduced by Lennard and Jones and others to
compute the energies and wavefunctions of atoms and molecules. The functions  are selected so that matrix elements
can be evaluated analytically. Two basis sets of atomic orbitals functions can be used: Slater type and Gaussian type:

Slater orbitals using Hydrogen-like wavefunctions

and Gaussian orbitals of the form

are the most widely used forms, where  are the spherical harmonics that represent the angular part of the atomic
orbitals. Gaussian orbitals form the basis of many quantum chemistry computer codes.

Dec 23, 2018, 11:08 PM

Because Slater orbitals give exact results for Hydrogen, we will use Gaussian orbitals to test the LCAO method on Hydrogen,
following S.F. Boys, Proc. Roy. Soc. A 200, 542 (1950) and W.R. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys. Rev. 52,
5001 (1970) with the basis set. Because products of Gaussians are also Gaussian, the required matrix elements are easily computed.

The linear variational method is used extensively in molecular orbitals of molecules and further examples will be postponed until
that discussion in Chapters 9.

This page titled 7.2: Linear Variational Method and the Secular Determinant is shared under a CC BY-NC-SA 4.0 license and was authored,
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 Example 7.2.2 : Linear Combination of Atomic Orbitals (LCAO) Approximation
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