
11.E.1 https://chem.libretexts.org/@go/page/13482

11.E: Computational Quantum Chemistry (Exercises)

A Libretexts Textmap organized around McQuarrie and Simon's textbook 

Physical Chemistry: A Molecular Approach
Template:HideTOC

These are homework exercises to accompany Chapter 11 of McQuarrie and Simon's "Physical Chemistry: A Molecular Approach"
Textmap.

What is meant by the expression ab initio calculation? 
List all the terms in a complete molecular Hamiltonian. 
Why are calculations on closed-shell systems more easily done than on open-shell systems? 
How is it possible to reduce a multi-electron Hamiltonian operator to a single-electron Fock operator? 
Why is the calculation with the Fock operator called a self-consistent field calculation? 
What is the physical meaning of a SCF one-electron energy? 
Why is the nonlinear variational method not used in every case to optimize basis functions, and what usually is done instead? 
Why is it faster for a computer to use the variational principle to determine the coefficients in a linear combination of functions than to
determine the parameters in the functions? 
Identify the characteristics of hydrogenic, Slater, and Gaussian basis sets. 
What is meant by the Hartree-Fock wavefunction and energy? 
What is neglected that makes the Hartree-Fock energy necessarily greater than the exact energy? 
What is meant by correlation energy? 
What purpose is served by including configuration interaction in a calculation?

Q11.1

Prove that a three dimensional Gaussian function centered at  = i + j + k is a product of three one-dimensional Gaussian
functions centered on , , .

S11.1

 = 

=  
=   

Q11.2
Show that

S11.2

The equalities are all equivalent since in the first integral  is a constant and the second and third are even.

Q11.3
The Gaussian Integral

Convert the integration variables from Cartesian coordinates to polar coordinates and show that
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S11.3
We first write

the product of two integrals can be expressed as a double integral

In polar coordinates  and . The limits of integration in polar coordinates corresponding to the limits in
Cartesian coordinates are 0  and .

The double integral becomes

The integration over  gives a factor of .The integral over r can be done using a U substitution,  and .

Therefore

meaning that , so .

Q11.4

Show that the integral

can be obtained from 

by differentiating  times with respect to  when  is

gives in a general form:

S11.4
The first step is to take the derivative of  about 3 times with respect to :

solve the integrals for the first  starting with ,

in general
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(note: if you look at the equations sheet provided in the Gaussian integrals sections the limits of integration from -  to +  and from 0 to
+  give the same end result with a minor difference in the exponent for the two in the denominator)

Q11.17

Using the Figure below, specify the coordinates of the atoms that comprise the molecule methane. Determine a set of Cartesian
coordinates of the atoms in the molecule. The HCH bond angle is 110.0° and the C-H bond length is 109.1 pm.

S11.17

This figure can represent methane if and only if the central atom is carbon and the 4 atoms at the vertices are hydrogen atoms. We then
must assign the origin of our coordinate system to be at the carbon atom. Considering the length of the edge of this cube is 2a, then the
bond length from the vertices (hydrogen atoms) to the center (carbon atom) is  times the length of one edge of the cube, so

Diagonal of cube length 2a would be  - but we need half that.

Q11.18

Determine a rough set of Cartesian coordinates of the atoms in the molecule  given the bond angle of  is  and
the  and  bond lengths are  and , respectively. (Hint: locate the origin at the Silicon.)

S11.18

For a simpler case of , The four hydrogen would be equally far from the central atom (origin). The coordinates can be calculated as 

 , , , and . The value of  can be determined by  where  is the bond length. For

hydrogen:

For florine:

One set of solutions is:

x/pm y/pm z/pm

C 0 0 0
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Q11.19
Molecule Frequency [cm ] R [pm]

H 4647 73.2

CO 2438 111.4

HCl 2886 130

Given the above table of calculated vibrational frequencies and bond lengths, calculate the vibrational force constant of each of the
molecules. Do you expect that the calculated values are higher or lower than the experimental values? Are bond length calculations or
vibrational-frequency calculations more accurate? Why?

S11.19

The relationship between wave number and harmonic force constant can be expressed as

which can be rewritten as

The reduced masses can be found to be

kg, kg, and kg.

Now we can find our force constants by plugging in the given values.

We should expect that the values we found are higher than what is experimentally measured, as other forces are unaccounted for. Bond
length calculations are more accurate because it requires a smaller basis set to calculate accurately.

Q11.20

Normalize the following Gaussian function:

S11.20

We write  in spherical coordinates and then apply the normalization condition of the normalized function 

The normalization condition is

or in bra-ket notation

.

where A is the normalization constant. In spherical coordinates,
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Therefore, the nomalization constant will the inverse of this result:

Q11.21

Which hydrogen atomic orbital corresponds to the following normalized Gaussian orbital?

How many radial and angular nodes does the above function have? Is this result what you would expect for the corresponding hydrogen
function?

S11.21

The typical form is:

.

From this, we can see the function in the question shows n = 2 and l = 1. Because n = 2, there is 1 node and l = 1 tells us that there is 1
angular node. Therefore, there are no radial nodes.This is consistent with the  orbital in a hydrogenic function.

Q11-22

Slater type orbitals have the form,

where the second term is the spherical harmonic given by

Define the 1s-slater type orbital.

S11-22

For n=1, the slater-type orbital is

11.23

Consider the normalized functions

Which hydrogen atomic orbital corresponds to the linear combination
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S11.23

Corresponds to the

hydrogen atomic orbital.

This is a good tricky question because usually people would think that

only has two energy levels, but really there are more, just not occupied. Once you excite/add a good amount of energy, it could change to
different orbitals.

( The math is right but Hydrogen has only five 3d orbitals and they are , , , , and  so the  is not
consistent . -RM)

Q11.27

Scientists are trying to theoretically predict the dipole moment of a CO molecule using the STO-3G and 6-31G* basis sets. When
compared to their experimental data, the 6-31G* basis set provided a more accurate calculation than did the STO-3G basis set. Why is
this?

S11.27

To calculate the dipole moment of a molecule, one needs an accurate description of the electron densities and molecular orbitals. This
description becomes more accurate when a larger basis set is used, which is why the 6-31G* basis set gave more accurate calculations
than did the STO-3G basis set.

Q11.28

The orbital energies calculated for formaldehyde using STO-3G an 3-21G basis sets are given below.

Orbital energy/E energy/E

1a -20.3217 -20.4856

2a -11.1250 -11.2866

3a -1.3373 -1.4117

4a -0.8079 -0.8661

1b -0.6329 -0.6924

5a -0.5455 -0.6345

1b -0.4431 -0.5234

2b -0.3545 -0.4330

2b 0.2819 0.1486

6a 0.6291 0.2718

3b 0.7346 0.3653

7a 0.9126 0.4512

Determine the ground-state electronic configuration of water. The photoelectron spectrum of water is shown below.
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Assign the bands. Which calculated set of energies shows the best agreement with the photoelectron spectrum? Predict the ionization
energy and electron affinity of water for each calculated set of energy levels. How do these compare with the experimental values?

S11.28

There are 8 electrons in water (2 from water and 6 from oxygen). This gives use the ground-state electronic configuration of

1a 2a  1b  3a  1b

The band at approx. 15 eV corresponds to the 1b  electrons, the bands at 15.5 eV correspond to 1b  3a electrons. 18.5 ev = 1a 2a .

IE = -E  = 0.6924*15 ev = 10.386 ev

EA = -E  = 0.5234*18.5 ev = 9.6829 ev

Q11.29

The units of dipole moment given by Gaussian 94 are called debyes (D), after the Dutch-American chemist, Peter Debye, who was
awarded the Nobel Prize for chemistry in 1936 for his work on dipole moments. One dehye is equal to 10  esu•cm where esu
(electrostatic units) is a non-SI unit for electric charge. Given that a 9v battery is 3.0 x 10  esu, show that the conversion factor between
debyes and C • m (coulomb • meters) is 1 D = 5.34 x 10^-38 C•m.

S11.29

Q11.30

Determine the dipole moment SnCl  by using the geometry and charges:

S11.30

Notes:

The equation I found for dipole moment is:

11.E: Computational Quantum Chemistry (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
LibreTexts.
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