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13.8: Rotational Spectra of Polyatomic Molecules

As discussed previously, the Schrödinger equation for the angular motion of a rigid (i.e., having fixed bond length ) diatomic
molecule is

or

The Hamiltonian in this problem contains only the kinetic energy of rotation; no potential energy is present because the
molecule is undergoing unhindered "free rotation". The angles  and  describe the orientation of the diatomic molecule's axis
relative to a laboratory-fixed coordinate system, and  is the reduced mass of the diatomic molecule

The eigenvalues corresponding to each eigenfunction are straightforward to find because  is proportional to the 
operator whose eigenvalues have already been determined. The resultant rotational energies are given as:

and are independent of .  is the rotational constant. Thus each energy level is labeled by  and is -fold degenerate
(because  ranges from  to ). The rotational energy in Equation  can be expressed in terms of the moment of
inertia 

where  is the mass of the  atom and  is its distance from the center of mass of the molecule. This moment of inertia
replaces  in the denominator of Equation :

Rotation of Polyatomic Molecules 
In contrast to diatomic molecules (Equation ), the rotational motions of polyatomic molecules in three dimensions are
characterized by multiple moments of inertia. typically reflected in an  inertia tensor. It is common in rigid body mechanics to
express in these moments of inertia in lab-based Cartesian coordinates via a notation that explicitly identifies the , , and  axes
such as  and , for the components of the inertia tensor.

The components of this tensor can be assembled into a matrix given by
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The rotational motions of polyatomic molecules are characterized by moments of inertia that are defined in a molecule based
coordinates with axes that are labeled , , and . Measured in the body frame the inertia matrix (Equation ) is a constant
real symmetric matrix, which can be decomposed into a diagonal matrix, given by

These labels are assigned so that  is the largest principal moment of inertia with an order of the three moments set as

The rotational kinetic energy operator for a rigid non-linear polyatomic molecule is then expressed as

The components of the quantum mechanical angular momentum operators along the three principal axes are:

The angles , , and  are the Euler angles needed to specify the orientation of the rigid molecule relative to a laboratory-fixed
coordinate system. The corresponding square of the total angular momentum operator  can be obtained as

and the component along the lab-fixed  axis is

Spherical Tops 

When the three principal moment of inertia values are identical, the molecule is termed a spherical top. In this case, the total
rotational energy Equation  can be expressed in terms of the total angular momentum operator 

= ( + )Iyy ∑
k=1

N

mk x2
k z2

k

= ( + )Izz ∑
k=1

N

mk x2
k

y2
k

= = −Iyx Ixy ∑
k=1

N

mkxkyk

= = −Izx Ixz ∑
k=1

N

mkxkzk

= = − .Izy Iyz ∑
k=1

N

m kykzk

a b c 13.8.4

I =
⎛

⎝
⎜

Ia

0

0

0

Ib

0

0

0

Ic

⎞

⎠
⎟

Ic

< <Ia Ib Ic

= + +Hrot

J 2
a

2Ia

J 2
b

2Ib

J 2
c

2Ic

(13.8.5)

Ja

Jb

Jc

= −iℏ cos χ[cot θ −(sinθ ]−−iℏ sinχ
∂

∂χ
)−1 ∂

∂φ

∂

∂θ

= iℏ sinχ[cot θ −(sinθ ]−−iℏ cos χ
∂

∂χ
)−1 ∂

∂φ

∂

∂θ

= −
ih∂

∂χ

(13.8.6)

(13.8.7)

(13.8.8)

θ φ χ

J 2

J 2 = + +J 2
a J 2

b
J 2

c

= − −cot θ −( )( + −2 cos θ )
∂2

∂θ2

∂

∂θ

1

sinθ

∂2

∂φ2

∂2

∂χ2

∂2

∂φ∂χ

(13.8.9)

(13.8.10)

Z

= −ih .JZ

∂

∂φ

13.8.5 J 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13671?pdf


13.8.3 https://chem.libretexts.org/@go/page/13671

As a result, the eigenfunctions of  are those of  (and  as well as  both of which commute with  and with one another;
 is the component of  along the lab-fixed Z-axis and commutes with  because

and

act on different angles. The energies associated with such eigenfunctions are

for all K (i.e., J a quantum numbers) ranging from -J to J in unit steps and for all M (i.e., J Z quantum numbers) ranging from -J to
J. Each energy level is therefore  degenarate because there are  possible K values and  possible M values
for each J. The eigenfunctions of ,  and ,  are given in terms of the set of rotation matrices  :

which obey

Symmetric Tops 

Symmetrical tops are molecules with two rotational axes that have the same inertia and one unique rotational axis with a different
inertia. Symmetrical tops can be divided into two categories based on the relationship between the inertia of the unique axis and the
inertia of the two axes with equivalent inertia. If the unique rotational axis has a greater inertia than the degenerate axes the
molecule is called an oblate symmetrical top (Figure 13.8.1 ). If the unique rotational axis has a lower inertia than the degenerate
axes the molecule is called a prolate symmetrical top. For simplification think of these two categories as either frisbees for oblate
tops or footballs for prolate tops.

Figure 13.8.1 : The assignment of semi-axes on a spheroid. It is oblate if  (left) and prolate if  (right). (CC BY-SA 4.0;
Ag2gaeh)

Again, the rotational kinetic energy, which is the full rotational Hamiltonian, can be written in terms of the total rotational angular
momentum operator  and the component of angular momentum along the axis with the unique principal moment of inertia.

For prolate tops, Equation  becomes
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For oblate tops, Equation  becomes

As a result, the eigenfunctions of  are those of  and  or  (and of ), and the corresponding energy levels.

The energies for prolate tops are

and the energies for oblate tops are

again for K and M (i.e.,  or  and  quantum numbers, respectively) ranging from  to  in unit steps. Since the energy now
depends on K, these levels are only  degenerate due to the  different  values that arise for each  value. The
eigenfunctions  are the same rotation matrix functions as arise for the spherical-top case.

Asymmetric Tops 

The rotational eigenfunctions and energy levels of a molecule for which all three principal moments of inertia are distinct (a
asymmetric top) can not easily be expressed in terms of the angular momentum eigenstates and the , , and  quantum
numbers. However, given the three principal moments of inertia , , and , a matrix representation of each of the three
contributions to the general rotational Hamiltonian in Equation  can be formed within a basis set of the  rotation
matrix functions. This matrix will not be diagonal because the  functions are not eigenfunctions of the asymmetric top 

. However, the matrix can be formed in this basis and subsequently brought to diagonal form by finding its eigenvectors {C n,
J,M,K } and its eigenvalues . The vector coefficients express the asymmetric top eigenstates as

Because the total angular momentum  still commutes with , each such eigenstate will contain only one J-value, and hence 
 can also be labeled by a  quantum number:

To form the only non-zero matrix elements of  within the  basis, one can use the following properties of the
rotation-matrix functions:

Each of the elements of , , and  must, of course, be multiplied, respectively, by , , and  and summed
together to form the matrix representation of . The diagonalization of this matrix then provides the asymmetric top energies
and wavefunctions.

This page titled 13.8: Rotational Spectra of Polyatomic Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons.

13.8.5

= + ( − )Hrot

J 2

2I
J 2

c

1

2Ic

1

2I

Hrot J 2 Ja Jc JZ

E(J, K, M) = + ( − )
J(J +1)h2

2I 2
h2K2 1

2Ia

1

2I

E(J, K, M) = + ( − )
J(J +1)h2

2I2
h2K2 1

2Ic

1

2I

Ja Jc JZ −J J

2J +1 2J +1 M J

|J, M , K >

J M K

Ia Ib Ic

13.8.5 {|J, M , K⟩}

|J, M , K⟩

Hrot

{ }En

(θ, φ, χ) = |J, M , K⟩ψn ∑
J,M,K

Cn,J,M,K

J 2 Hrot

Ψn J

(θ, φ, χ) = |J, M , K⟩ψn,J ∑
M,K

Cn,J,M,K

Hrot |J, M , K⟩

⟨j, ⟩ = ⟨j, ⟩ = 1/2 < j, ⟩ = h2[J(J +1) −K2],

⟨j, ⟩ = h2K2

⟨j⟩ = −⟨j⟩ = [J(J +1) −K(K ±1)]1/2[J(J +1) −(K ±1)(K ±2)]1/2⟨j⟩ = 0h2

J 2
c J 2

a J 2
b 1/2Ic 1/2Ia 1/2Ib

Hrot

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13671?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/13%3A_Molecular_Spectroscopy/13.08%3A_Rotational_Spectra_of_Polyatomic_Molecules
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/

