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10.1: Hybrid Orbitals Account for Molecular Shape

Introduce hybrid orbital to explain non-linear molecular structure

Valence bond (VB) theory is one of two basic theories, along with molecular orbital (MO) theory, that were developed to use the
methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of the dissociated atoms
combine to give individual chemical bonds when a molecule is formed. In contrast, molecular orbital theory, which will be
discussed elsewhere, predict wavefunctions that cover the entire molecule.

Review of Diatomics 

Let us consider . Recall that the Lewis structure for a single  atom is  and for , it is . Thus, each hydrogen brings
one unpaired electron to the bond. Let the two protons be denoted A and B and the two electrons 1 and 2. Now, consider the
potential energy

But as , the , , , and  terms vanish and the potential energy becomes simply that of two
noninteracting hydrogen atoms

Since the potential energy becomes a simple sum of separate energies for electrons 1 and 2, the wavefunction should simply be a
product . But as we let , where  is the equilibrium bond length, the electrons mix, and we
can no longer tell if electron 1 belongs to atom A or atom B and the same for electron 2. Thus, we need to construct a combination
of products that is consistent with the Pauli exclusion principle. If we just consider the coordinates  and  of the electrons, then
the only wavefunction we can construct from a product of 1s orbitals is

where the  designator indicates that this is an odd function. The constant  is the overall noramlization constant. Unfortunately,
like in the LCAO method, such a wavefunction is antibonding and is not a good representation of the ground state. If, however, we
construct the wavefunction

(where  designates that this is an even function), we violate the Pauli exclusion principle, even though such a wavefunction leads
to a stable chemical bond.

What is missing here is the fact that we have not considered the spins of the electrons. Since the electrons are identical, if we
exchange coordinates and spins, then the wavefunction should change sign. Thus, we can make both wavefunctions above
consistent with the Pauli exclusion principle by multiplying by an appropriate spin wavefunction. We obtain

where  and  are the z-components of spin for electrons 1 and 2, respectively. We can now use  as an approximate 2-electron
wavefunction that leads to a stable chemical bond in .

The fact that  is antibonding can be easily determined by looking for a nodal plane between the two atoms, in this case, in the
plane that exactly bisects the line joining the two atoms, midway between them. That this is, indeed, a nodal plane can be seen by
considering two points  and  for the two electrons that are taken to lie in this plane. By symmetry, the functions  and 

 have the same value for  in this plane, and the same for  and . Let us assign the following values:
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Substituting these into , we obtain

Since the wavefunction has a node midway between the two atoms, it is clearly antibonding and should have a higher energy than
the corresponding bonding wavefunction .

A similar argument can be used for the molecule . Each  has an electronic configuration

and the Lewis structure of  is

Figure 10.1.1 : Lewis structure of .

Most of the electrons are in lone pairs, but the  electrons, which are unpaired in each  come together to form the bond. Thus,
the bonding wavefunction should be a 2-electron wavefunction constructed from  orbitals. The bonding wavefunction takes the
"gerade" form as in :

For , the  orbital on  and  orbital on  come together to form the bonding wavefunction. To be consistent with the
Pauli principle, we need a wavefunction of the form

Looking at the  example, it becomes clear how much valence bond theory attempts to appear as a "quantum version'' of the
Lewis dot structure model. Valence bond theory attempts to construct very approximate wavefunctions for the bonding electrons in
a Lewis structure, leaving the orbitals unused in the construction of the valence bond wavefunctions for the lone pair electrons. In
the case of , we use the  orbitals of , which leaves the ,  and  orbitals unused. Since there are three lone pairs,
these three orbitals are sufficient to hold each of the lone pairs as spin-up/spin-down couples.

Hybridization 
For polyatomic molecules, the valence bond theory becomes a very poor approximation because the directionalities of the  and 

 orbitals is too restrictive to describe molecules with steric numbers ranging between 2 and 4. The example considered above of 
 illustrates this rather dramatically! Let us consider an even simpler molecule, , which has a steric number of 2 and is

linear. Let the atoms lie entirely along the z-axis in the arrangement .

Although  has a ground-state electronic configuration of , but if we "promote" one of the  electrons to a state with
higher energy and allow its electronic structure to be , then the unpaired electrons in the  and  orbitals can combine
with the unpaired electrons in each of the hydrogen atoms to form bonds. The energy needed to excite the electron in Be would be
``repaid'' by the energy gained in the formation of stable bonds. The two valence-bond wavefunctions we would construct would be

Unfortunately, even this simple scheme does not work entirely because the two  bonds would be different due to their
construction from different combinations of orbitals. By symmetry, however, we can see that the two  bonds should be
equivalent. A solution to this problem was proposed by Linus Pauling in the 30s in the form of orbital hybridization, a scheme that
we still use today.

Pauling used the fact that in the first and second periods, the  and  orbitals have similar energies. Indeed, for , the energies
are exactly the same. Given that these energies are not that different, we can combine s and p orbitals and still have a valid solution
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of the Schrödinger equation. That is, a general orbital

is also a solution of the Schrödinger equation with the same energy as a  or  orbitals individually (this is exactly true for ). In
the case of , the external potential on the electrons in Be by the two hydrogens changes the energy levels and creates a near
degeneracy between the  and  orbitals, hence, we are now free to combine the into linear combinations that are more suitable
to the construction both of valence bond wavefunctions and MOs via the LCAO procedure.

 Hybrid Orbitals 

For Be, we now allow the s and p orbitals to mix and create two hybrid orbitals known as  orbitals. The two new hybrid
wavefunctions as linear combination of the functions for 2s and 2p  (using Dirac Notation):

These two wavefunctions must be orthogonal.

Which can be separated into the following relationships:

and

and

Equations  and  are the normality requirement and Equation  is the orthogonality requirement for the new
hybrid wavefunctions. Substituting  into  results in

and similarly for 

results in the following relationships

and

These are four unknowns and three equations. The fourth "constraint" is that we assume contribution of  is the same for both
hybrid orbitals.

Equations  to  revert to

χ(r) = (r) + (r) + (r) + (r)C1ψ2s C2ψ2px C3ψ2py C4ψ2pz

2s 2p H

BeH2

2s 2pz

sp

sp

z

| ⟩ = |2s⟩+ |2 ⟩χi a1 b1 pz (10.1.10)

| ⟩ = |2s⟩+ |2 ⟩χj a2 b2 pz (10.1.11)

⟨ | ⟩ =χi χj δij

⟨ | ⟩ = 1χi χi (10.1.12)

⟨ | ⟩ = 1χj χj (10.1.13)

⟨ | ⟩ = ⟨ | ⟩ = 0χi χj χj χi (10.1.14)

10.1.12 10.1.13 10.1.14
10.1.10 10.1.12

⟨ | ⟩ = + + ⟩+ = 1χi χi a2
1 ⟨2s|2s⟩

1
a1b1 ⟨2s|2 ⟩pz

0
a1b1 ⟨2 |2spz

0
b2

1 ⟨2 |2 ⟩pz pz
1

⟨ | ⟩χj χj

⟨ | ⟩ = + + ⟩+ = 1χj χj a2
2 ⟨2s|2s⟩

1
a2b2 ⟨2s|2 ⟩pz

0
a2b2 ⟨2 |2spz

0
b2

2 ⟨2 |2 ⟩pz pz
1

⟨ | ⟩ = + = 1χi χi a2
1 b2

1 (10.1.15)

⟨ | ⟩ = + = 1χj χj a2
2 b2

2 (10.1.16)

⟨ | ⟩ = + = 0χi χj a1a2 b1b2 (10.1.17)

|s⟩

=a1 a2

10.1.15 10.1.17

+ = 1a2
1 b2

1 (10.1.18)

+ = 1a2
1 b2

2 (10.1.19)

=b2
1 b2

2 (10.1.20)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13470?pdf


10.1.4 https://chem.libretexts.org/@go/page/13470

Therefore

and

Insert Equation  into  to get

and the two hybrid orbitals are

Note that these orbitals are both normalized and orthogonal:

These orbitals appear as shown in Figure 10.1.3

Figure 10.1.3 : The Formation of sp Hybrid Orbitals. Taking the sum and difference of an ns and an np atomic orbital where n = 2
gives two equivalent sp hybrid orbitals oriented at 180° to each other.

Given that the two  hybrid orbitals are mirror images of each other, they can overlap with the  orbital of  (shown in the
figure) and create two equal bonds, as needed for . Using the valence bond formulation, now, one of the  bonds will be
described by a wavefunction of the form:

In the above wavefunctions, it is clear that  is on the right and  is on the left, based on the directionalities of  and .

 Hybrid Orbitals 
For trigonal planar molecules such as , we start with the electronic configuration of , which is , and we promote
one of the  electrons to a  orbital, so that we have . Suppose the geometry of  is such that one of the
hydrogens lies along the positive x axis. The remaining hydrogens would be in the 3rd and 4th quadrants, respectively, as shown in
Figure 10.1.4 .
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Figure 10.1.4 : Geometry of .

If we simply combine the  with the  and  orbitals of boron, the resulting hybrid orbitals will not point in the correct
direction. For this reason, we will create rotated versions of the  and  orbitals, which, as we will see are tantamount to taking
new combinations of  and  orbitals to combine with the . Since the rotation occurs in the  plane, the coordinate that
controls this is the azimuthal angle . For the  and  orbitals, the  dependence is

If we rotate  by  degrees (Figure 10.1.5 ; blue is positive and red is negative), the  dependence becomes

Figure 10.1.5 : Rotation of a  orbital by  degrees.

Using the fact that

this rotation gives

Similarly, consider rotating  by  degrees (Figure 10.1.6 ). This gives

 

Figure 10.1.6 : Rotation of a  orbital by  degrees.

So, we now take the hybrid orbitals to be of the form
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The coefficients , , and  are determined by requiring that the orbitals are normalized and mutually orthogonal:

Carrying out the algebra, we obtain the following  hybrid orbitals:

The  hybrids allow bonding at  degrees, and these orbitals appear as shown in Figure 10.1.7 :

Figure 10.1.7 : Formation of sp  Hybrid Orbitals. Combining one ns and two np atomic orbitals gives three equivalent sp  hybrid
orbitals in a trigonal planar arrangement; that is, oriented at 120° to one another.

The figure also shows the overlaps of these orbitals with the  orbitals of .

 Hybrid Orbitals 

Finally, we consider the case of methane . The electronic configuration of  is . We now promote one of the 
orbitals to the  orbital and write  as . We can now hybridize the  orbital with each of the  orbitals to
create four hybrids:

The large lobes of the hybridized orbitals are oriented toward the vertices of a tetrahedron, with 109.5° angles between them
(Figure 10.1.8 ). Like all the hybridized orbitals discussed earlier, the sp  hybrid atomic orbitals are predicted to be equal in energy.
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Figure 10.1.8 : Formation of sp  Hybrid Orbitals. Combining one ns and three np atomic orbitals results in four sp  hybrid orbitals
oriented at 109.5° to one another in a tetrahedral arrangement.

In addition to explaining why some elements form more bonds than would be expected based on their valence electron
configurations, and why the bonds formed are equal in energy, valence bond theory explains why these compounds are so stable:
the amount of energy released increases with the number of bonds formed. In the case of carbon, for example, much more energy is
released in the formation of four bonds than two, so compounds of carbon with four bonds tend to be more stable than those with
only two. Carbon does form compounds with only two covalent bonds (such as CH  or CF ), but these species are highly reactive,
unstable intermediates that form in only certain chemical reactions.

Hybridization is an often misconceived concept. It only is a mathematical interpretation, which explains a certain bonding
situation (in an intuitive fashion). In a molecule the equilibrium geometry will result from various factors, such as steric and
electronic interactions, and further more interactions with the surroundings like a solvent or external field. The geometric
arrangement will not be formed because a molecule is hybridized in a certain way, it is the other way around, i.e. a result of the
geometry or more precise and interpretation of the wavefunction for the given molecular arrangement.

The justification we gave for invoking hybridization in molecules such as BeH , BF  and CH  was that the bonds in each are
geometrically and chemically equivalent, whereas the atomic s- and p-orbitals on the central atoms are not. By combining these
into new orbitals of sp, sp  and sp  types we obtain the required number of completely equivalent orbitals. This seemed easy
enough to do on paper; we just drew little boxes and wrote “sp ” or whatever below them. But what is really going on here?

The full answer is beyond the scope of this course, so we can only offer the following very general explanation. First, recall
what we mean by “orbital”: a mathematical function ψ having the character of a standing wave whose square ψ  is proportional
to the probability of finding the electron at any particular location in space. The latter, the electron density distribution, can be
observed (by X-ray scattering, for example), and in this sense is the only thing that is “real”.

A given standing wave (ψ-function) can be synthesized by combining all kinds of fundamental wave patterns (that is, atomic
orbitals) in much the same way that a color we observe can be reproduced by combining different sets of primary colors in
various proportions. In neither case does it follow that these original orbitals (or colors) are actually present in the final
product. So one could well argue that hybrid orbitals are not “real”; they simply turn out to be convenient for understanding the
bonding of simple molecules at the elementary level, and this is why we use them.

Summary 

The shape and bonding valecies of polyatomic molecules can be accounted for by hybrid orbitals. Molecular orbitals are formed
from linear combinations of atomic orbitals which are similar in energy. These atomic orbitals could come from different atoms, or
from the same atom. For example, the 2 sand 2patomic orbitals are very close energetically. When a linear combo of more than one
atomic orbital from the same atom is formed, we have a hybrid orbital.

This page titled 10.1: Hybrid Orbitals Account for Molecular Shape is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Mark E. Tuckerman.
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