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7.E: Approximation Methods (Exercises)
Solutions to select questions can be found online.
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7.3
Calculate the ground state energy of Harmonic Oscillator using variation method with the following trial wavefunction

You may require these definite integrals:

Solution

First, we must know the Hamiltonian operator for the harmonic oscillator, which is

From this point on, the determination of  can be found using the trail function

which once substitute get the following equation for the numerator portion:

Now solving the denominator:

After this we will find

Then find minimum value

therefore

\[E_{min}= \dfrac{7^{1/2} \hbar }{5 * (k/µ)^{1/2}} + \dfrac{7^{1/2} \hbar }{5 (k/µ)^{1/2} }= 71/2 \hbar /5 (k/µ)  = 0.53 \hbar *(k/
µ)

Therefore overall get

⇒ this value differs by 6%.
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=∫
∞
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7.8
What is the variational (trial) energy of the trial function

for the ground-state of a harmonic oscillator? Just set up the integral, but do not evaluate. Use

Solution

The variational energy:

numerator:

All combined together to extract the trial energy as a function of :

Use the components of  to operate on 

denominator:

7.9
Use the trial function

to set up the integrals to find the ground state energy of a anharmonic oscillator whose potential is , but do not evaluate.

Solution

|ϕ⟩ = e−ax
2

= ∇ +Ĥ
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n2 kx2

2

(a) = ≥Etrial

⟨ϕ(a)| |ϕ(a)⟩Ĥ
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⟨ϕ|ϕ⟩ = dx∫
∞

−∞
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∞

−∞
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7.12
Consider a particle of mass  in a box from  to  with  for . Assume a trial function of the form

for  and  otherwise.  is the parameter. Does the trial function satisfy the requirements of a particle in a box wavefunction?

The result of the variational method was

Where  is a new variational parameter for convenience of expression. Derive a polynomial expression for  that can be solved to obtain the

value of  that yields the ground state energy, but do not attempt to solve for this value of  .

Solution

Yes, it is finite over all  values, it's first and second derivatives are continuous, and it meets the boundary conditions ,
and it is normalizable for a choice of .

Taking the derivative of  with respect to ,

With some algebra, this becomes,

With a calculator or other root finding procedure,  can be solved for.

7.13
Given a trial wavefunction equal to , explain in words a stepwise procedure on how you would go about solving for the energy of this
trial wavefunction as well as how to minimize the error.

Solution

1. Denote 

2. Solve the integral 

3. Solve the integral 

4. Now that you solved for steps 2 and 3, plug into the equation

5. Take the derivative of  with respect to  and set equal to 0.

6. Solve for  and plug back into equation in step 4.

m x =−a x = a V (x) = −V0 |x| ≥ a

|ϕ(x)⟩ = −l2 x2
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=En
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7.16
Using the variational method approximation, find the ground state energy of a particle in a box using this trial function:

How does is it compare to the true ground state energy?

Solution

The problem asks that we apply variational methods approximation to our trial wavefunction.

Performing this integral and solving for N yields

The Hamiltonian for a particle in a one dimensional box is 

where . The above equation after the integral becomes

This is equal to the ground state energy of the particle in a box that we calculated from the Schrodinger equation using

|ϕ⟩ =N cos( )
πx

L

= ≥Eϕ

⟨ϕ| |ϕ⟩Ĥ

⟨ϕ|ϕ⟩
Eo
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L
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∣
∣
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L
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L
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2
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√
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2
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2
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7.17
For the three-electron detrimental wavefunction

confirm that:

a. the interchange of two columns changes the sign of the wavefunction,
b. the interchange of two rows changes the sign of the wavefunction, and
c. the three electrons cannot have the same spin orbital.

Solution

First find the determinant

a) Switch column  with column 

Now find the determinant

Comparing equation  with equation  we see that 

b) Switch row  with row 

Now find the determinant

Comparing equation  with equation  we see that 

c) Replace column  with column 

Now find the determinant

The first two terms are identical but opposite so they cancel one another. The third has a determinant of zero.

ψ = .

∣

∣

∣
∣
∣

(1)ϕA

(1)ϕB

(1)ϕC

(2)ϕA

(2)ϕB
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∣
∣
∣
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∣
∣

(2)ϕB

(2)ϕC

(3)ϕB

(3)ϕC

∣

∣
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∣

(1)ϕB

(1)ϕC

(3)ϕB

(3)ϕC

∣

∣
∣ ϕA

∣

∣
∣
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∣
∣
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∣
∣
∣
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∣
∣
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∣
∣
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∣
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∣
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∣
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∣
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∣
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∣
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∣
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∣
∣

(1)ϕB

(1)ϕC

(3)ϕB

(3)ϕC

∣

∣
∣ ϕA

∣

∣
∣

(1)ϕB

(1)ϕC

(3)ϕB

(3)ϕC

∣

∣
∣ ϕA

∣

∣
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= 0+ (3) ⋅ (0) = 0ϕ(c) ϕA

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13433?pdf


7.E.7 https://chem.libretexts.org/@go/page/13433

7.20

a. What is , , , and  for an oscillator that has a potential of

b. What is , , , and  for a particle in a box that has a potential of  between 0<x<L?

c. What is , , , and  for a hydrogenlike atom that has a potential of

Solution

For an oscillator:

 is the Hamiltonian for a simple harmonic oscillator, therefore

 is what is added to the Hamiltonian for a simple harmonic oscillator. therefore

Ψ  is the wave function for a simple harmonic oscillator, therefore

E is the energy for a simple harmonic oscillator, therefore

where v= 0,1, 2... ∞

Particle in a box

Using this as an example, we find that for a particle in a box with potential V(x) = 0 between 0<x<L

\[\hat{H}^{(1)} = 0\nonumber \]

Ψ  =B*sin(nπx/L)

 

E  = n h  / 8mL  where n= 1, 2, 3 ... ∞

Hydrogen like Atom

For a hydrogen like atom that has a potential of

\[\hat{H} = - ћ /2μ ∂2 /∂x2 ∇ -e /(4πϵ r) + (1/2)ϵrcosθ\nonumber \]

\[\hat{H}  = - ћ /2μ ∂2 /∂x2 ∇ -e /(4πϵ r)\nonumber \]

\[\hat{H}  =(1/2)ϵrcosθ\nonumber \]

Ψ  = Ψ  (r,θ,ϕ)

E  = μe  / 8ϵ h n

Ĥ
(0)

Ĥ
(1)

Ψ(0) E (0)

V (x) = (1/2)k + + + ?x2 x3 x4 x5

Ĥ
(0)

Ĥ
(1)

Ψ(0) E (0) V (x) = 0

Ĥ
(0)

Ĥ
(1)

Ψ(0) E (0)

V (x) = + ϵr cos θ?
−e2

4π rϵo

1

2

= − k + + +Ĥ
−ℏ2

2m

∂2

∂x2

1

2
x2 x3 x4 x6

Ĥ
(0)

= − kĤ
(0) −ћ2

2m

∂2

∂x2

1

2
x2

Ĥ
(1)

= + +Ĥ
(1)

x3 x4 x5

(0)

= ( x)Ψ(0) NvHv α1/2 e−α /2x2

(0) 

= hν(v+ )E (0) 1

2

= −Ĥ
ℏ2

2m

∂2

∂x2

=−Ĥ
(0) ℏ2

2m

∂2

∂x2

(0)

(0) 2 2 2

V (x) = − +(1/2)ϵr cos θ
e2

4π rϵo

2 2 2
o

(0) 2 2 2
o

(1)

(0)
n,l,m

(0) 4
o
2 2 2
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7.21

Using a harmonic oscillator as the unperturbed problem, calculate the first-order correction to the energy of the  level for the system
described as

7.22
Using the first order perturbation theory for particle in a box, calculate the ground-state energy for the system

Solution

v = 0

V (x) = + +
k

2
x2 m

6
x3 b

24
x4

V (x) = a 0 < x < bx3

= sin( )ψ1
2

b

−−
√

πx

b

= +Ĥ Ĥ
0

Ĥ
1

= aĤ
1

x3

= +E1 E0
1 E1

1

=E0
1

h2

8mb2

= ⟨ | | ⟩E1
1 ψ1 Ĥ

1
ψ1

= ( )dx∫
b

0

2a

b
x3 sin2 πx

b

=
2a

b

( −3)π2 b4

8π2

=
( −3)aπ2 b3

4π2

= +E1
h2

8mb2

( −3)aπ2 b3

4π2
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7.23
In your chemistry lab you were able to manipulate an external electric field to have the strength . You're supervisor wants you to figure out what
the first-order correction to the ground state energy of a hydrogen like atom of charge N in this electric field.

Solution

You should remember, or look up the ground state wavefunction for a hydrogen atom and find that

Our change in energy equation has a familiar form

For this problem you construct a Hamiltonian for a Hydrogen atom in an electron field with strength .

Luckily you have previously calculated  for this system in a previous experiment, simply allowing you to substitute your variables into
your expressions to find that

Notice that the problem gets simplified by the fact that

So your answer is a trivial solution.

κ

=ψ100
1

π−−√
( )

1

Z∘

3

2 e−r/ao

ΔE = ∫ dτψ(0)∗ Ĥ
(1)
ψ(0)

κ

=− − + erκ cos θĤ
ℏ2

2me

∇2 Ne2

4rπκ∘

Ĥ
(1)

ΔE = ( dr dϕ sin θ cos θdθ
Neκ

π

1

Z∘
)

3

∫
∞

0
r3e

−r

a∘ ∫
2π

0
∫

π

0

sin θ cos θdθ = 0∫
π

0

ΔE = 0
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7.25A
Use first-order perturbation theory to calculate ground-state energy of a harmonic oscillator with a  added to the end of the potential.

Solution

The Hamiltonian to the system can be formulated as

we then solve

We know that the integral is of an odd function over a symmetric boundary is 0, so by symmetry we can conclude that the energy is 0.

7.25B
In order to calculate the first-order correction to the ground-state energy of the quartic oscillator, use first-order perturbation theory. The potential
energy is ( ) = . For this potential use the harmonic oscillator as the unperturbed system. Solve for the perturbing potential as well.

Solution

The Hamiltonian operator is given below:

To use a harmonic oscillator as the reference system, add and subtract  from .

 

Hence we get :

Now we have:

∆E =  . . . .
By putting the values in the equation above, we get:

 

cx7

= + k + cĤ
−ℏ2

2m

d2

dx2

1

2
x2 x7

= ⟨ |c | ⟩E1 ψ0 x7 ψ0

V x cx4

=− + cĤ
ℏ2

2μ

d2

dx2
x4

k
1

2
x2 Ĥ

=− + k   + c − kĤ
ℏ2

2μ

d

dx2

1

2
x2 x4 1

2
x2

= c − kĤ
(0)

x4 1

2
x2

∫ dτψ(0)∗ Ĥ
(1)
ψ(0)

ΔE = dx (c − k )( )
α

π

1/2
∫

∞

−∞
e− αx2 x4 1

2
x2

= 2 [ − ]( )
α

π

1/2 3c

8α2
( )
π

α

1/2 k

8α
( )
π

α

1/2

= −
3c

4α2

k

4α
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7.26
Solve the following integrals using this trial wavefunction

For simplicity purposes, we can assume that a = 1.

 

 

 

Solution

We know that for a particle in a box

We also know the two components of the trial function that was given are

and

Using this we will have

and

Using this we can solve for  and  using this integral

Letting , we can now solve for

|ϕ⟩ = x(a−x) + (a−xc1 c2x
2 )2

=H11
ℏ2

6m
S =

1

30

= =H12 H22
ℏ2

30m
= =S12 S21

1

140

=H22
ℏ2

105m
=S22

1

630

=Ĥ
−ℏ2

2m

d2

dx2

= x(a−x)ϕ1

= (a−xϕ2 x2 )2

=Ĥϕ1
ℏ2

2m

= ( −6ax+6 )Ĥϕ2
ℏ2

m
a2 x2

Hii Sij

(1−x dx =∫
1

0
xm )n

m!n!

(m+n+1)!

a= 1

=H11
ℏ2

m

x(1−x)dx =∫
1

0

ℏ2

6m

=H12
ℏ2

m

x(1−x)(1−6x+6 )dx =∫
1

0
x2 ℏ2

30m

=H21
ℏ2

m

(1−x dx =∫
1

0
x2 )2

ℏ2

30m

=H22
ℏ2

105m

= (1−x dx = =S11 ∫
1

0
x2 )2

4

5!

1

30
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= = (1−x dx = =S12 S21 ∫
1

0
x3 )3

36
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1
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7.27
Use Perturbation Theory to add cubic and quartic perturbations to the SHO and find the first three SHO energy levels. Do this by expanding the
Morse potential:

into polynomials (i.e., a Taylor expansion). Show that the Hamiltonian can be written as

Note which terms can be associated with  and which are the  perturbation. What are the relationships between a, b, c, and D, B? How do
the new energy levels compare to the old ones?

Solution

The  function can be expanded noting that

So e  will expand similarly, replacing x in the above expansion with -Bx, so

The Morse Potential therefore is

The expansion is shortened to 4 terms only.

= D( Bx - B x /2 + B x /6)

=D (B x /36 - B x /6 + 7B x /12 - B x  + B x )

= DB x /36 - DB x /6 + 7DB x /12 - DB x  + DB x

7DB x /12 - DB x  + DB x

(We have truncated above the quartic term)

Here, it is seen that DB x corresponds to the H  potential, and 7DB x /12 - DB x is H

We can also see that a = DB , b = - DB c = 7DB /12 in in the Hamiltonian potential: ax  + bx  + cx

 

Perturbation theory states that

Therefore, with E  = hv/2 and Ψ  = (α/π) e

E  = 3hv/2 and Ψ  = (4α /π) xe

E  =5 hv/2 and Ψ  = (α/4π) (2αx  - 1)e

H  = bx  + cx

the first three energy levels are:

E  = hv/2 + ∫ (α/π) e ( bx  + cx )(α/π) e dx

= hv/2 + (α/π)  ∫e ( bx  + cx )dx

= hv/2 + (α/π)  [∫e bx dx + ∫e cx dx] (The cubic integral is odd so evaluates to 0)

= hv/2 + (α/π)  ∫e cx dx

We can use ∫x e dx = n!/(2α ) (This is true from 0 to infinity, so we must double it)

= hv/2 + 2 * c(α/π)  3/(2 α ) * (π/α)

= hv/2 + 3c/(4α )

V (x) =D(1− e−Bx)2

+a + b + c
−h2∇2

8 mπ2
x2 x3 x4

H 0 H 1

e−Bx

≈ 1+x+ + +. . .+Oex
x2

2

x3

6
xn

-Bx

e^{-Bx] = 1 - Bx + B^2x^2/2 - B^3x^3/6 + ... + Ox^n\nonumber

D(1−(1−Bx+ −B2 x
2

2
B3 x

3

6
)2

2 2 3 3 2

6 6 5 5 4 4 3 3 2 2

6 6 5 5 4 4 3 3 2 2

= 4 4 3 3 2 2

2 2 0 4 4 3 3 1

2 3, 4 2 3 4

= + = +∫ dτEn E0
n E1

n E0
n Ψ0

nH
1Ψ0

n

0
0

0
0

1/4 -α(x^2)/2

0
1

0
1

3 1/4 -α(x^2)/2

0
2

0
2

1/4 2 -α(x^2)/2

1 2 2

0
1/4 -α(x^2)/2 3 4 1/4 -α(x^2)/2

1/2 -α(x^2) 3 4

1/2 -α(x^2) 3 -α(x^2) 4

1/2 -α(x^2) 4

2n -αx^2 n + 1

1/2 * 3 2 1/2

2
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E  = 3hv/2 + ∫(4α /π) xe ( bx  + cx )(4α /π) xe dx

= 3hv/2 + (4α /π) ∫x e ( bx  + cx )dx

= 3hv/2 + (4α /π) [∫x e bx dx + ∫x e cx dx ] (First integral evaulates to 0)

= 3hv/2 + c(4α /π) ∫x e dx

We can use ∫x e dx = n!/(2α ) (This is true from 0 to infinity, so we must double it)

= 3hv/2 + 2* c(4α /π) 15/(2 α ) * (π/α)

= 3hv/2 + 15c/(4α )

E  = 5hv/2 + ∫ (α/4π) (2αx  - 1)e ( bx  + cx ) (α/4π) (2αx  - 1)e dx

= 5hv/2 + (α/4π) ∫( bx  + cx )(2αx  - 1) e dx

= 5hv/2 + (α/4π) [∫bx (2αx  - 1) e dx + ∫cx e (2αx  - 1) dx

= 5hv/2 + (α/4π) ∫cx e (2αx  - 1) dx (First integral evaluates to 0)

= 5hv/2 + (α/4π) ∫4cα x e  - 4αcx e  + cx e dx

We can use ∫x e dx = n!/(2α ) (This is true from 0 to infinity, so we must double it)

= 5hv/2 + (α/4π) [4cα *2*(105/(32α ))* (π/α)  - αc*2*15/(2 α ) * (π/α)  + c*2*3/(2 α ) * (π/α) ]

= 5hv/2 + 39c/4α

It is evident that as the energy levels increase, the perturbation to the energy increases as well, making the Hooke potential increasingly bad as
an approximation of intramolecular potential.

1
3 1/4 -α(x^2)/2 3 4 3 1/4 -α(x^2)/2

3 1/2 2 -α(x^2) 3 4

3 1/2 2 -α(x^2) 3 2 -α(x^2) 4

3 1/2 6 -α(x^2) 

2n -αx^2 n + 1

3 1/2 * 4 3 1/2

2

2o
1/4 2 -α(x^2)/2 3 4 1/4 2 -α(x^2)/2

1/2 3 4 2 2 -α(x^2)

1/2 3 2 2 -α(x^2) 4 -α(x^2) 2 2

1/2 4 -α(x^2) 2 2

1/2 2 8 -α(x^2) 6 -α(x^2) 4 -α(x^2)
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7.27
Use the perturbation theory to calculate the first - order corrections to the ground state energy of

a. A harmonic oscillator that arises from a cubic and quartic term.
b. A quartic oscillator that arises from only using a quartic term 

and compare the results.

Solution

A) The Hamiltonian for this problem is

We use the harmonic oscillator Hamiltonian for 

B) The Hamiltonian for this problem is

We use the harmonic oscillator Hamiltonian for 
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(0) −ℏ2

2μ

d2

dx2
x2

= c −Ĥ
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