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11.1: Overview of Quantum Calculations

Multielectron Electronic Wavefunctions 

We could symbolically write an approximate two-particle wavefunction as . This could be, for example, a two-electron
wavefunction for helium. To exchange the two particles, we simply substitute the coordinates of particle 1 ( ) for the coordinates
of particle 2 ( ) and vice versa, to get the new wavefunction . This new wavefunction must have the property that

Equation  will be true only if the wavefunctions before and after permutation are related by a factor of ,

so that

If we exchange or permute two identical particles twice, we are (by definition) back to the original situation. If each permutation
changes the wavefunction by , the double permutation must change the wavefunction by . Since we then are back to the
original state, the effect of the double permutation must equal 1; i.e.,

which is true only if  or an integer multiple of π. The requirement that a double permutation reproduce the original situation
limits the acceptable values for  to either +1 (when ) or -1 (when ). Both possibilities are found in nature, but the
behavior of elections is that the wavefunction be antisymmetric with respect to permutation . A wavefunction that is
antisymmetric with respect to electron interchange is one whose output changes sign when the electron coordinates are
interchanged, as shown below.

Blindly following the first statement of the Pauli Exclusion Principle, that each electron in a multi-electron atom must be described
by a different spin-orbital, we try constructing a simple product wavefunction for helium using two different spin-orbitals. Both
have the 1s spatial component, but one has spin function  and the other has spin function  so the product wavefunction matches
the form of the ground state electron configuration for He, .

After permutation of the electrons, this becomes

which is different from the starting function since  and  are different spin-orbital functions. However, an antisymmetric
function must produce the same function multiplied by (–1) after permutation, and that is not the case here. We must try something
else.

To avoid getting a totally different function when we permute the electrons, we can make a linear combination of functions. A very
simple way of taking a linear combination involves making a new function by simply adding or subtracting functions. The function
that is created by subtracting the right-hand side of Equation  from the right-hand side of Equation  has the desired
antisymmetric behavior. The constant on the right-hand side accounts for the fact that the total wavefunction must be normalized.

 A linear combination that describes an appropriately antisymmetrized multi-electron wavefunction for any desired orbital
configuration is easy to construct for a two-electron system. However, interesting chemical systems usually contain more than two
electrons. For these multi-electron systems a relatively simple scheme for constructing an antisymmetric wavefunction from a
product of one-electron functions is to write the wavefunction in the form of a determinant. John Slater introduced this idea so the
determinant is called a Slater determinant.
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The Slater determinant for the two-electron wavefunction for the ground state  system (with the two electrons occupying the  
molecular orbital)

We can introduce a shorthand notation for the arbitrary spin-orbital

or

as determined by the  quantum number. A shorthand notation for the determinant in Equation 8.6.4 is then

The determinant is written so the electron coordinate changes in going from one row to the next, and the spin orbital changes in
going from one column to the next. The advantage of having this recipe is clear if you try to construct an antisymmetric
wavefunction that describes the orbital configuration for uranium! Note that the normalization constant is

for a system of  electrons.

The generalized Slater determinant for a multe-electrom atom with N electrons is then

In a modern ab initio electronic structure calculation on a closed shell molecule, the electronic Hamiltonian is used with a single
determinant wavefunction. This wavefunction, , is constructed from molecular orbitals,  that are written as linear combinations
of contracted Gaussian basis functions, 

The contracted Gaussian functions are composed from primitive Gaussian functions to match Slater-type orbitals. The exponential
parameters in the STOs are optimized by calculations on small molecules using the nonlinear variational method and then those
values are used with other molecules. The problem is to calculate the electronic energy from

or in bra-ket notation

The the optimum coefficients  for each molecular orbital in Equation  by using the Self Consistent Field Method and the
Linear Variational Method to minimize the energy as was described previously for atoms.

The variational principle says an approximate energy is an upper bound to the exact energy, so the lowest energy that we calculate
is the most accurate. At some point, the improvements in the energy will be very slight. This limiting energy is the lowest that can
be obtained with a single determinant wavefunction (e.g., Equation ). This limit is called the Hartree-Fock limit, the energy
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is the Hartree-Fock energy, the molecular orbitals producing this limit are called Hartree-Fock orbitals, and the determinant is the
Hartree-Fock wavefunction.

You may encounter the terms restricted and unrestricted Hartree-Fock. The above discussion pertains to a restricted HF
calculation. In a restricted HF calculation, electrons with  spin are restricted or constrained to occupy the same spatial orbitals
as electrons with  spin. This constraint is removed in an unrestricted calculation. For example, the spin orbital for electron 1
could be , and the spin orbital for electron 2 in a molecule could be , where both the spatial molecular
orbital and the spin function differ for the two electrons. Such spin orbitals are called unrestricted. If both electrons are
constrained to have the same spatial orbital, e.g.  and , then the spin orbital is said to be restricted.
While unrestricted spin orbitals can provide a better description of the electrons, twice as many spatial orbitals are needed, so
the demands of the calculation are much higher. Using unrestricted orbitals is particular beneficial when a molecule contains an
odd number of electrons because there are more electrons in one spin state than in the other.

It is well known that carbon monoxide is a poison that acts by binding to the iron in hemoglobin and preventing oxygen from
binding. As a result, oxygen is not transported by the blood to cells. Which end of carbon monoxide, carbon or oxygen, do you
think binds to iron by donating electrons? We all know that oxygen is more electron-rich than carbon (8 vs 6 electrons) and
more electronegative. A reasonable answer to this question therefore is oxygen, but experimentally it is carbon that binds to
iron.

A quantum mechanical calculation done by Winifred M. Huo, published in J. Chem. Phys. 43, 624 (1965), provides an
explanation for this counter-intuitive result. The basis set used in the calculation consisted of 10 functions: the ls, 2s, 2p , 2p ,
and 2p  atomic orbitals of C and O. Ten molecular orbitals (mo’s) were defined as linear combinations of the ten atomic
orbitals (Equation . The ground state wavefunction  is written as the Slater Determinant of the five lowest energy
molecular orbitals . Equation  gives the energy of the ground state, where the denominator accounts for the
normalization requirement. The coefficients  in the linear combination are determined by the variational method to
minimize the energy. The solution of this problem gives the following equations for the molecular orbitals. Only the largest
terms have been retained here. These functions are listed and discussed in order of increasing energy.

. The 1 says this is the first  orbital. The  says it is symmetric with respect to reflection in the plane of the
molecule. The large coefficient, 0.94, means this is essentially the 1s atomic orbital of oxygen. The oxygen 1s orbital
should have a lower energy than that of carbon because the positive charge on the oxygen nucleus is greater.

. This orbital is essentially the 1s atomic orbital of carbon. Both the  and  are “nonbonding” orbitals
since they are localized on a particular atom and do not directly determine the charge density between atoms.

. This orbital is a “bonding” molecular orbital because the electrons
are delocalized over C and O in a way that enhances the charge density between the atoms. The 3 means this is the third 
orbital. This orbital also illustrates the concept of hybridization. One can say the 2s and 2p orbitals on each atom are
hybridized and the molecular orbital is formed from these hybrids although the calculation just obtains the linear
combination of the four orbitals directly without the à priori introduction of hybridization. In other words, hybridization
just falls out of the calculation. The hybridization in this bonding LCAO increases the amplitude of the function in the
region of space between the two atoms and decreases it in the region of space outside of the bonding region of the atoms.

. This molecular orbital also can be thought of as being a hybrid
formed from atomic orbitals. The hybridization of oxygen atomic orbitals, because of the negative coefficient with 2s ,
decreases the electron density between the nuclei and enhances electron density on the side of oxygen facing away from the
carbon atom. If we follow how this function varies along the internuclear axis, we see that near carbon the function is
positive whereas near oxygen it is negative or possibly small and positive. This change means there must be a node
between the two nuclei or at the oxygen nucleus. Because of the node, the electron density between the two nuclei is low so
the electrons in this orbital do not serve to shield the two positive nuclei from each other. This orbital therefore is called an
“antibonding” molecular orbital and the electrons assigned to it are called antibonding electrons. This orbital is the
antibonding partner to the  orbital.

 Hartree-Fock Calculations
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 Example 11.1.1 : Carbon Monoxide
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1s ≈ 0.941so σ σ

2s ≈ 0.921sc 1σ 2σ

3s ≈ (0.722 +0.182 ) +(0.282 +0.162 )so pzo sc pzc
σ

4s ≈ (0.372 +0.12 ) +(0.542 −0.432 )sc pzc pzo s0
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. These two orbitals are degenerate and correspond to bonding
orbitals made up from the p  and p  atomic orbitals from each atom. These orbitals are degenerate because the x and y
directions are equivalent in this molecule.  tells us that these orbitals are antisymmetric with respect to reflection in a
plane containing the nuclei.

. This orbital is the sp hybrid of the carbon atomic orbitals. The negative coefficient
for 2p  puts the largest amplitude on the side of carbon away from oxygen. There is no node between the atoms. We
conclude this is a nonbonding orbital with the nonbonding electrons on carbon. This is not a “bonding” orbital because the
electron density between the nuclei is lowered by hybridization. It also is not an antibonding orbital because there is no
node between the nuclei. When carbon monoxide binds to Fe in hemoglobin, the bond is made between the C and the Fe.
This bond involves the donation of the  nonbonding electrons on C to empty d orbitals on Fe. Thus molecular orbital
theory allows us to understand why the C end of the molecule is involved in this electron donation when we might naively
expect O to be more electron-rich and capable of donating electrons to iron.

This page titled 11.1: Overview of Quantum Calculations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by David M. Hanson, Erica Harvey, Robert Sweeney, Theresa Julia Zielinski.
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