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5.9: The Rigid Rotator is a Model for a Rotating Diatomic Molecule

Demonstrate how to use the 3D regid rotor to describe a rotating diatomic molecules
Demonstate how microwave spectroscopy can get used to characterize rotating diatomic molecules
Interprete a simple microwave spectrum for a diatomic molecule

To develop a description of the rotational states, we will consider the molecule to be a rigid object, i.e. the bond lengths are fixed
and the molecule cannot vibrate. This model for rotation is called the rigid-rotor model. It is a good approximation (even though a
molecule vibrates as it rotates, and the bonds are elastic rather than rigid) because the amplitude of the vibration is small compared
to the bond length.

The rotation of a rigid object in space is very simple to visualize. Pick up any object and rotate it. There are orthogonal rotations
about each of the three Cartesian coordinate axes just as there are orthogonal translations in each of the directions in three-
dimensional space (Figures 5.9.1 and 5.9.2 ). These rotations are said to be orthogonal because one can not describe a rotation
about one axis in terms of rotations about the other axes just as one can not describe a translation along the x-axis in terms of
translations along the y- and z-axes. For a linear molecule, the motion around the interatomic axis (x-axis) is not considered a
rotation.

Figure 5.9.1 : Cartesian rotations of a chair. Rotations about the (a) x axis, (b) y axis, and (c) z axis.

In this section we examine the rotational states for a diatomic molecule by comparing the classical interpretation of the angular
momentum vector with the probabilistic interpretation of the angular momentum wavefunctions. We want to answer the following
types of questions. How do we describe the orientation of a rotating diatomic molecule in space? Is the molecule actually rotating?
What properties of the molecule can be physically observed? In what ways does the quantum mechanical description of a rotating
molecule differ from the classical image of a rotating molecule?

Figure 5.9.2 : Rotation of a diatomic molecule about the x axis.

Introduction to Microwave Spectroscopy 

The permanent electric dipole moments of polar molecules can couple to the electric field of electromagnetic radiation. This
coupling induces transitions between the rotational states of the molecules. The energies that are associated with these transitions
are detected in the far infrared and microwave regions of the spectrum. For example, the microwave spectrum for carbon monoxide
spans a frequency range of 100 to 1200 GHz, which corresponds to 3 - 40 .

The selection rules for the rotational transitions are derived from the transition moment integral by using the spherical harmonic
functions and the appropriate dipole moment operator, .

 Learning Objectives

cm−1

μ̂

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13423?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/05%3A_The_Harmonic_Oscillator_and_the_Rigid_Rotor/5.09%3A_The_Rigid_Rotator_is_a_Model_for_a_Rotating_Diatomic_Molecule


5.9.2 https://chem.libretexts.org/@go/page/13423

or in braket notation

Evaluating the transition moment integral involves a bit of mathematical effort. This evaluation reveals that the transition moment
depends on the square of the dipole moment of the molecule,  and the rotational quantum number, , of the initial state in the
transition,

and that the selection rules for rotational transitions are

and

A photon is absorbed for  and emitted for .

Explain why your microwave oven heats water, but not air. Hint: draw and compare Lewis structures for components of air and
for water.

The energies of the  rotational levels are given by

with each  energy level having a degeneracy of  due to the different possible  values.

Microwave Transition Energies 

The transition energies for absorption of radiation are given by

Substituting the relationship for energy (Equation ) into Equation  results in

with  and  representing the rotational quantum numbers of the initial (lower) and final (upper) levels involved in the
absorption transition.

Since microwave spectroscopists use frequency units and infrared spectroscopists use wavenumber units when describing rotational
spectra and energy levels, both  and  are important to calculate. When we add in the constraints imposed by the selection rules to
identify possible transitions,  in Equation  can be replaced by , since the selection rule requires  for the
absorption of a photon (Equation ). The equation for absorption transitions (Equation ) then can be written in terms of
the only the quantum number  of the initial state.
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Equation  can be rewritten as

where  is the rotational constant for the molecule and is defined in terms of the energy of the absorbed photon

Often spectroscopists want to express the rotational constant in terms of frequency of the absorbed photon and do so by dividing
Equation  by 

More often, spectroscopists want to express the rotational constant in terms of wavenumbers ( ) of the absorbed photon by
dividing Equation  by ,

The rotational constant depends on the distance ( ) and the masses of the atoms (via the reduced mass) of the nuclei in the
diatomic molecule.

Construct a rotational energy level diagram for , , and  and add arrows to show all the allowed transitions between
states that cause electromagnetic radiation to be absorbed or emitted.

Complete the steps going from Equation  to Equation  and identify the units of  at the end.

Answer

Ephoton = hν

= hcν̄

= 2( +1)Ji
ℏ2

2I

(5.9.13)
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 Exercise 5.9.2

J = 0 1 2
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Now we do a standard dimensional analysis

Infrared spectroscopists use units of wavenumbers. Rewrite the steps going from Equation  to Equation  to obtain
expressions for  and  in units of wavenumbers. Note that to convert  in Hz to  in , you simply divide the former
by .

Figure 5.9.3: The rotation spectrum of  at 40 K. The peaks are tabulated in Table 5.9.1.

Figure 5.9.3 shows the rotational spectrum as a series of nearly equally spaced lines. The line positions , line spacings, and the
maximum absorption coefficients ( , the absorption coefficients associated with the specified line position) for each line in this
spectrum are given here in Table 5.9.1.

Table 5.9.1 : Rotational Transitions in  at 40 K

J  (MHz)
Spacing from previous line
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115,271.21 0 0.0082
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J  (MHz)
Spacing from previous line

(MHz)

230,538.01 115,266.80 0.0533

345,795.99 115,257.99 0.1278

461,040.76 115,244.77 0.1878

576,267.91 115,227.15 0.1983

691,473.03 115,205.12 0.1618

806,651.78 115,178.68 0.1064

921,799.55 115,147.84 0.0576

1,036,912.14 115,112.59 0.0262

1,151,985.08 115,072.94 0.0103

Let’s try to reproduce Figure 5.9.3 from the data in Table 5.9.1 by using the quantum theory that we have developed so far.
Equation  predicts a pattern of exactly equally spaced lines. The lowest energy transition is between  and  so
the first line in the spectrum appears at a frequency of . The next transition is from  to  so the second line appears
at . The spacing of these two lines is . In fact the spacing of all the lines is , which is consistent with the experimental data
in Table 5.9.1 showing that the lines are very nearly equally spaced. The difference between the first spacing and the last spacing is
less than 0.2%.

Figure 5.9.4 : Energy levels and line positions calculated in the rigid rotor approximation. (CC BY-SA 3.0; Nrrw via Wikipedia)

Use Equation  to prove that the spacing of any two lines in a rotational spectrum is , i.e. derive:

Answer

To prove the relationship, evaluate the LHS. First, define the terms:

Substitute into the equation and evaluate:

νJ γmax

1 → 2

2 → 3

3 → 4

4 → 5

6 → 6

6 → 7

7 → 8

8 → 9

9 → 10

5.9.19 = 0Ji = 1Jf
2B = 1Ji = 2Jf

4B 2B 2B

 Exercise 5.9.5
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LHS equals RHS.Therefore, the spacing between any two lines is equal to .

The molecule  undergoes a rotational transition from  to  when it absorbs a photon of frequency 
. What is the equilibrium bond length of the molecule?

Solution
We use  in the formula for the transition frequency

Solving for  gives

The reduced mass is given by

which is in atomic mass units or relative units. To convert to kilograms, we need the conversion factor 
 . Multiplying this by  gives a reduced mass of . Substituting in for  gives

Use the frequency of the  to  transition observed for carbon monoxide to determine a bond length for .

Solution
J=0: 
J=1: 

The reduced mass is

2B(( +1) +1) −2B( +1) = 2BJi Ji

2B( +1) +2B−2B( +1) = 2BJi Ji

2B = 2B

2B

 Example 5.9.1 : Rotation of Sodium Hydride

NaH J = 0 J = 1

2.94 ×  Hz1011

J = 0

ν = 2B = =
ℏ

2πI

ℏ

2πμR2
e

Re

=Re

ℏ

2πμν

− −−−−

√

μ =
mNamH

+mNa mH

=
(22.989)(1.0078)

22.989 +1.0078

= 0.9655

1 au = 1.66 ×  kg 10−27 0.9655 1.603 ×  kg10−27 Re

Re =
(1.055 ×  J ⋅ s)10−34

2π(1.603 ×  kg)(2.94 ×  Hz)10−27 1011

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 1.899 ×  m10−10

= 1.89  A
∘

 Example 5.9.6

J = 0 J = 1 O12C 16

= 115271.21 MHzv0

= 230538.01 MHzv1

Δv = 230538.01 MHz −115271.21 MHz

= 115266.8 MHz

= 1.153 ×  Hz1011

=
ℏ

2πμR2
e
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Convert to kg

Centrifugal stretching of the bond as  increases causes the decrease in the spacing between the lines in an observed spectrum
(Table 5.9.1 ). This decrease shows that the molecule is not really a rigid rotor. As the rotational angular momentum increases
with increasing , the bond stretches. This stretching increases the moment of inertia and decreases the rotational constant
(Figure 5.9.5 ).

Figure 5.9.5 : Two atoms connected by a vibrating bond. There is a rotation around the common center of mass, and oscillation
in bond distance. (CC SA-BY 3.0; www.cleonis.nl).

The effect of centrifugal stretching is smallest at low  values, so a good estimate for  can be obtained from the  to 
 transition. From , a value for the bond length of the molecule can be obtained since the moment of inertia that appears

in the definition of  (Equation ) is the reduced mass times the bond length squared. When the centrifugal stretching is
taken into account quantitatively, the development of which is beyond the scope of the discussion here, a very accurate and
precise value for B can be obtained from the observed transition frequencies because of their high precision. Rotational
transition frequencies are routinely reported to 8 and 9 significant figures.

As we have just seen, quantum theory successfully predicts the line spacing in a rotational spectrum. An additional feature of the
spectrum is the line intensities. The lines in a rotational spectrum do not all have the same intensity, as can be seen in Figure 5.9.3
and Table 5.9.1. This is related to the populations of the initial and final states. This aspect of spectroscopy will be discussed in
more detail in the following chapters

This page titled 5.9: The Rigid Rotator is a Model for a Rotating Diatomic Molecule is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by David M. Hanson, Erica Harvey, Robert Sweeney, Theresa Julia Zielinski.

μ =
mCmO

+mC mO

=
12.01 ×16.00

12.01 +16.00

= 6.86 amu

6.86amu ( ) = 1.139 ×  kg
1.661 ×  kg10−27

12 amu
10−26

Re =
ℏ

2πμΔv

− −−−−−
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=
1.055 ×  J ⋅ s10−34
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∘

 Advanced: Non-Rigid Rotors
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