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3.3: The Schrödinger Equation is an Eigenvalue Problem

To recognize that each quantum mechanical observable is determined by solve by an eigenvalue problem with different
operators for different observable
Confirm if a specific wavefunction is an eigenfunction of a specific operation and extract the corresponding obserable (the
eigenvalue)
To recognize that the Schrödinger equation, just like all measurable, is also an eigenvalue problem with the eigenvalue
ascribed to total energy
Identity and manipulate several common quantum mechanical operators

As per the definition, an operator acting on a function gives another function, however a special case occurs when the generated
function is proportional to the original

This case can be expressed in terms of a equality by introducing a proportionality constant 

Not all functions will solve an equation like in Equation . If a function does, then  is known as an eigenfunction and the
constant  is called its eigenvalue (these terms are hybrids with German, the purely English equivalents being "characteristic
function" and "characteristic value", respectively). Solving eigenvalue problems are discussed in most linear algebra courses.

In quantum mechanics, every experimental measurable  is the eigenvalue of a specific operator ( ):

The  eigenvalues represents the possible measured values of the  operator. Classically,  would be allowed to vary continuously,
but in quantum mechanics,  typically has only a sub-set of allowed values (hence the quantum aspect). Both time-dependent and
time-independent Schrödinger equations are the best known instances of an eigenvalue equations in quantum mechanics, with its
eigenvalues corresponding to the allowed energy levels of the quantum system.

The object on the left that acts on  is an example of an operator.

In effect, what is says to do is "take the second derivative of , multiply the result by  and then add  to the
result of that." Quantum mechanics involves many different types of operators. This one, however, plays a special role because it
appears on the left side of the Schrödinger equation. It is called the Hamiltonian operator and is denoted as

Therefore, the time-dependent Schrödinger equation can be (and it more commonly) written as

and the time-independent Schrödinger equation

Note that the functional form of Equation  is the same as the general eigenvalue equation in Equation  where the
eigenvalues are the (allowed) total energies ( ).
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The Hamiltonian, named after the Irish mathematician Hamilton, comes from the formulation of Classical Mechanics that is based
on the total energy, , rather than Newton's second law, . Equation  says that the Hamiltonian operator
operates on the wavefunction to produce the energy , which is a scalar (e.g., expressed in Joules) times the wavefunction.

Note that  is derived from the classical energy  simply by replacing . This is an example of
the Correspondence Principle initially proposed by Niels Bohr that states that the behavior of systems described by quantum
theory reproduces classical physics in the limit of large quantum numbers.

It is a general principle of Quantum Mechanics that there is an operator for every physical observable. A physical observable is
anything that can be measured. If the wavefunction that describes a system is an eigenfunction of an operator, then the value of the
associated observable is extracted from the eigenfunction by operating on the eigenfunction with the appropriate operator. The
value of the observable for the system is then the eigenvalue, and the system is said to be in an eigenstate. Equation  states this
principle mathematically for the case of energy as the observable. If the wavefunction is not the eigenfunction of the operation,
then the measurement will give an eigenvalue (by definition), but not necessarily the same one for each measurement (this will be
discussed in more detail in later section).

Common Operators 

Although we could theoretically come up with an infinite number of operators, in practice there are a few which are much more
important than any others.

Linear Momentum:

The linear momentum operator of a particle moving in one dimension (the -direction) is

and can be generalized in three dimensions:

Position

The position operator of a particle moving in one dimension (the -direction) is

and can be generalized in three dimensions:

where .

Kinetic Energy

Classically, the kinetic energy of a particle moving in one dimension (the -direction), in terms of momentum, is

Quantum mechanically, the corresponding kinetic energy operator is

and can be generalized in three dimensions:

Angular Momentum:

H = T +V F = ma 3.3.8
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Angular momentum requires a more complex discussion, but is the cross product of the position operator  and the
momentum operator 

Hamiltonian:

The Hamiltonian operator corresponds to the total energy of the system

and it represents the total energy of the particle of mass  in the potential . The Hamiltonian in three dimensions is

Total Energy:

The energy operator from the time-dependent Schrödinger equation

The right hand side of Equation  is the Hamiltonian Operator. In addition determining system energies, the Hamiltonian
operator dictates the time evolution of the wavefunction

This aspect will be discussed in more detail elsewhere.

Eigenstate, Eigenvalues, Wavefunctions, Measurables, and Observables 
In general, the wavefunction gives the "state of the system" for the system under discussion. It stores all the information available
to the observer about the system. Often in discussions of quantum mechanics, the terms eigenstate and wavefunction are used
interchangeably. The term eigenvalue is used to designate the value of measurable quantity associated with the wavefunction.

If you want to measure the energy of a particle, you have to operate on the wavefunction with the Hamiltonian operator
(Equation ).
If you want to measure the momentum of a particle, you have to operate on wavefunction with the momentum operator
(Equation ).
If you want to measure the position of a particle, you have to operate on wavefunction with the position operator (Equation 

).
If you want to measure the kinetic energy of a particle, you have to operate on wavefunction with the kinetic energy operator
(Equation ).

When discussing the eigenstates of the Hamiltonian ( ), the associated eigenvalues represent energies and within the context of
the momentum operators, the associated eigenvalues refer to the momentum of the particle. However, not all wavefunctions ( ) are
eigenstates of an operator ( ) – and if they are not, they can be usually be written as superpositions of eigenstates.

This will be discussed in more detail in later sections.

While the wavefunction may not be the eigenstate of an observable, when that operator operates on that wavefunction, the
wavefunction becomes an eigenstate of that observable and only eigenvalues can be observed. Another way to say this is that the
wavefunction "collapses" into an eigenstate of the observable. Because quantum mechanical operators have different forms, their
associated eigenstates are similarly often (i.e., most of the time) different. For example, when a wavefunction is an eigenstate of
total energy, it will not be an eigenstate of momentum.
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If a wavefunction is an eigenstate of one operator, (e.g., momentum), that state is not
necessarily an eigenstate of a different operator (e.g., energy), although not always.

The wavefunction immediately after a measurement is an eigenstate of the operator associated with this measurement. What
happens to the wavefunction after the measurement is a different topic.

Confirm that the following wavefunctions are eigenstates of linear momentum and kinetic energy (or neither or both):

a. 
b. 

Strategy
This question is asking if the eigenvalue equation holds for the operators and these wavefunctions. This is just asking if these
wavefunctions are solutions to Equation  using the operators in Equations  and , i.e., are these equations true:

where  and  are the measurables (eigenvalues) for these operators.

Solution a
Let's evaluate the left side of the linear momentum eigenvalue problem (Equation )

and compare to the the right side of Equation 

These are not the same so this wavefunction is not an eigenstate of momentum.

Let's look at the left side of the kinetic energy eigenvalue problem (Equation )

and compare to the right side

These are same, so this specific wavefunction is an eigenstate of kinetic energy. Moreover, the measured kinetic energy will be

Solution b
Let's look at the left side of Equation  for linear momentum

and the right side of Equation 

These are the same so this wavefunction is an eigenstate of momentum with momentum .

Let's look at the left side of Equation  for kinetic energy

 Example 3.3.1
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3.3.2 3.3.9 3.3.14
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ψ = KEψKÊ (3.3.22)
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and the right side

These are same so this wavefunction is an eigenstate of kinetic energy. And the measured kinetic energy will be

This wavefunction is an eigenstate of both momentum and kinetic energy.

Are  functions eigenstates of linear momentum and kinetic energy (or neither or both)?

Answer

 is an eigenstate of linear momentum with a eigenvalue of  and also an eigenstate of kinetic energy with an eigenvalue
of .

This page titled 3.3: The Schrödinger Equation is an Eigenvalue Problem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by David M. Hanson, Erica Harvey, Robert Sweeney, Theresa Julia Zielinski.
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Exercise 3.3.1

ψ = Me−bx

ψ biℏ
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