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6.3: The Three Components of Angular Momentum Cannot be Measured
Simultaneously with Arbitrary Precision

Understand how to measure the orbital angular momentum of an electron around a nucleus.
Understand how the Heisenburgh Uncertainty Principle extends to orbital angular momenta.
Manipulate the angular momenta cyclic permutations that allow two of the three projects to be simultaneous measured

Consider a particle described by the Cartesian coordinates  and their conjugate momenta . The
classical definition of the orbital angular momentum of such a particle about the origin is (i.e., via the vector cross product):

which can be separated into projections into each of the primary axes :

Extending this discussion to the quantum mechanics, we can assume that the operators  - that represent the
components of orbital angular momentum in quantum mechanics - can be defined in an analogous manner to the corresponding
components of classical angular momentum. In other words, we are going to assume that the above equations specify the angular
momentum operators in terms of the position and linear momentum operators.

In Cartesian coordinates, the three operators for the orbital angular momentum components can be written as

These can be transforming to operators in standard spherical polar coordinates,

we obtain

We can introduce a new operator :

 Learning Objectives

(x, y, z) ≡ r ⃗  ( , , ) ≡px py pz p ⃗ 

= ×L⃗  r ⃗  p ⃗ 

Lx

Ly

Lz

= y −z ,pz py

= z −xpx pz

= x −ypy px

( , , ) ≡L̂x L̂y L̂z L⃗ 

= −i ℏ(y −z )L̂x

∂

∂z

∂

∂y
(6.3.1)

= −i ℏ(z −x )L̂y

∂

∂x

∂

∂z
(6.3.2)

= −i ℏ(x −y )L̂z

∂

∂y

∂

∂x
(6.3.3)

x

y

z

= r sinθ cos φ

= r sinθ sinφ

= r cos θ

L̂x

L̂y

L̂z

= i ℏ (sinφ +cot θ cos φ )
∂

∂θ

∂

∂φ

= −i ℏ (cos φ −cot θ sinφ )
∂

∂θ

∂

∂φ

= −i ℏ
∂

∂φ

L2̂

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13428?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/06%3A_The_Hydrogen_Atom/6.03%3A_The_Three_Components_of_Angular_Momentum_Cannot_be_Measured_Simultaneously_with_Arbitrary_Precision
https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/12%3A_Vectors_in_Space/12.4%3A_The_Cross_Product


6.3.2 https://chem.libretexts.org/@go/page/13428

The eigenvalue problem for  takes the form

where  is the wavefunction, and  is a number. Let us write

By definition,

where  is an integer. This is an important conclusion that argues the angular momentum is quantized with the square of the
magnitude of the angular momentum only capable of assume one of the discrete set of values (Equation ). From this, the
amplitude of angular momentum can be expressed

We often refer to a particle in a state with angular momentum quantum number  as having angular momentum , rather than
saying that it has angular momentum of  magnitude, primarily since it is awkward to say quickly.

The properties of spherical harmonics that the z-component of the angular momentum ( ) is also quantized and can only assume a
one of a discrete set of values

where  is an integer lying in the range .

 is sometimes called "azimuthal quantum number" or "orbital quantum number"
 is sometimes called "magnetic quantum number"

Simultaneous Measurements 

Note that observables associated with , , and  can, in principle, be measured. However, to determine if they can be
measured simultaneously with infinite precision, the corresponding operators must commute. Remember that the fundamental
commutation relations satisfied by the position and linear momentum operators are:

where  and  stand for either , , or . Consider the commutator of the operators  and  :

The cyclic permutations of the above result yield the fundamental commutation relations satisfied by the components of an orbital
angular momentum:
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The three commutation relations (Equations  - ) are the foundation for the whole theory of angular momentum in
quantum mechanics. Whenever we encounter three operators having these commutation relations, we know that the dynamical
variables that they represent have identical properties to those of the components of an angular momentum (which we are about to
derive). In fact, we shall assume that any three operators that satisfy the commutation relations (Equations  - )
represent the components of some sort of angular momentum.

Any three operators that satisfy the cyclic commutation relations represent the
components of some sort of angular momentum.

Show that the  and  operators commute.

Solution

We want to confirm that  that from Equation  this can be expanded

from the properties of commutators, this can be expanded

However,

So

Lets look at some related forms which can be used to simplify the above expression. The first two terms can and final two
terms can be rewritten as different commutators

The first & fourth terms cancel, giving

Similarly,

So,
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One can also show similarly that

Example 6.3.1 shows that while  can be known with certainty,  and  would unknown. This means that every vector with
the appropriate length and z-component can drawn to represent , which forms a cone (Figure 6.3.1 ). The expected value of the
angular momentum for a given ensemble of systems in the quantum state characterized by  and  could be somewhere on this
cone while it cannot be defined for a single system (since the components of  do not commute with each other).
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Figure 6.3.1 : Illustration of the vector model of orbital angular momentum. (left) A set of states with quantum numbers , and 
. (right) A set of states with quantum numbers , and . (Public Domain; Maschen

via Wikipedia)

The mathematics of commutation relations is relatively straightforward, but what does it physically mean for an observable
(Hermitian operator) to commute with another observable (Hermitian operator) in quantum mechanics?

If two operators  and  commute with each other then

which can be rearranged to

This is not a trivial statement and many operations do not commute and hence the end-result depends on how you have ordered
the operations.

If you recall that operators act on quantum mechanical states and give you a new state in return, then this means that with 
and  commuting, the state you obtain from letting first  act and then  act on some initial state is the same as if you let first

 and then  act on that state, i.e.,

Recall that when you perform a quantum mechanical measurement, you will always measure an eigenvalue of your operator,
and after the measurement your state is left in the corresponding eigenstate. The eigenstates to the operator are precisely those
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states for which there is no uncertainty in the measurement: You will always measure the eigenvalue.

Therefore,  must be an eigenfunction of  with eigenvalue  just like  itself is. That is essentially saying that  is an
eigenfunction of .

A key example of this is since  and  commute (Example 6.3.1 ) then both operators share the same eigenstates. Hence, we
do no need to solve two eignevalue problems:

and

If we solve one, we then know the eigenvalues ( ) for the other!

What does it mean when some observable  commutes with the Hamiltonian ? First, we get all the result from above: There
is a simultaneous eigenbasis of the energy-eigenstates and the eigenstates of . This can yield a tremendous simplification of
the task of solving Schrödinger equations. For example, the Hamiltonian of the hydrogen atom commutes with , the angular
momentum operator, and with , its z-component. This tells you that you can classify the eigenstates by an angular- and
magnetic quantum number  and .

Summary 
In the quantum world, angular momentum is quantized. The square of the magnitude of the angular momentum (determined by the
eigenvalues of the  operator) can only assume one of the discrete set of values

or the magnitude of the angular momentum

with 

The z-component of the angular momentum (i.e., projection of  onto the -axis) is also quantized with

with  for a given value of . Hence,  and  are the angular momentum quantum number and
the magnetic quantum number, respectively.
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Â

L̂

L̂z

l m

L2̂

= l(l +1)L2 ℏ2

L = ℏl(l +1)
− −−−−−

√

l = 0, 1, 2, . . .

L z

= ℏLz ml

= −l, 0 −1, . . . , 0, . . . +l +1, lml l l ml

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/13428?pdf
http://farside.ph.utexas.edu/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/06%3A_The_Hydrogen_Atom/6.03%3A_The_Three_Components_of_Angular_Momentum_Cannot_be_Measured_Simultaneously_with_Arbitrary_Precision
https://creativecommons.org/licenses/by-nc-sa/4.0

