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12.10: Molecular Motions of a Molecule can be Represented by a Reducible
Reperesentation

Determining the Symmetries of Molecular Motions 

We mentioned above that the procedure for determining the normal vibrational modes of a polyatomic molecule is very similar to
that used in previous sections to construct molecular orbitals. In fact, virtually the only difference between these two applications
of group theory is the choice of basis set.

As we have already established, the motions of a molecule may be described in terms of the motions of each atom along the , 
and  axis. Consequently, it probably won’t come as too much of a surprise to discover that a very useful basis for describing
molecular motions comprises a set of  axes centered on each atom. This basis is usually known as the  Cartesian basis
since there are  Cartesian axes,  axes for each of the  atoms in the molecule. In other words, each atom as 3 degrees of
freedom. Degrees of freedom are the number of independent ways a molecule can move. An atom has 3 degrees of freedom as it
can move in , , and , but cannot rotate or vibrate. Note that each molecule will have a different  Cartesian basis, just as
every molecule has a different atomic orbital basis.

Our first task in investigating motions of a particular molecule is to determine the characters of the matrix representatives for the 
 Cartesian basis under each of the symmetry operations in the molecular point group. We will use the  molecule, which has
 symmetry, as an example.

 has three atoms, so the  Cartesian basis will have  elements. The basis vectors are shown in the diagram below.

One way of determining the characters would be to construct all of the matrix representatives and take their traces. While you are
more than welcome to try this approach if you want some practice at constructing matrix representatives, there is an easier way.
Recall that we can also determine the character of a matrix representative under a particular symmetry operation by stepping
through the basis functions and applying the following rules:

i. Add  to the character if the basis function is unchanged by the symmetry operation;
ii. Add  to the character if the basis function changes sign under the symmetry operation;

iii. Add  to the character if the basis function moves when the symmetry operation is applied.

For , this gives us the following characters for the  Cartesian basis (check that you can obtain this result using the rules
above and the basis vectors as drawn in the figure):

There is an even quicker way to work out the characters of the  Cartesian basis if you have a character table in front of you. The
character for the Cartesian basis is simply the sum of the characters for the , , and  (or , , and ) functions listed in the
character table. To get the character for the  Cartesian basis, simply multiply this by the number of atoms in the molecule that
are unshifted by the symmetry operation.

The  character table is shown below.

 transforms as ,  as , and  as , so the characters for the Cartesian basis are
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We multiply each of these by the number of unshifted atoms (  for the identity operation,  for ,  for  and  for ) to obtain
the characters for the  Cartesian basis.

Reassuringly, we obtain the same characters as we did previously. Which of the three methods you use to get to this point is up to
you.

We now have the characters for the molecular motions (described by the  Cartesian basis) under each symmetry operation. At
this point, we want to separate these characters into contributions from translation, rotation, and vibration. This turns out to be a
very straightforward task. We can read the characters for the translational and rotational modes directly from the character table,
and we obtain the characters for the vibrations simply by subtracting these from the  Cartesian characters we’ve just
determined. The characters for the translations are the same as those for . We find the characters for the rotations by adding
together the characters for , , and  from the character table (or just  and  if the molecule is linear). For , we
have:

The characters in the final row are the sums of the characters for all of the molecular vibrations. We can find out the symmetries of
the individual vibrations by using the reduction equation (Equation (15.20)) to determine the contribution from each irreducible
representation.

In many cases you won’t even need to use the equation, and can work out which irreducible representations are contributing just by
inspection of the character table. In the present case, the only combination of irreducible representations that can give the required
values for  is . As an exercise, you should make sure you are also able to obtain this result using the reduction
equation.

So far this may all seem a little abstract, and you probably want to know is what the vibrations of  actually look like. For a
molecule with only three atoms, it is fairly easy to identify the possible vibrational modes and to assign them to the appropriate
irreducible representation.

For a larger molecule, the problem may become much more complex, and in that case we can generate the SALCs of the 
Cartesian basis, which will tell us the atomic displacements associated with each vibrational mode. We will do this now for .
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