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4.5: Eigenfunctions of Operators are Orthogonal

Understand the properties of a Hermitian operator and their associated eigenstates
Recognize that all experimental obervables are obtained by Hermitian operators

Consideration of the quantum mechanical description of the particle-in-a-box exposed two important properties of quantum
mechanical systems. We saw that the eigenfunctions of the Hamiltonian operator are orthogonal, and we also saw that the position
and momentum of the particle could not be determined exactly. We now examine the generality of these insights by stating and
proving some fundamental theorems. These theorems use the Hermitian property of quantum mechanical operators that correspond
to observables, which is discuss first.

Hermitian Operators 

Since the eigenvalues of a quantum mechanical operator correspond to measurable quantities, the eigenvalues must be real, and
consequently a quantum mechanical operator must be Hermitian. To prove this, we start with the premises that  and  are
functions,  represents integration over all coordinates, and the operator  is Hermitian by definition if

This equation means that the complex conjugate of  can operate on  to produce the same result after integration as  operating
on , followed by integration. To prove that a quantum mechanical operator  is Hermitian, consider the eigenvalue equation and
its complex conjugate.

Note that  because the eigenvalue is real. Multiply Equation  and  from the left by  and , respectively, and
integrate over the full range of all the coordinates. Note that  is normalized. The results are

Since both integrals equal , they must be equivalent.

The operator acting on the function,

produces a new function. Since functions commute, Equation  can be rewritten as

This equality means that  is Hermitian.

Eigenfunctions of a Hermitian operator are orthogonal if they have different eigenvalues.
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∫ ψ dτ = ∫ ( )ψ dτψ∗Â Â
∗
ψ∗ (4.5.1)
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 Orthogonality Theorem
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Because of this theorem, we can identify orthogonal functions easily without having to integrate or conduct an analysis based on
symmetry or other considerations.

 and  are two eigenfunctions of the operator Â with real eigenvalues  and , respectively. Since the eigenvalues are real, 
 and .

Multiply the first equation by  and the second by  and integrate.

Subtract the two equations in Equation  to obtain

The left-hand side of Equation  is zero because  is Hermitian yielding

If  and  in Equation  are not equal, then the integral must be zero. This result proves that nondegenerate
eigenfunctions of the same operator are orthogonal.

Two wavefunctions,  and , are said to be orthogonal if

Consider two eigenstates of ,  and , which correspond to the two different eigenvalues  and , respectively. Thus,

Multiplying the complex conjugate of the first equation by , and the second equation by , and then integrating over all
, we obtain

However, from Equation , the left-hand sides of the above two equations are equal. Hence, we can write

By assumption, , yielding
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In other words, eigenstates of an Hermitian operator corresponding to different eigenvalues are automatically orthogonal.

The eigenvalues of operators associated with experimental measurements are all real.

Draw graphs and use them to show that the particle-in-a-box wavefunctions for  and  are orthogonal to
each other.

Solution
The two PIB wavefunctions are qualitatively similar when plotted

These wavefunctions are orthogonal when

and when the PIB wavefunctions are substituted this integral becomes

We can expand the integrand using trigonometric identities to help solve the integral, but it is easier to take advantage of the
symmetry of the integrand, specifically, the  wavefunction is even (blue curves in above figure) and the  is
odd (purple curve). Their product (even times odd) is an odd function and the integral over an odd function is zero. Therefore 

 and  wavefunctions are orthogonal.

This can be repeated an infinite number of times to confirm the entire set of PIB wavefunctions are mutually orthogonal as the
Orthogonality Theorem guarantees.

Orthogonality of Degenerate Eigenstates 

Consider two eigenstates of ,  and , which correspond to the same eigenvalue, . Such eigenstates are termed degenerate.
The above proof of the orthogonality of different eigenstates fails for degenerate eigenstates. Note, however, that any linear
combination of  and  is also an eigenstate of  corresponding to the eigenvalue . Thus, even if  and  are not
orthogonal, we can always choose two linear combinations of these eigenstates which are orthogonal. For instance, if  and 
are properly normalized, we can define the overlap integral
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It is easily demonstrated (but not here) that

is a properly normalized eigenstate of , corresponding to the eigenvalue , which is orthogonal to . It is straightforward to
generalize the above argument to three or more degenerate eigenstates. Hence, we conclude that the eigenstates of a Hermitian
operator are, or can be chosen to be, mutually orthogonal.

Degenerate eigenfunctions are not automatically orthogonal, but can be made so mathematically via the Gram-Schmidt
Orthogonalization.

The above theorem argues that if the eigenvalues of two eigenfunctions are the same then the functions are said to be degenerate
and linear combinations of the degenerate functions can be formed that will be orthogonal to each other. Since the two
eigenfunctions have the same eigenvalues, the linear combination also will be an eigenfunction with the same eigenvalue. The
proof of this theorem shows us one way to produce orthogonal degenerate functions.

If  and  are degenerate, but not orthogonal, we can define a new composite wavefunction  where  is the
overlap integral:

then  and  will be orthogonal.

then  and  will be orthogonal.

Find  that normalizes  if  where  and  are normalized wavefunctions and  is their overlap
integral.
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Remember that to normalize an arbitrary wavefunction, we find a constant  such that . This equates to the
following procedure:

therefore

We conclude that the eigenstates of operators are, or can be chosen to be, mutually orthogonal.
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