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2.4: The General Solution is a Superposition of Normal Modes

Separate the wave equation into individual spatial and temporal problems and solve them.
Demonstrate that the general solution can be a superposition of solutions (normal modes)

As discussed previously, the solutions to the string example  for all  and  would be assumed to be a product of two
functions:  and , where  is a function of only , not  and  is a function of , but not .

By substituting the new product solution form into the original wave equation, one can obtain two ordinary differential equations
(differential equation containing a function or functions of one independent variable and its derivatives). Each differential equation
would involve only one of the independent variables (  or ).

Spatial Dependence of the Solution:  

The boundary conditions for the string held to zero at both ends argue that  collapses to zero at the extremes of the string.
Unfortunately, when , the general solution to the wave equation results in a sum of exponential decays and growths that
cannot achieve the boundary conditions (except for the trivial solution that ); hence . This means we must
introduce complex numbers due to the  terms in Equation 2.4.5. So we can rewrite :

and Equation 2.4.4b can be

The general solution to differential equations of the form of Equation  is

that when substituted with Equation  give

The complex exponentials in Equation  can be expressed as trigonometric functions via Euler formula ( )

collecting like terms

The general solution in Equation  can be expressed as oscillatory functions by introducing new complex constants 
 and :

Verify that Equation  is the general form for differential equations of the form of Equation .

Answer

In order to show that

is a general solution to the differential equation
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We then have to take the second derivative of Equation  and substitute it and the original function into the appropriate
locations in Equation  and verify that it does in fact equal .

First we have to take the first and then second derivative of Equation 

Now that we have the second derivative of Equation  we plug the relevant values into Equation 

We are given in Equation  that

So

Now we can plug that into our differential equation to simplify

As all of these terms cancel to equal 0, we prove that the solution given is a general solution to the differential equation. It
is important to remember though that it is not the only solution to the differential equation.

Now let's apply the boundary conditions from Equation  to determine the constants  and . Substituting the first boundary
condition ( ) into the general solutions of Equation  results in

and substituting the second boundary condition ( ) into the general solutions of Equation  results in

we already know that  from the first boundary condition so Equation  simplifies to

Given the properties of sines, Equations  simplifies to

with  is the trivial solution that we ignore so .
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Substituting Equations  and  into Equation  results in

Equation  presents a set of solutions to the spatial part of the solution to the wave equation subject to the boundary
conditions (Figure ). This set of solutions is infinitely large with individual solutions that are distinguished from each other by
the  parameter introduced to account for the boundary conditions. This number is an example of a "quantum number" that are
ubiquitously in quantum mechanics and are uniquely defined for each system.
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Figure : The first seven  solutions of a vibrating string of length  at the two times of maximum
displacement (red and blue). (CC BY-NC; Ümit Kaya via LibreTexts).

Time Dependence of the Solution:  

A similar argument applies to the other half of the ansatz ( ) originally proposed for the classical wave equation was obtain
from solving Equation 2.4.4a, which qualitatively resembles the original spatial differential equation solved above (Equation
2.4.4b).

However, the constraints extracted from solving spatial dependence apply to the time dependence. When Equations  and 
are substituted into Equation 2.4.4a, a more simplified expression is obtained

Define a new constant: 

and substitute into Equation 

This is the same functional form of Equation 

In contrast to the spatial dependence solution, we have no boundary conditions to use to identify the constants  and .
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The Principle of Superposition 

Now let's revisit the original ansatz solution to the classical wave equation (Equation ), which can be substituted with
Equations  and 

we can collect constants again with  and  and introduce a  dependence to each since  and  may be 
dependence.

The functions represented in Equation  are set of solutions including both spatial and temporal features that solve the wave
equation of a string held tight on two ends.

The wave equation has a very important property: if we have two solutions to the equation, then the sum of the two is also a
solution to the equation. It’s easy to check this:

Any differential equation for which this property holds is called a linear differential equation. Also note that 
 is also a solution to the equation if ,  are constants. So you can add together—superpose—multiples of

any two solutions of the wave equation to find a new function satisfying the equation.

The linearity property is easy to interpret visually: if you can draw two wave solutions, then at each point on the string simply add
the displacement  of one wave to the other —the sum of the two waves together is a solution. So, for example, as
two traveling waves moving along the string in opposite directions meet each other, the displacement of the string at any point at
any instant is just the sum of the displacements it would have had from the two waves singly.

Figure : Interference of Multiple Pulses. ("for non-profit educational purposes."; Tom Walsh via ophysics.com)

This simple addition of the displacements is interference, doubtless because if the waves meeting have displacements in opposite
directions, the string will be displaced less than by a single wave. This is also called the Principle of Superposition.

The Principle of Superposition is the sum of two or more solutions is also a solution.

Since the wave equation is a linear homogeneous differential equation, the total solution can be expressed as a sum of all possible
solutions described by Equation .
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Each  solution is called a normal mode of the system and can be characterized via their corresponding frequencies 

with . The spatial dependence of the first seven normal modes are shown in Figure  and are standing waves. The
first term with  is typically called the fundamental and each subsequent modes is called an overtone or harmonic. The
temporal dependence of the normal modes is sinusoidal with angular frequencies  that can be expanded to natural frequencies 
via

Hence, as the spatial curvature of the normal mode increases, the temporal oscillation of that mode also increases. This is a
common trait in quantum mechanical systems and is a direct consequence of the wave equation.

This page titled 2.4: The General Solution is a Superposition of Normal Modes is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Michael Fowler.
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