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8.8: Term Symbols Gives a Detailed Description of an Electron Configuration

Understand how electron configurations results in different manifestations of angular momenta (both oribital and spin)
Describe the manifestations in atoms via atomic term symbols

Atoms have quantum numbers that are directly analogous to the electronic quantum numbers.

The Total Orbital Angular Momentum Quantum Number: L 

One might naively think that you could get the total angular momentum of an atom ( ) by simply adding up the  values of the
individual electrons. The problem with this idea is that the angular momenta of the various electrons are not necessarily pointing in
the same direction. Let's consider the case of adding two 2p-orbitals together (i.e., with  quantum numbers).
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Figure 8.8.1 : The three possible angular momenta vectors for a p-orbital.

As discussed in Section 6.3, each of these electrons has  of angular momentum, but oriented in three different directions given
by three different  values of 1, 0, and -1 (Figure 8.8.1 ).

However, we must recognize that while the magnitude of angular momentum is a scalar (represented by ), angular momenta are
really vector quantities and to add them together will require vector addition (vs. scalar addition) to do properly and must address
all possible orientations of  for each electron.

For example, if two electrons are revolving in the same direction as each other (i.e., same  values), one would add just their 
values together

If the two elections were revolving in opposites direction (e.., opposite  values, you subtract their values.

If they are revolving at some off‐angle relative to each other (one revolving in a plane and one off plane), you would partially
subtract them.
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To figure out all of the possible combinations of  for a pair of electrons, simply add them together to get the co‐aligned case,
subtract them to get the opposing case, and then fill in all the numbers in between to get the off‐angle cases. For the two p-orbital
case, there are no other possibilities (remember that  and hence  must be non-negative since they represent the magnitude of
angular momenta (addressing the  values is a different story as we discuss below).

If you prefer to have a formula for the possibilities of , you can use this:

Technically, Equation  should include all electrons in a system, not just two, to account for all possible combinations of orbital
angular momenta, however, there are some tricks that aid in applying this equations to address larger multi-electron atoms. First,
electrons in s-orbitals have no orbital angular momentum, so they can be ignored. Second, if block of orbitals are completely filled
(e.g., all six p-block spin-orbitals or all 10 d-block spin-orbitals), then the orbital angular momentum vector of each electron will be
countered by another electron in the system; these are called closed-shell systems. Systems with partially unfilled blocks are called
open-shell systems.

Hence, conveniently for chemists, an atom’s electronic state depends entirely on its unfilled sub shells. Because electrons distribute
themselves in a symmetric manner, the inner shell electrons end up canceling out each other’s momenta. For an atom in the
configuration , only the two p‐electrons matter. For an atom in the configuration , we have to examine only the
2s and 2p electrons (and can ignore the s electrons too).

What are the possible  values for the electrons in the  configuration of carbon?

Solution
Both open‐shell electrons (i.e., the 2p electrons) are . The possible combinations are 2, 1, 0.

What are the possible  values for the electrons in the  ?

Solution
We can ignore the electrons in the  core and the electrons in the  block. So all we have to consider is the f electron 
and d electron .

The two extremes possible (Equation ) are

and

The possible combinations are thus 5, 4, 3, 2, and 1.

The Total Magnetic Quantum Number:  
The Total Magnetic Quantum Number  is the total z‐component of all of the relevant electrons’ orbital momentum. Where 
told you how much total angular momentum there is in the system,  tells you which direction it is pointing. Like , a given
configuration can have several possible values of , depending on the electrons’ relative orientation. Unlike ,  is allowed to
have negative values. To list the possible  values for a two electron system, take the case where both  are positive, then take
the case where they are both negative, and then fill in the numbers in between (Figure 8.8.1 ).

Note that there is no absolute value function in Equation  like in Equation .
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 Example 8.8.1 : Total Orbital Angular Momentum of Carbon

L 1 2 2s2 s2 p2

l = 1

 Example 8.8.2 : Total Orbital Angular Momentum of Unknown Species

L [Xe]6 4 5s2 f 1 d1

[Xe] 6s l = 3
l = 2

8.8.2
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8.8.3 8.8.2

 Example 8.8.3 : Total Magnetic Quantum Number of the Zirconium Ground State
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What are the possible values  of a zirconium atom with the  electron configuration?

Solution
Both open‐shell electrons (i.e., the 4d electrons) are , so the values are 4, 3, 2, 1, 0, ‐1, ‐2, ‐3, ‐4.

The Total Spin Magnetic Quantum Number:  

 is the sum total of the z‐components of the electrons’ inherent spin. Do not confuse it with , which is the sum total of the z‐
component of the orbital angular momentum. It is easily computed by finding all of the possible combinations of . Since 
for each individual electron can only be +1/2 or ‐ 1/2, this isn’t too complicated.

What are the M s values for  ?

Solution

The Total Intrinsic Spin Quantum Number:  

The sum total of the spin vectors of all of the electrons is called . The difference between  and  is subtle, but vital for
understanding multiplicity.  measures the total z‐component of the electrons’ spins, while  measures the entire resultant vector.
The values of  are computing in a manner very similar to . Because  measures the magnitude of a vector, it cannot ever be
negative.

Find  for .

Solution
 clearly has to be ½ since that’s the spin of a single electron and there’s only one electron to worry about.

Find S for .

Solution

Find  for carbon atoms with the  electron configuration.

Solution
 This is the same as the previous problem. Notice that  is not affected by which orbitals the electrons are in.  only

cares about how many open‐shell electrons (i.e., unpaired electrons) there are, not about where they are. This is because 
measures an inherent property of the electrons themselves

Find  for nitrogen atoms with the  electron configuration.

Solution

Ml [Kr]5 4s2 d2

l = 2

Ms

Ms Ml

ms ms

= + , + ‐ 1, . . . , ‐Ms ms1 ms2 ms1 ms2 ms1 ms2 (8.8.4)

 Example 8.8.4 : Total Spin Magnetic Quantum Number of the Carbon Ground State

1 2 2s2 s2 p2

= 1, 0, ‐ 1Ms
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S S Ms
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S Ms S

S = | + |, | + ‐ 1|, . . . , | ‐ |s1 s2 s1 s2 s1 s2 (8.8.5)

 Example 8.8.5 : The Hydrogen Ground State

S 1s1

S

 Example 8.8.6 : The Beryllium Excited State

1 2 2s2 s1 p1

S = 1, 0

 Example 8.8.7 : The Carbon Ground State

S 1 2 2s2 s2 p2

S = 1, 0 S S

S

 Example 8.8.8

S 1 2 2s2 s2 p3
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We have not done a three electron case yet, but they are not hard. Find all the combinations for a single pair first, and then
factor in the third electron. For two electrons, we already know that the two possible S values are S=1,0. A third electron can
either add or subtract ½ from these values, so the final  can be .

The Total Angular Momentum Quantum Number J 
The total orbital angular momentum of an atom (measured in terms of ), and the total spin angular momentum of an atom (measure
in ) combine to form total angular momentum, a number that is quantized by the number .  and  do not necessarily have to be
pointing in the same direction (Figure 8.8.1 ), so  can range from  to .

Figure 8.8.1 : Illustration of L-S coupling. Total angular momentum J is purple, orbital L is blue, and spin S is green.
Table 8.8.1 : Quantum Numbers and associated ranges

Symbol Name Allowed Range

Total orbital angular momentum

Magnet Quantum number

Spin Magnetic Quantum Number

Inherent Spin Number

Multiplicity 2S+1

Total Angular Momentum

Multiplicity 
Multiplicity is a simple ‐ sounding concept that defies simple explanations. You know from your first ‐ year education that a singlet
is when the net spin (S) is equal to zero (e.g. all the electrons are spin paired), and a triplet happens when the net spin is equal to 1
(e.g. two electrons are pointing in the same direction). They are called “singlet” and “triplet” because there are 3 ways to combine a
pair of electron spins to get S=1, but only one way to get . If you draw a picture of the possible ways that two electrons can
arrange their spins, you get something like this:

Figure 8.8.1 : When we call an electron spin “up,” what we really mean is that it has a positive z‐component (e.g. ).

S S = 3/2, 1, 1/2
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While this picture is an improvement over the simple up‐down model, it is still misleading. The three spin axes of an electron share
a Heisenberg Uncertainty Principle. The more you know about , the less you can know about either  or . The same is true
for all other combinations of x, y and z. Since we have defined  as a known and fixed value, the values of  and  must be
completely unknown. This causes the x and y orientations of the electrons to become smeared out across all possible values:

Constructing Term Symbols 
Atomic term symbols contain two pieces of information. They tell you the total orbital angular momentum of the atom ( ), and they
tell you the multiplicity ( ).  is denoted by a simple code, similar to the code used to delineate the types of atomic orbitals:

Note that while the notation is similar, L does NOT say anything about what types of orbitals the electrons are in. A state that has
the term symbol P does NOT necessarily have an open p‐shell. The multiplicity is indicated by appending a number to the upper
left of the symbol. A ,  state would be represented by . The secret to writing the term symbols for an atom is to
discover what combinations of  and  are possible for that atom with that specific electronic configuration. An atom that only has
closed shells will always be .

Each term symbol represents a discrete energy level. We can place these levels in the correct order by using these simple rules:

1: High multiplicity values mean low energy
2: If there is a tie, high  values mean low energy
3a: If there is still a tie and the shell is less than half full, then low J means low energy
3b: If the shell is more than half full, then high J means low energy

These rules reliably predict the ground state. They have only erratic agreement with experiment when ordering the other levels.

What are the term symbols for the microstates possible for  electronic configuration of hydrogen?

Solution
Since there is only one electron, this is a simple problem.  and , so the only possible term symbol is . With
only one electron, , so . Only one microstate exists for this configuration and it has a term symbol of 

.

Sx Sy Sz

Sz Sx Sy

l

M l

L = 0 → S

L = 1 → P

L = 2 → D

L = 3 → F

L = 2 M = 3 D3

l M

1S

l

 Example 8.8.9 : Hydrogen Ground State

1s1

L = 0 M = 1 S2

S = ½ J = 0 + ½ = ½
2S½
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What are the term symbols for the microstates possible for  electronic configuration of boron?

Solution
There still only one open shell electron, so ,  and . We get a term symbol of the type , which gets split
into separate symbols because  and . Two possible microstates exist for this system with term symbols of 
and .

What are the term symbols for the microstates possible for the  excited-state electronic configuration of Beryllium?

Solution
Now we have two electrons to worry about. Since  and , the only possible combination is . The possible
combinations of S are: . This means that  or . The term symbols will be of the form  and . For the

 state,  and , so . For the second state,  and , so . There are four microstates for
this configuration with term symbols of  and , , and .

What are the term symbols for the microstates possible for the  ground-state electronic configuration of zirconium?

Solution
This is a much harder problem. We will need to use a special technique to disentangle all of the possible combinations of  and 

. Let’s start be listing the relevant quantum numbers for the two open-shell electrons:

Let’s combine these numbers to generate the atomic quantum numbers:

We know that there will at least one each of S, P, D, F and G. It isn’t immediately clear which of these will be singlets and
which will be triplets. To figure this out, we need to systematically examine the possible microstates. It turns out that there are
45 possible ways to put distribute two electrons between 5 d orbitals. That’s a lot! The easiest way to list the states is to
organize them into a chart:

   

   

Attacking the chart one row at a time. Ask yourself, how many ways can I arrange the two electrons to give me ? It
turns out there is only one possible combination that does this:

 Example 8.8.10 : Boron

1 2 2s2 s2 p1

L = 1 M = 1 S = ½ P2

J = 3/2 1/2 2P3/2
2P1/2

 Example 8.8.11 : Beryllium Excited State

1 2 2s2 s1 p1

= 0l1 = 1l2 L = 1
S = 1, 0 M = 3 M = 1 P1 P3

P1 L = 1 S = 0 J = 1 L = 1 S = 1 J = 2, 1, 0
1P1

3P2
3P1

3P0

 Example 8.8.12 : Zirconium

[Kr]5 4s2 d2

l

M

= 2l1 = 2l2

= 2, 1, 0, ‐ 1, ‐ 2ml1 = 2, 1, 0, ‐ 1, ‐ 2ml2

= ½, ‐ ½ms1 = ½, ‐ ½ms1

L = 4, 3, 2, 1, 0

= 4, 3, 2, 1, 0, ‐ 1, ‐ 2, ‐ 3, ‐ 4Ml

= 1, 0Ms

= −1Ms = 0Ms = +1Ms

= 4Ml
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alt

This state is has . This means that there is only 1 microstate that corresponds to  and , and none that
correspond to  and . We add this microstate to the chart like this:

4 0 1 0

    

Now, how many ways are there to get ?

4 0 1 0

3 1 2 1

    

    

For , we find the following states:

4 0 1 0

3 1 2 1

2 1 3 1

    

    

You should be able to draw the microstates on your own by now. You should find 8 states, four of which are singlet and four of
which are triplets.

4 0 1 0

3 1 2 1

2 1 3 1

= 0Ms = 4Ml = 0Ms

= 4Ml = ±‐ 1Ms

Ml = −1Ms = 0Ms = +1Ms

= 3Ml

Ml = −1Ms = 0Ms = +1Ms

= 2Ml

Ml = −1Ms = 0Ms = +1Ms

Ml = −1Ms = 0Ms = +1Ms
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1 2 4 2

    

    

There are only nine possible ways to arrange the electrons to get 

4 0 1 0

3 1 2 1

2 1 3 1

1 2 4 2

0 2 5 2

    

    

    

    

The rest of the chart will be symmetric to the first half, so we do not need to do any more work:

4 0 1 0

3 1 2 1

2 1 3 1

1 2 4 2

0 2 5 2

-1 2 4 2

-2 1 3 1

-3 1 2 1

-4 0 1 0

Now that we have a listing of all of the microstates, we need to figure out how to divide them up between the term symbols. It
turns out that each term symbol can have, at most, one microstate from each box on the chart. The term symbols always end up
claiming a “box” of microstates, centered on the middle of the chart. This is easier shown than said.

Attacking the chart from the top, we can see that the   state clearly belongs to a  symbol. The  
 box also clearly belongs to this symbol. If I connect these states with a “box,” I get this:

4 0 1 0

3 1 2 1

Ml = −1Ms = 0Ms = +1Ms

= 0Ml

Ml = −1Ms = 0Ms = +1Ms

Ml = −1Ms = 0Ms = +1Ms

= 4Ml = 0Ms G1 =‐ 4Ml

= 0Ms

Ml = −1Ms = 0Ms = +1Ms
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2 1 3 1

1 2 4 2

0 2 5 2

-1 2 4 2

-2 1 3 1

-3 1 2 1

-4 0 1 0

The strickthough configurations all belong to the  state. Let's subtract them from the chart to indicate that they are not
available for other term symbols.

3 1 2 1

2 1 3 1

1 2 4 2

0 2 5 2

-1 2 4 2

-2 1 3 1

-3 1 2 1

The next row indicates a  state. Because there are three  values available, this is a triplet. The term symbol will be 
, which reduces the chart down to

1 2 4 2

0 2 5 2

-1 2 4 2

The next state will be . Leaving us with

1 1 1 1

0 1 2 1

-1 1 1 1

Next is a  state. The chart is getting pretty small now wtih

 0

The last remaining microstate comprises the  term symbol.

Ml = −1Ms = 0Ms = +1Ms

G1

Ml = −1Ms = 0Ms = +1Ms

L = 3 Ms

F3

Ml = −1Ms = 0Ms = +1Ms

D1

Ml = −1Ms = 0Ms = +1Ms

P3

Ml = 0Ms

S1
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The total listing is

, , , , .

Assigning  values, we get

, , , , , , , , 

If you can do this problem, you can do almost any atomic term symbol.

The secret to writing the term symbols for an atom is to discover what combinations of  and  are possible for that atom with
that specific electronic configuration.

Shortcuts 

There is a deep symmetry that connects different electronic configurations. It turns out that a  configuration has the same term
symbols as a . Similarly, . A similar relationship can be used to figure out high electron number term symbols for the 
and  orbitals.

8.8: Term Symbols Gives a Detailed Description of an Electron Configuration is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by Mattanjah de Vries.
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J

1G4
3F4

3F3
3F2

1D2
3P2

3P1
3P0

1S0

 Note

l M
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