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1.1: Introduction to evolutionary game theory
Evolutionary Game Theory (EGT) is a branch of a more general discipline called game theory. Therefore, to understand what EGT
is about, we believe it is useful to get familiar with the basic ideas underlying game theory first.

1. What is game theory?
Game theory is a discipline devoted to studying social interactions where individuals’ decisions are interdependent, i.e. situations
where the outcome of the interaction for any individual generally depends not only on her own choices, but also on the choices
made by every other individual. Thus, several scholars have pointed out that game theory could well be defined as ‘interactive
decision theory’ (Myerson, 1997, p. 1). Some examples of interactive decisions for which game theory is useful are:

1. Choosing the side of the road on which to drive.
2. Choosing WhatsApp or Facebook messenger as your default text messaging app.
3. Choosing which restaurant to go in the following situation:

Imagine that over breakfast your partner and you decided to have lunch together, but you did not specify where. Right before
lunch time you discover that you left your cellphone at home, and there is no other way to contact your partner quickly.
Fortunately, you are not completely lost: there are only two restaurants that you both love in town. Which one should you go to?

Interactive social interactions like the ones outlined above are modeled in game theory as games. A game is an abstract
representation of a social interaction which is meant to capture its most basic properties. In particular, a game typically comprises:

the set of individuals who interact (called players),
the different choices available to each of the individuals when they are called upon to act (named actions or pure strategies),
the information individuals have at the time of making their decisions,
and a payoff function that assigns a value to each individual for each possible combination of choices made by every individual
(Fig. 1). In most cases, payoffs represent the preferences of each individual over each possible outcome of the social interaction,

 though there are some evolutionary models where payoffs represent Darwinian fitness.

 Player 2

 Player 2 chooses A Player 2 chooses B

Player 1
Player 1 chooses A 1 , 1 0 , 0

Player 1 chooses B 0 , 0 2 , 2

Figure 1. Payoff matrix of a 2-player 2-strategy game. For each possible combination of pure strategies there is a corresponding
pair of numbers (x , y) in the matrix whose first element x represents the payoff for player 1, and whose second element y represents
the payoff for player 2.

Note that the payoff matrix shown in Fig. 1 could well be used for the three examples outlined above, assuming that there is one
side of the road, one text messaging app, and one restaurant in town that is preferred, if only slightly. To be sure, let us model the
example about choosing a restaurant as a game, identifying each of its elements:

The players would be you and your partner.
Each of you may choose restaurant A or restaurant B.
Neither of you have any information about the other’s choice at the time of making your decision.
Both of you prefer eating together rather than being alone, no matter where, and you both prefer restaurant B over restaurant A.
Thus, the best possible outcome for both would be to meet at restaurant B; second best would be meeting at restaurant A; and
any lack of coordination would be equally awful.

The three examples above are very different in many aspects, but they all could be modeled using the same game. This is so
because games are abstractions that are meant to capture the bare essentials of the original social interaction and, at least to some
extent, the three examples above share the same strategic backbone.

[1]

[2]
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Having seen this, it may not come as a surprise that the sort of issues for which game theory can be useful is impressively broad
and diverse, including applications in international relations, resource management, network routing (of vehicles or information
packages), voting systems, linguistics, law, distributed control, evolutionary biology, design of incentive systems, and business and
environmental regulations.

2. Traditional game theory
Game theory has nowadays various branches. Historically, the first branch to be developed was Traditional Game Theory (TGT)
(von Neumann and Morgenstern (1944), Nash (1950), Selten (1965, 1975), Harsanyi (1967, 1968a, 1968b)). TGT is also the branch
where most of the work has been focused, and the one with the largest representation in most game theory textbooks and academic
courses.

In TGT, payoffs reflect preferences and players are assumed to be rational, meaning that they act as if they have consistent
preferences and unlimited computational capacity to achieve their well-defined objectives. The aim of the discipline is to study
how these instrumentally rational players would behave in order to obtain the maximum possible payoff in the formal game  .

A key problem in TGT is that, in general, assuming rational behavior for any one player rules out very few actions –and
consequently very few outcomes– in the absence of strong assumptions about what players know about others’ rationality,
knowledge and actions. Hence, in order to derive specific predictions about how rational players would behave, it is often
necessary to make very stringent assumptions about everyone’s beliefs and their reciprocal consistency. If one assumes common
knowledge of rationality and consistency of beliefs, then the outcome of the game is a Nash equilibrium, which is a set of
strategies, one for each player, such that no player, knowing the other players’ strategies in that set, could improve her expected
payoff by unilaterally changing her own strategy (see Samuelson (1997, pp. 10-12) and Holt and Roth (2004) for several
interpretations). An equivalent definition is the following: A Nash equilibrium is a strategy profile (i.e. one strategy for each player
in the game) where every player is best responding to the strategies of the others.

Oftentimes, games have several Nash equilibria. As an example, the game depicted in Fig. 1 has three different Nash equilibria: the
two strategy profiles where both players choose the same action (i.e. {A, A} and {B, B}), and a third equilibrium in mixed
strategies, which means that players choose each action with a certain probability. In this third Nash equilibrium, both players
choose action A with probability ⅔ (and action B with probability ⅓), a strategy that we denote (⅔, ⅓).

The equilibrium in mixed strategies is unsatisfactory for a number of reasons. First, since both actions can be chosen with strictly
positive probability by each player, any observation of the actions actually taken by the two players would be consistent with this
Nash equilibrium. Therefore, this equilibrium cannot be falsified by observing the outcome of the game. Another disappointing
property of the Nash equilibrium in mixed strategies is the low payoff that players are expected to receive when they play it. In that
equilibrium, outcome {B, B} would occur with probability ⅓ × ⅓, outcome {A, A} would occur with probability ⅔ × ⅔, and
players would not coordinate with probability 2 × ⅓ × ⅔ , yielding a total expected payoff of ⅔ for each of them. Thus, this
equilibrium is worse than any of the other two Nash equilibria for both players. Finally, the mixed-strategy equilibrium does not
seem to be very robust. Imagine that one of the players deviates from this equilibrium only slightly, by choosing action B with a
probability marginally greater than ⅓. Then the other player’s best response would be to choose action B with probability 1, and
the deviator’s best response to that reaction would be to play B with probability 1, too. Thus, this mixed-strategy equilibrium does
not seem to be very stable.

One could think that this diversity of equilibria, and the existence of the mixed-strategy equilibrium, may be partly an artifact of the
fact that the game is played just once. It seems intuitive to think that if the game was played repeatedly, rational individuals would
manage to coordinate in the (unique) Pareto optimal  outcome {B, B}, and the other suboptimal outcomes would not be observed
in any Nash equilibrium. However, that natural intuition turns out to be wrong. To understand this, let us briefly review how
repeated games are modeled in TGT.

In a repeated game, a certain basic game (called stage game) is played a number of rounds; the payoff obtained by each player in
the repeated game is the sum of the (potentially discounted) payoffs obtained in each of the rounds. At any round, all the actions
chosen by each of the players in previous rounds are known by everyone. A strategy in this repeated game is a complete plan of
action for every possible contingency that may occur. For instance, in our coordination game, a possible strategy for the 3-round
repeated game would be:

[3]

[4]

[5]
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At initial round t = 1, play B.
At round t > 1, play B if the other player chose B at time t – 1. Otherwise play A.

Importantly, note that, even though the game is played repeatedly, the interaction only occurs once, since the strategies of the
individuals dictate what to do in every possible history of the long game. Players could send their strategies by mail, and robots
could implement them.

So, does repetition lead to sharper predictions about how rational players may interact? Not at all, rather the opposite. It turns out
that when a game is repeated, the number of Nash equilibria generally multiplies, and there is a wide range of possible outcomes
that can be supported by them. As an example, in our coordination game, any sequence formed by combining the three Nash
equilibria of the stage game is a Nash equilibrium of the repeated game, and there are many more.

The approach followed to model repeated interactions in Evolutionary Game Theory is rather different, as we explain below.

3. Evolutionary Game Theory

3.1. The beginnings

Some time after the emergence of traditional game theory, biologists realized the potential of game theory to formally study
adaptation and coevolution of biological populations, particularly in contexts where the fitness of a phenotype depends on the
composition of the population (Hamilton, 1967). The initial development of the evolutionary approach to game theory came with
important changes on how the main elements of a game (i.e. players, strategies, information and payoffs) were interpreted and
used:

Players (who most often represented non-human animals) were assumed to be pre-programmed to play one given strategy, i.e.
players were seen as mere carriers of a particular fixed strategy that had been genetically endowed to them and could not be
changed during the course of the player’s lifetime. As for the number of players, the main interest in early EGT was to study
large populations of animals, where the actions of one single individual could not significantly affect the overall success of any
strategy in the population.
Strategies, therefore, were not assumed to be selected by players, but rather hardwired in the animals’ genetic make-up.
Strategies were, basically, phenotypes.

The concept is couched in terms of a ‘strategy’ because it arose in the context of
animal behaviour. The idea, however, can be applied equally well to any kind of
phenotypic variation, and the word strategy could be replaced by the word phenotype;
for example, a strategy could be the growth form of a plant, or the age at first
reproduction, or the relative numbers of sons and daughters produced by a parent.
Maynard Smith (1982, p. 10)

Since strategies are not consciously chosen by players, but they are simply hardwired, information at the time of making the
decision plays no significant role.
Payoffs did not represent any order of preference, but Darwinian fitness, i.e. the expected reproductive contribution to future
generations.

The main assumption underlying evolutionary thinking was that strategies with greater payoffs at a particular time would tend to
spread more and thus have better chances of being present in the future. The first models in EGT, which were developed for
biological contexts, assumed that this selection biased towards individuals with greater payoffs occurred at the population level,
through a process of natural selection. As a matter of fact, early EGT models embraced a fairly direct interpretation of the essence
of Wallace and Darwin’s idea of evolution by natural selection.

As many more individuals of each species are born than can possibly survive; and as,
consequently, there is a frequently recurring struggle for existence, it follows that any
being, if it vary however slightly in any manner profitable to itself, under the complex and
sometimes varying conditions of life, will have a better chance of surviving, and thus be

[6]
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naturally selected. From the strong principle of inheritance, any selected variety will
tend to propagate its new and modified form. Darwin (1859, p. 5)

The essence of this simple and groundbreaking idea could be algorithmically summarized as follows:

IF:

More offspring are produced than can survive and reproduce, and
variation within populations:

affects the fitness (i.e. the expected reproductive contribution to future generations) of individuals, and
is heritable,

THEN:

evolution by natural selection occurs.

The key insight that game theory contributed to evolutionary biology is that, once the strategy distribution changes as a result of the
evolutionary process, the relative fitness of the remaining strategies may also change, so previously unsuccessful strategies may
turn out to be successful in the new environment, and thus increase their prevalence. In other words, the fitness landscape is not
static, but it also evolves as the distribution of strategies changes.

An important concept developed in this research programme was the notion of Evolutionarily Stable Strategy (ESS), put forward
by Maynard Smith and Price (1973) for 2-player symmetric games played by individuals belonging to the same population.
Informally, a strategy I (for Incumbent) is an ESS if and only if, when adopted by all members of a population, it enjoys a uniform
invasion barrier in the sense that any other strategy M (for Mutant) that could enter the population (in sufficiently low proportion)
would obtain a strictly lower expected payoff in the postentry population than the incumbent strategy I. The ESS concept is a
refinement of (symmetric) Nash equilibrium.

As an example, in the coordination game depicted in Fig. 1 both pure strategies are ESSs, but the mixed strategy (⅔ , ⅓),
corresponding to the symmetric Nash equilibrium in mixed strategies, is not an ESS. The intuition for this is clear: a population
where every agent is playing strategy I = (⅔ , ⅓) would be invadable by e.g. a small fraction of mutants playing action B (i.e.
strategy (0,1)). This is so because the mutants would obtain the same payoff against the incumbents as the incumbents among
themselves (i.e. ⅔ on average), but a strictly greater payoff whenever they met other mutants (i.e. 2 for certain). Thus, natural
selection would gradually favor the mutants over the incumbents.

The basic ideas behind EGT  –i.e. that strategies with greater payoffs tend to spread more, and that fitness is frequency-dependent–
soon transcended the borders of biology and started to permeate many other disciplines. In economic contexts, it was understood
that natural selection would derive from competition among entities for scarce resources or market shares. In other social contexts,
evolution was often understood as cultural evolution, and it referred to dynamic changes in behavior or ideas over time (Nelson
and Winter (1982), Boyd and Richerson (1985)).

3.2. An interpretation of evolutionary game theory where strategies are explicitly selected by
individuals
Evolutionary ideas proved very useful to understand several phenomena in many disciplines, but –at the same time– it became
increasingly clear that a direct application of the principles of Darwinian natural selection was not always appropriate for the study
of (non-Darwinian) social evolution.  In many contexts, it seems more natural to assume that players are capable of adapting their
behavior within their lifetime, occasionally revising their strategy in a way that tends to favor strategies leading to higher payoffs
over strategies leading to lower payoffs. The key distinction is that, in this latter interpretation, strategies are selected at the
individual level (rather than at the population level). Also, in this view of selection taking place at the individual level, payoffs do
not have to represent Darwinian fitness anymore, but can perfectly well represent a preference ordering, and interpersonal
comparisons of payoffs may not be needed. Following this interpretation, the algorithmic view of the process by which strategies
with greater payoffs gradually displace strategies with lower payoffs would look as follows:

IF:

Players using different strategies obtain different payoffs, and

[7]

[8]
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they occasionally revise their strategies (by e.g. imitation or direct reasoning over gathered information), preferentially
switching to strategies that provide greater payoffs,

THEN:

the frequency of strategies with greater payoffs will tend to increase (and this change in strategy frequencies may alter the
future relative success of strategies).

In this interpretation, the canonical evolutionary model typically comprises the following elements:

A population of agents,
a game that is recurrently played by the agents,
a procedure by which revision opportunities are assigned to agents, and
a revision protocol, which dictates how individual agents choose their strategy when they are given the opportunity to revise.

Note that this approach to EGT can formally encompass the biological interpretation, since one can always interpret the revision of
a strategy as a death and birth event, rather than as a conscious decision. Having said that, it is clear that different interpretations
may seem more natural in different contexts. The important point is that the framework behind the two interpretations is the same.

To conclude this section, let us revisit our coordination example (with payoff matrix shown in Fig. 1) in a population context. We
will analyze two revision protocols that lead to different results: imitative pairwise-difference protocol and best experienced payoff
protocol.

Under the imitative pairwise-difference protocol (Helbing (1992), Hofbauer (1995), Schlag (1998)), a revising agent looks at
another individual at random and imitates her strategy only if that strategy yields a higher expected payoff than his current
strategy; in this case he switches with probability proportional to the payoff difference. It can be proved that the dynamics of
this protocol in large populations will tend to approach the state where every agent plays action B if the initial proportion of B-
players is greater than ⅓, and will tend to approach the state where every agent plays action A if the initial proportion of B-
players is less than ⅓ (Fig. 2).

Figure 2. Mean dynamic of the imitative pairwise-difference protocol in a coordination
game.

The following video shows some NetLogo simulations that illustrate these dynamics. In this book, we will learn to implement
and analyze this model.

Simulation runs of the imitative pairwise-difference protocol in coordination game [[1 0][0 2]]

Under the best experienced payoff protocol (Osborne and Rubinstein (1998), Sethi (2000, 2019), Sandholm et al. (2019, 2020)),
a revising agent tests each of the two strategies against a random agent, with each play of each strategy being against a newly
drawn opponent. The revising agent then selects the strategy that obtained the greater payoff in the test, with ties resolved at
random. It can be proved that the dynamics of this protocol in large populations will tend to approach the state where every
agent plays action B from any initial condition (other than the state where everyone plays A; see Fig. 3).

[9]

[10]

0:00

[11]

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/123821?pdf


1.1.6 https://math.libretexts.org/@go/page/123821

Figure 3. Mean dynamic of the best experienced protocol in a coordination game.

The following video shows some NetLogo simulations that illustrate these dynamics. In this book, we will learn to implement
and analyze this model.

Simulation runs of the best experienced payoff protocol in coordination game [[1 0][0 2]]

The example above shows that different protocols can lead to very different dynamics in non-trivial ways. Both protocols above
tend to favor best-performing strategies, and in both the mixed-strategy Nash equilibrium is unstable. However, given an initial
state where 80% of the population is playing strategy A, one of the protocols will almost certainly lead the population to the state
where everyone plays A, while the other protocol will lead the population to the state where everyone plays B. In this book, we will
learn a range of different concepts and techniques that will help us understand these differences.

Many engineering infrastructures are becoming increasingly complex to manage due to their large-scale distributed nature and
the nonlinear interdependences between their components (Quijano et al., 2017). Examples include communication networks,
transportation systems, sensor and data networks, wind farms, power grids, teams of autonomous vehicles, and urban drainage
systems. Controlling such large-scale distributed systems requires the implementation of decision rules for the interconnected
components that guarantee the accomplishment of a collective objective in an environment that is often dynamic and uncertain.
To achieve this goal, traditional control theory is often of little use, since distributed architectures generally lack a central entity
with access or authority over all components (Marden and Shamma, 2015).

The concepts developed in EGT can be very useful in such situations. The analogy between distributed systems in engineering
and the social interactions analyzed in EGT has been formally established in various engineering contexts (Marden and
Shamma, 2015). In EGT terms, the goal is to identify revision protocols that will lead to desirable outcomes using limited local
information only. As an example, at least in the coordination game discussed above, the best experienced payoff protocol is
more likely to lead to the most efficient outcome than the imitative pairwise-difference protocol.

3.3. Take-home message

EGT is devoted to the study of the evolution of strategies in a population context where individuals repeatedly interact to play a
game. Strategies are subjected to evolutionary pressures in the sense that the relative frequency of strategies which obtain higher
payoffs in the population will tend to increase at the expense of those which obtain relatively lower payoffs. The aim is to identify
which strategies are most likely to thrive in this “evolving ecosystem of strategies” and which will be wiped out, under different
evolutionary dynamics. In this sense, note that EGT is an inherently dynamic theory.

There are two ways of interpreting the process by which strategies are selected. In biological systems, players are typically
assumed to be pre-programmed to play one given strategy throughout their whole lifetime, and strategy composition changes by
natural selection. By contrast, in socio-economic models, players are usually assumed capable of adapting their behavior within
their lifetime, revising their strategy in a way that tends to favor strategies that provide greater payoffs at the time of revision.

[12]
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Whether strategies are selected by natural selection or by individual players is rather irrelevant for the formal analysis of the
system, since in both cases the interest lies in studying the evolution of strategies. In this book, we will follow the approach which
assumes that strategies are selected by individuals using a revision protocol.

3.4. Relation with other branches
The differences between TGT and EGT are quite clear and rather obvious. TGT players are rational and forward-looking, while
EGT players adapt in a fairly gradual and myopic fashion. TGT is a theory stated in terms of a one-time interaction: even if the
interaction is a repeated game, this long game is played just once. In stark contrast, dynamics are at the core of EGT: the outcomes
of the game shape the distribution of strategies in the population, and this change in distribution modifies the relative success of
different strategies when the game is played again. Finally, TGT is mainly focused on the study of end-states and possible
equilibria, paying hardly any attention to how such equilibria might be reached. By contrast, EGT is concerned with the evolution
of the strategy composition in a population, which in some cases may never settle down on an equilibrium.

The branch of game theory that is closest to EGT is the Theory of Learning in Games (TLG). Like EGT, TLG abandons the
demanding assumptions of TGT on players’ rationality and beliefs, and assumes instead that players learn over time about the game
and about the behavior of others (e.g. through reinforcement, imitation, or belief updating).

The process of learning in TLG can take many different forms, depending on the available information and feedback, and the way
these are used to modify behavior. The assumptions made in these regards give rise to different models of learning. In most models
of TLG, players use the history of the game to decide what action to take. In the simplest forms of learning (e.g. reinforcement or
imitation) this link between acquired information and action is direct (e.g. in a stimulus-response fashion); in more sophisticated
learning, players use the history of the game to form expectations or beliefs about the other players’ behavior, and they then react
optimally to these inferred expectations.

The interpretation of EGT which assumes that players can revise their strategy is very similar to TLG. The main differences
between these two branches are:

EGT tends to study large populations of small agents, who interact anonymously. This implies that players’ payoffs only depend
on the distribution of strategies in the population, and also that any one player’s actions have little or no effect on the aggregate
success of any strategy at the population level. In contrast, TLG is mainly concerned with the analysis of small groups of
players who repeatedly play a game among them, each of them in her particular role.
The revision protocols analyzed in EGT tend to be fairly simple and use information about the current state of the population
only. By contrast, the sort of algorithms analyzed in TLG tend to be more sophisticated, and make use of the history of the game
to decide what action to take.

4. How can I learn game theory?
To learn more about game theory, we recommend the following material:

Overviews:

Introductory: Colman (1995).
Advanced: Vega-Redondo (2003).

Traditional game theory:

Introductory: Dixit and Nalebuff (2008).
Intermediate: Osborne (2004).
Advanced: Fudenberg and Tirole (1991), Myerson (1997), Binmore (2007).

Evolutionary game theory:

Introductory: Maynard Smith (1982), Gintis (2009), Sandholm (2009).
Advanced: Hofbauer and Sigmund (1988), Weibull (1995), Samuelson (1997), Sandholm (2010).
Recent literature review: Newton (2018).

The theory of learning in games:

Introductory: Vega-Redondo (2003, chapters 11 and 12).
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Advanced: Fudenberg and Levine (1998), Young (2004).

1. A common misconception about game theory relates to the roots of players’ preferences. There is no assumption in game theory
that dictates that players’ preferences are formed in complete disregard of each other’s interests. On the contrary, preferences in
game theory are assumed to account for anything, i.e. they may include altruistic motivations, moral principles, and social
constraints (see e.g. Colman (1995, p. 301), Vega-Redondo (2003, p. 7), Binmore and Shaked (2010, p. 88), Binmore (2011, p.
8) or Gintis (2014, p. 7)). ↵

2. Note that there is no inconsistency in being indifferent about outcomes {A, B} and {B, A}, even if you prefer restaurant B. It is
sufficient to assume that you care about your partner as much as about yourself. ↵

3. TGT can be divided further into cooperative and non-cooperative game theory. In cooperative game theory, it is assumed that
players may negotiate binding agreements that can be externally enforced (by e.g. contract law). In non-cooperative game
theory, such agreements cannot be enforced externally, so they are relevant only to the extent that abiding by them is in each
individual's interest. ↵

4. The same logic applies if one assumes that the deviation consists in choosing action B with a probability marginally less than
⅓. In this case, the other player's best response would be to choose action A with probability 1. ↵

5. An outcome is Pareto optimal if it is impossible to make one player better off without making at least one other player worse off
↵

6. In general, any strategy profile which at every round prescribes the play of a Nash equilibrium of the stage game regardless of
history is a (subgame perfect) Nash equilibrium of the repeated game. This can be easily proved using the one-shot deviation
principle. ↵

7. Note that mutants playing action A (i.e. strategy (1,0)) would also be able to invade the incumbent population. ↵
8. As an example, note that payoffs interpreted as Darwinian fitness are added across different players to determine the relative

frequency of different types of players (i.e. strategies) in succeeding generations. These interpersonal comparisons are inherent
to the notion of biological evolution by natural selection, and pose no problems if payoffs reflect Darwinian fitness. However, if
evolution is interpreted in cultural terms, presuming the ability to conduct interpersonal comparisons of payoffs across players
may be controversial. In this link, you can watch a video that shows how unconvinced John Maynard Smith was by direct
applications of the principles of Darwinian natural selection in Economics. ↵

9. To prove this statement, note that the mean dynamic of this revision protocol is the well-known replicator dynamic (Taylor and
Jonker, 1978) ↵

10. See exercise 5 in section 1.0 and exercise 3 in section 1.4 ↵
11. This statement is a direct application of Proposition 5.11 in Sandholm et al. (2020) ↵
12. See exercise 6 in section 1.0 and exercise 4 in section 1.4 ↵
13. Izquierdo et al. (2012) provide a succinct overview of some of the learning models that have been studied in TLG. For a more

detailed account, see chapters 11 and 12 in Vega-Redondo (2003). ↵

This page titled 1.1: Introduction to evolutionary game theory is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Luis R. Izquierdo, Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and
standards of the LibreTexts platform.
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1.2: Introduction to agent-based modeling

1. What is agent-based modeling?
Agent-based modeling (ABM) is a methodology used to build formal models of real-world systems that are made up by individual units (such as e.g. atoms, cells, animals, people or
institutions) which repeatedly interact among themselves and/or with their environment.

The essence of agent-based modeling

The defining feature of the agent-based modeling approach is that it establishes a direct and explicit correspondence

between the individual units in the target system to be modeled and the parts of the model that represent these units (i.e. the agents), and also
between the interactions of the individual units in the target system and the interactions of the corresponding agents in the model (figure 1).

This approach contrasts with e.g. equation-based modeling, where entities of the target system may be represented via average properties or via single representative agents.

Figure 1. In an agent-based model, the individual units of the real-world system to be modeled and their interactions are explicitly and individually represented in the model.

Thus, in an agent-based model, the individual units of the system and their repeated interactions are explicitly and individually represented in the model (Edmonds, 2001).  Beyond
this, no further assumptions are made in agent-based modeling.

At this point, you may be wondering whether game theory is part of ABM, since in game theory players are indeed explicitly and individually represented in the models.  The key to
answer that question is the last sentence in the box above, i.e. “Beyond this, no further assumptions are made in agent-based modeling“. There are certainly many disciplines (e.g. game
theory and cellular automata theory) that analyze models where individuals and their interactions are represented explicitly. The key distinction is that these disciplines make further
assumptions, i.e. impose additional structure on their models. These additional assumptions constrain the type of models that are analyzed and, by doing so, they often allow for more
accurate predictions and/or greater understanding within their (somewhat more limited) scope. Thus, when one encounters a model that fits perfectly into the framework of a particular
discipline (e.g. game theory), it seems more appropriate to use the more specific name of the particular discipline, and leave the term “agent-based” for those models which satisfy the
defining feature of ABM mentioned above and they do not currently fit in any more specific area of study.

The last sentence in the box also uncovers a key feature of ABM: its flexibility. In principle, you can make your agent-based model as complex as you wish. This has pros and cons.
Adding complexity to your model allows you to study any phenomenon you may be interested in, but it also makes analyzing and understanding the model harder (or even sometimes
practically impossible) using the most advanced mathematical techniques. Because of this, agent-based models are generally implemented in a programming language and explored
using computer simulation. This is so common that the terms agent-based modeling and agent-based simulation are often used interchangeably. The following is a list of some features
that traditionally have been difficult to analyze mathematically, and for which agent-based modeling can be useful (Epstein and Axtell, 1996):

Agents’ heterogeneity. Since agents are explicitly represented in the model, they can be as heterogeneous as the modeler deems appropriate.
Interdependencies between processes (e.g. demographic, economic, biological, geographical, technological) that have been traditionally studied in different disciplines, and are not
often analyzed together. There is no restriction on the type of rules that can be implemented in an agent-based model, so models can include rules that link disparate aspects of the
world that are often studied in different disciplines.
Out-of-equilibrium dynamics. Dynamics are inherent to ABM. Running a simulation consists in applying the rules that define the model over and over, so agent-based models
almost invariably include some notion of time within them. Equilibria are never imposed a priori: they may emerge as an outcome of the simulation, or they may not.
The micro-macro link. ABM is particularly well suited to study how global phenomena emerge from the interactions among individuals, and also how these emergent global
phenomena may constrain and shape back individuals’ actions.
Local interactions and the role of physical space. The fact that agents and their environment are represented explicitly in ABM makes it particularly straightforward and natural to
model local interactions (e.g. via networks).

As you can imagine, introducing any of the aspects outlined above in an agent-based model often means that the model becomes mathematically intractable, at least to some extent.
However, in this book we will learn that, in many cases, there are various aspects of agent-based models that can be analytically solved, or described using formal approximation
results. Our view is that the most useful agent-based models lie at the boundaries of theoretical understanding, and help us push these boundaries. They are advances sufficiently small
so that simplified versions of them (or certain aspects of their behaviour) can be fully understood in mathematical terms –thus retaining its analytical rigour–, but they are steps large
enough to significantly extend our understanding beyond what is achievable using the most advanced mathematical techniques available.

In my personal (albeit biased) view, the best simulations are those which just peek over the rim of theoretical understanding,
displaying mechanisms about which one can still obtain causal intuitions. Probst (1999)
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2. What is an agent?
In this book we will use the term agent to refer to a distinct part of our (computational) model that is meant to represent a decision-maker. Agents could represent human beings, non-
human animals, institutions, firms, etc. The agents in our models will always play a game, so in this book we will use the term agent and the term player interchangeably.

Agents have individually-owned variables, which describe their internal state (e.g. a strategy), and are able to conduct certain computations or tasks, i.e. they are able to run instructions
(e.g. to update their strategy). These instructions are sometimes called decision rules, or rules of behavior, and most often imply some kind of interaction with other agents or with the
environment.

The following are some of the individually-owned variables that the agents we are going to implement in this book may have:

strategy (a number)
payoff (a number)
my-coplayers (the set of agents with whom this agent plays the game)
color (the color of this agent)

And the following are examples of instructions that the agents in most of our models will be able to run:

to play (play a certain game with my-coplayers and set the payoff appropriately)
to update-strategy (revise strategy according to a certain revision protocol)
to update-color (set color according to strategy)

3. A paradigmatic example
In this section we present a model that captures the spirit of ABM. The model implements the main features of a family of models proposed by Sakoda (1949, 1971) and –
independently– by Schelling (1969, 1971, 1978).  Specifically, here we present a computer implementation put forward by Edmonds and Hales (2005).

In this model there are 133 blue agents and 133 orange agents who live in a 2-dimensional grid made up of 20×20 cells (figure 2). Agents are initially located at random on the grid. The
neighborhood of a cell is defined by the eight neighboring cells (i.e. the eight cells which surround it).

Figure 2. Grid of Schelling-Sakoda model (20×20), with 133 blue agents, 133 orange
agents. The agents in yellow circles have 2 out of 5 neighbors of the same color.

Agents may be happy or unhappy. An agent is happy if the proportion of other agents of its same colour in its neighbourhood is greater or equal than a certain threshold (%-similar-
wanted), which is a parameter of the model; otherwise the agent is said to be unhappy. Agents with no neighbors are assumed to be happy regardless of the value of %-similar-wanted.
In each iteration of the model one unhappy agent is randomly selected to move to a random empty cell in the lattice.

As an example, the two agents surrounded by a circle in figure 2 have 2 out of 5 neighbors of the same color as them, i.e. 40%. This means that in simulation runs where %-similar-
wanted ≤ 40% these agents would be happy, and would not move. On the other hand, in simulations where %-similar-wanted > 40% these two agents would move to a random location.

In this model, agent’s individually-owned variables are:

color, which can be either blue or orange,
(xcor, ycor), which determine the agent’s location on the grid, and
happy?, which indicates whether the agent is happy or not.

Agents are able to run the following instructions:

to move, to change the agent’s location to a random empty cell, and
to update-happiness, to update the agent’s individually-owned variable happy?.

Now imagine that we simulate a society where agents require at least 60% of their neighbors to be of the same color as them in order to be happy (i.e. %-similar-wanted = 60%). These
are pretty strong segregationist preferences, so one would expect a fairly clear pattern of spatial segregation at the end. The following video shows a representative run. You may wish
to run the simulations yourself downloading this model’s code.

[3][4] [5]
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Simulation run of Schelling-Sakoda model with %-similar-wanted = 60.

As expected, the final outcome of the simulation shows clearly distinctive ghettos. To measure the level of segregation of a certain spatial pattern we define a global variable named
avg-%similar, which is the average proportion (across agents) of an agent’s neighbors that are the same color as the agent. Extensive Monte Carlo simulation shows that a good estimate
of the expected avg-%similar is about 95.7% when %-similar-wanted is 60%.

What is really surprising is that even with only mild segregationist preferences, such as %-similar-wanted = 40%, we still obtain fairly segregated spatial patterns (expected avg-
%similar ≈ 82.7%). The following video shows a representative run.

Simulation run of Schelling-Sakoda model with %-similar-wanted = 40.

And even with segregationist preferences as weak as %-similar-wanted = 30% (i.e. you are happy unless strictly less than 30% of your neighbors are of the same color as you), the
emergent spatial patterns show significant segregation (expected avg-%similar ≈ 74.7%). The following video shows a representative run.

Simulation run of Schelling-Sakoda model with %-similar-wanted = 30.

So this agent-based model illustrates how strong spatial segregation can result from only weakly segregationist preferences (e.g. trying to avoid an acute minority status). This model
has been enriched in a number of directions (e.g. to include heterogeneity between and within groups),  but the implementation discussed here is sufficient to illustrate a non-trivial
phenomenon that emerges from agents’ individual choices and their interactions.

4. Agent-based modeling and evolutionary game theory
Given that models in Evolutionary Game Theory (EGT) comprise many individuals who repeatedly interact among them and occasionally revise their individually-owned strategy, it
seems clear that agent-based modelling is certainly an appropriate methodology to build EGT models. Therefore, the question is whether other approaches may be more appropriate or
convenient. This is an important issue, since nowadays most models in EGT are equation-based, and therefore –in general– more amenable to mathematical analysis than agent-based
models. This is a clear advantage for equation-based models. Why bother with agent-based modeling then?

The reason is that mathematical tractability often comes at a price: equation-based models tend to incorporate several assumptions that are made solely for the purpose of guaranteeing
mathematical tractability. Examples include assuming that the population is infinite, or assuming that revising agents are able to evaluate strategies’ expected payoffs. These
assumptions are clearly made for mathematical convenience, since there are no infinite populations in the real world, and –in general– it seems more natural to assume that agents’
choices are based on information obtained from experiences with various strategies, or from observations of others’ experiences. Are assumptions made for mathematical convenience
harmless? We cannot know unless we study models where such assumptions are not made. And this is where agent-based modelling can play an important role.

Agent-based modeling gives us the potential to build models closer to the real-world systems that we want to study, because in an agent-based model we are free to choose the sort of
assumptions that we deem appropriate in purely scientific terms. We may not be able to fully analyze all aspects of the resulting agent-based model mathematically, but we will
certainly be able to explore it using computer simulation, and this exploration can help us assess the impact of assumptions that are made only for mathematical tractability. In this way,
we will be able to shed light on questions such as: how large must a population be for the mathematical model to be a good description of the dynamics of the finite-population model?
and, how much do dynamics change if agents cannot evaluate strategies’ expected payoffs with infinite precision?

5. How can I learn about agent-based modeling?
A wonderful classic book to learn the fundamental concepts and appreciate the kind of models you can build using ABM is Epstein and Axtell (1996). In this short book, the authors
show how to build an artificial society where agents, using extremely simple rules, are able to engage in a wide range of activities such as sex, cultural exchange, trade, combat, disease
transmission, etc. Epstein and Axtell (1996)‘s interdisciplinary book shows how complex patterns can emerge from very simple rules of interaction.

Epstein and Axtell (1996)‘s seminal book focuses on the fundamental concepts without discussing any code whatsoever. The following books are also excellent introductions to
scientific agent-based modeling, and all of them make use of NetLogo: Gilbert (2007), Railsback and Grimm (2019), Wilensky and Rand (2015) and Janssen (2020) . Hamill and
Gilbert (2016) discuss the implementation of several NetLogo models in the context of Economics. Most of these models are significantly more sophisticated than the ones we
implement and analyze in this book.
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1. These three videos by Bruce Edmonds and Michael Price and Uri Wilensky nicely describe what ABM is about. ↵
2. The extent to which repeated interactions are explicitly represented in traditional game theoretical models is not so clear. ↵
3. Hegselmann (2017) provides a detailed and fascinating account of the history of this family of models. ↵
4. Our implementation is not a precise instance of neither Sakoda's nor Schelling's family of models, because unhappy agents in our model move to a random location. We chose this

migration regime to make the code simpler. For details, see Hegselmann (2017, footnote 124). ↵
5. Izquierdo et al. (2009, appendix B) analyze this model as a Markov chain. ↵
6. Cells on a side have five neighbors and cells at a corner have three neighbors. ↵
7. See Aydinonat (2007). ↵
8. Free online book ↵

This page titled 1.2: Introduction to agent-based modeling is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R. Izquierdo, Segismundo S. Izquierdo, William H.
Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the LibreTexts platform.
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1.3: Introduction to NetLogo

1. What is NetLogo?
NetLogo is a well-written, easy-to-install, easy-to-use, easy-to-extend, and easy-to-
publish-online environment. The entry level is simple enough and the tutorials provided in
the package are straightforward and clear enough that anyone who can read and is
comfortable using a keyboard and mouse could create their own models in a short time,
with little or no additional instruction. Sklar (2007, p. 7)

NetLogo (Wilensky, 1999) is a modeling environment designed for coding and running agent-based simulations.  Nowadays,
there are many languages and software platforms that can be employed to create agent-based models,  and at the time of writing
NetLogo is the most widely used. We recommend NetLogo and will use it throughout this book for the many reasons we outline
below.

Easy to learn

NetLogo stands out as the quickest to learn and the easiest to use. Gilbert (2007, p. 49)

The language used to code models within NetLogo –which is also called NetLogo– has been designed following a “Low Threshold,
No Ceiling” philosophy (Wilensky and Rand, 2015). All reviews of the software highlight how easy it is to learn. To be concrete,
we would estimate that an average scholar without previous coding experience can learn the basics of the language and be in a
position to write a simple agent-based model after 2-4 days of work. Someone with programming experience could reduce the
estimated time to 1-2 days.

One characteristic that makes the NetLogo language easy to learn is that it is remarkably close to natural language. As a matter of
fact, NetLogo language could perfectly be used as pseudo-code to communicate algorithms implemented in other languages.

Since NetLogo was designed to be easily readable, we believe that NetLogo code is about
as easy to read as any pseudo-code we would have used. NetLogo also has the big
advantage over pseudo-code of being executable, so the user can run and test the
examples. (Wilensky and Rand, 2015, p. xiv)

NetLogo language is definitely simpler to use than e.g. Java or Objective-C, and can often reduce programming efforts
significantly when compared with other languages.

Powerful

NetLogo has become a standard platform for agent-based simulation, yet there appears to
be widespread belief that it is not suitable for large and complex models due to slow
execution. Our experience does not support that belief. Railsback et al. (2017, abstract)

NetLogo is powerful in that it can accommodate reasonably large and complex simulations, and its execution speed is more than
acceptable for most purposes. NetLogo can easily run simulations with several tens of thousands of agents.

Excellent documentation

NetLogo is by far the most professional platform in its appearance and documentation.
Railsback et al. (2006, p. 613)

One of the reasons why NetLogo is so easy to learn is that it is very well documented. The user manual includes three tutorials to
help beginners get started, an excellent programming guide, and a comprehensive dictionary with the definitions of all NetLogo
primitives, including examples of how to use them. NetLogo also comes with an extensive library of models from different
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disciplines (e.g. art, biology, chemistry, computer science, mathematics, networks, philosophy, physics, psychology, and other
social sciences) and several code examples which succinctly illustrate particular features and coding techniques.

Possibility to interact with the model at runtime
NetLogo is designed to allow the user to interact with the model during runtime in a variety of ways:

By modifying parameter values at runtime, with immediate effect on the simulation. This feature is very convenient to assess
the impact of different assumptions in the model and conduct exploratory work.
By running commands in the middle of a run to e.g. create new agents, remove others, or make a subset of them take some
action.
By probing agents to see –and potentially set– the value of any of their individually-owned variables at any time.

Automatic exploration of parameter space
NetLogo includes a software tool named BehaviorSpace (Wilensky and Shargel, 2002) which greatly facilitates running a model
many times, systematically varying the desired parameter values, and keeping a record of the results of each run. Besides,
computational experiments set up with BehaviorSpace can be run from the command line, i.e. without having to open NetLogo’s
graphical user interface. This feature is particularly useful for launching large-scale experiments in computer clusters.

Open-source and free
NetLogo can be downloaded for free at http://ccl.northwestern.edu/netlogo/. Its source code is publicly hosted on GitHub at
https://github.com/NetLogo/NetLogo, where users can open issues to request the implementation of new features or to report bugs.

Multiplatform and online execution of models

NetLogo can run on Windows, Mac or Linux. Most modern computers will run NetLogo without any trouble. It can also be used
online through NetLogo Web. NetLogo Web can also be used to create stand-alone versions of NetLogo models in HTML format.
These self-contained versions can be run in any browser without having to install any software.

Great support and active user community

NetLogo developers are always happy to receive feedback and enhancement requests (at feedback@ccl.northwestern.edu), and bug
reports (at bugs@ccl.northwestern.edu). There is also an active community of NetLogo users who post their questions and help
each other at the NetLogo-Users Google group and on StackOverflow.

Abundance of quality resources

At https://ccl.northwestern.edu/netlogo/resources.shtml you can find plenty of quality resources to learn NetLogo. These include
references to textbooks, papers that make use of NetLogo, courses given at middle schools, high schools and Universities all
around the world, competitions and tutorials. There are also many video tutorials on YouTube.

This reviewer, who has used NetLogo for both research and teaching at several levels,
highly recommends it for instructors from elementary school to graduate school and for
researchers from a wide range of fields. Sklar (2007, p. 8)

Extensions to fulfill specialised needs
Extensions are add-ons that extend the NetLogo language with new primitives created to fulfill specialised needs. Some of these
extensions come bundled with NetLogo, some have been created by NetLogo developers but must be downloaded separately, and
others have been created by third parties. Four representative examples of useful extensions that come with NetLogo are:

The rnd extension, which provides efficient primitives to make random weighted selections, with or without replacement.
The nw extension, which adds many primitives to generate networks, compute several network-related metrics, and import and
export network data.
The matrix extension, which adds a matrix data structure to NetLogo and several primitives to operate with it.
The GIS (Geographic Information Systems) extension.

[3]

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/123823?pdf
https://ccl.northwestern.edu/netlogo/6.1.1/docs/behaviorspace.html
http://ccl.northwestern.edu/netlogo
https://github.com/NetLogo/NetLogo
https://www.netlogoweb.org/launch#https://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Traffic%202%20Lanes.nlogo
https://www.netlogoweb.org/launch#https://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Traffic%202%20Lanes.nlogo
mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu
https://groups.google.com/forum/#!forum/netlogo-users
http://stackoverflow.com/questions/tagged/netlogo
https://ccl.northwestern.edu/netlogo/resources.shtml
https://ccl.northwestern.edu/netlogo/docs/extensions.html
https://github.com/NetLogo/NetLogo/wiki/Extensions#bundled-extensions
https://github.com/NetLogo/NetLogo/wiki/Extensions#other-ccl-extensions
https://github.com/NetLogo/NetLogo/wiki/Extensions#community-extensions
https://ccl.northwestern.edu/netlogo/docs/rnd.html
https://ccl.northwestern.edu/netlogo/docs/nw.html
https://ccl.northwestern.edu/netlogo/docs/matrix.html
https://ccl.northwestern.edu/netlogo/docs/gis.html


1.3.3 https://math.libretexts.org/@go/page/123823

Useful to conduct experiments with real people and for participatory modeling
The NetLogo release includes HubNet (Wilensky and Stroup, 1999), a technology that enables users to communicate and interact
with each other through NetLogo. Thus, Hubnet can be very useful to run participatory simulations and experiments, in which
human users can be part of the simulation and interact among themselves and with artificial agents.

Happy to link with other software

NetLogo is now a powerful tool widely used in science and we recommend it strongly,
especially for those new to modeling and programming but also for serious scientists with
software experience. Lytinen and Railsback (2012)

NetLogo can be linked with advanced software tools like R (R Core Team, 2019), Python (Python Software Foundation, 2019),
Mathematica (Wolfram Research, Inc., 2019) or Matlab (The MathWorks, Inc., 2019). Specifically, using an R package called
RNetLogo (Thiele (2014); Thiele et al. (2012a, 2012b, 2014)), it is possible to run and control NetLogo models from R, execute
NetLogo commands, and obtain any information from a NetLogo model. The connector PyNetLogo (Jaxa-Rozen and Kwakkel,
2018) provides the same functionalty for Python, and the so-called Mathematica link (Bakshy and Wilensky, 2007) for
Mathematica. The Mathematica link comes bundled as part of the latest NetLogo releases.

Conversely, one can also call R, Python and Matlab commands from within NetLogo using the R-Extension (Thiele and Grimm,
2010), the NetLogo Python extension (Head, 2018) and MatNet (Biggs and Papin, 2013) respectively.

2. How to learn NetLogo
To make the most of this book, we recommend you get familiar with the NetLogo environment and with NetLogo programming
before moving to the next chapter. This will normally take from a few hours to a couple of days, depending on your programming
skills, and can be accomplished doing the following tasks:

Download and install NetLogo following the instructions at https://ccl.northwestern.edu/netlogo/. In this book we will be using
NetLogo version 6.1.1.
Go through the three tutorials in the NetLogo user manual, i.e.

Tutorial #1: Models
Tutorial #2: Commands
Tutorial #3: Procedures

After having gone through the previous material, you will have obtained the required NetLogo background to follow this text
without any problems. In the next section we review the main concepts of NetLogo and give an overview of the structure of most
NetLogo models, using the Schelling-Sakoda model as an illustration.

1. NetLogo was created by Uri Wilensky and is under continuous development at the Northwestern's Center for Connected
Learning and Computer-Based Modeling. It is also important to acknowledge Seth Tisue, who "worked meticulously to
guarantee the quality of the NetLogo software" (Wilensky and Rand, 2015, p. xxii) as lead developer for over a decade. ↵

2. To our knowledge, the most up-to-date and comprehensive review of agent-based simulation software has been conducted by
Abar et al. (2017), who compare 85 tools using a convenient tabular and chart format, and deem NetLogo both easy to use and
also appropriate to execute medium/large-scale simulations. Another recent review that assesses and compares NetLogo with
other platforms has been published by Kravari and Bassiliades (2015). There is also a Wikipedia page set up by Nikolai and
Madey (2009) which provides an up-to-date comparison of agent-based software toolkits. Finally, it is also possible to code
agent-based models using general-purpose programming languages directly. In the context of evolutionary game theory, Isaac
(2008) convincingly demonstrates how this can be easily done with Python. ↵

3. This can be done by uploading any NetLogo model to NetLogo Web and exporting it as HTML. ↵
4. Please, make sure you download version 6.1.1 or greater. NetLogo syntax changed significantly in version 6.0, and a little bit in

6.1. ↵
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1.4: The fundamentals of NetLogo
This section provides a succinct overview of the fundamentals of NetLogo. It is strongly based on the excellent NetLogo user manual, version 6.1.1 (Wilensky, 2019). By no means do we claim
originality on the content of this section; all credit should go to Uri Wilensky and his team. The following table provides links to the different aspects of NetLogo programming that we cover here.

Very basics More advanced Final polishing

The three tabs Ask Consistency within procedures

Types of agents Lists Breeds

Instructions Agentsets Ticks and Plotting

Variables Synchronization Skeleton of many NetLogo models

  The code for Schelling-Sakoda model

Feel free to skip this section if you are already familiar with NetLogo. For future reference, you may wish to download our NetLogo quick guide, which is a 6-page pdf file containing the main
concepts outlined here.

1. The three tabs
The main window of NetLogo contains three tabs, i.e. the interface tab, the info tab and the code tab (see figure 1).

Figure 1. Top bar of the NetLogo Interface tab, where you can select the tab you want to see.

The interface tab is used to run the model. It often contains buttons, sliders, switches, plots… Most models include a button labeled setup, which is used to initialize the model, and another button
labeled go, which is used to run the model.

The Info tab can be used to include the documentation of the model.

Finally, the code tab contains most of the code of the model. We say most because in some models part of the code is included within the plots in the interface tab.

2. Types of agents

Figure 2. The NetLogo world is made up of turtles, patches, links and the observer.

The NetLogo world is made up by four types of agents (see figure 2), i.e.:

Turtles. Turtles are agents that can move.
Patches: The NetLogo world is two-dimensional and is divided up into a grid of patches. Each patch is a square piece of “ground” over which turtles can move.
Links: Links are agents that connect two turtles. Links can be directed (from one turtle to another turtle) or undirected (one turtle with another turtle).
The observer: There is only one observer and it does not have a location. You can think of the observer as the conductor of the whole NetLogo orchestra.

Note that in many descriptions of agent-based models, the word agent is used only to refer to the turtles (i.e. the mobile agents in NetLogo), while patches and links are not considered agents (and
the observer is not even mentioned). However, when reading NetLogo documentation, it is important to remember that these four types of entities are all agents in NetLogo.

3. Instructions
Instructions tell agents what to do. Three characteristics are useful to remember about instructions:

Whether the instruction is implemented by the user (procedures), or whether it is built into NetLogo (primitives). Once you define a procedure, you can use it elsewhere in your program. The
NetLogo Dictionary has a complete list of built-in instructions (i.e. primitives). The following code is an example of the implementation of procedure to setup:

to setup             ;; comments are written after semicolon(s)

  clear-all          ;; clear everything 

  create-turtles 10  ;; make 10 new turtles

end                  ; (one semicolon is enough, but I like two)

The instruction to setup is a procedure (since it is implemented by us), whereas clear-all and create-turtles are both primitives (they are built into NetLogo).
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Note that primitives are nicely colored, and you can click on them and press F1 to see their syntax, functionality, and examples. You may want to copy and paste the code above to see all this for
yourself.
Whether the instruction produces an output (reporters) or not (commands).

A reporter computes a result and reports it. Most reporters are nouns or noun phrases (e.g. “average-wealth”, “most-popular-girl”). These names are preceded by the keyword to-report. The
keyword end marks the end of the instructions in the procedure.

to-report average-wealth          ;; this reporter returns the 

  report mean [wealth] of turtles ;; average wealth in the 

end                               ;; population of turtles

A command is an action for an agent to carry out. Most commands begin with verbs (e.g. “create”, “die”, “jump”, “inspect”, “clear”). These verbs are preceded by the keyword to (instead of
to-report). The keyword end marks the end of the procedure.

to go

  ask turtles [ 

    forward 1        ;; all turtles move forward one step

    right random 360 ;; and turn a random amount

  ] 

end

Note that primitive commands are colored in blue while primitive reporters are colored in purple. Keywords are colored in green.

Whether the instruction takes an input (or several inputs) or not. Inputs are values that the instruction uses in carrying out its actions.

to-report absolute-value [number]     ;; number is the input

  ifelse number >= 0         ;; if number is already non-negative    

    [ report number ]        ;; return number (a non-negative value).

    [ report (- number) ]    ;; Otherwise, return the opposite, which

end                          ;; is then necessarily positive.

4. Variables
Variables are places to store values (such as numbers). A variable can be a global variable, a turtle variable, a patch variable, a link variable, or a local variable (local to a procedure). To change the
value of a variable you can use the set command. If you don’t set the variable to any value, it starts out storing a value of zero.

Global variables: If a variable is a global variable, there is only one value for the variable, and every agent can access it. You can declare a new global variable either in the Interface tab –by
adding a switch, a slider, a chooser or an input box– or in the Code tab –by using the globals keyword at the beginning of your code, like this:

globals [ n-of-strategies ]

Turtle, patch, and link variables: Each turtle has its own value for every turtle variable, each patch has its own value for every patch variable, and each link has its own value for every link
variable. Turtle, patch, and link variables can be built-in or defined by the user.

Built-in variables: For example, all turtles and all links have a color variable, and all patches have a pcolor variable. If you set this variable, the corresponding turtle, link or patch changes
color. Other built-in turtle variables are xcor, ycor, and heading. Other built-in patch variables include pxcor and pycor. Other built-in link variables are end1, end2, and thickness. You can
find the complete list in the NetLogo Dictionary.
User-defined turtle, patch and link variables: You can also define new turtle, patch or link variables using the turtles-own, patches-own, and links-own keywords respectively, like this:

turtles-own [ energy ]    ;; each turtle has its own energy

patches-own [ roughness ] ;; each patch has its own roughness

links-own   [ weight ]    ;; each link has its own weight

Local variables: A local variable is defined and used only in the context of a particular procedure or part of a procedure. To create a local variable, use the let command. You can use this
command anywhere. If you use it at the top of a procedure, the variable will exist throughout the procedure. If you use it inside a set of square brackets, for example inside an ask, then it will
exist only inside those brackets.

to swap-colors [turtle1 turtle2]  ;; turtle1 and turtle2 are inputs

  let temp ([color] of turtle1)   ;; store the color of turtle1 in temp

  ask turtle1 [ set color ([color] of turtle2) ]

;; set turtle1’s color to turtle2’s color

  ask turtle2 [ set color temp ]

;; now set turtle2’s color to turtle1’s (original) color

end     ;; (which was conveniently stored in local variable “temp”).

Setting and reading the value of variables
Global variables can be read and set at any time by any agent. Every agent has direct access to her own variables, both for reading and setting. Sometimes you will want an agent to read or set a
different agent’s variable; to do that, you can use ask (which is explained in further detail later):

ask turtle 5 [ show color ]      ;; turtle 5 shows its color

ask turtle 5 [ set color blue ]  ;; turtle 5 becomes blue 

You can also use of to make one agent read another agent’s variable. of is written in between the variable name and the relevant agent (i.e. [reporter] of agent). Example:

show [color] of turtle 5 ;; observer shows turtle 5's color
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Finally, a turtle can read and set the variables of the patch it is standing on directly, e.g.

ask turtles [ set pcolor red ]

The code above causes every turtle to make the patch it is standing on red. (Because patch variables are shared by turtles in this way, you cannot have a turtle variable and a patch variable with the
same name –e.g. that is why we have color for turtles and pcolor for patches).

5. Ask
NetLogo uses the ask command to specify instructions that are to be run by turtles, patches or links. Usually, the observer uses ask to ask all turtles or all patches to run commands. Here’s an
example of the use of ask syntax in a NetLogo procedure:

to setup

  clear-all            ;; clear everything

  create-turtles 100   ;; create 100 new turtles with random heading

  ask turtles [        ;; ask them

    set color red      ;; to turn red and

    forward 50         ;; to move 50 steps forward

  ]       

  ask patches [        ;; ask patches

    if (pxcor > 0) [   ;; with pxcor greater than 0

      set pcolor green ;; to turn green

    ]

  ] 

end

You can also use ask to have an individual turtle, patch or link run commands. The reporters turtle, patch, link, and patch-at are useful for this technique. For example:

to setup

  clear-all               ;; clear the world

  create-turtles 3        ;; make 3 turtles

  ask turtle 0 [ fd 10 ]  ;; tell the first one to go forward 10 steps

  ask turtle 1 [   ;; ask the second turtle (with who number 1)

    set color green       ;; ... to become green

  ]

  ask patch 2 -2 [        ;; ask the patch at (2,-2)...

    set pcolor blue       ;; ... to become blue

  ]

  ask turtle 0 [     ;; ask the first turtle (with who number 0)

    create-link-to turtle 2 ;; to link to turtle with who number 2

  ]

  ask link 0 2 [          ;; ask the link between turtle 0 and 2...

    set color blue        ;; ... to become blue

  ]

  ask turtle 0 [          ;; ask the turtle with who number 0

    ask patch-at 1 0 [    ;; ... to ask the patch to her east

      set pcolor red      ;; ... to become red

    ]

  ]

end

6. Lists
In the simplest models, each variable holds only one piece of information, usually a number or a string. Lists let you store multiple pieces of information in a single variable by collecting those
pieces of information in a list. Each value in the list can be any type of value: a number, a string, an agent, an agentset, or even another list.

Constant lists
You can make a list by simply putting the values you want in the list between brackets, e.g.:

set my-list [2 4 6 8]

Building lists on the fly
If you want to make a list in which the values are determined by reporters, as opposed to being a series of constants, use the list reporter. The list reporter accepts two other reporters, runs them, and
reports the results as a list.

set my-random-list list (random 10) (random 20)

To make shorter or longer lists, you can use the list reporter with fewer or more than two inputs, but in order to do so, you must enclose the entire call in parentheses, e.g.:

show (list random 10)

show (list (random 10) (turtle 3) "a" 30)  ;; inner () are not necessary
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The of primitive lets you construct a list from an agentset (i.e. a set of agents). It reports a list containing each agent’s value for the given reporter (syntax: [reporter] of agentset).

set fitness-list ([fitness] of turtles)

;; list containing the fitness of each turtle (in random order)

show [pxcor * pycor] of patches

See also: n-values, range, sentence and sublist.

Reading and changing list items

List items can be accessed using first, last and item. The first element of a list is item 0. Technically, lists cannot be modified, but you can construct new lists based on old lists. If you want the new
list to replace the old list, use set. For example:

set my-list [2 7 5 "Bob" [3 0 -2]]     ;; my-list is now [2 7 5 "Bob" [3 0 -2]]

set my-list replace-item 2 my-list 10  ;; my-list is now [2 7 10 "Bob" [3 0 -2]]

See also: but-first, but-last, fput, lput, length, shuffle, position and remove-item.

Iterating over lists
To apply a function (procedure) on each item in a list, you can use foreach or map. The function to be applied is usually defined using anonymous procedures, with the following syntax:

[ [input-1 input-2 ...] -> code of the procedure ]

  ;; this syntax was different in versions before NetLogo 6.0

The names assigned to the inputs of the procedure (i.e. input-1 and input-2 above) may be used within the code of the procedure just like you would use any other variable within scope. You can use
any name you like for these local variables (complying with the usual restrictions). An example of an anonymous procedure that implements the absolute value is:

[ [x] -> abs x ]  ;; you can use any symbol instead of x

[  x  -> abs x ]  ;; if there is just one input 

                  ;; you do not need the square brackets

foreach is used to run a command on each item in a list. It takes as inputs the list and the command to be run on each element of the list, e.g.:

foreach [1.2 4.6 6.1] [ n -> show (word n " rounded is " round n) ]

  ;; output: "1.2 rounded is 1" "4.6 rounded is 5" "6.1 rounded is 6"

map is similar to foreach, but it is a reporter (it returns a list). It takes as inputs a list and a reporter; and returns an output list containing the results of applying the reporter to each item in the input
list. As in foreach, procedures can be anonymous.

map [ element -> round element ] [1.2 2.2 2.7]  ;; returns [1 2 3]

Simple uses of foreach, map, n-values, and related primitives can be written more concise.

map round [1.2 2.2 2.7]    

  ;; (see Anonymous procedures in Programming Guide)

Both foreach and map can take multiple lists as input; in that case, the procedure is run once for the first items of all input lists, once for the second items, and so on.

(map [[el1 el2] -> el1 + el2] [1 2 3] [10 20 30])  ;; returns [11 22 33]

(map + [1 2 3] [10 20 30])  ;; a shorter way of writing the same

See also: reduce, filter, sort-by, sort-on, and -> (anonymous procedure).

7. Agentsets
An agentset is a set of agents; all agents in an agentset must be of the same type (i.e. turtles, patches, or links). An agentset is not in any particular order. In fact, it’s always in a random order.
What’s powerful about the agentset concept is that you can construct agentsets that contain only some agents. For example, all the red turtles, or the patches with positive pxcor, or all the links
departing from a certain agent. These agentsets can then be used by ask or by various reporters that take agentsets as inputs, such as one-of, n-of, with, with-min, max-one-of, etc. The primitive with
and its siblings are very useful to build agentsets. Here are some examples:

turtles with [color = red]         ;; all red turtles

patches with [pxcor > 0]           ;; patches with positive pxcor

[my-out-links] of turtle 0         ;; all links outgoing from turtle 0

turtles in-radius 3                ;; all turtles three or fewer patches away

other turtles-here with-min [size] ;; other turtles with min size on my patch 

(patch-set self neighbors4)        ;; von Neumann neighborhood of a patch

Once you have created an agentset, here are some simple things you can do:

Use ask to make the agents in the agentset do something.
Use any? to see if the agentset is empty.
Use all? to see if every agent in an agentset satisfies a condition.
Use count to find out exactly how many agents are in the set.

Here are some more complex things you can do:

[1]
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ask one-of turtles [ set color green ]

;; one-of reports a random agent from an agentset 

ask (max-one-of turtles [wealth]) [ donate ]

;; max-one-of agentset [reporter] reports an agent in the

;; agentset that has the highest value for the given reporter

show mean ([wealth] of turtles with [gender = male])

;; Use of to make a list of values, one for each agent in the agentset. 

show (turtle-set turtle 0 turtle 2 turtle 9 turtles-here)

;; Use turtle-set, patch-set and link-set reporters to make new 

;; agentsets by gathering together agents from a variety of sources

show (turtles with [gender = male]) = (turtles with [wealth > 10])

;; Check whether two agentsets are equal using = or !=

show member? (turtle 0) turtles with-min [wealth]

;; Use member? to see if an agent is a member of an agentset.

if all? turtles [color = red]     ;; use all? to see if every agent in the

  [ show "every turtle is red!" ] ;; agentset satisfies a certain condition

ask turtles [

  create-links-to other turtles-here ;; on same patch as me, not me,

    with [color = [color] of myself] ;; and with same color as me.

]

show [([color] of end1) - ([color] of end2)] of links   ;; check everything’s OK

8. Synchronization
When you ask a set of agents to run more than one command, each agent must finish all the commands in the block before the next agent starts. One agent runs all the commands, then the next agent
runs all of them, and so on. As mentioned before, the order in which agents are chosen to run the commands is random. To be clear, consider the following code:

ask turtles [

  forward random 10 ;; move forward a random number of steps (0–9)

  wait 0.5          ;; wait half a second

  set color blue    ;; set your color to blue

]

The first (randomly chosen) turtle will move forward some steps, she will then wait half a second, and she will finally set her color to blue. Then, and only then, another turtle will start doing the
same; and so on until all turtles have run the commands inside ask without being interrupted by any other turtle. The order in which turtles are selected to run the commands is random. If you want
all turtles to move, and then all wait, and then all become blue, you can write it this way:

ask turtles [ forward random 10 ]

ask turtles [ wait 0.5 ]        ;; note that you will have to wait 

ask turtles [ set color blue ]  ;; (0.5 * number-of-turtles) seconds

Finally, you can make agents execute a set of commands in a certain order by converting the agentset into a list. There are three primitives that help you do this: sort, sort-by and sort-on.

set my-list-of-agents sort-by [[t1 t2] -> [size] of t1 < [size] of t2] turtles

 ;; This sets my-list-of-agents to a list of turtles sorted in

 ;; ascending order by their turtle variable size. For simple orderings

 ;; like this, you can use sort-on, e.g.: sort-on [size] turtles

foreach my-list-of-agents [ ag ->

    ask ag [            ;; each agent undertakes the list of commands

    forward random 10   ;; (forward, wait, and set) without being 

    wait 0.5            ;; interrupted, i.e. the next agent does not 

    set color blue      ;; start until the previous one has finished.

  ]

]

9. Consistency within procedures
Some primitives in NetLogo can only be run by a certain type of agent. For instance, forward can only be run by turtles, since turtles are the only type of agent that can move. An easy way of
knowing which type of agent can run a certain primitive is to find the primitive in the NetLogo Dictionary and look at the icon beneath the name of the primitive. If you click on forward, you will
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see the icon , which denotes turtles. The icons for the other types of agent are:  for the observer,  for patches, and  for links. There are primitives that can be run by more than one type of
agent. For instance, reporter turtles-here can be run by turtles and by patches.

The question that naturally comes to mind now is: How do we tell NetLogo what type of agent should run a certain procedure (which we implement)? The answer is simple: we don’t. NetLogo
infers that from the code of the procedure; we just have to be consistent. An example of inconsistency would be to code a procedure containing two primitives that can be run only by two different
types of agents, as in the following example:

to setup

  create-turtles 10

  forward 1

end

If we implement this code, we obtain the following error message: “You can’t use FORWARD in an observer context, because FORWARD is turtle-only” (see figure 3).

Figure 3. Inconsistency error.

The reason is that NetLogo reads the primitive create-turtles and, since it can only be run by the observer, NetLogo infers that the procedure to setup will be run only by the observer, i.e. everything
inside is in an observer context. Then, NetLogo reads the primitive forward, which can only be run by turtles, and throws the error.

We would obtain similar inconsistency errors if we tried to access individually-owned variables within procedures that can only be run by a type of agent that cannot access those variables, as in the
following examples.

to setup

  create-turtles 10

  show xcor

end

;; Here we would obtain the error:

;; "You can't use XCOR in an observer context, because XCOR is turtle-only"

to setup

  create-turtles 10

  show pxcor

end

;; Here we would obtain the error:

;; "You can't use PXCOR in an observer context, because PXCOR is turtle/patch-only"

Note that in the example above, NetLogo says that pxcor is “turtle/patch-only”. This is because all patch variables can be directly accessed by any turtle standing on the patch (see section Variables
above).

to setup

  create-turtles 10

  show end1

end

;; Here we would obtain the error:

;; "You can't use END1 in an observer context, because END1 is link-only"

10. Breeds
NetLogo allows you to have different types of turtles and different types of links. There are called breeds. Here we discuss breeds of turtles only, since breeds of links follow the same logic. Breeds
are defined with the syntax:

breed [plural-name singular-name]

For instance, to define a breed of sellers and a breed of buyers, we would type the following at the top of our code:

breed [sellers seller]

breed [buyers buyer]

From then onwards, we could assign different individually-owned variables to each of the breeds, using the keywords sellers-own and buyers-own. Also, there are a number of primitives that are
automatically added to the NetLogo language once you have defined a breed, such as create-sellers, hatch-sellers, sprout-sellers, sellers-here, sellers-at, sellers-on, and is-seller?.

11. Ticks and Plotting
In most NetLogo models, time passes in discrete steps called “ticks”. NetLogo includes a built-in tick counter so you can keep track of how many ticks have passed. The current value of the tick
counter is shown above the view. Note that –since NetLogo 5.0– ticks and plots are closely related.

You can write code inside the plots. Every plot and each of its pens have setup and update code fields where you can write commands. All these fields must be edited directly in each plot –i.e. in the
interface, not in the code tab. To execute the commands written inside the plots, you can use setup-plots and update-plots, which run the corresponding fields in every plot and in every pen.
However, in models that use the tick counter, these two primitives are not normally used because they are automatically triggered by tick-related commands, as explained below.
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To use the tick counter, first you must reset-ticks; this command resets the tick counter to zero, sets up all plots (i.e. triggers setup-plots), and then updates all plots (i.e. triggers update-plots); thus,
the initial state of the world is plotted. Then, you can use the tick command, which advances the tick counter by one and updates all plots.

See also: plot, plotxy, and ticks.

12. Skeleton of many NetLogo models
In most NetLogo models there are two basic procedures that are run by the observer: to setup and to go.

Procedure to setup is run just once at the beginning of the simulation, most often by clicking a button in the interface tab. In this procedure:

we initialize the model from scratch using the primitive clear-all,
we set up all initial conditions (this often implies creating several agents), and
we finish with the primitive reset-ticks.

Procedure to go contains all the actions that will be executed repeatedly in the model. Some of these actions will be executed directly by the observer, while others will be run by the turtles, the
patches or the links. In any case, procedure to go is run by the observer, so it is the observer who must ask the other agents to run the appropriate instructions, using the primitive ask. Most often,
procedure to go contains the primitive tick, which advances the (discrete) NetLogo clock in one unit.

globals  [ … ]     ;; global variables (also defined with sliders, …)

turtles-own [ … ]  ;; user-defined turtle variables (also <breeds>-own)

patches-own [ … ]  ;; user-defined patch variables

links-own [ … ]    ;; user-defined link variables (also <link-breeds>-own)

…

to setup 

  clear-all 

  …

  setup-patches  ;; procedure where patches are initialized

  …

  setup-turtles  ;; procedure where turtles are created

  …

  reset-ticks

end

…

to go

  conduct-observer-procedure 

  …

  ask turtles [conduct-turtle-procedure] 

  …

  ask patches [conduct-patch-procedure] 

  …

  tick ;; this will update every plot and every pen in every plot

end

…

to-report a-particular-statistic 

  …

  report the-result-of-some-formula  

end

13. The code for Schelling-Sakoda model
To conclude this section, we present some simple code that implements the Schelling-Sakoda model described in section 0.2 “Introduction to agent-based modeling”. The code we show here is
simpler than the one used for the videos in section 0.2, which is more efficient but less readable.  In the interface, we have used two sliders to define parameters number-of-agents and %-similar-
wanted (see figure 4).

Figure 4. Interface of a simple version of Schelling-Sakoda model.

[2]

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/123824?pdf
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#reset-ticks
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#setup-plots
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#update-plots
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#tick
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#plot
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#plotxy
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#ticks
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#clear-all
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#reset-ticks
https://ccl.northwestern.edu/netlogo/6.1.1/docs/dictionary.html#ask


1.4.8 https://math.libretexts.org/@go/page/123824

Figure 5. Window that pops up when you inspect a turtle.
You can ask the turtle to execute instructions by typing
them on the bottom line.

The code that goes in the code tab is shown below. You can download the whole model here and take this code as a test to check whether you are ready to proceed to the next chapter. If you can
understand most of it, you are definitely prepared!

To work your way through the code, you will most likely have to use the NetLogo Dictionary intensively, and run small pieces of code in the Command Center (especially because the model
includes several NetLogo primitives that we have not seen yet). You can also inspect individual turtles and make them run (turtle) instructions such as:

ask turtles-on neighbors [set label "Hi!"]

You will have to type these instructions on the bottom line of the window that pops up when you inspect a turtle (see figure 5). To inspect a turtle, right-click on it, select the name of the turtle (e.g.
turtle 21), and click on “inspect”. Alternatively, you can just type the following instruction in the command center:

inspect turtle 21

Developing these skills will be useful, since programming in NetLogo most often involves looking up the dictionary very often and testing short snippets of code. Once you have understood most of
the code below we can start building our first agent-based evolutionary model in the next chapter!

;;;;;;;;;;;;;;;;;

;;; VARIABLES ;;;

;;;;;;;;;;;;;;;;;

turtles-own [

  happy?

]

;;;;;;;;;;;;;;;;;;;;;;;;

;;; SETUP PROCEDURES ;;;

;;;;;;;;;;;;;;;;;;;;;;;;

to setup

  clear-all

  setup-agents

  reset-ticks

end

to setup-agents

  set-default-shape turtles "person"

  ask n-of number-of-agents patches

    [ sprout 1 [set color cyan] ]

  ask n-of (number-of-agents / 2) turtles

    [ set color orange ]

  ask turtles [update-happiness]

end

;;;;;;;;;;;;;;;;;;;;;;

;;; MAIN PROCEDURE ;;;

;;;;;;;;;;;;;;;;;;;;;;
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to go

  if all? turtles [happy?] [stop]

  ask one-of turtles with [not happy?] [move]

  ask turtles [update-happiness]

  tick

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; TURTLES' PROCEDURES ;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;

to move

  move-to one-of patches with [not any? turtles-here]

end

to update-happiness

  let my-nbrs (turtles-on neighbors)

  let n-of-my-nbrs (count my-nbrs)

  let similar-nbrs (count my-nbrs with [color = [color] of myself])

  set happy? similar-nbrs >= (%-similar-wanted * n-of-my-nbrs / 100)

end

1. If you want agents to do something in a fixed order, you can make a list of the agents instead. ↵
2. Both implementations lead to exactly the same dynamics. ↵
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2.1: Our very first model

1. Goal
The goal of this section is to create our first agent-based evolutionary model in NetLogo. Being our first model, we will keep it
simple; nonetheless, the model will already contain the four building blocks that define most models in agent-based evolutionary
game theory, namely:

a population of agents,
a game that is recurrently played by the agents,
an assignment rule, which determines how revision opportunities are assigned to agents, and
a revision protocol, which specifies how individual agents update their (pure) strategies when they are given the opportunity to
revise.

In particular, in our model the number of (individually-represented) agents in the population will be chosen by the user. These agents
will repeatedly play a symmetric 2-player 2-strategy game, each time with a randomly chosen counterpart. The payoffs of the game
will be determined by the user. Agents will revise their strategy with a certain probability, also to be chosen by the user. The revision
protocol these agents will use is called “imitate-the-better-realization”, which dictates that a revising agent imitates the strategy of a
randomly chosen player, if this player obtained a payoff greater than the revising agent’s.

This fairly general model will allow us to explore a variety of specific questions, like the one we outline next.

2. Motivation. Cooperation in social dilemmas
There are many situations in life where we have the option to make a personal effort that will benefit others beyond the personal cost
incurred. This type of behavior is often termed “to cooperate”, and can take a myriad forms: from paying your taxes, to inviting your
friends over for a home-made dinner. All these situations, where cooperating involves a personal cost but creates net social value,
exhibit the somewhat paradoxical feature that individuals would prefer not to pay the cost of cooperation, but everyone prefers the
situation where everybody cooperates to the situation where no one does. Such counterintuitive characteristic is the defining feature
of social dilemmas, and life is full of them (Dawes, 1980).

The essence of many social dilemmas can be captured by a simple 2-person game called the Prisoner’s Dilemma. In this game, the
payoffs for the players are: if both cooperate, R (Reward); if both defect, P (Punishment); if one cooperates and the other defects, the
cooperator obtains S (Sucker) and the defector obtains T (Temptation). The payoffs satisfy the condition T > R > P > S. Thus, in a
Prisoner’s Dilemma, both players prefer mutual cooperation to mutual defection (R > P), but two motivations may drive players to
behave uncooperatively: the temptation to exploit (T > R), and the fear to be exploited (P > S).

Let us see a concrete example of a Prisoner’s Dilemma. Imagine that you have $1000, which you may keep for yourself, or transfer
to another person’s account. This other person faces the same decision: she can transfer her $1000 money to you, or else keep it.
Crucially, whenever money is transferred, the money doubles, i.e. the recipient gets $2000.

Try to formalize this situation as a game, assuming you and the other person only care about money.

The game can be summarized using the payoff matrix in Fig. 1. To see that this game is indeed a Prisoner’s Dilemma, note that
transferring the money would be what is often called “to cooperate”, and keeping the money would be “to defect”.

 Player 2

 Keep Transfer

Player 1
Keep 1000 , 1000 3000 , 0

Transfer 0 , 3000 2000 , 2000

Figure 1. Payoff matrix of a Prisoner’s Dilemma game.

To explore whether cooperation may be sustained in a simple evolutionary context, we can model a population of agents who are
repeatedly matched to play the Prisoner’s Dilemma. Agents are either cooperators or defectors, but they can occasionally revise their
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strategy. A revising agent looks at another agent in the population and, if the observed agent’s payoff is greater than the revising
agent’s payoff, the revising agent copies the observed agent’s strategy. Do you think that cooperation will be sustained in this setting?
Here we are going to build a model that will allow us to investigate this question… and many others!

3. Description of the model
In this model, there is a population of n-of-players agents who repeatedly play a symmetric 2-player 2-strategy game. The two
possible strategies are labeled 0 and 1. The payoffs of the game are determined by the user in the form of a matrix [[A  A ] [A
A ]], where A  is the payoff that an agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1}).

Initially, the number of agents playing strategy 1 is a (uniformly distributed) random number between 0 and the number of players in
the population. From then onwards, the following sequence of events –which defines a tick– is repeatedly executed:

1. Every agent obtains a payoff by selecting another agent at random and playing the game.
2. With probability prob-revision, individual agents are given the opportunity to revise their strategies. The revision rule –called

“imitate the better realization”– reads as follows:
Look at another (randomly selected) agent and adopt her strategy if and only if her payoff was greater than yours.

The model shows the evolution of the number of agents choosing each of the two possible strategies at the end of every tick.

4. Interface design

Figure 2. Interface design.

The interface (see figure 2) includes:

Three buttons:

1. One button named setup, which runs the procedure to setup.
2. One button named go once, which runs the procedure to go.
3. One button named go, which runs the procedure to go indefinitely.

In the Code tab, write the procedures to setup and to go, without including any code inside for now.

to setup

  ;; empty for now

end

to go

00 01 10

11 ij

[1]
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  ;; empty for now

end

In the Interface tab, create a button and write setup in the “commands” box. This will make the procedure to setup run whenever
the button is pressed.

Create another button for the procedure to go (i.e., write go in the commands box) with display name go once to emphasize that
pressing the button will run the procedure to go just once.

Finally, create another button for the procedure to go, but this time tick the “forever” option. When pressed, this button will make
the procedure to go run repeatedly until the button is pressed again.
A slider to let the user select the number of players. Create a slider for global variable n-of-players. You can choose limit values 2
(as the minimum) and 1000 (as the maximum), and an increment of 1.
An input box where the user can write a string of the form [ [A  A ] [A  A ] ] containing the payoffs A  that an agent playing
strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1}). Create an input box with associated global variable
payoffs. Set the input box type to “String (reporter)”. Note that the content of payoffs will be a string (i.e. a sequence of
characters) from which we will need to extract the payoff numeric values.
A slider to let the user select the probability of revision. Create a slider with associated global variable prob-revision. Choose
limit values 0 and 1, and an increment of 0.01.
A plot that will show the evolution of the number of agents playing each strategy. Create a plot and name it Strategy Distribution.
Since we are not going to use the 2D view (i.e. the large black square in the interface) in this model, you may want to overlay it
with the newly created plot.

5. Code

5.1. Skeleton of the code

Figure 3. Skeleton of the code

5.2. Global variables and individually-owned variables
First we declare the global variables that we are going to use and we have not already declared in the interface. We will be using a
global variable named payoff-matrix to store the payoff values on a list, so the first line of code in the Code tab will be:

globals [payoff-matrix]

Next we declare a breed of agents called “players”. If we did not do this, we would have to use the default name “turtles”, which may
be confusing to newcomers.

breed [players player]

Individual players have their own strategy (which can be different from the other agents’ strategy) and their own payoff, so we need
to declare these individually-owned variables as follows:

00 01 10 11 ij
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players-own [

  strategy

  payoff

]

5.3. Setup procedures
In the setup procedure we want:

To clear everything up. We initialize the model afresh using the primitive clear-all:

clear-all

To transform the string of characters the user has written in the payoffs input box (e.g. “[[1 2][3 4]]”) into a list (of 2 lists) that we
can use in the code (e.g. [[1 2][3 4]]). This list of lists will be stored in the global variable named payoff-matrix. To do this
transformation (from string to list, in this case), we can use the primitive  read-from-string as follows:

set payoff-matrix read-from-string payoffs

To create n-of-players players and set their individually-owned variables to an appropriate initial value. At first, we set the value
of payoff and strategy to 0:

create-players n-of-players [

  set payoff 0

  set strategy 0

]

Note that the primitive create-players does not appear in the NetLogo dictionary; it has been automatically created after defining
the breed “players”. Had we not defined the breed “players”, we would have had to use the primitive create-turtles instead.

Now we will ask a random number of players (between 0 and n-of-players) to set their strategy to 1, using one of the most
important primitives in NetLogo, namely ask. The instruction will be of the form:

ask AGENTSET [set strategy 1]

where AGENTSET  should be a random subset o players.

To randomly select a certain number of agents from an agentset (such as players), we can use the primitive n-of (which reports
another –usually smaller– agentset):

ask (n-of SIZE players) [set strategy 1]

where SIZE  is the number of players we would like to select.

Finally, to generate a random integer between 0 and n-of-players we can use the primitive random:

random (n-of-players + 1)

The resulting instruction will be:

ask n-of (random (n-of-players + 1)) players [set strategy 1]

[2]
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To initialize the tick counter. At the end of the setup procedure, we should include the primitive reset-ticks, which resets the tick
counter to zero (and also runs the “plot setup commands”, the “plot update commands” and the “pen update commands” in every
plot, so the initial state of the model is plotted):

reset-ticks

Thus, the code up to this point should be as follows:

globals [

  payoff-matrix

]

breed [players player]

players-own [

  strategy

  payoff

]

to setup

  clear-all

  set payoff-matrix read-from-string payoffs

  create-players n-of-players [

    set payoff 0

    set strategy 0

  ]

  ask n-of random (n-of-players + 1) players [set strategy 1]

  reset-ticks

end

to go

  

end

5.4. Go procedure
The procedure to go contains all the instructions that will be executed in every tick. In this particular model, these instructions
include a) asking all players to interact with another (randomly selected) player to obtain a payoff and b) asking all players to revise
their strategy with probability prob-revision.

To keep things nice and modular, we will create two separate procedures to be run by players named to play and to update-strategy.
Writing short procedures with meaningful names will make our code elegant, easy to understand, easy to debug, and easy to
extend… so we should definitely aim for that. Following this modular design, the procedure to go is particularly easy to code and
understand:

ask players [play]

ask players [

  if (random-float 1 < prob-revision) [update-strategy]

]
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Note that condition

 (random-float 1 < prob-revision)

will be true with probability prob-revision.

Having the agents go once through the code above will mark an evolution step (or generation), so, to keep track of these cycles and
have the plots in the interface automatically updated at the end of each cycle, we include the primitive tick at the end of to go.

tick

5.5 Other procedures

to play

Importantly, note that the procedure to play will be run by a particular player. Thus, within the code of this procedure, we can access
and set the value of player-owned variables strategy and payoff.

Here we want the player running this procedure (let us call her the running player) to play with some other player and get the
corresponding payoff. First, we will (randomly) select a counterpart and store it in a local variable named mate:

let mate one-of other players

Now we need to compute the payoff that the running player will obtain when she plays the game with her mate. This payoff is an
element of the payoff-matrix list, which is made up of two sublists (e.g., [[1 2][3 4]]).

Note that the first sublist (i.e., item 0 payoff-matrix) corresponds to the case in which the running player plays strategy 0. We want to
consider the sublist corresponding to the player’s strategy, so we type:

item strategy payoff-matrix

In a similar fashion, the payoff to extract from this sublist is determined by the strategy of the running player’s mate (i.e., [strategy]
of mate). Thus, the payoff obtained by the running agent is:

item ([strategy] of mate) (item strategy payoff-matrix)

Finally, to make the running agent store her payoff, we can write:

set payoff item ([strategy] of mate) (item strategy payoff-matrix)

This line of code concludes the definition of the procedure to play.

to update-strategy

In this procedure, which is also to be run by individual players, we want the running player to look at some other random player
(which we will call the observed-agent) and, if the payoff of the observed-agent is greater than her own payoff, adopt the observed-
agent’s strategy.

To select a random player and store it in the local variable observed-agent, we can write:

let observed-agent one-of other players

To compare the payoffs and, if appropriate, adopt the observed-agent’s strategy, we can write:
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if ([payoff] of observed-agent) > payoff [

  set strategy ([strategy] of observed-agent)

]

This concludes the definition of the procedure to update-strategy and, actually, of all the code in the Code tab, which by now should
look as shown below.

5.6. Complete code in the Code tab

globals [

  payoff-matrix

]

breed [players player]

players-own [

  strategy

  payoff

]

to setup

  clear-all

  set payoff-matrix read-from-string payoffs

  create-players n-of-players [

    set payoff 0

    set strategy 0

  ]

  ask n-of random (n-of-players + 1) players [set strategy 1]

  reset-ticks

end

to go

  ask players [play]

  ask players [

    if (random-float 1 < prob-revision) [update-strategy]

  ]

  tick

end

to play

  let mate one-of other players

  set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to update-strategy

  let observed-agent one-of other players

  if ([payoff] of observed-agent) > payoff [
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    set strategy ([strategy] of observed-agent)

  ]

end

5.7. Code in the plots
Finally, let us set up the plot to show the number of agents playing each strategy. This is something that can be done directly on the
plot, in the Interface tab.

Edit the plot by right-clicking on it, choose a color and a name for the pen showing the number of agents with strategy 0, and in the
“pen update commands” area write:

plot count players with [strategy = 0]

Add a second pen to show the number of players with strategy 1.

6. Sample runs
Now that we have the model, we can investigate the question we posed at the motivation above. Let strategy 0 be “Defect” and let
strategy 1 be “Cooperate”. We can use payoffs [[1 3][0 2]]. Note that we could choose any other numbers (as long as they satisfy the
conditions that define a Prisoner’s Dilemma), since our revision protocol only depends on ordinal properties of payoffs. Let us set n-
of-players = 100 and prob-revision = 0.1, but feel free to change these values.

If you run the model with these settings, you will see that in nearly all runs all agents end up defecting in very little time.  The video
below shows some representative runs.

Note that at any population state, defectors will tend to obtain a greater payoff than cooperators, so they will be preferentially
imitated. Sadly, this drives the dynamics of the process towards overall defection.

7. Exercises
You can use the following link to download the complete NetLogo model: 2×2-imitate-if-better.

Picture by Caleb Whiting

Exercise 1. Consider a coordination game with payoffs [[3 0][0 2]] such that both players are better off if they coordinate in one
of the actions (0 or 1) than if they play different actions. Run several simulations with 1000 players and probability of revision 0.1.
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(You can easily do that by leaving the button go pressed down and clicking the setup button every time you want to start again from
random initial conditions.)

Do simulations end up with all players choosing the same action? Does the strategy with a greater initial presence tend to displace
the other strategy? How does changing the payoff matrix to [[30 0][0 2]] make a difference on whether agents coordinate on 0 or
strategy 1?

P.S. You can explore this model’s (deterministic) mean dynamic approximation with this program.

Exercise 2. Consider a Stag hunt game with payoffs [[3 0][2 1]] where strategy 0 is “Stag” and strategy 1 is “Hare”. Does the
strategy with greater initial presence tend to displace the other strategy?

P.S. You can explore this model’s (deterministic) mean dynamic approximation with this program.

Picture by Ming Jun Tan

Exercise 3. Consider a Hawk-Dove game with payoffs [[0 3][1 2]] where strategy 0 is “Hawk” and strategy 1 is “Dove”. Do all
players tend to choose the same strategy? Reduce the number of players to 100 and observe the difference in behavior (press the
setup button after changing the number of players). Reduce the number of players to 10 and observe the difference.

P.S. You can explore this model’s (deterministic) mean dynamic approximation with this program.

Exercise 4. Create a stand-alone version of the model we have implemented in this section. To do this, you will have to upload the
model to NetLogo Web and then export it in HTML format.

Exercise 5. Reimplement the procedure to update-strategy so the revising agent uses the imitative pairwise-difference
protocol that we saw in section 0.1.

Exercise 6. Reimplement the procedure to update-strategy so the revising agent uses the best experienced payoff protocol
that we saw in section 0.1.

1. This protocol has been studied by Izquierdo and Izquierdo (2013) and Loginov (2019). ↵
2. By default, user-defined variables in NetLogo are initialized with the value 0, so there is no actual need to explicitly set the initial

value of individually-owned variables to 0, but it does no harm either. ↵
3. All simulations will necessarily end up in one of the two absorbing states where all agents are using the same strategy. The

absorbing state where everyone defects (henceforth D-state) can be reached from any state other than the absorbing state where
everyone cooperates (henceforth C-state). The C-state can be reached from any state with at least two cooperators, so –in
principle– any simulation with at least two agents using each strategy could end up in either absorbing state. However, it is
overwhelmingly more likely that the final state will be the D-state. As a matter of fact, one single defector is extremely likely to
be able to invade a whole population of cooperators, regardless of the size of the population. ↵

This page titled 2.1: Our very first model is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R. Izquierdo,
Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the
LibreTexts platform.
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2.2: Extension to any number of strategies

1. Goal
Our goal here is to extend the model we have created in the previous section –which accepted games with 2 strategies only– to model
(2-player symmetric) games with any number of strategies.

2. Motivation. Rock, paper, scissors
The model we will develop in this section will allow us to explore games such as Rock-Paper-Scissors. Can you guess what will
happen in our model if agents are matched to play Rock-Paper-Scissors and they keep on using the “imitate-the-better-realization”
rule whenever they revise?

3. Description of the model
In this model, there is a population of n-of-players agents who repeatedly play a symmetric 2-player game with any number of
strategies. The payoffs of the game are determined by the user in the form of a matrix [ [A  A  … A ] [A  A  … A ] … [A  A
… A ] ] containing the payoffs A  that an agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1, …,
n}). The number of strategies is inferred from the number of rows in the payoff matrix.

Initially, players choose one of the available strategies at random (uniformly). From then onwards, the following sequence of events
–which defines a tick– is repeatedly executed:

1. Every agent obtains a payoff by selecting another agent at random and playing the game.
2. With probability prob-revision, individual agents are given the opportunity to revise their strategies. The revision rule –called

“imitate the better realization”– reads as follows:
Look at another (randomly selected) agent and adopt her strategy if and only if her payoff was greater than yours.

The model shows the evolution of the number of agents choosing each of the possible strategies at the end of every tick.

4. Interface design
We depart from the model we developed in the previous section (so if you want to preserve it, now is a good time to duplicate it).

Figure 1. Interface design

The new interface (see figure 1 above) requires just two simple modifications:
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Make the payoffs input box bigger and let its input contain several lines. In the Interface tab, select the input box (by right-
clicking on it) and make it bigger. Then edit it (by right-clicking on it) and tick the “Multi-Line” box.
Remove the “pens” in the Strategy Distribution plot. Since the number of strategies is unknown until the payoff matrix is read, we
will need to create the required number of “pens” via code. In the Interface tab, edit the Strategy Distribution plot and delete both
pens.

5. Code

5.1. Skeleton of the code

Figure 2. Skeleton of the code

5.2. Global variables and individually-owned variables

It will be handy to have a variable store the number of strategies. Since this information will likely be used in various procedures, it
makes sense to define the new variable as global. A natural name for this new variable is n-of-strategies. The modified code will look
as follows, then:

globals [

  payoff-matrix

  n-of-strategies

]

5.3. Setup procedures
The current setup procedure is the following:

to setup

  clear-all

  set payoff-matrix read-from-string payoffs

  create-players n-of-players [

    set payoff 0

    set strategy 0

  ]

  ask n-of random (n-of-players + 1) players [set strategy 1]
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  reset-ticks

end

Note that the code in the current setup procedure performs several unrelated tasks –namely clear everything, set up the payoffs, set
up the players, and set up the tick counter–, and now we will need to set up the graph as well (since we have to create as many pens
as strategies). Let us take this opportunity to modularize our code and improve its readability by creating new procedures with
descriptive names for groups of related instructions, as follows:

to setup

  clear-all

  setup-payoffs

  setup-players

  setup-graph

  reset-ticks

  update-graph

end

to setup-payoffs

The procedure to setup-payoffs will include the instructions to read the payoff matrix, and will also set the value of the global
variable n-of-strategies. We will use the primitive length to obtain the number of rows in the payoff matrix.

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix

end

to setup-players

The procedure to setup-players will create the players and set the initial values for their individually-owned variables. The initial
payoff will be 0 and the initial strategy will be a random integer between 0 and (n-of-strategies – 1).

to setup-players

 create-players n-of-players [

   set payoff 0

   set strategy (random n-of-strategies)

 ]

end

to setup-graph

The procedure to setup-graph will create the required number of pens –one for each strategy– in the Strategy Distribution plot. To
this end, we must first specify that we wish to work on the Strategy Distribution plot, using the primitive set-current-plot.

set-current-plot "Strategy Distribution"

Then, for each strategy i ∈ {0, 1, …, (n-of-strategies – 1)}, we do the following tasks:

1. Create a pen with the name of the strategy. For this, we use the primitive create-temporary-plot-pen to create the pen, and the
primitive word to turn the strategy number into a string.

create-temporary-plot-pen (word i)
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2. Set the pen mode to 1 (bar mode) using set-plot-pen-mode. We do this because we plan to create a stacked bar chart for the
distribution of strategies.

set-plot-pen-mode 1

3. Choose a color for each pen. See how colors work in NetLogo.

set-plot-pen-color 25 + 40 * i

Now we have to actually loop through the number of each strategy, making i take the values 0, 1, …, (n-of-strategies – 1). There are
several ways we can do this. Here, we do it by creating a list [0 1 2 … (n-of-strategies – 1)] containing the strategy numbers and
going through each of its elements. To create the list, we use the primitive range.

range n-of-strategies

The final code for the procedure to setup-graph is then:

to setup-graph

  set-current-plot "Strategy Distribution"

  foreach (range n-of-strategies) [ i ->

    create-temporary-plot-pen (word i)

    set-plot-pen-mode 1

    set-plot-pen-color 25 + 40 * i

  ]

end

to update-graph

Procedure to update-graph will draw the strategy distribution using a stacked bar chart, like the one shown in figure 3 below. This
procedure is called at the end of setup to plot the initial distribution of strategies, and then also at the end of procedure to go, to plot
the strategy distribution at the end of every tick.

Figure 3. Example of stacked bar chart showing the strategy distribution as ticks go by

We start by creating a list containing the strategy numbers [0 1 2 … (n-of-strategies – 1)], which we store in local variable strategy-
numbers.

let strategy-numbers (range n-of-strategies)
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To compute the (relative) strategy frequencies, we apply to each element of the list strategy-numbers, i.e. to each strategy number,
the operation that calculates the fraction of players using that strategy. To do this, we use primitive map. Remember that map requires
as inputs a) the function to be applied to each element of the list and b) the list containing the elements on which you wish to apply
the function. In this case, the function we wish to apply to each strategy number (implemented as an anonymous procedure) is:

[n -> ( count (players with [strategy = n]) ) / n-of-players]

In the code above, we first identify the subset of players that have a certain strategy (using with), then we count the number of
players in that subset (using count), and finally we divide by the total number of players n-of-players. Thus, we can use the following
code to obtain the strategy frequencies, as a list:

map [n -> count players with [strategy = n] / n-of-players] strategy-numbers

Finally, to build the stacked bar chart, we begin by plotting a bar of height 1, corresponding to the first strategy. Then we repeatedly
draw bars on top of the previously drawn bars (one bar for each of the remaining strategies), with the height diminished each time by
the relative frequency of the corresponding strategy. The final code of procedure to update-graph will look as follows:

to update-graph

  let strategy-numbers (range n-of-strategies)

  let strategy-frequencies map [ n -> 

        count players with [strategy = n] / n-of-players 

      ] strategy-numbers

  set-current-plot "Strategy Distribution"

  let bar 1

  foreach strategy-numbers [ n ->

    set-current-plot-pen (word n)

    plotxy ticks bar

    set bar (bar - (item n strategy-frequencies))

  ]

  set-plot-y-range 0 1

end

5.4. Go procedure
The only change needed in the go procedure is the call to procedure to update-graph, which will draw the fraction of agents using
each strategy at the end of every tick:

to go

  ask players [play]

  ask players [

    if (random-float 1 < prob-revision) [update-strategy]

  ]

  tick

  update-graph

end
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5.5. Other procedures
Note that there is no need to modify the code of to play or to update-strategy.

5.6. Complete code in the Code tab

The Code tab is ready!

globals [

  payoff-matrix

  n-of-strategies

]

breed [players player]

players-own [

  strategy

  payoff

]

to setup

  clear-all

  setup-payoffs

  setup-players

  setup-graph

  reset-ticks

  update-graph

end

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix

end

to setup-players

  create-players n-of-players [

    set payoff 0

    set strategy (random n-of-strategies)

  ]

end

to setup-graph

  set-current-plot "Strategy Distribution"

  foreach (range n-of-strategies) [ i ->

    create-temporary-plot-pen (word i)

    set-plot-pen-mode 1

    set-plot-pen-color 25 + 40 * i

  ]

end
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to go

  ask players [play]

  ask players [

    if (random-float 1 < prob-revision) [update-strategy]

  ]

  tick

  update-graph

end

to play

  let mate one-of other players

  set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to update-strategy

  let observed-player one-of other players

  if ([payoff] of observed-player) > payoff [

    set strategy ([strategy] of observed-player)

  ]

end

to update-graph

  let strategy-numbers (range n-of-strategies)

  let strategy-frequencies map [n -> count players with [strategy = n] / n-of-players] 

  set-current-plot "Strategy Distribution"

  let bar 1

  foreach strategy-numbers [ n ->

    set-current-plot-pen (word n)

    plotxy ticks bar

    set bar (bar - (item n strategy-frequencies))

  ]

  set-plot-y-range 0 1

end

5.7. Code inside the plots
Note that we take care of all plotting in the update-graph procedure. Thus there is no need to write any code inside the plot. We could
instead have written the code of procedure to update-graph inside the plot, but given that it is somewhat lengthy, we find it more
convenient to group it with the rest of the code in the Code tab.

6. Sample run
Now that we have implemented the model, we can explore the behavior of a population who are repeatedly matched to play a Rock-
Paper-Scissors game. To do that, let us use payoff matrix [[0 -1 1][1 0 -1][-1 1 0]], a population of 500 agents and a 0.1 probability of
revision. The following video shows a representative run with these settings.
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Note that soon in the simulation run, one of the strategies will get a greater share by chance (due to the inherent randomness of the
model). Then, the next strategy (modulo 3) will enjoy a payoff advantage, and thus will tend to be imitated. For example, if “Paper”
is the most popular strategy, then agents playing “Scissors” will tend to get higher payoffs, and thus be imitated. As the fraction of
agents playing “Scissors” grows, strategy “Rock” becomes more attractive… and so on and so forth. These cycles get amplified until
one of the strategies disappears. At that point, one of the two remaining strategies is superior and finally prevails. The three strategies
have an equal change of being the “winner” in the end, since the whole model setting is symmetric.

7. Exercises
You can use the following link to download the complete NetLogo model: nxn-imitate-if-better.

Picture by Liane Metzler

Exercise 1. Consider a Rock-Paper-Scissors game with payoff matrix [[0 -1 1][1 0 -1][-1 1 0]]. Here we ask you to explore how
the dynamics are affected by the number of players n-of-players and by the probability of revision prob-revision. Explore simulations
with a small population (e.g. n-of-players = 50) and with a large population (e.g. n-of-players = 1000). Also, for each case, try both a
small probability of revision (e.g. prob-revision = 0.01) and a large probability of revision (e.g. prob-revision = 0.5).

How do your insights change if you use payoff matrix [[0 -1 10][10 0 -1][-1 10 0]]?

Exercise 2. Consider a game with payoff matrix [[1 1 0][1 1 1][0 1 1]]. Set the probability of revision to 0.1. Press the setup
button and run the model for a while (then press the setup button again to change the initial conditions). Can you explain what
happens?

Exercise 3. How would you create the list [0 1 2 … (n-of-strategies – 1)] using n-values instead of range?

Exercise 4. Implement the procedure to setup-graph:

1. using the primitive repeat instead of foreach.
2. using the primitive while instead of foreach.
3. using the primitive loop instead of foreach.

Exercise 5. Reimplement the procedure to update-strategy so the revising agent looks at five (randomly selected) other
agents and copies the strategy of the agent with the highest payoff (among these five observed agents). Resolve ties as you wish.

Exercise 6. Reimplement the procedure to update-strategy so the revising agent selects the strategy that is the best response
to (i.e. obtains the greatest payoff against) the strategy of another (randomly) observed agent. This is an instance of the so-called
sample best response revision protocol (Sandholm (2001), Kosfeld et al. (2002), Oyama et al. (2015)). Resolve ties as you wish.

This page titled 2.2: Extension to any number of strategies is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis
R. Izquierdo, Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards
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of the LibreTexts platform.
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2.3: Noise and initial conditions

1. Goal
Our goal is to extend the model we have created in the previous section by adding two features that will prove very useful:

The possibility of setting initial conditions explicitly. This is an important feature because initial conditions can be very relevant for the
evolution of a system.
The possibility that revising agents select a strategy at random with a small probability. This type of noise in the revision process may
account for experimentation or errors in economic settings, or for mutations in biological contexts. The inclusion of noise in a model
can sometimes change its dynamical behavior dramatically, even creating new attractors. This is important because dynamic
characteristics of a model –such as attractors, cycles, repellors, and other patterns– that are not robust to the inclusion of small noise
may not correspond to relevant properties of the real-world system that we aim to understand. Besides, as a positive side-effect, adding
small amounts of noise to a model often makes the analysis of its dynamics easier to undertake.

2. Motivation. Rock, paper, scissors
In the previous section we saw that simulations of the Rock-Paper-Scissors game under the “imitate-the-better-realization” revision
protocol end up in a state where everyone is choosing the same strategy. Can you guess what will happen in this model if we add a little bit
of noise?

3. Description of the model
In this model, there is a population of n-of-players agents who repeatedly play a symmetric 2-player game with any number of strategies.
The payoffs of the game are determined by the user in the form of a matrix [ [A  A  … A ] [A  A  … A ] … [A  A  … A ] ]
containing the payoffs A  that an agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1, …, n}). The
number of strategies is inferred from the number of rows in the payoff matrix.

Initial conditions are set with parameter n-of-players-for-each-strategy, using a list of the form [a  a  … a ], where item a  is the initial
number of agents with strategy i. Thus, the total number of agents is the sum of all elements in this list. From then onwards, the following
sequence of events –which defines a tick– is repeatedly executed:

1. Every agent obtains a payoff by selecting another agent at random and playing the game.
2. With probability prob-revision, individual agents are given the opportunity to revise their strategies. In that case, with probability noise,

the revising agent will adopt a random strategy; and with probability (1 – noise), the revising agent will choose her strategy following
the “imitate the better realization” protocol:
Look at another (randomly selected) agent and adopt her strategy if and only if her payoff was greater than yours.

The model shows the evolution of the number of agents choosing each of the possible strategies at the end of every tick.

4. Interface design
We depart from the model we developed in the previous section (so if you want to preserve it, now is a good time to duplicate it).

00 01 0n 10 11 1n n0 n1 nn

ij

0 1 n i
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Figure 1. Interface design

The new interface (see figure 1 above) requires a few simple modifications:

Create an input box to let the user set the initial number of players using each strategy. In the Interface tab, add an input box with
associated global variable n-of-players-for-each-strategy. Set the input box type to “String (reporter)”.
Note that the total number of players (which was previously set using a slider with associated global variable n-of-players) will now be
computed totaling the items of the list n-of-players-for-each-strategy. Thus, we should remove the slider, and include the global variable
n-of-players in the Code tab.

globals [

  payoff-matrix

  n-of-strategies

  n-of-players

]

Add a monitor to show the total number of players. This number will be stored in the global variable n-of-players, so the monitor must
show the value of this variable. In the Interface tab, create a monitor. In the “Reporter” box write the name of the global variable n-of-
players.
Create a slider to choose the value of parameter noise. In the Interface tab, create a slider with associated global variable noise. Choose
limit values 0 and 1, and an increment of 0.001.

5. CodeCODE 
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5.1. Skeleton of the code

Figure 2. Skeleton of the code

5.2. Global variables and individually-owned variables
The only change required regarding user-defined variables is the inclusion of global variable n-of-players in the Code tab, as explained in
the previous section.

5.3. Setup procedures
To read the initial conditions specified with parameter n-of-players-for-each-strategy and set up the players accordingly, it is clear that we
only have to modify the code in procedure to setup-players. Note that making our code modular, implementing short procedures with
specific tasks and meaningful names, makes our life easy when we extend the model.

to setup-players

Since the content of parameter n-of-players-for-each-strategy is a string, the first we should do is to turn it into a list that we can use in our
code. To this end, we use the primitive  read-from-string and store its output in a new local variable named initial-distribution, as follows:

let initial-distribution read-from-string n-of-players-for-each-strategy

Next, we can check that the number of elements in the list initial-distribution matches the number of possible strategies (i.e. the number of
rows in the payoff matrix stored in payoff-matrix), and issue a warning message otherwise, using primitive  user-message. Naturally, this is
by no means compulsory, but it is a thoughtful touch that will make our program more user-friendly. To this end, we can use the code
below.

if length initial-distribution != length payoff-matrix [

  user-message (word "The number of items in\n"

      ;; "\n" is used to jump to the next line

    "n-of-players-for-each-strategy (i.e. "

    length initial-distribution "):\n" 

    n-of-players-for-each-strategy

    "\nshould be equal to the number of rows\n"

    "in the payoff matrix (i.e. " 

    length payoff-matrix "):\n"

    payoffs

  )
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]

;; It is not necessary to show the user 

;; the value of n-of-players-for-each-strategy 

;; and payoffs again, 

;; but when creating an error message, 

;; it is good practice to give the user

;; as much information as possible,

;; so the error can be easily corrected.

Now, let us create as many players using each strategy as indicated by the values in the list initial-distribution. For instance, if initial-
distribution is [5 10 15], we should create 5 players with strategy 0, 10 players with strategy 1, and 15 players with strategy 2. Since we
want to perform a task for each element of the list, primitive foreach will be handy.

Besides going through each element on the list using foreach, we would also like to keep track of the position being read on the list, which
is the corresponding strategy number. For this, we create a counter i which we start at 0:

let i 0

foreach initial-distribution [ j ->

  create-players j [

    set payoff 0

    set strategy i

  ]

  set i (i + 1)

]

Finally, let us set the value of the global variable n-of-players:

 set n-of-players count players

The line above concludes the definition of procedure to setup-players, and the implementation of the user-chosen initial conditions.

5.4. Go and other main procedures
To implement the choice of a random strategy with probability noise by revising agents, we have to modify the code of procedure to
update-strategy. At present, the code of this procedure looks as follows:

to update-strategy

  let observed-player one-of other players

  if ([payoff] of observed-player) > payoff [

    set strategy ([strategy] of observed-player)

  ]

end

We can implement the noise feature using primitive ifelse, whose structure is

ifelse CONDITION 

   [ COMMANDS EXECUTED IF CONDITION IS TRUE ] 

   [ COMMANDS EXECUTED IF CONDITION IS FALSE ]

In our case, the CONDITION  should be true with probability noise. Bearing all this in mind, the final code for procedure to update-
strategy could be as follows:
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to update-strategy

  ifelse random-float 1 < noise 

  ;; the condition is true with probability noise

    [ ;; code to be executed if there is noise

      set strategy (random n-of-strategies)

    ]   

    [ ;; code to be executed if there is no noise

      let observed-player one-of other players

      if ([payoff] of observed-player) > payoff [

        set strategy ([strategy] of observed-player)

      ]

    ]

end

5.5. Complete code in the Code tab

The Code tab is ready!

globals [

  payoff-matrix

  n-of-strategies

  n-of-players

]

breed [players player]

players-own [

  strategy

  payoff

]

to setup

  clear-all

  setup-payoffs

  setup-players

  setup-graph

  reset-ticks

  update-graph

end

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix

end

to setup-players

  let initial-distribution read-from-string n-of-players-for-each-strategy

  if length initial-distribution != length payoff-matrix [

    user-message (word "The number of items in\n" 

      "n-of-players-for-each-strategy (i.e. "
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      length initial-distribution "):\n" 

      n-of-players-for-each-strategy

      "\nshould be equal to the number of rows\n"

      "in the payoff matrix (i.e. " 

      length payoff-matrix "):\n"

      payoffs

    )

  ]

  let i 0

  foreach initial-distribution [ j ->

    create-players j [

      set payoff 0

      set strategy i

    ]

    set i (i + 1)

  ]

  set n-of-players count players

end

to setup-graph

  set-current-plot "Strategy Distribution"

  foreach (range n-of-strategies) [ i ->

    create-temporary-plot-pen (word i)

    set-plot-pen-mode 1

    set-plot-pen-color 25 + 40 * i

  ]

end

to go

  ask players [play]

  ask players [

    if (random-float 1 < prob-revision) [update-strategy]

  ]

  tick

  update-graph

end

to play

  let mate one-of other players

  set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to update-strategy

  ifelse random-float 1 < noise

    [ set strategy (random n-of-strategies) ]

    [

      let observed-player one-of other players

      if ([payoff] of observed-player) > payoff [
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        set strategy ([strategy] of observed-player)

      ]

    ]

end

to update-graph

  let strategy-numbers (range n-of-strategies)

  let strategy-frequencies map [ n -> 

    count players with [strategy = n] / n-of-players ] 

    strategy-numbers

  set-current-plot "Strategy Distribution"

  let bar 1

  foreach strategy-numbers [ n ->

    set-current-plot-pen (word n)

    plotxy ticks bar

    set bar (bar - (item n strategy-frequencies))

  ]

  set-plot-y-range 0 1

end

6. Sample run
Now that we have implemented the model, we can use it to answer the question posed above: Will adding a bit of noise change the
dynamics of the Rock-Paper-Scissors game under the “imitate-the-better-realization” revision protocol? To do that, let us use the same
setting as in the previous section, i.e. payoffs = [[0 -1 1][1 0 -1][-1 1 0]] and prob-revision = 0.1. To have 500 agents and initial conditions
close to random, we can set n-of-players-for-each-strategy = [167 167 166]. Finally, let us use noise = 0.01. The following video shows a
representative run with these settings.

As you can see, noise dampens the amplitude of the cycles, so the monomorphic states where only one strategy is chosen by the whole
population are not observed anymore.  Even if at some point one strategy went extinct, noise would bring it back into existence. Thus, the
model with noise = 0.01 exhibits an everlasting pattern of cycles of varying amplitudes. This contrasts with the model without noise, which
necessarily ends up in one of only three possible final states.

7. Exercises
You can use the following link to download the complete NetLogo model: nxn-imitate-if-better-noise.
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Picture by Danielle MacInnes

Exercise 1. Consider a Prisoner’s Dilemma with payoffs [[2 4][1 3]] where strategy 0 is “Defect” and strategy 1 is “Cooperate”. Set
prob-revision to 0.1 and noise to 0. Set the initial number of players using each strategy, i.e. n-of-players-for-each-strategy, to [0 200], i.e.,
everybody plays “Cooperate”. Press the setup button and run the model. While it is running, move the noise slider slightly rightward to
introduce some small noise. Can you explain what happens?

Exercise 2. Consider a Rock-Paper-Scissors game with payoff matrix [[0 -1 1][1 0 -1][-1 1 0]]. Set prob-revision to 0.1 and noise to 0.
Set the initial number of players using each strategy, i.e. n-of-players-for-each-strategy, to [100 100 100]. Press the setup button and run the
model for a while. While it is running, click on the noise slider to set its value to 0.001. Can you explain what happens?

Exercise 3. Consider a game with payoff matrix [[1 1 0][1 1 1][0 1 1]]. Set prob-revision to 0.1, noise to 0.05, and the initial number of
players using each strategy, i.e. n-of-players-for-each-strategy, to [500 0 500]. Press the setup button and run the model for a while (then
press the setup button again to change the initial conditions). Can you explain what happens?

Exercise 4. Consider a game with n players and s strategies, with noise equal to 1. What is the infinite-horizon probability distribution of
the number of players using each strategy?

Exercise 5. Imagine that you’d like to run this model faster, and you are not interested in the plot. This is a common scenario when
you want to conduct large-scale computational experiments. What lines of code could you comment out?

Exercise 6. Note that you can modify the values of parameters prob-revision and noise at runtime with immediate effect on the
dynamics of the model. How could you implement the possibility of changing the number of players in the population with immediate
effect on the model?

1. In this model with noise, every state will be observed at some point if we wait for long enough, but long enough might be a really long
time (e.g. centuries). ↵

This page titled 2.3: Noise and initial conditions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R. Izquierdo,
Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the LibreTexts
platform.
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2.4: Interactivity and efficiency

1. Goal
Our goal in this section is to improve the interactivity and the efficiency of our model.

By interactivity we mean the possibility of changing the value of parameters at runtime, with immediate effect on the dynamics of the model. This
feature is very convenient for exploratory work. In this section, we will implement the necessary functionality to let the user change the number of agents
in the population at runtime.

By efficiency we mean implementing the model in such a way that it can be executed using as little time and memory as possible. In this section, we will
modify the code of our model slightly to make it run significantly faster.

Oftentimes there is a trade-off between interactivity and efficiency: making the model more interactive generally implies some loss of efficiency.
Nonetheless, sometimes we can find ways of implementing a model more efficiently without compromising its interactivity.

It is also important to be aware that –most often– there is also a trade-off between efficiency and code readability. The changes required to make our
model run faster will frequently make our code somewhat less readable too. Uri Wilensky –the creator of NetLogo– and William Rand do not recommend
making such comprises:

However, it is important that your code be readable, so others can understand it. In the end, computer time
is cheap compared to human time. Therefore, it should be noted that, whenever there is a possibility of
trade-off, clarity of code should be preferred over efficiency. Wilensky and Rand (2015, pp 219–20)

Our personal opinion is that this decision is best made case by case, taking into account the objectives and constraints of the whole modelling exercise in
the specific context at hand. Our hope is that, after reading this book, you will be prepared to make these decisions by yourself in any specific situation
you may encounter.

2. Motivation. Rock, paper, scissors
The dynamics of many evolutionary models strongly depend on the number of agents in the population. Can you guess how the population size affects
the dynamics of the “imitate-the-better-realization” revision protocol with noise in the Rock-Paper-Scissors game? In this section we will implement the
possibility of changing the population size at runtime, a feature that will greatly facilitate the exploration of this question.

3. Description of the model
We will not make any modification on the formal model our program implements. Thus, we refer to the previous section to read the description of the
model. The only paragraph we add (about the program itself) is the following:

The number of players in the simulation can be changed at runtime with immediate effect on the dynamics of the model, using parameter n-of-players:

If n-of-players is reduced, the necessary number of (randomly selected) players are killed.
If n-of-players is increased, the necessary number of (randomly selected) players are cloned.

Thus, the proportions of agents playing each strategy remain the same on average (although the actual effect of this change is stochastic).

4. Skeleton of the code

Figure 2. Skeleton of the code
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5. Interactivity
Note that we can already modify the value of parameters prob-revision and noise at runtime, with immediate effect on the dynamics of the model. This is
so because the values of these variables are used directly in the code. Parameter prob-revision is used only in procedure to go, in the following line:

if (random-float 1 < prob-revision) [update-strategy]

And parameter noise is used only in procedure to update-strategy, in the following line:

ifelse (random-float 1 < noise)

Whenever NetLogo reads the two lines of code above, it uses the current values of the two parameters. Because of this, we can modify the parameters’
values on the fly and immediately see how that change affects the dynamics of the model.

By contrast, changing the value of parameter n-of-players-for-each-strategy at runtime will have no effect whatsoever. This is so because parameter n-of-
players-for-each-strategy is only used in procedure to setup-players, which is executed at the beginning of the simulation –triggered by procedure to
setup– and never again.

To enable the user to modify the population size at runtime, we should create a slider for the new parameter n-of-players. Before doing so, we have to
remove the declaration of the global variable n-of-players in the Code tab, since the creation of the slider implies the definition of the variable as global.

globals [

  payoff-matrix

  n-of-strategies

  ;; n-of-players      <== We remove this line

]

After creating the slider for parameter n-of-players, we could also remove the monitor showing n-of-players from the interface, since it is no longer
needed. Another option (see figure 1 below) is to use that same monitor to display the value of the ticks that have gone by since the beginning of the
simulation. To do this, we just have to write the primitive ticks (instead of n-of-players) in the “Reporter” box of the monitor.

Figure 1. Interface design

The next step is to implement a separate procedure to check whether the value of parameter n-of-players differs from the current number of players in the
simulation and, if it does, act accordingly. We find it natural to name this new procedure to update-n-of-players, and one possible implementation would
be the following:

to update-n-of-players

  let diff (n-of-players - count players)
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  if diff != 0 [

    ifelse diff > 0

    [ repeat diff [ ask one-of players [hatch-players 1] ] ]

    [ ask n-of (- diff) players [die] ]

  ]

end

Note the use of primitives hatch-players and die to clone and kill agents respectively. The difference between primitives hatch-players and create-players
is important. Hatching is an action that only individual agents (i.e. “turtles” and breeds of “turtles”, in NetLogo parlance) can execute. By contrast, only
the observer can run create-turtles and create-<breeds> primitives.

Finally, we should include the call to the new procedure at the beginning of to go.

to go

  update-n-of-players        ;; <== New line

  ask players [play]

  ask players [

    if (random-float 1 < prob-revision) [update-strategy]

  ]

  tick

  update-graph

end

And with this, we’re ready to go! Give it a try, and enjoy the good progress you are making!

6. Efficiency
Naturally, to make a model run faster, one can always untick the “view updates” box on the Interface tab.  This is a must in models that do not make use
of the view, like the ones we are programming in this chapter, since it implies a significant speed-up at no cost. But beyond this simple piece of advice, in
general, how can we know whether our model can run faster? A good first step is to try to identify inefficiencies in our code. These inefficiencies often
take one of two possible forms:

Computations that we conduct but we do not use at all.
Computations that we conduct several times despite knowing that their outputs will not change.

Let us see an example of each of these inefficiencies in our current code.

6.1. Example of computations that we conduct but do not use

Can you identify computations that we perform in the current implementation but are not actually needed (i.e. the model would behave in the same way
without carrying them out)?

Note that in this model we make all agents play in every tick, but we only use the payoffs obtained by the revising agents and by the agents they observe.
Thus, we can make the model run faster by asking only revising and observed agents to play. One way of implementing this efficiency improvement
would be to modify the code of procedures to go and to update-strategy as follows:

to go

  update-n-of-players

  ;; ask players [play]      <== We remove this line

  ask players [

    if (random-float 1 < prob-revision) [update-strategy]

  ]

  tick

  update-graph

end

to update-strategy

  let observed-player one-of other players
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  play                       ;; <== New line

  ask observed-player [play] ;; <== New line

  if ([payoff] of observed-player) > payoff [

    set strategy ([strategy] of observed-player)

  ]

end

These changes will make simulations with low prob-revision run much faster. 

6.2. Example of computations that we conduct several times when once would do

Let us now focus on the second type of inefficiency pointed out above. Can you identify a computation that we repeatedly conduct in every tick, even
though its result does not change?

Note that we undertake the computation:

other players

several times in every tick, but we could conduct it just once for each agent in each simulation. To be sure, we conduct that operation every time an agent
computes her payoff in to play:

let mate one-of other players

And also every time an agent revises her strategy in to update-strategy:

let observed-agent one-of other players

This computation may not sound very expensive, but if the number of agents is large, it may well be (see exercise 3 below). To make the model run faster,
we could create an individually-owned variable named e.g. other-players, as follows

players-own [

  strategy

  payoff

  other-players

]

And then we should set the new individually-owned variable other-players to the appropriate value only once at the beginning of each simulation (at the
end of procedure to setup-agents).

ask players [ set other-players other players ]

Since we may change the number of players at runtime, we should also include the line above in the block of code where we clone or kill agents in
procedure to update-n-of-agents, i.e.

to update-n-of-players

  let diff (n-of-players - count players)

  if diff != 0 [

    ifelse diff > 0

    [ repeat diff [ ask one-of players [hatch-players 1] ] ]

    [ ask n-of (- diff) players [die] ]

    ask players [set other-players other players]

  ]

end

Once we have done that, in the two lines of code where we had the code

other players

[2]
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we should write other-players instead. These changes will make simulations with many players run faster.

6.3. Measuring execution speed of different parts of the code
There are two simple ways to measure execution speed in NetLogo. One is using primitives reset-timer and timer. For instance, to time how long it takes
to have every agent carry out the operation:

other players

we could write the following reporter:

to-report time-other-players

  reset-timer

  ask players [let temporary-var other players]

  report timer

end

A second –more advanced– way of measuring execution speed involves the Profiler Extension, which comes bundled with NetLogo. This extension
allows us to see how many times each procedure in our model is called during a run and how long each call takes. The extension is simple to use and well
documented here. To use it in our model, we should include the extension at the beginning of our code, as follows:

extensions [profiler]

Then we could execute the following procedure, borrowed from the Profiler Extension documentation page.

to show-profiler-report

  setup                  ;; set up the model

  profiler:start         ;; start profiling

  repeat 1000 [ go ]     ;; run something you want to measure

  profiler:stop          ;; stop profiling

  print profiler:report  ;; print the results

  profiler:reset         ;; clear the data

end

Once the procedure is implemented, you can run it by typing its name in the Command Center.

The profiler report includes the inclusive time and the exclusive time for each procedure. Inclusive time is the time the simulation spends running the
procedure, i.e. since the procedure is entered until it finishes. Exclusive time is the time passed since the procedure is entered until it finishes, but does
not include any time spent in other user-defined procedures which it calls. An example of the output printed by show-profiler-report  follows:

BEGIN PROFILING DUMP

Sorted by Exclusive Time

Name                      Calls Incl T(ms) Excl T(ms) Excl/calls

PLAY                     119130   2804.330   2804.330      0.024

UPDATE-STRATEGY           60131   4441.429   1637.099      0.027

UPDATE-GRAPH               1000    231.718    231.718      0.232

GO                         1000   4823.320    147.693      0.148

UPDATE-N-OF-PLAYERS        1000      2.480      2.480      0.002

Sorted by Inclusive Time

GO                         1000   4823.320    147.693      0.148

UPDATE-STRATEGY           60131   4441.429   1637.099      0.027

PLAY                     119130   2804.330   2804.330      0.024

UPDATE-GRAPH               1000    231.718    231.718      0.232

UPDATE-N-OF-PLAYERS        1000      2.480      2.480      0.002

Sorted by Number of Calls

PLAY                     119130   2804.330   2804.330      0.024
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UPDATE-STRATEGY           60131   4441.429   1637.099      0.027

GO                         1000   4823.320    147.693      0.148

UPDATE-GRAPH               1000    231.718    231.718      0.232

UPDATE-N-OF-PLAYERS        1000      2.480      2.480      0.002

END PROFILING DUMP

In the example above we can see –among other things– that:

Simulations spend most of the time executing procedure to play (2804.330 ms) and procedure to update-strategy (1637.099 ms).
The procedure that is called the greatest number of times is to play, which is called 119130 times. This makes sense, since there were 600 agents in
this simulation, prob-revision was 0.1, a revision requires a play by the agent and by the opponent he observes, and we ran the model 1000 ticks (600
× 0.1 × 2 × 1000 = 120000).
Our implementation to allow the user to modify the number of agents at runtime hardly takes any computing time (just 2.480 ms).

6.4. Other tips to improve the efficiency of NetLogo code
Railsback et al. (2017) give several guidelines to identify slow parts of NetLogo code and make them run faster, providing specific examples for agent-
based models written in NetLogo.

7. Complete code in the Code tab

globals [

  payoff-matrix

  n-of-strategies

]

breed [players player]

players-own [

  strategy

  payoff

  other-players

]

to setup

  clear-all

  setup-payoffs

  setup-players

  setup-graph

  reset-ticks

  update-graph

end

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix

end

to setup-players

  let initial-distribution read-from-string n-of-players-for-each-strategy

  if length initial-distribution != length payoff-matrix [

    user-message (word "The number of items in\n"

      "n-of-players-for-each-strategy (i.e. "

      length initial-distribution "):\n" n-of-players-for-each-strategy

      "\nshould be equal to the number of rows\n"

      "in the payoff matrix (i.e. "

      length payoff-matrix "):\n"
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      payoffs

    )

  ]

  let i 0

  foreach initial-distribution [ j ->

    create-players j [

      set payoff 0

      set strategy i

    ]

    set i (i + 1)

  ]

  set n-of-players count players

  ask players [set other-players other players]

end

to setup-graph

  set-current-plot "Strategy Distribution"

  foreach (range n-of-strategies) [ i ->

    create-temporary-plot-pen (word i)

    set-plot-pen-mode 1

    set-plot-pen-color 25 + 40 * i

   ]

end

to go

  update-n-of-players

  ask players [

    if (random-float 1 < prob-revision) [update-strategy]

  ]

  tick

  update-graph

end

to play

  let mate one-of other-players

  set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to update-strategy

  ifelse (random-float 1 < noise)

    [ set strategy (random n-of-strategies) ]

    [

      let observed-player one-of other-players

      play

      ask observed-player [play]

      if ([payoff] of observed-player) > payoff [

        set strategy ([strategy] of observed-player)

      ]

    ]

end

to update-graph

  let strategy-numbers (range n-of-strategies)
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  let strategy-frequencies map 

    [n -> count players with [strategy = n] / n-of-players] 

    strategy-numbers

  set-current-plot "Strategy Distribution"

  let bar 1

  foreach strategy-numbers [ n ->

    set-current-plot-pen (word n)

    plotxy ticks bar

    set bar (bar - (item n strategy-frequencies))

  ]

  set-plot-y-range 0 1

end

to update-n-of-players

  let diff (n-of-players - count players)

  if diff != 0 [

    ifelse diff > 0

    [ repeat diff [ ask one-of players [hatch-players 1] ] ]

    [ ask n-of (- diff) players [die] ]

    ask players [set other-players other players]

  ]

end

8. Sample run
Now that we can change the population size at runtime, we can easily explore the question posed above: How does population size affect the dynamics of
the “imitate-the-better-realization” revision protocol with noise in the Rock-Paper-Scissors game? To do that, let us use the same setting as in the previous
sections (i.e. payoffs = [[0 -1 1][1 0 -1][-1 1 0]] and prob-revision = 0.1), start with a small population of 60 agents (n-of-players-for-each-strategy = [20
20 20]), and then, increase n-of-players up to 2000 at runtime. The following video shows a representative run with these settings, where we increased the
population size from 60 to 2000 at tick 4000.

As you can see, when the number of agents is small, the population consistently follows cycles of large amplitude among the three strategies. The cycles
are so wide that sometimes one or even two strategies go extinct for a while. In stark contrast, when the population is large, the cycles get much smaller
and the population tends to linger around the state where each strategy is used by approximately a third of the population.

9. Exercises
You can use the following link to download the complete NetLogo model: nxn-imitate-if-better-noise-efficient.

0:00
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Picture by Romain Peli

Exercise 1. In this section we have improved both the interactivity and the efficiency of our model. Can you quantify how much faster the
current version of the code runs compared to the previous one? For the sake of concreteness, use 1000-tick simulations with 600 agents and prob-revision
0.1.

Exercise 2. In this section we have reduced the number of times procedure to play is called (as long as prob-revision is less than 0.5). To
illustrate this, compare the number of times this procedure is called in a 1000-tick simulation with 600 agents and prob-revision 0.1, before and after our
efficiency improvement. Can you compute the number of times procedure to play is called in the general case?

Exercise 3. In this section we have reduced the number of times the computation other players  is conducted by creating an individually-
owned variable (named other-players). To compare these two approaches, write a short NetLogo program where 10000 agents conduct this operation.

Exercise 4. In this section we have reduced the number of times procedure to play is called (as long as prob-revision is less than 0.5). However, it
is still possible that some players will execute procedure to play more than once in the same tick, specially if prob-revision is high. Can you think of a
way to reduce the number of calls to procedure to play even further?

1. This action is equivalent to pushing the speed slider –situated in the middle of the interface toolbar– to its rightmost position and can also be done via
code using primitive no-display ↵

2. Note, however, that the new model is not exactly the same as the old one. In the new –efficient– version of the model, agents switch strategies
sequentially, since all relevant payoffs are computed just before any single revision takes place, using the strategy distribution at the time of the
revision. In constrast, in the old version all revisions within the same tick made use of the payoffs computed at the beginning of the tick, using the
strategy distribution at the beginning of the tick. It is not difficult to define an efficient and totally equivalent version of the old model by defining a
new players-own variable to store players' strategy after the revision. We chose not to do so here for pedagogical reasons. ↵

3. The state where all strategies are equally represented is a globally asymptotically stable state of the mean dynamics of this model (which provides a
good approximation for models with large populations). See solution to Exercise 1.2.2. ↵

This page titled 2.4: Interactivity and efficiency is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R. Izquierdo, Segismundo S.
Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the LibreTexts platform.
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2.5: Analysis of these models

1. Two complementary approaches
Agent-based models are usually analyzed using computer simulation and/or mathematical analysis.

The computer simulation approach consists in running many simulations –i.e. sampling the model many times– and then, with the
data thus obtained, trying to infer general patterns and properties of the model.
Mathematical approaches do not look at individual simulation runs, but instead analyze the rules that define the model directly,
and try to derive their logical implications. Mathematical approaches use deductive reasoning only, so their conclusions follow
with logical necessity from the assumptions embedded in the model (and in the mathematics employed).

These two approaches are complementary, in that they can provide fundamentally different insights on the same model. Furthermore,
there are synergies to be exploited by using the two approaches together (see e.g. Izquierdo et al. (2013, 2019), Seri (2016), García
and van Veelen (2016, 2018) and Hindersin et al. (2019)).

Here we provide several references to material that is helpful to analyze the agent-based models we have developed in this chapter of
the book, and illustrate its usefulness with a few examples. Section 2 below deals with the computer simulation approach, while
section 3 addresses the mathematical analysis approach.

2. Computer simulation approach
The task of running many simulation runs –with the same or different combinations of parameter values– is greatly facilitated by a
tool named BehaviorSpace, which is included within NetLogo and is very well documented at NetLogo website. Here we provide an
illustration of how to use it.

Consider a coordination game defined by payoffs [[1 0][0 2]], played by 1000 agents who sequentially revise their strategies with
probability 0.01 in every tick following the imitate-the-better-realization rule without noise.  This model is stochastic and we wish to
study how it usually behaves, departing from a situation where both strategies are equally represented. To that end, we could run
several simulation runs (say 1000) and plot the average fraction of 1-strategists in every tick, together with the minimum and the
maximum values observed across runs in every tick. An illustration of this type of graph is shown in figure 1. Recall that strategies are
labeled 0 and 1, so strategy 1 is the one that can get a payoff of 2.

Figure 1. Average proportion of 1-strategists in an experiment of 1000 simulation runs. Orange error bars show the minimum and
maximum values observed across the 1000 runs. Payoffs [[1 0][0 2]]; prob-revision 0.01; noise 0; initial conditions [500 500].

To set up the computational experiment that will produce the data required to draw figure 1, we just have to go to Tools (in the upper
menu of NetLogo) and then click on BehaviorSpace. The new experiment can be set up as shown in figure 2.

[1]
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Figure 2. Experiment setup in BehaviorSpace

In this particular experiment, we are not changing the value of any parameter, but doing so is straightforward. For instance, if we
wanted to run simulations with different values of prob-revision –say 0.01, 0.05 and 0.1–, we would just write:

[ "prob-revision" 0.01 0.05 0.1 ] 

If, in addition, we would like to explore the values of noise 0, 0.01, 0.02 … 0.1, we could use the syntax for loops, [start increment
end], as follows:

[ "noise" [0 0.01 0.1] ] ;; note the additional brackets

If we made the two changes described above, then the new computational experiment would comprise 33000 runs, since NetLogo
would run 1000 simulations for each combination of parameter values (i.e. 3 × 11).

The original experiment shown in figure 2, which consists of 1000 simulation runs only, takes a couple of minutes to run. Once it is
completed, we obtain a .csv file with all the requested data, i.e. the fraction of 1-strategists in every tick for each of the 1000
simulation runs – a total of 1001000 data points. Then, with the help of a pivot table (within e.g. an Excel spreadsheet), it is easy to
plot the graph shown in figure 1. A similar graph that can be easily plotted is one that shows the standard error of the average
computed in every tick (see figure 3).[2]
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Figure 3. Average proportion of 1-strategists in an experiment of 1000 simulation runs. Orange error bars show the standard error.
Payoffs: [[1 0][0 2]]; prob-revision: 0.01; noise 0; initial conditions [500 500].

3. Mathematical analysis approach. Markov chains
From a mathematical point of view, agent-based models can be usefully seen as time-homogeneous Markov chains (see Gintis (2013)
and Izquierdo et al. (2009) for several examples). Doing so can make evident many features of the model that are not apparent before
formalizing the model as a Markov chain. Thus, our first recommendation is to learn the basics of this theory. Karr (1990), Kulkarni
(1995, chapters 2-4), Norris (1997), Kulkarni (1999, chapter 5), and Janssen and Manca (2006, chapter 3) are all excellent
introductions to the topic.

All the models developed in this chapter can be seen as time-homogeneous Markov chains on the finite space of possible strategy
distributions. This means that the number of agents that are following each possible strategy is all the information we need to know
about the present –and the past– of the stochastic process in order to be able to –probabilistically– predict its future as accurately as it
is possible. Thus, the number of possible states in these models is , where  is the number of agents and  the number of
strategies.

In some simple cases, a full Markov analysis can be conducted by deriving the transition probabilities of the Markov chain and
operating directly with them. Section 3.1 illustrates how this type of analysis can be undertaken on models with 2 strategies where
agents revise their strategies sequentially.

However, in many other models a full Markov analysis is unfeasible because the exact formulas can lead to very cumbersome
expressions, or may even be too complex to evaluate. This is often the case if the number of states is large.  In such situations, one
can still take advantage of powerful approximation results, which we introduce in section 3.2.

3.1. Markov analysis of 2-strategy evolutionary processes where agents switch strategies sequentially
In this section we study 2-strategy evolutionary processes where agents switch strategies sequentially. For simplicity, we will asume
that there is one revision per tick, but several revisions could take place in the same tick as long as they ocurred sequentially.  These
processes can be formalized as birth-death chains, a special type of Markov chains for which various analytical results can be derived.
An example of such a process is the one simulated in section 2 above.

3.1.1. Markov chain formulation

Consider a population of  agents who repeatedly play a symmetric 2-player 2-strategy game. The two possible strategies are labeled
0 and 1. In every tick, one random agent is given the opportunity to revise his strategy, and he does so according to a certain revision
protocol (such as the imitate-the-better-realization protocol, the imitative pairwise-difference protocol or the best experienced payoff
protocol).

Let  be the proportion of the population using strategy 1 at tick . The evolutionary process described above induces a Markov
chain  on the state space . We do not have to keep track of the proportion of agents using strategy 0 because

[3]

[4]
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there are only two strategies, so the two proportions must add up to one. Since there is only one revision per tick, note that there are
only three possible transitions: one implies increasing  by , another one implies decreasing  by , and the other one leaves the
state unchanged. Let us denote the transition probabilities as follows:

Thus, the probability of staying at the same state after one tick is:

This Markov chain has two important properties: the state space  is endowed with a linear order and all transitions
move the state one step to the left, one step to the right, or leave the state unchanged. These two properties imply that the Markov
chain is a birth-death chain. Figure 4 below shows the transition diagram of this birth-death chain, ignoring the self-loops.

Figure 4. Transition diagram of a birth-death chain

The transition matrix  of a Markov chain gives us the probability of going from one state to another. In our case, the elements
 of the transition matrix are:

In our evolutionary process, the transition probabilities  and  are determined by the revision protocol that agents use. Let us see
how this works with a specific example. Consider the coordination game defined by payoffs [[1 0][0 2]], played by agents who
sequentially revise their strategies according to the the imitate-the-better-realization rule (without noise). This is the model we have
simulated in section 2 above. 

Let us derive . Note that the state increases by  if and only if the revising agent is using strategy 0 and
he switches to strategy 1. In the game with payoffs [[1 0][0 2]], this happens if and only if the following conditions are satisfied:

the agent who is randomly drawn to revise his strategy is playing strategy 0 (an event which happens with probability ),
the agent that is observed by the revising agent is playing strategy 1 (an event which happens with probability ; note that there
are  agents using strategy 1 and the revising agent observes another agent, thus the divisor ), and
the observed agent’s payoff is 2, i.e. the observed agent –who is playing strategy 1– played with an agent who was also playing
strategy 1 (an event which happens with probability ; note that the observed agent plays with another agent who is also
playing strategy 1).

Therefore:

[6]
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Note that, in this case, the payoff obtained by the revising agent is irrelevant.

We can derive  in a similar fashion. Do you want to give it a try before reading the solution?

Computation of 

Note that the state decreases by  if and only if the revising agent is using strategy 1 and he switches to strategy 0. In the game with
payoffs [[1 0][0 2]], this happens if and only if the following conditions are satisfied:

the agent who is randomly drawn to revise his strategy is playing strategy 1 (an event which happens with probability ),
the agent that is observed by the revising agent is playing strategy 0 (an event which happens with probability ; note that
there are  0-strategists and the revising agent observes another agent, thus the divisor ),
the revising agent’s payoff is 0, i.e. the revising agent played with an agent who was playing strategy 0 (an event which happens
with probability ; note that the revising agent plays with another agent, thus the divisor ).
the observed agent’s payoff is 1, i.e. the observed agent, who is playing strategy 0, played with an agent who was also playing
strategy 0 (an event which happens with probability ; note that the observed agent plays with another agent who is also
playing strategy 0).

Therefore:

With the formulas of  and  in place, we can write the transition matrix of this model for any given . As an example, this is the
transition matrix  for :

And here’s a little Mathematica  script that can be used to generate the transition matrix for any :

n = 10;

p[x_] := (1 - x) (x n/(n - 1)) ((x n - 1)/(n - 1))

q[x_] := x (((1 - x)n)/(n - 1))^2 ((1 - x)n - 1)/(n - 1)

P = SparseArray[{

    {i_, i_} -> (1 - p[(i - 1)/n] - q[(i - 1)/n]),

    {i_, j_} /; i == j - 1 -> p[(i - 1)/n],

    {i_, j_} /; i == j + 1 -> q[(i - 1)/n]

    }, {n + 1, n + 1}];

MatrixForm[P]

®
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3.1.2. Transient dynamics

In this section, we use the transition matrix  we have just derived to compute the transient dynamics of our two-strategy evolutionary
process, i.e. the probability distribution of  at a certain . Naturally, this distribution generally depends on initial conditions.

To be concrete, imagine we set some initial conditions, which we express as a (row) vector  containing the initial probability
distribution over the  states of the system at tick , i.e. , where . If initial
conditions are certain, i.e. if , then all elements of  are 0 except for , which would be equal to 1.

Our goal is to compute the vector , which contains the probability of finding the process in each of
the possible  states at tick  (i.e. after  revisions), having started at initial conditions . This  is a row vector representing the
probability mass function of .

To compute , it is important to note that the -step transition probabilities  are given by the entries of the th
power of the transition matrix, i.e.:

Thus, we can easily compute the transient distribution  simply by multiplying the initial conditions  by the th power of the
transition matrix :

As an example, consider the evolutionary process we formalized as a Markov chain in the previous section, with  imitate-the-
better-realization agents playing the coordination game [[1 0][0 2]]. Let us start at initial state , i.e. ,
where the solitary 1 lies exactly at the middle of the vector  (i.e. at position ). Figure 5 shows the distributions

 and .

Figure 5. Probability mass function of  at different ticks. Number of agents . Initial conditions .

To produce figure 5, we have computed the transition matrix with the previous Mathematica  script (having previously set the
number of agents to 100) and then we have run the following two lines:

a0 = UnitVector[n + 1, 1 + n/2];

ListPlot[Table[a0.MatrixPower[N@P, i], {i, 100, 500, 100}], PlotRange -> All]

Looking at the probability distribution of , it is clear that, after 500 revisions, the evolutionary process is very likely to be at a
state where most of the population is using strategy 1. There is even a substantial probability (~6.66%) that the process will have
reached the absorbing state where everyone in the population is using strategy 1. Note, however, that all the probability distributions
shown in figure 5 have full support, i.e. the probability of reaching the absorbing state where no one uses strategy 1 after 100, 200,
300, 400 or 500 is very small, but strictly positive. As a matter of fact, it is not difficult to see that, given that  and  (i.e.
initially there are 50 agents using strategy 1), a_k(0) = \mathbb{P}(X_k = 0 \,|\, X_0=0.5) 0" class="ql-img-inline-formula quicklatex-auto-format"
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height="18" style="vertical-align: -4px;" title="Rendered by QuickLaTeX.com" width="256"
src="/@api/deki/files/108430/quicklatex.com-2e2201cc319aeea97a34b91c08c8505e_l3.png"> for any .

Finally, to illustrate the sensitivity of transient dynamics to initial conditions, we replicate the computations shown in figure 5, but
with initial conditions  (figure 6) and  (figure 7).

Figure 6. Probability mass function of  at different ticks. Number of agents . Initial conditions .

Figure 7. Probability mass function of  at different ticks. Number of agents . Initial conditions .

Besides the probability distribution of  at a certain , we can analyze many other interesting properties of a Markov chain, such
as the expected hitting time (or first passage time) of a certain state , which is the expected time at which the process first reaches
state . For general Markov chains, this type of results can be found in any of the references mentioned at the beginning of section 3.
For birth-death chains specifically, Sandholm (2010, section 11.A.3) provides simple formulas to compute expected hitting times and
hitting probabilities (i.e. the probability that the birth-death chain reaches state  before state ).

3.1.3. Infinite-horizon behavior

In this section we wish to study the infinite-horizon behavior of our evolutionary process, i.e. the distribution of  when the number
of ticks  tends to infinity. This behavior generally depends on initial conditions, but we focus here on a specific type of Markov chain
–i.e. irreducible and aperiodic– whose limiting behavior does not depend on initial conditions. To understand the concepts of
irreducibility and aperiodicity, we recomend you read any of the references on Markov chains provided at the beginning of section 3.
Here we just provide sufficient conditions that guarantee that a (time-homogeneous) Markov chain is irreducible and aperiodic:

Sufficient conditions for irreducibility and aperiodicity of time-homogeneous Markov chains
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If it is possible to go from any state to any other state in one single step ( P_{ij} 0" class="ql-img-inline-formula quicklatex-auto-
format" height="18" style="vertical-align: -6px;" title="Rendered by QuickLaTeX.com" width="56"
src="/@api/deki/files/108439/quicklatex.com-fe08eaf2596bbfdd530e703a02a3771d_l3.png"> for all ) and there are more
than 2 states, then the Markov chain is irreducible and aperiodic.
If it is possible to go from any state to any other state in a finite number of steps, and there is at least one state in which the system
may stay for two consecutive steps ( P_{ii} 0" class="ql-img-inline-formula quicklatex-auto-format" height="15" style="vertical-
align: -3px;" title="Rendered by QuickLaTeX.com" width="54" src="/@api/deki/files/108441/quicklatex.com-
8aa23c021787fc8fb7af37a505c4bc3c_l3.png"> for some ), then the Markov chain is irreducible and aperiodic.
If there exists a positive integer  such that (P^m)_{ij} 0" class="ql-img-inline-formula quicklatex-auto-format" height="20"
style="vertical-align: -6px;" title="Rendered by QuickLaTeX.com" width="84" src="/@api/deki/files/108443/quicklatex.com-
39ed3317dd0ab52a09eae4c8277dda17_l3.png"> for all  and , then the Markov chain is irreducible and aperiodic.

If one sees the transition diagram of a Markov chain (see e.g. Figure 4 above) as a directed graph (or network), the conditions above
can be rewritten as:

The network contains more than two nodes and there is a directed link from every node to every other node.
The network is strongly connected and there is at least one loop.
There exists a positive integer  such that there is at least one walk of length 
from any node to every node (including itself).

The 2-strategy evolutionary process we are studying in this section is not necessarily irreducible if there is no noise. For instance, the
coordination game played by imitate-the-better-realization agents analyzed in section 3.1.2 is not irreducible. That model will
eventually reach one of the two absorbing states where all the agents are using the same strategy, and stay in that state forever. The
probability of ending up in one or the other absorbing state depends on initial conditions (see Figure 8).

Figure 8. Probability of ending up in each of the two absorbing states for different initial states , in the coordination game [[1 0][0 2]]
played by  imitate-if-better agents.

However, if we add noise in the agents’ revision protocol –so there is always the possibility that revising agents choose any strategy–,
then it is easy to see that the second sufficient condition for irreducibility and aperiodicity above is fulfilled.

Generally, in irreducible and aperiodic Markov chains  with state space  (henceforth IAMCs), the probability mass function of
 approaches a limit as  tends to infinity. This limit is called the limiting distribution, and is denoted here by , a vector with

components  which denote the probability of finding the system in state  in the long run. Formally, in IAMCs the following
limit exists and is unique (i.e. independent of initial conditions):

\lim_{k \to \infty}\mathbb{P}(X_k = i) = \mu(i) 0\;\text{ for all }i \in S." class="ql-img-inline-formula quicklatex-auto-format" height="18"
style="vertical-align: -4px;" title="Rendered by QuickLaTeX.com" width="333" src="/@api/deki/files/108449/quicklatex.com-

5053bcf1ce3ccf6106a8558e478e7fd7_l3.png">
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Thus, in IAMCs the probability of finding the system in each of its states in the long run is strictly positive and independent of initial
conditions. Importantly, in IAMCs the limiting distribution  coincides with the occupancy distribution , which is the long-run
fraction of the time that the IAMC spends in each state.  This means that we can estimate the limiting distribution  of a IAMC using
the computer simulation approach by running just one simulation for long enough (which enables us to estimate ).

In any IAMC, the limiting distribution  can be computed as the left eigenvector of the transition matrix  corresponding to
eigenvalue 1.  Note, however, that computing eigenvectors is computationally demanding when the state space is large. Fortunately,
for irreducible and aperiodic birth-death chains (such as our 2-strategy evolutionary process with noise), there is an analytic formula
for the limiting distribution that is easy to evaluate:

where the value of  is derived by imposing that the elements of  must add up to 1. This formula can be

easily implemented in Mathematica :

μ = Normalize[FoldList[Times, 1, Table[p[(j-1)/n]/q[j/n],{j, n}]], Total]

Note that the formula above is only valid for irreducible and aperiodic birth-death chains. An example of such a chain would be the
model where a number of imitate-the-better-realization agents are playing the coordination game [[1 0][0 2]] with noise. Thus, for this
model we can easily analyze the impact of noise on the limiting distribution. Figure 9 illustrates this dependency.

Figure 9. Limiting distribution  for different values of noise in the coordination game [[1 0][0 2]] played by  imitate-the-
better-realization agents.

Figure 9 has been created by running the following Mathematica  script:

n = 100;

p[x_, noise_]:= (1-x)((1-noise)(x n/(n-1))((x n - 1)/(n-1)) + noise/2)

q[x_, noise_]:= x((1-noise)(((1-x)n)/(n-1))^2 ((1-x)n-1)/(n-1) + noise/2)

μs = Map[Normalize[

           FoldList[Times, 1, Table[p[(j-1)/n, #] / q[j/n, #], {j, n}]]

         , Total]&, {0.01, 0.1, 0.2, 0.3, 0.4, 0.5}];

   

ListPlot[μs, DataRange->{0, 1}, PlotRange->{0, All}, Filling -> Axis]

[9]
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The limiting distribution of birth-death chains can be further characterized using results in Sandholm (2007).

3.2. Approximation results
In many models, a full Markov analysis cannot be conducted because the exact formulas are too complicated or because they may be
too computationally expensive to evaluate. In such cases, we can still apply a variety of approximation results. This section introduces
some of them.

3.2.1. Deterministic approximations of transient dynamics when the population is large. The mean dynamic

When the number of agents is sufficiently large, the mean dynamic of the process provides a good deterministic approximation to the
dynamics of the stochastic evolutionary process over finite time spans. In this section we are going to analyze the behavior of our
evolutionary process as the population size  becomes large, so we make this dependency on  explicit by using superscripts for ,

 and .

Let us start by illustrating the essence of the mean dynamic approximation with our running example where  imitate-the-better-
realization agents are playing the coordination game [[1 0][0 2]] without noise. Initially, half the agents are playing strategy 1 (i.e.

). Figures 10, 11 and 12 show the expected proportion of 1-strategists  against the number of revisions 
(scaled by ), together with the 95% band for , for different population sizes.  Figure 10 shows the transient dynamics for

, figure 11 for  and figure 12 for . These figures show exact results, computed as explained in section 3.1.2.

Figure 10. Expected proportion of agents playing strategy 1 and its 95% band (in yellow). Model: coordination game [[1 0][0 2]] played
by  imitate-the-better-realization agents. Initially, half the population is using strategy 1.

Figure 11. Expected proportion of agents playing strategy 1 and its 95% band (in yellow). Model: coordination game [[1 0][0 2]] played
by  imitate-the-better-realization agents. Initially, half the population is using strategy 1.
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Figure 12. Expected proportion of agents playing strategy 1 and its 95% band (in yellow). Model: coordination game [[1 0][0 2]] played
by  imitate-the-better-realization agents. Initially, half the population is using strategy 1.

Looking at figures 10, 11 and 12 it is clear that, as the number of agents  gets larger, the stochastc evolutionary process  gets
closer and closer to its expected motion. The intuition is that, as the number of agents gets large, the fluctuations of the evolutionary
process around its expected motion tend to average out. In the limit when  goes to infinity, the stochastic evolutionary process is
very likely to behave in a nearly deterministic way, mirroring a solution trajectory of a certain ordinary differential equation called the
mean dynamic.

To derive the mean dynamic of our 2-strategy evolutionary process, we consider the behavior of the process  over the next 
time units, departing from state . We define one unit of clock time as  ticks, i.e. the time over which every agent is expected to
receive exactly one revision opportunity. Thus, over the time interval , the number of agents who are expected to receive a revision
opportunity is . Of these  agents who revise their strategies,  are expected to switch from strategy 0 to strategy 1 and

 are expected to switch from strategy 1 to strategy 0. Hence, the expected change in the number of agents that are using
strategy 1 over the time interval  is . Therefore, the expected change in the proportion of agents using strategy 1,
i.e. the expected change in state at , is

Note that the transition probabilities  and  may depend on . This does not represent a problem as long as this dependency
vanishes as  gets large. In that case, to deal with that dependency, we take the limit of  and  as  goes to infinity since,
after all, the mean dynamic approximation is only valid for large . Thus, defining

and

we arrive at the mean dynamic equation:

As an illustration of the usefulness of the mean dynamic to approximate transient dynamics, consider the simulations of the
coordination game example presented in section 2. We already computed the transition probabilities  and  for this model in
section 3.1.1:

Thus, the mean dynamic reads:
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where  stands for the fraction of 1-strategists. The solution of the mean dynamic with initial condition  is shown in figure 13
below. It is clear that the mean dynamic provides a remarkably good approximation to the average transient dynamics plotted in
figures 1 and 3.  And, as we have seen, the greater the number of agents, the closer the stochastic process will get to its expeted
motion.

Figure 13. Trajectory of the mean dynamic of the example in section 2, showing the proportion of 1-strategists as a function of time
(rescaled to match figures 1 and 3).

Naturally, the mean dynamic can be solved for many different initial conditions, providing an overall picture of the transient dynamics
of the model when the population is large. Figure 14 below shows an illustration, created with the following Mathematica  code:

Plot[

 Evaluate[

  Table[

   NDSolveValue[{x'[t] == x[t] (x[t] - 1) (x[t]^2 - 3 x[t] + 1), 

      x[0] == x0}, x, {t, 0, 10}][ticks/100]

  , {x0, 0, 1, 0.01}]

 ], {ticks, 0, 1000}]

Figure 14. Trajectories of the mean dynamic of the example in section 2, showing the proportion of 1-strategists as a function of time
(rescaled to match figures 1 and 3) for different initial conditions.

[13]
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The cut-off point that separates the set of trajectories that go towards state  from those that will end up in state  is easy to
derive, by finding the rest points of the mean dynamic:

The three solutions in the interval  are ,  and .

In this section we have derived the mean dynamic for our 2-strategy evolutionary process where agents switch strategies sequentially.
Note, however, that the mean dynamic approximation is valid for games with any number of strategies and even for models where
several revisions take place simultaneously (as long as the number of revisions is fixed as  goes to infinity or the probability of
revision is ).

It is also important to note that, even though here we have presented the mean dynamic approximation in informal terms, the link
between the stochastic process and its relevant mean dynamic rests on solid theoretical grounds (see Benaïm & Weibull (2003),
Sandholm (2010, chapter 10) and Roth & Sandholm (2013)).

Finally, to compare agent-based simulations of the imitate-the-better-realization rule and its mean dynamics in 2×2 symmetric games,
you may want to play with the purpose-built demonstration titled Expected Dynamics of an Imitation Model in 2×2 Symmetric
Games. And to solve the mean dynamic of the imitate-the-better-realization rule in 3-strategy games, you may want to use this
demonstration.

3.2.2. Diffusion approximations to characterize dynamics around equilibria

“Equilibria” in finite population dynamics are often defined as states where the expected motion of the (stochastic) process is zero.
Formally, these equilibria correspond to the rest points of the mean dynamic of the original stochastic process. At some such
equilibria, agents do not switch strategies anymore. Examples of such static equilibria would be the states where all agents are using
the same strategy under the imitate-the-better-realization protocol. However, at some other equilibria, the expected flows of agents
switching between different strategies cancel one another out (so the expected motion is indeed zero), but agents keep revising and
changing strategies, potentially in a stochastic fashion. To characterize the dynamics around this second type of “equilibria”, which
are most often interior, the diffusion approximation is particularly useful.

As an example, consider a Hawk-Dove game with payoffs [[2 1][3 0]] and the imitate-the-better-realization revision rule without
noise. The mean dynamic of this model is:

where  stands for the fraction of 1-strategists, i.e. “Hawk” agents.  Solving the mean dynamic reveals that most large-population
simulations starting with at least one “Hawk” and at least one “Dove” will tend to approach the state where half the population play
“Hawk” and the other play “Dove”, and stay around there for long. Figure 15 below shows several trajectories for different initial
conditions.

Figure 15. Trajectories of the mean dynamic of an imitate-the-better-realization Hawk-Dove game, showing the proportion of “Hawks”
as a function of time for different initial conditions. One unit of time corresponds to  revisions.

[14]
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Naturally, simulations do not get stuck in the half-and-half state, since agents keep revising their strategy in a stochastic fashion (see
figure 16). To understand this stochastic flow of agents between strategies near equilibria, it is necessary to go beyond the mean
dynamic. Sandholm (2003) shows that –under rather general conditions– stochastic finite-population dynamics near rest points can be
approximated by a diffusion process, as long as the population size  is large enough. He also shows that the standard deviations of
the limit distribution are of order .

To illustrate this order , we set up one simulation run starting with 10 agents playing “Hawk” and 10 agents playing “Dove”. This
state constitutes a so-called “Equilibrium”, since the expected change in the strategy distribution is zero. However, the stochasticity in
the revision protocol and in the matching process imply that the strategy distribution is in perpetual change. In the simulation shown
in figure 16, we modify the number of players at runtime. At tick 10000, we increase the number of players by a factor of 10 up to 200
and, after 10000 more ticks, we set n-of-players to 2000 (i.e., a factor of 10, again). The standard deviation of the fraction of players
using strategy “Hawk” (or “Dove”) during each of the three stages in our simulation run was: 0.1082, 0.0444 and 0.01167
respectively. As expected, these numbers are related by a factor of approximately .

Figure 16. A simulation run of an imitate-the-better-realization Hawk-Dove game, set up with 20 agents during the first 10000 ticks,
then 200 agents during the following 10000 ticks, and finally 2000 agents during the last 10000 ticks. Payoffs: [[2 1][3 0]]; prob-
revision: 0.01; noise 0; initial conditions [10 10].

As a matter of fact, Izquierdo et al. (2019, example 3.1) use the diffusion approximation to show that in the large  limit, fluctuations
of this process around its unique interior rest point  are approximately Gaussian with standard deviation .

3.2.3. Stochastic stability analyses

In the last model we have implemented in this chapter, if noise is strictly positive, the model’s infinite-horizon behavior is
characterized by a unique stationary distribution regardless of initial conditions (see section 3.1 above). This distribution has full
support (i.e. all states will be visited infinitely often) but, naturally, the system will spend much longer in certain areas of the state
space than in others. If the noise is sufficiently small (but strictly positive), the infinite-horizon distribution of the Markov chain tends
to concentrate most of its mass on just a few states. Stochastic stability analyses are devoted to identifying such states, which are often
called stochastically stable states (Foster and Young, 1990), and are a subset of the absorbing states of the process without noise.

To learn about this type of analysis, the following references are particularly useful: Vega-Redondo (2003, section 12.6), Fudenberg
and Imhof (2008), Sandholm (2010, chapters 11 and 12) and Wallace and Young (2015).

To illustrate the applicability of stochastic stability analyses, consider our imitate-the-better-realization model where agents play the
Hawk-Dove game analyzed in section 3.2.2 with some strictly positive noise. It can be proved that the only stochastically stable state
in this model is the state where everyone chooses strategy Hawk.  This means that, given a certain population size, as noise tends to
0, the infinite-horizon dynamics of the model will concentrate on that single state.

[15]
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An important concern in stochastic stability analyses is the time one has to wait until the prediction of the analysis becomes relevant.
This time can be astronomically long, as the following example illustrates.

3.2.4 A final example

A fundamental feature of these models, but all too often ignored in applications, is that the
asymptotic behavior of the short-run deterministic approximation need have no connection
to the asymptotic behavior of the stochastic population process. Blume (1997, p. 443)

Consider the Hawk-Dove game analyzed in section 3.2.2, played by  imitate-the-better-realization agents with noise = 10 ,
departing from an initial state where 28 agents are playing Hawk. Even though the population size is too modest for the mean
dynamic and the diffusion approximations to be accurate, this example will clarify the different time scales at which each of the
approximations is useful.

Let us review what we can say about this model using the three approximations discussed in the previous sections:

Mean dynamic. Figure 15 shows the mean dynamic of this model without noise. The noise we are considering here is so small
that the mean dynamic looks the same in the time interval shown in figure 15.  So, in our model with small noise, for large ,
the process will tend to move towards state , a journey that will take about  revisions for our initial conditions

. The greater the , the closer the stochastic process will be to the solution trajectory of its mean dynamic.
Diffusion approximation. Once in the vicinity of the unique interior rest point , the diffusion approximation tells us that –
for large – the dynamics are well approximated by a Gaussian distribution with standard deviation .
Stochastic stability. Finally, we also know that, for a level of noise low enough (but strictly positive), the limiting distribution is
going to place most of its mass on the unique stochastically stable state, which is . So, eventually, the dynamics will approach
its limiting distribution, which –assuming the noise is low enough– places most of its mass on the monomorphic state .

Each of these approximations refers to a different time scale. In this regard, we find the classification made by Binmore and
Samuelson (1994) and Binmore et al. (1995) very useful (see also Samuelson (1997) and Young (1998)). These authors distinguish
between the short run, the medium run, the long run and the ultralong run:

By the short run, we refer to the initial conditions that prevail when one begins one’s
observation or analysis. By the ultralong run, we mean a period of time long enough for the
asymptotic distribution to be a good description of the behavior of the system. The long run
refers to the time span needed for the system to reach the vicinity of the first equilibrium in
whose neighborhood it will linger for some time. We speak of the medium run as the time
intermediate between the short run [i.e. initial conditions] and the long run, during which
the adjustment to equilibrium is occurring. Binmore et al. (1995, p. 10)

Let us see these different time scales in our Hawk-Dove example. The following video shows the exact transient dynamics of this
model, computed as explained in section 3.1.2. Note that the video shows all the revisions up until , but then it moves faster
and faster. The blue progress bar indicates the number of revisions already shown.

Transient dynamics of a model where  imitate-the-better-realization agents are playing a Hawk-Dove game, with noise= .
Each iteration corresponds to one revision.

In the video we can distinguish the different time scales:

-10
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The short run, which is determined by the initial conditions .
The medium run, which in this case spans roughly from  to . The dynamics of this adjustment process towards
the equilibrium  can be characterized by the mean dynamic, especially for large .
The long run, which in this case refers to the dynamics around the equilibrium , spanning roughly from  to

. These dynamics are well described by the diffusion approximation, especially for large .
The ultra long run, which in this case is not really reached until . It is not until then that the limiting distribution becomes a
good description of the dynamics of the model.

It is remarkable how long it takes for the infinite horizon prediction to hold force. Furthermore, the wait grows sharply as  increases
and also as the level of noise decreases.  These long waiting times are typical of stochastic stability analyses, so care must be taken
when applying the conclusions of these analyses to real world settings.

In summary, as  grows, both the mean dynamic and the difussion approximations become better. For any fixed , eventually, the
behavior of the process will be well described by its limiting distribution. If the noise is low enough (but strictly positive), the limiting
distribution will place most of its mass on the unique stochastically stable state . But note that, as  grows, it will take
exponentially longer for the infinite-horizon prediction to kick in (see Sandholm and Staudigl (2018)).

Note also that for the limiting distribution to place most of its mass on the stochastically stable state, the level of noise has to be
sufficiently low, and if the population size  increases, the maximum level of noise at which the limiting distribution concentrates
most of its mass on the stochastically stable state decreases. As an example, consider the same setting as the one shown in the video,
but with . In this case, the limiting distribution is completely different (see figure 17). A noise level of 10  is not enough for
the limiting distribution to place most of its mass on the stochastically stable state when .

Figure 17. Limiting distribution of a model where  imitate-the-better-realization agents are playing a Hawk-Dove game, with
noise = 10 .

Figure 17 has been created by running the following Mathematica  script:

n = 50;

noise = 10.^-10;

p[x_, noise_] := (1-x)((1-noise)* ((x n)/(n-1))((1-x)n/(n-1)) + noise/2)

q[x_, noise_] := x((1-noise)(((1-x)n)/(n-1))(x n - 1)/(n-1) + noise/2)

μ = Normalize[

       FoldList[Times, 1, Table[p[(j-1)/n, noise] / q[j/n, noise], {j, n}]]

     , Total];

[19]
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ListPlot[μ, DataRange->{0, 1}, PlotRange->{0, All}, Filling -> Axis]

4. Exercises
Exercise 1. Consider the evolutionary process analyzed in section 3.1.2. Figure 5 shows that, if we start with half the population

using each strategy, the probability that the whole population will be using strategy 1 after 500 revisions is about 6.66%. Here we ask
you to use the NetLogo model implemented in the previous section to estimate that probability. To do that, you will have to set up and
run an experiment using BehaviorSpace.

Exercise 2. Derive the mean dynamic of a Prisoner’s Dilemma game for the imitate-the-better-realization protocol.

Exercise 3. Derive the mean dynamic of the coordination game discussed in section 0.1 (with payoffs [[1 0][0 2]]) for the imitative
pairwise-difference protocol.

Exercise 4. Derive the mean dynamic of the coordination game discussed in section 0.1 (with payoffs [[1 0][0 2]]) for the best
experienced payoff protocol.

1. This is the model implemented in the previous section. It can be downloaded here. Note that in this model agents switch strategies
sequentially, even when several revisions take place in the same tick. This is so because all relevant payoffs are computed just
before any single revision takes place, using the strategy distribution at the time of the revision. ↵

2. The standard error of the average equals the standard deviation of the sample divided by the square root of the sample size. In our
example, the maximum standard error was well below 0.01. ↵

3. This result can be easily derived using a "stars and bars" analogy. ↵
4. As an example, in a 4-strategy game with 1000 players, the number of possible states (i.e. strategy distributions) is

. ↵
5. Note that the implementation of procedure to update-strategy in the model implemented in the previous section implies that agents

switch strategies sequentially. This is so because all relevant payoffs are computed just before any single revision takes place,
using the strategy distribution at the time of the revision. ↵

6. The only difference is that now we are asuming that there is exactly one revision per tick, while in the model simulated in section
2 agents sequentially revise their strategies with probability 0.01 in every tick. This difference is really just about what we decide
to call "tick". ↵

7. These probabilities are sometimes called "fixation probabilities". ↵
8. In terms of the transition probabilities  and , adding noise implies that p(x)0" class="ql-img-inline-formula quicklatex-

auto-format" height="18" style="vertical-align: -4px;" title="Rendered by QuickLaTeX.com" width="66"
src="/@api/deki/files/108506/quicklatex.com-55b4009716026af0482010b65ecbae68_l3.png"> for  (i.e. you can always
move one step to the right unless  already equals 1), q(x)0" class="ql-img-inline-formula quicklatex-auto-format" height="18"
style="vertical-align: -4px;" title="Rendered by QuickLaTeX.com" width="65" src="/@api/deki/files/108508/quicklatex.com-
c20d07a68c98d93a4f2bb1b9e026f6a1_l3.png"> for x0" class="ql-img-inline-formula quicklatex-auto-format" height="12"
style="vertical-align: 0px;" title="Rendered by QuickLaTeX.com" width="43" src="/@api/deki/files/108509/quicklatex.com-
4d0528f1c8d6265b2860f59b7575cf72_l3.png"> (i.e. you can always move one step to the left unless  already equals 0) and

 for all  (i.e. you can always stay where you are). ↵
9. Formally, the occupancy of state  is defined as:

where  denotes the number of times that the Markov chain visits state  over the time span . ↵
10. The second-largest eigenvalue modulus of the transition matrix  determines the rate of convergence to the limiting distribution.

↵
11. For the derivation of this formula, see e.g. Sandholm (2010, example 11.A.10, p. 443). ↵
12. For each value of , the band is defined by the smallest interval  that leaves less than 2.5% probability at both sides, i.e.

 and \mathbb{P}(X_k j \,|\, X^N_0=0.5)<0.025" class="ql-img-inline-formula quicklatex-auto-format"
height="20" style="vertical-align: -5px;" title="Rendered by QuickLaTeX.com" width="230"
src="/@api/deki/files/108517/quicklatex.com-d7d682ed2c25cf72d936d285727d242b_l3.png">, with . ↵
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13. Note that one unit of clock time in the mean dynamic is defined in such a way that each player expects to receive one revision
opportunity per unit of clock time. In the model simulated in section 2, prob-revision = 0.01, so one unit of clock time corresponds
to 100 ticks (i.e. 1 / prob-revision). ↵

14. For details, see Izquierdo and Izquierdo (2013) and Loginov (2019). ↵
15. There are a number of different definitions of stochastic stability, depending on which limits are taken and in what order. For a

discussion of different definitions, see Sandholm (2010, chapter 12). ↵
16. To be precise, here we are considering stochastic stability in the small noise limit, where we fix the population size and take the

limit of noise to zero (Sandholm, 2010, section 12.1.1). The proof can be conducted using the concepts and theorems put forward
by Ellison (2000). Note that the radius of the state where everyone plays Hawk is 2 (i.e. 2 mutations are needed to leave its basin
of attraction), while its coradius is just 1 (one mutation is enough to go from the state where everyone plays Dove to the state
where everyone plays Hawk). ↵

17. The only difference is that, in the model with noise, the two trajectories starting at the monomorphic states eventually converge to
the state , but this convergence cannot be appreciated in the time interval shown in figure 15. ↵

18. Using the analytic formula for the limiting distribution of irreducible and aperiodic birth-death chains provided in section 3.1.3, we
have checked that \mu(1)0.9" class="ql-img-inline-formula quicklatex-auto-format" height="18" style="vertical-align: -4px;"
title="Rendered by QuickLaTeX.com" width="80" src="/@api/deki/files/108519/quicklatex.com-
cec115c901c1ab72019d844e3444a6f7_l3.png"> for  and noise = 10 . ↵

19. Using tools from large deviations theory, Sandholm and Staudigl (2018) show that –for large population sizes – the time required
to reach the boundary is of an exponential order in . ↵

This page titled 2.5: Analysis of these models is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R. Izquierdo,
Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the
LibreTexts platform.

-10

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/123829?pdf
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Agent-Based_Evolutionary_Game_Dynamics_(Izquierdo_Izquierdo_and_Sandholm)/02%3A_Our_first_agent-based_evolutionary_model/2.05%3A_Analysis_of_these_models
https://creativecommons.org/licenses/by/4.0
http://segis.izqui.org/
https://wisc.pb.unizin.org/agent-based-evolutionary-game-dynamics


1

CHAPTER OVERVIEW

3: Spatial interactions on a grid
3.1: Spatial chaos in the Prisoner's Dilemma
3.2: Robustness and fragility
3.3: Extension to any number of strategies
3.4: Other types of neighborhoods and other revision protocols

This page titled 3: Spatial interactions on a grid is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R.
Izquierdo, Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards
of the LibreTexts platform.

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Agent-Based_Evolutionary_Game_Dynamics_(Izquierdo_Izquierdo_and_Sandholm)/03%3A_Spatial_interactions_on_a_grid/3.01%3A_Spatial_chaos_in_the_Prisoner's_Dilemma
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Agent-Based_Evolutionary_Game_Dynamics_(Izquierdo_Izquierdo_and_Sandholm)/03%3A_Spatial_interactions_on_a_grid/3.02%3A_Robustness_and_fragility
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Agent-Based_Evolutionary_Game_Dynamics_(Izquierdo_Izquierdo_and_Sandholm)/03%3A_Spatial_interactions_on_a_grid/3.03%3A_Extension_to_any_number_of_strategies
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Agent-Based_Evolutionary_Game_Dynamics_(Izquierdo_Izquierdo_and_Sandholm)/03%3A_Spatial_interactions_on_a_grid/3.04%3A_Other_types_of_neighborhoods_and_other_revision_protocols
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Agent-Based_Evolutionary_Game_Dynamics_(Izquierdo_Izquierdo_and_Sandholm)/03%3A_Spatial_interactions_on_a_grid
https://creativecommons.org/licenses/by/4.0
http://segis.izqui.org/
https://wisc.pb.unizin.org/agent-based-evolutionary-game-dynamics


3.1.1 https://math.libretexts.org/@go/page/123830

3.1: Spatial chaos in the Prisoner's Dilemma

1. Goal
The goal of this chapter is to learn how to build agent-based models with spatial structure. In models with spatial structure, agents do not interact with
all other agents with the same probability, but they interact preferentially with those who are nearby.

More generally, populations where some pairs of agents are more likely to interact with each other than with others are called structured populations.
This contrasts with the random matching models developed in the previous chapter, where all members of the population were equally likely to
interact with each other.  The dynamics of an evolutionary process under random matching can be very different from the dynamics of the same
process in a structured population. In social dilemmas in particular, population structure can play a crucial role (Gotts et al. (2003), Hauert (2002,
2006), Roca et al. (2009a, 2009b)).

2. Motivation. Cooperation in spatial settings
In the previous chapter, we saw that if agents play the Prisoner’s Dilemma under random matching, defection prevails. Here we want to explore
whether adding spatial structure may affect that observation. Could cooperation be sustained if we removed the unrealistic assumption that all
members of the population are equally likely to interact with each other? To shed some light on this question, in this section we will implement a
model analyzed by Nowak and May (1992, 1993).

3. Description of the model
In this model, there is a population of agents arranged on a 2-dimensional lattice of “patches”. There is one agent in each patch. The size of the lattice,
i.e. the number of patches in each of the two dimensions, can be set by the user. Each patch has eight neighboring patches (i.e. the eight cells which
surround it), except for the patches at the boundary, which have five neighbors if they are on a side, or three neighbors if they are at one of the four
corners.

Agents repeatedly play a symmetric 2-player 2-strategy game, where the two possible strategies are labeled C (for Cooperate) and D (for Defect). The
payoffs of the game are determined using four parameters: CC-payoff, CD-payoff, DC-payoff, and DD-payoff, where XY-payoff denotes the payoff
obtained by an X-player who meets a Y-player.

The initial percentage of C-players in the population is initial-%-of-C-players, and they are randomly distributed in the grid. From then onwards, the
following sequence of events –which defines a tick– is repeatedly executed:

1. Every agent plays the game with all his neighbors (once with each neighbor) and with himself (Moore neighborhood). The total payoff for the
player is the sum of the payoffs in these encounters.

2. All agents simultaneously revise their strategy according to the “imitate the best neighbor” revision protocol, which reads as follows:
Consider the set of all your neighbors plus yourself; then adopt the strategy of one of the agents in this set who has obtained the greatest payoff. If
there is more than one agent with the greatest payoff, choose one of them at random to imitate.

4. Interface design

Figure 1. Interface design.

To define each agent’s neighborhood, in this chapter we will use the 2-dimensional grid already built in NetLogo, often called “the world”. This will
make our code simpler and the visualizations nicer.

The interface (see figure 1 above) includes:

[1]

[2]

[3]

[4]
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The 2D view of the NetLogo world (i.e. the large black square in the interface), which is made up of patches. This view is already on the interface
by default when creating a new NetLogo model.

Choose the dimensions of the world by clicking on the “Settings…” button on the top bar, or by right-clicking on the 2D view and choosing Edit.
A window will pop up, which allows you to choose the number of patches by setting the values of min-pxcor, max-pxcor, min-pycor and max-
pycor. You can also determine the patches’ size in pixels, and whether the grid wraps horizontally, vertically, both or none (see Topology section).
You can choose these parameters as in figure 2 below:

Figure 2. Model settings.

Three buttons:

1. One button named setup, which runs the procedure to setup.
2. One button named go once, which runs the procedure to go.
3. One button named go, which runs the procedure to go indefinitely.

In the Code tab, write the procedures to setup and to go, without including any code inside for now. Then, create the buttons, just like we did in the
previous chapter. Note that the interface in figure 1 has an extra button labeled make agent at 0 0 play D. You may wish to include it now. The
code that goes inside this button is proposed as Exercise 2.
Four sliders, to choose the payoffs for each possible outcome (CC, CD, DC, DD). Create the four sliders with global variable names CC-payoff,
CD-payoff, DC-payoff, and DD-payoff. Remember to choose a range, an interval and a default value for each of them. You can choose minimum
0, maximum 2 and increment 0.01.
A slider to let the user select the initial percentage of C-players. Create a slider for global variable initial-%-of-C-players. You can choose limit
values 0 (as the minimum) and 100 (as the maximum), and an increment of 1.
A plot that will show the evolution of the number of agents playing each strategy. Create a plot and name it Strategy Distribution.

5. CodeCODE 
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5.1. Skeleton of the code

Figure 3. Skeleton of the code

5.2. Global variables and individually-owned variables
We will not need any global variables besides those defined with the sliders in the interface.

Note that in this model there is a one-to-one correspondence between our immobile players and the patches they live in. Thus, there is no need to
create any turtles (i.e. NetLogo mobile agents) in our model. We can work only with patches, and our code will be much simpler and readable.

Thus, we can make the built-in “patches” be the players, identifying each patch with one player. These patches already exist in NetLogo, making up
the world, so we do not need to create them. Having said that, we do need to associate with each patch all the information that we want it to carry.
This information will be:

Whether the patch is a C-player or D-player. For efficiency and code readability we can use a boolean variable to this end, which we can call C-
player? and which will take the value true or false.
Whether the patch will be a C-player or a D-player after its revision. For this purpose, we may use the boolean variable C-player?-after-revision.
This is needed because we want to model synchronous updating, i.e. we want all patches to change their strategy at the same time. To do this, first
we will ask all patches to compute the strategy they will adopt after the revision and, once all patches have computed their next strategy, we will
ask them all to switch to it at the same time.
The total payoff obtained by the patch playing with its neighbours. We can call this variable payoff.
For efficiency, it will also be useful to endow each patch with the set of neighbouring patches plus itself. The reason is that this set will be used
many times, and it never changes, so it can be computed just once at the beginning and stored in memory. We will store this set in a variable
named my-nbrs-and-me.
The following variable is also defined for efficiency reasons. Note that the payoff of a patch depends on the number of C-players and D-players in
its set my-nbrs-and-me. To spare the operation of counting D-players, we can calculate it as the number of players in my-nbrs-and-me (which does
not change in the whole simulation) minus the number of C-players. To this end, we can store the number of players in the set my-nbrs-and-me of
each patch as an individually-owned variable that we naturally name n-of-my-nbrs-and-me.

Thus, this part of the code looks as follows:

patches-own  [

  C-player?

  C-player?-after-revision

  payoff

  my-nbrs-and-me

  n-of-my-nbrs-and-me

]

5.3. Setup procedures

In the setup procedure we will:

1. Clear everything up, so we initialize the model afresh, using the primitive clear-all:

clear-all
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2. Set initial values for the variables that we have associated to each patch. We can set the payoff to 0,  and both C-player? and C-player-last? to
false (later we will ask some patches to set these values to true). To set the value of my-nbrs-and-me, NetLogo primitives neighbors and patch-set
are really handy.

ask patches [

  set payoff 0

  set C-player? false

  set C-player?-after-revision false

  set my-nbrs-and-me (patch-set neighbors self)

  set n-of-my-nbrs-and-me (count my-nbrs-and-me)

]

3. Ask a certain number of randomly selected patches to be C-players. That number depends on the percentage initial-%-of-C-players chosen by the
user and on the total number of patches, and it must be an integer, so we can calculate it as:

round (initial-%-of-C-players * count patches / 100) 

To randomly select a certain number of agents from an agentset (such as patches), we can use the primitive n-of (which reports another –usually
smaller– agentset). Thus, the resulting instruction will be:

ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

  set C-player? true

  set C-player?-after-revision true

]

4. Color patches according to the four possible combinations of values of C-player? and C-player?-after-revision. The color of a patch is controled by
the NetLogo built-in patch variable pcolor. A first (and correct) implementation of this task could look like:

ask patches [

  ifelse C-player?-after-revision

  [

    ifelse C-player?

    [set pcolor blue]

    [set pcolor lime]

  ]

  [

    ifelse C-player?

    [set pcolor yellow]

    [set pcolor red]

  ]

]

However, the following implementation, which makes use of NetLogo primitive ifelse-value is more readable, as one can clearly see that the only
thing we are doing is to set the patch’s pcolor.

ask patches [

  set pcolor

    ifelse-value C-player?-after-revision

     [ifelse-value C-player? [blue] [lime]]

     [ifelse-value C-player? [yellow] [red]]

]

5. Reset the tick counter using reset-ticks.

Note that:
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Points 2 and 3 above are about setting up the players, so, to keep our code nice and modular, we could group them into a new procedure called to
setup-players. This will make our code more elegant, easier to understand, easier to debug and easier to extend, so let us do it!
The operation described in point 4 above will be conducted every tick, so we should create a separate procedure to this end that we can call to
update-color, to be run by individual patches. Since this procedure is rather secondary (i.e. our model could run without this), we have a slight
preference to place it at the end of our code, but feel free to do it as you like, since the order in which NetLogo procedures are written in the Code
tab is immaterial.

Thus, the code up to this point should be as follows:

patches-own [

  C-player?

  C-player?-after-revision

  payoff

  my-nbrs-and-me

  n-of-my-nbrs-and-me

]

to setup

  clear-all

  setup-players

  ask patches [update-color]

  reset-ticks

end

to setup-players

  ask patches [

    set payoff 0

    set C-player? false

    set C-player?-after-revision false

    set my-nbrs-and-me (patch-set neighbors self)

    set n-of-my-nbrs-and-me (count my-nbrs-and-me)

  ]

  ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

    set C-player? true

    set C-player?-after-revision true

  ]

end

to go

 

end

to update-color

  set pcolor

    ifelse-value C-player?-after-revision

     [ifelse-value C-player? [blue] [lime]]

     [ifelse-value C-player? [yellow] [red]]

end

5.4. Go procedure

The procedure to go contains all the instructions that will be executed in every tick. In this particular model, we will ask each player (i.e. patch):

1. To play with its neighbours in order to calculate its payoff. For modularity and clarity purposes, we should do this in a new procedure named to
play.
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2. To compute the value of its next strategy and store it in the variable C-player?-after-revision. In this way, the variable C-player? will keep the
strategy with which the current payoff has been obtained, and we can update the value of C-player?-after-revision without losing that information,
which will be required by neighboring players when they compute their next strategy. To keep our code nice and modular, we will do this
computation in a new procedure called to update-strategy-after-revision.

3. To update its color according to their C-player? and C-player?-after-revision values, using the procedure to update-color.
4. To update its strategy (i.e. the value of C-player?). We will do this in a separate new procedure called to update-strategy.

We should also mark the end of the round, or tick, after all players have updated their strategies, using the primitive tick, which increases the tick
counter by one, and updates the graph on the interface. Thus, by now the code of procedure to go should look as follows:

to go

  ask patches [ play ]

  ask patches [

    update-strategy-after-revision

      ;; here we are not updating the agent's strategy yet

    update-color

  ]

  ask patches [ update-strategy ]

    ;; now we update every agent's strategy at the same time

  tick

end

5.5 Other procedures

to play

In procedure to play we want patches to calculate their payoff. This payoff will be the number of C-players in the set my-nbrs-and-me times the
payoff obtained with a C-player, plus the number of D-players in the set times the payoff obtained with a D-player.

We will store the number of C-players in the set my-nbrs-and-me in a local variable that we can name n-of-C-players. The number can be computed
as follows:

let n-of-C-players count my-nbrs-and-me with [C-player?]

Note that if the calculating patch is a C-player, the payoff obtained when playing with another C-player is CC-payoff, and if the calculating patch is a
D-player, the payoff obtained when playing with a C-player is DC-payoff. Thus, in general, the payoff obtained when playing with a C-player can
then be obtained using the following code:

ifelse-value C-player? [CC-payoff] [DC-payoff]

Similarly, the payoff obtained when playing with a D-player is:

ifelse-value C-player? [CD-payoff] [DD-payoff]

Taking all this into account, we can implement procedure to play as follows:

to play

  let n-of-C-players count my-nbrs-and-me with [C-player?]

  set payoff n-of-C-players * 

                  (ifelse-value C-player? [CC-payoff] [DC-payoff]) +

             (n-of-my-nbrs-and-me - n-of-C-players) * 

                  (ifelse-value C-player? [CD-payoff] [DD-payoff])

end

to update-strategy-after-revision

In this procedure, which will be run by individual patches, we want the patch to compute its next strategy, which will be the strategy used by one of
the patches with the maximum payoff in the set my-nbrs-and-me. To select one of these maximum-payoff patches, we may use primitives one-of and
with-max as follows:
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one-of (my-nbrs-and-me with-max [payoff])

Now remember that strategy updating in this model is synchronous, i.e. every player revises his strategy at the same time. Thus, we want each patch to
adopt the strategy that was used by the selected maximum-payoff patch when it played the game, i.e. before any strategy revision may have taken
place. This strategy is stored in variable C-player?. With this, we conclude the code of procedure to update-strategy-after-revision.

to update-strategy-after-revision

  set C-player?-after-revision [C-player?] of one-of my-nbrs-and-me with-max [payoff]

end

Another (equivalent) implementation of this procedure, which makes use of primitive max-one-of is the following.

to update-strategy-after-revision

  set C-player?-after-revision [C-player?] of max-one-of my-nbrs-and-me [payoff]

end

to update-strategy

This is a very simple procedure where the patch just updates its strategy (stored in variable C-player?) with the value of C-player?-after-revision. This
update is not conducted right after having computed the value of C-player?-after-revision to make the strategy updating synchronous.

to update-strategy

  set C-player? C-player?-after-revision

end

5.6. Complete code in the Code tab
The Code tab is ready!

patches-own [

  C-player?

  C-player?-after-revision

  payoff

  my-nbrs-and-me

  n-of-my-nbrs-and-me

]

to setup

  clear-all

  setup-players

  ask patches [update-color]

  reset-ticks

end

to setup-players

  ask patches [

    set payoff 0

    set C-player? false

    set C-player?-after-revision false

    set my-nbrs-and-me (patch-set neighbors self)

    set n-of-my-nbrs-and-me (count my-nbrs-and-me)

  ]

  ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

    set C-player? true

    set C-player?-after-revision true
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  ]

end

to go

  ask patches [ play ]

  ask patches [

    update-strategy-after-revision

      ;; here we are not updating the agent's strategy yet

    update-color

  ]

  ask patches [ update-strategy ]

    ;; now we update every agent's strategy at the same time

  tick

end

to play

  let n-of-C-players count my-nbrs-and-me with [C-player?]

  set payoff n-of-C-players * (ifelse-value C-player? [CC-payoff] [DC-payoff]) +

       (n-of-my-nbrs-and-me - n-of-C-players) * (ifelse-value C-player? [CD-payoff] [DD-payoff])

end

to update-strategy-after-revision

  set C-player?-after-revision [C-player?] of one-of my-nbrs-and-me with-max [payoff]

end

to update-strategy

  set C-player? C-player?-after-revision

end

to update-color

  set pcolor

    ifelse-value C-player?-after-revision

     [ifelse-value C-player? [blue] [lime]]

     [ifelse-value C-player? [yellow] [red]]

end

5.7. Code in the plots
We will use blue color for the number of C-players and red for the number of D-players.

To complete the Interface tab, edit the graph and create the pens as in the image below:
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Figure 4. Plot settings.

6. Sample runs
We can use the model we have implemented to shed some light on the question that we posed at the motivation above. We will use the same
parameter values as Nowak and May (1992), so we can replicate their results: CD-payoff = DD-payoff = 0, CC-payoff = 1, DC-payoff = 1.85, and
initial-%-of-C-players = 90.  An illustration of the sort of patterns that this model generates is shown in the video below.

As you can see, both C-players and D-players coexist in this spatial environment, with clusters of both types of players expanding, colliding and
fragmenting. The overall fraction of C-players fluctuates around 0.318 for most initial conditions (Nowak and May, 1992). Thus, we can see that
adding spatial structure can make cooperation be sustained even in a population where agents can only play C or D (i.e. they cannot condition their
actions on previous moves).

Incidentally, this model is also useful to see that a simple 2-player 2-strategy game in a two-dimensional spatial setting can generate chaotic and
kaleidoscopic patterns (Nowak and May, 1993). To illustrate this, let us use the same payoff values as before, but let us start with all agents playing C,
i.e. initial-%-of-C-players = 100.

When you click on setup, the whole world should look blue, since all agents are C-players. If you now click on go, nothing should happen, since all
agents are playing the same strategy and the strategy updating is imitative. To make things interesting, let us ask the agent at the center to play D. You
can do this by typing the following code at the Command Center (i.e. the line at the bottom of the NetLogo screen) after clicking on setup:

ask patch 0 0 [set C-player? false]

If you now click on go, you should see the following beautiful patterns:

7. Exercises
You can use the following link to download the complete NetLogo model: 2×2-imitate-best-nbr.
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Exercise 1. Let us run a (weak) Prisoner’s Dilemma game with payoffs DD-payoff = CD-payoff = 0, CC-payoff = 1 and DC-payoff = 1.7. Set the
initial-%-of-cooperators to 90. Run the model and observe the evolution of the system as you gradually increase the value of DC-payoff from 1.7 to 2.
If at any point all the players adopt the same strategy, press the setup button again to start a new simulation. Compare your observations with those in
fig. 1 of Nowak and May (1992). Note: To use the same dimensions as Nowak and May (1992), you can change the location of the NetLogo world’s
origin to the bottom left corner, and set both the max-pxcor and the max-pycor to 199. You may also want to change the patch size to 2.

Exercise 2. Create a button to make the patch at 0 0 be a D-player. You may want to label it make agent at 0 0 play D. This button will be
useful to replicate some of the experiments in Nowak and May (1992, 1993).

Exercise 3. Replicate the experiment shown in figure 3 of Nowak and May (1992). Note that you will have to make the NetLogo world be a 99 ×
99 square lattice.

Exercise 4. Implement the following extension to Nowak and May (1992)‘s model, proposed by Mukherji et al. (1996):

With a small probability ε, each player errs and chooses evenly between strategies C and D; with
probability 1-ε, the player follows the Nowak and May update rule.

You may wish to rerun the sample run above with a small value for ε. You may also want to replicate the experiment shown in Mukherji et al. (1996,
fig. 1).

Exercise 5. Implement the following extension to Nowak and May (1992)‘s model, proposed by Mukherji et al. (1996):

During each period, players fail to update their previous strategy with a small probability, θ.

You may wish to rerun the sample run above with a small value for θ. You may also want to replicate the experiment shown in Mukherji et al. (1996,
fig. 1).

Exercise 6. Implement the following extension to Nowak and May (1992)‘s model, proposed by Mukherji et al. (1996):

After following the Nowak and May update rule, each cooperator has a small independent probability, ϕ,
of cheating by switching to defection.

You may wish to rerun the sample run above with a small value for ϕ. You may also want to replicate the experiment shown in Mukherji et al. (1996,
fig. 1).

1. Note that in most evolutionary models there are two types of neighborhoods for each individual agent A:

the set of agents with whom agent A plays the game, and
the set of agents that agent A may observe at the time of revising his strategy.

Most often these two sets coincide for each individual agent, but that is not necessarily the case (see e.g. Ohtsuki et al. (2007a, b). ↵
2. Populations where all members are equally likely to interact with each other are sometimes called well-mixed populations. ↵
3. See Roca et al. (2009b) for an important and illuminating discussion of this paper. ↵
4. Christoph Hauert has an excellent collection of interactive tutorials on this topic at his site EvoLudo (Hauert 2018). ↵
5. By default, user-defined variables in NetLogo are initialized with the value 0, so there is no actual need to explicitly set the initial value of

individually-owned variables to 0, but it does no harm either. ↵
6. The parentheses around the first ifelse-value block are necessary since NetLogo 6.1.0 (see

https://ccl.northwestern.edu/netlogo/docs/transition.html#changes-for-netlogo-610). ↵
7. Some authors make CD-payoff = DD-payoff, so they can parameterize the game with just one parameter, i.e. DC-payoff. Note, however, that the

resulting game lies at the border between a Prisoner's Dilemma and a Hawk-Dove (aka Chicken or Snowdrift) game. Making CD-payoff = DD-
payoff is by no means a normalization of the Prisoner's Dilemma, but a restriction which reduces the range of possibilities that can be studied. ↵

This page titled 3.1: Spatial chaos in the Prisoner's Dilemma is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R. Izquierdo,
Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the LibreTexts platform.
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3.2: Robustness and fragility

1. Goal
Our goal in this section is to extend the model we have created in the previous section by adding three features that will prove very useful:

Noise, i.e. the possibility that revising agents select a strategy at random with a small probability.
Self-matching, i.e. the possibility to choose whether agents are matched with themselves to play the game or not.
Asynchronous strategy updating, i.e. the possibility that agents revise their strategies sequentially –rather than simultaneously– within the same tick.

These three features will allow us to assess the robustness of our previous computational results.

2. Motivation. Robustness of cooperation in spatial settings
In the previous section, we saw that spatial structure can induce significant levels of cooperation in the Prisoner’s Dilemma, at least for some parameter
settings. In particular, we saw that with CD-payoff = DD-payoff = 0, CC-payoff = 1, DC-payoff = 1.85, the overall fraction of C-players fluctuates
around 0.318 for most initial conditions (Nowak and May, 1992). Here we wonder how robust this result is to changes in some of the model assumptions.
In particular, we would like to study what happens…

if we add a bit of noise,
if agents do not play the game with themselves,
if strategy updating is asynchronous, rather than synchronous, or
if we use DD-payoff = 0.1 (rather than DD-payoff = 0), making the game a true Prisoner’s Dilemma.

3. Description of the model
The model we are going to develop here is a generalization of the model implemented in the previous section. In particular, we are going to add the
following three parameters:

noise. With probability noise, the revising agent will adopt a random strategy; and with probability (1 – noise), the revising agent will choose her
strategy following the “imitate the best neighbor” protocol. Thus, if noise = 0, we recover the model implemented in the previous section.
self-matching?. If self-matching? is true, agents play the game with themselves, just like before. On the other hand, if self-matching? is false, agents
do not play the game with themselves.
synchronous-updating?. If synchronous-updating? is true, agents update their strategies simultaneously, just like before. On the other hand, if
synchronous-updating? is false, agents play and update their strategies sequentially, i.e. one after another. In this latter case, all agents revise their
strategies in every tick in a random order.

Everything else stays as described in the previous section.

4. Interface design
We depart from the model we developed in the previous section (so if you want to preserve it, now is a good time to duplicate it).

Figure 1. Interface design.

In the new interface (see figure 1 above), we just have to add one slider for the new parameter noise, and two switches: one for parameter synchronous-
updating? and another one for parameter self-matching?. We have added these elements at the bottom of the interface, but feel free to place them
wherever you like.
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5. Code

5.1. Skeleton of the code

Figure 2. Skeleton of the code

5.2. Extension I. Adding noise to the revision protocol
Recall that the implementation of the revision protocol is conducted in procedure to update-strategy-after-revision. At present, the code of this procedure
looks as follows:

to update-strategy-after-revision

  set C-player?-after-revision [C-player?] of one-of my-nbrs-and-me with-max [payoff]

end

To implement the choice of a random strategy with probability noise by revising agents, we can use NetLogo primitive ifelse-value as follows:

to update-strategy-after-revision

  set C-player?-after-revision ifelse-value (random-float 1 < noise)

    [ one-of [true false] ] ;; this is run with probability noise

    [ [C-player?] of one-of (my-nbrs-and-me with-max [payoff]) ]

end

The noise extension is now ready, so you may want to explore the impact of noise in this model.

5.3. Extension II. Playing the game with yourself or not

Whether it is natural to include self-interactions in the theory depends on the biological assumptions
underlying the model. In general, if each cell is viewed as being occupied by a single individual adopting a
given strategy then it is natural to exclude self-interaction. However, if each cell is viewed as being occupied
by a population, all of whose members are adopting a given strategy, then it may be more natural to include
self-interaction. Killingback and Doebeli (1996, p. 1136)

In our model, agents will play the game with themselves or not depending on the value of the new parameter self-matching?. To implement this extension
elegantly, we find it convenient to define a new patch variable named my-coplayers, which will store the agentset with which the patch will play. Thus, if

CODE 
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self-matching? is true, my-coplayers will include the patch’s neighbors plus the patch itself, while if self-matching? is false, my-coplayers will include
only the patch’s neighbors.

It will also be convenient to define another patch variable named n-of-my-coplayers, which will store the cardinality of my-coplayers for each patch. This
is just for the same (efficiency) reasons we defined n-of-my-nbrs-and-me in the previous model. Now that we have variables my-coplayers and n-of-my-
coplayers, patch variable n-of-my-nbrs-and-me will no longer be needed. Thus, the definition of patch-own variables in the Code tab will look as follows:

patches-own [

  C-player?

  C-player?-after-revision

  payoff

  my-nbrs-and-me

  my-coplayers           ;; <== new variable

  n-of-my-coplayers      ;; <== new variable

  ;; n-of-my-nbrs-and-me    <== not needed anymore 

]

Now we have to set the value of the two new patch-own variables. Since these values will not change during the course of the simulation and they pertain
to the individual players, the natural place to set them is in procedure to setup-players.

to setup-players

  ask patches [

    set payoff 0

    set C-player? false

    set C-player?-after-revision false

    set my-nbrs-and-me (patch-set neighbors self)

    ;; set n-of-my-nbrs-and-me (count my-nbrs-and-me)    <== not needed anymore 

    ;; the following two lines are new

    set my-coplayers ifelse-value self-matching? [my-nbrs-and-me] [neighbors]

    set n-of-my-coplayers (count my-coplayers)

  ]

  ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

    set C-player? true

    set C-player?-after-revision true

  ]

end

Finally, we have to modify procedure to play so patches play with agentset my-coplayers, rather than with agentset my-nbrs-and-me.

to play

  let n-of-C-players count my-coplayers with [C-player?]

  set payoff n-of-C-players * (ifelse-value C-player? [CC-payoff] [DC-payoff]) +

       (n-of-my-coplayers - n-of-C-players) * ifelse-value C-player? [CD-payoff] [DD-payoff]

end

Note also that we have to replace the variable n-of-my-nbrs-and-me with n-of-my-coplayers when computing the payoff. You can now explore the
consequences of not forcing agents to play the game with themselves!

5.4. Extension III. Asynchronous strategy updating
To implement asynchronous updating we will have to modify procedure to go. If synchronous-updating? is true, updating takes place just like before, so
we can wrap the code we had in to go within an ifelse statement whose condition is the boolean variable synchronous-updating? , i.e.:
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to go

  ifelse synchronous-updating?

    [

      ask patches [ play ]

      ask patches [

        update-strategy-after-revision

          ;; here we are not updating the agent's strategy yet

        update-color

      ]

      ask patches [ update-strategy ]

        ;; now we update every agent's strategy at the same time

    ]

    [

      ;; this is where we have to place the code 

      ;; for asynchronous strategy updating

    ]

  tick

end

The implementation of sequential updating requires that every patch (in a random order) goes through the whole cycle of playing and updating its
strategy without being interrupted. Note that, at the time of revising the strategy, agents will compare their payoff with their coplayers’ payoffs, so before
calling procedure update-strategy-after-revision we have to make sure that all these payoffs have been properly computed, i.e. we must ask the revising
agent and her coplayers to play the game. So basically, each patch, in sequential order, must:

play the game,
ask its coplayers to play the game (so their payoffs are updated),
run update-strategy-after-revision to compute its next strategy (C-player?-after-revision),
update its color (now that we have access both to the current strategy C-player? and to the next strategy C-player?-after-revision)
update its strategy, i.e. set the value of C-player? to C-player?-after-revision. This is done in procedure update-strategy.

Taking all this into account, the code in the procedure to go looks as follows:

to go

  ifelse synchronous-updating?

    [

      ask patches [ play ]

      ask patches [

        update-strategy-after-revision

          ;; here we are not updating the agent's strategy yet

        update-color

      ]

      ask patches [ update-strategy ]

        ;; now we update every agent's strategy at the same time

    ]

    [

      ask patches [

        play

        ask my-coplayers [ play ]

           ;; since your coplayers' strategies or

           ;; your coplayers' coplayers' strategies

           ;; could have changed since the last time

           ;; your coplayers played

        update-strategy-after-revision

        update-color

        update-strategy

      ]
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    ]

  tick

end

5.5. Complete code in the Code tab
The Code tab is ready! Congratulations! You have implemented three important generalizations of the model in very little time.

patches-own [

  C-player?

  C-player?-after-revision

  payoff

  my-nbrs-and-me

  my-coplayers

  n-of-my-coplayers

]

to setup

  clear-all

  setup-players

  ask patches [update-color]

  reset-ticks

end

to setup-players

  ask patches [

    set payoff 0

    set C-player? false

    set C-player?-after-revision false

    set my-nbrs-and-me (patch-set neighbors self)

    set my-coplayers ifelse-value self-matching? [my-nbrs-and-me] [neighbors]

    set n-of-my-coplayers (count my-coplayers)

  ]

  ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

    set C-player? true

    set C-player?-after-revision true

  ]

end

to go

  ifelse synchronous-updating?

    [

      ask patches [ play ]

      ask patches [

        update-strategy-after-revision

          ;; here we are not updating the agent's strategy yet

        update-color

      ]

      ask patches [ update-strategy ]

        ;; now we update every agent's strategy at the same time

    ]

    [

      ask patches [

        play

        ask my-coplayers [ play ]
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           ;; since your coplayers' strategies or

           ;; your coplayers' coplayers' strategies

           ;; could have changed since the last time

           ;; your coplayers played

        update-strategy-after-revision

        update-color

        update-strategy

      ]

    ]

  tick

end

to play

  let n-of-cooperators count my-coplayers with [C-player?]

  set payoff n-of-cooperators * (ifelse-value C-player? [CC-payoff] [DC-payoff]) +

       (n-of-my-coplayers - n-of-cooperators) * ifelse-value C-player? [CD-payoff] [DD-payoff]

end

to update-strategy-after-revision

  set C-player?-after-revision ifelse-value (random-float 1 < noise)

    [ one-of [true false] ]

    [ [C-player?] of one-of (my-nbrs-and-me with-max [payoff]) ]

end

to update-strategy

  set C-player? C-player?-after-revision

end

to update-color

  set pcolor

    ifelse-value C-player?-after-revision

     [ifelse-value C-player? [blue] [lime]]

     [ifelse-value C-player? [yellow] [red]]

end

6. Sample runs
Now that we have implemented the extended model, we can use it to answer the questions posed in the motivation above. Let us see how the simulation
we ran in the previous section (with CD-payoff = DD-payoff = 0, CC-payoff = 1, DC-payoff = 1.85, and initial-%-of-C-players = 90 in a 81×81 grid) is
affected by each of the changes outlined in the motivation, one by one. We will refer to this parameterization as the baseline setting.

What happens if we add a bit of noise?

If you run the model with noise, you will see that the level of cooperation diminishes drastically. Using BehaviorSpace, we have estimated that the
percentage of cooperators in the regime where cooperators and defectors coexist drops from ~32% in the model without noise to ~15% if noise = 0.04. If
noise = 0.05, the long-run fraction of cooperation is just ~3%, so nearly all cooperation is coming from the random strategy updates (which accounts for
2.5% of the cooperation).  The influence of noise in the baseline setting was pointed out by Mukherji et al. (1996).

What happens if agents do not play the game with themselves?

The impact of self-matching? is also clear. When agents do not play the game with themselves, no cooperation can emerge in the baseline setting. If the
initial fraction of cooperators is high, some small clusters of initial cooperators may survive, but these clusters disappear if we add a tiny bit of noise. As
an illustration, the video below shows a simulation with self-matching? = false, initial-%-of-C-players = 99 and noise = 0.01.
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Therefore, it turns out that playing with oneself is a necessary condition to obtain some cooperation in the baseline setting.

What happens if strategy updating is asynchronous, rather than synchronous?

The impact of synchronous-updating? on cooperation is also clear. If agents update their strategies sequentially, rather than simultaneously, no
cooperation whatsoever can be sustained in the baseline setting. This observation was pointed out by Huberman and Glance (1993). As a matter of fact, to
eliminate cooperation in this setting, it is sufficient that only a small fraction of the population (~15%) do not synchronize (Mukherji et al., 1996).

What happens if we use DD-payoff = 0.1?

Increasing the value of DD-payoff to 0.1 (so the game becomes a real Prisoner’s Dilemma) also eliminates the emergence of cooperation. If the initial
fraction of cooperators is high, some small clusters of initial cooperators may survive, but these clusters disappear if we add some noise.  As an
illustration, the video below shows a simulation with DD-payoff = 0.1, initial-%-of-C-players = 99 and noise = 0.01.

Discussion

In this section we have discovered that the emergence of cooperation observed in the sample run of the previous section is not robust at all. Any of the
four modifications we have explored is sufficient to destroy cooperation altogether. Having said that, the emergence of cooperation in the spatially
embedded Prisoner’s Dilemma is much more robust for lower values of DC-payoff (see Nowak et al. (1994a, 1994b, 1996)). As an example, consider a
simulation with DC-payoff = 1.3, where we include the four modifications we have investigated, i.e. noise = 0.05, self-matching? = false, synchronous-
updating? = false, and DD-payoff = 0.1. The other parameter values are the same as in our baseline simulation, i.e. CD-payoff = 0, CC-payoff = 1, and
the grid is 81×81. Cooperation in this setting can indeed emerge and be sustained. The video below shows an illustrative run with initial conditions
initial-%-of-C-players = 25. The long-run proportion of cooperators in this setting is greater than 50%.

In section 2.3 we will see that there is another assumption in this model that has a very important (positive) influence in the emergence of cooperation:
the use of the “imitate the best neighbor” protocol. But for now, let us take a step back and think about what we have learned in this section in general
terms, i.e. beyond the specifics of this particular model.

In this section we have learned that assumptions that may seem irrelevant at first sight can actually play a crucial role in the dynamics of our models.
Furthermore, there are often complex interactions between the effects of different assumptions. We have also learned that small changes in one parameter
can lead to big changes in the dynamics of our models (see exercise 1 below for a striking example). Unfortunately, this sensitivity to seemingly small
details is not the exception but the rule in agent-based models. For this reason, it is of utmost importance to always check the robustness of our
computational results, to explore the parameter space adequately, and to keep our conclusions within the scope of what we have actually investigated, not
beyond.
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7. Exercises
You can use the following link to download the complete NetLogo model: 2×2-imitate-best-nbr-extended.

Photo by Tyler Easton on Unsplash

Exercise 1.  Roca et al. (2009a, fig. 10; 2009b, fig. 2) report a counterintuitive singularity that we can replicate with our model. To do so, modify the
baseline setting (CD-payoff = DD-payoff = 0, CC-payoff = 1) by choosing self-matching? = false, make the world 100×100 with periodic (or ‘wrap-
around’) boundaries, and set initial conditions initial-%-of-C-players = 50. Now compare the long-run fraction of cooperators for values of DC-payoff
equal to 1.3999, 1.4 and 1.4001. What do you observe?

To understand this curious phenomenon, you may also want to run simulations with initial conditions initial-%-of-C-players = 100 and make use of our
button labeled make agent at 0 0 play D.

P.S. One may wonder whether this singularity could be an artifact due to floating-point errors, since (1.4 + 1.4 + 1.4 + 1.4 + 1.4) ≠ 7 in the IEEE754
floating-point standard (which is the standard used in most programming languages, and in NetLogo in particular).  You can check that the singularity is
not due to floating-point errors choosing an equivalent parameterization that is not prone to floating-point errors. Can you come up with an equivalent
parameterization that uses only integers when computing payoffs?

Exercise 2.  Consider the simulation run from the previous section which produced the beautiful kaleidoscopic patterns. How does each of the four
modifications outlined in the motivation affect its dynamics?

Exercise 3. How can we parameterize our model to replicate the results shown in figure 2 of Killingback and Doebeli (1996, p. 1138)?

Exercise 4. What changes should we make in the code to be able to replicate figure 3 of Killingback and Doebeli (1996, p. 1139)? Note that in
the model used to produce that figure, individual patches do not update their strategy with 5% probability.

Exercise 5. In section “Sample runs”, when we added some noise to the baseline setting, we stated that the percentage of cooperators in the
regime where cooperators and defectors coexist is about ~15% if noise = 0.04. Try to corroborate this estimation using BehaviorSpace.

Exercise 6.  In our model, changing the value of noise has an immediate effect on the dynamics of the model at runtime. The same occurs with
synchronous-updating?, but not with self-matching?. How can you make the model respond immediately to changes in self-matching? ? Try to do it in a
way that does not affect the execution speed.

1. There are different ways one can implement asynchronicity. Here we implement what Cornforth et al. (2005) call "Random Asynchronous Order".
Under this scheme, at each tick all agents revise their strategy in a random order. ↵

2. We could also implement the noise extension using the NetLogo primitive ifelse, but the use of ifelse-value makes it clear that the only thing we are
doing in this procedure is to set the value of the patch variable C-player?-after-revision. ↵

3. The model with low noise seems to have two regimes, one where most agents are defecting and another one where cooperators and defectors coexist.
Simulations that start with a low percentage of initial cooperators tend to move first to the mostly-defection regime, while simulations that start with
higher proportions of initial cooperators tend to move to the coexistence regime. Note, however, that transitions from one regime to the other are
always possible with noise, and therefore they will occur if we wait for long enough. Having said that, the time we would have to wait to actually see
these transitions may be extremely long in some settings. Note also that the model with noise can be seen as an irreducible and aperiodic Markov
chain (see sufficient conditions for irreducibility and aperiodicity). This means that the long-run dynamics of this model are independent of initial
conditions. ↵

4. Newth and Cornforth (2009) analyze various other updating schemes in this model. ↵
5. If DD-payoff  0.58, no clusters of initial cooperators can survive, even in the absence of noise. ↵
6. Note that in our implementation of procedure to play we do not add individual payoffs but we multiply them, so we would not compute (1.4 + 1.4 +

1.4 + 1.4 + 1.4) but instead 5*1.4, which is indeed exactly equal to 7 in IEEE754 floating-point arithmetic. For more on the potential impact of
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floating-point errors on agent-based models, see Polhill et al. (2006) and Izquierdo and Polhill (2006). ↵

This page titled 3.2: Robustness and fragility is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R. Izquierdo, Segismundo S.
Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the LibreTexts platform.
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3.3: Extension to any number of strategies

1. Goal
Our goal here is to extend the model we have created in the previous section –which accepted games with 2 strategies only– to model (2-player
symmetric) games with any number of strategies.

2. Motivation. Spatial Hawk-Dove-Retaliator
The model we are going to develop in this section will allow us to explore games with any number of strategies. Thus, we will be able to model games
like the classical Hawk-Dove-Retaliator (Maynard Smith (1982, pp. 17-18), which is an extension of the Hawk-Dove game, with the additional strategy
Retaliator. Retaliators are just like Doves, except in contests against Hawks. When playing against Hawks, Retaliators behave like Hawks. A possible
payoff matrix for this symmetric game is the following:

 Hawk (H) Dove (D) Retaliator (R)

Hawk (H) -1 2 -1

Dove (D) 0 1 1

Retaliator (R) -1 1 1

Let us consider the population game where agents are matched to play the normal form game with payoffs as above.  The only Evolutionarily Stable
State (ESS; see Thomas (1984) and Sandholm (2010, section 8.3)) of this population game is the state (½H + ½D), with half the population playing Hawk
and the other half playing Dove (Maynard Smith (1982, appendix E), Binmore (2013)). Also, note that Retaliators are weakly dominated by Doves: they
get a strictly lower expected payoff than Doves in any situation, except in those population states with no Hawks whatsoever (at which retaliators get
exactly the same payoff as Doves).

Figure 1 below shows the best response correspondence of this game. Population states are represented in a simplex, and the color at any population state
indicates the strategy that provides the highest expected payoff at that state: orange for Hawk, green for Dove, and blue for Retaliator. As an example, the
population state where the three strategies are equally present, i.e. (⅓H + ⅓D +⅓R), which lies at the barycenter of the simplex, is colored in green,
denoting that the strategy that provides the highest expected payoff at that state is Dove.

Fig. 1. Best response correspondence for the Hawk-Dove-Retaliator game. Color indicates the strategy with the highest expected payoff
at each population state. Arrows are just a visual aid that indicate the direction of the best response. The yellow line indicates that both
Dove and Hawk are best response. The purple line indicates that both Dove and Retaliator are best response. All three strategies are best
response at the white circle at (⅔D +⅓R). Finally, the unique ESS (½H + ½D) is indicated with a red circle.

We would like to study the dynamic stability of the unique ESS (½H + ½D) in spatial contexts. In unstructured populations, ESSs are asymptotically
stable under a wide range of revision protocols (see e.g. Sandholm (2010, theorem 8.4.7)), and in particular under the best response protocol. Therefore,
one might be tempted to think that in our spatial model with the “imitate the best neighbor” protocol (including some noise to allow for the occasional
entry of any strategy), simulations will tend to spend most of the time around the unique (½H + ½D) and Retaliators would hardly be observed. This
hypothesis may be further supported by the fact that the area around the unique ESS where Retaliators are suboptimal is quite sizable. In no situation can

[1]

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/123832?pdf
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Agent-Based_Evolutionary_Game_Dynamics_(Izquierdo_Izquierdo_and_Sandholm)/03%3A_Spatial_interactions_on_a_grid/3.03%3A_Extension_to_any_number_of_strategies
https://en.wikipedia.org/wiki/Chicken_(game)
https://en.wikipedia.org/wiki/Best_response


3.3.2 https://math.libretexts.org/@go/page/123832

Retaliators obtain a higher expected payoff than Doves, and departing from the unique ESS, at least one half of the population would have to be replaced
(i.e. all the Hawks) for Retaliators to get the same expected payoff as Doves.

Having seen all this, it may come as no surprise that if we simulate this game with the random-matching model we implemented in the previous chapter,
retaliators tend to disappear from any interior population state. The following video shows an illustrative simulation starting from a situation where all
agents are retaliators (and including some noise to allow for the entry of any strategy).

So, will space give Retaliators any chance of survival? Let’s build a model to explore this question!

3. Description of the model
The model we are going to develop here is a generalization of the model implemented in the previous section. The new model will have a new parameter,
payoffs, that the user can use to input a payoff matrix of the form [ [A  A  … A ] [A  A  … A ] … [A  A  … A ] ], containing the payoffs A  that
an agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1, …, n}). The number of strategies will be inferred from the
number of rows in the payoff matrix.

The user will also be able to set any initial conditions using parameter n-of-players-for-each-strategy, which will be a list of the form [a  a  … a ], where
item a  is the initial number of agents playing strategy i. Naturally, the sum of all the elements in this list should equal the number of patches in the world.

Everything else stays as described in the previous section.

4. Interface design
We depart from the model we developed in the previous section (so if you want to preserve it, now is a good time to duplicate it).

Fig. 2. Interface design

The new interface (see figure 2 above) requires the following modifications:

Remove the sliders for parameters CC-payoff, CD-payoff, DC-payoff, DD-payoff, and initial-%-of-C-players. Since these sliders were our way of
declaring the corresponding global variables, you will now get all sorts of errors, but don’t panic, we will sort them out later.
Remove the button labeled make agent at 0 0 play D. Yes, more errors, but let us do our best to stay calm; we will fix them in a little while.
Add an input box for parameter payoffs. Create an input box with associated global variable payoffs. Set the input box type to “String (reporter)” and
tick the “Multi-Line” box. Note that the content of payoffs will be a string (i.e. a sequence of characters) from which we will have to extract the
payoff numeric values.
Create an input box to let the user set the initial number of players using each strategy. Create an input box with associated global variable n-of-
players-for-each-strategy. Set the input box type to “String (reporter)”.
Remove the “pens” in the Strategy Distribution plot. Since the number of strategies is unknown until the payoff matrix is read, we will need to create
the required number of “pens” in the Code tab. Edit the Strategy Distribution plot and delete both pens.
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We have also modified the monitor. Before it showed the ticks and now it shows the number of players (i.e. the value of a global variable named n-of-
players, to be defined shortly). You may want to do this or not, as you like.

5. Code

5.1. Skeleton of the code

Figure 3. Skeleton of the setup procedure

Figure 4. Skeleton of the go procedure

5.2. Global variables and individually-owned variables

First of all, we declare the global variables that we are going to use and we have not already declared in the interface. We will be using a global variable
named payoff-matrix to store the payoff values on a list. It will also be handy to have a variable store the number of strategies and another variable store
the number of players. Since this information will likely be used in various procedures and will not change during the course of a simulation, it makes
sense to define the new variables as global. The natural names for these two variables are n-of-strategies and n-of-players:

globals [

  payoff-matrix

  n-of-strategies

  n-of-players

]

Now we focus on the patches-own variables. We are going to need each individual patch to store its strategy and its strategy-after-revision. These two
variables replace the previous C-player? and C-player?-after-revision. Thus, the code for patches-own variables looks as follows now:
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patches-own [

  ;; C-player?                   <== no longer needed

  ;; C-player?-after-revision    <== no longer needed

  strategy                    ;; <== new variable

  strategy-after-revision     ;; <== new variable

  payoff

  my-nbrs-and-me

  my-coplayers

  n-of-my-coplayers

]

5.3. Setup procedures
The current setup procedure looks as follows:

to setup

  clear-all

  setup-players

  ask patches [update-color]

  reset-ticks

end

Clearly we will have to keep this code, but additionally we will have to set up the payoffs and set up the graph (since the number of pens to be created
depends on the payoff matrix now). To do this elegantly, we should create separate procedures for each set of related tasks; to setup-payoffs and to setup-
graph are excellent names for these new procedures. Thus, the code of procedure to setup should include calls to these new procedures:

to setup

  clear-all

  setup-payoffs    ;; <== new line

  setup-players

  setup-graph      ;; <== new line

  reset-ticks

  

  update-graph     ;; <== new line

  ask patches [update-color]

end

Note that we have also included a call to another new procedure named to update-graph, to plot the initial conditions.  The code of procedure to setup in
this model looks almost identical to the code of the same procedure in the model we developed in the previous chapter. As a matter of fact, we will be
able to reuse much of the code we wrote for that model. Let us now implement procedures to setup-payoffs, to setup-graph and to update-graph. We will
also have to modify procedures to setup-players and to update-color.

to setup-payoffs

The procedure to setup-payoffs will include the instructions to read the payoff matrix, and will also set the value of the global variable n-of-strategies.
Looking at the implementation of the same procedure in the model we developed in the previous chapter, can you implement procedure to setup-payoffs
for our new model?

Implementation of procedure to setup-payoffs.

Yes, well done! We can use exactly the same code!

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix

end

[3]
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to setup-players

The current procedure to setup-players looks as follows:

to setup-players

  ask patches [

    set payoff 0

    set C-player? false

    set C-player?-after-revision false

    set my-nbrs-and-me (patch-set neighbors self)

    set my-coplayers ifelse-value self-matching? [my-nbrs-and-me] [neighbors]

    set n-of-my-coplayers (count my-coplayers)

  ]

  ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

    set C-player? true

    set C-player?-after-revision true

  ]

end

This procedure will have to be modified substantially. In particular, the lines in bold in the code above include variables that do not exist anymore. But
don’t despair! Once again, to modify procedure to setup-players appropriately, the implementation of the same procedure in the model we developed in
the previous chapter will be invaluable. Using that code, can you try to implement procedure to setup-players in our new model?

Implementation of procedure to setup-players.

The lines marked in bold below are the only modifications we have to make to the implementation of this procedure from the previous chapter.

to setup-players

  let initial-distribution read-from-string n-of-players-for-each-strategy

  if length initial-distribution != length payoff-matrix [

    user-message (word "The number of items in\n"

      "n-of-players-for-each-strategy (i.e. "

      length initial-distribution "):\n" n-of-players-for-each-strategy

      "\nshould be equal to the number of rows\n"

      "in the payoff matrix (i.e. "

      length payoff-matrix "):\n"

      payoffs

    )

  ]

  ask patches [set strategy false]

  let i 0

  foreach initial-distribution [ j ->

    ask n-of j (patches with [strategy = false]) [

      set payoff 0

      set strategy i

      set my-nbrs-and-me (patch-set neighbors self)

      set my-coplayers ifelse-value self-matching?

         [my-nbrs-and-me] [neighbors]

      set n-of-my-coplayers (count my-coplayers)

    ]

    set i (i + 1)

  ]

  set n-of-players count patches

end
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Finally, it would be a nice touch to warn the user if the total number of players in list n-of-players-for-each-strategy is not equal to the number of patches.
One possible way of doing this is to include the code below, right before setting the patches’ strategies to false.

if sum initial-distribution != count patches [

  user-message (word "The total number of agents in\n"

    "n-of-agents-for-each-strategy (i.e. "

    sum initial-distribution "):\n" n-of-players-for-each-strategy

    "\nshould be equal to the number of patches (i.e. "

    count patches ")"

  )

]

to setup-graph

The procedure to setup-graph will create the required number of pens –one for each strategy– in the Strategy Distribution plot. Looking at the
implementation of the same procedure in the model we developed in the previous chapter, can you implement procedure to setup-graph for our new
model?

Implementation of procedure to setup-graph.

Yes, well done! We can use exactly the same code!

to setup-graph

  set-current-plot "Strategy Distribution"

  foreach (range n-of-strategies) [ i ->

    create-temporary-plot-pen (word i)

    set-plot-pen-mode 1

    set-plot-pen-color 25 + 40 * i

  ]

end

to update-graph

Procedure to update-graph will draw the strategy distribution using a stacked bar chart, just like in the model we implemented in the previous chapter (see
figure 3 in section 1.1). This procedure is called at the end of setup to plot the initial distribution of strategies, and will also be called at the end of
procedure to go, to plot the strategy distribution at the end of every tick.

Looking at the implementation of the same procedure in the model we developed in the previous chapter, can you implement procedure to update-graph
for our new model?

Implementation of procedure to update-graph.

Yes, well done! We only have to replace the word players in the previous code with patches in the current code.

to update-graph

  let strategy-numbers (range n-of-strategies)

  let strategy-frequencies map [ n -> 

        count patches with [strategy = n] / n-of-players 

      ] strategy-numbers

  set-current-plot "Strategy Distribution"

  let bar 1

  foreach strategy-numbers [ n ->

    set-current-plot-pen (word n)

    plotxy ticks bar

    set bar (bar - (item n strategy-frequencies))

  ]

  set-plot-y-range 0 1

end
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to update-color

Note that in the previous model, patches were colored according to the four possible combinations of values of C-player? and C-player?-after-revision.
Now that there can be many strategies, it seems more natural to use one color for each strategy. It also makes sense to use the same color legend as in the
Strategy Distribution plot (see procedure to setup-graph). Can you try and implement the new version of to update-color?

Implementation of procedure to update-color.

Here we go!

to update-color

  set pcolor 25 + 40 * strategy

end

5.4. Go procedure
The current go procedure looks as follows:

to go

  ifelse synchronous-updating?

    [

      ask patches [ play ]

      ask patches [

        update-strategy-after-revision

          ;; here we are not updating the agent's strategy yet

        update-color

      ]

      ask patches [ update-strategy ]

        ;; now we update every agent's strategy at the same time

    ]

    [

      ask patches [

        play

        ask my-coplayers [ play ]

           ;; since your coplayers' strategies or

           ;; your coplayers' coplayers' strategies

           ;; could have changed since the last time

           ;; your coplayers played

        update-strategy-after-revision

        update-color

        update-strategy

      ]

    ]

  tick

end

In the previous version of the model, the call to update-color had to be done in between the calls to update-strategy-after-revision and update-strategy.
Now that the patches’ color only depends on their (updated) strategy, we should ask patches to run update-color at the end of procedure to go, after every
patch has updated its strategy.

Finally, recall that we also have to run update-graph at the end of procedure to go, to plot the strategy distribution at the end of every tick. Thus, the code
of procedure to go will be as follows:

to go

  ifelse synchronous-updating?

    [

      ask patches [ play ]

      ask patches [ update-strategy-after-revision ]

        ;; here we are not updating the agent's strategy yet
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      ask patches [ update-strategy ]

        ;; now we update every agent's strategy at the same time

    ]

    [

      ask patches [

        play

        ask my-coplayers [ play ]

           ;; since your coplayers' strategies or

           ;; your coplayers' coplayers' strategies

           ;; could have changed since the last time

           ;; your coplayers played

        update-strategy-after-revision

        update-strategy

      ]

    ]

  tick

  update-graph                 ;; <== new line

  ask patches [update-color]   ;; <== new line

end

5.5. Other procedures

to play

In procedure to play the patch has to compute its payoff. For that, the patch must count how many of its coplayers are using each of the possible
strategies. We can count the number of coplayers that are using strategy i ∈ {0, 1, …, (n-of-strategies – 1)} as:

count my-coplayers with [strategy = i]  

Thus, we just have to run this little function for each value of i ∈ {0, 1, …, (n-of-strategies – 1)} . This can be easily done using primitive n-values:

n-values n-of-strategies [ i -> count my-coplayers with [strategy = i] ]

The code above produces a list with the number of coplayers that are using each strategy. Let us store this list in local variable n-of-coplayers-with-
strategy-?:

let n-of-coplayers-with-strategy-? n-values n-of-strategies [ i -> 

     count my-coplayers with [strategy = i] ]

Now note that the relevant row of the payoff-matrix is the one at position strategy. We store this row in local variable my-payoffs:

let my-payoffs (item strategy payoff-matrix)

Finally, the payoff that the patch will get for each coplayer playing strategy i is the i-th element of the list my-payoffs, so we only have to multiply the
two lists (my-payoffs and n-of-coplayers-with-strategy-?) element by element, and add up all the elements in the resulting list. To multiply the two lists
element by element we use primitive map:

sum (map * my-payoffs n-of-coplayers-with-strategy-?)

With this, we have finished the code in procedure to play.

to play

  let n-of-coplayers-with-strategy-? n-values n-of-strategies [ i ->

    count my-coplayers with [strategy = i] ]

  let my-payoffs (item strategy payoff-matrix)

  set payoff sum (map * my-payoffs n-of-coplayers-with-strategy-?)

end
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to update-strategy-after-revision

Right now, procedure to update-strategy-after-revision is implemented as follows:

to update-strategy-after-revision

  set C-player?-after-revision ifelse-value (random-float 1 < noise)

    [ one-of [true false] ]

    [ [C-player?] of one-of (my-nbrs-and-me with-max [payoff]) ]

end

What changes do we have to make in this procedure?

Implementation of procedure to update-strategy-after-revision.

The only changes we have to make are highlighted in bold below:

to update-strategy-after-revision

  set strategy-after-revision ifelse-value (random-float 1 < noise)

    [ random n-of-strategies ]

    [ [strategy] of one-of (my-nbrs-and-me with-max [payoff]) ]

end

to update-strategy

Right now, procedure to update-strategy is implemented as follows:

to update-strategy

  set C-player? C-player?-after-revision

end

What changes do we have to make in this procedure?

Implementation of procedure to update-strategy.

Keep up the excellent work!

to update-strategy

  set strategy strategy-after-revision

end

5.6. Complete code in the Code tab
The Code tab is ready!

globals [

  payoff-matrix

  n-of-strategies

  n-of-players

]

patches-own [

  strategy

  strategy-after-revision

  payoff

  my-nbrs-and-me

  my-coplayers

  n-of-my-coplayers

]

to setup

  clear-all
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  setup-payoffs

  setup-players

  setup-graph

  reset-ticks

  update-graph

  ask patches [update-color]

end

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix

end

to setup-players

  let initial-distribution read-from-string n-of-players-for-each-strategy

  if length initial-distribution != length payoff-matrix [

    user-message (word "The number of items in\n"

      "n-of-players-for-each-strategy (i.e. "

      length initial-distribution "):\n" n-of-players-for-each-strategy

      "\nshould be equal to the number of rows\n"

      "in the payoff matrix (i.e. "

      length payoff-matrix "):\n"

      payoffs

    )

  ]

  if sum initial-distribution != count patches [

    user-message (word "The total number of agents in\n"

      "n-of-agents-for-each-strategy (i.e. "

      sum initial-distribution "):\n" n-of-players-for-each-strategy

      "\nshould be equal to the number of patches (i.e. "

      count patches ")"

    )

  ]

  ask patches [set strategy false]

  let i 0

  foreach initial-distribution [ j ->

    ask n-of j (patches with [strategy = false]) [

      set payoff 0

      set strategy i

      set my-nbrs-and-me (patch-set neighbors self)

      set my-coplayers ifelse-value self-matching?

         [my-nbrs-and-me] [neighbors]

      set n-of-my-coplayers (count my-coplayers)

    ]

    set i (i + 1)

  ]

  set n-of-players count patches

end

to setup-graph

  set-current-plot "Strategy Distribution"
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  foreach (range n-of-strategies) [ i ->

    create-temporary-plot-pen (word i)

    set-plot-pen-mode 1

    set-plot-pen-color 25 + 40 * i

  ]

end

to go

  ifelse synchronous-updating?

    [

      ask patches [ play ]

      ask patches [ update-strategy-after-revision ]

        ;; here we are not updating the agent's strategy yet

      ask patches [ update-strategy ]

        ;; now we update every agent's strategy at the same time

    ]

    [

      ask patches [

        play

        ask my-coplayers [ play ]

           ;; since your coplayers' strategies or

           ;; your coplayers' coplayers' strategies

           ;; could have changed since the last time

           ;; your coplayers played

        update-strategy-after-revision

        update-strategy

      ]

    ]

  tick

  update-graph

  ask patches [update-color]

end

to play

  let n-of-coplayers-with-strategy-? n-values n-of-strategies [ i ->

    count my-coplayers with [strategy = i] ]

  let my-payoffs (item strategy payoff-matrix)

  set payoff sum (map * my-payoffs n-of-coplayers-with-strategy-?)

end

to update-strategy-after-revision

  set strategy-after-revision ifelse-value (random-float 1 < noise)

    [ random n-of-strategies ]

    [ [strategy] of one-of my-nbrs-and-me with-max [payoff] ]

end

to update-strategy

  set strategy strategy-after-revision

end

to update-graph

  let strategy-numbers (range n-of-strategies)

  let strategy-frequencies map [ n ->

    count patches with [strategy = n] / n-of-players ] strategy-numbers
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  set-current-plot "Strategy Distribution"

  let bar 1

  foreach strategy-numbers [ n ->

    set-current-plot-pen (word n)

    plotxy ticks bar

    set bar (bar - (item n strategy-frequencies))

  ]

  set-plot-y-range 0 1

end

to update-color

  set pcolor 25 + 40 * strategy

end

5.7. Code inside the plots

Note that we take care of all plotting in the update-graph procedure. Thus there is no need to write any code inside the plot. We could instead have written
the code of procedure to update-graph inside the plot, but given that it is somewhat lengthy, we find it more convenient to group it with the rest of the
code in the Code tab.

6. Sample runs
Now that we have implemented the model we can explore the dynamics of the spatial Hawk-Dove-Retaliator game! Will Retaliators survive in a spatial
context? Let us explore this question using the parameter values shown in figure 2 above. Get ready… because the results are going to blow your mind!

Unbelievable! Retaliators do not only survive, but they are capable of taking over about half the population. Is this observation robust? If you modify the
parameters of the model you will see that indeed it is. The following video shows an illustrative run with noise = 0.05, synchronous-updating? = false and
self-matching? = false.

The greater level of noise means that more Hawks appear by chance. This harms Retaliators more than it harms Doves, but Retaliators still manage to
stay the most prevalent strategy in the population. How can this be?

First, note that even though the state where the whole population is choosing Retaliator is not an ESS, it is a Neutrally Stable State (Sandholm, 2010, p.
82). And, crucially, it is the only pure state that is Nash (i.e. the only pure strategy that is best response to itself). Note that in spatial contexts neighbors
face similar situations when playing the game (since their neighborhoods overlap). Because of this, it is often the case that neighbors choose the same
strategy, and therefore clusters of agents using the same strategy are common. In the Hawk-Dove-Retaliator game, clusters of Retaliators are more stable
than clusters of Doves (which are easily invadable by Hawks) and also more stable than clusters of Hawks (which are easily invadable by Doves). This
partially explains the amazing success of Retaliators in spatial contexts, even though they are weakly dominated by Doves.

7. Exercises
You can use the following link to download the complete NetLogo model: nxn-imitate-best-nbr.

0:00

0:00

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/123832?pdf
https://wisc.pb.unizin.org/app/uploads/sites/28/2019/12/nxn-imitate-best-nbr.nlogo


3.3.13 https://math.libretexts.org/@go/page/123832

Snapshot of a simulation run of a spatial monocyclic game with noise = 0.001,
synchronous-updating? = false and self-matching? = true.

Exercise 1.  Killingback and Doebeli (1996, pp. 1140-1) explore the spatial Hawk-Dove-Retaliator-Bully game, with payoff matrix:

[[ -1 2 -1 2]
[ 0 1 1 0]
[ -1 1 1 2]
[ 0 2 0 1]]

Do Retaliators still do well in this game?

Exercise 2.  Explore the beautiful dynamics of the following monocyclic game (Sandholm, 2010, example 9.2.2, pp. 329-30):

[[ 0 -1 0 0 1]
[ 1 0 -1 0 0]
[ 0 1 0 -1 0]
[ 0 0 1 0 -1]
[-1 0 0 1 0]]

Compare simulations with balanced initial conditions (i.e. all strategies approximately equally present) and with unbalanced initial conditions (e.g. only
one strategy present at the beginning of the simulation). What do you observe?

Exercise 3.  How can we parameterize our model to replicate the results shown in figure 4 of Killingback and Doebeli (1996, p. 1141)?

Exercise 4.  In procedure to play we compute the list with the number of coplayers that are using each strategy as follows:

n-values n-of-strategies [ i -> count my-coplayers with [strategy = i] ]

Can you implement the same functionality using the primitive map instead of n-values?

Exercise 5. Reimplement the procedure to update-strategy-after-revision so the revising agent uses the imitative pairwise-difference protocol
adapted to networks, i.e. the revising agent looks at a random neighbor and copies her strategy only if the observed agent’s average payoff is higher than
the revising agent’s average payoff; in that case, the revising agent switches with probability proportional to the payoff difference.

1. The payoff function of the associated population game is , where  denotes the population state and  denotes the payoff matrix of the
normal form game. This population game can be obtained by assuming that every agent plays with every other agent. ↵

2. The fact that the simulation tends to linger around the ESS is a coincidence, since the imitate-the-better-realization protocol depends only on ordinal
properties of the payoffs. What is not a coincidence is that Retaliators (which are weakly dominated by Doves) are eliminated in the absence of noise
(Loginov, 2019). ↵

3. There is some flexibility in the order of the lines within procedure to setup. For instance, the call to procedure setup-graph could be made before or
after executing reset-ticks. ↵

This page titled 3.3: Extension to any number of strategies is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R. Izquierdo,
Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the LibreTexts platform.
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3.4: Other types of neighborhoods and other revision protocols

1. Goal
Our goal in this section is to extend the model we have created in the previous section by adding two features that are crucial to assess the impact of
space on evolutionary models:

The possibility to model different types of neighborhoods of arbitrary size. Besides Moore neighborhoods, we will implement Von Neumann
neighborhoods, and both of them of any size.
The possibility to model other revision protocols besides the “imitate the best neighbor” protocol. In particular, we will implement the imitative
pairwise-difference protocol, the imitative positive-proportional protocol, and the imitative logit protocol.

2. Motivation. Robustness of cooperation in spatial settings
In section 2.1 we explored the impact of different assumptions on the robustness of cooperation in spatial settings. However, one assumption we did not
change was the revision protocol (aka update rule). Roca et al. (2009a, 2009b) conducted an impressive simulation study of the effect of spatial structure
in 2×2 games, and discovered that the revision protocol can play a major role. In particular, they found that the “imitate the best neighbor” protocol
(which Roca et al. (2009a, 2009b) call “unconditional imitation”) favors cooperation in the Prisoner’s Dilemma more than any other revision protocol
they studied.

In what concerns the Prisoner’s Dilemma, the above results also prove that the promotion of cooperation in
this game is not robust against changes in the update rule, because the beneficial effect of spatial lattices
practically disappears for rules different from unconditional imitation, when seen in the wider scope of the
ST plane. Roca et al. (2009b, p. 9)

In this section we are going to implement several revision protocols. This will allow us to replicate Roca et al.’s (2009a, 2009b) results… and many
others (see the proposed exercises).

3. Description of the model
The model we are going to develop here is a generalization of the model implemented in the previous section. In particular, we are going to add the
following four parameters:

neighborhood-type. This parameter is used to define the agents’ neighborhood (both for playing and for strategy updating).  The parameter can have
two possible values: “Moore” for a Moore neighborhood, or “Von Neumann” for a Von Neumann neighborhood.
neighborhood-range. This parameter determines the range of the neighborhood. A patch’s Moore neighborhood of range r consists of the patches
within Chebyshev distance r. A patch’s Von Neumann neighborhood of range r is composed of the patches within Manhattan distance r. Note that in
our descriptions of revision protocols below, we do not consider a patch to be a neighbor of itself unless otherwise stated.
protocol. This parameter determines the revision protocol that agents will follow. It will be implemented with a chooser, with four possible values:

“best-neighbor” (Nowak and May, 1992, 1993). This is the “imitate the best neighbor” protocol, already implemented in our model.
“imitative-pairwise-difference” (Hauert 2002,  2006). This is the imitative pairwise-difference protocol we saw in section 0.1 adapted to
networks. Under this protocol, the revising agent looks at a random neighbor and considers copying her strategy only if the observed neighbor’s
average payoff is higher than the revising agent’s average payoff; in that case, the revising agent switches with probability proportional to the
payoff difference.
“imitative-positive-proportional-m” (Nowak et al., 1994a, b). Under this revision protocol, the revising agent copies the strategy of one of her
neighbors (including herself, in this case) with probability proportional to their total payoff raised to parameter m.  Parameter m controls the
intensity of selection (see below). We do not allow for negative payoffs when using this protocol.
“imitative-logit-m” (Weibull, 1995, p. 161; Szabó and Tőke, 1998). Under this revision protocol, the revising agent  looks at one of her neighbors
 at random and copies her strategy with probability , where  denotes agent ‘s average payoff and .  Parameter m controls the

intensity of selection (see below).

m. This is a parameter that controls the intensity of selection in revision protocols “imitative-positive-proportional-m” and “imitative-logit-m” (see
above). High values of m imply that selection is strongly based on payoffs, i.e. the agents with the highest payoffs will be chosen with very high
probability. Lower values of m mean that the sensitivity of selection to payoffs is weak (e.g. if m = 0, selection among agents is random, i.e.
independent of their payoffs).

Everything else stays as described in the previous section.

4. Interface design
We depart from the model we developed in the previous section (so if you want to preserve it, now is a good time to duplicate it).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

CODE 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/123833?pdf
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Agent-Based_Evolutionary_Game_Dynamics_(Izquierdo_Izquierdo_and_Sandholm)/03%3A_Spatial_interactions_on_a_grid/3.04%3A_Other_types_of_neighborhoods_and_other_revision_protocols
https://en.wikipedia.org/wiki/Moore_neighborhood
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood
https://en.wikipedia.org/wiki/Moore_neighborhood
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood
https://en.wikipedia.org/wiki/Moore_neighborhood
https://en.wikipedia.org/wiki/Chebyshev_distance
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood
https://en.wikipedia.org/wiki/Manhattan_distance


3.4.2 https://math.libretexts.org/@go/page/123833

Figure 1. Interface design.

In the new interface (see figure 1 above), we have to add:

One chooser for new parameter neighborhood-type (with possible values “Moore” and “Von Neumann“), and a slider for parameter neighborhood-
range (with minimum = 1 and increment = 1).
One chooser for new parameter protocol (with possible values “best-neighbor“, “imitative-pairwise-difference“, “imitative-positive-proportional-m”
and “imitative-logit-m“), and a slider for parameter m (with minimum = 0 and increment = 0.1).

We have also added a button (labeled show player’s neighborhood) to see any patch’s neighborhood on the 2D view and another button (labeled clear) to
clear the display of the neighborhood.

5. Code

5.1. Skeleton of the code

The skeleton of the code for procedures to setup and to go is the same as in the previous model. In this section we will modify mainly the following two
procedures:

procedure to setup-players, to set the players’ neighborhoods according to parameters neighborhood-type and neighborhood-range (see figure 2).

Figure 2. Calls to other procedures from procedure to setup-players.

procedure to update-strategy-after-revision, to run the revision protocol indicated in parameter protocol (see figure 3).

Figure 3. Calls to other procedures from procedure to update-strategy-after-revision.
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5.2. Extension I. Implementation of different neighborhoods
Recall that patches have the following two individually owned variables:

my-coplayers, which contains the set of agents with whom the patch plays the game (and is affected by parameter self-matching?), and
my-nbrs-and-me, which is the set of agents the player considers when revising its strategy.

These two agentsets are the same if self-matching? is true, and differ only in the focal patch if self-matching? is false. We will keep this distinction for
any type of neighborhood.

To implement the different neighborhoods, primitive at-points will be very useful. This primitive reports a subset of a given agentset that includes only
the agents on the patches at the given coordinates (relative to the calling agent). As an example, the following code gives a patch’s Von Neumann
neighborhood of range 1 (including the patch itself):

patches at-points [[-1 0] [0 -1] [0 0] [0 1] [1 0]]

And the following code gives a patch’s Moore neighborhood of range 1 (including the patch itself):

patches at-points [[-1 -1] [-1 0] [-1 1] [0 -1] [0 0] [0 1] [1 -1] [1 0] [1 1]]

Thus, the key is to implement procedures that report the appropriate lists of relative coordinates.  Let’s do this!

Implementation of relative coordinates for Moore neighborhoods

Our goal here is to implement a procedure that reports the appropriate list of relative coordinates for Moore neighborhoods, for any given range and
letting the user choose whether the list should include the item [0 0] or not. Let us call this reporter to-report moore-offsets. Note that this reporter takes
two inputs, which we can call r (for range) and include-center?.

to-report moore-offsets [r include-center?]

   ;; code to be written

end

Below we provide some examples of what reporter to-report moore-offsets should produce:

If r = 1 and include-center? is true:

[[-1 -1] [-1 0] [-1 1] [0 -1] [0 0] [0 1] [1 -1] [1 0] [1 1]]

If r = 1 and include-center? is false:

[[-1 -1] [-1 0] [-1 1] [0 -1] [0 1] [1 -1] [1 0] [1 1]]

If r = 2 and include-center? is true:

[[-2 -2] [-2 -1] [-2 0] [-2 1] [-2 2] [-1 -2] [-1 -1] [-1 0] [-1 1] [-1 2] [0 -2] [0 -1] [0 0] [0 

Note that the effect of input include-center? is just to include or exclude [0 0] from the output list, so we can worry about that at the end of the
implementation. To produce the list of Moore offsets for range r, we can start building the list l = [ –r, –r+1, …, r-1, r ] and then build 2-item lists which
each element of the list l together with each element of the same list l. Thus, let us build the list l = [ –r, –r+1, …, r-1, r ]:

let l (range (- r) (r + 1))

To build 2-items lists with first element el1 and second element each of the elements of list l, we can use primitive map as follows:

map [el2 -> list el1 el2] l

And now we should make el1 be each of the elements of list l. For this we can use primitive map again:

map [ el1 -> map [el2 -> list el1 el2] l] l

The only problem now is that we have several nested lists. For example, the code above for l = [ -1, 0, 1 ] produces:

[9]
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[[[-1 -1] [-1 0] [-1 1]] [[0 -1] [0 0] [0 1]] [[1 -1] [1 0] [1 1]]]

Note that the outmost list contains three sublists, each of which contains three 2-item lists. We can get rid of the extra lists using primitives reduce and
sentence:

let result reduce sentence map [ el1 -> map [el2 -> list el1 el2] l] l

The code above creates the list of required offsets, including [0 0]. Now we just have to remove [0 0] if and only if input include-center? is false. Thus,
the final code for reporter to-report moore-offsets is as follows:

to-report moore-offsets [r include-center?]

  let l (range (- r) (r + 1))

  let result reduce sentence map [ el1 -> map [el2 -> list el1 el2] l] l

  report ifelse-value include-center?

    [ result ]

    [ remove [0 0] result ]

end

Implementation of relative coordinates for Von Neumann neighborhoods

Our goal here is to implement a procedure that reports the appropriate list of relative coordinates for Von Neumann neighborhoods. Let us call this
reporter to-report von-neumann-offsets and let us call its inputs r (for range) and include-center?, just like before.

to-report von-neumann-offsets [r include-center?]

   ;; code to be written

end

Note that, for any given r and include-center?, the list of offsets for a Von Neumann neighborhood is a subset of the list of offsets for the corresponding
Moore neighborhood. In particular, the list of Von Neumann offsets is composed of the elements [el1 el2] in the list of Moore offsets that satisfy the
condition |el1| + |el2| ≤ r . Thus, we can create the corresponding list of Moore offsets and filter those coordinates that satisfy the condition using
primitive filter. Do you want to give it a try?

Implementation of procedure to-report von-neumann-offsets

Yes, well done!

to-report von-neumann-offsets [r include-center?]

  let moore-list (moore-offsets r include-center?)

  report filter [l -> abs first l + abs last l <= r] moore-list

end

Putting everything together

Now that we have implemented to-report moore-offsets and to-report von-neumann-offsets, we can use them in procedure to setup-players to create the
right neighborhood for each patch. The only lines we have to modify are the ones highlighted in bold below:

to setup-players

  let initial-distribution read-from-string n-of-players-for-each-strategy

  if length initial-distribution != length payoff-matrix [

    user-message (word "The number of items in\n"

      "n-of-players-for-each-strategy (i.e. "

      length initial-distribution "):\n" n-of-players-for-each-strategy

      "\nshould be equal to the number of rows\n"

      "in the payoff matrix (i.e. "

      length payoff-matrix "):\n"

      payoffs

    )

  ]
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  if sum initial-distribution != count patches [

    user-message (word "The total number of agents in\n"

      "n-of-agents-for-each-strategy (i.e. "

      sum initial-distribution "):\n" n-of-players-for-each-strategy

      "\nshould be equal to the number of patches (i.e. "

      count patches ")"

    )

  ]

  ask patches [set strategy false]

  let i 0

  let offsets ifelse-value (neighborhood-type = "Von Neumann")

        [ von-neumann-offsets neighborhood-range self-matching? ]

        [ moore-offsets neighborhood-range self-matching? ]

  foreach initial-distribution [ j ->

    ask n-of j (patches with [strategy = false]) [

      set payoff 0

      set strategy i

      set my-coplayers patches at-points offsets

      set n-of-my-coplayers (count my-coplayers)

      set my-nbrs-and-me (patch-set my-coplayers self)

    ]

    set i (i + 1)

  ]

  set n-of-players count patches

end

Note that variable my-coplayers may or may not contain the patch itself (depending on the value of parameter self-matching?), but variable my-nbrs-and-
me will always contain it, since we are setting its value to (patch-set my-coplayers self). This is perfectly fine even if my-coplayers already contains the
patch itself, since agentsets do not contain duplicates. Adding an agent a to an agentset that already contains that agent a has no effect whatsoever.

A nice final touch

Finally, we are going to write some code to let the user see the neighborhood of any patch in the 2D view by clicking on it. This is just for displaying
purposes, so feel free to skip this if you’re not really interested. Let us start by implementing a new procedure called to show-neighborhood as follows:

to show-neighborhood

  if mouse-down? [

    ask patch mouse-xcor mouse-ycor [

      ask my-coplayers [set pcolor white]

    ]

  ]

  display

end

You may want to read the documentation for primitives mouse-down?, mouse-xcor and mouse-ycor. Basically, this procedure paints in white the patches
contained in the variable my-coplayers of the patch you click with your mouse. However, for this to work, the procedure must be running all the time. To
do this, we can run this procedure within the button labeled show player’s neighborhood in the interface, and make this button be a “forever” button.

Insert the following code within the button labeled show player’s neighborhood:

with-local-randomness [show-neighborhood]
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The use of primitive with-local-randomness guarantees that this piece of code does not interfere with the generation of pseudorandom numbers for the
rest of the model.

To clear the white paint, insert the following code within the button labeled clear (which should not be a “forever” button):

with-local-randomness [ ask patches [update-color] ]

Figure 4 shows a patch’s Von Neumann neighborhood of range 5 (excluding the patch itself) painted in white.

Figure 4. The 2D view shows in white a patch’s set my-coplayers. Relevant parameters: neighborhood-type = “Von Neumann“, neighborhood-range =
5, and self-matching? = false.

5.3. Extension II. Implementation of different revision protocols

The implementation of the revision protocol takes place in procedure to update-strategy-after-revision. Note that the effect of noise is the same regardless
of the revision protocol, so we can deal with noise in a unified way, regardless of which revision protocol will be executed. One possible way of doing
this is as follows:

to update-strategy-after-revision

  ifelse (random-float 1 < noise)

    [ set strategy-after-revision random n-of-strategies ]

    [ 

      ;; code to set strategy-after-revision 

      ;; using the revision protocol indicated by the user

      ;; through parameter protocol

    ]

end

To make the implementation of revision protocols elegant and modular, we should implement a different procedure for each revision protocol. Let us call
these procedures: best-neighbor-protocol, imitative-pairwise-difference-protocol, imitative-positive-proportional-m-protocol and imitative-logit-m-
protocol. With these procedures in place, the code for procedure to update-strategy-after-revision would just look as follows:

to update-strategy-after-revision

  ifelse (random-float 1 < noise)

    [ set strategy-after-revision random n-of-strategies ]

    [ (ifelse

        protocol = "best-neighbor"

                  [ best-neighbor-protocol ]

        protocol = "imitative-pairwise-difference"

                  [ imitative-pairwise-difference-protocol ]

        protocol = "imitative-positive-proportional-m"

                  [ imitative-positive-proportional-m-protocol ]

        protocol = "imitative-logit-m"
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                  [ imitative-logit-m-protocol ]

      )

    ]

end

Note that primitive ifelse can work with multiple conditions, just like switch statements in other programming languages.

Now we just have to implement the procedures for each of the four revision protocols. Do you want to give it a try? The first one is not very difficult.

Implementation of procedure to best-neighbor-protocol

to best-neighbor-protocol

  set strategy-after-revision 

      [strategy] of one-of my-nbrs-and-me with-max [payoff]

end

The implementation of procedure to imitative-pairwise-difference-protocol is significantly more difficult than the previous one, but if you have managed
to read this book until here, you certainly have what it takes to do it!

Implementation of procedure to imitative-pairwise-difference-protocol

A possible implementation of this procedure is as follows:

to imitative-pairwise-difference-protocol

  let observed-player one-of other my-coplayers

  ;; compute difference in average payoffs

  let payoff-diff ([payoff / n-of-my-coplayers] of observed-player   

                 - (payoff / n-of-my-coplayers))

  set strategy-after-revision   

     ifelse-value (random-float 1 < (payoff-diff / max-payoff-difference))

       [ [strategy] of observed-player ]

       [ strategy ]

      ;; If your strategy is the better, payoff-diff is negative,

      ;; so you are going to stick with it.

      ;; If it's not, you switch with probability

      ;; (payoff-diff / max-payoff-difference)

end

Note that we are using a new variable, i.e. max-payoff-difference, to make sure that the agent changes strategy with probability proportional to the
average payoff difference. Thus, we should define it as global (since this max-payoff difference will not change over the course of a run), as follows:

globals [

  payoff-matrix

  n-of-strategies

  n-of-players

  max-payoff-difference     ;; <== New line

]

We also have to set the value of this new variable. We can do that at the end of the setup-payoffs method, as follows:

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix

  ;;New lines below

  set max-payoff-difference
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     (max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)

end

Finally, note that we have implemented two new procedures to compute the minimum and the maximum value of a matrix:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; SUPPORTING PROCEDURES ;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;

;;; Matrices ;;;

;;;;;;;;;;;;;;;;

to-report max-of-matrix [m]

  report max reduce sentence m

end

to-report min-of-matrix [m]

  report min reduce sentence m

end

To implement procedure to imitative-positive-proportional-m-protocol, there is an extension that comes bundled with NetLogo which will make our life
much easier: extension rnd. To use it, you just have to add the following line at the beginning of your code

extensions [rnd]

Having loaded the rnd extension, you can use primitive rnd:weighted-one-of, which will be very handy. With this information, you may want to try to
implement this short procedure yourself.

Implementation of procedure to imitative-positive-proportional-m-protocol

to imitative-positive-proportional-m-protocol

  let chosen-nbr rnd:weighted-one-of my-nbrs-and-me [ payoff ^ m ]

  set strategy-after-revision [strategy] of chosen-nbr

end

If you wanted to use average rather than total payoffs, you would only have to divide the payoff by n-of-my-coplayers.

To avoid errors when payoffs are negative and this protocol is used, it would be nice to check that payoffs are non-negative, and if they are, let the user
know. We can do this implementing the following procedure:

to check-payoffs-are-non-negative

  if min reduce sentence payoff-matrix < 0 [

    user-message (word

      "Since you are using protocol = imitative-positive-proportional-m, all elements in the payoff m

      payoffs

      "\nshould be non-negative numbers.")

  ]

end

An appropriate place to call this procedure would be at the end of procedure to setup-payoffs, which would then be as follows:

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix
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  ;; New lines below

  set max-payoff-difference 

     (max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)

  if protocol = "imitative-positive-proportional-m" 

     [ check-payoffs-are-non-negative ]

end

The implementation of procedure to imitative-logit-m-protocol is not extremely hard after having seen the implementation of to imitative-pairwise-
difference-protocol, and realizing that .

Implementation of procedure to imitative-logit-m-protocol

A possible implementation of this procedure is as follows:

to imitative-logit-m-protocol

  let observed-player one-of other my-coplayers

  ;; compute difference in average payoffs 

  let payoff-diff ([payoff / n-of-my-coplayers] of observed-player   

                 - (payoff / n-of-my-coplayers))

  set strategy-after-revision   

    ifelse-value (random-float 1 < (1 / (1 + exp (- m * payoff-diff))))

      [ [strategy] of observed-player ]

      [ strategy ]

end

5.5. Complete code in the Code tab

The Code tab is ready! Congratulations! With this model you can rigorously explore the effect of space in 2-player games.

extensions [rnd]         ;; <== New line

globals [

  payoff-matrix

  n-of-strategies

  n-of-players

  max-payoff-difference  ;; <== New line

]

patches-own [

  strategy

  strategy-after-revision

  payoff

  my-nbrs-and-me

  my-coplayers

  n-of-my-coplayers

]

to setup

  clear-all

  setup-payoffs

  setup-players

  setup-graph

  reset-ticks

  update-graph
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  ask patches [update-color]

end

to setup-payoffs

  set payoff-matrix read-from-string payoffs

  set n-of-strategies length payoff-matrix

  ;; New lines below

  set max-payoff-difference

     (max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)

  if protocol = "imitative-positive-proportional-m" 

     [ check-payoffs-are-non-negative ]

end

to setup-players

  let initial-distribution read-from-string n-of-players-for-each-strategy

  if length initial-distribution != length payoff-matrix [

    user-message (word "The number of items in\n"

      "n-of-players-for-each-strategy (i.e. "

      length initial-distribution "):\n" n-of-players-for-each-strategy

      "\nshould be equal to the number of rows\n"

      "in the payoff matrix (i.e. "

      length payoff-matrix "):\n"

      payoffs

    )

  ]

  if sum initial-distribution != count patches [

    user-message (word "The total number of agents in\n"

      "n-of-agents-for-each-strategy (i.e. "

      sum initial-distribution "):\n" n-of-players-for-each-strategy

      "\nshould be equal to the number of patches (i.e. "

      count patches ")"

    )

  ]

  ask patches [set strategy false]

  let i 0

  let offsets ifelse-value (neighborhood-type = "Von Neumann")

        [ von-neumann-offsets neighborhood-range self-matching? ]

        [ moore-offsets neighborhood-range self-matching? ]

  foreach initial-distribution [ j ->

    ask n-of j (patches with [strategy = false]) [

      set payoff 0

      set strategy i

      set my-coplayers patches at-points offsets

      set n-of-my-coplayers (count my-coplayers)

      set my-nbrs-and-me (patch-set my-coplayers self)

    ]

    set i (i + 1)

  ]
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  set n-of-players count patches

end

to setup-graph

  set-current-plot "Strategy Distribution"

  foreach (range n-of-strategies) [ i ->

    create-temporary-plot-pen (word i)

    set-plot-pen-mode 1

    set-plot-pen-color 25 + 40 * i

  ]

end

to go

  ifelse synchronous-updating?

    [

      ask patches [ play ]

      ask patches [ update-strategy-after-revision ]

        ;; here we are not updating the agent's strategy yet

      ask patches [ update-strategy ]

        ;; now we update every agent's strategy at the same time

    ]

    [

      ask patches [

        play

        ask my-coplayers [ play ]

           ;; since your coplayers' strategies or

           ;; your coplayers' coplayers' strategies

           ;; could have changed since the last time

           ;; your coplayers played

        update-strategy-after-revision

        update-strategy

      ]

    ]

  tick

  update-graph

  ask patches [update-color]

end

to play

  let n-of-coplayers-with-strategy-? n-values n-of-strategies [ i ->

    count my-coplayers with [strategy = i] ]

  let my-payoffs (item strategy payoff-matrix)

  set payoff sum (map * my-payoffs n-of-coplayers-with-strategy-?)

end

to update-strategy-after-revision

  ifelse (random-float 1 < noise)

    [ set strategy-after-revision random n-of-strategies ]

    [ (ifelse

        protocol = "best-neighbor"

                  [ best-neighbor-protocol ]

        protocol = "imitative-pairwise-difference"

                  [ imitative-pairwise-difference-protocol ]

        protocol = "imitative-positive-proportional-m"
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                  [ imitative-positive-proportional-m-protocol ]

        protocol = "imitative-logit-m"

                  [ imitative-logit-m-protocol ]

      )

    ]

end

to best-neighbor-protocol

  set strategy-after-revision 

      [strategy] of one-of my-nbrs-and-me with-max [payoff]

end

to imitative-pairwise-difference-protocol

  let observed-player one-of other my-coplayers

  ;; compute difference in average payoffs

  let payoff-diff ([payoff / n-of-my-coplayers] of observed-player 

                 - (payoff / n-of-my-coplayers))

  set strategy-after-revision 

      ifelse-value (random-float 1 < (payoff-diff / max-payoff-difference))

        [ [strategy] of observed-player ]

        [ strategy ]

      ;; If your strategy is the better, payoff-diff is negative,

      ;; so you are going to stick with it.

      ;; If it's not, you switch with probability

      ;; (payoff-diff / max-payoff-difference)

end

to imitative-positive-proportional-m-protocol

  let chosen-nbr rnd:weighted-one-of my-nbrs-and-me [ payoff ^ m ]

      ;; https://ccl.northwestern.edu/netlogo/docs/rnd.html#rnd:weighted-one-of

  set strategy-after-revision [strategy] of chosen-nbr

end

to imitative-logit-m-protocol

  let observed-player one-of other my-coplayers

  ;; compute difference in average payoffs

  let payoff-diff ([payoff / n-of-my-coplayers] of observed-player 

                 - (payoff / n-of-my-coplayers))

  set strategy-after-revision 

    ifelse-value (random-float 1 < (1 / (1 + exp (- m * payoff-diff))))

      [ [strategy] of observed-player ]

      [ strategy ]

end

to update-strategy

  set strategy strategy-after-revision

end

to update-graph
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  let strategy-numbers (range n-of-strategies)

  let strategy-frequencies map [ n ->

    count patches with [strategy = n] / n-of-players ] strategy-numbers

  set-current-plot "Strategy Distribution"

  let bar 1

  foreach strategy-numbers [ n ->

    set-current-plot-pen (word n)

    plotxy ticks bar

    set bar (bar - (item n strategy-frequencies))

  ]

  set-plot-y-range 0 1

end

to update-color

  set pcolor 25 + 40 * strategy

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; SUPPORTING PROCEDURES ;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to-report moore-offsets [r include-center?]

  let l (range (- r) (r + 1))

  let result reduce sentence map [ el1 -> map [el2 -> list el1 el2] l] l

  report ifelse-value include-center?

    [ result ]

    [ remove [0 0] result ]

end

to-report von-neumann-offsets [r include-center?]

  let moore-list (moore-offsets r include-center?) 

  report filter [l -> abs first l + abs last l <= r] moore-list 

end

to show-neighborhood

  if mouse-down? [

    ask patch mouse-xcor mouse-ycor [

      ask my-coplayers [set pcolor white]

    ]

  ]

  display

end

to check-payoffs-are-non-negative

  if min reduce sentence payoff-matrix < 0 [

    user-message (word

      "Since you are using protocol = imitative-positive-proportional-m, all elements in the payoff m

      payoffs

      "\nshould be non-negative numbers.")

  ]

end

;;;;;;;;;;;;;;;;
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;;; Matrices ;;;

;;;;;;;;;;;;;;;;

to-report max-of-matrix [matrix]

  report max reduce sentence matrix

end

to-report min-of-matrix [matrix]

  report min reduce sentence matrix

end

6. Sample runs
Revision protocols

Now that we have implemented the model, we can explore the impact of the revision protocol on the promotion of cooperation in the spatially embedded
Prisoner’s Dilemma. Let us explore this question using the parameter values shown in figure 1 above. We start with the “imitate the best neighbor”
protocol. The simulation below shows a representative run.

As you can see in the video above, with the “imitate the best neighbor” protocol, high levels of cooperation are achieved (i.e. about 90% of the patches
cooperate in the long run). But, how robust is this result to changes in the revision protocol? To explore this question, let us run the same simulation with
the other three revision protocols we have implemented. The simulation below shows a representative run with the “imitative-pairwise-difference”
protocol.

With the “imitative-pairwise-difference” protocol, there is no cooperation at all in the long run. Let us now try the “imitative-positive-proportional-m”
protocol with m = 1:

We do not observe any cooperation at all with the “imitative-positive-proportional-m” (with m = 1) either. Finally, let us try the “imitative-logit-m”
protocol with m = 1 (or any other positive value, for that matter):

0:00

0:00

[12]

0:00

[13]
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And we observe universal defection again! Clearly, as Roca et al. (2009a, 2009b) point out, the “imitate the best neighbor” protocol seems to favor
cooperation in the Prisoner’s Dilemma more than other revision protocols.

Neighborhoods

What about if we change the type of neighborhood? You can check that the simulations shown in the videos above do not change qualitatively if we use
Von Neumann neighborhoods rather than Moore neighborhoods. However, what does make a difference is the size of the neighborhood. Note that if the
size is so large that agents’ neighborhoods encompass the whole population, we have a global interaction model (i.e. a model without population
structure). Thus, the size of the neighborhood allows us to study the effect of population structure in a gradual manner. Having seen this, we can predict
that, for the “imitate the best neighbor” protocol, if we increase the size of the neighborhood enough, at some point cooperation will disappear. As an
exercise, try to find the minimum neighborhood-range (for both types of neighborhood) at which cooperation cannot be sustained anymore, with the other
parameter values as shown in figure 1.

Critical neighborhood size at which cooperation does not emerge in the simulation parameterized as in figure 1.
neighborhood-type = “Moore“. With neighborhood-range = 1, we observe significant levels of cooperation (about 90%) cooperation, but with
neighborhood-range ≥ 2, we observe no cooperation at all.
neighborhood-type = “Von Neumann“. With neighborhood-range = 1, we observe significant levels of cooperation (about 75%) cooperation.
Interestingly, with neighborhood-range = 2, we observe even more cooperation (usually more than 90%), but with neighborhood-range ≥ 3, we
observe no cooperation at all.

Discussion

We would like to conclude this section emphasizing that the influence of population structure on evolutionary dynamics generally depends on many
factors that may seem insignificant at first sight, and whose effects interact in complex ways. This may sound discouraging, since it suggests that a simple
general theory of the influence of population structure on evolutionary dynamics cannot be derived. On a more positive note, it also highlights the
importance of the skills you are learning with this book. Without the aid of computer simulation, it seems impossible to explore this type of questions.
But using computer simulation we can gain some understanding of the complexity and the beauty of these apparently simple –yet surprisingly intricate–
systems. The following quote from Roca et al. (2009b) nicely summarizes this view.

To conclude, we must recognize the strong dependence on details of evolutionary games on spatial networks.
As a consequence, it does not seem plausible to expect general laws that could be applied in a wide range of
practical settings. On the contrary, a close modeling including the kind of game, the evolutionary dynamics
and the population structure of the concrete problem seems mandatory to reach sound and compelling
conclusions. With no doubt this is an enormous challenge, but we believe that this is one of the most
promising paths that the community working in the field can explore. Roca et al. (2009b, pp. 14-15)

7. Exercises
You can use the following link to download the complete NetLogo model: nxn-imitate-best-nbr-extended.

0:00
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A frame of the simulation shown in figure 11 of Nowak and May (1993).

Exercise 1.  How can we parameterize our model to replicate the results shown in figures 1b and 1d of Hauert and Doebeli (2004)?

Exercise 2.  How can we parameterize our model to replicate the results shown in figures 1, 2, 6 and 7 of Nowak et al. (1994a)?

Exercise 3. How can we parameterize our model to replicate the results shown in figure 1 of Szabó and Tőke (1998)? Note that Szabó and Tőke (1998)
use total payoffs and we use average payoffs in our “imitative-logit-m” protocol, but a clever parameterization can save you any programming efforts.

Exercise 4.  How can we parameterize our model to replicate the results shown in figure 11 of Nowak and May (1993)?

Exercise 5.  To appreciate the impact that neighborhood-type may have, run a simulation parameterized as in figure 1 above, but with protocol =
“imitative-logit-m”, m = 10, and self-matching? = true. Compare the results obtained using neighborhood-type = “Moore” and neighborhood-type = “Von
Neumann”. What do you observe?

Exercise 6.  The following block of code (in procedure to update-strategy-after-revision) can be replaced by one simple line using run (a primitive
that can take a string containing the name of a command as an input, and it runs the command).

[ (ifelse

    protocol = "best-neighbor"

              [ best-neighbor-protocol ]

    protocol = "imitative-pairwise-difference"

              [ imitative-pairwise-difference-protocol ]

    protocol = "imitative-positive-proportional-m"

              [ imitative-positive-proportional-m-protocol ]

    protocol = "imitative-logit-m"

              [ imitative-logit-m-protocol ]

  )

]

Can you come up with the simple line?

1. The names given to the different protocols follow Izquierdo et al. (2019). ↵
2. Recall that the set of patches that a patch plays with also depends on the value of self-matching?. ↵
3. Roca et al. (2009a, 2009b) call this revision protocol "unconditional imitation" and Hauert (2002) calls it "best takes over". Also, note that Hauert

(2002) resolves ties differently. ↵
4. See Roca et al. (2009b) for an important and illuminating discussion of this paper. ↵
5. Roca et al. (2009a, 2009b) call this revision protocol "replicator rule or proportional imitation rule", though their implementation is not exactly the

same as ours. They use total payoffs and we use average payoffs. The two implementations differ only if it is possible that two agents have different
number of neighbors (e.g. as with non-periodic boundary conditions). Note, however, that Roca et al. (2009a, 2009b)'s experiments have periodic
boundary conditions, i.e. all agents have the same number of neighbors, so for all these cases the two implementations are equivalent. Hauert (2002)
calls this revision protocol "imitate the better". ↵

6. It may make more sense to use average rather than total payoffs. We use total payoffs here to be able to replicate Nowak et al.'s (1994a, b)
experiments. To use average payoffs, the change in the code is minimal. ↵

7. Roca et al. (2009a, 2009b) call this revision protocol with m = 1 "Moran rule". Their implementation is not exactly the same as ours, since they do
allow for negative payoffs by introducing a constant. Note, however, that the two implementations are equivalent if payoffs are non-negative. Hauert
(2002) calls this revision protocol with m = 1 "proportional update". ↵

[14]
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8. Roca et al. (2009a, 2009b) and other authors (see e.g. Traulsen and Hauert (2009), Perc and Szolnoki (2010) and Adami et al. (2016)) call this revision
protocol the "Fermi rule". Note also that some authors (e.g. Szabó and Tőke (1998)) use total payoffs rather than average payoffs. ↵

9. Our implementation is heavily based on code example titled "Moore & Von Neumann Example", which you can find in NetLogo models library.
Note, however, that this code example does not compute the correct neighborhoods if the center of the world lies at the edge or at a corner of the
world (at least in version 6.1 and previous ones). ↵

10. For instance, the following code reports true.

show (patch-set patch 0 0 patch 0 0) = (patch-set patch 0 0)

↵
11. This functionality was added in NetLogo 6.1. ↵
12. As long as m ≤ 5, results are very similar, but for greater values of m (i.e. greater intensity of selection) cooperation starts to emerge. ↵
13. In contrast with what happens under the "imitative-positive-proportional-m" protocol, parameter m does not seem to have a great influence in this

case. This changes if self-matching? is turned on. In that case, for high values of m, cooperation can emerge. ↵
14. Figures 1 and 2 in Nowak et al. (1994a) are the same as figures 1 and 2 in Nowak et al. (1994b). ↵

This page titled 3.4: Other types of neighborhoods and other revision protocols is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luis R.
Izquierdo, Segismundo S. Izquierdo, William H. Sandholm, & William H. Sandholm via source content that was edited to the style and standards of the LibreTexts
platform.
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