
A FIRST COURSE IN 
DIFFERENTIAL 
EQUATIONS FOR 
SCIENTISTS AND 
ENGINEERS

Russell Herman
University of North Carolina Wilmington



 

A First Course in Differential Equations for
Scientists and Engineers

Russell Herman

University of North Carolina Wilmington;



This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds
of other texts available within this powerful platform, it is freely available for reading, printing and "consuming." Most, but not all,
pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully
consult the applicable license(s) before pursuing such effects.

Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their
students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new
technologies to support learning. 

The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform
for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our
students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-
access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource
environment. The project currently consists of 14 independently operating and interconnected libraries that are constantly being
optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are
organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields)
integrated.

The LibreTexts libraries are Powered by NICE CXOne and are supported by the Department of Education Open Textbook Pilot
Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions
Program, and Merlot. This material is based upon work supported by the National Science Foundation under Grant No. 1246120,
1525057, and 1413739.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation nor the US Department of Education.

Have questions or comments? For information about adoptions or adaptions contact info@LibreTexts.org. More information on our
activities can be found via Facebook (https://facebook.com/Libretexts), Twitter (https://twitter.com/libretexts), or our blog
(http://Blog.Libretexts.org).

This text was compiled on 05/24/2024

https://libretexts.org/
https://www.nice.com/products
mailto:info@LibreTexts.org
https://facebook.com/Libretexts
https://twitter.com/libretexts
http://blog.libretexts.org/


1 https://math.libretexts.org/@go/page/89135

TABLE OF CONTENTS

Licensing

Prologue

1: First Order ODEs
1.1: Free Fall
1.2: First Order Differential Equations
1.3: Applications
1.4: Other First Order Equations
1.5: Problems

2: Second Order ODEs
2.1: Introduction
2.2: Constant Coefficient Equations
2.3: Simple Harmonic Oscillators
2.4: Forced Systems
2.5: Cauchy-Euler Equations
2.6: Problems

3: Numerical Solutions
3.1: Euler’s Method
3.2: Implementation of Numerical Packages
3.3: Higher Order Taylor Methods
3.4: Runge-Kutta Methods
3.5: Numerical Applications

3.5.1: The Nonlinear Pendulum
3.5.2: Extreme Sky Diving
3.5.3: The Flight of Sports Balls
3.5.4: Falling Raindrops
3.5.5: The Two-body Problem
3.5.6: The Expanding Universe
3.5.7: The Coefficient of Drag

3.6: Problems

4: Series Solutions
4.1: Introduction to Power Series
4.2: Power Series Method
4.3: Singular Points
4.4: The Frobenius Method

4.4.1: Introduction
4.4.2: Roots of Indicial Equation

4.5: Legendre Polynomials
4.6: Bessel Functions
4.7: Gamma Function
4.8: Hypergeometric Functions

https://libretexts.org/
https://math.libretexts.org/@go/page/89135?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/00:_Front_Matter/04:_Licensing
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/00:_Front_Matter/04:_Prologue
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01:_First_Order_ODEs
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01:_First_Order_ODEs/1.01:_Free_Fall
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01:_First_Order_ODEs/1.02:_First_Order_Differential_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01:_First_Order_ODEs/1.03:_Applications
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01:_First_Order_ODEs/1.04:_Other_First_Order_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01:_First_Order_ODEs/1.05:_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/02:_Second_Order_ODEs
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/02:_Second_Order_ODEs/2.01:_Introduction
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/02:_Second_Order_ODEs/2.02:_Constant_Coefficient_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/02:_Second_Order_ODEs/2.03:_Simple_Harmonic_Oscillators
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/02:_Second_Order_ODEs/2.04:_Forced_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/02:_Second_Order_ODEs/2.05:_Cauchy-Euler_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/02:_Second_Order_ODEs/2.06:_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.01:_Eulers_Method
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.02:_Implementation_of_Numerical_Packages
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.03:_Higher_Order_Taylor_Methods
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.04:_Runge-Kutta_Methods
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.05:_Numerical_Applications
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.05:_Numerical_Applications/3.5.01:_The_Nonlinear_Pendulum
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.05:_Numerical_Applications/3.5.02:_Extreme_Sky_Diving
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.05:_Numerical_Applications/3.5.03:_The_Flight_of_Sports_Balls
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.05:_Numerical_Applications/3.5.04:_Falling_Raindrops
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.05:_Numerical_Applications/3.5.05:_The_Two-body_Problem
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.05:_Numerical_Applications/3.5.06:_The_Expanding_Universe
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.05:_Numerical_Applications/3.5.07:_The_Coefficient_of_Drag
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03:_Numerical_Solutions/3.06:_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.01:_Introduction_to_Power_Series
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.02:_Power_Series_Method
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.03:_Singular_Points
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.04:_The_Frobenius_Method
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.04:_The_Frobenius_Method/4.4.01:_Introduction
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.04:_The_Frobenius_Method/4.4.02:_Roots_of_Indicial_Equation
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.05:_Legendre_Polynomials
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.06:_Bessel_Functions
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.07:_Gamma_Function
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.08:_Hypergeometric_Functions


2 https://math.libretexts.org/@go/page/89135

4.9: Problems

5: Laplace Transforms
5.1: The Laplace Transform
5.2: Properties and Examples of Laplace Transforms
5.3: Solution of ODEs Using Laplace Transforms
5.4: Step and Impulse Functions
5.5: The Convolution Theorem
5.6: Systems of ODEs
5.7: Problems

6: Linear Systems
6.1: Linear Systems
6.2: Applications

6.2.1: Mass-Spring Systems
6.2.2: Circuits
6.2.3: Mixture Problems
6.2.4: Chemical Kinetics
6.2.5: Predator Prey Models
6.2.6: Love Affairs
6.2.7: Epidemics

6.3: Matrix Formulation
6.4: Eigenvalue Problems
6.5: Solving Constant Coefficient Systems in 2D
6.6: Examples of the Matrix Method
6.7: Theory of Homogeneous Constant Coefficient Systems
6.8: Nonhomogeneous Systems
6.9: Problems

7: Nonlinear Systems
7.1: Introduction
7.2: The Logistic Equation
7.3: Autonomous First Order Equations
7.4: Bifurcations for First Order Equations
7.5: The Stability of Fixed Points in Nonlinear Systems
7.6: Nonlinear Population Models
7.7: Limit Cycles
7.8: Nonautonomous Nonlinear Systems
7.9: The Period of the Nonlinear Pendulum
7.10: Exact Solutions Using Elliptic Functions
7.11: Problems

8: Appendix Calculus Review
8.1: Introduction
8.2: Trigonometric Functions
8.3: Hyperbolic Functions
8.4: Derivatives
8.5: Integrals
8.6: Geometric Series
8.7: Power Series

https://libretexts.org/
https://math.libretexts.org/@go/page/89135?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04:_Series_Solutions/4.09:_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05:_Laplace_Transforms
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05:_Laplace_Transforms/5.01:_The_Laplace_Transform
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05:_Laplace_Transforms/5.02:_Properties_and_Examples_of_Laplace_Transforms
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05:_Laplace_Transforms/5.03:_Solution_of_ODEs_Using_Laplace_Transforms
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05:_Laplace_Transforms/5.04:_Step_and_Impulse_Functions
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05:_Laplace_Transforms/5.05:_The_Convolution_Theorem
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05:_Laplace_Transforms/5.06:_Systems_of_ODEs
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05:_Laplace_Transforms/5.07:_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.01:_Linear_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.02:_Applications
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.02:_Applications/6.2.01:_Mass-Spring_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.02:_Applications/6.2.02:_Circuits
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.02:_Applications/6.2.03:_Mixture_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.02:_Applications/6.2.04:_Chemical_Kinetics
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.02:_Applications/6.2.05:_Predator_Prey_Models
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.02:_Applications/6.2.06:_Love_Affairs
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.02:_Applications/6.2.07:_Epidemics
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.03:_Matrix_Formulation
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.04:_Eigenvalue_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.05:_Solving_Constant_Coefficient_Systems_in_2D
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.06:_Examples_of_the_Matrix_Method
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.07:_Theory_of_Homogeneous_Constant_Coefficient_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.08:_Nonhomogeneous_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06:_Linear_Systems/6.09:_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.01:_Introduction
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.02:_The_Logistic_Equation
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.03:_Autonomous_First_Order_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.04:_Bifurcations_for_First_Order_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.05:_The_Stability_of_Fixed_Points_in_Nonlinear_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.06:_Nonlinear_Population_Models
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.07:_Limit_Cycles
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.08:_Nonautonomous_Nonlinear_Systems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.09:_The_Period_of_the_Nonlinear_Pendulum
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.10:_Exact_Solutions_Using_Elliptic_Functions
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/07:_Nonlinear_Systems/7.11:_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.01:_Introduction
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.02:_Trigonometric_Functions
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.03:_Hyperbolic_Functions
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.04:_Derivatives
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.05:_Integrals
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.06:_Geometric_Series
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.07:_Power_Series


3 https://math.libretexts.org/@go/page/89135

8.8: The Binomial Expansion
8.9: Problems

Index

Detailed Licensing

https://libretexts.org/
https://math.libretexts.org/@go/page/89135?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.08:_The_Binomial_Expansion
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08:_Appendix_Calculus_Review/8.09:_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/zz:_Back_Matter/10:_Index
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/zz:_Back_Matter/30:_Detailed_Licensing


1 https://math.libretexts.org/@go/page/109665

Licensing
A detailed breakdown of this resource's licensing can be found in Back Matter/Detailed Licensing.

https://libretexts.org/
https://math.libretexts.org/@go/page/109665?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/00%3A_Front_Matter/04%3A_Licensing
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/zz%3A_Back_Matter/30%3A_Detailed_Licensing


1 https://math.libretexts.org/@go/page/97271

Prologue
"How can it be that mathematics, being after all a product of human thought independent of experience, is so admirably adapted to
the objects of reality?." - Albert Einstein (1879-1955)

Introduction
THIS BOOK IS WRITTEN FOR AN UNDERGRADUATE COURSE On the introduction to differential equations typically taken
by majors in mathematics, the physical sciences, and engineering. In this course we will investigate analytical, graphical, and
approximate solutions of differential equations. We will study the theory, methods of solution and applications of ordinary
differential equations. This will include common methods of finding solutions, such as using Laplace transform and power series
methods.

Students should also be prepared to review their calculus, especially if they have been away from calculus for a while. Some of the
key topics are reviewed in the appendix. In particular, students should know how to differentiate and integrate all elementary
functions, including hyperbolic functions. They should review the methods of integration as the need arises, including methods of
substitution and integration by parts. For the most part, we will just need material from Calculus I and II. Other topics from
Calculus II that we will review are infinite series and introductory differential equations and applications.

Most students will have just come out of the calculus sequence knowing all about differentiation and integration. We hope that they
have also seen plenty of applications. In this course, we will extend these applications to those connected with differential
equations. Differential equations are equations involving an unknown function and its derivatives. If the function is a function of a
single variable, then the equations are known as ordinary differential equations, the subject of this book. If the unknown function is
a function of several independent variables, then the equation is a partial differential equation, which we will not deal with in this
course. Finally, there may be several unknown functions satisfying several coupled differential equations. These systems of
differential equations will be treated later in the course and are often the subject of a second course in differential equations.

In all cases we will be interested in specific solutions satisfying a set of initial conditions, or values, of the function and some of its
derivatives at a given point of its domain. These are known as initial value problems. When such conditions are given at several
points, then one is dealing with boundary value problems. Boundary value problems would be the subject of a second course in
differential equations and in partial differential equations.

We will begin the study of differential equations with first order ordinary differential equations. These equations involve only
derivatives of first order. Typical examples occur in population modeling and in free fall problems. There are a few standard forms
which can be solved quite easily. In the second chapter we move up to second order equations. As the order increases, it becomes
harder to solve differential equations analytically. So, we either need to deal with simple equations or turn to other methods of
finding approximate solutions.

For second order differential equations there is a theory for linear second order differential equations and the simplest equations are
constant coefficient second order linear differential equations. We will spend some time looking at these solutions. Even though
constant coefficient equations are relatively simple, there are plenty of applications and the simple harmonic oscillator is one of
these. The solutions make physical sense and adding damping and forcing terms leads to interesting solutions and additional
methods of solving these equations.

Not all differential equations can be solved in terms of elementary functions. So, we turn to the numerical solution of differential
equations using the solvable models as test beds for numerical schemes. This also allows for the introduction of more realistic
models. Using Computer Algebra Systems (CAS) or other programming environments, we can explore these examples.

A couple hundred years ago there were no computers. So, mathematicians of the day sought series solutions of differential
equations. These series solutions led to the discovery of now famous functions, such as Legendre polynomials and Bessel
functions. These functions are quite common in applications and the use of power series solutions is a well known approach to
finding approximate solutions by hand.

Another common technique for solving differential equation, both ordinary and partial, are transform methods. One of the simplest
of these is the Laplace transform. This integral transform is used to transform the ordinary differentia equation to an algebraic
equation. The solution of the algebraic equation is then used to uncover the solution to the differential equation. These techniques
are often useful in systems theory or electrical engineering.
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In recent decades the inclusion of technology in the classroom has allowed for the introduction of systems of differential equations
into the typical course on differential equations. Solutions of linear systems of equations is an important tool in the study of
nonlinear differential equations and nonlinear differential equations have been the subject of many research papers over the last
several decades. We will look at systems of differential equations at the end of the book and discuss the stability of solutions in
dynamical systems.

Technology and Tables
AS YOU PROGRESS THROUGH THE COURSE, you will often have to compute integrals and derivatives by hand. However,
many readers know that some of the tedium can be alleviated by using computers, or even looking up what you need in tables. In
some cases you might even find applets online that can quickly give you the answers you seek.

You also need to be comfortable in doing many computations by hand. This is necessary, especially in your early studies, for
several reasons. For example, you should try to evaluate integrals by hand when asked to do them. This reinforces the techniques,
as outlined earlier. It exercises your brain in much the same way that you might jog daily to exercise your body. The more
comfortable you are with derivations and evaluations, the easier it is to follow future lectures without getting bogged down by the
details, wondering how your professor got from step A to step D. You can always use a computer algebra system, or a Table of
Integrals, to check on your WORK.

Problems can arise when depending purely on the output of computers, or other "black boxes." Once you have a firm grasp on the
techniques and a feeling as to what answers should look like, then you can feel comfortable with what the computer gives you.
Sometimes, Computer Algebra Systems (CAS) like Maple, can give you strange looking answers and sometimes even wrong
answers. Also, these programs cannot do every integral or solve every differential equation that you ask them to do. Even some of
the simplest looking expressions can cause computer algebra systems problems. Other times you might even provide wrong input,
leading to erroneous results.

Another source of indefinite integrals, derivatives, series expansions, etc, is a Table of Mathematical Formulae. There are several
good books that have been printed. Even some of these have typos in them, so you need to be careful. However, it may be worth
the investment to have such a book in your personal library. Go to the library, or the bookstore, and look at some of these tables to
see how useful they might be.

There are plenty of online resources as well. For example, there is the Wolfram Integrator at http://integrals.wolfram.com/ as well
as the recent http://www.wolframalpha.com/. There is also a wealth of information at the following sites: http://www.sosmath.com/,
http://www.math2.org/, http://mathworld.wolfram.com/, and http: / / functions.wolfram.com /.

While these resources are useful for problems which have analytical solutions, at some point you will need to realize that most
problems in texts, especially those from a few decades ago, are mostly aimed at solutions which either have nice analytical
solutions or have solutions that can be approximated using pencil and paper.

More and more you will see problems which need to be solved numerically. While most of this book  stresses the traditional
methods used for determining the exact or approximate behavior of systems based upon solid mathematical methods, there are
times that an basic understanding of computational methods is useful. Therefore, we will occasionally discuss some numerical
methods related to the subject matter in the text. In particular, we will discuss some methods of computational physics such as the
numerical solution of differential equations and fitting data to curves. Applications will be discussed which can only be solved
using these methods.

There are many programming languages and software packages which can be used to determine numerical solutions to algebraic
equations or differential equations. For example, CAS (Computer Algebra Systems) such as Maple and Mathematica are available.
Open source packages such as Maxima, which has been around for a while, Mathomatic, and the SAGE Project, do exist as
alternatives. One can use built in routines and do some programming. The main features are that they can produce symbolic
solutions. Generally, they are slow in generating numerical solutions.

For serious programming, one can use standard programming languages like FORTRAN,  and its derivatives. Recently, Python
has become an alternative and much accepted resource as an open source programming language and is useful for doing scientific
computing using the right packages.

Also, there is MATLAB. MATLAB was developed in the  s as a Matrix Laboratory and for a long time was the standard
outside "normal" programming languages to handle non-symbolic solutions in computational science. Similar open source clones
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have appeared, such as Octave. Octave can run most MATLAB files and some of its own. Other clones of MATLAB are SciLab,
Rlab, FreeMat, and PyLab.

In this text there are some snippets provided of Maple and MATLAB routines. Most of the text does not rely on these; however, the
MATLAB snippets should be relatively readable to anyone with some knowledge of computer packages, or easy to pass to the open
source clones, such as Octave. Maple routines are not so simple, but may be translatable to other packages with a little effort.
However, the theory lying behind the use of any of these routines is described in the text and the text can be read without explicit
understanding of the particular computer software.
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CHAPTER OVERVIEW

1: First Order ODEs
"The profound study of nature is the most fertile source of mathematical discoveries." - Joseph Fourier (1768-1830)

1.1: Free Fall
1.2: First Order Differential Equations
1.3: Applications
1.4: Other First Order Equations
1.5: Problems

This page titled 1: First Order ODEs is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01%3A_First_Order_ODEs/1.01%3A_Free_Fall
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01%3A_First_Order_ODEs/1.02%3A_First_Order_Differential_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01%3A_First_Order_ODEs/1.03%3A_Applications
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01%3A_First_Order_ODEs/1.04%3A_Other_First_Order_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01%3A_First_Order_ODEs/1.05%3A_Problems
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/01%3A_First_Order_ODEs
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
http://people.uncw.edu/hermanr/mat361/ODEBook/index.htm


1.1.1 https://math.libretexts.org/@go/page/91046

1.1: Free Fall
In this chapter we will study some common differential equations that appear in physics. We will begin with the simplest types of
equations and standard techniques for solving them We will end this part of the discussion by returning to the problem of free fall
with air resistance. We will then turn to the study of oscillations, which are modeled by second order differential equations.

Free fall example
Let us begin with a simple example from introductory physics. Recall that free fall is the vertical motion of an object solely under
the force of gravity. It has been experimentally determined that an object near the surface of the Earth falls at a constant
acceleration in the absence of other forces, such as air resistance. This constant acceleration is denoted by , where  is called the
acceleration due to gravity. The negative sign is an indication that we have chosen a coordinate system in which up is positive.

We are interested in determining the position, , of the falling body as a function of time. From the definition of free fall, we
have

Note that we will occasionally use a dot to indicate time differentiation.

Differentiation with respect to time is often denoted by dots instead of primes

This notation is standard in physics and we will begin to introduce you to this notation, though at times we might use the more
familiar prime notation to indicate spatial differentiation, or general differentiation.

In Equation  we know . It is a constant. Near the Earth’s surface it is about  or . What we do not know is
. This is our first differential equation. In fact it is natural to see differential equations appear in physics often through

Newton’s Second Law, , as it plays an important role in classical physics. We will return to this point later.

So, how does one solve the differential equation in ? We do so by using what we know about calculus. It might be easier to
see when we put in a particular number instead of . You might still be getting used to the fact that some letters are used to
represent constants. We will come back to the more general form after we see how to solve the differential equation.

Consider

Recalling that the second derivative is just the derivative of a derivative, we can rewrite this equation as

This tells us that the derivative of  is 5 . Can you think of a function whose derivative is 5 ? (Do not forget that the
independent variable is .) Yes, the derivative of  with respect to  is 5 . Is this the only function whose derivative is 5 ? No! You
can also differentiate , etc. In general, the derivative of  is 5, where  is an arbitrary integration
constant.

So, Equation  can be reduced to

Now we ask if you know a function whose derivative is . Well, you might be able to do this one in your head, but we just
need to recall the Fundamental Theorem of Calculus, which relates integrals and derivatives. Thus, we have

where  is a second integration constant.

Equation  gives the solution to the original differential equation. That means that when the solution is placed into the
differential equation, both sides of the differential equation give the same expression. You can always check your answer to a
differential equation by showing that your solution satisfies the equation. In this case we have

−g g

y(t)

(t) = −g.ÿ (1.1.1)

1.1.1 g 9.81 m/s2 32.2ft/s2

y(t)
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1.1.1

g

(t) = 5.ÿ

( ) = 5
d

dt

dy

dt

dy/dt

t 5t t
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Therefore, Equation  gives the general solution of the differential equation.

We also see that there are two arbitrary constants,  and . Picking any values for these gives a whole family of solutions. As we
will see, the equation  is a linear second order ordinary differential equation. The general solution of such an equation
always has two arbitrary constants.

Let’s return to the free fall problem. We solve it the same way. The only difference is that we can replace the constant 5 with the
constant . So, we find that

and

Once you get down the process, it only takes a line or two to solve.

There seems to be a problem. Imagine dropping a ball that then undergoes free fall. We just determined that there are an infinite
number of solutions for the position of the ball at any time! Well, that is not possible. Experience tells us that if you drop a ball you
expect it to behave the same way every time. Or does it? Actually, you could drop the ball from anywhere. You could also toss it up
or throw it down. So, there are many ways you can release the ball before it is in free fall producing many different paths, .
That is where the constants come in. They have physical meanings.

If you set  in the equation, then you have that . Thus,  gives the initial position of the ball. Typically, we denote
initial values with a subscript. So, we will write . Thus, .

That leaves us to determine . It appears at first in Equation . Recall that , the derivative of the position, is the vertical

velocity, . It is positive when the ball moves upward. We will denote the initial velocity . Inserting  in Equation 
, we find that . This implies that .

Putting this all together, we have the physical form of the solution for free fall as

Doesn’t this equation look familiar? Now we see that the infinite family of solutions consists of free fall resulting from initially
dropping a ball at position  with initial velocity . The conditions  and  are called the initial conditions. A
solution of a differential equation satisfying a set of initial conditions is often called a particular solution. Specifying the initial
conditions results in a unique solution.

So, we have solved the free fall equation. Along the way we have begun to see some of the features that will appear in the solutions
of other problems that are modeled with differential equation. Throughout the book we will see several applications of differential
equations. We will extend our analysis to higher dimensions, in which we case will be faced with socalled partial differential
equations, which involve the partial derivatives of functions of more that one variable.

But are we done with free fall? Not at all! We can relax some of the conditions that we have imposed. We can add air resistance.
We will visit this problem later in this chapter after introducing some more techniques. We can also provide a horizontal component
of motion, leading to projectile motion.
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dt2
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Figure : Free fall far from the Earth from a height  from the surface.

Finally, we should also note that free fall at constant  only takes place near the surface of the Earth. What if a tile falls off the
shuttle far from the surface of the Earth? It will also fall towards the Earth. Actually, the tile also has a velocity component in the
direction of the motion of the shuttle. So, it would not necessarily take radial path downwards. For now, let’s ignore that
component. To look at this problem in more detail, we need to go to the origins of the acceleration due to gravity. This comes out of
Newton’s Law of Gravitation. Consider a mass  at some distance  from the surface of the (spherical) Earth. Letting  and 
be the Earth’s mass and radius, respectively, Newton’s Law of Gravitation states that

Here  is the Universal Gravitational Constant,  and  are
the Earth’s mass and mean radius, respectively. For .

Thus, we arrive at a differential equation

This equation is not as easy to solve. We will leave it as a homework exercise for the reader.

This page titled 1.1: Free Fall is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.2: First Order Differential Equations
-th order ordinary differential equation.

Before moving on, we first define an -th order ordinary equation. It is an equation for an unknown function  a relationship
between the unknown function and its first  derivatives. One could write this generally as

Here  represents the th derivative of y(x).

Initial value problem.

An initial value problem consists of the differential equation plus the values of the first  derivatives at a particular value of the
independent variable, say  :

Linear th order differential equation.

A linear th order differential equation takes the form

Homogeneous and nonhomogeneous equations.

If , then the equation is said to be homogeneous, otherwise it is called nonhomogeneous.

First order differential equation.

Typically, the first differential equations encountered are first order equations. A first order differential equation takes the form

There are two common first order differential equations for which one can formally obtain a solution. The first is the separable case
and the second is a first order equation. We indicate that we can formally obtain solutions, as one can display the needed integration
that leads to a solution. However, the resulting integrals are not always reducible to elementary functions nor does one obtain
explicit solutions when the integrals are doable.

Separable Equations
A first order equation is separable if it can be written the form

Special cases result when either  or . In the first case the equation is said to be autonomous.

Separable equations. The general solution to Equation  is obtained in terms of two integrals:

where  is an integration constant. This yields a 1-parameter family of solutions to the differential equation corresponding to
different values of C. If one can solve Equation  for , then one obtains an explicit solution. Otherwise, one has a family of
implicit solutions. If an initial condition is given as well, then one might be able to find a member of the family that satisfies this
condition, which is often called a particular solution.

.

Solution

n
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Applying Equation , one has

Intergrating yields

Exponentiating, one obtains the general solution,

Here we have defined . Since  is an arbitrary constant,  is an arbitrary constant. Several solutions in this 1 -
parameter family are shown in Figure .

Figure : Plots of solutions from the 1- parameter family of solutions of Example  for several initial conditions.

Next, one seeks a particular solution satisfying the initial condition. For , one finds that . So, the particular solution
satisfy-ing the initial condition is .

. Following the same procedure as in the last example, one obtains:

Then we obtain an implicit solution. Writing the solution as .

Thus, we obtain an implicit solution. Writing the solution as  , we see that this is a family of circles for  and
the origin for . Plots of some solutions in this family are shown in Figure .
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Figure : Plots of solutions of Example  for several initial conditions.

Linear First Order Equations
The second type of first order equation encountered is the linear first order differential equation in the standard form

In this case one seeks an integrating factor, , which is a function that one can multiply through the equation making the left
side a perfect derivative. Thus, obtaining,

The integrating factor that works is . One can derive  by expanding the derivative in Equation ,

and comparing this equation to the one obtained from multiplying  by 

Note that these last two equations would be the same if the second terms were the same. Thus, we will require that

Integrating factor

This is a separable first order equation for  whose solution is the integrating factor:

Equation  is now easily integrated to obtain the general solution to the linear first order differential equation:

.

One first notes that this is a linear first order differential equation. Solving for , one can see that the equation is not separable.
Furthermore, it is not in the standard form . So, we first rewrite the equation as

1.2.2 1.2.2

(x) +p(x)y(x) = q(x)y′

μ(x)

[μ(x)y(x)] = μ(x)q(x)
d

dx

μ(x) = exp( p(ξ)dξ)∫ x
μ(x) 1.2.8

μ(x) (x) + (x)y(x) = μ(x)q(x)y′ μ′

1.2.7 μ(x) :
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x
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Noting that , we determine the integrating factor

Multiplying Equation  by , we actually get back the original equation! In this case we have found that 
must have been the derivative of something to start. In fact, . Therefore, the differential equation becomes

Integrating, one obtains

Or

Inserting the initial condition into this solution, we have . Therefore, . Thus, the solution of the initial

value problem is

We can verify that this is the solution. Since , we have

Also, .

.

Solution
Actually, this problem is easy if you realize that the left hand side is a perfect derivative. Namely,

But, we will go through the process of finding the integrating factor for practice.

First, we rewrite the original differential equation in standard form. We divide the equation by  to obtain

Then, we compute the integrating factor as

Using the integrating factor, the standard form equation becomes

Integrating, we have

p(x) =
1

x

μ(x) = exp[ ] = = x∫
x dξ

ξ
eln x

1.2.13 μ(x) = x x +yy′

(xy = x +x)′ y′

(xy = x.)′

xy = +C
1

2
x2

y(x) = x+
1

2

C

x

0 = +C
1

2
C = −

1

2

y(x) = (x− )
1

2

1

x

= +y′ 1

2

1

2x2

x +y = x+ + (x− ) = x.y′ 1

2

1

2x

1

2

1

x

y(1) = (1 −1) = 0
1

2

 Example 1.2.4

(sinx) +(cosx)y =y′ x2

((sinx)y) = (sinx) +(cosx)y
d

dx
y′

sinx

+(cotx)y = cscxy′ x2

\(μ(x) = exp( cot ξdξ) = = sinx∫
x

eln(sin x) (1.2.3)

((sinx)y) =
d

dx
x2
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So, the solution is

There are other first order equations that one can solve for closed form solutions. However, many equations are not solvable, or one
is simply interested in the behavior of solutions. In such cases one turns to direction fields or numerical methods. We will return to
a discussion of the qualitative behavior of differential equations later and numerical solutions of ordinary differential equations
later in the book.

Exact Differential Equations

Some first order differential equations can be solved easily if they are what are called exact differential equations. These equations
are typically written using differentials. For example, the differential equation

can be written in the form

This is seen by multiplying Equation  by  and noting from calculus that for a function , the relation between the
differentials  and  is

Differential one-forms. The expression  is called a differential one-form. Such a one-form is called exact
if there is a function  such that

Exact one-form. However, from calculus we know that for any function ,

If , then we have

Since

when these second derivatives are continuous, by Clairaut’s Theorem, then we have

must hold if  is to be an exact one-form.

In summary, we have found that

y sinx = +C
1

3
x3

y(x) =( +C) cscx
1

3
x3

N(x, y) +M(x, y) = 0
dy

dx

M(x, y)dx+N(x, y)dy = 0

1.2.14 dx y = y(x)

dx dy

dy = dx
dy

dx

M(x, y)dx+N(x, y)dy

u(x, y)

M(x, y)dx+N(x, y)dy = du

u(x, y)

du = dx+ dy
∂u

∂x

∂u

∂y

du = M(x, y)dx+N(x, y)dy

= M(x, y)
∂u

∂x

= N(x, y)
∂u

∂y

=
u∂2

∂x∂y

u∂2

∂y∂x

=
∂M

∂y

∂N

∂x

M(x, y)dx+N(x, y)dy
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Conditions for  to be exact

The differential equation  is exact in the domain  of the -plane for , and 
continuous functions in  if and only if

holds in the domain.

Furthermore, if , then , for  an arbitrary constant. Thus, an implicit solution can
be found as

We show this in the following example.

Show that  is an exact differential equation and obtain the corresponding implicit
solution

We first note that

Since these partial derivatives are the same, the differential equation is exact. So, we need to find the function  such that
. .

First, we note that  and . The remaining terms can be combined to find that

Combining these results, we have

What if the one-form is not exact?

So, what if  is not exact? We can multiply the oneform by an integrating factor, , and try to make he
resulting form exact. We let

For the new form to be exact, we have to require that

Carrying out the differentiation, we have

 Theorem : Condition for exactness1.2.1

M(x, y)dx+N(x, y)dy = 0

M(x, y)dx+N(x, y)dy = 0 D xy M ,N ,My Nx

D

=
∂M

∂y

∂N

∂x

du = M(x, y)dx+N(x, y)dy = 0 u(x, y) = C C

M(x, y)dx+ N(x, y)dy = C∫
x

x0

∫
y

y0

 Example 1.2.5

( +x )dx+( y+ )dy = 0x3 y2 x2 y3

= 2xy, = 2xy
∂M

∂y

∂N

∂x

u(x, y)

d u=\left(x^{3}+\right x )dx+( y+ )dyy2 x2 y3

= d( )x3 x4

4
= d( )y3 y4

4

x dx+ ydyy2 x2 = xy(ydx+xdy)

= xyd(xy)

= d( )
(xy)2

2

u = + + = C
x4

4

x2y2

2

y4

4

M(x, y)dx+N(x, y)dy μ(x)

du = μMdx+μNdy

(μM) = (μN)
∂

∂y

∂

∂x

N −M = μ( − )
∂μ

∂x

∂μ

∂y

∂M

∂y

∂N

∂x
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Thus, the integrating factor satisfies a partial differential equation. If the integrating factor is a function of only  or , then this
equation reduces to ordinary differential equations for .

As an example, if , then the integrating factor satisfies

Or

If  is only a function of ,

then .

If  is only a function of ,

then .

Find the general solution to the differential equation .

Solution
First, we note that this is not exact. We have  and . Then,

Therefore, the differential equation is not exact.

Next, we seek the integrating factor. We let

For the new form to be exact, we have to require that

\[\begin{aligned} & \text { If , then

This is easily solved as a separable first order equation. We find that .

Multiplying the original equation by , we obtain

Thus,

gives the solution.

x y

μ

μ = μ(x)

N = μ( − )
dμ

dx

∂M

∂y

∂N

∂x

N = −
d lnμ

dx

∂M

∂y

∂N

∂x

( − )
μ

N

∂M

∂y

∂N

∂x
x

μ = μ(x)

( − )
μ

M

∂N

∂x

∂M

∂y
y

u = u(y)

 Example 1.2.6

(1 + )dx+xydy = 0y2

M(x, y) = 1 +y2 N(x, y) = xy

= 2y, = y
∂M

∂y

∂N

∂x

du = μ (1 + )dx+μxydyy2

xy −(1 + ) = μ( − ) = μy
∂μ

∂x
y2 ∂μ

∂y

∂ (1 + )y2

∂y

∂xy

∂x

μ = μ(x)

x = μ.
dμ

dx

μ(x) = x

μ = x

0 = x (1 + )dx+ ydy = d( + )y2 x2 x2

2

x2y2

2

+ = C
x2

2

x2y2

2
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1.3: Applications
In this section we will look at some simple applications which are modeled with first order differential equations. We will begin
with simple exponential models of growth and decay.

Growth and Decay
Some of the simplest models are those involving growth or decay. For example, a population model can be obtained under simple

assumptions. Let  be the population at time . We want to find an expression for the rate of change of the population, .

Assuming that there is no migration of population, the only way the population can change is by adding or subtracting individuals
in the population. The equation would take the form

The Rate In could be due to the number of births per unit time and the Rate Out by the number of deaths per unit time. The simplest
forms for these rates would be given by

Here we have denoted the birth rate as  and the mortality rate as . This gives the total rate of change of population as

Equation  is a separable equation. The separation follows as we have seen earlier in the chapter. Rearranging the equation, its
differential form is

Integrating, we have

Next, we solve for  through exponentiation, Integrating, we have

More generally, the initial value problem  has the solution .

Here we renamed the arbitrary constant, , as .

If the population at  is , i.e., , then the solution gives . So, the solution of the initial
value problem is

Malthusian population growth.

Equation  the familiar exponential model of population growth:

This is easily solved and one obtains exponential growth  or decay .

P (t) t
dP

dt

=  Rate In  −  Rate Out. 
dP

dt

 Rate In  = bP  and the Rate Out  = mP .

b m

= bP −mP ≡ kP
dP

dt
(1.3.1)

1.3.1

= kdt
dP

P

∫ = ∫ kdt
dP

P

ln |P | = kt+C

P (t)

|P (t)|

P (t)

= ekt+C

= ±ekt+C

= ±eCekt

= A .ekt

dP/dt = kP ,P ( ) =t0 P0 P (t) = P0e
k(t− )t0

±eC A

t = 0 P0 P (0) = P0 P (0) = A = A =e0 P0

P (t) = P0e
kt

1.3.1

= kP
dP

dt

(k > 0) (k < 0)
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This Malthusian growth model has been named after Thomas Robert Malthus , a clergyman who used this model to
warn of the impending doom of the human race if its reproductive practices continued.

Consider a bacteria population of weight . If the population doubles every 20 minutes, then what is the population after 30
minutes? [Note: It is easier to weigh this population than to count it.]

Solution
One looks at the given information before trying to answer the question. First, we have the initial condition . Since
the population doubles every 20 minutes, then . Here we have take the time units as minutes. We are then
asked to find .

We do not need to solve the differential equation. We will assume a simple growth model. Using the general solution, 
, we have

or

We can solve this for ,

This gives an approximate solution, . Now we can answer the original question. Namely, .

Of course, we could get an exact solution. With some simple manipulations, we have

This answer takes the general form for population doubling,  , where  is the doubling rate.

Another standard growth-decay problem is radioactive decay. Certain isotopes are unstable and the nucleus breaks apart, leading to
nuclear decay. The products of the decay may also be unstable and undergo further nuclear decay. As an example, Uranium-238
(U-238) decays into Thorium-234 (Th-Radioactive decay problems. 234). Thorium-234 is unstable and decays into Protactinium
(Pa-234). This in turn decays in many steps until lead (Pb-206) is produced as shown in Table . This lead isotope is stable and
the decay process stops. While this is one form of radioactive decay, there are other types. For example, Radon 222 (Rn-222) gives
up an alpha particle (helium nucleus) leaving Polonium (Po-218).

Table : U-238 decay chain.
Isotope Half-life

 years

 days

 minutes

(1766 −1834)

 Example 1.3.1

20 g

= 20 gP0

P (20) = 2 = 40P0

P (30)

P (t) = 20ekt

P (20) = 20 = 40e20k

= 2e20k

k

20k = ln2, ⇒ k = ≈ 0.035
ln2

20

P (t) ≈ 20e.035t P (30) ≈ 57

P (t) = 20ekt

= 20e
t

⎛

⎝

ln2

20
⎞

⎠

= 20( )eln 2

t

20

= 20
⎛

⎝
⎜2

t

20
⎞

⎠
⎟

P (t) = P02

t

τ τ

1.3.1

1.3.1

U 238 4.468x109

Th234 24.1

Pa234m 1.17
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Isotope Half-life

 years

 years

1602 years

 days

 minutes

 minutes

 minutes

164 microsec

21 years

 days

 days

stable

Given a certain amount of radioactive material, it does not all decay at one time. A measure of the tendency of a nucleus to decay is
called the half-life. This is the time it takes for half of the material to decay. This is similar to the last example and can be
understood using a simple example.

If  of Thorium-234 decays to  of Thorium234 in three days, what is its half-life?

Solution
This is another simple decay process. If  represents the quantity of unstable material, then  satisfies the rate equation

with . The solution of the initial value problem, as we have seen, is .

Now, let the half-life be given by . Then, . Inserting this fact into the solution, we have

Noting that , we solve Equation  for

Then, the solution can be written in the general form

Note that the decay constant is .

Returning to the problem, we are given

U 234 2.47x105

Th230 8.0x104

Ra226

Rn222 3.823

Po218 3.05

Pb214 26.8

Bi214 19.7

Po214

Pb210

Bi210 5.01

Po210 138.4

Pb206

 Example 1.3.2

150.0 g 137.6 g

Q(t) Q(t)

= kQ
dQ

dt

k < 0 Q(t) = Q0e
kt

τ Q(τ) =
1

2
Q0

Q(τ)

1

2
Q0

1

2

= Q0e
kτ

= Q0e
kτ

= ekτ

Q(t) = Q0( )ek
t

1.3.5

=ek 2−1/τ

Q(t) = Q02
−
t

τ

k = − < 0
ln2

τ
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Solving to ,

Therefore, the half-life is about  days.

Newton’s Law of Cooling
If you take your hot cup of tea, and let it sit in a cold room, the tea will cool off and reach room temperature after a period of time.
The law of cooling is attributed to Isaac Newton (1642-1727) who was probably the first to state results on how bodies cool.  The
main idea is that a body attemperature  is initially at temperature . It is placed in an environment at an ambient
temperature of . A simple model is given that the rate of change of the temperature of the body is proportional to the difference
between the body temperature and its surroundings. Thus, we have

The proportionality is removed by introducing a cooling constant.

where .

Newton’s 1701 Law of Cooling is an approximation to how bodies cool for small temperature differences  and
does not take into account all of the cooling processes. One account is given by C. T. O’Sullivan, Am. J. Phys (1990) p 956-
960.

This differential equation can be solved by noting that the equation can be written in the form

This is now of the form of exponential decay of the function . The solution is easily found as

Or

A cup of tea at  cools to  in ten minutes. If the room temperature is , what is its temperature after 30 minutes?

Solution
Using the general solution with ,

Q(3) = = 137.61502
−

3

τ

τ

2
−

3

τ

−3 ln2

τ

=
136.7

150

= ln .9173τ

= − = 24.09
3 ln2

ln .9173

24.1

1

T (t) T (0) = T0

Ta

∝ T −
dT

dt
Ta

= −k (T − )
dT

dt
Ta (1.3.2)

k > 0

 Note 1

(T − ≪ T )Ta

(T − ) = −k (T − )
d

dt
Ta Ta

T (t) −Ta

T (t) − = ( − )Ta T0 Ta e−kt

T (t) = +( − )Ta T0 Ta e−kt

 Example 1.3.3

C90∘ C85∘ C22∘

= CT0 90∘

T (t) = 22 +(90 −22) = 22 +68e−k e−kt
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we then find  using the given information, . We have

This gives the equation for this model as

Now we can answer the question. What is 

Terminal Velocity

Now let’s return to free fall. What if there is air resistance? We first need to model the air resistance. As an object falls faster and
faster, the drag force becomes greater. So, this resistive force is a function of the velocity. There are a couple of standard models
that people use to test this. The idea is to write  in the form

where  gives the resistive force and  is the weight. Recall that this applies to free fall near the Earth’s surface. Also, for it to
be resistive,  should oppose the motion. If the body is falling, then  should be positive. If it is rising, then  would
have to be negative to indicate the opposition to the motion.

One common determination derives from the drag force on an object moving through a fluid. This force is given by

where  is the drag coefficient,  is the cross sectional area and  is the fluid density. For laminar flow the drag coefficient is
constant.

Unless you are into aerodynamics, you do not need to get into the details of the constants. So, it is best to absorb all of the constants
into one to simplify the computation. So, we will write . The differential equation including drag can then be rewritten
as

where . Note that this is a first order equation for . It is separable too! Formally, we can separate the variables and
integrate over time to obtain

This is the first use of Partial Fraction Decomposition. We will explore this method further in the section on Laplace Transforms.

(Note: We used an integration constant of  since  is the drag coefficient in this problem.) If we can do the integral, then we
have a solution for v. In fact, we can do this integral. You need to recall another common method of integration, which we have not
reviewed yet. Do you remember Partial Fraction Decomposition? It involves factoring the denominator in the integral. In the
simplest case there are two linear factors in the denominator and the integral is rewritten:

k T (10) = C85∘

85

63

e−10k

−10k

k

= T (10)

= 22 +68e−10k

= 68e−10k

= ≈ 0.926
63

68

= ln0.926

= − = 0.00764
ln0.926

10

[T (t) = 22 +68e−0.00764t

T (30)?

T (30) = 22 +68 = Ce−0.00764(30) 76∘

F = ma

m = −mg+f(v)ÿ

f(v) mg

f(v) f(v) f(v)

f(v) = CAρ
1

2
v2

C A ρ

f(v) = bv2

= k −gv̇ v2

k = b/m v(t)

t+K = ∫
v dz

k −gz2

K C

∫ = ∫ [ − ]dx
dx

(x−a)(x−b)

1

b−a

1

x−a

1

x−b
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The new integral now has two terms which can be readily integrated.

In order to factor the denominator in the current problem, we first have to rewrite the constants. We let  and write the
integrand as

Now we use a partial fraction decomposition to obtain

Now, the integrand can be easily integrated giving

Solving for , we have

where  can be determined using the initial velocity.

There are other forms for the solution in terms of a tanh function, which the reader can determine as an exercise. One important

conclusion is that for large times, the ratio in the solution approaches . Thus,   as . This means that the

falling object will reach a constant terminal velocity.

As a simple computation, we can determine the terminal velocity. We will take an  skydiver with a cross sectional area of
about . (The skydiver is falling head first.) Assume that the air density is a constant  and the drag coefficient is

. We first note that

So,

This is about , which is slightly higher than the actual terminal velocity of a sky diver with arms and feet fully extended.
One would need a more accurate determination of  and  for a more realistic answer. Also, the air density varies along the way.

Mixture Problems

Mixture problems often occur in a first course on differential equations as examples of first order differential equations. In such
problems we consider a tank of brine, water containing a specific amount of salt with pure water entering and the mixture leaving,
or the flow of a pollutant into, or out of, a lake. The goal is to predict the amount of salt, or pollutant, at some later time.

In general one has a rate of flow of some concentration of mixture entering a region and a mixture leaving the region. The goal is to
determine how much stuff is in the region at a given time. This is governed by the equation

Rate of change of substance  Rate In  Rate Out.

The rates are not often given. One is generally given information about the concentration and flow rates in and out of the system. If
one pays attention to the dimension and sketches the situation, then one can write out this rate equation as a first order differential
equation. We consider a simple example.

= g/kα2

=
1

k −gz2

1

k

1

−z2 α2

= [ − ]
1

k −gz2

1

2αk

1

z−α

1

z+α

t+K = ln
1

2αk
∣
∣
∣
v−α

v+α

∣
∣
∣

v

v(t) = α
1 −Be2αkt

1 +Be2αkt

B ≡ .BeK

−1 v→ −α = −
g

k

−−
√ t → ∞

80 kg
0.093 m2 1.2 kg/m3

C = 2.0

= − = −vterminal 
g

k

−−
√

2mg

CAρ

− −−−−

√

= − = −78 m/svterminal 
2(70)(9.8)

(2.0)(0.093)(1.2)

− −−−−−−−−−−−−−

√

175mph
C A

 Theorem 1.3.1

= −
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A 50 gallon tank of pure water has a brine mixture with concentration of 2 pounds per gallon entering at the rate of 5 gallons
per minute. [See Figure .] At the same time the well-mixed contents drain out at the rate of 5 gallons per minute. Find the
amount of salt in the tank at time . In all such problems one assumes that the solution is well mixed at each instant of time.

Figure : A typical mixing problem

Solution
Let  be the amount of salt at time . Then the rate at which the salt in the tank increases is due to the amount of salt
entering the tank less that leaving the tank. To figure out these rates, one notes that  has units of pounds per minute. The
amount of salt entering per minute is given by the product of the entering concentration times the rate at which the brine enters.
This gives the correct units:

Similarly, one can determine the rate out as

Thus, we have

This equation is solved using the methods for linear first order equations. The integrating factor is , leading to the
general solution

Using the initial condition, one finds the particular solution

Often one is interested in the long time behavior of a system. In this case we have that . This makes
sense because 2 pounds per galloon enter during this time to eventually leave the entire 50 gallons with this concentration.
Thus,

 Example : Single Tank Problem1.3.4

1.3.1
t

1.3.1

x(t) t

dx/dt

(2 )(5 ) = 10 .
 pounds 

 gal 

 gal 

 min 

 pounds 

 min 

( )(5 ) = .
x pounds 

50 gal 

 gal 

 min 

x

10

 pounds 

 min 

= 10 −
dx

dt

x

10

μ = ex/10

x(t) = 100 +Ae−t/10

x(t) = 100(1 − )e−t/10

x(t) = 100lblimt→∞

50gal ×2 = 100lb
lb

50gal
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Orthogonal Trajectories of Curves
There are many problems from geometry which have lead to the study of differential equations. One such problem is the
construction of orthogonal trajectories. Give a a family of curves, , we seek another family of curves  such that the
second family of curves are perpendicular the to given family. This means that the tangents of two intersecting curves at the point
of intersection are perpendicular to each other. The slopes of the tangent lines are given by the derivatives  and . We
recall from elementary geometry that the slopes of two perpendicular lines are related by

Find a family of orthogonal trajectories to the family of parabolae .

Solution
We note that the new collection of curves has to satisfy the equation

Before solving for , we need to eliminate the parameter . From the give function, we have that . Inserting this

into the equation for , we have

Thus, to find , we have to solve the differential equation

Noting that  and  this (exact) equation can be Written as

Integrating, we find the family of solutions,

In Figure  we plot both families of orthogonal curves.

(x; a)y1 (x; c)y2

(x)y′
1 (x)y′

2

(x) = −y′
2

1

(x)y′
1

 Example 1.3.5

(x; a) = ay1 x2

(x) = − = −y′
2

1

(x)y′
1

1

2ax

(x)y2 a a =
y

x2

y′
2

(x) = − = −y′ 1

2ax

x

2y

(x)y2

2y +x = 0y′

= 2y( )y2 ′
y′ =( )

1

2
x2

′

x′′

( + ) = 0
d

dx
y2 1

2
x2

+ = ky2 1

2
x2

1.3.2
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Figure : Plot of orthogonal families of curves,  and .

Pursuit Curves*
Another application that is interesting is to find the path that a body traces out as it moves towards a fixed point or another moving
body. Such curses are know as pursuit curves. These could model aircraft or submarines following targets, or predators following
prey. We demonstrate this with an example.

A hawk at point  sees a sparrow traveling at speed  along a straight line. The hawk flies towards the sparrow at constant
speed  but always in a direction along line of sight between their positions. If the hawk starts out at the point  at ,
when the sparrow is at , then what is the path the hawk needs to follow? Will the hawk catch the sparrow? The situation
is shown in Figure . We pick the path of the sparrow to be along the -axis. Therefore, the sparrow is at position .

Figure : A hawk at point  sees a sparrow at point  and always follows the straight line between these points.

Solution
First we need the equation of the line of sight between the points  and . Considering that the slope of the line is the
same as the slope of the tangent to the path, , we have

1.3.2 y = ax2 + = ky2 1

2
x2

 Example 1.3.6

(x, y) v

w (a, 0) t = 0
(0, 0)

1.3.3 y (0, vt)

1.3.3 (x,y) (0,vt)

(x, y) (0, vt)
y = y(x)
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The hawk is moving at a constant speed, w. Since the speed is related to the time through the distance the hawk travels. We
need to find the arclength of the path between  and . This is given by

The distance is related to the speed, , and the time, , by . Eliminating the time using , we have

Furthermore, we can differentiate this result with respect to  to get rid of the integral,

Even though this is a second order differential equation for , it is a first order separable equation in the speed function 
. Namely,

Separating variables, we find

The integrals can be computed using standard methods from calculus. We can easily integrate the right hand side,

The left hand side takes a little extra work, or looking the value up in Tables or using a CAS package. Recall a trigonometric
substitution is in order. [See the Appendix.] We let . Then . The methods proceeds as follows:

Putting these together, we have for ,

Using the initial condition  and  at ,

or .

Using this value for , we find

=y′ y−vt

x

(a, 0) (x, y)

L = ∫ ds = dx.∫
a

x

1 +[ (x)]y′ 2
− −−−−−−−−

√

w t L = wt =y′ y−vt

x

dx = (y−x )∫
a

x

1 +[ (x)]y′ 2
− −−−−−−−−

√ w

v
y′

x

= x1 +[ (x)]y′ 2
− −−−−−−−−

√ w

v
y′′

y(x)
z(x) = (x)y′

x =
w

v
z′ 1 +z2− −−−−

√

∫ = ∫
w

v

dz

1 +z2
− −−−−

√

dx

x

∫ = ln|x| + .
dx

x
c1

z = tanθ dz = θdθsec2

∫
dz

1 +z2
− −−−−

√

 

= ∫ dθ
θsec2

1 + θtan2
− −−−−−−−

√

= ∫ sec θdθ

= ln(tanθ+sec θ) +c2

= ln(z+ )+1 +z2− −−−−
√ c2

x > 0

ln(z+ ) = lnx+C1 +z2− −−−−
√ v

w

z = = 0y′ x = a t = 0

0 = lna+C
v

w

C = − lna
v

w

c
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We can solve for , to find

Integrating,

The integration constant, , can be found knowing . This gives

The full solution for the path is given by

Can the hawk catch the sparrow? This would happen if there is a time when . Inserting  into the solution, we
have . This is possible if .

This page titled 1.3: Applications is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

ln(z+ )1 +z2− −−−−√

ln(z+ )1 +z2− −−−−
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ln(z+ )1 +z2− −−−−√

z+ 1 +z2− −−−−
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w
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1.4: Other First Order Equations
There are several nonlinear first order equations whose solution can be obtained using special techniques. We conclude this chapter
by looking at a few of these equations named after famous mathematicians of the  th century inspired by various
applications.

Bernoulli Equation
The Bernoulli’s were a family of Swiss mathematicians spanning three generations. It all started with Jacob Bernoulli (1654-1705)
and his brother Johann Bernoulli (1667-1748). Jacob had a son, Nicolaus Bernoulli (1687- 1759) and Johann (1667-1748) had three
sons, Nicolaus Bernoulli II (1695-1726), Daniel Bernoulli (1700-1872), and Johann Bernoulli II (1710-1790). The last generation
consisted of Johann II’s sons, Johann Bernoulli III (1747-1807) and Jacob Bernoulli II (1759-1789). Johann, Jacob and Daniel
Bernoulli were the most famous of the Bernoulli’s. Jacob studied with Leibniz, Johann studied under his older brother and later
taught Leonhard Euler (1707-1783) and Daniel Bernoulli, who is known for his work in hydrodynamics.

We begin with the Bernoulli equation, named after Jacob Bernoulli (1655-1705). The Bernoulli equation is of the form

Note that when  the equation is linear and can be solved using an integrating factor. The key to solving this equation is

using the transform  to make the equation for  linear. We demonstrate the procedure using an example.

Solve the Bernoulli equation  for .

Solution

In this example , and . Therefore, we let mous of the Bernoulli’s. Jacob studied . Then,

Inserting  and  into the differential equation, we have

Thus, the resulting equation is a linear first order differential equation. It can be solved using the integrating factor,

Multiplying the differential equation by the integrating factor, we have

Integrating, we obtain

17 −18

+p(x)y = q(x) , n ≠ 0, 1
dy

dx
yn

n = 0, 1

z(x) =
1

(x)yn−1
z(x)

 Example 1.4.1

x +y = lnxy′ y2 x > 0

p(x) = 1, q(x) = lnx n = 2 z =
1

y

= − = .z′ 1

y2
y′ z2y′

z = y−1 =z′ z2y′

x +yy′

−x +
z′

z2

1

z

−x +zz′

− z = − .z′ 1

x

lnx

x

= lnxy2

=
lnx

z2

= lnx

μ(x) = exp(−∫ ) =
dx

x

1

x

=( )
z

x

′ lnx

x2
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Multiplying by , we have . Since , the general solution to the problem is

Lagrange and Clairaut Equations

Alexis Claude Clairaut (1713-1765) solved the differential equation

This is a special case of the family of Lagrange equations,

named after Joseph Louis Lagrange (1736-1813). These equations also have solutions called singular solutions. Singular solution
are solutions for which there is a failure of uniqueness to the initial value problem at every point on the curve. A singular solution
is often one that is tangent to every solution in a family of solutions.

First, we consider solving the more general Lagrange equation. Let  in the Lagrange equation, giving

Next, we differentiate with respect to  to find

Lagrange equations

Here we used the Chain Rule. For example,

Solving for , we have

We have introduced , viewed as a function of . Let’s assume that we can invert this function to find . Then,
from introductory calculus, we know that the derivatives of a function and its inverse are related,

Applying this to Equation , we have

assuming that .

z

x
= −∫ +C

lnx

x2

= +∫ +C
lnx

x

dx

x2

= + +C
lnx

x

1

x

x z = lnx+1 +Cx z = y−1

y =
1

lnx+1 +Cx

y = x +g ( )y′ y′

y = xf ( ) +g ( )y′ y′

p = y′

y = xf(p) +g(p)

x

= p = f(p) +x (p) + (p)y′ f ′ p′ g′ p′

y = xf ( ) +g ( ) .y′ y′

=
dg(p)

dx

dg

dp

dp

dx

p′

=
dp

dx

p−f(p)

x (p) + (p)f ′ g′

p = p(x) x x = x(p)

=
dx

dp

1

dp

dx

1.4.4

dx

dp

− xx′ (p)f ′

p−f(p)

=
x (p) + (p)f ′ g′

p−f(p)

=
(p)g′

p−f(p)

p−f(p) ≠ 0
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As can be seen, we have transformed the Lagrange equation into a first order linear differential equation  for . Using
methods from earlier in the chapter, we can in principle obtain a family of solutions

where  is an arbitrary integration constant. Using Equation , one might be able to eliminate  in Equation  to obtain a
family of solutions of the Lagrange equation in the form

If it is not possible to eliminate  from Equations  and , then one could report the family of solutions as a parametric
family of solutions with  the parameter. So, the parametric solutions would take the form

Singular solutions are possible for Lagrange equations.

We had also assumed the . However, there might also be solutions of Lagrange’s equation for which .
Such solutions are called singular solutions.

Solve the Lagrange equation .

Solution
We will start with Equation . Noting that  , we have

This first order linear differential equation can be solved using an integrating factor. Namely,

Multiplying the differential equation by the integrating factor, we have

Integrating,

This gives the general solution

Replacing  in the original differential equation, we have . The family of solutions is then given by the
parametric equations

1.4.5 x(p)

x = F (p,C)

C 1.4.3 p 1.4.5

φ(x, y,C) = 0

p 1.4.3 1.4.5

p

x = F (p,C)

y = F (p,C)f(p) +g(p)

p−f(p) ≠ 0 p−f(p) = 0

 Example 1.4.2

y = 2x −y′ y′2

1.4.5 f(p) = 2p, g(p) = −p2

− xx′ (p)f ′
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− xx′ 2
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+ xx′ 2

p
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(p)g′
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=
−2p

p−2p

= 2.

μ(p) = exp(∫ dp) = =
2

p
e2 ln p p2

(x ) = 2
d

dp
p2 p2

x = +C.p2 2

3
p3

x(p) = p+
2

3

C

p2

= py′ y = 2xp−p2
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The plots of these solutions is shown in Figure .

Figure : Family of solutions of the La-grange equation 

We also need to check for a singular solution. We solve the equation , or . This gives the solution 
.

The Clairaut differential equation is given by

Letting , we have

This is the Lagrange equation with . Differentiating with respect to x,

Clairaut Equations

Rearranging, we find

So, we have the parametric solution

For the case that , it can be seen that  is a general solution solution.

x

y

= p+ ,
2

3

C

p2

= 2( p+ ) p−
2

3

C

p2
p2

= + .
1

3
p2 2C

p

1.4.1

1.4.1 y = 2x −y′ y′2

p−f(p) = 0 p = 0

y(x) = (2xp− )p = 0 = 0p2

y = x +g ( )y′ y′

p = y′

y = xp+g(p)

f(p) = p

y = x +g ( ) .y′ y′

p = p+x + (p)p′ g′ p′

x = − (p)g′

x = − (p)g′

y = −p (p) +g(p)g′

= Cy′ y = Cx+g(C)
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Find the solutions of .

Solution
As noted, there is a family of straight line solutions , since . There might also by a parametric
solution not contained  this family. It would be given by the set of equations

Figure : Plot of solutions to the Clairaut equation . The straight line solutions are a family of curves whose
limit is the parametric solution.

Eliminating , we have the parabolic curve .

In Figure  we plot these solutions. The family of straight line solutions are shown in blue. The limiting curve traced out,
much like string figures one might create, is the parametric curve.

Riccati Equation

Jacopo Francesco Riccati (  ) studied curves With some specified curvature. He proposed an equation of the form

around 1720. He communicated this to the Bernoulli’s. It was Daniel Bernoulli who had actually solved this equation. As noted by
Ranjan Roy , Riccati had published his equation in 1722 with a note that D. Bernoulli giving the solution in terms of an
anagram. Furthermore, when , the Riccati equation reduces to a Bernoulli equation.

In Section 7.2, we will show that the Ricatti equation can be transformed into a second order linear differential equation. However,
there are special cases in which we can get our hands on the solutions. For example, if , and  are constants, then the differential
equation can be integrated directly. We have

This equation is separable and we obtain

 Example 1.4.3

y = x −y′ y′2

y = Cx−C 2 g(p) = −p2

n

x = − (p) = 2pg′

y = −p (p) +g(p) = 2 − =g′ p2 p2 p2

1.4.2 y = x −y′ y′2

p y = /4x2

1.4.2

1676 −1754

+a(x) +b(x)y+c(x) = 0y′ y2

(2011)

a ≡ 0

a, b c

= −(a +by+c)
dy

dx
y2

x−C = −∫
dy

a +by+cy2
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When a differential equation is left in this form, it is said to be solved by quadrature when the resulting integral in principle can be
computed in terms of elementary functions. 

By elementary functions we mean

well known functions like polynomials, trigonometric, hyperbolic, and some not so well know to undergraduates, such as
Jacobi or Weierstrass elliptic functions.

If a particular solution is known, then one can obtain a solution to the Riccati equation. Let the known solution be  and
assume that the general solution takes the form  for some unknown function . Substituting this form into
the differential equation, we can show that  satisfies a first order linear differential equation.

Inserting  into the general Riccati equation, we have

The last equation is a Bernoulli equation with . So, we can make it a linear equation with the substitution .

Then, we obtain a differential equation for . It is given by

Find the general solution of the Riccati equation,  , using the particular solution .

Solution
We let the sought solution take the form . Then, the equation for  is found as

This equation is simple enough to integrate directly to obtain . Then, the solution to the problem becomes

This page titled 1.4: Other First Order Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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 Note 1

x−C = −∫
dy

a +by+cy2

(x)y1

y(x) = (x) +z(x)y1 z(x)

v(x) = 1/z(x)

y = +zy1

0 =

=

=

−a(x) =z2

+a(x) +b(x)y+c
dy

dx
y2

+a +2az +bz+
dz

dx
z2 y1

+ +a +b +c
dy1

dx
y2

1 y1

+a(x) [2 z+ ] +b(x)z
dz

dx
y1 z2

+[2a(x) +b(x)] z.
dz

dx
y1

(1.4.1)

n = 2 z = , = −
1

v
z′ z′

v2

v(x)
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 Example 1.4.4
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1.5: Problems
1. Find all of the solutions of the first order differential equations. When an initial condition is given, find the particular solution

satisfying that condition.

a. 

b. .

c. .

d. .
e. .
f. .

g. .

h. .

i. .

j. .

2. For the following determine if the differential equation is exact. If it is not exact, find the integrating factor. Integrate the
equations to obtain solutions.
a. 
b. .
c. .
d. .
e. .

3. Consider the differential equation

e. Find the I-parameter family of solutions (general solution) of this equation.
f. Find the solution of this equation satisfying the initial condition . Is this a member of the i-parameter family?

4. A ball is thrown upward with an initial velocity of  from  high. How high does the ball get and how long does in
take before it hits the ground? [Use results from the simple free fall problem, 

5. Consider the case of free fall with a damping force proportional to the velocity,  with .
a. Using the correct sign, consider a  mass falling from rest at a height of room. Find the velocity as a function of time.

Does the mass reach terminal velocity?
b. Let the mass be thrown upward from the ground with an initial speed of . Find the velocity as a function of time as it

travels upward and then falls to the ground. How high does the mass get? What is its speed when it returns to the ground?
6. An piece of a satellite falls to the ground from a height of . Ignoring air resistance, find the height as a function of

time. [Hint: For free fall from large distances.

Multiplying both sides by , show that

Integrate and solve for . Further integrating gives 

=
dy

dx

ex

2y

= (1 + ) , y(0) = 1
dy

dt
y2 t2

=
dy

dx

1 −y2− −−−−
√

x
x = y(1 −2y), y(1) = 2y′

−(sinx)y = sinxy′

x −2y = , y(1) = 1y′ x2

+2s = s , , s(0) = 1
ds

dt
t2

−2x = tx′ e2t

+y = sinx, y(0) = 0
dy

dx

− y = , y(1) = 4
dy
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3

x
x3
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(x+ )dx−2xydy = 0y2
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7. The problem of growth and decay is stated as follows: The rate of change of a quantity is proportional to the quantity. The
differential equation for such a problem is

The solution of this growth and decay problem is . Use this solution to answer the following questions if forty
percent of a radioactive substance disappears in 100 years.

a. What is the half-life of the substance?
b. After how many years will  be gone?

8. Uranium 237 has a half-life of  days. If there are  grams of U-237 now, then how much will be left after two weeks?
9. The cells of a particular bacteria culture divide every three and a half hours. If there are initially 250 cells, how many will there

be after ten hours?
10. The population of a city has doubled in 25 years. How many years will it take for the population to triple?
11. Identify the type of differential equation. Find the general solution and plot several particular solutions. Also, find the singular

solution if one exists.

a. .

b. .
c. .
d. .

12. Find the general solution of the Riccati equation given the particular solution(A function  is said to be homogeneous of
degree  if .)
a. .
b. .

13. The initial value problem

does not fall into the class of problems considered in this chapter. The function on the right-hand side is a homogeneous function of
degree zero. However, if one substitutes  into the differential equation, one obtains an equation for  which can be
solved. Use this substitution to solve the initial value problem for .

14. If  and  are homogeneous functions of the same degree, then  can be written as a function of . This
suggests that a substitution of  into  might simplify the equation. For the following
problems use this method to find the family of solutions.
a. 
b. .
c. .

15. Find the family of orthogonal curves to the given family of curves.
a. 
b. .
c. .

16. The temperature inside your house is  and it is  outside. At  oo A.M. the furnace breaks down. At 3:00 A.M. the
temperature in the house has dropped to . Assuming the outside temperature is constant and that Newton’s Law of Cooling
applies, determine when the temperature inside your house reaches .

17. A body is discovered during a murder investigation at 8:oo P.M. and the temperature of the body is . Two hours later the
body temperature has dropped to  in a room that is at . Assuming that Newton’s Law of Cooling applies and the body
temperature of the person was  at the time of death, determine when the murder occurred.

18. Newton’s Law of Cooling states that the rate of heat loss of an object is proportional to the temperature gradient, or

= ±ky
dy

dt

y(t) = y0e
±kt

90%

6.78 10.0

y = x +y′ 1

y′

y = 2x +lny′ y′

+2xy = 2xy′ y2

+2xy =y′ y2ex
2

F (x, y)

k F (tx, ty) = F (x, y)tk

x − +(2x+1)y = +2x, (x) = xy′ y2 x2 y1

+ −2y = 1 − , (x) =y′e−x y2 ex e2x y1 ex

= , y(1) = 1
dy

dx

+xyy2

x2

y(x) = xz(x) z(x)

y(x)

M(x, y) N(x, y) M/N y/x

y(x) = xz(x) M(x, y)dx+N(x, y)dy

( −xy+ )dx−xydy = 0x2 y2

xydx−( + )dy = 0x2 y2

( +2xy−4 )dx−( −8xy−4 )dy = 0x2 y2 x2 y2

y = ax

y = ax2

+ = 2axx2 y2
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where  is the thermal energy,  is the heat transfer coefficient,  is the surface area of the body, and . If ,
where  is the heat capacity, then we recover Equation  with .

However, there are modifications which include convection or radiation. Solve the following models and compare the solution
behaviors.

a. Newton 
b. Dulong-Petit 
c. Newton-Stefan  .

19. Initially a 200 gallon tank is filled with pure water. At time  a salt concentration with 3 pounds of salt per gallon is added
to the container at the rate of 4 gallons per minute, and the well-stirred mixture is drained from the container at the same rate.
a. Find the number of pounds of salt in the container as a function of time.
b. How many minutes does it take for the concentration to reach 2 pounds per gallon?
c. What does the concentration in the container approach for large values of time? Does this agree with your intuition?
d. Assuming that the tank holds much more than 200 gallons, and everything is the same except that the mixture is drained at 3

gallons per minute, what would the answers to parts a and b become?
20. You make two gallons of chili for a party. The recipe calls for two teaspoons of hot sauce per gallon, but you had accidentally

put in two tablespoons per gallon. You decide to feed your guests the chili anyway. Assume that the guests take i cup/min of
chili and you replace what was taken with beans and tomatoes without any hot sauce. [ 1 gal  cups and  tsp.]

a. Write down the differential equation and initial condition for the amount of hot sauce as a function of time in this mixture-
type problem.

b. Solve this initial value problem.
c. How long will it take to get the chili back to the recipe’s suggested concentration?

This page titled 1.5: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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2.1: Introduction
IN THE LAST SECTION WE SAW how second order differential equations naturally appear in the derivations for simple
oscillating systems. In this section we will look at more general second order linear differential equations.

Second order differential equations are typically harder than first order. In most cases students are only exposed to second order
linear differential equations. A general form for a second order linear differential equation is given by

One can rewrite this equation using operator terminology. Namely, one first defines the differential operator 

, where . Then, Equation  becomes

The solutions of linear differential equations are found by making use of the linearity of . Namely, we consider the vector space 
consisting of realvalued functions over some domain. Let  and  be vectors in this function space.  is a linear operator if for two
vectors  and  and scalar , we have that

1

We assume that the reader has been introduced to concepts in linear algebra. Later in the text we will recall the definition of a
vector space and see that linear algebra is in the background of the study of many concepts in the solution of differential
equations.

a. 

b. .

One typically solves Equation  by finding the general solution of the homogeneous problem,

and a particular solution of the nonhomogeneous problem,

Then, the general solution of Equation  is simply given as . This is true because of the linearity of . Namely,

There are methods for finding a particular solution of a nonhomogeneous differential equation. These methods range from pure
guessing, the Method of Undetermined Coefficients, the Method of Variation of Parameters, or Green’s functions. We will review
these methods later in the chapter.

Determining solutions to the homogeneous problem, , is not always easy. However, many now famous mathematicians
and physicists have studied a variety of second order linear equations and they have saved us the trouble of finding solutions to the
differential equations that often appear in applications. We will encounter many of these in the following chapters. We will first
begin with some simple homogeneous linear differential equations.

Linearity is also useful in producing the general solution of a homogeneous linear differential equation. If  and  are
solutions of the homogeneous equation, then the linear combination  is also a solution of the
homogeneous equation. This is easily proven.

Let  and . We consider . Then, since  is a linear operator,

a(x) (x) +b(x) (x) +c(x)y(x) = f(x)y′′ y′

L = a(x) +b(x)D+c(x)D2 D =
d

dx
2.1.1

Ly = f

L 1

f g L

f g a

L(f +g) = Lf +Lg

L(af) = aLf

2.1.1

L = 0yh

L = f .yp

2.1.1 y = +yh yp L

Ly = L ( + )yh yp

= L +Lyh yp

= 0 +f = f .

L = 0yh

(x)y1 (x)y2

y(x) = (x) + (x)c1y1 c2y2

L = 0y1 L 2 = 0y1 y = +c1y1 c2y2 L
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Therefore,  is a solution.

In fact, if  and  are linearly independent, then  is the general solution of the homogeneous problem. A
set of functions  is a linearly independent set if and only if

implies , for . Otherwise, they are said to be linearly dependent. Note that for , the general form is 

. If  and  are linearly dependent, then the coefficients are not zero and  and is a

multiple of . We see this in the next example.

Show that  and  are linearly dependent.

We set  and show that there are nonzero constants,  and  satisfying this equation. Namely, let

Then, for , this is true for any nonzero . Let  and we have . Next we consider two functions that
are not constant multiples of each other.

Show that  and  are linearly independent.

We set  and show that it can only be true if  and . Let

for all . Differentiating, we have two sets of equations that must be true for all  :

Setting , we get . Setting , then . Thus, .

Another approach would be to solve for the constants. Multiplying the second equation by  and subtracting yields .
Substituting this result into the second equation, we find .

For second order differential equations we seek two linearly independent functions,  and . As in the last example, we set
  and show that it can only be true if  and . Differentiating, we have

These must hold for all  in the domain of the solutions.

Now we solve for the constants. Multiplying the first equation by  and the second equation by , we have

Subtracting gives

Ly = L ( + )c1y1 c2y2

= L + Lc1 y1 c2 y2

= 0

y

(x)y1 (x)y2 y = +c1y1 c2y2

{ (x)}yi
n
i=1

(x) +… + (x) = 0c1y1 cnyn

= 0ci i = 1, … ,n n = 2

(x) + (x) = 0c1y1 c2y2 y1 y2 (x) = − (x)y2
c1

c2
y1

(x)y1

 Example 2.1.1

(x) = xy1 (x) = 4xy2

(x) + (x) = 0c1y1 c2y2 c1 c2

x+ (4x) = 0c1 c2

= −4c1 c2 c2 = 1c2 = −4c1

 Example 2.1.2

(x) = xy1 (x) =y2 x2

(x) + (x) = 0c1y1 c2y2 = 0c1 = 0c2

x+ = 0c1 c2x
2

x x

x+c1 c2x
2

+2 xc1 c2

=

=

0

0
(2.1.1)

x = 0 = 0c1 x = 1 + = 0c1 c2 = 0c2

x = 0c2

= 0c1

(x)y1 (x)y2

(x)+c1y1 (x) = 0c2y2 = 0c1 = 0c2

(x) + (x) = 0c1y1 c2y2

(x) + (x) = 0c1y′
1 c2y′

2

x

(x)y′
1

(x)y2

(x) (x) + (x) (x) = 0c1y1 y′
2 c2y2 y′

2

(x) (x) + (x) (x) = 0c1y′
1 y2 c2y′

2 y2

[ (x) (x) − (x) (x)] = 0y1 y′
2 y′

1 y2 c1
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Therefore, either  or . So, if the latter is true, then  and therefore, . This gives a
condition for which  and  are linearly independent:

We define this quantity as the Wronskian of  and .

Linear independence of the solutions of a differential equation can be established by looking at the Wronskian of the solutions. For
a second order differential equation the Wronskian is defined as

The Wronskian can be written as a determinant:

Thus, the definition of a Wronskian can be generalized to a set of  functions  using an  determinant.

Determine if the set of functions  are linearly independent.

We compute the Wronskian.

Since, , then the set  is linearly independent.

This page titled 2.1: Introduction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

= 0c1 (x) (x) − (x) (x) = 0y1 y′
2 y′

1 y2 = 0c1 = 0c2

(x)y1 (x)y2

(x) (x) − (x) (x) = 0y1 y′
2 y′

1 y2

(x)y1 (x)y2

W ( , ) = (x) (x) − (x) (x).y1 y2 y1 y′
2 y′

1 y2

W ( , ) = = (x) (x) − (x) (x)y1 y2
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∣

∣
∣

(x)y1

(x)y′
1

(x)y2

(x)y′
2

∣

∣

∣
∣ y1 y′

2 y′
1 y2

n { (x)}yi
n
i=1 n×n

 Example 2.1.3

{1, x, }x2

W ( , , )y1 y2 y3 =

∣

∣

∣
∣
∣
∣

(x)y1

(x)y′
1

(x)y′′
1

(x)y2

(x)y′
2

(x)y′′
2

(x)y3

(x)y′
3
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3

∣

∣

∣
∣
∣
∣
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∣
∣
∣

1
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0
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1

0

x2
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2

∣

∣

∣
∣
∣
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2.2: Constant Coefficient Equations
\THE SIMPLEST SECOND ORDER DIFFERENTIAL EQUATIONS are those with constant coefficients. The general form for a
homogeneous constant coefficient second order linear differential equation is given as

where , and  are constants.

Solutions to Equation  are obtained by making a guess of . Inserting this guess into Equation  leads to the
characteristic equation

The characteristic equation for  is . Solutions of this quadratic equation lead to solutions of
the differential equation.

Two real, distinct roots,  and , give solutions of the form

Namely, we compute the derivatives of , to get , and . Inserting into \), we
have

Since the exponential is never zero, we find that .

The roots of this equation, , in turn lead to three types of solutions depending upon the nature of the roots. In general, we have
two linearly independent solutions,  and , and the general solution is given by a linear combination of
these solutions,

For two real distinct roots, we are done. However, when the roots are real, but equal, or complex conjugate roots, we need to do a
little more work to obtain usable solutions.

.

Solution
The characteristic equation for this problem is . The roots of this equation are found as . Therefore,
the general solution can be quickly written down:

Note that there are two arbitrary constants in the general solution. Therefore, one needs two pieces of information to find a
particular solution. Of course, we have the needed information in the form of the initial conditions.

One also needs to evaluate the first derivative

in order to attempt to satisfy the initial conditions. Evaluating  and  at  yields

a (x) +b (x) +cy(x) = 0y′′ y′ (2.2.1)

a, b c

2.2.1 y(x) = erx 2.2.1

a +br+c = 0r2

a +b +cy = 0y′′ y′ a +br+c = 0r2

r1 r2

y(x) = + .c1e
xr1 c2e

xr2

y(x) = erx y(x) = rerx y(x) = r2erx Equation\(2.2.1

0 = a (x) +b (x) +cy(x) = (a +br+c)y′′ y′ r2 erx

a +br+c = 0r2

,r1 r2

(x) =y1 e xr1 (x) =y2 e xr2

y(x) = +c1e
xr1 c2e

xr2

 Example 2.2.1

− −6y = 0y(0) = 2, (0) = 0y′′ y′ y′

−r−6 = 0r2 r = −2, 3

y(x) = +c1e
−2x c2e

3x

(x) = −2 +3y′ c1e
−2x c2e

3x

y y′ x = 0

2 = +c1 c2

0 = −2 +3c1 c2
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These two equations in two unknowns can readily be solved to give  and . Therefore, the solution of the

initial value problem is obtained as .

Repeated roots, , give solutions of the form

In the case when there is a repeated real root, one has only one solution, . The question is how does one obtain the
second linearly in- dependent solution? Since the solutions should be independent, we must have that the ratio  is not a
constant. So, we guess the form . (This process is called the Method of Reduction of Order. See
Section 2.2.1)

For more on the Method of Reduction of Order, see Section 2.2.1.

For constant coefficient second order equations, we can write the equation as

where . We now insert  into this equation. First we compute

Then,

So, if  is to be a solution to the differential equation, then  for all . So, , which implies that

Without loss of generality, we can take  and  to obtain the second linearly independent solution, . The
general solution is then

Solution
In this example we have . There is only one root, . From the above discussion, we easily find the
solution  

When one has complex roots in the solution of constant coefficient equations, one needs to look at the solutions

We make use of Euler’s formula , which is treated in Section 8.1.

1

Euler’s Formula is found using Maclaurin series expansion

Let  and find

= 6/5c1 = 4/5c2

y(x) = +
6

5
e−2x 4

5
e3x

= = rr1 r2

y(x) = ( + x) .c1 c2 erx

(x) =y1 erx

(x)/ (x)y2 y1

(x) = v(x) (x) = v(x)y2 y1 erx

(D−r y = 0)2

D =
d

dx
(x) = v(x)y2 erx

(D−r)v =erx v′erx

0 = (D−r v = (D−r) =)2 erx v′erx v′′erx

(x)y2 (x) = 0v′′ erx x (x) = 0v′′

v(x) = ax+b

(x) = (ax+b)y2 erx

b = 0 a = 1 (x) = xy2 erx

y(x) = + xc1e
rx c2 erx

 Example 2.2.2

+6 +9y = 0y′′ y′

+6r+9 = 0r2 r = −3
y(x) = ( + x)c1 c2 e−3x

(x) =y1,2 e(α±iβ)x

1

= 1 +x+ + +⋯ex
1

2
x2 1

3!
x3

x = iθ
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Then, the linear combination of  and  becomes

Thus, we see that we have a linear combination of two real, linearly independent solutions,  and .

Complex roots, , give solutions of the form

. The characteristic equation in this case is . The roots 
are pure imaginary roots, , and the general solution consists 
purely of sinusoidal functions, , since 

 and .

. 
The characteristic equation in this case is . The roots The characteristic equation in this case is 

. The roots 
re complex,  and the general solution can be written as

.

This is an example of a nonhomogeneous problem. The homogeneous problem was actually solved in Example .
According to the theory, we need only seek a particular solution to the nonhomogeneous problem and add it to the solution of
the last example to get the general solution.

The particular solution can be obtained by purely guessing, making an educated guess, or using the Method of Variation of
Parameters. We will not review all of these techniques at this time. Due to the simple form of the driving term, we will make an
intelligent guess of  and determine what  needs to be. Inserting this guess into the differential equation gives 

. So, we see that  works. The general solution of the nonhomogeneous problem is therefore 

.

The three cases for constant coefficient linear second order differential equations are summarized below.

eiθ = 1 + iθ+ (iθ + (iθ +⋯
1

2
)2 1

3!
)3

= 1 − + +⋯
1

2
θ2 1

4!
θ4

i [θ− + +⋯]
1

3!
θ3 1

5!
θ5

= cosθ+ i sinθ

= cosβx+ i sinβxeiβx

(x)y1 (x)y2

A +Be(α+iβ)x e(α−iβ)x = [A +B ]eαx eiβx e−iβx

= [(A+B) cosβx+ i(A−B) sinβx]eαx

≡ ( cosβx+ sinβx)eαx c1 c2

(2.2.2)

cosβxeαx sinβxeαx

r = α± iβ

y(x) = ( cosβx+ sinβx) .eαx c1 c2

 Example 2.2.3

+4y = 0y′′ +4 = 0r2

r = ±2i
y(x) = cos(2x) + sin(2x)c1 c2

α = 0 β = 2

 Example 2.2.4

+2 +4y = 0y′′ y′

+2r+4 = 0r2

+2r+4 = 0r2

r = −1 ± i3
–

√

y(x) = [ cos( x) + sin( x)]c1 3
–

√ c2 3
–

√ e−x

 Example 2.2.5

+4y = sinxy′′

2.2.3

(x) = A sinxyp A

(−A+4A) sinx = sinx A = 1/3

y(x) = cos(2x) + sin(2x) + sinxc1 c2
1

3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91052?pdf


2.2.4 https://math.libretexts.org/@go/page/91052

Classification of Roots of the Characteristic Equation for Second Order Constant Coefficient ODEs
1. Real, distinct roots . In this case the solutions corresponding to each root are linearly independent. Therefore, the general

solution is simply .
2. Real, equal roots . In this case the solutions corresponding to each root are linearly dependent. To find a second

linearly independent solution, one uses the Method of Reduction of Order. This gives the second solution as . Therefore,
the general solution is found as 

3. Complex conjugate roots . In this case the solutions corresponding to each root are linearly independent.
Making use of Euler’s identity, , these complex exponentials can be rewritten in terms of trigonometric
functions. Namely, one has that  and  are two linearly independent solutions. Therefore, the general
solution becomes . .

As we will see, one of the most important applications of such equations is in the study of oscillations. Typical systems are a mass
on a spring, or a simple pendulum. For a mass  on a spring with spring constant , one has from Hooke’s law that the
position as a function of time, , satisfies the equation

This constant coefficient equation has pure imaginary roots  and the solutions are simple sine and cosine functions, leading
to simple harmonic motion.

2.2.1: Reduction of Order

WE HAVE SEEN THE THE METHOD OF REDUCTION OF ORDER Was useful in obtaining a second solution of a second
order differential equation with constant coefficients when one solution was known. It can also be used to solve other second order
differential equations. First, we review the method by example.

Verify that  is a solution of  and use the Method of Reduction of Order to find a second
linearly independent solution.

We note that

Substituting the  and its derivatives into the differential equation, we have

In order to find a second linearly independent solution, , we need a solution that is not a constant multiple of . So,
we guess the form . For this example, the function and its derivatives are given by

Substituting  and its derivatives into the differential equation, we have

,r1 r2

y(x) = +c1e
xr1 c2e

xr2

= = rr1 r2

xerx

y(x) = ( + x)c1 c2 erx

, = α± iβr1 r2

= cos(θ) + i sin(θ)eiθ

cos(βx)eαx sin(βx)eαx

y(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+\right sin(βx))c2

m k > 0
x(t)

m +kx = 0ẍ

(α = 0)

 Example 2.2.6

(x) = xy1 e2x −4 +4y = 0y′′ y′

(x) = (1 +2x)y′
1 e2x

(x) = [2 +2(1 +2x)] = (4 +4x)y′′
1 e2x e2x

(x)y1

−4 +4y′′
1 y′

1 y1 = (4 +4x) −4(1 +2x) +4xe2x e2x e2x

= 0
(2.2.3)

(x)y2 (x)y1

(x) = v(x) (x)y2 y1

y2

y′
2

y′′
2

= vy1

= (v )y1
′

= +vv′y1 y′
1

= ( +v )v′y1 y′
1

′

= +2 +vv′′y1 v′y′
1 y′′

1

y2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91052?pdf


2.2.5 https://math.libretexts.org/@go/page/91052

Therefore,  satisfies the equation

This is a first order equation for , which can be seen by introducing , leading to the separable first order
equation

This is readily solved to find . This gives

Further integration leads to

This gives

Note that the second term is the original , so we do not need this term and can set . Since the second linearly
independent solution can be determined up to a multiplicative constant, we can set  to obtain the answer .
Note that this argument for obtaining the simple form is reason enough to ignore the integration constants when employing the
Method of Reduction of Order.

For an example without constant coefficients, consider the following example.

Verify that  is a solution of  0 and use the Method of Reduction of Order to find a second
linearly independent solution.

Substituting the  and its derivatives into the differential equation, we have

In order to find a second linearly independent solution, , we need a solution that is not a constant multiple of . So,
we guess the form . For this example, the function and its derivatives are given by

0 = −4 +4y′′
2 y′

2 y2

= ( +2 +v ) −4 ( +v ) +4vv′′y1 v′y′
1 y′′

1 v′y1 y′
1 y1

= +2 −4 +v [ −4 +4 ]v′′y1 v′y′
1 v′y1 y′′

1 y′
1 y1

= +2 −4v′′y1 v′y′
1 v′y1

= x +2 (1 +2x) −4 xv′′ e2x v′ e2x v′ e2x

= [ x+2 ]v′′ v′ e2x

(2.2.4)

v(x)

x+2 = 0v′′ v′

(x)v′ z(x) = (x)v′

x = −2z.
dz

dx

z(x) =
A

x2

z = =
dv

dx

A

x2

v(x) = − +C
A

x

(x)y2 =(− +C)x
A

x
e2x

= −A +Cxe2x e2x

(x)y1 C = 0
A = −1 (x) =y2 e2x

 Example 2.2.7

(x) = xy1 −4x +4y =x2y′′ y′

(x) = xy1

−4x +4x2y′′
1 y′

1 y1 = 0 −4x+4x

= 0
(2.2.5)

(x)y2 (x)y1

(x) = v(x) (x)y2 y1
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Substituting  and its derivatives into the differential equation, we have

Note how the -terms cancel, leaving

This equation is solved by introducing . Then, the equation becomes

Using separation of variables, we have

Integrating, we obtain

This leads to the second solution in the form

Since the general solution is

we see that we can choose  and  to obtian the general solution as

Therefore, we typically do not need the arbitrary constants found in using reduction of order and simply report that 
.

This page titled 2.2: Constant Coefficient Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

y2

y′
2

y′′
2

= xv

= (xv)′

= v+xv′

= (v+x )v′ ′

= 2 +xv′ v′′

= xv(x)y2

0 = −4x +4x2y′′
2 y′

2 y2

= (2 +x ) −4x (v+x ) +4xvx2 v′ v′′ v′

= −2x3v′′ x2v′

v

x = 2v′′ v′

z(x) = (x)v′

x = 2z.
dz

dx

z = = A
dv

dx
x2

v= A +B
1

3
x3

(x) = x( A +B) = A +Bx.y2
1

3
x3 1

3
x4

y(x) = x+ ( A +Bx)c1 c2
1

3
x4

B = 0 A = 3
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2.3: Simple Harmonic Oscillators
THE NEXT PHYSICAL PROBLEM OF INTEREST is that of simple harmonic motion. Such motion comes up in many places in
physics and provides a generic first approximation to models of oscillatory motion. This is the beginning of a major thread running
throughout this course. You have seen simple harmonic motion in your introductory physics class. We will review SHM (or SHO in
some texts) by looking at springs, pendula (the plural of  pendulum), and simple circuits.

2.3.1: Mass-Spring Systems

Figure : Spring-Mass system

WE BEGIN WITH THE CASE of a single block on a spring as shown in Figure . The net force in this case is the restoring
force of the spring given by Hooke’s Law,

where  is the spring constant. Here  is the elongation, or displacement of the spring from equilibrium. When the
displacement is positive, the spring force is negative and when the displacement is negative the spring force is positive. We have
depicted a horizontal system sitting on a frictionless surface. A similar model can be provided for vertically oriented springs.
However, you need to account for gravity to determine the location of equilibrium. Otherwise, the oscillatory motion about
equilibrium is modeled the same.

From Newton’s Second Law, , we obtain the equation for the motion of the mass on the spring:

Dividing by the mass, this equation can be written in the form

where

This is the generic differential equation for simple harmonic motion.

We will later derive solutions of such equations in a methodical way. For now we note that two solutions of this equation are given
by

where  is the angular frequency, measured in rad/s, and  is called the amplitude of the oscillation.

The angular frequency is related to the frequency by

where  is measured in cycles per second, or Hertz. Furthermore, this is related to the period of oscillation, the time it takes the
mass to go through one cycle:

m

2.3.1

2.3.1

= −kxFs

k > 0 x

F = mẍ

m +kx = 0ẍ (2.3.1)

+ x = 0ẍ ω2

ω =
k

m

−−−
√

x(t)

x(t)

= A cosωt

= A sinωt

ω A

ω = 2πf

f
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2.3.2: The Simple Pendulum
THE SIMPLE PENDULUM consists of a point mass  hanging on a string of length  from some support. [See Figure .]
One pulls the mass back to some starting angle, , and releases it. The goal is to find the angular position as a function of time.

Figure : A simple pendulum consists of a point mass  attached to a string of length . It is released from an angle .

There are a couple of possible derivations. We could either use Newton’s Second Law of Motion, , or its rotational
analogue in terms of torque, . We will use the former only to limit the amount of physics background needed.

There are two forces acting on the point mass. The first is gravity. This points downward and has a magnitude of , where  is
the standard symbol for the acceleration due to gravity. The other force is the tension in the string. In Figure  these forces and
their sum are shown. The magnitude of the sum is easily found as  using the addition of these two vectors.

Now, Newton’s Second Law of Motion tells us that the net force is the mass times the acceleration. So, we can write

Figure : There are two forces acting on the mass, the weight  and the tension . The net force is found to be 
.

Next, we need to relate  and  is the distance traveled, which is the length of the arc traced out by the point mass. The arclength
is related to the angle, provided the angle is measure in radians. Namely,  for . Thus, we can write

Linear and nonlinear pendulum equation. Canceling the masses, this then gives us the nonlinear pendulum equation

The equation for a compound pendulum takes a similar form. We start with the rotational form of Newton’s second law .
Noting that the torque due to gravity acts at the center of mass position , the torque is given

T = 1/f

m L 2.3.2
θ0

2.3.2 m L θ0

F = ma

τ = Iα

mg g

2.3.3
F = mg sinθ

m = −mg sinθẍ

2.3.3 mg T
F = mg sin θ

x θ. x
x = rθ r = L

mL = −mg sinθ.θ̈

L +g sinθ = 0θ̈

τ = Iα

ℓ

+ θ = 0θ̈ ω2
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by . Since , we have . Then, for small angles , where . For a

simple pendulum, we let  and , and obtain .

We note that this equation is of the same form as the mass-spring system. We define  and obtain the equation for simple
harmonic motion,

There are several variations of Equation  which will be used in this text. The first one is the linear pendulum. This is obtained
by making a small angle approximation. For small angles we know that . Under this approximation Equation 
becomes

2.3.3: LRC Circuits

ANOTHER TYPICAL PROBLEM OFTEN ENCOUNTERED in a first year physics class is that of an LRC series circuit. This
circuit is pictured in Figure . The resistor is a circuit element satisfying Ohm’s Law. The capacitor is a device that stores
electrical energy and an inductor, or coil, store magnetic energy.

Figure : Series LRC Circuit.

The physics for this problem stems from Kirchoff’s Rules for circuits. Namely, the sum of the drops in electric potential are set
equal to the rises in electric potential. The potential drops across each circuit element are given by

1. Resistor: .

2. Capacitor: .

3. Inductor: .

Furthermore, we need to define the current as . where  is the charge in the circuit. Adding these potential drops, we set

them equal to the voltage supplied by the voltage source, . Thus, we obtain

Since both  and  are unknown, we can replace the current by its expression in terms of the charge to obtain

This is a second order equation for . More complicated circuits are possible by looking at parallel connections, or other
combinations, of resistors, capacitors and inductors. This will result in several equations for each loop in the circuit, leading to
larger systems of differential equations. An example of another circuit setup is shown in Figure . This is not a problem that
can be covered in the first year physics course. One can set up a system of second order equations and proceed to solve them. We
will see how to solve such problems in the next chapter.

In the following we will look at special cases that arise for the series LRC circuit equation. These include RC circuits, solvable by
first order methods and LC circuits, leading to oscillatory behavior.

τ = −mgℓ sinθ α = θ̈ I = −mgℓ sinθθ̈ + θ = 0θ̈ ω2 ω =
mgℓ

I
ℓ = L I = mL2 ω = g/L

− −−
√

ω = g/L
− −−

√

+ θ = 0θ̈ ω2

2.3.4
sinθ ≈ θ 2.3.4

L +gθ = 0.θ̈

2.3.4

2.3.4

V = IR

V =
q

C

V = L
dI

dt

I =
dq

dt
q

V (t)

IR+ +L = V (t)
q

C

dI

dt

q I

L +R + q = V (t)q̈ q̇
1

C

q(t)

2.3.5
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Figure : Parallel LRC Circuit.

2.3.4: RC Circuits

WE FIRST CONSIDER THE CASE OF an RC circuit in which there is no inductor. Also, we will consider what happens when
one charges a capacitor with a DC battery  and when one discharges a charged capacitor  as shown in
Figures  and .

Charging a capacitor.

For charging a capacitor, we have the initial value problem

This equation is an example of a linear first order equation for . However, we can also rewrite it and solve it as a separable
equation, since  is a constant. We will do the former only as another example of finding the integrating factor.

We first write the equation in standard form:

Figure : RC Circuit for charging.

The integrating factor is then

Thus,

Integrating, we have

Note that we introduced the integration constant, . Now divide out the exponential to get the general solution:

2.3.5

(V (t) = )V0 (V (t) = 0)
2.3.6 2.3.9

R + = , q(0) = 0
dq

dt

q

C
V0

q(t)
V0

+ =
dq

dt

q

RC

V0

R

2.3.6

μ(t) = =e
∫
dt

RC et/RC

(q ) =
d

dt
et/RC

V0

R
et/RC

q = ∫ dt = C +Ket/RC
V0

R
et/RC V0e

t/RC

K
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(If we had forgotten the , we would not have gotten a correct solution for the differential equation.)

Next, we use the initial condition to get the particular solution. Namely, setting , we have that

So, . Inserting this into the solution, we have

Now we can study the behavior of this solution. For large times the second term goes to zero. Thus, the capacitor charges up,
asymptotically, to the final value of . This is what we expect, because the current is no longer flowing over  and this
just gives the relation between the potential difference across the capacitor plates when a charge of  is established on the plates.

Figure : The charge as a function of time for a charging capacitor with  , and .

Let’s put in some values for the parameters. We let , , and . A plot of the solution is given in
Figure . We see that 
the charge builds up to the value of . If we use a smaller
resistance, , we see in Figure  that the capacitor charges to the 
same value, but much faster.

Time constant, .

The rate at which a capacitor charges, or discharges, is governed by the time constant, . This is the constant factor in the
exponential. The larger it is, the slower the exponential term decays. If we set , we find that

Thus, at time , the capacitor has almost charged to two thirds of its final value. For the first set of parameters, . For
the second set, .

q = C +KV0 e−t/RC

K

t = 0

0 = q(0) = C +KV0

K = −CV0

q(t) = C (1 − )V0 e−t/RC

= Cq0 V0 R

q0

2.3.7 R = 2.00kΩ,C = 6.00mF = 12 VV0

R = 2.00kω C = 6.00mF = 12 VV0

2.3.7
C = 0.072CV0

R = 200Ω 2.3.8

τ = RC

τ = RC

t = τ

q(τ) = C (1 − ) = (1 −0.3678794412 …) ≈ 0.63V0 e−1 q0 q0

t = τ τ = 12 s
τ = 1.2 s
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Figure : The charge as a function of time for a charging capacitor with
\(R=

200 \Omega\), 
, and

Discharging a capacitor.

Now, let’s assume the capacitor is charged with charge  on its plates. If we disconnect the battery and reconnect the wires to
complete the circuit as shown in Figure , the charge will then move off the plates, discharging the capacitor. The relevant form
of the initial value problem becomes

This equation is simpler to solve. Rearranging, we have

Figure : RC Circuit for discharging.

This is a simple exponential decay problem, which one can solve using separation of variables. However, by now you should know
how to immediately write down the solution to such problems of the form . The solution is

2.3.8

C = 6.00mF

= 12 VV0

±q0

2.3.9

R + = 0, q(0) = .
dq

dt

q

C
q0

= −
dq

dt

q

RC

2.3.9

= kyy′

q(t) = , τ = RCq0e
−t/τ
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Figure : The charge as a function of time for a discharging capacitor with  (solid) or  (dashed), and 
, and  .

We see that the charge decays exponentially. In principle, the capacitor never fully discharges. That is why you are often instructed
to place a shunt across a discharged capacitor to fully discharge it. In Figure 

 determines the behavior. At  we
have

So, at this time the capacitor only has about a third of its original value.

2.3.5: LC Circuits
LC Oscillators.

ANOTHER SIMPLE RESULT comes from studying  circuits. We will now connect a charged capacitor to an inductor as
shown in Figure . In this case, we consider the initial value problem

Dividing out the inductance, we have

Figure : An LC circuit.

This equation is a second order, constant coefficient equation. It is of the same form as the ones for simple harmonic motion of a
mass on a spring or the linear pendulum. So, we expect oscillatory behavior. The characteristic equation is

The solutions are

2.3.10 R = 2.00kΩ R = 200Ω
C = 6.00mF =q0 0.072C

2.3.10weshowthedischargingofthetwopreviousRCcircuits.Onceagain, \(τ = RC t = τ

q(τ) = = (0.3678794412 …) ≈ 0.37q0e
−1 q0 q0

LC

2.3.11

L + q = 0, q(0) = , (0) = I(0) = 0q̈
1

C
q0 q̇

+ q = 0q̈
1

LC

2.3.11

+ = 0r2 1

LC

= ±r1,2
i

LC
−−−

√
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Thus, the solution of Equation  is of the form

Inserting the initial conditions yields

The oscillations that result are understandable. As the charge leaves the plates, the changing current induces a changing magnetic
field in the inductor. The stored electrical energy in the capacitor changes to stored magnetic energy in the inductor. However, the
process continues until the plates are charged with opposite polarity and then the process begins in reverse. The charged capacitor
then discharges and the capacitor eventually returns to its original state and the whole system repeats this over and over.

The frequency of this simple harmonic motion is easily found. It is given by

This is called the tuning frequency because of its role in tuning circuits.

Find the resonant frequency for  and  .

Of course, this is an ideal situation. There is always resistance in the circuit, even if only a small amount from the wires. So, we
really need to account for resistance, or even add a resistor. This leads to a slightly more complicated system in which damping will
be present.

2.3.6: Damped Oscillations
As WE HAVE INDICATED, simple harmonic motion is an ideal situation. In real systems we often have to contend with some
energy loss in the system. This leads to the damping of the oscillations. A standard example is a spring-mass-damper system as
shown in Figure  mass is attached to a spring and a damper is added which can absorb some of the energy of the
oscillations. the damping is modeled with a term proportional to the velocity.

Figure : A spring-mass-damper system has a damper added which can abin the spring, in the way a pendulum is attached to
its support, or in the sorb some of the energy of the oscillaresistance to the flow of current in an LC circuit. The simplest models of
tions and is modeled with a term proportional to the velocity.

There are other models for oscillations in which energy loss could be in the spring, in the way a pendulum is attached to its support,
or in the resistance to the flow of current in an LC circuit. The simplest models of resistance are the addition of a term proportional
to first derivative of the dependent variable. Thus, our three main examples with damping added look like:

2.3.15

q(t) = cos(ωt) + sin(ωt), ω = (LCc1 c2 )−1/2

q(t) = cos(ωt)q0

f = =
ω

2π

1

2π

1

LC
−−−

√

 Example 2.3.1

C = 10μF L = 100mH

f = = 160 Hz
1

2π

1

(10 × ) (100 × )10−6 10−3
− −−−−−−−−−−−−−−−−−−−

√

2.12 A

2.3.12

m +b +kx = 0.ẍ ẋ
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These are all examples of the general constant coefficient equation

We have seen that solutions are obtained by looking at the characteristic equation . This leads to three different
behaviors depending on the discriminant in the quadratic formula:

We will consider the example of the damped spring. Then we have

Damped oscillator cases: Overdamped, critically damped, and underdamped.

Overdamped,

In this case we obtain two real root. Since this is Case I for constant coefficient equations, we have that

We note that . Thus, the roots are both negative. So, both terms in the solution exponentially decay. The damping is
so strong that there is no oscillation in the system.

Critically Damped,

In this case we obtain one real root. This is Case II for constant coefficient equations and the solution is given by

where . Once again, the solution decays exponentially. The damping is just strong enough to hinder any oscillation. If
it were any weaker the discriminant would be negative and we would need the third case.

Underdamped,

Figure : A plot of underdamped oscillation given by . The dashed lines are given by  ,
indicating the bounds on the amplitude of the motion.

In this case we have complex conjugate roots. We can write  and . Then the solution is

These solutions exhibit oscillations due to the trigonometric functions, but we see that the amplitude may decay in time due the
overall factor of  when . Consider the case that the initial conditions give  and . (When is this?) Then, the
solution, , looks like the plot in Figure .

a (x) +b (x) +cy(x) = 0y′′ y′

a +br+c = 0r2

r =
−b± −4acb2

− −−−−−−
√

2a

r =
−b± −4mkb2

− −−−−−−−
√

2m

> 4mkb2

x(t) = +c1e
tr1 c2e

tr2

−4mk <b2 b2

= 4mkb2

x(t) = ( + t)c1 c2 ert

r = −b/2m

< 4mkb2

2.3.13 x(t) = 2 cos 3te0.15t x(t) = ±2e0.15t

α = −b/2m β = /2m4mk−b2
− −−−−−−−

√

x(t) = ( cosβt+ sinβt)eαt c1 c2

eαt α < 0 = Ac1 = 0c2

x(t) = A cosβteαt 2.3.13
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2.4: Forced Systems
ALL OF THE SYSTEMS PRESENTED at the beginning of the last section exhibit the same general behavior when a damping
term is present. An additional term can be added that might cause even more complicated behavior. In the case of LRC circuits, we
have seen that the voltage source makes the system nonhomogeneous. It provides what is called a source term. Such terms can also
arise in the mass-spring and pendulum systems. One can drive such systems by periodically pushing the mass, or having the entire
system moved, or impacted by an outside force. Such systems are called forced, or driven.

Typical systems in physics can be modeled by nonhomogeneous second order equations. Thus, we want to find solutions of
equations of the form

As noted in Section 2.1, one solves this equation by finding the general solution of the homogeneous problem,

and a particular solution of the nonhomogeneous problem,

Then, the general solution of Equation  is simply given as .

So far, we only know how to solve constant coefficient, homogeneous equations. So, by adding a nonhomogeneous term to such
equations we will need to find the particular solution to the nonhomogeneous equation.

We could guess a solution, but that is not usually possible without a little bit of experience. So, we need some other methods. There
are two main methods. In the first case, the Method of Undetermined Coefficients, one makes an intelligent guess based on the
form of . In the second method, one can systematically developed the particular solution. We will come back to the Method of
Variation of Parameters and we will also introduce the powerful machinery of Green’s functions later in this section.

Method of Undetermined Coefficients

LET’S SOLVE A SIMPLE DIFFERENTIAL EQUATION highlighting how we can handle nonhomogeneous equations.

Consider the equation

The first step is to determine the solution of the homogeneous equation. Thus, we solve

The characteristic equation is . The roots are . So, we can immediately write the solution

The second step is to find a particular solution of Equation . What possible function can we insert into this equation such
that only a 4 remains? If we try something proportional to , then we are left with a linear function after inserting  and its
derivatives. Perhaps a constant function you might think.  does not work. But, we could try an arbitrary constant, .

Let’s see. Inserting  into Equation , we obtain

Ah ha! We see that we can choose  and this works. So, we have a particular solution, . This step is done.

Combining the two solutions, we have the general solution to the original nonhomogeneous equation Equation . Namely,

Ly(x) = a(x) (x) +b(x) (x) +c(x)y(x) = f(x)y′′ y′ (2.4.1)

L = 0yh

L = f .yp

2.1.1 y = +yh yp

f(x)

 Example 2.4.1

+2 −3y = 4y′′ y′

+2 −3 = 0y′′
h y′

h yh

+2r−3 = 0r2 r = 1, −3

(x) = +yh c1e
x c2e

−3x

2.4.2

x x

y = 4 y = A

y = A 2.4.2

−3A = 4

A = −
4

3
(x) = −yp

4

3

2.4.2

y(x) = (x) + (x) = + −yh yp c1e
x c2e

−3x 4

3
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Insert this solution into the equation and verify that it is indeed a solution. If we had been given initial conditions, we could
now use them to determine the arbitrary constants.

What if we had a different source term? Consider the equation

The only thing that would change is the particular solution. So, we need a guess.

We know a constant function does not work by the last example. So, let’s try . Inserting this function into Equation 
, we obtain

Picking  would get rid of the  terms, but will not cancel everything. We still have a constant left. So, we need
something more general.

Let’s try a linear function, . Then we get after substitution into Equation 

Equating the coefficients of the different powers of  on both sides, we find a system of equations for the undetermined
coefficients:

These are easily solved to obtain

So, the particular solution is

This gives the general solution to the nonhomogeneous problem as

There are general forms that you can guess based upon the form of the driving term, . Some examples are given in Table 
. More general applications are covered in a standard text on differential equations. However, the procedure is simple.

Given  in a particular form, you make an appropriate guess up to some unknown parameters, or coefficients. Inserting the
guess leads to a system of equations for the unknown coefficients. Solve the system and you have the solution. This solution is
then added to the general solution of the homogeneous differential equation.

Table : Forms used in the Method of Undetermined Coefficients.

Guess

 Example 2.4.2

+2 −3y = 4xy′′ y′

= Axyp
2.4.4

2A−3Ax = 4x

A = −4/3 x

(x) = Ax+Byp 2.4.4

2A−3(Ax+B) = 4x

x

2A−3B = 0

−3A = 4
(2.4.2)

A

B

= −
4

3

= A = −
2

3

8

9

(x) = − x−yp
4

3

8

9

y(x) = (x) + (x) = + − x−yh yp c1e
x c2e

−3x 4

3

8

9

f(x)

2.4.1

f(x)

2.4.1

f(x)

+ + ⋯ + x +anx
n an−1x

n−1 a1 a0

aebx

acosωx + bsinωx

+ + ⋯ + x +Anx
n An−1x

n−1 A1 A0

Aebx

Acosωx +B sinωx

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91054?pdf


2.4.3 https://math.libretexts.org/@go/page/91054

Solve

According to the above, we would guess a solution of the form . Inserting our guess, we find

Oops! The coefficient, , disappeared! We cannot solve for it. What went wrong?

The answer lies in the general solution of the homogeneous problem. Note that  and  are solutions to the homogeneous
problem. So, a multiple of  will not get us anywhere. It turns out that there is one further modification of the method. If
the driving term contains terms that are solutions of the homogeneous problem, then we need to make a guess consisting of the
smallest possible power of  times the function which is no longer a solution of the homogeneous problem. Namely, we guess 

 and differentiate this guess to obtain the derivatives  and 

Inserting these derivatives into the differential equation, we obtain

Comparing coefficients, we have

So,  and . Thus, the solution to the problem is

Modified Method of Undetermined Coefficients

In general, if any term in the guess  is a solution of the homogeneous equation, then multiply the guess by , where  is
the smallest positive integer such that no term in  is a solution of the homogeneous problem.

2.4.2: Periodically Forced Oscillations
A SPECIAL TYPE OF FORCING is periodic forcing. Realistic oscillations will dampen and eventually stop if left unattended. For
example, mechanical clocks are driven by compound or torsional pendula and electric oscillators are often designed with the need
to continue for long periods of time. However, they are not perpetual motion machines and will need a periodic injection of energy.
This can be done systematically by adding periodic forcing. Another simple example is the motion of a child on a swing in the
park. This simple damped pendulum system will naturally slow down to equilibrium (stopped) if left alone. However, if the child
pumps energy into the swing at the right time, or if an adult pushes the child at the right time, then the amplitude of the swing can
be increased.

There are other systems, such as airplane wings and long bridge spans, in which external driving forces might cause damage to the
system. A well know example is the wind induced collapse of the Tacoma Narrows Bridge due to strong winds. Of course, if one is
not careful, the child in the last example might get too much energy pumped into the system causing a similar failure of the desired
motion.

The Tacoma Narrows Bridge opened in Washington State (U.S.) in mid . However, in November of the same year the winds
excited a transverse mode of vibration, which eventually (in a few hours) lead to large amplitude oscillations and then collapse.

While there are many types of forced systems, and some fairly complicated, we can easily get to the basic characteristics of forced
oscillations by modifying the mass-spring system by adding an external, time-dependent, driving force. Such as system satisfies the
equation

 Example 2.4.3

+2 −3y = 2y′′ y′ e−3x

= Ayp e−3x

0 = 2e−3x

A

ex e−3x

e−3x

x

(x) = Axyp e−3x = A(1 −3x)y′
p e−3x = A(9x−6)y′′

p e−3x

[(9x−6) +2(1 −3x) −3x]A = 2e−3x e−3x

−4A = 2

A = −1/2 (x) = − xyp
1

2
e−3x

y(x) =(2 − x)
1

2
e−3x

(x)yp xk k

(x)xkyp

1940

m + +kx = F (t)ẍ b(x)˙
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where  is the mass,  is the damping constant,  is the spring constant, and  is the driving force. If  is of simple form,
then we can employ the Method of Undetermined Coefficients. Since the systems we have considered so far are similar, one could
easily apply the following to pendula or circuits.

Figure : An external driving force is added to the spring-mass-damper system.

As the damping term only complicates the solution, we will consider the simpler case of undamped motion and assume that .
Furthermore, we will introduce a sinusoidal driving force,  in order to study periodic forcing. This leads to the
simple periodically driven mass on a spring system

In order to find the general solution, we first obtain the solution to the homogeneous problem,

where . Next, we seek a particular solution to the nonhomogeneous problem. We will apply the Method of

Undetermined Coefficients.

A natural guess for the particular solution would be to use . However, recall that the guess should not be
a solution of the homogeneous problem. Comparing  with , this would hold if . Otherwise, one would need to use the
Modified Method of Undetermined Coefficients as described in the last section. So, we have two cases to consider.

Dividing through by the mass, we solve the simple driven system, 

Solve , for .

In this case we continue with the guess .

Since there is no damping term, one quickly finds that . Inserting  into the differential equation, we find
that

Solving for A, we obtain

The general solution for this case is thus,

Solve .

In this case, we need to employ the Modified Method of Undetermined Coefficients. So, we make the guess 
. Since there is no damping term, one finds that A = 0. Inserting the guess in to the differential

m b k F (t) F (t)

2.4.1

b = 0

F (t) = cosωtF0

m +kx = cosωt.ẍ F0

= cos t+ sin txh c1 ω0 c2 ω0

=ω0
k

m

−−−
√

= A cosωt+B sinωtxp
xp xh ω ≠ ω0

+ x = cosωtẍ ω2
0

F0

m

 Example 2.4.4

+ x = cosωtẍ ω2
0

F0

m
ω ≠ ω0

= A cosωt+B sinωtxp

B = 0 = A cosωtxp

(− + )A cosωt = cosωtω2 ω2
0

F0

m

A =
F0

m ( − )ω2
0 ω2

x(t) = cos t+ sin t+ cosωtc1 ω0 c2 ω0
F0

m ( − )ω2
0 ω2

 Example 2.4.5

+ x = cos tẍ ω2
0

F0

m
ω0

= A cos t+B sin txp ω0 ω0
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equation, we find that

,

or the general solution is

The general solution to the problem is thus

Special cases of these solutions provide interesting physics, which can be explored by the reader in the homework. In the case that 
, we see that the solution tends to grow as  gets large. This is what is called a resonance. Essentially, one is driving the

system at its natural frequency. As the system is moving to the left, one pushes it to the left. If it is moving to the right, one is
adding energy in that direction. This forces the amplitude of oscillation to continue to grow until the system breaks. An example of
such an oscillation is shown in Figure .

Figure : Plot of , a solution of  showing resonance.

In the case that , one can rewrite the solution in a simple form. Let’s choose the initial conditions that 
. Then one has (see Problem 13)

For values of  near , one finds the solution consists of a rapid oscillation, due to the  factor, with a slowly

varying amplitude, . The reader can investigate this solution.

This slow variation is called a beat and the beat frequency is given by  . In Figure  we see the high frequency

oscillations are contained by the lower beat frequency, . This corresponds to a period of , which

looks about right from the figure.

B =
F0

2mω0

x(t) = cos t+ sin t+ t sinωtc1 ω0 c2 ω0
F0

2mω

x(t) = cos t+ sin t+c1 ω0 c2 ω0

⎧

⎩

⎨

⎪⎪⎪⎪

⎪⎪⎪⎪

cosωt,
F0

m ( − )ω2
0 ω2

t sin t,
F0

2mω0
ω0

ω ≠ ω0

ω = ω0

(2.4.3)

ω = ω0 t

2.4.2

2.4.2 x(t) = 5cos 2t+ t sin2t
1

2
+ 4x = 2cos 2tẍ

ω ≠ ω0

= − / (m ( − )) , = 0c1 F0 ω2
0

ω2 c2

x(t) = sin sin
2F0

m ( − )ω2
0 ω2

( −ω) tω0

2

( +ω) tω0

2

ω ω0 sin
( +ω) tω0

2

sin
2F0

m ( − )ω2
0 ω2

( −ω) tω0

2

f =
| −ω|ω0

4π
2.4.3

f = s
0.15

4π
T = 1/f ≈ 83.7 Hz
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Figure : Plot of , a solution of , showing beats.

Solve , for  . For each case, we need the solution of the homogeneous
problem,

The particular solution depends on the value of .

For , the driving term, , is a solution of the homogeneous problem. Thus, we assume

Inserting this into the differential equation, we find  and . So, the general solution is

Imposing the initial conditions, we find

This solution is shown in Figure .

For , the driving term, , is not a solution of the homogeneous problem. Thus, we assume

Inserting this into the differential equation, we find  and . So, the general solution is

Imposing the initial conditions, we find

This solution is shown in Figure . The beat frequency in this case is the same as with Figure .

2.4.3 x(t) = (2045 cos 2t− 800 cos t)
1

249

43

20
+ 4x = 2 cos 2.15tẍ

 Example 2.4.6

+x = 2 cosωt, x(0) = 0, (0) = 0ẍ ẋ ω = 1, 1.15

(t) = cos t+ sin t.xh c1 c2

ω

ω = 1 2 cosωt

(t) = At cos t+Bt sin t.xp

A = 0 B = 1

x(t) = cos t+ sin t+ t sin tc1 c2

x(t) = t sin t

2.4.4

ω = 1.15 2 cosω1.15t

(t) = A cos 1.15t+B sin1.15txp

A = −
800

129
B = 0

x(t) = cos t+ sin t− cos tc1 c2
800

129

x(t) = (cos t−cos 1.15t)
800

129

2.4.5 2.4.3
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Figure : Plot of  a solution of .

Reduction of Order for Nonhomogeneous Equations

The Method of Reduction of Order is also useful for solving nonhomogeneous problems. In this case if we know one solution of
the homogeneous problem, then we can use it to obtain a particular solution of the nonhomogenous problem. For example, consider
the nonhomogeneous differential equation

Figure : Plot of , a solution of .

Let's assume  satisfies the homogeneous differential equation

The, we seek a particular solution,  Its derivatives are given by

Substituting  and its derivatives into the differential equation, we have

2.4.4 x(t) = t sin 2t, +x = 2 cos tẍ

a(x) (x) +b(x) (x) +c(x)y(x) = f(x)y′′ y′

2.4.5 x(t) = (cos t− cos t)
800

129

23

20
+x = 2 cos 1.15tẍ

(x)y1

a(x) (x) +b(x) (x) +c(x) (x) = 0y′′
1 y′

1 y1

(x) = v(x) (x)yp y1

y′
p

y′′
p

= (v )y1
′

= +vv′y1 y′
1

= ( +v )v′y1 y′
1

′

= +2 +vv′′y1 v′y′
1 y′′

1

yp

f = a +b +cy′′
p y′

p yp

= a ( +2 +v ) +b ( +v ) +cvv′′y1 v′y′
1 y′′

1 v′y1 y′
1 y1

= a +2a +b +v [a +b +c ]v′′y1 v′y′
1 v′y1 y′′

1 y′
1 y1

= a +2a +bv′′y1 v′y′
1 v′y1
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Therefore,  satisfies the second order equation

Letting , we see that we have the linear first order equation for  :

Use the Method of Reduction of Order to solve  .

Solutions of the homogeneous equation,  are  and . We can choose either to begin using the Method of
Reduction of Order. Let’s take . Its derivatives are given by

Substituting into the nonhomogeneous equation, we have

Letting , we have the linear first order differential equation

Rewriting the equation as,

Multiplying by the integrating factor,

we obtain

Integrating,

This can be integrated using integration by parts (letting  and  :

We now have enough to write out the solution. The particular solution is given by

v(x)

a(x)y(x) (x) +[2a(x) (x) +b(x) (x)] (x) = f(x)v′′ y′
1 y1 v′

z = v′ z(x)

a(x) x) (x) +[2a(x) (x) +b(x) (x)] z(x) = f(x)y( z′ y′
1 y1

 Example 2.4.7

+y′′ y = secx

+y = 0y′′ sinx cosx

= vcosxyp

y′
p

y′′
p

= (vcosx)′

= cosx−vsinxv′

= ( cosx−vsinx)v′ ′

= cosx−2 sinx−vcosxv′′ v′

secx = +y′′
p yp

= cosx−2 sinx−vcosx+vcosxv′′ v′

= cosx−2 sinxv′′ v′

= zv′

(cosx) −(2 sinx)z = secxz′

−(2 tanx)z = xz′ sec2

μ(x) = −exp 2 tanξdξ∫
x

= −exp2 ln | secx|

= xcos2

= 1(z x)cos2 ′

= z = x xv′ sec2

U = x V = tanx)

v = ∫ x xdxsec2

= x tanx−∫ tanxdx

= x tanx−ln| secx|
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The general solution is then

Method of Variation of Parameters

A MORE SYSTEMATIC WAY to find particular solutions is through the use of the Method of Variation of Parameters. The
derivation is a little detailed and the solution is sometimes messy, but the application of the method is straight forward if you can do
the required integrals. We will first derive the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of the standard form

We know that the solution of the homogeneous equation can be written in terms of two linearly independent solutions, which we
will call  and 

Replacing the constants with functions, then we no longer have a solution to the homogeneous equation. Is it possible that we could
stumble across the right functions with which to replace the constants and somehow end up with  when inserted into the left
side of the differential equation? It turns out that we can.

So, let’s assume that the constants are replaced with two unknown functions, which we will call  and . This change of
the parameters is where the name of the method derives. Thus, we are assuming that a particular solution takes the form

We assume the nonhomogeneous equation has a particular solution of the form 

If this is to be a solution, then insertion into the differential equation should make the equation hold. To do this we will first need to
compute some derivatives.

The first derivative is given by

Next we will need the second derivative. But, this will yield eight terms. So, we will first make a simplifying assumption. Let’s
assume that the last two terms add to zero:

It turns out that we will get the same results in the end if we did not assume this. The important thing is that it works!

Under the assumption the first derivative simplifies to

The second derivative now only has four terms:

Now that we have the derivatives, we can insert the guess into the differential equation. Thus, we have

Regrouping the terms, we obtain

yp = vy1

= (x tanx−ln| secx|) cosx

= x sinx+cosx ln | cosx|

y(x) = cosx+ sinx+x sinx+cosx ln | cosx|c1 c2

a(x) (x) +b(x) (x) +c(x)y(x) = f(x)y′′ y′

(x)y1 (x) :y2

(x) = (x) + (x)yh c1y1 c2y2

f(x)

(x)c1 (x)c2

(x) = (x) (x) + (x) (x).yp c1 y1 c2 y2

(x) = (x) (x) + (x) (x)yp c1 y1 c2 y2

(x) = (x) (x) + (x) (x) + (x) (x) + (x) (x)y′
p c1 y′

1 c2 y′
2 c′

1 y1 c′
2 y2

(x) (x) + (x) (x) = 0c′
1 y1 c′

2 y2

(x) = (x) (x) + (x) (x)y′
p c1 y′

1 c2 y′
2

(x) = (x) (x) + (x) (x) + (x) (x) + (x) (x)y′
p c1 y′′

1 c2 y′′
2 c′

1 y′
1 c′

2 y′
2

f(x) = a(x) [ (x) (x) + (x) (x) + (x) (x) + (x) (x)]c1 y′′
1 c2 y′′

2 c′
1 y′

1 c′
2 y′

2

+b(x) [ (x) (x) + (x) (x)]c1 y′
1 c2 y′

2

+c(x) [ (x) (x) + (x) (x)]c1 y1 c2 y2
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Note that the first two rows vanish since  and  are solutions of the homogeneous problem. This leaves the equation

which can be rearranged as

In order to solve the differential equation , we assume  for . Then, one need
only solve a simple system of Equation .

In summary, we have assumed a particular solution of the form

This is only possible if the unknown functions  and  satisfy the system of equations

It is standard to solve this system for the derivatives of the unknown functions and then present the integrated forms. However, one
could just as easily start from this system and solve the system for each problem encountered.

System  can be solved as  where  is the Wronskian. We use this solution

in the next section.

Find the general solution of the nonhomogeneous problem: .

The general solution to the homogeneous problem  is

In order to use the Method of Variation of Parameters, we seek a solution of the form

We find the unknown functions by solving the system in Equation , which in this case becomes

Adding these equations we find that

Solving for  we find

f(x) = (x) [a(x) (x) +b(x) (x) +c(x) (x)]c1 y′′
1 y′

1 y1

+ (x) [a(x) (x) +b(x) (x) +c(x) (x)]c2 y′′
2

y′
2

y2

+a(x) [ (x) (x) + (x) (x)]c′
1

y′
1

c′
2

y′
2

y1 y2

f(x) = a(x) [ (x) (x) + (x) (x)]c′
1 y′

1 c′
2 y′

2

(x) (x) + (x) (x) =c′
1

y′
1

c′
2

y′
2

f(x)

a(x)

Ly = f (x) = (x) (x) + (x) (x)yp c1 y1 c2 y2 L = 0y1,2

2.4.25

(x) = (x) (x) + (x) (x)yp c1 y1 c2 y2

(x)c1 (x)c2

(x) (x) + (x) (x) = 0c′
1 y1 c′

2 y2

(x) (x) + (x) (x) =c′
1 y′

1 c′
2 y′

2

f(x)

a(x)

2.4.25

(x) = −c′
1

fy2

aW ( , )y1 y2

(x) =c′
1

fy1

aW ( , )y1 y2

W ( , ) = −y1 y2 y1y′
2 y′

1y2

 Example 2.4.8

−y =y′′ e2x

− = 0y′′
h yh

(x) = +yh c1e
x c2e

−x

(x) = (x) + (x)yp c1 ex c2 e−x

2.4.25

(x) + (x) = 0c′
1 ex c′

2 e−x

(x) − (x) =c′
1 ex c′

2 e−x e2x
(2.4.4)

2 = → =c′
1e

x e2x c′
1

1

2
ex

(x)c1

(x) = ∫ dx =c1
1

2
ex

1

2
ex
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Subtracting the equations in the system yields

Thus,

The particular solution is found by inserting these results into  :

Thus, we have the general solution of the nonhomogeneous problem as

Now consider the problem: .

The solution to the homogeneous problem is

We now seek a particular solution of the form

We let  and  in Equation :

Now, use your favorite method for solving a system of two equations and two unknowns. In this case, we can multiply the first
equation by  and the second equation by . Adding the resulting equations will eliminate the  terms. Thus, we have

Inserting this into the first equation of the system, we have

These can easily be solved:

The final step in getting the particular solution is to insert these functions into . This gives

2 = − → = −c′
2e

−x e2x c′
2

1

2
e3x

(x) = − ∫ dx = −c2
1

2
e3x 1

6
e3x

yp

(x)yp = (x) (x) + (x) (x)c1 y1 c2 y2

=( ) +(− )
1

2
ex ex

1

6
e3x e−x

=
1

3
e2x

(2.4.5)

y(x) = + +c1e
x c2e

−x 1

3
e2x

 Example 2.4.9

+4y = sinxy′′

(x) = cos 2x+ sin2x.yh c1 c2

(x) = (x) cos 2x+ (x) sin2x.yh c1 c2

(x) = cos 2xy1 (x) = sin2x, a(x) = 1, f(x) = sinxy2 2.4.25

(x) cos 2x+ (x) sin2xc′
1 c′

2

−2 (x) sin2x+2 (x) cos 2xc′
1 c′

2

= 0

= sinx.

2 sin2x cos 2x c′
1

(x) = sinx cos 2x = (2 x−1) sinxc′
2

1

2

1

2
cos2

(x) = − (x) = − sinx sin2x = − x cosxc′
1 c′

2

sin2x

cos 2x

1

2
sin2

(x) = ∫ (2 x−1) sinxdx = (cosx− x)c2
1

2
cos2 1

2

2

3
cos3

(x) = −∫ cosxdx = − xc1 sinx 1

3
sin3

(x)yp
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So, the general solution is

2.4.5: Initial Value Green’s Functions
IN THIS SECTION WE WILL INVESTIGATE the solution of initial value problems involving nonhomogeneous differential
equations using Green’s functions. Our goal is to solve the nonhomogeneous differential equation

subject to the initial conditions

Since we are interested in initial value problems, we will denote the independent variable as a time variable, .

Equation  can be written compactly as

where  is the differential operator

The solution is formally given by

The inverse of a differential operator is an integral operator, which we seek to write in the form

The function  is referred to as the kernel of the integral operator and is called the Green’s function.

The history of the Green’s function dates back to 1828, when George Green published work in which he sought solutions of
Poisson’s equation  for the electric potential  defined inside a bounded volume with specified boundary conditions on
the surface of the volume. He introduced a function now identified as what Riemann later coined the "Green’s func-tion”. In this
section we will derive the initial value Green’s function for ordinary differential equations. Later in the book we will return to
boundary value Green’s functions and Green's funcitons for partial differential equations.

George Green (1793-1841), a British mathematical physicist who had little formal education and worked as a miller and a baker,
published An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism in which he not
only introduced what is now known as Green’s function, but he also introduced potential theory and Green’s Theorem in his studies
of electricity and magnetism. Recently his paper was posted at arXiv.org, arXiv:0807.0088.

In the last section we solved nonhomogeneous equations like Equation  using the Method of Variation of Parameters.
Letting,

we found that we have to solve the system of equations

(x)yp = (x) (x) + (x) (x)c1 y1 c2 y2

=(− x) cos 2x+( cosx− x) sinx
1

3
sin3 1

2

1

3
cos3

= sinx
1

3

(2.4.6)

y(x) = cos 2x+ sin2x+ sinxc1 c2
1

3

a(t) (t) +b(t) (t) +c(t)y(t) = f(t)y′′ y′ (2.4.7)

y(0) = (0) =y0 y′ v0

t

2.4.32

L[y] = f

L

L = a(t) +b(t) +c(t)
d2

dt2

d

dt

y = [f ]L−1

y(t) = ∫ G(t, τ)f(τ)dτ

G(t, τ)

u = f∇2 u

2.4.32

(t) = (t) (t) + (t) (t)yp c1 y1 c2 y2
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This system is easily solved to give

We note that the denominator in these expressions involves the Wronskian of the solutions to the homogeneous problem, which is
given by the determinant

When  and  are linearly independent, then the Wronskian is not zero and we are guaranteed a solution to the above
system.

So, after an integration, we find the parameters as

where  and  are arbitrary constants to be determined from the initial conditions.

Therefore, the particular solution of \) can be written as

We begin with the particular solution Equation  of the nonhomogeneous differential equation Equation . This can be
combined with the general solution of the homogeneous problem to give the general solution of the nonhomogeneous differential
equation:

However, an appropriate choice of  and  can be found so that we need not explicitly write out the solution to the homogeneous
problem, . However, setting up the solution in this form will allow us to use  and  to determine particular
solutions which satisfies certain homogeneous conditions. In particular, we will show that Equation  can be written in the
form

where the function  will be identified as the Green’s function.

The goal is to develop the Green’s function technique to solve the initial value problem

We first note that we can solve this initial value problem by solving two separate initial value problems. We assume that the
solution of the homogeneous problem satisfies the original initial conditions:

(t) (t) + (t) (t) = 0c′
1 y1 c′

2 y2

(t) (t) + (t) (t) =c′
1

y′
1

c′
2

y′
2

f(t)

q(t)

(t) = −c′
1

f(t) (t)y2

a(t) [ (t) (t) − (t) (t)]y1 y′
2 y′

1 y2

(t) = .c′
2

f(t) (t)y1

a(t) [ (t) (t) − (t) (t)]y1 y′
2 y′

1 y2

W ( , ) (t) =y1 y2

∣

∣

∣
∣

(t)y1

(t)y′
1

(t)y2

(t)y′
2

∣

∣

∣
∣

(t)y1 (t)y2

(t)c1

(t)c2

= − dτ∫
t

t0

f(τ) (τ)y2

a(τ)W (τ)

= dτ∫
t

t1

f(τ) (τ)y1

a(τ)W (τ)

t0 t1

Equation\(2.4.32

(t) = (t) dτ − (t) dτyp y2 ∫
t

t1

f(τ) (τ)y1

a(τ)W (τ)
y1 ∫

t

t0

f(τ) (τ)y2

a(τ)W (τ)

2.4.37 2.4.32

(t) = (t) + (t) + (t) dτ − (t) dτyp c1y1 c2y2 y2 ∫
t

t1

f(τ) (τ)y1

a(τ)W (τ)
y1 ∫

t

t0

f(τ) (τ)y2

a(τ)W (τ)

t0 t1

(t) + (t)c1y1 c2y2 t0 t1

2.4.38

y(t) = (t) + (t) + G(t, τ)f(τ)dτc1y1 c2y2 ∫
t

0

G(t, τ)

a(t) (t) +b(t) (t) +c(t)y(t) = f(t), y(0) = , (0) =y′′ y′ y0 y′ v0

a(t) (t) +b(t) (t) +c(t) (t) = 0, (0) = , (0) =y′′
h y′

h yh yh y0 y′
h v0
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We then assume that the particular solution satisfies the problem

Since the differential equation is linear, then we know that

is a solution of the nonhomogeneous equation. Also, this solution satisfies the initial conditions:

Therefore, we need only focus on finding a particular solution that satisfies homogeneous initial conditions. This will be done by
finding values for  and  in Equation  which satisfy the homogeneous initial conditions,  and .

First, we consider . We have

Here,  and  are taken to be any solutions of the homogeneous differential equation. Let’s assume that  and 
. Then, we have

We can force  if we set .

Now, we consider . First we differentiate the solution and find that

since the contributions from differentiating the integrals will cancel. Evaluating this result at , we have

Assuming that , we can set .

Thus, we have found that

This result is in the correct form and we can identify the temporal, or initial value, Green’s function. So, the particular solution is
given as

where the initial value Green’s function is defined as

We summarize

a(t) (t) +b(t) (t) +c(t) (t) = f(t), (0) = 0, (0) = 0y′′
p y′

p yp yp y′
p

y(t) = (t) + (t)yh yp

y(0) = (0) + (0) = +0 =yh yp y0 y0

(0) = (0) + (0) = +0 =y′ y′
h y′

p v0 v0

t0 t1 2.4.37 (0) = 0yp (0) = 0y′
p

(0) = 0yp

(0) = (0) dτ − (0) dτyp y2 ∫
0

t1

f(τ) (τ)y1

a(τ)W (τ)
y1 ∫

0

t0

f(τ) (τ)y2

a(τ)W (τ)

(t)y1 (t)y2 (0) = 0y1

≠ (0) = 0y2

(0) = (0) dτyp y2 ∫
0

t1

f(τ) (τ)y1

a(τ)W (τ)

(0) = 0yp = 0t1

(0) = 0y′
p

(t) = (t) dτ − (t) dτy′
p y′

2 ∫
t

0

f(τ) (τ)y1

a(τ)W (τ)
y′

1 ∫
t

t0

f(τ) (τ)y2

a(τ)W (τ)

t = 0

(0) = − (0) dτy′
p y′

1 ∫
0

t0

f(τ) (τ)y2

a(τ)W (τ)

(0) ≠ 0y′
1 = 0t0

(x)yp = (t) dτ − (t) dτy2 ∫
t

0

f(τ) (τ)y1

a(τ)W (τ)
y1 ∫

t

0

f(τ) (τ)y2

a(τ)W (τ)

= [ ] f(τ)dτ∫
t

0

(τ) (t) − (t) (τ)y1 y2 y1 y2

a(τ)W (τ)

(t) = G(t, τ)f(τ)dτyp ∫
t

0

G(t, τ) =
(τ) (t) − (t) (τ)y1 y2 y1 y2

a(τ)W (τ)
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Solution of IVP Using the Green’s Function

The solution of the initial value problem,

takes the form

where

is the Green’s function and  are solutions of the homogeneous equation satisfying

Solve the forced oscillator problem

We first solve the homogeneous problem with nonhomogeneous initial conditions:

The solution is easily seen to be .

Next, we construct the Green’s function. We need two linearly independent solutions, , to the homogeneous
differential equation satisfying different homogeneous conditions,  and . The simplest solutions are 

 and . The Wronskian is found as

Since  in this problem, we compute the Green’s function,

Note that the Green’s function depends on . While this is useful in some contexts, we will use the expanded form when
carrying out the integration.

We can now determine the particular solution of the nonhomogeneous differential equation. We have

a(t) (t) +b(t) (t) +c(t)y(t) = f(t), y(0) = , (0) =y′′ y′ y0 y′ v0

y(t) = (t) + G(t, τ)f(τ)dτyh ∫
t

0

G(t, τ) =
(τ) (t) − (t) (τ)y1 y2 y1 y2

a(τ)W (τ)

, ,y1 y2 yh

(0) = 0, (0) ≠ 0, (0) ≠ 0, (0) = 0, (0) = , (0) =y1 y2 y′
1 y′

2 yh y0 y′
h v0

 Example 2.4.10

+x = 2 cos t, x(0) = 4, (0) = 0x′′ x′

+ = 0, (0) = 4, (0) = 0x′′
h xh xh x′

h

(t) = 4 cos txh

(x), (x)y1 y2

(0) = 0y1 (0) = 0y′
2

(t) = sin ty1 (t) = cos ty2

W (t) = (t) (t) − (t) (t) = − t− t = −1y1 y′
2 y′

1 y2 sin2 cos2

a(t) = 1

G(t, τ) =
(τ) (t) − (t) (τ)y1 y2 y1 y2

a(τ)W (τ)

= sin t cos τ −sinτ cos t

= sin(t−τ)

(2.4.8)

t−τ

(t)xp = G(t, τ)f(τ)dτ∫
t

0

= (sin t cos τ −sinτ cos t)(2 cos τ)dτ∫
t

0

= 2 sin t τdτ −2 cos t sinτ cos τdτ∫
t

0

cos2 ∫
t

0

= 2 sin t −2 cos t[ + sin2τ]
τ

2

1

2

t

0

[ τ]
1

2
sin2

t

0

= t sin t

(2.4.9)
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Therefore, the solution of the nonhomogeneous problem is the sum of the solution of the homogeneous problem and this
particular solution: 

This page titled 2.4: Forced Systems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

x(t) = 4 cos t+ t sin t
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2.5: Cauchy-Euler Equations
Another class of solvable linear differential equations that is of interest are the Cauchy-Euler type of equations, also referred to in
some books as Euler’s equation. These are given by

Note that in such equations the power of  in each of the coefficients matches the order of the derivative in that term. These
equations are solved in a manner similar to the constant coefficient equations.

One begins by making the guess . Inserting this function and its derivatives,

into Equation , we have

Since this has to be true for all  in the problem domain, we obtain the characteristic equation

The solutions of Cauchy-Euler equations can be found using this characteristic equation. Just like the constant coefficient
differential equation, we have a quadratic equation and the nature of the roots again leads to three classes of solutions. If there are
two real, distinct roots, then the general solution takes the form

Find the general solution: 

Solution
As with the constant coefficient equations, we begin by writing down the characteristic equation. Doing a simple computation,

one determines the roots are . Therefore, the general solution is

Deriving the solution for Case 2 for the Cauchy-Euler equations works in the same way as the second for constant coefficient
equations, but it is a bit messier. First note that for the real root, , the characteristic equation has to factor as 

. Expanding, we have

The general characteristic equation is

Dividing this equation by  and rewriting, we have

Comparing equations, we find

a (x) +bx (x) +cy(x) = 0x2y′′ y′ (2.5.1)

x

y(x) = xr

(x) = r , (x) = r(r−1)y′ xr−1 y′′ xr−2

2.5.1

[ar(r−1) +br+c] = 0xr

x

ar(r−1) +br+c = 0

y(x) = +c1x
r1 c2x

r2

 Example 2.5.1

+5x +12y = 0x2y′′ y′

0

−8

= r(r−1) +5r+12

= +4r+12r2

= (r+2 +8,)2

= (r+2 ,)2

r = −2 ±2 i2
–

√

y(x) = [ cos(2 ln |x|) + sin(2 ln |x|)]c1 2
–

√ c2 2
–

√ x−2

r = r1

= 0(r− )r1
2

−2 r+ = 0r2 r1 r2
1

ar(r−1) +br+c = 0

a

+( −1) r+ = 0r2 b

a

c

a
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So, the Cauchy-Euler equation for this case can be written in the form

Now we seek the second linearly independent solution in the form  . We first list this function and its
derivatives,

Inserting these forms into the differential equation, we have

Thus, we need to solve the equation

Or

Integrating, we have

where  absorbs  and the signs from the absolute values. Exponentiating, we obtain one last differential equation to
solve,

Thus,

So, we have found that the second linearly independent equation can be written as

Therefore, the general solution is found as .

For one root, , the general solution is of the form .

Solve the initial value problem: , With the initial conditions .

Solution
For this example the characteristic equation takes the form

or

= 1 −2 , =
b

a
r1

c

a
r2

1

+(1 −2 )x + y = 0x2y′′ r1 y′ r2
1

(x) =y2 v(x)xr1

(x) = vy2 xr1

(x) = (x + v)y′
2 v′ r1 x −1r1

(x) = ( +2 x + ( −1)v)y′′
2 x2v′′ r1 v′ r1 r1 x −2r1

(2.5.2)

0 = +(1 −2 )x + yx2y′′ r1 y′ r2
1

= (x + )v′′ v′ x +1r1

x + = 0v′′ v′

= −
v′′

v′

1

x

ln| | = −ln |x| +Cv′

A = ±eC C

=v′ A

x

v(x) = A ln |x| +k

(x) = ln |x|.y2 xr1

y(x) = ( + ln |x|)c1 c2 xr

= = rr1 r2 y(x) = ( + ln |x|)c1 c2 xr

 Example 2.5.2

+3t +y = 0t2y′′ y′ y(1) = 0, (1) = 1y′

r(r−1) +3r+1 = 0
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There is only one real root, . Therefore, the general solution is

However, this problem is an initial value problem. At  we know the values of  and . Using the general solution, we
first have that

Thus, we have so far that .

Now, using the second condition and

we have

Therefore, the solution of the initial value problem is .

We now turn to the case of complex conjugate roots, . When dealing with the Cauchy-Euler equations, we have
solutions of the form . The key to obtaining real solutions is to first rewrite 

Thus, a power can be written as an exponential and the solution can be written as

For complex conjugate roots, , the general solution takes the form 

Recalling that

,

we can now find two real, linearly independent solutions,  and  following the same steps as earlier
for the constant coefficient case. This gives the general solution as

Solve: .

Solution
The characteristic equation takes the form

or

The roots of this equation are complex, . Therefore, the general solution is 
.

The three cases are summarized below.

+2r+1 = 0r2

r = −1

y(t) = ( + ln |t|)c1 c2 t−1

t = 1 y y′

0 = y(1) = c1

y(t) = ln |t|c2 t−1

(t) = (1 −ln |t|)y′ c2 t−2

1 = y(1) = c2

y(t) = ln |t|t−1

r = α± iβ

y(x) = xα+iβ :xy

= =xy eln xy ey ln x

y(x) = = , x > 0xα+iβ xαeiβ ln x

r = α± iβ y(x) = ( cos(β ln |x|) + sin(β ln |x|))xα c1 c2

= cos(β ln |x|) + i sin(β ln |x|)eiβ ln x

cos(β ln |x|)xα sin(β ln |x|)xα

y(x) = ( cos(β ln |x|) + sin(β ln |x|))xα c1 c2

 Example 2.5.3

−x +5y = 0x2y′′ y′

r(r−1) −r+5 = 0

−2r+5 = 0r2

= 1 ±2ir1,2

y(x) = x ( cos(2 ln |x|) + sin(2 ln |x|))c1 c2
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1. Real, distinct roots . In this case the solutions corresponding to each root are linearly independent. Therefore, the
general solution is simply

2. Real, equal roots . In this case the solutions corresponding to each root are linearly dependent. To find a second
linearly independent solution, one uses the Method of Reduction of Order. This gives the second solution as .
Therefore, the general solution is found as

3. Complex conjugate roots . In this case the solutions corresponding to each root are linearly independent.
These complex exponentials can be rewritten in terms of trigonometric functions. Namely, one has that  and

 are two linearly independent solutions. Therefore, the general solution becomes

Nonhomogeneous Cauchy-Euler Equations
We can also solve some nonhomogeneous Cauchy-Euler equations using the Method of Undetermined Coefficients or the Method
of Variation of Parameters. We will demonstrate this with a couple of examples.

Find the solution of .

Solution
First we find the solution of the homogeneous equation. The characteristic equation is . So, the roots are 

 and the solution is .

We next need a particular solution. Let’s guess . Inserting the guess into the nonhomogeneous differential
equation, we have

So, . Therefore, the general solution of the problem is

Find the solution of .

Solution
In this case the nonhomogeneous term is a solution of the homogeneous problem, which we solved in the last example. So, we
will need a modification of the method. We have a problem of the form

where  is a solution of . Let’s guess a solution of the form . Then one finds that the
differential equation reduces to . [You should verify this for yourself.]

 Classification of Roots of the Characteristic Equation for Cauchy-Euler Differential Equations

,r1 r2

y(x) = + .c1x
r1 c2x

r2

= = rr1 r2

ln |x|xr

y(x) = ( + ln |x|) .c1 c2 xr

, = α± iβr1 r2

cos(β ln |x|)xα

sin(β ln |x|)xα

y(x) = ( cos(β ln |x|) + sin(β ln |x|)) .xα c1 c2

 Example 2.5.4

−x −3y = 2x2y′′ y′ x2

−2r−3 = 0r2

r = −1, 3 (x) = +yh c1x
−1 c2x

3

(x) = Ayp x2

2x2 = −x −3y = 2x2y′′ y′ x2

= 2A −2A −3Ax2 x2 x2

= −3Ax2

A = −2/3

y(x) = + −c1x
−1 c2x

3 2

3
x2

 Example 2.5.5

−x −3y = 2x2y′′ y′ x3

a +bx +cy = dx2y′′ y′ xr

r ar(r−1) +br+c = 0 y = A lnxxr

A (2ar−a+b) = dxr xr
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With this in mind, we can now solve the problem at hand. Let . Inserting into the equation, we obtain 
, or . The general solution of the problem can now be written as

Find the solution of  using Variation of Parameters.

Solution
As noted in the previous examples, the solution of the homogeneous problem has two linearly independent solutions, 

 and . Assuming a particular solution of the form  , we need to
solve the system :

From the first equation of the system we have . Substituting this into the second equation gives 

. So,   and, therefore, . The particular solution is

Adding this to the homogeneous solution, we obtain the same solution as in the last example using the Method of

Undetermined Coefficients. However, since  is a solution of the homogeneous problem, it can be absorbed into the first

terms, leaving

This page titled 2.5: Cauchy-Euler Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

= A lnxyp x3

4A = 2x3 x3 A = 1/2

y(x) = + + lnxc1x
−1 c2x

3 1

2
x3

 Example 2.5.6

−x −3y = 2x2y′′ y′ x3

(x) =y1 x−1 (x) =y2 x3 (x) =yp (x) (x) + (x) (x)c1 y1 c2 y2

2.4.25

(x) + (x)c′
1 x−1 c′

2 x3

− (x) +3 (x)c′
1 x−2 c′

2 x2

= 0

= = 2x.
2x3

x2

(x) = − (x)c′
1 x4c′

2

(x) =c′
2

1

2x
(x) =c2 ln |x|

1

2
(x) =c1

1

8
x4

(x) = (x) (x) + (x) (x) = + ln |x|yp c1 y1 c2 y2
1

8
x3 1

2
x3

1

8
x3

y(x) = + + lnxc1x
−1 c2x

3 1

2
x3
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2.6: Problems
1. Find all of the solutions of the second order differential equations. When an initial condition is given, find the particular

solution satisfying that condition.
a. 
b. .
c. .
d.  for .

2. Verify that the given function is a solution and use Reduction of Order to find a second linearly independent solution.
a. .
b. .
c. . [Note: This is one solution of Legendre’s differential equation in Example

4.4.]
d. .

3. Prove that  and  are linearly independent solutions of . Write 
 as a linear combination of  and .

4. Consider the nonhomogeneous differential equation .
a. Find the general solution of the homogenous equation.
b. Find a particular solution using the Method of Undetermined Coefficients by guessing .
c. Use your answers in the previous parts to write down the general solution for this problem.

5. Find the general solution of the given equation by the method given.
a. , Undetermined Coefficients.
b. , Undetermined Coefficients.
c. , Reduction of Order.
d. , Reduction of Order.
e. , Reduction of Order.
f. , Variation of Parameters.
g. , Variation of Parameters.

6. Use the Method of Variation of Parameters to determine the general solution for the following problems.
a. .
b. .

c. .

d. .
7. Instead of assuming that  in the derivation of the solution using Variation of Parameters, assume that 

 for an arbitrary function  and show that one gets the same particular solution.
8. Find all of the solutions of the second order differential equations for  0. When an initial condition is given, find the

particular solution satisfying that condition.

a. .
b. .
c. .
d. .
e. .

9. Another approach to solving Cauchy-Euler equations is by transforming the equation to one with constant coefficients.

a. 

b. Use the above transformation to solve the following equations:
i. .

−9 +20y = 0y′′ y′

−3 +4y = 0, y(0) = 0, (0) = 1y′′ y′ y′

8 +4 +y = 0, y(0) = 1, (0) = 0y′′ y′ y′

− −6x = 0x′′ x′ x = x(t)

−2x −4y = 0, (x) =x2y′′ y′ y1 x4

x − +4 y = 0, (x) = sin( )y′′ y′ x3 y1 x2

(1 − ) −2x +2y = 0, (x) = xx2 y′′ y′ y1

(x−1) −x +y = 0, (x) =y′′ y′ y1 ex

(x) = sinhxy1 (x) = 3 sinhx−2 coshxy2 −y = 0y′′

(x) = coshxy3 y1 y2

−3 +2x = 6x′′ x′ e3t

(t) = Axp e3t

−3 +2y = 10y′′ y′

+2 +y = 5 +10 sin2xy′′ y′

−5 +6y = 3y′′ y′ ex

+5 −6y = 3y′′ y′ ex

+y = xy′′ sec3

+ = 3y′′ y′ x2

−y = +1y′′ ex

+y = tanxy′′

−4 +4y = 6xy′′ y′ e2x

−2 +y =y′′ y′ e2x

(1 + )ex 2

−3 +2y = cos( )y′′ y′ ex

+ = 0c′
1
y1 c′

2
y2

+ = h(x)c′
1
y1 c′

2
y2 h(x)

x >

+3x +2y = 0x2y′′ y′

−3x +3y = 0, y(1) = 1, (1) = 0x2y′′ y′ y′

+5x +4y = 0x2y′′ y′

−2x +3y = 0, y(1) = 3, (1) = 0x2y′′ y′ y′

+3x −3y = 0x2y′′ y′

= ( − )
yd2

dx2

1

x2

vd2

dt2

dv

dt

+3x −3y = 0x2y′′ y′
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ii. .
iii. .
iv. .

10. Solve the following nonhomogenous Cauchy-Euler equations for .
a. .
b. .
c. .
d. .

11. A spring fixed at its upper end is stretched six inches by a 1o-pound weight attached at its lower end. The spring-mass system is

suspended in a viscous medium so that the system is subjected to a damping force of  lbs. Describe the motion of the

system if the weight is drawn down an additional 4 inches and released. What would happen if you changed the coefficient " 5 "
to " 4 "? [You may need to consult your introductory physics text. For example, the weight and mass are related by ,
where the mass is in slugs and .]

12. Consider an LRC circuit with  , and  V. Suppose that no
charge is present and no current is flowing at time  when a battery of voltage  is inserted. Find the current and the charge
on the capacitor as functions of time. Describe how the system behaves over time.

13. Consider the problem of forced oscillations as described in section .
1. Plot the solutions in Equation  for the following cases: Let , and  for 

.
1. .
2. .
3. .
4. .
5. .
6. .

2. Confirm that the solution in Equation  is the same as the solution in Equation  for 
 , and , by plotting both solutions for  .

14. A certain model of the motion light plastic ball tossed into the air is given by

Here  is the mass of the ball,  is the acceleration due to gravity and  is a measure of the damping. Since there is no
 term, we can write this as a first order equation for the velocity  :

a. Find the general solution for the velocity  of the linear first order differential equation above.
b. Use the solution of part a to find the general solution for the position .
c. Find an expression to determine how long it takes for the ball to reach it’s maximum height?
d. Assume that . For , plot the solution,  versus the time, using computer software.
e. From your plots and the expression in part , determine the rise time. Do these answers agree?
f. What can you say about the time it takes for the ball to fall as compared to the rise time?

15. Find the solution of each initial value problem using the appropriate initial value Green’s function.
a. 
b. .
c. .
d. .

16. Use the initial value Green’s function for , , to solve the following problems.
a. .
b. .

17. For the problem ,

2 +5x +y = 0x2y′′ y′

4 +y = 0x2y′′

+x −y = 0x3y′′′ y′

x > 0

+3x −3y = 3x2y′′ y′ x2

2 +5x +y = +xx2y′′ y′ x2

+5x +4y = 2x2y′′ y′ x3

−2x +3y = 5 , y(1) = 3, (1) = 0x2y′′ y′ x2 y′

5
dx

dt

W = mg

g = 32ft/s2

L = 1.00H,R = 1.00 × Ω,C =102 1.00 × f10−4 V = 1.00 ×103

t = 0 V

2.4.2

(2.4.35) = 0.5, = 0, = 1.0 Nc1 c2 F0 m = 1.0 kg

t ∈ [0, 100]

= 2.0rad/s,ω = 0.1rad/sω0

= 2.0rad/s,ω = 0.5rad/sω0

= 2.0rad/s,ω = 1.5rad/sω0

= 2.0rad/s,ω = 2.2rad/sω0

= 1.0rad/s,ω = 1.2rad/sω0

= 1.5rad/s,ω = 1.5rad/sω0

(2.4.36) (2.4.35)

= 2.0 N,m = 10.0 kg, = 1.5F0 ω0 rad/s ω = 1.25rad/s t ∈ [0, 100]

m +c +mg = 0, x(0) = 0, (0) =x′′ x′ x′ v0

m g = 9.8 m/s2 c

x v(t) = (t)x′

m +cv+mg = 0v′

v(t)

x(t)

c/m = 5 s−1 = 5, 10, 15, 20 m/sv0 x(t)

c

−3 +2y = 20 , y(0) = 0, (0) = 6y′′ y′ e−2x y′

+y = 2 sin3x, y(0) = 5, (0) = 0y′′ y′

+y = 1 +2 cosx, y(0) = 2, (0) = 0y′′ y′

−2x +2y = 3 −x, y(1) = π, (1) = 0x2y′′ y′ x2 y′

+x = f(t), x(0) = 4x′′ (0) = 0x′

+x = 5x′′ t2

+x = 2 tan tx′′

− y = f(x), y(0) = 0, (0) = 1y′′ k2 y′

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91056?pdf


2.6.3 https://math.libretexts.org/@go/page/91056

a. Find the initial value Green’s function.
b. Use the Green’s function to solve .
c. Use the Green’s function to solve .

18. Find and use the initial value Green’s function to solve

This page titled 2.6: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

−y =y′′ e−x

−4y =y′′ e2x

+3x −15y = , y(1) = 1, (1) = 0x2y′′ y′ x4ex y′
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1

CHAPTER OVERVIEW

3: Numerical Solutions
"The laws of mathematics are not merely human inventions or creations. They simply ’are; they exist quite independently of the
human intellect." - M. C. Escher (1898-1972)

SO FAR WE HAVE SEEN SOME OF THE STANDARD METHODS for solving first and second order differential equations.
However, we have had to restrict ourselves to special cases in order to get nice analytical solutions to initial value problems. While
these are not the only equations for which we can get exact results, there are many cases in which exact solutions are not possible.
In such cases we have to rely on approximation techniques, including the numerical solution of the equation at hand.

The use of numerical methods to obtain approximate solutions of differential equations and systems of differential equations has
been known for some time. However, with the advent of powerful computers and desktop computers, we can now solve many of
these problems with relative ease. The simple ideas used to solve first order differential equations can be extended to the solutions
of more complicated systems of partial differential equations, such as the large scale problems of modeling ocean dynamics,
weather systems and even cosmological problems stemming from general relativity.

3.1: Euler’s Method
3.2: Implementation of Numerical Packages
3.3: Higher Order Taylor Methods
3.4: Runge-Kutta Methods
3.5: Numerical Applications

3.5.1: The Nonlinear Pendulum
3.5.2: Extreme Sky Diving
3.5.3: The Flight of Sports Balls
3.5.4: Falling Raindrops
3.5.5: The Two-body Problem
3.5.6: The Expanding Universe
3.5.7: The Coefficient of Drag

3.6: Problems

This page titled 3: Numerical Solutions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.1: Euler’s Method
In this section we will look at the simplest method for solving first order equations, Euler’s Method. While it is not the most efficient
method, it does provide us with a picture of how one proceeds and can be improved by introducing better techniques, which are
typically covered in a numerical analysis text.

Let’s consider the class of first order initial value problems of the form

We are interested in finding the solution  of this equation which passes through the initial point  in the -plane for
values of  in the interval , where . We will seek approximations of the solution at  points, labeled  for 

. For equally spaced points we have , etc. We can write these as

In Figure  we show three such points on the -axis.

Figure : The basics of Euler’s Method are shown. An interval of the  axis is broken into  subintervals. The approximations
to the solutions are found using the slope of the tangent to the solution, given by . Knowing previous approximations at 

, one can determine the next approximation, .

The first step of Euler’s Method is to use the initial condition. We represent this as a point on the solution curve, 
, as shown in Figure . The next step is to develop a method for obtaining approximations to the solution

for the other .

We first note that the differential equation gives the slope of the tangent line at  of the solution curve since the slope is the
derivative,  From the differential equation the slope is . Referring to Figure , we see the tangent line drawn at 

. We look now at . The vertical line  intersects both the solution curve and the tangent line passing through 

. This is shown by a heavy dashed line.

While we do not know the solution at , we can determine the tangent line and find the intersection point that it makes with the
vertical. As seen in the figure, this intersection point is in theory close to the point on the solution curve. So, we will designate  as
the approximation of the solution . We just need to determine .

The idea is simple. We approximate the derivative in the differential equation by its difference quotient:

Since the slope of the tangent to the curve at  is , we can write

Solving this equation for , we obtain

This gives  in terms of quantities that we know.

= f(x, y), y ( ) =
dy

dx
x0 y0

y(x) ( , )x0 y0 xy

x [a, b] a = x0 N xn
n = 1, … ,N Δx = − = −x1 x0 x2 x1

= +nΔxxn x0

3.1.1 x

3.1.1 x N
f(x,y)

( , )xn−1 yn−1 yn

( , y ( )) = ( , )x0 x0 x0 y0 3.1.1

sx′
n

(x, y(x))

(xy′ )′ f(x, y(x)) 3.1.1

( , )x0 y0 x = x1 x = x1

( , )x0 y0

x = x1

y1

y ( )x1 y1

≈ =
dy

dx

−y1 y0

−x1 x0

−y1 y0

Δx

( , )x0 y0 ( ) = f ( , )y′ x0 x0 y0

≈ f ( , )
−y1 y0

Δx
x0 y0

y1

= +Δxf ( , ) . y1 y0 x0 y0

y1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91057?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03%3A_Numerical_Solutions/3.01%3A_Eulers_Method


3.1.2 https://math.libretexts.org/@go/page/91057

We now proceed to approximate . Referring to Figure , we see that this can be done by using the slope of the solution
curve at . The corresponding tangent line is shown passing though  and we can then get the value of  from the
intersection of the tangent line with a vertical line, . Following the previous arguments, we find that

Continuing this procedure for all , we arrive at the following scheme for determining a numerical solution to the
initial value problem:

This is referred to as Euler’s Method.

Use Euler’s Method to solve the initial value problem  and obtain an approximation for .

Solution
First, we will do this by hand. We break up the interval , since we want the solution at  and the initial value is at 

. Let . Then,  and . Note that there are  subintervals and thus three

points.

We next carry out Euler’s Method systematically by setting up a table for the needed values. Such a table is shown in Table 3.1.
Note how the table is set up. There is a column for each  and . The first row is the initial condition. We also made use of the
function  in computing the  s from Equation . This sometimes makes the computation easier. As a result, we find
that the desired approximation is given as .

Table : Application of Euler’s Method for  and .

1

1

2

Is this a good result? Well, we could make the spatial increments smaller. Let’s repeat the procedure for , or .
The results are in Table .

Now we see that the approximation is . So, it looks like the value is near 3 , but we cannot say much more.
Decreasing  more shows that we are beginning to converge to a solution. We see this in Table .

Table : Application of Euler’s Method for  and .

1

1

2

3

4

5

Table : Results of Euler’s Method for  and varying 

y ( )x2 3.1.1

( , )x1 y1 ( , )x1 y1 y2

x = x2

= +Δxf ( , ) . y2 y1 x1 y1

,n = 1, …Nxn

= y ( ) ,y0 x0

= +Δxf ( , ) , n = 1, … ,N .yn yn−1 xn−1 yn−1

(3.1.1)

 Example 3.1.1

= x+y, y(0) = 1
dy

dx
y(1)

[0, 1] x = 1

x = 0 Δx = 0.50 = 0, = 0.5x0 x1 = 1.0x2 N = = 2
b−a

Δx

xn yn
f(x, y) y′

n 3.1.6

= 2.5y2

3.1.1 = x+y,y(0) = 1y′ Δx = 0.5

n xn = + Δxf ( , ) = 0.5 + 1.5yn yn−1 xn−1 yn−1 xn−1 yn−1

O o

0.5 0.5(0) + 1.5(1.0) = 1.5

1.0 0.5(0.5) + 1.5(1.5) = 2.5

Δx = 0.2 N = 5

3.2

= 2.97664y1

Δx 3.1.3

3.1.2 = x+y,y(0) = 1y′ Δx = 0.2

n xn = 0.2 + 1.2yn xn−1 yn−1

o o

0.2 0.2(0) + 1.2(1.0) = 1.2

0.4 0.2(0.2) + 1.2(1.2) = 1.48

0.6 0.2(0.4) + 1.2(1.48) = 1.856

0.8 0.2(0.6) + 1.2(1.856) = 2.3472

1.0 0.2(0.8) + 1.2(2.3472) = 2.97664

3.1.3 = x+y,y(0) = 1y′ Δx

Δx ≈ y(1)yN
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Of course, these values were not done by hand. The last computation would have taken 1000 lines in the table, or at least 40 pages!
One could use a computer to do this. A simple code in Maple would look like the following:

> restart:

> f:=(x,y)->y+x;

> a:=0: b:=1: N:=100: h:=(b-a)/N;

> x[0]:=0: y[0]:=1:

for i from 1 to N do

y[i]:=y[i-1]+h*f(x[i-1],y[i-1]):

x[i]:=x[0]+h*(i):

od:

evalf(y[N]);

Figure : A comparison of the results Euler’s Method to the exact solution for  and .

In this case we could simply use the exact solution. The exact solution is

(The reader can verify this.) So, the value we are seeking is

Adding a few extra lines for plotting, we can visually see how well the approximations compare to the exact solution. The Maple
code for doing such a plot is given below.

> with(plots):

> Data:=[seq([x[i],y[i]],i=0..N)]:

Δx ≈ y(1)yN

0.5 2.5

0.2 2.97664

0.1 3.187484920

0.01 3.409627659

0.001 3.433847864

0.0001 3.436291854

Code 3.1.1

3.1.2 = x+y,y(0) = 1y′ N = 10

y(x) = 2 −x−1ex

y(1) = 2e−2 = 3.4365636 …

Code :3.1.2
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> P1:=pointplot(Data,symbol=DIAMOND):

> Sol:=t->-t-1+2*exp(t);

> P2:=plot(Sol(t),t=a..b,Sol=0..Sol(b)):

> display({P1,P2});

Figure : A comparison of the results Euler’s Method to the exact solution for  and .

We show in Figures  the results for  and . In Figure  we can see how quickly the numerical solution
diverges from the exact solution. In Figure  we can see that visually the solutions agree, but we note that from Table  that for 

, the solution is still off in the second decimal place with a relative error of about o.8%.

Why would we use a numerical method when we have the exact solution? Exact solutions can serve as test cases for our methods. We
can make sure our code works before applying them to problems whose solution is not known.

There are many other methods for solving first order equations. One commonly used method is the fourth order Runge-Kutta method.
This method has smaller errors at each step as compared to Euler’s Method. It is well suited for programming and comes built-in in
many packages like Maple and MATLAB. Typically, it is set up to handle systems of first order equations.

In fact, it is well known that th order equations can be written as a system of  first order equations. Consider the simple second
order equation

This is a larger class of equations than the second order constant coefficient equation. We can turn this into a system of two first order
differential equations by letting  and . Then, . So, we have the first order system

We will not go further into higher order methods until later in the chapter. We will discuss in depth higher order Taylor methods in
Section  and Runge-Kutta Methods in Section . This will be followed by applications of numerical solutions of differential
equations leading to interesting behaviors in Section . However, we will first discuss the numerical solution using built-in
routines.

This page titled 3.1: Euler’s Method is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

3.1.3 = x+y,y(0) = 1y′ N = 100

3.2 −3.3 N = 10 N = 100 3.2

3.3 3.1.3

Δx = 0.01

n n

= f(x, y)y′′

u = y v= =y′ u′ = = f(x, u)v′ y′′

u′

v′

= v

= f(x, u)

3.3 3.4

3.5
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3.2: Implementation of Numerical Packages

3.2.1: First Order ODEs in MATLAB

One can use Matlab to obtain solutions and plots of solutions of differential equations. This can be done either symbolically, using
dsolve, or numerically, using numerical solvers like ode45. In this section we will provide examples of using these to solve first
order differential equations. We will end with the code for drawing direction fields, which are useful for looking at the general
behavior of solutions of first order equations without explicitly finding the solutions.

Symbolic Solutions

THE FUNCTION dsolve OBTAINS THE SYMBOLIC Solution and ezplot is used to quickly plot the symbolic solution. As an
example, we apply dsolve to solve the

At the MATLAB prompt, type the following:

sol = dsolve(’Dx=2*sin(t)-4*x’,’x(0)=0’,’t’);

ezplot(sol,[0 10])

xlabel(’t’),ylabel(’x’), grid

The solution is given as

sol =

(2*exp(-4*t))/17 - (2*17^(1/2)*cos(t + atan(4)))/17

Figure  shows the solution plot.

Figure : The solution of Equation  with  found using MATLAB’s dsolve command.

ODE45 and Other Solvers.

There are several ode solvers in Matlab, implementing Runge-Kutta and other numerical schemes. Examples of its use are in the
differential equations textbook. For example, one can implement ode45 to solve the initial value problem

using the following code:

[t y]=ode45(’func’,[0 5],1);

plot(t,y)

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)

One can define the function func in a file func.m such as

function f=func(t,y)

= 2 sin t−4x, x(0) = 0x′

3.2.1

3.2.1 3.2.1 x(0) = 0

= − , y(0) = 1
dy

dt

yt

2 −y2
− −−−−

√
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f=-t*y/sqrt(2-y.^2);

Running the above code produces Figure .

Figure : A plot of the solution of , found using MATLAB’s ode 45 command.

One can also use ode 45 to solve higher order differential equations. Second order differential equations are discussed in Section
3.2.2. See MATLAB help for other examples and other ODE solvers.

Direction Fields

ONE CAN PRODUCE DIRECTION FIELDS IN MATLAB. For the differential equation

we note that  is the slope of the solution curve passing through the point in the  plane. Thus, the direction field is a
collection of tangent vectors at points  indication the slope, , at that point.

A sample code for drawing direction fields in MATLAB is given by

[x,y]=meshgrid(0:.1:2,0:.1:1.5);

dy=1-y;

dx=ones(size(dy));

quiver(x,y,dx,dy)

axis([0,2,0,1.5])

xlabel(’x’)

ylabel(’y’)

The mesh command sets up the -grid. In this case  is in  and  is in . In each case the grid spacing is .

We let  and . Thus,

The quiver command produces a vector  at . The slope of each vector is . The other commands label the axes
and provides a window with . The result of using the above code is shown in
Figure ) \).

3.2.2

3.2.2 = − , y(0) = 1
dy

dt

yt

2 −y2− −−−−
√

= f(x, y)
dy

dx

f(x, y) xy =

(x, y) f(x, y)

xy x [0, 2] y [0, 1.5] 0.1

dy = 1 −y dx = 1

= = 1 −y
dy

dx

1 −y

1

(dx, dy) (x, y) dy/dx

xmin = 0, xmax = 2, ymin = 0, ymax = 1.5

3.2.3
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Figure : A direction field produced using MATLAB’s quiver function for .

One can add solution, or integral, curves to the direction field for different initial conditions to further aid in seeing the connection
between direction fields and integral curves. One needs to add to the direction field code the followig lines:

hold on

[t,y] = ode45(@(t,y) 1-y, [0 2], .5);

plot(t,y,’k’,’LineWidth’,2)

[t,y] = ode45(@(t,y) 1-y, [0 2], 1.5);

plot(t,y,’k’,’LineWidth’,2)

hold off

Here the function  is entered this time using MATLAB’s anonymous function, @(t,y) 1-y. Before plotting, the hold
command is invoked to allow plotting several plots on the same figure. The result is shown the following lines:

Figure : A direction field produced using MATLAB’s quiver function for  with solution curves added.

3.2.2: Second Order ODEs in MATLAB
WE CAN ALSO USE ode45 TO SOLVE second and higher order differential equations. The key is to rewrite the single
differential equation as a system of first order equations. Consider the simple harmonic oscillator equation, . Defining 

 and , and noting that

we have

Furthermore, we can view this system in the form . In particular, we have

3.2.3 = 1 −yy′

f(t, y) = 1 −y

3.2.4 = 1 −yy′

+ x = 0ẍ ω2

= xy1 =y2 ẋ

+ x = +ẍ ω2 ẏ2 ω2y1

=ẏ1 y2

= − .ẏ2 ω2y1

= yẏ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91058?pdf


3.2.4 https://math.libretexts.org/@go/page/91058

Now, we can use ode45. We modify the code slightly from Chapter .

[t y]=ode45(’func’,[0 5],[1 0]);

Here  gives the time interval and  gives the initial conditions

The function func is a set of commands saved to the file func.m for computing the righthand side of the system of differential
equations. For the simple harmonic oscillator, we enter the function as

function dy=func(t,y)

omega=1.0;

dy(1,1) = y(2);

dy(2,1) = -omega^2*y(1);

There are a variety of ways to introduce the parameter . Here we simply defined it within the function. Furthermore, the output dy
should be a column vector.

After running the solver, we then need to display the solution. The output should be a column vector with the position as the first
element and the velocity as the second element. So, in order to plot the solution as a function of time, we can plot the first column
of the solution, , vs  :

plot(t,y(:,1))

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)

Figure : Solution plot for the simple harmonic oscillator.

The resulting solution is shown in Figure .

We can also do a phase plot of velocity vs position. In this case, one can plot the second column, , vs the first column, 
:

plot(y(:,1),y(:,2))

xlabel(’y’),ylabel(’v’)

title(’v(t) vs y(t)’)

The resulting solution is shown in Figure .

[ ] = [ ]
d

dt

y1

y2

y1

−ω2y2

1

[05] [10]

(0) = x(0) = 1, (0) = (0) = 1y1 y2 ẋ

ω

y(:, 1) t

3.2.5

3.2.5

y(:, 2) y(:, 1)

3.2.6
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Figure : Phase plot for the simple harmonic oscillator.

Finally, we can plot a direction field using a quiver plot and add solution curves using ode45. The direction field is given for 
by  and .

clear

[x,y]=meshgrid(-2:.2:2,-2:.2:2);

dx=y;

dy=-x;

quiver(x,y,dx,dy)

axis([-2,2,-2,2])

xlabel(’x’)

ylabel(’y’)

hold on

[t y]=ode45(’func’,[0 6.28],[1 0]);

plot(y(:,1),y(:,2))

hold off

The resulting plot is given in Figure .

Figure : Phase plot for the simple harmonic oscillator.

3.2.3: GNU Octave

MUCH OF MATLAB’s FUNCTIONALITY CAN BE USED IN GNU OCTAVE. However, a simple solution of a differential
equation is not the same. Instead GNU Octave uses the Fortan lsode routine. The main code below gives what is needed to solve
the system

3.2.6

ω = 1

dx = y dy = −X

3.2.7

3.2.7

[ ] = [ ]
d

dt

x

y

x

−cy
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global c

c=1;

y=lsode("oscf",[1,0],(tau=linspace(0,5,100))’);

figure(1);

plot(tau,y(:,1));

xlabel(’t’)

ylabel(’x(t)’)

figure(2);

plot(y(:,1),y(:,2));

xlabel(’x(t)’)

ylabel(’y(t)’)

The function called by the lsode routine, oscf, looks similar to MATLAB code. However, one needs to take care in the syntax and
ordering of the input variables. The output from this code is shown in Figure .

function ydot=oscf(y,tau);

global c

ydot(1)=y(2);

ydot(2)=-c*y(1);

Figure : Numerical solution of the simple harmonic oscillator using GNU Octave’s lsode routine. In these plots are the
position and velocity vs times plots and a phase plot.

3.2.4: Python Implementation

ONE CAN ALSO SOLVE ORDINARY DIFFERENTIAL EQUATIONS using Python. One can use the odeint routine from
scipy.inegrate. This uses a variable step routine based on the Fortan lsoda routine. The below code solves a simple harmonic
oscillator equation and produces the plot in Figure .

3.2.8

3.2.8

3.2.9
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import numpy as np

import matplotlib. pyplot as plt

from scipy.integrate import odeint

# Solve dv/dt = [y, - cx] for v = [x,y]

def odefn(v,t, c):

x, y = v

dvdt = [y, -c*x ]

return dvdt

v0 = [1.0, 0.0]

t = np.arange(0.0, 10.0, 0.1)

c = 5;

sol = odeint(odefn, v0, t,args=(c,))

plt.plot(t, sol[:,0],’b’)

plt.xlabel(’Time (sec)’)

plt.ylabel(’Position’)

plt.title(’Position vs Time’)

plt.show()

Figure : Numerical solution of the simple harmonic oscillator using Python’s odeint.

If one wants to use something similar to the Runga-Kutta scheme, then the ode routine can be used with a specification of ode
solver. The below code solves a simple harmonic oscillator equation and produces the plot in Figure .

from scipy import *

from scipy.integrate import ode

from pylab import *

# Solve dv/dt = [y, - cx] for v = [x,y]

def odefn(t,v, c):

x, y = v

dvdt = [y, -c*x ]

return dvdt

v0 = [1.0, 0.0]

t0=0;

3.2.9

3.2.10
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tf=10;

dt=0.1;

c = 5;

Y=[];

T=[];

r = ode(odefn).set_integrator(’dopri5’)

r.set_f_params(c).set_initial_value(v0,t0)

while r.successful() and r.t+dt < tf:

r.integrate(r.t+dt)

Y.append(r.y)

T.append(r.t)

Y = array(Y)

subplot(2,1,1)

plot(T,Y)

plt.xlabel(’Time (sec)’)

plt.ylabel(’Position’)

subplot(2,1,2)

plot(Y[:,0],Y[:,1])

xlabel(’Position’)

ylabel(’Velocity’)

show()

3.2.5: Maple Implementation
MAPLE ALSO HAS BUILT-IN ROUTINES FOR SOLVING DIFFERENTIAL EQUATIONS. First, we consider the symbolic
solutions of a differential equation. An example of a symbolic solution of a first order differential equation,  with 

, is given by

> restart: with(plots):

> EQ:=diff(y(x),x)=1-y(x):

> dsolve({EQ,y(0)=1.5});

Figure : Numerical solution of the simple harmonic oscillator using Python’s ode routine. In these plots are the position and
velocity vs times plots and a phase plot.

The resulting solution from Maple is

= 1 −yy′

y(0) −1.5

3.2.10
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One can also plot direction fields for first order equations. An example is given below with the plot shown in Figure .

Figure : Maple direction field plot for first order differential equation.

In order to add solution curves, we specify initial conditions using the following lines as seen in Figure .

> ics:=[y(0)=0.5,y(0)=1.5]:

> DEplot(ode,yt),t=0..2,y=0..1.5,ics,arrows=medium,linecolor=black,color=black);

These routines can be used to obtain solutions of a system of differential equations.

Figure : Maple direction field plot for first order differential equation with solution curves added.

> EQ:=diff(x(t),t)=y(t),diff(y(t),t)=-x(t):

> ICs:=x(0)=1,y(0)=0;

> dsolve([EQ, ICs]);

> plot(rhs(%[1]),t=0..5);

A phaseportrait with a direction field, as seen in Figure , is found using the lines

> with(DEtools):

> DEplot( [EQ], [x(t),y(t)], t=0..5, x=-2..2, y=-2..2, , arrows=medium,linecolor=black,color=black,scaling=constrained);

Figure : Maple system plot.

y(x) = 1 +
1

2
e−x

3.2.11

3.2.11

3.2.12

3.2.12

3.2.13

3.2.13
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3.3: Higher Order Taylor Methods
Euler’s method for solving differential equations is easy to understand but is not efficient in the sense that it is what is called a first
order method. The error at each step, the local truncation error, is of order , for  the independent variable. The accumulation
of the local truncation errors results in what is called the global error. In order to generalize Euler’s Method, we need to rederive it.
Also, since these methods are typically used for initial value problems, we will cast the problem to be solved as

The first step towards obtaining a numerical approximation to the solution of this problem is to divide the -interval, , into 
subintervals,

where

We then seek the numerical solutions

with . Figure  graphically shows how these quantities are related.

Euler’s Method can be derived using the Taylor series expansion of of the solution  about  for .
This is given by

Here the term  captures all of the higher order terms and represents the error made using a linear approximation to 

. Dropping the remainder term, noting that  and defining the resulting numerical approximations by 
, we have

This is Euler’s Method.

Euler’s Method is not used in practice since the error is of order . However, it is simple enough for understanding the idea of
solving differential equations numerically. Also, it is easy to study the numerical error, which we will show next.

The error that results for a single step of the method is called the local truncation error, which is defined by

A simple computation gives

Since the local truncation error is of order , this scheme is said to be of order one. More generally, for a numerical scheme of the
form

(The local truncation error.) the local truncation error is defined by

Δx x

= f(t, y), y(a) = , t ∈ [a, b]
dy

dt
y0 (3.3.1)

t [a, b] N

= a+ ih, i = 0, 1, … ,N , = a, = bti t0 tN

h =
b−a

N

≈ y ( ) , i = 1, 2, … ,Ny~i ti

= y ( ) =y~0 t0 y0 3.17

y ( +h)ti t = ti i = 1, 2, … ,N

y ( )ti+1 = y ( +h)ti

= y ( ) + ( )h+ ( ) , ∈ ( , )ti y′ ti
h2

2
y′′ ξi ξi ti ti+1

( )
h2

2
y′′ ξi

y ( +h)ti (t) = f(t, y),y′

≈ y ( )y~i ti

label3.11
=y~i+1

=y~0

+hf ( , ) , i = 0, 1, … ,N −1,y~i ti y~i

y(a) = .y0

h

(h) = −f ( , )τi+1
y ( ) −ti+1 y~i

h
ti yi

(h) = ( ) , ∈ ( , )τi+1
h

2
y′′ ξi ξi ti ti+1

h

y~i+1

y~0

= +hF ( , ) , i = 0, 1, … ,N −1y~i ti y~i

= y(a) = y0
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The accumulation of these errors leads to the global error. In fact, one can show that if  is continuous, satisfies the Lipschitz
condition,

for a particular domain , and

then

Furthermore, if one introduces round-off errors, bounded by , in both the initial condition and at each step, the global error is
modified as

Then for small enough steps , there is a point when the round-off error will dominate the error. [See Burden and Faires, Numerical
Analysis for the details.]

Can we improve upon Euler’s Method? The natural next step towards finding a better scheme would be to keep more terms in the
Taylor series expansion. This leads to Taylor series methods of order .

Taylor series methods of order  take the form

where we have defined

However, since , we can write

We note that for , we retrieve Euler’s Method as a special case. We demonstrate a third order Taylor’s Method in the next
example.

Apply the third order Taylor’s Method to

Solution
and obtain an approximation for  for .

The third order Taylor’s Method takes the form

(h) = −F ( , )τi+1
y ( ) −ti+1 y~i

h
ti yi

f

|f (t, ) −f (t, )| ≤ L | − |y2 y1 y2 y1

D ⊂ R2

| (t)| ≤ M , t ∈ [a, b]y′′

|y ( ) − | ≤ ( −1) , i = 0, 1, … ,Nti y~
hM

2L
eL( −a)ti

δ

|y ( ) − | ≤ ( + )( −1)+| | , i = 0, 1, … ,Nti y~
1

L

hM

2

δ

h
eL( −a)ti δ0 eL( −a)ti

h

n

n

y~i+1

y~0

= +h ( , ) , i = 0, 1, … ,N −1y~i T (n) ti y~i

= y0

(t, y) = (t) + (t) +⋯ + (t)T (n) y′ h

2
y′′ h(n−1)

n!
y(n)

(t) = f(t, y)y′

(t, y) = f(t, y) + (t, y) +⋯ + (t, y)T (n) h

2
f ′ h(n−1)

n!
f (n−1)

n = 1

 Example 3.3.1

= t+y, y(0) = 1
dy

dt

y(1) h = 0.1

y~i+1

y~0

= +h ( , ) , i = 0, 1, … ,N −1y~i T (3) ti y~i

= y0
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where

and .

In order to set up the scheme, we need the first and second derivative of :

Inserting these expressions into the scheme, we have

for .

In Figure  we show the results comparing Euler’s Method, the 3 rd Order Taylor’s Method, and the exact solution for 
. In Table  we provide are the numerical values. The relative error in Euler’s method is about  and that of the 3 rd

Order Taylor’s Method is about o.006%. Thus, the 3 rd Order Taylor’s Method is significantly better than Euler’s Method.

In the last section we provided some Maple code for performing Euler’s method. A similar code in MATLAB looks like the
following:

a=0;

b=1;

N=10;

h=(b-a)/N;

Table : Numerical values for Euler’s Method, 3rd Order Taylor’s Method, and exact solution for solving Example  with .
Euler Taylor Exact

(t, y) = f(t, y) + (t, y) + (t, y)T (3) h

2
f ′ h2

3!
f ′′

f(t, y) = t+y(t)

f(t, y)

(t, y)f ′ = (t+y)
d

dt

= 1 +y′

= 1 + t+y

(t, y)f ′′ = (1 + t+y)
d

dt

= 1 +y′

= 1 + t+y

y~i+1

y~0

= +h [( + ) + (1 + + ) + (1 + + )]y~i ti yi
h

2
ti yi

h2

3!
ti yi

= +h ( + ) + ( + ) (1 + + )y~i ti yi h2 1

2

h

6
ti yi

= y0

i = 0, 1, … ,N −1

3.1.1

N = 10 3.3.1 7%

3.3.1 3.3.1 N = 10

1.0000 1.0000 1.0000

1.1000 1.1103 1.1103

1.2200 1.2428 1.2428

1.3620 1.3997 1.3997

1.5282 1.5836 1.5836

1.7210 1.7974 1.7974

1.9431 2.0442 2.0442

2.1974 2.3274 2.3275

2.4872 2.6509 2.6511
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Euler Taylor Exact

Figure : Numerical results for Euler’s Method (filled circle) and 3 rd Order Taylor’s Method (open circle) for solving
Example  as compared to exact solution (solid line).

% Slope function

f = inline(’t+y’,’t’,’y’);

sol = inline(’2*exp(t)-t-1’,’t’);

% Initial Condition

t(1)=0;

y(1)=1;

% Euler’s Method

for i=2:N+1

y(i)=y(i-1)+h*f(t(i-1),y(i-1));

t(i)=t(i-1)+h;

end

A simple modification can be made for the 3 rd Order Taylor’s Method by replacing the Euler’s method part of the preceding code
by

% Taylor’s Method, Order 3

y(1)=1;

h3 = h^2*(1/2+h/6);

for i=2:N+1

y(i)=y(i-1)+h*f(t(i-1),y(i-1))+h3*(1+t(i-1)+y(i-1));

t(i)=t(i-1)+h;

end

While the accuracy in the last example seemed sufficient, we have to remember that we only stopped at one unit of time. How can
we be confident that the scheme would work as well if we carried out the computation for much longer times. For example, if the
time unit were only a second, then one would need 86,400 times longer to predict a day forward. Of course, the scale matters. But,
often we need to carry out numerical schemes for long times and we hope that the scheme not only converges to a solution, but that
it coverges to the solution to the given problem. Also, the previous example was relatively easy to program because we could

2.8159 3.0190 3.0192

3.1875 3.4364 3.4366

3.3.1
3.3.1
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provide a relatively simple form for  with a quick computation of the derivatives of . This is not always the case
and higher order Taylor methods in this form are not typically used. Instead, one can approximate  by evaluating the
known function  at selected values of  and , leading to Runge-Kutta methods.

This page titled 3.3: Higher Order Taylor Methods is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

(t, y)T (3) f(t, y)
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3.4: Runge-Kutta Methods
As WE HAD SEEN IN THE LAST SECTION, we can use higher order Taylor methods to derive numerical schemes for solving

using a scheme of the form

where we have defined

In this section we will find approximations of  which avoid the need for computing the derivatives.

For example, we could approximate

by

for selected values of , and . This requires use of a generalization of Taylor’s series to functions of two variables. In particular,
for small  and  we have

Furthermore, we need . Since , this can be found using a generalization of the Chain Rule from Calculus III:

Thus,

Comparing this expression to the linear (Taylor series) approximation of , we have

We see that we can choose

This leads to the numerical scheme

= f(t, y), y(a) = , t ∈ [a, b]
dy

dt
y0 (3.4.1)

y~i+1

y~0

= +h ( , ) , i = 0, 1, … ,N −1y~i T (n) ti y~i

= y0

(3.4.2)

(t, y) = (t) + (t) +⋯ + (t)T (n) y′ h

2
y′′ h(n−1)

n!
y(n)

(t, y)T (n)

(t, y) = f(t, y) + (t, y)T (2) h

2

df

dt

(t, y) ≈ af(t+α, y+β)T (2)

a,α β

α β

af(t+α, y+β) = a[f(t, y) + (t, y)α+ (t, y)β+ ( (t, y) +2 (t, y)αβ+ (t, y) )]
∂f

∂t

∂f

∂y

1

2

f∂2

∂t2
α2 f∂2

∂t∂y

f∂2

∂y2
β2

+ higher order terms. 

(3.4.3)

(t, y)
df

dt
y = y(t)

(t, y) = +
df

dt

∂f

∂t

∂f

∂y

dy

dt

(t, y) = f(t, y) + [ + ]T (2) h

2

∂f

∂t

∂f

∂y

dy

dt

af(t+α, y+β)

T (2)

f + + f
h

2

∂f

∂t

h

2

∂f

∂y

≈ af(t+α, y+β)

≈ af +aα +β
∂f

∂t

∂f

∂y

(3.4.4)

a = 1, α = , β = f .
h

2

h

2

y~i+1

y~0

= +hf ( + , + f ( , )) , i = 0, 1, … ,N −1,y~i ti
h

2
y~i

h

2
ti y~i

= ,y0

(3.4.5)
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The Midpoint or Second Order Runge-Kutta Method

This Runge-Kutta scheme is called the Midpoint Method, or Second Order, and it has order 2 if all second order derivatives of 
are bounded. The Midpoint or Second Order RungeKutta Method. Often, in implementing Runge-Kutta schemes, one computes the
arguments separately as shown in the following MATLAB code snippet. (This code snippet could replace the Euler’s Method section
in the code in the last section.)

% Midpoint Method

y(1)=1;

for i=2: N+1

k1=h/2*f(t(i-1),y(i-1));

k2=h*f(t(i-1)+h/2,

y(i-1)+k1);

y(i)=y(i-1)+k2;

t(i)=t(i-1)+h;

end

Compare the Midpoint Method with the 2nd Order Taylor’s Method for the problem

.

The solution to this problem is . In order to implement the 2nd Order Taylor’s Method, we need

The results of the implementation are shown in Table .

Table : Numerical values for 2 nd Order Taylor’s Method, Midpoint Method, exact solution, and errors for solving Example  with 
.

Exact Taylor Error Midpoint Error

There are other way to approximate higher order Taylor polynomials. For example, we can approximate  using four
parameters by

f(t, y)

 Example 3.4.1

= +y, y(0) = 1, t ∈ [0, 1]y′ t2

y(t) = 3 −2 −2t−et t2

= f(t, y) + (t, y)T (2) h

2
f ′

= +y+ (2t+ +y)t2 h

2
t2

(3.4.6)

3.4.1

3.4.1 3.4.1
N = 10

1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1050 0.0005 1.1053 0.0003

1.2242 1.2231 0.0011 1.2236 0.0006

1.3596 1.3577 0.0019 1.3585 0.0010

1.5155 1.5127 0.0028 1.5139 0.0016

1.6962 1.6923 0.0038 1.6939 0.0023

1.9064 1.9013 0.0051 1.9032 0.0031

2.1513 2.1447 0.0065 2.1471 0.0041

2.4366 2.4284 0.0083 2.4313 0.0053

2.7688 2.7585 0.0103 2.7620 0.0068

3.1548 3.1422 0.0126 3.1463 0.0085

(t, y)T (3)
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Expanding this approximation and using

we find that we cannot get rid of  terms. Thus, the best we can do is derive second order schemes. In fact, following a
procedure similar to the derivation of the Midpoint Method, we find that

There are three equations and four unknowns. Therefore there are many second order methods. Two classic methods are given by the

modified Euler method  and Huen’s method ., .

The Fourth Order Runge-Kutta

The Fourth Order Runge-Kutta Method, which is most often used, is given the scheme

Again, we can test this on Example  with . The MATLAB implementation is given by

% Runge-Kutta 4th Order to solve dy/dt = f(t,y), y(a)=y0, on [a,b]

clear

a=0;

b=1;

N=10;

h=(b-a)/N;

% Slope function

f = inline(’t^2+y’,’t’,’y’);

sol = inline(’-2-2*t-t^2+3*exp(t)’,’t’);

% Initial Condition

t(1)=0;

y(1)=1;

% RK4 Method

y1(1)=1;

for i=2:N+1

k1=h*f(t(i-1),y1(i-1));

k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);

(t, y) ≈ af(t, y) +bf(t+α, y+βf(t, y).T (3)

(t, y) ≈ f(t, y) + (t, y) + (t, y)T (3) h

2

df

dt

h2

6

df

dt

O ( )h2

a+b = 1, ,αb = , β = α
h

2

(a = b = ,α = β = h)
1

2
\left(a=\dfrac{1}{4}, b=\dfrac{3}{4},\right α = β = h)

2

3

=y~0 y0

= hf ( , )k1 ti y~i

= hf ( + , + )k2 ti
h

2
y~i

1

2
k1

= hf ( + , + )k3 ti
h

2
y~i

1

2
k2

= hf ( +h, + )k4 ti y~i k3

= hf ( +h, + )k4 ti y~i k3

= + ( +2 +2 + ) , i = 0, 1, … ,N −1.y~i+1 y~i
1

6
k1 k2 k3 k4

3.4.1 N = 10
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k3=h*f(t(i-1)+h/2,y1(i-1)+k2/2);

k4=h*f(t(i-1)+h,y1(i-1)+k3);

y1(i)=y1(i-1)+(k1+2*k2+2*k3+k4)/6;

t(i)=t(i-1)+h;

end

MATLAB has built-in ODE solvers, as do other software packages, like Maple and Mathematica. You should also note that there are
currently open source packages, such as Python based NumPy and Matplotlib, or Octave, of which some packages are contained
within the Sage Project.

MATLAB has built-in ODE solvers, such as ode45 for a fourth order Runge-Kutta method. Its implementation is given by

[t,y]=ode45(f,[0 1],1);

In this case  is given by an inline function like in the above RK 4 code. The time interval is enetered as  and the 1 is the initial
condition, 

However, ode 45 is not a straight forward RK  implementation. It is a hybrid method in which a combination of 4 th and 5 th order
methods are combined allowing for adaptive methods to handled subintervals of the integration region which need more care. In this
case, it implements a fourth order Runge-Kutta-Fehlberg method. Running this code for the above example actually results in values
for  and not . If we wanted to have the routine output numerical solutions at specific times, then one could use the
following form

tspan=0:h:1;

[t,y]=ode45(f,tspan,1);

In Table  we show the solutions which results for Example  paring the  snippet above with ode45. As you can see 
is much better than the previous implementation of the second order RK (Midpoint) Method. However, the MATLAB routine is two
orders of magnitude better that .

Table : Numerical values for Fourth Order Runge-Kutta Method, rk45, exact solution, and errors for solving Example  with N
= 10.

Exact Taylor Error Midpoint Error

o.0000 o.0000

There are many ODE solvers in MATLAB. These are typically useful if  is having difficulty solving particular problems. For the
most part, one which is similar to odens but combining a second and third order scheme. Which is similar to ode 45 but combining a
second and third order scheme. Applying the results to Example  we obtain the results in table  We are shown below.

% Second Order RK Method

y1(1)=1;

for i=2:N+1

k1=h*f(t(i-1),y1(i-1));

f [0, 1]

y(0) =

4

N = 41 N = 10

3.4.2 3.4.1 RK4 RK4

RK4

PageIndex2 3.4.1

1.0000 1.0000 1.0000

1.1055 1.1055 4.5894e − 08 1.1055 −2.5083e − 10

1.2242 1.2242 1.2335e − 07 1.2242 −6.0935e − 10

1.3596 1.3596 2.3850e − 07 1.3596 −1.0954e − 09

1.5155 1.5155 3.9843e − 07 1.5155 −1.7319e − 09

1.6962 1.6962 6.1126e − 07 1.6962 −2.5451e − 09

1.9064 1.9064 8.8636e − 07 1.9064 −3.5651e − 09

2.1513 2.1513 1.2345e − 06 2.1513 −4.8265e − 09

2.4366 2.4366 1.6679e − 06 2.4366 −6.3686e − 09

2.7688 2.7688 2.2008e − 06 2.7688 −8.2366e − 09

3.1548 3.1548 2.8492e − 06 3.1548 −1.0482e − 08

RK4

3.3 3.4.2
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k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);

y1(i)=y1(i-1)+k2;

t(i)=t(i-1)+h;

end

tspan=0:h:1;

[t,y]=ode23(f,tspan,1);

Table : Numerical values for Second Order Runge-Kutta Method, rk23, exact solution, and errors for solving Example  with N = 10.

We have seen several numerical schemes for solving initial value problems. There are other methods, or combinations of methods,
which aim to refine the numerical approximations efficiently as if the step size in the current methods were taken to be much smaller.
Some methods extrapolate solutions to obtain information outside of the solution interval. Others use one scheme to get a guess to the
solution while refining, or correcting, this to obtain better solutions as the iteration through time proceeds. Such methods are described
in courses in numerical analysis and in the literature. At this point we will apply these methods to several physics problems before
continuing with analytical solutions.

This page titled 3.4: Runge-Kutta Methods is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

3.4.3 3.4.1

1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1053 0.0003 1.1055 2.7409e − 06

1.2242 1.2236 0.0006 1.2242 8.7114e − 06

1.3596 1.3585 0.0010 1.3596 1.6792e − 05

1.5155 1.5139 0.0016 1.5154 2.7361e − 05

1.6962 1.6939 0.0023 1.6961 4.0853e − 05

1.9064 1.9032 0.0031 1.9063 5.7764e − 05

2.1513 2.1471 0.0041 2.1512 7.8665e − 05

2.4366 2.4313 0.0053 2.4365 0.0001

2.7688 2.7620 0.0068 2.7687 0.0001

3.1548 3.1463 0.0085 3.1547 0.0002
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3.5: Numerical Applications
IN THIS SECTION WE APPLY VARIOUS NUMERICAL METHODS to several physics problems after setting them up. We first
describe how to work with second order equations, such as the nonlinear pendulum problem. We will see that there is a bit more to
numerically solving differential equations than to just running standard routines. As we explore these problems, we will introduce
other methods and provide some MATLAB code indicating how one might set up the system.

Other problems covered in these applications are various free fall problems beginning with a falling body from a large distance
from the Earth, to flying soccer balls, and falling raindrops. We will also discuss the numerical solution of the two body problem
and the Friedmann equation as nonterrestrial applications.

This page titled 3.5: Numerical Applications is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.5.1: The Nonlinear Pendulum
NOW WE WILL INVESTIGATE THE USE OF NUMERCIAL METHODS fOr SOLVing the nonlinear pendulum problem.

Solve

using Euler’s Method. Use the parameter values of , , and .

This is a second order differential equation. As describe later, we can write this differential equation as a system of two first
order differential equations,

Defining the vector

we can write the first order system as

where

This allows us to use the the methods we have discussed on this first order equation for .

For example, Euler’s Method for this system becomes

With .

We can write this scheme in component form as

or

starting with  and .

The MATLAB code that can be used to implement this scheme takes the form.

g=9.8;

L=0.5;

m=0.005;

a=0;

 Example : Nonlinear Pendulum3.5.1.1

= − sinθ, θ(0) = , ω(0) = 0, t ∈ [0, 8],θ̈
g

L
θ0

m = 0.005 kg L = 0.500 m g = 9.8 m/s2

\begin{equation}\begin{aligned} \dot{\theta} &=\omega, \\[4pt] \dot{\omega} &=-\dfrac{g}{L} \sin \theta . \end{aligned}\label{3.26}

Θ(t) =( )
θ(t)

ω(t)

= F(t, Θ), Θ(0) =( )
dΘ

dt

θ0

0

F (t, Θ) =
⎛

⎝
⎜

ω(t)

− sinθ(t)
g

L

⎞

⎠
⎟

Θ(t)

= +hF ( , )Θi+1 Θi+1 ti Θi

= Θ(0)Θ0

( ) =( )+h
θi+1

ωi+1

θi

ωi

⎛

⎝

ωi

− sin
g

L
θi

⎞

⎠

θi+1

ωi+1

= +hθi ωi

= −h sinωi

g

L
θi

=θ0 θ0 = 0ω0
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b=8;

N=500;

h=(b-a)/N;

% Initial Condition

t(1)=0;

theta(1)=pi/6;

omega(1)=0;

% Euler’s Method for

i=2:N+1

omega(i)=omega(i-1)-g/L*h*sin(theta(i-1));

theta(i)=theta(i-1)+h*omega(i-1);

t(i)=t(i-1)+h;

end

Figure : Solution for the nonlinear pendulum problem using Euler’s Method on  with .

In Figure  we plot the solution for a starting position of  with . Notice that the amplitude of oscillation is
increasing, contrary to our experience. So, we increase N and see if that helps. In Figure  we show the results for 
500, 1000, and 2000 points, or 0.016, 0.008, and 0.004, respectively. We note that the amplitude is not increasing as much.

3.5.1.1 t ∈ [0, 8] N = 500

3.5.1.1 300 N = 500

3.5.1.2 N =

h =
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The problem with the solution is that Euler’s Method is not an energy conserving method. As conservation of energy is important
in physics, we would like to be able to seek problems which conserve energy. Such schemes used to solve oscillatory problems in
classical mechanics are called symplectic integrators. A simple example is the Euler-Cromer, or semi-implicit Euler Method. We
only need to make a small modification of Euler’s Method. Namely, in the second equation of the method we use the updated value
of the dependent variable as computed in the first line.

Figure : Solution for the nonlinear pendulum problem using Euler’s Method on  with .

Let’s write the Euler scheme as

Then, we replace  in the second line by  to obtain the new scheme

The MATLAB code is easily changed as shown below.

g=9.8;

L=0.5;

m=0.005;

a=0;

3.5.1.2 t ∈ [0, 8] N = 500, 1000, 2000

= −h sinωi+1 ωi

g

L
θi

= +hθi+1 θi ωi

ωi ωi+1

ωi+1

θi+1

= −h sinωi

g

L
θi

= +hθi ωi+1
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b=8;

N=500;

h=(b-a)/N;

% Initial Condition

t(1)=0;

theta(1)=pi/6;

omega(1)=0;

% Euler-Cromer Method

for i=2:N+1

omega(i)=omega(i-1)-g/L*h*sin(theta(i-1));

theta(i)=theta(i-1)+h*omega(i);

t(i)=t(i-1)+h;

end

We then run the new scheme for  and compare this with what we obtained before. The results are shown in Figure 
. We see that the oscillation amplitude seems to be under control. However, the best test would be to investigate if the

energy is conserved.

Recall that the total mechanical energy for a pendulum consists of the kinetic and gravitational potential energies,

For the pendulum the tangential velocity is given by  and the height of the pendulum mass from the lowest point of the
swing is . Therefore, in terms of the dynamical variables, we have

We can compute the energy at each time step in the numerical simulation. In MATLAB it is easy to do using

E = 1/2*m*L^2*omega.^2+m*g*L*(1-cos(theta));

after implementing the scheme. In other programming environments one needs to loop through the times steps and compute the
energy along the way. In Figure  we shown the results for Euler’s Method for   and the Euler-Cromer
Method for . It is clear that the Euler-Cromer Method does a much better job at maintaining energy conservation.

N = 500

3.5.1.3

E = m +mgh
1

2
v2

v= Lω

h = L(1 −cosθ)

E = m +mgL(1 −cosθ)
1

2
L2ω2

3.5.1.4 N = 500, 1000, 2000

N = 500
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Figure : Solution for the nonlinear pendulum problem comparing Euler’s Method and the Euler-Cromer Method on 
 with .

3.5.1.3
t ∈ [0, 8] N = 500
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Figure : Total energy for the nonlinear pendulum problem.

This page titled 3.5.1: The Nonlinear Pendulum is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

3.5.1.4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/103775?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03%3A_Numerical_Solutions/3.05%3A_Numerical_Applications/3.5.01%3A_The_Nonlinear_Pendulum
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
http://people.uncw.edu/hermanr/mat361/ODEBook/index.htm


3.5.2.1 https://math.libretexts.org/@go/page/103776

3.5.2: Extreme Sky Diving
ON OCTOBER 14, 2012 FELIX BAUMGARTNER JUMPED from a helium balloon at an altitude of  or . According preliminary data from the Red Bull Stratos Mission
, as of November 6,2012 Baumgartner experienced free fall until he opened his parachute at  after 4 minutes and 20 seconds. Within the first minute he had broken the record set by Joe

Kittinger on August 16,1960 . Kittinger jumped from 102,800 feet  and fell freely for 4 minutes and 36 seconds to an altitude of  conservation. . Both set records for their
times. Kittinger reached  (Mach o.9) and Baumgartner reached  (Mach 1.24). Another record that was broken was that over 8 million watched the event on YouTube, breaking
current live stream viewing events.

1

The original estimated data was found at the Red Bull Stratos site, http://www.redbullstratos.com/. Some of the data has since been updated. The reader can redo the solution using the
updated data.

This much attention also peaked interest in the physics of free fall. Free fall at constant  through a height of  should take a time of

Of course,  is not constant. In fact, at an altitude of , we have

So,  is roughly constant.

Next, we need to consider the drag force as one free falls through the atmosphere, . One needs some values for the parameters in this problem. Let’s take ,

and , . Then, a simple model would give

or

This gives a terminal velocity of , or . However, we again have assumed that the drag coefficient and air density are constant. Since the Reynolds number is high, we expect  is
roughly constant. However, the density of the atmosphere is a function of altitude and we need to take this into account.

The Reynolds number is used several times in this chapter. It is defined as

where  is the kinematic viscosity. The kinematic viscosity of air at  is about .

A simple model for  can be found at the NASA site.  Using their data, we have

In Figure  the atmospheric density is shown as a function of altitude.

2

https://www.grc.nasa.gov/WWW/k-12/rocket/atmos.html

In order to use the methods for solving first order equations, we write the system of equations in the form

This is now in the form of a system of first order differential equations.

Then, we define a function to be called and store in as gravf.m as shown below.

39045 m(24.26mi 128100ft)
1 1585 m

(31 km) 18, 000ft (5, 500 m)

614mph 833.9mph

g h

t = = = 86 s
2h

g

−−−

√
2(36, 529)

9.8

− −−−−−−−−

√

g 39 km

g = = = 9.68 m/
GM

R+h

6.67 × (5.97 ×  kg)10−11Nm2  kg2 1024

6375 +39 km
s2

g

= CAFD

1

2
ρav

2 m = 90 kg,A = 1.0 m2

ρ = 1.29 kg/m3 C = 0.42

m = −mg+ CAρv̇
1

2
v2

= −g+.0030v̇ v2

57.2 m/s 128mph C
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2rv

v

v F60∘ 1.47 × /s10−5  m2

ρ = ρ(h) 2
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Figure : Atmospheric density as a function of altitude.

function dy=gravf(t,y);

G=6.67E-11;

M=5.97E24;

R=6375000;

m=90;

C=.42;

A=1;

dy(1,1)=y(2);

dy(2,1)=-G*M/(R+y(1)).^2+.5*density2(y(1))*C*A*y(2).^2/m;

Now we are ready to call the function in our favorite routine.

h0=1000;

tmax=20;

tmin=0;

[t,y]=ode45(’dgravf’,[tmin tmax],[h0;0]);% Const rho

plot(t,y(:,1),’k--’)

Here we are simulating free fall from an altitude of one kilometer. In Figure  we compare different models of free fall with  taken as constant or derived from Newton’s Law of Gravitation.
We also consider constant density or the density dependence on the altitude as given earlier. We chose to keep the drag coefficient constant at .

We can see from these plots that the slight variation in the acceleration due to gravity does not have as much an effect as the variation of density with distance.

Now we can push the model to Baumgartner’s jump from . In Figure  we compare the general model with that with no air resistance, though both taking into account the variation in .
As a body falls through the atmosphere we see the changing effects of the denser atmosphere on the free fall. For the parameters chosen, we find that it takes , or a little less than four minutes
to reach the point where Baumgartner opened his parachute. While not exactly the same as the real fall, it is amazingly close.

3.5.2.1

3.5.2.2 g

C = 0.42

39 km 3.5.2.3 g

238.8 s
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Figure : Comparison of different models of free fall from one kilometer above the Earth.

Figure : Free fall from  at constant  as compared to nonconstant  and nonconstant atmospheric density with drag coefficient .

This page titled 3.5.2: Extreme Sky Diving is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.
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3.5.3: The Flight of Sports Balls
ANOTHER INTERESTING PROBLEM IS THE PROJECTILE MOTION OF A SPORTS ball. In an introductory physics course,
one typically ignores air resistance and the path of the ball is a nice parabolic curve. However, adding air resistance complicates the
problem significantly and cannot be solved analytically. Examples in sports are flying soccer balls, golf balls, ping pong balls,
baseballs, and other spherical balls.

We will consider a ball moving in the -plane spinning about an axis perpendicular to the plane of motion. Such an analysis was
reported in Goff and Carré, AJP 77 (11) 1020. The typical trajectory of the ball is shown in Figure . The forces acting on the
ball are the drag force, , the lift force, , and the gravitational force, . These are indicated in Figure . The equation of
motion takes the form

Writing out the components, we have

Figure : Sketch of the path for projectile motion problems.

xz
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Figure : Forces acting on ball.

As we had seen before, the magnitude of the damping (drag) force is given by

For the case of soccer ball dynamics, Goff and Carré noted that the Reynolds number, , is between 70000 and 490000

by using a kinematic viscosity of  and typical speeds of . Their analysis gives .
The parameters used for the ball were   and cross sectional area  and the density of air was taken as 

The lift force takes a similar form,

The sign of  indicates if the ball has top spin  or bottom spin . The lift force is just one component of a more
general Magnus force, which is the force on a spinning object in a fluid and is perpendicular to the motion. In this example we
assume that the spin axis is perpendicular to the plane of motion. Allowing for spinning balls to veer from this plane would mean
that we would also need a component of the Magnus force perpendicular to the plane of motion. This would lead to an additional
sideways component (in the  direction) leading to a third acceleration equation. We will leave that case for the reader.

The lift coefficient can be related to the spin as

3.5.3.2

= ρAFD

1

2
CD v2

Re =
2rv

v
v= 1.54 × /s10−5  m2 v= 4.5 −31 m/s ≈ 0.2CD

m = 0.424 kg A = 0.035 m2

1.2 kg/m3

= ρA .FL

1

2
CL v2
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where  is the peripheral speed of the ball. Here  is the ball radius and  is the angular speed in rad /s. If 
, and , then .

So far, the problem has been reduced to

for  and  the components of the velocity. Also, . Furthermore, from Figure , we can write

So, the equations can be written entirely as a system of differential equations for the velocity components,

where .

Such systems of equations can be solved numerically by thinking of this as a vector differential equation,

and applying one of the numerical methods for solving first order equations.

Since we are interested in the trajectory, , we would like to determine the parametric form of the path, . So,
instead of solving two first order equations for the velocity components, we can rewrite the two second order differential equations
for  and  as four first order differential equations of the form

We first define

Then, the systems of first order differential equations becomes

The system can be placed into a function file which can be called by an ODE solver, such as the MATLAB m-file below.

function dy = ballf(t,y)

global g CD

CL alpha dy = zeros(4,1); % a column vector

= rωvspin R ω

v= 20 m/s,ω = 200rad/s r = 20 mm = 0.45CL

= − ( cosθ+ sinθ)
dvx

dt

ρA

2m
CD CL v2

= −g− ( sinθ− cosθ)
dvz

dt

ρA

2m
CD CL v2

vx vz = +v2 v2
x v2

z 3.5.3.2

cosθ = , sinθ = .
vx

v

vz

v

= −α ( + )
dvx

dt
CDvx CLvz ( + )v2

x v2
z

1/2

\dfrac{d v_{z}}{d t} &=-g-\alpha\left(C_{D} v_{z}-C_{L} v_{x}\right)\left(v_{x}^{2}+v_{z}^{2}\right)^{1 / 2} \nonumber

α = ρA/2m = 0.0530 m−1

= F(t, v)
dv

dt

z = z(x) (x(t), z(t))

x(t) z(t)

= F(t, y)
dy

dt

y = =

⎡

⎣

⎢⎢⎢⎢⎢⎢
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(t)y2

(t)y3

(t)y4

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣
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⎤
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dt
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v = sqrt(y(3).^2+y(4).^2); % speed v

dy(1) = y(3);

dy(2) = y(4);

dy(3) = -alpha*v.*(CD*y(3)+CL*y(4));

dy(4) = alpha*v.*(-CD*y(4)+CL*y(3))-g;

Then, the solver can be called using

[T,Y] = ode45(’ballf’,[0 2.5],[x0,z0,v0x,v0z]);

Figure : Example of soccer ball under the influence of drag.

In Figures  and  we indicate what typical solutions would look like for different values of drag and lift coefficients.
In the case of nonzero lift coefficients, we indicate positive and negative values leading to flight with top spin, , or bottom
spin, .

Figure : Example of soccer ball under the influence of lift with  and 

This page titled 3.5.3: The Flight of Sports Balls is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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3.5.4: Falling Raindrops
A SIMPLE PROBLEM THAT APPEARS IN MECHANICS is that of a falling raindrop through a mist. The raindrop not only
undergoes free fall, but the mass of the drop grows as it interacts with the mist. There have been several papers written on this
problem and it is a nice example to explore using numerical methods. In this section we look at models of a falling raindrop with
and without air drag.

First we consider the case in which there is no air drag. A simple model of free fall from Newton’s Second Law of Motion is

In this discussion we will take downward as positive. Since the mass is not constant. we have

In order to proceed, we need to specify the rate at which the mass is changing. There are several models one can adapt.We will
borrow some of the ideas and in some cases the numerical values from Sokal(2010)  and Edwards, Wilder, and Scime (2001).
These papers also quote other interesting work on the topic.

1

A. D. Sokal, The falling raindrop, revisited, Am. J. Phys. 78, 643-645, (2010).

2

B. F. Edwards, J. W. Wilder, and E. E. Scime, Dynamics of Falling Raindrops, Eur. J. Phys. 22, 113-118, (2001).

While  and  are functions of time, one can look for a way to eliminate time by assuming the rate of change of mass is an explicit
function of  and  alone. For example, Sokal (2010) assumes the form

This contains two commonly assumed models of accretion:

1. . This corresponds to growth of the raindrop proportional to the surface area. Since  and , then 
 implies that .

2. . In this case the growth of the raindrop is proportional to the volume swept out along the path. Thus, 
, where  is the cross sectional area and  is the distance traveled in time 

In both cases, the limiting value of the acceleration is a constant. It is  in the first case and  in the second case.

Another approach might be to use the effective radius of the drop, assuming that the raindrop remains close to spherical during the
fall. According to Edwards, Wilder, and Scime (2001), raindrops with Reynolds number greater than 1000 and with radii larger
than i mm will flatten. Even larger raindrops will break up when the drag force exceeds the surface tension. Therefore, they take 

 and . We will return to a discussion of the drag later.

It might seem more natural to make the radius the dynamic variable, than the mass. In this case, we can assume the accretion rate
takes the form

Since, 

Therefore, the two special cases become

1. . This corresponds to a growth of the raindrop proportional to the surface area.

= mg
d(mv)

dt
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2. . In this case the growth of the raindrop is proportional to the volume swept out along the path.

Here  is the density of the raindrop. We will also need

Putting this all together, we have a systems of two equations for  and  :

Determine  for the case  and the initial conditions  and .

In this case Equations  become

Noting that

we can convert the problem to one of finding the solution  subject to the equation

with the initial condition  for .

Rearranging the differential equation, we find that it is a linear first order differential equation,

This equation can be solved using an integrating factor, , obtaining

Integrating, we obtain the solution

Note that for large . Therefore, .

While this case was easily solved in terms of elementary operations, it is not always easy to generate solutions to Equations 
analytically. Sokal (2010) derived a general solution in terms of incomplete Beta functions, though this does not help visualize the
solution. Also, as we will see, adding air drag will lead to a nonintegrable system. So, we turn to numerical solutions.

In MATLAB, we can use the function in raindropf.m to capture the system  and the
radius in .

α = 0, β = 1

ρd

v
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dt
= v

4πρdr
2
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4

3
ρdr3
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= 3
v

r
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= 3γrα−1vβ+1

v(t) r(t)

dv
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dr

dt

= g−3γrα−1vβ+1

= γrαvβ

 Example 3.5.4.1

v= v(r) α = 0, β = 0 r(0) = 0.1 mm v(0) = 0 m/s

3.5.4.2

\begin{aligned} &\dfrac{d v}{d t}=g-3 \gamma r^{-1} v \\[4pt] &\dfrac{d r}{d t}=\gamma \end{aligned} \end{equation}\label{3.41}
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function dy=raindropf(t,y);

global alpha beta gamma g

dy=[g-3*gamma*y(2)^(alpha-1)*y(1)^(beta+1); ...

gamma*y(2)^alpha*y(1)^beta];

We then use the Runge-Kutta solver, ode45, to solve the system. An implementation is shown below which calls the function
containing the system. The value  is based on empirical results quoted by Edwards, Wilder, and Scime (2001).

Figure : The plots of position and velocity as a function of time for .

clear

global alpha beta gamma g

alpha=0;

beta=0;

gamma=2.5e-07;

g=9.81;

r0=0.0001;

v0=0;

γ = 2.5 ×10−7

3.5.4.1 α = β = 0
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y0=[v0;r0];

tspan=[0 1000];

[t,y]=ode45(@raindropf,tspan,y0);

plot(1000*y(:,2),y(:,1),’k’)

Figure : The plot the velocity as a function of position for .3.5.4.2 α = β = 0
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Figure : The plot the velocity as a function of position for .

The resulting plots are shown in Figures - . The plot of velocity as a function of position agrees with the exact
solution, which we derived in the last example. We note that these drops do not grow much, but they seem to obtain large speeds.

For the second case, , one can also obtain an exact solution. The result is

For large  one can show that . In Figures  we see again large velocities, though about a third as fast over the

same time interval. However, we also see that the raindrop has significantly grown well past the point it would break up.

In this simple model of a falling raindrop we have not considered air drag. Earlier in the chapter we discussed the free fall of a body
with air resistance and this lead to a terminal velocity. Recall that the drag force given by

where  is the drag coefficient,  is the cross sectional area and  is the air density. Also, we assume that the body is falling
downward and downward is positive, so that  so as to oppose the motion.

We would like to incorporate this force into our model . The first equation came from the force law, which now becomes

3.5.4.3 α = 0,β = 1

3.5.4.1 3.5.4.2

α = 0, β = 1

v(r) = [ r(1 − )]
2g

7γ
( )
r0

r

7

1

2

r ∼
dv

dt

g

7
3 ⋅ ⋅33−3 32

(v) = − AfD
1

2
CD ρav

2

CD A ρa
(v) < 0fD

3.5.4.2

m = mg−v − A
dv

dt

dm

dt

1

2
CD ρav

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/103779?pdf


3.5.4.6 https://math.libretexts.org/@go/page/103779

Or

The next step is to eliminate the dependence on the mass, , in favor of the radius, . The drag force term can be written as

We had already done this for the second term; however, Edwards, Wilder, and Scime (2001) point to experimental data and propose
that

where  is the mist density. So, the second terms leads to

Figure : The plots of position and velocity as a function of time for 

But, since 
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This suggests that their model corresponds to , and .

Now we can write down the modified system

Edwards, Wilder, and Scime (2001) assume that the densities are constant with values , and 
 . However, the drag coefficient is not constant. As described later in Section 3.5.7, there are various

models indicating the dependence of  on the Reynolds number,

where  is the kinematic viscosity, which Edwards, Wilder, and Scime (2001) set to . For raindrops of the
range  to 1 , the Reynolds number is below rooo. Edwards, Wilder, and Scime (2001) modeled .
In the plots in Section  we include this model and see that this is a good approximation for these raindrops. In Chapter 10 we
discuss least squares curve fitting and using these methods, one can use the models of Putnam (1961) and Schiller-Naumann (1933)
to obtain a power law fit similar to that used here. So, introducing

and defining

we can write the system of equations  as

Now, we can modify the MATLAB code for the raindrop by adding the extra term to the first equation, setting , and
using  and  from Edwards, Wilder, and Scime .
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Figure : The plots of position and velocity as a function of time with air drag included.3.5.4.5
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Figure : The plot the velocity as a function of position with air drag included.

In Figures -  we see different behaviors as compared to the previous models. It appears that the velocity quickly
reaches a terminal velocity and the radius continues to grow linearly in time, though at a slow rate.

We might be able to understand this behavior. Terminal, or constant ,

Looking at these terms, one finds that the second term is significantly smaller

This agrees with the numerical data which gives the slope of the  vs  plot would occur when than the other terms and thus

Or as .

This page titled 3.5.4: Falling Raindrops is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.5.5: The Two-body Problem
A STANDARD PROBLEM IN CLASSICAL DYNAMICS is the study of the motion of several bodies under the influence of
Newton’s Law of Gravitation. The so-called -body problem is not solvable. However, the two body problem is. Such problems
can model the motion of a planet around the sun, the moon around the Earth, or a satellite around the Earth. Further interesting, and
more realistic problems, would involve perturbations of these orbits due to additional bodies. For example, one can study problems
such as the influence of large planets on the asteroid belt. Since there are no analytic solutions to these problems, we have to resort
to finding numerical solutions. We will look at the two body problem since we can compare the

We consider two masses,  and , located at positions,  and , respectively, as shown in Figure . Newton’s Law of
Gravitation for the force between two masses separated by position vector  is given by

Each mass experiences this force due to the other mass. This gives the system of equations

Now we seek to set up this system so that we can find numerical solutions for the positions of the masses. From the conservation of
angular momentum, we know that the motion takes place in a plane. [Note: The solution of the Kepler Problem is discussed in
Chapter 9.] We will choose the orbital plane to be the -plane. We define , and , .
Furthermore, we write the two second order equations as four first order equations. So, defining the velocity components as 

, the system of equations can be written in the form

n
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Figure : Two masses interact under Newton’s Law of Gravitation. system of equations can be written in the form3.5.5.1
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Figure : Simulation of two bodies under gravitational attraction. function  twobody 

function dz = twobody(t,z)

dz = zeros(8,1);

G = 1;

m1 = .1;

m2 = 2;

r=((z(1) - z(3)).^2 + (z(2) - z(4)).^2).^(3/2);

alpha=G/r;

dz(1) = z(5);

dz(2) = z(6);

dz(3) = z(7);

dz(4) = z(8);

dz(5) = alpha*m2*(z(3) - z(1));

3.5.5.2 dz = (t,z)
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dz(6) = alpha*m2*(z(4) - z(2));

dz(7) = alpha*m1*(z(1) - z(3));

dz(8) = alpha*m1*(z(2) - z(4));

In the above code we picked some seemingly nonphysical numbers for  and the masses. Calling ode 45 with a set of initial
conditions,

[t,z] = ode45(’twobody’,[0 20], [-1 0 0 0 0 -1 0 0]);

plot(z(:,1),z(:,2),’k’,z(:,3),z(:,4),’k’);

we obtain the plot shown in Figure . We see each mass moves along what looks like elliptical helices with the smaller body
tracing out a larger orbit.

In the case of a very large body, most of the motion will be due to the smaller body. So, it might be better to plot the relative motion
of the small body with respect to the larger body. Actually, an analysis of the two body problem shows that the center of mass

satisfies . Therefore, the system moves with a constant velocity.

The relative position of the masses is defined through the variable  . Dividing the masses from the left hand side of
Equations  and subtracting, we have the motion of  about 

where . Note that . Integrating, this gives  constant. This is just a statement of the
conservation of angular momentum.

The orbiting body will remain in a plane and, therefore, we can take the -axis perpendicular to , the position as 
, and the velocity as . Then, the equations of motion can be written as four first order equations:

where  and .

While we have established a system of equations which can be integrated, we should note a few results from the study of the
Kepler problem in classical dynamics which we review in Chapter 9. Kepler’s Laws of Planetary Motion state:

1. All planets travel in ellipses.

The polar equation for the path is given by

where  is the eccentricity and  is the length of the semimajor axis. For , the orbit is an ellipse.

2. A planet sweeps out equal areas in equal times.
3. The square of the period of the orbit is proportional to the cube of the semimajor axis. In particular, one can show that

By an appropriate choice of units, we can make  a reasonable number. For the Earth-Sun system,

G
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That is a large number and can cause problems in the numerics. However, if one uses astronomical scales, such as putting lengths
in astronomical units, , and time in years, then

in units of .

Setting , the location of the perigee is given by

or

At this point the velocity is given by

Knowing the position and velocity at , we can set the initial conditions for a bound orbit. The MATLAB code based on the
above analysis is given below and the solution can be seen in Figure .

Figure : Simulation of one body orbiting a larger body under gravitational attraction

e=0.9;

μ = 6.67 × k (1.99 × +5.97 × )kg10−11m3 g−1s−2 1030 1024

= 1.33 ×1020m3s−1

1AU = 1.50 ×  km108

μ = = 4
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T 2
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A /yU 3 r2

ϕ = 0

r = = a(1 −e)
a (1 − )e2

1 +e

r = (a(1 −e), 0)

=(0, ) .ṙ
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3.5.5.3

3.5.5.3
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tspan=[0 100];

z0=[1-e;0;0;sqrt((1+e)/(1-e))];

[t,z] = ode45(’twobodyf’,tspan, z0);

plot(z(:,1),z(:,2),’k’);

axis equal

function dz = twobodyf(t,z)

dz = zeros(4,1);

GM = 1;

r=(z(1).^2 + z(2).^2).^(3/2);

alpha=GM/r;

dz(1) = z(3);

dz(2) = z(4);

dz(3) = -alpha*z(1);

dz(4) = -alpha*z(2);

While it is clear that the mass is following an elliptical orbit, we see that it will only do so for a finite period of time partly because
the RungeKutta code does not conserve energy and it does not conserve the angular momentum. The conservation of energy is
found (up to a factor of  ) as

Similarly, the conservation of (specific) angular momentum is given by

As was the case with the nonlinear pendulum example, we saw that an implicit Euler method, or Cromer’s method, was better at
conserving energy. So, we compare the Euler’s Method version with the Implicit-Euler Method. In general, we seek to solve the
system

As we had seen earlier, Euler’s Method is given by

For the two body problem, we can write out the Euler Method steps using , and 

. (Euler’s Method for the two body problem)The MATLAB code would use the loop

for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

u(i)=u(i-1)-h*alpha*x(i-1);

v(i)=v(i-1)-h*alpha*y(i-1);

x(i)=x(i-1)+h*u(i-1);

y(i)=y(i-1)+h*v(i-1);

t(i)=t(i-1)+h;

end
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Note that more compact forms can be used, but they are not readily adaptable to other packages or programming languages.

Figure : Results for using Euler method for  and . The parameters are , , and .

In Figure  we show the results along with the energy and angular momentum plots for  and  for the
case of , The par . , and . The orbit based on the exact solution is in the center of the figure on the left.
The energy and angular momentum as a function of time are shown along with the similar plots obtained using ode 45 . In neither
case are these two quantities conserved.

for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

u(i)=u(i-1)-h*alpha*x(i-1);

v(i)=v(i-1)-h*alpha*y(i-1);

x(i)=x(i-1)+h*u(i);

y(i)=y(i-1)+h*v(i);

t(i)=t(i-1)+h;

end

(Implicit-Euler Method for the two body)The Implicit-Euler Method is a slight modification to the Euler Method problem and has a
better chance at handing the conserved quantities as the ImplicitEuler Method is one of many symplectic integrators. The
modification uses the new value of the velocities in the updating of the position. Thus, we have

It is a simple matter to update the MATLAB code. In Figure  we show the results along with the energy and angular momentum
plots for  200000 and  for the case of , and . The orbit based on the exact solution coincides
with the orbit as seen in the left figure. The energy and angular momentum as functions of time are appear to be conserved. The
energy fluctuates about  and the angular momentum remains constant. Again, the ode45 results are shown in comparison. The
number of time steps has been decreased from the Euler Method by a factor of 20 .

Figure : Results for using the ImplicitEuler method for  and  . The parameters are  0,9 ,
and .

3.5.5.4 N = 4000000 t ∈ [0, 100] μ = 1 e = 0, 9 a = 1

3.8 N = 4000000 t ∈ [0, 100]

μ = 1 a = 1 e = 0, 9 a = 1

= +Δt ∗ G ( , )vn vn−1 tn−1 xn−1

= +Δt ∗ F ( , )rn rn−1 tn−1 vn

(3.5.5.2)

3.9

N = t ∈ [0, 100] μ = 1, e = 0, 9 a = 1

−0.5

3.5.5.5 N = 200000 t ∈ [0, 100] μ = 1,e =
a = 1
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The Euler and Implicit Euler are first order methods. We can attempt a faster and more accurate process which is also a symplectic
method. As a final example, we introduce the velocity Verlet method for solving

The derivation is based on a simple Taylor expansion:

Replace  with  to obtain

Now, adding these expressions leads to some cancellations,

Writing this in a more useful form, we have

Thus, we can find  from the previous two values without knowing the velocity. This method is called the Verlet, or Störmer-
Verlet Method.

Loup Verlet (1931-) is a physicist who works on molecular dynamics and Fredrik Carl Mülertz Störmer (1874-1957) was a
mathematician and physicist who modeled the motion of charged particles in his studies of the aurora borealis.

It is useful to know the velocity so that we can check energy conservation and angular momentum conservation. The Verlet Method
can be rewritten in the Stömer-Verlet Method in an equivalent form know as the velocity Verlet method. We use

in the Stömer-Verlet Method and write

where . For the current problem, .

(Störmer-Verlet Method for the two body problem.)

The MATLAB snippet is given as

for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

x(i)=x(i-1)+h*u(i-1)-h^2/2*alpha*x(i-1);

y(i)=y(i-1)+h*v(i-1)-h^2/2*alpha*y(i-1);

u(i)=u(i-1)-h/2*alpha*x(i-1);

v(i)=v(i-1)-h/2*alpha*y(i-1);

alpha=mu/(x(i).^2 + y(i).^2).^(3/2);

u(i)=u(i)-h/2*alpha*x(i);

= a(r(t))r̈

r(t+Δt) = r(t) +v(t)Δt+ a(t)Δ +⋯ ⋅
1

2
t2

Δt −Δt

r(t−Δt) = r(t) −v(t)Δt+ a(t)Δ −⋯ ⋅
1

2
t2

r(t+Δt) = 2r(t) −r(t−Δt) +a(t)Δ +O (Δ )t2 t4

= 2 − +a ( ) Δrn+1 rn rn−1 rn t2

rn+1

r(t) −r(t−Δt) ≈ v(t)Δt− aΔ
1

2
t2

rn

vn−1/2

an

vn

= + u+ a ( ) ,rn−1 vn−1
h2

2
rn−1

= + a ( ) ,vn−1

h

2
rn−1

= a ( ) ,rn

= + ,vn−1/2

h

2
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v(i)=v(i)-h/2*alpha*y(i);

t(i)=t(i-1)+h;

end

The results using the velocity Verlet method are shown in Figure . For only 50,000 steps we have 
and the orbit appears stable.

Figure : Results for using velocity Verlet method for  and . The parameters are , , and 
.

This page titled 3.5.5: The Two-body Problem is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
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3.5.6: The Expanding Universe
ONE OF THE REMARKABLE STORIES Of the twentieth century is the development of both the theory and the experimental
data leading to our current understanding of the large scale structure of the universe. In 1916 Albert Einstein (1879-1955) published
his general theory of relativity. It is a geometric theory of gravitation which relates the curvature of spacetime to its energy and
momentum content. This relationship is embodied in the Einstein field equations, which are written compactly as

The left side contains the curvature of spacetime as determined by the metric . The Einstein tensor, , is

determined from the curvature tensor  and the scalar curvature, . These in turn are obtained from the metric tensor.  is the
famous cosmological constant, which Einstein originally introduced to maintain a static universe, which has since taken on a
different role. The right-hand side of Einstein’s equation involves the familiar gravitational constant, the speed of light, and the
stress-energy tensor, .

Georges Lemaitre (1894-1966) had actually predicted the expansion of the universe in 1927 and proposed what later became
known as the big bang theory.

In 1917 Einstein applied general relativity to cosmology. However, it was Alexander Alexandrovich Friedmann (1888-1925) who
was the first to provide solutions to Einstein’s equation based on the assumptions of homogeneity and isotropy and leading to the
expansion of the universe. Unfortunately, Friedmann died in 1925 of typhoid.

In 1929 Edwin Hubble (1889-1953) showed that the radial velocities of galaxies are proportional to their distance, resulting in what
is now called Hubble’s Law. Hubble’s Law takes the form

where  is the Hubble constant and indicates that the universe is expanding. The current values of the Hubble constant are 
  and some recent WMAP results indicate it could be .

1

These strange units are in common us  age.  stands for 1 megaparsec   and i  
. The recent value was reported at the NASA website on March 25, 2013

http://map.gsfc.nasa.gov/universe/bb_tests_exp.html.

In this section we are interested in Friedmann’s Equation, which is the simple differential equation

Here,  is the scale factor of the universe, which is taken to be one at present time;  is the energy density;  is the radius of
curvature; and,  is the curvature constant,  for positively curved space,  for flat space,  for negatively
curved space.) The cosmological constant, , is now added to account for dark energy. The idea is that if we know the right side of
Friedmann’s equation, then we can say something about the future size of the unverse. This is a simple differential equation which
comes from applying Einstein’s equation to an isotropic, homogenous, and curved spacetime. Einstein’s equation actually gives us
a little more than this equation, but we will only focus on the (first) Friedmann equation. The reader can read more in books on
cosmology, such as B. Ryden’s Introduction to Cosmology.

Friedmann’s equation can be written in a simpler form by taking into account the different contributions to the energy density. For 
 and zero curvature, one has

We define the Hubble parameter as . At the current time, , , Hubble’s constant, and we take .
The energy density in this case is called the critical density,

+Λ =Gμv gμv
8πG

c4
Tμv

gμv = − RGμv Rμv

1

2
gμv

Rμv R Λ

Tμv

v= rH0

H0

(70 ±7)km Mpcs−1 −1 (71.0 ±2.5)kms−1 1

.5Mpc−1 Mpc = 3.086 ×  m1022 kms−1Mpc−1

= 3.24 ×10−20  s−1

= ε(t) − +( )
ȧ

a

2
8πG
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Λ

3

a(t) ε(t) R0
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Λ
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ȧ

a

2
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3c2
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It is typical to introduce the density parameter,  varepsilon . Then, the Friedmann equation can be written as

Evaluating this expression at the current time, then

and, therefore,

Solving for , we have the differential equation

where  takes into account the contributions to the energy density of the universe. These contributions are due to nonrelativistic
matter density, contributions due to photons and neutrinos, and the cosmological constant, which might represent dark energy. This
is discussed in Ryden (2003). In particular,  is a function of  for certain models. So, we write

where current estimates (Ryden (2003)) are , . In general, We require

So, in later examples, we will take this relationship into account.

(The compact form of Friedmann’s equation.)Therefore, the Friedmann equation can be written as

Taking the square root of this expression, we obtain a first order equation for the scale factor,

The appropriate sign will be used when the scale factor is increasing or decreasing.

For special universes, by restricting the contributions to , one can get analytic solutions. But, in general one has to solve this
equation numerically. We will leave most of these cases to the reader or for homework problems and will consider some simple
examples.

Determine  for a flat universe with nonrelativistic matter only. (This is called an Einstein-de Sitter universe.)

In this case, we have , and . Since   and the Friedman equation
takes the form

This is a simple separable first order equation. Thus,

(t) = H(t .εc
3c2

8πG
)2

Ω = /εc

1 −Ω = − .
κc2

a(t H(tR2
0 )2 )2
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Integrating, we have

Taking , we have

Since , we find

This would give the age of the universe in this model as roughly  9.3 Gyr.

Determine  for a curved universe with nonrelativistic matter only.

We will consider . In this case, the Friedman equation takes the form

Note that there is an extremum  which occurs for . This occurs for

Analytic solutions are possible for this problem in parametric form. Note that we can write the differential equation in the form

A separation of variables gives

This form suggests a trigonometric substitution,

with . Thus, the integration becomes
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In proceeding, we should be careful. Recall that for real numbers . In order to remove the roots of squares we need
to consider the quadrant  is in. Since  at , and it will vanish again for , we will assume . For this
range, . However,  is not of one sign for this domain. In fact, a reaches it maximum at . So, . This
corresponds to the upper sign in front of the integral. For  and thus we need the lower sign and 

 for that part of the domain. Thus, it is safe to simplify the square roots and we obtain

for  at .

We have arrived at a parametric solution to the example,

for . Letting, , this solution can be written as

for . As we will see in Chapter 10, the curve described by these equations is a cycloid.

A similar computation can be performed for . This will be left as a homework exercise. The answer takes the form

for 

Determine the numerical solution of Friedmann’s equation for a curved universe with nonrelativistic matter only.

Since Friedmann’s equation is a differential equation, we can use our favorite solver to obtain a solution. Not all universe types
are amenable to obtaining an analytic solution as the last example. We can create a function in MATLAB for use in ode45:

function da=cosmosf(t,a)

global Omega

f=Omega./a+1-Omega;

da=sqrt(f);

end
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Figure : Numerical solution (circles) of the Friedmann equation superimposed on the analytic solutions for a matter plus
curvature  or no curvature  universe.

We can then solve the Friedmann equation and compare the solutions to the analytic forms in the last two examples. The code for
doing this is given below:

clear

global Omega

for Omega=0.8:.1:1.2;

if Omega<1

amax=50;

tmax=100;

elseif Omega==1

amax=50;

tmax=100;

else

amax=Omega/(Omega-1);

tmax=Omega/(Omega-1)^1.5/2*pi;

end

3.5.6.1
( ≠ 1)Ω0 ( = 1)Ω0
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tspan=0:4:tmax;

a0=.1;

[t,a]=ode45(@cosmosf,tspan,a0);

plot(t,a,’ok’)

hold on

if Omega<1

eta=0:.1:4;

a3 = Omega/(1-Omega)/2*(cosh(eta)-1);

t3 = Omega/(1-Omega)^1.5/2*(sinh(eta)-eta);

plot(t3,a3,’k’)

axis([0,max(t3),0,max(a3)])

xlabel(’t’)

ylabel(’a’)

elseif Omega==1

t3=0:.1:1.5*tmax;

a3=(3*t3/2).^(2/3);

plot(t3,a3,’k’)

else

phi=0:.1:2*pi;

a3 = Omega/(Omega-1)/2*(1-cos(phi));

t3 = Omega/(Omega-1)^1.5/2*(phi-sin(phi));

plot(t3,a3,’k’)

end

end

hold off

axis([0,150,0,50])

xlabel(’t’)

ylabel(’a’)

In Figure  we show the results. For  the solutions lie on the first half of the cycloid solution. The other solutions
indicate that the universe continues to expand, leading to what is called the Big Chill. The analytic solutions to the  cases
eventually collapse to  in finite time. These final states are what Stephen Hawking calls the Big Crunch.

The numerical solutions for  run into difficulty because the radicand in the square root is negative. But, this corresponds to
when . So, we have to modify the code by estimating the maximum on the curve and run the numerical algorithm with new
initial conditions and using the fact that  in the function cosmosf by setting da . The modified code is below and
the resulting numerical solutions are shown in Figure .

tspan=0:4:tmax;

a0=.1;

[t,a]=ode45(@cosmosf,tspan,a0);

plot(t,a,’ok’,’MarkerSize’,2)

hold on

3.5.6.1 > 1Ω0

> 1Ω0

a = 0

> 1Ω0

< 0ȧ

< 0ȧ = −sqrt(f)
3.5.6.2
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if Omega>1

tspan=tmax+.0001:4:2*tmax;

a0=amax-.0001;

[t2,a2]=ode45(@cosmosf2,tspan,a0);

plot(t2,a2,’ok’,’MarkerSize’,2)

end

Figure : Modified numerical solution (circles) of the Friedmann equation superimposed on the analytic solutions for a
matter plus curvature  or no curvature  universe with the when .

This page titled 3.5.6: The Expanding Universe is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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3.5.7: The Coefficient of Drag
WE HAVE SEEN THAT AIR DRAG can play a role in interesting physics problems in differential equations. This also is an
important concept in fluid flow and fluid mechanics when looking at flows around obstacles, or when the obstacle is moving with
respect to the background fluid. The simplest such object is a sphere, such as a baseball, soccer ball, golf ball, or ideal spherical
raindrop. The resistive force is characterized by the dimensionless drag coefficient

where  and  are the characteristic length and speed of the object moving through the fluid.

There has been much attention focussed on relating the drag coefficient to the Reynolds number. The Reynolds number is given by

where  is the viscosity and  is the kinematic viscosity. It is a measure of the size of the kinematic to viscous forces in the

problem at hand. There are different ranges of fluid behavior depending on the order of the Reynolds number. These range from
laminar flow  to turbulent flow . There are a range of other types of flows such as creeping flow 

 and transitional flows, which are a mix of laminar and turbulent flow.

For low Reynolds number, the inertial forces are small compared to the viscous forces, leading to the Stokes drag force, 
. This result can be determined analytically. Similarly, for large Reynolds number the drag coefficient is a constant.

This is the Newtonian regime. Somewhere in between the form of the drag coefficient is found through empirical studies. There
have been many empirical expressions developed and all are within a few percent of the data in the range of applicability. Some of
the commonly used expressions are given below.

Models that are useful for 

Models that are useful for  are the White (1991) and CliftGavin (1970), respectively,

A more recent model was proposed by Morrison (2010) for 

Plots for these models are shown in Figures . In Figure  we see that the models differ significantly for large
Reynolds numbers.

Figure  shows a log-log plot of the drag coefficient as a function of Reynolds number. In Figure  we show a power
law fit for Reynolds number less than 1000 confirming the model used by Edwards, Wilder, and Scime (2001) as described in the
raindrop problem.
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Figure : Drag coefficient as a function of Reynolds number for spheres.3.5.7.1
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Figure : Log-log plot of the drag coefficient as a function of Reynolds number for spheres.3.5.7.2
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Figure : A power law fit for the drag coefficient as a function of Reynolds number using linearization and linear regression
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3.6: Problems
1. Use Euler’s Method to determine the given value of  for the following problems. When possible compare the numerical

approximations with the exact solutions. 

a. . Find  with  

b. . Find  with  

c. . Find  with . 

d.  with . 

e.  with .

2. Use the Midpoint Method to solve the initial value problems in Problem .
3. Numerically solve the nonlinear pendulum problem using the EulerCromer code for a pendulum with length  using

initial angles of , and . In each case run the routines long enough and with an appropriate  such that you can
determine the period in each case. Compare your results with the linear pendulum period.

4. For the Baumgartner sky dive we had obtained the results for his position as a function of time. There are other questions which
could be asked.
a. Find the velocity as a function of time for the model developed in the text.
b. Find the velocity as a function of altitude for the model developed in the text.
c. What maximum velocity is obtained in the model? At what time and position?
d. Does the model indicate that terminal velocity was reached?
e. What speed is predicted for the point at which the parachute opened?
f. How do these numbers compare with reported data?

5. Consider the flight of a golf ball with mass  and a diameter of  . Assume it is projected at  with a speed of 
 and no spin.

a. Ignoring air resistance, analytically find the path of the ball and determine the range, maximum height, and time of flight for
it to land at the height that the ball had started.

b. Now consider a drag force , with  and . Determine the range, maximum

height, and time of flight for the ball to land at the height that it had started.
c. Plot the Reynolds number as a function of time. [Take the kinematic viscosity of air, .
d. Based on the plot in part , create a model to incorporate the change in Reynolds number and repeat part b. Compare the

results from parts  and .

6. Consider the flight of a tennis ball with mass  and a diameter of  mm. Assume the ball is served  meters from the
net at a speed of   down the center line from a height of . It needs to just clear the net .
a. Ignoring air resistance and spin, analytically find the path of the ball assuming it just clears the net. Determine the angle to

clear the net and the time of flight.
b. Find the angle to clear the net assuming the tennis ball is given a topspin with .
c. Repeat part b assuming the tennis ball is given a bottom spin with .
d. Repeat parts , and  with a drag force, taking .

7. In Example  was determined for a curved universe with nonrelativistic matter for . Derive the parametric
equations for ,

for 

8. Find numerical solutions for other models of the universe.

y

= 2y, y(0) = 2
dy

dx
y(1) h = 0.1

= x−y, y(0) = 1
dy

dx
y(2) h = 0.2

= x , y(1) = 0
dy

dx
1 −y2
− −−−−

√ y(2) h = 0.2

= 1 + , y(1) = 2
dy

dt

y

t
h = 0.25

= −3y+ t , y(0) = 0
dy

dt
e2t h = 0.25

1

L = 0.5 m

=θ0 10∘ =θ0 70∘ h

46 g 42.7 mm 30∘

36 m/s

= ρπfD
1

2
CD r2v2 = 0.42CD ρ = 1.21 kg/m3

v= 1.47 ×10−5

c

a, b d

57 g 66.0 6.40

50.0 m/s 2.8 m (0.914 m)

ω = 50rad/s

ω = 50rad/s

a, b c = 0.55CD

3.7a(t) > 1Ω0

< 1Ω0

a

t

= (coshη−1)
Ω0

2 (1 − )Ω0

= (sinhη−η)
Ω0

2 (1 −ΩH0 )3/2

η ≥ 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91062?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/03%3A_Numerical_Solutions/3.06%3A_Problems


3.6.2 https://math.libretexts.org/@go/page/91062

a. A flat universe with nonrelativistic matter only with .
b. A curved universe with radiation only with curvature of different types.
c. A flat universe with nonrelativistic matter and radiation with several values of  and .
d. Look up the current values of , and . Use these values to predict future values of .
e. Investigate other types of universes of your choice, but different from the previous problems and examples.

This page titled 3.6: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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CHAPTER OVERVIEW

4: Series Solutions
"In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics
alone each generation adds a new story to the old structure." - Hermann Hankel (1839-1873)

4.1: Introduction to Power Series
4.2: Power Series Method
4.3: Singular Points
4.4: The Frobenius Method

4.4.1: Introduction
4.4.2: Roots of Indicial Equation

4.5: Legendre Polynomials
4.6: Bessel Functions
4.7: Gamma Function
4.8: Hypergeometric Functions
4.9: Problems
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4.1: Introduction to Power Series
As NOTED A FEW TIMES, not all differential equations have exact solutions. So, we need to resort to seeking approximate
solutions, or solutions i the neighborhood of the initial value. Before describing these methods, we need to recall power series. A
power series expansion about  with coefficient sequence  is given by . For now we will consider all
constants to be real numbers with  in some subset of the set of real numbers. We review power series in the appendix.

The two types of series encountered in calculus are Taylor and Maclaurin series. A Taylor series expansion of  about  is
the series

(Taylor series expansion.)

where

Note that we use  to indicate that we have yet to determine when the series may converge to the given function.

(Maclaurin series expansion.) A Maclaurin series expansion of  is a Taylor series expansion of  about , or

where

We note that Maclaurin series are a special case of Taylor series for which We note that Maclaurin series are a special case of
Taylor series for which the expansion is about . Typical Maclaurin series, which you should know, are given in Figure .

A simple example of developing a series solution for a differential equation is given in the next example.

Figure : Common Mclaurin Series Expansions

x = a cn (x −a∑
∞
n=0 cn )n

x

f(x) x = a

f(x) ∼ (x −a∑
n=0

∞

cn )n

= .cn

(a)f (n)

n!

∼

f(x) f(x) x = 0

f(x) ∼∑
n=0

∞

cnxn

=cn

(0)f (n)

n!

x = 0 4.1.1

4.1.1
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.

We are interested in seeking solutions of this initial value problem. We note that this was already solved in Example 3.1. Let’s
assume that we can write the solution as the Maclaurin series

We already know that . So, we know the first term in the series expansion. We can find the value of  from the
differential equation:

In order to obtain values of the higher order derivatives at , we differentiate the differential equation several times:

All other values of the derivatives are the same. Therefore, we have

This solution can be summed as

This is the same result we had obtained before.

This page titled 4.1: Introduction to Power Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

 Example 4.1.1

(x) = x +y(x), y(0) = 1y′

y(x) =∑
n=0

∞ (x)y(n)

n!
xn

= y(0) + (0)x + (0) + (0) +…y′ 1

2
y′′ x2 1

6
y′′′ x3

(4.1.1)

y(0) = 1 (0)y′

(0) = 0 +y(0) = 1y′

x = 0

(x)y′′

(0)y′′

(x)y′′′

= 1 + (x)y′

= 1 + (0) = 2y′

= (x) = 2y′′

y(x) = 1 +x +2( + +…) .
1

2
x2 1

3!
x3

y(x) = 2(1 +x + + +…)−1 −x = 2 −x −1.
1

2
x2 1

3!
x3 ex
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4.2: Power Series Method
IN THE LAST EXAMPLE WE WERE ABLE to use the initial condition to produce a series solution to the given differential
equation. Even if we specified more general initial conditions, are there other ways to obtain series solutions? Can we find a
general solution in the form of power series? We will address these questions in the remaining sections. However, we will first
begin with an example to demonstrate how we can find the general solution to a first order differential equation.

Find a general Maclaurin series solution to the ODE: .

Let’s assume that the solution takes the form

The goal is to find the expansion coefficients, 

Differentiating, we have

Note that the index starts at , since there is no  term remaining.

Inserting the series for  and  into the differential equation, we have

Equating like powers of  on both sides of this result, we have

We can solve these sequentially for the coefficient of largest index:

We note that the odd terms vanish and the even terms survive:

Thus, we have found a series solution, or at least the first several terms, up to a multiplicative constant.

Of course, it would be nice to obtain a few more terms and guess at the general form of the series solution. This could be done
if we carried out the streps in a more general way. This is accomplished by keeping the summation notation and trying to
combine all terms with like powers of . We begin by inserting the series expansion into the differential equation and
identifying the powers of  :

 Example 4.2.1

−2xy = 0y′

y(x) =∑
n=0

∞

cnx
n

,n = 0, 1, …cn

(x) = ny′ ∑
n=1

∞

cnx
n−1

n = 1 n = 0

y(x) (x)y′

0 =

=

=

n −2x∑
n=1

∞

cnx
n−1 ∑

n=0

∞

cnx
n

( +2 x+3 +4 +…)c1 c2 c3x
2 x3

−2x ( + x+ + +…)c0 c1 c2x
2 c3x

3

+(2 − )x+(3 −2 ) +(4 −2 ) +…c1 c2 c0 c3 c1 x2 c4 c2 x3

(4.2.1)

x

0

0

0

0

= c1

= 2 −c2 c0

= 3 −c3 c1

= 4 −2 , …c4 c2

(4.2.2)

= 0, = , = = 0, = = , …c1 c2 c0 c3
2

3
c1 c3

1

2
c2

1

2
c0

y(x) = + x+ + +…c0 c1 c2x
2 c3x

3

= + + +…c0 c0x
2 1

2
c0x

4
(4.2.3)

x

x
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We note that the powers of  in these two sums differ by 2 . We can re-indexing a series. re-index the sums separately so that
the powers are the same, say . After all, when we had expanded these series earlier, the index, , disappeared. Such an index
is known as a dummy index since we could call the index anything, like , or even  in the first series. So,
we can let , or , to write

Note, that re-indexing has not changed the terms in the series.

Similarly, we can let , or , in the second series to find

Combining both series, we have

Here, we have combined the two series for . The  term in the first series gives the constant term as shown.

We can now set the coefficients of powers of  equal to zero since there are no terms on the left hand side of the equation. This
gives  and

This last equation is called a recurrence relation. It can be used to find successive coefficients in terms of previous values. In
particular, we have

Inserting different values of , we have

0 = n −2x∑
n=1

∞

cnx
n−1 ∑

n=0

∞

cnx
n

= n − 2∑
n=1

∞

cnx
n−1 ∑

n=0

∞

cnx
n+1

(4.2.4)

x

k n

n−1, ℓ −1 k = n−1
k = n−1 n = k+1

n∑
n=1

∞

cnx
n−1 = (k+1)∑

k=0

∞

ck+1x
k

= +2 x+3 +4 +…c1 c2 c3x
2 x3

(4.2.5)

k = n+1 n = k−1

2∑
n=0

∞

cnx
n+1 = 2∑

k=1

∞

ck−1x
k

= 2 +2 x+2 +2 +…c0 c1 c2x
2 c3x

3

(4.2.6)

0 = n − 2∑
n=1

∞

cnx
n−1 ∑

n=0

∞

cnx
n+1

= (k+1) − 2∑
k=0

∞

ck+1x
k ∑

k=1

∞

ck−1x
k

= + [(k+1) −2 ]c1 ∑
k=1

∞

ck+1 ck−1 xk

(4.2.7)

k = 1, 2, … . k = 0

x

= 0c1

(k+1) −2 , k = 1, 2, …ck+1 ck−1

= , k = 1, 2, … .ck+1
2

k+1
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k
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Continuing, we can see a pattern. Namely,

Thus,

This example demonstrated how we can solve a simple differential equation by first guessing that the solution was in the form of a
power series. We would like to explore the use of power series for more general higher order equations. We will begin second order
differential equations in the form

where , and  are polynomials in . The point  is called an ordinary point if . Otherwise,  is called
a singular point. (Ordinary and singular points.) When  is an ordinary point, then we can seek solutions of the form

For most of the examples, we will let , in which case we seek solutions of the form

Find the general Maclaurin series solution to the ODE:

We will look for a solution of the form

k = 1 :

k = 2 :

k = 3 :

k = 4 :

k = 5 :

= = .c2
2

2
c0 c0

= = 0.c3
2

3
c1

= = .c4
2

4
c2

1

2
c0

= = 0.c5
2

5
c3

= = .c6
2

6
c4

1

3(2)
c0

(4.2.8)

=ck

⎧

⎩
⎨
⎪

⎪

0,

,
1

ℓ!

k = 2ℓ +1

k = 2ℓ

y(x) =∑
k=0

∞

ckx
k

= + x+ + +…c0 c1 c2x
2 c3x

3

= + + + +…c0 c0x
2 1

2!
c0x

4 1

3!
c0x

6

= (1 + + + +…)c0 x2 1

2!
x4 1

3!
x6

= c0∑
ℓ=0

∞ 1

ℓ!
x2ℓ

= c0e
x2

(4.2.9)

P (x) (x) +Q(x) (x) +R(x)y(x) = 0y′′ y′

P (x),Q(x) R(x) x x0 P ( ) ≠ 0x0 x0

x0

y(x) =∑
n=0

∞

cn (x− )x0
n

= 0x0

y(x) =∑
n=0

∞

cnx
n
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The first and second derivatives of the series are given by

Inserting these derivatives into the differential equation gives

We want to combine the three sums into one sum and identify the coefficients of each power of . The last two sums have
similar powers of . So, we need only re-index the first sum. We let , or . This gives

Inserting this sum, and setting  in the other two sums, we have

Noting that the coefficients of powers  have to vanish, we have  and

or

Using this result, we can successively determine the coefficients to as many terms as we need.

y(x) =∑
n=0

∞

cnx
n

(x) = ny′ ∑
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∞
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∞
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This gives the series solution as

We note that the general solution to this second order differential equation has two arbitrary constants. The general solution is a
linear combination of two linearly independent solutions obtained by setting one of the constants equal to one and the other
equal to zero.

Sometimes one can sum the series solution obtained. In this case we note that the series multiplying  can be rewritten as

This gives the exact solution 

The second linearly independent solution is not so easy. Since we know one solution, we can use the Method of Reduction of
Order to obtain the second solution. One can verify that the second solution is given by

where  is the error function. See Problem 3 .

Consider the Legendre equation

for  an integer.

We first note that there are singular points for , or .

(Legendre’s differential equation.)Therefore,  is an ordinary point and we can proceed to obtain solutions in the form of
Maclaurin series expansions. Insert the series expansions

k = 1 :

k = 2 :

k = 3 :

k = 4 :

k = 5 :

= .c3
1

3
c1

= = .c4
1

4
c2

1

8
c0

= = .c5
1

5
c3

1

15
c1

= = .c6
1

6
c4

1

48
c0

= = .c7
1

7
c5

1

105
c1

(4.2.10)

y(x) =∑
n=0

∞

cnx
n

= + x+ + +…c0 c1 c2x
2 c3x

3

= + x+ + + + + +…c0 c1
1

2
c0x

2 1

3
c1x

3 1

8
c0x

4 1

15
c1x

5 1

48
c0x

6

= (1 + + +…)+ (x+ + +…) .c0
1

2
x2 1

8
x4 c1

1

3
x3 1

15
x5

c0

(x) = 1 + + +… = 1 + + ++ +…y1
1

2
x2 1

8
x4 x2

2

1

2
( )
x2

2

2
1

3!
( )
x2

2

3

(x) =y1 e /2x2

(x) = dt = erf( )y2 e /2x2
∫

x/ 2√

0
e−t2

e /2x2 x

2
–

√

erf(x)

 Example 4.2.3

(1 − ) −2x +ℓ(ℓ +1)y = 0x2 y′′ y′

ℓ

1 − = 0x2 x = ±1

x = 0
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into the differential equation to obtain

Re-indexing the first sum with , we have

Matching terms, we have

For , the first equation gives  and the third equation gives  for  This leads to  is
a solution for .

Similarly, for , the second equation gives  and the third equation gives  for . Thus, 
 is a solution for . In fact, for  any nonnegative integer the series truncates. For example, if , then

these equations reduce to

For , we have . So, . Also, we have . This gives

Therefore, there is a polynomial solution of degree 2 . The remaining coefficients are proportional to , yielding the second
linearly independent solution, which is not a polynomial.

y(x)

(x)y′

(x)y′′

=∑
n=0

∞

cnx
n

= n∑
n=1

∞

cnx
n−1

= n(n−1)∑
n=2

∞

cnx
n−2

0 = (1 − ) −2x +ℓ(ℓ +1)yx2 y′′ y′

= (1 − ) n(n−1) −2x n +ℓ(ℓ +1)x2 ∑
n=2

∞

cnx
n−2 ∑

n=1

∞

cnx
n−1 ∑

n=0

∞

cnx
n

= n(n−1) − n(n−1) − 2n + ℓ(ℓ +1)∑
n=2

∞

cnx
n−2 ∑

n=2

∞

cnx
n ∑

n=1

∞

cnx
n ∑

n=0

∞

cnx
n

= n(n−1) + [ℓ(ℓ +1) −n(n+1)]∑
n=2

∞

cnx
n−2 ∑

n=0

∞

cnx
n

k = n−2

0 =

=

=

n(n−1) + [ℓ(ℓ +1) −n(n+1)]∑
n=2

∞

cnx
n−2 ∑

n=0

∞

cnx
n

(k+2)(k+1) + [ℓ(ℓ +1) −k(k+1)]∑
k=0

∞

ck+2x
k ∑

k=0

∞

ckx
k

2 +6 x+ℓ(ℓ +1) +ℓ(ℓ +1) x−2 xc2 c3 c0 c1 c1

+ ((k+2)(k+1) +[ℓ(ℓ +1) −k(k+1)] )∑
k=2

∞

ck+2 ck xk

k = 0 :

k = 1 :

k ≥ 2 :

2 = −ℓ(ℓ +1)c2 c0

6 = [2 −ℓ(ℓ +1)]c3 c1

(k+2)(k+1) = [k(k+1) −ℓ(ℓ +1)] .ck+2 ck

(4.2.11)

ℓ = 0 = 0c2 = 0c2m m = 1, 2, 3, … (x) =y1 c0

ℓ = 0

ℓ = 1 = 0c3 = 0c2m+1 m = 1, 2, 3, …
(x) = xy1 c1 ℓ = 1 ℓ ℓ = 2

k = 0 :

k = 1 :

k ≥ 2 :

2 = −6c2 c0

6 = −4c3 c1

(k+2)(k+1) = [k(k+1) −2(3)]ck+2 ck

(4.2.12)

k = 2 12 = 0c4 = = … = 0c6 c8 = −3c2 c0

y(x) = (1 −3 )+( x+ + + +…)c0 x2 c1 c3x
3 c5x

5 c7x
7

c1
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For other nonnegative integer values of , we have

When , the right side of the equation vanishes, making the remaining coefficients vanish. Thus, we will be left with a
polynomial of degree . These are the Legendre polynomials, .

This page titled 4.2: Power Series Method is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

ℓ > 2

= , k ≥ 2ck+2
k(k+1) −ℓ(ℓ +1)

(k+2)(k+1)
ck

k = ℓ
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4.3: Singular Points
The power series method does not always give us the full general solution to a differential equation. Problems can arise when the
differential equation has singular points. The simplest equations having singular points are Cauchy-Euler equations,

A few examples are sufficient to demonstrate the types of problems that can occur.

Find the series solutions for the Cauchy-Euler equation,

for the cases i. , ii. , and iii. .

Solution
As before, we insert

into the differential equation to obtain

\[\begin{aligned} 0 &=a x^{2} y^{\prime \prime}+b x y^{\prime}+c y \

\[4pt] &=a x^{2} \sum_{n=2}^{\infty} n(n-1) d_{n} x^{n-2}+b x \sum_{n=1}^{\infty} n d_{n} x^{n-1}+c
\sum_{n=0}^{\infty} d_{n} x^{n} \

\[4pt] &=a \sum_{n=0}^{\infty} n(n-1) d_{n} x^{n}+b \sum_{n=0}^{\infty} n d_{n} x^{n}+c \sum_{n=0}^{\infty} d_{n}
x^{n} \

Here we changed the lower limits on the first sums as  vanishes for  and the added terms all are zero.

Setting all coefficients to zero, we have

Therefore, all of the coefficients vanish, , except at the roots of .

In the first case, , and , we have

Thus, . This leaves two terms in the series, reducing to the polynomial .

In the second case, , and , we have

Thus, . Since the  s are nonnegative, this leaves one term in the solution, . So, we do not
have the most general solution since we are missing a second linearly independent solution. We can use the Method of
Reduction of Order from Section 2.2.1, or we could use what we know about Cauchy-Euler equations, to show that the general
solution is

Finally, the third case has , and , we have

a +bx +cy = 0x2y′′ y′

 Example 4.3.1

a +bx +cy = 0x2y′′ y′

a = 1, b = −4, c = 6 a = 1, b = 2, c = −6 a = 1, b = 1, c = 6

y(x) = , (x) = n , (x) = n(n−1)∑
n=0

∞

dnx
n y′ ∑

n=1

∞

dnx
n−1 y′′ ∑

n=2

∞

dnx
n−2

4pt] &=\sum_{n=0}^{\infty}[a n(n-1)+b n+c] d_{n} x^{n} \end{aligned} \end{equation}\label{4.25}

n(n−1) n = 0, 1

[a +(b−a)n+c] = 0, n = 0, 1, …n2 dn

= 0dn a +(b−a)n+c = 0n2

a = 1, b = −4 c = 6

0 = +(−4 −1)n+6 = −5n+6 = (n−2)(n−3)n2 n2

= 0,n ≠ 2, 3dn y(x) = +d2x
2 d3x

3

a = 1, b = 2 c = −6

0 = +(2 −1)n−6 = +n−6 = (n−2)(n+3)n2 n2

= 0,n ≠ 2, −3dn n′ y(x) = d2x
2

y(x) = +c1x
2 c2x

−3

a = 1, b = 1 c = 6

0 = +(1 −1)n+6 = +6n2 n2
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Since there are no real solutions to this equation,  for all . Again, we could use what we know about Cauchy-Euler
equations, to show that the general solution is

In the last example, we have seen that the power series method does not always work. The key is to write the differential equation
in the form

We already know that  is a singular point of the Cauchy-Euler equation. Putting the equation in the latter form, we have

We see that  and  are not defined at . So, we do not expect a convergent power series solution in the
neighborhood of .

The initial value problem

has a unique Taylor series solution converging in the interval  if both  and  can be represented by
convergent Taylor series converging for . (Then,  and  are said to be analytic at .) As noted
earlier,  is then called an ordinary point. Otherwise, if either, or both,  and  are not analytic at , then  is called a
singular point.

Determine if a power series solution exits for  near .

Solution
Putting this equation in the form

we see that  is not defined at , so  is a singular point. Let’s see how far we can get towards obtaining a series
solution.

We let

,

into the differential equation to obtain

\[ \begin{aligned} 0 &=x y^{\prime \prime}+2 y^{\prime}+x y \

\[4pt] &=x \sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+2 \sum_{n=1}^{\infty} n c_{n} x^{n-1}+x \sum_{n=0}^{\infty}
c_{n} x^{n} \

\[4pt] &=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-1}+\sum_{n=1}^{\infty} 2 n c_{n} x^{n-1}+\sum_{n=0}^{\infty} c_{n}
x^{n+1} \

Here we combined the first two series and pulled out the first term of the second series.

We can re-index the series. In the first series we let  and in the second series we let . This gives

= 0dn n

y(x) = cos( lnx) + sin( lnx)c1 6
–

√ c2 6
–

√

(x) +p(x) (x) +q(x)y(x) = 0y′′ y′

x = 0

+ + y = 0y′′ a

x
y′ b

x2

p(x) = a/x q(x) = b/x2 x = 0
x = 0

 Theorem 4.3.1

(x) +p(x) (x) +q(x)y(x) = 0, y ( ) = α, ( ) = βy′′ y′ x0 y′ x0

|x− | < Rx0 p(x) q(x)
|x− | < Rx0 p(x) q(x) x = x0

x0 p(x) q(x) x0 x0

 Example 4.3.2

x +2 +xy = 0y′′ y′ x = 0

+ +2y = 0y′′ 2

x
y′

a(x) x = 0 x = 0

y(x) = , (x) = n , (x) = n(n−1)∑∞
n=0 cnx

n y′ ∑∞
n=1 cnx

n−1 y′′ ∑∞
n=2 cnx

n−2

4pt] &=2 c_{1}+\sum_{n=2}^{\infty}[n(n-1)+2 n] c_{n} x^{n-1}+\sum_{n=0}^{\infty} c_{n} x^{n+1} \end{aligned} \label{4.26}

k = n−1 k = n+1
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\[ \begin{aligned} 0 &=2 c_{1}+\sum_{n=2}^{\infty} n(n+1) c_{n} x^{n-1}+\sum_{n=0}^{\infty} c_{n} x^{n+1} \

\[4pt] &=2 c_{1}+\sum_{k=1}^{\infty}(k+1)(k+2) c_{k+1} x^{k}+\sum_{k=1}^{\infty} c_{k-1} x^{k} \

Setting coefficients to zero, we have  and

Therefore, we have  for . For the even indices, we have

\[ \begin{array}{ll} k=1: & c_{2}=-\dfrac{1}{3(2)} c_{0}=-\dfrac{c_{0}}{3 !} \

\[4pt] k=3: & c_{4}=-\dfrac{1}{5(4)} c_{2}=\dfrac{c_{0}}{5 !} \

\[4pt] k= & 5: \

\[4pt] k= & c_{6}=-\dfrac{1}{7(6)} c_{4}=-\dfrac{c_{0}}{7 !} \

We can see the pattern and write the solution in closed form.

\[ \begin{aligned} y(x) &=\sum_{n=0}^{\infty} c_{n} x^{n} \

\[4pt] &=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots \

\[4pt] &=c_{0}\left(1-\dfrac{x^{2}}{3 !}+\dfrac{x^{4}}{5 !}-\dfrac{x^{6}}{7 !}+\dfrac{x^{8}}{9 !} \cdots\right) \

\[4pt] &=c_{0} \dfrac{1}{x}\left(x-\dfrac{x^{3}}{3 !}+\dfrac{x^{5}}{5 !}-\dfrac{x^{7}}{7 !}+\dfrac{x^{9}}{9 !}
\cdots\right) \

We have another case where the power series method does not yield a general solution.

In the last example we did not find the general solution. However, we did find one solution, . So, we could use the

Method of Reduction to obtain a second linearly independent of Order to obtain the second linearly independent solution. (Use of
the Method of Reduction of Order). This is carried solution. See Section 2.2.1 out in the next example.

Let  be one solution of . Find a second linearly independent solution.

Solution
Let . Inserting this into the differential equation, we have

\[ \begin{aligned} & 0=x y^{\prime \prime}+2 y^{\prime}+x y \

\[4pt] & =x\left(v y_{1}\right)^{\prime \prime}+2\left(v y_{1}\right)^{\prime}+x v y_{1} \

\[4pt] & =x\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)^{\prime}+2\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+x v
y_{1} \

\[4pt] & =x\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+2\left(v^{\prime}
y_{1}+v y_{1}^{\prime}\right)+x v y_{1} \

\[4pt] & =x\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}\right)+2 v^{\prime} y_{1}+v\left(x y_{1}^{\prime
\prime}+2 y_{1}^{\prime}+x y_{1}\right) \

\[4pt] & =x\left[\dfrac{\sin x}{x} v^{\prime \prime}+2\left(\dfrac{\cos (x)}{x}-\dfrac{\sin (x)}{x^{2}}\right)
v^{\prime}\right]+2 \dfrac{\sin x}{x} v^{\prime} \

4pt] &=2 c_{1}+\sum_{k=1}^{\infty}\left[(k+1)(k+2) c_{k+1}+c_{k-1}\right] x^{k} \end{aligned} \end{equation}\label{4.27}

= 0c1

= − , k = 1, 2, …ck+1
1

(k+12)(k+1)
ck−1

= 0cn n = 1, 3, 5, …

4pt] & c_{8}=-\dfrac{1}{9(8)} c_{6}=\dfrac{c_{0}}{9 !} \end{array} \label{4.28}

4pt] &=c_{0} \dfrac{\sin x}{x} \end{aligned} \label{4.29}

(x) =y1
sinx

x

 Example 4.3.3

(x) =y1
sinx

x
x +2 +xy = 0y′′ y′

y(x) = v(x) (x)y1
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This is a first order separable differential equation for . Thus,

Or

Integrating, we have

Setting , we have , or . This gives the second solution as

This page titled 4.3: Singular Points is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

4pt] & =\sin x v^{\prime \prime}+2 \cos x v^{\prime} . \end{aligned} \label{4.30}

z = v′

sinx = −2z cosx
dz

dx

= −2 cotxdx
dz

z

ln |z| = 2 ln | cscx| +C

C = 0 = z = xv′ csc2 v= −cotx

y(x) = v(x) (x) = −cotx = − .y1
sinx

x

cosx

x
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4.4: The Frobenius Method
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4.4.1: Introduction
IT MIGHT BE POSSIBLE TO USE POWER SERIES to obtain solutions to differential equations in terms of series involving

noninteger powers. For example, we found in Example  that  and  are solutions of the differential

equation . Series expansions about  are given by

While the first series is a Taylor series, the second one is not due to the presence of the first term, . We would like to be able to
capture such expansions. So, we seek solutions of the form

for some real number . This is the basis of the Frobenius Method.

Consider the differential equation,

If  and  are real analytic, i.e., have convergent Taylor series expansions about , then we can find a solution of the
form

for some constant . Furthermore,  is determined from the solution of an indicial equation.

Show that  is a regular singular point of the equation

If  is a regular singular point, then we can apply the Frobenius Method.

and then find a solution in the form  
Rewriting the equation as

4.6 (x) =y1
sinx

x
(x) =y2

cosx

x
x +2 +xy = 0y′′ y′ x = 0

sinx

x
= (x− + − +…)

1

x

x3

3!

x5

5!

x7

7!

= 1 − + − +…
x2

3!

x4

5!

x6

7!

cosx

x
= (1 − + − +…)

1

x

x2

2!

x4

4!

x6

6!

= − + − +…
1

x

x

2!

x3

4!

x5

6!

x−1

y(x) = =xr∑
n=0

∞

cnx
n ∑

n=0

∞

cnx
n+r

r

(x) +a(x) (x) +b(x)y(x) = 0y′′ y′

xa(x) b(x)x2 x = 0

y(x) =∑
n=0

∞

cnx
n+r

r r

 Example 4.4.1.1

x = 0

+x(3 +x) +(1 +x)y = 0x2y′′ y′

x = 0

y(x) = ∑∞
n=

+ + y = 0y′ 3 +x

x
y′′

(1 +x)

x2

 Rewriting the equation as 

+y′ 3 +x

x
y′′

a(x)

b(x) =

+ y = 0
(1 +x)

x2

=
3 +x

x

(1 +x)

x2
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So,  and  are polynomials in  and are therefore real analytic. Thus,  is a regular singular
point.

Solve

using the Frobenius Method.

In order to find a solution to the differential equation using the Frobenius Method, we assume  and its derivatives are of
the form

Inserting these series into the differential equation, we have

Next, we re-index the last sum using  so that both sums involve the powers . Therefore, we have

We can combine both sums for  if we set the coefficients in the  term to zero. Namely,

If we assume that , then

This is the indicial equation. Expanding, we have

xa(x) = 3 +x b(x) = 1 +xx2 x x = 0

 Example 4.4.1.2

+x(3 +x) +(1 +x)y = 0x2y′′ y′

y(x)

y(x)

(x)y′

(x)y′′

=∑
n=0

∞

cnx
n+r

= (n+r)∑
n=0

∞

cn xn+r−1

= (n+r)(n+r−1)∑
n=0

∞

cn xn+r−2

0 =

=

=

=

=

+x(3 +x) +(1 +x)y = 0x2y′′ y′

(n+r)(n+r−1) +x(3 +x) (n+r)x2∑
n=0

∞

cn xn+r−2 ∑
n=0

∞

cn xn+r−1

+(1 +x)∑
n=0

∞

cnx
n+r

(n+r)(n+r−1) +3 (n+r)∑
n=0

∞

cn xn+r ∑
n=0

∞

cn xn+r

+ (n+r) + +∑
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So, this gives . Inserting  into Equation  and combining the remaining sums, we have

We find the indicial equation from the terms with lowest powers of . Setting  at the bottom of the previous page, the
lowest powers are  and the coefficient yields . The indicial equation is then .

Setting the coefficients equal to zero, we have found that

So, each coefficient is a multiple of the previous one. In fact, for , we have that

Therefore, all of the coefficients are zero except for . This gives a solution as

We had assumed that . What if  Then, Equation  becomes

Setting the coefficients equal to zero, we have

When , (the lowest power of  )

So, , or . If  this gives  and

Then, we have  and all other coefficient vanish, leaving the solution as

We only found one solution. We need a second linearly independent solution in order to find the general solution to the
differential equation. This can be found using the Method of Reduction of

Method of Reduction of Order. Order from Section 2.2.1 For completeness we will seek a solution , where 
. Then,

r = −1 r = −1 4.4.1.5
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k2ck ck−1 xk−1
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1 −k
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= (0) = 0c1 c0

c0

(x) =y0
c0

x

≠ 0c0 = 0?c0 4.4.1.5
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∞
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Letting , the last equation can be written as

This is a separable first order equation. Separating variables and integrating, we have

or

Exponentiating,

Further integration yields

Thus,

Note that the integral does not have a simple antiderivative and defines the exponential function

where  is the Euler-Mascheroni constant.

Thus, we have found the general solution

Another example is that of Bessel’s equation. This is a famous equation which occurs in the solution of problems involving
cylindrical symmetry. We discuss the solutions more generally in Section 4.6. Here we apply the Frobenius method to obtain the
series solution.

Solve Bessel’s equation using the Frobenius method,

We first note that  is a regular singular point. (Bessel’s equation). We assume  and its derivatives are of the form

Inserting these series into the differential equation, we have

z = v′

x +(1 +x)z = 0
dz

dx

∫ = −∫ dx
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∞

x

e−t

t
∑
n=1

∞ (−1)2xn

n!n

γ = 0.5772 …

y(x) = + (x)
c1

x

c2

x
E1

 Example 4.4.1.3

+x +( − )y = 0x2y′′ y′ x2 v2

x = 0 y(x)

y(x)

(x)y′

(x)y′′

=∑
n=0

∞

cnx
n+r

= (n+r)∑
n=0

∞

cn xn+r−1

= (n+r)(n+r−1)∑
n=0

∞

cn xn+r−2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/103786?pdf


4.4.1.5 https://math.libretexts.org/@go/page/103786

We re-index the last sum with , or , to obtain

We again obtain the indicial equation from the  terms, . The solutions are .

We consider the case . The  terms give

For . [In the next section we consider the case 

For , we have

Or

Noting that , we evaluate a few of the nonzero coefficients:

Continuing long enough, we see a pattern emerge,
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The solution is given by

As we will see later, picking the right value of , this gives the Bessel function of the first kind of order  provided  is not a
negative integer.

The case  is similar. The  terms give

For . [In the next section we consider the case . ] For , we have

Or

Noting that , we evaluate a few of the nonzero coefficients:

Continuing long enough, we see a pattern emerge,

The solution is given by

provided  is not a positive integer. The example  is investigated in the next section.
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source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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4.4.2: Roots of Indicial Equation
IN THIS SECTION WE WILL CONSIDER the types of solutions one can obtain of the differential equation,

when  is a regular singular point. In this case, we assume that  and  have the convergent Maclaurin series
expansions

Using the Frobenius Method, we assume  and its derivatives are of the form

Inserting these series into the differential equation, we obtain

Using the expansions for  and , we note that the lowest power of  is  when . The coefficient for the 
 term must vanish:

Assuming that , we have the indicial equation

The roots of the indicial equation determine the type of behavior of the solution. This amounts to considering three different cases.
Let the roots of the equation be  and . Then,

i. Distinct roots with  integer.

In this case we have two linearly independent solutions,

ii. Equal roots: .

The form for  is the same, but one needs to use the Method of Reduction of Order to seek the second linearly independent
solution.
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′′

y
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iii. Distinct roots with  positive integer.

Just as in the last case, one needs to find a second linearly independent solution.

The constant  can be subsequently determined and in some cases might vanish.

For solutions near regular singular points, , one has a similar set of cases but for expansions of the form 
.

.

In this example  is a singular point. We have  and . Thus,

So,  and . The indicial equation becomes

Simplifying, we have , or .

For , we insert the series  into the differential equation, collect like terms by re-indexing, and

find

This gives  and

Iterating, we have  for  odd and
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This gives

Similarly, for for , one obtains the second solution,  . Setting  and , give the two

linearly independent solutions. This differential equation is the Bessel equation of order one half and the solutions are Bessel
functions of order one half:

 For this problem  and . Thus, the indicial equation is

This is a case with two equal roots, . A solution of the form

will only result in one solution. We will use this solution form to arrive at a second linearly independent solution.

We will not insert  into the solution form yet. Writing the differential equation in operator form, , we have

Setting the coefficients of like terms equal to zero for , we have
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Iterating, we find

Setting , we have the expression

This is not a solution of the differential equation because we did not use the root . Instead, we have

from the  term. If , then  is one solution of the differential equation. Namely,

Now consider what happens if we differentiate Equation  with respect to  :

Therefore,  is also a solution to the differential equation when .

Since

we have

Therefore, the second solution is given by

In order to determine the solutions, we need to evaluate  and . Recall that (setting  )

Therefore,

Next we compute . This can be done using logarithmic differentiation. We consider
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Differentiating with respect to  and evaluating at , we have

where we have defined

This gives the second solution as

.

This equation is similar to the last example, but it is the Bessel equation of order one. The indicial equation is given by

The roots are . In this case the roots differ by an integer, .

The first solution can be obtained using

Inserting these series into the differential equation, we have
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We re-index the last sum with , or , to obtain

Thus,  and

Since , all  vanish for odd . For , we have

Continuing, this gives

and the first solution is

Now we look for a second linearly independent solution of the form

The function and its derivatives are given by

0 = +x +( −1)yx2y′′ y′ x2

= n(n+1) +x (n+1)x2∑
n=0

∞

cn xn−1 ∑
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n=0

∞
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∞
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n=2

∞

)2 ck ck−2 xk+1 c1x
2

= 0c1

= − = − , k ≥ 2ck
1

(k+1 −1)2
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Inserting these series into the differential equation, we have

We now try to combine like powers of . First, we combine the terms involving  s,

Since there are no even powers on the right-hand side of the equation, we find , and  and
 odd. Therefore, all odd  ’s vanish.

Next, we set , or , in the remaining terms, obtaining

Thus, . We choose , making . The remaining terms satisfy the relation

Or

(x) =y2
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2
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2
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n=0

∞

dn x
n−3

+α [ (x) lnx+2 (x) − (x) ]y′′
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=

=

=
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Choosing , the coefficients take an interesting form. Namely,

Defining the partial sums of the harmonic series,

these coefficients become  and the coefficients in the expansion are

We can verify this by computing  :

= + , n ≥ 1d2n+2
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= − −d4
1

4(2)(1)
d2

3

(2)(1) 2!1!42
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This gives the second solution as

This page titled 4.4.2: Roots of Indicial Equation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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4.5: Legendre Polynomials
Legendre Polynomials are one of a set of classical orthogonal polynomials. These polynomials satisfy a second-order linear differential equation. This
differential equation occurs naturally in the solution of initial boundary value problems in three dimensions which possess some spherical symmetry.
Legendre polynomials, or Legendre functions of the first kind, are solutions of the differential equation

 Adrien-Marie Legendre (1752-1833) was a French mathematician who made many contributions to analysis and algebra.

In Example 4.4 we found that for n an integer, there are polynomial solutions. The first of these are given by , , and 
. As the Legendre equation is a linear second-order differential equation, we expect two linearly independent solutions. The

second solution, called the Legendre function of the second kind, is given by  and is not well behaved at . For example,

. We will mostly focus on the Legendre polynomials and some of their properties in this section.

A generalization of the Legendre equation is given by \((1 − x^2 )y'' − 2xy' + [n(n + 1) − \dfrac{m^2 }{1−x^2}] y = 0. \nonumber \]

Solutions to this equation,  and , are called the associated Legendre functions of the first and second kind.

4.5.1: Properties of Legendre Polynomials
LEGENDRE POLYNOMIALS BELONG TO THE CLASS Of classical orthogonal polynomials. Members of this class satisfy similar properties. First,
we have the Rodrigues Formula for Legendre polynomials:

(The Rodrigues Formula). From the Rodrigues formula, one can show that  is an th degree polynomial. Also, for  odd, the polynomial is an
odd function and for  even, the polynomial is an even function.

Determine  from the Rodrigues Formula:

Note that we get the same result as we found in the last section using orthogonalization.

Table : Tabular computation of the Legendre polynomials using the Rodrigues Formula.

1 1 1 1

1

2

3

The Three-Term Recursion Formula. The first several Legendre polynomials are given in Table . In Figure  we show plots of these Legendre
polynomials.

The classical orthogonal polynomials also satisfy a three-term recursion formula (or, recurrence relation or formula). In the case of the Legendre
polynomials, we have

1

(1 − ) −2x +n(n+1)y = 0x2 y′′ y′

(x) =P0 c0 (x) = xP1 c1

(x) = (1 −3 )P2 c2 x2

(x)Qn x = ±1

(x) = lnQ0
1

2

1 +x

1 −x

(x)P m
n (x)Qm

n

(x) = , n ∈Pn

1

n!2n
dn

dxn
( −1)x2 n

N0

(x)Pn n n

n

 Example 4.5.1
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This can also be rewritten by replacing  with  as

Use the recursion formula to find  and , given that  and .

We first begin by inserting  into Equation :

Figure : Plots of the Legendre polynomials , , , and .

So,  

For , we have

This gives . These expressions agree with the earlier results.

4.5.2: The Generating Function for Legendre Polynomials
A PROOF OF THE THREE-TERM RECURSION FORMULA can be obtained from the generating function of the Legendre polynomials. Many
special functions have such generating functions. In this case, it is given by

This generating function occurs often in applications. In particular, it arises in potential theory, such as electromagnetic or gravitational potentials.

These potential functions are  type functions.

Figure : The position vectors used to describe the tidal force on the Earth due to the moon.

For example, the gravitational potential between the Earth and the moon is proportional to the reciprocal of the magnitude of the difference between
their positions relative to some coordinate system. An even better example would be to place the origin at the center of the Earth and consider the
forces on the non-pointlike Earth due to the moon. Consider a piece of the Earth at position  and the moon at position  as shown in Figure .
The tidal potential  is proportional to

(n+1) (x) = (2n+1)x (x) −n (x), n = 1, 2, …Pn+1 Pn Pn−1

n n−1

(2n−1)x (x) = n (x) +(n−1) (x), n = 1, 2, …Pn−1 Pn Pn−2

 Example 4.5.2

(x)P2 (x)P3 (x) = 1P0 (x) = xP1

n = 1 4.5.3

2 (x) = 3x (x) − (x) = 3 −1.P2 P1 P0 x2

4.5.1 (x)P2 (x)P3 (x)P4 (x)P5
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1

2
x2

n = 2

3 (x)P3 = 5x (x) −2 (x)P2 P1

= x (3 −1)−2x
5

2
x2

= (15 −9x)
1

2
x3

(x) = (5 −3x)P3
1

2
x3

g(x, t) = = (x) , |x| ≤ 1, |t| < 1
1
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1
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where  is the angle between  and .

Typically, one of the position vectors is much larger than the other. Let’s assume that . Then, one can write

Now, define  and . We then have that the tidal potential is proportional to the generating function for the Legendre polynomials! So,

we can write the tidal potential as

The first term in the expansion, , is the gravitational potential that gives the usual force between the Earth and the moon. [Recall that the

gravitational potential for mass  at distance  from  is given by  and that the force is the gradient of the potential, 

 The next terms will give expressions for the tidal effects.

Now that we have some idea as to where this generating function might have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Evaluate  using the generating function.  is found by considering . Setting  in Equation , we have

We can use the binomial expansion to find the final answer. Namely, and

Comparing these expansions, we have the  for  odd and for even integers one can show that 

where  is the double factorial,

1

This example can be finished by first proving that

and

Evaluate . This is a simpler problem. In this case we have
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GMm
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Therefore, .

Prove the three-term recursion formula,

using the generating function.

We can also use the generating function to find recurrence relations. To prove the three term recursion Equation  that we introduced above,
then we need only differentiate the generating function with respect to  in Equation  and rearrange the result. First note that

Combining this with

we have

Inserting the series expression for  and distributing the sum on the right side, we obtain

Multiplying out the  factor and rearranging, leads to three separate sums:

Each term contains powers of  that we would like to combine into a single sum. This is done by re-indexing. For the first sum, we could use the
new index . Then, the first sum can be written

Using different indices is just another way of writing out the terms. Note that

and

actually give the same sum. The indices are sometimes referred to as dummy indices because they do not show up in the expanded expression and
can be replaced with another letter.

If we want to do so, we could now replace all the  s with  s. However, we will leave the  s in the first term and now re-index the next sums in
Equation . The second sum just needs the replacement  and the last sum we re-index using . Therefore, Equation 
becomes

We can now combine all the terms, noting the  term is automatically zero and the  terms give

Of course, we know this already. So, that leaves the  terms:

(−1) = (−1Pn )n

 Example 4.5.5
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Since this is true for all , the coefficients of the  s are zero, or

While this is the standard form for the three-term recurrence relation, the earlier form is obtained by setting .

There are other recursion relations that we list in the box below. Equation  was derived using the generating function. Differentiating it with
respect to , we find Equation  Equation  can be proven using the generating function by differentiating  with respect to  and
rearranging the resulting infinite series just as in this last manipulation. This will be left as Problem 9. Combining this result with Equation , we
can derive Equation  and Equation . Adding and subtracting these equations yields Equation  and Equation .

Recursion Formulae for Legendre Polynomials for 

Finally, Equation  can be obtained using Equation  and Equation . Just multiply Equation  by ,

Now use Equation \), but first replace  with  to eliminate the  term:

Rearranging gives the Equation .

Use the generating function to prove

Another use of the generating function is to obtain the normalization constant. This can be done by first squaring the generating function in order to
get the products , and then integrating over .

(The normalization constant). Squaring the generating function must be done with care, as we need to make proper use of the dummy summation
index. So, we first write

Legendre polynomials, we have

The integral on the left can be evaluated by first noting

Then, we have

t tk′

(k+1) (x) −(2k+1)x (x) +k (x) = 0, k = 1, 2, …Pk+1 Pk Pk−1

k = n−1

4.5.13
x 4.5.14 4.5.15 g(x, t) x

(4.63)
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n P ′
n−1
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n+1 P ′

n P ′
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n−1 P ′

n Pn

(x) = x (x) +(n+1) (x)P ′
n+1 P ′

n Pn

(x) + (x) = 2x (x) + (x)P ′
n−1 P ′

n+1 P ′
n Pn

(x) − (x) = (2n+1) (x)P ′
n+1 P ′

n−1 Pn

( −1) (x) = nx (x) −n (x)x2 P ′
n Pn Pn−1
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(x) −nx (x) = x (x)x2P ′
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n−1

4.5.17 n n−1 x (x)P ′
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4.5.20

 Example 4.5.6
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∞
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∞
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∞
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∞
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∞
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Expanding this expression about , we obtain 

2

You will need the series expansion

 Comparing this result with Equation , we find that

Finally, we can use the properties of the Legendre polynomials to obtain the Legendre differential equation. We begin by differentiating Equation 
 and using Equation  to simplify:

This page titled 4.5: Legendre Polynomials is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

= ln( )∫
1

−1

dx

1 −2xt+ t2

1

t

1 + t

1 − t

3

t = 0 2

\begin{aligned}} \ln (1+x)&=\sum_{n=1}^{\infty}(-1)^{n+1} \dfrac{x^{n}}{n}\\[4pt]&=x-\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3}-\cdots \end{aligned} \nonumber
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1

t

1 + t

1 − t
∑
n=0

∞ 2

2n+1
t2n

. 4.5.22

= (x)dx =∥ ∥Pn
2 ∫

1

−1
P 2
n

2

2n+1

4.5.20 4.5.16

(( −1) (x))
d

dx
x2 P ′

n = n (x) +nx (x) −n (x)Pn P ′
n P ′

n−1

= n (x) + (x)Pn n2Pn

= n(n+1) (x)Pn

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91067?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/04%3A_Series_Solutions/4.05%3A_Legendre_Polynomials
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
http://people.uncw.edu/hermanr/mat361/ODEBook/index.htm


4.6.1 https://math.libretexts.org/@go/page/91068

4.6: Bessel Functions
BESSEL FUNCTIONS ARISE IN MANY PROBLEMS in physics possessing cylindrical symmetry, such as the vibrations of
circular drumheads and the radial modes in optical fibers. They also provide us with another orthogonal set of basis functions.

Bessel functions have a long history and were named after Friedrich Wilhelm Bessel (  )

The first occurrence of Bessel functions (zeroth order) was in the work of Daniel Bernoulli on heavy chains (1738). More general
Bessel functions. were studied by Leonhard Euler in 1781 and in his study of the vibrating membrane in . Joseph Fourier
found them in the study of heat conduction in solid cylinders and Siméon Poisson (1781-1840) in heat conduction of spheres ( 1823
).

The history of Bessel functions, did not just originate in the study of the wave and heat equations. These solutions originally came
up in the study of the Kepler problem, describing planetary motion. According to . Watson in his Treatise on Bessel Functions,
the formulation and solution of Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in 1770. Namely, the
problem was to express the radial coordinate and what is called the eccentric anomaly, , as functions of time. Lagrange found
expressions for the coefficients in the expansions of  and  in trigonometric functions of time. However, he only computed the
first few coefficients. In 1816, Friedrich Wilhelm Bessel  had shown that the coefficients in the expansion for 
could be given an integral representation. In 1824 , he presented a thorough study of these functions, which are now called Bessel
functions.

You might have seen Bessel functions in a course on differential equations as solutions of the differential equation

Solutions to this equation are obtained in the form of series expansions.

Namely, one seeks solutions of the form

by determining the form the coefficients must take. We will leave this for a homework exercise and simply report the results.

One solution of the differential equation is the Bessel function of the first kind of order , given as

Here  s the Gamma function, satisfying . It is a generalization of the factorial and is discussed in the next
section.

Figure : Plots of the Bessel functions , , , and .

In Figure , we display the first few Bessel functions of the first kind of integer order. Note that these functions can be described
as decaying oscillatory functions.
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A second linearly independent solution is obtained for  not an integer as . However, for  an integer, the 
factor leads to evaluations of the Gamma function at zero, or negative integers, when  is negative. Thus, the above series is not
defined in these cases. Another method for obtaining a second linearly independent solution is through a linear combination of 

 and  as

These functions are called the Neumann functions, or Bessel functions of the second kind of order .

Figure : Plots of the Neumann functions , and .

In Figure , we display the first few Bessel functions of the second kind of integer order. Note that these functions are also
decaying oscillatory functions. However, they are singular at .

In many applications, one desires bounded solutions at . These functions do not satisfy this boundary condition. For example,
one standard problem is to describe the oscillations of a circular drumhead. For this problem one solves the two dimensional wave
equation using separation of variables in cylindrical coordinates. The radial equation leads to a Bessel equation. The Bessel
function solutions describe the radial part of the solution and one does not expect a singular solution at the center of the drum. The
amplitude of the oscillation must remain finite. Thus, only Bessel functions of the first kind can be used.

Bessel functions satisfy a variety of properties, which we will only list at this time for Bessel functions of the first kind. The reader
will have the opportunity to prove these for homework.

Derivative Identities. These identities follow directly from the manipulation of the series solution.

Recursion Formulae. The next identities follow from adding, or subtracting, the derivative identities.

Orthogonality. One can recast the Bessel equation into an eigenvalue problem whose solutions form an orthogonal basis of
functions on . Using Sturm-Liouville Theory, one can show that

where  is the th root of  A list of some of these roots is provided in Table .

Table : The zeros of Bessel Functions, .
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d
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1
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7
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Generating Function.

Integral Representation.
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nn m = 0m = 0 m = 1m = 1 m = 2m = 2 m = 3m = 3 m = 4m = 4 m = 5m = 5

2.405 3.832 5.136 6.380 7.588 8.771

5.520 7.016 8.417 9.761 11.065 12.339

8.654 10.173 11.620 13.015 14.373 15.700

11.792 13.324 14.796 16.223 17.616 18.980

14.931 16.471 17.960 19.409 20.827 22.218

18.071 19.616 21.117 22.583 24.019 25.430

21.212 22.760 24.270 25.748 27.199 28.627

24.352 25.904 27.421 28.908 30.371 31.812

27.493 29.047 30.569 32.065 33.537 34.989

= (x) , x > 0, t ≠ 0e
x(t− )/2

1

t ∑
n=−∞

∞

Jn tn

(x) = cos(x sinθ−nθ)dθ, x > 0,n ∈ ZJn
1

π
∫

π

0
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4.7: Gamma Function
A FUNCTION THAT OFTEN OCCURS IN THE STUDY OF SPECIAL FUNCTIONS is the Gamma function. We will need the
Gamma function in the next section on Fourier-Bessel series.

For  we define the Gamma function as

The name and symbol for the Gamma function were first given by Legendre in 1811. However, the search for a generalization of
the factorial extends back to the  when Euler provided the first representation of the factorial as an infinite product, later to
be modified by others like Gauß, Weierstraß, and Legendre. The Gamma function is a generalization of the factorial function and a
plot is shown in Figure . In fact, we have

and

The reader can prove this identity by simply performing an integration by parts. (See Problem 13.) In particular, for integers 
, we then have

We can also define the Gamma function for negative, non-integer values of . We first note that by iteration on , we have

Solving for , we then find

Note that the Gamma function is undefined at zero and the negative integers.

Figure : Plot of the Gamma function.

We now prove that

This is done by direct computation of the integral:

x > 0

Γ(x) = dt, x > 0∫
∞

0
tx−1e−t

s1720′

4.5

Γ(1) = 1

Γ(x+1) = xΓ(x)

n ∈ Z+

Γ(n+1) = nΓ(n) = n(n−1)Γ(n−2) = n(n−1) ⋯ 2Γ(1) = n!

x n ∈ Z+

Γ(x+n) = (x+n−1) ⋯ (x+1)xΓ(x), x+n > 0

Γ(x)

Γ(x) = , −n < x < 0
Γ(x+n)

(x+n−1) ⋯ (x+1)x

4.7.1

 Example 4.7.1
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Letting , we have

Due to the symmetry of the integrand, we obtain the classic inte-

 Using a substitution , we can gral4 show the more general result:

Which can be performed using a standard trick. Consider the integral.

Then,

Note that we changed the integration variable. This write this product of integrals as a double integral:

Note that we changed the integration variable. This will allow us to This is an integral over the entire -plane. We can
transform this Cartesian integration to an integration over polar coordinates. The integral becomes

This is simple to integrate and we have . So, the final result is found by taking the square root of both sides:

In Problem 15, the reader will prove the more general identity

Another useful relation, which we only state, is

The are many other important relations, including infinite products, which we will not need at this point. The reader is encouraged
to read about these elsewhere. In the meantime, we move on to the discussion of another important special function in physics and
mathematics.
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4.8: Hypergeometric Functions
Hypergeometric functions are probably the most useful, but least understood, class of functions. They typically do not make it into
the undergraduate curriculum and seldom in graduate curriculum. Most functions that you know can be expressed using
hypergeometric functions. There are many approaches to these functions and the literature can fill books. See for example Special
Functions by G. E. Andrews, R. Askey, and R. Roy, 1999, Cambridge University Press.

In 1812 Gauss published a study of the hypergeometric series

Here , and  are real numbers. If one sets  and , this series reduces to the familiar geometric series

The hypergeometric series is actually a solution of the differential equation

This equation was first introduced by Euler and latter studied extensively by Gauss, Kummer and Riemann. It is sometimes called
Gauss’s equation. Note that there is a symmetry in that  and  may be interchanged without changing the equation. The points 

 and  are regular singular points. Series solutions may be sought using the Frobenius method. It can be confirmed that
the above hypergeometric series results.

A more compact form for the hypergeometric series may be obtained by introducing new notation. One typically introduces the
Pochhammer symbol, , satisfying

i. .
ii. 

This symbol was introduced by Leo August Pochhammer ( .

Consider 

This reduces to . In fact, one can show that

for  and  positive integers. In fact, one can extend this result to noninteger values for  by introducing the gamma function:

We can now write the hypergeometric series in standard notation as

For , one can express the hypergeometric function as an integral:

Using this notation, one can show that the general solution of Gauss’ equation is

By carefully letting  approach , one obtains what is called the confluent hypergeometric function. This in effect changes the
nature of the differential equation. Gauss  equation has three regular singular points at . One can transform Gauss’

y(x) = 1 + x+ + +…
αβ

γ

α(1 +α)β(1 +β)

2!γ(1 +γ)
x2 α(1 +α)(2 +α)β(1 +β)(2 +β)

3!γ(1 +γ)(2 +γ)
x3

α, β, γ x α = 1 β = γ

y(x) = 1 +x+ + +…x2 x3

x(1 −x) +[γ−(α+β+1)x] −αβy = 0y′′ y′

α β

x = 0 x = 1

(α)n

(α = 1 if α ≠ 0)0

(α = α(1 +α) … (k−1 +α),  for k = 1, 2, … .)k

1841 −1920)

(1 .  For n = 0, (1 = 1.  For n > 0,)n )0

(1 = 1(1 +1)(2 +1) … [(n−1) +1])n
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k n k
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∞ (α (β)n )n
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1
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equation by letting . This changes the regular singular points to . Letting , two of the singular points
merge.

The new confluent hypergeometric function is then given as

This function satisfies the differential equation

The purpose of this section is only to introduce the hypergeometric function. Many other special functions are related to the
hypergeometric function after making some variable transformations. For example, the Legendre polynomials are given by

In fact, one can also show that

The Bessel function  can be written in terms of confluent geometric functions as

These are just a few connections of the powerful hypergeometric functions to some of the elementary functions that you know.
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4.9: Problems
1. Find the first four terms in the Taylor series expansion of the solution to 

a.  
b. . 
c. . 
d. . 
e. .

2. Use the power series method to obtain power series solutions about the given point. 
a. . 
b. . 
c. . 
d. . 
e. . 
f. . 
g. .

3. In Example  we found the general Maclaurin series solution to

a. Show that one solution of this problem is .
b. Find the first five nonzero terms of the Maclaurin series expansion for  and
c. d. Verify that this second solution is consistent with the solution found in Example .

4. Find at least one solution about the  point  using the power series method. Determine the second solution using
the method of reduction of order.

a. . 
b. . 
c. .

5. List the singular points in the finite plane of the following:

a. .

b. 

c. .
d. .

6. Sometimes one is interested in solutions for large . This leads to the concept of the point at infinity.

a. Let  and . Using the Chain Rule, show that

b. Use the transformation in part (a) to transform the differential equation  into an equation for  and classify the
point at infinity by determining if  is an ordinary point, a regular singular point, or an irregular singular point.

c. Classify the point at infinity for the following equations:

i. .

ii. .

7. Find the general solution of the following equations using the Method of Frobenius at .

(x) = y(x) −x, y(0) = 2y′

(x) = 2xy(x) − , y(0) = 1y′ x3

(1 +x) (x) = py(x), y(0) = 1y′

(x) = , y(0) = 1y′ + (x)x2 y2− −−−−−−−−
√

(x) −2x (x) +2y(x) = 0, y(0) = 1, (0) = 0y′′ y′ y′

= y−x, y(0) = 2, = 0y′ x0

(1 +x) (x) = py(x), = 0y′ x0

+9y = 0, y(0) = 1, (0) = 0, = 0y′′ y′ x0

+2 +xy = 0, = 0y′′ x2y′ x0

−x +3y = 0, y(0) = 2, = 0y′′ y′ x0

x −x +y = , y(0) = 1, (0) = 2, = 0y′′ y′ ex y′ x0

−x +y = 0, = 1x2y′′ y′ x0

4.3

−x −y = 0y′′ y′

(x) =y1 e /2x2

(x)y1

4.3

singular x = 0

+2x −2y = 0x2y′′ y′

x +(1 −x) −y = 0y′′ y′

−x(1 −x) +y = 0x2y′′ y′

(1 − ) + + y = 0x2 y′′ 3

x+2
y′ (1 −x)2

x+3

+ + y = 0
1

x
y′′

3(x−4)

x+6
y′

(x−2)x2

x−1
+xy = 0y′′

(x−2) +4(x−2) +3y = 0x2 y′′ y′

x

z =
1

x
y(x) = v(z)

dy

dx

yd2

dx2

= −z2 dv

dz

= +2z4 vd2

dz2
z2 dv

dz

+y = 0x2y′′ w(z)
w = 0

+xy = 0y′′

(x−2) +4(x−2) +3y = 0x2 y′′ y′

x = 0
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a. 

b. 

c. .

d. .

d. .

e. .

f. .

g. .

8. Find  using

a. The Rodrigues Formula in Equation 4.5.1.

b. The three-term recursion formula in Equation 4.5.3.

9. In Equations 4.5.13 through Equation 4.5.20 we provide several identities for Legendre polynomials. Derive the results in
Equations 4.5.14 through 4.5.20 as described in the text. Namely,

a. Differentiating Equation 4.5.13 with respect to , derive Equation 4.5.14.

b. Derive Equation 4.5.15 by differentiating  with respect to  and rearranging the resulting infinite series.

c. Combining the previous result with Equation 4.5.13, derive Equations 4.5.16 and 4.5.17.

d. Adding and subtracting Equations 4.5.16 and 4.5.17, obtain Equations 4.5.18 and 4.5.19.

e. Derive Equation 4.5.20 using some of the other identities.

10. Use the recursion relation Equation 4.5.3 to evaluate .
11. Consider the Hermite equation

Determine the recursion formula for the coefficients in a series solution, . Show that if  is an integer, then one
of the linearly independent solutions is a polynomial.

12. Using the power series method to find the general solution of Airy’s equation,

13. Use integration by parts to show .
14. Prove the double factorial identities:

and

15. Using the property , and , prove that

16. Express the following as Gamma functions. Namely, noting the form  and using an appropriate
substitution, each expression can be written in terms of a Gamma function. 
a. . 

4x +2 +y = 0y′′ y′

+ y = 0y′′ 1

4x2

x +2 +xy = 0y′′ y′

+ − y = 0y′′ 1

2x
y′ x+1

2x2

4 +4x +(4 −1)y = 0x2y′′ y′ x2

2x(x+1) +3(x+1) −y = 0y′′ y′

−x(1 +x) +y = 0x2y′′ y′

x −(4 +x) +2y = 0y′′ y′

(x)P4

x

g(x, t) x

x (x) (x)dx,n ≤ m∫ 1
−1 Pn Pm

−2x +2ny = 0y′′ y′

y(x) =∑∞
k=0 ckx

k n

−xy = 0y′′

Γ(x+1) = xΓ(x)

(2n)!! = n!2n

(2n−1)!! =
(2n)!

n!2n

Γ(x+1) = xΓ(x), x > 0 Γ( ) =
1

2
π−−√

Γ(n+ ) =
1

2

(2n−1)!!

2n
π−−√

Γ(x+1) = dt∫ ∞
0

txe−t

dx∫ ∞
0

x2/3e−x
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b.  

c. .

17. A solution of Bessel’s equation, , can be found using the guess . One

obtains the recurrence relation . Show that for , we get the Bessel function of the first kind

of order  from the even values 

18. Use the infinite series in Problem 17 to derive the derivative identities Equation 4.6.4 and 4.6.5: 

a. . 

b. .

19. Prove the following identities based on those in Problem 18 .

a. .

b. .

20. Use the derivative identities of Bessel functions, Equation 4.6.4 and 4.6.5, and integration by parts to show that

21. We can rewrite the series solution for Bessel functions,

a. 
b. Extend the series definition of the Bessel function of the first kind of order , for  by writing the series solution for 

 in Problem 17 using the Gamma function.
c. Extend the series to , for . Discuss the resulting series and what happens when  is a positive integer.
d. d. Use the results in part  with the recursion formula for Bessel functions,

22. Show that setting  and  in  leads to the geometric series.

23. Prove the following: 
a.  
b. .

24. Verify the following relations by transforming the hypergeometric equation into the equation satisfied by each function. 

a. . 

b. . 

c. .
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j=0 ajx
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=aj
−1
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n j= 2k :

(x) =Jn ∑
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∞ (−1)k
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d
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∫ (x)dx = (x) −2 (x) +Cx3J0 x3J1 x2J2

v, (x)Jv v≥ 0
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CHAPTER OVERVIEW

5: Laplace Transforms
"We could, of course, use any notation we want; do not laugh at notations; invent them, they are powerful. In fact, mathematics is,
to a large extent, invention of better notations." - Richard P. Feynman (1918-1988)

5.1: The Laplace Transform
5.2: Properties and Examples of Laplace Transforms
5.3: Solution of ODEs Using Laplace Transforms
5.4: Step and Impulse Functions
5.5: The Convolution Theorem
5.6: Systems of ODEs
5.7: Problems
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5.1: The Laplace Transform
Up to this point we have only explored Fourier exponential transforms as one type of integral transform. The Fourier transform is
useful on infinite domains. However, students are often introduced to another integral transform, called the Laplace transform, in
their introductory differential equations class. These transforms are defined over semi-infinite domains and are useful for solving
initial value problems for ordinary differential equations.

The Laplace transform is named after Pierre-Simon de Laplace (1749 - 1827). Laplace made major contributions, especially to
celestial mechanics, tidal analysis, and probability.

Integral transform on  with respect to the integral kernel, .

The Fourier and Laplace transforms are examples of a broader class of transforms known as integral transforms. For a function 
 defined on an interval , we define the integral transform

where  is a specified kernel of the transform. Looking at the Fourier transform, we see that the interval is stretched over the
entire real axis and the kernel is of the form, . In Table 5.1 we show several types of integral transforms.

Table : A Table of Common Integral Transforms.

Laplace Transform

Fourier Transform

Fourier Cosine Transform

Fourier Sine Transform

Mellin Transform

Hankel Transform

It should be noted that these integral transforms inherit the linearity of integration. Namely, let , where 
and  are constants. Then,

Therefore, we have shown linearity of the integral transforms. We have seen the linearity property used for Fourier transforms and
we will use linearity in the study of Laplace transforms.

The Laplace transform of . We now turn to Laplace transforms. The Laplace transform of a function  is defined
as

This is an improper integral and one needs

to guarantee convergence.

[a, b] K(x, k)

f(x) (a, b)

F (k) = K(x, k)f(x)dx∫
b

a

K(x, k)

K(x, k) = eikx

5.1.1

F(s) = f(x)dx∫ ∞
0 e−sx

F(k) = f(x)dx∫ ∞
−∞ eikx

F(k) = cos(kx)f(x)dx∫ ∞
0

F(k) = sin(kx)f(x)dx∫ ∞
0

F(k) = f(x)dx∫ ∞
0 xk−1

F(k) = x (kx)f(x)dx∫ ∞
0 Jn

h(x) = αf(x) +βg(x) α

β

H(k) = K(x, k)h(x)dx∫
b

a

= K(x, k)(αf(x) +βg(x))dx∫
b

a

= α K(x, k)f(x)dx+β K(x, k)g(x)dx∫
b

a

∫
b

a

= αF (x) +βG(x)

f ,F = L[f ] f(t)

F (s) = L[f ](s) = f(t) dt, s > 0∫
∞

0

e−st

f(t) = 0lim
t→∞

e−st
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Laplace transforms also have proven useful in engineering for solving circuit problems and doing systems analysis. In Figure  it
is shown that a signal  is provided as input to a linear system, indicated by . One is interested in the system output, ,
which is given by a convolution of the input and system functions. By considering the transforms of  and , the transform
of the output is given as a product of the Laplace transforms in the s-domain. In order to obtain the output, one needs to compute a
convolution product for Laplace transforms similar to the convolution operation we had seen for Fourier transforms earlier in the
chapter. Of course, for us to do this in practice, we have to know how to compute Laplace transforms.

Figure : A schematic depicting the use of Laplace transforms in systems theory.

This page titled 5.1: The Laplace Transform is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

5.1

x(t) h(t) y(t)

x(t) h(t)

5.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91072?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05%3A_Laplace_Transforms/5.01%3A_The_Laplace_Transform
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
http://people.uncw.edu/hermanr/mat361/ODEBook/index.htm


5.2.1 https://math.libretexts.org/@go/page/91073

5.2: Properties and Examples of Laplace Transforms
IT IS TYPICAL THAT ONE MAKES USE of Laplace transforms by referring to a Table of transform pairs. A sample of such
pairs is given in Table . Combining some of these simple Laplace transforms with the properties of the Laplace transform, as
shown in Table , we can deal with many applications of the Laplace transform. We will first prove a few of the given Laplace
transforms and show how they can be used to obtain new transform pairs. In the next section we will show how these transforms
can be used to sum infinite series and to solve initial value problems for ordinary differential equations.

Table : Table of Selected Laplace Transform Pairs.

We begin with some simple transforms. These are found by simply using the definition of the Laplace transform.

Show that .

For this example, we insert  into the definition of the Laplace transform:

This is an improper integral and the computation is understood by introducing an upper limit of  and then letting . We
will not always write this limit, but it will be understood that this is how one computes such improper integrals. Proceeding
with the computation, we have

Thus, we have found that the Laplace transform of 1 is . This result can be extended to any constant , using the linearity of the

transform, . Therefore,

5.2.1

5.2.2

5.2.1

f(t) F(s) f(t) F(s)

c
c

s
eat ,s > a

1

s− a

tn ,s > 0
n!

sn+1
tneat

n!

(s− a)n+1

sinωt
ω

+s2 ω2 sinωteat
ω

(s− a +)2 ω2

cosωt
s

+s2 ω2 cosωteat
s− a

(s− a +)2 ω2

tsinωt
2ωs

( + )s2 ω2 2 tcosωt
−s2 ω2

( + )s2 ω2 2

sinhat
a

−s2 a2 coshat
s

−s2 a2

H(t− a) ,s > 0
e−as

s
δ(t− a) , a ≥ 0,s > 0e−as

 Example 5.2.1

L[1] =
1

s

f(t) = 1

L[1] = dt∫
∞

0

e−st

a a → ∞

L[1] = dt∫
∞

0
e−st

= dtlim
a→∞

∫
a

0

e−st

= lim
a→∞

(− )
1

s
e−st

a

0

= (− + ) =lim
a→∞

1

s
e−sa 1

s

1

s

1

s
c

L[c] = cL[1]

L[c] =
c

s
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Show that , for 

For this example, we can easily compute the transform. Again, we only need to compute the integral of an exponential
function.

Note that the last limit was computed as . This is only true if , or . [Actually,  could be
complex. In this case we would only need  to be greater than the real part of , 

Show that  and .

For these examples, we could again insert the trigonometric functions directly into the transform and integrate. For example,

Recall how one evaluates integrals involving the product of a trigonometric function and the exponential function. One
integrates by parts two times and then obtains an integral of the original unknown integral. Rearranging the resulting integral
expressions, one arrives at the desired result. However, there is a much simpler way to compute these transforms.

Recall that . Making use of the linearity of the Laplace transform, we have

Thus, transforming this complex exponential will simultaneously provide the Laplace transforms for the sine and cosine
functions!

The transform is simply computed as

Note that we could easily have used the result for the transform of an exponential, which was already proven. In this case, 
.

We now extract the real and imaginary parts of the result using the complex conjugate of the denominator:

Reading off the real and imaginary parts, we find the sought-after transforms,

 Example 5.2.2

L [ ] =eat
1

s−a
s > a

L [ ]eat = dt∫
∞

0

eate−st

= dt∫
∞

0

e(a−s)t

=( )
1

a−s
e(a−s)t

∞

0

= − =lim
t→∞

1

a−s
e(a−s)t 1

a−s

1

s−a

= 0limt→∞ e(a−s)t a−s < 0 s > a a

s a s > Re(a). ]

 Example 5.2.3

L[cosat] =
s

+s2 a2
L[sinat] =

a

+s2 a2

L[cosat] = cosatdt∫
∞

0

e−st

= cosat+ i sinateiat

L [ ] = L[cosat] + iL[sinat]eiat

L [ ] = dt = dt =eiat ∫
∞

0

eiate−st ∫
∞

0

e−(s−ia)t 1

s− ia

s > Re(ia) = 0

= =
1

s− ia

1

s− ia

s+ ia

s+ ia

s+ ia

+s2 a2

L[cosat]

L[sinat]

=
s

+s2 a2

=
a

+s2 a2
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Show that .For this example we evaluate

This integral can be evaluated using the method of integration by parts:

Show that  for nonnegative integer .

We have seen the  and  cases:  and . We now generalize these results to nonnegative integer

powers, , of . We consider the integral

Following the previous example, we again integrate by parts: 

1

This integral can just as easily be done using differentiation. We note that \

Since

,

We could continue to integrate by parts until the final integral is computed. However, look at the integral that resulted after one
integration by parts. It is just the Laplace transform of . So, we can write the result as

We compute  by turning it into an initial value problem for a first-order difference equation and finding the
solution using an iterative method.

This is an example of a recursive definition of a sequence. In this case, we have a sequence of integrals. Denoting

 Example 5.2.4

L[t] =
1

s2

L[t] = t dt∫
∞

0

e−st

t dt∫
∞

0

e−st = − + dtt
1

s
e−st ∣

∣
∣
∞

0

1

s
∫

∞

0

e−st

=
1

s2

 Example 5.2.5

L [ ] =tn
n!

sn+1
n

n = 0 n = 1 L[1] =
1

s
L[t] =

1

s2

n > 1 t

L [ ] = dttn ∫
∞

0

tne−st

1

dt∫
∞

0

tne−st = − + dttn
1

s
e−st ∣

∣
∣
∞

0

n

s
∫

∞

0

t−ne−st

= dt
n

s
∫

∞

0

t−ne−st

dt = dt.(− )
d

ds

n

∫
∞

0
e−st ∫

∞

0
tne−st

dt =∫
∞

0
e−st 1

s

dt = =∫
∞

0

tne−st (− )
d

ds

n
1

s

n!

sn+1

tn−1

L [ ] = L [ ] .tn
n

s
tn−1

dt∫ ∞

0
tne−st
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and noting that , we have the following:

This is also what is called a difference equation. It is a first-order difference equation with an "initial condition," . The next
step is to solve this difference equation. Finding the solution of this first-order difference equation is easy to do using simple
iteration. Note that replacing  with , we have

Repeating the process, we find

We can repeat this process until we get to , which we know. We have to carefully count the number of iterations. We do this
by iterating  times and then figuring out how many steps will get us to the known initial value. A list of iterates is easily
written out:

Since we know , we choose to stop at  obtaining

Therefore, we have shown that .

Such iterative techniques are useful in obtaining a variety of integrals, such as .

As a final note, one can extend this result to cases when  is not an integer. To do this, we use the Gamma function, which was
discussed in Section 4.7. Recall that the Gamma function is the generalization of the factorial function and is defined as

Note the similarity to the Laplace transform of  :

= L [ ] = dtIn tn ∫
∞

0
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= L[1] =I0
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= , =In
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In−1 I0
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I0

n n−1
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In =
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s
In−1

= ( )
n

s

n−1

s
In−2

=
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s2
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=
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s3
In−3

I0

k

In =
n

s
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=
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s2
In−2

=
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s3
In−3
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=
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sk
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=I0
1

s
k = n

= =In
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sn
I0
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sn+1

= dxIn ∫ ∞
−∞ x2ne−x2

n

Γ(x) = dt∫
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0

tx−1e−t

tx−1
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For  an integer and , we have that

Thus, the Gamma function can be viewed as a generalization of the factorial and we have shown that

for .

Now we are ready to introduce additional properties of the Laplace transform in Table . We have already discussed the first
property, which is a consequence of the linearity of integral transforms. We will prove the other properties in this and the following
sections.

Table : Table of selected Laplace transform properties.
Laplace Transform Properties

 

 

 

 
 

Show that  

We have to compute

We can move the derivative off  by integrating by parts. This is similar to what we had done when finding the Fourier
transform of the derivative of a function. Letting  and , we have

Here we have assumed that  vanishes for large .

The final result is that

L [ ] = dttx−1 ∫
∞

0

tx−1e−st

x−1 s = 1

Γ(x) = (x−1)!

L [ ] =tp
Γ(p+1)

sp+1

p > −1

5.2.2

5.2.2

L[af(t) + bg(t)] = aF(s) + bG(s)

L[tf(t)] = − F(s)
d

ds

L[ ] = sF(s) − f(0)
df

dt

L[ ] = F(s) − sf(0) − (0)
fd2

dt2
s2 f ′

L [ f(t)] = F(s− a)eat

L[H(t− a)f(t− a)] = F(s)e−as

L[(f ∗ g)(t)] = L[ f(t− u)g(u)du] = F(s)G(s)∫ t

0

 Example 5.2.6

L[ ] = sF (s) −f(0)
df

dt

L[ ] = dt
df

dt
∫

∞

0

df

dt
e−st

f

u = e−st v= f(t)

L[ ]
df

dt
= dt∫

∞

0

df

dt
e−st

= +s f(t) dtf(t)e−st ∣∣
∞

0
∫

∞

0

e−st

= −f(0) +sF (s).

f(t)e−st t

L[ ] = sF (s) −f(0)
df

dt

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91073?pdf


5.2.6 https://math.libretexts.org/@go/page/91073

Show that .

We can compute this Laplace transform using two integrations by parts, or we could make use of the last result. Letting 

, we have

But,

So,

We will return to the other properties in Table  after looking at a few applications.

This page titled 5.2: Properties and Examples of Laplace Transforms is shared under a CC BY-NC-SA 3.0 license and was authored, remixed,
and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.

 Example 5.2.7

L[ ] = F (s) −sf(0) − (0)
fd2

dt2
s2 f ′

g(t) =
df(t)

dt

L[ ] = L[ ] = sG(s) −g(0) = sG(s) − (0)
fd2

dt2

dg

dt
f ′

G(s) = L[ ] = sF (s) −f(0)
df

dt

L[ ]
fd2

dt2
= sG(s) − (0)f ′

= s[sF (s) −f(0)] − (0)f ′

= F (s) −sf(0) − (0)s2 f ′

5.3
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5.3: Solution of ODEs Using Laplace Transforms
ONE OF THE TYPICAL APPLICATIONS OF LAPLACE TRANSFORMS is the solution of nonhomogeneous linear constant
coefficient differential equations. In the following examples we will show how this works.

The general idea is that one transforms the equation for an unknown function  into an algebraic equation for its transform, 
. Typically, the algebraic equation is easy to solve for  as a function of . Then, one transforms back into -space using

Laplace transform tables and the properties of Laplace transforms. The scheme is shown in Figure .

Figure : The scheme for solving an ordinary differential equation using Laplace transforms. One transforms the initial value
problem for  and obtains an algebraic equation for . Solve for  and the inverse transform gives the solution to the
initial value problem.

Solve the initial value problem .

The first step is to perform a Laplace transform of the initial value problem. The transform of the left side of the equation is

Transforming the right-hand side, we have

Combining these two results, we obtain

The next step is to solve for  :

Now we need to find the inverse Laplace transform. Namely, we need to figure out what function has a Laplace transform of
the above form. We will use the tables of Laplace transform pairs. Later we will show that there are other methods for carrying
out the Laplace transform inversion.

The inverse transform of the first term is . However, we have not seen anything that looks like the second form in the table
of transforms that we have compiled, but we can rewrite the second term using a partial fraction decomposition. Let’s recall
how to do this.

The goal is to find constants  and  such that

We picked this form because we know that recombining the two terms into one term will have the same denominator. We just
need to make sure the numerators agree afterward. So, adding the two terms, we have

y(t)

Y (t) Y (s) s t

5 ⋅ 2

5.3.1
y(t) Y (s) Y (s)

 Example 5.3.1

+3y = , y(0) = 1y′ e2t

L [ +3y] = sY −y(0) +3Y = (s +3)Y −1y′

L [ ] =e2t 1

s −2

(s +3)Y −1 =
1

s −2

Y (s)

Y (s) = +
1

s +3

1

(s −2)(s +3)

e−3t

A B

= +
1

(s −2)(s +3)

A

s −2

B

s +3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91074?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/05%3A_Laplace_Transforms/5.03%3A_Solution_of_ODEs_Using_Laplace_Transforms


5.3.2 https://math.libretexts.org/@go/page/91074

Equating numerators,

There are several ways to proceed at this point.

a. Method 1.

We can rewrite the equation by gathering terms with common powers of , we have

The only way that this can be true for all  is that the coefficients of the different powers of  agree on both sides. This leads to
two equations for  and  :

The first equation gives , so the second equation becomes . The solution is then .

b. Method 2 .

Since the equation  is true for all , we can pick specific values. For , we find 

, or . For , we find , or . Thus, we obtain the same result as Method 1, but much

quicker.

This is an example of carrying out a partial fraction decomposition.

Figure : A plot of the solution to Example .

c. Method 3.

We could just inspect the original partial fraction problem. Since the numerator has no  terms, we might guess the form

But, recombining the terms on the right-hand side, we see that

Since we were off by 5, we divide the partial fractions by 5 to obtain

=
1

(s −2)(s +3)

A(s +3) +B(s −2)

(s −2)(s +3)

1 = A(s +3) +B(s −2)

s

(A +B)s +3A −2B = 1

s s

A B

A +B = 0

3A −2B = 1
(5.3.1)

A = −B −5B = 1 A = −B =
1

5

= +
1

(s −2)(s +3)

A

s −2

B

s +3
s s = 2

1 = 5A A =
1

5
s = −3 1 = −5B B = −

1

5

5.3.2 5.3.1

s

= −
1

(s −2)(s +3)

1

s −2

1

s +3

− =
1

s −2

1

s +3

5

(s −2)(s +3)

= [ − ]
1

(s −2)(s +3)

1

5

1

s −2

1

s +3
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which once again gives the desired form.

Returning to the problem, we have found that

We can now see that the function with this Laplace transform is given by

works. Simplifying, we have the solution of the initial value problem

We can verify that we have solved the initial value problem.

and .

Solve the initial value problem , .

We can probably solve this without Laplace transforms, but it is a simple exercise. Transforming the equation, we have

Solving for , we have

We now ask if we recognize the transform pair needed. The denominator looks like the type needed for the transform of a sine
or cosine. We just need to play with the numerator. Splitting the expression into two terms, we have

The first term is now recognizable as the transform of . The second term is not the transform of . It would be if the
numerator were a 2 . This can be corrected by multiplying and dividing by 2 :

The solution is then found as

The reader can verify that this is the solution of the initial value problem and is shown in Figure .

Y (s) = + ( − )
1

s +3

1

5

1

s −2

1

s +3

y(t) = [ + ( − )] = + ( − )L
−1 1

s +3

1

5

1

s −2

1

s +3
e−3t 1

5
e2t e−3t

y(t) = +
1

5
e2t 4

5
e−3t

+3y = − +3( + ) =y′ 2

5
e2t 12

5
e−3t 1

5
e2t 4

5
e−3t e2t

y(0) = + = 1
1

5

4

5

 Example 5.3.2

+4y = 0, y(0) = 1y′′ (0) = 3y′

0 = Y −sy(0) − (0) +4Ys2 y′

= ( +4)Y −s −3s2

Y

Y (s) =
s +3

+4s2

Y (s) = +
s

+4s2

3

+4s2

cos 2t sin2t

= ( )
3

+4s2

3

2

2

+4s2

y(t) = [ + ( )] = cos 2t + sin2tL
−1 s

+4s2

3

2

2

+4s2

3

2
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Figure : A plot of the solution to Example .

This page titled 5.3: Solution of ODEs Using Laplace Transforms is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
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5.4: Step and Impulse Functions

Heaviside Step Function

OFTEN, THE INITIAL VALUE PROBLEMS THAT ONE FACES in differential equations courses can be solved using either the
Method of Undetermined Coefficients or the Method of Variation of Parameters. However, using the latter can be messy and
involves some skill with integration. Many circuit designs can be modeled with systems of differential equations using Kirchoff’s
Rules. Such systems can get fairly complicated. However, Laplace transforms can be used to solve such systems, and electrical
engineers have long used such methods in circuit analysis.

In this section we add a couple more transform pairs and transform properties that are useful in accounting for things like turning
on a driving force, using periodic functions like a square wave, or introducing impulse forces.

Figure : A shifted Heaviside function, .

We first recall the Heaviside step function, given by

. A more general version of the step function is the horizontally shifted step function, . This function is shown in Figure 
. The Laplace transform of this function is found for  as

The Laplace transform has two Shift Theorems involving the multiplication of the function, , or its transform, , by
exponentials. The First and Second Shift Properties Theorems are given by

(The Shift Theorems). We prove the First Shift Theorem and leave the other proof as an exercise for the reader. Namely,

5.4.1 H(t−a)

H(t) ={
0,

1,

t < 0

t > 0

H(t−a)

5 ⋅ 5 a > 0

L[H(t−a)] = H(t−a) dt∫
∞

0
e−st

= dt∫
∞

a

e−st

= =
e−st

s

∣

∣
∣
∞

a

e−as

s

f(t) F (s)

L [ f(t)] = F (s−a)eat

L[f(t−a)H(t−a)] = F (s).e−as

L [ f(t)]eat = f(t) dt∫
∞

0

eat e−st

= f(t) dt = F (s−a)∫
∞

0

e−(s−a)t
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Compute the Laplace transform of .

This function arises as the solution of the underdamped harmonic oscillator. We first note that the exponential multiplies a sine
function. The First Shift Theorem tells us that we first need the transform of the sine function. So, for , we have

Using this transform, we can obtain the solution to this problem as

More interesting examples can be found using piecewise defined functions. First we consider the function . For 
, both terms are zero. In the interval , the function  and . Therefore,  for 

. Finally, for , both functions are one and therefore the difference is zero. The graph of  is shown
in Figure .

Figure : The box function,  are zero.

We now consider the piecewise defined function:

This function can be rewritten in terms of step functions. We only need to multiply  by the above box function,

We depict this in Figure .

 Example 5.4.1

sinωte−at

f(t) = sinωt

F (s) =
ω

+s2 ω2

L [ sinωt] = F (s+a) =e−at ω

(s+a +)2 ω2

H(t) −H(t−a)

t < 0 [0, a] H(t) = 1 H(t−a) = 0 H(t) −H(t−a) = 1

t ∈ [0, a] t > a H(t) −H(t−a)

5.4.2

5.4.2 H(t)−

g(t) ={
f(t),

0,

0 ≤ t ≤ a

t < 0, t > a

f(t)

g(t) = f(t)[H(t) −H(t−a)].

5.4.3
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Figure : Formation of a piecewise function, .

Even more complicated functions can be written in terms of step functions. We only need to look at sums of functions of the form 
 for . This is similar to a box function. It is nonzero between  and  and has height . We

show as an example the square wave function in Figure . It can be represented as a sum of an infinite number of boxes,

for 

Find the Laplace Transform of a square wave "turned  at .

Figure : A square wave,  .

We let

Using the properties of the Heaviside function, we have

5.4.3 f(t) = [H(t) −H(t−a)]

f(t)[H(t−a) −H(t−b)] b > a a b f(t)

5.4.4

f(t) = [H(t−2na) −H(t−(2n+1)a)]∑
n=−∞

∞

a > 0

 Example 5.4.2

on′′ t = 0

5.4.4 f(t) = [H(t− 2na) −H(t− (2n+ 1)a)]∑∞
n=−∞

f(t) = [H(t−2na) −H(t−(2n+1)a)], a > 0∑
n=0

∞
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Note that the third line in the derivation is a geometric series. We summed this series to get the answer in a compact form since
 .

Periodic Functions

The previous example provides us with a causal function  for  which is periodic with period . Such periodic
functions can be teated in a simpler fashion. We will now show that

(Laplace transform of periodic functions).

If  is periodic with period  and piecewise continuous on , then

Proof.

Solving for , one obtains the desired result.

Use the periodicity of

L[f(t)] = [L[H(t−2na)] −L[H(t−(2n+1)a)]]∑
n=0

∞

= [ − ]∑
n=0

∞
e−2nas

s

e−(2n+1)as

s

=
1 −e−as

s
∑
n=0

∞

( )e−2as n

= ( )
1 −e−as

s

1

1 −e−2as

=
1 −e−as

s (1 − )e−2as

=
1

s (1 + )e−as

<e−2as 1

∗

(f(t) = 0 t < 0. ) a

 Theorem 5.4.1

f(t) T [0,T ]

F (s) = f(t) dt
1

1 −e−sT
∫

T

0

e−st

F (s) = f(t) dt∫
∞

0

e−st

= f(t) dt+ f(t) dt∫
T

0

e−st ∫
∞

T

e−st

= f(t) dt+ f(t−T ) dt∫
T

0

e−st ∫
∞

T

e−st

= f(t) dt+ f(τ) dτ∫
T

0

e−st e−sT ∫
∞

0

e−sτ

= f(t) dt+ F (s)∫
T

0
e−st e−sT

F (s)

 Example 5.4.3

f(t) = [H(t−2na) −H(t−(2n+1)a)], a > 0∑
n=0

∞
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to obtain the Laplace transform.

We note that  has period . By Theorem 5.1, we have

This is the same result that was obtained in the previous example.

P. A. M. Dirac  introduced the  function in his book, The Principles of Quantum Mechanics, 4 th Ed.,  ford
University Press, 1958 , originally published in 1930 , as part of his orthogonality statement for a basis of functions in a Hilbert
space,   in the same way we introduced discrete orthogonality using the Kronecker delta. Historically, a
number of mathematicians sought to understand the Diract delta function, culminating in Laurent Schwartz’s (1915-2002) theory of
distributions in 1945 .

Dirac Delta Function
ANOTHER USEFUL CONCEPT IS THE IMPULSE FUNCTION. If wE want to apply an impulse function, we can use the Dirac
delta function . This is an example of what is known as a generalized function, or a distribution. Dirac had introduced this
function in the 1930 s in his study of quantum mechanics as a useful tool. It was later studied in a general theory of distributions
and found to be more than a simple tool used by physicists. The Dirac delta function, as any distribution, only makes sense under
an integral. Here will will introduce the Dirac delta function through its main properties. The delta function satisfies two main
properties:

1.  for .
2. .

Integration over more general intervals gives

Another important property is the sifting property:

This can be seen by noting that the delta function is zero everywhere except at . Therefore, the integrand is zero everywhere
and the only contribution from  will be from . So, we can replace  with  under the integral. Since  is a
constant, we have that

f(t) T = 2a

F (s) = f(t) dt∫
∞

0

e−st

= [H(t) −H(t−a)] dt
1

1 −e−2as
∫

2a

0

e−st

= [ dt− dt]
1

1 −e−2as
∫

2a

0

e−st ∫
2a

a

e−st

= [ − ]
1

1 −e−2as

e−st

−s

∣

∣
∣
2a

0

e−st

−s

∣

∣
∣
2a

a

= [1 − + − ]
1

s (1 − )e−2as
e−2as e−2as e−as

=
1 −e−as

s (1 − )e−2as

=
1

s (1 + )e−as

(1902 −1984) δ Ox−

⟨ ∣ ⟩ =ξ′ ξ′′ cδ ( − )ξ′ ζ ′′

δ(x)

δ(x) = 0 x ≠ 0

δ(x)dx = 1∫ ∞

−∞

δ(x)dx ={∫
b

a

1,

0,

0 ∈ [a, b]

0 ∉ [a, b]
(5.4.1)

δ(x−a)f(x)dx = f(a)∫
∞

−∞

x = a

f(x) x = a f(x) f(a) f(a)
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Evaluate: 

This is a simple use of the sifting property:

Another property results from using a scaled argument, . In this case, we show that

usual, this only has meaning under an integral sign. So, we place  inside an integral and make a substitution  :

If  then

However, if  then

The overall difference in a multiplicative minus sign can be absorbed into one expression by changing the factor  to .
Thus,

Properties of the Dirac delta function:

Evaluate 

This is a straightforward integration:

The first step is to write . Then, the final evaluation is given by

δ(x−a)f(x)dx∫
∞

−∞

= δ(x−a)f(a)dx∫
∞

−∞

= f(a) δ(x−a)dx = f(a)∫
∞

−∞

 Example 5.4.4

δ(x+3) dx∫ ∞

−∞
x3

δ(x+3) dx = (−3 = −27∫
∞

−∞

x3 )3

ax

δ(ax) = |a δ(x)|
−1

δ(ax) y = ax

δ(ax)dx∫
∞

−∞

= δ(ax)dxlim
L→∞

∫
L

−L

= δ(y)dylim
L→∞

1

a
∫

aL

−aL

a > 0

δ(ax)dx = δ(y)dy∫
∞

−∞

1

a
∫

∞

−∞

a < 0

δ(ax)dx = δ(y)dy = − δ(y)dy∫
∞

−∞

1

a
∫

−∞

∞

1

a
∫

∞

−∞

1/a 1/|a|

δ(ax)dx = δ(y)dy∫
∞

−∞

1

|a|
∫

∞

−∞

δ(x−a)f(x)dx = f(a).∫
∞

−∞

δ(ax)dx = δ(y)dy.∫
∞

−∞

1

|a|
∫

∞

−∞

 Example 5.4.5

(5x+1)δ(4(x−2))dx∫ ∞
−∞

(5x+1)δ(4(x−2))dx = (5x+1)δ(x−2)dx =∫
∞

−∞

1

4
∫

∞

−∞

11

4

δ(4(x−2)) = δ(x−2)
1

4
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The Dirac delta function can be used to represent a unit impulse. Summing over a number of impulses, or point sources, we can
describe a general function as shown in Figure 5.9. The sum of impulses located at points , , with strengths 
would be given by

Figure : Plot representing impulse forces of height . The sum 

A continuous sum could be written as

This is simply an application of the sifting property of the delta function.

We will investigate a case when one would use a single impulse. While a mass on a spring is undergoing simple harmonic motion,
we hit it for an instant at time . In such a case, we could represent the force as a multiple of \(\delta(t − a) \\[4pt]).

One would then need the Laplace transform of the delta function to solve the associated initial value problem. Inserting the delta
function into the Laplace transform, we find that for ,

Solve the initial value problem ,

This initial value problem models a spring oscillation with an impulse force. Without the forcing term, given by the delta
function, this spring is initially at rest and not stretched. The delta function models a unit impulse at . Of course, we
anticipate that at this time the spring will begin to oscillate. We will solve this problem using Laplace .
transforms. First, we transform the differential equation:

(5x+1)δ(x−2)dx = (5(2) +1) =
1

4
∫

∞

−∞

1

4

11

4

ai i = 1, … ,n f ( )ai

f(x) = f ( ) δ (x− )∑
i=1

n

ai ai

5.4.5 f ( )ai f ( ) δ (x− )∑n

i=1 ai ai

f(x) = f(ξ)δ(x−ξ)dξ∫
∞

−∞

t = a

a > 0

L[δ(t−a)] = δ(t−a) dt∫
∞

0

e−st

= δ(t−a) dt∫
∞

−∞

e−st

= e−as

 Example 5.4.6

+4 y = δ(t−2)y′′ π2

t = 2

y(0) = (0) = 0y′

Y −sy(0) − (0) +4 Y =s2 y′ π2 e−2s
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Inserting the initial conditions, we have

Solving for , we obtain

We now seek the function for which this is the Laplace transform. The form of this function is an exponential times some
Laplace transform, . Thus, we need the Second Shift Theorem since the solution is of the form  for

We need to find the corresponding  of the Laplace transform pair. The denominator in  suggests a sine or cosine.
Since the numerator is constant, we pick sine. From the tables of transforms, we have

So, we write

This gives .

We now apply the Second Shift Theorem,  , or

( +4 )Y =s2 π2 e−2s

Y (s)

Y (s) =
e−2s

+4s2 π2

F (s) Y (s) = F (s)e−2s

F (s) = .
1

+4s2 π2

f(t) F (s)

L[sin2πt] =
2π

+4s2 π2

F (s) =
1

2π

2π

+4s2 π2

f(t) = (2π sin2πt)−1

L[f(t−a)H(t−a)] = F (s)e−as

y(t) = [ F (s)]L
−1 e−2s

= H(t−2)f(t−2)

= H(t−2) sin2π(t−2)
1

2π
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Figure : A plot of the solution to Example  in which a spring at rest experiences an impulse force at t = 2.

This solution tells us that the mass is at rest until  and then ample  in which a spring at rest exbegins to oscillate at its
natural frequency. A plot of this solution is periences an impulse force at . shown in Figure 

Solve the initial value problem

where

We need the Laplace transform of f(t). This function can be written in terms of a Heaviside function, .
In order to apply the Second Shift Theorem, we need a shifted version of the cosine function. We find the shifted version by
noting that . Thus, we have

The Laplace transform of this driving term is

5.4.6 5.4.6

t = 2 5.14

t = 2 5.4.6

 Example 5.4.7

+y = f(t), y(0) = 0, (0) = 0y′′ y′

f(t) ={
cosπt,

0,

0 ≤ t ≤ 2

 otherwise 

f(t) = cosπtH(t−2)

cosπ(t−2) = cosπt

f(t) = cosπt[H(t) −H(t−2)]

= cosπt−cosπ(t−2)H(t−2), t ≥ 0

F (s) = (1 − )L[cosπt] = (1 − )e−2s e−2s s

+s2 π2
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Now we can proceed to solve the initial value problem. The Laplace transform of the initial value problem yields

Therefore,

We can retrieve the solution to the initial value problem using the Second Shift Theorem. The solution is of the form 
  for

Then, the final solution takes the form

We only need to find  in order to finish the problem. This is easily done using the partial fraction decomposition

Then,

The final solution is then given by

A plot of this solution is shown in Figure .

( +1)Y (s) = (1 − )s2 e−2s s

+s2 π2

Y (s) = (1 − )e−2s s

( + ) ( +1)s2 π2 s2

Y (s) = (1− )G(s)e−2s

G(s) =
s

( + ) ( +1)s2 π2 s2

y(t) = g(t) −g(t−2)H(t−2)

g(t)

G(s) = = [ − ]
s

( + ) ( +1)s2 π2 s2

1

−1π2

s

+1s2

s

+s2 π2

g(t) = [ ] = (cos t−cosπt)L
−1 s

( + ) ( +1)s2 π2 s2

1

−1π2

y(t) = [cos t−cosπt−H(t−2)(cos(t−2) −cosπt)]
1

−1π2
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Figure : A plot of the solution to Example  in which a spring at rest experiences an piecewise defined force.
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5.5: The Convolution Theorem
Finally, we consider the convolution of two functions. Often, we are faced with having the product of two Laplace transforms that

we know and we seek the inverse transform of the product. For example, let’s say we have obtained  while

trying to solve an initial value problem. In this case, we could find a partial fraction decomposition. But, there are other ways to
find the inverse transform, especially if we cannot perform a partial fraction decomposition. We could use the Convolution
Theorem for Laplace transforms or we could compute the inverse transform directly. We will look into these methods in the next
two sections. We begin with defining the convolution.

We define the convolution of two functions defined on  much the same way as we had done for the Fourier transform. The
convolution  is defined as

Note that the convolution integral has finite limits as opposed to the Fourier transform case.

The convolution operation has two important properties:

1. The convolution is commutative: 

Proof. The key is to make a substitution  in the integral. This makes  a simple function of the integration variable.

2. The Convolution Theorem: The Laplace transform of a convolution is the product of the Laplace transforms of the individual
functions:

Proof. Proving this theorem takes a bit more work. We will make some assumptions that will work in many cases. First, we assume
that the functions are causal,  and  for . Second, we will assume that we can interchange integrals, which
needs more rigorous attention than will be provided here. The first assumption will allow us to write the finite integral as an infinite
integral. Then a change of variables will allow us to split the integral into the product of two integrals that are recognized as a
product of two Laplace transforms.

Carrying out the computation, we have

Now, make the substitution . We note that

Y (s) =
1

(s−1)(s−2)

[0, ∞)

f ∗ g

(f ∗ g)(t) = f(u)g(t−u)du∫
t

0

f ∗ g = g∗ f

y = t−u f

(g∗ f)(t) = g(u)f(t−u)du∫
t

0

= − g(t−y)f(y)dy∫
0

t

= f(y)g(t−y)dy∫
t

0

= (f ∗ g)(t)

L[f ∗ g] = F (s)G(s)

f(t) = 0 g(t) = 0 t < 0

L[f ∗ g] = ( f(u)g(t−u)du) dt∫
∞

0

∫
t

0

e−st

= ( f(u)g(t−u)du) dt∫
∞

0

∫
∞

0

e−st

= f(u)( g(t−u) dt) du∫
∞

0

∫
∞

0

e−st

τ = t−u

f(u)( g(t−u) dt) du = f(u)( g(τ) dτ) duint∞
0 ∫

∞

0

e−st ∫
∞

0

∫
∞

−u

e−s(τ+u)
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However, since  is a causal function, we have that it vanishes for  and we can change the integration interval to .
So, after a little rearranging, we can proceed to the result.

We make use of the Convolution Theorem to do the following examples.

Find .

We note that this is a product of two functions:

We know the inverse transforms of the factors:

Using the Convolution Theorem, we find . We compute the convolution:

One can also confirm this by carrying out a partial fraction decomposition.

Consider the initial value problem,  . The Laplace transform of this problem is given by

Solving for , we obtain

The inverse Laplace transform of the second term is easily found as ; however, the first term is more complicated.

We can use the Convolution Theorem to find the Laplace transform of the first term. We note that

g(τ) τ < 0 [0, ∞)

L[f ∗ g] = f(u)( g(τ) dτ) du∫
∞

0

∫
∞

0

e−s(τ+u)

= f(u) ( g(τ) dτ) du∫
∞

0

e−su ∫
∞

0

e−sτ

=( f(u) du)( g(τ) dτ)∫
∞

0
e−su ∫

∞

0
e−sτ

= F (s)G(s)

 Example 5.5.1

y(t) = [ ]L
−1 1

(s−1)(s−2)

Y (s) = = = F (s)G(s)
1

(s−1)(s−2)

1

s−1

1

s−2

f(t) =  and g(t) =et e2t

y(t) = (f ∗ g)(t)

y(t) = f(u)g(t−u)du∫
t

0

= du∫
t

0

eue2(t−u)

= due2t ∫
t

0

e−u

= [− +1] = −e2t et e2t et

 Example 5.5.2

+9y = 2 sin3ty′′ y(0) = 1, (0) = 0y′

( +9)Y −s =s2 6

+9s2

Y (s)

Y (s) = +
6

( +9)s2 2

s

+9s2

cos(3t)

=
6

( +9)s2 2

2

3

3

( +9)s2

3

( +9)s2
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is a product of two Laplace transforms (up to the constant factor).

Thus,

where . Evaluating this convolution product, we have

Combining this with the inverse transform of the second term of , the solution to the initial value problem is

Note that the amplitude of the solution will grow in time from the first term. You can see this in Figure . This is known as
a resonance.

Figure : Plot of the solution to Example  showing a resonance.

Find  using partial fraction decomposition.

If we look at Table , we see that the Laplace transform pairs with the denominator  are

and

So, we might consider rewriting a partial fraction decomposition as

[ ] = (f ∗ g)(t)L
−1 6

( +9)s2 2

2

3

f(t) = g(t) = sin3t

[ ]L
−1 6

( +9)s2 2
= (f ∗ g)(t)

2

3

= sin3u sin3(t−u)du
2

3
∫

t

0

= [cos 3(2u− t) −cos 3t]du
1

3
∫

t

0

=
1

3
[ sin(6u−3t) −u cos 3t]

1

6

t

0

= sin3t− t cos 3t
1

9

1

3

Y (s)

y(t) = − t cos 3t+ sin3t+cos 3t
1

3

1

9

5.5.1

5.5.1 5.5.2

 Example 5.5.3

[ ]L
−1 6

( +9)s2 2

5 ⋅ 2 ( + )s2 ω2 2

L[t sinωt] =
2ωs

( + )s2 ω2 2

L[t cosωt] =
−s2 ω2

( + )s2 ω2 2
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Combining the terms on the right over a common denominator, we find

Collecting like powers of , we have

Therefore, , and . Solving the last two equations, we find .

Using these results, we find

This is the result we had obtained in the last example using the Convolution Theorem.

This page titled 5.5: The Convolution Theorem is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

= + +
6

( +9)s2 2

A6s

( +9)s2 2

B ( −9)s2

( +9)s2 2

Cs+D

+9s2

6 = 6As+B ( −9)+(Cs+D)( +9)s2 s2

s

C +(D+B) +6As+(D−B) = 6s3 s2

C = 0,A = 0,D+B = 0 D−B =
2

3
D = −B =

1

3

= − +
6

( +9)s2 2

1

3

( −9)s2

( +9)s2 2

1

3

1

+9s2
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5.6: Systems of ODEs
LAPACE TRANSFORMS ARE ALSO USEFUL for solving systems of differential equations. We will study linear systems of
differential equation in Chapter 6. For now, we will just look at simple examples of the application of Laplace transforms.

An example of a system of two differential equations for two unknown functions,  and , is given by the pair of coupled
differential equations

Neither equation can be solved on its own without knowledge of the other unknown function. This is why they are called couple.
We will also need initial values for the system. We will choose  and .

Now, what would happen if we were to take the Laplace transform of each equation? We can apply the rules as before. Letting the
Laplace transforms of  and  be  and , respectively, we have

We have obtained a system of algebraic equations for  and . Using standard methods, like Cramer’s Method, we can solve this
system of two equations and two unknowns. First, we rewrite the equations as

Using Cramer’s (determinant) Rule for solving such systems, we have

Note that the denominator in each solution is a  determinant consisting of the coefficients of  and  in the appropriate
order. The numerators are the same determinant but with the right-hand side of the equation replacing the respective columns.

Computing the determinants, using

we have

or

We now know the Laplace transforms of the solutions, so a simple inverse Laplace transform is in order. The denominators are the
same,

We can apply a partial fraction decomposition to each function to obtain

x(t) y(t)

= 3x+4yx′

= 2x+yy′

x(0) = 1 y(0) = 0

x(t) y(t) X(t) Y (t)

sX−1

sY

= 3X+4Y ,

= 2X+Y .

X Y

(s−3)X−4Y

−2X+(s−1)Y

= 1

= 0

X = , Y =

∣

∣
∣
1

0

−4

s−1

∣

∣
∣

∣

∣
∣
s−3

−2

−4

s−1

∣

∣
∣

∣

∣
∣
s−3

−2

1

0

∣

∣
∣

∣

∣
∣
s−3

−2

−4

s−1

∣

∣
∣

2 ×2 X Y

= ad−bc
∣

∣
∣
a

c

b

d

∣

∣
∣

X = , Y =
1

(s−3)(s−1) −8

2

(s−3)(s−1) −8

X = , Y =
s−1

−4s−5s2

2

−4s−5s2

−4s−5 = (s−5)(s+1)s
2
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So, the solutions to the system of differential equations is given by

We can verify that  and .

Determine the current in Figure  for the following values:  and

The problem can be modeled by a system of differential equations. In Figure  there are three currents indicated.
Kirchoff’s Point(Junction) Rule indicates that .

X

Y

=
s−1

(s−5)(s+1)

=
s−5 +4

(s−5)(s+1)

= +
1

s+1

4

(s−5)(s+1)

= + [ − ]
1

s+1

2

3

1

s−5

1

s+1

= +
2

3

1

s−5

1

3

1

s+1

=
2

(s−5)(s+1)

= [ − ]
1

3

1

s−5

1

s+1

x(t) = t+
2

3
e

5 1

3
e

−t

y(t) = ( − )
1

3
e5t e−t

x(0) = 1 y(0) = 0

x
′

3x+4y

y
′

2x+y

= −
10

3
e

5t 1

3
e

−t

= (2 + )+ ( − )e
5t

e
−t 4

3
e

5t
e

−t

= −
10

3
e5t 1

3
e−t

= +
5

3
e

5t 1

3
e

−t

=( + )+ ( − )
4

3
e

5t 2

3
e

−t 1

3
e

5t
e

−t

= +
5

3
e

5t 1

3
e

−t

 Example 5.6.1

5.6.1 (0) = (0) = (0) = 0i1 i2 i3

v(t) ={
,v0

0,

0 ≤ t ≤ 3.0

 otherwise 

5.6.1

= +i1 i2 i3
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Figure : A circuit with two loops containing two resistors and two inductors in parallel.

In order to apply Kirchoff’s Loop Rule, we need totally the potential drops and rises. For resistors, these come from Ohm’s

Law, , and for inductors, this comes from Faraday’s Law, . For the left loop (2), we have

where the prime denotes the time derivative. For the right loop (1), we have

We can use the Point Rule to eliminate one of the currents, , leaving the model as two first order differential
equations,

Or

where  is the Heaviside function.

Taking the Laplace transform, assuming that , we obtain the algebraic system of equations

Here  and  are the Laplace transforms of  and , respectively.

As before, we use Cramer’s Rule to find the solutions.

5.6.1

v= iR v= L
di

dt

=L2i
′
3 R1i2

+ + = v(t)L1i
′
1 R1i2 R2i1

= −i2 i1 i3

− ( − )L2i
′
3 R1 i1 i3

+ ( − ) +L1i
′
1 R1 i1 i3 R2i1

= 0

= v(t)

− +L2i
′
3 R1i1 R1i3

+( + ) −L1i
′
1 R1 R2 i1 R1i3

= 0

= (1 −H(t−3))v0

H(t)

(0) = (0) = 0i1 i2

− +(s + )R1I1 L2 R1 I3

(s + + ) −L1 R1 R2 I1 R1I3

= 0

= (1 − )
v0

s
e

−3s

(s)I1 (s)I3 (t)i1 (t)i3
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The denominator in these expressions cannot be factored. So, to make any further progress, one needs specific values for the
constants. Let . and  V. Then,

Using partial fractions on the coefficient of , we find that

This gives

Taking the inverse Laplace transform, we find the solutions

=I1

∣

∣

∣
∣

0

(1 − )
v0

s
e−3s

s +L2 R1

−R1

∣

∣

∣
∣

∣

∣
∣

−R1

s + +L1 R1 R2

s +L2 R1

−R1

∣

∣
∣

=
− (s + )(1 − )v0 L2 R1 e−3s

s [ −(s + ) (s + + )]R2
1 L2 R1 L1 R1 R2

= .
(s + )(1 − )v0 L2 R1 e−3s

s [( ) +( + ( + ))s+ ]L1L2 s2 R1L1 L2 R1 R2 R1R2

=I3

∣

∣

∣
∣

−R1

s + +L1 R1 R2

0

(1 − )
v0

s
e−3s

∣

∣

∣
∣

∣

∣
∣

−R1

s + +L1 R1 R2

s +L2 R1

−R1

∣

∣
∣

=
(1 − )v0R1 e−3s

s [ −(s + ) (s + + )]R2
1 L2 R1 L1 R1 R2

= .
− (1 − )v0R1 e−3s

s [( ) +( + ( + ))s+ ]L1L2 s2 R1L1 L2 R1 R2 R1R2

= 2.00Ω, = 18.0Ω, = 48.0H, = 6.00HR1 R2 L1 L2 = 18v0

= (1 − )I1
3s+1

s(2s+1)(4s+1)
e−3s
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Figure : A plot of the currents vs time for Example  with the voltage . The taller curve
represents  and the other curve is .

In Figure , we plot the currnts  and the other curve is  is negative, indicating a flow in reverse of the direction in
Figure . Not the sudden change in  at , the time that the voltage is turned on.

One can easily change the time that the voltage is applied. Namely, if

then the solutions are given by
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Figure : A plot of the currents vs time for Example  for the voltage given by . The taller
curve represents  and the other curve is 

A plot of the currents for  are shown in Figure .
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5.7: Problems

Problems
1. Find the Laplace transform of the following functions:

a. 
b. .
c. .
d. .
e. .
f. .
g. .
h. .
i. .
j.  and write the answer in the simplest form.

2. Find the inverse Laplace transform of the following functions using the properties of Laplace transforms and the table of
Laplace transform pairs.

a. 

b. .

c. .

d. .

e. .

f. 

g. 

h. .

3. Use Laplace transforms to solve the following initial value problems. Where possible, describe the solution behavior in terms of
oscillation and decay.
a. 
b. .
c. .
d. .
e. .

4. Use Laplace transforms to solve the following initial value problems. Where possible, describe the solution behavior in terms of
oscillation and decay.
a. 

b. . 

c. .
d. , where .

5. For the following problems, draw the given function and find the Laplace transform in closed form.
a. .
b. .

c. 

f(t) = 9 −7t2

f(t) = e5t−3

f(t) = cos 7t

f(t) = sin2te4t

f(t) = (t+cosh t)e2t

f(t) = H(t−1)t2

f(t)=\left\{\begin{array}{cl}\sin t, & t<4 \pi, \\[4pt] \sin t+\cos t, & t>4 \pi .\end{array}\right

f(t) = (t−u sinudu∫ t

0
)2

f(t) = coshudu∫ t

0

f(t) = (t+5 + t cos 3t)2 e2t

F (s) = +
18

s3

7

s

F (s) = −
1

s−5

2

+4s2

F (s) =
s+1

+1s2

F (s) =
3

+2s+2s2

F (s) =
1

(s−1)2

F (s) =
e−3s

−1s2

F (s) =
1

+4s−5s2

F (s) =
s+3

+8s+17s2

−5 +6y = 0, y(0) = 2, (0) = 0y′′ y′ y′

+2 +5y = 0, y(0) = 1, (0) = 0y′′ y′ y′

−y = t , y(0) = 0, (0) = 1y′′ e2t y′

−3 −4y = , y(0) = 2, (0) = 1y′′ y′ t2 y′

−3 −2y = , y(0) = 1, (0) = 0y′′′ y′ et y′

+4y = δ(t−1), y(0) = 3, (0) = 0y′′ y′

−4 +13y = δ(t−1), y(0) = 0, (0) = 2y′′ y′ y′

+6 +18y = 2H(π− t), y(0) = 0, (0) = 0y′′ y′ y′

+4y = f(t), y(0) = 1, (0) = 0y′′ y′ f(t)=\left\{\begin{array}{cc}1, & 0<t<1 \\[4pt] 0, & t>1\end{array}\right

f(t) = 1 + (−1 H(t−n)∑∞
n=1 )n

f(t) = [H(t−2n+1) −H(t−2n)]∑∞
n=0
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6. The period, , and the function defined on its first period are given. Sketch several periods of these periodic functions. Make
use of the periodicity to find the Laplace transform of each function.

a. .
b. .
c. ..
d. .
e. .

7. Compute the convolution  (in the Laplace transform sense) and its corresponding Laplace transform  for the
following functions:
a. 
b. .
c. .

d. .

8. Use the Convolution Theorem to compute the inverse transform of the following:

a. .

b. .

c. .

9. Find the inverse Laplace transform in two different ways: (i) Use tables. (ii) Use the Convolution Theorem.

a. .

b. .

c. .

d. .

e. .

10. A linear Volterra integral equation, introduced by Vito Volterra (  , is of the form

where  is an unknown function and  and the "kernel," , are given functions. The integral is in the form of a
convolution integral and such equations can be solved using Laplace transforms. Solve the following Volterra integral equations.

a. 
b. .
c. .
d. . Note: This is a Volterra integral equation of the first kind.

11. Use Laplace transforms to convert the following system of differential equations into an algebraic system and find the solution
of the differential equations.

f(t) = (t−2n)[H(t−2n) −H(t−2n−1)]∑
n=0

∞

+ (2n+2 − t)[H(t−2n−1) −H(t−2n−2)]∑
n=0

∞

T

f(t) = sin t,T = 2π

f(t) = t,T = 1

f(t)=\left\{\begin{array}{cl}t, & 0 \leq t \leq 1, \\[4pt] 2-t, & 1 \leq t \leq 2,\end{array} T=2\right
f(t) = t[H(t) −H(t−1)],T = 2

f(t) = sin t[H(t) −H(t−π)],T = π

(f ∗ g)(t) L[f ∗ g]

f(t) = , g(t) =t2 t3

f(t) = , g(t) = cos 2tt2

f(t) = 3 −2t+1, g(t) =t2 e−3t

f(t) = δ(t− ) , g(t) = sin5t
π

4

F (s) =
2

( +1)s2 s2

F (s) =
e−3s

s2

F (s) =
1

s ( +2s+5)s2

F (s) =
1

(s+4s3 )2

F (s) =
1

−4s−5s2

F (s) =
s+3

+8s+17s2

F (s) =
s+1

(s−2 (s+4))2

F (s) =
+8s−3s2

( +2s+1) ( +1)s2 s2

1860−1940)

y(t) = f(t) + K(t−τ)y(τ)dτ∫
t

0

y(t) f(t) K(t)

y(t) = + cos(t−τ)y(τ)dτe−t ∫ t

0

y(t) = t− (t−τ)y(τ)dτ∫ t

0

y(t) = t+2 y(τ)dτ∫ t

0
et−τ

sin t = y(τ)dτ∫ t

0 et−τ
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12. Use Laplace transforms to convert the following nonhomogeneous systems of differential equations into an algebraic system
and find the solutions of the differential equations.

a. 

b. 

c. 

13. Redo Example  using the values  . and  in 
. Plot the currents as a function of time for several values of .

This page titled 5.7: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

x′′

y′′

= 3x−6y,

= x+y,

x(0)

y

= 1,

(0) = 0,

(0)x′

(0)y′

= 0

= 0

= 2x+3y+2 sin2t, x(0) = 1x′

= −3x+2y, y(0) = 0y′

= −4x−y+ , x(0) = 2x′ e−t

= x−2y+2 , y(0) = −1y′ e−3t

= x−y+2 cos t, x(0) = 3x′

= x+y−3 sin t, y(0) = 2y′
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CHAPTER OVERVIEW

6: Linear Systems
"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein ( 
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6.1: Linear Systems

6.1.1: Coupled Oscillators

IN SECTION  WE SAW THAT the numerical solution of second order equations, or higher, can be cast into systems of first
order equations. Such systems are typically coupled in the sense that the solution of at least one of the equations in the system
depends on knowing one of the other solutions in the system. In many physical systems this coupling takes place naturally. We will
introduce a simple model in this section to illustrate the coupling of simple oscillators.

There are many problems in physics that result in systems of equations. This is because the most basic law of physics is given by
Newton’s Second Law, which states that if a body experiences a net force, it will accelerate. Thus,

Figure : Spring-Mass system.

Since  we have a system of second order differential equations in general for three dimensional problems, or one second
order differential equation for one dimensional problems for a single mass.

We have already seen the simple problem of a mass on a spring as shown in Figure 2.1. Recall that the net force in this case is the
restoring force of the spring given by Hooke’s Law,

where  is the spring constant and  is the elongation of the spring. When the spring constant is positive, the spring force is
negative and when the spring constant is negative the spring force is positive. The equation for simple harmonic motion for the
mass-spring system was found to be given by

This second order equation can be written as a system of two first order equations in terms of the unknown position and velocity.
We first set . Noting that , we rewrite the second order equation in terms of  and . Thus, we have

One can look at more complicated spring-mass systems. Consider two blocks attached with two springs as in Figure . In this
case we apply Newton’s second law for each block. We will designate the elongations of each spring from equilibrium as  and 

. These are shown in Figure .

For mass , the forces acting on it are due to each spring. The first spring with spring constant  provides a force on  of 
. The second spring is stretched, or compressed, based upon the relative locations of the two masses. So, the second spring

will exert a force on  of .

3.5

∑F = ma

6.1.1

a = ẍ

= −kxFS

k > 0 x

m +kx = 0ẍ

y = ẋ =ẍ ẏ x ẏ

= yẋ

= − xẏ
k

m

(6.1.1)

6.1.2
x1

x2 6.1.2

m1 k1 m1

−k1x1

m1 ( − )k2 x2 x1
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Figure : System of two masses and two springs.

Similarly, the only force acting directly on mass  is provided by the restoring force from spring 2 . So, that force is given by 
. The reader should think about the signs in each case.

Putting this all together, we apply Newton’s Second Law to both masses. We obtain the two equations

Thus, we see that we have a coupled system of two second order differential equations. Each equation depends on the unknowns 
and .

One can rewrite this system of two second order equations as a system of four first order equations by letting  and 
. This leads to the system

As we will see in the next chapter, this system can be written more compactly in matrix form:

We can solve this system of first order equations using matrix methods. However, we will first need to recall a few things from
linear algebra. This will be done in the next chapter. For now, we will return to simpler systems and explore the behavior of typical
solutions in planar systems.

6.1.2: Planar Systems

We NOW CONSIDER EXAMPLES of solving a coupled system of first order differential equations in the plane. We will focus on
the theory of linear systems with constant coefficients. Understanding these simple systems will help in the study of nonlinear
systems, which contain much more interesting behaviors, such as the onset of chaos. In the next chapter we will return to these
systems and describe a matrix approach to obtaining the solutions.

A general form for first order systems in the plane is given by a system of two equations for unknowns  and  :

6.1.2

m2

− ( − )k2 x2 x1

= − + ( − )m1ẍ1 k1x1 k2 x2 x1

= − ( − )m2ẍ2 k2 x2 x1

x1

x2

=x3 ẋ1

=x4 ẋ2

=ẋ1 x3

ẋ2

ẋ3

ẋ4

= x4

= − + ( − )
k1

m1
x1

k2

m1
x2 x1

= − ( − )
k2

m2
x2 x1

=
d

dt

⎛

⎝

⎜⎜
⎜⎜
⎜

x1

x2

x3

x4

⎞

⎠

⎟⎟
⎟⎟
⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜

0

0

−
+k1 k2

m1

k2

m2

0

0

k2

m1

−
k2

m2

1

0

0

0

0

1

0

0

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟

⎛

⎝

⎜⎜
⎜⎜
⎜

x1

x2

x3

x4

⎞

⎠

⎟⎟
⎟⎟
⎟

x(t) y(t)

(t) = P (x, y, t)x′

(t) = Q(x, y, t)y′
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An autonomous system is one in which there is no explicit time dependence:

Autonomous systems.

Otherwise the system is called nonautonomous.

A linear system takes the form

A homogeneous linear system results when  and .

A linear, constant coefficient system of first order differential equations is given by

A linear, homogeneous system of constant coefficient first order differential equations in the plane.

We will focus on linear, homogeneous systems of constant coefficient first order differential equations:

As we will see later, such systems can result by a simple translation of the unknown functions. These equations are said to be
coupled if either  or .

We begin by noting that the system Equation  can be rewritten as a second order constant coefficient linear differential
equation, which we already know how to solve. We differentiate the first equation in system Equation  and systematically

replace occurrences of  and , since we also know from the first equation that . Thus, we have

Rewriting the last line, we have

This is a linear, homogeneous, constant coefficient ordinary differential equation. We know that we can solve this by first looking
at the roots of the characteristic equation

and writing down the appropriate general solution for . Then we can find  using

Equation :

We now demonstrate this for a specific example.

Consider the system of differential equations

(t) = P (x, y)x′

(t) = Q(x, y).y′

= a(t)x+b(t)y+e(t)x′

= c(t)x+d(t)y+f(t)y′

e(t) = 0 f(t) = 0

= ax+by+ex′

= cx+dy+fy′

= ax+byx′

= cx+dy.y′
(6.1.2)

b ≠ 0 c ≠ 0

6.1.9
6.1.9

y y′ y = ( −ax)
1

b
x′

x′′ = a +bx′ y′

= a +b(cx+dy)x′

= a +bcx+d ( −ax)x′ x′

−(a+d) +(ad−bc)x = 0x′′ x′

−(a+d)r+ad−bc = 0r2

x(t) y(t)

6.1.9

y = ( −ax)
1

b
x′

 Example 6.1.1
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Carrying out the above outlined steps, we have that . This can be shown as follows:

The resulting differential equation has a characteristic equation of . The roots of this equation are .
Therefore, . But, we still need . From the first equation of the system we have

Thus, the solution to the system is

Sometimes one needs initial conditions. For these systems we would specify conditions like  and . These
would allow the determination of the arbitrary constants as before.

Solving systems with initial conditions.

Solve

given .

We already have the general solution of this system in Equation . Inserting the initial conditions, we have

Solving for  and  gives  and . Therefore, the solution of the initial value problem is

6.1.3: Equilibrium Solutions and Nearby Behaviors
IN STUDYING SYSTEMS OF DIFFERENTIAL EQUATIONS, it is often useful to study the behavior of solutions without
obtaining an algebraic form for the solution. This is done by exploring equilibrium solutions and solutions nearby equilibrium
solutions. Such techniques will be seen to be useful later in studying nonlinear systems.

We begin this section by studying equilibrium solutions of system Equation . For equilibrium solutions the system does not
change in time. Therefore, equilibrium solutions satisfy the equations  and . Of course, this can only happen for
constant solutions. Let  and  be the (constant) equilibrium solutions. Then,  and  must satisfy the system

= −x+6yx′

= x−2yy′

+3 −4x = 0x′′ x′

x′′ = − +6x′ y′

= − +6(x−2y)x′

= − +6x−12( )x′ +xx′

6

= −3 +4xx′

+3r−4 = 0r2 r = 1, −4
x(t) = +c1e

t c2e
−4t y(t)

y(t) = ( +x) = (2 −3 )
1

6
x′ 1

6
c1e

t c2e
−4t

x(t) = +c1e
t c2e

−4t

y(t) = −
1

3
c1e

t 1

2
c2e

−4t

x(0) = x0 y(0) = y0

 Example 6.1.2

= −x+6yx′

= x−2yy′

x(0) = 2, y(0) = 0

6.1.15

2 = +c1 c2

0 = −
1

3
c1

1

2
c2

c1 c2 = 6/5c1 = 4/5c2

x(t) = (3 +2 )
2

5
et e−4t

y(t) = ( − )
2

5
et e−4t

6.1.8
= 0x′ = 0y′

x0 y0 x0 y0
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Equilibrium solutions.

This is a linear system of nonhomogeneous algebraic equations. One only has a unique solution when the determinant of the system
is not zero, i.e., . Using Cramer’s (determinant) Rule for solving such systems, we have

If the system is homogeneous, , then we have that the origin is the equilibrium solution; i.e., . Often we
will have this case since one can always make a change of coordinates from  to  by  and . Then, 

.

Next we are interested in the behavior of solutions near the equilibrium solutions. Later this behavior will be useful in analyzing
more complicated nonlinear systems. We will look at some simple systems that are readily solved.

Consider the system

This is a simple uncoupled system. Each equation is simply solved to give

In this case we see that all solutions tend towards the equilibrium point, . This will be called a stable node, or a sink.

Before looking at other types of solutions, we will explore the stable node in the above example. There are several methods of
looking at the behavior of solutions. We can look at solution plots of the dependent versus the independent variables, or we can
look in the -plane at the parametric curves .

Figure : Plots of solutions of Example  for several initial conditions.

Solution Plots: One can plot each solution as a function of  given a set of initial conditions. Examples are shown in Figure 
for several initial conditions. Note that the solutions decay for large . Special cases result for various initial conditions. Note that
for  and . (Of course, one can provide initial conditions at any . It is generally easier to pick 
in our general explanations.) If we pick an initial condition with , then  for all . One obtains similar results when
setting .

0

0

= a +b +ex0 y0

= c +d +fx0 y0

ad−bc ≠ 0

= − , = −x0

∣

∣
∣
e

f

b

d

∣

∣
∣

∣

∣
∣
a

c

b

d

∣

∣
∣

y0

∣

∣
∣
a

c

e

f

∣

∣
∣

∣

∣
∣
a

c

b

d

∣

∣
∣

e = f = 0 ( , ) = (0, 0)x0 y0

(x, y) (u, v) u = x−x0 v= y−y0

= = 0u0 v0

 Example : Stable Node (sink)6.1.3

= −2xx′

= −yy′

x(t) =  and y(t) =c1e
−2t c2e

−t

(0, 0)

xy (x(t), y(t))

6.1.3 6.1.3

t 6.1.3
t

t = 0, x(0) = c1 y(0) = c2 t = t0 t = 0
= 0c1 x(t) = 0 t

y(0) = 0
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Phase Portrait: There are other types of plots which can provide additional information about the solutions even if we cannot find
the exact solutions as we can for these simple examples. In particular, one can consider the solutions  and  as the
coordinates along a parameterized path, or curve, in the plane:  Such curves are called trajectories or orbits. The 

-plane is called the phase plane and a collection of such orbits gives a phase portrait for the family of solutions of the given
system.

One method for determining the equations of the orbits in the phase plane is to eliminate the parameter  between the known
solutions to get a relationship between  and . Since the solutions are known for the last example, we can do this, since the
solutions are known. In particular, we have

Another way to obtain information about the orbits comes from noting that the slopes of the orbits in the -plane are given by 
. For autonomous systems, we can write this slope just in terms of  and . This leads to a first order differential equation,

which possibly could be solved analytically or numerically.

First we will obtain the orbits for Example  by solving the corresponding slope equation. Recall that for trajectories defined
parametrically by  and , we have from the Chain Rule for  that

Therefore,

The Slope of a parametric curve.

For the system in Equation  we use Equation  to obtain the equation for the slope at a point on the orbit:

The general solution of this first order differential equation is found using 
separation of variables as  for  an arbitrary constant. Plots of these solutions in the phase plane are given in Figure 

. [Note that this is the same form for the orbits that we had obtained above by eliminating  from the solution of the system.]

Figure : Orbits for Example .

Once one has solutions to differential equations, we often are interested in the long time behavior of the solutions. Given a
particular initial condition , how does the solution behave as time increases? For orbits near an equilibrium solution, do the
solutions tend towards, or away from, the equilibrium point? The answer is obvious when one has the exact solutions  and 

. However, this is not always the case.

Let’s consider the above example for initial conditions in the first quadrant of the phase plane. For a point in the first quadrant we
have that

x(t) y(t)
r = (x(t), y(t))

xy

t

x y

x = = ≡ A .c1e
−2t c1( )

y

c2

2

y2

xy

dy/dx x y

6.1.3
x = x(t) y = y(t) y = y(x(t))

=
dy

dt

dy

dx

dx

dt

=
dy

dx

dy

dt

dx

dt

6.1.21 6.1.22

=
dy

dx

y

2x

x = Ay2 A

6.1.4 t

6.1.4 6.1.3

( , )x0 y0

x(t)
y(t)
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Figure : Sketch of tangent vectors using Example .

Figure : Direction field for Example 

Figure : Phase portrait for Example . This is a stable node, or sink.

meaning that as  get more negative. Similarly,

indicating that  is also getting smaller for this problem. Thus, these orbits tend towards the origin as . This qualitative
information was obtained without relying on the known solutions to the problem.

Direction Fields: Another way to determine the behavior of the solutions of the system of differential equations is to draw the
direction field. A direction field is a vector field in which one plots arrows in the direction of tangents to the orbits at selected
points in the plane. This is done because the slopes of the tangent lines are given by . For the general system Equation ,
the slope is

This is a first order differential equation which can be solved as we show in the following examples.

dx/dt = −2x < 0

6.1.5 6.1.3

6.1.6 6.1.3

6.1.7 6.1.3

t → ∞, x(t)

dy/dt = −y < 0

y(t) t → ∞

dy/dx 6.1.9

=
dy

dx

cx+dy

ax+by
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Draw the direction field for Example .

We can use software to draw direction fields. However, one can sketch these fields by hand. We have that the slope of the
tangent at this point is given by

For each point in the plane one draws a piece of tangent line with this slope. In Figure  we show a few of these. For 
 the slope is . So, we draw an arrow with slope  at this point. From system Equation ,

we have that  and  are both negative at this point. Therefore, the vector points down and to the left.

We can do this for several points, as shown in Figure . Sometimes one can quickly sketch vectors with the same slope.
For this example, when , the slope is zero and when  the slope is infinite. So, several vectors can be provided. Such

vectors are tangent to curves known as isoclines in which  constant.

It is often difficult to provide an accurate sketch of a direction field. Computer software can be used to provide a better rendition.
For Example  the direction field is shown in Figure . Looking at this direction field, one can begin to "see" the orbits by
following the tangent vectors.

Of course, one can superimpose the orbits on the direction field. This is shown in Figure . Are these the patterns you saw in
Figure ?

In this example we see all orbits "flow" towards the origin, or equilibrium point. Again, this is an example of what is called a stable
node or a sink. (Imagine what happens to the water in a sink when the drain is unplugged.)

This is another uncoupled system. The solutions are again simply gotten by integration. We have that  and 
. Here we have that  decays as  gets large and  increases as  gets large. In particular, if one picks initial conditions

with , then orbits follow the -axis towards the origin. For initial points with , orbits originating on the -axis will
flow away from the origin. Of course, in these cases the origin is an equilibrium point and once at equilibrium, one remains there.

In fact, there is only one line on which to pick initial conditions such that the orbit leads towards the equilibrium point. No matter
how small  is, sooner, or later, the exponential growth term will dominate the solution. One can see this behavior in Figure 

\).

Consider the system

Similar to the first example, we can look at plots of solutions orbits in the phase plane. These are given by Figures 
. The orbits can be obtained from the system as

The solution is . For different values of  we obtain a family of hyperbolae. These are the same curves one might

obtain for the level curves of a surface known as a saddle surface, . Thus, this type of equilibrium point is classified as a
saddle point. From the phase portrait we can verify that there are many orbits that lead away from the origin (equilibrium
point), but there is one line of initial conditions that leads to the origin and that is the -axis. In this case, the line of initial
conditions is given by the -axis.

 Example 6.1.4

6.1.3

= =
dy

dx

−y

−2x

y

2x

6.1.5
(x, y) = (1, 1) dy/dx = 1/2 1/2 6.1.21

x′ y′

6.1.5
y = 0 x = 0

=
dy

dx

6.1.3 6.1.6

6.1.7
6.1.6

x(t) = c1e
−t

y(t) = c2e
t x t y t

= 0c2 x = 0c1 y

c2

6.1.8

 Example : Saddle6.1.5

= −xx′

= y.y′

6.1.8 −6.1.9

= = −
dy

dx

dy/dt

dx/dt

y

x

y =
A

x
A ≠ 0

z = xy

x

x
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Figure : Plots of solutions of Example  for several initial conditions.

Figure : Phase portrait for Example . This is a saddle.

This example is similar to Example . The solutions are obtained by replacing  with . The solutions, orbits, and
direction fields can be seen in Figures . This is once again a node, but all orbits lead away from the equilibrium
point. It is called an unstable node or a source.

This system is a simple, coupled system. Neither equation can be solved without some information about the other unknown
function. However, we can differentiate the first equation and use the second equation to obtain

We recognize this equation as one that appears in the study of simple harmonic motion. The solutions are pure sinusoidal
oscillations:

In the phase plane the trajectories can be determined either by looking at the direction field, or solving the first order equation

Performing a separation of variables and integrating, we find that

6.1.8 6.1.5

6.1.9 6.1.5

 Example : Unstable Node (source)6.1.6

= 2xx′

= y.y′

6.1.3 t −t

6.1.10 −6.1.11

 Example : Center6.1.7

= yx′

= −xy′

+x = 0x′′

x(t) = cos t+ sin t, y(t) = − sin t+ cos tc1 c2 c1 c2

= −
dy

dx

x

y
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Thus, we have a family of circles for . (Can you prove this using the general solution?) Looking at the results
graphically in Figures  confirms this result. This type of point is called a center.

Figure : Plots of solutions of Example  for several initial conditions.

Figure : Phase portrait for Example , an unstable node or source.

Figure : Plots of solutions of Example  for several initial conditions.

+ = Cx2 y2

C > 0
6.1.12 −6.1.13

6.1.10 6.1.6

6.1.11 6.1.6

6.1.12 6.1.7
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Figure : Phase portrait for Example , a center.

In this example, we will see an additional set of behaviors of equilibrium points in planar systems. We have added one term, 
, to the system in Example . We will consider the effects for two specific values of the parameter: . The

resulting behaviors are shown in the Figures 6.15-6.18. We see orbits that look like spirals. These orbits are stable and unstable
spirals (or foci, the plural of focus.)

We can understand these behaviors by once again relating the system of first order differential equations to a second order
differential equation. Using the usual method for obtaining a second order equation form a system, we find that  satisfies
the differential equation

We recall from our first course that this is a form of damped simple harmonic motion. The characteristic equation is 
. The solution of this quadratic equation is

There are five special cases to consider as shown in the below classification.

Figure : Plots of solutions of Example  for several initial conditions, .

6.1.13 6.1.7

 Example : Focus (spiral)6.1.8

x′

y′

= αx+y

= −x

αx 6.1.7 α = 0.1, −0.2

x(t)

−α +x = 0x′′ x′

−αr+1 = 0r2

r =
α± −4α2

− −−−−
√

2

6.1.14 6.1.8 α = −0.2
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Figure : Plots of solutions of Extion is coupled. ample  for several initial conditions, .

Figure : Phase portrait for . This is a degenerate node.

Classification of Solutions of 

1. . There is one real solution. This case is called critical damping since the solution  leads to exponential decay.
The solution is .

2. . There are two real, negative solutions, . The solution is . In this case we
have what is called overdamped motion. There are no oscillations

3. . There are two complex conjugate solutions  with real part less than zero and . The

solution is  . Since , this consists of a decaying exponential times oscillations. This is
often called an underdamped oscillation.

4. . This leads to simple harmonic motion.
5. . This is similar to the underdamped case, except . The solutions are growing oscillations.
6. . There is one real solution. The solution is . It leads to unbounded growth in time.
7. For . There are two real, positive solutions . The solution is , which grows in time.

For  the solutions are losing energy, so the solutions can oscillate with a diminishing amplitude. (See Figure 6.14.) For 
, there is a growth in the amplitude, which is not typical. (See Figure 6.15.) Of course, there can be overdamped motion if the

magnitude of  is too large.

For this example, we will write out the solutions. It is a coupled system for which only the second equation is coupled.

There are two possible approaches:

6.1.15 6.1.8 α = 0.1

6.1.16 6.1.9

−α +x = 0x′′ x′

α = −2 r = −1
x(t) = ( + t)c1 c2 e−t

α < −2 r = −μ, −v,μ, v> 0 x(t) = +c1e
−μt c2e

−vt

−2 < α < 0 r = α/2 ± iβ β =
4 −α2
− −−−−

√

2
x(t) = ( cosβt+ sinβt)c1 c2 eαt/2 α < 0

α = 0
0 < α < 2 α > 0
α = 2 x(t) = ( + t)c1 c2 et

α > 2 r = μ, v> 0 x(t) = +c1eμt c2evt

α < 0
α > 0

α

 Example : Degenerate Node6.1.9

= −xx′

= −2x−yy′
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a. We could solve the first equation to this solution into the second equation, we

This is a relatively simple linear first order equation for . The integrating factor is . The solution is found as 
. .

b. Another method would be to proceed to rewrite this as a second order equation. Computing  does not get us very far. So,
we look at

Therefore, satisfies

The characteristic equation has one real root, . So, we write

This is a stable degenerate node. Combining this with the solution , we can show that  as
before.

In Figure  we see several orbits in this system. It differs from the stable node show in Figure  in that there is only
one direction along which the orbits approach the origin instead of two. If one picks , then  and .
This leads to orbits running along the -axis as seen in the figure.

Figure : Phase portrait for Example  with . This is a stable focus, or spiral.

Figure : Phase portrait for Example . This is a degenerate node.

+y = −2y′ c1e
−t

y = y(t) μ = et

y(t)=\left(c_{2}-\right 2 t)c1 e−t

x′′

= −2 −y′′ x′ y′

= 2x−y′

= −2 −yy′

y

+2 +y = 0y′′ y′

r = −1

y(t) = ( + t)k1 k2 e−t

x(t) = c1e
−t y(t) = ( −2 t)c2 c1 e−t

6.1.16 6.1.4
= 0c1 x(t) = 0 y(t) = c2e−t

y

6.1.17 6.1.8 α = −0.2

6.1.18 6.1.9
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Figure : Plots of direction field of Example .

In this last example, we have a coupled set of equations. We rewrite it as a second order differential equation:

So, the second order equation is

and the characteristic equation is . This gives the general solution as

and thus

In Figure 6.19 we show the direction field. The constant slope field seen in this example is confirmed by a simple computation:

Furthermore, looking at initial conditions with , we have at ,

Therefore, points on this line remain on this line forever,  . This line of fixed points is called a line of
equilibria.

6.1.4: Polar Representation of Spirals
IN THE EXAMPLES WITH A CENTER OR A SPIRAL, one might be able to write the solutions in polar coordinates. Recall that
a point in the plane can be described by either Cartesian  or polar  coordinates. Given the polar form, one can find the
Cartesian components using

Given the Cartesian coordinates, one can find the polar coordinates using

6.1.19 6.1.10

 Example : A Line of Equilibria, Zero Root6.1.10

= 2x−yx′

= −2x+yy′

x′′ = 2 −x′ y′

= 2 −(−2x+y)x′

= 2 +2x+( −2x) = 3x′ x′ x′

−3 = 0x′′ x′

0 = r(r−3)

x(t) = +c1 c2e
3t

y = 2x− = 2 ( + t)−(3 ) = 2 −x′ c1 c2e
3 c2e

3t c1 c2e
3t

= = −1.
dy

dx

−2x+y

2x−y

y = 2x t = 0

2 − = 2 ( + ) ⇒ = 0c1 c2 c1 c2 c2

(x, y) = ( , 2 )c1 c1

(x, y) (r, θ)

x = r cosθ and y = r sinθ
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Since  and  are functions of , then naturally we can think of  and  as functions of . Converting a system of equations in the
plane for  and  to polar form requires knowing  and . So, we first find expressions for  and  in terms of  and .

Differentiating the first equation in Equation  gives

Inserting the expressions for  and  from system , we have

In some cases this may be written entirely in terms of  s. Similarly, we have that

which the reader can prove for homework.

In summary, when converting first order equations from rectangular to polar form, one needs the relations below.

Derivatives of Polar Variables

Rewrite the following system in the resulting system.

We first compute  and  :

This leads to simpler system

This system is uncoupled. The second equation in this system indicates that we traverse the orbit at a constant rate in the
clockwise direction. Solving these equations, we have that  . Eliminating  between these
solutions, we finally find the polar equation of the orbits:

If you graph this for , you will get stable or unstable spirals.

Consider the specific system

In order to convert this system into polar form, we compute

= +  and  tanθ =r2 x2 y2 y

x

x y t r θ t

x′ y′ r′ θ′ r′ θ′ x′ y′

6.1.31

r = x +y .r′ x′ y′

x′ y′ 6.1.9

r = x(ax+by) +y(cx+dy)r′

r′

=θ′ x −yy′ x′

r2

r′

θ′

=
x +yx′ y′

r

=
x −yy′ x′

r2

 Example 6.1.11

x′

y′

= ax+by

= −bx+ay.

r′ θ′

r = x +y = x(ax+by) +y(−bx+ay) = ar′ x′ y′ r2

= x −y = x(−bx+ay) −y(ax+by) = −b .r2θ′ y′ x′ r2

r′

θ′

= ar

= −b

r(t) = , θ(t) =r0eat −btθ0 t

r = r0e
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This leads to simpler system

Solving these equations yields

Eliminating  from this solution gives the orbits in the phase plane, .

A more complicated example arises for a nonlinear system of differential equations. Consider the following example.

Transforming to polar coordinates, one can show that in order to convert this system into polar form, we compute

This uncoupled system can be solved and this is left to the reader.
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= rr′

= 1.θ′

r(t) = , θ(t) = t+r0e
t θ0

t r(θ) = r0e
θ−θ0
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6.2: Applications
IN THIS SECTION WE WILL DESCRIBE SOME SIMPLE APPLICATIONS leading to systems of differential equations which
can be solved using the methods in this chapter. These systems are left for homework problems and the as the start of further
explorations for student projects.
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6.2.1: Mass-Spring Systems
THE FIRST EXAMPLES THAT WE HAD SEEN involved masses on springs. Recall that for a simple mass on a spring we
studied simple harmonic motion, which is governed by the equation

This second order equation can be written as two first order equations

or

where . The coefficient matrix for this system is

Figure : System of two masses and two springs.

We also looked at the system of two masses and two springs as shown in Figure . The equations governing the motion of the
masses is

We can rewrite this system as four first order equations

m +kx = 0ẍ

= yẋ

= − xẏ
k

m

= yẋ

= − xẏ ω2

=ω2 k

m

A =( )
0

−ω2

1

0

6.2.1.1

6.20

= − + ( − )m1ẍ1 k1x1 k2 x2 x1

= − ( − )m2ẍ2 k2 x2 x1
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The coefficient matrix for this system is

We can study this system for specific values of the constants using the methods covered in the last sections.

Writing the spring-block system as a second order vector system.

This system can then be written compactly as

where

This system can be solved by guessing a form for the solution. We could guess

Or

where  are phase shifts determined from initial conditions.

Inserting  into the system gives

This is a homogeneous system. It is a generalized eigenvalue problem for eigenvalues  and eigenvectors a. We solve this in a
similar way to the standard matrix eigenvalue problems. The eigenvalue equation is found as

Once the eigenvalues are found, then one determines the eigenvectors and constructs the solution.

Let  and . Then, we have to solve the system

ẋ1

ẋ2

ẋ3

ẋ4
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0

0

m2

ẍ1

ẍ2
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−k2
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M = −Kx,ẍ

M =( ) , K =( )
m1

0

0

m2

+k1 k2

−k2

−k2

k2

x = aeiωt

x =( )
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δi
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The eigenvalue equation is given by

Solving this quadratic equation for , we have

For positive values of , one can show that

The eigenvectors can be found for each eigenvalue by solving the homogeneous system

The eigenvectors are given by

We are now ready to construct the real solutions to the problem. Similar to solving two first order systems with complex roots,
we take the real and imaginary parts and take a linear combination of the solutions. In this problem there are four terms, giving
the solution in the form

where the  s are the eigenvalues and the a’s are the corresponding eigenvectors. The constants are determined from the initial
conditions,  and .
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6.2.2: Circuits
IN THE LAST CHAPTER WE INVESTIGATED SIMPLE SERIES LRC CIRCUITS. More complicated circuits are possible by
looking at parallel connections, or other combinations, of resistors, capacitors and inductors. This results in several equations for
each loop in the circuit, leading to larger systems of differential equations. An example of another circuit setup is shown in Figure 

. This is not a problem that can be covered in the first year physics course.

There are two loops, indicated in Figure  as traversed clockwise. For each loop we need to apply Kirchoff’s Loop Rule.
There are three oriented currents, labeled . Corresponding to each current is a changing charge,  such that

We have for loop one

and for loop two

Figure : A circuit with two loops containing several different circuit elements.

6.2.2.1

6.2.2.2

, i = 1, 2, 3Ii qi

= , i = 1, 2, 3Ii
dqi

dt

+ = V (t)I1R1
q2

C

+L = .I3R2
dI3

dt
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C
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Figure : The previous parallel circuit with the directions indicated for traversing the loops in Kirchoff’s Laws.

There are three unknown functions for the charge. Once we know the charge functions, differentiation will yield the three currents.
However, we only have two equations. We need a third equation. This equation is found from Kirchoff’s Point (Junction) Rule.

Consider the points A and B in Figure . Any charge (current) entering these junctions must be the same as the total charge
(current) leaving the junctions. For point  we have

Or

Equations , and  form a coupled system of differential equations for this problem. There are both first and
second order derivatives involved. We can write the whole system in terms of charges as

The question is whether, or not, we can write this as a system of first order differential equations. Since there is only one second
order derivative, we can introduce the new variable . The first equation can be solved for . The third equation can be
solved for  with appropriate substitutions for the other terms.  is gotten from the definition of  and the second equation can
be solved for  and substitutions made to obtain the system

So, we have a nonhomogeneous first order system of differential equations.

6.2.2.2

6.2.2.2
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= +I1 I2 I3

= +q̇ 1 q̇ 2 q̇ 3
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+L =R2 q̇ 3 q̈ 3
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6.2.3: Mixture Problems
There are many types of mixture problems. Such problems are standard in a first course on differential equations as examples of
first order differential equations. Typically these examples consist of a tank of brine, water containing a specific amount of salt with
pure water entering and the mixture leaving, or the flow of a pollutant into, or out of, a lake. We first saw such problems in Chapter

.

In general one has a rate of flow of some concentration of mixture entering a region and a mixture leaving the region. The goal is to
determine how much stuff is in the region at a given time. This is governed by the equation

This can be generalized to the case of two interconnected tanks. We will provide an example, but first we review the single tank
problem from Chapter .

A 50 gallon tank of pure water has a brine mixture with concentration of 2 pounds per gallon entering at the rate of 5 gallons
per minute. [See Figure .] At the same time the well-mixed contents drain out at the rate of 5 gallons per minute. Find
the amount of salt in the tank at time . In all such problems one assumes that the solution is well mixed at each instant of time.

Figure : A typical mixing problem.

Let  be the amount of salt at time . Then the rate at which the salt in the tank increases is due to the amount of salt
entering the tank less that leaving the tank. To figure out these rates, one notes that  has units of pounds per minute. The
amount of salt entering per minute is given by the product of the entering concentration times the rate at which the brine enters.
This gives the correct units:

Similarly, one can determine the rate out as

Thus, we have

This equation is easily solved using the methods for first order equations.

1

Rate of change of substance = Rate In−Rate Out.

1

 Example : Single Tank Problem6.2.3.1
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t
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One has two tanks connected together, labeled  and , as shown in Figure .

Figure : The two tank problem.

Let tank X initially have 100 gallons of brine made with 100 pounds of salt. Tank Y initially has 100 gallons of pure water.
Pure water is pumped into tank  at a rate of  gallons per minute. Some of the mixture of brine and pure water flows into
tank  at 3 gallons per minute. To keep the tank levels the same, one gallon of the  mixture flows back into  at a rate
of one gallon per minute and 2.0 gallons per minute drains out. Find the amount of salt at any given time in the tanks. What
happens over a long period of time?

In this problem we set up two equations. Let  be the amount of salt in  and  the amount of salt in tank .
Again, we carefully look at the rates into and out of each tank in order to set up the system of differential equations. We obtain
the system

This is a linear, homogenous constant coefficient system of two first order equations, which we know how to solve. The matrix
form of the system is given by

The eigenvalues for the problem are given by  and the eigenvectors are

Since the eigenvalues are real and distinct, the general solution is easily written down:

Finally, we need to satisfy the initial conditions. So,

or

 Example : Double Tank Problem6.2.3.2
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⎛

⎝

⎜⎜⎜

−
3

100

3

100

1

100

−
3

100

⎞

⎠

⎟⎟⎟
100

0

λ = −3 ± 3
–

√

( )
1

± 3
–

√

x(t) = ( ) + ( )c1

1

3
–

√
e

(−3+ )t3√
c2

1

− 3
–

√
e

(−3− )t3√

x(0) = ( )+ ( ) =( ) ,c1

1

3
–

√
c2

1

− 3
–

√

100

0

+ = 100, ( − ) = 0.c1 c2 c1 c2 3
–

√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/107200?pdf


6.2.3.3 https://math.libretexts.org/@go/page/107200

So, . The final solution is

or
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6.2.4: Chemical Kinetics
THERE ARE MANY PROBLEMS IN THE CHEMISTRY of chemical reactions which lead to systems of differential equations.
The simplest reaction is when a chemical  turns into chemical . This happens at a certain rate, . This reaction can be
represented by the chemical formula

In this case we have that the rates of change of the concentrations of , and , are given by

The chemical reactions used in these examples are first order reactions. Second

order reactions have rates proportional to the square of the concentration.

Think about this as it is a key to understanding the next reactions.

A more complicated reaction is given by

Here there are three concentrations and two rates of change. The system of equations governing the reaction is

The more complication rate of change is when [B] increases from [A] changing to [B] and decrease when [B] changes to [C]. Thus,
there are two terms in the rate of change equation for concentration [B].

One can further consider reactions in which a reverse reaction is possible. Thus, a further generalization occurs for the reaction

The reverse reaction rates contribute to the reaction equations for [A] and [B]. The resulting system of equations is

Nonlinear chemical reactions will be discussed in the next chapter.

This page titled 6.2.4: Chemical Kinetics is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

A B k > 0

A Bk
⟶

A, [A] B, [B]

d[A]

dt

d[B]

dt

= −k[A]

= k[A]

A B C.⟶
k1

⟶
k2

d[A]

dt

d[B]

dt

d[C]

dt

= − [A]k1

= [A] − [B]k1 k2

= [B]k2

A ≪ ⟶ B C.k1
k3

⟶
k2

d[A]

dt

d[B]

dt

d[C]

dt

= − [A] + [B]k1 k3

= [A] − [B] − [B]k1 k2 k3

= [B]k2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/107201?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06%3A_Linear_Systems/6.02%3A_Applications/6.2.04%3A_Chemical_Kinetics
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/06%3A_Linear_Systems/6.02%3A_Applications/6.2.04%3A_Chemical_Kinetics
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
http://people.uncw.edu/hermanr/mat361/ODEBook/index.htm


6.2.5.1 https://math.libretexts.org/@go/page/107202

6.2.5: Predator Prey Models
ANOTHER COMMON POPULATION MODEL is that describing the coexistence of species. For example, we could consider a
population of rabbits and foxes. Left to themselves, rabbits would tend to multiply, thus

with . In such a model the rabbit population would grow exponentially. Similarly, a population of foxes would decay without
the rabbits to feed on. So, we have that

for .

Now, if we put these populations together on a deserted island, they would interact. The more foxes, the rabbit population would
decrease. However, the more rabbits, the foxes would have plenty to eat and the population would thrive. Thus, we could model the
competing populations as

where all of the constants are positive numbers. Studying this coupled system would lead to a study of the dynamics of these
populations. The nonlinear version of this system, the Lotka-Volterra model, will be discussed in the next chapter.
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6.2.6: Love Affairs
The next application is one that was introduced in 1988 by Strogatz as a cute system involving relationships.  One considers what
happens to the affections that two people have for each other over time. Let  denote the affection that Romeo has for Juliet and 
be the affection that Juliet has for Romeo. Positive values indicate love and negative values indicate dislike.

One possible model is given by

with  and . In this case Romeo loves Juliet the more she likes him. But Juliet backs away when she finds his love for her
increasing.

A typical system relating the combined changes in affection can be modeled as

Several scenarios are possible for various choices of the constants. For example, if  and , Romeo gets more and more
excited by Juliet’s love for him. If  and , Juliet is being cautious about her relationship with Romeo. For specific values
of the parameters and initial conditions, one can explore this match of an overly zealous lover with a cautious lover.

Steven H. Strogatz introduced this problem as an interesting example of systems of differential equations in Mathematics
Magazine, Vol. 61, No. 1 (Feb. 1988) p 35. He also describes it in his book Nonlinear Dynamics and Chaos (1994).
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6.2.7: Epidemics
Another interesting area of application of differential equation is in predicting the spread of disease. Typically, one has a population
of susceptible people or animals. Several infected individuals are introduced into the population and one is interested in how the
infection spreads and if the number of infected people drastically increases or dies off. Such models are typically nonlinear and we
will look at what is called the SIR model in the next chapter. In this section we will model a simple linear model.

Let us break the population into three classes. First, we let  represent the healthy people, who are susceptible to infection. Let 
 be the number of infected people. Of these infected people, some will die from the infection and others could recover. We will

consider the case that initially there is one infected person and the rest, say , are healthy. Can we predict how many deaths have
occurred by time  ?

We model this problem using the compartmental analysis we had seen for mixing problems. The total rate of change of any
population would be due to those entering the group less those leaving the group. For example, the number of healthy people
decreases due infection and can increase when some of the infected group recovers. Let’s assume that a) the rate of infection is
proportional to the number of healthy people, , and  ) the number who recover is proportional to the number of infected people,

. Thus, the rate of change of healthy people is found as

Let the number of deaths be . Then, the death rate could be taken to be proportional to the number of infected people. So,

Finally, the rate of change of infected people is due to healthy people getting infected and the infected people who either recover or
die. Using the corresponding terms in the other equations, we can write the rate of change of infected people as

This linear system of differential equations can be written in matrix form.

The reader can find the solutions of this system and determine if this is a realistic model.
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6.3: Matrix Formulation
We have investigated several linear systems in the plane and in the next chapter we will use some of these ideas to investigate
nonlinear systems. We need a deeper insight into the solutions of planar systems. So, in this section we will recast the first order
linear systems into matrix form. This will lead to a better understanding of first order systems and allow for extensions to higher
dimensions and the solution of nonhomogeneous equations later in this chapter.

We start with the usual homogeneous system in Equation 6.1.9. Let the unknowns be represented by the vector

Then we have that

Here we have introduced the coefficient matrix . This is a first order vector differential equation,

Formerly, we can write the solution as

You can verify that this is a solution by simply differentiating,

However, there remains the question, "What does it mean to exponentiate a matrix  The exponential of a matrix is defined using
the Maclaurin series expansion

We define

In general it is difficult to sum this series, but it is doable for some simple examples.e

The exponential of a matrix is defined using the Maclaurin series expansion 

So, we define  

In general, it is difficult computing  unless  is diagonal.
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Evaluate  for .

We first note that

Therefore,

Then, we have

Since summing these infinite series might be difficult, we will now investigate the solutions of planar systems to see if we can find
other approaches for solving linear systems using matrix methods. We begin by recalling the solution to the problem in Example
6.2.3.2. We obtained the solution to this system as

This can be rewritten using matrix operations. Namely, we first write the solution in vector form.
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We see that our solution is in the form of a linear combination of vectors of the form

with  a constant vector and  a constant number. This is similar to how we began to find solutions to second order constant
coefficient equations. So, for the general problem 6.9.3 we insert this guess. Thus,

For this to be true for all , we have that

This is an eigenvalue problem.  is a  matrix for our problem, but could easily be generalized to a system of  first order
differential equations. We will confine our remarks for now to planar systems. However, we need to recall how to solve eigenvalue
problems and then see how solutions of eigenvalue problems can be used to obtain solutions to our systems of differential
equations.
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6.4: Eigenvalue Problems
We seek nontrivial solutions to the eigenvalue problem

We note that  is an obvious solution. Furthermore, it does not lead to anything useful. So, it is called a trivial solution.
Typically, we are given the matrix  and have to determine the eigenvalues, , and the associated eigenvectors, , satisfying the
above eigenvalue problem. Later in the course we will explore other types of eigenvalue problems.

For now we begin to solve the eigenvalue problem for . Inserting this into Equation , we obtain the homogeneous

algebraic system

The solution of such a system would be unique if the determinant of the system is not zero. However, this would give the trivial
solution , . To get a nontrivial solution, we need to force the determinant to be zero. This yields the eigenvalue
equation

This is a quadratic equation for the eigenvalues that would lead to nontrivial solutions. If we expand the right side of the equation,
we find that

This is the same equation as the characteristic equation 6.1.12 for the general constant coefficient differential equation considered
in the first chapter. Thus, the eigenvalues correspond to the solutions of the characteristic polynomial for the system.

Once we find the eigenvalues, then there are possibly an infinite number solutions to the algebraic system. We will see this in the
examples.

So, the process is to

a. Write the coefficient matrix;
b. Find the eigenvalues from the equation ; and,
c. Find the eigenvectors by solving the linear system  for each .
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6.5: Solving Constant Coefficient Systems in 2D
Before proceeding to examples, we first indicate the types of solutions that could result from the solution of a homogeneous,
constant coefficient system of first order differential equations.

We begin with the linear system of differential equations in matrix form.

The type of behavior depends upon the eigenvalues of matrix . The procedure is to determine the eigenvalues and eigenvectors
and use them to construct the general solution.

If we have an initial condition, , we can determine the two arbitrary constants in the general solution in order to obtain
the particular solution. Thus, if  and  are two linearly independent solutions , then the general solution is given as

2

Recall that linear independence means  if and only if . The reader should derive the condition
on the  for linear independence.

Then, setting , we get two linear equations for  and  :

The major work is in finding the linearly independent solutions. This depends upon the different types of eigenvalues that one
obtains from solving the eigenvalue equation, . The nature of these roots indicate the form of the general
solution. In Table  we summarize the classification of solutions in terms of the eigenvalues of the coefficient matrix. We first
make some general remarks about the plausibility of these solutions and then provide examples in the following section to clarify
the matrix methods for our two dimensional systems.

The construction of the general solution in Case I is straight forward. However, the other two cases need a little explanation.

Let’s consider Case III. Note that since the original system of equations does not have any  s, then we would expect real solutions.
So, we look at the real and imaginary parts of the complex solution. We have that the complex solution satisfies the equation

Differentiating the sum and splitting the real and imaginary parts of the equation, gives

Setting the real and imaginary parts equal, we have

and

Therefore, the real and imaginary parts each are linearly independent solutions of the system and the general solution can be
written as a linear combination of these expressions.

Table : Solutions Types for Planar Systems with Constant Coefficients
Classification of the Solutions for Two Linear First Order Differential Equations
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1. Case I: Two real, distinct roots.
Solve the eigenvalue problem  for each eigenvalue obtaining two eigenvectors . Then write the general solution as a linear
combination 

2. Case II: One Repeated Root 
Solve the eigenvalue problem  for one eigenvalue , obtaining the first eigenvector . One then needs a second linearly independent
solution. This is obtained by solving the nonhomogeneous problem 

 for .
The general solution is then given by .

3. Case III: Two complex conjugate roots. 
Solve the eigenvalue problem  for one eigenvalue, , obtaining one eigenvector v. Note that this eigenvector may have
complex entries. Thus, one can write the vector  . Now, construct two linearly independent solutions to the
problem using the real and imaginary parts of   and . Then the general solution can be written as 

.

We now turn to Case II. Writing the system of first order equations as a second order equation for  with the sole solution of the

characteristic equation, , we have that the general solution takes the form

This suggests that the second linearly independent solution involves a term of the form . It turns out that the guess that works
is

Inserting this guess into the system  yields

Noting this is true for all , we find that

Therefore,

We know everything except for . So, we just solve for it and obtain the second linearly independent solution.
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6.6: Examples of the Matrix Method
Here we will give some examples for typical systems for the three cases mentioned in the last section.

.

Eigenvalues: We first determine the eigenvalues.

Therefore,

The eigenvalues are then . This is an example of Case I.

Eigenvectors: Next we determine the eigenvectors associated with each of these eigenvalues. We have to solve the system 
 in each case.

Case .

This gives . One possible solution yields an eigenvector of

Case 

For this case we need to solve . This yields

General Solution: We can now construct the general solution.
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.

Eigenvalues: Again, one solves the eigenvalue equation.

Therefore,

The eigenvalues are then . This is an example of Case III.

Eigenvectors: In order to find the general solution, we need only find the eigenvector associated with .

We need to solve . Thus,

Complex Solution: In order to get the two real linearly independent solutions, we need to compute the real and imaginary
parts of .
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General Solution: Now we can construct the general solution.

Note: This can be rewritten as

.

Eigenvalues:

Therefore,

There is only one real eigenvalue, . This is an example of Case II.

Eigenvectors: In this case we first solve for  and then get the second linearly independent vector.

Therefore, we have

= (cos t+ i sin t)( )e
t

2 + i

1

= ( )e
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Second Linearly Independent Solution: Now we need to solve .

Expanding the matrix product, we obtain the system of equations

The solution of this system is .

General Solution: We construct the general solution as

6.6.1: Planar Systems - Summary
The reader should have noted by now that there is a connection between the behavior of the solutions obtained in Section 6.1.3 and
the eigenvalues found from the coefficient matrices in the previous examples. In Table  we summarize some of these cases.

Table : List of typical behaviors in planar systems.
Type Eigenvalues Stability

Node Real , same signs , stable
, unstable

Saddle Real  opposite signs Mostly Unstable

Center  pure imaginary

Focus/Spiral Complex , stable
, unstable

Degenerate Node Repeated roots, , stable

Lines of Equilibria One zero eigenvalue , stable

The connection, as we have seen, is that the characteristic equation for the associated second order differential equation is the same
as the eigenvalue equation of the coefficient matrix for the linear system. However, one should be a little careful in cases in which
the coefficient matrix in not diagonalizable. In Table  are three examples of systems with repeated roots. The reader should look
at these systems and look at the commonalities and differences in these systems and their solutions. In these cases one has unstable
nodes, though they are degenerate in that there is only one accessible eigenvector.
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Figure : Three examples of systems with a repeated root of .

Another way to look at the classification of these solution is to use the determinant and trace of the coefficient matrix. Recall that

the determinant and trace of  are given by  and 

We note that the general eigenvalue equation,

can be written as

Therefore, the eigenvalues are found from the quadratic formula as

The solution behavior then depends on the sign of discriminant,

If we consider a plot of where the discriminant vanishes, then we could plot

in the  )-plane. This is a parabolic cure as shown by the dashed line in Figure . The region inside the parabola have a
negative discriminant, leading to complex roots. In these cases we have oscillatory solutions. If , then one has centers. If 

, the solutions are stable spirals; otherwise, they are unstable spirals. If the discriminant is positive, then the roots are real,
leading to nodes or saddles in the regions indicated.
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6.7: Theory of Homogeneous Constant Coefficient Systems
There is a general theory for solving homogeneous, constant coefficient systems of first order differential equations. We begin by
once again recalling

Figure : Solution Classification for Planar Systems.

the specific problem (6.16). We obtained the solution to this system as

This time we rewrite the solution as

Thus, we can write the general solution as a  matrix  times an arbitrary constant vector. The matrix  consists of two
columns that are linearly independent solutions of the original system. This matrix is an example of what we will define as the
Fundamental Matrix of solutions of the system. So, determining the Fundamental Matrix will allow us to find the general solution
of the system upon multiplication by a constant matrix. In fact, we will see that it will also lead to a simple representation of the
solution of the initial value problem for our system. We will outline the general theory.

Consider the homogeneous, constant coefficient system of first order differential equations

As we have seen, this can be written in the matrix form , where

6.7.1
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and

Now, consider  vector solutions of this system: . These solutions are said to be linearly independent on
some domain if

for all  in the domain implies that .

Let  be a set of  linearly independent set of solutions of our system, called a fundamental set of solutions.
We construct a matrix from these solutions using these solutions as the column of that matrix. We define this matrix to be the
fundamental matrix solution. This matrix takes the form

What do we mean by a "matrix" solution? We have assumed that each  is a solution of our system. Therefore, we have that 
, for  . We say that  is a matrix solution because we can show that  also satisfies the matrix formulation

of the system of differential equations. We can show this using the properties of matrices.

Given a set of vector solutions of the system, when are they linearly independent? We consider a matrix solution  of the
system in which we have  vector solutions. Then, we define the Wronskian of  to be

If , then  is a fundamental matrix solution.

Before continuing, we list the fundamental matrix solutions for the set of examples in the last section. (Refer to the solutions from
those examples.) Furthermore, note that the fundamental matrix solutions are not unique as one can multiply any column by a
nonzero constant and still have a fundamental matrix solution.
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We should note in this case that the Wronskian is found as

So far we have only determined the general solution. This is done by the following steps:

1. Solve the eigenvalue problem .
2. Construct vector solutions from . The method depends if one has real or complex conjugate eigenvalues.
3. Form the fundamental solution matrix  from the vector solution.
4. The general solution is given by  for  an arbitrary constant vector.

We are now ready to solve the initial value problem:

Starting with the general solution, we have that

As usual, we need to solve for the . Using matrix methods, this is now easy. Since the Wronskian is not zero, then we can invert 
 at any value of . So, we have

Putting  back into the general solution, we obtain the solution to the initial value problem:

You can easily verify that this is a solution of the system and satisfies the initial condition at .
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The matrix combination  is useful. So, we will define the resulting product to be the principal matrix solution,
denoting it by

Thus, the solution of the initial value problem is . Furthermore, we note that  is a solution to the matrix initial
value problem

where  is the  identity matrix.

In summary, the matrix solution of

is given by

where  is the fundamental matrix solution and  is the principal matrix solution.

Let’s consider the matrix initial value problem

satisfying . Find the solution of this problem.

We first note that the coefficient matrix is

The eigenvalue equation is easily found from

So, the eigenvalues are . The corresponding eigenvectors are found to be

Now we construct the fundamental matrix solution. The columns are obtained using the eigenvectors and the exponentials, 

So, the fundamental matrix solution is

Φ(t) ( )Φ−1 t0

Ψ(t) = Φ(t) ( )Φ−1 t0

x(t) = Ψ(t)x0 Ψ(t)

= Ax, x ( ) = Ix
′ t0

I n×n

 Matrix Solution of the Homogeneous Problem
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dt
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 Example 6.7.4
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The general solution to our problem is then

for  is an arbitrary constant vector.

In order to find the particular solution of the initial value problem, we need the principal matrix solution. We first evaluate 
, then we invert it:

The particular solution is then

Thus,  and 

This page titled 6.7: Theory of Homogeneous Constant Coefficient Systems is shared under a CC BY-NC-SA 3.0 license and was authored,
remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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6.8: Nonhomogeneous Systems
Before leaving the theory of systems of linear, constant coefficient systems, we will discuss nonhomogeneous systems. We would
like to solve systems of the form

We will assume that we have found the fundamental matrix solution of the homogeneous equation. Furthermore, we will assume
that  and  are continuous on some common domain.

As with second order equations, we can look for solutions that are a sum of the general solution to the homogeneous problem plus a
particular solution of the nonhomogeneous problem. Namely, we can write the general solution as

where  is an arbitrary constant vector,  is the fundamental matrix solution of , and

Such a representation is easily verified.

We need to find the particular solution, . We can do this by applying The Method of Variation of Parameters for Systems. We
consider a solution in the form of the solution of the homogeneous problem, but replace the constant vector by unknown parameter
functions. Namely, we assume that

Differentiating, we have that

Or

But the left side is 

or, since  is invertible (why?),

In principle, this can be integrated to give c. Therefore, the particular solution can be written as

This is the variation of parameters formula.

The general solution of Equation  has been found as

We can use the general solution to find the particular solution of an initial value problem consisting of Equation  and the
initial condition . This condition is satisfied for a solution of the form

provided
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This can be solved for  as in the last section. Inserting the solution back into the general solution Equation , we have

This solution can be written a little neater in terms of the principal matrix solution,  :

Finally, one further simplification occurs when  is a constant matrix, which are the only types of problems we have solved in this
chapter. In this case, we have that . So, computing  is relatively easy.

. This example can be solved using the Method of Undetermined Coefficients. However,
we will use the matrix method described in this section.

First, we write the problem in matrix form. The system can be Written as

Thus, we have a nonhomogeneous system of the form

Next we need the fundamental matrix of solutions of the homogeneous problem. We have that

The eigenvalues of this matrix are . An eigenvector associated with  is easily found as . This leads to a

complex solution

From this solution we can construct the fundamental solution matrix

So, the general solution to the homogeneous problem is

Next we seek a particular solution to the nonhomogeneous problem. From Equation  we see that we need .
Thus, we have
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We now compute

therefore, the general solution is

The solution to the initial value problem is

Or
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Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
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6.9: Problems
1. Consider the system

a. Determine the second order differential equation satisfied by .
b. Solve the differential equation for .
c. Using this solution, find .
d. Verify your solutions for  and .
e. Find a particular solution to the system given the initial conditions  and .

2. Consider the following systems. Determine the families of orbits for each system and sketch several orbits in the phase plane
and classify them by their type (stable node, etc.)

a. 

b. 

c. 

d. 

e. 

3. Use the transformations relating polar and Cartesian coordinates to prove that

4. Consider the system of equations in Example 6.1.13.

a. Derive the polar form of the system.
b. Solve the radial equation, , for the initial values .
c. Based upon these solutions, plot and describe the behavior of all solutions to the original system in Cartesian coordinates.

5. Consider the following systems. For each system determine the coefficient matrix. When possible, solve the eigenvalue
problem for each matrix and use the eigenvalues and eigenfunctions to provide solutions to the given systems. Finally, in the
common cases which you investigated in Problem 2, make comparisons with your previous answers, such as what type of
eigenvalues correspond to stable nodes.

a. 

b. 

c. 

d. 
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e. 

f. 

6. For the given matrix, evaluate , using the definition

and simplifying.

a. 

b. .

c. .

d. 

e. .

f. 

7. Find the fundamental matrix solution for the system  where matrix  is given. If an initial condition is provided, find
the solution of the initial value problem using the principal matrix.

a. 

b. 

c. .

d. 

e. 

f. 

g. 

h. .

i. 
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8. Solve the following initial value problems using Equation 6.8.6, the solution of a nonhomogeneous system using the principal
matrix solution.

a. 

b. 

c. 

9. Add a third spring connected to mass two in the coupled system shown in Figure 6.1.2 to a wall on the far right. Assume that
the masses are the same and the springs are the same.
a. Model this system with a set of first order differential equations.
b. If the masses are all  and the spring constants are all  , then find the general solution for the system.
c. Move mass one to the left (of equilibrium)  and mass two to the right . Let them go. find the solution and

plot it as a function of time. Where is each mass at  seconds?
d. Model this initial value problem with a set of two second order differential equations. Set up the system in the form 

 and solve using the values in part .
10. In Example 6.1.14 we investigated a couple mass-spring system as a pair of second order differential equations.

a. In that problem we used . Prove this result.

b. Rewrite the system as a system of four first order equations.
c. Find the eigenvalues and eigenfunctions for the system of equations in part b to arrive at the solution found in Example

6.1.14.
d. Let  and . Assume that the masses are initially at rest and plot the positions as a function of

time if initially i)  and i)  . Describe the resulting motion.

11. Consider the series circuit in Figure  with  , and 
a. Set up the problem as a system of two first order differential equations for the charge and the current.
b. Suppose that no charge is present and no current is flowing at time  when  is applied. Find the current and the

charge on the capacitor as functions of time.
c. Plot your solutions and describe how the system behaves over time.

12. Consider the series circuit in Figure 6.2.2.1 with  , and 
.

1. Set up the problem as a system of first order differential equations for the charges and the currents in each loop.
2. Suppose that no charge is present and no current is flowing at time  when  is applied. Find the current and the

charge on the capacitor as functions of time.
3. Plot your solutions and describe how the system behaves over time.

13. Initially a 100 gallon tank is filled with pure water. At time  water with a half a pound of salt per two gallons is added to
the container at the rate of 3 gallons per minute, and the well-stirred mixture is drained from the container at the same rate.
a. Find the number of pounds of salt in the container as a function of time.
b. How many minutes does it take for the concentration to reach 2 pounds per gallon?
c. What does the concentration in the container approach for large values of time? Does this agree with your intuition?

14. You make two quarts of salsa for a party. The recipe calls for five teaspoons of lime juice per quart, but you had accidentally put
in five tablespoons per quart. You decide to feed your guests the salsa anyway. Assume that the guests take a quarter cup of
salsa per minute and that you replace what was taken with chopped tomatoes and onions without any lime juice. [ 1 quart 
cups and 

a. Write down the differential equation and initial condition for the amount of lime juice as a function of time in this mixture-
type problem.

b. Solve this initial value problem.
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c. How long will it take to get the salsa back to the recipe’s suggested concentration?
15. Consider the chemical reaction leading to the system in Equations 6.2.4.3. Let the rate constants be 

, and . What do the eigenvalues of the coefficient matrix say about the
behavior of the system? Find the solution of the system assuming  , and . Plot
the solutions for  to  and describe what is happening over this time.

16. Find and classify any equilibrium points in the Romeo and Juliet problem for the following cases. Solve the systems and
describe their affections as a function of time.
a. .
b. .
c. .

Figure : Figure for Problem 17.

17. Two tanks contain a mixture of water and alcohol with tank A containing  and tank  1000 L. Initially, the concentration
of alcohol in Tank  is  and that of  is . Solution leaves  into  at a rate of 15 liter/min and the solution
in tank B returns to A at a rate of  while well mixed solution also leaves the system at 10 liter/min through an outlet. A
mixture of water and alcohol enters  at the rate of 10 liter/min with the concentration of  through an inlet. What will
be the concentration of the alcohol of the solution in each tank after 10 mins?

18. Consider the tank system in Problem 17. Add a third  to  with a volume of . Connect  with 
from  and  flow back. Let io  flow out of the system. If the initial concentration is  in each tank and
a mixture of water and alcohol enters tank  at the rate of 10 liter/min with the concentration of  through an inlet, what
will be the concentration of the alcohol in each of the tanks after an hour?

19. Consider the epidemic model leading to the system in Equation 6.2.7.1. Choose the constants as  days  days 
, and  days . What are the eigenvalues of the coefficient matrix? Find the solution of the system assuming an initial

population of 1,000 and one infected individual. Plot the solutions for  to  days and describe what is happening over
this time. Is this model realistic?

This page titled 6.9: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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CHAPTER OVERVIEW

7: Nonlinear Systems
"The scientist does not study nature because it is useful; he studies it because he delights in it, and he delights in it because it is
beautiful." - Jules Henri Poincaré (1854-1912)
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7.1: Introduction
SOME OF THE MOST INTERESTING PHENOMENA in the world are modeled by nonlinear systems. These systems can be
modeled by differential equations when time is considered as a continuous variable or difference equations when time is treated in
discrete steps. Applications involving differential equations can be found in many physical systems such as planetary systems,
weather prediction, electrical circuits, and kinetics. Even in some simple dynamical systems a combination of damping and a
driving force can lead to chaotic behavior. Namely, small changes in initial conditions could lead to very different outcomes. In this
chapter we will explore a few different nonlinear systems and introduce some of the tools needed to investigate them. These tools
are based on some of the material in Chapters 2 and 3 for linear systems of differential equations.

Nonlinear differential equations are either integrable, but difficult to solve, or they are not integrable and can only be solved
numerically. We will see that we can sometimes approximate the solutions of nonlinear systems with linear systems in small
regions of phase space and determine the qualitative behavior of the system without knowledge of the exact solution.

Nonlinear problems occur naturally. We will see problems from many of the same fields we explored in Section 6.2. We will
concentrate mainly on continuous dynamical systems. We will begin with a simple population model and look at the behavior of
equilibrium solutions of first order autonomous differential equations. We will then look at nonlinear systems in the plane, such as
the nonlinear pendulum and other nonlinear oscillations. We will conclude by discussing a few other interesting physical examples
stressing some of the key ideas of nonlinear dynamics.
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7.2: The Logistic Equation
In this section we will explore a simple nonlinear population model. Typically, we want to model the growth of a given population,
y(t), and the differential equation governing the growth behavior of this population is developed in a manner similar to that used
previously for mixing problems. Namely, we note that the rate of change of the population is given by an equation of the form

The Rate In could be due to the number of births per unit time and the Rate Out by the number of deaths per unit time. While there
are other potential contributions to these rates we will consider the birth and death rates in the simplest examples.

A simple population model can be obtained if one assumes that these rates are linear in the population. Thus, we assume that the

Here we have denoted the birth rate as  and the mortality rate as . This gives the rate of change of population as

(Malthusian population growth). Generally, these rates could depend on the time. In the case that they are both constant rates, we
can define  and obtain the familiar exponential model of population growth:

This is easily solved and one obtains exponential growth  or decay . This Malthusian growth model has been
named after Thomas Robert Malthus , a clergyman who used this model to warn of the impending doom of the
human race if its reproductive practices continued.

The logistic model was first published in previous exponential model takes the form  by Pierre François Verhulst ( 
1849) in the form

where  is the population at time  is the growth rate, and  is what is called the carrying capacity. Note that in our model 
.

When populations get large enough, there is competition for resources, such as space and food, which can lead to a higher mortality
rate. Thus, the mortality rate may be a function of the population size, . The simplest model would be a linear
dependence, . Then, the previous exponential model takes the form

where . This is known as the logistic model of population growth. Typically,  is small and the added nonlinear term
does not really kick in until the population gets large enough.

Show that Equation  can be written in the form

which has only one parameter.

We carry this out be rescaling the population, , where  is to be determined. Inserting this transformation, we
have

=  Rate In  −  Rate Out. 
dy

dt

 Rate In  = by and the Rate Out  = my.

b m

= by−my
dy

dt

k = b−m

= ky
dy

dt

(k > 0) (k < 0)

(1766 −1834)

8183 18O4

= rN (1 − )
dN

dt

N

K

N t, r K

r = k = Kc

m = m(y)

m = +cym~

= ky−c
dy

dt
y2

k = b−m~ c

 Example 7.2.1
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Or

Thus, we obtain the result, , if we pick .

Before we obtain the exact solution, it is instructive to study the qualitative behavior of the solutions without actually writing down
any explicit solutions. Such methods are useful for more difficult nonlinear equations as we will see later in this chapter.

We will demonstrate this analysis with a simple logistic equation example. We will first look for constant solutions, called
equilibrium solutions, satisfying . Then, we will look at the behavior of solutions near the equilibrium solutions, or fixed
points, and determine the stability of the equilibrium solutions. In the next section we will extend these ideas to other first order
differential equations.

Find and classify the equilibrium solutions of the logistic equation,

If two solutions of the differential equation intersect then they have common values  at time . Using this information,
we could set up an initial value problem for which the initial condition is . Since the two different solutions
intersect at this point in the phase plane, we would have an initial value problem with two different solutions. This would
violate the uniqueness theorem for initial value problems.

First, we determine the equilibrium, or constant, solutions given by . For this case, we have . So, the
equilibrium solutions are  and .

These solutions divide the ty-plane into three regions,  , and . Solutions that originate in one of these
regions at  will remain in that region for all  since solutions of this differential equation cannot intersect.

Next, we determine the behavior of solutions in the three regions. Noting that  gives the slope of any solution in the plane,
then we find that the solutions are monotonic in each region. Namely, in regions where , we have monotonically
increasing functions and in regions where , we have monotonically decreasing functions. We determine the sign of 

 from the right-hand side of the differential equation.

For example, in this problem  only for the middle region and  for the other two regions. Thus, the slope
is positive in the middle region, giving a rising solution as shown in Figure 7.1. Note that this solution does not cross the
equilibrium solutions. Similar statements can be made about the solutions in the other regions.

Figure : Representative solution behavior for .

= kz(1 −α z)z′ c

k

= kz(1 −z)z′ α =
k

c

(t) = 0y′

 Example 7.2.2

= y−
dy
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y1 t1

y ( ) =t1 y1
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(Stable and unstable equilibria). We further note that the solutions on either side of the equilibrium solution  tend to
approach this equilibrium solution for large values of . In fact, no matter how far these solutions are from , as long as 

, the solutions will eventually approach this equilibrium solution as . We then say that the equilibrium solution,
, is a stable equilibrium.

Similarly, we note that the solutions on either side of the equilibrium solution  tend away from  for large values of 
. No matter how close a solution is to  at some given time, eventually these solutions will diverge as . We say

that such equilibrium solutions are unstable equilibria.

Figure : Representative solution behavior and the phase line for .

Figure : Phase line for .

(Phase lines). If we are only interested in the behavior of the equilibrium solutions, we could just display a phase line. In
Figure  we place a vertical line to the right of the ty-plane plot. On this line we first place dots at the corresponding
equilibrium solutions and label the solutions. These points divide the phase line into three intervals.

In each interval we then place arrows pointing upward or downward indicating solutions with positive or negative slopes,
respectively. For example, for the interval  there is a downward pointing arrow indicating that the slope is negative in
that region.

Looking at the resulting phase line we can determine if a given equilibrium is stable (arrows pointing towards the point) or
unstable (arrows pointing away from the point). In Figure  we draw the final phase line by itself. We see that  is a
stable equilibrium point and  is an unstable equilibrium point.

The Riccati Equation
WE HAVE SEEN THAT ONE DOES NOT NEED an explicit solution of the logistic Equation  in order to study the behavior
of its solutions. However, the logistic equation is an example of a nonlinear first order equation that is solvable. It is also an

y = 1

t y = 1

y(t) > 0 t → ∞

y = 1

y = 0 y = 0

t y = 0 t → ∞
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example of a general Riccati equation, a first order differential equation quadratic in the unknown function.

The Riccati equation is named after the Italian mathematician Jacopo Francesco Riccati . When , the
equation becomes a Bernoulli equation.

The general form of the Riccati equation is

As long as , this equation can be reduced to a second order linear differential equation through the transformation

We will demonstrate the use of this transformation in obtaining the solution of the logistic equation.

Solve the logistic equation

using the transformation

differentiating this transformation with respect to , we obtain

Inserting this result into the logistic equation , we have

Simplifying, we see that the logistic equation has been reduced to a second order linear, differential equation,

This equation is readily solved. One integration gives

A second integration gives

where  and  are two arbitrary constants.

Inserting this result into the Riccati transformation, we obtain

It appears that we have two arbitrary constants. However, we started out with a first order differential equation and so we
expect only one arbitrary constant. We can resolve this dilemma by dividing  the numerator and denominator by  and

(1676 −1754) a(t) = 0

= a(t) +b(t)y+c(t)
dy

dt
y2

c(t) ≠ 0

y(t) = − .
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defining . Then, we have the solution

showing that there really is only one arbitrary constant in the solution. Plots of the solution  of the logistic equation for
different initial conditions gives the solutions seen in the last section. In particular, setting all of the constants to unity, we have
the sigmoid function,

This is the signature -shaped curve of the logistic model as shown in Figure . We should note that this is not the only
way to obtain the solution to the logistic equation, though this approach has provided us with an introduction to Riccati
equations. A more direct approach would be to use separation of variables on the logistic equation, which is Problem 1.

Figure : Plot of the sigmoid function.

1

This general solution holds for . If , then we have  and, thus,  is the constant equilibrium
solution.

This page titled 7.2: The Logistic Equation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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7.3: Autonomous First Order Equations
In this section we will study the stability of nonlinear first order autonomous equations. We will then extend this study in the next
section to looking at families of first order equations which are connected through a parameter.

Recall that a first order autonomous equation is given in the form

We will assume that  and  are continuous functions of , so that we know that solutions of initial value problems exist and are

unique.

A solution  of Equation  is called an equilibrium solution, or a fixed point solution, if it is a constant solution satisfying 
. Such solutions are the roots of the right-hand side of the differential equation, .

Find the equilibrium solutions of .

Solution
The equilibrium solutions are the roots of . The equilibria are found to be .

Once we have determined the equilibrium solutions, we would like to classify them. Are they stable or unstable? As we had seen
previously, we are interested in the behavior of solutions near the equilibria. This classification can be determined using a
linearization of the given equation. This will provide an analytic criteria to establish the stability of equilibrium solutions without
geometrically drawing the phase lines as we had done previously.

Let  be an equilibrium solution of Equation . Then, any solution can be written in the form

where  measures how far the solution is from the equilibrium at any given time.

Inserting Equation  form into Equation , we have

We now consider small  in order to study solutions near the equilibrium solution. For such solutions, we can expand  about
the equilibrium solution,

Since  is an equilibrium solution, , the first term in the Taylor series vanishes. If the first derivative does not vanish,
then for solutions close to equilibrium, we can neglect higher order terms in the expansion. Then,  approximately satisfies the
differential equation

This is called a linearization of the original nonlinear equation about the equilibrium point. This equation has exponential solutions
for ,

= f(y)
dy

dt
(7.3.1)
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Now we see how the stability criteria arise. If  grows in time. Therefore, nearby solutions stray from the
equilibrium solution for large times. On the other hand, if  decays in time and nearby solutions approach the
equilibrium solution for large . Thus, we have the results:

 

The stability criteria for equilibrium solutions of a first order differential equation.

Determine the stability of the equilibrium solutions of .

In the last example we found the equilibrium solutions, . The stability criteria require computing

For this problem we have . Therefore,  is a stable equilibrium and  is an unstable equilibrium.

Find and classify the equilibria for the logistic equation .

Solution
We had already investigated this problem using phase lines. There are two equilibria,  and .

We next apply the stability criteria. Noting that , the first equilibrium solution gives . So,  is an
unstable equilibrium. Since , we see that  is a stable equilibrium. These results are the same as we hade
determined earlier using phase lines.

This page titled 7.3: Autonomous First Order Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
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7.4: Bifurcations for First Order Equations
We now consider families of first order autonomous differential equations of the form

Here  is a parameter that we can change and then observe the resulting behaviors of the solutions of the differential equation.
When a small change in the parameter leads to changes in the behavior of the solution, then the system is said to undergo a
bifurcation. The value of the parameter, , at which the bifurcation occurs is called a bifurcation point.

We will consider several generic examples, leading to special classes of bifurcations of first order autonomous differential
equations. We will study the stability of equilibrium solutions using both phase lines and the stability criteria developed in the last
section

.

Solution
First note that equilibrium solutions occur for . In this problem, there are three cases to consider.

1. .

In this case there are two real solutions of . Note that  for . So, we have the right phase
line in Figure \).

Figure : Phase lines for .On the right  and on the left .

2. .

There is only one equilibrium point at . The equation becomes . It is obvious that the right side of this equation is
never negative. So, the phase line, which is shown as the middle line in Figure , has upward pointing arrows.

3. .

In this case there are no equilibrium solutions. Since , the slopes for all solutions are positive as indicated by the
last phase line in Figure .

We can also confirm the behaviors of the equilibrium points by noting that . Then,  for .
Therefore, the equilibria  are unstable equilibria for . Similarly, the equilibria  are stable equilibria
for .

We can combine these results for the phase lines into one diagram known as a bifurcation diagram. We will plot the
equilibrium solutions and their phase lines  in the -plane. We begin by lining up the phase lines for various  s.
These are shown on the left side of Figure . Note the pattern of equilibrium points lies on the parabolic curve . The
upper branch of this curve is a collection of unstable equilibria and the bottom is a stable branch. So, we can dispose of the
phase lines and just keep the equilibria. However, we will draw the unstable branch as a dashed line and the stable branch as a
solid line.
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 Example 7.4.1
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Figure : (a) The typical phase lines for . (b) Bifurcation diagram for . This is an example of a
saddle-node bifurcation.

The bifurcation diagram is displayed on the right side of Figure . This type of bifurcation is called a saddle-node
bifurcation. The point  at which the behavior changes is the bifurcation point. As  changes from negative to positive
values, the system goes from having no equilibria to having one stable and one unstable equilibrium point.

.

Solution
Writing this equation in factored form, , we see that there are two equilibrium points,  and . The
behavior of the solutions depends upon the sign of . This leads to four cases with the indicated signs of the
derivative. The regions indicating the signs of  are shown in Figure .

1. .
2. .
3. .
4. .

Figure : The regions indicating the different signs of the derivative for  .

The corresponding phase lines and superimposed bifurcation diagram are shown in figure . The bifurcation diagram is on
the right side of Figure  and this type of bifurcation is called a transcritical bifurcation.

Again, the stability can be determined from the derivative   evaluated at . From , we see
that  is stable for  and unstable for . Similarly,  implies that  is unstable for  and stable
for . These results are consistent with the phase line plots.

7.4.2 = −μy′ y2 = −μy′ y2

7.4.2
μ = 0 μ

 Example 7.4.2
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.

Solution
For this last example, we find from  that there are two cases.

1. . In this case there is only one equilibrium point at . For positive values of  we have that  and for
negative values of  we have that . Therefore, this is an unstable equilibrium point.

Figure : (a) Collection of phase lines for . (b) Bifurcation diagram for . This is an example of
a transcritical bifurcation.

Figure : (a) The phase lines for  . The left one corresponds to  0 and the right phase line is for . (b)
Bifurcation diagram for . This is an example of a pitchfork bifurcation.

When two of the prongs of the pitchfork are unstable branches, the bifurcation is called a subcritical pitchfork bifurcation.
When two prongs are stable branches, the bifurcation is a supercritical pitchfork bifurcation.

2. . Here we have three equilibria, . A careful investigation shows that  is a stable equilibrium point
and that the other two equilibria are unstable.

In Figure \) we show the phase lines for these two cases. The corresponding bifurcation diagram is then sketched on the
right side of Figure . For obvious reasons this has been labeled a pitchfork bifurcation.

Since , the stability analysis gives that . So,  is stable for  and unstable for . For
, we have that . Therefore, , is unstable. Thus, we have a subcritical pitchfork

bifurcation.
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7.5: The Stability of Fixed Points in Nonlinear Systems
We next investigate the stability of the equilibrium solutions of the nonlinear pendulum which we first encountered in section 2.3.2
. Along the way we will develop some basic methods for studying the stability of equilibria in nonlinear systems in general.

Recall that the derivation of the pendulum equation was based upon a simple point mass  hanging on a string of length  from
some support as shown in Figure . One pulls the mass back to some starting angle, , and releases it. The goal is to find the
angular position as a function of time, .

In Chapter 2 we derived the nonlinear pendulum equation,

There are several variations of Equation  which we have used in this text. The first one is the linear pendulum, which was
obtained using a small angle approximation,

Figure : A simple pendulum consists of a point mass  attached to a string of length . It is released from an angle .

We also made the system more realistic by adding damping and forcing. A variety of these oscillation problems are summarized in
the table below.

1. Nonlinear Pendulum: .
2. Damped Nonlinear Pendulum: .
3. Linear Pendulum: .
4. Damped Linear Pendulum: .
5. Forced Damped Nonlinear Pendulum: .
6. Forced Damped Linear Pendulum: .

There are two simple systems that we will consider, the damped linear pendulum, in the form

and the the damped nonlinear pendulum, in the form

These are second order differential equations and can be cast as a system of two first order differential equations using the methods
of Chapter .

The linear equation can be written as

m L

7.5.1 θ0

θ(t)

L +g sinθ = 0θ̈

7.5.1

L +gθ = 0θ̈

7.5.1 m L θ0

 Equations for Pendulum Motion

L +g sinθ = 0θ̈

L +b +g sinθ = 0θ̈ θ̇

L +gθ = 0θ̈

L +b +gθ = 0θ̈ θ̇

L +b +g sinθ = F cosωtθ̈ θ̇

L +b +gθ = F cosωtθ̈ θ̇

+b + x = 0x′′ x′ ω2

+b + sinx = 0x′′ x′ ω2

6

= yx′

= −by− xy′ ω2
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This system has only one equilibrium solution, .

The damped nonlinear pendulum takes the form

This system also has the equilibrium solution . However, there are actually an infinite number of solutions. The
equilibria are determined from

These equations imply that  and . There are an infinite number of solutions to the latter equation: 
. So, this system has an infinite number of equilibria, 

The next step is to determine the stability of the equilibrium solutions these systems. This can be accomplished just as we had done
for first order equations. To do this we need a more general theory for nonlinear systems. So, we will develop the needed
machinery.

We begin with the -dimensional system

Here  is a mapping from  to . We define the equilibrium solutions, or fixed points, of this system as the points 
 satisfying .

Figure : A general point in the plane, which is near the fixed point, in the form 

(Linear stability analysis of systems). The stability in the neighborhood of equilibria will now be determined. We are interested in
what happens to solutions of the system with initial conditions starting near a fixed point. We will represent a general point in the
plane, which is near the fixed point, in the form . We note that the length of  gives an indication of how close we are to
the fixed point. So, we consider that initially, .

As the system evolves,  will change. The change of  in time is in turn governed by a system of equations. We can approximate
this evolution as follows. First, we note that

Next, we have that

We can expand the right side about the fixed point using a multidimensional version of Taylor’s Theorem. Thus, we have that

(The Jacobian matrix). Here  is the Jacobian matrix, defined as

x = 0, y = 0

x′

y′

= y

= −by− sinxω2

x = 0, y = 0

y = 0 and  −by− sinx = 0ω2

y = 0 sinx = 0
x = nπ,n = 0, ±1, ±2, … (nπ, 0),n = 0, ±1, ±2, …

n

= f (x), x ∈x
′ Rn

f : →Rn Rn Rn Rn

x
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7.5.2 x = + ξx∗

x = +ξx
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Noting that , we then have that System  becomes

It is this equation which describes the behavior of the system near the fixed point. As with first order equations, we say that System
 has been linearized or that Equation  is the linearization of System .

(Linearization of the system ). The stability of the equilibrium point of the nonlinear system is now reduced to analyzing
the behavior of the linearized system given by Equation . We can use the methods from the last two chapters to investigate the
eigenvalues of the Jacobian matrix evaluated at each equilibrium point. We will demonstrate this procedure with several examples.

Determine the equilibrium points and their stability for the system

We first determine the fixed points. Setting the right-hand side equal to zero and factoring, we have

From the second equation, we see that either  or . The first equation then gives  in either case. So, there are
two fixed points:  and .

Next, we linearize the system of differential equations about each fixed point. First, we note that the Jacobian matrix is given
by

1. Case I Equilibrium point .

In this case we find that

Therefore, the linearized equation becomes

This is equivalently written out as the system
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⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟

f ( ) = 0x∗ 7.5.6

≈ Df ( ) ξξ′
x

∗

7.5.6 7.5.7 7.5.6

= f (x)x
′

7.5.7

 Example 7.5.1

= −2x−3xyx′

= 3y−y′ y2

−x(2 +3y)

y(3 −y)

= 0

= 0

y = 0 y = 3 x = 0
(0, 0) (0, 3)

Df (x, y) =( )
−2 −3y

0

−3x

3 −2y

(0, 0)

Df (0, 0) =( )
−2

0

0

3

=( ) ξξ′
−2

0

0

3

= −2ξ′
1 ξ1

= 3 .ξ′
2 ξ2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91091?pdf


7.5.4 https://math.libretexts.org/@go/page/91091

This is the linearized system about the origin. Note the similarity with the original system. We should emphasize that the
linearized equations are constant coefficient equations and we can use matrix methods to determine the nature of the
equilibrium point. The eigenvalues of this system are obviously . Therefore, we have that the origin is a saddle
point.

2. Case II Equilibrium point .

Again we evaluate the Jacobian matrix at the equilibrium point and look at its eigenvalues to determine the type of fixed point.
The Jacobian matrix for this case becomes

The eigenvalues are . So, this fixed point is a stable node.

Figure : Phase plane for the system .

This analysis has given us a saddle and a stable node. We know what the behavior is like near each fixed point, but we have to
resort to other means to say anything about the behavior far from these points. The phase portrait for this system is given in
Figure . You should be able to locate the saddle point and the node in the figure. Notice how solutions behave in regions
far from these points.

We can expect to be able to perform a linearization under general conditions. These are given in the Hartman-Grofman Theorem:

A continuous map exists between the linear and nonlinear systems when  does not have any eigenvalues with zero real
part.

Generally, there are several types of behavior that one can see in nonlinear systems. One can see sinks or sources, hyperbolic
(saddle) points, elliptic points (centers) or foci. We have defined some of these for planar systems. In general, if at least two
eigenvalues have real parts with opposite signs, then the fixed point is a hyperbolic point. If the real part of a nonzero eigenvalue
is zero, then we have a center, or elliptic point.

For linear systems in the plane, this classification was done in Chapter 6 . The Jacobian matrix evaluated at the equilibrium points
is simply the  coefficient matrix we had called .

Here we are using .

The eigenvalue equation is given by

However,  is the trace,  and . Therefore, we can write the eigenvalue equation as

λ = −2, 3

(0, 3)

Df (0, 3) =( )
−11

0

0

−3

λ = −11, −3

7.5.3 = −2x− 3xy, = 3y−x′ y′ y2

7.5.3

 Theorem 7.5.1
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b

d
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91091?pdf


7.5.5 https://math.libretexts.org/@go/page/91091

The solution of this equation is found using the quadratic formula,

We had seen in previous chapter that equilibrium points in planar systems can be classified as nodes, saddles, centers, or spirals
(foci). The type of behavior can be determined from solutions of the eigenvalue equation. Since the nature of the eigenvalues
depends on the trace and determinant of the Jacobian matrix at the equilibrium point, we can relate the types of equilibria to points
in the det-tr plane. This is shown in Figure , which is similar to Figure 6.7.1.

In Figure  the parabola  divides the det-tr plane. Points on this curve give a vanishing discriminant in the
computation of the eigenvalues. In these cases one finds repeated roots, or eigenvalues. Along this curve one can find stable and
unstable degenerate nodes. Also along this line are stable and unstable proper nodes, called star nodes. These arise from systems of
the form .

In the case that , we have that the discriminant

is positive. Not only that, . Thus, we obtain two real and distinct eigenvalues with opposite signs. These lead to saddle
points.

In the case that , we can have either  or . The discriminant is negative for points inside the parabolic
curve. It is in this region that one finds centers and spirals, corresponding to complex eigenvalues. When , there are
unstable spirals. There are stable spirals when . For the case that , the eigenvalues are pure imaginary, giving
centers.

There are several other types of behavior depicted in the figure, but we will now turn to studying a few of examples.

Figure : Diagram indicating the behavior of equilibrium points in the det tr plane. The parabolic curve

indicates where the discriminant vanishes.

Find and classify all the equilibrium solutions of the nonlinear system.

−tr(J)λ+det(J) = 0λ2

λ = [−tr(J) ± ]
1
2

(J) −4 det(J)tr2
− −−−−−−−−−−−−

√

7.5.4

7.5.4 (J) = 4 det(J)tr2

= ax, = ayx′ y′

det(J) < 0

Δ ≡ (J) −4 det(J)tr2

Δ > (J)tr2

det(J) > 0 Δ > 0 Δ < 0
tr(J) > 0

tr(J) < 0 tr(J) = 0
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In Figure  we show the direction field for this system. Try to locate and classify the equilibrium points visually. After the
stability analysis, you should return to this figure and determine if you identified the equilibrium points correctly.

We will first determine the equilibrium points. Setting the righthand side of each differential equation to zero, we have

This system of algebraic equations can be solved exactly. Adding the equations, we have

Figure : Phase plane for the system

Solving for ,

and substituting the result for  into the first algebraic equation, we find an equation for  :

The solutions to this equation are

The corresponding values for  are

Now that we have located the equilibria, we can classify them. The Jacobian matrix is given by

Now, we evaluate the Jacobian at each equilibrium point and find the eigenvalues.

1. Case I. Equilibrium point .

= 2x−y+2xy+3 ( − )x′ x2 y2

= x−3y+xy−3 ( − )y′ x2 y2

7.5.5

2x−y+2xy+3 ( − )x2 y2

x−3y+xy−3 ( − )x2 y2

= 0

= 0

3x−4y+3xy = 0

7.5.5

= 2x−y+ 2xy+ 3 ( − ) ,x′ x2 y2

= x− 3y+xy− 3 ( − ) .y′ x2 y2

x

x =
4y

3(1 +y)

x y
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√
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In this case we find that

The eigenvalues of this matrix are . Therefore, the origin is a saddle point.

2. Case II. Equilibrium point .

Again we evaluate the Jacobian matrix at the equilibrium point and look at its eigenvalues to determine the type of fixed point.
The Jacobian matrix for this case becomes

The eigenvalues are . This fixed point is an unstable node.

3. Case III. Equilibrium point .

The Jacobian matrix for this case becomes

There are two equilibrium points under this case. The first is given by

The eigenvalues for this point are

These are approximately  and  So, this equilibrium point is a stable node.

The other equilibrium is . The corresponding eigenvalues are complex with

negative real parts,

or . This point is a stable spiral.

Plots of the phase plane are given in Figures  and . The reader can look at the direction field and verify these results
for the behavior of equilibrium solutions. A zoomed in view is shown in Figure  with several orbits indicated.
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Figure : A closer look at the phase plane for the system

with a few trajectories shown.

We are now ready to establish the behavior of the fixed points of the damped nonlinear pendulum system in Equation .
Recall that the system for the damped nonlinear pendulum was given by

For a damped system, we will need . We had found that there are an infinite number of equilibrium points at 

The Jacobian matrix for this systems is

Evaluating this matrix at the fixed points, we find that

The eigenvalue equation is given by

There are two cases to consider:  even and  odd. For the first case, we find the eigenvalues

For , we have two complex conjugate roots with a negative real part. Thus, we have stable foci for even  values. If
there is no damping, then we obtain centers .

In the second case,  odd, we find

Since , these roots will be real with opposite signs. Thus, we have hyperbolic points, or saddles. If there is no
damping, the eigenvalues reduce to .

7.5.6

= 2x−y+ 2xy+ 3 ( − )x′ x2 y2

= x− 3y+xy− 3 ( − )y′ x2 y2

 Example Damped Nonlinear Pendulum Equilibria7.5.3
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In Figure  we show the phase plane for the undamped nonlinear pendulum with . We see that we have a mixture
of centers and saddles. There are orbits for which there is periodic motion. In the case that  we have an inverted
pendulum. This is an unstable position and this is reflected in the presence of saddle points, especially if the pendulum is
constructed using a massless rod.

Figure : Phase plane for the undamped nonlinear pendulum. Solution curves
are shown for initial conditions .

 
There are also unbounded orbits, going through all possible angles. These correspond to the mass spinning around the pivot in
one direction forever due to initially having large enough energies.

We have indicated in the figure solution curves with the initial conditions . These show
the various types of motions that we have described.

Figure : Phase plane for the damped nonlinear pendulum. Solution curves are shown for initial conditions 
.

When there is damping, we see that we can have a variety of other behaviors as seen in Figure . In this example we have
set  and . We see that energy loss results in the mass settling around one of the stable fixed points. This leads
to an understanding as to why there are an infinite number of equilibria, even though physically the mass traces out a bound set
of Cartesian points. We have indicated in the Figure  solution curves with the initial conditions 

.

In Figure  we show a region of the phase plane which corresponds to oscillations about . For small angles the
pendulum oscillates following somewhat elliptical orbits. As the angles get larger, due to greater initial energies, these orbits
begin to change from ellipses to other periodic orbits. There is a limiting orbit, beyond which one has unbounded motion. The
limiting orbit connects the saddle points on either side of the center. The curve is called a separatrix and being that these
trajectories connect two saddles, they are often referred to as heteroclinic orbits.

7.5.7 ω = 1.25
θ = π

7.5.7
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7.5.8
b = 0.08 ω = 1.25

7.5.8
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7.5.9 x = 0
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Figure : Several orbits in the phase plane for the undamped nonlinear pendulum with . The orbits surround a
center at . At the edges there are saddle points, .

(Heteroclinc orbits and separatrices). In Figures  we show more orbits, including both bound and unbound motion
beyond the interval . For both plots we have chosen  and the same set of initial conditions, 

 . for . The time interval is taken for . The only difference is that in
the damped case we have . In these plots one can see what happens to the heteroclinic orbits and nearby unbounded
orbits under damping.

Figure : Several orbits in the phase plane for the undamped nonlinear pendulum with .

Before leaving this problem, we should note that the orbits in the phase plane for the undamped nonlinear pendulum can be
obtained graphically. Recall from Equation 7.9.6, the total mechanical energy for the nonlinear pendulum is

From this equation we obtained Equation 7.9.7,

Figure : Several orbits in the phase plane for the damped nonlinear pendulum with  and .
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Letting , and defining , this equation can be Written as

For each energy , this gives a constant energy curve. Plotting the family of energy curves we obtain the phase portrait
shown in Figure .

Figure : A family of energy curves in the phase plane for . Here we took  and .

This page titled 7.5: The Stability of Fixed Points in Nonlinear Systems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed,
and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.
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7.6: Nonlinear Population Models
WE HAVE ALREADY ENCOUNTERED SEVERAL MODELS Of population dynamics in this and previous chapters. Of course,
one could dream up several other examples. While such models might seem far from applications in physics, it turns out that these
models lead to systems od differential equations which also appear in physical systems such as the coupling of waves in lasers, in
plasma physics, and in chemical reactions.

The Lotka-Volterra model is named after model looks similar, except there are a few sign changes, since one species Alfred James
Lotka (188o-1949) and Vito Volterra (1860-1940). is not feeding on the other. Also, we can build in logistic terms into our model.
We will save this latter type of model for the homework.

Two well-known nonlinear population models are the predator-prey and competing species models. In the predator-prey model, one
typically has one species, the predator, feeding on the other, the prey. We will look at the standard Lotka-Volterra model in this
section. The competing species

(The Lotka-Volterra model of population dynamics). The Lotka-Volterra model takes the form

where , and  are positive constants. In this model, we can think of  as the population of rabbits (prey) and  is the
population of foxes (predators). Choosing all constants to be positive, we can describe the terms.

: When left alone, the rabbit population will grow. Thus  is the natural growth rate without predators.
: When there are no rabbits, the fox population should decay. Thus, the coefficient needs to be negative.
: We add a nonlinear term corresponding to the depletion of the rabbits when the foxes are around.

: The more rabbits there are, the more food for the foxes. So, we add a nonlinear term giving rise to an increase in fox
population.

Determine the equilibrium points and their stability for the Lotka-Volterra system.

The analysis of the Lotka-Volterra model begins with determining the fixed points. So, we have from Equation 

Therefore, the origin, , and  are the fixed points.

Next, we determine their stability, by linearization about the fixed points. We can use the Jacobian matrix, or we could just
expand the right-hand side of each equation in Equation  about the equilibrium points as shown in he next example. The
Jacobian matrix for this system is

Evaluating at each fixed point, we have

The eigenvalues of  are . So, the origin is a saddle point.
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The eigenvalues of Equation  satisfy . So, the other point is a center. In Figure  we show a sample
direction field for the Lotka-Volterra system.

Figure :Phase plane for the LotkaVolterra system given by , . Solution curves are shown
for initial conditions  .

Another way to carry out the linearization of the system of differential equations is to expand the equations about the fixed points.
For fixed points , we let

Inserting this translation of the origin into the equations of the system, and dropping nonlinear terms in  and , results in the
linearized system. This method is equivalent to analyzing the Jacobian matrix for each fixed point.

Direct linearization of a system is carried out by introducing , or  into the system and
dropping nonlinear terms in  and .

Expand the Lotka-Volterra system about the equilibrium points.

For the origin  the linearization about the origin amounts to simply dropping the nonlinear terms. In this case we have

The coefficient matrix for this system is the same as .

For the second fixed point, we let

Inserting this transformation into the system gives

Expanding, we obtain

7.6.4 +ad = 0λ2 7.6.1
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u v
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u v
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In both equations the constant terms cancel and linearization is simply getting rid of the  terms. This leaves the linearized
system

Or

The coefficient matrix for this linearized system is the same as . In fact, for nearby orbits, they are almost circular

orbits. From this linearized system, we have .

We can take , where  and  can be determined from the initial conditions. Then,

Therefore, the solutions near the center are given by

For , and initial values of , these solutions become

Plots of these solutions are shown in Figure .

It is also possible to find a first integral of the Lotka-Volterra system whose level curves give the phase portrait of the system. As
we had done in Chapter 2, we can write
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Figure : The linearized solutions of Lotka-Volterra system ,  for the initial conditions 
.

This is an equation of the form seen in Problem 2.6.13. This equation is now a separable differential equation. The solution this
differential equation is given in implicit form as

,

where  is an arbitrary constant. This expression is known as the first system.

Figure : Phase plane for the LotkaVolterra system given by ,  based upon the first integral of
the system.

This page titled 7.6: Nonlinear Population Models is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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7.7: Limit Cycles
So far we have just been concerned with equilibrium solutions and their behavior. However, asymptotically stable fixed points are
not the only attractors. There are other types of solutions, known as limit cycles, towards which a solution may tend. In this section
we will look at some examples of these periodic solutions.

Such solutions are common in nature. Rayleigh investigated the problem

in the study of the vibrations of a violin string. Balthasar van der Pol (1889-1959) studied an electrical circuit, modeling this
behavior. Others have looked into biological systems, such as neural systems, chemical reactions, such as Michaelis-Menten
kinetics, and other chemical systems leading to chemical oscillations. One of the most important models in the historical study of
dynamical systems is that of planetary motion and investigating the stability of planetary orbits. As is well known, these orbits are
periodic.

Limit cycles are isolated periodic solutions towards which neighboring states might tend when stable. A key example exhibiting a
limit cycle is given in the next example.

Find the limit cycle in the system

Solution
It is clear that the origin is a fixed point. The Jacobian matrix is given as

The eigenvalues are found to be . For  we have a center. For  we have a stable spiral and for  we
have an unstable spiral. However, this spiral does not wander off to infinity. We see in Figure  that the equilibrium point is
a spiral. However, in Figure  it is clear that the solution does not spiral out to infinity. It is bounded by a circle.

Figure : Phase plane for System  with .

One can actually find the radius of this circle. This requires rewriting the system in polar form. Recall from Chapter 2 that we
can change derivatives of Cartesian coordinates to derivatives of polar coordinates by using the relations

+c( −1) +x = 0x′′ 1

3
( )x′ 2

x′

 Example 7.7.1
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Figure : Phase plane for system  with  showing that the inner spiral is bounded by a limit cycle.

Inserting the system  into these expressions, we have

This leads to the system

Of course, for a circle the radius is constant,  const. Therefore, in order to find the limit cycle, we need to look at the
equilibrium solutions of Equation . This amounts to finding the constant solutions of . The equilibrium
solutions are . The limit cycle corresponds to the positive radius solution, .

In Figures  we take . In this case we expect a circle with . From the  equation, we
have that . This means that we follow the limit cycle in a counterclockwise direction as time increases.

Limit cycles are not always circles. In Figures  we show the behavior of the Rayleigh system  for  and 
. In this case we see that solutions tend towards a noncircular limit cycle in a clockwise direction.

A slight change of the Rayleigh system leads to the van der Pol equation:

(The van der Pol system). The limit cycle for  is shown in Figure .

Can one determine ahead of time if a given nonlinear system will have a limit cycle? In order to answer this question, we will
introduce some definitions.

Figure : Phase plane for the Rayleigh system  with .
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Figure : Phase plane for the van der Pol system  with .

Figure : Phase plane for the van der Pol system  with .

Figure : A sketch depicting the idea of a trajectory, or orbit, passing through .

Figure : A sketch depicting an  limit set. Note that the orbits tend towards the set as  increases.

7.7.4 7.7.7 c = 2.0
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Figure : A sketch depicting an  limit set. Note that the orbits tend away from the set as  increases.

We first describe different trajectories and families of trajectories. A flow on  is a function  that satisfies the following

1.  is continuous in both arguments.
2.  for all .
3. .

(Orbits and trajectories). The orbit, or trajectory, through  is defined as . In Figure  we demonstrate
these properties. For . Increasing , one follows the trajectory until one reaches the point . Continuing 

 further, one is then at . By the third property, this is the same as going from  to  for .

Having defined the orbits, we need to define the asymptotic behavior of the orbit for both positive and negative large times. We
define the positive semiorbit through  as . The negative semiorbit through  is defined as 

. Thus, we have .

(Limit sets and limit points). The positive limit set, or w-limit set, of point  is defined as

The  s are referred to as w-limit points. This is shown in Figure .

Similarly, we define the negative limit set, or the alpha-limit set, of point  is defined as

and the corresponding  s are -limit points. This is shown in Figure .

(Cycles and periodic orbits). There are several types of orbits that a system might possess. A cycle or periodic orbit is any closed
orbit which is not an equilibrium point. A periodic orbit is stable if for every neighborhood of the orbit such that all nearby orbits
stay inside the neighborhood. Otherwise, it is unstable. The orbit is asymptotically stable if all nearby orbits converge to the
periodic orbit.

A limit cycle is a cycle which is the  or -limit set of some trajectory other than the limit cycle. A limit cycle  is stable if 
 for all  in some neighborhood of . A limit cycle  is unstable if  for all  in some neighborhood of . Finally, a

limit cycle is semistable if it is attracting on one side and repelling on the other side. In the previous examples, we saw limit cycles
that were stable. Figures  and depict stable and unstable limit cycles, respectively.

We now state a theorem which describes the type of orbits we might find in our system.

Let be contained in  bounded region in which there are finitely many critical points. Then is either

1. a single critical point;
2. a single closed orbit;
3. a set of critical points joined by heteroclinic orbits. [Compare Figures  and . ]

We are interested in determining when limit cycles may, or may not, exist. A consequence of the Poincaré-Bendixon Theorem is
given by the following corollary.

7.7.8 α− t

R2 ϕ

ϕ(x, t)
ϕ(x, 0) = x x ∈ R2

ϕ (ϕ (x, ) , ) = ϕ (x, + )t1 t2 t1 t2

x γ = {ϕ(x, t) ∣ t ∈ I} 7.7.6
t = 0,ϕ(x, 0) = x t ϕ (x, )t1

t2 ϕ (ϕ (x, ) , )t1 t2 x ϕ (x, + )t1 t2 t = +t1 t2

x = {ϕ(x, t) ∣ t > 0}γ+ x

= {ϕ(x, t) ∣ t < 0}γ− γ = ∪γ+ γ−

x

= {y ∣  there exists a sequence of  → ∞ such that ϕ (x, ) → y}Λ+ tn tn

y′ 7.7.7

x

= {y ∣  there exists a sequences of  → −∞ such that ϕ (x, ) → y}Λ− tn tn

y′ α 7.7.8

α ω Γ
= ΓΛ+ x Γ Γ = ΓΛ− x Γ

7.7.7 7.7.8

 Theorem : Poincaré-Bendixon Theorem7.7.1
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Let  be a bounded closed set containing no critical points and suppose that . Then there exists a limit cycle contained
in .

More specific criteria allow us to determine if there is a limit cycle in a given region. These are given by Dulac’s Criteria and
Bendixon’s Criteria.

Figure : A heteroclinic orbit connecting two critical points.

Figure : A homoclinic orbit returning to the point it left.

Consider the autonomous planar system

and a continuously differentiable function  def 
 contained in some open set. If

does not change sign in , then there is at most one limit cycle contained entirely in .

Consider the autonomous planar system

defined on a simply connected domain  such that

in . Then, there are no limit cycles entirely in .

Proof.

These are easily proved using Green’s Theorem in the Plane. (See your calculus text.) We prove Bendixon’s Criteria. Let 
. Assume that  is a closed orbit lying in . Let  be the interior of . Then

 Corollary 7.7.1

D ⊂ Dγ+

D

7.7.9

7.7.10

 Theorem : Dulac’s Criteria7.7.2

= f(x, y), = g(x, y)x′ y′

ψ

D

(ψf) + (ψg)
∂

∂x

∂

∂y

D D

 Theorem : Bendixon’s Criteria7.7.3

= f(x, y), = g(x, y)x′ y′

D

(ψf) + (ψg) ≠ 0
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So, if  is not identically zero and does not change sign in , then from the continuity of  in  we have that the
right side above is either positive or negative. Thus, we have a contradiction and there is no closed orbit lying in .

Consider the earlier example in  with .

We already know that a limit cycle exists at . A simple computation gives that

For an arbitrary annulus , we have

For  and . Thus,  in the annulus . Therefore, by Dulac’s
Criteria there is at most one limit cycle in this annulus.

Consider the system

Let . Then,

We conclude by Bendixon’s Criteria that there are no limit cycles for this system.

This page titled 7.7: Limit Cycles is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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7.8: Nonautonomous Nonlinear Systems
IN THIS SECTION WE DISCUSS NONAUTONOMOUS SYSTEMS. Recall that an autonomous system is one in which there is
no explicit time dependence. A simple example is the forced nonlinear pendulum given by the nonhomogeneous equation

We can set this up as a system of two first order equations:

This system is not in a form for which we could use the earlier methods. Namely, it is a nonautonomous system. However, we
introduce a new variable  and turn it into an autonomous system in one more dimension. The new system takes the form

The system is now a three dimensional autonomous, possibly nonlinear, system and can be explored using methods from Chapters
2 and 3 .

A more interesting model is provided by the Duffing Equation. This equation, named after Georg Wilhelm Christian Caspar
Duffing (1861-1944), models hard spring and soft spring oscillations. It also models a periodically forced beam as shown in Figure 

. It is of interest because it is a simple equation describes a periodically forced new visualization methods for nonautonomous
systems.

Figure : One model of the Duffing equation describes a periodically forced beam which interacts with two magnets.

The most general form of Duffing’s equation is given by the damped, forced system

This equation models hard spring, , and soft spring, , oscillations. However, we will use the simpler version of the
Duffing equation:

An equation of this form can be obtained by setting  and rescaling  and  in the original equation. We will explore the
behavior of the system as we vary the remaining parameters. In Figures  we show some typical solution plots
superimposed on the direction field.

(The undamped, unforced Duffing equation). We start with the undamped  and unforced  Duffing equation,

We can write this second order equation as the autonomous system

+ sinx = f(t)ẍ ω2

= yẋ

= − sinx +f(t).ẏ ω2
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ẋ

ẏ
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= y
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= 1.
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We see that there are three equilibrium points at  and . In Figure  we plot several orbits for , and . We
see that the three equilibrium points consist of two centers and a saddle.

(The unforced Duffing equation). We now turn on the damping. The system becomes

In Figures  and  we show what happens when . These plots are reminiscent of the plots for the nonlinear
pendulum; however, there are fewer equilibria. Note that the centers become stable spirals for .

Figure : Phase plane for the undamped, unforced Duffing equation .

Figure : Phase plane for the unforced Duffing equation with  and .

Next we turn on the forcing to obtain a damped, forced Duffing equation. The system is now nonautonomous.

The damped, forced Duffing equation.

In Figure  we only show one orbit with , and . The solution intersects itself and look a bit messy.
We can imagine what we would get if we added any more orbits. For completeness, we show in Figure  an example with four
different orbits.

In cases for which one has periodic orbits such as the Duffing equation, Poincaré introduced the notion of surfaces of section. One
embeds the orbit in a higher dimensional space so that there are no self intersections, like we saw in Figures  and . In
Figure  we show an example where a simple orbit is shown as it periodically pierces a given surface.

In order to simplify the resulting pictures, one only plots the points at which the orbit pierces the surface as sketched in Figure 
. In practice, there is a natural frequency, such as  in the forced Duffing equation. Then, one plots points at times that are

ẋ
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multiples of the period, . In Figure  we show what the plot for one orbit would look like for the damped, unforced

Duffing equation.

Figure : Display of two orbits for the unforced Duffing equation with  and .

Figure : Phase plane for the Duffing equation with , and . In this case we show only one orbit
which was generated from the initial condition .

Figure : Phase plane for the Duffing equation with , and . In this case four initial conditions were
used to generate four orbits.

The more interesting case, is when there is forcing and damping. In this case the surface of section plot is given in Figure .
While this is not as busy as the solution plot in Figure , it still provides some interesting behavior. What one finds is what is
called a strange attractor. Plotting many orbits, we find that after a long time, all of the orbits are attracted to a small region in the
plane, much like a stable node attracts nearby orbits. However, this set consists of more than one point. Also, the flow on the
attractor is chaotic in nature. Thus, points wander in an irregular way throughout the attractor. This is one of the interesting topics
in chaos theory and this whole theory of dynamical systems has only been touched in this text leaving the reader to wander of into
further depth into this fascinating field.

T =
2π

ω
7.8.9

7.8.4 k = 0.1 Γ = 0
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Figure : As an orbit pierces the surface of section, one plots the point of intersection in that plane to produce the surface of
section plot.

Figure : Poincaré’s surface of section. One notes each time the orbit pierces the surface.

The surface of section plots at the end of the last section were obtained using code from S. Lynch’s book Dynamical Systems with
Applications Using Maple. For reference, the plots in Figures  and  were generated in Maple using the following
commands:

Figure : Poincaré’s surface of section plot for the damped, unforced Duffing equation.
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Figure : Poincaré’s surface of section plot for the damped, forced Duffing equation. This leads to what is known as a strange
attractor.

This page titled 7.8: Nonautonomous Nonlinear Systems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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7.9: The Period of the Nonlinear Pendulum
RECALL THAT THE PERIOD OF THE SIMPLE PENDULUM is given by

for

This was based upon the solving the linear pendulum Equation 7.5.2. This equation was derived assuming a small angle
approximation. How good is this approximation? What is meant by a small angle?

We recall that the Taylor series approximation of  about  :

One can obtain a bound on the error when truncating this series to one term after taking a numerical analysis course. But we can
just simply plot the relative error, which is defined as

A plot of the relative error is given in Figure . Thus for  radians

. or,  we have that the relative error is about .

(Relative error in  approximation). We would like to do better than this. So, we now turn to the nonlinear pendulum equation
7.5.1 in the simpler form

Figure : The relative error in percent when approximating  by .

(Solution of nonlinear pendulum equation). We next employ a technique that is useful for equations of the form

when it is easy to integrate the function . Namely, we note that

For the nonlinear pendulum problem, we multiply Equation  by ,

and note that the left side of this equation is a perfect derivative. Thus,
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Therefore, the quantity in the brackets is a constant. So, we can write

Solving for , we obtain

This equation is a separable first order equation and we can rearrange and integrate the terms to find that

Of course, we need to be able to do the integral. When one finds a solution in this implicit form, one says that the problem has been
solved by quadratures. Namely, the solution is given in terms of some integral.

In fact, the above integral can be transformed into what is known as an elliptic integral of the first kind. We will rewrite this result
and then use it to obtain an approximation to the period of oscillation of the nonlinear pendulum, leading to corrections to the linear
result found earlier.

We will first rewrite the constant found in Equation . This requires a little physics. The swinging of a mass on a string,
assuming no energy loss at the pivot point, is a conservative process. Namely, the total mechanical energy is conserved. Thus, the
total of the kinetic and gravitational potential energies is a constant. The kinetic energy of the mass on the string is given as

The potential energy is the gravitational potential energy. If we set the potential energy to zero at the bottom of the swing, then the
potential energy is , where  is the height that the mass is from the bottom of the swing. A little trigonometry gives that 

. So,

(Total mechanical energy for the nonlinear pendulum). So, the total mechanical energy is

We note that a little rearranging shows that we can relate this result to Equation Equation . Dividing by  and  and using
the definition of , we have

Therefore, we have determined the integration constant in terms of the total mechanical energy,

We can use Equation  to get a value for the total energy. At the top of the swing the mass is not moving, if only for a moment.
Thus, the kinetic energy is zero and the total mechanical energy is pure potential energy. Letting  denote the angle at the highest
angular position, we have that

Therefore, we have found that

We can solve for  and integrate the differential equation to obtain
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Using the half angle formula,

we can rewrite the argument in the radical as

Noting that a motion from  to  is a quarter of a cycle, we have that

This result can now be transformed into an elliptic integral.  We define

and

Then, Equation  becomes

This is done by noting that  and that . The integral in

this result is called the complete elliptic integral of the first kind.

1

Elliptic integrals were first studied by Leonhard Euler and Giulio Carlo de’ Toschi di Fagnano , who studied the
lengths of curves such as the ellipse and the lemniscate,

We note that the incomplete elliptic integral of the first kind is defined as

(The complete and incomplete elliptic integrals of the first kind). Then, the complete elliptic integral of the first kind is given by 

, or

Therefore, the period of the nonlinear pendulum is given by
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There are table of values for elliptic integrals. However, one can use a computer algebra system to compute values of such
integrals. We will look for small angle approximations.

For small angles , we have that  is small. So, we can develop a series expansion for the period, , for small . This is

simply done by using the binomial expansion,

Inserting this expansion into the integrand for the complete elliptic integral and integrating term by term, we find that

The first term of the expansion gives the well known period of the simple pendulum for small angles. The next terms in the
expression give further corrections to the linear result which are useful for larger amplitudes of oscillation. In Figure , we
show the relative errors incurred when keeping the  (quadratic) and  (quartic) terms as compared to the exact value of the
period.

Figure : The relative error in percent when approximating the exact period of a nonlinear pendulum with one (solid), two
(dashed), or three (dotted) terms in Equation .

This page titled 7.9: The Period of the Nonlinear Pendulum is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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7.10: Exact Solutions Using Elliptic Functions
THE Solution IN EQUATION 7.9.9 OF THE NONLINEAR PENDULUM EQUATION led to the introduction of elliptic integrals.
The incomplete elliptic integral of the first kind is defined as

The complete integral of the first kind is given by , or

Elliptic integrals of the second kind are defined as

Recall, a first integration of the nonlinear pendulum equation from Equation 7.9.6,

Or

Letting

the differential equation becomes

Applying separation of variables, we find

The solution, , is then found by solving for  and using  to solve for . This requires that we know how to invert

the elliptic integral, .

Elliptic functions result from the inversion of elliptic integrals. Consider

F (ϕ, k) ≡ =∫
ϕ

0

dθ

1 − θk2 sin2− −−−−−−−−−√
∫

sin ϕ

0

dz

(1 − ) (1 − )z2 k2z2− −−−−−−−−−−−−−−√

K(k) = F ( , k)
π

2

K(k) = =∫
π/2

0

dθ

1 − θk2 sin2
− −−−−−−−−−

√
∫

1

0

dz

(1 − ) (1 − )z2 k2z2− −−−−−−−−−−−−−−
√

E(ϕ, k) = dθ = dt∫
ϕ

0
1 − θk2 sin2− −−−−−−−−−

√ ∫
sin ϕ

0

1 −k2t2
− −−−−−−

√

1 − t2
− −−−−

√

E(k) = dθ = dt∫
π/2

0
1 − θk2 sin2− −−−−−−−−−

√ ∫
1

0

1 −k2t2
− −−−−−−

√

1 − t2
− −−−−

√

− cosθ = − cos( )
dθ

dt

2

ω2 ω2 θ0

= 2 [ − ]( )
dθ

dt

2

ω2 sin2 θ

2
sin2 θ0

2

kz = sin  and k = sin
θ

2

θ0

2

= ±ω
dz

dτ
1 −z2− −−−−√ 1 −k2z2− −−−−−−√

±ω (t− ) =t0
1

ω
∫

z

1

dz

1 −z2
− −−−−

√ 1 −k2z2
− −−−−−−

√

= −∫
1

0

dz

1 −z2
− −−−−

√ 1 −k2z2
− −−−−−−

√
∫

z

0

dz

1 −z2
− −−−−

√ 1 −k2z2
− −−−−−−

√

= K(k) −F ( ( sinθ), k)sin−1 k−1

θ(t) z kz = sin
θ

2
θ

F (z, k)

u(sinϕ, k) = F (ϕ, k) = ∫
ϕ

0

dθ

1 − θk2 sin2− −−−−−−−−−
√
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Note:  and . In these cases  is obviously monotone increasing and thus there must be an
inverse.

The inverse of Equation  is defined as , where . The function  is called the
Jacobi amplitude function and  is the elliptic modulus. [In some references and software like MATLAB packages,  is used
as the parameter.] Three of the Jacobi elliptic functions, shown in Figure , can be defined in terms of the amplitude function
by

and the delta amplitude

(Jacobi elliptic functions).

They are related through the identities

Figure : Plots of the Jacobi elliptic functions , and  
for . Here 

The elliptic functions can be extended to the complex plane. In this case the functions are doubly periodic. However, we will not
need to consider this in the current text.

Also, we see that these functions are periodic. The period is given in rent text. terms of the complete elliptic integral of the first
kind, . Consider

Since , we have

= ∫
sin ϕ

0

dt

(1 − ) (1 − )t2 k2t2− −−−−−−−−−−−−−
√

F (ϕ, 0) = ϕ F (ϕ, 1) = ln(secϕ+tanϕ) F

7.10.1 ϕ = (u, k) = am(u, k)F −1 u = sinϕ am(u, k)
k m = k2

7.10.1

sn(u, k) = sinam(u, k) = sinϕ,

cn(u, k) = cos am(u, k) = cosϕ,

dn(u, k) = .1 − ϕk2 sin2
− −−−−−−−−−

√

(u, k) + (u, k) = 1cn2 sn2

(u, k) + (u, k) = 1dn2 k2 sn2

7.10.1 sn(u,k), cn(u,k) dn(u,k)
m = = 0.5k2 K(k) = 1.8541

K(k)

F (ϕ+2π, k) = ∫
ϕ+2π

0

dθ

1 − θk2 sin2
− −−−−−−−−−

√

= +∫
ϕ

0

dθ

1 − θk2 sin2
− −−−−−−−−−

√
∫

ϕ+2π

ϕ

dθ

1 − θk2 sin2
− −−−−−−−−−

√

= F (ϕ, k) +∫
2π

0

dθ

1 − θk2 sin2
− −−−−−−−−−

√

= F (ϕ, k) +4K(k)

F (ϕ+2π, k) = u+4K

sn(u+4K) = sin(am(u+4K)) = sin(am(u) +2π) = sinam(u) = snu
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In general, we have

The plots of , , and , are shown in Figures - .

Figure : Plots of  
.

Figure : Plots of  for  .

Namely,

Figure : Plots of dn  for 

sn(u+2K, k) = −sn(u, k)

cn(u+2K, k) = −cn(u, k)

dn(u+2K, k) = dn(u, k)

sn(u) cn(u) dn(u) 7.10.2 7.10.4

7.10.2 sn(u,k)
0, 0.25, 0.50, 0.75, 1.00

7.10.3 cn(u,k) m = 0, 0.25, 0.50, 0.75, 1.00

sn(u+K, k) = , sn(u+2K, k) = −snu,
cnu

dnu

cn(u+K, k) = − , dn(u+2K, k) = −cnu,1 −k2 snu

dnu

− −−−−−−−−
√

7.10.4 (u,k) m = 0, 0.25, 0.50, 0.75, 1.00
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Therefore, dn and cn have a period of  and dn has a period of .

Special values found in Figure  are seen as

where  is called the complementary modulus.

Important to this section are the derivatives of these elliptic functions,

and the amplitude function

Sometimes the Jacobi elliptic functions are displayed without reference to the elliptic modulus, such as . When 
is understood, we can do the same.

Show that  satisfies the differential equation

From the above derivatives, we have that

Letting  and using the identities , we have that

This is the desired result.

Show that  is a solution of the equation .

Differentiating , we have

dn(u+K, k) = , dn(u+2K, k) = dnu.
1 −k2
− −−−−

√

dnu

4K 2K

7.10.1

sn(K, k) = 1

cn(K, k) = 0

dn(K, k) = =1 −k2− −−−−
√ k′

k′

sn(u, k) = cn(u, k) dn(u, k)
∂

∂u

cn(u, k) = −sn(u, k) dn(u, k)
∂

∂u

dn(u, k) = − sn(u, k) cn(u, k)
∂

∂u
k2

am(u, k) = dn(u, k)
∂

∂u

sn(u) = sn(u, k) k

 Example 7.10.1

sn(u)

+(1 + )y = 2y′′ k2 k2y3

sn(u)
d2

du2
= (cn(u) dn(u))

d

du

= −sn(u) (u) − sn(u) (u)dn2 k2 cn2

y(u) = sn(u) 7.10.9 −7.10.10

= −y (1 − )− y (1 − ) = −(1 + )y+2y′′ k2y2 k2 y2 k2 k2y3

 Example 7.10.2

θ(t) = 2 (k sn t)sin−1 +sinθ = 0θ̈

θ(t) = 2 (k sn t)sin−1

(2 (k sn t))
d2

dt2
sin−1 = (2 )

d

dt

k cn tdn t

1 − tk2 sn2
− −−−−−−−−

√

= (2k cn t)
d

dt

= −2k sn tdn t
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However, we can evaluate  for a range of . Thus, we have

Comparing these results, we have shown that .

The solution to the last example can be used to obtain the exact solution to the nonlinear pendulum problem, 
. The general solution is given by  where  has to be

determined from the initial conditions. We note that

Evaluating at , we have .

Therefore, if we pick , then  and the solution is

Furthermore, the other initial value is found to be

Thus, , as we had seen in the earlier derivation of the elliptic integral solution. The solution is given as

In Figures , we show comparisons of the exact solutions of the linear and nonlinear pendulum problems for 
 and initial angles  and .

Figure : Comparison of exact solutions of the linear and nonlinear pendulum problems for  and .

sinθ θ

sinθ = sin(2 (k sn t))sin−1

= 2 sin( (k sn t)) cos( (k sn t))sin−1 sin−1

= 2k sn t 1 − tk2 sn2− −−−−−−−−
√

= 2k sn tdn t

+sinθ = 0θ̈

+ sinθ = 0, θ(0) = , (0) = 0θ̈ ω2 θ0 θ̇ θ(t) = 2 (k sn(ωt+ϕ))sin−1 ϕ

d sn(u+K)

du
= cn(u+K) dn(u+K)

= (− )( )1 −k2− −−−−
√

snu

dnu

1 −k2
− −−−−

√

dnu

= −(1 − )k2 snu

udn2

u = 0 (K) = 0sn′

ϕ = K (0) = 0θ̇

θ(t) = 2 (k sn(ωt+K))sin−1

θ(0) = 2 (k snK) = 2 ksin−1 sin−1

k = sin
θ0

2

θ(t) = 2 (sin sn(ωt+K))sin−1 θ0

2

7.10.5 −7.10.6
L = 1.0 m =θ0 10∘ =θ0 50∘

7.10.5 L = 1.0 m =θ0 10∘
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Figure : Comparison of the exact solutions of the linear and nonlinear pendulum problems for  and .
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7.11: Problems
1. Solve the general logistic problem,

using separation of variables.

2. Find the equilibrium solutions and determine their stability for the following systems. For each case draw representative
solutions and phase lines. 
a.  
b. . 
c. . 
d. .

3. For , find the general solution corresponding to . Provide specific solutions for the following initial
conditions and sketch them: a. , b. , and c. .

4. For each problem determine equilibrium points, bifurcation points and construct a bifurcation diagram. Discuss the different
behaviors in each system. 
a.  
b.  
c.  

d. 

5. Consider the family of differential equations . 
a. Sketch a bifurcation diagram in the -plane for . 
b. Sketch a bifurcation diagram in the -plane for .

Hint: Pick a few values of  and  in order to get a feel for how this system behaves.

6. System  can be solved exactly. Integrate the -equation using separation of variables. For initial conditions a) 
, and b) , and , find and plot the solutions in the -plane showing the

approach to a limit cycle.
7. Consider the system

Rewrite this system in polar form. Look at the behavior of the  equation and construct a bifurcation diagram in  space. What
might this diagram look like in the three dimensional  space? (Think about the symmetry in this problem.) This leads to what is
called a Hopf bifurcation.

8. Find the fixed points of the following systems. Linearize the system about each fixed point and determine the nature and
stability in the neighborhood of each fixed point, when possible. Verify your findings by plotting phase portraits using a
computer.

a. 

b. 

c. 

d. 

= ky−c , y(0) =
dy

dt
y2 y0

= −6y−16y′ y2

= cosyy′

= y(y−2)(y+3)y′

= (y+1)(y−4)y′ y2

= y−y′ y2 y(0) = y0

y(0) = 0.25 y(0) = 1.5 y(0) = −0.5

= y−μy′ y2

= y(μ−y)(μ−2y)y′

= μ−x′ x3

= x−x′
μx

1 +x2

= +δ −μxx′ x3 x2

xμ δ = 0
xμ δ > 0

δ μ

7.52 r

r(0) = 0.25, θ(0) = 0 r(0) = 1.5, θ(0) = 0 μ = 1.0 xy

x′

y′

= −y+x [μ− − ]x2 y2

= x+y [μ− − ]x2 y2

r μr

μxy

x′

y′

= x(100 −x−2y)

= y(150 −x−6y)

= x+x′ x3

= y+y′ y3

= x− +xyx′ x2

= 2y−xy−6y′ y2
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9. Plot phase portraits for the Lienard system

for a small and a not so small value of . Describe what happens as one varies .

10. Consider the period of a nonlinear pendulum. Let the length be   and . Sketch  vs the initial angle 
and compare the linear and nonlinear values for the period. For what angles can you use the linear approximation confidently?

11. Another population model is one in which species compete for resources, such as a limited food supply. Such a model is given
by

In this case, assume that all constants are positive.

1. Describe the effects/purpose of each terms.
2. Find the fixed points of the model.
3. Linearize the system about each fixed point and determine the stability.
4. From the above, describe the types of solution behavior you might expect, in terms of the model.

12. Consider a model of a food chain of three species. Assume that each population on its own can be modeled by logistic growth.
Let the species be labeled by , and . Assume that population  is at the bottom of the chain. That population will
be depleted by population . Population  is sustained by  s, but eaten by  s. A simple, but scaled, model for this system can
be given by the system

a. Find the equilibrium points of the system.
b. Find the Jacobian matrix for the system and evaluate it at the equilibrium points.
c. Find the eigenvalues and eigenvectors.
d. Describe the solution behavior near each equilibrium point.
e. Which of these equilibria are important in the study of the pop- ulation model and describe the interactions of the species

in the neighborhood of these point(s).

13. Derive the first integral of the Lotka-Volterra system,  .
14. Show that the system , has a unique limit cycle by picking an appropriate  in Dulac’s

Criteria.
15. The Lorenz model is a simple model for atmospheric convection developed by Edward Lorenz in . The system is given by

the three equations

\[

\label{ \]

a. Find the equilibrium points of the system.

= −2xy,x′

= −x+y+xy− .y′ y3

= y−μ ( −x)x′ x3

= −x.y′

μ μ

L = 1.0 m g = 9.8 m/s2 T θ0

= ax−b −cxy,x′ x2

= dy−e −fxy.y′ y2

x(t), y(t) z(t) x

y y x′ z′

= x(1 −x) −xyx′

= y(1 −y) +xy−yzy′

= z(1 −z) +yz.z′

a lny+d lnx− cx−by = C

= x−y− , = x+y−x′ x3 y′ y3 ψ(x, y)

1963

= σ(y−x)
dx

dt

= x(ρ−z) −y
dy

dt

= xy−βz
dz

dt
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b. Find the Jacobian matrix for the system and evaluate it at the equilibrium points.
c. Determine any bifurcation points and describe what happens near the bifurcation point(s). Consider ,

and vary .
d. This system is know to exhibit chaotic behavior. Lorenz found a so-called strange attractor for parameter values 

, and . Using a computer, locate this strange attractor.

16. The Michaelis-Menten kinetics reaction is given by

The resulting system of equations for the chemical concentrations is

In chemical kinetics one seeks to determine the rate of product formation . Assuming that  is a
constant, find  as a function of  and the total enzyme concentration . As a nonlinear dynamical system,
what are the equilibrium points?

17. In Equation  we saw a linear version of an epidemic model. The commonly used nonlinear SIR model is given by

where  is the number of susceptible individuals,  is the number of infected individuals, and  are the number who have been
removed from the the other groups, either by recovering or dying.

1. Let  be the total population. Prove that  constant. Thus, one need only solve the first two equations and
find  afterwards.

2. Find and classify the equilibria. Describe the equilibria in terms of the population behavior.
3. Let  and . Assume that in a population of 100 there is one infected person. Numerically solve the system of

equations for  and  and describe the solution being careful to determine the units of population and the constants.
4. How does this affect any equilibrium solutions?
5. Again, let  and . Let  For a population of 100 with one infected person numerically solve the

system of equations for  and  and describe the solution being careful to determine the units of population and the
constants.

18. An undamped, unforced Duffing equation, , can be solved exactly in terms of elliptic functions. Using the
results of Exercise 7.10.1, determine the solution of this equation and determine if there are any restrictions on the parameters.

19. Determine the circumference of an ellipse in terms of an elliptic integral.
20. Evaluate the following in terms of elliptic integrals and compute the values to four decimal places.

a. .

σ = 10, β = 8/3
ρ

σ = 10, β = 8/3 ρ = 28

E+S ⟶ ES E+Pk1

k3

⟶
k2

d[S]

dt

d[E]

dt

d[ES]

dt

d[P ]

dt

= − [E][S] + [ES]k1 k3

= − [E][S] +( + ) [ES]k1 k2 k2

= [E][S] −( + ) [ES]k1 k2 k2

= [ES]k3

(v= d[P ]/dt = [ES])k3 [ES]
v [S] [ ] = [E] + [ES]ET

(6.58)

dS

dt

dI

dt

dR

dt

= −βSI

= βSI −γI

= γI

S I R

N = S+I +R N =
R = N −S−I

β = 0.05 γ = 0.2
S(t) I(t)

β = 0.05 γ = 0.2 μ = 0.1
S(t) I(t)

+ x+ ϵ = 0ẍ ω2 x3

∫
π/4

0

dθ

1 − θ
1

2
sin2

− −−−−−−−−
√
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b. .

c. .

d. .

e. .
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∫ π/2
0

dθ

1 − θ
1

4
sin2

− −−−−−−−−
√

∫ 2
0

dx

(9 − ) (4 − )x2 x2− −−−−−−−−−−−−
√

∫ π/2
0

dθ

cosθ
− −−−

√

∫ ∞
1

dx

−1x4
− −−−−

√
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1

CHAPTER OVERVIEW

8: Appendix Calculus Review
"Ordinary language is totally unsuited for expressing what physics really asserts, since the words of everyday life are not
sufficiently abstract. Only mathematics and mathematical logic can say as little as the physicist means to say." Bertrand Russell 

BEFORE YOU BEGIN OUR STUDY OF DIFFERENTIAL EQUATIONS perhaps you should review some things from calculus.
You definitely need to know something before taking this class. It is assumed that you have taken Calculus and are comfortable
with differentiation and integration. Of course, you are not expected to know every detail from these courses. However, there are
some topics and methods that will come up and it would be useful to have a handy reference to what it is you should know.

Most importantly, you should still have your calculus text to which you can refer throughout the course. Looking back on that old
material, you will find that it appears easier than when you first encountered the material. That is the nature of learning
mathematics and other subjects. Your understanding is continually evolving as you explore topics more in depth. It does not always
sink in the first time you see it. In this chapter we will give a quick review of these topics. We will also mention a few new methods
that might be interesting.
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8.7: Power Series
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8.9: Problems
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8.1: Introduction
THERE ARE TWO MAIN TOPICS IN CALCULUS: derivatives and integrals. You learned that derivatives are useful in providing
rates of change in either time or space. Integrals provide areas under curves, but also are useful in providing other types of sums
over continuous bodies, such as lengths, areas, volumes, moments of inertia, or flux integrals. In physics, one can look at graphs of
position versus time and the slope (derivative) of such a function gives the velocity. (See Figure .) By plotting velocity versus
time you can either look at the derivative to obtain acceleration, or you could look at the area under the curve and get the
displacement:

This is shown in Figure .

Figure : Plot of position vs time.

Figure : Plot of velocity vs time.

Logarithmic properties.

Of course, you need to know how to differentiate and integrate given functions. Even before getting into differentiation and
integration, you need to have a bag of functions useful in physics. Common functions are the polynomial and rational functions.
You should be fairly familiar with these. Polynomial functions take the general form

where . This is the form of a polynomial of degree . Rational functions, , consist of ratios of polynomials.

Their graphs can exhibit vertical and horizontal asymptotes.

Next are the exponential and logarithmic functions. The most common are the natural exponential and the natural logarithm. The
natural exponential is given by , where . The natural logarithm is the inverse to the exponential,
denoted by . (One needs to be careful, because some mathematics and physics books use log to mean natural exponential,

8.1.1

x = vdt∫
t

t0

8.1.2

8.1.1

8.1.2

f(x) = + +⋯ + x+anx
n an−1x

n−1 a1 a0

≠ 0an n f(x) =
g(x)

h(x)

f(x) = ex e ≈ 2.718281828 …

lnx
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whereas many of us were first trained to  this notation to mean the common logarithm, which is the ’log base 10 ’. Here we
will use  for the natural logarithm.)

(Exponential Properties). The properties of the exponential function follow from the basic properties for exponents. Namely, we
have:

The relation between the natural logarithm and natural exponential is given by

(Logarithmic Properties). Some common logarithmic properties are

We will see applications of these relations as we progress through the course.

This page titled 8.1: Introduction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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8.2: Trigonometric Functions
Another set of useful functions are the trigonometric functions. These functions have probably plagued you since high school. They
have their origins as far back as the building of the pyramids. Typical applications in your introductory math classes probably have
included finding the heights of trees, flag poles, or buildings. It was recognized a long time ago that similar right triangles have
fixed ratios of any pair of sides of the two similar triangles. These ratios only change when the non-right angles change.

Thus, the ratio of two sides of a right triangle only depends upon the angle. Since there are six possible ratios (think about it!), then
there are six possible functions. These are designated as sine, cosine, tangent and their reciprocals (cosecant, secant and cotangent).
In your introductory physics class, you really only needed the first three. You also learned that they are represented as the ratios of
the opposite to hypotenuse, adjacent to hypotenuse, etc. Hopefully, you have this down by now.

You should also know the exact values of these basic trigonometric functions for the special angles , and their

corresponding angles in the second, third and fourth quadrants. This becomes internalized after much use, but we provide these
values in Table  just in case you need a reminder.

Table : Table of Trigonometric Values

1

1 undefined

The problems students often have using trigonometric functions in later courses stem from using, or recalling, identities. We will
have many an occasion to do so in this class as well. What is an identity? It is a relation that holds true all of the time. For example,
the most common identity for trigonometric functions is the Pythagorean identity

This holds true for every angle  An even simpler identity is

Other simple identities can be derived from the Pythagorean identity. Dividing the identity by , or , yields

Several other useful identities stem from the use of the sine and cosine of the sum and difference of two angles. Namely, we have
that

Note that the upper (lower) signs are taken together.

Evaluate .

θ = 0, , , ,
π

6

π

3

π

4

π

2

8.2.1

8.2.1

θ cosθ sinθ tanθ

O 1 O O
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–

√

3
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3
1
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√

2
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√

π

4
2
–

√

2

2
–

√

2

π

2
0

θ+ θ = 1sin2 cos2

θ!

tanθ =
sinθ

cosθ

θcos2 θsin2

θ+1 = θtan2 sec2

1 + θ = θcot2 csc2

sin(A±B) = sinA cosB±sinB cosA

cos(A±B) = cosA cosB∓sinA sinB

 Example 8.2.1

sin
π
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Solution

(Double angle formulae). The double angle formulae are found by setting 

Using Equation , we can rewrite Equation  as

(Half angle formulae). These, in turn, lead to the half angle formulae. Solving for  and , we find that

Evaluate .

Solution
In the last example, we used the sum/difference identities to evaluate a similar expression. We could have also used a half
angle identity. In this example, we have

So, . This is not the simplest form and is called a nested radical. In fact, if we proceeded using the

difference identity for cosines, then we would obtain

So, how does one show that these answers are the same?

It is useful at times to know when one can reduce square roots of such radicals, called denesting. More generally, one seeks to

write . Following the procedure in this example, one has  and

sin
π

12
= sin( − )

π

3

π

4

= sin cos −sin cos
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√
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√
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√

4
3
–

√

A = B :

sin(2A) = 2 sinA cosB

cos(2A) = A− Acos2 sin2

8.2.1 8.2.9

cos(2A) = 2 A−1cos2

= 1 −2 Asin2

Acos2 Asin2

A =sin2 1 −cos 2A

2

A =cos2 1 +cos 2A

2

 Example 8.2.2
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1
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π
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√
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As long as  is a perfect square, there is a chance to reduce the expression to a simpler form.

Let’s focus on the factor . We seek to write this in the form . Equating the two expressions and squaring, we
have

In order to solve for  and , it would seem natural to equate the

coefficients of  and the remaining terms. We obtain a system of two nonlinear algebraic equations,

Solving the second equation for , and substituting the result into the first equation, we find result into the first
equation, we find

This fourth order equation has four solutions,

and

Thus,

and

Of the four solutions, two are negative and we know the value of the cosine for this angle has to be positive. The remaining
two solutions are actually equal! A quick computation will verify this:

= (a± ) . c2 1

2
−qa2 b2

− −−−−−−
√

−qa2 b2

2 + 3
–

√
− −−−−−

√ c+d 3
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√ )2
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√

c d
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–

√
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√
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We could have bypassed this situation be requiring that the solutions for  and  were not simply proportional to  like they
are in the second case.

Product Identities

Finally, another useful set of identities are the product identities. For example, if we add the identities for  and 
, the second terms cancel and we have

Thus, we have that

Similarly, we have

and

(Know the above boxed identities!) These boxed equations are the most common trigonometric identities. They appear often and
should just roll off of your tongue.

We will also need to understand the behaviors of trigonometric functions. In particular, we know that the sine and cosine functions
are periodic. They are not the only periodic functions, as we shall see. [Just visualize the teeth on a carpenter’s saw.] However, they
are the most common periodic functions.

A periodic function  satisfies the relation

for some constant . If  is the smallest such number, then  is called the period. Both the sine and cosine functions have period 

. This means that the graph repeats its form every  units. Similarly,  and  have the common period . We

will make use of this fact in later chapters.

In Feynman’s Surely You’re Joking Mr. Feynman!, Richard Feynman (1918-1988) talks about his invention of his own notation for
both trigonometric and inverse trigonometric functions as the standard notation did not make sense to him.

Related to these are the inverse trigonometric functions. For example, , or . Inverse functions give
back angles, so you should think

Figure : 

b c 3
–

√

sin(A+B)
sin(A−B)

sin(A+B) +sin(A−B) = 2 sinA cosB

sinA cosB = (sin(A+B) +sin(A−B))
1

2

cosA cosB = (cos(A+B) +cos(A−B))
1

2

sinA sinB = (cos(A−B) −cos(A+B))
1

2

f(x)

f(x+p) = f(x),  for all x

p p p

2π 2π sinbx cos bx p =
2π

b

f(x) = xsin−1 f(x) = arcsinx

θ = x ⇔ x = sinθsin−1

8.2.1 θ = x ⇒ tan θ =sin−1 x

1 −x2
− −−−−

√
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Also, you should recall that  is only a function if  . Similar relations exist for 

 and  .

Once you think about these functions as providing angles, then you can make sense out of more complicated looking expressions,
like . Such expressions often pop up in evaluations of integrals. We can untangle this in order to produce a simpler
form by referring to expression Equation .  is simple an angle whose sine is . Knowing the sine is the opposite
side of a right triangle divided by its hypotenuse, then one just draws a triangle in this proportion as shown in Figure .
Namely, the side opposite the angle has length  and the hypotenuse has length 1. Using the Pythagorean Theorem, the missing
side (adjacent to the angle) is simply . Having obtained the lengths for all three sides, we can now produce the tangent of
the angle as

This page titled 8.2: Trigonometric Functions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

y = x = arcsinxsin−1 − ≤
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2
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2
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tan( x)sin−1

8.2.24 θ = xsin−1 x

8.2.1
x

1 −x2
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√
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8.3: Hyperbolic Functions
So, are there any other functions that are useful in physics? Actually, there are many more. However, you have probably not see
many of them to date. We will see by the end of the semester that there are many important functions that arise as solutions of some
fairly generic, but important, physics problems. In your calculus classes you have also seen that some relations are represented in
parametric form. However, there is at least one other set of elementary functions, which you should already know about. These are
the hyperbolic functions. Such functions are useful in representing hanging cables, unbounded orbits, and special traveling waves
called solitons. They also play a role in special and general relativity.

Solitons are special solutions to some generic nonlinear wave equations. They typically experience elastic collisions and play
special roles in a variety of fields in physics, such as hydrodynamics and optics. A simple soliton solution is of the form

(Hyperbolic functions). We recall a few definitions and identities of hyperbolic functions: the hyperbolic sine and hyperbolic cosine
(shown in Figure ):

Figure : Plots of  and . Note that , and .

Hyperbolic functions are related to the trigonometric functions. We can see this from the relations

Letting  we have  and .

There are four other hyperbolic functions. These are defined in terms of the above functions similar to the relations between the
trigonometric functions. Namely, just as all of the trigonometric functions can be built from the sine and the cosine, the hyperbolic
functions can be defined in terms of the hyperbolic sine and hyperbolic cosine. We have

u(x, t) = 2 η (x −4 t)η2 sech2 η2

8.3.1

sinhx =
−ex e−x

2

coshx =
+ex e−x

2

8.3.1 cosh x sinh x sinh 0 = 0, cosh 0 = 1 cosh x ≥ 1

sinθ

cos θ

=
−eiθ e−iθ

2i

=
+eiθ e−iθ

2

θ = ix sin ix = i sinhx cos ix = coshx

tanhx = =
sinhx

coshx

−ex e−x

+ex e−x

sechx = =
1

coshx

2

+ex e−x

cschx = =
1

sinhx

2

−ex e−x

cothx = =
1

tanhx

+ex e−x

−ex e−x
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There are also a whole set of identities, similar to those for the trigonometric functions. For example, the Pythagorean identity for
trigonometric functions, , is replaced by the identity

This is easily shown by simply using the definitions of these functions. This identity is also useful for providing a parametric set of
equations describing hyperbolae. Letting  and , one has

(Hyperbolic identities). A list of commonly needed hyperbolic function identities are given by the following:

Note the similarity with the trigonometric identities. Other identities can be derived from these.

There also exist inverse hyperbolic functions and these can be written in terms of logarithms. As with the inverse trigonometric
functions, we begin with the definition

The aim is to write  in terms of  without using the inverse function. First, we note that

Next we solve for . This is done by noting that  and rewriting the previous equation as

This equation is in quadratic form which we can solve using the quadratic formula as

(There is only one root as we expect the exponential to be positive.)

The final step is to solve for ,

The inverse hyperbolic functions care given by , , 

.
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8.4: Derivatives
Now that we know some elementary functions, we seek their derivatives. We will not spend time exploring the appropriate limits in
any rigorous way. We are only interested in the results. We provide these in Table . We expect that you know the meaning of
the derivative and all of the usual rules, such as the product and quotient rules.

Also, you should be familiar with the Chain Rule. Recall that this rule tells us that if we have a composition of functions, such as
the elementary functions above, then we can compute the derivative of the composite function. Namely, if , then

Table : Table of Common Derivatives (  is a constant).
Function Derivative

0

Differentiate .

Solution
This is a composition of three functions, , where , and . Then
the derivative becomes

8.4.1

h(x) = f(g(x))

= (f(g(x))) = = (g(x)) (x)
dh

dx

d

dx

df

dg

∣

∣
∣
g(x)

dg

dx
f ′ g′

8.4.1 a

a

xn nxn−1

eax aeax

lnax
1

x

sinax acosax

cosax −asinax

tanax a axsec2

cscax −acscaxcotax

secax asecax tanax

cotax −a axcsc2

sinhax acoshax

coshax asinhax

tanhax a axsech2

cschax −acschaxcothax

sechax −asechax tanhax

cothax −a axcsch2

 Example 8.4.1

H(x) = 5 cos(π tanh2 )x2

H(x) = f(g(h(x))) f(x) = 5 cosx, g(x) = π tanhx h(x) = 2x2

(x)H ′ = 5 (−sin(π tanh2 )) ((π tanh2 ))x2 d

dx
x2

= −5π sin(π tanh2 ) 2 (2 )x2 sech2 x2 d

dx
x2

= −20πx sin(π tanh2 ) 2x2 sech2 x2
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8.5: Integrals
Integration is typically a bit harder. Imagine being given the last result in Equation 8.4.2 and having to figure out what was
differentiated in order to get the given function. As you may recall from the Fundamental Theorem of Calculus, the integral is the
inverse operation to differentiation:

It is not always easy to evaluate a given integral. In fact some integrals are not even doable! However, you learned in calculus that
there are some methods that could yield an answer. While you might be happier using a computer algebra system, such as Maple or
WolframAlpha.com, or a fancy calculator, you should know a few basic integrals and know how to use tables for some of the more
complicated ones. In fact, it can be exhilarating when you can do a given integral without reference to a computer or a Table of
Integrals. However, you should be prepared to do some integrals using what you have been taught in calculus. We will review a
few of these methods and some of the standard integrals in this section.

First of all, there are some integrals you are expected to know without doing any work. These integrals appear often and are just an
application of the Fundamental Theorem of Calculus to the previous Table 8.4.1. The basic integrals that students should know off
the top of their heads are given in Table .

These are not the only integrals you should be able to do. We can expand the list by recalling a few of the techniques that you
learned in calculus, the Method of Substitution, Integration by Parts, integration using partial fraction decomposition, and
trigonometric integrals, and trigonometric substitution. There are also a few other techniques that you had not seen before. We will
look at several examples.

Evaluate .

Solution
When confronted with an integral, you should first ask if a simple substitution would reduce the integral to one you know how
to do.

The ugly part of this integral is the  under the square root. So, we let .

Noting that when , we have . For our example, .

Looking at the integral, part of the integrand can be written as . Then, the integral becomes

The substitution has converted our integral into an integral over . Also, this integral is doable! It is one of the integrals we
should know. Namely, we can write it as

This is now easily finished after integrating and using the substitution variable to give

Note that we have added the required integration constant and that the derivative of the result easily gives the original
integrand (after employing the Chain Rule).

∫ dx = f(x) +C
df

dx

8.5.1

 Example 8.5.1

∫ dx
x

+1x2
− −−−−

√

+1x2 u = +1x2

u = f(x) du = (x)dxf ′ du = 2xdx

xdx = udu
1

2

∫ dx = ∫
x

+1x2
− −−−−

√

1

2

du

u−−√

u

∫ = ∫ du
1

2

du

u
−−

√

1

2
u−1/2

∫ dx = +C = +C.
x

+1x2
− −−−−

√

1

2

u1/2

1

2

+1x2− −−−−
√
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Often we are faced with definite integrals, in which we integrate between two limits. There are several ways to use these limits.
However, students often forget that a change of variables generally means that the limits have to change.

Table : Table of Common Integrals.
Function Indefinite Integral

Evaluate .

Solution
This is the last example but with integration limits added. We proceed as before. We let . As  goes from o to 
takes values from i to . So, this substitution gives

When you becomes proficient at integration, you can bypass some of these steps. In the next example we try to demonstrate the
thought process involved in using substitution without explicitly using the substitution variable.

8.5.1

a ax

xn
xn+1

n+ 1

eax
1

a
eax

1

x
lnx

sinax − cosax
1

a

cosax sinax
1

a

axsec2 tanax
1

a

sinhax coshax
1

a

coshax sinhax
1

a

axsech2 tanhax
1

a

secx ln|secx + tanx|

1

a+ bx
ln(a+ bx)

1

b

1

+a2 x2

1

a
tan−1 x

a

1

−a2 x2
− −−−−−

√
sin−1 x

a

1

x −x2 a2
− −−−−−

√
1

a
sec−1 x

a

1

−x2 a2
− −−−−−

√
= ln + xcosh−1 x

a
∣∣ −x2 a2

− −−−−−
√ ∣∣

 Example 8.5.2

dx∫ 2
0

x

+1x2
− −−−−

√

u = +1x2 x 2, u
5

dx = = = −1∫
2

0

x

+1x2
− −−−−

√

1

2
∫

5

1

du

u−−√
|u−−√
5
1

5
–

√
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Evaluate .

Solution
As with the previous example, one sees that the derivative of  is proportional to , which is in the numerator of the
integrand. Thus a substitution would give an integrand of the form . So, we expect the answer to be proportional to 

. The starting point is therefore,

where  is a constant to be determined.

We can determine  through differentiation since the derivative of the answer should be the integrand. Thus,

Comparing this result with the integrand, we see that the integrand is obtained when . Therefore,

We now complete the integral,

The function  is called the Gudermannian and connects trigonometric and hyperbolic

functions. This function was named after Christoph Gudermann (1798-1852), but introduced by Johann Heinrich Lambert ( 
 ), who was one of the first to introduce hyperbolic functions.

Evaluate .

Solution
This integral can be performed by first using the definition of  followed by a simple substitution.

Now, we let  and . Then,

 Example 8.5.3

dx∫ 2
0

x

9 +4x2
− −−−−−

√

9 +4x2 x

u−1/2

=u−−√ 9 +4x2
− −−−−−

√

∫ dx = A
x

9 +4x2
− −−−−−

√
9 +4x2− −−−−−

√

A

A

A
d

dx
(9 +4 )x2

1

2 = A ( ) (8x)(9 +4 )x2
−

1

2
1

2

= 4xA(9 +4 )x2
−

1

2

A =
1

4

∫ dx =
x

9 +4x2
− −−−−−

√

1

4
9 +4x2− −−−−−

√

dx = [5 −3] =∫
2

0

x

9 +4x2
− −−−−−

√

1

4

1

2

gd(x) = = 2 −∫ x

0

dx

coshx
tan−1 ex

π

2

1728 −1777

 Example 8.5.4

∫
dx

coshx

coshx

∫
dx

coshx
= ∫ dx

2

+ex e−x

= ∫ dx
2ex

+1e2x

u = ex du = dxex
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Integration by Parts
When the Method of Substitution fails, there are other methods you can try. One of the most used is the Method of Integration by
Parts. Recall the Integration by Parts Formula:

The idea behind Integrating by Parts is that you are given the integral on the left and you can relate it to an integral on the right.
Hopefully, the new integral is one you can do, or at least it is an easier integral than the one you are trying to evaluate.

However, you are not usually given the functions  and . You have to determine them. The integral form that you really have is a
function of another variable, say . Another form of the Integration by Parts Formula can be written as

Note: Often in physics one needs to move a derivative between functions inside an integrand. The key - use integration by parts to
move the derivative from one function to the other under an integral.

This form is a bit more complicated in appearance, though it is clearer than the  form as to what is happening. The derivative
has been moved from one function to the other. Recall that this formula was derived by integrating the product rule for
differentiation. These two formulae can be related by using the differential relations

This also gives a method for applying the Integration by Parts Formula.

Consider the integral .

Solution
We choose  and . This gives the correct left side of the Integration by Parts Formula. We next determine 
and  :

We note that one usually does not need the integration constant. Inserting these expressions into the Integration by Parts
Formula, we have

We see that the new integral is easier to do than the original integral. Had we picked  and , then the
formula still works, but the resulting integral is not easier.

∫
dx

coshx
= ∫ du

2

1 +u2

= 2 u+Ctan−1

= 2 +Ctan−1 ex

 Integration by Parts Formula

∫ udv= uv−∫ vdu

u v

x

∫ f(x) (x)dx = f(x)g(x) −∫ g(x) (x)dxg′ f ′

u−v

u = f(x) → du = (x)dxf ′

v= g(x) → dv= (x)dxg′

 Example 8.5.5

∫ x sin2xdx

u = x dv= sin2xdx v

du

du = dx = dx
du

dx

v= ∫ dv= ∫ sin2xdx = − cos 2x
1

2

∫ x sin2xdx = − x cos 2x+ ∫ cos 2xdx
1

2

1

2

u = sin2x dv= xdx

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91102?pdf
https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/03%3A_Derivatives/3.03%3A_Differentiation_Rules


8.5.5 https://math.libretexts.org/@go/page/91102

For completeness, we finish the integration. The result is

As always, you can check your answer by differentiating the result, a step students often forget to do. Namely,

So, we do get back the integrand in the original integral.

(Integration by Parts for Definite Integrals). We can also perform integration by parts on definite integrals. The general formula is
written as

Consider the integral

This will require two integrations by parts. First, we let  and . Then,

Inserting into the Integration by Parts Formula, we have

We note that the resulting integral is easier that the given integral, but we still cannot do the integral off the top of our head
(unless we look at Example  ). So, we need to integrate by parts again. (Note: In your calculus class you may recall that there
is a tabular method for carrying out multiple applications of the formula. We will show this method in the next example.)

We apply integration by parts by letting  and . This gives  and . Therefore, we
have

The final result is

There are other ways to compute integrals of this type. First of all, there is the Tabular Method to perform integration by parts. A
second method is to use differentiation of parameters under the integral. We will demonstrate this using examples.

∫ x sin2xdx = − x cos 2x+ sin2x+C.
1

2

1

4

(− x cos 2x+ sin2x+C)
d

dx

1

2

1

4
= − cos 2x+x sin2x+ (2 cos 2x)

1

2

1

4

= x sin2x. 

f(x) (x)dx = − g(x) (x)dx∫
b

a

g′ f(x)g(x)|ba ∫
b

a

f ′

 Example 8.5.6

cosxdx∫
π

0
x2

u = x2 dv= cosx

du = 2xdx. v= sinx

cosxdx∫
π

0
x2 = −2 x sinxdxsinxx2 ∣∣

π

0
∫

π

0

= −2 x sinxdx∫
π

0

3!

U = x dV = sinxdx dU = dx V = −cosx

x sinxdx∫
π

0
= − + cosxdxx cosx|π0 ∫

π

0

= π+ sinx|π0

= π

cosxdx = −2π∫
π

0
x2
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Compute the integral  using the Tabular Method.

(Using the Tabular Method). First we identify the two functions under the integral,  and . We then write the two
functions and list the derivatives and integrals of each, respectively. This is shown in Table A.4. Note that we stopped

First when we reached zero in the left column.

Next, one draws diagonal arrows, as indicated, with alternating signs attached, starting with . The indefinite integral is then
obtained by summing the products of the functions at the ends of the arrows along with the signs on each arrow:

To find the definite integral, one evaluates the antiderivative at the given limits.

Actually, the Tabular Method works even if a zero does not appear in the left column. One can go as far as possible, and if a zero
does not appear, then one needs only integrate, if possible, the product of the functions in the last row, adding the next sign in the
alternating sign progression. The next example shows how this works.

Figure : Tabular Method

Figure : Tabular Method, showing a nonterminating example.

Use the Tabular Method to compute .

As before, we first set up the table as shown in Figure .

Putting together the pieces, noting that the derivatives in the left column will never vanish, we have

 Example 8.5.7

cosxdx∫ π

0
x2

x2 cosx

+

∫ cosxdx = sinx+2x cosx−2 sinx+Cx2 x2

cosxdx∫
π

0
x2 = [ sinx+2x cosx−2 sinx]x2 π

0

= ( sinπ+2π cosπ−2 sinπ)−0π2

= −2π.

8.5.1

8.5.2

 Example 8.5.8

∫ sin3xdxe2x

8.5.2
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The integral on the right is a multiple of the one on the left, so we can combine them,

or

Differentiation Under the Integral
Differentiation Under the Integral Sign and Feynman’s trick.

Another method that one can use to evaluate this integral is to differentiate under the integral sign. This is mentioned in the Richard
Feynman’s memoir Surely You’re Joking, Mr. Feynman!. In the book Feynman recounts using this "trick" to be able to do integrals
that his MIT classmates could not do. This is based on a theorem found in Advanced Calculus texts. Reader’s unfamiliar with
partial derivatives should be able to grasp their use in the following example.

Let the functions  and  be continuous in both , and , in the region of the  plane which includes 

, where the functions  and  are continuous and have continuous derivatives for 
. Defining

then

for . This is a generalized version of the Fundamental Theorem of Calculus.

In the next examples we show how we can use this theorem to bypass integration by parts.

Use differentiation under the integral sign to evaluate . First, consider the integral

Then,

∫ sin3xdx =( sin3x− cos 3x) +∫ (−9 sin3x)( ) dxe2x 1

2

3

4
e2x 1

4
e2x

∫ sin3xdx =( sin3x− cos 3x)
13

4
e2x 1

2

3

4
e2x

∫ sin3xdx =( sin3x− cos 3x)e2x 2

13

3

13
e2x

 Theorem 8.5.1

f(x, t)
∂f(x, t)

∂x
t x (t, x)

a(x) ≤ t ≤ b(x), ≤ x ≤x0 x1 a(x) b(x)
≤ x ≤x0 x1

F (x) ≡ f(x, t)dt,∫
b(x)

a(x)

dF (x)

dx
=( ) +( ) + f(x, t)dt

∂F

∂b

db

dx

∂F

∂a

da

dx
∫

b(x)

a(x)

∂

∂x

= f(x, b(x)) (x) −f(x, a(x)) (x) + f(x, t)dtb′ a′ ∫
b(x)

a(x)

∂

∂x

≤ x ≤x0 x1

 Example 8.5.9

∫ x dxex

I(x, a) = ∫ dx =eax
eax

a

= ∫ x dx
∂I(x, a)

∂a
eax

SO
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Evaluating this result at , we have

The reader can verify this result by employing the previous methods or by just differentiating the result.

We will do the integral  once more. First, consider the integral

Differentiating the integral  with respect to  twice gives

Evaluation of this result at  leads to the desired result. Namely,

Trigonometric Integrals

Other types of integrals that you will see often are trigonometric integrals. In particular, integrals involving powers of sines and
cosines. For odd powers, a simple substitution will turn the integrals into simple powers.

For example, consider

∫ x dxeax =
∂I(x, a)

∂a

= (∫ dx)
∂

∂a
eax

= ( )
∂

∂a

eax

a

=( − )
x

a

1

a2
eax

a = 1

∫ x dx = (x−1)ex ex

 Example 8.5.10

cosxdx∫ π

0
x2

I(a) ≡ cosaxdx∫
π

0

=
sinax

a

∣
∣
∣
π

0

=
sinaπ

a

I(a) a

= − cosaxdx
I(a)d2

da2
∫

π

0
x2

a = 1

cosxdx∫
π

0
x2 = −

I(a)d2

da2

∣

∣
∣
a=1

= − ( )
d2

da2

sinaπ

a

∣

∣
∣
a=1

∣

∣
∣
a=1

= − )( )
d

da

aπ cosaπ−sinaπ

a2

∣

∣
∣
a3

|a=1

= −(
sinaπ+2aπ cosaπ−2 sinaπa2π2

−2π.

 Example 8.5.11

∫ xdxcos3
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Solution
This can be rewritten as

Integration of odd powers of sine and cosine. Let . Then, . Since , we have

A quick check confirms the answer:

Even powers of sines and cosines are a little more complicated, but doable. In these cases we need the half angle formulae
(A.24)-(A.25).

(Integration of even powers of sine and cosine).

As an example, we will compute

.

Solution
Substituting the half angle formula for , we have

We note that this result appears often in physics. When looking at root mean square averages of sinusoidal waves, one needs the
average of the square of sines and cosines. Recall that the average of a function on interval  is given as

So, the average of  over one period is

∫ xdx = ∫ x cosxdxcos3 cos2

u = sinx du = cosxdx x = 1 − xcos2 sin2

∫ xdxcos3 = ∫ x cosxdxcos2

= ∫ (1 − )duu2

= u− +C
1

3
u3

= sinx− x+C.
1

3
sin3

(sinx− x+C)
d

dx

1

3
sin3 = cosx− x cosxsin2

= cosx (1 − x)sin2

= xcos3

 Example 8.5.12

xdx∫
2π

0
cos2

xcos2

xdx∫
2π

0
cos2 = (1 +cos 2x)dx

1

2
∫

2π

0

=
1

2
(x− sin2x)

1

2

2π

0

= π

[a, b]

= f(x)dxfave 
1

b−a
∫

b

a

xcos2
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The root mean square is then found by taking the square root, .

Recall that RMS averages refer to the root mean square average. This is computed by first computing the average, or mean, of the
square of some quantity. Then one takes the square root. Typical examples are RMS voltage, RMS current, and the average energy
in an electromagnetic wave. AC currents oscillate so fast that the measured value is the RMS voltage.

Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involving the forms , , or \(\sqrt{x^2 − 1\).
These can be simplified through the use of trigonometric substitutions. The idea is to combine the two terms under the radical into
one term using trigonometric identities. We will consider some typical examples.

Evaluate .

Solution

Since , we perform the sine substitution

In any of these computations careful attention has to be paid to simplifying the radical. This is because

For example, . For  one typically specifies the domain . In this domain we
have .

Then,

Using the last example, we have

However, we need to write the answer in terms of . We do this by first using the double angle formula for  and 
 to obtain

Similar trigonometric substitutions result for integrands involving  and . The substitutions are summarized in
Table A.6. The simplification of the given form is then obtained using trigonometric identities. This can also be accomplished by
referring to the right triangles shown in Figure .

Table : Standard trigonometric substitutions.
Form Substitution Differential

xdx = .
1

2π
∫

2π

0
cos2 1

2

1

2
–

√

1 −x2
− −−−−

√ 1 +x2
− −−−−

√

 Example 8.5.13

∫ dx1 −x2
− −−−−

√

1 − θ = θsin2 cos2

x = sinθ, dx = cosθdθ

= |x|.x2−−
√

= = 5(−5)2− −−−−
√ 25

−−
√ x = sinθ, −π/2 ≤ θ ≤ π/2

| cosθ| = cosθ

∫ dx1 −x2− −−−−
√ = ∫ cosθdθ1 − θsin2− −−−−−−−

√

= ∫ θdθ.cos2

∫ dx = (θ− sin2θ)+C.1 −x2− −−−−
√ 1

2

1

2

x sin2θ

cosθ = 1 −x2
− −−−−

√

∫ dx = ( x−x )+C.1 −x2− −−−−
√ 1

2
sin−1 1 −x2− −−−−

√

1 +x2
− −−−−

√ −1x2
− −−−−

√

8.5.3

8.5.2

−a2 x2− −−−−−√ x = asinθ dx = acosθdθ

+a2 x2− −−−−−√ x = atanθ dx = a θdθsec2
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Form Substitution Differential

Figure : Geometric relations used in trigonometric substitution.

Evaluate .

Solution
Let . Then,  and

So, the integral becomes

One has to recall, or look up,

This gives

Evaluate .

Solution
In this case one needs the secant substitution. This yields

−x2 a2− −−−−−√ x = asecθ dx = asecθtanθdθ

8.5.3

 Example 8.5.14

dx∫ 2
0 +4x2

− −−−−
√

x = 2 tanθ dx = 2 θdθsec2

= = 2 sec θ+4x2− −−−−
√ 4 θ+4tan2− −−−−−−−−

√

dx = 4 θdθ∫
2

0
+4x2− −−−−

√ ∫
π/4

0
sec3

∫ θdθ = (tanθ sec θ+ln| sec θ+tanθ|) +C.sec3 1

2

dx∫
2

0
+4x2− −−−−

√ = 2[tanθ sec θ+ln| sec θ+tanθ|]
π/4
0

= 2( +ln | +1| −(0 +ln(1)))2
–

√ 2
–

√

= 2( +ln( +1))2
–

√ 2
–

√

 Example 8.5.15

∫ , x ≥ 1
dx

−1x2
− −−−−

√
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Evaluate .

Again we can use a secant substitution. This yields

Hyperbolic Function Substitution
Even though trigonometric substitution plays a role in the calculus program, students often see hyperbolic function substitution
used in physics courses. The reason might be because hyperbolic function substitution is sometimes simpler. The idea is the same
as for trigonometric substitution. We use an identity to simplify the radical.

Evaluate  using the substitution .

Solution

Since , we have . Also, we can use the identity  to rewrite

The integral can be now be evaluated using these substitutions and some hyperbolic function identities,

∫
dx

−1x2
− −−−−

√
= ∫

sec θ tanθdθ

θ−1sec2
− −−−−−−−

√

= ∫
sec θ tanθdθ

tanθ

= ∫ sec θdθ

= ln(sec θ+tanθ) +C

= ln(x+ )+C.−1x2− −−−−
√

 Example 8.5.16

∫ , x ≥ 1
dx

x −1x2− −−−−
√

∫
dx

x −1x2
− −−−−

√
= ∫

sec θ tanθdθ

sec θ θ−1sec2
− −−−−−−−

√

= ∫ dθ
sec θ tanθ

sec θ tanθ

= ∫ dθ = θ+C = x+C.sec−1

 Example 8.5.17

dx∫ 2
0 +4x2

− −−−−
√ x = 2 sinhu

x = 2 sinhu dx = 2 coshudu u− u = 1cosh2 sinh2

= = 2 coshu+4x2− −−−−
√ 4 u+4sinh2

− −−−−−−−−−
√

dx∫
2

0
+4x2− −−−−

√ = 4 udu∫
1sinh−1

0
cosh2

= 2 (1 +cosh2u)du∫
1sinh−1

0

= 2[u+ sinh2u]
1

2

1sinh−1

0

= 2[u+sinhu coshu] 1sinh−1

0

= 2 ( 1 + )sinh−1 2
–

√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91102?pdf


8.5.13 https://math.libretexts.org/@go/page/91102

In Example A.17 we used a trigonometric substitution and found

This is the same result since .

Evaluate  for  using hyperbolic function substitution.

Solution
This integral was evaluated in Example  using the trigonometric substitution  and the resulting integral of 
had to be recalled. Here we will use the substitution

Then,

This is the same result as we had obtained previously, but this derivation was a little cleaner.

Also, we can extend this result to values  by letting  - cosh . This gives

Combining these results, we have shown

We have seen in the last example that the use of hyperbolic function substitution allows us to bypass integrating the secant function
in Example  when using trigonometric substitutions. In fact, we can use hyperbolic substitutions to evaluate integrals of
powers of secants. Comparing Example  and Example , we consider the transformation . The relation
between differentials is found by differentiation, giving

Since

we have , therefore

In the next example we show how useful this transformation is.

(Evaluation of ).

= 2( +ln( +1))∫
2

0
+4x2− −−−−

√ 2
–

√ 2
–

√

1 = ln(1 + )sinh−1 2
–

√

 Example 8.5.18

∫
dx

−1x2
− −−−−

√
x ≥ 1

8.5.16 x = sec θ sec θ

x = coshu, dx = sinhudu, = = sinhu−1x2− −−−−
√ u−1cosh2

− −−−−−−−−
√

∫
dx

−1x2
− −−−−

√
= ∫

sinhudu

sinhu

= ∫ du = u+C

= x+Ccosh−1

= ln(x+ )+C, x ≥ 1
1

2
−1x2− −−−−

√

x ≤ −1 x = u

∫ = ln(x+ )+C, x ≤ −1
dx

−1x2
− −−−−

√

1

2
−1x2− −−−−

√

∫ = ln(|x| + )+C, ≥ 1
dx

−1x2
− −−−−

√

1

2
−1x2− −−−−

√ x2

8.5.16
8.5.16 8.5.18 sec θ = coshu

sec θ tanθdθ = sinhudu

θ = θ−1tanh2 sec2

tanθ = sinhu

dθ =
du

coshu

∫ sec θdθ
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Evaluate  using hyperbolic function substitution.

Solution
From the discussion in the last paragraph, we have

We can express this result in the usual form by using the logarithmic form of the inverse hyperbolic cosine,

The result is

This example was fairly simple using the transformation . Another common integral that arises often is integrations
of . In a typical calculus class this integral is evaluated using integration by parts. However. that leads to a tricky
manipulation that is a bit scary the first time it is encountered (and probably upon several more encounters.) In the next example,
we will show how hyperbolic function substitution is simpler.

(Evaluation of ).

Evaluate  using hyperbolic function substitution.

Solution

First, we consider the transformation  with  . Then,

This integral was done in Example A.7, leading to

While correct, this is not the form usually encountered. Instead, we make the slightly different transformation .
Since , we find . As before, we find

Using this transformation and several identities, the integral becomes

 Example 8.5.19

∫ sec θdθ

∫ sec θdθ = ∫ du

= u+C

= (sec θ) +Ccosh−1

x = ln(x+ )cosh−1 −1x2− −−−−
√

∫ sec θdθ = ln(sec θ+tanθ)

sec θ = coshu
θsec3

∫ θdθsec3

 Example 8.5.20

∫ θdθsec3

sec θ = coshu dθ =
du

coshu

∫ θdθ = ∫sec3 du

coshu

∫ θdθ = 2 +Csec3 tan−1 eu

tanθ = sinhu
θ = 1 + θsec2 tan2 sec θ = coshu

dθ =
du

coshu
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There are many other integration methods, some of which we will visit in other parts of the book, such as partial fraction
decomposition and numerical integration. Another topic which we will revisit is power series.

This page titled 8.5: Integrals is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

∫ θdθsec3 = ∫ uducosh2

= ∫ (1 +cosh2u)du
1

2

= (u+ sinh2u)
1

2

1

2

= (u+sinhu coshu)
1

2

= ( (sec θ) +tanθ sec θ)
1

2
cosh−1

= (sec θ tanθ+ln(sec θ+tanθ))
1

2
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8.6: Geometric Series
Infinite series occur often in mathematics and physics. Two series Which occur often are the geometric series and the binomial series. We will
discuss these next.

A geometric series is of the form

Here  is the first term and  is called the ratio. It is called the ratio because the ratio of two consecutive terms in the sum is .

is an example of a geometric series. We can write this using summation notation,

Thus,  is the first term and  is the common ratio of successive terms.

Next, we seek the sum of this infinite series, if it exists.

The sum of a geometric series, when it exists, can easily be determined. We consider the th partial sum:

Now, multiply this equation by .

Subtracting these two equations, while noting the many cancelations, we have

\[ \begin{aligned} (1-r) s_{n}=&\left(a+a r+\ldots+a r^{n-2}+a r^{n-1}\right) \

\[4pt] &-\left(a r+a r^{2}+\ldots+a r^{n-1}+a r^{n}\right) \

\[4pt] =& a-a r^{n} \

Thus, the th partial sums can be written in the compact form

The sum, if it exists, is given by . Letting  get large in the partial sum (Equation ), we need only evaluate . From
the special limits in the Appendix we know that this limit is zero for . Thus, we have

\[\begin{aligned} &\text { Geometric Series } \

\[4pt] &\sum_{n=0}^{\infty} a r^{n}=\dfrac{a}{1-r^{\prime}}, \quad|r|<1 \

The sum of the geometric series exists for  and is given by

The reader should verify that the geometric series diverges for all other values of . Namely, consider what happens for the separate cases , 
 and .

Next, we present a few typical examples of geometric series.

 Definition: Geometric Series

a = a +ar +a +… +a +…∑
n=0

∞

r
n

r
2

r
n

a r r

 Example 8.6.1

1 + + + +…
1

2

1

4

1

8

1 + + + +… = 1
1

2

1

4

1

8
∑
n=0

∞

( )
1

2

n

a = 1 r =
1

2

n

= a +ar +… +a +asn r
n−2

r
n−1

r

r = ar +a +… +a +asn r
2

r
n−1

r
n

4pt] =& a\left(1-r^{n}\right) \end{aligned} \label{A.92}

n

= .sn

a (1 − )r
n

1 −r
(8.6.1)

S = limn→∞ sn n 8.6.1 limn→∞ r
n

|r| < 1

4pt] &\text { (A.94) } \end{aligned} \nonumber

|r| < 1

r |r| > 1

r = 1 r = −1
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Solution

In this case we have that  and . Therefore, this infinite series converges and the sum is

Solution
In this example we first note that the first term occurs for . It sometimes helps to write out the terms of the series,

Looking at the series, we see that  and . Since , the geometric series converges. So, the sum of the series is given by

Solution
Finally, in this case we do not have a geometric series, but we do have the difference of two geometric series. Of course, we need to be  A
rearrangement of terms in an infinite careful whenever rearranging infinite series. In this case it is allowed series is allowed when the series is
absolutely convergent. (See the Appendix.)

Now we can add both geometric series to obtain

Geometric series are important because they are easily recognized and summed. Other series which can be summed include special cases of Taylor
series and telescoping series. Next, we show an example of a telescoping series.

 Example 8.6.2

∑
n=0

∞ 1

2n

a = 1 r =
1

2

S = = 2
1

1 −
1

2

 Example 8.6.3

∑
k=2

∞ 4

3k

k = 2

= + + + +…∑
k=2

∞
4

3k

4

32

4

33

4

34

4

35

a =
4

9
r =

1

3
|r| < 1

S = =

4

9

1 −
1

3

2

3

 Example 8.6.4

( − )∑
n=1

∞ 3

2n

2

5n

I 

( − ) = −∑
n=1

∞ 3

2n

2

5n
∑
n=1

∞ 3

2n
∑
n=1

∞ 2

5n

( − ) = − = 3 − =∑
n=1

∞ 3

2n

2

5n

3

2

1 −
1

2

2

5

1 −
1

5

1

2

5

2
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Solution
The first few terms of this series are

It does not appear that we can sum this infinite series. However, if we used the partial fraction expansion

then we find the  th partial sum can be written as

\[ \begin{aligned} s_{k} &=\sum_{n=1}^{k} \dfrac{1}{n(n+1)} \

\[4pt] &=\sum_{n=1}^{k}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right) \

We see that there are many cancelations of neighboring terms, leading to the series collapsing (like a retractable telescope) to something
manageable:

Taking the limit as , we find .

Actually, what are now known as Taylor and Maclaurin series were known long before they were named. James Gregory (1638-1675) has been
recognized for discovering Taylor series, which were later named after Brook Taylor (1685-1731). Similarly, Colin Maclaurin (1698-1746) did not
actually discover Maclaurin series, but the name was adopted because of his particular use of series.

This page titled 8.6: Geometric Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content
that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Example 8.6.5

∑∞
n=1

1

n(n +1)

= + + + +…∑
n=1

∞ 1

n(n +1)

1

2

1

6

1

12

1

20

= −
1

n(n +1)

1

n

1

n +1

k

4pt] &=\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\cdots+\left(\dfrac{1}{k}-\dfrac{1}{k+1}\right) \end{aligned} \label{A.95}

= 1 −sk

1

k +1

k → ∞ = 1∑
∞
n=1

1

n(n +1)
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8.7: Power Series
ANOTHER EXAMPLE OF AN INFINITE SERIES that the student has encountered in previous courses is the power series.
Examples of such series are provided by Taylor and Maclaurin series.

A power series expansion about  with coefficient sequence  is given by . For now we will consider all
constants to be real numbers with  in some subset of the set of real numbers.

Consider the following expansion about  :

We would like to make sense of such expansions. For what values of  will this infinite series converge? Until now we did not pay
much attention to which infinite series might converge. However, this particular series is already familiar to us. It is a geometric
series. Note that each term is gotten from the previous one through multiplication by . The first term is . So, from
Equation 8.6.5, we have that the sum of the series is given by

Figure : (a) Comparison of  (solid) to  (dashed) for  . (b) Comparison of  (solid) to 

 (dashed) for .

In this case we see that the sum, when it exists, is a simple function. In fact, when  is small, we can use this infinite series to
provide approximations to the function . If  is small enough, we can write

Figure : Comparison of  (solid) to 

 (dashed) and 

In Figure a we see that for small values of  these functions do agree. (dotted) for .

x = a cn (x −a∑∞
n=0 cn )n

x

x = 0

= 1 +x + +…∑
n=0

∞

xn x2

x

r = x a = 1

= , |x| < 1∑
n=0

∞

xn 1

1 −x

8.7.1
1

1 − x
1 + x x ∈ [−0.2, 0.2]

1

1 − x
1 + x + x2 x ∈ [−0.2, 0.2]

x

(1 −x)−1 x

(1 −x ≈ 1 +x)−1

8.7.2
1

1 − x
1 + x + x2 1 + x + +x2 x3

8.7.1 x x ∈ [−1.0, 0.7]
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Of course, if we want better agreement, we select more terms. In Figure b we see what happens when we do so. The
agreement is much better. But extending the interval, we see in Figure  that keeping only quadratic terms may not be good
enough. Keeping the cubic terms gives better agreement over the interval.

Finally, in Figure  we show the sum of the first 21 terms over the entire interval . Note that there are problems with
approximations near the endpoints of the interval, .

Figure : Comparison of  (solid) to  for .

Such polynomial approximations are called Taylor polynomials. Thus,  is the third order Taylor

polynomial approximation of .

With this example we have seen how useful a series representation might be for a given function. However, the series
representation was a simple geometric series, which we already knew how to sum. Is there a way to begin with a function and then
find its series representation? Once we have such a representation, will the series converge to the function with which we started?
For what values of  will it converge? These questions can be answered by recalling the definitions of Taylor and Maclaurin series.

A Taylor series expansion of  about  is the series

where

Note that we use ∼ to indicate that we have yet to determine when the series may converge to the given function. A special class of
series are those Taylor series for which the expansion is about . These are called Maclaurin series.

Maclaurin series expansion.

 
A Maclaurin series expansion of  is a Taylor series expansion of  about , or

where

8.7.1
8.7.2

8.7.3 [−1, 1]
x = ±1

8.7.3
1

1 − x
∑20

n=0 xn x ∈ [−1, 1]

(x) = 1 +x + +T3 x2 x3

f(x) =
1

1 −x

x

f(x) x = a

f(x) ∼ (x −a∑
n=0

∞

cn )n

=cn

(a)f (n)

n!

x = 0

f(x) (x) x = 0

f(x) ∼ (x∑
n=0

∞

cn )n

= . cn

(0)f (n)

n!
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Expand  about .

Solution
We begin by creating a table. In order to compute the expansion coefficients, , we will need to perform repeated
differentiations of . So, we provide a table for these derivatives. Then, we only need to evaluate the second column at 

 and divide by .

0

1

2

3

Next, we look at the last column and try to determine a pattern so that we can write down the general term of the series. If there
is only a need to get a polynomial approximation, then the first few terms may be sufficient. In this case, the pattern is obvious:

. So,

Expand  about .

Solution
Here we seek an expansion of the form . We could create a table like the last example. In fact, the last
column would have values of the form . (You should confirm this.) However, we will make use of the Maclaurin series

expansion for  and get the result quicker. Note that . Now, apply the known expansion for  :

Expand  about .

Solution
This is the example with which we started our discussion. We can set up a table in order to find the Maclaurin series
coefficients. We see from the last column of the table that we get back the geometric series Equation .

 Example 8.7.1

f(x) = ex x = 0

cn

f(x)
x = 0 n!

n (x)f (n) (0)f (n) cn

ex = 1e0 = 1
1

0!

ex = 1e0 = 1
1

1!

ex = 1e0 1

2!

ex = 1e0 1

3!

=cn

1

n!

∼ex ∑
n=0

∞ xn

n!

 Example 8.7.2

f(x) = ex x = 1

∼ (x −1ex ∑∞
n=0 cn )n

e

n!
ex = = eex ex−1+1 ex−1 ex

∼ e(1 +(x −1) + + +…) =ex (x −1)2

2

(x −1)3

3!
∑
n=0

∞ e(x −1)n

n!

 Example 8.7.3

f(x) =
1

1 −x
x = 0

8.7.1

n (x)f (n) (0)f (n) cn
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0 1

1 1

2

3

So, we have found

We can replace  by equality if we can determine the range of -values for which the resulting infinite series converges. We will
investigate such convergence shortly.

Series expansions for many elementary functions arise in a variety of applications. Some common expansions are provided in
Figure .

Figure : Common Mclaurin Series Expansions

We still need to determine the values of  for which a given power series converges. The first five of the above expansions
converge for all reals, but the others only converge for .

We consider the convergence of . For  the series obviously converges. Will it converge for other points?
One can prove

If  converges for , then  converges absolutely for all  satisfying .

This leads to three possibilities

1.  may only converge at .
2.  may converge for all real numbers.
3.  converges for  and diverges for  .

(Interval and radius of convergence). The number  is called the radius of convergence of the power series and  is
called the interval of convergence. Convergence at the endpoints of this interval has to be tested for each power series.

n (x)f (n) (0)f (n) cn

1

1 − x
= 1

1

0!

1

(1 − x)2 = 1
1

1!

2(1)

(1 − x)3
2(1) = 1

2!

2!

3(2)(1)

(1 − x)4
3(2)(1) = 1

3!

3!

∼
1

1 −x
∑
n=0

∞

xn

∼ x

8.7.4

8.7.4

x

|x| < 1

(x −a∑∞
n=0 cn )n x = a

 Theorem 8.7.1

(b −a∑∞
n=0 cn )n b ≠ a (x −a∑∞

n=0 cn )n x |x −a| < |b −a|

(x −a∑∞
n=0 cn )n x = a

(x −a∑∞
n=0 cn )n

(x −a∑∞
n=0 cn )n |x −a| < R ∣x− a ∣> R

R (a −R, a +R)
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In order to determine the interval of convergence, one needs only note that when a power series converges, it does so absolutely.
So, we need only test the convergence of . This is easily done using either the ratio test
or the th root test. We first identify the nonnegative terms , and then we apply one of the convergence tests
from the calculus curriculum.

For example, the th Root Test gives the convergence condition for  ,

Since  is independent of , we can factor it out of the limit and divide the value of the limit to obtain

Thus, we have found the radius of convergence, .

Similarly, we can apply the Ratio Test.

Again, we rewrite this result to determine the radius of convergence:

Find the radius of convergence of the series .

Solution
Since there is a factorial, we will use the Ratio Test.

Since , it is independent of  and thus the series converges for all . We also can say that the radius of convergence is
infinite.

Find the radius of convergence of the series  .

Solution
In this example we will use the th Root Test.

Thus, we find that we have absolute convergence for . Setting  or , we find that the resulting series do not
converge. So, the endpoints are not included in the complete interval of convergence.

In this example we could have also used the Ratio Test. Thus,

| (x −a | = | | |x −a∑∞
n=0 cn )n ∑∞

n=0 cn |n

n = | | |x −aan cn |n

n =an | | |x −acn |n

ρ = = −a ∣< 1lim
n→∞

an
−−

√n lim
n→∞

| | ∣ xcn

− −−−−−
√n

|x −a| n′

|x −a| < ≡ R( )lim
n→∞

| |cn

−−−
√n

−1

R

ρ = = |x −a| < 1lim
n→∞

an+1

an

lim
n→∞

| |cn+1

| |cn

|x −a| < ≡ R( )lim
n→∞

| |cn+1

| |cn

−1

 Example 8.7.4

=ex ∑∞
n=0

xn

n!
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n→∞

|n!|

|(n +1)!|
lim

n→∞

1

n +1

ρ = 0 |x| x

 Example 8.7.5

=
1

1 −x
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n
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1
–
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|x| < 1 x = 1 x = −1
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We have obtained the same result as when we used the th Root Test.

Find the radius of convergence of the series .

Solution
In this example, we have an expansion about . Using the th

Root Test we find that

Solving for  in this inequality, we find . Thus, the radius of convergence is  and the interval of

convergence is .

As for the endpoints, we first test the point . The resulting series is . This is the harmonic

series, and thus it does not converge. Inserting , we get the alternating harmonic series. This series does converge. So,

we have convergence on . However, it is only conditionally convergent at the left endpoint, .

Find an expansion of  about .

Solution
Instead of explicitly computing the Taylor series expansion for this function, we can make use of an already known function.
We first Write  as a function of , since we are expanding about ; i.e., we are seeking a series whose terms are
powers of .

This expansion is easily done by noting that . Factoring out a 3 , we can rewrite this expression as a

sum of a geometric series. Namely, we use the expansion for

and then we rewrite  as

n

 Example 8.7.6

∑∞
n=1

(x −23n )n

n

x = 2 n

ρ = |x −2| = 3|x −2| < 1.lim
n→∞

3n

n

−−−
√n

|x −2| |x −2| <
1

3
R =

1

3

(2 − , 2 + ) =( , )
1

3

1

3

5

3

7

3

x =
7

3
=∑∞

n=1

3n( )
1

3

n

n
∑∞

n=1

1

n

x =
5

3

[ , )
5

3

7

3
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5

3

 Example 8.7.7
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1 +z
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x +2

=
1

(x −1) +3

=
1

3 [1 + (x −1)]
1

3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91104?pdf


8.7.7 https://math.libretexts.org/@go/page/91104

Note that  for . So, the expansion becomes

This can further be simplified as

Convergence is easily established. The expansion for  converges for . So, the expansion for  converges for 

 1. This implies that . Putting this inequality in interval notation, we have that the power series

converges absolutely for  . Inserting the endpoints, one can show that the series diverges for both  and 
. You should verify this!

Prove Euler’s Formula: .

Solution

Euler’s Formula, , is an important formula and is used throughout the text.

As a final application, we can derive Euler’s Formula,

where . We naively use the expansion for  with . This leads us to

Next we note that each term has a power of . The sequence of powers of  is given as 
. See the pattern? We conclude that

This gives

We recognize the expansions in the parentheses as those for the cosine and sine functions. Thus, we end with Euler’s Formula.

We further derive relations from this result, which will be important for our next studies. From Euler’s formula we have that for
integer  :

We also have

Equating these two expressions, we are led to de Moivre’s Formula, named after Abraham de Moivre ,

=
1

3

1

1 + (x −1)
1

3

f(x) = g( (x −1))
1

3

1

3
g(z) =

1

1 +z

f(x) = [1 − (x −1) + − +…]
1

3

1

3
( (x −1))

1

3

2

( (x −1))
1

3

3

f(x) = − (x −1) + (x −1 −…
1

3

1

9

1

27
)2

g(z) |z| < 1 f(x)

− (x −1) <
∣
∣
∣

1

3
∣
∣
∣ |x −1| < 3

x ∈ (−2, 4) x = −2
x = 4

 Example 8.7.8

= cos θ + i sinθeiθ

= cos θ + i sinθeiθ
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= 1 + iθ + + + +…eiθ (iθ)2
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4!

i i

{1, i, −1, −i, 1, i, −1, −i, 1, i, −1, −i, …}

= ,  where r =  remainder after dividing n by 4in ir
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2!
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4!

θ3

3!
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This formula is useful for deriving identities relating powers of sines or cosines to simple functions. For example, if we take 
in Equation , we find

Looking at the real and imaginary parts of this result leads to the well known double angle identities

formulae:

Replacing  or leads to the half angle formulae:

We can also use Euler’s Formula to write sines and cosines in terms of complex exponentials. We first note that due to the fact that
the cosine is an even function and the sine is an odd function, we have

Combining this with Euler’s Formula, we have that

We finally note that there is a simple relationship between hyperbolic functions and trigonometric functions. Recall that

If we let , then we have that and . Similarly, we can show that  and 

Here we see elegant proofs of well known trigonometric identities.

Trigonometric functions can be written in terms of complex exponentials:

Hyperbolic functions and trigonometric functions are intimately related.

(cos θ + i sinθ = cos(nθ) + i sin(nθ))n

n = 2
8.7.8

cos 2θ + i sin2θ = (cos θ + i sinθ = θ − θ +2i sinθ cos θ)2 cos2 sin2

cos 2θ = θ − θ, sin2θ = 2 sinθ cos θcos2 sin2

cos 2θ = θ − θ, sin2θ = 2 sinθ cos θcos2 sin2

θ = 1 − θcos2 sin2 θ = 1 − θsin2 cos2

θ = (1 +cos 2θ), θ = (1 −cos 2θ)cos2 1

2
sin2 1

2

= cos θ − i sinθe−iθ

cos θ = , sinθ =
+eiθ e−iθ

2

−eiθ e−iθ

2i

coshx =
+ex e−x

2

x = iθ cosh(iθ) = cos θ cos(ix) = coshx sinh(iθ) = isinθ

sin(ix) = −i sinhx

cos 2θ = θ − θcos2 sin2

sin2θ = 2 sinθ cos θ

θ = (1 +cos 2θ)cos2 1

2

θ = (1 +cos 2θ)sin2 1

2

θ = (1 −cos 2θ). sin2 1

2

cos θ =
+eiθ e−iθ

2

sinθ =
−eiθ e−iθ

2i

cos(ix) = coshx,

sin(ix) = −i sinhx.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91104?pdf


8.7.9 https://math.libretexts.org/@go/page/91104

This page titled 8.7: Power Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/91104?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/A_First_Course_in_Differential_Equations_for_Scientists_and_Engineers_(Herman)/08%3A_Appendix_Calculus_Review/8.07%3A_Power_Series
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
http://people.uncw.edu/hermanr/mat361/ODEBook/index.htm


8.8.1 https://math.libretexts.org/@go/page/91105

8.8: The Binomial Expansion
Another series expansion which occurs often in examples and applications is the binomial expansion. This is simply the expansion
of the expression  in powers of  and . We will investigate this expansion first for nonnegative integer powers  and then
derive the expansion for other values of . While the binomial expansion can be obtained using Taylor series, we will provide a
more intuitive derivation to show that

where the  are called the binomial coefficients.

The binomial expansion is a special series expansion used to approximate expressions of the form  for , or 
for .

Lets list some of the common expansions for nonnegative integer powers.

We now look at the patterns of the terms in the expansions. First, we note that each term consists of a product of a power of  and a
power of . The powers of  are decreasing from  to 0 in the expansion of . Similarly, the powers of  increase from 0 to 

. The sums of the exponents in each term is . So, we can write the  st term in the expansion as . For example, in
the expansion of  the 6 th term is . However, we do not yet know the numerical coefficients in the
expansion.

Pascal’s triangle is named after Blaise Pascal (1623-1662). While such configurations of numbers were known earlier in history,
Pascal published them and applied them to probability theory. Pascal’s triangle has many unusual properties and a variety of uses:

Horizontal rows add to powers of 2.
The horizontal rows are powers of 11 (1, 11, 121, 1331, etc.).
Adding any two successive numbers in the diagonal 1-3-6-10-15-21-28... results in a perfect square.
When the first number to the right of the 1 in any row is a prime number, all numbers in that row are divisible by that prime
number. The reader can readily check this for the n = 5 and n = 7 rows.
Sums along certain diagonals leads to the Fibonacci sequence. These diagonals are parallel to the line connecting the first 1 for
n = 3 row and the 2 in the n = 2 row

Let’s list the coefficients for the above expansions.

This pattern is the famous Pascal’s triangle. There are many interesting the  in any row is a prime number, features of this triangle.
But we will first ask how each row can be generated.

We see that each row begins and ends with a one. The second term and can readily check this for the  next to last term have a
coefficient of . Next we note that consecutive pairs and  rows. in each row can be added to obtain entries in the next row.
For example, we have for rows  and  that  and :

(a+b)p a b p

p

(a+b =)n ∑
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n

C n
r an−rbr

C n
r

(a+b)p b ≪ a (1+x)p

|x| ≪ 1

(a+b = 1)0
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(a+b = +2ab+)2 a2 b2

(a+b = +3 b+3a +)3 a3 a2 b2 b3

(a+b = +4 b+6 +4a +)4 a4 a3 a2b2 b3 b4

⋯

a

b a n (a+b)n b

n n (k+1) an−kbk

(a+b)51 =a51−5b5 a46b5
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1
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1
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1
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With this in mind, we can generate the next several rows of our triangle.

So, we use the numbers in row  to generate entries in row  : . We then use row  to get row
, etc.

Of course, it would take a while to compute each row up to the desired . Fortunately, there is a simple expression for computing a
specific coefficient. Consider the  th term in the expansion of . Let , for . Then this term is of
the form . We have seen that the coefficients satisfy

Actually, the binomial coefficients, , have been found to take a simple form,

This is nothing other than the combinatoric symbol for determining how to choose  objects  at a time. In the binomial expansions
this makes sense. We have to count the number of ways that we can arrange  products of  with  products of . There are 
slots to place the  s. For example, the  case for  involves the six products: , and bbaa.
Thus, it is natural to use this notation.

Andreas Freiherr von Ettingshausen(1796-1878) was a German mathematician and physicist who in 1826 introduced the notation 

. However, the binomial coefficients were known by the Hindus centuries beforehand.

So, we have found that

Now consider the geometric series  We have seen that such this geometric series converges for , giving

But, . This is a binomial to a power, but the power is not an integer.

It turns out that the coefficients of such a binomial expansion can be written similar to the form in Equation . This example
suggests that our sum may no longer be finite. So, for  a real number,  and , we generalize Equation  as

and see if the resulting series makes sense. However, we quickly run into problems with the coefficients in the series.

Consider the coefficient for  in an expansion of . This is given by

n = 2 : 1
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But what is  By definition, it is

This product does not seem to exist! But with a little care, we note that

So, we need to be careful not to interpret the combinatorial coefficient literally. There are better ways to write the general binomial
expansion. We can write the general coefficient as

With this in mind we now state the theorem:

General Binomial Expansion
The general binomial expansion for  is a simple generalization of Equation . For  real, we have the following
binomial series:

Often in physics we only need the first few terms for the case that 

The factor  is important in special relativity. Namely, this is the factor relating differences in time and length

measurements by observers moving relative inertial frames. For terrestrial speeds, this gives an appropriate approximation.

For  the first approximation is found inserting . Thus, one obtains . This is the Newtonian approximation
and does not provide enough of an approximation for terrestrial speeds. Thus, we need to expand  in powers of .

First, we rewrite  as

Using the binomial expansion for , we have

The average speed of a large commercial jet airliner is about 500 mph. If you flew for an hour (measured from the ground),
then how much younger would you be than if you had not taken the flight, assuming these reference frames obeyed the
postulates of special relativity?

(−1)!?

(−1)! = (−1)(−2)(−3)⋯

= =−1
(−1)!

(−2)!

(−1)(−2)!

(−2)!

( )
p

r
=

p!

(p−r)!r!

=
p(p−1)⋯(p−r+1)(p−r)!

(p−r)!r!

=
p(p−1)⋯(p−r+1)

r!

(1+x)p 8.8.5 p

(1+x = , |x| < 1.)p ∑
r=0

∞ p(p−1)⋯(p−r+1)

r!
xr

x ≪1 :

(1+x = 1+px+ +O ( ))p p(p−1)

2
x2 x3

γ =(1− )
v2

c2

−1/2

 Example 8.8.1
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γ v/c

γ
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1

1−
v2

c2

− −−−−−
√
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2 −1/2
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This is the problem of time dilation. Let  be the elapsed time in a stationary reference frame on the ground and  be that in
the frame of the moving plane. Then from the Theory of Special Relativity these are related by

The time differences would then be

The plane speed, , is roughly  and  . Since , we would need to use the binomial
approximation to get a nonzero result.

Thus, you have aged one nanosecond less than if you did not take the flight.

Compute   for  and .

Inserting these values into a scientific calculator, one finds that

In some calculators one might obtain o, in other calculators, or computer algebra systems like Maple, one might obtain other
answers. What answer do you get and how accurate is your answer?

The problem with this computation is that . Therefore, the computation of  depends on how many digits the
computing device can handle. The best way to get an answer is to use the binomial approximation. Writing , or 

, we have

Of course, you should verify how many digits should be kept in reporting the result.

In the next examples, we generalize this example. Such general computations appear in proofs involving general expansions
without specific numerical values given.

Δt Δτ

Δt = γΔτ

Δt−Δτ = (1− )Δtγ−1

=(1− )Δt1−
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c2

− −−−−−

√

500mph 225 m/s c = 3.00×108 m/s V ≪ c

Δt−Δτ =(1− )Δt1−
v2

c2

− −−−−−

√

=(1−(1− +…))Δt
v2

2c2

≈ Δt
v2

2c2

= (1 h) = 1.01 ns
(225)2

2(3.00× )108
2

 Example : Small differences in large numbers:8.8.3

f(R,h) = −R+R2 h2
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− −−−−−−−−−−

√ 10−7

R ≫ h f(R,h)
h = Rx

x =
h

R

f(R,h) = −R+R2 h2− −−−−−−
√

= R −R1+x2− −−−−
√

≃ R[1+ ]−R
1

2
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= R
1

2
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Obtain an approximation to  when  is much larger than , denoted by .

If we neglect  then . How good of an approximation is this? This is where it would be nice to know the order of
the next term in the expansion. Namely, what is the power of  of the first neglected term in this expansion?

In order to do this we first divide out  as

Now we have a small parameter, . According to what we have seen earlier, we can use the binomial expansion to write

Thus, we have a sum of terms involving powers of . Since , most of these terms can be neglected. So, we can write

Here we used , big-  notation, to indicate the size of the first neglected term.

Summarizing, we have

Therefore, we can approximate , with an error on the order of . Note that the order of the error
does not include the constant factor from the expansion. We could also use the approximation that , but it is not
typically good enough in applications because the error in this case is of the order .

Approximate  for .

In an earlier example we computed  for  and . We can make use of
the binomial expansion to determine the behavior of similar functions in the form . Inserting the
binomial expression into , we have as  that

This result might not be the approximation that we desire. So, we could back up one step in the derivation to write a better
approximation as
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We now use this approximation to compute  for  and  in the earlier

example. We let  and . Then, the leading order approximation would be of order

Thus, we have

where

This is the same result we had obtained before. However, we have also an estimate of the size of the error and this might be
useful in indicating how many digits we should trust in the answer.

This page titled 8.8: The Binomial Expansion is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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− −−−−−−−−−−√ ap−1

px = (0.5)1 = 7.83926×ap−1 ( )63781642
−1/2

10−8
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8.9: Problems
1. Prove the following identities using only the definitions of the trigonometric functions, the Pythagorean identity, or the

identities for sines and cosines of sums of angles. 
a.  
b. , for what values of  and  ? 

c. .

2. Determine the exact values of 
a. . 

b. . 
C. .

3. Denest the following if possible. 
a. . 
b. . 
c. . 
d. . 
e. Find the roots of  in simplified form.

4. Determine the exact values of 

a. . 

b. . 

c. .

5. Do the following. 
a. Write  in terms of exponentials. 
b. Prove  using the expo- nential forms of the hyperbolic functions. 
c. Prove . 

d. If  and , find  and . 

e. Find the exact value of .

6. Prove that the inverse hyperbolic functions are the following logarithms: 

a. . 

b. .

7. Write the following in terms of logarithms: 

a. . 

b. . 

c. .

8. Solve the following equations for . 
a. . 

b. . 

c. .

9. Compute the following integrals.

a. .

cos2x = 2 x−1cos2

sin3x =A x+B sinxsin3 A B

sec θ+tanθ= tan( + )
θ

2

π

4

sin
π

8
tan15∘

cos105∘

3−2 2
–

√
− −−−−−−

√

1+ 2
–

√
− −−−−−√

5+2 6
–

√
− −−−−−−

√

−+25
–

√
− −−−−−√3 −25

–
√
− −−−−−√3

+6x−4 = 0x2 5
–

√

sin( )cos−1 3

5

tan( )sin−1 x

7

(sin )sin−1 3π

2

(coshx−sinhx)6

cosh(x−y) = coshx coshy−sinhx sinhy

cosh2x = x+ xcosh2 sinh2

coshx =
13

12
x < 0 sinhx tanhx

sinh(arccosh3)

x = ln(x+ )cosh−1 −1x2
− −−−−

√

x = lntanh−1 1

2

1+x

1−x

cosh−1 4

3

tanh−1 1

2
2sinh−1

x

cosh(x+ln3) = 3

2 = ln2tanh−1 x−2

x−1
x−7 coshx+13 = 0sinh2

∫ x dxe2x
2
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b. .

c. . (Do this using integration by parts, the Tabular Method, and differentiation under the integral sign.)
d. .
e. .
f. .
g. 

h. , using the substitution .

i. , using a hyperbolic function substitution.

j. , using the substitution .

k. , using the substitutions  and 

l. .

10. Find the sum for each of the series: 

a.  

b. . 

c. . 

d. . 

e. . 

f. . g. What is 

11. A superball is dropped from a  height. After it rebounds, it reaches a new height of . Assuming a constant
coefficient of restitution, find the (ideal) total distance the ball will travel as it keeps bouncing.

12. Here are some telescoping series problems.
a. 

b. Find the th partial sum of the series  and use it to determine the sum of the resulting telescoping

series.
c. Sum the series  by first writing the  th partial sum and then computing .

13. Determine the radius and interval of convergence of the following infinite series:

a. .

b. .

c. .

d. .

14. Find the Taylor series centered at  and its corresponding radius of convergence for the given function. In most cases, you
need not employ the direct method of computation of the Taylor coefficients.
a. .
b. .

c. .

dx∫ 3
0

5x

+16x2
− −−−−−

√
∫ sin3xdxx3

∫ 3xdxcos4

xdx∫ π/4
0

sec3

∫ sinhxdxex

∫ dx9−x2
− −−−−

√

∫
dx

(4− )x2 2
x = 2 tanhu

∫ 4
0

dx

9+x2
− −−−−

√

∫
dx

1−x2
x = tanhu

∫
dx

( +4)x2 3/2
x = 2 tanθ x = 2 sinhu

∫
dx

3 −6x+4x2
− −−−−−−−−−

√

5+ + + +⋯⋅
25

7

125

49

625

343

∑∞
n=0

(−1 3)n

4n

∑∞
n=2

2

5n

(−1∑∞
n=−1 )n+1( )

e

π

n

( + )∑∞
n=0

5

2n
1

3n

∑∞
n=1

3

n(n+3)
0.56 ?9

¯̄̄

2.00 m 1.65 m

n ( − )∑∞
n=1

n+1

n+2

n

n+1

[ n− (n+1)]∑∞
n=1 tan−1 tan−1 N limN→∞ sN

(−1∑∞
n=1 )n

(x−1)n

n

∑∞
n=1

xn

n!2n

∑∞
n=1

1

n
( )
x

5

n

(−1∑∞
n=1 )n

xn

n−−√

x = a

f(x) = sinhx, a= 0
f(x) = , a= 01+x

− −−−−
√

f(x) = ln , a= 0
1+x

1−x
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d. .

e. .

f. .

g. .

15. Consider Gregory’s expansion

a. expanding the integrand in a Maclaurin series, and integrating the resulting series term by term.
b. From this result, derive Gregory’s series for  by inserting an appropriate value for  in the series expansion for .

16. In the event that a series converges uniformly, one can consider the derivative of the series to arrive at the summation of other
infinite series.

a. Differentiate the series representation for  to sum the series .

b. Use the result from part a to sum the series .

c. Sum the series .

d. Use the result from part c to sum the series .

e. Use the results from this problem to sum the series .

17. Evaluate the integral  by doing the following:
a. Compute the integral exactly.
b. Integrate the first three terms of the Maclaurin series expansion of the integrand and compare with the exact result.

18. Determine the next term in the time dilation example, A.38. That is, find the  term and determine a better approximation to

the time difference of .
19. Evaluate the following expressions at the given point. Use your calculator or your computer (such as Maple). Then use series

expansions to find an approximation to the value of the expression to as many places as you trust.

a.  at 

b.  at .

c.  at .

d.  for  and .

e.  for .

This page titled 8.9: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

f(x) = x , a= 1ex

f(x) = , a= 1
1

x−−√
f(x) = +x−2, a= 2x4

f(x) = , a= 1
x−1

2+x

x = x− + −⋯ =tan−1 x3

3

x5

5
∑
k=0

∞ (−1)k

2k+1
x2k+1

π x xtan−1

f(x) =
1

1−x
n , |x| < 1∑∞

n=1 xn

∑∞
n=1

n

5n

n(n−1) , |x| < 1∑∞
n=2 xn

∑∞
n=2

−nn2

5n

∑∞
n=4

n2

5n

xdx∫
π/6
0 sin2

v4

c2

1 ns

−cos
1

1+x3
− −−−−

√
x2 x = 0.015

ln −tanx
1+x

1−x

− −−−−
√ x = 0.0015

f(x) = −1+
1

1+2x2
− −−−−−

√
x2 x = 5.00×10−3

f(R,h) =R− +R2 h2
− −−−−−−

√ R= 1.374×  km103 h = 1.00 m

f(x) = 1−
1

1−x
− −−−−

√
x = 2.5×10−13
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