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12.3: The Most General Applications of Bernoulli’s Equation

By the end of this section, you will be able to:

Calculate using Torricelli’s theorem.
Calculate power in fluid flow.

Torricelli’s Theorem
Figure  shows water gushing from a large tube through a dam. What is its speed as it emerges? Interestingly, if resistance is
negligible, the speed is just what it would be if the water fell a distance  from the surface of the reservoir; the water’s speed is
independent of the size of the opening. Let us check this out.

Figure : (a) Jet tubes releasing water in Glen Canyon Dam High Flow Experiment (Bureau of Reclamation): (b) In the
absence of significant resistance, water flows from the reservoir with the same speed it would have if it fell the distance  without
friction. This is an example of Torricelli’s theorem.

Bernoulli’s equation must be used since the depth is not constant. We consider water flowing from the surface (point 1) to the
tube’s outlet (point 2). Bernoulli’s equation as stated in previously is

Both  and  equal atmospheric pressure (  is atmospheric pressure because it is the pressure at the top of the reservoir. 
must be atmospheric pressure, since the emerging water is surrounded by the atmosphere and cannot have a pressure different from
atmospheric pressure.) and subtract out of the equation, leaving

Solving this equation for  noting that the density  cancels (because the fluid is incompressible), yields

We let , the equation then becomes

where  is the height dropped by the water. This is simply a kinematic equation for any object falling a distance  with negligible
resistance. In fluids, this last equation is called Torricelli’s theorem. Note that the result is independent of the velocity’s direction,
just as we found when applying conservation of energy to falling objects.
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Figure : Pressure in the nozzle of this fire hose is less than at ground level for two reasons: the water has to go uphill to get to
the nozzle, and speed increases in the nozzle. In spite of its lowered pressure, the water can exert a large force on anything it
strikes, by virtue of its kinetic energy. Pressure in the water stream becomes equal to atmospheric pressure once it emerges into the
air.

All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or constant pressure.
The next example is a more general application of Bernoulli’s equation in which pressure, velocity, and height all change. (See
Figure.)

Fire hoses used in major structure fires have inside diameters of 6.40 cm. Suppose such a hose carries a flow of 40.0 L/s
starting at a gauge pressure of . The hose goes 10.0 m up a ladder to a nozzle having an inside diameter of
3.00 cm. Assuming negligible resistance, what is the pressure in the nozzle?

Strategy

Here we must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation states

where the subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle,
respectively. We must first find the speeds  and . Since , we get

Similarly, we find

(This rather large speed is helpful in reaching the fire.) Now, taking  to be zero, we solve Bernoulli’s equation for :
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Substituting known values yields

Discussion

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus the nozzle pressure equals
atmospheric pressure, as it must because the water exits into the atmosphere without changes in its conditions.

Power in Fluid Flow
Power is the rate at which work is done or energy in any form is used or supplied. To see the relationship of power to fluid flow,
consider Bernoulli’s equation:

All three terms have units of energy per unit volume, as discussed in the previous section. Now, considering units, if we multiply
energy per unit volume by flow rate (volume per unit time), we get units of power. That is . This means that if
we multiply Bernoulli’s equation by flow rate , we get power. In equation form, this is

Each term has a clear physical meaning. For example,  is the power supplied to a fluid, perhaps by a pump, to give it its
pressure . Similarly,  is the power supplied to a fluid to give it its kinetic energy. And  is the power going to
gravitational potential energy.

Power is defined as the rate of energy transferred, or . Fluid flow involves several types of power. Each type of power is
identified with a specific type of energy being expended or changed in form.

Suppose the fire hose in the previous example is fed by a pump that receives water through a hose with a 6.40-cm diameter
coming from a hydrant with a pressure of . What power does the pump supply to the water?

Strategy

Here we must consider energy forms as well as how they relate to fluid flow. Since the input and output hoses have the same
diameters and are at the same height, the pump does not change the speed of the water nor its height, and so the water’s kinetic
energy and gravitational potential energy are unchanged. That means the pump only supplies power to increase water pressure
by  (from  to .

Solution

As discussed above, the power associated with pressure is

Discussion
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Example : Calculating Power in a Moving Fluid12.3.2

0.700 × N/106 m2

0.92 × N/106 m2 0.700 × N/106 m2 1.62 × N/ )106 m2

power = P Q
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= 3.68 × W104

= 36.8 kW
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Such a substantial amount of power requires a large pump, such as is found on some fire trucks. (This kilowatt value converts
to about 50 hp.) The pump in this example increases only the water’s pressure. If a pump—such as the heart—directly
increases velocity and height as well as pressure, we would have to calculate all three terms to find the power it supplies.

Summary
Power in fluid flow is given by the equation , where the first term is power associated with
pressure, the second is power associated with velocity, and the third is power associated with height.
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