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8.6: Collisions of Point Masses in Two Dimensions

By the end of this section, you will be able to:

Discuss two dimensional collisions as an extension of one dimensional analysis.
Define point masses.
Derive an expression for conservation of momentum along x-axis and y-axis.
Describe elastic collisions of two objects with equal mass.
Determine the magnitude and direction of the final velocity given initial velocity, and scattering angle.

In the previous two sections, we considered only one-dimensional collisions; during such collisions, the incoming and outgoing
velocities are all along the same line. But what about collisions, such as those between billiard balls, in which objects scatter to the
side? These are two-dimensional collisions, and we shall see that their study is an extension of the one-dimensional analysis
already presented. The approach taken (similar to the approach in discussing two-dimensional kinematics and dynamics) is to
choose a convenient coordinate system and resolve the motion into components along perpendicular axes. Resolving the motion
yields a pair of one-dimensional problems to be solved simultaneously.

One complication arising in two-dimensional collisions is that the objects might rotate before or after their collision. For example,
if two ice skaters hook arms as they pass by one another, they will spin in circles. We will not consider such rotation until later, and
so for now we arrange things so that no rotation is possible. To avoid rotation, we consider only the scattering of point masses—
that is, structureless particles that cannot rotate or spin.

We start by assuming that  so that momentum  is conserved. The simplest collision is one in which one of the particles is
initially at rest. (See Figure.) The best choice for a coordinate system is one with an axis parallel to the velocity of the incoming
particle, as shown in Figure. Because momentum is conserved, the components of momentum along the  and  axes (  and 

) will also be conserved, but with the chosen coordinate system,  is initially zero and  is the momentum of the incoming
particle. Both facts simplify the analysis. (Even with the simplifying assumptions of point masses, one particle initially at rest, and
a convenient coordinate system, we still gain new insights into nature from the analysis of two-dimensional collisions.)

Figure : A two-dimensional collision with the coordinate system chosen so that  is initially at rest and  is parallel to the 
-axis. This coordinate system is sometimes called the laboratory coordinate system, because many scattering experiments have a

target that is stationary in the laboratory, while particles are scattered from it to determine the particles that make-up the target and
how they are bound together. The particles may not be observed directly, but their initial and final velocities are.
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Along the -axis, the equation for conservation of momentum is

Where the subscripts denote the particles and axes and the primes denote the situation after the collision. In terms of masses and
velocities, this equation is

But because particle 2 is initially at rest, this equation becomes

The components of the velocities along the -axis have the form . Because particle 1 initially moves along the -axis, we
find .

Conservation of momentum along the -axis gives the following equation

where  and  are as shown in Figure.

Along the -axis, the equation for conservation of momentum is

or

But  is zero, because particle 1 initially moves along the -axis. Because particle 2 is initially at rest,  is also zero. The
equation for conservation of momentum along the -axis becomes

The components of the velocities along the -axis have the form .

Thus, conservation of momentum along the -axis gives the following equation:

The equations of conservation of momentum along the -axis and -axis are very useful in analyzing two-dimensional collisions of
particles, where one is originally stationary (a common laboratory situation). But two equations can only be used to find two
unknowns, and so other data may be necessary when collision experiments are used to explore nature at the subatomic level.

Suppose the following experiment is performed. A 0.250-kg object  is slid on a frictionless surface into a dark room,
where it strikes an initially stationary object with mass of 0.400 kg . The 0.250-kg object emerges from the room at an
angle of  with its incoming direction.The speed of the 0.250-kg object is originally 2.00 m/s and is 1.50 m/s after the
collision. Calculate the magnitude and direction of the velocity  and  of the 0.400-kg object after the collision.
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Momentum is conserved because the surface is frictionless. The coordinate system shown in Figure is one in which  is
originally at rest and the initial velocity is parallel to the -axis, so that conservation of momentum along the - and -axes is
applicable. Everything is known in these equations except  and , which are precisely the quantities we wish to find. We
can find two unknowns because we have two independent equations: the equations describing the conservation of momentum
in the - and -directions.

Solution

Solving  for  and  for  and taking
the ratio yields an equation (in which  is the only unknown quantity. Applying the identity , we obtain

Entering known values into the previous equation gives

Thus,

Angles are defined as positive in the counter clockwise direction, so this angle indicates that  is scattered to the right in
Figure, as expected (this angle is in the fourth quadrant). Either equation for the - or -axis can now be used to solve for ,
but the latter equation is easiest because it has fewer terms.

Thus,

Discussion

It is instructive to calculate the internal kinetic energy of this two-object system before and after the collision. (This calculation
is left as an end-of-chapter problem.) If you do this calculation, you will find that the internal kinetic energy is less after the
collision, and so the collision is inelastic. This type of result makes a physicist want to explore the system further.
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Figure : A collision taking place in a dark room is explored in Example. The incoming object  is scattered by an initially
stationary object. Only the stationary object’s mass  is known. By measuring the angle and speed at which  emerges from the
room, it is possible to calculate the magnitude and direction of the initially stationary object’s velocity after the collision.

Elastic Collisions of Two Objects with Equal Mass

Some interesting situations arise when the two colliding objects have equal mass and the collision is elastic. This situation is nearly
the case with colliding billiard balls, and precisely the case with some subatomic particle collisions. We can thus get a mental
image of a collision of subatomic particles by thinking about billiards (or pool). (Refer to Figure for masses and angles.) First, an
elastic collision conserves internal kinetic energy. Again, let us assume object 2  is initially at rest. Then, the internal kinetic
energy before and after the collision of two objects that have equal masses is

Because the masses are equal, . Algebraic manipulation (left to the reader) of conservation of momentum in the -
and -directions can show that

(Remember that  is negative here.) The two preceding equations can both be true only if

There are three ways that this term can be zero. They are

: head-on collision; incoming ball stops;

: no collision; incoming ball continues unaffected

All three of these ways are familiar occurrences in billiards and pool, although most of us try to avoid the second. If you play
enough pool, you will notice that the angle between the balls is very close to 90º after the collision, although it will vary from this
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value if a great deal of spin is placed on the ball. (Large spin carries in extra energy and a quantity called angular momentum,
which must also be conserved.) The assumption that the scattering of billiard balls is elastic is reasonable based on the correctness
of the three results it produces. This assumption also implies that, to a good approximation, momentum is conserved for the two-
ball system in billiards and pool. The problems below explore these and other characteristics of two-dimensional collisions.

Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as we shall see in
Medical Applications of Nuclear Physics and Particle Physics. Ernest Rutherford, for example, discovered the nature of the
atomic nucleus from such experiments.

Summary
The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into components
along perpendicular axes. Choose a coordinate system with the x-axis parallel to the velocity of the incoming particle.
Two-dimensional collisions of point masses where mass 2 is initially at rest conserve momentum along the initial direction of
mass 1 (the x-axis), stated by  and along the direction perpendicular to the initial direction
(the y-axis) stated by .
The internal kinetic before and after the collision of two objects that have equal masses is

.

Point masses are structureless particles that cannot spin.

Glossary

point masses
structureless particles with no rotation or spin
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