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16.5: Energy and the Simple Harmonic Oscillator

By the end of this section, you will be able to:

Determine the maximum speed of an oscillating system.

To study the energy of a simple harmonic oscillator, we first consider all the forms of energy it can have. We know from Hooke’s
Law: Stress and Strain Revisited that the energy stored in the deformation of a simple harmonic oscillator is a form of potential
energy given by:

Because a simple harmonic oscillator has no dissipative forces, the other important form of energy is kinetic energy .
Conservation of energy for these two forms is:

or

This statement of conservation of energy is valid for all simple harmonic oscillators, including ones where the gravitational force
plays a role.

Namely, for a simple pendulum we replace the velocity with , the spring constant with  and the displacement
term with . Thus

In the case of undamped simple harmonic motion, the energy oscillates back and forth between kinetic and potential, going
completely from one to the other as the system oscillates. So for the simple example of an object on a frictionless surface attached
to a spring, as shown again in Figure , the motion starts with all of the energy stored in the spring. As the object starts to
move, the elastic potential energy is converted to kinetic energy, becoming entirely kinetic energy at the equilibrium position. It is
then converted back into elastic potential energy by the spring, the velocity becomes zero when the kinetic energy is completely
converted, and so on. This concept provides extra insight here and in later applications of simple harmonic motion, such as
alternating current circuits.
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Figure : The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a
frictionless surface.

The conservation of energy principle can be used to derive an expression for velocity . If we start our simple harmonic motion
with zero velocity and maximum displacement ( ), then the total energy is

This total energy is constant and is shifted back and forth between kinetic energy and potential energy, at most times being shared
by each. The conservation of energy for this system in equation form is thus:

Solving this equation for  yields:

Manipulating this expression algebraically gives:

and so

where

From this expression, we see that the velocity is a maximum ( ) at , as stated earlier in . Notice
that the maximum velocity depends on three factors. Maximum velocity is directly proportional to amplitude. As you might guess,
the greater the maximum displacement the greater the maximum velocity. Maximum velocity is also greater for stiffer systems,
because they exert greater force for the same displacement. This observation is seen in the expression for  it is proportional to
the square root of the force constant  Finally, the maximum velocity is smaller for objects that have larger masses, because the
maximum velocity is inversely proportional to the square root of . For a given force, objects that have large masses accelerate
more slowly.

A similar calculation for the simple pendulum produces a similar result, namely:
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Suppose that a car is 900 kg and has a suspension system that has a force constant . The car hits a bump
and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if you assume no damping occurs?

Strategy

We can use the expression for  given in  to determine the maximum vertical velocity. The variables  and

 are given in the problem statement, and the maximum displacement  is 0.100 m.

Solution

1. Identify known.

2. Substitute known values into .

3. Calculate to find .

Discussion

This answer seems reasonable for a bouncing car. There are other ways to use conservation of energy to find . We could
use it directly, as was done in the example featured in Hooke’s Law: Stress and Strain Revisited.

The small vertical displacement  of an oscillating simple pendulum, starting from its equilibrium position, is given as

where  is the amplitude,  is the angular velocity and  is the time taken. Substituting  we have

Thus, the displacement of pendulum is a function of time as shown above.

Also the velocity of the pendulum is given by

so the motion of the pendulum is a function of time.

Why does it hurt more if your hand is snapped with a ruler than with a loose spring, even if the displacement of each system is
equal?

Solution

The ruler is a stiffer system, which carries greater force for the same amount of displacement. The ruler snaps your hand with
greater force, which hurts more.

You are observing a simple harmonic oscillator. Identify one way you could decrease the maximum velocity of the system.

Solution

You could increase the mass of the object that is oscillating.
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Summary
Energy in the simple harmonic oscillator is shared between elastic potential energy and kinetic energy, with the total being
constant:

Maximum velocity depends on three factors: it is directly proportional to amplitude, it is greater for stiffer systems, and it is
smaller for objects that have larger masses:

This page titled 16.5: Energy and the Simple Harmonic Oscillator is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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