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16.1: Hooke’s Law - Stress and Strain Revisited

Learning Objectives

By the end of this section, you will be able to:

o Explain Newton’s third law of motion with respect to stress and deformation.
o Describe the restoration of force and displacement.
o Calculate the energy in Hook’s Law of deformation, and the stored energy in a string.

Newton’s first law implies that an object oscillating back and forth is experiencing forces. Without force, the object would move in
a straight line at a constant speed rather than oscillate. Consider, for example, plucking a plastic ruler to the left as shown in Figure
16.1.1 The deformation of the ruler creates a force in the opposite direction, known as a restoring force. Once released, the
restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. However, by
the time the ruler gets there, it gains momentum and continues to move to the right, producing the opposite deformation. It is then
forced to the left, back through equilibrium, and the process is repeated until dissipative forces dampen the motion. These forces
remove mechanical energy from the system, gradually reducing the motion until the ruler comes to rest.

8 Equilibrium position

Figure 16.1.1: When displaced from its vertical equilibrium position, this plastic ruler oscillates back and forth because of the
restoring force opposing displacement. When the ruler is on the left, there is a force to the right, and vice versa.

The simplest oscillations occur when the restoring force is directly proportional to displacement. When stress and strain were
covered in Newton’s Third Law of Motion, the name was given to this relationship between force and displacement was Hooke’s
law:

F=—ka (16.1.1)

Here, F' is the restoring force, x is the displacement from equilibrium or deformation, and k is a constant related to the difficulty in
deforming the system. The minus sign indicates the restoring force is in the direction opposite to the displacement.
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Equilibrium position

(a) (b) () (d) (e)

Figure 16.1.2: (a) The plastic ruler has been released, and the restoring force is returning the ruler to its equilibrium position. (b)

The net force is zero at the equilibrium position, but the ruler has momentum and continues to move to the right. (c) The restoring

force is in the opposite direction. It stops the ruler and moves it back toward equilibrium again. (d) Now the ruler has momentum to

the left. (e) In the absence of damping (caused by frictional forces), the ruler reaches its original position. From there, the motion

will repeat itself.
The force constant k is related to the rigidity (or stiffness) of a system—the larger the force constant, the greater the restoring force,
and the stiffer the system. The units of k& are newtons per meter (N/m). For example, k is directly related to Young’s modulus when
we stretch a string. Figure 16.1.3 shows a graph of the absolute value of the restoring force versus the displacement for a system
that can be described by Hooke’s law—a simple spring in this case. The slope of the graph equals the force constant k£ in newtons
per meter. A common physics laboratory exercise is to measure restoring forces created by springs, determine if they follow
Hooke’s law, and calculate their force constants if they do.
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Figure 16.1.3: (a) A graph of absolute value of the restoring force versus displacement is displayed. The fact that the graph is a
straight line means that the system obeys Hooke’s law. The slope of the graph is the force constant k. (b) The data in the graph
were generated by measuring the displacement of a spring from equilibrium while supporting various weights. The restoring force
equals the weight supported, if the mass is stationary.

Example 16.1.1: How Stiff Are Car Springs?

What is the force constant for the suspension system of a car that settles 1.20 cm when an 80.0-kg person gets in?
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Figure 16.1.4: The mass of a car increases due to the introduction of a passenger. This affects the displacement of the car on its
suspension system. (credit: exfordy on Flickr)

Strategy

Consider the car to be in its equilibrium position z = 0 before the person gets in. The car then settles down 1.20 cm, which
means it is displaced to a position = —1.20 x 10~2m. At that point, the springs supply a restoring force F' equal to the
person’s weight w = mg = (80.0 kg)(9.80 m/s?) = 784 N. We take this force to be F in Hooke's law. Knowing F and z,
we can then solve the force constant k.

Solution

1. Solve Hooke’s law, F' = —kzx, for k:

2. Substitute known values and solve k:

784 N
~1.20 x 10 2m

—6.53 x 10* N/m.

k=—

Discussion

Note that F' and  have opposite signs because they are in opposite directions—the restoring force is up, and the displacement
is down. Also, note that the car would oscillate up and down when the person got in if it were not for damping (due to
frictional forces) provided by shock absorbers. Bouncing cars are a sure sign of bad shock absorbers.

Energy in Hooke’s Law of Deformation

In order to produce a deformation, work must be done. That is, a force must be exerted through a distance, whether you pluck a
guitar string or compress a car spring. If the only result is deformation, and no work goes into thermal, sound, or kinetic energy,
then all the work is initially stored in the deformed object as some form of potential energy. The potential energy stored in a spring

1
is PEg = §k$2 . Here, we generalize the idea to elastic potential energy for a deformation of any system that can be described by

Hooke’s law. Hence,
1, o
PE,; = Ekw , (16.1.2)
where PR,; is the elastic potential energy stored in any deformed system that obeys Hooke’s law and has a displacement « from

equilibrium and a force constant k.

It is possible to find the work done in deforming a system in order to find the energy stored. This work is performed by an applied
force Fy,,. The applied force is exactly opposite to the restoring force (action-reaction), and so F,,, = kx . Figure 16.1.5shows a
graph of the applied force versus deformation « for a system that can be described by Hooke’s law. Work done on the system is

1
force multiplied by distance, which equals the area under the curve or §kw2 (Method A in the figure). Another way to determine
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the work is to note that the force increases linearly from 0 to kz, so that the average force is (1/2)kz, the distance moved is z, and
thus W = F,d = [(1/2)kz](z) = (1/2)kz® (Method B in the figure).
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Figure 16.1.5: A graph of applied force versus distance for the deformation of a system that can be described by Hooke’s law is
displayed. The work done on the system equals the area under the graph or the area of the triangle, which is half its base multiplied
by its height, or W = (1/2)kz?.

Example 16.1.2: Calculating Stored Energy: A Tranquilizer Gun Spring

We can use a toy gun’s spring mechanism to ask and answer two simple questions:

a. How much energy is stored in the spring of a tranquilizer gun that has a force constant of 50.0 N/m and is compressed
0.150 m?
b. If you neglect friction and the mass of the spring, at what speed will a 2.00-g projectile be ejected from the gun?

b) Work is done
to compress
spring

mmmmfwwip

Figure 16.1.6: (a) In this image of the gun, the spring is uncompressed before being cocked. (b) The spring has been
compressed a distance x, and the projectile is in place. (c) When released, the spring converts elastic potential energy PR,;
into kinetic energy.

Strategy for a
(a): The energy stored in the spring can be found directly from elastic potential energy equation, because k£ and z are given.
Solution for a

Entering the given values for k£ and « yields

1 1
PE, = Ekmz = 5(50.0 N/m)(0.150 m)* =0.563 N -m = 0.563 J (16.1.3)
Strategy for b

Because there is no friction, the potential energy is converted entirely into kinetic energy. The expression for kinetic energy can
be solved for the projectile’s speed.

Solution for b
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1. Identify known quantities:
KE; =PEor1/2mv’ = (1/2)ka® = PE, =0.563 J (16.1.4)

2. Solve for v:

ve [2PEez] _ [2(0.563 J)

_ 1/2
T ] 23.7(J/K) (16.1.5)

m
3. Convert units: 23.7m/s

Discussion

(a) and (b): This projectile speed is impressive for a tranquilizer gun (more than 80 km/h). The numbers in this problem seem
reasonable. The force needed to compress the spring is small enough for an adult to manage, and the energy imparted to the

dart is small enough to limit the damage it might do. Yet, the speed of the dart is great enough for it to travel an acceptable
distance.

Exercise 16.1.1: Check your Understanding

Envision holding the end of a ruler with one hand and deforming it with the other. When you let go, you can see the
oscillations of the ruler. In what way could you modify this simple experiment to increase the rigidity of the system?

Answer

You could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original
experiment.

Exercise 16.1.2: Check your Understanding

If you apply a deforming force on an object and let it come to equilibrium, what happened to the work you did on the system?

Answer

It was stored in the object as potential energy.

Summary

e An oscillation is a back and forth motion of an object between two points of deformation.

e An oscillation may create a wave, which is a disturbance that propagates from where it was created.

o The simplest type of oscillations and waves are related to systems that can be described by Hooke’s law: F' = —kx where F' is
the  restoring force, PE,; is the displacement from equilibrium or deformation, and PEg = (1/2)kz?.

Glossary

deformation

displacement from equilibrium

elastic potential energy

potential energy stored as a result of deformation of an elastic object, such as the stretching of a spring

force constant

a constant related to the rigidity of a system: the larger the force constant, the more rigid the system; the force constant is
represented by k

restoring force

force acting in opposition to the force caused by a deformation
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