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9.2: The Second Condition for Equilibrium

By the end of this section, you will be able to:

State the second condition that is necessary to achieve equilibrium.
Explain torque and the factors on which it depends.
Describe the role of torque in rotational mechanics.

The second condition necessary to achieve equilibrium involves avoiding accelerated rotation (maintaining a constant angular
velocity. A rotating body or system can be in equilibrium if its rate of rotation is constant and remains unchanged by the forces
acting on it. To understand what factors affect rotation, let us think about what happens when you open an ordinary door by
rotating it on its hinges.

Several familiar factors determine how effective you are in opening the door (Figure ). First of all, the larger the force, the
more effective it is in opening the door—obviously, the harder you push, the more rapidly the door opens. Also, the point at which
you push is crucial. If you apply your force too close to the hinges, the door will open slowly, if at all. Most people have been
embarrassed by making this mistake and bumping up against a door when it did not open as quickly as expected. Finally, the
direction in which you push is also important. The most effective direction is perpendicular to the door—we push in this direction
almost instinctively.

Figure : Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed
from overhead). Torque has both magnitude and direction. (a) Counterclockwise torque is produced by this force, which means that
the door will rotate in a counterclockwise due to . Note that  is the perpendicular distance of the pivot from the line of action
of the force. (b) A smaller counterclockwise torque is produced by a smaller force  acting at the same distance from the hinges
(the pivot point). (c) The same force as in (a) produces a smaller counterclockwise torque when applied at a smaller distance from
the hinges. (d) The same force as in (a), but acting in the opposite direction, produces a clockwise torque. (e) A smaller
counterclockwise torque is produced by the same magnitude force acting at the same point but in a different direction. Here,  is
less than . (f) Torque is zero here since the force just pulls on the hinges, producing no rotation. In this case, .

The magnitude, direction, and point of application of the force are incorporated into the definition of the physical quantity called
torque. Torque is the rotational equivalent of a force. It is a measure of the effectiveness of a force in changing or accelerating a
rotation (changing the angular velocity over a period of time). In equation form, the magnitude of torque is defined to be

Learning Objectives

Definition: Torque

9.2.1

9.2.1

F r⊥

F ′

θ
90o θ = 0o

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/1546?pdf
https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/09%3A_Statics_and_Torque/9.02%3A_The_Second_Condition_for_Equilibrium


9.2.2 https://phys.libretexts.org/@go/page/1546

where  (the Greek letter tau) is the symbol for torque,  is the distance from the pivot point to the point where the force is applied, 
 is the magnitude of the force, and  is the angle between the force and the vector directed from the point of application to the

pivot point, as seen in Figures  and .

Figure : A force applied to an object can produce a torque, which depends on the location of the pivot point. (a) The three
factors  and  for pivot point A on a body are shown here -  is the distance from the chosen pivot point to the point where the
force  is applied, and  is the angle between  and the vector directed from the point of application to the pivot point. If the
object can rotate around point A, it will rotate counterclockwise. This means that torque is counterclockwise relative to pivot A. (b)
In this case, point B is the pivot point. The torque from the applied force will cause a clockwise rotation around point B, and so it is
a clockwise torque relative to B.

An alternative expression for torque is given in terms of the perpendicular lever arm  as shown in Figures  and , which
is defined as

so that

The perpendicular lever arm  is the shortest distance from the pivot point to the line along which  acts; it is shown as a dashed
line in Figures  and . Note that the line segment that defines the distance  is perpendicular to , as its name implies. It
is sometimes easier to find or visualize  than to find both  and . In such cases, it may be more convenient to use 
rather than  for torque, but both are equally valid.

The SI unit of torque is newtons times meters, usually written as . For example, if you push perpendicular to the door with a
force of 40 N at a distance of 0.800 m from the hinges, you exert a torque of  relative to the
hinges. If you reduce the force to 20 N, the torque is reduced to , and so on.

The torque is always calculated with reference to some chosen pivot point. For the same applied force, a different choice for the
location of the pivot will give you a different value for the torque, since both  and  depend on the location of the pivot. Any point
in any object can be chosen to calculate the torque about that point. The object may not actually pivot about the chosen “pivot
point.”

Note that for rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise relative to the
chosen pivot point, as illustrated for points B and A, respectively, in Figure . If the object can rotate about point A, it will
rotate counterclockwise, which means that the torque for the force is shown as counterclockwise relative to A. But if the object can
rotate about point B, it will rotate clockwise, which means the torque for the force shown is clockwise relative to B. Also, the
magnitude of the torque is greater when the lever arm is longer.

Now, the second condition necessary to achieve equilibrium is that the net external torque on a system must be zero. An external
torque is one that is created by an external force. You can choose the point around which the torque is calculated. The point can be
the physical pivot point of a system or any other point in space—but it must be the same point for all torques. If the second
condition (net external torque on a system is zero) is satisfied for one choice of pivot point, it will also hold true for any other
choice of pivot point in or out of the system of interest. (This is true only in an inertial frame of reference.) The second condition
necessary to achieve equilibrium is stated in equation form as

τ = rF sin θ (9.2.1)

τ r

F θ

9.2.1 9.2.2

9.2.2
r, F θ r

F θ F

r⊥ 9.2.1 9.2.2

= r sin θr⊥ (9.2.2)

τ = F .r⊥ (9.2.3)

r⊥ F

9.2.1 9.2.2 r⊥ F

r⊥ r θ τ = Frperp

τ = rF sin θ

N ⋅ m

32 N ⋅ m(0.800 m ×40 N ×sin )90o

16 N ⋅ m

r θ

9.2.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/1546?pdf


9.2.3 https://phys.libretexts.org/@go/page/1546

where net means total. Torques, which are in opposite directions are assigned opposite signs. A common convention is to call
counterclockwise (ccw) torques positive and clockwise (cw) torques negative.

When two children balance a seesaw as shown in Figure , they satisfy the two conditions for equilibrium. Most people have
perfect intuition about seesaws, knowing that the lighter child must sit farther from the pivot and that a heavier child can keep a
lighter one off the ground indefinitely.

Figure : Two children balancing a seesaw satisfy both conditions for equilibrium. The lighter child sits farther from the pivot
to create a torque equal in magnitude to that of the heavier child.

The two children shown in Figure  are balanced on a seesaw of negligible mass. (This assumption is made to keep the
example simple—more involved examples will follow.) The first child has a mass of 26.0 kg and sits 1.60 m from the pivot.

a. If the second child has a mass of 32.0 kg, how far is she from the pivot?
b. What is , the supporting force exerted by the pivot?

Strategy

Both conditions for equilibrium must be satisfied. In part (a), we are asked for a distance; thus, the second condition (regarding
torques) must be used, since the first (regarding only forces) has no distances in it. To apply the second condition for
equilibrium, we first identify the system of interest to be the seesaw plus the two children. We take the supporting pivot to be
the point about which the torques are calculated. We then identify all external forces acting on the system.

Solution (a)

The three external forces acting on the system are the weights of the two children and the supporting force of the pivot. Let us
examine the torque produced by each. Torque is defined to be

Here  so that  for all three forces. That means  for all three. The torques exerted by the three forces
are first,

second,

and third,

net τ = 0 (9.2.4)
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Note that a minus sign has been inserted into the second equation because this torque is clockwise and is therefore negative by
convention. Since  acts directly on the pivot point, the distance  is zero. A force acting on the pivot cannot cause a
rotation, just as pushing directly on the hinges of a door will not cause it to rotate. Now, the second condition for equilibrium is
that the sum of the torques on both children is zero. Therefore

or

Weight is mass times the acceleration due to gravity. Entering  for , we get

Solve this for the unknown :

The quantities on the right side of the equation are known; thus,  is

As expected, the heavier child must sit closer to the pivot (1.30 m versus 1.60 m) to balance the seesaw.

Solution (b)

This part asks for a force . The easiest way to find it is to use the first condition for equilibrium, which is

The forces are all vertical, so that we are dealing with a one-dimensional problem along the vertical axis; hence, the condition
can be written as

where we again call the vertical axis the y-axis. Choosing upward to be the positive direction, and using plus and minus signs
to indicate the directions of the forces, we see that

This equation yields what might have been guessed at the beginning:

So, the pivot supplies a supporting force equal to the total weight of the system:

Entering known values gives

Discussion

The two results make intuitive sense. The heavier child sits closer to the pivot. The pivot supports the weight of the two
children. Part (b) can also be solved using the second condition for equilibrium, since both distances are known, but only if the
pivot point is chosen to be somewhere other than the location of the seesaw’s actual pivot!
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Several aspects of the preceding example have broad implications. First, the choice of the pivot as the point around which torques
are calculated simplified the problem. Since  is exerted on the pivot point, its lever arm is zero. Hence, the torque exerted by the
supporting force  is zero relative to that pivot point. The second condition for equilibrium holds for any choice of pivot point,
and so we choose the pivot point to simplify the solution of the problem.

Second, the acceleration due to gravity canceled in this problem, and we were left with a ratio of masses. This will not always be
the case. Always enter the correct forces—do not jump ahead to enter some ratio of masses.

Third, the weight of each child is distributed over an area of the seesaw, yet we treated the weights as if each force were exerted at
a single point. This is not an approximation—the distances  and  are the distances to points directly below the center of gravity
of each child. As we shall see in the next section, the mass and weight of a system can act as if they are located at a single point.

Finally, note that the concept of torque has an importance beyond static equilibrium. Torque plays the same role in rotational
motion that force plays in linear motion. We will examine this in the next chapter.

Take a piece of modeling clay and put it on a table, then mash a cylinder down into it so that a ruler can balance on the
round side of the cylinder while everything remains still. Put a penny 8 cm away from the pivot. Where would you need to
put two pennies to balance? Three pennies?

Summary
The second condition assures those torques are also balanced. Torque is the rotational equivalent of a force in producing a
rotation and is defined to be

where  is torque,  is the distance from the pivot point to the point where the force is applied,  is magnitude of the force, and 
 is the angle between  and the vector directed from the point where the force acts to the pivot point. The perpendicular lever

arm  is defined to be

so that

The perpendicular lever arm  is the shortest distance from the pivot point to the line along which  acts. The SI unit for
torque is newton-meter (N \cdot m). The second condition necessary to achieve equilibrium is that the net external torque on a
system must be zero:

By convention, counterclockwise torques are positive, and clockwise torques are negative.

Glossary

torque
turning or twisting effectiveness of a force

perpendicular lever arm
the shortest distance from the pivot point to the line along which  lies

SI units of torque
newton times meters, usually written as N·m

center of gravity
the point where the total weight of the body is assumed to be concentrated
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