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30.8: Quantum Numbers and Rules

Learning Objectives

By the end of this section, you will be able to:

o Define quantum number.
e Calculate angle of angular momentum vector with an axis.
o Define spin quantum number.

Physical characteristics that are quantized -- such as energy, charge, and angular momentum -- are of such importance that names and symbols are
given to them. The values of quantized entities are expressed in terms of quantum numbers , and the rules governing them are of the utmost
importance in determining what nature is and does. This section covers some of the more important quantum numbers and rules—all of which
apply in chemistry, material science, and far beyond the realm of atomic physics, where they were first discovered. Once again, we see how physics
makes discoveries which enable other fields to grow.

The energy states of bound systems are quantized, because the particle wavelength can fit into the bounds of the system in only certain ways. This
was elaborated for the hydrogen atom, for which the allowed energies are expressed as

1
E, x ok (30.8.1)
where n =1,2,3, - -. We define n to be the principal quantum number that labels the basic states of a system. The lowest-energy state has n =1,
the first excited state has n = 2, and so on. Thus the allowed values for the principal quantum number are
n=1,2,3,... (30.8.2)

This is more than just a numbering scheme, since the energy of the system, such as the hydrogen atom, can be expressed as some function of n, as
can other characteristics (such as the orbital radii of the hydrogen atom).

The fact that the magnitude of angular momentum is quantized was first recognized by Bohr in relation to the hydrogen atom; it is now known to be
true in general. With the development of quantum mechanics, it was found that the magnitude of angular momentum L can only have the values

h
L=,/10+1)5-(1=0,1,2,...,n-1), (30.8.3)

where [ is defined to be the angular momentum quantum number. The rule for [ in atoms is given in the parentheses. Given n, the value [ can be
any integer from zero up to n — 1. For example, if n =4, then [ can be 0, 1, 2, or 3.

Note that for n =1, [ can only be zero. This means that the ground-state angular momentum for hydrogen is actually zero, not h/2m as Bohr
proposed. The picture of circular orbits is not valid, because there would be angular momentum for any circular orbit. A more valid picture is the
cloud of probability shown for the ground state of hydrogen in this link. The electron actually spends time in and near the nucleus. The reason the
electron does not remain in the nucleus is related to Heisenberg’s uncertainty principle -- the electron’s energy would have to be much too large to
be confined to the small space of the nucleus. Now the first excited state of hydrogen has n = 2, so that [ can be either 0 or 1, according to the rule
in Equation 30.8.3. Similarly, for n =3, [ can be 0, 1, or 2. It is often most convenient to state the value of [, a simple integer, rather than
calculating the value of L from Equation 30.8.3 For example, for [ = 2, we see that

L= l(l+1)£ = 6i =0.390h =2.58 x 10 34 J - 5. (30.8.4)
27 2
It is much simpler to state [ = 2. As recognized in the Zeeman effect, the direction of angular momentum is quantized. We now know this is true in
all circumstances. It is found that the component of angular momentum along one direction in space, usually called the -axis, can have only certain
values of L,. The direction in space must be related to something physical, such as the direction of the magnetic field at that location. This is an
aspect of relativity. Direction has no meaning if there is nothing that varies with direction, as does magnetic force. The allowed values of L, are

L. :ml%(ml 41y, —1,0,1,.. 1 1,1), (30.8.5)
where L, is the z-component of the angular momentum and m; is the angular momentum projection quantum number. The rule in parentheses
for the values of m; is that it can range from —I to [ in steps of one. For example, if [ =2, then m; can have the five values -2, -1, 0, 1, and 2.
Each m; corresponds to a different energy in the presence of a magnetic field, so that they are related to the splitting of spectral lines into discrete
parts, as discussed in the preceding section. If the z- component of angular momentum can have only certain values, then the angular momentum
can have only certain directions, as illustrated in Figure 30.9.1.
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Figure 30.8.1. The component of a given angular momentum along the z-axis (defined by the direction of a magnetic field) can have only certain
values; these are shown here for [ = 1, for which m; = —1,0,and + 1 . The direction of L is quantized in the sense that it can have only certain
angles relative to the z-axis.

Example 30.8.1: What are the Allowed Directions?

Calculate the angles that the angular momentum vector L can make with the z-axis for [ = 1, as illustrated in Figure 30.9.1.
Strategy:
Figure 30.9.1. represents the vectors L and L, as usual, with arrows proportional to their magnitudes and pointing in the correct directions. L
and L, form a right triangle, with L being the hypotenuse and L, the adjacent side. This means that the ratio of L, to L is the cosine of the
angle of interest. We can find L and L, using L = \/l(lTl) % and L, = m2—’; .
Solution
We are give [ =1, so that m; can be =1, 0, or -1. Thus L has the value given by L = /I (I+1 2—’; .
= l(;:”h = \frh (30.8.6)
L, can have three values, given by L, =my % .
3= My =+1
Lo=mt = 0 my=0 (30.8.7)
27
%, my =—1
As can be seen in Figure cosd = L,/ L, and so for m; + 1, we have
= 1
cosf; = TZ = \/_;h = 7 = —.707. (30.8.8)
2
Thus,
6; =cos0.7071 =45.0°. (30.8.9)
Similarly, for m; = 0, we find cosy = 0; thus,
02 =cos0 1 =90.0° (30.8.10)
And form; = —1,
_h 1
cosfz = TZ = ﬁ =-5= —0.707, (30.8.11)
27
so that
03 = cos (—0.707) ' =135.0°. (30.8.12)
Discussion:
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The angles are consistent with the figure. Only the angle relative to the z-axis is quantized. L can point in any direction as long as it makes the
proper angle with the z-axis. Thus the angular momentum vectors lie on cones as illustrated. This behavior is not observed on the large scale.
To see how the correspondence principle holds here, consider that the smallest angle (67 in the example) is for the maximum value of m; =0,
namely m; = [. For that smallest angle,

L, l
cosf=—=—-+ (30.8.13)

L i+’
which approaches 1 as [ becomes very large. If cos@ = 1, then § = 0° . Furthermore, for large /, there are many values of m;, so that all angles
become possible as ! gets very large.

Intrinsic Spin Angular Momentum Is Quantized in Magnitude and Direction

There are two more quantum numbers of immediate concern. Both were first discovered for electrons in conjunction with fine structure in atomic
spectra. It is now well established that electrons and other fundamental particles have intrinsic spin, roughly analogous to a planet spinning on its
axis. This spin is a fundamental characteristic of particles, and only one magnitude of intrinsic spin is allowed for a given type of particle. Intrinsic
angular momentum is quantized independently of orbital angular momentum. Additionally, the direction of the spin is also quantized. It has been
found that the magnitude of the intrinsic (internal) spin angular momentum, S, of an electron is given by

S=,/s(s+1) %(521/2 for electrons), (30.8.14)

where s is defined to be the spin quantum number. This is very similar to the quantization of L given in L = /I (I +1 2—’; , except that the only
value allowed for s for electrons is 1/2.

The direction of intrinsic spin is quantized, just as is the direction of orbital angular momentum. The direction of spin angular momentum along
one direction in space, again called the z-axis, can have only the values

h 11
szzmsﬂ(ms:_gﬂrg) (30.8.15)

for electrons. \(s_{z}\0 is the z-component of spin angular momentum and m; is the spin projection quantum number. For electrons, s can
only be 1/2, and m; can be either +1/2 or —1/2. Spin projection ms = +1/2 is referred to as spin up, whereas ms; = —1/2 is called m;, = —1/2 is
called spin down. These are illustrated in this link.

In later chapters, we will see that intrinsic spin is a characteristic of all subatomic particles. For some particles s is half-integral, whereas for
others s is integral -- there are crucial differences between half-integral spin particles and integral spin particles. Protons and neutrons, like
electrons, have s = 1/2, whereas photons have s = 1, and other particles called pions have s =0, and so on.

To summarize, the state of a system, such as the precise nature of an electron in an atom, is determined by its particular quantum numbers. These

are expressed in the form n, [, m;, m -- see Table For electrons in atoms, the principal quantum number can have the values n =1, 2,3, .. .. Once
n is known, the values of the angular momentum quantum number are limited to {=1,2,3,...,n—1. For a given value of [, the angular
momentum projection quantum number can have only the values m; = —I, -l +1,...,-1,0,1,...,1—1,1. Electron spin is independent of n, [,

and m, always having s = 1/2. The spin projection quantum number can have two values. ms =1/2 or —1/2.

Name Symbol Allowed Values
Principal quantum number n 1,23,...
Angular momentum l 0,1,2,...n—1
Angular momentum projection my -1, -1+1,...,-1,0,1,...,1—1,1(or 0, £1, £2
Spin s 1/2 (electrons)
Spin projection my +1/2

Figure 30.9.2. shows several hydrogen states corresponding to different sets of quantum numbers. Note that these clouds of probability are the
locations of electrons as determined by making repeated measurements -- each measurement finds the electron in a definite location, with a greater
chance of finding the electron in some places rather than others. With repeated measurements, the pattern of probability shown in the figure
emerges. The clouds of probability do not look like nor do they correspond to classical orbits. The uncertainty principle actually prevents us and
nature from knowing how the electron gets from one place to another, and so an orbit really does not exist as such. Nature on a small scale is again
much different from that on the large scale.
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Figure 30.8.2. Probability clouds for the electron in the ground state and several excited states of hydrogen. The nature of these states is determined
by their sets of quantum numbers, here given as n,l,m;. The ground state is (0, 0, 0); one of the possibilities for the second excited state is (3, 2,
1). The probability of finding the electron is indicated by the shade of color; the darker the coloring the greater the chance of finding the electron.

We will see that the quantum numbers discussed in this section are valid for a broad range of particles and other systems, such as nuclei. Some
quantum numbers, such as intrinsic spin, are related to fundamental classifications of subatomic particles, and they obey laws that will give us
further insight into the substructure of matter and its interactions.

PHET EXPLORATIONS: STERN-GERLACH EXPERIMENT

The classic Stern-Gerlach Experiment shows that atoms have a property called spin. Spin is a kind of intrinsic angular momentum, which has
no classical counterpart. When the z-component of the spin is measured, one always gets one of two values: spin up or spin down.

PhET Interactive Simulation

Figure 30.8.3: Stern-Gerlach Experiment

Summary

o Quantum numbers are used to express the allowed values of quantized entities. The principal quantum number 7 labels the basic states of a
system and is givenbyn =1, 2,3, ...

o The magnitude of angular momentum is given by L = \/l(lTl) 2—’;(l =0,1,2,...,n—1), where [ is the angular momentum quantum
number. The direction of angular momentum is quantized, in that its component along an axis defined by a magnetic field, called the z-axis is
givenby L, = ml2—]jr (my=—-1,-1+1,...,-1,0,1,...1—1,1), where L, is the z-component of the angular momentum and m; is the
angular momentum projection quantum number. Similarly, the electron’s intrinsic spin angular momentum S is given by
S=./s(s+1) 4 (s=1/2 forelectrons), where S is the z-component of spin angular momentum and m is the spin projection

quantum number. Spin projection m, = +1/2 is referred to as spin up, whereas m, = —1/2 is called spin down. The table summarizes the
atomic quantum numbers and their allowed values.

This page titled 30.8: Quantum Numbers and Rules is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content
that was edited to the style and standards of the LibreTexts platform.
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