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10.6: Collisions of Extended Bodies in Two Dimensions

Learning Objectives

By the end of this section, you will be able to:

e Observe collisions of extended bodies in two dimensions.
o Examine collision at the point of percussion.

Bowling pins are sent flying and spinning when hit by a bowling ball—angular momentum as well as linear momentum and energy
have been imparted to the pins. (See Figure 10.6.1). Many collisions involve angular momentum. Cars, for example, may spin and
collide on ice or a wet surface. Baseball pitchers throw curves by putting spin on the baseball. A tennis player can put a lot of top
spin on the tennis ball which causes it to dive down onto the court once it crosses the net. We now take a brief look at what happens
when objects that can rotate collide.

Figure 10.6.1: The bowling ball causes the pins to fly, some of them spinning violently. (credit: Tinou Bao, Flickr)

Consider the relatively simple collision shown in Figure 10.6.2 in which a disk strikes and adheres to an initially motionless stick
nailed at one end to a frictionless surface. After the collision, the two rotate about the nail. There is an unbalanced external force on
the system at the nail. This force exerts no torque because its lever arm is zero. Angular momentum is therefore conserved in the
collision. Kinetic energy is not conserved, because the collision is inelastic. It is possible that momentum is not conserved either
because the force at the nail may have a component in the direction of the disk’s initial velocity. Let us examine a case of rotation
in a collision in Example 10.6.1.
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Figure 10.6.2: (a) A disk slides toward a motionless stick on a frictionless surface. (b) The disk hits the stick at one end and
adheres to it, and they rotate together, pivoting around the nail. Angular momentum is conserved for this inelastic collision because
the surface is frictionless and the unbalanced external force at the nail exerts no torque.

Example 10.6.1: Rotation in a Collision

Suppose the disk in Figure 10.6.2has a mass of 50.0 g and an initial velocity of 30.0 m/s when it strikes the stick that is 1.20 m
long and 2.00 kg.

a. What is the angular velocity of the two after the collision?
b. What is the kinetic energy before and after the collision?
c. What is the total linear momentum before and after the collision?

Strategy for (a)

We can answer the first question using conservation of angular momentum as noted. Because angular momentum is Jw, we can
solve for angular velocity.

Solution for (a)
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Conservation of angular momentum states
L=L, (10.6.1)

where primed quantities stand for conditions after the collision and both momenta are calculated relative to the pivot point. The
initial angular momentum of the system of stick-disk is that of the disk just before it strikes the stick. That is,

L=Iuw, (10.6.2)

where I is the moment of inertia of the disk and w is its angular velocity around the pivot point. Now, I = m? (taking the
disk to be approximately a point mass) and w = v/r, so that

L=mr*Z = maur. (10.6.3)
r
After collision,
L'=TId. (10.6.4)
It is ' that we wish to find. Conservation of angular momentum gives
' =mor. (10.6.5)
Rearranging the equation yields
mur
w’ = T, (1066)

where I’ is the moment of inertia of the stick and disk stuck together, which is the sum of their individual moments of inertia
about the nail. [link] gives the formula for a rod rotating around one end to be I = M2 /3. Thus,

Mr? M
I' =mr? + 37’ = (m—l— —) r? (10.6.7)
Entering known values in this equation yields,
I' = (0.0500 kg +0.667 kg)(1.20m)* = 1.032 kg- m* (10.6.8)

The value of I’ is now entered into the expression for «’, which yields

,  mur  (0.0500 kg)(30.0m/s)(1.20 m)
O T 1.032 kg-m? (10.6.9)

=1.744rad/s ~1.7Arad/s. (10.6.10)

Strategy for (b)

The kinetic energy before the collision is the incoming disk’s translational kinetic energy, and after the collision, it is the
rotational kinetic energy of the two stuck together.

Solution for (b)

First, we calculate the translational kinetic energy by entering given values for the mass and speed of the incoming disk.

1
KE = quﬁ = (0.500)(0.0500 kg)(30.0m/5)* = 22.5 J. (10.6.11)

After the collision, the rotational kinetic energy can be found because we now know the final angular velocity and the final
moment of inertia. Thus, entering the values into the rotational kinetic energy equation gives

1.,
KE' = EI'wQ = (0.5)(1.032 kg-m*)(1.744 rad/s)* (10.6.12)

=1.57J. (10.6.13)
Strategy for (c)
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The linear momentum before the collision is that of the disk. After the collision, it is the sum of the disk’s momentum and that
of the center of mass of the stick.

Solution of (c)
Before the collision, then, linear momentum is
p =mv = (0.0500 kg)(30.0m/s) =1.50 kg- m/s. (10.6.14)

After the collision, the disk and the stick’s center of mass move in the same direction. The total linear momentum is that of the
disk moving at a new velocity v = rw' plus that of the stick’s center of mass,

which moves at half this speed because veyr = (5) ' = ”?I . Thus,

P =mv' + Mucy =mv' + 5 (10.6.15)
Gathering similar terms in the equation yields,
p = (m—i—%) v (10.6.16)
so that
p = <m+%> rw (10.6.17)
Substituting known values into the equation,
p' = (1.050 kg)(1.20 m)(1.744 rad/s) = 2.20 kg- m/s. (10.6.18)

Discussion

First note that the kinetic energy is less after the collision, as predicted, because the collision is inelastic. More surprising is
that the momentum after the collision is actually greater than before the collision. This result can be understood if you consider
how the nail affects the stick and vice versa. Apparently, the stick pushes backward on the nail when first struck by the disk.
The nail’s reaction (consistent with Newton’s third law) is to push forward on the stick, imparting momentum to it in the same
direction in which the disk was initially moving, thereby increasing the momentum of the system.

The above example has other implications. For example, what would happen if the disk hit very close to the nail? Obviously, a
force would be exerted on the nail in the forward direction. So, when the stick is struck at the end farthest from the nail, a backward
force is exerted on the nail, and when it is hit at the end nearest the nail, a forward force is exerted on the nail. Thus, striking it at a
certain point in between produces no force on the nail. This intermediate point is known as the percussion point.

An analogous situation occurs in tennis as seen in Figure 10.6.3. If you hit a ball with the end of your racquet, the handle is pulled
away from your hand. If you hit a ball much farther down, for example, on the shaft of the racquet, the handle is pushed into your
palm. And if you hit the ball at the racquet’s percussion point (what some people call the “sweet spot™), then little or no force is
exerted on your hand, and there is less vibration, reducing chances of a tennis elbow. The same effect occurs for a baseball bat.
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Figure 10.6.3: A disk hitting a stick is compared to a tennis ball being hit by a racquet. (a) When the ball strikes the racquet near
the end, a backward force is exerted on the hand. (b) When the racquet is struck much farther down, a forward force is exerted on
the hand. (c) When the racquet is struck at the percussion point, no force is delivered to the hand.

Exercise 10.6.1

Is rotational kinetic energy a vector? Justify your answer.

Solution

No, energy is always scalar whether motion is involved or not. No form of energy has a direction in space and you can see that
rotational kinetic energy does not depend on the direction of motion just as linear kinetic energy is independent of the direction
of motion.

Summary

o Angular momentum L is analogous to linear momentum and is given by L = Jw.

e Angular momentum is changed by torque, following the relationship net 7 = AAf .
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« Angular momentum is conserved if the net torque is zero L = constant (net 7 =0) or L = L' (net 7 = 0) . This equation is
known as the law of conservation of angular momentum, which may be conserved in collisions.

This page titled 10.6: Collisions of Extended Bodies in Two Dimensions is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.
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