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13.4: Kinetic Theory- Atomic and Molecular Explanation of Pressure and
Temperature

Learning Objectives

By the end of this section, you will be able to:

o Express the ideal gas law in terms of molecular mass and velocity.

e Define thermal energy.

o Calculate the kinetic energy of a gas molecule, given its temperature.

o Describe the relationship between the temperature of a gas and the kinetic energy of atoms and molecules.
o Describe the distribution of speeds of molecules in a gas.

We have developed macroscopic definitions of pressure and temperature. Pressure is the force divided by the area on which the
force is exerted, and temperature is measured with a thermometer. We gain a better understanding of pressure and temperature from
the kinetic theory of gases, which assumes that atoms and molecules are in continuous random motion.

Figure 13.4.1: When a molecule collides with a rigid wall, the component of its momentum perpendicular to the wall is reversed. A
force is thus exerted on the wall, creating pressure.

Figure shows an elastic collision of a gas molecule with the wall of a container, so that it exerts a force on the wall (by Newton’s
third law). Because a huge number of molecules will collide with the wall in a short time, we observe an average force per unit
area. These collisions are the source of pressure in a gas. As the number of molecules increases, the number of collisions and thus
the pressure increase. Similarly, the gas pressure is higher if the average velocity of molecules is higher. The actual relationship is
derived in the Things Great and Small feature below. The following relationship is found:

1 —_
PV = gNmzﬁ, (13.4.1)

where P is the pressure (average force per unit area), V' is the volume of gas in the container, N is the number of molecules in the
container, m is the mass of a molecule, and v2 is the average of the molecular speed squared.

What can we learn from this atomic and molecular version of the ideal gas law? We can derive a relationship between temperature
and the average translational kinetic energy of molecules in a gas. Recall the previous expression of the ideal gas law:

PV = NKT. (13.4.2)

Equating the right-hand side of this equation with the right-hand side of PV = %N muv? gives
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1
Evaz = NkT. (13.4.3)

Making Connections: Things Great and Small—Atomic and Molecular Origin

of Pressure in a Gas

Figure shows a box filled with a gas. We know from our previous discussions that putting more gas into the box produces
greater pressure, and that increasing the temperature of the gas also produces a greater pressure. But why should increasing the
temperature of the gas increase the pressure in the box? A look at the atomic and molecular scale gives us some answers, and
an alternative expression for the ideal gas law.

The figure shows an expanded view of an elastic collision of a gas molecule with the wall of a container. Calculating the
average force exerted by such molecules will lead us to the ideal gas law, and to the connection between temperature and
molecular kinetic energy. We assume that a molecule is small compared with the separation of molecules in the gas, and that its
interaction with other molecules can be ignored. We also assume the wall is rigid and that the molecule’s direction changes, but
that its speed remains constant (and hence its kinetic energy and the magnitude of its momentum remain constant as well). This
assumption is not always valid, but the same result is obtained with a more detailed description of the molecule’s exchange of
energy and momentum with the wall.
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Figure 13.4.2: Gas in a box exerts an outward pressure on its walls. A molecule colliding with a rigid wall has the direction of
its velocity and momentum in the x- direction reversed. This direction is perpendicular to the wall. The components of its
velocity momentum in the y- and z- directions are not changed, which means there is no force parallel to the wall.
If the molecule’s velocity changes in the x-direction, its momentum changes from —muv, to +muv,. Thus, its change in
momentum is Amv = +muv, — (—muv;) = 2mu, . The force exerted on the molecule is given by

Ap  2mu,
At At
There is no force between the wall and the molecule until the molecule hits the wall. During the short time of the collision, the
force between the molecule and wall is relatively large. We are looking for an average force; we take At to be the average time
between collisions of the molecule with this wall. It is the time it would take the molecule to go across the box and back (a
distance 21) at a speed of v,.. Thus At = 21/v,, and the expression for the force becomes

F =

(13.4.4)
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2mu, mu’

F = = 13.4.
2l/v, l (13.4.5)
This force is due to one molecule. We multiply by the number of molecules /N and use their average squared velocity to find
the force
mo?
F=N T (13.4.6)

where the bar over a quantity means its average value. We would like to have the force in terms of the speed v, rather than the
x-component of the velocity. We note that the total velocity squared is the sum of the squares of its x-components, so that

v? =02 +02 2. (13.4.7)

Because the velocities are random, their average components in all directions are the same:

v =12 =02 (13.4.8)
Thus,
v =302, (13.4.9)
or
B_13
vz = S (13.4.10)
Substituting év_2 into the expression for F' gives
F _J\;T"_‘A’5 (13.4.11)
- 33l -
The pressure is F'/ A, so that we obtain
F v 1 Nmo?
p=— NI _ T (13.4.12)

A 340 3 V
where we used V = Al for the volume. This gives the important result.

1 _—
PV = §va2. (13.4.13)

This equation is another expression of the ideal gas law.

1
We can get the average kinetic energy of a molecule, Emvz, from the right-hand side of the equation by canceling /N and
multiplying by 3/2. This calculation produces the result that the average kinetic energy of a molecule is directly related to absolute
temperature.

_ 1 —=
KE = gmv’ = %kT (13.4.14)

The average translational kinetic energy of a molecule, KE, is called thermal energy. The equation KE = %mv2 = %kT

is a molecular interpretation of temperature, and it has been found to be valid for gases and reasonably accurate in liquids and
solids. It is another definition of temperature based on an expression of the molecular energy.

It is sometimes useful to rearrange KE = %mv2
temperature,

= %kT and solve for the average speed of molecules in a gas in terms of

~ T
VP = Vs = 4 /&, (13.4.15)
m
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where v,.,s stands for root-mean-square (rms) speed.

Example 13.4.1: Calculating Kinetic Energy and Speed of a Gas Molecule

(a) What is the average kinetic energy of a gas molecule at 20°C' (room temperature)? (b) Find the rms speed of a nitrogen
molecule (N3)

at this temperature.
Strategy for (a)
The known in the equation for the average kinetic energy is the temperature.
-— 1 = 3
Before substituting values into this equation, we must convert the given temperature to kelvins. This conversion gives
T=(20.0+273)k=293 K.
Solution for (a)

The temperature alone is sufficient to find the average translational kinetic energy. Substituting the temperature into the
translational kinetic energy equation gives

KE = %kT = 3(1.38 x 10722 J/K)(293 K) =6.07 x 107" J. (13.4.17)

Strategy for (b)

Finding the rms speed of a nitrogen molecule involves a straightforward calculation using the equation

I (13.4.18)
m

but we must first find the mass of a nitrogen molecule. Using the molecular mass of nitrogen N> from the periodic table,

2(14.0067) x 1073 k !
— ) Ny 9/mol _ 4 65 % 10720 kg, (13.4.19)
6.02 x 10*° mol~1

Solution for (b)

Substituting this mass and the value for k into the equation for v,.,,s yields

3(1.38 x10** J/K)(293)
By = =511m/s. 13.4.20
" \/ 4.65x 10" kg / : )

Discussion

Note that the average kinetic energy of the molecule is independent of the type of molecule. The average translational kinetic
energy depends only on absolute temperature. The kinetic energy is very small compared to macroscopic energies, so that we
do not feel when an air molecule is hitting our skin. The rms velocity of the nitrogen molecule is surprisingly large. These large
molecular velocities do not yield macroscopic movement of air, since the molecules move in all directions with equal
likelihood. The mean free path (the distance a molecule can move on average between collisions) of molecules in air is very
small, and so the molecules move rapidly but do not get very far in a second. The high value for rms speed is reflected in the
speed of sound, however, which is about 340 m/s at room temperature. The faster the rms speed of air molecules, the faster that
sound vibrations can be transferred through the air. The speed of sound increases with temperature and is greater in gases with
small molecular masses, such as helium. (See Figure.)
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Figure 13.4.3: (a) There are many molecules moving so fast in an ordinary gas that they collide a billion times every second. (b)
Individual molecules do not move very far in a small amount of time, but disturbances like sound waves are transmitted at speeds
related to the molecular speeds.
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Making Connections: Historical Note—Kinetic

Theory of Gases

o The kinetic theory of gases was developed by Daniel Bernoulli (1700-1782), who is best known in physics for his work on
fluid flow (hydrodynamics). Bernoulli’s work predates the atomistic view of matter established by Dalton.

Distribution of Molecular Speeds

The motion of molecules in a gas is random in magnitude and direction for individual molecules, but a gas of many molecules has a
predictable distribution of molecular speeds. This distribution is called the Maxwell-Boltzmann distribution, after its originators,
who calculated it based on kinetic theory, and has since been confirmed experimentally. (See Figure.) The distribution has a long
tail, because a few molecules may go several times the rms speed. The most probable speed is less than the rms speed vy.,s . Figure
shows that the curve is shifted to higher speeds at higher temperatures, with a broader range of speeds.
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Figure 13.4.4: The Maxwell-Boltzmann distribution of molecular speeds in an ideal gas. The most likely speed vy is less than the
rms speed v,.,,s. Although very high speeds are possible, only a tiny fraction of the molecules have speeds that are an order of
magnitude greater than v,.,.
The distribution of thermal speeds depends strongly on temperature. As temperature increases, the speeds are shifted to higher
values and the distribution is broadened.
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Figure 13.4.5: The Maxwell-Boltzmann distribution is shifted to higher speeds and is broadened at higher temperatures.

What is the implication of the change in distribution with temperature shown in Figure for humans? All other things being equal, if
a person has a fever, he or she is likely to lose more water molecules, particularly from linings along moist cavities such as the
lungs and mouth, creating a dry sensation in the mouth.

Example 13.4.2: Calculating Temperature: Escape Velocity of Helium Atoms

In order to escape Earth’s gravity, an object near the top of the atmosphere (at an altitude of 100 km) must travel away from
Earth at 11.1 km/s. This speed is called the escape velocity. At what temperature would helium atoms have an rms speed equal
to the escape velocity?
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Strategy

Identify the knowns and unknowns and determine which equations to use to solve the problem.
Solution

1. Identify the knowns: v is the escape velocity, 11.1 km/s.

2. Identify the unknowns: We need to solve for temperature, 7'. We also need to solve for the mass m
of the helium atom.

3. Determine which equations are needed.

e To solve for mass m of the helium atom, we can use information from the periodic table:

S molar mass ‘ (13.4.21)
number of atoms per mole

e To solve for temperature 7', we can rearrange either

—— 1 = g
E=-mv’==kT (13.4.22)
2 2
or
i kT
V2 = Uppns = LA (13.4.23)
m
| - (13.4.24)
- 3k’ o

where k is the Boltzmann constant and m is the mass of a helium atom.

4. Plug the known values into the equations and solve for the unknowns.

[ 4.0026 x 103k l
_ molar mass _ g/mole =6.65 x 10> kg (13.4.25)
number of atoms per mole 6.02 x 10%mol
6.65 x 10727 kg)(11.1 x 103 2
7 9)( M8 1 98 x10° K (13.4.26)

3(1.38 x 1072 J/K)
Discussion

This temperature is much higher than atmospheric temperature, which is approximately 250 K (—25°C or —10°F') at high
altitude. Very few helium atoms are left in the atmosphere, but there were many when the atmosphere was formed. The reason
for the loss of helium atoms is that there are a small number of helium atoms with speeds higher than Earth’s escape velocity
even at normal temperatures. The speed of a helium atom changes from one instant to the next, so that at any instant, there is a
small, but nonzero chance that the speed is greater than the escape speed and the molecule escapes from Earth’s gravitational
pull. Heavier molecules, such as oxygen, nitrogen, and water (very little of which reach a very high altitude), have smaller rms
speeds, and so it is much less likely that any of them will have speeds greater than the escape velocity. In fact, so few have
speeds above the escape velocity that billions of years are required to lose significant amounts of the atmosphere. Figure shows
the impact of a lack of an atmosphere on the Moon. Because the gravitational pull of the Moon is much weaker, it has lost
almost its entire atmosphere. The comparison between Earth and the Moon is discussed in this chapter’s Problems and
Exercises.
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Figure 13.4.6: This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as
though it was taken at night with a large spotlight. In fact, the light is coming from the Sun. Because the acceleration due to gravity
on the Moon is so low (about 1/6 that of Earth), the Moon’s escape velocity is much smaller. As a result, gas molecules escape very
easily from the Moon, leaving it with virtually no atmosphere. Even during the daytime, the sky is black because there is no gas to
scatter sunlight. (credit: Harrison H. Schmitt/NASA)

Check Your Understanding

If you consider a very small object such as a grain of pollen, in a gas, then the number of atoms and molecules striking its
surface would also be relatively small. Would the grain of pollen experience any fluctuations in pressure due to statistical
fluctuations in the number of gas atoms and molecules striking it in a given amount of time?

[Hide Solution]

Yes. Such fluctuations actually occur for a body of any size in a gas, but since the numbers of atoms and molecules are
immense for macroscopic bodies, the fluctuations are a tiny percentage of the number of collisions, and the averages spoken of
in this section vary imperceptibly. Roughly speaking the fluctuations are proportional to the inverse square root of the number

of collisions, so for small bodies they can become significant. This was actually observed in the 19th century for pollen grains
in water, and is known as the Brownian effect.

PhET Explorations: Gas Properties

Pump gas molecules into a box and see what happens as you change the volume, add or remove heat, change gravity, and
more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

PhET Interactive Simulation

Figure 13.4.7: Gas Property

Summary

o Kinetic theory is the atomistic description of gases as well as liquids and solids.

o Kinetic theory models the properties of matter in terms of continuous random motion of atoms and molecules.
o The ideal gas law can also be expressed as
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1 =
PV = gva{ (13.4.27)

where P is the pressure (average force per unit area), V' is the volume of gas in the container, NV is the number of molecules in

the container, is the mass of a molecule, and 02 is the average of the molecular speed squared.
o The temperature of gases is proportional to the average translational kinetic energy of atoms and molecules.

- 1 -
KE = §mv2 = %kT (13.4.28)

or

= [3kT
AV = Vs = EL (13.4.29)
m

o The motion of individual molecules in a gas is random in magnitude and direction. However, a gas of many molecules has a
predictable distribution of molecular speeds, known as the Maxwell-Boltzmann distribution.
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