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5.3: Elasticity - Stress and Strain

By the end of this section, you will be able to:

State Hooke’s law.
Explain Hooke’s law using graphical representation between deformation and applied force.
Discuss the three types of deformations such as changes in length, sideways shear and changes in volume.
Describe with examples the young’s modulus, shear modulus and bulk modulus.
Determine the change in length given mass, length and radius.

We now move from consideration of forces that affect the motion of an object (such as friction and drag) to those that affect an
object’s shape. If a bulldozer pushes a car into a wall, the car will not move but it will noticeably change shape. A change in shape
due to the application of a force is a deformation. Even very small forces are known to cause some deformation. For small
deformations, two important characteristics are observed. First, the object returns to its original shape when the force is removed—
that is, the deformation is elastic for small deformations. Second, the size of the deformation is proportional to the force—that is,
for small deformations, Hooke’s law is obeyed. In equation form, Hooke’s law is given by

where  is the amount of deformation (the change in length, for example) produced by the force , and  is a proportionality
constant that depends on the shape and composition of the object and the direction of the force. Note that this force is a function of
the deformation  it is not constant as a kinetic friction force is. Rearranging this to

makes it clear that the deformation is proportional to the applied force. Figure shows the Hooke’s law relationship between the
extension  of a spring or of a human bone. For metals or springs, the straight line region in which Hooke’s law pertains is much
larger. Bones are brittle and the elastic region is small and the fracture abrupt. Eventually a large enough stress to the material will
cause it to break or fracture. Tensile strength is the breaking stress that will cause permanent deformation or fracture of a material.

where  is the amount of deformation (the change in length, for example) produced by the force , and  is a
proportionality constant that depends on the shape and composition of the object and the direction of the force.
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Figure : A graph of deformation  versus applied force . The straight segment is the linear region where Hooke’s law is
obeyed. The slope of the straight region is  For larger forces, the graph is curved but the deformation is still elastic—  will
return to zero if the force is removed. Still greater forces permanently deform the object until it finally fractures. The shape of the
curve near fracture depends on several factors, including how the force  is applied. Note that in this graph the slope increases just
before fracture, indicating that a small increase in  is producing a large increase in  near the fracture.

The proportionality constant  depends upon a number of factors for the material. For example, a guitar string made of nylon
stretches when it is tightened, and the elongation  is proportional to the force applied (at least for small deformations). Thicker
nylon strings and ones made of steel stretch less for the same applied force, implying they have a larger  (see Figure). Finally, all
three strings return to their normal lengths when the force is removed, provided the deformation is small. Most materials will
behave in this manner if the deformation is less than about 0.1% or about 1 part in .

Figure :The same force, in this case a weight , applied to three different guitar strings of identical length produces the
three different deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker nylon,
and the one on the right is steel.

How would you go about measuring the proportionality constant  of a rubber band? If a rubber band stretched 3 cm when a
100-g mass was attached to it, then how much would it stretch if two similar rubber bands were attached to the same mass—
even if put together in parallel or alternatively if tied together in series?

We now consider three specific types of deformations: changes in length (tension and compression), sideways shear (stress), and
changes in volume. All deformations are assumed to be small unless otherwise stated.

Changes in Length—Tension and Compression: Elastic Modulus
A change in length  is produced when a force is applied to a wire or rod parallel to its length , either stretching it (a tension)
or compressing it. (See Figure.)
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Figure :(a) Tension. The rod is stretched a length  when a force is applied parallel to its length. (b) Compression. The
same rod is compressed by forces with the same magnitude in the opposite direction. For very small deformations and uniform
materials,  is approximately the same for the same magnitude of tension or compression. For larger deformations, the cross-
sectional area changes as the rod is compressed or stretched.

Experiments have shown that the change in length  depends on only a few variables. As already noted,  is proportional to
the force  and depends on the substance from which the object is made. Additionally, the change in length is proportional to the
original length  and inversely proportional to the cross-sectional area of the wire or rod. For example, a long guitar string will
stretch more than a short one, and a thick string will stretch less than a thin one. We can combine all these factors into one equation
for :

where  is the change in length,  the applied force,  is a factor, called the elastic modulus or Young’s modulus, that depends
on the substance,  is the cross-sectional area, and  is the original length. Table lists values of  for several materials—those
with a large  are said to have a large tensile stifness because they deform less for a given tension or compression.

Material
Young’s modulus (tension–

compression) Y 
Sheer modulus S Bulk modulus B 

Aluminum 70 25 75

Bone – tension 16 80 8

Bone – compression 9   

Brass 90 35 75

Brick 15   

Concrete 20   

Glass 70 20 30

Granite 45 20 45

Hair (human) 10   

Hardwood 15 10  

Iron, cast 100 40 90

Lead 16 5 50

Marble 60 20 70

Nylon 5   
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Material
Young’s modulus (tension–

compression) Y 
Sheer modulus S Bulk modulus B 

Polystyrene 3   

Silk 6   

Spider thread 3   

Steel 210 80 130

Tendon 1   

Acetone   0.7

Ethanol   0.9

Glycerin   4.5

Mercury   25

Water   2.2

Young’s moduli are not listed for liquids and gases in Table because they cannot be stretched or compressed in only one direction.
Note that there is an assumption that the object does not accelerate, so that there are actually two applied forces of magnitude 
acting in opposite directions. For example, the strings in Figure are being pulled down by a force of magnitude  and held up by
the ceiling, which also exerts a force of magnitude .

Suspension cables are used to carry gondolas at ski resorts. (See Figure) Consider a suspension cable that includes an
unsupported span of 3020 m. Calculate the amount of stretch in the steel cable. Assume that the cable has a diameter of 5.6 cm
and the maximum tension it can withstand is 

Figure : Gondolas travel along suspension cables at the Gala Yuzawa ski resort in Japan. (credit: Rudy Herman, Flickr)

Strategy

The force is equal to the maximum tension, or  The cross-sectional area is  The
equation  can be used to find the change in length.

Solution

All quantities are known. Thus,

Discussion

This is quite a stretch, but only about 0.6% of the unsupported length. Effects of temperature upon length might be important in
these environments.
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Bones, on the whole, do not fracture due to tension or compression. Rather they generally fracture due to sideways impact or
bending, resulting in the bone shearing or snapping. The behavior of bones under tension and compression is important because it
determines the load the bones can carry. Bones are classified as weight-bearing structures such as columns in buildings and trees.
Weight-bearing structures have special features; columns in building have steel-reinforcing rods while trees and bones are fibrous.
The bones in different parts of the body serve different structural functions and are prone to different stresses. Thus the bone in the
top of the femur is arranged in thin sheets separated by marrow while in other places the bones can be cylindrical and filled with
marrow or just solid. Overweight people have a tendency toward bone damage due to sustained compressions in bone joints and
tendons.

Another biological example of Hooke’s law occurs in tendons. Functionally, the tendon (the tissue connecting muscle to bone) must
stretch easily at first when a force is applied, but offer a much greater restoring force for a greater strain. Figure shows a stress-
strain relationship for a human tendon. Some tendons have a high collagen content so there is relatively little strain, or length
change; others, like support tendons (as in the leg) can change length up to 10%. Note that this stress-strain curve is nonlinear,
since the slope of the line changes in different regions. In the first part of the stretch called the toe region, the fibers in the tendon
begin to align in the direction of the stress—this is called uncrimping. In the linear region, the fibrils will be stretched, and in the
failure region individual fibers begin to break. A simple model of this relationship can be illustrated by springs in parallel: different
springs are activated at different lengths of stretch. Examples of this are given in the problems at end of this chapter. Ligaments
(tissue connecting bone to bone) behave in a similar way.

Figure :Typical stress-strain curve for mammalian tendon. Three regions are shown: (1) toe region (2) linear region, and (3)
failure region.

Unlike bones and tendons, which need to be strong as well as elastic, the arteries and lungs need to be very stretchable. The elastic
properties of the arteries are essential for blood flow. The pressure in the arteries increases and arterial walls stretch when the blood
is pumped out of the heart. When the aortic valve shuts, the pressure in the arteries drops and the arterial walls relax to maintain the
blood flow. When you feel your pulse, you are feeling exactly this—the elastic behavior of the arteries as the blood gushes through
with each pump of the heart. If the arteries were rigid, you would not feel a pulse. The heart is also an organ with special elastic
properties. The lungs expand with muscular effort when we breathe in but relax freely and elastically when we breathe out. Our
skins are particularly elastic, especially for the young. A young person can go from 100 kg to 60 kg with no visible sag in their
skins. The elasticity of all organs reduces with age. Gradual physiological aging through reduction in elasticity starts in the early
20s.

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it,
assuming the bone to be equivalent to a uniform rod that is 40.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported, or

and the cross-sectional area is  The equation  can be used to find the change in length.

Solution

All quantities except  are known. Note that the compression value for Young’s modulus for bone must be used here. Thus,

5.3.5

Example : Calculating Deformation: How Much Does Your Leg Shorten5.3.1

When You Stand on It?

F = mg = (62.0 kg)(9.80 m/ ) = 607.6 N ,s2 (5.3.8)
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Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large
forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid
compared with fat or muscle, several of the substances listed in Table have larger values of Young’s modulus . In other
words, they are more rigid.

The equation for change in length is traditionally rearranged and written in the following form:

The ratio of force to area,  is defined as stress (measured in , and the ratio of the change in length to length,  is
defined as strain (a unitless quantity). In other words,

In this form, the equation is analogous to Hooke’s law, with stress analogous to force and strain analogous to deformation. If we
again rearrange this equation to the form

we see that it is the same as Hooke’s law with a proportionality constant

This general idea—that force and the deformation it causes are proportional for small deformations—applies to changes in length,
sideways bending, and changes in volume.

The ratio of force to area,  is defined as stress measured in .

The ratio of the change in length to length,  is defined as strain (a unitless quantity). In other words,

Sideways Stress: Shear Modulus
Figure illustrates what is meant by a sideways stress or a shearing force. Here the deformation is called  and it is perpendicular
to , rather than parallel as with tension and compression. Shear deformation behaves similarly to tension and compression and
can be described with similar equations. The expression for shear deformation is

where  is the shear modulus (see Table) and  is the force applied perpendicular to  and parallel to the cross-sectional area .
Again, to keep the object from accelerating, there are actually two equal and opposite forces  applied across opposite faces, as
illustrated in Figure. The equation is logical—for example, it is easier to bend a long thin pencil (small ) than a short thick one,
and both are more easily bent than similar steel rods (large ).
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where  is the shear modulus (see Table) and  is the force applied perpendicular to  and parallel to the cross-sectional area
.

Figure : Shearing forces are applied perpendicular to the length  and parallel to the area , producing a deformation .
Vertical forces are not shown, but it should be kept in mind that in addition to the two shearing forces, , there must be supporting
forces to keep the object from rotating. The distorting effects of these supporting forces are ignored in this treatment. The weight of
the object also is not shown, since it is usually negligible compared with forces large enough to cause significant deformations.

Examination of the shear moduli in Table reveals some telling patterns. For example, shear moduli are less than Young’s moduli for
most materials. Bone is a remarkable exception. Its shear modulus is not only greater than its Young’s modulus, but it is as large as
that of steel. This is why bones are so rigid.

The spinal column (consisting of 26 vertebral segments separated by discs) provides the main support for the head and upper part
of the body. The spinal column has normal curvature for stability, but this curvature can be increased, leading to increased shearing

forces on the lower vertebrae. Discs are better at withstanding compressional forces than shear forces. Because the spine is not
vertical, the weight of the upper body exerts some of both. Pregnant women and people that are overweight (with large abdomens)
need to move their shoulders back to maintain balance, thereby increasing the curvature in their spine and so increasing the shear
component of the stress. An increased angle due to more curvature increases the shear forces along the plane. These higher shear

forces increase the risk of back injury through ruptured discs. The lumbosacral disc (the wedge shaped disc below the last
vertebrae) is particularly at risk because of its location.

The shear moduli for concrete and brick are very small; they are too highly variable to be listed. Concrete used in buildings can
withstand compression, as in pillars and arches, but is very poor against shear, as might be encountered in heavily loaded floors or
during earthquakes. Modern structures were made possible by the use of steel and steel-reinforced concrete. Almost by definition,
liquids and gases have shear moduli near zero, because they flow in response to shearing forces.

Find the mass of the picture hanging from a steel nail as shown in Figure, given that the nail bends only . (Assume the
shear modulus is known to two significant figures.)

Figure : Side view of a nail with a picture hung from it. The nail flexes very slightly (shown much larger than actual)
because of the shearing effect of the supported weight. Also shown is the upward force of the wall on the nail, illustrating that
there are equal and opposite forces applied across opposite cross sections of the nail. See Example for a calculation of the mass
of the picture.
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Strategy.

The force  on the nail (neglecting the nail’s own weight) is the weight of the picture . If we can find , then the mass of the
picture is just . The equation  can be solved for .

Solution

Solving the equation  for , we see that all other quantities can be found:

 is found in Table and is . The radius  is 0.750 mm (as seen in the figure), so the cross-sectional area is

The value for  is also shown in the figure. Thus,

This 51 N force is the weight  of the picture, so the picture’s mass is

Discussion

This is a fairly massive picture, and it is impressive that the nail flexes only  —an amount undetectable to the unaided
eye.

Changes in Volume: Bulk Modulus
An object will be compressed in all directions if inward forces are applied evenly on all its surfaces as in Figure. It is relatively
easy to compress gases and extremely difficult to compress liquids and solids. For example, air in a wine bottle is compressed
when it is corked. But if you try corking a brim-full bottle, you cannot compress the wine—some must be removed if the cork is to
be inserted. The reason for these different compressibilities is that atoms and molecules are separated by large empty spaces in
gases but packed close together in liquids and solids. To compress a gas, you must force its atoms and molecules closer together. To
compress liquids and solids, you must actually compress their atoms and molecules, and very strong electromagnetic forces in them
oppose this compression.

Figure : An inward force on all surfaces compresses this cube. Its change in volume is proportional to the force per unit area
and its original volume, and is related to the compressibility of the substance.

We can describe the compression or volume deformation of an object with an equation. First, we note that a force “applied evenly”
is defined to have the same stress, or ratio of force to area  on all surfaces. The deformation produced is a change in volume 
which is found to behave very similarly to the shear, tension, and compression previously discussed. (This is not surprising, since a
compression of the entire object is equivalent to compressing each of its three dimensions.) The relationship of the change in
volume to other physical quantities is given by
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where  is the bulk modulus (see Table),  is the original volume, and  is the force per unit area applied uniformly inward on
all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of industrial-grade
diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms rearrange their crystalline structure
into the more tightly packed pattern of diamonds. In nature, a similar process occurs deep underground, where extremely large
forces result from the weight of overlying material. Another natural source of large compressive forces is the pressure created by
the weight of water, especially in deep parts of the oceans. Water exerts an inward force on all surfaces of a submerged object, and
even on the water itself. At great depths, water is measurably compressed, as the following example illustrates.

Calculate the fractional decrease in volume  for seawater at 5.00 km depth, where the force per unit area is 

Strategy

Equation  is the correct physical relationship. All quantities in the equation except  are known.

Solution

Solving for the unknown  gives

Substituting known values with the value for the bulk modulus  from Table,

Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500
atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which
is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up, since
most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break their
container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it freezes, and it
can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations
considered here.

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even
slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Figure : Masses & Springs
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is Water Compressed at Great Ocean Depths?
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Phet explorations: Masses & Springs
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Summary
Hooke’s law is given by

where  is the amount of deformation (the change in length),  is the applied force, and  is a proportionality constant that
depends on the shape and composition of the object and the direction of the force. The relationship between the deformation and
the applied force can also be written as

where  is Young’s modulus, which depends on the substance,  is the cross-sectional area, and  is the original length. The ratio
of force to area,  is defined as stress, measured in N/m .The ratio of the change in length to length,  is defined as strain (a
unitless quantity). In other words,

The expression for shear deformation is

where  is the shear modulus and  is the force applied perpendicular to  and parallel to the cross-sectional area .

The relationship of the change in volume to other physical quantities is given by

where  is the bulk modulus,  is the original volume, and  is the force per unit area applied uniformly inward on all surfaces.

Footnotes

Approximate and average values. Young’s moduli  for tension and compression sometimes differ but are averaged here. Bone has
significantly different Young’s moduli for tension and compression.

Glossary

deformation
change in shape due to the application of force

Hooke’s law
proportional relationship between the force F on a material and the deformation ΔL it causes, F=kΔL

tensile strength
the breaking stress that will cause permanent deformation or fraction of a material

stress
ratio of force to area

strain
ratio of change in length to original length

shear deformation

deformation perpendicular to the original length of an objec
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