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16.7: Damped Harmonic Motion

Learning Objectives

By the end of this section, you will be able to:

o Compare and discuss underdamped and overdamped oscillating systems.
o Explain critically damped system.

A guitar string stops oscillating a few seconds after being plucked. To keep a child happy on a swing, you must keep pushing.
Although we can often make friction and other non-conservative forces negligibly small, completely undamped motion is rare. In
fact, we may even want to damp oscillations, such as with car shock absorbers.

Figure 16.7.1: In order to counteract dampening forces, this dad needs to keep pushing the swing. (credit: Erik A. Johnson, Flickr)

For a system that has a small amount of damping, the period and frequency are nearly the same as for simple harmonic motion, but
the amplitude gradually decreases as shown in Figure 16.7.2 This occurs because the non-conservative damping force removes
energy from the system, usually in the form of thermal energy. In general, energy removal by non-conservative forces is described
as

Wy = A(KE + PE), (16.7.1)

where W, is work done by a non-conservative force (here the damping force). For a damped harmonic oscillator, W, is negative
because it removes mechanical energy (KE + PE) from the system.

=

Figure 16.7.2: In this graph of displacement versus time for a harmonic oscillator with a small amount of damping, the amplitude
slowly decreases, but the period and frequency are nearly the same as if the system were completely undamped.

If you gradually increase the amount of damping in a system, the period and frequency begin to be affected, because damping
opposes and hence slows the back and forth motion. (The net force is smaller in both directions.) If there is very large damping, the
system does not even oscillate—it slowly moves toward equilibrium. Figure 16.7.3%hows the displacement of a harmonic oscillator
for different amounts of damping. When we want to damp out oscillations, such as in the suspension of a car, we may want the
system to return to equilibrium as quickly as possible Critical damping is defined as the condition in which the damping of an
oscillator results in it returning as quickly as possible to its equilibrium position The critically damped system may overshoot the
equilibrium position, but if it does, it will do so only once. Critical damping is represented by Curve A in Figure 16.7.3 With less-
than critical damping, the system will return to equilibrium faster but will overshoot and cross over one or more times. Such a
system is underdamped; its displacement is represented by the curve in Figure 16.7.2 Curve B in Figure 16.7.3 represents an
overdamped system. As with critical damping, it too may overshoot the equilibrium position, but will reach equilibrium over a
longer period of time.
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Figure 16.7.3: Displacement versus time for a critically damped harmonic oscillator (A) and an overdamped harmonic oscillator
(B). The critically damped oscillator returns to equilibrium at X = 0 in the smallest time possible without overshooting.

Critical damping is often desired, because such a system returns to equilibrium rapidly and remains at equilibrium as well. In
addition, a constant force applied to a critically damped system moves the system to a new equilibrium position in the shortest time
possible without overshooting or oscillating about the new position. For example, when you stand on bathroom scales that have a
needle gauge, the needle moves to its equilibrium position without oscillating. It would be quite inconvenient if the needle
oscillated about the new equilibrium position for a long time before settling. Damping forces can vary greatly in character. Friction,
for example, is sometimes independent of velocity (as assumed in most places in this text). But many damping forces depend on
velocity—sometimes in complex ways, sometimes simply being proportional to velocity.

Example 16.7.1: Damping an Oscillatory Motion: Friction on an Object Connected to a Spring

Damping oscillatory motion is important in many systems, and the ability to control the damping is even more so. This is
generally attained using non-conservative forces such as the friction between surfaces, and viscosity for objects moving
through fluids. The following example considers friction. Suppose a 0.200-kg object is connected to a spring as shown in
Figure 16.7.4 but there is simple friction between the object and the surface, and the coefficient of friction uy is equal to
0.0800. (a) What is the frictional force between the surfaces? (b) What total distance does the object travel if it is released
0.100 m from equilibrium, starting at v = 0 ? The force constant of the spring is kK = 50.0 N /m.

v=20

(e)

Figure 16.7.4: The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a
frictionless surface.

Strategy

This problem requires you to integrate your knowledge of various concepts regarding waves, oscillations, and damping. To
solve an integrated concept problem, you must first identify the physical principles involved. Part (a) is about the frictional
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force. This is a topic involving the application of Newton’s Laws. Part (b) requires an understanding of work and conservation
of energy, as well as some understanding of horizontal oscillatory systems.

Now that we have identified the principles we must apply in order to solve the problems, we need to identify the knowns and
unknowns for each part of the question, as well as the quantity that is constant in Part (a) and Part (b) of the question.

Solution a

1. Choose the proper equation: Friction is f = pugpmg.
2. Identify the known values.
3. Enter the known values into the equation:

f =(0.0800)(0.200 kg)(9.80 m/s). (16.7.2)
4. Calculate and convert units: f =0.157 V.
Discussion a
The force here is small because the system and the coefficients are small.
Solution b
Identify the known:

o The system involves elastic potential energy as the spring compresses and expands, friction that is related to the work done,
and the kinetic energy as the body speeds up and slows down.

o Energy is not conserved as the mass oscillates because friction is a non-conservative force.

e The motion is horizontal, so gravitational potential energy does not need to be considered.

o Because the motion starts from rest, the energy in the system is initially PE,; ; = (1/2)kX 2. This energy is removed by
work done by friction W,,. = — fd, where d is the total distance traveled and f = p;mg is the force of friction. When the
system stops moving, the friction force will balance the force exerted by the spring, so PE 5 = (1/ 2)kx?, where z is the
final position and is given by

F,=f (16.7.3)
kx = ppmg. (16.7.4)
o= Mk;:;ng (16.7.5)

1. By equating the work done to the energy removed, solve for the distance d.
2. The work done by the non-conservative forces equals the initial, stored elastic potential energy. Identify the correct
equation to use:

1 2
Woe = A(KE+ PE) = PEy,; — PEa; = 5k ((%) - X2> . (16.7.6)
3. Recall that W, = — fd.
4. Enter the friction as f = ugmg into Wy, = —fd, thus
Whe = ppmgd. (16.7.7)
5. Combine these two equations to find
1 mg\ 2
~k ((M) —X2> — —ppmgd. (16.7.8)
2 k
6. Solve the equation for d:
k 2 HEmgH 2
d= X2 (—) . 16.7.9
2ppmg ( k ) ( )

7. Enter the known values into the resulting equation:
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50.0 N/m (0.0800)(0.200 kg)(9.80 m/s2))

2
= 2(0.0800)(0.200 kg)(9.80 m/s2)((0'100 = ( 50.0 N /m ) - (16.7.10)

8. Calculate d and convert units:

d=1.59m (16.7.11)
Discussion b

This is the total distance traveled back and forth across z = 0, which is the undamped equilibrium position. The number of
oscillations about the equilibrium position will be more than d/X = (1.59m)(0.100 m) = 15.9because the amplitude of the
oscillations is decreasing with time. At the end of the motion, this system will not return to = 0 for this type of damping
force, because static friction will exceed the restoring force. This system is underdamped. In contrast, an overdamped system
with a simple constant damping force would not cross the equilibrium position z = 0 a single time. For example, if this system
had a damping force 20 times greater, it would only move 0.0484 m toward the equilibrium position from its original 0.100-m
position.

This worked example illustrates how to apply problem-solving strategies to situations that integrate the different concepts you
have learned. The first step is to identify the physical principles involved in the problem. The second step is to solve for the
unknowns using familiar problem-solving strategies. These are found throughout the text, and many worked examples show
how to use them for single topics. In this integrated concepts example, you can see how to apply them across several topics.
You will find these techniques useful in applications of physics outside a physics course, such as in your profession, in other
science disciplines, and in everyday life.

Exercise 16.7.1:Check Your Understanding

Why are completely undamped harmonic oscillators so rare?

Answer

Friction often comes into play whenever an object is moving. Friction causes damping in a harmonic oscillator.

Exercise 16.7.2:Check Your Understanding

Describe the difference between overdamping, underdamping, and critical damping.

Answer

An overdamped system moves slowly toward equilibrium. An underdamped system moves quickly to equilibrium, but will
oscillate about the equilibrium point as it does so. A critically damped system moves as quickly as possible toward
equilibrium without oscillating about the equilibrium.

Summary

e Damped harmonic oscillators have non-conservative forces that dissipate their energy.

o Critical damping returns the system to equilibrium as fast as possible without overshooting.

¢ An underdamped system will oscillate through the equilibrium position.

o An overdamped system moves more slowly toward equilibrium than one that is critically damped.

Glossary

critical damping
the condition in which the damping of an oscillator causes it to return as quickly as possible to its equilibrium position without
oscillating back and forth about this position

over damping
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the condition in which damping of an oscillator causes it to return to equilibrium without oscillating; oscillator moves more
slowly toward equilibrium than in the critically damped system

under damping

the condition in which damping of an oscillator causes it to return to equilibrium with the amplitude gradually decreasing to
zero; system returns to equilibrium faster but overshoots and crosses the equilibrium position one or more times

This page titled 16.7: Damped Harmonic Motion is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform.
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