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4.7: Adding Angular Momenta
Consider a system having two angular momenta, for example an electron in a hydrogen atom having both orbital angular
momentum and spin. The ket space for a single angular momentum has an orthonormal basis  so for two angular momenta an
obvious orthonormal basis is the set of direct product kets . What does this mean, exactly? Suppose the first

angular momentum  has magnitude , and is in the state , and similarly the second

angular momentum  is in the state . Evidently the probability amplitude for finding the first spin in state 
 and at the same time the second in  is , and we denote that state by . How to handle these direct

product spaces will become clear on examining specific examples, as we do below, beginning with two spins one-half.

Now the sum of two angular momenta  is itself an angular momentum, operating in a space with a complete basis 
. This is easy to prove: the components of  satisfy , and similarly for the components of . The

components of  commute with the components of , of course, from which it follows immediately that the vector components
of  do indeed obey the angular momentum commutation relations: and recall that the commutation relations were

sufficient to determine the allowed sets of eigenvalues. We shall prove later that the eigenstates  of  are a complete

basis for the product space of the eigenkets of —to establish this, we must first find the possible allowed
values of the total angular momentum quantum number .

Here we have, then, two different orthonormal bases for what is evidently the same vector space. In practical applications, it often
turns out that we have to translate from one of these bases to the other. Our present task is to construct the appropriate
transformation: we accomplish this by finding the coefficients of any  in the  basis. These are called the
Clebsch-Gordan coefficients.

We shall build gradually, beginning with adding two spins one-half, then a spin one-half with an orbital angular momentum, finally
two general angular momenta.

Adding Two Spins: the Basis States and Spin Operators
The most elementary example of a system having two angular momenta is the hydrogen atom in its ground state. The orbital
angular momentum is zero, the electron has spin angular momentum , and the proton has spin .

The space of possible states of the electron spin has the two basis kets  and , (also variously written as ,  ;  , 

;  ,  ) the basis proton spin kets are  and , so the possible states of the combined system are kets in the direct

product space which has a basis of four kets:

using  as shorthand for .

Note here that we’ve written the kets in “alphabetical order” with  as the first letter,  as the second. That is to say, we’ve first
written all the kets having  as the first letter, etc.

For the more general case of adding  to , to be considered shortly, we’ll order the kets in the same “alphabetical” way, writing
first all the kets having , and so on down to :

The dimensionality of this space is then .

Now the first block of  elements all have the same - component of , that is, , the next block has ,
and so on. Think about what this means for constructing a rotation operator acting on the kets in this space: if it operates only on
the angular momentum , it will change the factors  multiplying the blocks, if the operator rotates only , it will operate within
each block, all the blocks being changed in the same way.

To get a feeling for how this works in practice, we go back to the simplest case, two spins one-half.

The space is four-dimensional, having basis .
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Any operator acting on the spins will be represented by a  matrix, best thought of as a  matrix made up of  blocks:
an operator acting on the proton spin acts within the blocks, one operating on the electron spin affects the overall multiplying
factors in front of each block.

Let’s look at a few examples. Recall that the raising operator for a single spin is the  matrix . So what is the

raising operator for the electron spin?

We use bold to denote  matrices.

The pattern is clear: the big structure (in bold above), that of the four  blocks, reflect the structure of the electron spin

operator , within those blocks (of which only one survives) the identity operator  acts on the

proton spin.

The operator that raises the proton spin is:

What about the operator that raises both electron and proton spin? In this case, the pattern of blocks, and the pattern within each

block, must both be , so

There is only one nonzero matrix element because only one member of the base survives this operation.

If two spins interact (via their magnetic moments, for example) in a way that preserves total angular momentum, a possible term in
the Hamiltonian would be , represented by:

Representing the Rotation Operator for Two Spins

Recall from the lecture on spin that the rotation operator on a single spin one-half is

in the  spin or space. As we established, this matrix operator has the form

with .
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This set of unitary  matrices form a representation of the rotation group in the sense that the total resulting from two
successive rotations is given by the matrix which is the matrix product of those corresponding to the two rotations.

From the discussion in the previous section, it should be clear that in the product space of the two spins, the representation of the
rotation operator—both spins of course undergoing the same rotation—is:

This set of  matrices, again with , must also form a representation of the rotation group over the four-
dimensional space. We shall shortly discover that this representation can be simplified, but to achieve that we need to analyze the
states in terms of total angular momentum.

Representing States of Two Spins in Terms of Total Angular Momentum
We’re now ready to look at total spin states for the ground-state (zero orbital angular momentum) hydrogen atom.

Consider first the state with both electron and proton spin pointing upwards, . The - component of the total spin is 
, so . Labeling the total spin state , we have a state with , so . (To confirm that this state

indeed has  we can apply the total-spin raising operator . Since both component spins have maximum 
value, , but  only gives zero when acting on the m=s member of a multiplet. )

We find, then, that  where we’ve added the suffix  to make clear that the numbers in the last ket signify 
for the total spin. The total spin , being a total angular momentum eigenstate, has a triplet of  values, , 

 being the top member. The  member is found by applying the lowering operator to  :

which together with

gives

Obviously, the third member of the triplet, .

But this triplet only accounts for three basis states in the  total angular momentum representation. A fourth state, orthogonal
to these three and normalized, is . This has , and also has , easily checked by noting that the raising

operator acting on this state gives zero, so the state has the maximum allowed  for its  value.

To summarize: in the total angular momentum |s,m\rangle representation for two spins one-half, the four basis states are 
. This orthonormal basis spans the same space as the other orthonormal set 

. Our construction of the  states above amounts to finding one set of basis kets in terms of the
others.

Note that since both sets of basis kets are orthonormal, mapping a vector from one set to the other is a unitary transformation. But
there’s more: the coefficients we found expressing one basis ket in the other basis are all real. This means that if any ket has real
coefficients in one basis, it does in the other. For this special case of all real coefficients, a unitary transformation is termed
orthogonal.

The orthogonal transformation expressing one base in terms of the other is easy to construct:
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The matrix is orthogonal and symmetric, so is its own inverse.

Geometrically,  means the component spins are parallel, for  they are antiparallel. This can be stated more precisely: 
, so for , , and for  . This makes it

easy to construct projection operators into the  and  subspaces: .

Physics example: an interesting case of a two-spin system is the hydrogen molecule. The electron spins are in the singlet state
(otherwise the molecule disassociates) but the two proton spins, which interact through their magnetic moments) can be parallel
(total spin one), this is called orthohydrogen, or antiparallel (parahydrogen). The energy difference is sufficiently small that at room
temperature the ratio of ortho to para is 3:1, meaning that all spins states are equally probable (effectively infinite temperature), but
at lower temperatures the lower energy para form dominates. This is in fact relevant to liquid hydrogen storage technology: the
conversion rate from ortho to para is very slow, but when it takes place energy is released. If this happens after storage, additional
refrigeration is required. To prevent this, catalysts can be used to hasten the conversion rate during cooling.

Representing the Rotation Operator in the Total Angular Momentum Basis
We’ve already established that the rotation operator, acting on the two spin system, can be represented by a  matrix, and that
the new (total angular momentum) basis can be reached from the original (two separate spin) basis by the orthogonal
transformation given explicitly above. Therefore, pre-and post-multiplying the two-spin rotation operator will in fact give a 
matrix representation of the rotation operator in the new total angular momentum basis.

However, that approach misses the point: first, the singlet state  has zero angular momentum, and so is not

changed by rotation.

Second, the triplet state has angular momentum one, so rotation operators must act on it just as we found earlier for an angular
momentum one:

This means that, as far as rotations are concerned, the space spanned by the four kets  is
actually a sum of two separate subspaces, the one-dimensional space , and the three-dimensional space having basis 

. Under rotation, a vector in one of these subspaces stays there: there are no cross terms in the matrix
mixing the spaces.

This means that the rotation matrix has the form  where  is the  matrix for spin one,  is just the  trivial

matrix in the singlet subspace, in other words 1, and the ’s are  and  sets of zeroes.

A state of the spins can of course be a sum of components in the two subspaces, for example

Reducible and Irreducible Group Representations
We began our discussion of two spins one-half by examining properties of spin operators in the four-dimensional product space of
the two two-dimensional spin spaces, and went on to construct a four-dimensional representation of the general rotation operator in
that space: a matrix representation of the rotation group. But when the two-spin system is labeled in terms of total angular
momentum, we find that in fact this four-dimensional rotation operator is a sum of a three-dimensional rotation, and a trivial
identity rotation for an angular momentum zero state. The four-dimensional operator can be “diagonalized”: the space split into a
three dimensional space and a one-dimensional space that don’t mix under rotation, and any state of the system is a sum of kets
from the two spaces.

This is often expressed by saying the product space of two spins one-half is the sum of a spin one space and a spin zero space, and
written
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Putting in the dimensionalities of the spaces in this equation,

This simple check on total dimensionality sets the pattern for more complicated product spaces examined below.

The  representation of the rotation operator is said to be a reducible representation: it can be reduced to a sum of smaller
dimensional representations. An irreducible representation is one in which there are no subspaces invariant under all rotations.

Recall that we constructed the reducible  representation by taking a direct product of the  spin one-half representations
of the rotation group. The equation  we used above to describe the ket spaces is also often used to describe the
rotation group representations within those subspaces.

One might wonder why we would bother to build two different bases for the same vector space. The reason is that different
problems need different bases. For a system of two spins in an external magnetic field, not interacting with each other, the
independent spins basis , etc., is natural. On the other hand, for a hydrogen atom in no external field, but including an
interaction between the spins (which are aligned with the magnetic dipole moments of the particles) the  basis is the right
one: the interaction Hamiltonian is proportional to , which can be written 

, where we recognize the raising and lowering operators for the

individual spins. This means that the state , for example, cannot be an eigenstate if the Hamiltonian includes , but for
this case the states  are eigenstates because  commutes with the total angular momentum and its components.

But what would be a good basis for a hydrogen atom, including the  term, and in an external magnetic field? That is a nice
exercise for the reader.

Adding a Spin to an Orbital Angular Momentum

In this section, we consider a hydrogen atom in a state with nonzero orbital angular momentum, . Such orbital motion is
equivalent to an electric current loop and generates a magnetic field. The magnetic dipole moment associated with the electron spin
interacts with this field, the appropriate Hamiltonian having a term proportional to , and is termed the spin-orbit interaction.
The proton also has a magnetic moment, but that is three orders of magnitude smaller than the electron’s, so we’ll neglect it for
now.

The spin-orbit interaction  is most naturally analyzed in the basis states of total angular momentum, , where 
 (see the analogous discussion of the spin-spin interaction above). Write the orbital angular momentum eigenstates 

 and the spin states  where  and . The product space  is 
dimensional: a single ket in this product space would be fully described by , but since both  are constant
throughout the problem, the only actual variables are  so we’ll write the ket in the more compact form , for
example .

The maximum possible angular momentum component in the z- direction is clearly , for the state . In the total
angular momentum representation, this must be the state . So the two different bases have a common
member:

In the total angular momentum  representation,  is the top  state of a multiplet having 
 members. Just as for the spin-spin case, the next member down of the multiplet is generated by applying

the lowering operator:

Therefore
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This state  lies in the  subspace, which is two-dimensional, having basis vectors  and 
 in the  representation. So it must have two basis vectors in the  representation as well. The other  ket

must be orthogonal to  and normalized: it can only be

We’ve represented this new ket in  as the top state of a  multiplet. It’s easy to check that this is indeed the case: it has 
, and  acting on it gives zero, so it has to be the top member of its multiplet. The only ambiguity is an overall phase:

the Condon-Shortley convention is that the highest m- state of the larger component angular momentum is assigned a positive
coefficient.

So  is the top state of a new multiplet having  members. The two multiplets  and 
 taken together have  members, and therefore span the whole  dimensional space. The rest of the 

basis vectors are generated by repeated application of the lowering operator in the two multiplets.

The reason there are only two multiplets in this problem is that there are only two ways the spin one-half can point relative to the
orbital angular momentum. Recalling that for the two spins we expressed the product space a sum of a spin 1 space and a spin 0
space, , the analogous equation here is

For the general case of adding angular momenta  with ,  multiplets are generated, corresponding to the
number of possible relative orientations of the two angular momenta.

Adding Two Angular Momenta: the General Case

The space of kets describing two angular momenta  is the direct product of two spaces each for a single angular momentum,
but the direct product nature of the kets is usually not made explicit,  can be written as a single ket 

. Just as in the examples above, since  are fixed throughout, they don’t need to be written into every ket,
we’ll just write , or, when dealing with numerical values, append  as a suffix: .

The kets  form a complete orthonormal basis of the  dimensional product space of the two angular

momenta: they are the eigenstates of the complete set of commuting variables .

Total Angular Momentum Basis States
There is of course an alternative complete orthogonal basis of the space of the two angular momenta: for total angular momentum 

, a different set of complete commuting variables is: . (This is not the same set of states as in the

previous paragraph: for example,  does not commute with . Check it out!)

This alternative set is a better basis set for two angular momenta interacting with each other—an interaction term like  can

change  but not , or .

As always, we’re taking  to be constants throughout, so the significant variables here are  and , and we write the
states simply as  or when we have numerical values, , following the notation introduced above. Of course, 

, and .

Going from One Basis to the Other: the Clebsch-Gordan Coefficients
How do we write a state  in terms of the states  ? Furthermore, how do we prove the new set of states  is a
complete basis for the space?

We know that the set of states  is a complete basis, since the whole space is a product space of the  and  spaces, which
are spanned by the sets ,  respectively. Therefore, the identity operator can be written

|l + , l − = |l −1, + |l, − .
1

2

1

2
⟩jm

2l

2l +1

− −−−−−
√

1

2
⟩mlms

1

2l +1

− −−−−−
√

1

2
⟩mlms (4.7.20)

|l + , l −1
2

1
2
⟩jm m = l − 1

2
|l −1, 1

2
⟩mlms

|l, − 1
2
⟩mlms |⟩mlms |⟩jm |⟩jm

|l + , l −1
2

1
2
⟩jm

|l − , l − = |l, − − |l −1, .
1

2

1

2
⟩jm

2l

2l +1

− −−−−−
√

1

2
⟩mlms

1

2l +1

− −−−−−
√

1

2
⟩mlms (4.7.21)

|⟩jm j = l − 1
2

m = l − 1
2

J+

|l − , l −1
2

1
2
⟩jm 2(l − ) +1 = 2l1

2
j = l + 1

2

j = l − 1
2

2(2l +1) 2(2l +1) |⟩jm

⊗ = 1 ⊕01
2

1
2

⊗ l = (l + ) ⊕(l − ).
1

2

1

2

1

2
(4.7.22)

,  j1 j2 ≥j1 j2 2 +1j2

,  j1 j2

| , ⟩⊗| , ⟩j1 m1 j2 m2

| , ; , ⟩j1 m1 j2 m2 ,  j1 j2

| , ⟩m1 m2 m1m2 |2, 3⟩m1m2

| , ⟩m1 m2 (2 +1)(2 +1)j1 j2

,     ,   ,    J ⃗ 2
1 J1z J ⃗ 2

2 J2z

= +J ⃗  J ⃗ 
1 J ⃗ 

2 ,   ,     ,J ⃗ 2
1 J ⃗ 2

2 J ⃗ 2 Jz

J ⃗ 2 J1z

⋅J ⃗ 
1 J ⃗ 

2

,  m1 m2 m = +m1 m2 J ⃗ 2

,  J ⃗ 2
1 J ⃗ 2

2 J ⃗ 2 Jz

|j, m⟩ |3, 1⟩jm

|j, m  ⟩ = j(j+1) |j, m  ⟩J ⃗ 2 ℏ2 |j, m  ⟩ = mℏ|j, m  ⟩Jz

|j, m⟩ | , ⟩m1 m2 |j, m⟩

| , ⟩m1 m2 j1 j2

| ⟩m1 | ⟩m2
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It follows that  can be expressed as a sum over the basis vectors  :

The coefficients  are called the Clebsch Gordan coefficients, often written CG coefficients.

One immediate property of the CG coefficients is that  unless . This follows from the operator
identity  taken between a bra and a ket from different bases,

and

so

We already know that the maximum value of  is , and of  is , so the maximum value of  is . Therefore, the
maximum value of , because if it could go any higher, there would be a higher  somewhere in the space,
contradicting .

For the set , there is one ket having this maximal value of m: . Equally, in the set of states  there is only
one with the maximal m: . Therefore, these two kets must be identical (setting the arbitrary phase factor equal
to one):

Now  is the top ket in a multiplet having  members.

The next-to-top member of the multiplet is generated as before by applying the lowering operator to both representations:

giving

so

and by exact analogy with the spin orbit case, the other  basis state in the  subspace is

with the appropriate sign convention for . This is the top member of a multiplet having , and so 
 members (checked as usual by applying  and getting zero).

To proceed further, the lowering operator is applied once more, to enter the  subspace. In the 
representation, this has three independent basis vectors (provided  ): 

. But only two kets have been lowered in the  representation—
the missing third  ket in the  subspace must be the top member of another new multiplet having 

, and so  members.

I = | , ⟩⟨ , |.∑
=−m1 j1

j1

∑
=−m2 j2

j2

m1 m2 m1 m2 (4.7.23)

|j, m⟩ | , ⟩m1 m2

|j, m⟩ = | , ⟩⟨ , |j, m⟩∑
=−m1 j1

j1

∑
=−m2 j2

j2

m1 m2 m1 m2 (4.7.24)

⟨ , |j, m  ⟩m1 m2

⟨ , |j, m  ⟩ = 0m1 m2 m = +m1 m2

= +Jz J1z J2z

⟨ , | |j, m⟩ = ⟨ , | + |j, m⟩m1 m2 Jz m1 m2 J1z J2z (4.7.25)

|j, m⟩ = mℏ|j, m⟩, ⟨ , |( + ) = ⟨ , |( + )ℏ,Jz m1 m2 J1z J2z m1 m2 m1 m2 (4.7.26)

(m − − )⟨ , |j, m⟩ = 0.m1 m2 m1 m2 (4.7.27)

m1 j1 m2 j2 m +j1 j2

j = +j1 j2 m

m = +m1 m2

| , ⟩m1 m2 | ,j1 j2⟩m1m2
|j, m⟩

| + ,   +j1 j2 j1 j2⟩jm

| , = | + ,   + .j1 j2⟩m1m2 j1 j2 j1 j2⟩jm (4.7.28)

| + ,   +j1 j2 j1 j2⟩jm 2( + ) +1j1 j2

| + ,   + = ( + )| ,  J− j1 j2 j1 j2⟩jm J1− J2− j1 j2⟩m1m2 (4.7.29)

ℏ| + ,   + −1 = ℏ| −1,   + ℏ| ,   −12( + )j1 j2

− −−−−−−−
√ j1 j2 j1 j2 ⟩jm 2j1

−−−
√ j1 j2⟩m1m2

2j2
−−−

√ j1 j2 ⟩m1m2
(4.7.30)

| + ,   + −1 = | −1,   + | ,   −1j1 j2 j1 j2 ⟩jm

j1

+j1 j2

− −−−−−

√ j1 j2⟩m1m2

j2

+j1 j2

− −−−−−

√ j1 j2 ⟩m1m2 (4.7.31)

|⟩jm m = + −1j1 j2

| + −1,   + −1 = − | −1,   + | ,   −1j1 j2 j1 j2 ⟩jm

j2

+j1 j2

− −−−−−

√ j1 j2⟩m1m2

j1

+j1 j2

− −−−−−

√ j1 j2 ⟩m1m2 (4.7.32)

>j1 j2 j = + −1j1 j2

2( + −1) +1 = 2( + ) −1j1 j2 j1 j2 J+

m = + −2j1 j2 |⟩m1m2

>j2
1
2

| −2,   ,   | −1,   −1 ,   | ,   −2j1 j2⟩m1m2 j1 j2 ⟩m1m2 j1 j2 ⟩m1m2 |⟩jm

|⟩jm m = + −2j1 j2

j = + −2j1 j2 2( + ) −3j1 j2
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Note that the coefficients generated by the lowering operators are all real, so all three  kets in the  subspace
can be written in terms of the  kets with real coefficients.

This process can be repeated until the  multiplets generated span the space. Recall that the dimensionality of the space, from
the  representation, is . The multiplets in  add to a total dimensionality

but where do we stop? Common sense suggests that for , the minimum total angular momentum must be .
Common sense is not necessarily to be trusted, but it is clear that all the members of the multiplets in  generated by using the
lowering operator, followed by introducing a new orthogonal multiplet top member each time, as described above, are independent
orthonormal kets, and if we stop at , the total number generated is

(Use .) This establishes that including all total angular momenta between  and  does in
fact give a complete basis spanning the space, so

Calculating Clebsch-Gordan Coefficients Using Recursion Relations

The scheme presented above, constructing a succession of multiplets beginning from the highest m state and using the Condon-
Shortley convention to settle signs, will generate all the CG coefficients. However, another approach proves useful in later work.
Recall that by finding matrix elements of  between a  bra and a  ket, we established that the
Clebsch-Gordan coefficients are zero unless . A parallel evaluation of matrix elements of  yields a
relationship between three CG coefficients:

yields

where  acting to the left reduces  by one. (Here, obviously, we must choose  to have nonzero
coefficients.)

To visualize what’s going on with all these coefficients, remember  can take  values and  can take  values, so
for given  every possible state of the two spins can be represented by a dot on a  grid: here’s 

:

|⟩jm m = + −2j1 j2

|⟩m1m2

|⟩jm

|⟩m1m2
(2 +1)(2 +1)j1 j2 |⟩jm

2( + ) +1 +2( + ) −1 +2( + ) −3 +…j1 j2 j1 j2 j1 j2 (4.7.33)

>j1 j2 j = −j1 j2

|⟩jm

j = −j1 j2

(2n +1) = (2 +1)(2 +1).∑
n=| − |j1 j2

+j1 j2

j1 j2 (4.7.34)

(2n +1) = (m +1∑m
n=0 )2 | − |j1 j2 +j1 j2

⊗ = ( + ) ⊕( + −1) ⊕⋯ ⊕(| − |).j1 j2 j1 j2 j1 j2 j1 j2 (4.7.35)

= +Jz J1z J2z ⟨ , |m1 m2 |j, m⟩

m = +m1 m2 = +J± J1± J2±

⟨ , | |j, m⟩ = ⟨ , | |j, m⟩+ ⟨ , | |j, m⟩m1 m2 J+ m1 m2 J1+ m1 m2 J2+ (4.7.36)

⟨ , |j, m +1⟩ =j(j+1) −m(m +1)
− −−−−−−−−−−−−−−−

√ m1 m2

⟨ −1, |j, m⟩+ ⟨ , −1|j, m⟩( +1) − ( −1)j1 j1 m1 m1
− −−−−−−−−−−−−−−−−−−

√ m1 m2 ( +1) − ( −1)j2 j2 m2 m2
− −−−−−−−−−−−−−−−−−−

√ m1 m2

(4.7.37)

J1+ m1 m = + −1m1 m2

m1 2 +1j1 m2 2 +1j2

,j1 j2 (2 +1) ×(2 +1)j1 j2

= 3,     = 2j1 j2
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How do these dots relate to the CG coefficients? the top right-hand dot (3, 2) uniquely represents the  state of total
angular momentum. The next dots down, (2, 2) and (3, 1), correspond to two CG coefficients for  and two different CG
coefficients for .

If we now pick one value of  less than , each dot in the grid will correspond to one coefficient.

Note that having fixed , the grid will be curtailed: let’s take , so  at most. Then the grid loses its far
corners:

Let us examine for this fixed  which CG coefficients are where in this curtailed grid.

There are a total of  states for .

The top state, , or , is given by three coefficients on the top diagonal line (it’s in a three-dimensional
subspace, and orthogonal to  and  multiplet members ,   which are also in the  subspace). We’re
not at this point calculating these coefficients, we’re just trying to find them a home.

Applying the lowering operator to  gives a vector in the four-dimensional  subspace, the coefficients would belong
to the next diagonal down, which has four elements. (This subspace also includes the top member of the  multiplet.) Using
the lowering operator one more time we enter the five-dimensional  subspace—but that is the maximum number of
dimensions in this problem, since angular momenta 3 and 2 cannot be added to give a  scalar.

Having now, for this particular  made from , found where all the CG coefficients for all the  multiplet members are
located, we shall see how they can all be systematically calculated using the recursion relations generated by .

We’ve mapped the recursion relations on the diagram: given  the three red dots at 
 (with  in this example) locate the three CG coefficients

satisfying the linear equation above from

so if two of them are known the third is given. Similarly, the parallel equation generated by  links the three green
dots, at .

We begin the computation of the CG coefficients with the blue dot, the point on the leading “arrow” edges. Let us arbitrarily assign
a value 1 to this point. If we make it the top member of a “green” triangle, that will link it to the dot below and to a dot to the right
which is off the array. The dot off the array makes zero contribution, so we have an equation giving the value of the coefficient at
the dot below the blue dot as a multiple of the value on the blue dot. We can then continue down to the next dot. We could instead
have gone up from the blue dot using incomplete red triangles—in fact we can continue around the edge of the whole array. Then,
once the values along the edges are fixed, the recursion triangles can be used to move inward and find the rest.

The point of this section is to establish that, apart from an overall multiplicative constant that must be fixed by normalization, all
the CG coefficients for this value of  can be found from the recursion relations alone. The reason this is important is because the
same algebraic structure, and therefore the same recursion relations, are used to define spherical tensors, so they can also be
combined using the same CG coefficients. (We still need a sign convention here to present a complete table: so far, the different
values of total  have arbitrary relative phases.)

This page titled 4.7: Adding Angular Momenta is shared under a not declared license and was authored, remixed, and/or curated by Michael
Fowler via source content that was edited to the style and standards of the LibreTexts platform.

j = 5,     m = 5
j = 5

j = 4

j +j1 j2

j j = 3 m = + = 3m1 m2

| , ⟩⊗| , ⟩.j1 m1 j2 m2 (4.7.38)

j

2j+1 = 7 m = 3,   2  , … , −3

j = 3,   m = 3 |3, 3⟩jm

j = 5 j = 4 |5, 3⟩jm |4, 3⟩jm m = 3

|3, 3⟩jm m = 2
j = 2

m = 1
j = 0

j +j1 j2 2j+1
= +J± J1± J2±

j,     ,    j1 j2

( , ),     ( −1, ),     ( , −1)m1 m2 m1 m2 m1 m2 = −1,   = 1m1 m2

⟨ , | |j, m⟩ = ⟨ , | |j, m⟩+ ⟨ , | |j, m⟩m1 m2 J+ m1 m2 J1+ m1 m2 J2+ (4.7.39)

= +J− J1− J2−

( , ),     ( +1, ),     ( , +1)m1 m2 m1 m2 m1 m2
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j
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