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3.6: Coherent States

What is the wavefunction of a Swinging Pendulum?

Consider a macroscopic simple harmonic oscillator, and to keep things simple assume there are no interactions with the rest of the
universe. We know how to describe the motion using classical mechanics: for a given initial position and momentum, classical
mechanics correctly predicts the future path, as confirmed by experiments with real (admittedly not perfect) systems. But from the
Hamiltonian we could also write down Schrödinger’s equation, and from that predict the future behavior of the system. Since we
already know the answer from classical mechanics and experiment, quantum mechanics must give us the same result in the limiting
case of a large system.

It is a worthwhile exercise to see just how this happens. Evidently, we cannot simply follow the classical method of specifying the
initial position and momentum -- the uncertainty principle won’t allow it. What we can do, though, is to take an initial state in
which the position and momentum are specified as precisely as possible. Such a state is called a minimum uncertainty state (the
details can be found in my earlier lecture on the Generalized Uncertainty Principle).

In fact, the ground state of a simple harmonic oscillator is a minimum uncertainty state. This is not too surprising -- it’s just a
localized wave packet centered at the origin. The system is as close to rest as possible, having only zero-point motion. Whatis
surprising is that there are excited states of the pendulum in which this ground state wave packet swings backwards and forwards
indefinitely, a quantum realization of the classical system, and the wave packet is always one of minimum uncertainty. Recall that
this doesn’t happen for a free particle on a line—in that case, an initial minimal uncertainty wave packet spreads out because the
different momentum components move at different speeds. But for the oscillator, the potential somehow keeps the wave packet
together, a minimum uncertainty wave packet at all times. These remarkable quasi-classical states are called coherent states, and
were discovered by Schrödinger himself. They are important in many quasi-classical contexts, including laser radiation.

Our task here is to construct and analyze these coherent states and to find how they relate to the usual energy eigenstates of the
oscillator.

Classical Mechanics of the Simple Harmonic Oscillator
To define the notation, let us briefly recap the dynamics of the classical oscillator: the constant energy is

or

The classical motion is most simply described in phase space, a two-dimensional plot in the variables . In this space, the
point  corresponding to the position and momentum of the oscillator at an instant of time moves as time progresses at
constant angular speed \omega in a clockwise direction around the circle of radius  centered at the origin.

(Note: phase space is usually defined in terms of the variables , but in describing the simple harmonic oscillator, the variables 
 are more convenient, they have the same dimensions.)

This motion is elegantly described by regarding the two-dimensional phase space as a complex plane, and defining the
dimensionless complex variable

The time evolution in phase space is simply

The particular choice of (quantum!) scaling factor in defining  amounts to defining the unit of energy as , the natural quantum
unit for the oscillator: it is easy to check that if the classical energy  then the dimensionless  is simply the
number  (which is of course very large, so the  is insignificant).
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Minimum Uncertainty Wavepackets
We established in the lecture on the Generalized Uncertainty Principle that any minimum uncertainty one-dimensional
wavefunction (so  ) for a particle must satisfy the linear differential equation (here  )

where , ,  are constants, and  is pure imaginary. The equation is easy to solve: any minimum uncertainly one-dimensional
wavefunction is a Gaussian wave packet, having expectation value of momentum , centered at  and having width 

. (  is defined for a state  by .)

That is to say, the minimum uncertainly solution is:

with  the normalization constant.

In fact, the simple harmonic oscillator ground state  is just such a minimum uncertainty state,
with

Furthermore, it is easy to see that the displaced ground state , with , and writing the
normalization constant , must also be a minimum uncertainty state, with the same \(\lambda=im\omega\). (It
satisfies the necessary differential equation.) Of course, in contrast to the ground state, this displaced state is no longer an
eigenstate of the Hamiltonian, and will therefore change with time.

(Both these states,  and , have the same spread in x -space , and the same spread in p -space, the
only difference in the p direction being a phase factor  for the displaced state.)

What about the higher eigenstates of the oscillator Hamiltonian? They are not minimally uncertain states -- for the  state, 
, as is easily checked using . So, if we construct a minimally uncertain higher

energy state, it will not be an eigenstate of the Hamiltonian.

Exercise: prove  for the  energy eigenstate. (Hint: use creation and annihilation operators.)

Eigenstates of the Annihilation Operator are Minimum Uncertainty States
Notation: We’ll write

We restrict our attention here to those minimum uncertainty states having the same spatial width as the oscillator ground state--
these are what we need, and these are the ones we’ll show to be eigenstates of the annihilation operator. (Actually, more general
minimum uncertainty states, known as squeezed states, are also interesting and important, but we’ll not consider them here.)

Suppose that at  the oscillator wavefunction is the minimum uncertainty state

centered at  in phase space (as defined above for the classical oscillator), and with  to give it the same spatial
extent as the ground state.

From the preceding section, this  satisfies the minimum uncertainty equation

Rearranging this equation (and multiplying by  ) shows it in a different light:
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Exercise 3.6.1

Δp ⋅ Δx = nℏ/2 nth

⟨x(t = 0)⟩ = , ⟨p(t = 0)⟩ = .x0 p0 (3.6.8)
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This is an eigenvalue equation! The wave packet  is an eigenstate of the operator  with eigenvalue 
. It is not, of course, an eigenstates of either  or  taken individually.

Furthermore, the operator  is just a constant times the annihilation operator  -- recall

Therefore, this minimally uncertain initial wave packet  is an eigenstate of the annihilation operator , with eigenvalue 
. (By the way, it’s ok for  to have complex eigenvalues, because  is not a Hermitian operator.)

We can now make the connection with the complex plane representation of the classical operator: the eigenvalue 
 is precisely the parameter  labeling the position of the classical operator in phase space in natural

dimensionless units!

That is to say, a minimum uncertainty oscillator wave packet

centered at  in phase space and having the same spatial extent as the ground state, is an eigenstate of the annihilation
operator

with eigenvalue the position of its center in phase space, that is,

Time Development of the Minimal Wave Packet

Turning now to the time development of the state, it is convenient to use the ket notation

with  denoting a minimum uncertainly wave packet (with the same spatial width as the ground state) having those expectation
values of position and momentum.

The time development of the ket, as usual, is given by

We shall show that  remains an eigenstate of the annihilation operator for all times : it therefore continues to be a
minimum uncertainty wave packet! (And, of course, with constant spatial extent.)

The key point in establishing this is that the annihilation operator itself has a simple time development in the Heisenberg
representation,

To prove this, consider the matrix elements of  between any two eigenstates  of the Hamiltonian

so

Since the only nonzero matrix elements of the annihilation operator  are for , and the energy eigenstates form a
complete set, this simple time dependence is true as an operator equation

It is now easy to prove that
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is always an eigenstate of :

Therefore the annihilation operator, which at  had the eigenvalue

corresponding to a minimal wave packet centered at   in phase space, evolves in time  to another minimal packet
(because it’s still an eigenstate of the annihilation operator), and writing

the new eigenvalue of 

Therefore, the center of the wave packet in phase space follows the classical path in time. This is made explicit by equating real
and imaginary parts:

So we’ve found Schrödinger’s “best possible” quantum description of a classical oscillator.

We have chosen to work with the original position and momentum variables, and the complex parameter expressed as a
function of those variables, throughout. We could have used the dimensionless variables introduced in the lecture on the simple
harmonic oscillator,

This would of course also give , a more compact representation, but one more thing to remember.

It’s also common to denote the eigenstates of  by , , very elegant, but we’ve used  to keep reminding
ourselves that this eigenvalue, unlike most of those encountered in quantum mechanics, is a complex number. Finally, some
use the dimensionless variables , , differing from  by a factor of . The
eigenvalue equation for the annihilation operator is very neat in this notation: . We’ve avoided it, though,
because our recommended textbook, Shankar, uses  for the ordinary position and momentum operators.

The Translation Operator

It’s worth repeating the exercise for the simple case of the oscillator initially at rest a distance  from the center. This gives a neat
tie -in with the translation operator (defined below).

Let us then take the initial state to be

where  is the ground state wavefunction -- so we’ve moved the packet to the right by .

Now do a Taylor series expansion (taking  to be the variable!):
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It’s clear from this that the translation operator  shifts the wavefunction a distance  to the right.

Since , the translation operator can also be written as , and from this it can be expressed in terms of , ,
since

( ,  being Hermitian) so

Therefore the displaced ground state wavefunction can be written

for real , since  is zero for this initial state (the wavefunction is real).

In the ket notation, we have established that the minimal uncertainty state centered at , and having zero expectation value for the
momentum, is

But it’s not exactly obvious that this is an eigenstate of  with eigenvalue ! (As it must be.)

It’s worth seeing how to prove that just from the properties of the operators -- but to do that, we need a couple of theorems
concerning exponentials of operators given in the Appendix.

First, if the commutator  commutes with  and , then  . This result simplifies the right hand side
of the above equation, for

where we have used .

This is simpler, but it’s still not obvious that we have an eigenstate of : we need the commutator

The second theorem we need is: if the commutator of two operators  itself

commutes with  and , then

(This is easily proved by expanding the exponential—see the Appendix.)

Applying this to our case,

It follows immediately that  is indeed an eigenstate of  with eigenvalue . (It must also be
correctly normalized because the translation  is a unitary operation for real .)

How do we generalize this translation operator to an arbitrary state, with nonzero , ? Thinking in terms of the complex
parameter space , we need to be able to move in both the  and the  directions, using both  and . This
is slightly tricky since these operators do not commute, but their commutator is just a number, so (using the theorem proved in the
Appendix) this will only affect the overall normalization.

Furthermore, both  and  are combinations of , , so for the generalization of  from real  to complex  to be
unitary, it must have an antihermitian combination of ,  in the exponent -- a unitary operator has the form , where  is
Hermitian, so  is antihermitian.
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â

= |0, 0⟩e− /2z2
0 ez0â
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â

[ , ].â ez0â
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We are led to the conclusion that

conveniently labeling the coherent state using the complex parameter  of its center in phase space. Since this generalized
translation operator is unitary, the new state is automatically correctly normalized.

How Do These States Relate to the Energy Eigenstates?
The equation above suggests the possibility of representing the displaced state  in the standard energy basis . We can simplify
with the same trick used for the spatial displacement case in the last section, that is, the theorem  where
now , :

using  since .

It is now straightforward to expand the exponential:

and recalling that the normalized energy eigenstates are

we find

Exercise: Check that this state is correctly normalized, and is an eigenstate of .

Time Development of an Eigenstate of a Using the Energy Basis

Now that we have expressed the eigenstate  as a sum over the eigenstates  of the Hamiltonian, finding its time development
in this representation is straightforward.

Since ,

which can be written

equivalent to the result  derived earlier.

Some Properties of the Set of Eigenstates of 
In quantum mechanics, any physical variable is represented by a Hermitian operator. The eigenvalues are real, the eigenstates are
orthogonal (or can be chosen to be so for degenerate states) and the eigenstates for a complete set, spanning the space, so any
vector in the space can be represented in a unique way as a sum over these states.

The operator  is not Hermitian. Its eigenvalues are all the numbers in the complex plane. The eigenstates belonging to different
eigenvalues are never orthogonal, as is immediately obvious on considering the ground state and a displaced ground state. The
overlap does of course decrease rapidly for states far away in phase space.

The state overlap can be computed using :
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†
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†

(3.6.40)

|0⟩ = |0⟩e−z∗â |0⟩ = 0â
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and we can then switch the operators ,   using the theorem from the Appendix , then since 
, we’re left with

from which

Finally, using , we can construct a unit operator using the ,

where the integral is over the whole complex plane  (this  is not, of course, the original position , recall for the
wavefunction just displaced along the axis  ). Therefore, the  span the whole space.
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