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3.4: The Simple Harmonic Oscillator

Einstein’s Solution of the Specific Heat Puzzle

The simple harmonic oscillator, a nonrelativistic particle in a potential , is an excellent model for a wide range of systems in
nature. In fact, not long after Planck’s discovery that the black body radiation spectrum could be explained by assuming energy to
be exchanged in quanta, Einstein applied the same principle to the simple harmonic oscillator, thereby solving a long-standing
puzzle in solid state physics—the mysterious drop in specific heat of all solids at low temperatures. Classical thermodynamics, a
very successful theory in many ways, predicted no such drop -- with the standard equipartition of energy,  in each mode
(potential plus kinetic), the specific heat should remain more or less constant as the temperature was lowered (assuming no phase
change).

To explain the anomalous low temperature behavior, Einstein assumed each atom to be an independent (quantum) simple harmonic
oscillator, and, just as for black body radiation, he assumed the oscillators could only absorb or emit energy in quanta.
Consequently, at low enough temperatures there is rarely sufficient energy in the ambient thermal excitations to excite the
oscillators, and they freeze out, just as blue oscillators do in low temperature black body radiation. Einstein’s picture was later
somewhat refined -- the basic set of oscillators was taken to be standing sound wave oscillations in the solid rather than individual
atoms (making the picture even more like black body radiation in a cavity) but the main conclusion -- the drop off in specific heat
at low temperatures -- was not affected.

The Classical Simple Harmonic Oscillator

The classical equation of motion for a one-dimensional simple harmonic oscillator with a particle of mass  attached to a spring
having spring constant  is

The solution is

and the momentum  has time dependence

The total energy

is clearly constant in time.

It is often useful to picture the time-development of a system in phase space, in this case a two-dimensional plot with position on
the x -axis, momentum on the y -axis. Actually, to have  coordinates with the same dimensions, we use .

It is evident from the above expression for the total energy that in these variables the point representing the system in phase space
moves clockwise around a circle of radius  centered at the origin.

Note that in the classical problem we could choose any point , place the system there and it would then move in a circle
about the origin. In the quantum problem, on the other hand, we cannot specify the initial coordinates  precisely, because
of the uncertainly principle. The best we can do is to place the system initially in a small cell in phase space, of size 

. In fact, we shall find that in quantum mechanics phase space is always divided into cells of essentially this size
for each pair of variables.

Schrödinger’s Equation and the Ground State Wavefunction
From the classical expression for total energy given above, the Schrödinger equation for the quantum oscillator follows in standard
fashion:
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What will the solutions to this Schrödinger equation look like? Since the potential increases without limit on going away
from , it follows that no matter how much kinetic energy the particle has, for sufficiently large  the potential energy
dominates, and the (bound state) wavefunction decays with increasing rapidity for further increase in . (Obviously, for a real
physical oscillator there is a limit on the height of the potential—we will assume that limit is much greater than the energies of
interest in our problem.)

We know that when a particle penetrates a barrier of constant height  (greater than the particle’s kinetic energy) the wavefunction
decreases exponentially into the barrier, as , where

In contrast to this constant height barrier, the “height” of the simple harmonic oscillator potential continues to increase as the
particle penetrates to larger . Obviously, in this situation the decay will be faster than exponential. If we (rather naïvely) assume it
is more or less locally exponential, but with a local  varying with , neglecting  relative to  in the expression for  suggests
that \alpha itself is proportional to  (since the potential is proportional to , and  ) so maybe the wavefunction decays as

?

To check this idea, we insert  in the Schrödinger equation, using

to find

The  is just a factor here, and it is never zero, so can be cancelled out. This leaves a quadratic expression which must have the
same coefficients of ,  on the two sides, that is, the coefficient of  on the left hand side must be zero:

This fixes the wavefunction. Equating the constant terms fixes the energy:

So the conjectured form for the wavefunction is in fact the exact solution for the lowest energy state! (It’s the lowest state because
it has no nodes.)

Also note that even in this ground state the energy is nonzero, just as it was for the square well. The central part of the
wavefunction must have some curvature to join together the decreasing wavefunction on the left to that on the right. This “zero
point energy” is sufficient in one physical case to melt the lattice -- helium is liquid even down to absolute zero temperature
(checked down to microkelvins!) because the wavefunction spread destabilizes the solid lattice that will form with sufficient
external pressure.

Higher Energy States

It is clear from the above discussion of the ground state that  is the natural unit of length in this problem, and  that of

energy, so to investigate higher energy states we reformulate in dimensionless variables,

Schrödinger’s equation becomes
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Deep in the barrier, the  term will become negligible, and just as for the ground state wavefunction, higher bound state
wavefunctions will have  behavior, multiplied by some more slowly varying factor (it turns out to be a polynomial).

Exercise: find the relative contributions to the second derivative from the two terms in . For given , when do the
contributions involving the first term become small? Define “small”.

The standard approach to solving the general problem is to factor out the  term,

giving a differential equation for :

We try solving this with a power series in :

Inserting this in the differential equation, and requiring that the coefficient of each power  vanish identically, leads to a
recurrence formula for the coefficients :

Evidently, the series of odd powers and that of even powers are independent solutions to Schrödinger’s equation. (Actually this
isn’t surprising: the potential is even in , so the parity operator P commutes with the Hamiltonian. Therefore, unless states are
degenerate in energy, the wavefunctions will be even or odd in . ) For large , the recurrence relation simplifies to

The series therefore tends to

Multiply this by the  factor to recover the full wavefunction, we find  diverges for large  as .

Actually we should have expected this -- for a general value of the energy, the Schrödinger equation has the solution 
 at large distances, and only at certain energies does the coefficient  vanish to give a normalizable bound

state wavefunction.

So how do we find the nondiverging solutions? It is clear that the infinite power series must be stopped! The key is in the
recurrence relation.

If the energy satisfies

then  and all higher coefficients vanish.

This requirement in fact completely determines the polynomial (except for an overall constant) because with  the
coefficients hm for  are determined by

This  order polynomial is called a Hermite polynomial and written . The standard normalization of the Hermite
polynomials  is to take the coefficient of the highest power  to be . The other coefficients then follow using the
recurrence relation above, giving:
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So the bottom line is that the wavefunction for the nth excited state, having energy , is , where 
 is a normalization constant to be determined in the next section.

It can be shown (see exercises at the end of this lecture) that . Using this, beginning with the ground state,
one can easily convince oneself that the successive energy eigenstates each have one more node -- the  state has  nodes. This is
also evident from numerical solution using the spreadsheet, watching how the wavefunction behaves at large  as the energy is
cranked up.

The spreadsheet can also be used to plot the wavefunction for large , say . It is instructive to compare the probability
distribution with that for a classical pendulum, one oscillating with fixed amplitude and observed many times at random intervals.
For the pendulum, the probability peaks at the end of the swing, where the pendulum is slowest and therefore spends most time.
The  distribution amplitude follows this pattern, but of course oscillates. However, in the large  limit these oscillations
take place over undetectably small intervals.

The classical pendulum when not at rest clearly has a time-dependent probability distribution -- it swings backwards and forwards.
This means it cannot be in an eigenstate of the energy. In fact, the quantum state most like the classical is a coherent state built up
of neighboring energy eigenstates. We shall discuss coherent states later in the course.

Operator Approach to the Simple Harmonic Oscillator (Ladder Operators)
Having scaled the position coordinate  to the dimensionless  defined as

and let us also scale the momentum from  to , so

The Hamiltonian is then

Dirac had the brilliant idea of factorizing this expression: the obvious thought  isn’t quite right,
because it fails to take account of the noncommutativity of the operators, but the symmetrical version

is fine, and we shall soon see that it leads to a very easy way of finding the eigenvalues and operator matrix elements for the
oscillator, far simpler than using the wavefunctions we found above. Interestingly, Dirac’s factorization here of a second-order
differential operator into a product of first-order operators is close to the idea that led to his most famous achievement, the Dirac
equation, the basis of the relativistic theory of electrons, protons, etc.

To continue, we define new operators ,  by

(We’ve expressed a in terms of the original variables ,  for later use.)

From the commutation relation  it follows that

Therefore the Hamiltonian can be written:
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( + ) = (ξ+ iπ)(ξ− iπ)ξ2 π2

H = [(ξ+ iπ)(ξ− iπ) +(ξ− iπ)(ξ+ iπ)]
ℏω
4
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a = ξ+ iπ2√ = (mωx+ ip), = = (mωx− ip).
1

2ℏmω
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2
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x p

[iπ, ξ] = 1
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2

1
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Note that the operator  can only have non-negative eigenvalues, since

Now

Suppose  has an eigenfunction  with eigenvalue ,

From the two equations above

so  is an eigenfunction of  with eigenvalue . Operating with  again and again, we climb an infinite ladder of
eigenstates equally spaced in energy.

 is often termed a creation operator, since the quantum of energy  added each time it operates is equivalent to an added
photon in black body radiation (electromagnetic oscillations in a cavity).

It is easy to check that the state is an eigenstate with eigenvalue , provided it is nonzero, so the operator a takes us down
the ladder. However, this cannot go on indefinitely -- we have established that  cannot have negative eigenvalues. We must
eventually reach a state  for which , the operator  annihilates the state. (At each step down,  annihilates one quantum
of energy -- so  is often called an annihilation or destruction operator.)

Since the norm squared of , , and since  for any nonvanishing state, it
must be that the lowest eigenstate (the  for which  ) has . It follows that the  ’s on the ladder are the positive
integers, so from this point on we relabel the eigenstates with  in place of .

That is to say, we have proved that the only possible eigenvalues of  are zero and the positive integers: 0, 1, 2, 3… .

 is called the number operator: it measures the number of quanta of energy in the oscillator above the irreducible ground state
energy (that is, above the “zero-point energy” arising from the wave-like nature of the particle).

Since from above the Hamiltonian

the energy eigenvalues are

It is important to appreciate that Dirac’s factorization trick and very little effort has given us all the eigenvalues of the Hamiltonian

Contrast the work needed in this section with that in the standard Schrödinger approach. We have also established that the lowest
energy state , having energy , must satisfy the first-order differential equation , that is,

The solution, unnormalized, is

N
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d
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(In fact, we’ve seen this equation and its solution before: this was the condition for the “least uncertain” wavefunction in the
discussion of the Generalized Uncertainty Principle.)

We denote the normalized set of eigenstates  with . Now , and  is easily
found:

and

Therefore, if we take the set of orthonormal states  as the basis in the Hilbert space, the only nonzero matrix
elements of  are . That is to say,

(The column vectors in the space this matrix operates on have an infinite number of elements: the lowest energy, the ground state
component, is the entry at the top of the infinite vector -- so up the energy ladder is down the vector!)

The adjoint

So

For practical computations, we need to find the matrix elements of the position and momentum variables between the normalized
eigenstates. Now

so

These matrices are, of course, Hermitian (not forgetting the  factor in . )

To find the matrix elements between eigenstates of any product of  ’s and  ’s, express all the  ’s and  ’s in terms of  ’s and 
’s, to give a sum of products of  ’s and  ’s. Each product in this sum can be evaluated sequentially from the right, because each 

 or  has only one nonzero matrix element when the product operates on one eigenstate.

|0⟩, |1⟩, |2⟩, … |n⟩… ⟨n|n⟩  = 1 |n⟩  = |n+1⟩a† Cn Cn

  =  ∣ Cn ⟨n+1|n+1⟩  =  ⟨n|a |n⟩  = (n+1),∣∣Cn ∣2 ∣2 a† (3.4.40)

|n⟩ = |n+1⟩.a† n+1− −−−−√ (3.4.41)
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⎟⎟⎟
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Normalizing the Eigenstates in x-space
The normalized ground state wavefunction is

where we have gone back to the  variable, and normalized using .

To find the normalized wavefunctions for the higher states, they are first constructed formally by applying the creation operator 
repeatedly on the ground state . Next, the result is translated into  -space (actually  ) by writing  as a differential
operator, acting on .

Using ,

Now

so

We need to check that this expression is indeed the same as the Hermite polynomial wavefunction derived earlier, and to do that we
need some further properties of the Hermite polynomials.

Some Properties of Hermite Polynomials
The mathematicians define the Hermite polynomials by:

so

It follows immediately from the definition that the coefficient of the leading power is .

It is a straightforward exercise to check that  is a solution of the differential equation

so these are indeed the same polynomials we found by the series solution of Schrödinger’s equation earlier (recall the equation for
the polynomial component of the wavefunction was

with

We have found  in the form

We shall now prove that the polynomial component is exactly equivalent to the Hermite polynomial as defined at the beginning of
this section.

(ξ) = C = ,ψ0 e− /2ξ2

( )
mω

πℏ

1/4
e−mω /2ℏx2

(3.4.47)

x dx =∫ ∞
−∞ e−ax2

π/a
− −−

√

a†

|0⟩ x ξ = x/b a†

(ξ)ψ0

⟨n| |n−1⟩  =a† n−−√

|n⟩  = |n−1⟩  = ⋯ = |0⟩.
a†

n−−√

(a†)n

n!
−−√

(3.4.48)

= (1/ )(ξ− iπ) = (1/ )(ξ−d/dξ),a† 2–√ 2–√ (3.4.49)

(ξ) = |0⟩ = .ψn

(a†)n

n!
−−√

1

n!
−−√
( (ξ− ))

1

2
–√

d

dξ

n

( )
mω

πℏ

1/4
e− /2ξ2

(3.4.50)

(ξ) = (−Hn )neξ
2 dn

dξn
e−ξ2

(3.4.51)

(ξ) = 1, (ξ) = 2ξ, (ξ) = 4 −2, (ξ) = 8 − ξ, etc.H0 H1 H2 ξ2 H3 ξ3 1
2

(3.4.52)

2n

Hn

( −2ξ +2n) (ξ) = 0,
d2

dξ2

d

dξ
Hn (3.4.53)

−2ξ +(2ε−1)h = 0,
hd2

dξ2

dh

dξ
(3.4.54)

2ε = 2n+1. (3.4.55)

(ξ)ψn

(ξ) = ( .ψn

1

n!
−−√

1

2
–√
(ξ− ))

d

dξ

n

( )
mω

πℏ

1/4
e− /2ξ2
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https://libretexts.org/
https://phys.libretexts.org/@go/page/2860?pdf


3.4.8 https://phys.libretexts.org/@go/page/2860

We begin with the operator identity:

Both sides of this expression are to be regarded as operators, that is, it is assumed that both are operating on some function .

Now take the  power of both sides: on the right, we find, for example,

since the intermediate exponential terms cancel against each other.

So

and substituting this into the expression for  above,

 

This established the equivalence of the two approaches to Schrödinger’s equation for the simple harmonic oscillator, and provides
us with the overall normalization constants without doing integrals. (The expression for  above satisfies .)

Exercises:

Use  to prove:

a. the coefficient of  is .
b. 
c. 
d.  (Hint: rewrite as , then integrate by parts  times, and use (a).)

e. , for .

It’s worth doing these exercises to become more familiar with the Hermite polynomials, but in evaluating matrix elements (and
indeed in establishing some of these results) it is almost always far simpler to work with the creation and annihilation
operators.

Use the creation and annihilation operators to find . This matrix element is useful in estimating the energy change
arising on adding a small nonharmonic potential energy term to a harmonic oscillator.

Time-Dependent Wavefunctions
The set of normalized eigenstates  discussed above are of course solutions to the time-independent
Schrödinger equation, or in ket notation eigenstates of the Hamiltonian . Putting in the time-dependence
explicitly,

(ξ− ) = −
d

dξ
e /2ξ2 d

dξ
e− /2ξ2

(3.4.57)

f(ξ)

nth

(− = (− = (−e /2ξ2 d

dξ
e− /2ξ2

)3 )3e /2ξ2 d

dξ
e− /2ξ2

e /2ξ2 d

dξ
e− /2ξ2

e /2ξ2 d

dξ
e− /2ξ2

)3e /2ξ2 d3

dξ3
e− /2ξ2

(3.4.58)

(ξ− )n = (−
d

dξ
)ne /2ξ2 dn

dξn
e− /2ξ2

(3.4.59)

(ξ)ψn

(ξ) = (− ( )ψn
1
n!2n√

)n e /2ξ2 dn

dξn
e− /2ξ2

( )mω

πℏ
1/4

e− /2ξ2

= (− ( )1
n!2n√

)n( )mω

πℏ
1/4

e− /2ξ2
eξ

2 dn

dξn
e−ξ2

= (ξ) , with ξ = x.1
n!2n√
( )mω

πℏ

1/4
Hn e− /2ξ2 mω

ℏ

−−−
√

(3.4.60)

(ξ)ψn ∫ | dx = 1ψn|2

Exercise 3.4.1

(ξ) = (−Hn )neξ
2 dn

dξn
e−ξ2

ξn 2n

'(ξ) = 2n (ξ)Hn Hn−1

(ξ) = 2ξ (ξ) −2n (ξ)Hn+1 Hn Hn−1

(ξ) dξ = n!∫ ∞
−∞ e−ξ2

H 2
n 2n π−−√ (ξ)(− dξ∫ ∞

−∞ Hn )n dn

dξn
e−  ξ2

n

(ξ)  (ξ)dξ = 0∫ ∞
−∞ e−ξ2

Hn Hm m ≠ n

Exercise 3.4.2

⟨n| |n⟩x4

|0⟩, |1⟩, |2⟩, … |n⟩…
H|n⟩ = (n+ )ℏω|n⟩1

2

|n, t⟩ = |n, t = 0⟩ = |n⟩.e−iHt/ℏ e−i(n+ )ωt1
2 (3.4.61)
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It is necessary to include the time dependence when dealing with a state which is a superposition of states of different energies,
such as , which then becomes

Expectation values of combinations of position and/or momentum operators in such states are best evaluated by expressing
everything in terms of annihilation and creation operators.

Solving Schrödinger’s Equation in Momentum Space
In the lecture on Function Spaces, we established that the basis of  states (eigenstates of the position operator) and that of 
states (eigenstates of the momentum operator) were both complete bases in Hilbert space (physicist’s definition) so we could work
equally well with either from a formal point of view. Why then do we almost always work in  -space? Well, probably because we
live in  -space, but there’s another reason. The momentum operator in the  -space representation is , so
Schrödinger’s equation, written , with  in operator form, is a second-order differential equation.
Now consider what happens to Schrödinger’s equation if we work in  -space. Since the operator identity  is true
regardless of representation, we must have . So for a particle in a potential , writing Schrödinger’s equation in  -
space we are confronted with the nasty looking operator ! This will produce a differential equation in general a lot
harder to solve than the standard  -space equation -- so we stay in  -space.

But there are two potentials that can be handled in momentum space: first, for a linear potential , the momentum
space analysis is actually easier -- it’s just a first-order equation. Second, for a particle in a quadratic potential -- a simple harmonic
oscillator -- the two approaches yield the same differential equation. That means that the eigenfunctions in momentum space
(scaled appropriately) must be identical to those in position space -- the simple harmonic eigenfunctions are their own Fourier
transforms!
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(1/ )(|0⟩+|1⟩)2–√

(1/ )( |0⟩+ |1⟩).2–√ e−iωt/2 e−3iωt/2 (3.4.62)

|x⟩ |k⟩

x

x x p = −iℏd/dx
( /2m+V (x))ψ(x) = Eψ(x)p2 p

p [x, p] = iℏ
x = iℏd/dp V (x) p

V (iℏd/dp)
x x

V (x) = −Fx
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