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1.3: Wave Equations, Wavepackets and Superposition

A Challenge to Schrddinger

De Broglie’s doctoral thesis, defended at the end of 1924, created a lot of excitement in European physics circles. Shortly after it
was published in the fall of 1925 Pieter Debye, a theorist in Zurich, suggested to Erwin Schrédinger that he give a seminar on de
Broglie’s work. Schrodinger gave a polished presentation, but at the end Debye remarked that he considered the whole theory
rather childish: why should a wave confine itself to a circle in space? It wasn’t as if the circle was a waving circular string, real
waves in space diffracted and diffused, in fact they obeyed three-dimensional wave equations, and that was what was needed. This
was a direct challenge to Schrédinger, who spent some weeks in the Swiss mountains working on the problem, and constructing his
equation.

There is no rigorous derivation of Schrédinger’s equation from previously established theory, but it can be made very plausible by
thinking about the connection between light waves and photons, and construction an analogous structure for de Broglie’s waves
and electrons (and, later, other particles).

Maxwell's Wave Equation

Let us examine what Maxwell’s equations tell us about the motion of the simplest type of electromagnetic wave—a monochromatic
wave in empty space, with no currents or charges present.

As we discussed in the last lecture, Maxwell found the wave equation
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for a plane wave moving in the x-direction, with solution
E(z,t) = Eyelke=) (1.3.3)
Applying the wave equation differential operator to this plane wave solution
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This is just the familiar statement that the wave must travel at c.

What does the Wave Equation tell us about the Photon?

We know from the photoelectric effect and Compton scattering that the photon energy and momentum are related to the frequency
and wavelength of the light by

E = hv = fw (1.3.6)
pz% = hk (1.3.7)

Notice, then, that the wave equation tells us that w = ck and hence £ =cp.

To put it another way, if we think of ¢*(s*~«?)

as describing a particle (photon) it would be more natural to write the plane wave as
Eqen =20 (1.3.8)

that is, in terms of the energy and momentum of the particle.
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In these terms, applying the (Maxwell) wave equation operator to the plane wave yields
92 1 0%\ o E?\ -
—— — — = | Egen(r* BV — < - —) Egen =B — 1.3.9
(507~ 7 ) Bo v-2) 5 (1.3.9)
or
E?=cp? (1.3.10)

The wave equation operator applied to the plane wave describing the particle propagation yields the energy-momentum
relationship for the particle.

Constructing a Wave Equation for a Particle with Mass

The discussion above suggests how we might extend the wave equation operator from the photon case (zero rest mass) to a particle
having rest mass mg. We need a wave equation operator that, when it operates on a plane wave, yields

E? =p? +mict (1.3.11)
Writing the plane wave function

o(x,t) = Aen =) (1.3.12)

where A is a constant, we find we can get E? = c?p? +mg ¢* by adding a constant (mass) term to the differentiation terms in the
wave operator:
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This wave equation is called the Klein-Gordon equation and correctly describes the propagation of relativistic particles of mass my.
However, it’s a bit inconvenient for nonrelativistic particles, like the electron in the hydrogen atom, just as E? = mg A +Ep? s
less useful than E = p? /2m for this case.

A Nonrelativistic Wave Equation

Continuing along the same lines, let us assume that a nonrelativistic electron in free space (no potentials, so no forces) is described
by a plane wave:

W(z,t) = Aet P2 E) (1.3.14)

We need to construct a wave equation operator which, applied to this wave function, just gives us the ordinary nonrelativistic
energy-momentum relationship, E = p* /2m. The p* obviously comes as usual from differentiating twice with respect to z, but the
only way we can get E is by having a single differentiation with respect to time, so this looks different from previous wave
equations:

N(a, t) R? 0%¢(,t)

i’ =

= T (1.3.15)

This is Schrédinger’s equation for a free particle. It is easy to check that if 1 (z,t) has the plane wave form given above, the
condition for it to be a solution of this wave equation is just E = p? /2m..

Notice one remarkable feature of the above equation—the % on the left means that ¢ cannot be a real function.

How Does a Varying Potential Affect a de Broglie Wave?

The effect of a potential on a de Broglie wave was considered by Sommerfeld in an attempt to generalize the rather restrictive
conditions in Bohr’s model of the atom. Since the electron was orbiting in an inverse square force, just like the planets around the
sun, Sommerfeld couldn’t understand why Bohr’s atom had only circular orbits, no Kepler-like ellipses. (Recall that all the
observed spectral lines of hydrogen were accounted for by energy differences between circular orbits.)

De Broglie’s analysis of the allowed circular orbits can be formulated by assuming at some instant in time the spatial variation of
the wave function on going around the orbit includes a phase term of the form e?%/%, where here the parameter g measures distance
around the orbit. Now for an acceptable wave function, the total phase change on going around the orbit must be 2nx, where n is
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an integer. For the usual Bohr circular orbit, p is constant on going around, g changes by 277, where 7 is the radius of the orbit,
giving

1
Ep27rr:2n7r, so pr = nh, (1.3.16)

the usual angular momentum quantization.

What Sommerfeld did was to consider a general Kepler ellipse orbit, and visualize the wave going around such an orbit. Assuming
the usual relationship p = h/\, the wavelength will vary as the particle moves around the orbit, being shortest where the particle
moves fastest, at its closest approach to the nucleus. Nevertheless, the phase change on moving a short distance Agq should still be
pAgq/h, and requiring the wave function to link up smoothly on going once around the orbit gives

?{pdq:nh (1.3.17)

Thus only certain elliptical orbits are allowed. The mathematics is nontrivial, but it turns out that every allowed elliptical orbit has
the same energy as one of the allowed circular orbits. That is why Bohr’s theory gave all the energy levels. Actually, this whole
analysis is old fashioned (it’s called the “old quantum theory”) but we’ve gone over it to introduce the idea of a wave with variable
wavelength, changing with the momentum as the particle moves through a varying potential.

The reader may well be wondering at this point why it is at all useful to visualize a real wave going round an orbit, when we have
stated that any solution of Schrédinger’s equation is necessarily a complex function. As we shall see, it is often possible to find
solutions, including those corresponding to Bohr’s energy levels, in which the complex nature of the wave function only appears in
a time varying phase factor, e Bt/" We should also add that if the spatial dependence is a real function, such as sinkz, it
represents a standing wave, not a particle circling in one direction, which would be e**, or e/, Bearing all this in mind, it is still
often instructive to sketch real wave functions, especially for one-dimensional problems.

Schrodinger’s Equation for a Particle in a Potential

Let us consider first the one-dimensional situation of a particle going in the x-direction subject to a “roller coaster” potential. What
do we expect the wave function to look like? We would expect the wavelength to be shortest where the potential is lowest, in the
valleys, because that’s where the particle is going fastest—maximum momentum.
With a nonzero potential present, the energy-momentum relationship for the particle becomes the energy equation
p?
E=—+V(z) (1.3.18)
2m

We need to construct a wave equation which leads naturally to this relationship. In contrast to the free particle cases discussed
above, the relevant wave function here will no longer be a plane wave, since the wavelength varies with the potential. However, at
a given x, the momentum is determined by the “local wavelength”, that is,

=—th— 1.3.1

p=—iho (1.3.19)

It follows that the appropriate wave equation is:

Op(z,t)  RB* 8*P(z,t)
ot 2m 92

This is the standard one-dimensional Schrédinger equation.

ih +V(2)y(z,t) (1.3.20)

In three dimensions, the argument is precisely analogous. The only difference is that the square of the momentum is now a sum of

2 2 2 2
three squared components, for the x, y and z directions, so g? becomes % + ;—yz + % =Vv?,

SO now
8¢(m’y7 Z’ t) hz

i

—v? 1.3.21
at 2mv w(x7y"z’ t)—l—V(.T:,y, z)d’(‘”a% Z, t) ( 3 )

This is the complete Schrédinger equation. So far, of course, it is based on plausibility arguments and hand-waving. Why should
anyone believe that it really describes an electron wave? Schrodinger’s test of his equation was the hydrogen atom. He looked for
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Bohr’s “stationary states”: states in which the electron was localized somewhere near the proton, and having a definite energy. The
time dependence would be the same as for a plane wave of definite energy, e Bt/ the spatial dependence would be a time-

independent function decreasing rapidly at large distances from the proton. That is, he took

He took advantage of the spherical symmetry by re-expressing the spatial wave function in spherical polar coordinates, and found
his equation became a standard differential equation solved in the nineteenth century. The solution gave the shape of possible wave
functions, and also allowed values of energy and angular momentum. These values were exactly the same as Bohr’s (except that
the lowest allowed state in the new theory had zero angular momentum): impressive evidence that the new theory was correct.

Current Conservation

When Schrédinger published this result in 1926, he also wrote down the complex conjugate equation, and proved that taking them
together it was not difficult to deduce a continuity equation:

% +divi =0 (1.3.23)
where p=*h = || (1.3.24)
SR e o

and j= Y (V*'V — V™) (1.3.25)

But What Do These Equations Mean?

Schrodinger believed the above continuity equations represented the conservation of electric charge, and had no further
significance. He thought that after all his own equation showed the electron to be just a smooth classical wave at the deepest level.
In fact, he succeeded in solving the three-dimensional equation with a Coulomb potential and he found the Bohr energy levels of
the hydrogen atom. Obviously, he was on the right track! This classical revival approach, however, couldn’t deal with the
unpredictability of quantum mechanics, such as where a single photon—or electron—would land in a two-slit diffraction pattern.

The truth is, Schrodinger didn’t understand his own equation. Another physicist, Max Born, published a paper a few days after
Schrédinger’s in which he suggested that |¢(z, y, z,t)\Qda:dydz was the relative probability of finding the electron in a small
volume dzdydz at (z, y, z) at time ¢. This interpretation was based directly on the analogy with light waves and photons, and has
turned out to be correct.

1 is called the “amplitude” or sometimes the “probability amplitude”.

Photons and Electrons

We have seen that electrons and photons behave in a very similar fashion—both exhibit diffraction effects, as in the double slit
experiment, both have particle like or quantum behavior. As we have already discussed, we now have a framework for
understanding photons—we first figure out how the electromagnetic wave propagates, using Maxwell’s equations, that is, we find
E as a function of z,y, 2, t. Having evaluated E(z, y, z,t), the probability of finding a photon in a given small volume of space
dzdydz, at time t, is proportional to |E(z, y, z, t)|2d:cdydz, the energy density.

Born assumed that Schrodinger’s wave function for the electron corresponded to the electromagnetic wave for the photon in the
sense that the square of the modulus of the Schrédinger wave amplitude at a point was the relative probability density for finding
the electron at that point. So the routine is the same: for given boundary conditions and a given potential, Schrédinger’s differential
equation can be solved and the wave function t(z, y, z, t) evaluated. Then, | (z, y, 2, t)|*dzdydz gives the relative probability of
finding the electron at (z, y, 2) at time ¢.

Notice, though, that this interpretation of the wave function is not essential in finding the allowed energy levels in a given potential,
such as the Bohr orbit energies, which Schrédinger derived before the physical significance of his wave function was understood.
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How Wave Amplitude Varies in a Roller Coaster Potential

We mentioned above that for an electron traveling along a roller coaster potential, the local wavelength is related to the momentum
of the electron as it passes that point.

Perhaps slightly less obvious is that the amplitude of the wave varies: it will be largest at the tops of the hills (provided the particle
has enough energy to get there) because that’s where the particle is moving slowest, and therefore is most likely to be found.
Keeping the Wave and the Particle Together?
Suppose following de Broglie we write down the relation between the “particle properties” of the electron and its “wave
properties”:

L o

5mY =E=hf, mv=p=nh/A (1.3.26)
It would seem that we can immediately figure out the speed of the wave, just using A f = ¢, say. We find:

1, .2
h Hymv 1
Af=—- == 1.3.27
! mu h 2" ( )
So the speed of the wave seems to be only half the speed of the electron! How could they stay together? What’s wrong with this
calculation?

Localizing an Electron

To answer this question, it is necessary to think a little more carefully about the wave function corresponding to an electron
traveling through a cathode ray tube, say. The electron leaves the cathode, shoots through the vacuum, and impinges on the screen.
At an intermediate point in this process, it is moving through the vacuum and the wave function must be nonzero over some
volume, but zero in the places the electron has not possibly reached yet, and zero in the places it has definitely left.

However, if the electron has a precise energy, say exactly a thousand electron volts, it also has a precise momentum. This
necessarily implies that the wave has a precise wavelength. But the only wave with a precise wavelength A has the form

P(x,t) = Aeilka=el) (1.3.28)

where k =27/, and w = 27 f. The problem is that this plane sine wave extends to infinity in both spatial directions, so cannot
represent a particle whose wave function is nonzero in a limited region of space.

Therefore, to represent a localized particle, we must superpose waves having different wavelengths. Now, the waves representing
electrons, unlike the light waves representing photons, travel at different speeds for different energies. Any intuition gained by
thinking about superposing light waves of different wavelengths can be misleading if applied to electron waves!

Fortunately, there are many examples in nature of waves whose speed depends on wavelength. A simple example is water waves on
the ocean. We consider waves having a wavelength much shorter than the depth of the ocean. What is the w, k relationship for
these waves? We know it’s not w = C'k, with a constant C, because waves of different wavelengths move at different speeds. In
fact, it’s easy to figure out the w, k relationship, known as the dispersion relation, for these waves from a simple dimensional
argument. What physical parameters can the wave frequency depend on? Obviously, the wavelength A. We will use k =27/ as
our variable. k has dimensions L~1.

These waves are driven by gravity, so g, with dimensions LT ~2 s relevant. Actually, that’s all. For ocean waves, surface tension
is certainly negligible, as is the air density, and the water’s viscosity. You might think the density of the water matters, but these
waves are rather like a pendulum, in that they are driven by gravity, so increasing the density would increase both force and inertial
mass by the same amount.

For these deepwater waves, then, dimensional analysis immediately gives:
w? = Cgk (1.3.29)

where C' is some dimensionless constant we cannot fix by dimensional argument, but actually it turns out to be 1.
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Wavepackets and the Principle of Superposition

To return momentarily to the electron traveling through a vacuum, it is clear physically that it must have a wave function that goes
to zero far away in either direction (we’ll still work in one dimension, for simplicity). A localized wave function of this type is
called a “wavepacket”. We shall discover that a wavepacket can be constructed by adding plane waves together. Now, the plane
waves we add together will individually be solutions of the Schrédinger equation.

But does it follow that the sum of such solutions of the Schrodinger equation is itself a solution to the equation? The answer is yes
—in other words, the Schrédinger equation

. 311’(96,31, 2, t) h2
th———— =

S v 1.3.21

is a linear equation, that is to say, if ¥ (z, y, z,t), ¥a(z, y, 2, t) are both solutions of the equation, then so is

1/)(:1,', Y, 2 t) = 011/)1 (:L‘, Y, 2 t) +621/}2 ('Ta Y, 2, t) (1330)
where ¢; and co are arbitrary constants, as is easy to check. This is called the Principle of Superposition.

The essential point is that in Schrodinger’s equation every term contains a factor t, but no term contains a factor ¢? (or a higher
power). That’s what is meant by a “linear” equation. If the equation did contain a constant term, or a term including %2,
superposition wouldn’t work—the sum of two solutions to the equation would not itself be a solution to the equation.

In fact, we have been assuming this linearity all along: when we analyze interference and diffraction of waves, we just add the two
wave amplitudes at each spot. For the double slit, we take it that if the wave radiating from one slit satisfies the wave equation, then
adding the two waves together will give a new wave which also satisfies the equation.

The First Step in Building a Wavepacket: Adding Two Sine Waves

If we add together two sine waves with frequencies close together, we get beats. This pattern can be viewed as a string of
wavepackets, and is useful for gaining an understanding of why the electron speed calculated from A f = ¢ above is apparently half
what it should be.

We use the trigonometric addition formula:
sin((k — Ak)z — (w— Aw)t) +sin((k + Ak)z — (w+ Aw)t) = 2sin(kz — wt) cos((Ak)z — (Aw)t) (1.3.31)

This formula represents the phenomenon of beats between waves close in frequency. The first term, sin(kz — wt), oscillates at the
average of the two frequencies. It is modulated by the slowly varying second term, often called the “envelope function”, which
oscillates once over a spatial extent of order w/Ak. This is the distance over which waves initially in phase at the origin become
completely out of phase. Of course, going a further distance of order 7/ Ak, the waves will become synchronized again.

That is, beating two close frequencies together breaks up the continuous wave into a series of packets, the beats. To describe a
single electron moving through space, we need a single packet. This can be achieved by superposing waves having a continuous
distribution of wavelengths, or wave numbers within of order Ak, say, of k. In this case, the waves will be out of phase after a
distance of order 7/ Ak but since they have many different wavelengths, they will never get back in phase again.

Phase Velocity and Group Velocity

It will immediately become apparent that there are two different velocities in the dynamics: first, the velocity with which the
individual peaks move to the right, and second the velocity at which the slowly varying envelope function—the beat pattern—
moves. The Af = ¢ individual peak velocity is determined by the term sin(kz — wt), it is w/k: this is called the phase velocity.
The speed with which the beat pattern moves, on the other hand, is determined by the term cos((Ak)z — (Aw)t), this speed is
Aw/Ak = dw/dk for close frequencies.

Going back one more time to the electron wavepacket, armed with this new insight, we can see immediately that the wave speed
we calculated from A f = ¢ was the phase velocity of the waves. The packet itself will of course move at the group velocity—and it
is easy to check that this is justv.
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Adding More Waves

We’ve seen how two sine waves of equal amplitude close together in frequency produce beats: if the waves are in phase at the
origin, as we go along the x-axis they gradually fall out of phase, and cancel each other at a distance = = 7/2A, where 2A is the
difference in k of the two sin kx waves. (For the moment, we are ignoring the time development of these waves: we’re just looking
at t = 0.). If we continue along the x-axis to 7/ A, the two waves will be back in phase again, this is the next beat. Now, if instead of
adding two waves, we add many waves, all of different k, but with the k’s taken from some small interval of size of order Ak, and
all these waves are in phase at the origin, then, again, they will all stay more or less in phase for a distance of order x = 7/2A.
However, as we proceed past that point, the chances of them all getting back in phase again get rapidly smaller as we increase the
number of different waves.

This suggests a way to construct a wavepacket: add together a lot of waves from within a narrow frequency range, and they will
only be in phase in a region containing the origin.

Adding waves in this way leads to a more general derivation of the formula dw/dk for the group velocity. The standard approach is
to replace the sum over plane waves by an integral, with the wavenumber % as the variable of integration, and the convention is to
put a factor 27 in the denominator:

+00

dk . .
Y(z,t) = / — ethe-iw(R)t g () (1.3.32)
27

—00
Since we are constructing a wavepacket with a fairly well-defined momentum, we will take the function ¢ (k) to be strongly peaked
at ko, and going rapidly to zero away from that value, so the only significant contribution to the integral is from the neighborhood

of kg. Therefore, if w(k) is reasonably smooth (which it is) it is safe to put

w(k) = w(ko) + (k —ko)w' (ko) (1.3.33)
in the exponential.
This gives
+oo +00
w(:v’t):/ Z_freikz—iw(ko)t—i(k—ko)w'(ko)t (k) = eilhrz—thD) / Z_:ei(k—ko)(x—w'(ko)t) B(k) (1.3.34)

The first term just represents a single wave at kg, and the peaks move at the phase velocity

Uphase =w/k (1.3.35)
The second term, the integral, is the envelope function: here x only appears in the combination

x —u (o)t (1.3.36)

so the envelope, and hence the wavepacket, moves to the right at the group velocity: vgroup = w' (ko). Note that if the next term in
the Taylor expansion of w(k) is also included, that amounts to adding wavepackets with slightly different group velocities together,
and the initial (total) wavepacket will gradually widen.

The Gaussian Wavepacket
Fortunately, there is a simple explicit mathematical realization of the addition of plane waves to form a localized function: the
Gaussian wavepacket,

Y(z,t=0)= Aeihow g=a*/24° (1.3.37)

where py = hky . For this wavepacket to represent one electron, with the probability of finding the electron in a small section of
length dz at  equal to |1/)|2d:c, and the total probability of finding the electron somewhere equal to one, the constant A is uniquely
determined (apart from a possible phase multiplier ?’, which would not affect the probability).

Using the standard result
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+00
/ e’ dg = |2 (1.3.38)
a
we find |A[* = (rA2?)"1/2 5o
Y(z,t =0)= L ik ga/n? (1.3.39)
’ (m A2)1/4 e
But how do we construct this particular wavepacket by superposing plane waves? That is to say, we need a representation of the
form:
+00 dk
Y(x) = / — % (k) (1.3.40)
2w
—00

The function ¢ (k) represents the weighting of plane waves in the neighborhood of wavenumber k. This is a particular example of a
Fourier transform—we will be discussing the general case in detail a little later in the course. Note that if ¢(k) is a bounded
function, any particular k£ value gives a vanishingly small contribution, the plane-wave contribution to \(y(x)\) from a range dk is
¢(k)dk/2x. In fact, ¢(k) is given in terms of ¢ (z) by

¢(k)=/ dze % () (1.3.41)

It is perhaps worth mentioning at this point that this can be understood qualitatively by observing that the plane wave prefactor
e "% will interfere destructively with all plane wave components of ¥(z) except that of wavenumber k, where it may at first
appear that the contribution is infinite, but recall that as stated above, any particular £ component has a vanishingly small weight—

and, in fact, this is the right answer, as we shall show in more convincing fashion later.

In the present case, the above handwaving argument is unnecessary, because both the integrals can be carried out exactly, using the
standard result:

+o0
/ efaz2+bz dxr = eb2/4‘1 1 (1342)
\/ a
giving
b(k) = (4T A2)T e A (k—ho)'/2 (1.3.43)

Putting this back in the integral for 1)(z) shows that the integral equations are consistent.

Note the normalization integrals in x-space and k-space are:
+00 +00
9 5 dk
[Y[fdz =1, [ |¢(k)[" - =1 (1.3.44)
2
—00 —00

The physical significance of the second equation above is that if the wavepacket goes through a diffraction grating so that the
different k-components are dispersed in different directions, like the colors in white light, and a detector is arranged to register the
electron if it has wavenumber between k and k + dk , the probability of finding it in that wavenumber range is |¢(k)|>dk /2.

Expectation Values and the Uncertainty Principle

It is clear from the expressions for (x) and its Fourier transform ¢ (k) above that the spreading of the wave function in x-space is
inversely related to its spreading in k-space: the x-space wavefunction has spread ~ A, the k-space wavefunction ~ 1/A. This is
perhaps the simplest example of Heisenberg’s famous Uncertainty Principle: in quantum mechanics, both the position and
momentum of a particle cannot be known precisely at the same moment; the more exactly one is specified the less well the other is
known. This is an inevitable consequence of the wave nature of the probability distribution. As we have already seen, a particle
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with an exact momentum has a wave of specific wavelength, and the only such wave is a plane wave extending from minus infinity
to infinity, so the position of the particle is completely undetermined. A particle with precisely defined position is described by a
wavepacket having all wavelengths included with equal weight—the momentum is completely undefined. We shall give more
examples of the Uncertainly Principle, of efforts to evade it and of its uses in estimates, in the next lecture.

Definitions of Az, Ap

The standard notation for the expectation value of an operator in a given quantum state is

(z) :/z|1/;(a:)|2da: (1.3.45)
In other words, (z) would be the statistical average outcome of making many measurements of  on identically prepared systems
all in the quantum state ¥ (z) (ignoring the time dependence here for the sake of simplicity).

When we talk about the “uncertainty” in x, we mean in quantum mechanics the root mean square deviation in the measurements.
This is usually written Az (unfortunate in view of our—also standard—use of A in the Gaussian function above, so the reader
should watch carefully!).

Therefore

Az = \//(w —(2))?|(z)|Pda (1.3.46)

For our wavepacket, (x) = 0. It is easy to check that

A h h
Az = —, and writing p=hk, Ap=—— giving Az-Ap=— 1.3.47
7 g p p=3 7 giving P=7 ( )
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