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10.4: Identical Particles- Symmetry and Scattering

Introduction
For two identical particles confined to a one-dimensional box, we established earlier that the normalized two-particle wavefunction 

, which gives the probability of finding simultaneously one particle in an infinitesimal length  at  and another in 
 at  as , only makes sense if , since we don’t know which of the two

indistinguishable particles we are finding where. It follows from this that there are two possible wave function symmetries: 
 or . It turns out that if two identical particles have a symmetric wave function in

some state, particles of that type always have symmetric wave functions, and are called bosons. (If in some other state they had an
antisymmetric wave function, then a linear superposition of those states would be neither symmetric nor antisymmetric, and so
could not satisfy .) Similarly, particles having antisymmetric wave functions are called fermions.
(Actually, we could in principle have , with  a constant phase, but then we wouldn’t get back to the
original wave function on exchanging the particles twice. Some two-dimensional theories used to describe the quantum Hall effect
do in fact have excitations of this kind, called anyons, but all ordinary particles are bosons or fermions.)

To construct wave functions for three or more fermions, we assume first that the fermions do not interact with each other, and are
confined by a spin-independent potential, such as the Coulomb field of a nucleus. The Hamiltonian will then be symmetric in the
fermion variables,

and the solutions of the Schrödinger equation are products of eigenfunctions of the single-particle Hamiltonian 
. However, these products, for example , do not have the required antisymmetry property.

Here  label the single-particle eigenstates, and  denote both space and spin coordinates of single particles, so 1
stands for . The necessary antisymmetrization for the particles 1, 2 is achieved by subtracting the same product wave
function with the particles 1 and 2 interchanged, so  is replaced by ,
ignoring overall normalization for now.

But of course the wave function needs to be antisymmetrized with respect to all possible particle exchanges, so for 3 particles we
must add together all 3! permutations of 1, 2, 3 in the state  with a factor -1 for each particle exchange necessary to get to a
particular ordering from the original ordering of 1 in , 2 in , and 3 in . In fact, such a sum over permutations is precisely the
definition of the determinant, so, with the appropriate normalization factor:

where  label three (different) quantum states and 1, 2, 3 label the three fermions. The determinantal form makes clear the
antisymmetry of the wave function with respect to exchanging any two of the particles, since exchanging two rows of a
determinant multiplies it by -1.

We also see from the determinantal form that the three states  must all be different, for otherwise two columns would be
identical, and the determinant would be zero. This is just Pauli’s Exclusion Principle: no two fermions can be in the same state.
Although these determinantal wave functions (sometimes called Slater determinants) are only strictly correct for noninteracting
fermions, they are a useful beginning in describing electrons in atoms (or in a metal), with the electron-electron repulsion
approximated by a single-particle potential. For example, the Coulomb field in an atom, as seen by the outer electrons, is partially
shielded by the inner electrons, and a suitable  can be constructed self-consistently, by computing the single-particle
eigenstates and finding their associated charge densities.

Space and Spin Wave Functions
Suppose we have two electrons in some spin-independent potential  (for example in an atom). We know the two-electron wave
function is antisymmetric. Now, the Hamiltonian has no spin-dependence, so we must be able to construct a set of common
eigenstates of the Hamiltonian, the total spin, and the - component of the total spin.

For two electrons, there are four basis states in the spin space. The eigenstates of  and  are the singlet state
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and the triplet states

where the first arrow in the ket refers to the spin of particle 1, the second to particle 2.

It is evident by inspection that the singlet spin wave function is antisymmetric in the two particles, the triplet symmetric. The total
wave function for the two electrons in a common eigenstate of  and the Hamiltonian  has the form:

and  must be antisymmetric. It follows that a pair of electrons in the singlet spin state must have a symmetric spatial wave
function,  whereas electrons in the triplet state, that is, with their spins parallel, have an antisymmetric
spatial wave function.

Dynamical Consequences of Symmetry
This overall antisymmetry requirement actually determines the magnetic properties of atoms. The electron’s magnetic moment is
aligned with its spin, and even though the spin variables do not appear in the Hamiltonian, the energy of the eigenstates depends
on the relative spin orientation. This arises from the electrostatic repulsion energy between the electrons. In the spatially
antisymmetric state, the two electrons have zero probability of being at the same place, and are on average further apart than in the
spatially symmetric state. Therefore, the electrostatic repulsion raises the energy of the spatially symmetric state above that of the
spatially antisymmetric state. It follows that the lower energy state has the spins pointing in the same direction. This argument is
still valid for more than two electrons, and leads to Hund’s rule for the magnetization of incompletely filled inner shells of electrons
in transition metal atoms and rare earths: if the shell is half filled or less, all the spins point in the same direction. This is the first
step in understanding ferromagnetism.

Another example of the importance of overall wave function antisymmetry for fermions is provided by the specific heat of
hydrogen gas. This turns out to be heavily dependent on whether the two protons (spin one-half) in the H  molecule have their
spins parallel or antiparallel, even though that alignment involves only a very tiny interaction energy. If the proton spins are
antiparallel, that is to say in the singlet state, the molecule is called parahydrogen. The triplet state is called orthohydrogen. These
two distinct gases are remarkably stable—in the absence of magnetic impurities, para–ortho transitions take weeks.

The actual energy of interaction of the proton spins is of course completely negligible in the specific heat. The important
contributions to the specific heat are the usual kinetic energy term, and the rotational energy of the molecule. This is where the
overall (space×spin) antisymmetric wave function for the protons plays a role. Recall that the parity of a state with rotational
angular momentum  is . Therefore, parahydrogen, with an antisymmetric proton spin wave function, must have a symmetric
proton space wave function, and so can only have even values of the rotational angular momentum. Orthohydrogen can only have
odd values. The energy of the rotational level with angular momentum  is , so the two kinds of hydrogen gas
have different sets of rotational energy levels, and consequently different specific heats.

Symmetry of Three-Electron Wave Functions
Things get trickier when we go to three electrons. There are now 2  = 8 basis states in the spin space. Four of these are accounted
for by the spin 3/2 state with all spins pointing in the same direction. This is evidently a symmetric state, so must be multiplied by
an antisymmetric spatial wave function, a determinant. But the other four states are two pairs of total spin  states. They are
orthogonal to the symmetric spin 3/2 state, so they can’t be symmetric, but they can’t be antisymmetric either, since in each such
state two of the spins must be pointing in the same direction! An example of such a state (following Baym, page 407) is

Evidently, this must be multiplied by a spatial wave function symmetric in 2 and 3, but to get a total wave function with overall
antisymmetry it is necessary to add more terms:

(from Baym). Requiring the spatial wave function  to be symmetric in 2, 3 is sufficient to guarantee the overall
antisymmetry of the total wave function . Particle enthusiasts might be interested to note that functions exactly like this arise in
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constructing the spin/flavor wave function for the proton in the quark model (Griffiths, Introduction to Elementary Particles, page
179).

For more than three electrons, similar considerations hold. The mixed symmetries of the spatial wave functions and the spin wave
functions which together make a totally antisymmetric wave function are quite complex, and are described by Young diagrams (or
tableaux). There is a simple introduction, including the generalization to SU(3), in Sakurai, section 6.5. See also 63 of Landau and
Lifshitz.

Scattering of Identical Particles
As a preliminary exercise, consider the classical picture of scattering between two positively charged particles, for example -
particles, viewed in the center of mass frame. If an outgoing  is detected at an angle  to the path of ingoing  #1, it could be #1
deflected through , or #2 deflected through . (see figure). Classically, we could tell which one it was by watching the
collision as it happened, and keeping track.

However, in a quantum mechanical scattering process, we cannot keep track of the particles unless we bombard them with photons
having wavelength substantially less than the distance of closest approach. This is just like detecting an electron at a particular
place when there are two electrons in a one dimensional box: the probability amplitude for finding an  coming out at angle  to
the ingoing direction of one of them is the sum of the amplitudes (not the sum of the probabilities!) for scattering through  and 

.

Writing the asymptotic scattering wave function in the standard form for scattering from a fixed target,

the two-particle wave function in the center of mass frame, in terms of the relative coordinate, is given by symmetrizing:

How does the particle symmetry affect the actual scattering rate at an angle ? If the particles were distinguishable, the differential
cross section would be

but quantum mechanically

This makes a big difference! For example, for scattering through 90°, where , the quantum mechanical scattering
rate is twice the classical (distinguishable) prediction.

Furthermore, if we make the standard expansion of the scattering amplitude  in terms of partial waves,
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then

and since  the scattering only takes place in even partial wave states. This is the same thing as saying that
the overall wave function of two identical bosons is symmetric, so if they are in an eigenstates of total angular momentum, from 

 it has to be a state of even .

For fermions in an antisymmetric spin state, such as proton-proton scattering with the two proton spins forming a singlet, the
spatial wave function is symmetric, and the argument is the same as for the boson case above. For parallel spin protons, however,
the spatial wave function has to be antisymmetric, and the scattering amplitude will then be . In this case there is
zero scattering at 90°!

Note that for (nonrelativistic) equal mass particles, the scattering angle in the center of mass frame is twice the scattering angle in
the fixed target (lab) frame. This is easily seen in the diagram below. The four equal-length black arrows, two in, two out, forming
an X, are the center of mass momenta. The lab momenta are given by adding the (same length) blue dotted arrow to each, reducing
one of the ingoing momenta to zero, and giving the (red arrow) lab momenta (slightly displaced for clarity). The outgoing lab
momenta are the diagonals of rhombi (equal-side parallelograms), hence at right angles and bisecting the center of mass angles of
scattering.

This page titled 10.4: Identical Particles- Symmetry and Scattering is shared under a not declared license and was authored, remixed, and/or
curated by Michael Fowler via source content that was edited to the style and standards of the LibreTexts platform.
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