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4.2: Orbital Eigenfunctions- 2-D Case

Previously, we established that the operators ,  have a common set of eigenkets (  with:

and

where ,  are integers or half odd integers, and we found the matrix elements of ,  (and hence those of ,  ) between
these eigenkets. This purely formal structure, therefore, nails down the allowed values of total angular momentum and of any
measured component. But there are other things we need to know: for example, how is an electron in a particular angular
momentum state in an atom affected by an external field? To compute that, we need to know the wave function .

If a system has spherical symmetry, such as an electron in the Coulomb field of a hydrogen nucleus, then the Hamiltonian  and

the operators ,  have a common set of eigenkets . The spherically symmetric Hamiltonian is unchanged by rotation,

so must commute with any rotation operator,  and . Recall that commuting Hermitian operators can be
diagonalized simultaneously -- and therefore have a common set of eigenkets.

Fortunately, many systems of interest do have spherical symmetry, at least to a good approximation, the basic example of course
being the hydrogen atom, so the natural set of basis states is the common eigenkets of energy and angular momentum. It turns out
that even when the spherical symmetry is broken, the angular momentum eigenkets may still be a useful starting point, with the
symmetry breaking treated using perturbation theory.

Commuting Hermitian operators can be diagonalized simultaneously and therefore have
a common set of eigenkets.

Two-Dimensional Models
As a warm-up exercise for the complications of the three-dimensional spherically symmetric model, it is worth analyzing a two-
dimensional circularly symmetric model, that is,

(In this section, we’ll denote the particle mass by , to avoid confusion with the angular momentum quantum number  -- but be
warned you are often going to find  used for both in the same discussion!)

The two-dimensional angular momentum operator is

It is a straightforward exercise to check that for the circularly-symmetric Hamiltonian above,

To take advantage of the circular symmetry, we switch to polar variables , where

Transforming the Hamiltonian and angular momentum into  coordinates,

and

J ⃗ 2 Jz |j,m⟩

|j,m⟩ = j(j+1) |j,m⟩J ⃗ 2 ℏ2 (4.2.1)

|j,m⟩ = mℏ|j,m⟩Jz (4.2.2)
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[H,L] = 0. (4.2.5)

Confirm that Equation  is accurate.4.2.5
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The angular momentum eigenfunctions  satisfy

equivalent to . So , and for this to be a single-valued wave function,  must be an integer.
(This also ensures the hermiticity of the operator -- the integration-by-parts check has canceling contributions from  and 

. )

Notice this means that any function of r multiplied by  is an eigenfunction of angular momentum with eigenvalue , and in
fact any eigenfunction of  with eigenvalue  must be of this form. So we can factor out the r -dependence, and write a complete
set of orthonormal eigenfunctions of , normalized by integrating around the circle:

where  is an integer.

It is interesting to note that this would be a complete set of wave functions for a particle confined to a ring -- rather like the original
Bohr orbits. In fact, nanotech rings in which electrons have wave functions like this can be manufactured. Note also that in such
rings one can also have real wave functions , , which are still energy eigenstates, but not angular
momentum eigenstates, since they are standing waves, linear superpositions of waves going around the ring in opposite directions.

The common eigenstates of the Hamiltonian and the angular momentum evidently have the form

We should emphasize that although the angular part of the wave function does not depend on the radial potential, the radial
component  does depend on the angular momentum . This becomes obvious on putting this  into the 
version of Schrödinger’s equation,

noting that , and canceling out the common factor  to give

In this one-dimensional equation for the radial wave function , the angular momentum term 
evidently is equivalent to a repulsive potential. It’s called the “centrifugal barrier” and is easy to understand from classical
mechanics. To see this, consider a classical particle bound (in two dimensions) by an attractive central force . Split the
momentum into a radial component  and a component in the direction perpendicular to the radius, . The angular momentum 

 and is constant (since the force is central). The energy

substituting . Since , the angular part is exactly equivalent to the above Schrödinger equation.

But what about the radial part? Why isn’t  just equal to , and  equal to ? We know the more complicated
differentiation with respect to  in the Schrödinger equation above must be correct, because it came from  and 

, .

To see why  equal to  is incorrect, even though it satisfies , recall what happens in x -space. We argued
there that  for a plane wave because from the photon analogy, acting on the plane wave state  this operator
gives the rate of change of phase and therefore the momentum. But a radial wave is a little different: picture a photon wave coming

L = −iℏ .
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Confirm Equation  is correct.4.2.8
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|E,m⟩ = (r,ϕ) = (r) (ϕ).ψE,m RE,m Φm (4.2.11)
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out of a single narrow slit, that is, a slit having width far smaller than the photon wavelength. The photon wave will radiate
outwards with equal amplitude in all directions (180°) but the wave amplitude will decrease with distance from the slit to conserve
probability. For a long (narrow) slit, this is essentially a two-dimensional problem, so the wave function will be 

. We know that if we measure the momentum of photons at different distances from the slit we’ll get the same
result. The wavelength determines the photon’s momentum, and it isn’t changing. The color stays the same. However, 
operating on  doesn’t just give : it picks up an extra term from differentiating the , so it is obviously not giving us the
right momentum. Fortunately, this is easy to fix: we define the operator

which eliminates the extra term, and still satisfies .

However, there is still a small problem. If we substitute this  in the classical expression for the energy, following the procedure
we used successfully to find Schrödinger’s equation in Cartesian coordinates, we find

This is almost -- but not quite -- the same as the equation we found by transforming from Cartesian coordinates. The difference is
the term . So which is right? Actually our first one was right -- this second one, derived directly from the classical
Hamiltonian, does give the same result in the classical limit, because the difference between them vanishes for . We
conclude that beginning with the classical Hamiltonian, and replacing dynamical variables with the appropriate quantum operators,
cannot guarantee that we get the correct quantum Hamiltonian: it might be off by some term of order . This would become evident
in predicting properties of truly quantum systems, such as atomic energy levels. Problems of this kind are common in constructing
quantum theories starting from a classical theory: essentially, in a classical theory, the order of variables in an expression is
irrelevant, but in the quantum theory there can only be one correct order of noncommuting variables such as  and  in any
expression.

What can we say about the radial wave function ? If both the energy and the potential at the origin are finite, then for small
:

However, the wave function cannot be discontinuous, so . To make further progress in finding the wave function,
we need to know the potential. Specific examples will be analyzed in due course. It is interesting to note that the allowed wave
functions, proportional to ,  , , are the complex functions ,   if the two-dimensional space is
mapped into the complex plane. Representing many-electron wave functions in the plane in this way was a key to understanding
the quantum Hall effect.

This page titled 4.2: Orbital Eigenfunctions- 2-D Case is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler via source content that was edited to the style and standards of the LibreTexts platform.
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