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7.1: The Density Matrix

Pure States and Mixed States

Let's being with two imagined Stern-Gerlach experiments. In that experiment, a stream of (non-ionized) silver atoms from an oven
is directed through an inhomogeneous vertical magnetic field, and the stream splits into two. The silver atoms have nonzero
magnetic moments, and a magnetic moment in an inhomogeneous magnetic field experiences a nonzero force, causing the atom to
veer from its straight line path, the magnitude of the deflection being proportional to the component of the atom’s magnetic
moment in the vertical (field) direction. The observation of the beam splitting into two, and no more, means that the vertical
component of the magnetic moment, and therefore the associated angular momentum, can only have two different values. From the
basic analysis of rotation operators and the properties of angular momentum that follow, this observation forces us to the
conclusion that the total angular momentum of a silver atom is . Ordinary orbital angular momenta cannot have half-integer
values; this experiment was one of the first indications that the electron has a spin degree of freedom, an angular momentum that
cannot be interpreted as orbital angular momentum of constituent parts. The silver atom has 47 electrons, 46 of them have total spin
and orbital momenta that separately cancel, the 47  has no orbital angular momentum, and its spin is the entire angular momentum
of the atom.

Here we shall use the Stern-Gerlach stream as an example of a large collection of quantum systems (the atoms) to clarify just how
to describe such a collection, often called an ensemble. To avoid unnecessary complications, we only consider the spin degrees of
freedom. We begin by examining two different streams:

Suppose experimentalist  prepares a stream of silver atoms such that each atom is in the spin state :

Meanwhile, experimentalist  prepares a stream of silver atoms which is a mixture: half the atoms are in state  and half are in
the state : call this mix .

Can we distinguish the  stream from the  stream?

Solution

Evidently, not by measuring the spin in the z-direction! Both will give up 50% of the time, down 50%.

But: we can distinguish them by measuring the spin in the x-direction: the  quantum state is in fact just that of a spin in the
x-direction, so it will give “up” in the x-direction every time—from now on we call it , whereas the state  (“up” in the
z-direction) will yield “up” in the x-direction only 50% of the time, as will .

The state  is called a pure state, it’s the kind of quantum state we’ve been studying this whole course.

The stream , in contrast, is in a mixed state: the kind that actually occurs to a greater or lesser extent in a real life stream of atoms,
different pure quantum states occurring with different probabilities, but with no phase coherence between them. In other words,
these relative probabilities in  of different quantum states do not derive from probability amplitudes, as they do in finding the
probability of spin up in stream : the probabilities of the different quantum states in the mixed state  are exactly like classical
probabilities.

That being said, though, to find the probability of measuring spin up in some such mixed state, one first uses the classical-type
probability for each component state, then for each quantum state in the mix, one finds the probability of spin up in that state by
the standard quantum technique.

Therefore, for a mixed state in which the system is in state  with probability , the expectation value of an
operator  is
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and we should emphasize that these  do not need to be orthogonal (but they are of course normalized): for example one could
be , another . (We put the usually omitted z in for emphasis.) The reason we put a hat on  here is to emphasize that this
is an operator, but the  are just numbers.

The Density Matrix

The equation for the expectation value  can be written:

where

To see exactly how this comes about, recall that for an operator  in a finite-dimensional vector space with an orthonormal basis
set , , where the repeated suffix implies summation of the diagonal matrix elements of the operator.

Therefore,

since , the identity.

This  is called the density matrix: its matrix form is made explicit by considering states  in a finite N-dimensional vector
space (such as spins or angular momenta)

where the  are an orthonormal basis set, and  is the  component of a normalized vector . It is convenient to express 
in terms of kets and bras belonging to this orthonormal basis,

and evidently

(Since  is just a number, .)

 is basis-independent, the trace of a matrix being unchanged by a unitary transformation, since it follows from 
 that

Note that since the vectors  are normalized, , with the  not summed over, and , it follows that

(also evident by putting  in the equation for  ).

For a system in a pure quantum state , , just the projection operator into that state, and
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as for all projection operators.

It’s worth spelling out how this differs from the mixed state by looking at the form of the density matrix.

For the pure state , if a basis is chosen so that  is a member of the basis (this can always be done),  is a matrix with every
element zero except the one diagonal element corresponding to , which will be unity. Obviously, . This is less
obvious in a general basis, where  will not necessarily be diagonal. But the statement  remains true under a transformation
to a new basis.

For a mixed state, let’s say for example a mixture of orthogonal states , if we choose a basis including both states, the
density matrix will be diagonal with just two entries . Both these numbers must be less than unity, so . A mix of
nonorthogonal states is left as an exercise for the reader.

First, our case A above (pure state): all spins in state .

In the standard ,  basis,

and

Notice that .

50% in the state , 50% .

The density matrix is

This is proportional to the unit matrix, so

and similarly for  and , since the Pauli  -matrices are all traceless. Note also that , as is true for all mixed

states.

That is, 50% of the spins in the state , “up” along the x- axis, and 50% in 
, “down” in the x-direction.

It is easy to check that

This is exactly the same density matrix we found for 50% in the state , 50% !
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The reason is that both formulations describe a state about which we know nothing—we are in a state of total ignorance, the
spins are completely random, all directions are equally likely. The density matrix describing such a state cannot depend on the
direction we choose for our axes.

Another two-state quantum system that can be analyzed in the same way is the polarization state of a beam of light, the basis
states being polarization in the x-direction and polarization in the y-direction, for a beam traveling parallel to the z- axis.
Ordinary unpolarized light corresponds to the random mixed state, with the same density matrix as in the last example above.

Time Evolution of the Density Matrix
In the mixed state, the quantum states evolve independently according to Schrödinger’s equation, so

Note that this has the opposite sign from the evolution of a Heisenberg operator, not surprising since the density operator is made
up of Schrödinger bras and kets.

The equation is the quantum analogue of Liouville’s theorem in statistical mechanics. Liouville’s theorem describes the evolution in
time of an ensemble of identical classical systems, such as many boxes each filled with the same amount of the same gas at the
same temperature, but the positions and momenta of the individual atoms are randomly different in each. Each box can be
classically described by a single point in a huge dimensional space, a space having six dimensions for each atom (position and
momentum, we ignore possible internal degrees of freedom). The whole ensemble, then, is a gas of these points in this huge space,
and the rate of change of local density of this gas, from Hamilton’s equations, is , the bracket now being a
Poisson bracket (see my Classical Mechanics notes). Anyway, this is the classical precursor of, and the reason for the name of, the
density matrix.

Thermal Equilibrium

A system in thermal equilibrium is represented in statistical mechanics by a canonical ensemble. If the eigenstate  of the
Hamiltonian has energy , the relative probability of the system being in that state is  in the standard notation.
Therefore the density matrix is:

where

Notice that in this formulation, apart from the normalization constant , the density operator is analogous to the propagator 
 for an imaginary time . Incidentally, for interacting quantum fields, the propagator can be constructed as

a set of Feynman diagrams corresponding to all possible sequences of particle scatterings by interaction. To find the
thermodynamic properties of a field theory at finite temperature, essentially the same set of diagrams is used to find the free
energy: the diagrams now describe the system propagating for a finite imaginary time, the same mathematical tools can be used.

At zero temperature (  ) the probability coefficients  are all zero except for the ground state: the system is in a
pure state, and the density matrix has every element zero except for a single element on the diagonal. At infinite temperature, all
the  are equal: the density matrix is just  times the unit matrix, where  is the total number of states available to the system.
In fact, the entropy of the system can be expressed in terms of the density matrix: . This is not as bad as it looks:
both operators are diagonal in the energy subspace.

This page titled 7.1: The Density Matrix is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler via
source content that was edited to the style and standards of the LibreTexts platform.

iℏ =∑ H| ⟩⟨ |  − ∑ | ⟩⟨ |H = [H, ].
dρ̂

dt
wi ψi ψi wi ψi ψi ρ̂ (7.1.19)

∂ρ/∂t = −{ρ,H}

|i⟩
Ei =e− /kTEi e−βEi

= |i⟩⟨i| = ,ρ̂
1

Z
∑
i

e−βEi
e−βH

Z
(7.1.20)

Z = = Tr .∑
i

e−βEi e−βH (7.1.21)

Z

U(t) = e−iHt/ℏ t = −iℏβ

β = ∞ = /Zwi e−βEi

wi 1/N N

S = −kTr( ln )ρ̂ ρ̂

https://libretexts.org/
https://phys.libretexts.org/@go/page/5668?pdf
http://galileoandeinstein.physics.virginia.edu/7010/CM_07_Poisson_Brackets.html
http://galileoandeinstein.physics.virginia.edu/7010/CM_07_Poisson_Brackets.html
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Fowler)/07%3A_The_Density_Matrix/7.01%3A_The_Density_Matrix
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Fowler)/07%3A_The_Density_Matrix/7.01%3A_The_Density_Matrix?no-cache=
http://galileo.phys.virginia.edu/~mf1i/
http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/home.html

