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4.3: Note on Curvilinear Coordinates

Div, Grad and Curl in Orthogonal Curvilinear Coordinates
Problems with a particular symmetry, such as cylindrical or spherical, are best attacked using coordinate systems that take full
advantage of that symmetry. For example, the Schrödinger equation for the hydrogen atom is best solved using spherical polar
coordinates. For this and other differential equation problems, then, we need to find the expressions for differential operators in
terms of the appropriate coordinates.

We only look at orthogonal coordinate systems, so that locally the three axes (such as  ) are a mutually perpendicular set. We
denote the curvilinear coordinates by . The standard Cartesian coordinates for the same space are as usual .

Suppose now we take an infinitesimally small cube with edges parallel to the local curvilinear coordinate directions, and therefore
with faces satisfying  for the three pairs of faces.

The lengths of the edges are then  and , where  are in general functions of . That is to
say, the distance across the cube from one corner to the opposite corner

It is clear that the gradient of a function  in the  direction is

The divergence of a vector field  in curvilinear coordinates is found using Gauss’ theorem, that the total vector flux through the
six sides of the cube equals the divergence multiplied by the volume of the cube, in the limit of a small cube.

The area of the face bracketed by  and  is . For that face, the component of the vector field contributing
to the flow from the cube is , so the flow across the face is . To find the flow across the opposite (parallel)
face of the cube, corresponding to an increase in  of , we must bear in mind that  and  all vary with , so the flow
will be:

The first term here of course cancels the contribution from the other face. The remaining term, plus the terms with 123 replaced
with 231 and 312 from the two other pairs of opposite faces, must, applying Gauss’ theorem, add to give

This gives:
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.

Putting this together with the expression for the gradient gives immediately the expression for the Laplacian operator in curvilinear
coordinates:

The curl of a vector field  is found by integrating around one of the square faces. Thus, the 1-component of  is given by

integrating  around the (23) square with two of its sides  and . The integral must equal  multiplied by
the area . This gives

Cylindrical Coordinates

Here , and .

Therefore, for example,

Spherical Polar Coordinates

So  and .
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