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10.3: Scattering Amplitudes, Bound States, Resonances

Low Energy Approximations for the S Matrix
In this section, we examine the properties of the partial-wave scattering matrix
Si(k) =1+2ikfi(k) (10.3.1)

for complex values of the momentum variable k. Of course, general complex values of k£ do not correspond to physical scattering,
but it turns out that the scattering of physical waves can often be most simply understood in terms of dominant singularities in the
complex k plane.

We begin with the complex &k connection between (positive energy) scattering and (negative energy) bound states. The asymptotic
form of the [ = 0 partial wavefunction in a scattering experiment is (from the previous lecture)

i (e—ikr SO (k)erT )

2_k T T

(10.3.2)

An [ =0 bound state has asymptotic wavefunction

C’e*h}’r

(10.3.3)

where C is a normalization constant.

Notice that this resembles an “outgoing wave” with imaginary momentum k =ik. If we analytically continue the scattering
wavefunction from real k into the complex k- plane, we get both exponentially increasing and decreasing wavefunctions, making
no physical sense. But there is an exception to this general observation: if the scattering matrix So(k) becomes infinite at some
complex value of k, the exponentially decreasing term will be infinitely larger than the exponentially increasing term. In other
words, we’ll only have a decreasing wavefunction—a bound state. We know that the energy of a bound state has to be real and
negative, and is also equal to h?k? /2m, so this can only happen for k pure imaginary, k = ix.

Now, the existence of a low energy bound state means that the S- matrix has a pole (on the imaginary axis) close to the origin, so
this will strongly affect low energy (near the origin, but real k ) scattering. Let’s see how that works using the low-energy
approximation discussed previously. Recall that the [ = 0 partial wave amplitude

1

fo(k) = W, (10.3.4)
and at low energy 8y (k) = —ka , so
1 1
fo(k) = k) —7)  dkiija’ (10.3.5)
and
So(k) =1+2ikfo(k) =—M (10.3.6)

k—(i/a)
Note that S — 1 as k — 0, as it should, since 8y (k) = —ka — 0 and Sy (k) = e*®(*) . Note also that this approximation correctly
gives |So(k)| =1.

This Sy (k) has a pole in the complex plane at k =/a, and if this corresponds to a bound state having x = 1/a, then the binding
energy h2k?/2m = h%/2ma? In fact, though, we run into a problem here: we get the same form of Sy (k) at low energies even
for a repulsive potential, which certainly doesn’t have a bound state! The pole in Sy(k) only means that we can have an asymptotic
wavefunction of the right form, but it does not guarantee that this asymptotic form will go smoothly to nonsingular behavior at the
origin. For a repulsive potential, it’s easy to see that the zero (or negative) energy wavefunction on integrating out from the origin
slopes more and more steeply upwards, so could never, with increasing r, go over to asymptotic decay.
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Effective Range
The low energy approximation above can be written
kcotdy(k) ~—1/a. (10.3.7)

We shall now derive a better approximation,
1
kcotég(k)zf(l/a)+§rok2, (10.3.8)
where 7, called the “effective range”, gives some measure of the extent of the potential (in contrast to a, which, as we have seen

can be arbitrarily large, even for a short-range potential).

A useful mathematical tool needed at this point is the Wronskian. For two functions f(z), g(z) the Wronskian is defined as

W(f,9)=rf9 —f'g, (10.3.9)

the prime denoting differentiation as usual. From this, W'(f, g) = f¢" — f"g, and if f(x), g(x) satisfy the same second-order
differential equation (like the Schrédinger equation with the same energy) then W' =0, so W (f, g) is constant, independent of x.

For the radial Schrodinger equation, asymptotically
u(k,r) = Csin(kr +do) = v(k, r) (10.3.10)

where we now show & explicitly. This asymptotic function v(k, ) satisfies the Schrédinger equation for zero potential, but does
not have the correct physical boundary behavior at r = 0.

Since in the low-energy limit § (k) = —ka , the k = 0 asymptotic wavefunction
v(0,r)=1—r/a (10.3.11)
(taking C = 1/sindy ).

From the Schrédinger equation

" (k,r) + (2mV (r) /B u(k, ) = K u(k, ) (10.3.12)
it is easy to check that the Wronskian of u(k, r) with the corresponding zero energy function u(0, ) satisfies:
d
JW[u(k, ), u(0,7)] = k*u(k, r)u(0,r). (10.3.13)

(The term involving the potential has canceled out: dW /dr is nonzero here because these two functions don’t satisfy the same
differential equation, the energy terms are different.)

The corresponding functions v(k, ), v(0,r) satisfy the same Wronskian equation:
d
EW[v(k, ), v(0,7)] = k*v(k, r)v(0, 7). (10.3.14)

We can find a formula for the effective range r¢ by integrating the difference between these two equations from r = 0 to infinity:
the two solutions u, v differ only within the range of the potential, and appropriately normalizing them, then taking the difference,
gives a measure of this range.
So
{Wlv(k, r),v(0,7)] = Wlu(k, r),w(0, )] }]=5°
5 oo (10.3.15)
=k fo [v(k, 7)v(0, ) — u(k, r)u(0,7)] dr

For 7 large, u(k, r) — v(k, ), so there is zero contribution from the upper end. For » — 0, the properly-behaved u functions go to
zero, the v functions are

v(k,r) = Csin(kr + &) = sin(kr + &)/ sindy (10.3.16)

from which, with

do(k) = —ka, v(0,r)=1-r/a. (10.3.17)
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it follows immediately that

1
Wv(k,7),v(0,7)],=0 = - kcot &g (10.3.18)
and therefore
1 oo
keotdy = —= + K / (o, 7)0(0, 7) — u(k, r)u(0, )] dr (10.3.19)
0
with a low-energy limit
11,
kcotdy =——+—-k°rg (10.3.20)
a 2
where
o0
) :2/ [v2(0,7) —u?(0,7)] dr. (10.3.21)
0

Now, by definition « (0, ), v(0,7) coincide outside the range of the potential, but moving from that region towards the origin, they
part company when the potential kicks in, with w — 0,v — 1 as r — 0. Therefore the integral above is a rough measure of the
actual range of the potential— about half of it (hence the factor of 2 in defining r( ). Note again the contrast with a, which can be
infinite for a short range potential.

Coulomb Scattering and the Hydrogen Atom Bound States

One particular set of bound states in a potential we’ve spent a good deal of time on are the states of the hydrogen atom, and it is
interesting to see how they relate to scattering. Recall that the asymptotic form of the bound state wavefunction is:

efr/nao

Ry(r) ~1" (10.3.22)

r

But this doesn’t have the bound-state form we found above from the analytic continuation argument, there’s an extra ! What’s
going on? The problem is that in all our previous work, we assumed that if we looked far enough away from the center of the
potential, the radial Schrédinger equation could be taken to be that for zero potential, to any desired accuracy. The Coulomb
potential, though, does not decay fast enough with distance for this to be true. For instance, it has bound states having arbitrarily
large radii.

Writing
1 me?
== 10.3.23
& nag nh? ( )
we have
1
Ry(r) ~ ;e*m*(me“’/ Ai) s (10.3.24)

Note that the extra term in the exponent keeps on growing, without limit! We are never free of the potential.

But how does this analysis of hydrogen atom wavefunctions relate to positive-energy scattering states? We can just analytically
continue this result back to real k to find out. Replacing —k by ik gives:

1 .
Rnl("') ~ ;ez(kr+(me2/h2k) lnr)‘ (10325)

So we have scattering states that are not of the standard form either—the phase shift is infinite, and not well-defined. But we found
this result be analytically continuing from the hydrogen atom bound states. Let’s check it: let us look at the radial Schrédinger
equation for positive energies at large r. Writing R(r) = u(r)/r as usual, let us also put u(r) = e**"v(r) for large 7, and we can
also ignore the centrifugal barrier term, so

. 10.3.26
oy (10.3.26)
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The equation for v(r) is
2 2
o 1 €
——(2tkv +v"')— —v=0 (10.3.27)
m r
and since v(r) is slowly varying, the second derivative can be ignored, so
, _ ime?

R2kr ©

This leads immediately to the same form we found by analytic continuation.

1

v (10.3.28)

Resonances and Associated Zeros

Recall in the first semester we discussed a- decay: an « particle in a heavy nucleus can be thought of as trapped in a potential well
generated by the attractive nuclear forces. A spherical square well is a workable approximation, except that this square well is at
the top of a hill—outside the nucleus, the repulsive electrostatic potential is (Z —2)2e?/r, sloping down from the well edge to
zero as r — o0o. This means that for a radioactive nucleus, although the energy level would be at negative energy for the square
well on level ground, actually it’s above the bottom of the electrostatic hill, and the » — oo wavefunction will not be decaying but
oscillating. This asymptotic wave is of course very tiny, since typically the chances of detecting the o well outside the nucleus, that
is, of decay, is one in millions of years.

Now consider the reverse process: imagine we bombard a decayed nucleus with « particles. If we sent in one at exactly the right
energy (very difficult—this is a thought experiment!) the wavefunction would be exactly the same as that for a decay. The
wavefunction inside the nucleus would be huge compared with that outside, we’d never see our o again. Less dramatically, if we
sent in one close to that energy, the wavefunction would still be very large inside the nucleus, meaning that the particle would
spend a long time inside before coming out again. (Recall for a particle in a roller coaster potential in one dimension, the
wavefunction is large where the particle spends a lot of time—that’s where you’re most likely to find it.) This is a resonance: at just
the right energy, the amplitude of the wavefunction within the potential becomes very large, analogous to the amplitude of a
classical driven oscillator as the driving frequency is adjusted to the natural oscillator frequency.

Can we understand this in terms of poles in the S- matrix? Considered as a function of energy, the S- matrix has poles at negative
energies corresponding to bound states. But this is a positive energy—and |.S(k)| = 1 for positive energies: that’s the regime of real
physical scattering. What it can have is a pole near a positive energy, in the complex plane. To keep |S(k)| =1, it would then have
to have a zero at the mirror image point, that is, be locally of the form

sis(p) _ £ —Eo—il'/2

Si(E)=e S E B2 (10.3.29)
From this,
tand;(E) = -T'/2(E — Ey), (10.3.30)
SO
0i(Ep) =m/2, (10.3.31)
and the scattering cross section reaches its maximum possible value, recall
0 4 &
o= 4w;(2z+ )| fik))? = oy IZO:(21+1) sin? 4y, (10.3.32)
o
o — ;t—;r(zl+1). (10.3.33)

For a narrow resonance (small I" ) the phase shift &;(F) goes rapidly from 0 to 7 as the energy is increased through E;. Most of the
variation occurs within an energy range I' of E, I is called the width of the resonance. If the resonance is superimposed on a
slowly varying background phase shift §, then it causes an increase from 4 to § + . This will pass through 0 or 7, depending on
the initial sign of §, so the maximum scattering at phase shift 7r/2 will have associated with it an energy at which there is zero
scattering. For substantial background &, the zero could be close to the peak, as illustrated below:
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Resonance Scattering
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