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3.2: General Uncertainty Principal

Uncertainty and Non-Commutation

As we discussed in the Linear Algebra lecture, if two physical variables correspond to commuting Hermitian operators, they can be
diagonalized simultaneously -- that is, they have a common set of eigenstates. In these eigenstates both variables have precise
values at the same time, there is no “Uncertainty Principle” requiring that as we know one of them more accurately, we
increasingly lose track of the other. For example, the energy and momentum of a free particle can both be specified exactly. More
interesting examples will appear in the sections on angular momentum and spin.

But if two operators do not commute, in general one cannot specify both values precisely. Of course, such operators could still have
some common eigenvectors, but the interesting case arises in attempting to measure  and  simultaneously for a state  in
which the commutator  has a nonzero expectation value, .

A Quantitative Measure of “Uncertainty”
Our task here is to give a quantitative analysis of how accurately noncommuting variables can be measured together. We found
earlier using a semi-quantitative argument that for a free particle,  at best. To improve on that result, we need to be
precise about the uncertainty  in a state .

We define  as the root mean square deviation:

where

To make the equations more compact, we define  by

(We’ll put a caret (a hat) on the  to remind ourselves it’s an operator -- and, of course, it’s a Hermitian operator, like . ) We also
drop the  bra and ket, on the understanding that this whole argument is for a particular state. Now

Introduce an operator  in exactly similar fashion, , having the property that .

The Generalized Uncertainty Principle

The quantitative measure of how the combined “uncertainty” of measuring two variables relates to their lack of commutativity is
most simply presented as a

Remember that for ,  to be Hermitian, then  is anti-Hermitian: so  is real! To make this clear, take adjoints: if 
is Hermitian then

so  is real.

If  is anti-Hermitian, , then

from which  is pure imaginary.)

A B |ψ⟩

[A,B] ⟨ψ|[A,B]|ψ⟩ ≠ 0

Δp ⋅ Δx ∼ ℏ

Δ A |ψ⟩

Δ A

(Δ A =  ⟨ψ|(A− ⟨A⟩ |ψ⟩)2 )2 (3.2.1)

⟨A⟩ = ⟨ψ|A|ψ⟩. (3.2.2)

â

A = ⟨A⟩+ .â (3.2.3)

â A

ψ

(Δ A = ⟨(A− ⟨A⟩ ⟩ = ⟨ ⟩.)2 )2 â
2

(3.2.4)

B B = ⟨B⟩+ b̂ ⟨ψ|[A,B]|ψ⟩ ≠ 0

Theorem

(Δ A (Δ B     ≥    ⟨i[A,B] .)2 )2 1

4
⟩2 (3.2.5)

A B [A,B] ⟨i[A,B]⟩ H

(⟨ψ|H|ψ⟩ = ⟨ψ| |ψ⟩ = ⟨ψ|H|ψ⟩)∗ H † (3.2.6)

⟨ψ|H|ψ⟩

K = −KK †

(⟨ψ|K|ψ⟩ = ⟨ψ| |ψ⟩ = −⟨ψ|K|ψ⟩)∗ K † (3.2.7)

⟨ψ|K|ψ⟩
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Define

Then

Using Schwartz’s inequality

gives immediately

The operator  is neither Hermitian nor antiHermitian. To evaluate the mod squared of its expectation value, we break the
amplitude into real and imaginary parts:

(The first term on the right-hand side is the expectation value of a Hermitian matrix, and so is real, the second term is the
expectation value of an antiHermitian matrix, so is pure imaginary.)

It follows immediately that

But , so

Minimizing the Uncertainty

For a particle in one dimension denote

so

(It important in that last step to understand that the operator  operates on everything to its right, and, as we are always finding

matrix elements of operators, there will be a following ket it operates on, so . )

We conclude that

Proof of Theorem

| ⟩ = |ψ⟩,   | ⟩ = |ψ⟩.ψa â ψb b̂ (3.2.8)

(ΔA (ΔB = ⟨ψ| |ψ⟩⟨ψ| |ψ⟩ = ⟨ | ⟩⟨ | ⟩)2 )2 â2 b̂
2

ψa ψa ψb ψb (3.2.9)

⟨ | ⟩⟨ | ⟩  ≥    |⟨ | ⟩ψa ψa ψb ψb ψa ψb |2 (3.2.10)

(ΔA (ΔB   ≥    |⟨ | ⟩ = |⟨ψ| |ψ⟩ .)2 )2 ψa ψb |2 âb̂ |2 (3.2.11)

âb̂

⟨ψ| |ψ⟩ = ⟨ψ| ( + )|ψ⟩+ ⟨ψ| [ , ]|ψ⟩.âb̂
1

2
âb̂ b̂â

1

2
â b̂ (3.2.12)

|⟨ψ| |ψ⟩   ≥  |⟨ψ| [ , ]|ψ⟩ .âb̂ |
2 1

2
â b̂ |

2
(3.2.13)

[A,B] = [ , ]â b̂

(Δ A (Δ B ≥  ⟨i[A,B] .)2 )2 1

4
⟩2 (3.2.14)

□

A

B

= x

= p = −iℏ
d

dx

(3.2.15)

(3.2.16)

[A,B] = −iℏ(x − x) = iℏ.
d

dx

x

dx
(3.2.17)

d

dx

x = 1 +x
d

dx

d

dx

(Δx (Δp   ≥ .)2 )2 1

4
ℏ2 (3.2.18)
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Is there a wavefunction for which the inequality in Equation  becomes an equality?

Solution

That would require

which can only be true if the two vectors are parallel,

or, written explicitly,

Actually , that’s not enough: we also need  to be zero. (Look at the equation above giving  in

terms of its real and imaginary parts, and how we used it to establish the inequality.)

Writing  as  and  we find

so this will be zero if and only if  is pure imaginary.

Turning to the differential equation, we first take the simplest case where  and  are both zero. The first requirement just sets
the origin, but the second stipulates that our wavefunction has no net momentum.

For this simple case,  becomes

and recalling that  is pure imaginary, this is a Gaussian wave packet! It is straightforward to check that the solution with  and 
 nonzero is

where  is real, and  is the usual Gaussian normalization constant.

Confirm Equation .

The conclusion is then that the Gaussian wave packet gives the optimum case for minimizing the joint uncertainties in position and
momentum.

Note that the condition  does not mean that  is an eigenstate of either  or , but it is an eigenstate of the non-
Hermitian operator , with eigenvalue zero. We shall soon see that this non-Hermitian operator and its adjoint
play important roles in the quantum mechanics of the simple harmonic oscillator.

Contributor
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Example 3.2.1

3.2.18

|⟨ | ⟩ = ⟨ | ⟩⟨ | ⟩ψa ψb |2 ψa ψa ψb ψb (3.2.19)

| ⟩ = λ| ⟩ψb ψa (3.2.20)

(−iℏ − ⟨p⟩)ψ(x) = λ(x− ⟨x⟩)ψ(x).
d

dx
(3.2.21)

⟨ψ| ( + )|ψ⟩
1

2
âb̂ b̂â ⟨ψ| |ψ⟩âb̂

| ⟩ = λ| ⟩ψb ψa |ψ⟩ = λ |ψ⟩b̂ â ⟨ψ| = ⟨ψ|b̂ λ∗ â

⟨ψ| ( + )|ψ⟩ = (λ+ )⟨ψ| |ψ⟩,
1

2
âb̂ b̂â λ∗ â2 (3.2.22)

λ

⟨x⟩ ⟨p⟩

| ⟩ = λ| ⟩ψb ψa

−iℏ = λxψ(x)
dψ(x)

dx

= xdx
dψ

ψ

iλ

ℏ

ψ = Ceiλ /2ℏx2

(3.2.23)

λ ⟨x⟩

⟨p⟩

ψ(x) = Ceix/ℏe−α(x−<x> /2ℏ)2

(3.2.24)

α = −iλ C

Exercise 3.2.1

3.2.24

|ψ⟩ = λ |ψ⟩b̂ â |ψ⟩ â b̂

−λ = + iαb̂ â b̂ â
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