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9.3: Van Der Waals Forces between Atoms

Introduction
The perfect gas equation of state  is manifestly incapable of describing actual gases at low temperatures, since they
undergo a discontinuous change of volume and become liquids. In the 1870’s, the Dutch physicist Van der Waals came up with an
improvement: a gas law that recognized the molecules interacted with each other. He put in two parameters to mimic this
interaction. The first, an attractive intermolecular force at long distances, helps draw the gas together and therefore reduces the
necessary outside pressure to contain the gas in a given volume—the gas is a little thinner near the walls. The attractive long range
force can be represented by a negative potential  on going away from the walls—the molecules near the walls are attracted
inwards, those in the bulk are attracted equally in all directions, so effectively the long range attraction is equivalent to a potential
well extending throughout the volume, ending close to the walls. Consequently, the gas density  near the walls is decreased by
a factor . Therefore, the pressure measured at the containing wall is from slightly diluted
gas, so  becomes , or . The second parameter van der
Waals added was to take account of the finite molecular volume. A real gas cannot be compressed indefinitely—it becomes a
liquid, for all practical purposes incompressible. He represented this by replacing the volume  with ,    is referred to as
the “excluded volume”, roughly speaking the volume of the molecules. Putting in these two terms gives his famous equation

This rather crude approximation does in fact give sets of isotherms representing the basic physics of a phase transition quite well.
(For further details, and an enlightening discussion, see for example Appendix D of Thermal Physics, by R. Baierlein.)

Ground State Hydrogen Atoms
Our interest here is in understanding the van der Waals long-range attractive force between electrically neutral atoms and molecules
in quantum mechanical terms. We begin with the simplest possible example, two hydrogen atoms, both in the ground state:

We label the atoms  and , the vectors from the protons to the electron position are denoted by  and  respectively, and  is
the vector from proton  to proton .

Then the Hamiltonian , where

and the electrostatic interaction between the two atoms

The ground state of  is just the product of the ground states of the atoms , that is,

Assuming now that the distance between the two atoms is much greater than their size, we can expand the interaction  in the
small parameters . As one might suspect from the diagram above, the leading order terms in the electrostatic energy
are just those of a dipole-dipole interaction:
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Taking now the z- axis in the direction , this interaction energy is

Now the first-order correction to the ground state energy of the two-atom system from this interaction is , where
here  and . Beginning with the first term  in 

is clearly zero since the ground states are spherically symmetric. Similarly, the other terms in  are zero to first order.

Recall that the second-order energy correction is .

That is,

A typical term here is

so the single-atom matrix elements are exactly those we discussed for the Stark effect (as we would expect—this is an electrostatic
interaction!). As before, only  contribute. To make a rough estimate of the size of , we can use the same trick
used for the quadratic Stark effect: replace the denominators by the constant  (the other terms are a lot smaller for the bound
states, and continuum states have small overlap terms in the numerator). The sum over intermediate states  can
then be taken to be completely unrestricted, including even the ground state, giving

the identity operator. In this approximation, then, just as for the Stark effect,

where  Ryd., so this is a lowering of energy.

In multiplying out , the cross terms will have expectation values of zero. The ground state wave
function is symmetrical, so all we need is , where  is the Bohr radius.

This gives

using . Bear in mind that this is an approximation, but a pretty good one—a more accurate calculation replaces the
6 by 6.5.

Forces between a 1s Hydrogen Atom and a 2p Hydrogen Atom
With one atom in the  and the other in , say, a typical leading order term would be

and this is certainly zero, as are all the other leading terms. Baym (Lectures on Quantum Mechanics) concluded from this that there
is no leading order energy correction between two hydrogen atoms if one of them is in the ground state. This is incorrect: the first
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excited state of the two-atom system (without interaction) is degenerate, so, exactly as for the 2-D simple harmonic oscillator
treated in the previous lecture, we must diagonalize the perturbation in the subspace of these degenerate first excited states. (For
this section, we follow fairly closely the excellent treatment in Quantum Mechanics, by C. Cohen-Tannoudji et al.)

The space of the degenerate first excited states of the two noninteracting atoms is spanned by the product-space kets:

The task, then, is to diagonalize  in this eight-dimensional subspace.

We begin by representing  as an  matrix using these states as the basis. First, note that all the diagonal elements of the
matrix are zero—in all of them, we’re finding the average of x,y or z for one of the atoms in the ground state. Second, writing 

, it is evident that  is unchanged if the system is rotated around the z- axis (the line joining the two
protons). This means that the commutator , where  is the total angular momentum component in the z- direction, so 

 will only have nonzero matrix elements between states having the same total . Third, from parity (or Wigner-Eckart) all
matrix elements in the subspace spanned by  must be zero.

This reduces the nonzero part of the  matrix to a direct product of three  matrices, corresponding to the three values of 
. For example, the  subspace is spanned by . The diagonal elements of the 

 matrix are zero, the off-diagonal elements are equal to , where we have kept the
unnecessary labels  to make clear where this term comes from. (The  and  terms will not contribute for . )

This is now a straightforward integral over hydrogen wave functions. The three  matrices have the form

(following the notation of Cohen-Tannoudji) where , and the energy eigenvalues are , with corresponding
eigenkets .

So for two hydrogen atoms, one in the ground state and one in the first excited state, the van der Waal interaction energy goes as 
, much more important than the  energy for two hydrogen atoms in the ground state. Notice also that the  can be

positive or negative, depending on whether the atoms are in an even or an odd state—so the atoms sometimes repel each other.

Finally, if two atoms are initially in a state , note that this is not an eigenstate of the Hamiltonian when the
interaction is included. Writing the state as a sum of the even and odd states, which have slightly different phase frequencies from
the energy difference, we find the excitation moves back and forth between the two atoms with a period .
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