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9.2: The Peierls Transition - an Unexpected Insulator

Introduction: Looking for Superconductors and Finding Insulators

In 1964, Little suggested (Phys. Rev 134, A1416) that it might be possible to synthesize a room temperature superconductor using
organic materials in which the electrons traveled along certain kinds of chains, effectively confined to one dimension. The first
satisfactory theory of “ordinary” superconductivity, that of Bardeen, Cooper, and Schrieffer (BCS) had appeared a few years
earlier, in 1957. The key point was that electrons became bound together in opposite spin pairs, and at sufficiently low temperatures
these bound pairs, being boson like, formed a coherent condensate—all the pairs had the same total momentum, so all traveled
together, a supercurrent. The locking of the electrons into this condensate effectively eliminated the usual single-electron scattering
by impurities that degrades ordinary currents in conductors.

But what could bind the electrostatically repelling electrons? The answer turned out to be lattice distortions, as first suggested by
Fröhlich in 1950. An electron traveling through the crystal attracts the positive ions, the consequent excess of local positive charge
attracts another electron. The strength of this binding, and hence the temperature at which the superconducting transition takes
place, depends on the rapidity of the lattice response. This was confirmed by the isotope effect: lattice response time obviously
depends on the inertia of the lattice, the BCS theory predicted that for a superconducting element with different isotopic varieties,
the ratio of the superconducting transition temperatures for pure isotopes  was equal to  being the ion
masses, the lighter isotope having the higher transition temperature. This was indeed the case.

Little’s idea was that the build up of positive charge by a passing electron could be speeded up dramatically if instead of having to
move ions, it need only rearrange other electrons. Unfortunately, there were no obvious three-dimensional candidate materials.
However, if the conduction electrons moved along a one-dimensional chain, polarizable side chains might be attached, and
rearrangement of the electronic charge distribution in these side chains would respond very rapidly to a passing conduction
electron, building up a local positive charge. If this worked, order of magnitude arguments suggested possible enhancement of the
transition temperature by a factor  over ordinary superconductors,  being the electron mass.

In the 1970’s, various organic materials were synthesized and tested, beginning with one called TTF-TCNQ, in which a set of
polymer-like long molecules donated electrons to another set, leaving one-dimensional conductors with partially filled bands (see
later), seemingly good candidates for superconductivity. Unfortunately, on cooling, these materials surprisingly became insulators
rather than superconductors! This was the first example of a Peierls transition, a widespread phenomenon in quasi one-dimensional
systems.

The basic mechanism of the Peierls transition can be understood with a simple model. It is a nice example of applied second-order
perturbation theory, including the degenerate case. We examine the model and the result below. It should be added that in some
newer materials the Peierls transition is (unexpectedly) suppressed under high pressure, and superconductivity has in fact been
observed in organic salts, but so far only at transition temperatures around one Kelvin: Little’s dream is not yet realized.

Second-Order Perturbation Theory: a Periodic Potential in One Dimension

To understand how a one-dimensional conductor might turn into an insulator at low temperatures, we must first become familiar
with the simplest model of a one-dimensional conductor:

with  a gas of noninteracting electrons on a line, and  periodic, that is, ,

the potential from a line of ions spaced  apart. We’ll take the system to have  ions in a total length , so

and to keep the math simple, we’ll require periodic boundary conditions.
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The physics here is that without the potential, the electron eigenstates are plane waves. The effect of the lattice potential is to
partially reflect the waves, like a diffraction grating, generating components at different wavelengths. This effect becomes
particularly important when the electron wavelength matches twice the ion spacing. For that case, the reflected and original waves
have the same strength, the electron is at a standstill. We’ll explore just how this happens later.

The eigenstates of  are then

 being an integer. The unperturbed energy eigenvalues,

This is to be understood as

and

We are following standard practice here. We shall also write  meaning . )

It’s worth plotting the  curve:

Suppose we have ions with two electrons each to contribute to this one-dimensional (supposed) conductor. Assuming they move
into these plane wave states, in the system ground state they will fill up the lowest energy states up to a maximum k- value denoted
by  (  stands for Fermi, this is the Fermi momentum.) Where is it?

We know there will be a total of  electrons. We also know that the allowed values of , from the boundary conditions, are 
, with  an integer. In other words, the allowed  ’s are uniformly spaced  apart, meaning they have a density of 

 in k- space, so the total number between  is . The  electrons will have  of each spin, each k- state can take
two electrons (one of each spin), so , and
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To do perturbation theory, we must find the matrix elements of  between eigenstates of :

This is just the Fourier component  of .

If  is periodic with period ,

In other words, if a function is periodic with spatial period , the only nonzero Fourier components are those having the same
spatial period .

Therefore

The  component of  is of no interest—it is just a constant potential, and so can be taken to be zero. Note that this
eliminates the trivial first order correction  to the energy eigenvalues.

We shall consider only the components  and  of , it turns out that the other components can be treated in
similar fashion. For ,  , the potential only has nonzero matrix elements between the plane wave state  and 

,   respectively.

So, the second order correction to the energy is:

This result is reasonable provided the terms are small, that is, the energy differences appearing in the denominators are large
compared to the relevant Fourier component . However, this cannot always be true! Notice that the state  has exactly
the same unperturbed energy  as the state : in this case, nondegenerate perturbation theory is clearly wrong. In
fact, even for states close to , the energy denominator  is small compared with the numerator , so the
series is not converging.

Quasi-Degenerate Perturbation Theory near the Critical Wavelength
The good news is that, despite the many states near  and  that are close together in energy, for any one state 
near  the potential only has a nonzero matrix element to one other state close in energy, the state , that is, .

The strategy now is to do what might be called quasidegenerate perturbation theory: to diagonalize the full Hamiltonian in the
subspace spanned by these two states . Other states with nonzero matrix elements to these states are relatively
much further away in energy, and can be treated using ordinary perturbation theory.

The matrix elements of the full Hamiltonian in the subspace spanned by these two states are:

Diagonalizing within this subspace gives energy eigenvalues:
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Notice that, provided , to leading order this gives back , the order depending on .
However, as  approaches ,  becomes of order , and the energies deviate from the unperturbed values. If  is
approaching  from below, , and the lower energy is pushed downwards by the perturbation: . This
is a common occurrence with almost degenerate states, perturbations cause the energy levels to “repel” each other.

For . At this value of , the unperturbed states are exactly degenerate, and the perturbation lifts
the degeneracy to give .

In the graph below, the green (continuous) curve is the unperturbed energy as a function of , the red curve (with the step) the
calculated energy including the leading correction from the periodic potential.

Energy Gaps and Bands

The energy jump, or gap, of  at  means that there are no plane wave type eigenstates with energies in that range—
attempting to integrate Schrödinger’s equation in the periodic potential for such an energy gives exponentially growing and
decaying solutions. Such energy gaps in fact are present in real crystalline solids, the allowed energies are said to be in “bands”.
The lowest band for our model is from  to . Since the allowed values of  are given by , the spacing
between adjacent ’s is  and the total number of ’s in the lowest band is , the same as the number of atoms. Since
each electron has two spin states, this implies that a one-dimensional crystal of divalent atoms will just fill the lowest band with
electrons. Therefore, any outside field can only excite an electron to a different state if an energy of at least  is supplied—for
a small electric field, the filled band of electrons will remain in the ground state, there will be no current. This material is an
insulator.

On the other hand, if monovalent atoms are used, it is clear that the lowest band is only half full, adjacent empty electron states are
available. The electrons are free to accelerate if an external field is applied. Barring the unexpected, this one-dimensional crystal
would be a metal.

Let us now examine how the periodic potential alters the eigenstates. Ignoring the small corrections from plane waves outside the 
 subspace, the eigenstates to this order have the form

where

from the diagonalization of the  matrix representing the Hamiltonian in the subspace.

As  increases from 0 towards , the plane wave initially proportional to  has a gradually increasing admixture of 
, until at  the two have equal weight—meaning that the eigenfunction is now a standing wave. In fact, there are

two standing wave solutions at , corresponding to the energies below and above the gap. Taking the atoms to have an
attractive potential, the lower energy wave has a probability distribution peaking at the atomic positions. The diffractive scattering
that gives a left-moving component to a right moving wave is known as Bragg scattering. It also manifests itself in the group
velocity of the electronic excitations, . An electron injected into a one-dimensional metal would
not be a plane wave state, but a wavepacket traveling at the group velocity. It is evident that for an injected electron with mean
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value of  close to , the electron will move very slowly into the metal. This is to be expected—the eigenstates become standing
waves as .

For three-dimensional crystals, the situation is far more complicated, but many of the same ideas are relevant. Electron waves are
now diffracted by whole planes of atoms, and the three-dimensional momentum space is divided into Brillouin zones, with planes
having an energy gap across them.

The Peierls Transition: how Cooling a Conductor Can Give an Insulator

As mentioned in the Introduction, substances very close to monovalent one-dimensional crystals have been synthesized, and it has
been found—surprisingly—that at low temperatures many of them undergo a transition from metallic to insulating behavior. What
happens is that the atoms in the lattice rearrange slightly, moving from an equally-spaced crystal to one in which the spacing
alternates, that is, the atoms form pairs. This is called dimerization, and costs some elastic energy, since for identical atoms the
lowest state must be one of equal spacing for any reasonable potential. However, the electrons are able to move to a lower energy
state by this maneuver.

Just how this happens can be understood using the perturbation theory analysis above. For equally spaced atoms, the electrons half-
fill the band, that is, they fill it up (two electrons, one of each spin, per state) to .

The crucial point is that if the atoms move together slightly into pairs, the crystal has a new period  instead of . This means that
the potential now has a nonzero component at , with a nonzero matrix element between the states  and 

, and so on. From this point, we can rerun the analysis above, except that now the gaps open up at  instead
of at .

The important point is that if the electrons fill all the states to , and none beyond (as would be the case for monovalent
atoms) then the opening of a gap at  means that all the electrons are in states whose energy is lowered. To find the total
energy benefit we need to integrate over .

Calculating the Electronic Energy Gained by Doubling the Lattice Period
It is evident from the above that most of the contribution comes from fairly close to  (and of course symmetrically 

 ). Since we want to find the total lowering in energy, let us study first the bare energy as a function of , that is, the
energy with no potential present. Of course, there isn’t much to say: . However, the physics of these one-
dimensional systems concerns only excitations near the “Fermi surface”, the boundary between filled (low energy) states at zero
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temperature and empty states. This “Fermi surface” is in fact just two points in one dimension: . In the neighborhood
of these two Fermi points, it is an excellent approximation to replace the gently curving  by straight line
approximations—the slope being 

Linearizing in the neighborhood of , then, we take

where

just k measured from the Fermi point .

The variable  is negative for the relevant states, since they are on the lower energy side.

The density of states in k-space is a constant , remembering the two spin states per k- value.

Recall

but now

and the lowering of energy of the electrons (counting it as a positive quantity) is:

where the extra factor of 2 counts the symmetrical contribution from the left-hand gap. (In examining the above expression, recall
that for the  states we are interested in,  is negative. The integrand on the right-hand side is still
positive, very small for small k, reaching a maximum of  at . )

Putting in our linearized energy approximation,

and remembering that now ,

Since ,

Substituting these linearized values in the integral for the total energy lowering: 

where in terms of the variable  we have set the lower limit of integration at : we can safely be vague about this lower limit, as
the integral turns out to be logarithmic.

Since the integral is over negative numbers, and we have taken the positive square root, it is zero for zero , as it must be.

The integral can be done exactly, but it is more illuminating to divide the range of integration into  and ,
then estimate the contributions from these two ranges separately.

First, consider . Here the integrand is of order  , and the region  of integration corresponding to 
is of order  , so the integral over this range is of order .
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Second, in the region , we can write

and expand the square root term. The leading terms cancel since  is negative, and the main contribution comes from the next term.
This gives:

The important thing here is the logarithm. For sufficiently small , this large (negative) term will dominate any term which is
just proportional to . But the elastic energy cost of the lattice “dimerizing”—the atoms forming pairs, so that the distance
between atoms alternates on going along the chain—must be proportional to . This leads to the conclusion that some, probably
small, dimerization is always going to happen—a one-dimensional equally spaced chain with one electron per ion is unstable.

This dimerization is known as a Peierls transition. Peierls discovered it in the 1930’s when writing a section on one-dimensional
models in an introductory solid-state textbook. He put it in the book, but didn’t publish it otherwise. As mentioned in the
Introduction, it became very relevant later when some theories suggested that quasi-one-dimensional conductors, materials made
up of loosely connected chains, each chain having one electron per atom for a half-filled lowest band, might be high-temperature
superconductors. It was found instead that many such materials actually became insulators on cooling: the reason was that at high
temperatures, the electrons filled states above and below the point  fairly equally, so dimerization did not lower the overall
energy much. On lowering the temperature, a point was reached where the Peierls transition gave a lower energy state, and the
material became an insulator.
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