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3.5: Propagators and Representations
We’ve spent most of the course so far concentrating on the eigenstates of the Hamiltonian, states whose time-dependence is merely a
changing phase. We did mention much earlier a superposition of two different energy states in an infinite well, resulting in a wavefunction
sloshing backwards and forwards. It’s now time to cast the analysis of time dependent states into the language of bras, kets and operators.
We’ll take a time-independent Hamiltonian , with a complete set of orthonormalized eigenstates, and as usual

Or, as we would now write it

Since  is itself time independent, this is very easy to integrate!

The exponential operator that generates the time-dependence is called the propagator, because it describes how the wave propagates from its
initial configuration, and is usually denoted by :

It’s appropriate to call the propagator , because it’s a unitary operator:

so

Since H is Hermitian,  is unitary. It immediately follows that

the norm of the ket vector is conserved, or, translating to wavefunction language, a wavefunction correctly normalized to give a total
probability of one stays that way. (This can also be proved from the Schrödinger equation, of course, but this is quicker.)

This is all very succinct, but unfortunately the exponential of a second-order differential operator doesn’t sound too easy to work with. Recall,
though, that any function of a Hermitian operator has the same set of eigenstates as the original operator. This means that the eigenstates of 

 are the same as the eigenstates of , and if , then

This is of course nothing but the time dependent phase factor for the eigenstates we found before — and, as before, to find the time
dependence of any general state we must express it as a superposition of these eigenkets, each having its own time dependence. But how do
we do that in the operator language? Easy: we simply insert an identity operator, the one constructed from the complete set of eigenkets, thus:

Staring at this, we see that it’s just what we had before: at the initial time , the wavefunction can be written as a sum over the eigenkets:

with

and

and the usual generalization for continuum eigenvalues, and the time development is just given by inserting the phases:

The expectation value of the energy  in ,

H

iℏ ψ(x, t) = − ψ(x, t) +V (x)ψ(x, t),
∂

∂t

ℏ
2

2m

∂2

∂x2
(3.5.1)

iℏ |ψ(x, t)⟩ = H|ψ(x, t)⟩.
∂

∂t
(3.5.2)

H

|ψ(x, t)⟩ = |ψ(x, )⟩.e−iH(t− )/ℏt0 t0 (3.5.3)

U

|ψ(x, t)⟩ = U(t− )|ψ(x, )⟩.t0 t0 (3.5.4)

U

U(t− ) = (t− )t0 e−iH t0 (3.5.5)

(t− ) = (t− ) = (t− ) = U −1(t− ).U † t0 eiH
†

t0 eiH t0 t0 (3.5.6)

U

⟨ψ(x, t)|ψ(x, t)⟩ = ⟨ψ(x, )| U(t− )|ψ(x, )⟩ = ⟨ψ(x, )|ψ(x, )⟩t0 U † t0 t0 t0 t0 (3.5.7)

e−iH(t− )/ℏt0 H H| ⟩ = | ⟩ψn En ψn

| ⟩ = | ⟩.e−iH(t− )/ℏt0 ψn e−iEn(t− )/ℏt0 ψn (3.5.8)

|ψ(t)⟩ = | ⟩⟨ |ψ( )⟩ = | ⟩⟨ |ψ( )⟩.e−iH(t− )/ℏt0 ∑
n=1

∞

ψn ψn t0 ∑
n=1

∞

e−i (t− )/ℏEn t0 ψn ψn t0 (3.5.9)

t = t0

|ψ( )⟩ =∑ | ( )⟩⟨ ( )|ψ( )⟩ =∑ | ( )⟩t0 ψn t0 ψn t0 t0 cn ψn t0 (3.5.10)

= ⟨ |ψ⟩cn ψn (3.5.11)

∑ | = 1cn|2 (3.5.12)

|ψ(t)⟩ =∑ | ( )⟩.cne
−i (t− )/ℏEn t0 ψn t0 (3.5.13)

E |ψ⟩
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and is (of course) time independent.

The expectation value of the particle position  is

and is not in general time-independent. (It is real, of course, on adding the ,  term to the ,  term.)

This analysis is only valid for a time-independent Hamiltonian. The important extension to a system in a time-dependent external field, such
as an atom in a light beam, will be given later in the course.

The Free Particle Propagator
To gain some insight into what the propagator  looks like, we’ll first analyze the case of a particle in one dimension with no potential at all.
We’ll also take  to make the equations less cumbersome. For a free particle in one dimension

the energy eigenstates are also momentum eigenstates, we label them , so

a particle is at : : what is the probability amplitude for finding it at  at a later time ? (This would be just
its wavefunction at the later time.)

On examining Equation , though, it turns out to be nonsense! Noting that the term in the exponent is pure imaginary, 

 independent of ! This particle apparently instantaneously fills all of space, but then its probability dies away as 1/t…

Question: Where did we go wrong?

Answer: Notice first that  is constant throughout space. This means that the normalization, ∫|ψ(x,t)|2dx=∞ ! And, as we’ve seen
above, the normalization stays constant in time — the propagator is unitary. Therefore, our initial wavefunction must have had infinite
norm. That’s exactly right — we took the initial wavefunction

\][ψ(x,t=0)=δ(x−x_0)=| x_0 ⟩.\]

Think of the δ-function as a limit of a function equal to 1/Δ over an interval of length Δ , with Δ going to zero, and it’s clear the normalization
goes to infinity as 1/Δ . This is not a meaningful wavefunction for a particle. Recall that continuum kets like |x0⟩ are normalized by ⟨x|x′⟩
=δ(x−x′ ) , they do not represent wavefunctions individually normalizable in the usual sense. The only meaningful wavefunctions are integrals
over a range of such kets, such as ∫dxψ(x)|x⟩ . In an integral like this, notice that states |x⟩ within some tiny x -interval of length δx, say, have
total weight ψ(x)δx , which goes to zero as δx is made smaller, but by writing ψ(x,t=0)=δ(x−x0)=| x0 ⟩ we took a single such state and gave it
a finite weight. This we can’t do.

Of course, we do want to know how a wavefunction initially localized near a point develops. To find out, we must apply the propagator to a
legitimate wavefunction — one that is normalizable to begin with. The simplest “localized particle” wavefunction from a practical point of
view is a Gaussian wave packet,

(I’ve used d in place of Shankar’s Δ here to try to minimize confusion with Δ x, etc.)

The wavefunction at a later time is then given by the operation of the propagator on this initial wavefunction:

⟨E⟩ = ⟨ψ|H|ψ⟩ =∑ |cn|2En (3.5.14)

x

⟨ψ(t)|x|ψ(t)⟩ = ⟨ ( )|x| ( )⟩∑
n,m

c∗
ncme

i( − )(t− )/ℏEn Em t0 ψn t0 ψm t0 (3.5.15)
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|k⟩

U(t) = = |k⟩⟨k| = t/2md π|k⟩⟨k|.e−iHt/ℏ ∈∞
−∞ e−iH  t/ℏd πk2

∫
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−∞
e−iℏ k2 k2 (3.5.17)

x0 ψ(x, t = 0) = δ(x− ) = | ⟩x0 x0 x t

⟨x|U(t, 0)| ⟩  = d π⟨x|k⟩⟨k|x0⟩ = dk2π = πℏit−−−−x0 ∫
∞

−∞
e−iℏ t/2mk2

k2 ∫
∞

−∞
e−iℏ t/2mk2

e−ik( −x)x0 m2

√ 2ℏt,eim( −x)2x0

(3.5.18)

Exercise 3.5.1

3.5.18

|ψ(x, t) =|2
m

2πℏt
x

|ψ(x, t)|2

ψ(x', 0) = 1/4.ei x'/ℏp0 e−x'2/2 (π )d2 d2

(3.5.19)

ψ(x, t) = ∫ U(x, t; x', 0)eip0x'/ℏe−x'2/2d2(πd2)1/4dx' = m2πℏit−−−−√∫ eim(x−x')2/2ℏteip0x'/ℏe

−x'2/2d2(πd2)1/4dx'.

(3.5.20)

https://libretexts.org/
https://phys.libretexts.org/@go/page/2861?pdf


3.5.3 https://phys.libretexts.org/@go/page/2861

The integral over x′ is just another Gaussian integral, so we use the same result,

Looking at the expression above, we can see that

This gives

where the second exponential is the term eb2/4a . As written, the small t limit is not very apparent, but some algebraic rearrangement yields:

It is clear that this expression goes to the initial wave packet as t goes to zero. Although the phase has contributions from all three terms here,
the main phase oscillation is in the third term, and one can see the phase velocity is one-half the group velocity, as discussed earlier.

The resulting probability density:

This is a Gaussian wave packet, having a width which goes as ℏt/md for large times, where d is the width of the initial packet in x -space —
so ℏ/md is the spread in velocities ⟨Δv⟩ within the packet, hence the gradual spreading ⟨Δv⟩t in x -space.

It’s amusing to look at the limit of this as the width d of the initial Gaussian packet goes to zero, and see how that relates to our δ -function
result. Suppose we are at distance x from the origin, and there is initially a Gaussian wave packet centered at the origin, width d≪x. At time
t∼mxd/ℏ , the wave packet has spread to x and has |ψ(x,t)|2 of order 1/x at x. Thereafter, it continues to spread at a linear rate in time, so
locally |ψ(x,t)|2 must decrease as 1/t to conserve probability. In the δ -function limit d→0 , the wavefunction instantly spreads through a huge
volume, but then goes as 1/t as it spreads into an even huger volume. Or something.

Schrödinger and Heisenberg Representations

Assuming a Hamiltonian with no explicit time dependence, the time-dependent Schrödinger equation has the form

and as discussed above, the formal solution can be expressed as:

Now, any measurement on a system amounts to measuring a matrix element of an operator between two states (or, more generally, a function
of such matrix elements).

In other words, the physically significant time dependent quantities are of the form

where  is an operator, which we are assuming has no explicit time dependence.

So in this Schrödinger picture, the time dependence of the measured value of an operator like x or p comes about because we measure the
matrix element of an unchanging operator between bras and kets that are changing in time.

Heisenberg took a different approach: he assumed that the ket describing a quantum system did not change in time, it remained at |ψ(0)⟩, but
the operators evolved according to:

Clearly, this leads to the same physics as before. The equation of motion of the operator is:

The Hamiltonian itself does not change in time — energy is conserved, or, to put it another way, H commutes with e−iHt/ℏ. But for a
nontrivial Hamiltonian, say for a particle in one dimension in a potential,

∫ −∞∞dx'e−ax'2 +bx' = πa−−√eb2/4a. (3.5.21)

b = −imℏt ⋅ (x−p0tm), a = 12d2 − im2ℏt. (3.5.22)

ψ(x, t) = π−1/4d(1 + iℏtmd2)√exp(imx22ℏt)exp(−imℏt(x−p0tm)22(1 + iℏtmd2)) (3.5.23)

ψ(x, t) = π−1/4d(1 + iℏt/md2)√exp(−(x−p0t/m)22d2(1 + iℏt/md2))exp(ip0ℏ(x−p0t/2m)). (3.5.24)

|ψ(x, t)|2 = 1π(d2 +ℏ2t2/m2d2)√ ⋅ exp−(x−p0t/m)2(d2 +ℏ2t2/m2d2). (3.5.25)

iℏ |ψ(x, t)⟩ = H|ψ(x, t)⟩
∂

∂t
(3.5.26)

|ψ(x, t)⟩ = |ψ(x, t = 0)⟩.e−iHt/ℏ (3.5.27)

⟨φ(t)|A|ψ(t)⟩ = ⟨φ(0)| A |ψ(0)⟩eiHt/ℏ e−iHt/ℏ (3.5.28)

A

AH(t) = AH(0) .eiHt/ℏ e−iHt/ℏ (3.5.29)

iℏ AH(t) = [AH(t),H].
d

dt
(3.5.30)

H = +V (x)
p2

2m
(3.5.31)
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the separate components will have time-dependence, parallel to the classical case: the kinetic energy of a swinging pendulum varies with time.
(For a particle in a potential in an energy eigenstate the expectation value of the kinetic energy is constant, but this is not the case for any other
state, that is, for a superposition of different eigenstates.) Nevertheless, the commutator of , and  will be time-independent:

(The Heisenberg operators are identical to the Schrödinger operators at t=0. )

Applying the general commutator result [A,BC]=[A,B]C+B[A,C] ,

so

and since

This result could also be derived by writing V(x) as an expansion in powers of x, then taking the commutator with p.

Exercise: check this.

Notice from the above equations that the operators in the Heisenberg Representation obey the classical laws of motion! Ehrenfest’s Theorem,
that the expectation values of operators in a quantum state follow the classical laws of motion, follows immediately, by taking the expectation
value of both sides of the operator equation of motion in a quantum state.

Simple Harmonic Oscillator in the Heisenberg Representation

For the simple harmonic oscillator, the equations are easily integrated to give:

We have put in the H subscript to emphasize that these are operators. It is usually clear from the context that the Heisenberg representation is
being used, and this subscript may be safely omitted.

The time-dependence of the annihilation operator a is:

with

Note again that although H is itself time-independent, it is necessary to include the time-dependence of individual operators within H.

so

Actually, we could have seen this as follows: if |n⟩ are the energy eigenstates of the simple harmonic oscillator,

Now the only nonzero matrix elements of the annihilation operator aˆ between energy eigenstates are of the form

Since this time-dependence is true of all energy matrix elements (trivially so for most of them, since they’re identically zero), and the
eigenstates of the Hamiltonian span the space, it is true as an operator equation.

Evidently, the expectation value of the operator a(t) in any state goes clockwise in a circle centered at the origin in the complex plane. That
this is indeed the classical motion of the simple harmonic oscillator is confirmed by recalling the definition a=ξ+iπ2√ =12ℏmω√(mωx+ip) , so
the complex plane corresponds to the (mωx,p) phase space discussed near the beginning of the lecture on the Simple Harmonic Oscillator.
We’ll discuss this in much more detail in the next lecture, on Coherent States.

x p

[xH(t), pH(t)] = [xH(0), pH(0)] = iℏ = iℏ.eiHt/ℏ e−iHt/ℏ eiHt/ℏ e−iHt/ℏ (3.5.32)

[xH(t),  p2H(t)2m] = iℏpH(t)m (3.5.33)

dxH(t)dt = pH(t)m (3.5.34)

[xH(t), pH(t)] = iℏ,    pH(t) = −iℏd/dxH(t), (3.5.35)

dpH(t)dt =  1iℏ[pH(t),V (xH(t))] = −∇V (xH(t)). (3.5.36)

Exercise 3.5.1

xH(t) = xH(0)cosωt+(pH(0)/mω)sinωtpH(t) = pH(0)cosωt−mωxH(0)sinωt. (3.5.37)

a(t) = eiHt/ℏa(0)e− iHt/ℏ (3.5.38)

H = ℏω(a † (t)a(t) +12/). (3.5.39)

iℏddta(t) = [a(t),H] = ℏω[a(t), a † (t)a(t)] = ℏω[a(t), a † (t)]a(t) = ℏω   a(t) (3.5.40)

a(t) = a(0)e− iωt. (3.5.41)

e− iHt/ℏ|n⟩ = e− in  ℏωt/ℏ|n⟩ = e− inωt|n⟩. (3.5.42)

⟨n−1|a(t)|n⟩ = ⟨n−1|eiHt/ℏa(0)e− iHt/ℏ|n⟩ = eiω(n−1)t⟨n−1|a(0)|n⟩e− iωnt = ⟨n−1|a(0)|n⟩e− iωt. (3.5.43)
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The time-dependence of the creation operator is just the adjoint equation:

Michael Fowler (Beams Professor, Department of Physics, University of Virginia)

This page titled 3.5: Propagators and Representations is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler via
source content that was edited to the style and standards of the LibreTexts platform.

a † (t) = a † (0)eiωt. (3.5.44)
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