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2.2: Linear Algebra

Introduction

We’ve seen that in quantum mechanics, the state of an electron in some potential is given by a wave function , and physical
variables are represented by operators on this wave function, such as the momentum in the x-direction . The
Schrödinger wave equation is a linearequation, which means that if  and  are solutions, then so is , where 
are arbitrary complex numbers.

This linearity of the sets of possible solutions is true generally in quantum mechanics, as is the representation of physical variables
by operators on the wave functions. The mathematical structure this describes, the linear set of possible states and sets of operators
on those states, is in fact a linear algebra of operators acting on a vector space. From now on, this is the language we’ll be using
most of the time. To clarify, we’ll give some definitions.

What is a Vector Space?
The prototypical vector space is of course the set of real vectors in ordinary three-dimensional space, these vectors can be
represented by trios of real numbers  measuring the components in the x, y and z directions respectively.

The basic properties of these vectors are:

any vector multiplied by a number is another vector in the space, ;
the sum of two vectors is another vector in the space, that given by just adding the corresponding components together: 

.

These two properties together are referred to as “closure”: adding vectors and multiplying them by numbers cannot get you out of
the space.

A further property is that there is a unique null vector  and each vector has an additive inverse  which
added to the original vector gives the null vector.

Mathematicians have generalized the definition of a vector space: a general vector space has the properties we’ve listed above for
three-dimensional real vectors, but the operations of addition and multiplication by a number are generalized to more abstract
operations between more general entities. The operators are, however, restricted to being commutative and associative.

Notice that the list of necessary properties for a general vector space does not include that the vectors have a magnitude—that
would be an additional requirement, giving what is called a normed vector space. More about that later.

To go from the familiar three-dimensional vector space to the vector spaces relevant to quantum mechanics, first the real numbers
(components of the vector and possible multiplying factors) are to be generalized to complex numbers, and second the three-
component vector goes an ncomponent vector. The consequent n-dimensional complex space is sufficient to describe the quantum
mechanics of angular momentum, an important subject. But to describe the wave function of a particle in a box requires an infinite
dimensional space, one dimension for each Fourier component, and to describe the wave function for a particle on an infinite line
requires the set of all normalizable continuous differentiable functions on that line. Fortunately, all these generalizations are to
finite or infinite sets of complex numbers, so the mathematicians’ vector space requirements of commutativity and associativity are
always trivially satisfied.

We use Dirac’s notation for vectors,  and call them “kets”, so, in his language, if  belong to the space, so does 
 for arbitrary complex constants . Since our vectors are made up of complex numbers, multiplying any vector by

zero gives the null vector, and the additive inverse is given by reversing the signs of all the numbers in the vector.

Clearly, the set of solutions of Schrödinger’s equation for an electron in a potential satisfies the requirements for a vector space: 
 is just a complex number at each point in space, so only complex numbers are involved in forming , and

commutativity, associativity, etc., follow at once.

Vector Space Dimensionality
The vectors  are linearly independent if

ψ( , t)x⃗ 
= −iℏ∂/∂xpx

ψ1 ψ2 +c1ψ1 c2ψ2 ,c1 c2
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implies

A vector space is n-dimensional if the maximum number of linearly independent vectors in the space is n.

Such a space is often called , or  if only real numbers are used.

Now, vector spaces with finite dimension n are clearly insufficient for describing functions of a continuous variable x. But they are
well worth reviewing here: as we’ve mentioned, they are fine for describing quantized angular momentum, and they serve as a
natural introduction to the infinite-dimensional spaces needed to describe spatial wavefunctions.

A set of n linearly independent vectors in n-dimensional space is a basis—any vector can be written in a unique way as a sum over
a basis:

You can check the uniqueness by taking the difference between two supposedly distinct sums: it will be a linear relation between
independent vectors, a contradiction.

Since all vectors in the space can be written as linear sums over the elements of the basis, the sum of multiples of any two vectors
has the form:

Inner Product Spaces

The vector spaces of relevance in quantum mechanics also have an operation associating a number with a pair of vectors, a
generalization of the dot product of two ordinary three-dimensional vectors,

Following Dirac, we write the inner product of two ket vectors  as . Dirac refers to this  form as a “bracket”
made up of a “bra” and a “ket”. This means that each ket vector  has an associated bra . For the case of a real n-dimensional
vector,  are identical—but we require for the more general case that

where  denotes complex conjugate. This implies that for a ket  the bra will be . (Actually, bras are
usually written as rows, kets as columns, so that the inner product follows the standard rules for matrix multiplication.) Evidently
for the n-dimensional complex vector  is real and positive except for the null vector:

For the more general inner product spaces considered later we require  to be positive, except for the null vector. (These
requirements do restrict the classes of vector spaces we are considering—no Lorentz metric, for example—but they are all satisfied
by the spaces relevant to nonrelativistic quantum mechanics.)

The norm of  is then defined by

If  is a member of , so is , for any complex number .

We require the inner product operation to commute with multiplication by a number, so

The complex conjugate of the right hand side is . For consistency, the bra corresponding to the ket  must therefore
be —in any case obvious from the definition of the bra in n complex dimensions given above.

It follows that if

= = = 0c1 c2 c3 (2.2.2)

(C)V n (R)V n

|V ⟩ =∑ |i⟩vi (2.2.3)

a|V ⟩+b|W ⟩ =∑(a +b )|i⟩vi wi (2.2.4)

, =∑a⃗  b ⃗  aibi (2.2.5)

|V ⟩, |W ⟩ ⟨W |V ⟩ ⟨ | ⟩

|V ⟩ ⟨V |
|V ⟩, ⟨V |

⟨W |V ⟩ = ⟨V |W ⟩∗ (2.2.6)

∗ ( , . . . , )v1 vn ( , . . . , )v∗
1 v∗

n

⟨V |V ⟩

⟨V |V ⟩ = |∑
1

n

vi|
2 (2.2.7)

⟨V |V ⟩

|V ⟩

|V | = ⟨V |V ⟩
− −−−−

√ (2.2.8)

|V ⟩ (C)V n a|V ⟩ a

⟨W |(a|V ⟩) = a⟨W |V ⟩ (2.2.9)

⟨V |W ⟩a∗ a|V ⟩

⟨V |a∗
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Constructing an Orthonormal Basis: the Gram-Schmidt Process

To have something better resembling the standard dot product of ordinary three vectors, we need , that is, we need to
construct an orthonormal basis in the space. There is a straightforward procedure for doing this called the Gram-Schmidt process.
We begin with a linearly independent set of basis vectors, ,... .

We first normalize  by dividing it by its norm. Call the normalized vector . Now  cannot be parallel to , because the
original basis was of linearly independent vectors, but  in general has a nonzero component parallel to , equal to ,
since  is normalized. Therefore, the vector  is perpendicular to , as is easily verified. It is also easy to compute
the norm of this vector, and divide by it to get , the second member of the orthonormal basis. Next, we take  and subtract off
its components in the directions  and , normalize the remainder, and so on.

In an n-dimensional space, having constructed an orthonormal basis with members , any vector  can be written as a column
vector,

The corresponding bra is , which we write as a row vector with the elements complex conjugated, 
. This operation, going from columns to rows and taking the complex conjugate, is called taking the adjoint,

and can also be applied to matrices, as we shall see shortly.

The reason for representing the bra as a row is that the inner product of two vectors is then given by standard matrix multiplication:

(Of course, this only works with an orthonormal base.)

The Schwartz Inequality

The Schwartz inequality is the generalization to any inner product space of the result  (or  ) for
ordinary three-dimensional vectors. The equality sign in that result only holds when the vectors are parallel. To generalize to higher
dimensions, one might just note that two vectors are in a two-dimensional subspace, but an illuminating way of understanding the
inequality is to write the vector  as a sum of two components, one parallel to  and one perpendicular to . The component
parallel to  is just , so the component perpendicular to  is the vector . Substituting this
expression into , the inequality follows.

This same point can be made in a general inner product space: if ,  are two vectors, then

is the component of  perpendicular to , as is easily checked by taking its inner product with .

Then

Linear Operators
A linear operator A takes any vector in a linear vector space to a vector in that space,  and satisfies

|V ⟩ =∑ |i⟩, |W ⟩ =∑ |i⟩, then ⟨V |W ⟩ =∑ ⟨i|j⟩vi wi v∗
iwj (2.2.10)

⟨i|j⟩ = δij

|1⟩, |2⟩, |3⟩
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|2⟩ |I⟩ |I⟩⟨I|2⟩

|I⟩ |2⟩−|I⟩⟨I|2⟩ |I⟩
|II⟩ |3⟩

|I⟩ |II⟩

|i⟩ |V ⟩

|V ⟩ =∑ |i⟩ = , where |1⟩ = and so on.vi
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i

⟨V | = ( , , . . . )v∗
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(2.2.12)

| , ≤ | |a⃗  b ⃗ |2 a⃗ |2 b ⃗ |2 θ ≤ 1cos2

a⃗  b ⃗  b ⃗ 

b ⃗  ( ⋅ )/|b ⃗  a⃗  b ⃗  b ⃗ |2 b ⃗  = − ( ⋅ )/|a⃗ ⊥ a⃗  b ⃗  a⃗  b ⃗  b ⃗ |2

⋅ ≥ 0a⃗ ⊥ a⃗ ⊥

|V ⟩ |W ⟩

|Z⟩ = |V ⟩−
|W ⟩⟨W |V ⟩

|W |2
(2.2.13)

|V ⟩ |W ⟩ |W ⟩

⟨Z|Z⟩ ≥ 0 gives immediately |⟨V |W ⟩ ≤ |V |W|2 |2 |2 (2.2.14)

A|V ⟩ = | ⟩V ′

A( | ⟩+ | ⟩) = A| ⟩+ A| ⟩c1 V1 c2 V2 c1 V1 c2 V2 (2.2.15)
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with ,  arbitrary complex constants.

The identity operator  is (obviously!) defined by:

For an n-dimensional vector space with an orthonormal basis , since any vector in the space can be expressed as a sum 
, the linear operator is completely determined by its action on the basis vectors—this is all we need to know. It’s

easy to find an expression for the identity operator in terms of bras and kets.

Taking the inner product of both sides of the equation  with the bra  gives , so

Since this is true for any vector in the space, it follows that that the identity operator is just

This is an important result: it will reappear in many disguises.

To analyze the action of a general linear operator , we just need to know how it acts on each basis vector. Beginning with ,
this must be some sum over the basis vectors, and since they are orthonormal, the component in the  direction must be just 

.

That is,

So if the linear operator A acting on  gives , that is, , the linearity tells us that

where in the fourth step we just inserted the identity operator.

Since the ’s are all orthogonal, the coefficient of a particular  on the left-hand side of the equation must be identical with the
coefficient of the same  on the right-hand side. That is, .

Therefore the operator  is simply equivalent to matrix multiplication:

Evidently, then, applying two linear operators one after the other is equivalent to successive matrix multiplication—and, therefore,
since matrices do not in general commute, nor do linear operators. (Of course, if we hope to represent quantum variables as linear
operators on a vector space, this has to be true—the momentum operator  certainly doesn’t commute with x!)

Projection Operators
It is important to note that a linear operator applied successively to the members of an orthonormal basis might give a new set of
vectors which no longer span the entire space. To give an example, the linear operator  applied to any vector in the space
picks out the vector’s component in the  direction. It’s called a projection operator. The operator  projects a
vector into its components in the subspace spanned by the vectors  and , and so on—if we extend the sum to be over the
whole basis, we recover the identity operator.

Exercise: prove that the  matrix representation of the projection operator  has all elements zero except the first
two diagonal elements, which are equal to one.

c1 c2

I

I|V ⟩ = |V ⟩ for all |V ⟩ (2.2.16)

|1⟩, . . . , |n⟩

|V ⟩ =∑ |i⟩vi

|V ⟩ =∑ |i⟩vi ⟨i| ⟨i|V ⟩ = vi

|V ⟩ =∑ |i⟩ =∑ |i⟩⟨i|V ⟩vi (2.2.17)

I = |i⟩⟨i|∑
1

n

(2.2.18)
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|i⟩
⟨i|A|1⟩
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1

n

∑
1

n

Ai1 Ai1 (2.2.19)

|V ⟩ =∑ |i⟩vi | ⟩ =∑ |i⟩V ′ v′
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p = −iℏd/dx

|1⟩⟨1|
|1⟩ (|1⟩⟨1| +|2⟩⟨2|)

|1⟩ |2⟩

(|1⟩⟨1| +|2⟩⟨2|)
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There can be no inverse operator to a nontrivial projection operator, since the information about components of the vector
perpendicular to the projected subspace is lost.

The Adjoint Operator and Hermitian Matrices
As we’ve discussed, if a ket  in the n-dimensional space is written as a column vector with  (complex) components, the
corresponding bra is a row vector having as elements the complex conjugates of the ket elements.  then follows
automatically from standard matrix multiplication rules, and on multiplying  by a complex number  to get  (meaning that
each element in the column of numbers is multiplied by ) the corresponding bra goes to .

But suppose that instead of multiplying a ket by a number, we operate on it with a linear operator. What generates the parallel
transformation among the bras? In other words, if , what operator sends the bra  to ? It must be a linear
operator, because  is linear, that is, if under  ,  and , then under   is required
to got to . Consequently, under the parallel bra transformation we must have ,  and 

,—the bra transformation is necessarily also linear. Recalling that the bra is an n-element row vector, the most general
linear transformation sending it to another bra is an  matrix operating on the bra from the right.

This bra operator is called the adjoint of , written . That is, the ket  has corresponding bra . In an orthonormal
basis, using the notation  to denote the bra  corresponding to the ket , say,

So the adjoint operator is the transpose complex conjugate.

Important: for a product of two operators (prove this!),

An operator equal to its adjoint  is called Hermitian. As we shall find in the next lecture, Hermitian operators are of
central importance in quantum mechanics. An operator equal to minus its adjoint, , is anti Hermitian (sometimes termed
skew Hermitian). These two operator types are essentially generalizations of real and imaginary number: any operator can be
expressed as a sum of a Hermitian operator and an anti Hermitian operator,

The definition of adjoint naturally extends to vectors and numbers: the adjoint of a ket is the corresponding bra, the adjoint of a
number is its complex conjugate. This is useful to bear in mind when taking the adjoint of an operator which may be partially
constructed of vectors and numbers, such as projection-type operators. The adjoint of a product of matrices, vectors and numbers is
the product of the adjoints in reverse order. (Of course, for numbers the order doesn’t matter.)

Unitary Operators

An operator is unitary if . This implies first that  operating on any vector gives a vector having the same norm, since
the new norm . Furthermore, inner products are preserved, . Therefore, under a
unitary transformation the original orthonormal basis in the space must go to another orthonormal basis.

Conversely, any transformation that takes one orthonormal basis into another one is a unitary transformation. To see this, suppose
that a linear transformation  sends the members of the orthonormal basis  to the different orthonormal set 

, so , etc. Then the vector  will go to , having the same
norm, . A matrix element , but also . That
is,  for arbitrary kets . This is only possible if , so  is unitary.

A unitary operation amounts to a rotation (possibly combined with a reflection) in the space. Evidently, since , the adjoint
 rotates the basis back—it is the inverse operation, and so  also, that is,  and  commute.

Determinants
We review in this section the determinant of a matrix, a function closely related to the operator properties of the matrix.

Let’s start with  matrices:

|V ⟩ n

⟨W |V ⟩ = ⟨V |W ⟩∗

|V ⟩ a a|V ⟩

a ⟨V | = ⟨V |a∗ a∗

A|V ⟩ = | ⟩V ′ ⟨V | ⟨ |V ′

A A | ⟩ → | ⟩V1 V ′
1 | ⟩ → | ⟩V2 V ′

2 | ⟩ = | ⟩+| ⟩V3 V1 V2 A | ⟩V3

| ⟩ = | ⟩+| ⟩V ′
3 V ′

1 V ′
2 ⟨ | → ⟨ |V1 V ′

1 ⟨ | → ⟨ |V2 V ′
2

⟨ | → ⟨ |V3 V ′
3

n×n

A A† A|V ⟩ ⟨V |A†

⟨Ai| ⟨i|A† A|i⟩ = |Ai⟩

( = ⟨i| |j⟩ = ⟨Ai|j⟩ = ⟨j|Ai =A†)ij A† ⟩∗ A∗
ji (2.2..22)

(AB =)† B†A† (2.2..23)

A = A†

A = −A†

A = (A+ ) + (A− )
1
2

A† 1
2

A† (2.2.24)

U = 1U † U

⟨V | U|V ⟩ = ⟨V |V ⟩U † ⟨W | U|V ⟩ = ⟨W |V ⟩U †

A (|1 , |2 , . . . , |n )⟩1 ⟩1 ⟩1

(|1 , |2 , . . . , |n )⟩2 ⟩2 ⟩2 A|1 = |1⟩1 ⟩2 |V ⟩ =∑ |ivi ⟩1 | ⟩ = A|V ⟩ =∑ |iV ′ vi ⟩2

⟨ | ⟩ = ⟨V |V ⟩ =∑ |V ′ V ′ vi|
2

⟨ | ⟩ = ⟨W |V ⟩ =∑W ′ V ′ w∗
i vi ⟨ | ⟩ = ⟨W | A|V ⟩W ′ V ′ A†

⟨W |V ⟩ = ⟨W | A|V ⟩A† |V ⟩, |W ⟩ A = 1A† A

U = 1U †

U † U = 1U † U U †

2 ×2
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The determinant of this matrix is defined by:

Writing the two rows of the matrix as vectors:

(  denotes row),  is just the area (with appropriate sign) of the parallelogram having the two row vectors as
adjacent sides:

This is zero if the two vectors are parallel (linearly dependent) and is not changed by adding any multiple of  to  (because the
new parallelogram has the same base and the same height as the original—check this by drawing).

Let’s go on to the more interesting case of  matrices:

The determinant of  is defined as

where  if any two are equal, +1 if  (that is to say, an even permutation of 123) and –1 if  is an
odd permutation of 123. Repeated suffixes, of course, imply summation here.

Writing this out explicitly,

Just as in two dimensions, it’s worth looking at this expression in terms of vectors representing the rows of the matrix

so

This is the volume of the parallelopiped formed by the three vectors being adjacent sides (meeting at one corner, the origin).

A =( )
a11

a21

a12

a22
(2.2.25)

detA = |A| = −a11a22 a12a21 (2.2.26)

= ( , )a⃗ R1 a11 a12

= ( , )a⃗ R2 a21 a22

(2.2.27)

R detA = ×a⃗ R1 a⃗ R2

a⃗ R2 a⃗ R2

3 ×3

A =
⎛

⎝
⎜

a11

a21

a31

a12

a22

a32

a13

a23

a33

⎞

⎠
⎟ (2.2.28)

A

detA = εijka1ia2ja3k (2.2.29)

= 0εijk ijk = 123, 231 or 312 ijk

detA = + + − − −a11a22a33 a21a32a13 a31a12a23 a11a32a23 a21a12a33 a31a22a13 (2.2.30)

= ( , , )a⃗ R1 a11 a12 a13

= ( , , )a⃗ R2 a21 a22 a23

= ( , , )a⃗ R3 a31 a32 a33

(2.2.31)

A = , and we see that detA = ( × ) ⋅
⎛

⎝

⎜⎜

a⃗ R1
a⃗ R2
a⃗ R3

⎞

⎠

⎟⎟ a⃗ R1 a⃗ R2 a⃗ R3 (2.2.32)
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This parallelepiped volume will of course be zero if the three vectors lie in a plane, and it is not changed if a multiple of one of the
vectors is added to another of the vectors. That is to say, the determinant of a matrix is not changed if a multiple of one row is
added to another row. This is because the determinant is linear in the elements of a single row,

and the last term is zero because two rows are identical—so the triple vector product vanishes.

A more general way of stating this, applicable to larger determinants, is that for a determinant with two identical rows, the
symmetry of the two rows, together with the antisymmetry of , ensures that the terms in the sum all cancel in pairs.

Since the determinant is not altered by adding some multiple of one row to another, if the rows are linearly dependent, one row
could be made identically zero by adding the right multiples of the other rows. Since every term in the expression for the
determinant has one element from each row, the determinant would then be identically zero. For the three-dimensional case, the
linear dependence of the rows means the corresponding vectors lie in a plane, and the parallelepiped is flat.

The algebraic argument generalizes easily to  determinants: they are identically zero if the rows are linearly dependent.

The generalization from  to   determinants is that  becomes:

where  is summed over all permutations of , and the  symbol is zero if any two of its suffixes are equal, +1 for an
even permutation and -1 for an odd permutation. (Note: any permutation can be written as a product of swaps of neighbors. Such a
representation is in general not unique, but for a given permutation, all such representations will have either an odd number of
elements or an even number.)

An important theorem is that for a product of two matrices ,  the determinant of the product is the product of the determinants, 
. This can be verified by brute force for  matrices, and a proof in the general case can be found in

any book on mathematical physics (for example, Byron and Fuller).

It can also be proved that if the rows are linearly independent, the determinant cannot be zero.

(Here’s a proof: take an  matrix with the  row vectors linearly independent. Now consider the components of those vectors
in the  dimensional subspace perpendicular to . These  vectors, each with only  components, must be
linearly dependent, since there are more of them than the dimension of the space. So we can take some combination of the rows
below the first row and subtract it from the first row to leave the first row , and a cannot be zero since we have a
matrix with  linearly independent rows. We can then subtract multiples of this first row from the other rows to get a determinant
having zeros in the first column below the first row. Now look at the  by  determinant to be multiplied by .

Its rows must be linearly independent since those of the original matrix were. Now proceed by induction.)

To return to three dimensions, it is clear from the form of

that we could equally have taken the columns of  as three vectors,  in an obvious notation, 
, and linear dependence among the columns will also ensure the vanishing of the determinant—so, in fact,

linear dependence of the columns ensures linear dependence of the rows.

det = det +λ det
⎛

⎝

⎜⎜

+λa⃗ R1 a⃗ R2
a⃗ R2
a⃗ R3

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜

a⃗ R1
a⃗ R2
a⃗ R3

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜

a⃗ R2
a⃗ R2
a⃗ R2

⎞

⎠

⎟⎟ (2.2.33)

εijk

n×n

3 ×3 n×n detA = εijka1ia2ja3k

detA = . . .εijk...pa1ia2ja3k anp (2.2.34)

ijk. . . p 132...n ε

A B

detAB = detA×detB 2 ×2

n×n n

n– 1 (1, 0, . . . , 0) n n– 1

(a, 0, 0, . . . , 0)
n

n– 1 n– 1 a

detA = + + − − −a11a22a33 a21a32a13 a31a12a23 a11a32a23 a21a12a33 a31a22a13 (2.2.30)

A A = ( , , )a⃗ C1 a⃗ C2 a⃗ C3
detA = ( × ) ⋅a⃗ C1 a⃗ C2 a⃗ C3
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This, too, generalizes to : in the definition of determinant , the row suffix is fixed and the
column suffix goes over all permissible permutations, with the appropriate sign—but the same terms would be generated by having
the column suffixes kept in numerical order and allowing the row suffix to undergo the permutations.

An Aside: Reciprocal Lattice Vectors
It is perhaps worth mentioning how the inverse of a  matrix operator can be understood in terms of vectors. For a set of
linearly independent vectors , a reciprocal set  can be defined by

and the obvious cyclic definitions for the other two reciprocal vectors. We see immediately that

from which it follows that the inverse matrix to

(These reciprocal vectors are important in x-ray crystallography, for example. If a crystalline lattice has certain atoms at positions 
, where  are integers, the reciprocal vectors are the set of normals to possible planes of the atoms,

and these planes of atoms are the important elements in the diffractive x-ray scattering.)

Eigenkets and Eigenvalues
If an operator  operating on a ket  gives a multiple of the same ket,

then  is said to be an eigenket (or, just as often, eigenvector, or eigenstate!) of  with eigenvalue .

Eigenkets and eigenvalues are of central importance in quantum mechanics: dynamical variables are operators, a physical
measurement of a dynamical variable yields an eigenvalue of the operator, and forces the system into an eigenket.

In this section, we shall show how to find the eigenvalues and corresponding eigenkets for an operator . We’ll use the notation 
 for the set of eigenkets  with corresponding eigenvalues . (Obviously, in the eigenvalue equation here the

suffix  is not summed over.)

The first step in solving  is to find the allowed eigenvalues .

Writing the equation in matrix form:

This equation is actually telling us that the columns of the matrix  are linearly dependent! To see this, write the matrix as a
row vector each element of which is one of its columns, and the equation becomes

which is to say

n×n detA = . . .εijk...pa1ia2ja3k anp

3 ×3

( , , )a⃗ 1 a⃗ 2 a⃗ 3 ( , , )b ⃗ 
1 b ⃗ 

2 b ⃗ 
3

=b ⃗ 
1

×a⃗ 2 a⃗ 3
× ⋅a⃗ 1 a⃗ 2 a⃗ 3

(2.2.35)

⋅ =a⃗ i b ⃗ 
j δij (2.2.36)

A = is B = ( )
⎛

⎝

⎜⎜

a⃗ R1
a⃗ R2
a⃗ R3

⎞

⎠

⎟⎟ b ⃗ C
1 b ⃗ C

2 b ⃗ C
3

(2.2.37)

+ +n1a⃗ 1 n2a⃗ 2 n3a⃗ 3 , ,n1 n2 n3

A |V ⟩

A|V ⟩ = λ|V ⟩ (2.2.38)

|V ⟩ A λ

A

A| ⟩ = | ⟩ai ai ai | ⟩ai ai
i

A|V ⟩ = λ|V ⟩ ai

= 0

⎛

⎝

⎜⎜⎜⎜⎜⎜

−λA11

A21

.

.
An1

A12

−λA22

.

.

.

.

.

.

.

.

.

.

.

.

.

A1n

.

.

.
−λAnn

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

v1

v2

.

.
vn

⎞

⎠

⎟⎟⎟⎟⎟⎟
(2.2.39)

A−λI

( , , . . . , ) = 0M⃗ C
1 M⃗ C

2 M⃗ C
n

⎛

⎝

⎜⎜⎜⎜⎜⎜

v1

.

.

.
vn

⎞

⎠

⎟⎟⎟⎟⎟⎟
(2.2.40)
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the columns of the matrix are indeed a linearly dependent set.

We know that means the determinant of the matrix  is zero,

Evaluating the determinant using  gives an  order polynomial in  sometimes called the
characteristic polynomial. Any polynomial can be written in terms of its roots:

where the 's, the roots of the polynomial, and  is an overall constant, which from inspection of the determinant we can see to be
. (It’s the coefficient of .) The polynomial roots (which we don’t yet know) are in fact the eigenvalues. For example,

putting  in the matrix, , which means that  has a nontrivial solution , and this is
our eigenvector .

Notice that the diagonal term in the determinant  generates the leading two orders in the
polynomial , (and some lower order terms too). Equating the coefficient of   here with
that in ,

Putting  in both the determinantal and the polynomial representations (in other words, equating the -independent terms),

So we can find both the sum and the product of the eigenvalues directly from the determinant, and for a  matrix this is enough
to solve the problem.

For anything bigger, the method is to solve the polynomial equation  to find the set of eigenvalues, then use them
to calculate the corresponding eigenvectors. This is done one at a time.

Labeling the first eigenvalue found as , the corresponding equation for the components  v  of the eigenvector  is

This looks like  equations for the  numbers , but it isn’t: remember the rows are linearly dependent, so there are only 
independent equations. However, that’s enough to determine

the ratios of the vector components , then finally the eigenvector is normalized. The process is then repeated for each
eignevalue. (Extra care is needed if the polynomial has coincident roots—we’ll discuss that case later.)

Eigenvalues and Eigenstates of Hermitian Matrices

For a Hermitian matrix, it is easy to establish that the eigenvalues are always real. (Note: A basic postulate of Quantum Mechanics,
discussed in the next lecture, is that physical observables are represented by Hermitian operators.) Taking (in this section)  to be
hermitian, , and labeling the eigenkets by the eigenvalue, that is,

+ +. . . + = 0v1M⃗ C
1 v2M⃗ C

2 vnM⃗ C
n (2.2.41)

A−λI

= 0

∣

∣

∣
∣
∣
∣
∣

−λA11

A21

.

.
An1

A12

−λA22

.

.

.

.

.

.

.

.

.

.

.

.

.

A1n

.

.

.
−λAnn

∣

∣

∣
∣
∣
∣
∣

(2.2.42)

detA = . . . .εijk...pa1ia2ja3k anp nth λ

C(λ− )(λ− ). . . . (λ− ) = 0a1 a2 an (2.2.43)

ai C

(−1)n λn

λ = a1 det(A− I) = 0a1 (A− I)|V ⟩ = 0a1 |V ⟩

| ⟩a1

( −λ)( −λ). . . . ( −λ)A11 A22 Ann

(−1 ( −( +. . . + ) ))n λn A11 Ann λn−1 λn−1

(−1 (λ− )(λ− ). . . . (λ− ))n a1 a2 an

= = TrA∑
i=1

n

ai ∑
i=1

n

Aii (2.2.44)

λ = 0 λ

= detA∏
i=1

n

ai (2.2.45)

2 ×2

det(A−λI) = 0

a1 vi i | ⟩a1

= 0

⎛

⎝

⎜⎜⎜⎜⎜⎜

−A11 a1

A21

.

.
An1

A12

−A22 a1

.

.

.

.

.

.

.

.

.

.

.

.

.

A1n

.

.

.
−Ann a1

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

v1

v2

.

.
vn

⎞

⎠

⎟⎟⎟⎟⎟⎟
(2.2.46)

n n vi n– 1

, . . . ,v1 vn

A

A = A†

A| ⟩ = | ⟩a1 a1 a1 (2.2.47)
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the inner product with the bra  gives . But the inner product of the adjoint equation (remembering 
)

with  gives , so , and all the eigenvalues must be real.

They certainly don’t have to all be different—for example, the unit matrix  is Hermitian, and all its eigenvalues are of course 1.
But let’s first consider the case where they are all different.

It’s easy to show that the eigenkets belonging to different eigenvalues are orthogonal.

If

take the adjoint of the first equation and then the inner product with , and compare it with the inner product of the second
equation with :

so  unless the eigenvalues are equal. (If they are equal, they are referred to as degenerate eigenvalues.)

Let’s first consider the nondegenerate case:  has all eigenvalues distinct. The eigenkets of , appropriately normalized, form an
orthonormal basis in the space.

Write

Now

so

Note also that, obviously,  is unitary:

We have established, then, that for a Hermitian matrix with distinct eigenvalues (nondegenerate case), the unitary matrix  having
columns identical to the normalized eigenkets of  diagonalizes , that is,  is diagonal. Furthermore, its (diagonal)
elements equal the corresponding eigenvalues of .

Another way of saying this is that the unitary matrix  is the transformation from the original orthonormal basis in ths space to the
basis formed of the normalized eigenkets of .

⟨ |a1 ⟨ |A| ⟩ = ⟨ | ⟩a1 a1 a1 a1 a1

A = A†

⟨ |A = ⟨ |a1 a∗
1 a1 (2.2.48)

| ⟩a1 ⟨ |A| ⟩ = ⟨ | ⟩a1 a1 a∗
1 a1 a1 =a1 a∗

1

I

A| ⟩ = | ⟩a1 a1 a1

A| ⟩ = | ⟩a2 a2 a2
(2.2.49)

| ⟩a2

⟨ |a1

⟨ |A| ⟩ = ⟨ | ⟩ = ⟨ | ⟩a1 a2 a1 a1 a2 a2 a1 a2 (2.2.50)

⟨ | ⟩ = 0a1 a2

A A

| ⟩ = , and consider thematrix V = = ( )a1

⎛

⎝

⎜⎜
⎜⎜

v11

v21

⋮
vn1

⎞

⎠

⎟⎟
⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

v11

v21

⋮
vn1

v12

v22

⋮
vn2

…
…

⋱
…

v1n

v2n

⋮
vnn

⎞

⎠

⎟⎟⎟⎟⎟
| ⟩a1 | ⟩a2 … | ⟩an (2.2.51)

AV = A ( ) = ( )| ⟩a1 | ⟩a2 … | ⟩an | ⟩a1 a1 | ⟩a2 a2 … | ⟩an an (2.2.52)

AV = ( ) =V †

⎛

⎝

⎜
⎜
⎜⎜

⟨ |a1

⟨ |a2

⋮
⟨ |an

⎞

⎠

⎟
⎟
⎟⎟

| ⟩a1 a1 | ⟩a2 a2 … | ⟩an an

⎛

⎝

⎜⎜⎜⎜⎜

a1

0

⋮
0

0
a2

⋮
0

…
…

⋱
…

0
0

⋮
an

⎞

⎠

⎟⎟⎟⎟⎟
(2.2.53)

V

V = ( ) =V †

⎛

⎝

⎜
⎜⎜
⎜

⟨ |a1

⟨ |a2

⋮
⟨ |an

⎞

⎠

⎟
⎟⎟
⎟

| ⟩a1 | ⟩a2 … | ⟩an

⎛

⎝

⎜⎜⎜⎜⎜

1
0

⋮
0

0
1

⋮
0

…
…

⋱
…

0
0

⋮
1

⎞

⎠

⎟⎟⎟⎟⎟
(2.2.54)

V

A A AVV †

A

V

A
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Proof that the Eigenvectors of a Hermitian Matrix Span the Space
We’ll now move on to the general case: what if some of the eigenvalues of  are the same? In this case, any linear combination of
them is also an eigenvector with the same eigenvalue. Assuming they form a basis in the subspace, the Gram Schmidt procedure
can be used to make it orthonormal, and so part of an orthonormal basis of the whole space.

However, we have not actually established that the eigenvectors do form a basis in a degenerate subspace. Could it be that (to take
the simplest case) the two eigenvectors for the single eigenvalue turn out to be parallel? This is actually the case for some 

matrices—for example, , we need to prove it is not true for Hermitian matrices, and nor are the analogous statements for

higher-dimensional degenerate subspaces.

A clear presentation is given in Byron and Fuller, section 4.7. We follow it here. The procedure is by induction from the  case.
The general  Hermitian matrix has the form

where ,  are real. It is easy to check that if the eigenvalues are degenerate, this matrix becomes a real multiple of the identity, and
so trivially has two orthonormal eigenvectors. Since we already know that if the eigenvalues of a  Hermitian matrix are
distinct it can be diagonalized by the unitary transformation formed from its orthonormal eigenvectors, we have established that
any  Hermitian matrix can be so diagonalized.

To carry out the induction process, we now assume any  Hermitian matrix can be diagonalized by a unitary
transformation. We need to prove this means it’s also true for an  Hermitian matrix . (Recall a unitary transformation takes
one complete orthonormal basis to another. If it diagonalizes a Hermitian matrix, the new basis is necessarily the set of
orthonormalized eigenvectors. Hence, if the matrix can be diagonalized, the eigenvectors do span the n-dimensional space.)

Choose an eigenvalue  of , with normalized eigenvector . (We put in  for transpose, to save the
awkwardness of filling the page with a few column vectors.) We construct a unitary operator  by making this the first column,
then filling in with  other normalized vectors to construct, with , an n-dimensional orthonormal basis.

Now, since , the first column of the matrix  will just be , and the rows of the matrix  will be 
 followed by  normalized vectors orthogonal to it, so the first column of the matrix   will be  followed by

zeros. It is easy to check that  is Hermitian, since  is, so its first row is also zero beyond the first diagonal term.

This establishes that for an  Hermitian matrix, a unitary transformation exists to put it in the form:

But we can now perform a second unitary transformation in the  subspace orthogonal to  (this of course
leaves  invariant), to complete the full diagonalization—that is to say, the existence of the  diagonalization,
plus the argument above, guarantees the existence of the  diagonalization: the induction is complete.

Diagonalizing a Hermitian Matrix
As discussed above, a Hermitian matrix is diagonal in the orthonormal basis of its set of eigenvectors: , since

If we are given the matrix elements of  in some other orthonormal basis, to diagonalize it we need to rotate from the initial
orthonormal basis to one made up of the eigenkets of .

Denoting the initial orthonormal basis in the standard fashion

A

2 ×2

( )
1
0

1
1

2 ×2
2 ×2

( )
a

b∗

b

c
(2.2.55)

a c

2 ×2

2 ×2

(n−1) ×(n−1)
n×n A

a1 A | ⟩ = ( , , . . . . ,a1 v11 v21 vn1)T T

V

n−1 | ⟩a1

A| ⟩ = | ⟩a1 a1 a1 AV | ⟩a1 a1 =V † V −1

⟨ |a1 n−1 AVV † a1

AVV † A

n×n

AV =V †

⎛

⎝

⎜⎜⎜⎜⎜⎜

a1

0
0
0
0

0
M22

.

.
Mn2

.

.

.

.

.

.

.

.

.

.

0
M2n

.

.
Mnn

⎞

⎠

⎟⎟⎟⎟⎟⎟
(2.2.56)

(n−1) ×(n−1) | ⟩a1

| ⟩a1 (n−1) ×(n−1)
n×n

| ⟩, | ⟩, . . . , | ⟩a1 a2 an

⟨ |A| ⟩ = ⟨ | | ⟩ = ⟨ | ⟩ =ai aj ai aj aj aj ai aj ajδij (2.2.57)

A

A

https://libretexts.org/
https://phys.libretexts.org/@go/page/1649?pdf


2.2.12 https://phys.libretexts.org/@go/page/1649

the elements of the matrix are .

A transformation from one orthonormal basis to another is a unitary transformation, as discussed above, so we write it

Under this transformation, the matrix element

So we can find the appropriate transformation matrix  by requiring that   be diagonal with respect to the original set
of basis vectors. (Transforming the operator in this way, leaving the vector space alone, is equivalent to rotating the vector space
and leaving the operator alone. Of course, in a system with more than one operator, the same transformation would have to be
applied to all the operators).

In fact, just as we discussed for the nondegenerate (distinct eigenvalues) case, the unitary matrix  we need is just composed of the
normalized eigenkets of the operator ,

And it follows as before that

(The repeated suffixes here are of course not summed over.)

If some of the eigenvalues are the same, the Gram Schmidt procedure may be needed to generate an orthogonal set, as mentioned
earlier.

Functions of Matrices
The same unitary operator  that diagonalizes an Hermitian matrix  will also diagonalize , because

so

Evidently, this same process works for any power of , and formally for any function of  expressible as a power series, but of
course convergence properties need to be considered, and this becomes trickier on going from finite matrices to operators on
infinite spaces.

Commuting Hermitian Matrices

From the above, the set of powers of an Hermitian matrix all commute with each other, and have a common set of eigenvectors (but
not the same eigenvalues, obviously). In fact it is not difficult to show that any two Hermitian matrices that commute with each
other have the same set of eigenvectors (after possible Gram Schmidt rearrangements in degenerate subspaces).

If two  Hermitian matrices ,  commute, that is, , and  has a nondegenerate set of eigenvectors 
, then , that is,  is an eigenvector of  with eigenvalue . Since 

|1⟩ = , |2⟩ = , |i⟩ = . . . (1 in place down), |n⟩ =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

1
0
0

⋮
0

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

0
1
0

⋮
0

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜
⎜
⎜⎜
⎜
⎜⎜

0

⋮
1

⋮
0

⎞

⎠

⎟
⎟
⎟⎟
⎟
⎟⎟

ith

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

0
0
0

⋮
1

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

(2.2.58)

= ⟨i|A|j⟩Aij

|V ⟩ → | ⟩ = U|V ⟩V ′ (2.2.59)

⟨W |A|V ⟩ → ⟨ |A| ⟩ = ⟨W | AU|V ⟩W ′ V ′ U † (2.2.60)

U AUU †

U

A

U = (| ⟩, | ⟩, . . . , | ⟩)a1 a2 an (2.2.61)

( AU = ⟨ | | ⟩ = , a diagonalmatrix.U † )ij ai aj aj δijaj (2.2.62)

U A A2

U = AAU = AU AUU−1A2 U−1 U−1 U−1 (2.2.63)

U =U †A2

⎛

⎝

⎜
⎜
⎜⎜
⎜⎜

a2
1

0

0

.
0

0

a2
2

0

.

.

0

0

a2
3

.

.

.

.

.

.

.

0

0

0

.
a2
n

⎞

⎠

⎟
⎟
⎟⎟
⎟⎟

(2.2.64)

A A

n×n A B AB = BA A

A| ⟩ = | ⟩ai ai ai AB| ⟩ = BA| ⟩ = B | ⟩ = B| ⟩ai ai ai ai ai ai B| ⟩ai A ai A
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is nondegenerate,  must be some multiple of , and we conclude that ,  have the same set of eigenvectors.

Now suppose  is degenerate, and consider the  subspace  spanned by the eigenvectors  of 
having eigenvalue . Applying the argument in the paragraph above,  must also lie in this subspace.
Therefore, if we transform  with the same unitary transformation that diagonalized ,  will not in general be diagonal in the
subspace , but it will be what is termed block diagonal, in that if  operates on any vector in  it gives a vector in .

 can be written as two diagonal blocks: one , one , with zeroes outside these diagonal blocks, for
example, for :

And, in fact, if there is only one degenerate eigenvalue that second block will only have nonzero terms on the diagonal:

 therefore operates on two subspaces, one m-dimensional, one (n-m)-dimensional, independently—a vector entirely in one
subspace stays there.

This means we can complete the diagonalization of  with a unitary operator that only operates on the  block . Such an
operator will also affect the eigenvectors of , but that doesn’t matter, because all vectors in this subspace are eigenvectors of 
with the same eigenvalue, so as far as  is concerned, we can choose any orthonormal basis we like—the basis vectors will still be
eigenvectors.

This establishes that any two commuting Hermitian matrices can be diagonalized at the same time. Obviously, this can never be
true of noncommuting matrices, since all diagonal matrices commute.

Diagonalizing a Unitary Matrix

Any unitary matrix can be diagonalized by a unitary transformation. To see this, recall that any matrix  can be written as a sum
of a Hermitian matrix and an anti Hermitian matrix,

where both  are Hermitian. This is the matrix analogue of writing an arbitrary complex number as a sum of real and
imaginary parts.

If  commute, they can be simultaneously diagonalized (see the previous section), and therefore  can be diagonalized. Now,
if a unitary matrix is expressed in this form  with  Hermitian, it easily follows from  that 

 commute, so any unitary matrix  can be diagonalized by a unitary transformation. More generally, if a matrix 
commutes with its adjoint , it can be diagonalized.

(Note: it is not possible to diagonalize  unless both  are simultaneously diagonalized. This follows from 
being Hermitian and antiHermitian for any unitary operator , so their off-diagonal elements cannot cancel each other, they must
all be zero if M has been diagonalized by , in which case the two transformed matrices  are diagonal, therefore
commute, and so do the original matrices .)

It is worthwhile looking at a specific example, a simple rotation of one orthonormal basis into another in three dimensions.
Obviously, the axis through the origin about which the basis is rotated is an eigenvector of the transformation. It’s less clear what
the other two eigenvectors might be—or, equivalently, what are the eigenvectors corresponding to a two dimensional rotation of
basis in a plane? The way to find out is to write down the matrix and diagonalize it.

B| ⟩ai | ⟩ai A B

A m×m Sai | , 1⟩, | , 2⟩, . . .ai ai A

ai B| , 1⟩, B| , 2⟩, . . .ai ai
B A B

Sai B Sai Sai

B m×m (n−m) ×(n−m)
m = 2, n = 5

⎛

⎝

⎜⎜⎜⎜⎜⎜

b11

b21

0
0
0

b12

b22

0
0
0

0
0
b33

b43

b53

0
0
b34

b44

b54

0
0
b35

b45

b55

⎞

⎠

⎟⎟⎟⎟⎟⎟
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⎛

⎝

⎜⎜⎜⎜⎜⎜

b11

b21

0
0
0

b12

b22

0
0
0

0
0
b3

0
0

0
0
0
b4

0

0
0
0
0
b5

⎞

⎠

⎟⎟⎟⎟⎟⎟
(2.2.65)

B

B m×m Sai

A A

A

M

M = + = A+ iB
M +M †

2
M −M †

2
(2.2.66)

A, B

A, B M

U = A+ iB A, B U = U = 1U † U †

A, B U M

M †

M A, B AU, iBUU † U †

U

U AU, iBUU † U †

A, B
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The matrix

Note that the determinant is equal to unity. The eigenvalues are given by solving

The corresponding eigenvectors satisfy

The eigenvectors, normalized, are:

Note that, in contrast to a Hermitian matrix, the eigenvalues of a unitary matrix do not have to be real. In fact, from ,
sandwiched between the bra and ket of an eigenvector, we see that any eigenvalue of a unitary matrix must have unit modulus—it’s
a complex number on the unit circle. With hindsight, we should have realized that one eigenvalue of a two-dimensional rotation
had to be , the product of two two-dimensional rotations is given be adding the angles of rotation, and a rotation through 
changes all signs, so has eigenvalue . Note that the eigenvector itself is independent of the angle of rotation—the rotations all
commute, so they must have common eigenvectors. Successive rotation operators applied to the plus eigenvector add their angles,
when applied to the minus eigenvector, all angles are subtracted.
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U(θ) =( )
cosθ

−sinθ
sinθ
cosθ

(2.2.67)

= 0 togive λ =
∣
∣
∣

cosθ−λ

−sinθ
sinθ

cosθ−λ

∣
∣
∣ e±iθ (2.2.68)

( )( ) = ( )
cosθ

−sinθ
sinθ
cosθ

u±
1

u±
2

e±iθ
u±

1

u±
2

(2.2.69)

( ) = ( )
u±

1

u±
2

1

2–√

1
±i
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U = 1U †

eiθ π

−1
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