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4.4: Orbital Eigenfunctions in 3-D

The Angular Momentum Operators in Spherical Polar Coordinates

The angular momentum operator

In spherical polar coordinates,

the gradient operator is

where now the little hats denote unit vectors:  is radially outwards,  points along a line of longitude away from the north pole (and therefore in the direction of increasing  ) and  points along a
line of latitude in an anticlockwise direction as seen looking down on the north pole (that is, in the direction of increasing ).

Here  form an orthonormal local basis, and

as should be clear from the diagram.

So

(Explicitly,  and .)

The vector  has zero component in the z-direction, the vector  has component  in the z-direction, so we can immediately conclude that

just as in the two-dimensional case.

The operator

To evaluate this expression, we use  but we must also check the effects of the differential operators in the first expression on the variables in the second, including the unit
vectors.

From the explicit coordinate expressions for the unit vectors, or by staring at the diagram, you should be able to establish the following:  is in the r-direction,  is a
horizontal unit vector pointing inwards perpendicular to , and having component  in the -direction, .

Therefore, the only "differentiation of a unit vector" term that contributes to is

The  acting on the  in  contributes nothing because .

Hence

Now, we know that  and have a common set of eigenkets (since they commute) and we've already established that those of  are , with  an integer, so the eigenkets of 
 must have this same  dependence, so they must be of the form , where  is a (suitably normalized) solution of the equation
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more conveniently written

To summarize: the solutions to this differential equation, with integer  will (together with ) give the complete set of eigenstates of , in the coordinate representation.

Finding the m = l Eigenket of , 
Recall now that for the simple harmonic oscillator, the easiest wave function to find was that of the ground state, the solution of the simple linear equation  (as well as being a solution of the
quadratic Schrödinger equation, of course). The other state wave functions could then be found by applying the creation operator in differential form the necessary number of times.

A similar strategy works here: we can easily find the highest state on the  ladder, , the state , since it satisfies the linear equation , where . We just need to cast
this equation in coordinate form. In Cartesian coordinates, , and we've already shown that

Therefore

and using ,  we see that , the component of  in the + direction, is , and similarly .

So

and  becomes

That is,

The solution to this equation is

where  is the normalization constant. The  wave functions are generated by applying the lowering operator .

Normalizing the m = l Eigenket
The standard notation for the normalized eigenkets  is . These functions, being eigenkets of Hermitian operators with different eigenvalues, must satisfy

So, our first job is to normalize  (taking  already normalized)

The integral can be evaluated using the substitution  to give , then making the further substitution  to give , which can be integrated by

parts to give

Therefore

where we have fixed the sign in accord with the standard convention, and we will denote the rather cumbersome normalization constant by .

Notice that for large values of , this function is heavily weighted around the equator, as we would expect -- for a given total angular momentum one gets a maximum component in the z-direction
when the motion is concentrated in the x, y plane. This looks like a Bohr orbit.

Finding the Rest of the Eigenkets: the Details

Now that  is normalized, we can automatically produce correctly normalized 's, since we know the matrix element of the lowering operator between normalized states. We don't have to do
any more integrals.

For example, , equivalently (the 's of course cancel)

That is,

(both terms giving equal contributions).
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Note that this function is actually zero on the equator, but for large  it peaks close to the equator (on both sides).

In principle, we can reapply this differential operator over and over to generate all the  states, but this gets very messy. However, there is a neat theorem concerning the lowering operator that
makes it all straightforward:

Exercise: prove this.

So

and applying the operator again,

So the point of introducing this odd-looking representation of the lowering operator is that the  term in the middle is exactly canceled when the operator is applies twice, and similar
cancellations occur on repeating the operation, giving the (relatively) simple representation:

(Where did all those factorials come from? They're the product of all the inverse square root factors in

for the number of lowerings necessary.)

Note that for  the function is

and in fact not a function of  at all. This isn't surprising, since it has zero angular momentum about the z-direction, the appropriate  is just constant.

For , the differentiation becomes trivial, because, writing , the differentiation becomes  and only the  term survives, giving

Of course, this could also have been found from the linear equation , and we could have equally generated all the states by applying to this state. In fact, this gives a different -- but
of course equivalent -- expression for the :

(from Messiah, page 522).

Relating the Y 's to the Legendre Functions

The Legendre polynomials  are defined by:

where , so . From this form, it is easy to show that  (all  differentiations must take out a  factor to give a nonzero contribution), and  must have 
zeros in the interval (-1, 1).  alternates between an even function and an odd function.

The normalization of the 's is

where in that last line we used the result for the integral obtained earlier in this lecture for normalizing .

Doing the same repeated integration by parts for two different Legendre polynomials proves they are orthogonal,

The associated Legendre functions are defined (for n and m zero or positive integers, ) by:

Following Messiah in requiring  be real and positive, we find
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where the coefficient just reflects the differing normalization conventions. Similarly, the spherical harmonics with nonzero m are proportional to the associated Legendre functions (the odd ones are
not polynomials in , despite Shankar p. 337, since they include odd powers of ),

The Spherical Harmonics as a Basis
We have found explicit expressions for the spherical harmonics: an orthonormal set of eigenfunctions of  and  defined on the surface of a sphere,

They form a complete set:

or

in the notation of Messiah, where W refers to a point on the spherical surface.

(Formal proof of the completeness is given in Byron and Fuller, Mathematics of Classical and Quantum Physics.)

The above equation could also be written

where the ket  is to be understood as a localized ket, the spherical-surface version of , normalized by its delta function inner product with the bra , exactly analogous to 
, bearing in mind that the infinitesimal area element is , (a positive quantity in the relevant interval, 0 to ).

This completeness means that any reasonable function on the surface of the sphere can be expressed as a sum over spherical harmonics with appropriate coefficients, in other words the spherical
generalization of a Fourier series.

In fact,  is equivalent to  on the spherical surface, so the  are the eigenfunctions of the operator . Just as in one dimension the eigenfunctions of  have the spatial dependence of the
eigenmodes of a vibrating string, the spherical harmonics have the spatial dependence of the eigenmodes of a vibrating spherical balloon. Of course, to describe the displacement of the balloon skin
(which must be real!) with these eigenfunctions, we can no longer use the eigenfunctions of the z-component of angular momentum, since they are complex except in the trivial zero case. We must
rearrange the eigenfunctions of , for example replacing the pair  with . These real solutions, essentially

, have  nodal lines (zeroes) of longitude. Moving down one notch in , the (real) state with  has  longitudinal nodes, but has added a latitudinal node: the equator. Then 
 has  longitudinal nodes, 2 latitudinal nodal lines -- there are always  nodal lines total.

Some of these modes of vibration have been observed in the sun after a sunspot storm. The spherical harmonics are also used in analyzing the cosmic background radiation.

Some Low Order Spherical Harmonics
Let's look in more detail at the lowest order spherical harmonics. For the first few, the normalization of the highest state  is pretty easy to do from scratch: factoring out the  dependence as
before, , and taking the normalized , the  normalization for  is just

This is easily accomplished for .

All we then need is

,

, and finally the sign convention that  be real and positive.

With a few elementary steps, it can be established that:
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It is often useful to write the  in terms of Cartesian coordinates,

so

cosθ sinθ

(θ,ϕ) = (−1 (cosθ).Y m
l

(2l+1)(l−m)!

4π(l+m)!

− −−−−−−−−−−−−

√ )meimϕP m
l (4.4.36)

L2 Lz

\int^{\pi}_{\theta=0}\int^{2\pi}_{\phi=0} Y^{m'^{*}}_{l'}(\theta,\phi)Y^m_l(\theta,\phi)\sin\theta d\theta d\phi=\int Y^{m'^*}_{l'}(\theta,\phi)Y^m_l(\theta,\phi)d\Omega=\delta_{l'l}\delta_{m'm} \; . \label{4.4.16}

|l,m⟩⟨l,m| = I∑
l=0

∞

∑
m=−l

l

(4.4.37)

(θ,ϕ) ( , ) = δ(cosθ−cos )δ(ϕ− ) = δ(Ω − )∑
l=0

∞

∑
m=−l

l

Y m∗

l Y m
l θ′ ϕ′ θ′ ϕ′ Ω′ (4.4.38)

⟨θ,ϕ|l,m⟩⟨l,m| , ⟩ = ⟨θ,ϕ| , ⟩ = δ(cosθ−cos )δ(ϕ− )∑
l=0

∞

∑
m=−l

l

θ′ ϕ′ θ′ ϕ′ θ′ ϕ′ (4.4.39)

| , ⟩θ′ ϕ′ |x⟩ ⟨θ,ϕ|
⟨x| ⟩ = δ(x− )x′ x′ −d(cosθ)dϕ π

L2 ∇2 Y m
l ∇2 /dd2 x2

L2 ,eiϕ e−iϕ cosϕ, sinϕ

(|l, l⟩±|l, −l⟩)
1

2
–

√
(4.4.40)

l |m| |m| = l−1 l−1
|m| = l−2 l−2 l

|l, l⟩ ϕ

(θ,ϕ) = (θ) (ϕ)Y m
l Θm

l Φm (ϕ) = /Φm eimϕ 2π
−−

√ θ |l, l⟩

|N|^2\int^{\pi}_0 (\sin\theta)^{2l+1}d\theta=1 \label{4.4.17}

l = 0, 1, 2

= ±ℏ ( ± i cotθ )L± e±iϕ ∂

∂θ

∂

∂ϕ
(4.4.41)

|l,m⟩ = ℏ |l,m−1⟩L− l(l+1) −m(m−1)
− −−−−−−−−−−−−−−−

√ (4.4.42)

(0, 0)Y 0
l

=Y 0
0

1

4π
−−

√

= − sinθY 1
1

3

8π

−−−
√ eiϕ

= cosθY 0
1

3

4π

−−−
√

= sinθY −1
1

3

8π

−−−
√ e−iϕ

(4.4.43)

= θ , = − sinθcosθ , = (3 θ−1)Y 2
2

15

32π

− −−−
√ sin2 e2iϕ Y 1

2

15

8π

−−−
√ eiϕ Y 0

2

5

16π

− −−−
√ cos2

= θ , = sinθcosθ ,Y −2
2

15

32π

− −−−
√ sin2 e−2iϕ Y −1

2

15

8π

−−−
√ e−iϕ

(4.4.44)

Y m
l

(x, y, z) = (r sinθcosϕ, r sinθ sinϕ, r cosθ) (4.4.45)

https://libretexts.org/
https://phys.libretexts.org/@go/page/5612?pdf


4.4.5 https://phys.libretexts.org/@go/page/5612

and

The Y  as a Basis of the l = 1 Subspace
The  are the  eigenstates of  and . But what if we'd chosen to look for the common eigenstates of  and  instead? What  state has zero angular momentum component in the
direction of the x-axis? Clearly it will be

, in other words the previous  with z replaced by x, because after all, our labeling of axes was arbitrary.

Now,

In fact, any  state, with a specified component in any direction, can be written as

This can be seen as follows: an  state has to be linear in  (any quadratic term would give rise to  about an appropriate axis, call that the z-axis, so  and  must be 2 or
greater), and any such state can be written as a linear combination of

The bottom line, then, is that the  do indeed provide a complete basis for the  space of eigenstates of .

Representing the Rotation Operator Within the l = 1 Subspace

Recall that we originally introduced the angular momentum operator  by defining it as the generator of infinitesimal rotations when acting on any wave function, including multicomponent wave
functions. We found, using the commutativity properties of ordinary rotations, that the vector components of  had to satisfy , etc., and from that we deduced the possible sets of

eigenvalues of the commuting pair of operators ,  were  for , with  an integer of half an odd integer, and for each such  the allowed eigenvalues of  were

Back to the  angular wave functions: we have established that any such function can be written

and so is a vector in a three-dimensional space spanned by the set . In other words, the wave function is a three-component object. The angular momentum operator must
therefore be a matrix operator in this three-dimensional space, such that, by definition, the effect of an infinitesimal rotation on the multicomponent wave function is:

The unitary rotation operator acting in the  subspace,

, has to be a  matrix. The standard notation for its matrix elements is:

so the rotated ket is

To evaluate this matrix explicitly, we must expand the exponential and we need the matrix elements of , ,  between the states  -- which we already know.

Now, the basis of the three-dimensional space is just the common eigenkets of , , in this case identical to , . We know the matrix elements of , ,  between states  from the
earlier lecture, so it is simple to find the matrix representations of the components of  in this space:

We have added the superscript (1) because this representation of the infinitesimal rotation operators is specific to  (representations for general values of  are as  matrices,
reflecting the dimensionality of the space spanned by the  distinct  values).

Expanding the exponential is not difficult, because by inspection , so from spherical symmetry  for a unit vector in any direction. The result is:

One other point we should note: at the end of the linear algebra lecture, we discussed rotations about the z-axis in ordinary (x, y, z) space. Obviously, if we label a point in the (x, y) plane using the
complex number , a rotation by an angle  about the z-axis will move the point in such a way that the new label is . The angle in this case has the opposite sign to that given by the
operator above: the reason is that when we write the eigenstate as
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l = 1
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j= 1 j (2j+1) ×(2j+1)
2j+1 m

( /ℏ = ( /ℏ)J
(1)
z )3 J

(1)
z ( ⋅ /ℏ = ( /ℏ)n⃗ ^ J ⃗ (1)

)3 n⃗ ^J ⃗ (1)
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x+ iy θ (x+ iy)eiθ

− ⋅
3

8π

−−−
√

x+ iy
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4.4.6 https://phys.libretexts.org/@go/page/5612

this is a function of position in the plane, not a point in the plane, so for the reasons discussed at the beginning of the first Angular Momentum lecture, the sign is opposite.
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