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6.1: Charged Particle in a Magnetic Field

Classically, the force on a charged particle in electric and magnetic fields is given by the Lorentz force law:

~ . $xB
F:q<E+vX ) (6.1.1)

c

This velocity-dependent force is quite different from the conservative forces from potentials that we have dealt with so far, and the
recipe for going from classical to quantum mechanics—replacing momenta with the appropriate derivative operators—has to be
carried out with more care. We begin by demonstrating how the Lorentz force law arises classically in the Lagrangian and
Hamiltonian formulations.

Laws of Classical Mechanics

Recall first that the Principle of Least Action leads to the Euler-Lagrange equations for the Lagrangian L:

d (0L(g;,4q;) O0L(gi,q;)
dt( . — _0 (6.1.2)

with g; and ¢; being coordinates and velocities. The canonical momentum p; is defined by the equation

oL

i = A 6.1.3
Pi= 5 (6.1.3)
and the Hamiltonian is defined by performing a Legendre transformation of the Lagrangian:
H(gi,pi) =Y (pid; — L(gi, 4:)) (6.1.4)
It is straightforward to check that the equations of motion can be written:
. 0H . OH
= Py =—— 6.1.5
=5, Pi = "5, (6.1.5)

These are known as Hamilton’s Equations. Note that if the Hamiltonian is independent of a particular coordinate g;, the
corresponding momentum p; remains constant. (Such a coordinate is termed cyclic, because the most common example is an
angular coordinate in a spherically symmetric Hamiltonian, where angular momentum remains constant.)

For the conservative forces we have been considering so far,

L=T-V (6.1.6)
and

H=T+V (6.1.7)

with T the kinetic energy, V' the potential energy.

Poisson Brackets

Any dynamical variable f in the system is some function of the ¢;’s and p;’s and (assuming it does not depend explicitly on time)
its development is given by:

d of . df . Of dH Of 0H
—Fqipi) = =G+ ——p; = - — — =L = —{f H}. 6.1.8
dtf(q Di) 9q. + 0.0 " Bq om0 {f, H} ( )

The curly brackets are called Poisson Brackets, and are defined for any dynamical variables as:

0A 0B 0A OB

We have shown from Hamilton’s equations that for any variable f = { f, H}.

It is easy to check that for the coordinates and canonical momenta,
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This was the classical mathematical structure that led Dirac to link up classical and quantum mechanics: he realized that the
Poisson brackets were the classical version of the commutators, so a classical canonical momentum must correspond to the
quantum differential operator in the corresponding coordinate.

9, 9; =0 =pi, pj, ¢4,p; =di;. (6.1.10)

I Poisson brackets are the classical version of the commutators

Particle in a Magnetic Field

The Lorentz force is velocity dependent, so cannot be just the gradient of some potential. Nevertheless, the classical particle path is
still given by the Principle of Least Action. The electric and magnetic fields can be written in terms of a scalar and a vector

potential:
B=VxA (6.1.11)
L )
E=-V¢g———. 6.1.12
L ( )
The right Lagrangian turns out to be:
1 . Lo
L:Emvz—qgaJr%v-A. (6.1.13)

Relativity Effects

If you’re familiar with Relativity, the interaction term here looks less arbitrary: the relativistic version would have the

-

relativistically invariant (g/c) [ A*dz, added to the action integral, where the four-potential A, =(A,¢) and
dz, = (dzi,dzs, dzs, cdt) . This is the simplest possible invariant interaction between the electromagnetic field and the

particle’s four-velocity. Then in the nonrelativistic limit, (g/c) [ A*dz,, just becomes [ g(v- A /c—) dt .

The derivation of the Lorentz force from the Hamilton equations is straightforward.
Note that for zero vector potential, the Lagrangian has the usual 7' — V' form.

For this one-particle problem, the general coordinates g; are just the Cartesian co-ordinates z; = (z1, 2, 3), the position of the
particle, and the g; are the three components &; = v; of the particle’s velocity.

The important new point is that the canonical momentum
q
= =T =mv;+ =4 (6.1.14)
T; c

is no longer mass x velocity—there is an extra term!
The Hamiltonian is
H(gi,pi) =>_piq; — L(gi, d:)
= Y (mw; + 24 v; — tmi? +qp — 245 A (6.1.15)

= Imi’ +qp

Reassuringly, the Hamiltonian just has the familiar form of kinetic energy plus potential energy. However, to get Hamilton’s
equations of motion, the Hamiltonian has to be expressed solely in terms of the coordinates and canonical momenta. That is,

(5 —gA(@,1)/c)®
2m

where we have noted explicitly that the potentials mean those at the position Z of the particle at time £.

H= +qp (2,1) (6.1.16)

Let us now consider Hamilton’s equations

=2 piz—aH (6.1.17)

6:13i
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It is easy to see how the first equation comes out, bearing in mind that
q . q
p; =muv; +=A; = mz; + = A;. (6118)
c c

The second equation yields the Lorentz force law, but is a little more tricky. The first point to bear in mind is that dp/dt is not the
acceleration, the A term also varies in time, and in a quite complicated way, since it is the field at a point moving with the particle.

That is,

. . 4 . g (04

D; mei-i-zAi :m.’Ei-i-z( En +’UJ‘Vin) . (6.1.19)
The right-hand side of the second Hamilton equation p; = — % is

_oH _ (F-aA@N/) a oA _ 9@y

o, m ¢ o, ~ 9 0x; (6.1.20)
= %vjV,-Aj—qVpr.

Putting the two sides together, the Hamilton equation reads:

. 0A,;
mx; =—2<_ +’UjVin) +2vjViAj—qV,-go . (6121)
c\ ot c

Using ¥ (V x A) =V(3-A)— (- V)A ,B=V x A, and the expressions for the electric and magnetic fields in terms of the

potentials, the Lorentz force law emerges:

o (a B
mwzq(E—i—vx ) (6.1.22)
c
Quantum Mechanics of a Particle in a Magnetic Field
We make the standard substitution:
p= —ihﬁ, sothat [z;,p;] = ihd;; as usual : but now p; # muv;. (6.1.23)

This leads to the novel situation that the velocities in different directions do not commute. From

muv; = —ihV; —q4;/c (6.1.24)
it is easy to check that
iqh
[v2,v,] = —= B (6.1.25)
m2c

To actually solve Schrédinger’s equation for an electron confined to a plane in a uniform perpendicular magnetic field, it is
convenient to use the Landau gauge,

—

A(z,y,2z) = (-By,0,0) (6.1.26)

giving a constant field B in the z direction. The equation is

2

Hy(@,y) = | 5= (0. +aBy/cf + o | 9(e,y) = By(a,y). (6.1.27)

Note that x does not appear in this Hamiltonian, so it is a cyclic coordinate, and p,, is conserved. In other words, this H commutes
with p,, so H and p, have a common set of eigenstates. We know the eigenstates of p, are just the plane waves e®«*/", so the
common eigenstates must have the form:

P(z,y) =P/ Px(y). (6.1.28)
Operating on this wavefunction with the Hamiltonian, the operator p, appearing in H simply gives its eigenvalue. That is, the p,
in H just becomes a number! Therefore, writing p, = —ifd/dy, the y-component x(y) of the wavefunction satisfies:
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R 42 1 (q¢B\’
f%d—yzx(y 3 (E) (v —0)*x(¥) = Ex(y) (6.1.29)
where
Yo = —cp./qB. (6.1.30)

We now see that the conserved canonical momentum p, in the x-direction is actually the coordinate of the center of a simple
harmonic oscillator potential in the y-direction! This simple harmonic oscillator has frequency w = |q| B/mc, so the allowed values
of energy for a particle in a plane in a perpendicular magnetic field are:

B=(n+5)ho=(n-+ 3)hlaB/me. (6.1.31)

The frequency is of course the cyclotron frequency—that of the classical electron in a circular orbit in the field (given by
mv?/r=quB/c, w=v/r=¢qB/mc ).

Let us confine our attention to states corresponding to the lowest oscillator state, £ = %hw How many such states are there?
Consider a square of conductor, area A =L, x L, , and, for simplicity, take periodic boundary conditions. The center of the

oscillator wave function y, must lie between 0 and L,,. But remember that yy = —cp,/¢B, and with periodic boundary conditions
eP:la/h =1 s0p, = 2nmh/L, =nh/L, . This means that yo takes a series of evenly-spaced discrete values, separated by
Ayo =ch/¢BL,. (6.1.32)

So the total number of states N = L, / Ay,

B
=A - — 6.1.33
( - ) By ( )
qB
where @ is called the “flux quantum”. So the total number of states in the lowest energy level £ = %hw (usually referred to as the

lowest Landau level, or LLL) is exactly equal to the total number of flux quanta making up the field B penetrating the area A.

It is instructive to find yo from a purely classical analysis.

Writing mv = 29 x B in components,
C

. gB .
mx = Ty’
my = —T.’E

These equations integrate trivially to give:
(6.1.35)

Here (zg,¥o) are the coordinates of the center of the classical circular motion (the velocity vector 7 = (z,y) is always
perpendicular to (¥ —7g) ), and 7 is given by

Yo =y —cmu, /qB = —cp, /qB

zy =z +cmvy/qB =z +cp,/qB. (6.1.36)
(Recall that we are using the gauge A(m, y,2) = (—By,0,0), and p, = g—é =mu, + %Az , etc.)
Just as yo is a conserved quantity, so is xy: it commutes with the Hamiltonian since
[ +cpy/qB, ps +qBy/c] =0. (6.1.37)
However, z and yy do not commute with each other:
[0, yo] = —ihc/qB. (6.1.38)

This is why, when we chose a gauge in which yy was sharply defined, 2y was spread over the sample. If we attempt to localize the
point (zg, yo) as well as possible, it is fuzzed out over an area essentially that occupied by one flux quantum. The natural length
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scale of the problem is therefore the magnetic length defined by

he

=45 (6.1.39)

References: the classical mechanics at the beginning is similar to Shankar’s presentation, the quantum mechanics is closer to that in
Landau.

This page titled 6.1: Charged Particle in a Magnetic Field is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler via source content that was edited to the style and standards of the LibreTexts platform.
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