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6.1: Charged Particle in a Magnetic Field
Classically, the force on a charged particle in electric and magnetic fields is given by the Lorentz force law:

This velocity-dependent force is quite different from the conservative forces from potentials that we have dealt with so far, and the
recipe for going from classical to quantum mechanics—replacing momenta with the appropriate derivative operators—has to be
carried out with more care. We begin by demonstrating how the Lorentz force law arises classically in the Lagrangian and
Hamiltonian formulations.

Laws of Classical Mechanics
Recall first that the Principle of Least Action leads to the Euler-Lagrange equations for the Lagrangian :

with  and  being coordinates and velocities. The canonical momentum  is defined by the equation

and the Hamiltonian is defined by performing a Legendre transformation of the Lagrangian:

It is straightforward to check that the equations of motion can be written:

These are known as Hamilton’s Equations. Note that if the Hamiltonian is independent of a particular coordinate , the
corresponding momentum  remains constant. (Such a coordinate is termed cyclic, because the most common example is an
angular coordinate in a spherically symmetric Hamiltonian, where angular momentum remains constant.)

For the conservative forces we have been considering so far,

and

with  the kinetic energy,  the potential energy.

Poisson Brackets
Any dynamical variable  in the system is some function of the ’s and ’s and (assuming it does not depend explicitly on time)
its development is given by:

The curly brackets are called Poisson Brackets, and are defined for any dynamical variables as:

We have shown from Hamilton’s equations that for any variable .

It is easy to check that for the coordinates and canonical momenta,
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This was the classical mathematical structure that led Dirac to link up classical and quantum mechanics: he realized that the
Poisson brackets were the classical version of the commutators, so a classical canonical momentum must correspond to the
quantum differential operator in the corresponding coordinate.

Poisson brackets are the classical version of the commutators

Particle in a Magnetic Field
The Lorentz force is velocity dependent, so cannot be just the gradient of some potential. Nevertheless, the classical particle path is
still given by the Principle of Least Action. The electric and magnetic fields can be written in terms of a scalar and a vector
potential:

The right Lagrangian turns out to be:

If you’re familiar with Relativity, the interaction term here looks less arbitrary: the relativistic version would have the
relativistically invariant  added to the action integral, where the four-potential  and 

. This is the simplest possible invariant interaction between the electromagnetic field and the
particle’s four-velocity. Then in the nonrelativistic limit,  just becomes .

The derivation of the Lorentz force from the Hamilton equations is straightforward.

Note that for zero vector potential, the Lagrangian has the usual  form.

For this one-particle problem, the general coordinates  are just the Cartesian co-ordinates , the position of the
particle, and the  are the three components  of the particle’s velocity.

The important new point is that the canonical momentum

is no longer mass  velocity—there is an extra term!

The Hamiltonian is

Reassuringly, the Hamiltonian just has the familiar form of kinetic energy plus potential energy. However, to get Hamilton’s
equations of motion, the Hamiltonian has to be expressed solely in terms of the coordinates and canonical momenta. That is,

where we have noted explicitly that the potentials mean those at the position  of the particle at time .

Let us now consider Hamilton’s equations

, = 0 = , , , = .qi qj pi pj qi pj δij (6.1.10)

= ×B⃗  ∇⃗  A ⃗  (6.1.11)

= − φ− .E ⃗  ∇⃗  1

c

∂A ⃗ 

∂t
(6.1.12)

L = m −qφ+ ⋅ .
1

2
v ⃗ 2

q

c
v ⃗  A ⃗  (6.1.13)

Relativity Effects

(q/c)∫ dAμ xμ = ( ,φ)Aμ A ⃗ 

d = (d , d , d , cdt)xμ x1 x2 x3

(q/c)∫ dAμ xμ ∫ q( ⋅ /c−φ) dtv ⃗  A ⃗ 

T −V

qi = ( , , )xi x1 x2 x3

q̇ i =ẋi vi
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It is easy to see how the first equation comes out, bearing in mind that

The second equation yields the Lorentz force law, but is a little more tricky. The first point to bear in mind is that  is not the
acceleration, the  term also varies in time, and in a quite complicated way, since it is the field at a point moving with the particle.
That is,

The right-hand side of the second Hamilton equation  is

Putting the two sides together, the Hamilton equation reads:

Using , , and the expressions for the electric and magnetic fields in terms of the
potentials, the Lorentz force law emerges:

Quantum Mechanics of a Particle in a Magnetic Field
We make the standard substitution:

This leads to the novel situation that the velocities in different directions do not commute. From

it is easy to check that

To actually solve Schrödinger’s equation for an electron confined to a plane in a uniform perpendicular magnetic field, it is
convenient to use the Landau gauge,

giving a constant field  in the z direction. The equation is

Note that x does not appear in this Hamiltonian, so it is a cyclic coordinate, and  is conserved. In other words, this  commutes
with , so  and  have a common set of eigenstates. We know the eigenstates of  are just the plane waves , so the
common eigenstates must have the form:

Operating on this wavefunction with the Hamiltonian, the operator  appearing in  simply gives its eigenvalue. That is, the 
in  just becomes a number! Therefore, writing , the y-component  of the wavefunction satisfies:
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where

We now see that the conserved canonical momentum  in the x-direction is actually the coordinate of the center of a simple
harmonic oscillator potential in the y-direction! This simple harmonic oscillator has frequency , so the allowed values
of energy for a particle in a plane in a perpendicular magnetic field are:

The frequency is of course the cyclotron frequency—that of the classical electron in a circular orbit in the field (given by 
 ) .

Let us confine our attention to states corresponding to the lowest oscillator state, . How many such states are there?
Consider a square of conductor, area , and, for simplicity, take periodic boundary conditions. The center of the
oscillator wave function  must lie between 0 and . But remember that , and with periodic boundary conditions 

, so . This means that  takes a series of evenly-spaced discrete values, separated by

So the total number of states ,

where  is called the “flux quantum”. So the total number of states in the lowest energy level  (usually referred to as the
lowest Landau level, or LLL) is exactly equal to the total number of flux quanta making up the field  penetrating the area .

It is instructive to find  from a purely classical analysis.

Writing  in components,

These equations integrate trivially to give:

Here  are the coordinates of the center of the classical circular motion (the velocity vector  is always
perpendicular to  ) , and  is given by

(Recall that we are using the gauge , and , etc.)

Just as  is a conserved quantity, so is : it commutes with the Hamiltonian since

However,  and  do not commute with each other:

This is why, when we chose a gauge in which  was sharply defined,  was spread over the sample. If we attempt to localize the
point  as well as possible, it is fuzzed out over an area essentially that occupied by one flux quantum. The natural length
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scale of the problem is therefore the magnetic length defined by

References: the classical mechanics at the beginning is similar to Shankar’s presentation, the quantum mechanics is closer to that in
Landau.

This page titled 6.1: Charged Particle in a Magnetic Field is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler via source content that was edited to the style and standards of the LibreTexts platform.
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