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3.5: Stability of Nuclei

In Figure 3.5.1 we have color coded the nuclei of a given mass A = N + Z by their mass, red for those of lowest mass through to
magenta for those of highest mass. We can see that typically the nuclei that are most stable for fixed A have more neutrons than
protons, more so for large A increases than for low A. This is the “neutron excess”.
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Figure 3.5.1: The valley of stability

B decay

If we look at the mass of nuclides with fixed nucleon number A (i.e., roughly perpendicular cuts through the valley of stability in
Figure 3.5.1), we can see that the masses vary strongly,
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Figure 3.5.2: The negative of binding energy per nucleon for nuclides with fixed A: (left) A = 56 and (right) A = 150. The profile
of binding energy across the valley of stability is roughly a parabola (e.g., Iron-56 is stable, while Vandium-56 is unstable to 5~
decay.

It is known that a free neutron is not a stable particle, it actually decays by emission of an electron and an antineutrino,
n—-p+e +Ue.
The reason that this reaction can take place is that it is endothermic,
mnc2 > mp02 —i—mecz.
Here we assume that the neutrino has no mass.
The degree of allowance of such a reaction is usually expressed in a () value, the amount of energy released in such a reaction,
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Q =m,c? —myc® —mec (3.5.1)

—939.6 —938.3—0.5 = 0.8 MeV. (3.5.2)

Generically it is found that two reaction may take place, depending on the balance of masses. Either a neutron “8 decays” as
sketched above, or we have the inverse reaction

p—>n+e++z/e.

For historical reason the electron or positron emitted in such a process is called a 8 particle. Thus in 8~ decay of a nucleus, a
nucleus of Z protons and IV neutrons turns into one of Z+ 1 protons and /N — 1 neutrons (moving towards the right in Figure
3.5.2A In 87" decay the nucleus moves to the left. Since in that figure I am using atomic masses, the @ factor is
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Qs =M(A Z)¢* —M(A, Z+1),
Qs =M(A,2) —M(A, Z—1)c* —2m.c

The double electron mass contribution in this last equation because the atom looses one electron, as well as emits a positron with
has the same mass as the electron.

In similar ways we can study the fact whether reactions where a single nucleon (neutron or proton) is emitted, as well as those

where more complicated objects, such as Helium nuclei (« particles) are emitted. I shall return to such processed later, but let us
note the ) values,
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