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4.2: Square Potential Barrier
Consider a particle of mass  and energy  interacting with the simple square potential barrier

where . In the regions to the left and to the right of the barrier,  satisfies

where  is given by Equation ([e5.6]).

Let us adopt the following solution of the previous equation to the left of the barrier (i.e., ):

This solution consists of a plane-wave of unit amplitude traveling to the right [because the time-dependent wavefunction is
multiplied by , where ], and a plane wave of complex amplitude  traveling to the left. We interpret the
first plane wave as an incoming particle (or, rather, a stream of incoming particles), and the second as a particle (or stream of
particles) reflected by the potential barrier. Hence,  is the probability of reflection. This can be seen by calculating the
probability current ([eprobc]) in the region , which takes the form

where  is the classical particle velocity.

Let us adopt the following solution to Equation ([e5.15]) to the right of the barrier (i.e. ):

This solution consists of a plane-wave of complex amplitude  traveling to the right. We interpret this as a particle (or stream of
particles) transmitted through the barrier. Hence,  is the probability of transmission. The probability current in the region 

 takes the form

Now, according to Equation ([ediffp]), in a stationary state (i.e., ), the probability current is a spatial constant (i.e., 
). Hence, we must have , or

In other words, the probabilities of reflection and transmission sum to unity, as must be the case, because reflection and
transmission are the only possible outcomes for a particle incident on the barrier.

Inside the barrier (i.e., ),  satisfies

where

Let us, first of all, consider the case where . In this case, the general solution to Equation ([e5.21]) inside the barrier takes
the form

where .
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Now, the boundary conditions at the edges of the barrier (i.e., at  and ) are that  and  are both continuous.
These boundary conditions ensure that the probability current ([eprobc]) remains finite and continuous across the edges of the
boundary, as must be the case if it is to be a spatial constant.

Continuity of  and  at the left edge of the barrier (i.e., ) yields

Likewise, continuity of  and  at the right edge of the barrier (i.e., ) gives

After considerable algebra, the previous four equations yield

and

Note that the previous two expression satisfy the constraint ([e5.20]).

It is instructive to compare the quantum mechanical probabilities of reflection and transmission—([e5.28]) and ([e5.29]),
respectively—with those derived from classical physics. Now, according to classical physics, if a particle of energy  is incident
on a potential barrier of height  then the particle slows down as it passes through the barrier, but is otherwise unaffected. In
other words, the classical probability of reflection is zero, and the classical probability of transmission is unity.

Figure 10: Transmission (solid-curve) and reflection (dashed-curve) probabilities for a square potential barrier of width 
, where  the free-space de Broglie wavelength, as a function of the ratio of the height of the barrier, , to the energy, 

, of the incident particle.
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Figure 11: Transmission (solid-curve) and reflection (dashed-curve) probabilities for a particle of energy  incident on a square
potential barrier of height , as a function of the ratio of the width of the barrier, , to the free-space de Broglie
wavelength, 

The reflection and transmission probabilities obtained from Equations ([e5.28]) and ([e5.29]), respectively, are plotted in Figures
[fb1] and [fb2]. It can be seen, from Figure [fb1], that the classical result,  and , is obtained in the limit where
the height of the barrier is relatively small (i.e., ). However, when  is of order , there is a substantial probability that
the incident particle will be reflected by the barrier. According to classical physics, reflection is impossible when .

It can also be seen, from Figure [fb2], that at certain barrier widths the probability of reflection goes to zero. It turns out that this is
true irrespective of the energy of the incident particle. It is evident, from Equation ([e5.28]), that these special barrier widths
correspond to

where . In other words, the special barriers widths are integer multiples of half the de Broglie wavelength of the
particle inside the barrier. There is no reflection at the special barrier widths because, at these widths, the backward traveling wave
reflected from the left edge of the barrier interferes destructively with the similar wave reflected from the right edge of the barrier
to give zero net reflected wave.

Let us, now, consider the case . In this case, the general solution to Equation ([e5.21]) inside the barrier takes the form

where . Continuity of  and  at the left edge of the barrier (i.e., ) yields

Likewise, continuity of  and  at the right edge of the barrier (i.e., ) gives

After considerable algebra, the previous four equations yield
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and

These expressions can also be obtained from Equations ([e5.28]) and ([e5.29]) by making the substitution . Note that
Equations ([e5.36]) and ([e5.37]) satisfy the constraint ([e5.20]).

It is again instructive to compare the quantum mechanical probabilities of reflection and trans/-mission—([e5.36]) and ([e5.37]),
respectively—with those derived from classical physics. Now, according to classical physics, if a particle of energy  is incident
on a potential barrier of height  then the particle is reflected. In other words, the classical probability of reflection is unity,
and the classical probability of transmission is zero.

Figure 12: Transmission (solid-curve) and reflection (dashed-curve) probabilities for a square potential barrier of width 
the free-space de Broglie wavelength, as a function of the ratio of the energy, , of the incoming particle to

the height, ,of the barrier.
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Figure 13: Transmission (solid-curve) and reflection (dashed-curve) probabilities for a particle of energy  incident on a square
potential barrier of height , as a function of the ratio of the width of the barrier, , to the free-space de Broglie
wavelength, 

The reflection and transmission probabilities obtained from Equations ([e5.36]) and ([e5.37]), respectively, are plotted in Figures
[fb3] and [fb4]. It can be seen, from Figure [fb3], that the classical result,  and , is obtained for relatively thin
barriers (i.e., ) in the limit where the height of the barrier is relatively large (i.e., ). However, when  is of order 

, there is a substantial probability that the incident particle will be transmitted by the barrier. According to classical physics,
transmission is impossible when .

It can also be seen, from Figure [fb4], that the transmission probability decays exponentially as the width of the barrier increases.
Nevertheless, even for very wide barriers (i.e., ), there is a small but finite probability that a particle incident on the barrier
will be transmitted. This phenomenon, which is inexplicable within the context of classical physics, is called tunneling.
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