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12.4: Perturbation Expansion
Let us recall the analysis of Section 1.2. The  are the stationary orthonormal eigenstates of the time-independent unperturbed
Hamiltonian, . Thus, , where the  are the unperturbed energy levels, and . Now, in the
presence of a small time-dependent perturbation to the Hamiltonian, , the wavefunction of the system takes the form

where . The amplitudes  satisfy

where  and . Finally, the probability of finding the system in the th eigenstate at
time  is simply

(assuming that, initially, ).

Suppose that at  the system is in some initial energy eigenstate labeled . Equation ([e13.42]) is, thus, subject to the initial
condition

Let us attempt a perturbative solution of Equation ([e13.42]) using the ratio of  to  (or  to , to be more exact) as
our expansion parameter. Now, according to Equation ([e13.42]), the  are constant in time in the absence of the perturbation.
Hence, the zeroth-order solution is simply

The first-order solution is obtained, via iteration, by substituting the zeroth-order solution into the right-hand side of Equation
([e13.42]). Thus, we obtain

subject to the boundary condition . The solution to the previous equation is

It follows that, up to first-order in our perturbation expansion,

Hence, the probability of finding the system in some final energy eigenstate labeled  at time , given that it is definitely in a
different initial energy eigenstate labeled  at time , is

Note, finally, that our perturbative solution is clearly only valid provided
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