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13.2: Helium Atom
A helium atom consists of a nucleus of charge  surrounded by two electrons. Let us attempt to calculate its ground-state
energy.

Let the nucleus lie at the origin of our coordinate system, and let the position vectors of the two electrons be  and ,
respectively. The Hamiltonian of the system thus takes the form

where we have neglected any reduced mass effects. The terms in the previous expression represent the kinetic energy of the first
electron, the kinetic energy of the second electron, the electrostatic attraction between the nucleus and the first electron, the
electrostatic attraction between the nucleus and the second electron, and the electrostatic repulsion between the two electrons,
respectively. It is the final term that causes all of the difficulties. Indeed, if this term is neglected then we can write

where

In other words, the Hamiltonian just becomes the sum of separate Hamiltonians for each electron. In this case, we would expect the
wavefunction to be separable: that is,

Hence, Schrödinger’s equation,

reduces to

where

Of course, Equation  is the Schrödinger equation of a hydrogen atom whose nuclear charge is , instead of . It follows,
from Section [s10.4] (making the substitution ), that if both electrons are in their lowest energy states then

where

Here,  is the Bohr radius. [See Equation ([e9.57]).] Note that  is properly normalized. Furthermore,

where  is the hydrogen ground-state energy. [See Equation ([e9.56]).] Thus, our crude estimate for the ground-state
energy of helium becomes

Unfortunately, this estimate is significantly different from the experimentally determined value, which is . This fact
demonstrates that the neglected electron-electron repulsion term makes a large contribution to the helium ground-state energy.
Fortunately, however, we can use the variational principle to estimate this contribution.
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Let us employ the separable wavefunction discussed previously as our trial solution. Thus,

The expectation value of the Hamiltonian  thus becomes

where

The variation principle only guarantees that Equation  yields an upper bound on the ground-state energy. In reality, we hope
that it will give a reasonably accurate estimate of this energy.

It follows from Equations ([e9.56]), , and  that

where . Neglecting the hats, for the sake of clarity, the previous expression can also be written

where  is the angle subtended between vectors  and . If we perform the integral in  space before that in  space then

where

Our first task is to evaluate the function . Let  be a set of spherical coordinates in  space whose axis of
symmetry runs in the direction of . It follows that . Hence,

which trivially reduces to

Making the substitution , we can see that

Now,
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giving

But ,

yielding

Because the function  only depends on the magnitude of , the integral in Equation  reduces to

which yields

Hence, from Equation , our estimate for the ground-state energy of helium is

This is remarkably close to the correct result.

Shielding and Effective Nuclear Charge
We can actually refine our estimate further. The trial wavefunction  essentially treats the two electrons as non-interacting
particles. In reality, we would expect one electron to partially shield the nuclear charge from the other, and vice versa. Hence, a
better trial wavefunction might be

where  is effective nuclear charge number seen by each electron. Let us recalculate the ground-state energy of helium as a
function of , using the previous trial wavefunction, and then minimize the result with respect to . According to the variational
principle, this should give us an even better estimate for the ground-state energy.

We can rewrite the expression  for the Hamiltonian of the helium atom in the form
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is the Hamiltonian of a hydrogen atom with nuclear charge ,

is the electron-electron repulsion term, and

It follows that

where  is the ground-state energy of a hydrogen atom with nuclear charge ,  is the
value of the electron-electron repulsion term when recalculated with the wavefunction in Equation  [actually, all we need to
do is to make the substitution ], and

Here,  is the expectation value of  calculated for a hydrogen atom with nuclear charge . It follows from Equation
([e9.74]) [with , and making the substitution ] that

Hence,

because . Collecting the various terms, our new expression for the expectation value of the Hamiltonian
becomes

The value of  that minimizes this expression is the root of

It follows that

The fact that  confirms our earlier conjecture that the electrons partially shield the nuclear charge from one another. Our new
estimate for the ground-state energy of helium is

This is clearly an improvement on our previous estimate in Equation . (Recall that the correct result is  eV.)

Obviously, we could get even closer to the correct value of the helium ground-state energy by using a more complicated trial
wavefunction with more adjustable parameters.

Note, finally, that because the two electrons in a helium atom are indistinguishable fermions, the overall wavefunction must be
anti-symmetric with respect to exchange of particles. (See Chapter [smany].) Now, the overall wavefunction is the product of the
spatial wavefunction and the spinor representing the spin-state. Our spatial wavefunction ([e14.44]) is obviously symmetric with
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respect to exchange of particles. This means that the spinor must be anti-symmetric. It is clear, from Section [shalf], that if the spin-
state of an  system consisting of two spin one-half particles (i.e., two electrons) is anti-symmetric with respect to interchange
of particles then the system is in the so-called singlet state with overall spin zero. Hence, the ground-state of helium has overall
electron spin zero.
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