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4.7: Simple Harmonic Oscillator

The classical Hamiltonian of a simple harmonic oscillator is
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where K > 0 is the so-called force constant of the oscillator. Assuming that the quantum mechanical Hamiltonian has the same
form as the classical Hamiltonian, the time-independent Schrédinger equation for a particle of mass m and energy E moving in a

simple harmonic potential becomes
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Let w= /K /m, where w is the oscillator’s classical angular frequency of oscillation. Furthermore, let
muw
and
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Equation ([e5.90]) reduces to
d?y 2
W_(y —€)yp=0. (4.7.5)

We need to find solutions to the previous equation which are bounded at infinity: that is, solutions which satisfy the boundary
condition ¢ — 0 as |y| — oo.

Consider the behavior of the solution to Equation ([¢5.93]) in the limit |y| >> 1. As is easily seen, in this limit the equation
simplifies somewhat to give

d %
W—y%p:o. (4.7.6)

The approximate solutions to the previous equation are

P(y) ~ Ay)e™ 2, (4.7.7)

where A(y) is a relatively slowly varying function of y. Clearly, if (y) is to remain bounded as |y| — oo then we must chose the
exponentially decaying solution. This suggests that we should write

W(y) =h(y)e? (4.7.8)
where we would expect h(y) to be an algebraic, rather than an exponential, function of y.

Substituting Equation ([e5.96]) into Equation (|e5.93]), we obtain
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Let us attempt a power-law solution of the form
hy)= > cy'. (4.7.10)
1=0,00
Inserting this test solution into Equation ([e5.971), and equating the coefficients of y ¢, we obtain the recursion relation
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Consider the behavior of h(y) in the limit |y| — oo. The previous recursion relation simplifies to

2
Cit2 =~ ; C;. (4.7.12)

Hence, at large |y|, when the higher powers of y dominate, we have

hy)~C> L noer’. (4.7.13)

It follows that (y) = h(y) exp(—y2/2) varies as exp(y 2/2) as |y| — oo. This behavior is unacceptable, because it does not
satisfy the boundary condition ) — 0 as |y| — oo. The only way in which we can prevent % from blowing up as |y| — oo is to
demand that the power series ([5.98]) terminate at some finite value of 7. This implies, from the recursion relation ([e5.99]), that

e=2n+1, (4.7.14)

where n is a non-negative integer. Note that the number of terms in the power series ([5.98]) is n+ 1. Finally, using Equation
(le5.92]), we obtain

E=(n+1/2)hw, (4.7.15)
forn=0,1,2,--..

Hence, we conclude that a particle moving in a harmonic potential has quantized energy levels that are equally spaced. The spacing
between successive energy levels is hw, where w is the classical oscillation frequency. Furthermore, the lowest energy state (
n =0) possesses the finite energy (1/2)hAw. This is sometimes called zero-point energy. It is easily demonstrated that the
(normalized) wavefunction of the lowest energy state takes the form

il 4.7.16
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Let 9, () be an energy eigenstate of the harmonic oscillator corresponding to the eigenvalue
E,=(n+1/2)hw. (4.7.17)
Assuming that the 1),, are properly normalized (and real), we have
[e¢]
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Now, Equation ([e5.93]) can be written
d2
(—dy—2—|—y2) Y = (2n+1) 9y, (4.7.19)
where  =dy, and d = \/h/m w. It is helpful to define the operators

0y = % (;i +y) . (4.7.20)

As is easily demonstrated, these operators satisfy the commutation relation

[a+,a_]=—1. (4.7.21)
Using these operators, Equation ([e5.108]) can also be written in the forms
aya_ v, =niy,, (4.7.22)
or
a_ay P, =(n—+1)vY,. (4.7.23)

The previous two equations imply that
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ay Py = \/n—H Ynt1,
a-Pp =/np_1.

We conclude that @ and a_ are raising and lowering operators, respectively, for the harmonic oscillator: that is, operating on the
wavefunction with a, causes the quantum number 7 to increase by unity, and vice versa. The Hamiltonian for the harmonic
oscillator can be written in the form

H=hw <a+ a—i—%) ) (4.7.24)

from which the result
Hipn = (n+1/2) hwpn = Ep ¢y (4.7.25)
is readily deduced. Finally, Equations ([e5.107]), ([e5.113]), and ([e5.114]) yield the useful expression
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