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8.2: Infinite Spherical Potential Well
Consider a particle of mass  and energy  moving in the following simple central potential:

Clearly, the wavefunction  is only non-zero in the region . Within this region, it is subject to the physical boundary
conditions that it be well behaved (i.e., square-integrable) at , and that it be zero at . (See Section [s5.2].) Writing the
wavefunction in the standard form

we deduce (see the previous section) that the radial function  satisfies

in the region , where

Defining the scaled radial variable , the previous differential equation can

be transformed into the standard form

\[\frac{d^{\,2} R_{n,l}}{dz^{\,2}} + \frac{2}{z}\frac{dR_{n,l}}{dz} + \left[1 - \frac{l\,(l+1

)}{z^{\,2}}\right] R_{n,l} = 0.\]

The two independent solutions to this well-known second-order differential equation are called spherical Bessel functions, and can
be written

Thus, the first few spherical Bessel functions take the form

These functions are also plotted in Figure [sph]. It can be seen that the spherical Bessel functions are oscillatory in nature, passing
through zero many times. However, the  functions are badly behaved (i.e., they are not square integrable) at , whereas
the  functions are well behaved everywhere. It follows from our boundary condition at  that the  are unphysical,
and that the radial wavefunction  is thus proportional to  only. In order to satisfy the boundary condition at 
[i.e., ], the value of  must be chosen such that  corresponds to one of the zeros of . Let us denote the th
zero of  as . It follows that

for . Hence, from Equation ([e9.29]), the allowed energy levels are
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n = 1, 2, 3, …
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The first few values of  are listed in Table [tsph]. It can be seen that  is an increasing function of both  and .

The first few zeros of the spherical Bessel function .

3.142 6.283 9.425 12.566

[0.5ex] 4.493 7.725 10.904 14.066

[0.5ex] 5.763 9.095 12.323 15.515

[0.5ex] 6.988 10.417 13.698 16.924

[0.5ex] 8.183 11.705 15.040 18.301

We are now in a position to interpret the three quantum numbers— , , and —which determine the form of the wavefunction
specified in Equation ([e9.27]). As is clear from Chapter [sorb], the azimuthal quantum number  determines the number of nodes
in the wavefunction as the azimuthal angle  varies between 0 and . Thus,  corresponds to no nodes,  to a single
node,  to two nodes, et cetera. Likewise, the polar quantum number  determines the number of nodes in the wavefunction as
the polar angle  varies between 0 and . Again,  corresponds to no nodes,  to a single node, et cetera. Finally, the radial
quantum number  determines the number of nodes in the wavefunction as the radial variable  varies between 0 and  (not
counting any nodes at  or ). Thus,  corresponds to no nodes,  to a single node,  to two nodes, et
cetera. Note that, for the case of an infinite potential well, the only restrictions on the values that the various quantum numbers can
take are that  must be a positive integer,  must be a non-negative integer, and  must be an integer lying between  and . Note,
further, that the allowed energy levels ([e9.39]) only depend on the values of the quantum numbers  and . Finally, it is easily
demonstrated that the spherical Bessel functions are mutually orthogonal: that is,

when . Given that the  are mutually orthogonal (see Chapter [sorb]), this ensures that wavefunctions ([e9.27])
corresponding to distinct sets of values of the quantum numbers , , and  are mutually orthogonal.
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