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4.1: Infinite Potential Well
Consider a particle of mass  and energy  moving in the following simple potential:

It follows from Equation ([e5.2]) that if  (and, hence, ) is to remain finite then  must go to zero in regions where the
potential is infinite. Hence,  in the regions  and . Evidently, the problem is equivalent to that of a particle trapped
in a one-dimensional box of length . The boundary conditions on  in the region  are

Furthermore, it follows from Equation ([e5.2]) that  satisfies

in this region, where

Here, we are assuming that . It is easily demonstrated that there are no solutions with  which are capable of satisfying
the boundary conditions ([e5.4]).

The solution to Equation ([e5.5]), subject to the boundary conditions ([e5.4]), is

where the  are arbitrary (real) constants, and

for . Now, it can be seen from Equations ([e5.6]) and ([e5.8]) that the energy  is only allowed to take certain
discrete values: that is,

In other words, the eigenvalues of the energy operator are discrete. This is a general feature of bounded solutions: that is, solutions
for which  as . According to the discussion in Section [sstat], we expect the stationary eigenfunctions  to
satisfy the orthonormality constraint

It is easily demonstrated that this is the case, provided . Hence,

for .

Finally, again from Section [sstat], the general time-dependent solution can be written as a linear superposition of stationary
solutions:

where
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