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2.2: Plane-Waves
As we have just seen, a wave of amplitude , wavenumber , angular frequency , and phase angle , propagating in the positive 

-direction, is represented by the following wavefunction:

This type of wave is conventionally termed a one-dimensional plane-wave. It is one-dimensional because its associated
wavefunction only depends on the single Cartesian coordinate, . Furthermore, it is a plane-wave because the wave maxima, which
are located at

where  is an integer, consist of a series of parallel planes, normal to the -axis, that are equally spaced a distance  apart,
and propagate along the positive -axis at the velocity . These conclusions follow because Equation (2.2.2) can be
rewritten in the form

where . Moreover, as is well known, Equation (2.2.3) is the equation of a plane, normal to the -axis,
whose distance of closest approach to the origin is .

Figure 1: The solution of  is a plane.

The previous equation can also be written in the coordinate-free form

where  is a unit vector directed along the positive -axis, and  represents the vector displacement of a
general point from the origin. Because there is nothing special about the -direction, it follows that if  is reinterpreted as a unit
vector pointing in an arbitrary direction then Equation (2.2.4) can be reinterpreted as the general equation of a plane. As before, the
plane is normal to , and its distance of closest approach to the origin is . See Figure [f10.1]. This observation allows us to write
the three-dimensional equivalent to the wavefunction (2.2.1) as

where the constant vector  is called the wavevector. The wave represented previously is conventionally
termed a three-dimensional plane-wave. It is three-dimensional because its wavefunction, , depends on all three Cartesian
coordinates. Moreover, it is a plane-wave because the wave maxima are located at

or
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where , and . Note that the wavenumber, , is the magnitude of the wavevector, : that is, . It follows,
by comparison with Equation (2.2.4), that the wave maxima consist of a series of parallel planes, normal to the wavevector, that are
equally spaced a distance  apart, and that propagate in the -direction at the velocity . See Figure [f10.2]. Hence, the direction of
the wavevector specifies the wave propagation direction, whereas its magnitude determines the wavenumber, , and, thus, the
wavelength, .

Figure 2: Wave maxima associated with a three-dimensional plane wave.
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n ⋅ r = (j−φ/2π)λ+v t, (2.2.7)
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