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14.6: Hard-Sphere Scattering
Let us test out this scheme using a particularly simple example. Consider scattering by a hard sphere, for which the potential is
infinite for , and zero for . It follows that  is zero in the region , which implies that  for all . Thus,

for all . Equation ([e17.82]) thus gives

Consider the  partial wave, which is usually referred to as the -wave. Equation ([e17.90]) yields

where use has been made of Equations ([e17.58a]) and ([e17.58b]). It follows that

The -wave radial wave function is [see Equation ([e17.80])]

The corresponding radial wavefunction for the incident wave takes the form [see Equation ([e15.49])]

Thus, the actual  radial wavefunction is similar to the incident  wavefunction, except that it is phase-shifted by .

Let us examine the low- and high-energy asymptotic limits of . Low energy implies that . In this regime, the
spherical Bessel functions reduce to:

where . It follows that

It is clear that we can neglect , with , with respect to . In other words, at low energy, only -wave scattering (i.e.,
spherically symmetric scattering) is important. It follows from Equations ([e15.17]), ([e17.73]), and ([e17.92]) that

for . Note that the total cross-section

is four times the geometric cross-section  (i.e., the cross-section for classical particles bouncing off a hard sphere of radius ).
However, low energy scattering implies relatively long wavelengths, so we would not expect to obtain the classical result in this
limit.
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Consider the high-energy limit . At high energies, all partial waves up to  contribute significantly to the
scattering cross-section. It follows from Equation ([e17.75]) that

With so many  values contributing, it is legitimate to replace  by its average value . Thus,

This is twice the classical result, which is somewhat surprising, because we might expect to obtain the classical result in the short-
wavelength limit. For hard-sphere scattering, incident waves with impact parameters less than  must be deflected. However, in
order to produce a “shadow” behind the sphere, there must also be some scattering in the forward direction in order to produce
destructive interference with the incident plane-wave. (Recall the optical theorem.) In fact, the interference is not completely
destructive, and the shadow has a bright spot (the so-called “Poisson spot” ) in the forward direction. The effective cross-section
associated with this bright spot is  which, when combined with the cross-section for classical reflection, , gives the actual
cross-section of .
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