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14.2: Born Approximation
Equation ([e15.17]) is not particularly useful, as it stands, because the quantity  depends on the, as yet, unknown
wavefunction . [See Equation ([e5.12]).] Suppose, however, that the scattering is not particularly strong. In this case, it is
reasonable to suppose that the total wavefunction, , does not differ substantially from the incident wavefunction, . Thus,
we can obtain an expression for  by making the substitution  in Equation ([e5.12]). This
procedure is called the Born approximation .

The Born approximation yields

Thus,  becomes proportional to the Fourier transform of the scattering potential  with respect to the wavevector 
.

For a spherically symmetric potential,

giving

Note that  is just a function of  for a spherically symmetric potential. It is easily demonstrated that

where  is the angle subtended between the vectors  and . In other words,  is the scattering angle. Recall that the vectors  and
 have the same length, via energy conservation.

Consider scattering by a Yukawa potential ,

where  is a constant, and  measures the “range” of the potential. It follows from Equation ([e17.38]) that

because

Thus, in the Born approximation, the differential cross-section for scattering by a Yukawa potential is

given that

The Yukawa potential reduces to the familiar Coulomb potential as , provided that . In this limit,
the Born differential cross-section becomes

Recall that  is equivalent to , so the previous equation can be rewritten
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where  is the kinetic energy of the incident particles. Of course, Equation ([e17.46]) is identical to the famous
Rutherford scattering cross-section formula of classical physics .

The Born approximation is valid provided that  is not too different from  in the scattering region. It follows, from
Equation ([e15.9]), that the condition for  in the vicinity of  is

Consider the special case of the Yukawa potential. At low energies, (i.e., ) we can replace  by unity, giving

as the condition for the validity of the Born approximation. The condition for the Yukawa potential to develop a bound state is

where  is negative . Thus, if the potential is strong enough to form a bound state then the Born approximation is likely to break
down. In the high-  limit, Equation ([e17.47]) yields

This inequality becomes progressively easier to satisfy as  increases, implying that the Born approximation is more accurate at
high incident particle energies.
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