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8.E: Central Potentials (Exercises)
1. A particle of mass  is placed in a finite spherical well:

with  and . Find the ground-state by solving the radial equation with . Show that there is no ground-state if 
.

2. Consider a particle of mass  in the three-dimensional harmonic oscillator potential . Solve the
problem by separation of variables in spherical coordinates, and, hence, determine the energy eigenvalues of the system.

3. The normalized wavefunction for the ground-state of a hydrogen-like atom (neutral hydrogen, , , et cetera.) with
nuclear charge  has the form

where  and  are constants, and  is the distance between the nucleus and the electron. Show the following:
1. .
2. , where .
3. The energy is  where .
4. The expectation values of the potential and kinetic energies are  and , respectively.
5. The expectation value of  is .
6. The most probable value of  is .

4. An atom of tritium is in its ground-state. Suddenly the nucleus decays into a helium nucleus, via the emission of a fast electron
that leaves the atom without perturbing the extranuclear electron, Find the probability that the resulting  ion will be left in
an ,  state. Find the probability that it will be left in a ,  state. What is the probability that the ion will be
left in an  state?

5. Calculate the wavelengths of the photons emitted from the ,  to ,  transition in hydrogen, deuterium, and
positronium.

6. To conserve linear momentum, an atom emitting a photon must recoil, which means that not all of the energy made available in
the downward jump goes to the photon. Find a hydrogen atom’s recoil energy when it emits a photon in an  to 
transition. What fraction of the transition energy is the recoil energy?
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