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2.4: Classical Light-Waves
Consider a classical, monochromatic, linearly-polarized, plane light-wave, propagating through a vacuum in the -direction. It is
convenient to characterize a light-wave (which is, of course, a type of electromagnetic wave) by specifying its associated electric
field. Suppose that the wave is polarized such that this electric field oscillates in the -direction. (According to standard
electromagnetic theory, the magnetic field oscillates in the -direction, in phase with the electric field, with an amplitude which is
that of the electric field divided by the velocity of light in vacuum. ) Now, the electric field can be conveniently represented in
terms of a complex wavefunction:

Here, ,  and  are real parameters, and  is a complex wave amplitude. By convention, the physical electric field is the
real part of the previous expression. Suppose that

where  is real. It follows that the physical electric field takes the form

where  is the amplitude of the electric oscillation,  the wavenumber,  the angular frequency, and  the phase angle. In
addition,  is the wavelength, and  the frequency (in hertz).

According to standard electromagnetic theory , the frequency and wavelength of light-waves are related according to the well-
known expression

or, equivalently,

where  is the velocity of light in vacuum. Equations (2.4.3) and (2.4.5) yield

Note that  depends on  and  only via the combination . It follows that the wave maxima and minima satisfy

Thus, the wave maxima and minima propagate in the -direction at the fixed velocity

An expression, such as Equation (2.4.5), that determines the wave angular frequency as a function of the wavenumber, is generally
termed a dispersion relation. As we have already seen, and as is apparent from Equation (2.4.6), the maxima and minima of a
plane-wave propagate at the characteristic velocity

which is known as the phase-velocity. Hence, the dispersion relation (2.4.5) is effectively saying that the phase-velocity of a plane
light-wave, propagating through a vacuum, always takes the fixed value , irrespective of its wavelength or frequency.

From standard electromagnetic theory , the energy density (i.e., the energy per unit volume) of a plane light-wave is

where  is the electrical permittivity of free space. Hence, it follows from Equations (2.4.1) and (2.4.3) that
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Furthermore, a light-wave possesses linear momentum, as well as energy. This momentum is directed along the wave’s direction of
propagation, and is of density
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