
3.9.1 https://phys.libretexts.org/@go/page/15883

3.9: Measurement
Suppose that  is an Hermitian operator corresponding to some dynamical variable. By analogy with the discussion in Section
[scoll], we expect that if a measurement of  yields the result  then the act of measurement will cause the wavefunction to
collapse to a state in which a measurement of  is bound to give the result . What sort of wavefunction, , is such that a
measurement of  is bound to yield a certain result, ? Well, expressing  as a linear combination of the eigenstates of , we have

where  is an eigenstate of  corresponding to the eigenvalue . If a measurement of  is bound to yield the result  then

and

Now, it is easily seen that

Thus, Equation ([e4.130]) gives

Furthermore, the normalization condition yields

For instance, suppose that there are only two eigenstates. The previous two equations then reduce to , and ,
where , and

The only solutions are  and . This result can easily be generalized to the case where there are more than two
eigenstates. It follows that a state associated with a definite value of  is one in which one of the  is unity, and all of the others
are zero. In other words, the only states associated with definite values of  are the eigenstates of . It immediately follows that
the result of a measurement of  must be one of the eigenvalues of . Moreover, if a general wavefunction is expanded as a linear
combination of the eigenstates of , like in Equation ([e4.128]), then it is clear from Equation ([e4.131]), and the general definition
of a mean, that the probability of a measurement of  yielding the eigenvalue  is simply , where  is the coefficient in front
of the th eigenstate in the expansion. Note, from Equation ([e4.134]), that these probabilities are properly normalized: that is, the
probability of a measurement of  resulting in any possible answer is unity. Finally, if a measurement of  results in the
eigenvalue  then immediately after the measurement the system will be left in the eigenstate corresponding to .

Consider two physical dynamical variables represented by the two Hermitian operators  and . Under what circumstances is it
possible to simultaneously measure these two variables (exactly)? Well, the possible results of measurements of  and  are the
eigenvalues of  and , respectively. Thus, to simultaneously measure  and  (exactly) there must exist states which are
simultaneous eigenstates of  and . In fact, in order for  and  to be simultaneously measurable under all circumstances, we
need all of the eigenstates of  to also be eigenstates of , and vice versa, so that all states associated with unique values of  are
also associated with unique values of , and vice versa.

Now, we have already seen, in Section 1.8, that if  and  do not commute (i.e., if ) then they cannot be
simultaneously measured. This suggests that the condition for simultaneous measurement is that  and  should commute.
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Suppose that this is the case, and that the  and  are the normalized eigenstates and eigenvalues of , respectively. It follows
that

or

Thus,  is an eigenstate of  corresponding to the eigenvalue  (though not necessarily a normalized one). In other words, 
, or

where  is a constant of proportionality. Hence,  is an eigenstate of , and, thus, a simultaneous eigenstate of  and . We
conclude that if  and  commute then they possess simultaneous eigenstates, and are thus simultaneously measurable (exactly).

Continuous Eigenvalues
In the previous two sections, it was tacitly assumed that we were dealing with operators possessing discrete eigenvalues and
square-integrable eigenstates. Unfortunately, some operators—most notably,  and —possess eigenvalues that lie in a continuous
range and non-square-integrable eigenstates (in fact, these two properties go hand in hand). Let us, therefore, investigate the
eigenstates and eigenvalues of the displacement and momentum operators.

Let  be the eigenstate of  corresponding to the eigenvalue . It follows that

for all . Consider the Dirac delta-function . We can write

because  is only non-zero infinitesimally close to . Evidently,  is proportional to . Let us make
the constant of proportionality unity, so that

It is easily demonstrated that

Hence,  satisfies the orthonormality condition

This condition is analogous to the orthonormality condition ([e3.125]) satisfied by square-integrable eigenstates. Now, by
definition,  satisfies

where  is a general function. We can thus write

where , or

In other words, we can expand a general wavefunction  as a linear combination of the eigenstates, , of the
displacement operator. Equations ([e4.144]) and ([e4.145]) are analogous to Equations ([e3.123]) and ([e3.126]), respectively, for
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square-integrable eigenstates. Finally, by analogy with the results in Section 1.9, the probability density of a measurement of 
yielding the value  is , which is equivalent to the standard result . Moreover, these probabilities are properly
normalized provided  is properly normalized [cf., Equation ([e3.127])]: that is,

Finally, if a measurement of  yields the value  then the system is left in the corresponding displacement eigenstate, ,
immediately after the measurement. That is, the wavefunction collapses to a “spike-function”, , as discussed in Section
[scoll].

Now, an eigenstate of the momentum operator  corresponding to the eigenvalue  satisfies

It is evident that

We require  to satisfy an analogous orthonormality condition to Equation ([e4.143]): that is,

Thus, it follows from Equation ([e3.72]) that the constant of proportionality in Equation ([e4.148]) should be : that is,

Furthermore, according to Equations ([e3.64]) and ([e3.65]),

where  [see Equation ([e3.65])], or

In other words, we can expand a general wavefunction  as a linear combination of the eigenstates, , of the
momentum operator. Equations ([e4.152]) and ([e4.153]) are again analogous to Equations ([e3.123]) and ([e3.126]), respectively,
for square-integrable eigenstates. Likewise, the probability density of a measurement of  yielding the result  is , which is
equivalent to the standard result . The probabilities are also properly normalized provided  is properly normalized
[cf., Equation ([e3.83])]: that is,

Finally, if a mesurement of  yields the value  then the system is left in the corresponding momentum eigenstate, ,
immediately after the measurement.
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