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6.1: Fundamental Concepts
We have seen that in one dimension the instantaneous state of a single non-relativistic particle is fully specified by a complex
wavefunction, . The probability of finding the particle at time  between  and  is , where

Moreover, the wavefunction is normalized such that

at all times.

In three dimensions, the instantaneous state of a single particle is also fully specified by a complex wavefunction, . By
analogy with the one-dimensional case, the probability of finding the particle at time  between  and , between  and 

, and between  and , is , where

As usual, this interpretation of the wavefunction only makes sense if the wavefunction is normalized such that

This normalization constraint ensures that the probability of finding the particle anywhere is space is always unity.

In one dimension, we can write the probability conservation equation (see Section [s4.5])

where

is the flux of probability along the -axis. Integrating Equation ([e6.5]) over all space, and making use of the fact that  as 
 if  is to be square-integrable, we obtain

In other words, if the wavefunction is initially normalized then it stays normalized as time progresses. This is a necessary criterion
for the viability of our basic interpretation of  as a probability density.

In three dimensions, by analogy with the one dimensional case, the probability conservation equation becomes

Here,

is the flux of probability along the -axis, and

the flux of probability along the -axis, et cetera. Integrating Equation ([e6.8]) over all space, and making use of the fact that 
 as  if  is to be square-integrable, we obtain
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Thus, the normalization of the wavefunction is again preserved as time progresses, as must be the case if  is to be interpreted
as a probability density.

In one dimension, position is represented by the algebraic operator , whereas momentum is represented by the differential
operator . (See Section [s4.6].) By analogy, in three dimensions, the Cartesian coordinates , , and  are represented by
the algebraic operators , , and , respectively, whereas the three Cartesian components of momentum, , , and , have the
following representations:

Let , , , and , et cetera. Because the  are independent variables (i.e., ), we conclude
that the various position and momentum operators satisfy the following commutation relations:

Now, we know, from Section [smeas], that two dynamical variables can only be (exactly) measured simultaneously if the operators
that represent them in quantum mechanics commute with one another. Thus, it is clear, from the previous commutation relations,
that the only restriction on measurement in a system consisting of a single particle moving in three dimensions is that it is
impossible to simultaneously measure a given position coordinate and the corresponding component of momentum. Note, however,
that it is perfectly possible to simultaneously measure two different positions coordinates, or two different components of the
momentum. The commutation relations ([commxx])–([commxp]) again illustrate the point that quantum mechanical operators
corresponding to different degrees of freedom of a dynamical system (in this case, motion in different directions) tend to commute
with one another. (See Section [sfuncon].)

In one dimension, the time evolution of the wavefunction is given by [see Equation ([etimed])]

where  is the Hamiltonian. The same equation governs the time evolution of the wavefunction in three dimensions.

Now, in one dimension, the Hamiltonian of a non-relativistic particle of mass  takes the form

where  is the potential energy. In three dimensions, this expression generalizes to

Hence, making use of Equations ([e6.12])–([e6.14]) and ([e6.15]), the three-dimensional version of the time-dependent
Schröndiger equation becomes [see Equation ([e3.1])]
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is known as the Laplacian. Incidentally, the probability conservation equation ([e6.8]) is easily derivable from Equation ([esh3d]).
An eigenstate of the Hamiltonian corresponding to the eigenvalue  satisfies

It follows from Equation ([e6.15]) that (see Section [sstat])

where the stationary wavefunction  satisfies the three-dimensional version of the time-independent Schröndiger equation
[see Equation ([etimeii])]:

where  is assumed not to depend explicitly on .

Contributors and Attributions
Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

This page titled 6.1: Fundamental Concepts is shared under a not declared license and was authored, remixed, and/or curated by Richard
Fitzpatrick.

E

H ψ = Eψ. (6.1.17)

ψ(x, y, z, t) = ψ(x, y, z) ,e−i E t/ℏ (6.1.18)

ψ(x, y, z)

ψ = (V −E)ψ,∇ 2 2 m

ℏ 2
(6.1.19)

V t

https://libretexts.org/
https://phys.libretexts.org/@go/page/15757?pdf
http://farside.ph.utexas.edu/
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/06%3A_Three-Dimensional_Quantum_Mechanics/6.01%3A_Fundamental_Concepts
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/06%3A_Three-Dimensional_Quantum_Mechanics/6.01%3A_Fundamental_Concepts?no-cache
http://farside.ph.utexas.edu/

