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4.5: Alpha Decay
Many types of heavy atomic nucleus spontaneously decay to produce daughter nucleii via the emission of -particles (i.e., helium
nucleii) of some characteristic energy. This process is know as -decay. Let us investigate the -decay of a particular type of
atomic nucleus of radius , charge-number , and mass-number . Such a nucleus thus decays to produce a daughter nucleus of
charge-number  and mass-number , and an -particle of charge-number  and mass-number 

. Let the characteristic energy of the -particle be . Incidentally, nuclear radii are found to satisfy the empirical formula

for .

In 1928, George Gamow proposed a very successful theory of -decay, according to which the -particle moves freely inside the
nucleus, and is emitted after tunneling through the potential barrier between itself and the daughter nucleus . In other words, the -
particle, whose energy is , is trapped in a potential well of radius  by the potential barrier

for .

Making use of the WKB approximation (and neglecting the fact that  is a radial, rather than a Cartesian, coordinate), the
probability of the -particle tunneling through the barrier is

where  and . Here,  is the -particle mass. The previous expression reduces to

where

is a dimensionless constant, and

is the characteristic energy the -particle would need in order to escape from the nucleus without tunneling. Of course, . It
is easily demonstrated that

when . Hence.

Now, the -particle moves inside the nucleus with the characteristic velocity . It follows that the particle bounces
backward and forward within the nucleus at the frequency , giving

for a 1 MeV -particle trapped inside a typical heavy nucleus of radius  m. Thus, the -particle effectively attempts to tunnel
through the potential barrier  times a second. If each of these attempts has a probability  of succeeding then the probability of
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decay per unit time is . Hence, if there are  undecayed nuclii at time  then there are only  at time ,
where

This expression can be integrated to give

Now, the half-life, , is defined as the time which must elapse in order for half of the nuclii originally present to decay. It follows
from the previous formula that

Note that the half-life is independent of .

Finally, making use of the previous results, we obtain

where

Figure 15: The experimentally determined half-life,  of various atomic nucleii which decay via  emission versus the best-fit
theoretical half-life . Both half-lives are measured in years. Here, .
Both half-lives are measured in years. Here,  is the charge number of the nucleus, and  the characteristic
energy of the emitted -particle in MeV. In order of increasing half-life, the points correspond to the following nucleii: Rn 215, Po
214, Po 216, Po 197, Fm 250, Ac 225, U 230, U 232, U 234, Gd 150, U 236, U 238, Pt 190, Gd 152, Nd 144. Data obtained from
IAEA Nuclear Data Centre.

Equation ([e5.64]) is known as the Geiger-Nuttall formula, because it was discovered empirically by H. Geiger and J.M. Nuttall in
1911 .
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The half-life, , the daughter charge-number, , and the -particle energy, , for atomic nucleii which undergo -decay
are indeed found to satisfy a relationship of the form ([e5.64]). The best fit to the data (see Figure [fal]) is obtained using

Note that these values are remarkably similar to those calculated previously.
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