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8.3: Hydrogen Atom

A hydrogen atom consists of an electron, of charge —e and mass m,, and a proton, of charge +e and mass m,, moving in the
Coulomb potential

e?

V(r)=— (8.3.1)

4meg|r|’

where r is the position vector of the electron with respect to the proton. Now, according to the analysis in Section [stwo], this two-
body problem can be converted into an equivalent one-body problem. In the latter problem, a particle of mass

Me My

p= ety (8.3.2)
moves in the central potential
e?
V(r)=-— Ireor (8.3.3)

Note, however, that because m, / my, ~1 /1836 the difference between m, and y is very small. Hence, in the following, we shall
write neglect this difference entirely.

Writing the wavefunction in the usual form,
¢(7"7 6, ¢) = Rn,l("") Yl,m(oa ¢)’ (8'3'4)

it follows from Section 1.2 that the radial function R,, ;(r) satisfies

B2 [d2  2d L(I+1 2
Rl e L

dr?2 rdr r2

. /2mh(2_E) :\/%00, (8.3.6)

where Ey and ag are defined in Equations ([¢9.56]) and ([€9.57]), respectively. Here, it is assumed that E < 0, because we are
only interested in bound-states of the hydrogen atom. The previous differential equation transforms to

2m, Admegr

+E) R, =0. (8.3.5)

Let r = a z, with

d? 2d l(1+1) ¢
S A ST A Y | = 3.
[dz2+zdz =2 +z ]Rn,z 0, (8.3.7)
where
2me.ae? E,
= =2,/—. 8.3.8
4meg b2 E ( )

Suppose that R, ;(r) = Z(r/a) exp(—r/a)/(r/a). It follows that

d? d ll+1) ¢
{@_25_ — +;]Z_0. (8.3.9)

We now need to solve the previous differential equation in the domain z =0 to z = co, subject to the constraint that R, ;(r) be
square-integrable.

Let us look for a power-law solution of the form
Z(z):chzk. (8.3.10)
k

Substituting this solution into Equation ([¢9.48]), we obtain

ch {k(k—1)2"? —2kz""—1(1+1) 2" 2 +¢2* '} =0. (8.3.11)
7z
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Equating the coefficients of z*~2 gives the recursion relation
ek [k(k—=1)—1(1+1)])=cx1 [2(k—1)—(]. (8.3.12)

Now, the power series ([€9.49]) must terminate at small k, at some positive value of k, otherwise Z(z) behaves unphysically as

z— 0 [ie., it yields an R, ;(r) that is not square integrable as 7 — 0]. From the previous recursion relation, this is only possible if

[Fmin (kmin —1) =1 ({+1)] =0 , where the first term in the series is ¢y, zFwin There are two possibilities: kmi, = —I or

kmin =1+1. However, the former possibility predicts unphysical behavior of Z(z) at z=0. Thus, we conclude that
Fmin = [ +1 . Note that, because R, ;(r) ~ Z(r/a)/(r/a) ~ (r/a)' at small r, there is a finite probability of finding the electron
at the nucleus for an ! =0 state, whereas there is zero probability of finding the electron at the nucleus for an [ > 0 state [i.e.,

2
|¥|“ =0 atr =0, except when ! =0].

For large values of z, the ratio of successive coefficients in the power series ([€9.49]) is

Cp 2

==, 8.3.13
P ( )
according to Equation ([e9.51]). This is the same as the ratio of successive coefficients in the power series
(22)*
3y o (8.3.14)

k

which converges to exp(2z). We conclude that Z(z) —exp(2z) as z—oo. It thus follows that
R, (r) ~ Z(r/a) exp(—r/a)/(r/a) — exp(r/a)/(r/a) as r — oco. This does not correspond to physically acceptable behavior
of the wavefunction, because [ \1/J|2 dV must be finite. The only way in which we can avoid this unphysical behavior is if the
power series ([€9.49]) terminates at some maximum value of k. According to the recursion relation ([e9.51]), this is only possible if

5 :n’ (8.3-15)

where n is an integer, and the last term in the series is ¢, z ™. Because the first term in the series is ¢;11 2 1 it follows that n must
be greater than I, otherwise there are no terms in the series at all. Finally, it is clear from Equations ([e9.45]), ([€9.47]), and
(1e9.54]) that

E= — (8.3.16)
and
a=mnag, (8.3.17)
where
mee? e?
Ey=— =— =-13.6eV 8.3.18
0 2 (4mep)? h2 87 ey ag ’ ( )
and
Ameg B2
=22 =53x10 ' m. (8.3.19)
Me €

Here, E) is the energy of so-called ground-state (or lowest energy state) of the hydrogen atom, and the length ag is known as the
Bohr radius. Note that |Eg| ~ a?m, c2, where a =e? /(4w ey hc) ~1/137 is the dimensionless fine-structure constant. The
fact that | Ey| < m, c? is the ultimate justification for our non-relativistic treatment of the hydrogen atom.

We conclude that the wavefunction of a hydrogen atom takes the form
'd)n,l,m(ra 07 ¢) = Rn,l(r) le,m(07 ¢) (8320)

Here, the Y} ,,(6, ¢) are the spherical harmonics (see Section [sharm]), and Ry, ;(z =r/a) is the solution of

1 d ,d 10+1) 2n
2 T 2 R, = 3.21
z2 dzz dz 22 + 2 Ry =0 (8.3.21)
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which varies as z ! at small z. Furthermore, the quantum numbers n, [, and m can only take values that satisfy the inequality

Im| <l<mn,
where n is a positive integer, [ a non-negative integer, and m an integer.

We expect the stationary states of the hydrogen atom to be orthonormal: that is,

/7/);/ U m! 'l/"n,l,m dVv = (Snn’ 61[’ 5mm’a

(8.3.22)

(8.3.23)

where dV is a volume element, and the integral is over all space. Of course, dV = r2drdf2, where df2 is an element of solid
angle. Moreover, we already know that the spherical harmonics are orthonormal [see Equation ([sphol)]: that is,

fiflr:km, Y;,m a2 = 611’ ‘Smm’ .

It, thus, follows that the radial wavefunction satisfies the orthonormality constraint

o0
/ Ry Royr?dr =6y
0

The first few radial wavefunctions for the hydrogen atom are listed below:

- L)
Ryo(r) = @;W <1 - 2L(10) exp(—LaO),
Rso(r) = (?;cjm (1 — 32—(:0 + 2277*(1202) exp(—3LaO>,

Roa(r) = —2Y2_ T (1—L) exp(—3L>,

9(3a9)%/2 ag

)~ ) (75

These functions are illustrated in Figures [coull] and [coul2].

(8.3.24)

(8.3.25)
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Figure 21: The agr?|R,, (r)|* plotted as a functions of r/aq. The solid, short-dashed, and long-dashed curves correspond to

n,l=1,0, and 2,0, and 2, 1, respectively.
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Figure 22: The oz07"2|Rn,l(7")|2 plotted as a functions of r/ay.The solid, short-dashed, and long-dashed curves correspond to

n,1=3,0, and 3,1, and 3, 2, respectively.

Given the (properly normalized) hydrogen wavefunction ([¢9.59]), plus our interpretation of |1| Zasa probability density, we can
calculate
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= [ R (8.3.26)
0

where the angle-brackets denote an expectation value. For instance, it can be demonstrated (after much tedious algebra) that

2,2
ag n

[Bn?4+1-31(1+1)],

(r) = 130" —1(1+1)),

(=) =T

() =T
r3/  1(1+1/2)(1+1)n3ad "’

According to Equation ([e9.55]), the energy levels of the bound-states of a hydrogen atom only depend on the radial quantum
number 7. It turns out that this is a special property of a 1/ potential. For a general central potential, V(r), the quantized energy
levels of a bound-state depend on both n and [. (See Section 1.3.)

The fact that the energy levels of a hydrogen atom only depend on n, and not on ! and m, implies that the energy spectrum of a
hydrogen atom is highly degenerate: that is, there are many different states which possess the same energy. According to the
inequality ([€9.61]) (and the fact that n, [, and m are integers), for a given value of [, there are 2 [+ 1 different allowed values of
m (e, —l,—l+1,---,1—1,1). Likewise, for a given value of n, there are n different allowed values of [ (i.e., 0,1,---,n —1).
Now, all states possessing the same value of n have the same energy (i.e., they are degenerate). Hence, the total number of
degenerate states corresponding to a given value of n is

143+45+--+2(n—1)+1=n2 (8.3.27)

Thus, the ground-state (n = 1) is not degenerate, the first excited state (n = 2) is four-fold degenerate, the second excited state (
n = 3) is nine-fold degenerate, et cetera (Actually, when we take into account the two spin states of an electron, the degeneracy of
the nth energy level becomes 2 n.2.)
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