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12.2: Two-State System
Consider a system in which the time-independent Hamiltonian possesses two eigenstates, denoted

Suppose, for the sake of simplicity, that the diagonal elements of the interaction Hamiltonian, , are zero: that is,

The off-diagonal elements are assumed to oscillate sinusoidally at some frequency : that is,

where  and  are real. Note that it is only the off-diagonal matrix elements which give rise to the effect which we are interested in:
namely, transitions between states 1 and 2.

For a two-state system, Equation ([e13.12]) reduces to

where . The previous two equations can be combined to give a second-order differential equation for the time-
variation of the amplitude : that is,

Once we have solved for , we can use Equation ([e13.20]) to obtain the amplitude . Let us search for a solution in which the
system is certain to be in state 1 (and, thus, has no chance of being in state 2) at time . Thus, our initial conditions are 

 and . It is easily demonstrated that the appropriate solutions to ([e13.21]) and ([e13.20]) are

where

Now, the probability of finding the system in state 1 at time  is simply . Likewise, the probability of finding the
system in state 2 at time  is . It follows that

This result is known as Rabi’s formula .

Equation ([e13.25]) exhibits all the features of a classic resonance . At resonance, when the oscillation frequency of the
perturbation, , matches the frequency , we find that
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According to the previous result, the system starts off in state 1 at . After a time interval  it is certain to be in state 2.
After a further time interval  it is certain to be in state 1 again, and so on. Thus, the system periodically flip-flops between
states 1 and 2 under the influence of the time-dependent perturbation. This implies that the system alternatively absorbs and emits
energy from the source of the perturbation.

The absorption-emission cycle also takes place away from the resonance, when . However, the amplitude of the oscillation
in the coefficient  is reduced. This means that the maximum value of  is no longer unity, nor is the minimum of  zero.
In fact, if we plot the maximum value of  as a function of the applied frequency, , then we obtain a resonance curve whose
maximum (unity) lies at the resonance, and whose full-width half-maximum (in frequency) is . Thus, if the applied frequency
differs from the resonant frequency by substantially more than  then the probability of the system jumping from state 1 to state 2
is always very small. In other words, the time-dependent perturbation is only effective at causing transitions between states 1 and 2
if its frequency of oscillation lies in the approximate range . Clearly, the weaker the perturbation (i.e., the smaller 
becomes), the narrower the resonance.
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