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13.3: Hydrogen Molecule Ilon

The hydrogen molecule ion consists of an electron orbiting about two protons, and is the simplest imaginable molecule. Let us
investigate whether or not this molecule possesses a bound state: that is, whether or not it possesses a ground-state whose energy is
less than that of a hydrogen atom and a free proton. According to the variation principle, we can deduce that the H; ion has a
bound state if we can find any trial wavefunction for which the total Hamiltonian of the system has an expectation value less than
that of a hydrogen atom and a free proton.
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Figure 26: The hydrogen molecule ion.

Suppose that the two protons are separated by a distance R. In fact, let them lie on the z-axis, with the first at the origin, and the
second at z = R. See Figure [fh2p]. In the following, we shall treat the protons as essentially stationary. This is reasonable because
the electron moves far more rapidly than the protons. Incidentally, the neglect of nuclear motion when calculating the electronic
energy of the molecule is known as the Born-Oppenheimer approximation.

Let us try

P(r)e = Aftho(r1) £ eho(r2)] (13.3.1)
as our trial wavefunction, where
_r
vra)'?

is a normalized hydrogen ground-state wavefunction centered on the origin, and ry » are the position vectors of the electron with
respect to each of the protons. See Figure [fh2p]. Obviously, this is a very simplistic wavefunction, because it is just a linear
combination of hydrogen ground-state wavefunctions centered on each proton . Note, however, that the wavefunction respects the
obvious symmetries in the problem.

o(r) = e/ (13.3.2)

Our first task is to normalize our trial wavefunction. We require that

/|¢i|2d3r= 1. (13.3.3)
Hence, from Equation ([e14.57]), A=1 -1/2 , where
1= [ [[oten) 1+ Foo(e2) * £ 2400 ¥ia)] (13.8.4
It follows that
I=2(1+J), (13.3.5)

13.3.1 https://phys.libretexts.org/@go/page/15808



https://libretexts.org/
https://phys.libretexts.org/@go/page/15808?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/13%3A_Variational_Methods/13.03%3A_Hydrogen_Molecule_Ion

LibreTextsm

with
J= /¢0(r1)¢0(r2)d3r. (13.3.6)

Let us employ the standard spherical coordinates ( 7, 6, ¢). Now, it is easily seen that 7 =7 and
ry=(r?+R?—27R cosf)'/? . Hence,

J:2/ /exp[—w—(a:2+X2—2chos9)1/2]xzda;sinedo, (13.3.7)
0 0

where X = R/aq. Here, we have already performed the trivial ¢ integral. Let y = (22 4+ X 2 —2z X cos6)'/2 . It follows that
d(y%) =2ydy =2z X sinfdf, giving

N 24X 222X cos 6)Y/? 1 o
/e(’”+ 22X csO) " Gnpdh = — e Yydy
0 rX |z—X]|
1
== [e—<w+X> A+z+X)—e X (142 —X|)] .
Thus,
9 X
I =g [Tt X ) -1 X o) de
0

2 o0
- / e_“[e_X(l—i—X—i—a:)—eX(l—X—i—m)]mdac,
X Jx

which evaluates to

X3
J=eX (1 +X+T>. (13.3.8)
Now, the Hamiltonian of the electron is written
h? e? /1 1
H=— 2_ - (=4 =). 13.3.9
2mev 471'60(7‘1+7‘2> ( )
Note, however, that
h 2 ) 62
_ - =F 13.3.1
( oy \4 Ir e 7'1,2) Yo (r1,2) = Eo ¥o(r1,2), (13.3.10)

because 9 (r1 2) are hydrogen ground-state wavefunctions. It follows that

2 2
s =a[-f v (2 ) e £t
B e? Yo(r1) | to(rz)
=Eoy-4 (471'60) [ o = 1 ]
Hence,
(H) = Ey +4 A? (D+E) Ey, (13.3.11)
where
D:<1/10(I‘1) @ ¢o(rl)>,
T
E:<¢o<r1) o ¢o(r2)>.
1
Now,
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o) L -2z
D:2/ / ° 2% dz sin0do, (13.3.12)
o Jo (z24+X2—-2zX cosh)l/2
which reduces to
4 X o)
D:—/ e’2zw2dm+4/ e 2% rdr, (13.3.13)
X Jo b'e
giving
1
D= Y(l —[1+X]e2¥). (13.3.14)
Furthermore,
E:2/ / exp[fmf(m2+X272acX c056)1/2] x dz sinfdo, (13.3.15)
0o Jo
which reduces to
2 X
E :—Xe’X/ [e?*(1+X+z)—(1+X—z)|do
0
_3 = 2z [ —X X _
e e (1+X+z)—e (1-X+a)|da,
X Jx
yielding
E=(1+X)e ™. (13.3.16)
Our expression for the expectation value of the electron Hamiltonian is
(D+E)
H)y=|142—| E 13.3.17
() = 14277 B (13.3.17)

where J, D, and E are specified as functions of X = R/aq in Equations ([e14.66]), ([e14.75]), and ([e14.78]), respectively. In
order to obtain the total energy of the molecule, we must add to this the potential energy of the two protons. Thus,

e? 2
E =(H =(H)— = E 13.3.1
ot = (H) + - = (H) 5 B, (13.3.18)
because Ey = —e 2 /(8 €p ag). Hence, we can write
Eiotal = —F4(R/ay) Ey, (13.3.19)

where Ej is the hydrogen ground-state energy, and

2 (1+X)e2X+(1-2X2/3)e X
F(X)=-1+= . 13.3.20
wX) =1+ 1+(1+X+X2/3)eX ( )

The functions F'; (X) and F_(X) are both plotted in Figure [fh2pa]. Recall that in order for the H, ion to be in a bound state it
must have a lower energy than a hydrogen atom and a free proton: that is, Eyota1 < Eg . It follows from Equation ([e14.81]) that a
bound state corresponds to F. < —1. Clearly, the even trial wavefunction 1), possesses a bound state, whereas the odd trial
wavefunction 1_ does not. [See Equation ([e14.57]).] This is hardly surprising, because the even wavefunction maximizes the
electron probability density between the two protons, thereby reducing their mutual electrostatic repulsion. On the other hand, the
odd wavefunction does exactly the opposite. The binding energy of the H," ion is defined as the difference between its energy and
that of a hydrogen atom and a free proton: that is,

Bhinda = Etota1 — Ey = —(F+ +1) Ep. (13.3.21)

According to the variational principle, the binding energy is less than or equal to the minimum binding energy that can be inferred
from Figure [fh2pa]. This minimum occurs when X ~ 2.5 and F'; ~ —1.13. Thus, our estimates for the separation between the
two protons, and the binding energy, for the H; jon are R=2.5ap=1.33x10"%m and Ey,q =0.13 E; =—1.77 €V,
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respectively. The experimentally determined values are R =1.06 x 107! m, and Ej;,q = —2.8 eV, respectively . Clearly, our
estimates are not particularly accurate. However, our calculation does establish, beyond any doubt, the existence of a bound state of
the H2+ ion, which is all that we set out to achieve.
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Figure 27: The functions F (X) (solid curve) and F_ (X) (dashed curve).

Contributors and Attributions

e Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

This page titled 13.3: Hydrogen Molecule Ton is shared under a not declared license and was authored, remixed, and/or curated by Richard
Fitzpatrick.

13.3.4 https://phys.libretexts.org/@go/page/15808


https://libretexts.org/
https://phys.libretexts.org/@go/page/15808?pdf
http://farside.ph.utexas.edu/
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/13%3A_Variational_Methods/13.03%3A_Hydrogen_Molecule_Ion
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/13%3A_Variational_Methods/13.03%3A_Hydrogen_Molecule_Ion?no-cache
http://farside.ph.utexas.edu/

