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11.6: Degenerate Perturbation Theory
Let us, rather naively, investigate the Stark effect in an excited (i.e., ) state of the hydrogen atom using standard non-
degenerate perturbation theory. We can write

because the energy eigenstates of the unperturbed Hamiltonian only depend on the quantum number . Making use of the selection
rules ([e12.63]) and ([e12.73]), non-degenerate perturbation theory yields the following expressions for the perturbed energy levels
and eigenstates [see Equations ([e12.56]) and ([e12.57])]:

and

where

Unfortunately, if  then the summations in the previous expressions are not well defined, because there exist non-zero matrix
elements, , that couple degenerate eigenstates: that is, there exist non-zero matrix elements that couple states with the same
value of , but different values of . These particular matrix elements give rise to singular factors  in the summations.
This does not occur if  because, in this case, the selection rule , and the fact that  (because ), only
allow  to take the single value 1. Of course, there is no  state with . Hence, there is only one coupled state
corresponding to the eigenvalue . Unfortunately, if  then there are multiple coupled states corresponding to the eigenvalue 

.

Note that our problem would disappear if the matrix elements of the perturbed Hamiltonian corresponding to the same value of ,
but different values of , were all zero: that is, if

In this case, all of the singular terms in Equations ([e12.88]) and ([e12.89]) would reduce to zero. Unfortunately, the previous
equation is not satisfied in general. Fortunately, we can always redefine the unperturbed eigenstates corresponding to the
eigenvalue  in such a manner that Equation ([e12.91]) is satisfied. Suppose that there are  coupled eigenstates belonging to
the eigenvalue . Let us define  new states which are linear combinations of our  original degenerate eigenstates:

Note that these new states are also degenerate energy eigenstates of the unperturbed Hamiltonian, , corresponding to the
eigenvalue . The  are chosen in such a manner that they are also eigenstates of the perturbing Hamiltonian, : that is, they
are simultaneous eigenstates of  and . Thus,

The  are also chosen so as to be orthonormal: that is,

It follows that

Thus, if we use the new eigenstates, instead of the old ones, then we can employ Equations ([e12.88]) and ([e12.89]) directly,
because all of the singular terms vanish. The only remaining difficulty is to determine the new eigenstates in terms of the original
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ones.

Now [see Equation ([e12.20])]

where  denotes the identity operator in the sub-space of all coupled unperturbed eigenstates corresponding to the eigenvalue .
Using this completeness relation, the eigenvalue equation ([e12.93]) can be transformed into a straightforward matrix equation:

This can be written more transparently as

where the elements of the  Hermitian matrix  are

Provided that the determinant of  is non-zero, Equation ([e12.100]) can always be solved to give  eigenvalues  (for 
to ), with  corresponding eigenvectors . The normalized eigenvectors specify the weights of the new eigenstates in terms
of the original eigenstates: that is,

for  to . In our new scheme, Equations ([e12.88]) and ([e12.89]) yield

and

There are no singular terms in these expressions, because the summations are over : that is, they specifically exclude the
problematic, degenerate, unperturbed energy eigenstates corresponding to the eigenvalue . Note that the first-order energy shifts
are equivalent to the eigenvalues of the matrix equation ([e12.100]).
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