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8.1: Derivation of Radial Equation
Now, we have seen that the Cartesian components of the momentum, , can be represented as (see Section [s7.2])

for , where , , , and . Likewise, it is easily demonstrated, from the previous
expressions, and the basic definitions of the spherical coordinates [see Equations ([e8.21])–([e8zz])], that the radial component of
the momentum can be represented as

Recall that the angular momentum vector, , is defined

[See Equation ([e8.0]).] This expression can also be written in the following form:

Here, the  (where  all run from 1 to 3) are elements of the so-called totally anti-symmetric tensor . The values of the
various elements of this tensor are determined via a simple rule:

Thus, , , and , et cetera. Equation ([e9.6]) also makes use of the Einstein
summation convention, according to which repeated indices are summed (from 1 to 3) . For instance, 

. Making use of this convention, as well as Equation ([e9.7]), it is easily seen that Equations ([e9.5])
and ([e9.6]) are indeed equivalent.

Let us calculate the value of  using Equation ([e9.6]). According to our new notation,  is the same as . Thus, we obtain

Note that we are able to shift the position of  because its elements are just numbers, and, therefore, commute with all of the 
and the . Now, it is easily demonstrated that

Here  is the usual Kronecker delta, whose elements are determined according to the rule

It follows from Equations ([e9.8]) and ([e9.9]) that

Here, we have made use of the fairly self-evident result that . We have also been careful to preserve the order of the
various terms on the right-hand side of the previous expression, because the  and the  do not necessarily commute with one
another.

We now need to rearrange the order of the terms on the right-hand side of Equation ([e9.11]). We can achieve this goal by making
use of the fundamental commutation relation for the  and the :

[See Equation ([commxp]).] Thus,
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Here, we have made use of the fact that , because the  commute with one another. [See Equation ([commpp]).] Next,

Now, according to Equation ([e9.12]),

Hence, we obtain

When expressed in more conventional vector notation, the previous expression becomes

Note that if we had attempted to derive the previous expression directly from Equation ([e9.5]), using standard vector identities,
then we would have missed the final term on the right-hand side. This term originates from the lack of commutation between the 
and  operators in quantum mechanics. Of course, standard vector analysis assumes that all terms commute with one another.

Equation ([e9.17]) can be rearranged to give

Now,

where use has been made of Equation ([e9.4]). Hence, we obtain

Finally, the previous equation can be combined with Equation ([e9.2]) to give the following expression for the Hamiltonian:

Let us now consider whether the previous Hamiltonian commutes with the angular momentum operators  and . Recall, from
Section [s8.3], that  and  are represented as differential operators that depend solely on the angular spherical coordinates, 
and , and do not contain the radial coordinate, . Thus, any function of , or any differential operator involving  (but not  and 

), will automatically commute with  and . Moreover,  commutes both with itself, and with . (See Section [s8.2].) It is,
therefore, clear that the previous Hamiltonian commutes with both  and .

According to Section [smeas], if two operators commute with one another then they possess simultaneous eigenstates. We thus
conclude that for a particle moving in a central potential the eigenstates of the Hamiltonian are simultaneous eigenstates of  and 

. Now, we have already found the simultaneous eigenstates of  and —they are the spherical harmonics, ,
discussed in Section [sharm]. It follows that the spherical harmonics are also eigenstates of the Hamiltonian. This observation leads
us to try the following separable form for the stationary wavefunction:

It immediately follows, from Equation ([e8.29]) and ([e8.30]), and the fact that  and  both obviously commute with , that

Recall that the quantum numbers  and  are restricted to take certain integer values, as explained in Section [slsq].
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Finally, making use of Equations ([e9.1]), ([e9.21]), and ([e9.24]), we obtain the following differential equation which determines
the radial variation of the stationary wavefunction:

Here, we have labeled the function  by two quantum numbers,  and . The second quantum number, , is, of course, related to
the eigenvalue of . [Note that the azimuthal quantum number, , does not appear in the previous equation, and, therefore, does
not influence either the function  or the energy, .] As we shall see, the first quantum number, , is determined by the
constraint that the radial wavefunction be square-integrable.
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