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11.8: Fine Structure of Hydrogen
According to special relativity, the kinetic energy (i.e., the difference between the total energy and the rest mass energy) of a
particle of rest mass  and momentum  is

In the non-relativistic limit , we can expand the square-root in the previous expression to give

Hence,

Of course, we recognize the first term on the right-hand side of this equation as the standard non-relativistic expression for the
kinetic energy. The second term is the lowest-order relativistic correction to this energy. Let us consider the effect of this type of
correction on the energy levels of a hydrogen atom. So, the unperturbed Hamiltonian is given by Equation ([e12.58]), and the
perturbing Hamiltonian takes the form

Now, according to standard first-order perturbation theory (see Section 1.4), the lowest-order relativistic correction to the energy of
a hydrogen atom state characterized by the standard quantum numbers , , and  is given by

However, Schrödinger’s equation for a unperturbed hydrogen atom can be written

where . Because  is an Hermitian operator, it follows that

It follows from Equations ([e9.74]) and ([e9.75]) that

Finally, making use of Equations ([e9.55]), ([e9.56]), and ([e9.57]), the previous expression reduces to
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is the dimensionless fine structure constant.

Note that the previous derivation implicitly assumes that  is an Hermitian operator. It turns out that this is not the case for 
states. However, somewhat fortuitously, our calculation still gives the correct answer when . Note, also, that we are able to
employ non-degenerate perturbation theory in the previous calculation, using the  eigenstates, because the perturbing
Hamiltonian commutes with both  and . It follows that there is no coupling between states with different  and  quantum
numbers. Hence, all coupled states have different  quantum numbers, and therefore have different energies.

Now, an electron in a hydrogen atom experiences an electric field

due to the charge on the nucleus. However, according to electromagnetic theory, a non-relativistic particle moving in a electric field
 with velocity  also experiences an effective magnetic field

Recall, that an electron possesses a magnetic moment [see Equations ([e10.58]) and ([e10.59])]

due to its spin angular momentum, . We, therefore, expect an additional contribution to the Hamiltonian of a hydrogen atom of
the form [see Equation ([e10.60a])]

where  is the electron’s orbital angular momentum. This effect is known as spin-orbit coupling. It turns out that the
previous expression is too large, by a factor 2, due to an obscure relativistic effect known as Thomas precession . Hence, the true
spin-orbit correction to the Hamiltonian is

Let us now apply perturbation theory to the hydrogen atom, using the previous expression as the perturbing Hamiltonian.

Now,

is the total angular momentum of the system. Hence,

giving

Recall, from Section [s11.2], that while  commutes with both  and , it does not commute with either  or . It follows
that the perturbing Hamiltonian ([e12.127]) also commutes with both  and , but does not commute with either  or .
Hence, the simultaneous eigenstates of the unperturbed Hamiltonian ([e12.58]) and the perturbing Hamiltonian ([e12.127]) are the
same as the simultaneous eigenstates of , , and  discussed in Section [s11.3]. It is important to know this because,
according to Section 1.6, we can only safely apply perturbation theory to the simultaneous eigenstates of the unperturbed and
perturbing Hamiltonians.

Adopting the notation introduced in Section [s11.3], let  be a simultaneous eigenstate of , , , and  corresponding
to the eigenvalues
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According to standard first-order perturbation theory, the energy-shift induced in such a state by spin-orbit coupling is given by

Here, we have made use of the fact that  for an electron. It follows from Equation ([e9.75a]) that

where  is the radial quantum number. Finally, making use of Equations ([e9.55]), ([e9.56]), and ([e9.57]), the previous expression
reduces to

where  is the fine structure constant. A comparison of this expression with Equation ([e12.121]) reveals that the energy-shift due
to spin-orbit coupling is of the same order of magnitude as that due to the lowest-order relativistic correction to the Hamiltonian.
We can add these two corrections together (making use of the fact that  for a hydrogen atom—see Section [s11.3]) to
obtain a net energy-shift of

This modification of the energy levels of a hydrogen atom due to a combination of relativity and spin-orbit coupling is known as
fine structure.

Now, it is conventional to refer to the energy eigenstates of a hydrogen atom that are also simultaneous eigenstates of  as 
states, where  is the radial quantum number,  as , and  is the total angular momentum
quantum number. Let us examine the effect of the fine structure energy-shift ([e12.138]) on these eigenstates for  and 3.

For , in the absence of fine structure, there are two degenerate  states. According to Equation ([e12.138]), the fine
structure induced energy-shifts of these two states are the same. Hence, fine structure does not break the degeneracy of the two 

 states of hydrogen.

For , in the absence of fine structure, there are two  states, two  states, and four  states, all of which are
degenerate. According to Equation ([e12.138]), the fine structure induced energy-shifts of the  and  states are the same
as one another, but are different from the induced energy-shift of the  states. Hence, fine structure does not break the
degeneracy of the  and  states of hydrogen, but does break the degeneracy of these states relative to the  states.

For , in the absence of fine structure, there are two  states, two  states, four  states, four  states, and
six  states, all of which are degenerate. According to Equation ([e12.138]), fine structure breaks these states into three
groups: the  and  states, the  and  states, and the  states.

The effect of the fine structure energy-shift on the , 2, and 3 energy states of a hydrogen atom is illustrated in Figure below:
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Figure 23: Effect of the fine structure energy-shift on the  and 3 states of a hydrogen atom. Not to scale.

Note, finally, that although expression ([e12.137]) does not have a well defined value for , when added to expression
([e12.121]) it, somewhat fortuitously, gives rise to an expression ([e12.138]) that is both well-defined and correct when .
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