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3.6: Momentum Representation
Fourier’s theorem (see Section [s2.9]), applied to one-dimensional wavefunctions, yields

where  represents wavenumber. However, . Hence, we can also write

where  is the momentum-space equivalent to the real-space wavefunction .

At this stage, it is convenient to introduce a useful function called the Dirac delta-function . This function, denoted , was first
devised by Paul Dirac , and has the following rather unusual properties:  is zero for , and is infinite at . However,
the singularity at  is such that

The delta-function is an example of what is known as a generalized function: that is, its value is not well defined at all , but its
integral is well defined. Consider the integral

Because  is only non-zero infinitesimally close to , we can safely replace  by  in the previous integral
(assuming  is well behaved at ), to give

where use has been made of Equation ([e3.64a]). A simple generalization of this result yields

which can also be thought of as an alternative definition of a delta-function.

Suppose that . It follows from Equations ([e3.65]) and ([e3.69]) that

Hence, Equation ([e3.64]) yields the important result

Similarly,

It turns out that we can just as easily formulate quantum mechanics using the momentum-space wavefunction, , as the real-
space wavefunction, . The former scheme is known as the momentum representation of quantum mechanics. In the
momentum representation, wavefunctions are the Fourier transforms of the equivalent real-space wavefunctions, and dynamical
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variables are represented by different operators. Furthermore, by analogy with Equation ([e3.55]), the expectation value of some
operator  takes the form

Consider momentum. We can write

where use has been made of Equation ([e3.64]). However, it follows from Equation ([e3.72]) that

Hence, using Equation ([e3.69]), we obtain

Evidently, momentum is represented by the operator  in the momentum representation. The previous expression also strongly
suggests [by comparison with Equation ([e3.22])] that  can be interpreted as the probability density of a measurement of
momentum yielding the value  at time . It follows that  must satisfy an analogous normalization condition to Equation
([e3.4]): that is,

Consider displacement. We can write

Integration by parts yields

Hence, making use of Equations ([e3.72]) and ([e3.69]), we obtain

Evidently, displacement is represented by the operator

in the momentum representation.

Finally, let us consider the normalization of the momentum-space wavefunction . We have

Thus, it follows from Equations ([e3.69]) and ([e3.72]) that
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Hence, if  is properly normalized [see Equation ([e3.4])] then , as defined in Equation ([e3.65]), is also properly
normalized [see Equation ([enormp])].

The existence of the momentum representation illustrates an important point. Namely, there are many different, but entirely
equivalent, ways of mathematically formulating quantum mechanics. For instance, it is also possible to represent wavefunctions as
row and column vectors, and dynamical variables as matrices that act upon these vectors.
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