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7.6: Spherical Harmonics
The simultaneous eigenstates, , of  and  are known as the spherical harmonics . Let us investigate their functional
form.

We know that

because there is no state for which  has a larger value than . Writing

[see Equations ([e8.34]) and ([e8.38])], and making use of Equation ([e8.28]), we obtain

This equation yields

which can easily be solved to give

Hence, we conclude that

Likewise, it is easy to demonstrate that

Once we know , we can obtain  by operating on  with the lowering operator . Thus,

where use has been made of Equation ([e8.28]). The previous equation yields

Now,

where  is a general function. Hence, we can write

ikewise, we can show that

We can now obtain  by operating on  with the lowering operator. We get
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which reduces to

Finally, making use of Equation ([e8.64]), we obtain

Likewise, we can show that

A comparison of Equations ([e8.59]), ([e8.64a]), and ([e8.68]) reveals the general functional form of the spherical harmonics:

Here,  is assumed to be non-negative. Making the substitution , we can also write

Finally, it is clear from Equations ([e8.60]), ([e8.65]), and ([e8.69]) that

Figure 18: The  plotted as a functions of . The solid, short-dashed, and long-dashed curves correspond to 
, respectively.

We now need to normalize our spherical harmonic functions so as to ensure that

After a great deal of tedious analysis, the normalized spherical harmonic functions are found to take the form
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m u = cosθ

(u,ϕ) ∼ (1 − (1 − .Yl,m e i mϕ u 2)−m/2( )
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∼ .Yl,−m Y ∗
l,m (7.6.19)
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for , where the  are known as associated Legendre polynomials , and are written

for . Alternatively,

for . The spherical harmonics characterized by  can be calculated from those characterized by  via the identity

The spherical harmonics are orthonormal: that is,

and also form a complete set. In other words, any well-behaved function of  and  can be represented as a superposition of
spherical harmonics. Finally, and most importantly, the spherical harmonics are the simultaneous eigenstates of  and 
corresponding to the eigenvalues  and , respectively.

Figure 19: The  plotted as a functions of . The solid, short-dashed, and long-dashed curves correspond to
 respectively.

All of the , , and  spherical harmonics are listed below:
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m ≥ 0 m < 0 m > 0
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l,m (7.6.24)
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The  variation of these functions is illustrated in Figures [ylm1] and [ylm2].
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