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5.4: Identical Particles
Consider a system consisting of two identical particles of mass . As before, the instantaneous state of the system is specified by
the complex wavefunction . This wavefunction tells us is that the probability of finding the first particle between 
and , and the second between  and , at time  is . However, because the particles are
identical, this must be the same as the probability of finding the first particle between  and , and the second between 
and , at time  (because, in both cases, the result of the measurement is exactly the same). Hence, we conclude that

or

where  is a real constant. However, if we swap the labels on particles 1 and 2 (which are, after all, arbitrary for identical
particles), and repeat the argument, we also conclude that

Hence,

The only solutions to the previous equation are  and . Thus, we infer that, for a system consisting of two identical
particles, the wavefunction must be either symmetric or anti-symmetric under interchange of particle labels. That is, either

or

The previous argument can easily be extended to systems containing more than two identical particles.

It turns out that the question of whether the wavefunction of a system containing many identical particles is symmetric or anti-
symmetric under interchange of the labels on any two particles is determined by the nature of the particles themselves . Particles
with wavefunctions that are symmetric under label interchange are said to obey Bose-Einstein statistics , and are called bosons. For
instance, photons are bosons. Particles with wavefunctions that are anti-symmetric under label interchange are said to obey Fermi-
Dirac statistics , and are called fermions. For instance, electrons, protons, and neutrons are fermions.

Consider a system containing two identical and non-interacting bosons. Let  be a properly normalized, single-particle,
stationary wavefunction corresponding to a state of definite energy . The stationary wavefunction of the whole system is written

when the energies of the two particles are  and . This expression automatically satisfies the symmetry requirement on the
wavefunction. Incidentally, because the particles are identical, we cannot be sure which particle has energy , and which has
energy —only that one particle has energy , and the other .

For a system consisting of two identical and non-interacting fermions, the stationary wavefunction of the whole system takes the
form

Again, this expression automatically satisfies the symmetry requirement on the wavefunction. Note that if  then the total
wavefunction becomes zero everywhere. Now, in quantum mechanics, a null wavefunction corresponds to the absence of a state.
We thus conclude that it is impossible for the two fermions in our system to occupy the same single-particle stationary state.

Finally, if the two particles are somehow distinguishable then the stationary wavefunction of the system is simply
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Let us evaluate the variance of the distance, , between the two particles, using the previous three wavefunctions. It is easily
demonstrated that if the particles are distinguishable then

where

For the case of two identical bosons, we find

where

Here, we have assumed that , so that

Finally, for the case of two identical fermions, we obtain

Equation  indicates that the symmetry requirement on the total wavefunction of two identical bosons causes the particles to
be, on average, closer together than two similar distinguishable particles. Conversely, Equation  indicates that the symmetry
requirement on the total wavefunction of two identical fermions causes the particles to be, on average, further apart than two
similar distinguishable particles. However, the strength of this effect depends on square of the magnitude of , which measures
the overlap between the wavefunctions  and . It is evident, then, that if these two wavefunctions do not overlap to
any great extent then identical bosons or fermions will act very much like distinguishable particles.

For a system containing  identical and non-interacting fermions, the anti-symmetric stationary wavefunction of the system is
written

This expression is known as the Slater determinant, and automatically satisfies the symmetry requirements on the wavefunction.
Here, the energies of the particles are . Note, again, that if any two particles in the system have the same energy
(i.e., if  for some ) then the total wavefunction is null. We conclude that it is impossible for any two identical
fermions in a multi-particle system to occupy the same single-particle stationary state. This important result is known as the Pauli
exclusion principle .
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