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6.3: Degenerate Electron Gases
Consider  electrons trapped in a cubic box of dimension . Let us treat the electrons as essentially non-interacting particles.
According to Section [snon], the total energy of a system consisting of many non-interacting particles is simply the sum of the
single-particle energies of the individual particles. Furthermore, electrons are subject to the Pauli exclusion principle (see Section
[siden]), because they are indistinguishable fermions. The exclusion principle states that no two electrons in our system can occupy
the same single-particle energy level. Now, from the previous section, the single-particle energy levels for a particle in a box are
characterized by the three quantum numbers, , , and . Thus, we conclude that no two electrons in our system can have the
same set of values of , , and . It turns out that this is not quite true, because electrons possess an intrinsic angular momentum
called spin. The spin states of an electron are governed by an additional quantum number, which can take one of two different
values. (See Chapter [sspin].) Hence, when spin is taken into account, we conclude that a maximum of two electrons (with different
spin quantum numbers) can occupy a single-particle energy level corresponding to a particular set of values of , , and . Note,
from Equations ([e7.38]) and ([e7.39]), that the associated particle energy is proportional to .

Suppose that our electrons are cold: that is, they have comparatively little thermal energy. In this case, we would expect them to fill
the lowest single-particle energy levels available to them. We can imagine the single-particle energy levels as existing in a sort of
three-dimensional quantum number space whose Cartesian coordinates are , , and . Thus, the energy levels are uniformly
distributed in this space on a cubic lattice. Moreover, the distance between nearest neighbor energy levels is unity. This implies that
the number of energy levels per unit volume is also unity. Finally, the energy of a given energy level is proportional to its distance, 

, from the origin.

Because we expect cold electrons to occupy the lowest energy levels available to them, but only two electrons can occupy a given
energy level, it follows that if the number of electrons, , is very large then the filled energy levels will be approximately
distributed in a sphere centered on the origin of quantum number space. The number of energy levels contained in a sphere of
radius  is approximately equal to the volume of the sphere—because the number of energy levels per unit volume is unity. It turns
out that this is not quite correct, because we have forgotten that the quantum numbers , , and  can only take positive values.
Hence, the filled energy levels actually only occupy one octant of a sphere. The radius  of the octant of filled energy levels in
quantum number space can be calculated by equating the number of energy levels it contains to the number of electrons, . Thus,
we can write

Here, the factor 2 is to take into account the two spin states of an electron, and the factor  is to take account of the fact that , 
, and  can only take positive values. Thus,

According to Equation ([e7.38]), the energy of the most energetic electrons—which is known as the Fermi energy —is given by 

where  is the electron mass. This can also be written as

where  is the number of electrons per unit volume (in real space). Note that the Fermi energy only depends on the
number density of the confined electrons.

The mean energy of the electrons is given by
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lF

0
l 2 l 2 4

3
l 5
F

3

5
EF (6.3.5)

https://libretexts.org/
https://phys.libretexts.org/@go/page/15759?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/06%3A_Three-Dimensional_Quantum_Mechanics/6.03%3A_Degenerate_Electron_Gases


6.3.2 https://phys.libretexts.org/@go/page/15759

because , and the energy levels are uniformly distributed in quantum number space within an octant of radius . Now,
according to classical physics, the mean thermal energy of the electrons is , where  is the electron temperature, and 
the Boltzmann constant . Thus, if  then our original assumption that the electrons are cold is valid. Note that, in this
case, the electron energy is much larger than that predicted by classical physics—electrons in this state are termed degenerate. On
the other hand, if  then the electrons are hot, and are essentially governed by classical physics—electrons in this state
are termed non-degenerate.

The total energy of a degenerate electron gas is

Hence, the gas pressure takes the form

because . [See Equation ([e7.42]).] Now, the pressure predicted by classical physics is . Thus, a
degenerate electron gas has a much higher pressure than that which would be predicted by classical physics. This is an entirely
quantum mechanical effect, and is due to the fact that identical fermions cannot get significantly closer together than a de Broglie
wavelength without violating the Pauli exclusion principle. Note that, according to Equation ([e7.43]), the mean spacing between
degenerate electrons is

where  is the de Broglie wavelength. Thus, an electron gas is non-degenerate when the mean spacing between the electrons is
much greater than the de Broglie wavelength, and becomes degenerate as the mean spacing approaches the de Broglie wavelength.

In turns out that the conduction (i.e., free) electrons inside metals are highly degenerate (because the number of electrons per unit
volume is very large, and ). Indeed, most metals are hard to compress as a direct consequence of the high degeneracy
pressure of their conduction electrons. To be more exact, resistance to compression is usually measured in terms of a quantity
known as the bulk modulus, which is defined

Now, for a fixed number of electrons, . [See Equations ([e7.42]) and ([e7.46]).] Hence,

For example, the number density of free electrons in magnesium is . This leads to the following estimate for
the bulk modulus: . The actual bulk modulus is .
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n ∼ 8.6 ×1028 m−3

B ∼ 6.4 × N1010 m−2 B = 4.5 × N1010 m−2

https://libretexts.org/
https://phys.libretexts.org/@go/page/15759?pdf
http://farside.ph.utexas.edu/
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/06%3A_Three-Dimensional_Quantum_Mechanics/6.03%3A_Degenerate_Electron_Gases
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/06%3A_Three-Dimensional_Quantum_Mechanics/6.03%3A_Degenerate_Electron_Gases?no-cache
http://farside.ph.utexas.edu/

