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14.3: Partial Waves
We can assume, without loss of generality, that the incident wavefunction is characterized by a wavevector  that is aligned parallel
to the -axis. The scattered wavefunction is characterized by a wavevector  that has the same magnitude as , but, in general,
points in a different direction. The direction of  is specified by the polar angle  (i.e., the angle subtended between the two
wavevectors), and an azimuthal angle  about the -axis. Equations ([e17.38]) and ([e17.39]) strongly suggest that for a spherically
symmetric scattering potential [i.e., ] the scattering amplitude is a function of  only: that is,

It follows that neither the incident wavefunction,

nor the large-  form of the total wavefunction,

depend on the azimuthal angle .

Outside the range of the scattering potential, both  and  satisfy the free-space Schrödinger equation,

What is the most general solution to this equation in spherical polar coordinates that does not depend on the azimuthal angle ?
Separation of variables yields

because the Legendre functions, , form a complete set in -space. The Legendre functions are related to the spherical
harmonics, introduced in Chapter [sorb], via

Equations ([e17.54]) and ([e17.55]) can be combined to give

The two independent solutions to this equation are the spherical Bessel functions,  and , introduced in Section [rwell].
Recall that

Note that the  are well behaved in the limit , whereas the  become singular. The asymptotic behavior of these
functions in the limit  is
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where the  are constants. Note there are no  functions in this expression because they are not well-behaved as . The
Legendre functions are orthonormal ,

so we can invert the previous expansion to give

It is well known that

where . Thus,

giving

The previous expression tells us how to decompose the incident plane-wave into a series of spherical waves. These waves are
usually termed “partial waves”.

The most general expression for the total wavefunction outside the scattering region is

where the  and  are constants. Note that the  functions are allowed to appear in this expansion because its region of
validity does not include the origin. In the large-  limit, the total wavefunction reduces to

where use has been made of Equations ([e17.59a]) and ([e17.59b]). The previous expression can also be written

where the sine and cosine functions have been combined to give a sine function which is phase-shifted by . Note that 
 and .

Equation ([e17.68]) yields

which contains both incoming and outgoing spherical waves. What is the source of the incoming waves? Obviously, they must be
part of the large-  asymptotic expansion of the incident wavefunction. In fact, it is easily seen from Equations ([e17.59a]) and
([e15.49]) that

in the large-  limit. Now, Equations ([e17.52]) and ([e17.53]) give
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Note that the right-hand side consists of an outgoing spherical wave only. This implies that the coefficients of the incoming
spherical waves in the large-  expansions of  and  must be the same. It follows from Equations ([e17.69]) and ([e17.70])
that

Thus, Equations ([e17.69])–([e17.71]) yield

Clearly, determining the scattering amplitude, , via a decomposition into partial waves (i.e., spherical waves) is equivalent to
determining the phase-shifts, .

Now, the differential scattering cross-section, , is simply the modulus squared of the scattering amplitude, . [See
Equation ([e15.17]).] The total cross-section is thus given by

where . It follows that

where use has been made of Equation ([e17.61]).

Contributors and Attributions
Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

This page titled 14.3: Partial Waves is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

r ψ(r) (r)ψ0

= (2 l+1) exp[ i ( + l π/2)].Cl δl (14.3.20)

f(θ) = (2 l+1) sin (cosθ).∑
l=0,∞

exp( i )δl

k
δl Pl (14.3.21)

f(θ)
δl

dσ/dΩ f(θ)

σtotal = ∫ |f(θ) dΩ| 2

= ∮ dϕ dμ (2 l+1) (2 +1) exp[ i ( − )] sin sin (μ) (μ),
1

k 2
∫

1

−1
∑
l

∑
l′

l′ δl δl′ δl δl′ Pl Pl′

μ = cosθ

= (2 l+1) ,σtotal
4π

k 2
∑
l

sin2 δl (14.3.22)

https://libretexts.org/
https://phys.libretexts.org/@go/page/15815?pdf
http://farside.ph.utexas.edu/
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/14%3A_Scattering_Theory/14.03%3A_Partial_Waves
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/14%3A_Scattering_Theory/14.03%3A_Partial_Waves?no-cache
http://farside.ph.utexas.edu/

