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4.7: Simple Harmonic Oscillator
The classical Hamiltonian of a simple harmonic oscillator is

where  is the so-called force constant of the oscillator. Assuming that the quantum mechanical Hamiltonian has the same
form as the classical Hamiltonian, the time-independent Schrödinger equation for a particle of mass  and energy  moving in a
simple harmonic potential becomes

Let , where  is the oscillator’s classical angular frequency of oscillation. Furthermore, let

and

Equation ([e5.90]) reduces to

We need to find solutions to the previous equation which are bounded at infinity: that is, solutions which satisfy the boundary
condition  as .

Consider the behavior of the solution to Equation ([e5.93]) in the limit . As is easily seen, in this limit the equation
simplifies somewhat to give

The approximate solutions to the previous equation are

where  is a relatively slowly varying function of . Clearly, if  is to remain bounded as  then we must chose the
exponentially decaying solution. This suggests that we should write

where we would expect  to be an algebraic, rather than an exponential, function of .

Substituting Equation ([e5.96]) into Equation ([e5.93]), we obtain

Let us attempt a power-law solution of the form

Inserting this test solution into Equation ([e5.97]), and equating the coefficients of , we obtain the recursion relation
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Consider the behavior of  in the limit . The previous recursion relation simplifies to

Hence, at large , when the higher powers of  dominate, we have

It follows that  varies as  as . This behavior is unacceptable, because it does not
satisfy the boundary condition  as . The only way in which we can prevent  from blowing up as  is to
demand that the power series ([e5.98]) terminate at some finite value of . This implies, from the recursion relation ([e5.99]), that

where  is a non-negative integer. Note that the number of terms in the power series ([e5.98]) is . Finally, using Equation
([e5.92]), we obtain

for .

Hence, we conclude that a particle moving in a harmonic potential has quantized energy levels that are equally spaced. The spacing
between successive energy levels is , where  is the classical oscillation frequency. Furthermore, the lowest energy state (

) possesses the finite energy . This is sometimes called zero-point energy. It is easily demonstrated that the
(normalized) wavefunction of the lowest energy state takes the form

Let  be an energy eigenstate of the harmonic oscillator corresponding to the eigenvalue

Assuming that the  are properly normalized (and real), we have

Now, Equation ([e5.93]) can be written

where , and . It is helpful to define the operators

As is easily demonstrated, these operators satisfy the commutation relation

Using these operators, Equation ([e5.108]) can also be written in the forms
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The previous two equations imply that
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We conclude that  and  are raising and lowering operators, respectively, for the harmonic oscillator: that is, operating on the
wavefunction with  causes the quantum number  to increase by unity, and vice versa. The Hamiltonian for the harmonic
oscillator can be written in the form

from which the result

is readily deduced. Finally, Equations ([e5.107]), ([e5.113]), and ([e5.114]) yield the useful expression
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