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2.3: Representation of Waves via Complex Functions
In mathematics, the symbol  is conventionally used to represent the square-root of minus one: in other words, one of the solutions
of . Now, a real number,  (say), can take any value in a continuum of different values lying between  and . On
the other hand, an imaginary number takes the general form , where  is a real number. It follows that the square of a real
number is a positive real number, whereas the square of an imaginary number is a negative real number. In addition, a general
complex number is written

where  and  are real numbers. In fact,  is termed the real part of , and  the imaginary part of . This is written
mathematically as  and . Finally, the complex conjugate of  is defined .

Just as we can visualize a real number as a point lying on an infinite straight-line, we can visualize a complex number as a point
lying in an infinite plane. The coordinates of the point in question are the real and imaginary parts of the number: that is, 

. This idea is illustrated in Figure [f13.2]. The distance, , of the representative point from the origin is
termed the modulus of the corresponding complex number, . This is written mathematically as . Incidentally,
it follows that . The angle, , that the straight-line joining the representative point to the
origin subtends with the real axis is termed the argument of the corresponding complex number, . This is written mathematically
as . It follows from standard trigonometry that , and . Hence, .

Figure 3: Representation of a complex number as a point in a plane.

Complex numbers are often used to represent wavefunctions. All such representations depend ultimately on a fundamental
mathematical identity, known as Euler’s theorem , that takes the form

where  is a real number. Incidentally, given that , where  is a general complex
number,  its modulus, and  its argument, it follows from Euler’s theorem that any complex number, , can be
written

where  and  are real numbers.

A one-dimensional wavefunction takes the general form

where  is the wave amplitude,  the wavenumber,  the angular frequency, and  the phase angle. Consider the complex
wavefunction
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ψ(x, t) = A cos(k x −ω t +φ), (2.3.4)
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where  is a complex constant. We can write

where  is the modulus, and  the argument, of . Hence, we deduce that

Thus, it follows from Euler’s theorem, and Equation (2.3.4), that

In other words, a general one-dimensional real wavefunction, (2.3.4), can be represented as the real part of a complex wavefunction
of the form (2.3.5). For ease of notation, the “take the real part” aspect of the previous expression is usually omitted, and our
general one-dimension wavefunction is simply written

The main advantage of the complex representation, (2.3.8), over the more straightforward real representation, (2.3.4), is that the
former enables us to combine the amplitude, , and the phase angle, , of the wavefunction into a single complex amplitude, .
Finally, the three-dimensional generalization of the previous expression is

where  is the wavevector.
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ψ(x, t) = ,ψ0 e i (k x−ω t) (2.3.5)

ψ0

= A ,ψ0 e i φ (2.3.6)

A φ ψ0

Re [ ]ψ0 e i (k x−ω t) = Re [A ] = Re [A ] = A Re [ ] .e i φ e i (k x−ω t) e i (k x−ω t+φ) e i (k x−ω t+φ)

Re [ ] = A cos(k x −ω t +φ) = ψ(x, t).ψ0 e i (k x−ω t) (2.3.7)

ψ(x, t) = .ψ0 e i (k x−ω t) (2.3.8)

A φ ψ0

ψ(r, t) = ,ψ0 e i (k⋅r−ω t) (2.3.9)
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