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5.4: |dentical Particles

Consider a system consisting of two identical particles of mass m. As before, the instantaneous state of the system is specified by
the complex wavefunction v (zy, z3,t). This wavefunction tells us is that the probability of finding the first particle between z;
and z1 +dz; , and the second between z5 and x5 +dz, , at time ¢ is |¢(z1, 22, 1) 2 dzy dxy. However, because the particles are
identical, this must be the same as the probability of finding the first particle between x5 and x2 + dx> , and the second between x;
and 1 +dx; , at time ¢ (because, in both cases, the result of the measurement is exactly the same). Hence, we conclude that

|'l/1(331,2132,t)|2:|¢(J:2,:L‘1,t)‘2, (541)

or
¢(m1)$27t):ei¢¢(m27ml’t)a (542)

where ¢ is a real constant. However, if we swap the labels on particles 1 and 2 (which are, after all, arbitrary for identical
particles), and repeat the argument, we also conclude that

Y(ze,x1,t) = e P oh(zy, T2, t). (5.4.3)
Hence,
e?lv=1. (5.4.4)

The only solutions to the previous equation are ¢ =0 and ¢ = . Thus, we infer that, for a system consisting of two identical
particles, the wavefunction must be either symmetric or anti-symmetric under interchange of particle labels. That is, either

¢($2axlat) :’1/1(.’B1,1172,t), (545)

or

1/)(1E2,Cl§1,t) :—¢($1,$2,t). (546)
The previous argument can easily be extended to systems containing more than two identical particles.

It turns out that the question of whether the wavefunction of a system containing many identical particles is symmetric or anti-
symmetric under interchange of the labels on any two particles is determined by the nature of the particles themselves . Particles
with wavefunctions that are symmetric under label interchange are said to obey Bose-Einstein statistics , and are called bosons. For
instance, photons are bosons. Particles with wavefunctions that are anti-symmetric under label interchange are said to obey Fermi-
Dirac statistics , and are called fermions. For instance, electrons, protons, and neutrons are fermions.

Consider a system containing two identical and non-interacting bosons. Let t(z, E) be a properly normalized, single-particle,
stationary wavefunction corresponding to a state of definite energy E. The stationary wavefunction of the whole system is written

1
YE boson(T1, T2) = E [V (21, Ea) (2, Bp) + (2, Ea) (21, Eb)], (5.4.7)
when the energies of the two particles are E, and Ej. This expression automatically satisfies the symmetry requirement on the
wavefunction. Incidentally, because the particles are identical, we cannot be sure which particle has energy E,, and which has
energy E,—only that one particle has energy E,, and the other Ej.

For a system consisting of two identical and non-interacting fermions, the stationary wavefunction of the whole system takes the
form

VB termion(@1, T2) = %W(wl, E.) (2, By) — (x2, Ea) (a1, By)], (5.4.8)

Again, this expression automatically satisfies the symmetry requirement on the wavefunction. Note that if E, = E} then the total
wavefunction becomes zero everywhere. Now, in quantum mechanics, a null wavefunction corresponds to the absence of a state.
We thus conclude that it is impossible for the two fermions in our system to occupy the same single-particle stationary state.

Finally, if the two particles are somehow distinguishable then the stationary wavefunction of the system is simply

Ve dist (T1, T2) = Y (21, Ea) Y(x2, Eyp). (5.4.9)

https://phys.libretexts.org/@go/page/15753



https://libretexts.org/
https://phys.libretexts.org/@go/page/15753?pdf
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Introductory_Quantum_Mechanics_(Fitzpatrick)/05%3A_Multi-Particle_Systems/5.04%3A_Identical_Particles

LibreTextsw

Let us evaluate the variance of the distance, £; — z2 , between the two particles, using the previous three wavefunctions. It is easily
demonstrated that if the particles are distinguishable then

(@1 —22) Dot = (@) + (22— 2 () (2, (5.4.10)
where
<x">a,b:/ (@, Bup) 2" (@, Bup) do. (5.4.11)
For the case of two identical bosons, we find
<($1 _$2) 2>boson = <($1 _$2) 2>dist -2 |<x>ab| 2a (5412)
where
(%) :/ W (@, Ba) 7 ¥(x, By) da. (5.4.13)

Here, we have assumed that E, # Ej, so that
/ " (2, Ea) (@, By) dz = 0. (5.4.14)
—00

Finally, for the case of two identical fermions, we obtain

((z1 —x2) 2>fermion = ((z1 —z2) 2>dist +2 [(x) e 2, (5.4.15)

Equation 5.4.12 indicates that the symmetry requirement on the total wavefunction of two identical bosons causes the particles to
be, on average, closer together than two similar distinguishable particles. Conversely, Equation 5.4.15 indicates that the symmetry
requirement on the total wavefunction of two identical fermions causes the particles to be, on average, further apart than two
similar distinguishable particles. However, the strength of this effect depends on square of the magnitude of (x), which measures
the overlap between the wavefunctions ¥ (x, E,) and 9 (z, Ej). It is evident, then, that if these two wavefunctions do not overlap to
any great extent then identical bosons or fermions will act very much like distinguishable particles.

For a system containing /N identical and non-interacting fermions, the anti-symmetric stationary wavefunction of the system is

written
Y(z1, E1)  P(z2, E1) ... Y(zN, Er)
1 | Y1, E2)  Y(ze, E2) ... Y(zn, Es)
@bE(ml,xQ,...mN)zﬁ (5416)
Y(z1, En) Y(x2,En) ... ¢(zn,En)
This expression is known as the Slater determinant, and automatically satisfies the symmetry requirements on the wavefunction.
Here, the energies of the particles are E1, Es, ..., Ey. Note, again, that if any two particles in the system have the same energy

(ie., if E; = E; for some i # j) then the total wavefunction is null. We conclude that it is impossible for any two identical
fermions in a multi-particle system to occupy the same single-particle stationary state. This important result is known as the Pauli
exclusion principle .
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