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3.5: Operators
An operator,  (say), is a mathematical entity that transforms one function into another: that is,

For instance,  is an operator, because  is a different function to , and is fully specified once  is given. Furthermore,
 is also an operator, because  is a different function to , and is fully specified once  is given. Now,

This can also be written

where the operators are assumed to act on everything to their right, and a final  is understood [where  is a general
function]. The previous expression illustrates an important point. Namely, in general, operators do not commute with one another.
Of course, some operators do commute. For instance,

Finally, an operator, , is termed linear if

where  is a general function, and  a general complex number. All of the operators employed in quantum mechanics are linear.

Now, from Equations ([e3.22]) and ([e3.38]),

These expressions suggest a number of things. First, classical dynamical variables, such as  and , are represented in quantum
mechanics by linear operators that act on the wavefunction. Second, displacement is represented by the algebraic operator , and
momentum by the differential operator : that is, \[\label{e3.54} p \equiv -{\rm i}\,\hbar\,\frac{\partial}{\partial x}.\]

Finally, the expectation value of some dynamical variable represented by the operator  is simply

Clearly, if an operator is to represent a dynamical variable that has physical significance then its expectation value must be real. In
other words, if the operator  represents a physical variable then we require that , or

where  is the complex conjugate of . An operator that satisfies the previous constraint is called an Hermitian operator. It is
easily demonstrated that  and  are both Hermitian. The Hermitian conjugate, , of a general operator, , is defined as follows:

The Hermitian conjugate of an Hermitian operator is the same as the operator itself: that is, . For a non-Hermitian operator, 
 (say), it is easily demonstrated that , and that the operator  is Hermitian. Finally, if  and  are two

operators, then .

Suppose that we wish to find the operator that corresponds to the classical dynamical variable . In classical mechanics, there is
no difference between  and . However, in quantum mechanics, we have already seen that . So, should we choose 
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 or ? Actually, neither of these combinations is Hermitian. However,  is Hermitian. Moreover, 
, which neatly resolves our problem of the order in which to place 

 and .

It is a reasonable guess that the operator corresponding to energy (which is called the Hamiltonian, and conventionally denoted )
takes the form

Note that  is Hermitian. Now, it follows from Equation ([e3.54]) that

However, according to Schrödinger’s equation, ([e3.1]), we have

so

Thus, the time-dependent Schrödinger equation can be written

Finally, if  is a classical dynamical variable that is a function of displacement, momentum, and energy then a reasonable
guess for the corresponding operator in quantum mechanics is , where , and 

.
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