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2.4: Classical Light-Waves

Consider a classical, monochromatic, linearly-polarized, plane light-wave, propagating through a vacuum in the z-direction. It is
convenient to characterize a light-wave (which is, of course, a type of electromagnetic wave) by specifying its associated electric
field. Suppose that the wave is polarized such that this electric field oscillates in the y-direction. (According to standard
electromagnetic theory, the magnetic field oscillates in the z-direction, in phase with the electric field, with an amplitude which is
that of the electric field divided by the velocity of light in vacuum. ) Now, the electric field can be conveniently represented in
terms of a complex wavefunction:

Y(z,t) =pe ket (2.4.1)

Here, i =+/—1, k and w are real parameters, and z/_) is a complex wave amplitude. By convention, the physical electric field is the
real part of the previous expression. Suppose that

P=¢le'?, (2.4.2)
where ¢ is real. It follows that the physical electric field takes the form
E,(z,t) =Re[y(z,t)] = [¢| cos(kz —wt+ ), (2.4.3)

where |1/_J| is the amplitude of the electric oscillation, k£ the wavenumber, w the angular frequency, and ¢ the phase angle. In
addition, A = 27 /k is the wavelength, and v = w/2 the frequency (in hertz).

According to standard electromagnetic theory , the frequency and wavelength of light-waves are related according to the well-
known expression

c=v, (2.4.4)
or, equivalently,
w=kec, (2.4.5)
where ¢ = 3 x 10 m/s is the velocity of light in vacuum. Equations (2.4.3) and (2.4.5) yield
Ey(z,t) = 9| cos(k [z — (w/k) t] +¢) = [¢] cos(k [z —ct] + ). (2.4.6)
Note that Ey, depends on x and ¢ only via the combination z — ct. It follows that the wave maxima and minima satisfy
x —ct = constant. (2.4.7)

Thus, the wave maxima and minima propagate in the z-direction at the fixed velocity

dx
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7 (2.4.8)
An expression, such as Equation (2.4.5), that determines the wave angular frequency as a function of the wavenumber, is generally
termed a dispersion relation. As we have already seen, and as is apparent from Equation (2.4.6), the maxima and minima of a
plane-wave propagate at the characteristic velocity

(2.4.9)

Up =

k I’
which is known as the phase-velocity. Hence, the dispersion relation (2.4.5) is effectively saying that the phase-velocity of a plane
light-wave, propagating through a vacuum, always takes the fixed value c, irrespective of its wavelength or frequency.
From standard electromagnetic theory , the energy density (i.e., the energy per unit volume) of a plane light-wave is
E 2
U=—-, (2.4.10)
€

where ¢ = 8.85 x 10 2 F /m is the electrical permittivity of free space. Hence, it follows from Equations (2.4.1) and (2.4.3) that

U o || 2. (2.4.11)
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Furthermore, a light-wave possesses linear momentum, as well as energy. This momentum is directed along the wave’s direction of
propagation, and is of density

a=Z.
c

(2.4.12)
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