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11.2: Improved Notation
Before commencing our investigation, it is helpful to introduce some improved notation. Let the  be a complete set of eigenstates
of the Hamiltonian, , corresponding to the eigenvalues : that is,

Now, we expect the  to be orthonormal. (See Section [seig].) In one dimension, this implies that

In three dimensions (see Chapter [sthree]), the previous expression generalizes to

Finally, if the  are spinors (see Chapter [sspin]) then we have

The generalization to the case where  is a product of a regular wavefunction and a spinor is fairly obvious. We can represent all of
the previous possibilities by writing

Here, the term in angle brackets represents the integrals appearing in Equations ([e12.1]) and ([e12.2]) in one- and three-
dimensional regular space, respectively, and the spinor product appearing in Equation ([e12.3]) in spin-space. The advantage of our
new notation is its great generality: that is, it can deal with one-dimensional wavefunctions, three-dimensional wavefunctions,
spinors, et cetera.

Expanding a general wavefunction, , in terms of the energy eigenstates, , we obtain

In one dimension, the expansion coefficients take the form (see Section [seig])

whereas in three dimensions we get

Finally, if  is a spinor then we have

We can represent all of the previous possibilities by writing

The expansion ([e12.7]) thus becomes

Incidentally, it follows that

Finally, if  is a general operator, and the wavefunction  is expanded in the manner shown in Equation ([e12.7]), then the
expectation value of  is written (see Section [seig])
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Here, the  are unsurprisingly known as the matrix elements of . In one dimension, the matrix elements take the form

whereas in three dimensions we get

Finally, if  is a spinor then we have

We can represent all of the previous possibilities by writing

The expansion ([e12.14]) thus becomes

Incidentally, it follows that [see Equation ([e5.48])]

Finally, it is clear from Equation ([e12.20a]) that

where the  are a complete set of eigenstates, and 1 is the identity operator.
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