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2.10: Wave-Packets

The previous discussion suggests that the wavefunction of a massive particle of momentum p and energy E, moving in the positive
x-direction, can be written

W(z,t) =pet ket (2.10.1)

where k=p/h >0 and w=E/h>0. Here, w and k are linked via the dispersion relation ([¢2.38]). Expression ([e2.41])
represents a plane-wave whose maxima and minima propagate in the positive z-direction with the phase-velocity v, = w/k. As we
have seen, this phase-velocity is only half of the classical velocity of a massive particle.

From before, the most reasonable physical interpretation of the wavefunction is that |¢(z,t)] % s proportional to the probability
density of finding the particle at position « at time ¢t. However, the modulus squared of the wavefunction ([e2.41]) is |1/_)| 2, which
depends on neither z nor ¢. In other words, this wavefunction represents a particle that is equally likely to be found anywhere on
the x-axis at all times. Hence, the fact that the maxima and minima of the wavefunction propagate at a phase-velocity that does not
correspond to the classical particle velocity does not have any real physical consequences.

How can we write the wavefunction of a particle that is localized in z: that is, a particle that is more likely to be found at some
positions on the z-axis than at others? It turns out that we can achieve this goal by forming a linear combination of plane-waves of
different wavenumbers: in other words,

Y(z,t) :/fo (k) et k2wt gk, (2.10.2)

Here, @(k) represents the complex amplitude of plane-waves of wavenumber k in this combination. In writing the previous
expression, we are relying on the assumption that particle waves are superposable: that is, that it is always possible to add two valid
wave solutions to form a third valid wave solution. The ultimate justification for this assumption is that particle waves satisfy a
differential wave equation that is linear in . As we shall see, in Section 1.15, this is indeed the case. Incidentally, a plane-wave
that varies as exp[i (k2 —wt)] and has a negative k (but positive w) propagates in the negative z-direction at the phase-velocity
w/|k|. Hence, the superposition ([e2.42]) includes both forward and backward propagating waves.

There is a useful mathematical theorem, known as Fourier’s theorem , which states that if
1 o _ ik
T)=— k)e'"*dk, 2.10.3
f@)=—= [ F (2.10.3)

then

__L [ z)e ko dy
Fk) = \/ﬂ/_m F@) e da. (2.10.4)

Here, f (k) is known as the Fourier transform of the function f(z). We can use Fourier’s theorem to find the k-space function

(k) that generates any given z-space wavefunction (z) at a given time.

For instance, suppose that at t = 0 the wavefunction of our particle takes the form

22
¢(m,0)o<exp[ik0x—%]. (2.10.5)

Thus, the initial probability density of the particle is written

(z —20)* ] (2.10.6)

(0,0 cexp| 2=

This particular probability distribution is called a Gaussian distribution, and is plotted in Figure [f4]. It can be seen that a
measurement of the particle’s position is most likely to yield the value x, and very unlikely to yield a value which differs from g
by more than 3 Az. Thus, Equation ([e2.45]) is the wavefunction of a particle that is initially localized around = = xy in some
region whose width is of order Az. This type of wavefunction is known as a wave-packet.
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Figure 7: A Gaussian probability distribution in z-space.

According to Equation ([e2.42]),

¥(,0) :/ B(k) e dk, (2.10.7)
—00
Hence, we can employ Fourier’s theorem to invert this expression to give
o0
P(k) o</ P(z,0) e *2 dg. (2.10.8)
—00
Making use of Equation ([e2.45]), we obtain
0 2
b(k oce_i(k_kf’)’””/ exp|—i(k—ko) (x —x —M 2.10.9
B(K) [ e[ h) @ w0) ~ T (2.10.9)
Changing the variable of integration to y = (z — zg)/(2 Ax), this reduces to
— . S
oxe 'FH exp(—18y—y~)dy, .10.
P(k iha ip 2)d 2.10.10
where 8 =2 (k —ky) Az . The previous equation can be rearranged to give
-_ . S
D(k) oce—lkwo—ﬁz/‘*/ e )’ gy, (2.10.11)
—00
where yo = —i 8/2. The integral now just reduces to a number, as can easily be seen by making the change of variable z =y —yq .
Hence, we obtain
- (k—ko)? ]
k) xexp|—-ikxy — ——|, 2.10.12
(k) x| ik — L8 (210.12)
where
Ak = L (2.10.13)
2Az° o

If |4 (z)| % is proportional to the probability density of a measurement of the particle’s position yielding the value z then it stands to
reason that |4 (k)| 2 is proportional to the probability density of a measurement of the particle’s wavenumber yielding the value .
(Recall that p="hk, so a measurement of the particle’s wavenumber, k, is equivalent to a measurement of the particle’s
momentum, p). According to Equation ([e2.51]),

TN [_M] (2.10.14)
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Note that this probability distribution is a Gaussian in k-space. [See Equation ([e2.46]) and Figure [f4].] Hence, a measurement of
k is most likely to yield the value kg, and very unlikely to yield a value which differs from &y by more than 3 Ak. Incidentally, a
Gaussian is the only simple mathematical function in z-space that has the same form as its Fourier transform in k-space.

We have just seen that a Gaussian probability distribution of characteristic width Az in z-space [see Equation ([e2.46])] transforms
to a Gaussian probability distribution of characteristic width Ak in k-space [see Equation ([e2.53])], where

Az Ak:%. (2.10.15)

This illustrates an important property of wave-packets. Namely, if we wish to construct a packet that is very localized in x-space
(i.e., if Az is small) then we need to combine plane-waves with a very wide range of different k-values (i.e., Ak will be large).
Conversely, if we only combine plane-waves whose wavenumbers differ by a small amount (i.e., if Ak is small) then the resulting
wave-packet will be very extended in z-space (i.e., Az will be large).
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