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5.6: Electromagnetic Waves

The Wave Equation

When Maxwell realized that his new addition to the theory meant that not only can changing magnetic fields induce electric fields
(Faraday), but changing electric fields can also induce magnetic fields, it occurred to him that it might be possible for propagation
to occur: A changing magnetic field creates a changing electric field, which creates a changing magnetic field, and so on.

It was not hard for a mathematician such as Maxwell to express this propagation mathematically. To see how it comes about, let's
simplify our physical situation by considering a region free of charges. This results in a simplified set of Maxwell's equations:

Let's start by taking a derivative of the equation of the Maxwell equation with respect to time:

Now plug the equation of Faraday into the derivative of the magnetic field:

Now we have an equation exclusively in terms of the electric field (electric field induces magnetic field which induces electric field
again). The double curl looks quite daunting to simplify, but it turns out that there is a useful identity from vector calculus to save
the day:

Plugging the electric Gauss equation into this and then plugging this equation in for the double curl gives:

Perhaps you recognize this differential equation from Physics 9B? It is the wave equation – not surprising, really, given that a
changing electric field seems to propagate another electric field (using the changing magnetic field as an intermediate step).
Naturally Maxwell recognized the wave equation as well, and asked the most obvious question, "How fast is this wave?" Given
that the velocity of a wave can be taken directly from the wave equation, this is not hard to calculate. The coefficient of the second
time derivative term is the inverse of the square of the wave speed, so the speed of this wave is:

Well of course Maxwell recognized this number immediately (as should you!) – it is the speed of light, . Maxwell has shown that
light is an electromagnetic phenomenon that exists because electric and magnetic fields can propagate by inducing each other.

If one begins the derivation above by taking a derivative of the Faraday equation with respect to time and follows the same steps,
one finds that the very same wave equation applies to the magnetic field – both fields propagate together as a single light
("electromagnetic") wave.

Figure 5.6.1 – Electromagnetic Wave

electric Gauss:

magnetic Gauss:

Faraday:

Maxwell:

⋅ = 0∇
→

E
→

⋅ = 0∇
→

B
→

× = −∇
→

E
→ d

dt
B
→

× =∇
→

B
→

μoϵo
d

dt
E
→

(5.6.1)

× = × =
d

dt
∇
→

B
→

∇
→ d

dt
B
→

μoϵo
d2

dt2
E
→

(5.6.2)

×(− × ) =∇
→

∇
→

E
→

μoϵo
d2

dt2
E
→

(5.6.3)

×( × ) = ( ⋅ )−∇
→

∇
→

E
→

∇
→

∇
→

E
→

∇2 E
→

(5.6.4)

=∇2 E
→

μoϵo
d2 E

→

dt2
(5.6.5)

v= = = 3.0 ×
1

μoϵo
− −−−

√

1

(4π× )(8.85 × )10−7 Ns2

C 2
10−12 C 2

Nm2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−
√

108 m

s
(5.6.6)

c

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/21539?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9C__Electricity_and_Magnetism/5%3A_Electromagnetism/5.6%3A_Electromagnetic_Waves
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9B__Waves_Sound_Optics_Thermodynamics_and_Fluids/01%3A_Waves/1.01%3A_Wave_Mathematics#3d_wave_equation


5.6.2 https://phys.libretexts.org/@go/page/21539

EM Wave Properties
Let’s see what we can find out about these waves by looking at a specific example. Suppose we have a harmonic plane wave of
electric field polarized in the -  plane. Recall from 9B that this is expressed mathematically by:

This represents a wave that propagates along the  direction, the "displacement" direction (polarization direction of the electric
field vectors) along the  direction, has an amplitude of , a wavelength of , and period of . We have chosen the starting time
such that the phase constant is zero.

Let's plug this field into Faraday's equation by taking its curl:

Performing the derivative, we get:

Now that we know the curl of the electric field, we can plug the result into Faraday's law:

We can now integrate to find the wave function for the magnetic field of this wave (for simplicity, we will assume that the electric
and magnetic fields are in phase with each other, which will mean the arbitrary constant from the integral is just zero):

We see that the magnetic field wave function has the same frequency and wavelength as the electric field wave function, and since

the ratio  is just the inverse of the speed of the wave , which means that the amplitudes of the electric and magnetic parts of the

wave are related by:
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We can also see a how the various directions are related. The velocity is in the  direction, the electric field in the  direction, and
the magnetic field in the  direction – all three of these vectors are mutually orthogonal. In fact, the direction of the wave's velocity

vector is the same direction as the vector .

Example 

We know that electric and magnetic fields store energy in the space in which they exist. As a light wave passes through a region
of space, the fluctuating fields cause the energy density in that space to fluctuate. Is more of the wave's energy a result of the
electric field or the magnetic field? More specifically, compute the ratio of the maximum energy densities of the two fields within
a single EM wave traveling through a vacuum.

Solution

The energy densities for electric and magnetic fields in a vacuum are given by:

The maximum energy densities come about when the fields equal their amplitudes, so taking the ratio of these energies gives:

Now plugging in Equation 5.6.6 and Equation 5.6.12, we get the simple result:

Both fields contribute equally to the energy density in the space through which the wave passes.

This page titled 5.6: Electromagnetic Waves is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.
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ĵ

×E
→

B
→

5.6.1

=UE
1
2
ϵoE

2

=UB
1

2μo
B2

= =
UE

UB

ϵoE
2

1
μo
B2

ϵoμo

E2
o

B2
o

=UE UB

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/21539?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9C__Electricity_and_Magnetism/5%3A_Electromagnetism/5.6%3A_Electromagnetic_Waves
https://creativecommons.org/licenses/by-sa/4.0
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman

