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1.1: Fundamentals of Sound

Why Sound?
Physics 9D is a class about modern physics, so why is the first chapter in the textbook dedicated to the phenomenon of sound?
 Three reasons:

1. There is typically a long period of time that elapses between taking Physics 9B (where general wave phenomena are first
studied) and taking Physics 9D, where wave physics is used extensively.  By returning to the specific wave phenomenon of
sound, you are given an opportunity to review some of the general features of waves, while applying them to the specific
physical conditions present for sound.

2. Studying sound provides a useful historical context for modern physics.  Sound was a wave phenomenon that was studied
extensively prior to the modern era of physics, and this knowledge was both a help and a hindrance to physicists trying to
unravel the mysteries that came around in the transition period between the  and   centuries. We can benefit from
following their journey.

3. Examining properties of sound provides a useful contrast to the unusual aspects of waves that arise in relativity and quantum
physics.

As Physics 9D progresses, the  reader is encouraged to sort out which characteristics  of sound waves are closely paralleled in
modern physics, and which are vastly different (but may nevertheless be useful as an analogous model).

Sound Waves in Air
Sound can travel through any phase of matter – solid, liquid, or gas. Like other mechanical waves, it depends upon a restoring
mechanism that returns particles in the medium to equilibrium after they are displaced. But unlike a wave in a string, for which the
restoring mechanism is perpendicular to the direction of wave motion, the direction of sound's restoring mechanism is parallel to
the direction of the wave motion – sound waves are longitudinal rather than transverse. As we discussed in Physics 9B, this comes
about as a result of compressions and rarefactions.  In one-dimension, this can be visualized as compressing and expanding coils of
a slinky, but sound waves can travel in three dimensions, which makes the picture slightly more challenging to grasp.

We will primarily focus our exploration on sound waves in air, mainly because that is the way that we usually encounter them.
What is not commonly noted is that sound waves in air are fundamentally different from sound waves in liquids and solids. As we
noted in Physics 9B, gases are collections of particles that, to a very good approximation, don't interact with each other. If one
particle in a medium doesn't interact with a neighboring particle, it seems strange that a wave can propagate through that medium at
all. After all, waves require some sort of "restoring force" that returns the medium to its equilibrium state after it is displaced away
from it.   So how does the gas medium oscillate as a wave goes by, if the particles are not experiencing forces to make them
oscillate?

The answer is "probability and statistics."  Whenever there is an imbalance in the populations of particles in a gas (as there is when
there is a low-density rarefaction next to a high-density compression), on average more randomly-moving particles enter the low-
density region than leave it, and more particles leave the high-density region than enter it.  So the low-density  region naturally
(through sheer probability) grows in density, while the high-density region drops in density, providing a statistical rather than
mechanical "restoring force."  Note that for solids (and to a lesser extent, liquids), the particles do interact with each other, and the
restoring forces are exactly that – forces, but not so for sound through gases.   As you can see below, the sound wave of
compressions and rarefactions propagates along, even as the particles of the gas fly around randomly.

Figure 1.1.1 – Sound Wave in Air

Alert
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Frequently textbooks and other sources, in their discussion of sound in air, refer to the oscillatory displacement of particles in
the medium. It is okay to refer to the "average displacement" of a particle from the equilibrium point, but individual particles in
a gas are flying all over the place, not actually bouncing back-and-forth. The distinction between these can easily be lost,
leading to a lot of confusion.

For these reasons, when we express a wave function for sound in air, it will have units of either density or pressure. Note that when
we detect a sound with our ears, it is the variations in pressure in the medium that causes our eardrums to vibrate.

Sound Wave Properties
The speed of sound in air at standard temperature and pressure is around . For air and other fluids, the sound wave velocity
dependence on the medium is very similar to that which we found for a transverse wave on a string. The density changes from a
linear density to a volume density (which we denote with a ), and the tension is replaced by a constant known as bulk modulus.
The velocity relation looks like:

Sound will also travel through a solid, but in that case the interactions of the particles are different than in a fluid, and the constant
that takes the place of tension is a different one: Young’s modulus. But the formula looks the same:

We will not explore the exact nature of the bulk and Young's moduli – simply knowing that they play the same role for fluids and
solids respectively as the tension plays for a transverse wave on a string will suffice for our purposes.

Alert
At a very young age, children in science classes learn that sound travels faster through water than through air, and faster
through solids than through water. This often leads to the erroneous conclusion that sound travels faster in media that are more
dense. Indeed, the opposite is true, and in fact it is the greater bulk or Young's modulus that accounts for the faster speed of
sound.

The intensity of a sound wave also obeys the rule-of-thumb for intensity – the intensity is proportional to the square of the
amplitude. Specifically, it turns out that for an amplitude measured in pressure, the intensity is given by:

Alert
It is important to note that the amplitude of pressure is the difference between the maximum pressure of the compression (or the
minimum pressure of the rarefaction) and the ambient (equilibrium) pressure.

As with any other wave, the dimensions into which a sound wave spreads also determines how the intensity varies with distance
from the source. That is, a sound that expands spherically outward has its intensity dissipate according to the inverse-square law.
This explains why sound made into a closed tube (like those that can be found in playgrounds for children to play with) will remain
so much louder despite the distance the sound travels – the sound is not allowed to spread out spherically, and is instead reflected
back into the direction of the tube. Even shouting through a cone or cupped hands has some effect in this regard.

The Decibel Scale
The human ear is very sensitive to detecting sound. How loud a sound is depends upon the amplitude of the vibration of the
eardrum, which is determined by how much energy the sound wave transfers to the eardrum per second. This of course depends
upon the intensity (which is multiplied by the area of the eardrum to get the power transferred), and it turns out that the range of
intensities that the ear can detect before it starts becoming painful is quite large. A healthy human ear can hear sounds with
intensities as low as  (known as the threshold of hearing), and starts to feel pain around . A range of 12 orders
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of magnitude is quite large, making it more convenient to count the powers of ten rather than the exact values. A logarithmic scale
has therefore been devised that works as follows:

We start with a benchmark value – the threshold of hearing – which will translate to a zero value in the logarithmic scale (so the
power of ten will be zero). Then just convert every intensity to a ratio with this benchmark, and take the logarithm (to base 10):

The number yielded by just the logarithm of the ratio is described as the number of "bels" of the loudness of the sound. It is
traditional to multiply this by number by 10, so that the unit describing the loudness is decibels. Note that the threshold of hearing
results in zero decibels, while the pain threshold occurs at .

Alert
Sometimes the decibel level of sound is referred to as the sound's "intensity." Strictly speaking this is not accurate, but as there
is a one-to-one correspondence between an intensity and a decibel level, it doesn't cause problems, especially if the context of
this use of the term "intensity" includes some mention of a number of decibels.

Example 
A medieval village has a bell located in a tower in its central square which is rung to warn the townspeople of emergencies,
such as raiding parties from nearby regions. If the loudness of the bell heard by villagers in the town  (about 1/10 mile)
from the tower is , then about how far from the tower does the sound carry (i.e. at what distance does the bell become
barely audible)? Assume that there is negligible energy dissipated from the sound wave due to obstacles and the atmosphere.

Solution

The decibel scale is logarithmic, which means that every time the decibel level changes by , the intensity changes by a
factor of 10. The bell can barely be heard at the threshold of hearing, which is , which means that the decibel level can
afford to drop by , and the intensity can drop by two factors of 10 (i.e. drop by a factor of 100). The sound from the
bell expands outward spherically, so the intensity drops off according to the inverse-square law. Therefore to drop by a
factor of 100, the distance must increase by a factor of 10. So the bell can barely be heard at a distance of one mile.

Example 
A speaker at the north end of a round football stadium emits a sound at a single frequency. A listener in the center of the
stadium hears the sound at an decibel level of . Speakers in phase with the north end speaker are then turned on at the
east, south, and west ends of the stadium, with all four speakers emitting sound at the same power output. Find the decibel level
of the sound heard at the center of the stadium from all four speakers combined. Assume no thermal dissipation of sound wave
energy into the air.

Solution

The sound waves coming from the four speakers all start in phase at the same time, and travel the same distance, so when
they reach the common point at the center of the stadium, they are in phase, and interfere constructively. [Note that the
direction of motion of the sound is irrelevant, as the contributions to the density of the air is what is superposing.] With four
identical waves in phase, the superposed wave will have four times the amplitude of each individual wave. Multiplying the
amplitude of the sound wave by 4 results in an intensity that is increased by a factor of 16. Now all we need to do is
determine how much of a change this means for the decibel level (which is not a factor of 16!):

β = (10 dB) ( )log10

I

Io
(1.1.4)
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1.2: Doppler Effect

Sound Source in Motion
All waves begin at some source, and have an effect some distance away at something we will call a "receiver." Sound waves in particular exhibit this
source/receiver relationship very well: Something (a "source") vibrates, varying the air pressure in its vicinity in some fashion. This pressure variance then
propagates as a sound wave to another place, where the varying pressure causes another object (the "receiver") to vibrate. We have already seen how the
separation distance and the inverse-square law relates the vibration of the source to the vibration of the receiver in terms of their energies.

Let's consider the following three properties of a sound wave generated at a source and detected at a receiver:

period (or frequency)

The period of the wave according to the source is simply the time span between the generation of each wave crest, and the frequency measured by the
source is the inverse of this number. As each compression reaches the receiver, a compression occurs, so the time that elapses between crests "washing
over" the receiver is the period of the wave as measured by the receiver, and the inverse of this period is the frequency measured by that receiver.

wavelength

The spatial separation of the wave crests is the wavelength of the sound wave. This is not a measurement that "belongs" to either the source or receiver – a
simple snapshot of the particles in the air can be used to measure this distance.

wave velocity

The two values above – the period and wavelength – are related to each other according to the speed of the wave. That is, the source calculates the speed
of the wave to be the ratio of the wavelength and the period measured by the source. The receiver calculates the wave speed as the ratio of the wavelength
and the period that it measures.

The question we seek to answer here is, "How does motion of the source through the medium affect these quantities, if at all?" To answer this question,
we'll start with the simple case where there is no movement through the medium, and create a model that simplifies comparisons of what happens at the
sender and receiver. We'll assume that the sender is point source (depicted with a red dot in the figure below), and that the receiver is a point in space as
well (depicted with a blue dot in the figure below). The radiating circles in the figure represent sound wave crests (regions of maximum density or
pressure), propagating outward from the source. Every time a new crest is created at the source, the red dot flashes, and every time a wave crest is
detected, the blue dot flashes. The time between red dot flashes is the period of the wave according to the source, and the time between blue dot flashes is
the period of the wave according to the receiver.

Figure 1.2.1 – Source and Receiver Stationary

The source and receiver have been placed exactly three wavelengths apart, which has the effect of synchronizing their flashes, which makes it clear that
the time between red dot flashes is the same as the time between blue dot flashes. Of course, the time interval between flashes would be the same even if
the source and receiver were separated by a different distance and the flashes were not simultaneous. The point is that the source and receiver agree upon
the period (frequency) of this wave. There is no reason that the source and receiver should ever disagree about the wavelength of the wave, as a snapshot
can be taken at any moment and a meter stick can be used to measure this quantity. Also it is clear that the wave moves away from the source at the same
speed that it moves toward the receiver. So both source and receiver agree upon measurements of all three of the quantities in the equation .

Now let's suppose that the source is moving through the air toward the stationary receiver as the sound is emitted. After a wave crest leaves the source, it
continues spherically outward from the point where the source was when it emitted the sound, but the source moves before it emits the next wave crest,
which results in the spherical wave crests not not being concentric. The result is depicted in the figure below.

Figure 1.2.2 – Source Moving Toward Stationary Receiver

v= λf
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While the source is emitting a crest at the same regular time intervals as in the stationary case above (the time between red dot flashes is the same), the
wave crests that reach the receiver are closer together. The speed of the wave crests according to the receiver is the same as before (the only difference is
that they start at different places), so the time interval between blue dot flashes is shorter than before. It is clear that the blue dot is flashing twice as
frequently as the red dot. So the source and receiver do not agree upon the period (frequency) of this wave!

The wavelength in this case is tricky – clearly it depends upon where you measure it. In front of the source it is much shorter than behind it. For the
purposes of this discussion, just the wavelength along the line joining the source and receiver matters, and as before a snapshot can be taken, and the
distance measured between wave crests is well-defined. So both the source and receiver agree upon the wavelength, but disagree upon the frequency, so
what happens to the relation ? Clearly the source and receiver cannot agree on the speed of the wave. Of course they don't! The wave moves at a
fixed velocity through the medium, and the receiver measures this speed because it is not moving through the medium. But the source is moving through
the medium, which means it will measure a slower speed for the wave crests. Indeed, the source sees the crests moving away from it (in the direction
specified) slower than the receiver sees the same crest coming toward it. So the source measures a slower wave speed and lower frequency for the wave
than the receiver, and both measure the same wavelength, which allows both to satisfy the equation .

Ultimately we would like a relationship between the frequencies measured by the source and receiver. To this end, let's make the following definitions:

We can compute the wavelength in front of the source using these quantities. A wave crest is emitted, and in the time it takes for a second one to be
emitted ( ), it travels a distance of . At this point, a second wave crest is emitted, but it is not emitted at the same position as the previous one. This
one is emitted from a position that is closer to the receiver by the amount that the source has moved in the same time period: . The wavelength is the
distance between these two crests:

Now we can use the wavelength (which is the same for the receiver as the source) to relate the two frequencies:

The fraction is greater than one, so this formula agrees with our observation that the frequency of the wave measured by the receiver is greater than the
frequency sent by the source.

Suppose the source was moving away from the receiver. Then the wavelength is increased, which means that the time span between wave crests reaching
the receiver is increased, and the receiver measures a lower frequency than the source. The amount that the wavelength is expanded is found the same way
that the amount it was reduced in the previous case, and the effect is that the two terms in Equation 2.2.1 are added rather than subtracted. This changes the
final answer such that the minus sign in the denominator becomes a plus sign. We can therefore summarize the relationship between the source and
receiver frequencies (known as the doppler effect) for motion along a line as:
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The upper (–) sign refers to the source moving toward the receiver, and the lower (+) sign refers to it moving away from the receiver. If the source is not
moving directly toward or away from the receiver, then things get only slightly more complicated. Note that the wavelength is different for every angle the
velocity of the source makes with the line between the source and receiver. While this is not a particularly difficult extension to the doppler formula, it's
more than we will need for our purposes, and we will examine it no further.

Example 
A pedestrian standing on a corner hears the siren of a police car coming directly toward her. At this point in time, the car is  away and she hears
a decibel level of . The policeman in the car hears the siren at a frequency of , while the pedestrian hears it at a frequency of .
Find the decibel level the pedestrian hears  later. Assume the police car maintains a constant speed and that sound exits the siren radially into 3-
dimensions. The speed of sound in air is .

Solution

The loudness of the siren will of course increase as it gets closer to her. We can use the inverse-square law for intensity to determine how much
louder it is when it is closer 22 seconds later, but to determine how much closer it is, we first have to figure out how fast it is going. We do this using
the doppler effect. We are given the source’s frequency and the listener’s frequency, so we use those to compute the velocity of the source, noting that
the listener is not moving, and the source is moving toward the listener:

The distance traveled by the police car during the 22 seconds is therefore:

Subtracting this from the original distance tells us that the car is now a mere  away. We use this fact to determine the change in the intensity of
the sound from the inverse-square law (Equation 1.3.14):

Now we need to express this in the logarithmic scale for decibels. It is simplest to find the change in decibel level:

Sound Receiver in Motion
Okay, now that we know what effect a moving source has on the frequency measured by a stationary receiver, we'll look at the opposite scenario – the
effect on the frequency when the receiver is moving toward and away from the source. The overall effect is similar, in that moving toward the source
increases the frequency and moving away from the source decreases the frequency, but the analysis is slightly different. With the source stationary, the
wave crests are not squeezed closer together or stretched farther apart. The wavelength is simply determined from the source's frequency and the speed of
sound in the medium:

If the receiver is moving into the crests (toward the source), then the crests are moving toward the receiver at a relative speed of , where now  is
the velocity of the receiver. The time it takes between crests hitting the receiver (blue light flashes) is the distance traveled (one wavelength) divided by the
relative speed, so:

Putting these two equations together gives us the relationship between the frequencies:

The fraction is greater than one, so the frequency measured by the receiver is indeed higher than that of the source. As before, if the receiver is moving
away, then there is a sign change from this case, giving:
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As before the upper sign indicates motion toward, and the lower sign motion away.

Example 
Sound is emitted from a stationary source, and is detected by a stationary receiver. Naturally both measure the same frequency. The source now starts
moving away from the receiver, and the frequency of the sound heard by the receiver is shifted lower by 25%. If the receiver had instead moved away
from the source at the same speed, by what percentage would the frequency of the sound shift down?

Solution

We start by determining the speed we are talking about here. From the source-moving formula, if the receiver frequency is 25% lower, then it is 3/4
of the source frequency:

So the source is moving away at a speed of one third the speed of sound. Now we only need to compute the change in frequency when the receiver
moves away from the stationary source at the same speed (i.e. plug in  for ):

So if the source moves away at the same speed, then the frequency drops by one third (33%).

Combinations of Motions
The next natural question that arises is, "What if both the source and receiver are moving?" In this case, we can actually just "stack" these two results.
When we calculated the effect of the receiver moving toward the source, we started with the wavelength of the sound. In that particular case, the
wavelength resulted from a stationary source, but if it hadn't, the derivation would have been the same. So if the wavelength is compressed or stretched by
the motion of the source, we use that wavelength, and get the answer from there. That is, instead of plugging Equation 2.2.4 (which expresses a stationary
source) into Equation 2.2.5, we use Equation 2.2.1 (which expresses a moving source) instead:

Once again the top sign handles motion toward the other, and the bottom sign handles motion away. There are a couple of checks we can do on this result.
First, putting in  or  gives the same equations we found above for a stationary receiver and source, respectively. Second, we notice that if
both objects are moving in the same direction at the same speed through the air, then one is moving toward while the other is moving away, and these
speeds are equal, so the numerator equals the denominator, and both measure the same frequency.

Another interesting combination that comes up often is the echo. If a source is moving toward (say) a stationary wall, and the sound sent by the source is
reflected off the wall and heard by the source (which now has become a receiver), how does the emitted frequency compare with the received frequency?
The important concept to understand here is that when a wave strikes a new medium (in this case, sound going from air into a solid wall), the property of
the wave that is maintained is the frequency. This is because if we measure the time between successive wave crests hitting the new medium, the same
time elapses between wave crests emitted by that new medium. This applies to both reflection and transmission. So whatever frequency of sound is
received by the wall then becomes the frequency of the sound transmitted by the wall in the echo.

So the sound received by the original sender after an echo undergoes two successive doppler effects. The wave that strikes the wall is a different frequency
from the what was sent by the moving source. Then upon reflection, that new frequency is transmitted (with the wall treated as a new stationary source)
and measured by the original sender (which is now a moving receiver).

Example 
An automated flying drone comes equipped with an ultrasonic sensing device. This device emits sound pulses with a frequency of  to probe its
surroundings by detecting echoes of those pulses from nearby objects. The drone flies along the -axis in the  direction, when it detects an echo from
a UFO that is directly in front of it that is also moving along the -axis. The onboard computer for the drone immediately logs the following data:

a. Are the drone and the UFO moving toward or away from each other as this data is being recorded? Explain.
b. Find the direction in which the UFO is moving through the air (  or ).
c. Find the speed of the UFO through the air.

Solution

a. The frequency of the wave is increased in the course of the round-trip. We know that if the drone and UFO were moving at the same speed in the
same direction, then the UFO would “hear” the same frequency as the drone emits, would then echo back that same frequency, and again since they
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are moving the same speed and direction, the drone would “hear” the same frequency echoed by the UFO, which means there would be no doppler
shift at all. Clearly then if the UFO slows down (or reverses direction) or the drone speeds up so that they are moving toward each other, the effect
will be to doppler shift the detected echo to a higher frequency than the emitted sound pulse. So the drone and UFO are moving toward each other.

b. There are a couple ways to do this. We will look at one way here, and the second way will be given in the answer to part (c). Suppose the UFO is
stationary. The doppler effect for the echoed sound would then be found in the usual 2-step manner: UFO hears a doppler-shifted sound, reflects
that frequency back, and the drone hears that sound doppler-shifted again. The first shift is due to a moving source, and the second shift is due to a
moving listener, so:

So if the UFO were stationary, then the frequency shift would be , and this is more than the . For the frequency shift to be reduced
from the case of when the UFO is stationary, the UFO must be moving away from the drone, which is in the  direction.

c. We do this in two steps. The first incorporates the doppler shifted sound heard by the UFO, then for the echo that frequency becomes the source,
and it is doppler shifted again when it is heard by the drone’s detector. Unlike part (b), the doppler shifts are due to motion of both the source and
the listener each time. Since we know the UFO and drone are getting closer, we’ll assume that the UFO is moving in the –x direction (toward the
drone):

We are given the emitted and received frequencies, as well as the drone speed, so we can solve for the UFO speed. The result of the algebra is:

Notice that the sign came out negative. At the beginning we assumed that the UFO was moving toward the drone (in the  direction). The negative
sign indicates that the UFO is in fact moving in the opposite direction, in agreement with what we determined in part (b).

This page titled 1.2: Doppler Effect is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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1.3: Interference Effects

Standing Waves
Sound can create a variety of interference effects, like any other wave. Among those interference effects are standing waves. These
are formed in precisely the way described for strings in Physics 9B, with two traveling waves reflecting back-and-forth between
two endpoints. In the case of sound in a gas, it isn't immediately clear what constitutes "fixed" and "free" endpoints, since sound
waves in gas do not involve particles of media that can ever be held in place. We have to broaden our notion of what it means to
have a fixed boundary to mean simply that whatever physical quantity plays the role of "displacement" for a wave is unchanging.
In the case of sound, this would mean pressure or density. We will see in a moment how this can be.

We are used to talking about one-dimensional standing waves, so it is fair to ask how this can be set up for sound in a gas. If a
region of the gas has a pressure higher than the ambient pressure, the gas will naturally expand into the lower-pressure region, so to
create a 1-dimensional standing sound wave, we must set up circumstances so that the compressed regions doesn't expand into all
three dimensions. We can do this by producing the sound within a hollow pipe. The fixed or free boundary conditions at the ends of
the pipe then depend upon whether the end of the pipe is open or closed, but which case is fixed, and which is free?

Let's look first at a closed end. When a compression propagates its way toward a closed end, the means for the compression to
restore itself to equilibrium is restricted – it can't continue forward. The compression grows even greater than the amplitude of the
wave, just as the displacement of a string at the point of reflection from a free end grows above the amplitude (see Figure 1.5.5 in
the 9B textbook). So in fact a closed end of a hollow pipe represents a "free" end for a standing sound wave.

The open end is quite different. In fact, it does not behave like an end at all, but rather like a transition point. We know this is true if
we follow the energy – a sound wave headed for an open end will transmit energy out of that open end, as the compressions and
rarefactions are transmitted to the region of the gas outside the pipe. So why would there be any reflection back into the pipe at all?
As in the case of going from slow-to-fast or fast-to-slow medium, the mathematics of the boundary interaction is beyond this
course, but the result is the same. The obvious objection here is that the speed of the wave within the air in the pipe is no different
from the speed of sound outside the pipe. This is true, and in fact it requires a bit of a revision to that observation. Perhaps a better
way of describing the reflection/transmission phenomenon is to say that there is at least partial reflection whenever the wave
equation governing the wave changes. One way for the wave equation to change is for the wave velocity to change. Another is for
the wave to go from being confined to one dimension to three dimensions. This is exactly what happens when the sound in a pipe
emerges from an open end.

We know that waves in three-dimensions spread the energy very fast, causing the amplitude to drop-off in proportion to the
distance. It is therefore not a bad approximation to claim that at the open end (or slightly beyond it) is at a fixed pressure/density
(the ambient pressure/density). This means that if we are forced to choose, the open end of the pipe to a good approximation
behaves like a fixed end, and the sound wave that reflects back into the pipe is phase-shifted.

From these considerations, we now know that standing sound waves in a pipe create pressure antinodes at closed ends, and pressure
nodes at open ends. Armed with this information, we can use all the same machinery regarding standing waves that we learned in
Physics 9B. What is interesting about the case of sound is how this can be used to create tones in organ pipes and wind instruments.
These devices make use of two special aspects of standing waves in pipes. The first we have already mentioned – an open end
allows for some transmission of sound waves, which means that we can hear the tone produced without having to crawl inside the
pipe. The second has to do do with the idea of resonance.

Digression: Resonance
Resonance is a very important concept in many fields of physics, and we unfortunately don't have time to cover it in great detail
here, though it will come up again in both Physics 9C and 9D. The main idea is that if vibrating systems interact with each
other, the amount of energy that can be transmitted from one to the other is largely dependent upon how closely the "natural

frequencies" (think of masses on springs with frequencies that look like ) of those systems match. If the frequencies are

a good match, then the superposition of the displacements of the two systems leads to constructive interference. If they don't
match, then the displacements don't synchronize, and there is very little overall constructive interference. A good analogy is
pushing a child on a swing. If you give them a push forward every time they reach the peak of their backswing, then the
frequency of your pushes matches the natural frequency of the swing, and energy is transmitted to the swing. If, however, you
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were to push with a different frequency, then some of the pushes would add energy to the swing, but many others would push the
swing forward as it is coming backward, taking energy away from the swing.

If we get air moving near the end of a pipe, like when we blow into a flute, the result is turbulent flow. This adds energy to the
system, but the waves created come in a wide variety of frequencies. All of these sound waves travel the length of the pipe,
partially reflecting and transmitting when they get there. But as we have seen in our study of standing waves, only those waves that
have one of the harmonic wavelengths will exhibit the constructive interference required for a standing wave. Those waves that do
have the right frequency exhibit resonance, building energy for the standing wave at that frequency. The result is that of the many
sound waves that escape the pipe, those at a resonant frequency of the pipe (determined by its length) have by far the most energy,
and are the only sounds heard. It turns out that by far most of the energy goes to the fundamental harmonic, though overtones can
also often be heard. To modulate the frequency of the sound that escapes therefore becomes a matter of changing the length of the
pipe. An organ designates a pipe for every key on the keyboard; a slide trombone allows the player to physically expand the length
of the pipe; valves and holes in other wind instruments also serve this same purpose. Note also that all of these instruments rely
upon the turbulent flow to provide the spectrum of sound waves, whether it is through a vibrating reed, vibrating lips, or air forced
across an open end. (Note: Air forced into an open end does not induce much turbulence compared to air forced across the
opening.)

Lastly, it should be noted that to produce a sustained tone, one must continually add energy. This is because energy is always
exiting the pipe via the transmitted wave. The rate at which energy is added equals the rate of energy escaping via sound waves,
while the energy in the standing wave within the pipe remains constant.

Example 
A string is plucked above a pipe that is open at one end, and the fundamental harmonic tone is heard coming from the pipe. If
the closed end of the pipe is now opened, how must the tension of the string be change in order to excite the new fundamental
harmonic?

Solution

Open ends of pipes act as fixed points (nodes) for standing sound waves. The fundamental harmonic of the pipe with one end
closed fits one quarter of a wave between the ends of the pipe (node to first antinode), while the first harmonic with both
ends open fits a half-wavelength (node to node). Therefore opening a closed end shrinks the wavelength of the fundamental
harmonic by a factor of 2. The speed of the sound wave is unchanged, so its fundamental harmonic frequency rises a factor
of 2. The standing sound wave is being driven by (i.e. is getting energy from) the standing wave in the string, so their
frequencies must match for this resonance to occur, which means that when the end of the pipe is opened, the string's
standing wave frequency must also rise by a factor of 2. The string has not changed length, so the only other way to change
its frequency is to change the speed of the traveling wave on the string. To double the speed of the string wave (and therefore
double the frequency), the tension must be quadrupled, since the wave speed on the string is proportional to the square root
of the tension, and the linear density of the string cannot be changed.

Beats
Up to now, all of our cases of interference involve waves that have identical frequencies. But a very interesting phenomenon
emerges when two sound waves interfere that have slightly different frequencies (actually any two different frequencies will do, but
the phenomenon is easier to detect when the frequencies are within 1 or 2 hertz, for reasons we will see). We'll start with another
over-simplified diagram like those we have used above. This time, the two waves emerging from the speakers will have different
frequencies, and therefore different wavelengths (though for simplicity, we will assume they have the same amplitude).

Figure 1.3.4 – Superposing Two Sound Waves of Different Frequencies
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The diagram is of course a snapshot at a moment in time. If, at this moment in time, a listener is positioned at the left vertical line,
then the superposition of the two waves results in constructive interference, which means that the sound heard is loud. If, on the
other hand, someone is positioned at the right vertical line, then destructive interference results in silence. But now suppose that
one remains at the right vertical line for a short time after this snapshot is taken. Both waves are traveling at the same speed (they
are both in the same medium), so the rarefactions that coincide at the left vertical line will soon be at the right vertical line. That is,
a person listening at the right vertical line will, at one moment, hear silence, and then a short time later, a loud tone. This pattern
will in fact repeat itself with regularity, and this pulsing of the sound is referred to as beats.

The math that governs this phenomenon results from a straightforward application of trigonometric identities. We start with a wave
function for each wave. As we are talking about sound for which the "displacement" is pressure, we will represent the wave
function with the variable . Note we are also keeping things simple by staying in one dimension:

We are interested in what is happening to the sound at a single point in space (i.e. we want to show it gets it gets louder and softer),
and any point will do, so for simplicity we'll choose the origin, . This reduces our two functions to:

These functions are oscillating with different frequencies, so they are out-of-sync. We can choose a position and time when one of
these waves is at a maximum, and define these as  and , respectively.  For this wave, we have essentially set its phase
constant  equal to zero. There is no guarantee that the other wave will also be at a maximum at this place and time, so we can't
arbitrarily set the other phase constant equal to zero as well.  If they do have a relative phase that is non-zero, then it turns out that
the combined sound will not be as loud as if they waves were in phase, but the general features described below remain the same.
 To simplify the math, we will therefore just look at the simple case where the waves are in phase, and set . With the
phase constants equal to zero, we now have a simple pair of functions to work with (note that we can drop the minus signs on the
times, since ). Superposing these and replacing the periods with frequencies gives:

Now apply a trigonometric identity:

This looks like a complicated mess, but there is a reasonable way to interpret it. If we identify the second cosine function as the
variation of the pressure that defines the time portion of the sound wave (often referred to as the carrier wave), the tone produced
has a frequency that is the average of the two individual frequencies. The first cosine function can then be combined with , and
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together they can be treated as a time-dependent amplitude. The amplitude is directly related to the intensity, which is a measure of
the loudness of the sound, so a harmonically-oscillating amplitude would manifest itself as regularly-spaced increases and
decreases in volume (beats). It's a bit easier to see how this works with a diagram.

Figure 1.3.5 – Graph of Pressure vs. Time at a Fixed Point Exhibiting Beats

The blue function shown represents the fluctuations in pressure (at position  as a function of time as the sound wave passes
through that point. Notice that the peaks have varying heights, reflecting the time-varying amplitude. The red "envelope" function
traces just the amplitude of the wave. The intensity is proportional to the square of the amplitude, so the sound is loud everywhere
that a red bump occurs, and silence is heard when the red function crosses the axis.

Alert
The volume of the sound doesn't drop to zero every time the blue graph crosses the axis! That is simply when the pressure
happens to be passing through the equilibrium point, and there is still energy in a wave when the displacement of the medium
passes through the equilibrium point (in the form of kinetic energy of the medium). But when the amplitude of oscillations goes
to zero, the energy is zero, and in the case of sound, this means silence.

We can ask how frequently the beats occur. A beat occurs every time a bump in the red graph occurs. Notice it doesn't matter
whether the bump is up or down in the red cosine function, since the intensity is the square of the amplitude. Therefore there are
two beats are heard for every full period of the red cosine function; one for the bump at the peak, and one for the bump at the
trough. This means that the frequency of beats is twice the frequency of the red cosine function:

[Note: We have assumed that  is the greater of the two frequencies, as negative frequencies have no meaning. One can remove
this assumption by defining beat frequency in terms of the absolute value.] We can measure the time spans between peaks for the
blue function. This is the period of the carrier wave, which we have already stated is the average of the frequencies of the two
sound waves:

We only really hear the beats clearly when the two individual frequencies are close together – if there is too great of a difference,
then the beat frequency is very high, and the beats come too frequently. In this case it’s impossible for the human ear to tell when
one beat begins and the other ends. In that case, it sounds to the human ear more like a mixture of two sounds – one at the average
frequency and one at the much lower "beat frequency."

Example 
A standing wave of sound persists within a hollow pipe that is open at both ends. A bug within the pipe walks along its length at
a speed of . As it does so it passes through nodes and antinodes of the standing wave, hearing the tone get alternately
loud and silent, with the time between moments of silence equaling 2.0s. From what we have learned about standing waves, we
can compute the frequency of the tone. The distance between the nodes is one-half wavelength of the traveling sound wave, and
based on the ant's speed and the time between nodes, we can determine this distance. Then with the wavelength and the speed of
sound, we get the frequency:
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When asked about the experience, the bug claimed it had no idea that it was walking through loud and silent regions. It
described the experience as hearing periodic "beats" every 2.0 seconds in the tone. Re-derive the frequency of the sound from
the perspective of the bug.

Solution

This problem is challenging because it's not immediately clear how beats can occur, when beats require two sound waves of
different frequencies. There are two sound waves here – one reflected by each end of the pipe – but they both have the same
frequency... or do they? They have the same frequency from our perspective, but not from the bug's! The bug is moving
toward one end of the pipe and away from the other, so one of the waves is doppler-shifted to a higher frequency, and the
other wave is doppler-shifted to a lower frequency. These waves of different frequencies interfere to provide beats from the
ant's perspective. So now that we see how this makes sense, we need to do some math. Both doppler shifts involve a
stationary source (the ends of the pipe) and a moving receiver (the bug):

The frequency  is what is heard by the ant from the wave coming from in front of it, and  is the frequency of the sound
coming from behind it, and  is the frequency of the sound from the perspective of the stationary ends of the pipes (i.e. the
frequency of the standing wave). The beat frequency heard by the ant is simply the difference of these two frequencies, so:

We know that the bug hears silence every 2.0 seconds, so the beat frequency is . Plugging this, the speed of the ant,
and the speed of sound into this equation gives:

While we have worked this out for some specific numbers, it is of course true in general. If the bug was moving faster, then
the pulses at the antinodes would come more frequently. From the bug's perspective the doppler shifts would greater
separate the two individual sound frequencies, leading to a higher difference and faster beat frequency, and this identically
equals the rate of passing through antinodes.

 

This page titled 1.3: Interference Effects is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.

distance between nodes = t = ⇒ λ = 2(4.0 ) (2.0s) = 16cm ⇒ f = = = 2150Hzvbug

λ

2

cm

s

v

λ

344 m
s

0.16m

=( ) f =( ) ff1
v+vant

v
f2

v−vant

v

f1 f2

f

= − =( ) f −( ) f = 2 ffbeat f1 f2
v+vant

v

v−vant

v

vant

v

0.50Hz

f = = (0.5Hz) = 2150Hz
v

2vant

fbeat

344 m

s

2 (0.040 )m
s

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/62965?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/1%3A_Sound/1.3%3A_Interference_Effects
https://creativecommons.org/licenses/by-sa/
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman


1

CHAPTER OVERVIEW

2: Foundations of Special Relativity
2.1: The Relativity Principle
2.2: The Nature of Time
2.3: More Thought Experiments
2.4: Paradoxes

This page titled 2: Foundations of Special Relativity is shared under a not declared license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.

https://libretexts.org/
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Foundations_of_Special_Relativity/2.1%3A_The_Relativity_Principle
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Foundations_of_Special_Relativity/2.2%3A_The_Nature_of_Time
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Foundations_of_Special_Relativity/2.3%3A_More_Thought_Experiments
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Foundations_of_Special_Relativity/2.4%3A_Paradoxes
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Foundations_of_Special_Relativity
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Foundations_of_Special_Relativity?no-cache
http://physics.ucdavis.edu/people/adjunct-faculty-and-lecturers/tom-weideman


2.1.1 https://phys.libretexts.org/@go/page/21802

2.1: The Relativity Principle

Inertial Frames
Back in our studies of classical mechanics, we spent a very brief period of time learning about how to relate the measurements of position
and time between two observers in relative motion (go here for the LibreText reminder of this topic). Actually "relative motion" in this
context is imprecise. We restricted our study to a very specific kind of relative motion – that for which the two observers maintain a
constant relative velocity.

For what is to come, we will restrict these frames of reference even further – we will insist that every observer makes its measurements
from an inertial frame. This kind of frame is one in which Newton's first law assures that objects will not spontaneously begin to
accelerate. That is, if we are in such a frame, and we eliminate all of the real forces present on a stationary object, then the object remains
at rest in that frame.

The simplest way to understand inertial frames is to consider what kind of frame is not inertial. Suppose you are in spaceship (far away
from all gravitational sources), and it is accelerating forward. You hold a pencil in your hand, which is at rest in your frame, but you are
exerting a force on it with your fingers, so to test to see if you are in an inertial frame, you release it. As soon as you do, it continues with
whatever speed it had at the moment of release, while you and your spaceship continue to accelerate. From your perspective, it is the
pencil that accelerates, which tells you that you are not in an inertial frame.

[One might wonder why an inertial frame is an additional restriction beyond what we did in 9A. Certainly the intention was to deal with
inertial frames back then, but technically two frames with equal acceleration vectors (but unequal velocities) will also satisfy the Galilean
transformation.]

Postulate(s)
We have a simple experiment for testing whether our frame is inertial, but it doesn't tell us whether our frame is stationary or moving in a
straight line at a constant speed, because when we release the pencil under these circumstances, it remains stationary from our perspective
in both cases. So what kind of experiment will tell us whether or not we are moving?

Albert Einstein pondered this very thought, and came up with no answer. Eventually, he felt compelled to assert it as a fundamental aspect
of our universe, and the relativity principle was born:

No experiment can be performed within an inertial frame that determines whether it is moving or at rest.

This is also known as the first postulate of the theory of Special Relativity. One way that we can express this is in terms of an "argument"
between two observers.

Figure 1.1.1 – All Observers in Inertial Frames Can Claim to Be Stationary

[These kinds of diagrams, where the perspectives of two observers in relative motion, will have some common elements. First, we will
always define their relative motion to be parallel to their common -axes. Second, we will define the primed frame to be moving in the 

 direction relative to the unprimed frame.]

Calling this the "first postulate" implies that there is a second postulate, and there is, though one could argue that it follows directly from
the first postulate and therefore doesn't need to be stated separately. It is this:
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Every observer measures the velocity light to be the same value.

The reason this "second postulate" can be considered a consequence of the first postulate is that the theory from which we derive the
speed of light contains no provisions for the motion of the observer (or rather, it predicts the same speed for all observers). Therefore the
theory predicts that any experiment that measures the speed of light in a vacuum will give a specific answer. If different inertial frames
produced different values for the speed of light, we would have a violation of the first postulate, as we would then have an experiment to
determine the "true" rest frame. So to the extent that we accept this theory of light propagation, we don't need the second postulate.

Digression: "Ultimate Speed"
The discussion above actually paints a somewhat in inaccurate picture of the foundation of relativity. As we will see later, these
postulates lead to the requirement of the speed of light being the limit which no relative motion can ever exceed. It turns out that if we
just postulate that such an "ultimate speed" exists, then relativity results, independent of the theory of light propagation. That is, light
sort of "coincidentally" travels at the ultimate speed, but the theory of relativity would apply even it if didn't, so long as this "cosmic
speed limit" exists.

A Bit About Waves
The first postulate seems innocuous enough, and perhaps it even seems intuitive. But this business about every observer measuring the
same speed for a beam of light didn't sit well with many physicists at the time Einstein proposed it. To see why, and to fully understand
the implications of this being true, we need to review a little bit about waves, because as we know from Physics 9B and 9C, light is a
wave phenomenon. Of all the things we previously learned about waves, these are the properties of waves we will most need to recall for
this discussion...

effect of medium
Waves are phenomena which transfer energy through space by the means of a self-propagating disturbance of a medium (the stuff that is
"waving"). A wave on a string carries energy along because a piece of the string displaces, which pulls on an adjacent piece of string,
displacing it, and so on. Surface waves on water and sound waves through air work in a similar manner. What these all have in common is
that medium itself doesn't travel with the energy (it moves with the disturbance), and the speed with which adjacent particles in the
medium interact with each other is a property of the medium. Put another way, the speed of a wave is exclusively a function of the
properties of the medium. A wave on a string travels faster when the string is more taut, and slower when the string is made is more
dense, for example.

superposition
When two waves traveling through the same medium encounter each other, the effects they have on the medium are additive at that the
same point in the medium. So if one wave displaces a string by  at some position  on the string, and another wave displaces the string
by  at the same position, then the total displacement of the string with the two waves present at  at the same time is . This
additivity property is called superposition, and it has the particularly interesting feature that two waves can actually cancel each other
entirely (a phenomenon called destructive interference), if the two waves happen to be displacing the medium equal amounts in opposite
directions.

If a wave happens to be harmonic (the medium displacement as a function of position and time is a sine wave), then this destructive
interference occurs when two identical waves are out of phase by .

Figure 1.1.2 – Destructive Interference of Two Harmonic Waves
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The Michelson-Morley Experiment
The crux of the problem for those originally opposed to Einstein's assertion that the speed of light is the same when measured by any
observer is that this is not true of other waves. If one moves through the air into an oncoming sound wave, that sound wave is moving
faster relative to that person than relative to someone stationary in the air. The point is that, as stated above, the speed of a wave is entirely
determined by the medium, and this speed is relative to that medium. So if an observer moves relative to a medium, then the relative
speed of waves propagating through that medium can change.

So we are left with the question: What medium is disturbed as a light wave passes through it, and can't we see a change in the speed of
light if we just move relative to this medium? This was an open question at the time of Einstein, and was very puzzling for a couple
reasons. The first is that the theory of light did not require the existence of any medium at all.

But far more puzzling than this was the fact that no one could seem to come up with any experimental evidence of the existence of a
medium for light (which they referred to as the luminiferous aether). The most convincing null result of such a search was performed by
two American physicists Albert Michelson and Edward Morley, who employed a device called an interferometer, the basics of which are
still used today for countless applications.

The basics of an interferometer work like this: A single light beam is split into two separate beams. As they came from the same source,
they are in phase with each other, but if we send them on separate journeys, and then bring them back together, they may no longer be in
phase. For example, one of the beams may travel farther than the other. If the difference in their phases when they get back together is just
right, they will destructively interfere with each other.

[For the two beams to behave this way, the original beam needs to be somewhat coherent, meaning that parts of the light near each other
are in phase.   Nowadays we easily achieve this artificially with lasers (sunlight is also quite coherent), but fortunately the degree of
coherence achievable in a lab in the late 1800's was sufficient to successfully perform this experiment.]

The ingenuity of the MM interferometer is that it splits the beam of light and sends the two pieces on journeys that are equal distances,
but are at right angles to each other. If the laboratory is stationary in the aether, then the beams come back to the detector in phase, and do
not cancel each other out:

Figure 1.1.3 – Laboratory Stationary in Aether

If this device is moving through aether (let's say in a direction parallel to one of these directions), then one of the arms of the
interferometer moves parallel to the direction of the light during the journey, while the other moves perpendicular to it. These two
journeys are not equal in distance, which means the beams can enter the detector out of phase:

Figure 1.1.4 – Laboratory Moving through Aether

We can do a bit of math to determine the difference in the distance between these two journeys. The only difference between the paths of
the two beams comes after they encounter the half-silvered mirror the first time, and before they encounter it the second time, so we focus
on this portion of the process for both of them:
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Figure 1.1.5 – Distance Traveled by the Transverse Beam

The transverse beam (the one perpendicular to the laboratory's motion) follows a diagonal path in both directions, the distance of which
can be determined from the Pythagorean Theorem:

But the distance traveled by the beam also equals the speed of light through the aether  multiplied by the time elapsed, so we get:

Figure 1.1.6 – Distance Traveled by the Longitudinal Beam

The longitudinal beam (the one parallel to the laboratory's motion) stays on a straight line, but the time it spends going in each direction is
not the same, so we compute these times separately then use them along with the speed of light to get the full distance this beam traverses
during this part of the process:
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We can see from these two results that the two beams travel different distances. The denominator for each case is a fraction that is less
than 1, so the square root is the larger denominator.  This means that the longitudinal path (with the smaller denominator) is longer than
the transverse path. The difference between these paths can be expressed by a multiplicative factor that depends upon the speed of the
laboratory through the aether and the speed of light:

We therefore find that if the laboratory is moving through the aether at just the right speed, then the difference in distances traveled will
equal half the length of a wave, and the two beams will cancel at the detector, resulting in darkness. In fact, this is not the only case that
will give this result. If the difference in distance traveled is  of a full wave, then again the troughs and crests of the waves will match up,
making destructive interference. Moreover, even if there is not complete destructive interference, every offset of the waves will result in
some variation in the brightness of the light.

So given that the earth is moving through space, and is also rotating, one would expect that it is not difficult to find some evidence that the
aether exists, and that we are moving through it. But try as they might, Michelson and Morley found no such thing. Many explanations
were offered for the problem (many before the experiment was even performed), such as the aether being "dragged" by the earth, so that it
was stationary around us here on the surface (logical arguments based on starlight observations and additional experiments on starlight
proved this to be false). Einstein alone showed the courage to just discard the existence of the aether altogether, no matter how
nonsensical the consequences might seem to be at first.

This page titled 2.1: The Relativity Principle is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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2.2: The Nature of Time

Spacetime Events
We now embark on deriving the consequences of the relativity principle in the same way that Einstein did – using a tool he called
Gedankenexperiment (thought experiment). in order to keep everything straight in our discussions, we begin by defining a
spacetime event.

In the context of special relativity, a spacetime event is an instantaneous occurrence at a specific point in space and at a specific
moment in time. A single point on a stationary light bulb as it dims defines a specified location, but it is not an event because the
dimming process does not occur at a single instant in time. A baseball bat at exactly 12:01pm occurs at a single instant in time, but
it is not an event, because the position is not specified at a single point. An easy way to visualize a spacetime event is to picture it
as a very quick flash of light from a point source. The position of the point source and the instant in time the flash occurs define the
space and time “coordinates” of the spacetime event.

It is much easier to define what a spacetime event is than it is to put physical quantities in terms of the spacetime coordinates, but
as we will see, this is exactly what we will have to do to make sense of what is to come. We begin with one of most startling
results, which is ironically one of the easiest to derive.

Time Dilation
Our first thought experiment involves turning the function of a clock into a series of spacetime events. This clock functions as
follows: Light bounces back-and-forth between two mirrors, and every time it strikes one of the mirrors, the clock "ticks." We
begin with Ann's perspective on what is happening with this clock. She happens to be in the same frame as the two mirrors, so to
her they are at rest, and the light is bouncing parallel to her -axis. The two spacetime events we will look at are two consecutive
ticks of the clock.

Figure 1.2.1 – Ann's Perspective of the Light Clock

Okay, so we have used the two events to determine the time span between them according to Ann. The goal of relativity is to
describe what a second observer measures for a physical process given what the first observer measured. So now we introduce Bob,
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who is in what we call  the primed inertial frame, moving at a constant speed  in the -direction relative to Ann. One might
interject, "Wait, this is time we are talking about! Won't both of them measure the same amount of time between ticks of the
clock?" Don't assume anything in relativity – just use the spacetime events and the postulate(s), and see where it leads.

Looking from Bob's perspective means that not only is Ann moving in the -direction, as we noted previously, but the two events
(which both occur at the top mirror) don't occur at the same position in space, since the mirror moves:

Figure 1.2.2 – Bob's Perspective of the Light Clock

Now we calculate the time between the two events, as we did for Ann. From Bob's perspective, the light travels a longer distance
than Ann measures, and very importantly, both Ann and Bob measure the speed of light to be the same (postulate of relativity), so
Bob must measure a longer time period than Ann measures between the same ticks of the light clock! According to Bob, the light
travels diagonally from the top mirror to the bottom one, and the length of this half of the trip can be written in terms of the speed
of light, and in terms of the Pythagorean Theorem:

We can eliminate  from these two equations to relate the time span measured by Bob to the time span measured by Ann:

The time between ticks for Bob is greater than the time between ticks for Ann by a factor of  (which is clearly a constant greater
than 1). Just to clarify, this is not an optical illusion for Bob – he doesn't just "see the clock ticking slower than it really is," it is
actually ticking slower. Also, it is important to note that while we used light to achieve this answer, it doesn't just apply to light
phenomena, it applies to time flow in all its manifestations. If Ann measures her own pulse to be 60 beats per second (one second
between each beat), and , the Bob would measure Ann's heart rate to be 30 beats per second (2 seconds between each beat).

It's worth taking a moment to review what the source of this result is. It comes from the fact that the light in the light clock travels
farther for Bob than it does for Ann, but they agree on the speed of that light, which means that the time between the two events
must be greater for Bob than it is for Ann.

As startling as this result is, it gets weirder. Suppose Bob has a light clock exactly like Ann's. What does Ann observe when she
looks at Bob's clock? She sees exactly the same thing happening with Bob's clock as he sees with her clock! Therefore Ann claims
that time is passing slower for Bob than it is for her, even as Bob says that Ann's time is passing slower than his own. Which one of
them is correct? Is Ann's time passing slower, or is Bob's? They are both in inertial frames, so according to the principle of
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relativity, each has an equal right to declare themselves to be "stationary." Therefore they are both right. The reason it seems like it
is impossible that this can be true is that we cling to the incorrect notion that time is universal. The time span between two events is
a relative quantity that depends upon who measures it.

Recording Spacetime Coordinates
While the calculation above is correct, it does require an assumption that we need to briefly address. Both Ann and Bob noted the
positions and times of the events in their frames. Given the importance of both position and time in relativity, we need to be
specific about how these numbers are recorded. What is observed is a spacetime event, which we have modeled as  a flash of
light that occurs in an instant at a specific position. So let's imagine constructing a massive lattice of labeled positions throughout
all of space, and the position of any possible flash must coincide with one of those positions, giving us our spatial label. Note that
every inertial observer can create such a lattice independent of every other observer, because according to the relativity principle,
everyone has an equally valid claim to being "stationary."  It is true that Bob's lattice of position labels is moving according to Ann,
but Ann and Bob only use their own stationary labels to describe the positions of events they see.

To get a complete reckoning of an event, we need to record not only its position, but the time at which it occurs.  Given what we
know about the rate of time flow for moving clocks, we have to be very careful about how we measure the time at which an event
occurs.  The one way to be safe is to have the clock that reads the time be positioned at the same place in space as the event. So
whenever an event occurs, one simply reads the label of the lattice point at which it occurs, and the value indicated by a clock
located at that lattice point when the event occurs.

Two Different Time Measurements
Now that we have a plan for recording data for events in spacetime, we need to give a little more thought to how we plan to have a
clock that is properly positioned to measure the time.  It turns out that there are two fundamentally different ways to achieve this.

coordinate time
The first way that comes to mind for measuring the time of any given event is to simply place a separate clock at every lattice
point. While this is a simple way to get a measurement for any event, we will be interested the time intervals between two events,
which means that all of our clocks positioned throughout space need to be synchronized.  How do we do this?  If we bring all our
clocks together in one place, set them the same, and then move them out to their assigned locations, then the weird effects that
come from relative motion of clocks make un-synchronize them when they are moved. Instead what we can do is this

1. Distribute all of the clocks throughout space.
2. Set the clock at the origin to a time of 0:00.
3. Using the lattice positions of the clocks, compute the time it will take a spherical wave pulse of light that starts at the origin to

reach all the other clocks, add this time to 0:00, and set the clock at this time.
4. Start the clock at the origin while starting the spherical pulse of light from the origin.
5. When the light wave reaches a clock, start it running.

Figure 1.2.3 – Synchronizing Clocks Distributed in Space

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/21803?pdf


2.2.4 https://phys.libretexts.org/@go/page/21803

By anticipating what the time on the origin clock must be when the light arrives, we can assure that the spherical wave propagates
clock synchronization throughout space.  This measurement of the time of an event is called coordinate time .

In the example above, both Ann and Bob measured the time between ticks in their own coordinate time. For Ann, the coordinate
time span between the two spacetime events was , while for Bob it was . As we found in the thought
experiment, these values are not equal, which is to say that this manner of measuring a time span between two events is relative.
Whenever the value of a physical quantity is different when measured from different inertial frames, we say that such a quantity is
frame-dependent. We therefore declare:

Coordinate time spans are frame-dependent.

proper time
We certainly are not required to measure time between events by placing synchronized clocks at all the lattice points in our frame.
Another way would be to use a single clock that is moved from the lattice point of the first event to the lattice point of the second.
As before, a clock records the time of the event while it is at the same point in the lattice as the event, but this time it is the same
clock, which means we do not need to rely upon our synchronization method above. A time interval measured in this manner is
called a proper time  between the spacetime events.

Alert
The name "proper time" dates back to the early days of relativity, and is still used today, but it is dangerously misleading for
those new to the subject. The word "proper" can easily be misconstrued to mean "correct," and hopefully this section is making
it clear that this is cannot be the case. We are in the process of defining two different ways of measuring the time between two
events (which can give different answers), and neither of these is any more correct than the other. The sooner the reader purges
from their thoughts the notion that time is absolute and that there must be one correct value for the time between two events, the
better.

It might seem like both the coordinate and proper time methods of measuring time intervals between events should produce the
same result, but in fact they do not. The figures below demonstrates these two measurements for the same two spacetime events.

Figure 1.2.4 – Spacetime Events
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Here we have just two spacetime events viewed from a particular reference frame.

Figure 1.2.5 – Coordinate Time Interval

These are the same two events, viewed from the same reference frame, but the coordinate time clocks placed at the positions of the
events are in place to measure the times at which the events occur.

Figure 1.2.6 – Proper Time Interval
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Again we have the same two spacetime events, viewed in the same frame, but a clock at rest in a different frame is now visible, and
it measures the time interval between the two spacetime events, but it that frame the events occur at the same position (at the nose
of the rocket ship).

Our example with Ann and Bob earlier shows why these time measurements come out different, if the postulate of special relativity
about the constancy of the speed of light is accurate.  The two flashes occur at the same lattice point in Ann's frame (the top mirror
remains at the same place in Ann's labeled lattice), so she measures the time interval using the proper time method.  Meanwhile, the
top mirror moves from one lattice point in Bob's frame to another, so he relies upon the synchronized clocks positioned at those
points for the time interval. The thought experiment demonstrates through the postulates of relativity that these two time intervals
are not equal.

Example 
In the figures above that depict two spacetime events and a spaceship moving between them, we are observing from an inertial
frame. How fast is the spaceship moving relative to this frame?

Solution

The two events occur at the same position in space in the ship's frame (at its nose - remember that the people on the ship can
claim that the ship is not moving, so the two flashes occur at the same place). Therefore the ship measures the proper time
interval between the two flashes, just as Ann measured the proper time interval of the two flashes at the top mirror.  Using
the formula we derived to express the relationship between the time intervals, we find:

The feature that best distinguishes proper time from coordinate time is the fact that a coordinate system is not needed to measure
proper time. For example, we could introduce several other inertial frames of reference to look at the time interval between those
top mirror flashes, but only Ann's clock will measure the time interval as the one where the flashes occur at the same position in
space – every frame other than Ann's will be similar to Bob's, in that the flashes occur at different lattice positions for their frame.
All of the observers will agree on one thing – that Ann's measurement of the time interval is somehow "special", and this gives
them a way to all agree upon a  time interval.   Put another way, the measurement of proper time (essentially asking Ann what

2.2.1
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answer she got, as she was the only observer in an inertial frame to have both events occur at the same position) gives the same
result for all reference frames. That is: 

Proper time is frame-independent.

Besides "frame-independent," a word typically used to describe a physical quantity like proper time that doesn't vary from one
frame to another, is invariant.

Note that it is possible for a proper time measurement to be equal to a coordinate time measurement. For example, in the case
discussed above, Ann sees the two events occur at the same lattice point in her frame, so if she looks at the clock placed there, it is
the same clock measuring the time for both events, which means it also records the proper time. Bob's measurement of coordinate
time, on the other hand, is not the proper time, since he reads the numbers off two different clocks – one placed at the lattice point
of the first spacetime event, and one placed at the second. From the light clock example, it should be clear that the shortest distance
the light has to travel between the two mirrors occurs in Ann's frame. That is, every frame other than the "proper frame" that
measures coordinate time is going to measure a longer time interval between the events than the proper time.

two important notes
There are two details that have not been tied-up above that we will mention here and address in a future section:

1. The proper time between two events may not be definable, if the events are separated by a distance that is too great for the
spaceship to cross in the interval between their occurrences.  For example, if the two events viewed in the frame of the figure
above occurred simultaneously in that frame, then there is no way for the spaceship to traverse the distance between the events
fast enough to allow both events to both occur at the nose of the ship.  We will see below that there is another invariant quantity
that applies to any two events, and that the proper time interval is a special case of this invariant when an inertial frame exists
that can measure the events at the same position in space.

2. We have defined the proper time here as being measured in an inertial frame, but the spaceship could also have both events
occur at its nose when it accelerates between the two events.  This will come out to a different result than the inertial frame
case, so it is important when declaring (as we did above) that the "proper time is frame-independent", that we keep in mind that
this is restricted to the specific history of the clock that measures it.  That is, every observer will agree on the proper time
measured by a single clock that is present at the positions of both events. "Invariance" pertains to different
observers, not different clocks.  A second clock that is present at the positions of both events will not necessarily measure the
same proper time interval as the first clock.  The way that each clock gets from the first event to the second (namely, its
acceleration during the trip) determines how these two proper time measurements may differ.

Cosmic Speed Limit and the Spacetime Interval
When we look back at the time dilation result we obtained above, an obvious question comes to mind: If observe a  clock in a

moving frame to tick more slowly than one in our rest frame by a factor of , then what happens when the relative speed of

the two inertial frames reaches or exceeds ? Clearly the result gives a nonsense answer, and while this is far from "proof," we
will take this moment to make a declaration that we will later see to be true in many other cases...

Two inertial frames can never have a relative speed that exceeds the speed of light, and this cosmic speed limit can only be
attained for light itself.

Technically, there are other phenomena besides light that can propagate at light's eponymous speed, and the criterion for this is a
simple one, but we will save that discussion for later. For now, we will generalize the "cosmic speed limit" to state that no
"influence" or "information" can be passed from one point in space to another at a speed faster than light can traverse the same
distance.

This speed limit gives us a new perspective on time intervals between two events. We said above that there was no way to measure
the proper time interval between events that are separated in space and are simultaneous, because there is no way for a single clock
to get from one event to the other in time. Now we see that the two events don't need to be simultaneous for this to be true. Because
of the cosmic speed limit, there is no way for the proper time interval between two events to be measured if they are separated by
enough distance that light cannot travel from the earlier spacetime event to the later one.  If light can't make it in time, then neither
can a clock, and the proper time cannot be measured.

Let's say that the events occur at positions  and  , and times  and  (with ), as measured in some
arbitrary inertial frame, respectively. Then there will be a well-defined proper time measurable by a moving clock if the distance

1 − v2

c2
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√
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between them is less than the distance that light can travel in the time interval :

We can therefore invent a sort of "discriminant" that tells us whether two events can be connected in this way:

When , it is possible to move a clock from the earlier event to the later one, so that the clock measures the proper time,
otherwise one cannot do this. This quantity   is called the spacetime interval between the two events.

We said that the quantities ,  ,  , and   are measured in any arbitrary inertial reference frame, but for a moment let's
suppose that the events are sufficiently close together, and look at the value of the spacetime interval in the frame where the events
are at the same position (i.e. the frame with the clock that, when viewed by someone else, is moved from the earlier event to the
later one).  In this frame,  and  is the proper time, which means:

So the spacetime interval between two events is just proportional to the square of the proper time interval between those events. We
stated earlier that the value of  is an invariant – it is the same when measured in any reference frame.  This means that all
observers will agree on the spacetime interval between two events that allow for a proper time.  But now that we are talking about
an abstract mathematical quantity instead of a span of time, we can make the more general statement for all pairs of events:

The spacetime interval between any two events is an invariant.

Yes, sometimes this interval is positive (allowing for a measurable proper time interval), sometimes it is negative (not allowing this
- the proper time interval is imaginary, whatever that means), and sometimes it is zero (making the proper time interval zero). But
whatever it comes out to, the value of  is measured to be the same quantity in all frames of reference.  Let's be clear about what
this means: The values of  ,  ,  , and   are all different for various reference frames, but the special combination of these
quantities that equals   comes out to be the same in every frame, provided the same two events are involved. In other words, if
we have two different reference frames, unprimed and primed, then they measure the same spacetime interval:

Example 
Show that the spacetime interval of the light flash events at the top mirror in the time dilation thought experiment above are the
same for Ann and Bob.

Solution

The flashes occur at the same place in space for Ann, so the spacetime interval in her frame is easy to calculate.

The flashes occur at different -values for Bob (but the same  and  positions), so:

The separation of the two events for Bob is just the speed at which Ann is moving, multiplied by the time interval that Bob
measures, so:

Plugging-in our time-dilation result for Bob's time interval in terms of Ann's, we get:
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So the spacetime interval measured by both Bob and Ann are the same.

This page titled 2.2: The Nature of Time is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
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2.3: More Thought Experiments

Doppler Effect
We know that two observers in motion relative to each other measure the same speed when they look at a light wave, but what about the
other properties of the light, such as the frequency and wavelength? We know that for sound they would not measure the same frequency
due to the doppler effect (the phenomenon responsible for the change in perceived pitch of a car siren as it drives by), but in the case of the
doppler effect for sound the medium through which the sound travels plays a critical role. In particular, an observer moving through the air
toward a sound source will note that the sound wave is moving toward them faster than that sound is moving through the air. This of
course is not the case for light traveling through a vacuum. Nevertheless, there is a doppler effect for light. To get started, we need to
define a few things about waves:

The length of the repeating waveform, called the wavelength of the wave, we represent with the symbol \(\lambda\. A snapshot of the wave
tells us something about its spatial features like the wavelength and amplitude, but the wave is moving, so if we want to know something
about its time-dependence, we need to select a specific point in space, and observe the displacement of the medium (or in the case of light,
where no medium is needed, the strength of something called the electromagnetic field – but more on this in classes yet to come). The
wave moves at a constant speed, and the length of each repeating waveform is the same, so the time span required for a single waveform to
go by is a constant for the entire wave, called the period of the wave. An alternative way of measuring the temporal feature of the wave is
the rate at which the process repeats, called frequency. Frequency is measured in units of cycles per second, a unit known as hertz (Hz).
Since 1 period is the time required for one cycle, there is a simple relationship between period and frequency:

We can make another association of periodic wave properties. If we pick a specific point on a waveform (called a point of fixed phase for
the wave), and follow its motion, it should be clear that it travels a full wavelength in the time of one period. We therefore can relate the
wave speed, wavelength, and period (or frequency):

In the analysis to come, we will represent the "crests" of light waves with circles, so that the distance between these circles is the
wavelength. We'll start with the basic phenomenon of doppler effect. The two gifs that follow apply equally to light or sound. The main
idea is to note that when there is no relative motion, the rate of flashes of the red source equals the rate of flashes of the blue receiver (each
flash of the receiver occurs when a crest arrives). But when the source is moving relative to the receiver, the rate of source and receiver
flashes do not match. Specifically, the receiver frequency goes up when the relative motion is toward each other, and goes down when it is
away from each other.

Figure 1.3.1 – No Relative Motion of Source and Receiver

Figure 1.3.2 – Approaching Relative Motion (Receiver's Perspective)
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Now let's put Ann and Bob into the roles of source and receiver, respectively. We start with what Ann measures for the light source that
remains stationary in her frame:

Figure 1.3.3 – Ann's Perspective of Light Signal for Two Crests

The wavelength's relationship to the frequency and wave speed is as we stated above.

Figure 1.3.4 – Bob's Perspective of Light Signal for Two Crests
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Bob's measurement of the wavelength is different from Ann's because in the time between emissions of the two wave fronts, the source
moves according to Bob. But this is not the only source of the disparity between the two frequency measurements. The diagram shows that
the time elapsed between wave front emissions also plays a role, and as we know, the fact that the flashes occur at the same place for Ann
means that her coordinate time measurement happens to equal the proper time measurement (and she is in an interial frame, so this is also
the spacetime interval), while Bob's coordinate time measurements involve events at different positions. So Bob will measure a longer time
between flashes than Ann. While all waves (most notably sound) exhibit the doppler effect, the result is different for light, giving us an
"ordinary" doppler effect, and a relativistic doppler effect. Plugging in the time dilation relation gives the relation between the two
frequencies measured:

Whenever this occurs with light in the visible spectrum, the change in frequency goes away from the red end of the spectrum, and toward
the blue end, so this increase in frequency for light is called a blue shift (even when the light is not in the visible spectrum).

If Ann happens to be moving away from Bob, then it is a simple change to this equation to get the correct answer – change  to ,
giving:

This effect of reducing the frequency perceived due to relative motion is called a red shift.

But of course these are not the only two options. For example, Ann and Bob may be in the process of moving past each other. If this is
happening, then determining the wavelength measured by Bob is a tougher, but the time dilation between the two frames still applies. One
specific example we can look at is when Bob and Ann are aligned along the -axis. We have to be careful about using words like "when"
in the context of relativity, so we will define this moment for Bob as when he sees the source of the light as being aligned with him along
the -axis (of course, he will deduce that the light source is elsewhere, but that is not what counts here, as Bob is actually observing the
light). At this moment, Ann and Bob will agree upon the wavelength, since their relative motion is along the -direction and has no effect
on the spacing of wave fronts. In this case, only the time dilation plays a role, and the result is simply:

The more general case involves the line joining the source and receiver forming an angle  with the relative velocity vector:

Figure 1.3.5 – Relative Motion of Source and Receiver Not Along Line Joining Them
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Once again, the line joins the receiver and the apparent (not deduced) source of the light. In this case, the doppler effect on the frequency
comes from the component of the source's motion relative to the receiver that lies along the line joining them. That is we replace the 
above with :

It is left as an exercise for the reader to show that this equation reduces to the three equations above for the appropriate values of .

Simultaneity
Let's return to our discussion of how to measure coordinate time by synchronizing clocks at all the lattice points in a reference frame.
Suppose Ann and Bob are moving past each other along the -axis, and at the moment that their origins coincide, they start their clocks at
the origin. Then each of them synchronizes all the clocks on their lattice with the clock at the origin. Doesn't this mean that all of Ann's
clocks are synchronized with all of Bob's clocks? And if so, doesn't this mean that they should measure the same coordinate times between
events, in contradiction to everything we have said fo far? Such a conundrum calls for a thought experiment!

Let's suppose Ann decides to synchronize two clocks using a flash from her clock at the origin:

Figure 1.3.6 – Simultaneous Events for Ann

Does Bob agree that the two clocks (located at the two detectors) are synchronized? Let's look at what Bob sees:

Figure 1.3.7 – Ann's Synchronized Events Seen by Bob (a)
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The detectors Ann is using are fixed in the lattice points in her frame, so they move along with her, according to Bob. When the light
flashes, it takes time for the wave to get to the detectors, and while this time passes, the detectors move, according to Bob:

Figure 1.3.8 – Ann's Synchronized Events Seen by Bob (b)

As you can see, the detector trailing Ann receives the signal before the other detector, according to Bob.

Figure 1.3.9 – Ann's Synchronized Events Seen by Bob (c)
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Far from seeing the two events simultaneously, Bob measures a time difference between them. This means that when he looks at all the
clocks in Ann's lattice, he sees them all out of sync, with the times getting later the farther the clock is on the positive side of the origin.
We therefore find that the concept of simultaneous events is relative (frame-dependent).

Alert
It is important to keep in mind that when we are talking simultaneous events in one frame, we are not talking about about simply seeing
two things occur at a different time. For example, if Ann happened to be standing close to detector #1, then the light from the flag that
pops up there would reach her sooner than the light coming from the flag at detector #2, and she would witness the two flags popping
at different times, but the two events would still be simultaneous in her frame.

Example 
We found in the light clock thought experiment that the relationship between Ann's and Bob's time measurements is given by Equation
1.2.2. If Ann's two clocks are synchronized, then the time between the two events that occur when the flash reaches both detectors is
zero. So why don't we find that for those same two events viewed by Bob, the time interval is also zero?

Solution

The equation quoted assumed that the time measured by Ann was the proper time, since the two events occurred at the same position
in her inertial frame. The synchronized events in this case do not occur at the same position, so it is the coordinate time that she
measures to be zero. One way to avoid this confusion is to write the time dilation formula of Equation 1.2.2 explicitly in terms of the
proper time:

In the case above, the comparison is not between a coordinate time and a proper time, but two different coordinate times.

Length Contraction
Instead of comparing time spans between two frames in relative motion, let’s compare distance spans. To do this, we need to first figure
out what it means to measure the length of an object (say a meter stick). As we know, whatever we do in relativity must be in terms of
spacetime events. We can’t simply say that the length of an object is the distance between events that occur at the object’s endpoints,
because the object might move after one event occurs and before the second one occurs. So clearly to define the length of an object, we
need to stipulate that the two events that occur at the endpoints of the object being measured occur at the same time. But since observers in
two frames in relative motion will not agree to what events are simultaneous, it stands to reason that they might not agree to length
measurements.

2.3.1

Δ = Δt = 0t′ γv

Δ = Δτt′ γv
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We consider The following scenario: Ann lays a rod down along her -axis, and as she passes by Bob, each end of the rod creates a spark
(constituting a spacetime event) when it coincides with a device stationary in Bob's frame that we will call a "sparker."

Figure 1.3.10 – Ann Measures the Length of the Rod

Ann measures the length of her rod to be the speed of Bob's sparker multiplied by the coordinate time she measures between the two
events. The way Bob measures the length of the rod is similar:

Figure 1.3.11 – Bob Measures the Length of the Rod
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We can now use the time dilation formula that relates these two times to determine a relationship between the two measured lengths, but
we have to be very careful here. Namely, we must ask ourselves, whose measures the dilated time here? Put another way, which of these
two observers measures the proper time between the two events? The answer is clearly Bob, since both events occur at the end of his
sparker, which is at rest in his frame, meaning that both events occur at the same place – the exact criterion for proper time. Therefore we
find that it is Ann's time between events that is longer than the time measured by Bob, giving:

So Bob measures the rod to be shorter than Ann measures it to be (recall ). This phenomenon is known as length contraction.

A few comments about this result:

The longest possible measurement of length occurs in the rest frame of the object whose length is being measured. This length is often
referred to as the proper length.
We are accustomed to attributing different visual observations of the same object to optical illusions. This is not one of those cases. The
same rod is shorter for Bob than it is for Ann. Length is not an intrinsic property – it is observer-dependent.
If Bob zooms by Ann with an identical rod, then Bob will measure Ann’s rod to be shorter than his own, and Ann will measure Bob’s
rod to be shorter than hers. We will explore this seeming paradox soon, but the short answer is that length is not a quality that is
inherent to an object, so the fact that the rods are identical does not mean that their lengths are. Most people are not bothered by the
fact that two identical rods may have different colors (due to red/blue shift), because it isn’t too difficult to accept that color is not a

Δt = Δ ⇒ = vΔ = v =γv t′ L′ t′ Δt

γv

L

γv

(2.3.7)

> 1γv
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property inherent to objects, but length is significantly tougher to swallow. If it helps, it’s okay to say that identical objects have equal
proper lengths.
If we consider examining the same rod in both frames when it is aligned along the -axis (while relative motion is still along the -
axis), we will fairly easily find that both observers agree on the length. Put another way, lengths contract only along the dimension
parallel to the direction of relative motion.
In terms of the lattice points for the two frames, we would say that Bob sees Ann's lattice points ate closer together along the -
direction that his own, and Ann would conclude the same about Bob's lattice points. This is because each can measure the rod in terms
of these points, so if the length of the rod is relative, so is the entire space of the moving item.

Angles
Consider our usual setup with Ann and Bob in relative motion along their common -axis. We know that there is a contraction of length
along the -axis when an object is moving relative to the frame it is viewed in. Furthermore, we know that lengths along the  and  axes
do not contract. Suppose Ann has a right-triangular wooden block at rest in her frame as in the figure below, and measures the angle it
makes with the -axis to be . What angle does Bob measure?

Figure 1.3.12 – Ann and Bob Measure an Angle

With only the side of the triangle along the -axis contracting, the angle must change. If we call the length of the base of the triangle in
Ann's frame  and the height , then we get:

Example 
Compute Bob's unanswered question in the figure above – what does he measure for the hypotenuse of the triangle, in terms of the
hypotenuse and angle measured by Ann?

Solution

Start with the Pythagorean theorem:

Now write Ann's values of  and  in terms of  and :

This page titled 2.3: More Thought Experiments is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.

Current page by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
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2.4: Paradoxes

The Ladder & Barn Paradox
We have derived some rather outlandish results from the postulate(s) of relativity, using the simple but powerful tool of thought
experiments. We will now use that same tool to construct some scenarios that appear at first blush to result in logical
inconsistencies in the theory called paradoxes, and then we will shoot them down, demonstrating that the theory is in fact logical
and consistent.

The first paradox we will examine involves length contraction, and it goes like this...

A farmer wishes to store a long ladder that he owns inside his barn, but is frustrated to discover that his ladder is too long to fit.
Specifically, he finds that is ladder is 50ft long, while his barn is only 40ft long. But like every good farmer, this fellow is well-
versed in special relativity, and decides that if he can get the ladder moving fast enough relative to the barn, then the ladder’s
length will contract enough so that both the front and back barn doors can be closed at the same time while the ladder is inside.
Before he actually tries to close the ladder in, he does a test run, zooming the ladder in one door and out the other. Sure enough, as
his wife drives their souped-up tractor at 0.6c, he notes that both ends of the length-contracted ladder are briefly within the
confines of the two doors:

Since the  barn is at rest relative to the farmer, the  length-contracted ladder just barely fits.

Overjoyed that his ploy is going to work, he goes to embrace his wife, who looks distraught. When he asks her what is the matter,
she says, “When I am zooming into the barn, it is way too short to fit the ladder." Indeed:

The frame of the farmer's wife sees the ladder at rest and the barn moving past, so naturally the  ladder doesn't fit inside the 
 length-contracted barn. So how it is possible that both the farmer and his wife are correct at the same time? How can the

ladder both be contained in the barn and not contained at the same time?

Figure 1.4.1 – Ladder & Barn Paradox

As with everything else in relativity, we can't trust our logic without converting everything into the language of spacetime events.
In terms of events, what does it mean for the ladder to be “entirely within the barn?” Well, imagine that each end of the ladder is
equipped with a flashbulb that flashes whenever it is in a doorway of the barn. We can say that the ladder is just barely “completely
enclosed” if the light at the front of the ladder flashes in the exit doorway at the same instant that the light at the rear of the ladder

farmer measures ladder length to be:  = = (50ft) = 40ftL′ L

γv

1 −( )
0.6c

c

2
− −−−−−−−−−−

√ (2.4.1)

40ft 40ft

farmer's wife measures barn length to be:  = = (40ft) = 32ftL′ L

γv

1 −( )
0.6c

c

2
− −−−−−−−−−−

√ (2.4.2)

50ft

32ft

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/21806?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Foundations_of_Special_Relativity/2.4%3A_Paradoxes


2.4.2 https://phys.libretexts.org/@go/page/21806

flashes in the entrance doorway. Then we can say that both ends of the ladder are inside the barn at the same time. But we know
from our discussion of simultaneity that what one observer sees as simultaneous events will not be seen as simultaneous by another.
So the farmer sees the ladder as being within the barn because he can declare both ends to be within the confines of the barn at the
same time, even as his wife claims that the front of the ladder exits the barn well in advance of the rear of the ladder entering it.

Figure 1.4.2 – Paradox Resolved By Discarding Simultaneity

Once we accept that the idea of simultaneity is not universal, we realize that "being inside the barn" is a relative concept – two
observers don't need to agree on this.

Okay, so much for the “dry run” of driving the ladder into one door and out the other. If the farmer can correctly claim that the
ladder is within the barn, what happens if he closes the two barn doors simultaneously, while the ladder is in there? What will his
wife see then?

If the barn door closings are simultaneous to the farmer, then they are not so for the wife. She would see the exiting barn door
closed first, just as the front of the ladder gets there, and at that moment in her frame, the rear of the ladder will not be in the barn,
and the entrance door is not yet being closed. But the question is, if the front of the ladder is stopped by the closed door, how does
the rear of the ladder ever get in?

The answer to this is subtle and a bit beyond what we have discussed so far. Before we go into it, it is necessary to point out that
everything we have been discussing to now points to a “cosmic speed limit” that is the speed of light. If two frames could move at
the speed of light relative to each other, then one would witness time in the other frame to be stopped, and lengths to be shrunk to
zero parallel to the direction of motion. This is an asymptotic speed limit that applies not only to solid objects, but also influences
(such as forces and fields) and information.

Given that influences can’t travel faster than , we must concede that even if we could somehow instantly stop the front of the
ladder with the closed barn door, the rear of the ladder will keep moving forward until it “gets the message from the front” to stop.
From the wife’s perspective, this means that the front of the barn will continue moving at  until the rear of the barn sends a
message to it to stop moving. As time passes after the collision of the back door of the barn with the ladder, more and more of the
barn will stop moving, until finally the front of the barn gets the message and the entire barn is at rest. If the message to stop could
get to the front of the barn instantly, then of course the front door could never be closed and we would have a paradox, since the
farmer clearly sees that it is possible to close both doors with the ladder within. So we need to calculate to see if the message is
slow enough (even at the cosmic speed limit) to stop the front of the barn before the ladder can be enclosed.

Figure 1.4.3 – Can Both Barn Doors Be Closed?
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After  seconds in the wife's reference frame, the barn has gotten longer by an amount :

The distance that the light has traveled from the rear door in the wife's reference frame is equal to , so the signal reaches the front
of the barn when:

Okay, so we know how long it takes according to the wife for the barn to stop moving, so we can plug this time in to determine the
maximum length of the barn:

The ladder is 50ft long in the wife's frame, so it is inside the barn before the front of the barn gets the message to stop moving, and
the barn door can be closed, averting the paradox entirely.

The Twin Paradox
The next paradox takes on time dilation. The idea is that if Ann and Bob can both see the other's clock ticking more slowly, what
happens if, after awhile, we just bring both of the clocks together (into the same frame) and compare them? Which clock will have
elapsed more time?

Two identical twins are born on a space station, and live there for their whole lives, until one of them gets into a spaceship for a
long journey. When she speeds away from the space station at a sizable fraction of the speed of light, the twin on the space station
(Ann) uses a powerful telescope to look through the window of her sister Bea’s spaceship, and sees the effects of time dilation as
the clock on Bea’s ship is turning much slower than an identical clock in the space station. Bea also has a powerful telescope, and
looking back at her sister, see that the space station clock is turning slow compared to her own. When Bea returns from her long
journey and reunites with her sister, it would seem that both twins will encounter someone that is much younger than they are, but
of course this is impossible. Which one will be older, or will they be the same age at the reunion?

The apparent paradox arises here because of symmetry. Each twin can claim that the other is moving because there is no such thing
as a universal inertial frame. What is more, if we define the spacetime events as being the flash of light at the space dock that
occurs during both the departure and the return, we see that both twins measure the proper time between these events, because the
positions of both events in space are the same.

But is this symmetric? Both twins start in the same inertial frame, but in order to end up in different inertial frames, one of them
has to change frames. For this to happen, she needs to accelerate, and this (at least while she is accelerating) puts her into a special
non-inertial frame, which she can do an experiment to detect. The flash of light at the space dock occurs at the same position in
each twin's frame, so they both measure a proper time, but only Ann measures the spacetime interval between those flashes, as only
she stays in the inertial frame of the clock that records both events.

t vΔt

length of barn after t = 32ft +vt = 32ft +(0.6c) t (2.4.3)

ct

ct = 32ft +(0.6c) t ⇒ t =
32ft

0.4c
(2.4.4)

length of stretched barn = distance the light travels in the total time  = ct = = 80ft
32ft

0.4
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This means that the viewpoint of Ann remains correct – her sister experiences fewer years than she does during the trip. They
started as twins, but after the trip Ann is several years older.

Alert
It is important to understand that this is not the fountain of youth – both twins age in the usual way. It isn't the rate of aging that
is changed, it is the rate of time flow itself that is different. The older sister has more experiences than the younger one, and if
they both live to be 100, they have equally-long lives. Their lives just don’t conclude at the same time, even though they started
at the same time.

Let's do a specific calculation of this effect. Suppose that before the trip begins, Bea tells Ann that she’s going to a destination that
is 20 light-years away and coming back. Her ship will travel at a more-or-less constant speed of  (except for the quick
accelerations near the two endpoints). Ann does the simple math and determines that to cover the distance of the round trip at that
speed will require 50 years:

And this is in fact the amount of time that Ann measures for Bea’s trip. But what does Bea measure? Once Bea quickly gets up to
speed, the distance isn't so far anymore, as the separation of the two endpoints is length-contracted (think of placing a very long rod
between the endpoints). What is 20 light-years away in Ann's frame in Bea's frame is:

At a speed of , this 24 light-year round trip only takes 30 years. So Bea returns home to find that her twin sister is 20 years
older than she is.

Let's call the departure of Bea and her arrival spacetime events A and B.  Note that these both occur at the same place in space
(Ann & Bea's home), which means that both  Ann and Bea measure a proper time between the events.   The fact that these are
different comes back to our discussion around Equation 1.2.9 – the proper time measurement depends upon the history of the clock
that measures it.  Ann remains in an inertial frame, but Bea must accelerate to leave, turn around, and stop when arriving home.  So
the integrals come out different for the two sisters. This appeal to pure mathematics is perhaps not very satisfying, so let's try a new
thought experiment to try to clear it up. This involves three players: Ann, Bob, and Chu, who have the following roles:

Ann will be our “reference” observer. We will watch the motions of the other two through a telescope from the comfort of her
(by her account, stationary) inertial frame on her spaceship.
Bob will be engaging in a race from the starting point to the finish in a spaceship that travels in a straight line at a constant rate
(as measured by Ann) of . So Bob remains in an inertial frame throughout the trip.
Chu will be the other contestant in the race, but he will get off to a slow start with a speed of . Sometime during the race
he will instantaneously speed his spaceship up to  (both speeds according to Ann) in an effort to catch up to Bob before
the finish line.

All three participants have identical clocks on board their ships, and when the race begins, a flash of light (spacetime event) at the
start line signifies the start of the race. When a ship crosses the finish line, another flash of light is given off there, providing a
spacetime event that indicates that the ship has finished the race. Ann measures the distance between the start and finish lines as
being 40 light-minutes (roughly the distance from our Sun to Jupiter).

Let's compute the time it takes Bob to complete the race, according to Ann. This is easy - no relativity necessary. Traveling at 
over a distance of 40 light-minutes requires 80 minutes.

According to Ann, Chu makes his shift in speeds 40 minutes into the race (when Bob is halfway to the destination). So in the first
40 minutes at a speed of , Chu travels 10 light-minutes. Then for the remaining 30 light-minutes of the trip he is traveling at 

, which means it takes him 40 more minutes... He finishes in a tie with Bob!

The start and finish of the race both occur at the same position in Bob's frame (the front tip of his ship), and he is in an inertial
frame, so he measures the proper time  interval  , as we know from  the time dilation formula between two
inertial frames. Bob's time comes out to be:

0.8c
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Δx

v

40 light years

0.8c
(2.4.6)

= = (20 light years) = 12 light yearsL′ 20 light years

γv

1 −( )
0.8c

c

2
− −−−−−−−−−−

√ (2.4.7)

0.8c

0.5c

0.25c

0.75c

0.5c

0.25c

0.75c

Δ = Δγ0.5c τBob tAnn

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/21806?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Foundations_of_Special_Relativity/2.2%3A_The_Nature_of_Time#proper_time_integral


2.4.5 https://phys.libretexts.org/@go/page/21806

Now let's compute the time measured by Chu. We can do this by splitting his trip into three events. We already have two of them –
the flash that occurs at the start and finish. As with Bob, these two events occur at the same place in his frame, so he measures a
proper time, but as his inertial frame changes, it is not the same. The third event we will define as a flash at the front tip of Chu's
spaceship when he suddenly changes speeds. Now we can compute his time for each leg of the trip separately. He remains in an
inertial frame during each leg, so we can use the time dilation of Ann for each leg (like we did for Bob's whole trip):

So we see that less time elapses for Chu than for Bob during this race. So how does this apply to the twin paradox? Let's view the
whole race from Bob's perspective. Let's call the direction of the race the -direction. According to Bob, he and Chu start at the
same position, and Chu is initially going in the -direction (because Bob is moving faster than Chu in the  direction according
to Ann). A little while later, Bob sees Chu suddenly stop and immediately start coming back toward him (because Chu is now
moving faster than Bob in the  direction according to Ann), until they are back at the same position. Bob insists he was
stationary the whole time, so according to Bob, Chu basically took off and came back. And sure enough, when he came back, Chu
had aged 4 minutes less than Bob.

While we haven't proven it with this one example, we do see a general result: For the same two spacetime events, all proper time
measurements (like Bob's and Chu's) are shorter than all coordinate time measurements that are not proper (like Ann's). Also, the
proper time interval between two events measured in an inertial frame  (like Bob's) is longer than all of the other (non-inertial)
proper time measurements (like Chu's).

This page titled 2.4: Paradoxes is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on
the LibreTexts platform.
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3.1: Spacetime Diagrams

Graphing Spacetime Events
Up to now, we have been representing the position of a spacetime event relative to the spatial axes of Ann and Bob, while
representing time by drawing the axes at different positions, with the set of axes remaining fixed being the coordinate system of the
observer from whose perspective we are seeing the event. Here we will represent spacetime events in a more efficient and useful
(though perhaps a bit more abstract) manner.

We will stay with simplified situations where all the action occurs along the -axis, which means that we have room for something
else. Specifically, we will draw the position (along -axis), and time axes for an observer in an inertial frame whose perspective we
are viewing from. With this construction, a spacetime event is simply a point located in the plane of the two axes, and the
coordinate position and coordinate time for the observer we are viewing from can be read off the axes directly.

In 9A we worked with 1-dimensional graphs with the position represented on the vertical axis, and the time on the horizontal axis.
In relativity, it is standard (perhaps just to alert the reader to the fact that relativity is being considered) to use time as the vertical
axis. What is more, these diagrams give both axes the same units by scaling the vertical axis by the speed of light, . The resulting
representation of spacetime events is called a spacetime or Minkowski diagram.

Figure 3.1.1 – Spacetime Events on a Minkowski Diagram

The times indicated by the values on the vertical axis are those measured by synchronized clocks in the frame of the observer
represented by these axes. If the two events happen to be aligned vertically, then the two events occur at the same position in this
frame, which means the difference  in that case is also the proper time interval . The spacetime interval is related to the
"distance" separating these events in the diagram.  If the spacetime interval is measured in an inertial frame, then it is the "length"
of the straight line connecting the events, otherwise it is the "arclength" of the curve connecting the events.  All of these quoted
words must be very confusing at the moment, but things will be made clearer below.

World Lines
While it is nice to be able to draw two separate events on the same diagram, rather than drawing multiple drawings as we did
before, there is an even greater advantage to the tool of the Minkowski diagram – we can represent spacetime trajectories, also
known as world lines. Suppose we track a flashing beacon as it moves along the -axis. Each flash records a spacetime event with
the position it is located and the time of the flash, so we get a string of several points on the spacetime diagram. If the flashing
frequency is increased to infinity, then the spacetime points form a continuous curve that tracks the spacetime history of the moving
object.

Let's consider a few special world lines. When someone observes a stationary object, its trajectory in the Minkowski diagram must
be such that the position doesn't change (but of course the time does). If this person witnesses an object moving at a constant speed,
then the world line is sloped, positively when the motion is in the  direction, and negatively when the motion is in the 
direction.

Figure 3.1.2 – Some Simple World Lines
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A closer look at the values of the slope of a world line reveals that it is:

That is, the inverse of the slope of the world line of an object is the fraction of the speed of light that the observer measures for that
object, with the sign representing the direction of motion. If the "object" happens to be a light beam, then its slope is .

Example 
Let's return to the thought experiment for the twin paradox involving Ann, Bob, and Chu at the end of Section 1.4, and use a
spacetime diagram to depict the race.

a. Draw a spacetime diagram in Ann's reference frame depicting the world lines of both Bob and Chu, and label the important
spacetime events along these worldlines.

b. Use the diagram to determine the time on Ann's clock in her spaceship (not at the lattice point in her reference frame) when
she sees through her telescope that Chu has changed speed.

c. Use the diagram to determine the time on Bob's clock in his spaceship when he sees through the window of his spaceship
that Chu has changed speed.

Solution

a. The diagram below has light minutes as units on both axes. Both start the race at the same point in spacetime (
 in Ann's frame), and end at the same point in spacetime (  light-minutes,  minutes later). Chu

changes speed at  light-minutes, after  minutes. Bob moves at a constant speed of half the speed of light, so the
slope of his world line is . Chu moves at one-quarter the speed of light and then three-quarters the speed of light, so the
slopes of his world line segments are  and , respectively.

slope of a world line = = , u ≡ = speed of the object measured by observer
c −ct2 t1

−x2 x1

c

u

Δx

Δt
(3.1.1)
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b. Ann doesn't see the event of Chu changing speed until light from that event reaches her. The world line of this light has a
slope of  because it is coming back to Ann (in the -direction). Drawing this into the diagram shows that she discovers
Chu has changed speeds at time  minutes, because that's when the light world line intersects with Ann's world line
(which is the vertical axis, since she starts at her origin and never moves).

c. Now we want to know when Bob sees light from the event of Chu changing speed. This time the light goes in the -
direction to get to Bob, so it has a slope of . This allows us to find the intersection point of the light world line with Bob's
world line, but then deriving from that the time on Bob's clock requires a little more work. The simplest way to get this
number is to find what the time is on Ann's clock, then use the time dilation formula to get Bob's time. Looking at the
diagram below, we see that the time of this intersection in Ann's frame is  minutes, which in Bob's frame translates to:
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Minkowski Spacetime
Let's represent on spacetime diagrams a comparison of what Ann sees to what Bob sees when they witness the same object's
motion. Specifically, let's say they both observe the same clock, which gives off two light flashes at different times, and records
those times. Let's further have the clock remain stationary in Ann's frame between these flashes.

With the clock at rest in Ann's frame, the world line for it looks like the first graph in the figure above. With Bob moving in the 
-direction relative to Ann at a speed , he sees this same object moving in the -direction at a speed , which means the

worldline he sketches for the object looks like the third graph in the figure above.

As we showed above, the spacetime interval between the two events is the square of the length of the segment of the world line
connecting the two events in Ann's spacetime diagram. When we first discussed the nature of time, we made a point of noting that
all proper times, and therefore  the spacetime interval, are invariants, which means that everyone measures the same value. This
would seem to indicate that if Bob measures the length of the segment of the world line he draws between the two events, he
should get the same result. In fact this is true, but as we will see, there is a surprise twist.

We found that the time dilation effect gives the comparison between time intervals to be (Bob is the primed frame here):

But wait, since , this means that , and when we look at the spacetime diagrams for Ann and Bob, we
see this means that the vertical change in the graph is greater for Bob than it is for Ann.

Figure 3.1.3 – Comparison of Spacetime Intervals for Ann and Bob

It sure doesn't look like there is any way that Ann and Bob could agree on the length of the spacetime interval between these two
events! Now for the twist (and the explanation for why we used the quotes on the words "distance", "length", and "arclength"
earlier). Let's go back to the light clock thought experiment from Section 1.2. The distance traveled by the light beam was,
according to Ann and Bob:

Eliminating the  from these equations gives:

The left side of this result is the spacetime interval squared written in Ann's frame, and the right side of the equation is how it is
written in Bob's frame, so they are equal. This looks very close to the Pythagorean theorem, with the exception that the squares that
are added are not all positive. Now we can see how the lengths of the two world line segments are actually equal after all. The
horizontal leg of the right triangle in Bob's graph actually contributes a negative amount to the length of the hypotenuse. Clearly we
have redefined "length" in this context (which we no longer call length, preferring the word "interval" to avoid confusion), but it is
necessary to do so to accommodate the nature of time and the constancy of the speed of light.

We therefore reiterate explicitly what we said about the invariance of the spacetime interval back in Section 1.2:
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Notice this works for the case of Ann and Bob above, since  for Ann.

Three Measurements of Time Between Two Events
With the tool of spacetime diagrams and a means for computing intervals between events, we can gain a better understanding of the
three versions of time.

Figure 3.1.4 – Three Measurements of Time in Spacetime Diagrams

The figure above shows the same two events expressed in the same frame of reference. The first graph shows that the coordinate
time elapsed between the two events is simply the difference in the times measured by the synchronized clocks at the two lattice
points.

The middle graph expresses a general version of proper time. The time is measured by a clock whose world line passes through
both events, and it equals the path length of the clock through spacetime divided by . This path length is found by doing a line
integral to add up all the tiny contributions   – each of which is an infinitesimal straight line segment.

The derivatives are the components of the velocity of the object tracing the world line, measured in the frame indicated by the axes,
so we can right this more compactly as:

One can now imagine computing (the  square root of) the  spacetime interval between two events of finite separation by
"chaining together" (integrating) infinitesimal intervals:

Given the relationship between the proper time and the spacetime interval, we get a link between the proper time interval and the
coordinate time interval between events A and B:

Notice that for the middle graph, the world line is changing slope, which means that the value of  is changing along the path (the
object is accelerating), and the integral is not simple. But if the slope of the world line remains constant, like it is in the right graph
above, then the square root can be removed from the integral, and the result is the usual time dilation formula.
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If a different observer were to graph spacetime coordinate points for the same two events, and then watch the same clocks, the three
graphs would look different. The coordinate time separating the two events would change. The world lines of the clock would look
different in the other two graphs as well. The world line in the right graph would still be a straight line, but with a different slope.
The world line would be different in the middle graph as well, but would still be curved. However, the calculation of  in these
two graphs would come out the same as they did for the original observer.

Alert
The calculation of  for the moving clock in the noninertial frame (middle graph) is the same when computed by any observer.
The calculation of  for the moving clock in the inertial frame (middle graph) is the same when computed by any observer.
Don't confuse this for saying they are the same as each other! The time elapsed on the clock is proportional to the path length 

 through spacetime, and the path length is different for a straight line compared to a curved one.

We found in our discussion of the twin paradox that the proper time span between two events is longer when measured using an
inertial clock than when measured with a non-inertial clock (the twin in the non-inertial space ship ages less over the round trip). In
other words, the value of  in the middle graph of Figure 2.1.4 is less than the value of  in the right graph (remember, the
world lines connect the same two events). This seems weird in light of the old adage, "the shortest distance between two points is a
straight line," but remember that this is Minkowski space with the weird version of the Pythagorean theorem. To see clearly that
this is true, we can change frames to one were the two events are at the same value of  – remember that these  values don't
change when we change frames. This will change the right  graph such  that the world line is a vertical straight line, while the
middle graph remains curvy. Because of the  contributions to the integral, any horizontal deviations from the vertical path
will serve to reduce the magnitude of the integral. So the proper time  for a straight world line between two events (i.e.
measured by an inertial clock) is greater than the  for any non-straight world line between the same two events (i.e. measured by
a non-inertial clock).

Example 
Once again returning to the thought experiment for the twin paradox involving Ann, Bob, and Chu at the end of Section 1.4, use
the spacetime diagram created in part (a) of Example 3.1.1 above to answer the following:

a. Compute the (Minkowski) length of the world line for Bob to get the time elapsed for him during the race.
b. Repeat the process in part (a) for Chu.

Solution

a. The  and  parts of Bob's world line are  and  light-minutes (lm), respectively, so the Minkowski length of his world
line is:

Dividing  by the speed of light gives the time, which means that 69 minutes elapse for Bob. This agrees with the result we
got in Section 1.4.

b. To compute the length of the world line for Chu, we need to compute the lengths of two separate segments and then add
them together.

Again, this is in agreement with our result before.

Causality
You may have noticed that there is a peculiarity lurking in what we have discussed in this section (we eluded to it when we first
discussed the "cosmic speed limit"). In case you haven't, consider the following. We start with events at two points in spacetime,
and we want to measure the spacetime interval time that elapses between these events. So we start a clock at one of the events, and
move it at a constant speed to the other, recording the times of each event. We know that the clock must record this time span
(omitting the  and  terms):
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Naturally  two events can occur anywhere in spacetime, so the question is this: If the position in spacetime is such that 
, exactly what time does the clock measure?! Does an imaginary ' ' suddenly appear in the digital readout?

When we say that a clock cannot be moved from one event to another to record the proper time between the events, what we are
really saying is that there is no world-line that connects them. When we think about a spacetime diagram, this means that we can
place individual events wherever we like, but we can only connect them with world lines if such a line has a slope whose absolute
value is greater than 1 (a speed smaller than ). This leads to three different categories for how two spacetime events relate to each
other:

time-like separation: 
This is the case we have been talking about before now, where an object can follow a world line and connect the two events. There
is a well-defined proper time associated with the spacetime interval. When two events are separated in this way, we can always find
an inertial frame where the events occur at the same spatial position.

light-like separation: 
In this case, the world line that connects the two events must belong to a light beam. It isn't possible to change the reference frame
to one that is moving at the speed of light relative to another, so although there is a world line that can connect them, it can't belong
to a clock.

space-like separation: 
For this case, not even light can connect the two events with a world line. If we imagine an event occurring because someone at the
spatial position of the event pushes a button to cause a light to flash, then the people responsible for two events separated in this
way have no idea that the other event exists, as there is no world line to carry a message about one event to the other event.

This last point about space-like separated events brings up an important concept – that of causality. The study of physics is all
about cause-and-effect – it is a net force that causes an acceleration, for example. We see now that we can relate two events
according to whether one can cause the other. If there is no way, even in principle, for a message to get from one event to another,
then there is no way for the first event to cause the other.

We can characterize what events can be causally-related nicely by using a spacetime diagram. Start by choosing a spacetime event.
Then note that to be causally-related to this event, a second event must be positioned such that a straight world line drawn between
the two has a slope that is no less than 1 (and if it has a slope of 1, they must be related through a signal that moves at the speed of
light). This limits the region of the second event relative to the first into what is called the light cone of that first event.

Figure 3.1.5 – Light Cone of an Event

The light cone divides into two halves, called the future and past light cones. Only events in the past light cone can be a cause for
the event at the vertex of the light cone, and the event at the vertex of the light cone can only be a cause for events within the future
light cone.

It is important to keep in mind that a spacetime diagram is based on a specific frame of reference, and if we change to another
frame, the relative positions of the events change (see Figure 3.1.3, for example). But because the spacetime interval is an invariant,
what lies within the future(past) light cone of an event in one inertial frame must lie within the future(past) light cone in all inertial
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frames. We can put this in a far less abstract way: If in Ann's frame event #1 occurs before event #2, and the two events lie within
each other's light cones, then event #1 also occurs before event #2 in Bob's frame, no matter what the relative speed of Ann and
Bob may be. This assures that if Ann declares that event #1 has caused event #2, there's no observer that can disagree with this on
the grounds that event #2 has occurred first.

For a pair of events that do not lie within a light cone (such as two events that are simultaneous in one frame but at different
positions, so that they are horizontally-aligned in the spacetime diagram), then the ordering of events is not necessarily preserved in
all frames. To see this, let's return to the ladder-and-barn paradox from Section 1.4.

Suppose the farmer's wife is driving one tractor in the  direction while the farmer's daughter is driving another tractor in the 
direction in an effort to get two ladders into the barn at once (both barn doors are open, and they are coming in from opposite
directions). According to the farmer, both ladders can be inside the barn at the same time, because the events at the barn doors are
simultaneous in his frame. These events are at different positions, so they lie outside the light cone from each other. The farmer's
wife notes that the front of her ladder reaches the back of the barn before the rear of her ladder enters, so she says that the event at
the back door occurs before the event at the front door. The farmer's daughter sees the exact opposite – the event at the front door
occurs first for her.

There is no way that the farmer's wife can ever claim that the event at the back door causes the event at the front door (even though
it comes first), because her daughter would argue that it is impossible for the event that occurs second to cause the event that occurs
first. Recall that the fact that a light signal cannot get from the back door event to the front door event is exactly what resolved the
paradox of whether both doors can be closed with the ladder inside.

This page titled 3.1: Spacetime Diagrams is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman
directly on the LibreTexts platform.
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3.2: Lorentz Transformation

Transformations Between Inertial Frames
When we first studied relative motion in Physics 9HA, we wrote down a way of translating between the values measured in the two
frames. This set of equations was called the Galilean transformation equations. As sensible as these are, they clearly are not correct
in light of what we now know about relativity. Most notably, the Galilean transformation assumes a universal time variable that is
common to all frames.

So now we seek a new set of transformation equations to relate the spacetime coordinates of frames in relative motion. We will
start with a couple of simplifying assumptions. First, the two frames in question share a spatial origin at the moment in time we will
call  – we will define "event A" as occurring at this spacetime point. The effect of doing this is that distances and time
intervals between this event and a second event are now just the spacetime coordinates themselves. For example: 
and  .

For our second assumption, we will continue to define the relative motion as the primed frame moving at a speed  in the -
direction relative to the unprimed frame.

In order to get a set of equations that gives us a translation between the ( ) spacetime coordinates measured in one
frame and the ( ) spacetime coordinates measured in the other, we begin by noting that with motion only along the 

-axis, the  and  coordinates will remain unchanged. For example, we know that lengths along those directions do not contract,
so we would not expect the coordinates to be related in any way other than  and . But what about the  and 
coordinates?

We start by assuming that the transformation is a linear one, not unlike the Galilean transformation (after all, the Galilean
transformation does work for frames whose relative speed is low). This means that the primed values can be written as linear
combinations of the unprimed values:

Our goal is to determine the unknown constants , , , and  that work for relativity. Let's start by defining "event B" viewed
by the primed observer. Let's say that this event occurs at this observer's time , and takes place at the origin of the unprimed
frame. Since the primed observer sees this frame moving in the -direction for a time period of  after starting at the origin, the
primed observer sees this event occur at the position . Plugging  (the event occurs at the unprimed origin) into the
first equation above and comparing gives us the constant :

Events A and B both occur at the origin of the unprimed frame, so the time span between them is the proper time, and the frame is
inertial, so it is the spacetime interval. Therefore the time measured between these events in the primed and unprimed frames are
related according to the usual time dilation formula:

Plugging this in above gives us the constant :

Using this same event B, we can obtain the constant  as well. Plugging in  gives:

Recapping what we have so far:
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Now to determine the other two constants, define "event B" as occurring at the origin of the primed frame, . The unprimed
observer will see this event occur at the position , which we can plug back in to get:

To find the final constant  requires noting that the time measured in the primed frame for event B is now the proper time, and a bit
more algebra than was needed for the previous constants (which is omitted here):

Putting everything together gives us the Lorentz transformation equations:

The symmetry between the  and  variable is apparent, and shows the important difference between relativity and galilean physics
– time is not universal and unaffected by the position of an event. Notice that when the velocity is very small compared to the
speed of light (as it is in our everyday experience), then letting  changes the Lorentz transformation equations into the
Galilean transformation equations.

Finally, it should be noted that these transformations can also be written in terms of changes in these variables from one event to
another. In effect, this is hidden in the equations themselves, as event A simply has all the variables equal to zero.

These equations give the spacetime coordinates of an event in the primed frame given the spacetime coordinates of the same event
in the unprimed frame. But what if we want to do the reverse – find the coordinates of the event in the unprimed frame from those
in the primed frame? [This is called the inverse of this transformation.] It's actually quite easy to do – the only difference in
perspectives between these two frames is the sign of the velocity. We get the inverse transformation by simply replacing the 
everywhere in the equations with .

Example 
We have said that the interval-squared  is an invariant, which means that it is the same in
every inertial frame. Use the Lorentz transformation equations to show that this is true.

Solution

We want to show that , which makes this a pure plug-in. Clearly the  and  changes are equal in both frames,
so we will ignore them and deal with just the  and  changes:

Revisiting Previous Results
After all that struggle with thought experiments and spacetime diagrams, only now do we have a simple, powerful tool for
achieving the same results. Time dilation is downright trivial. If (unprimed) Ann sees two events occur at the same place ( )
separated by a time interval , then the time span that (primed) Bob measures between these events is:
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We can also look at simultaneity. Events that are simultaneous in Ann's frame ( ) are not simultaneous in Bob's:

Looking at this expression, we also see that  is negative (i.e. ) when  is positive (i.e. ). This means that for
the two events that Ann sees as simultaneous, Bob sees the event with the greater -value as occurring first (note that we are still
assuming that Bob is moving in the -direction relative to Ann). So is Ann flies by Bob in a spaceship where she sees lights on
the front and rear of her ship flashing in sync, Bob sees the light on the rear of her ship flashing ahead of the light on the front.

Reproducing length contraction is a bit more difficult to obtain from the Lorentz transformation equations. the reason is that the
length that is measured by one observer depends upon different events than the length measured by the other observer. That is, the
length of an object in a given frame is the distance between events located at both ends of the object that occur at the same time,
and as just noted, events simultaneous in one frame are not simultaneous in the other. Nevertheless, we can get the length
contraction result with some care.

Two events that are simultaneous at both ends of an object according to Bob gives:

Plugging this back into the transformation for the length measured by Bob gives the length contraction:

This page titled 3.2: Lorentz Transformation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.

2.2: Lorentz Transformation by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
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3.3: Velocity Addition

Cosmic Speed Limit
We have already said a few times that nothing we have found makes any sense if ordinary objects can move at or beyond the speed of light.
So doesn't the whole theory come crashing down in the following scenario?

Bob is moving past Ann at  in the -direction, as she fires off her powerful potato gun in the -direction. Ann measures the speed
of the potato in her frame to be . Bob now measures the speed of the potato – doesn't he see it moving at , ruining this whole crazy
theory?

This sensible result comes straight from the equally-sensible (and yet wrong) Galilean transformation. Let's consider a case where both
Ann and Bob are looking at the same object that is moving relative to both of them (as always, they are moving with a relative speed of 
along the -axis):

Figure 3.3.1 – Ann and Bob Watch the Same Ball

If we use the Galilean transformation to determine how these velocities  and  relate to each other, we get:

So this gives the result we expected before we ever heard of relativity. But now we know that the Galilean transformations are just an
approximation of what really describes our universe, and that we actually need to use the lorentz transformation equations instead. So let's
follow precisely the method we followed above with the lorentz transformation to find how velocities add in relativity. [Note that we have
to use the  that goes with the relative velocity of the two frames (since that is what transforms the coordinates), not the gamma related to
the relative motion of the ball. This velocity is not changing, so  is treated as a constant in the derivatives to come.]

Note that the signs of the components of  are important here. When , the -component of the ball's velocity measured in Ann's
frame is in the same direction as Bob is moving relative to Ann, and Bob sees the velocity of the ball as a little bit faster than the Galilean
transformation predicts, because the denominator of the velocity transformation is less than 1. On the other hand, if the ball's velocity has

0.6c +x −x

0.8c 1.4c

v

x

u
→

u
→′

= tt′

= x−vtx′

= yy′

= zz′

⇒

⇒

⇒

⇒

= 1
dt′

dt

= = =( −v) (1) = −vu′
x

dx′

dt′

dx′

dt

dt

dt′

dx

dt
ux

= = =( ) (1) =u′
y

dy′

dt′

dy′

dt

dt

dt′

dy

dt
uy

= = =( ) (1) =u′
z

dz′

dt′

dz′

dt

dt

dt′

dz

dt
uz

(3.3.1)

γ

γv

c = [ct−( )x]t′ γv
v

c

= (x−vt)x′ γv

= yy′

= zz′

⇒

⇒

⇒

⇒

= [1 −( ) ]
dt′

dt
γv

v

c2

dx

dt

= = = ( −v)u′
x

dx′

dt′

dx′

dt

dt

dt′
γv

dx

dt
[ (1 − )]γv

vux

c2

−1

= = =( )u′
y

dy′

dt′

dy′

dt

dt

dt′

dy

dt
[ (1 − )]γv

vux

c2

−1

= = =( )u′
z

dz′

dt′

dz′

dt

dt

dt′

dz

dt
[ (1 − )]γv

vux

c2

−1

= (1 − )γv
vux

c2

=
−vux

1 −
vux

c2

=
uy

(1 − )γv
vux

c2

=
uz

(1 − )γv
vux

c2

(3.3.2)

u
→

> 0ux x

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/81607?pdf
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9D__Modern_Physics/2%3A_Light_Isn't_Just_a_Wave/3.3%3A_Velocity_Addition


3.3.2 https://phys.libretexts.org/@go/page/81607

an -component in Ann's frame that is opposite to Bob's direction of motion ( ), then the velocities add, but the sum is not as great as
is predicted by the Galilean transformation, because the denominator is greater than 1.

So let's try the example that started this discussion. Putting in the velocity of the potato in Ann's frame and Bob's relative velcoity with Ann
gives the speed measured by Bob:

The cosmic speed limit is obeyed!

Example 
Here's another idea to bring relativity to its knees: Maybe we can't get a speed greater than  for a moving object by stacking one
velocity on top of another because neither of them can be going a speed  to begin with, but what if Ann shines a light so that the light's
speed adds to Bob's speed? Won't Bob measure the light going faster than ?

Solution

Well, this clearly violates the postulate of relativity, but let's use this idea to check our velocity formula anyway. Putting 
into the velocity transformation indeed gives us the right answer:

Velocity Vectors
We have focused on the effects of velocity addition along the direction of motion, but perhaps a result we didn't see coming was that
relative motion along the -direction also affects the relationship between the two observers' measurements of velocities in directions
perpendicular to the relative motion. This comes about because of the time dilation effect – if time is passing more slowly in another frame
than in your own, then things are moving more slowly in those perpendicular directions. For example, if Bob sees time passing more
slowly for Ann as she moves by, then when she drops her pencil, it will take longer to get to the floor from Bob's perspective than from
Ann's perspective, so for Bob the pencil is moving more slowly, even though it is moving in a direction perpendicular to the relative
motion.

Suppose as Bob zooms by, Ann fires a laser in the  direction. What does Bob see for the laser's speed and direction? Well, he had better
see a speed of , and thanks to the velocity transformation, he does:

Bob and Ann don't agree on the direction however. While Ann sees the laser going in the  direction, Bob sees an angle with his -axis:

This page titled 3.3: Velocity Addition is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on
the LibreTexts platform.
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3.4: Electricity and Magnetism

Motion in E&M
Electricity and magnetism was the main wildly-successful theory at the time that Einstein came onto the scene. Maxwell had shown
how the two different forces could be unified into one mathematical theory. Electric charges cause both electric and magnetic
fields, both of the fields exert forces on electric charges (in different ways), and each of the two fields (when they vary in time) can
induce the existence of the other.

But when Einstein pondered his ideas about relative motion, an important question came to mind. The velocity of an electric charge
appears in two different places in Maxwell's theory: A moving charge produces a magnetic field that is proportional to its speed,
and a moving charge experiences a force from an external magnetic field that is proportional to its speed. So the obvious question
to ask is, "What happens if we just view the moving charge from a frame that is stationary relative to the charge?" In this frame, it
would seem that there is no magnetic field produced by the charge, and this charge would experience no force from an external
magnetic field. Reconciling this is vital to confirming the validity of both theories, and we will do so with – what else? – a thought
experiment.

Lorentz Force in Two Frames
Let us consider the following simple example from Physics 9C:

Figure 3.4.1 – Ann Observes a Stationary Charge Near a Current-Carrying Wire

Ann observes a positive point charge  that is at rest in her inertial frame. Close by (a distance  away), parallel to the -axis, is a
long-straight wire that carries a current  in the -direction. Like any other current-carrying wire, this one has zero electric charge
density. It should be immediately clear that Ann will witness no net force on this charge – there is no charge density on the wire to
produce an electric field, and although the current produces a magnetic field at the position of the charge, the charge isn't moving,
so there is no magnetic force on it either.

Okay, all simple stuff. We continue with our thought experiment as we usually do, by considering what is seen by a different
observer, Bob. Recall that electric current is typically due to movement of electrons in a conductor (while the protons remain
stationary), and these electrons, being negatively-charged move in the direction opposite to the electric current. So for our thought
experiment, let's choose Bob to be an observer in a frame that moves along with the electrons in the conductor:

Figure 3.4.2 – Bob Moves by the Charge with the Electrons
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At first blush, it might seem that Bob should see a magnetic force on the charge, because according to him, the electric charge is
moving in the magnetic field of the wire. Specifically, the right-hand-rule tells us that the magnetic field of the current points into
the page  at the position of the charge, and the charge (according to Bob) is moving to the right. So applying the RHR for the
Lorentz force , we find that the force on this positive charge must be toward the wire. But if this force exists, then
Bob would see the charge start moving closer to the wire, while Ann would see the charge remain stationary. Both of these results
cannot be true, so what are we missing?

To answer this, we need to have a closer look at the charges that comprise the electric current. We have set things up so that Ann is
stationary relative to the protons (with the electrons moving left at ), and Bob is stationary relative to the electrons, which means
that relative to him, the protons are moving to the right at a speed . At the start of our thought experiment, we said that Ann
witnesses zero charge density on the wire. This is because the electrons provide a negative charge density that is equal in
magnitude to the positive charge density provided by the protons. These densities are determined by the spacings of the charges –
the closer together they are, the more dense the charge distribution is. But relative motions changes distances with length
contraction, so Bob will not measure the charge separations to be the same that Ann measures.

Figure 3.4.3 – Comparing Charge Densities Measured

Here we see side-by side the views of each observer in their rest frames. The electrons are moving relative to Ann, so to her their
separation is length-contracted. In Bob's frame their separations  are not length-contracted, so he see them to be farther apart.
Similarly, the protons are moving in Bob's frame, and stationary in Ann's so Bob sees them to be closer together than Ann. The end
result is that while Ann sees zero charge density on the wire, Bob does not, because he sees the protons much more closely-spaced
than the electrons. Interestingly, both observers see an electric current going to the right (positive charges to the right and negative
charges moving to the left both result in current to the right).

Without yet doing any math, we can begin to see why Bob's conclusion could possibly agree with Ann's. With a current to the right
and a right-moving point charge, as we noted above, Bob does witness a magnetic force on the point charge toward the wire. But
now we see that there is also an electric force due to the net positive charge density on the wire. This will of course repel the

= Q ×F ⃗  v ⃗  B⃗ 
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positive point charge, so if the magnitude of this repulsive electric force happens to equal the magnitude of the attractive magnetic
force, then Bob and Ann will agree, as they must!

Now for the Math
In principle the electric and magnetic forces on the point charge witnessed by Bob can cancel, but for us to actually confirm that
special relativity is consistent with E&M, the math has to work out. There are a number of parts to put together here. We'll start
with the charge density. We'll call the separation of neighboring charges in Ann's frame , and adjust the separations in Bob's frame
by length contraction:

Figure 3.4.4 – Charge Densities in Both Frames

The linear density is the charge per unit length, so:

From Physics 9C, we have a formula for the electric field of a line of charge, in terms of its line density. The electric field seen by
Ann is clearly zero, and for Bob it is:

Okay, now we need the magnetic field. We start by reminding ourselves how to get the current from a moving charge density:

Note that for Bob, only the positive charges are moving, so the  that appears in this formula is the charge density of the positive
charges only, not the total charge density. So the current is, according to Bob:

We also have a formula for the magnetic field from the current of a long straight wire from Physics 9C, and plugging this current
into it gives the magnetic field seen by Bob:

All that remains is to compute the Lorentz force measured by Bob. We have already establish that the electric and magnetic forces
are in opposite directions, and since the motion of the point charge is perpendicular to the magnetic field, we have:

And now the calculation is completed at last using another result from Physics 9C:
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Full Unification Of Electricity and Magnetism
What this thought experiment shows us is the remarkable unification of the electric and magnetic forces started by Maxwell and
completed by Einstein. Maxwell showed that a single source (electric charge) is responsible for both fields and is affected by both
fields. With special relativity, Einstein went a step further, and showed that both fields are actually a single field, which has electric
and magnetic properties that will be manifested differently depending upon the inertial frame in which they are observed.

It is actually possible to derive specifically how electric and magnetic fields mix into each other as one changes reference frames,
in the same way that the Lorentz transformations describe how position and time variables mix into each other. We won't reproduce
the derivation here, but here is the final result:

In these formulas, the quantities require some explanation. The primed frame is moving with a velocity  relative to the unprimed
frame. The field vectors with no subscripts are the full field vectors, while those with the " " subscript are the field components
parallel to , and those with the " " subscript are the field components perpendicular to .

This page titled 3.4: Electricity and Magnetism is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom
Weideman.
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CHAPTER OVERVIEW

4: Dynamics in Special Relativity
4.1: Momentum Conservation
4.2: Energy Conservation
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4.1: Momentum Conservation

Another Thought Experiment
We have completed our exploration of the fundamentals of relativistic kinematics and its consequences. Now it is time to examine
the consequences of the relativity principle in the area of dynamics. Our first clue that something needs to be done differently
comes from the basis of all dynamics: Newton's laws of motion. In particular, the second law looks like:

The obvious question is, with respect to what time measurement is this momentum changing? This is actually a very difficult
problem to deal with in relativity in that it is difficult to apply the relativity principle, so we will instead look at a consequence of
this law – momentum conservation. If someone in one frame observes a collision of two objects and declares that momentum is
conserved, then an observer in another frame watching the same collision should conclude the same thing. Momentum
conservation is among the most cherished principles of physics, and if an experiment could be performed where two inertial
observers do not agree that it is upheld, then that would cause problems for the relativity principle. This calls for a thought
experiment!

We have three players involved here (Ann, Bob, and Chu), and we are initially viewing the activities from Chu's perspective, who
sees Ann moving in the -direction and Bob moving in the -direction at equal speeds. Ann and Bob both throw identical balls
in a direction that is (from their own perspectives) along their  axes, at speeds they each measure to be . The balls collide
elastically with each other, and return to where they started.

Figure 4.1.1 – Chu Observes Collision

From Chu's perspective, everything is completely symmetric, and so he concludes that the momentum (and most notably, the -
component of the momentum) in this collision is conserved. Okay, let's confirm that all observers agree upon this basic physics
principle by looking at the very same collision from Bob's perspective. To Bob, his ball's motion parallels his -axis, while Ann's
has an -component (equal to her frame's relative motion).

Figure 4.1.2 – Bob Observes Collision
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Bob now compares the -components of velocity of the two balls. We already stated that Bob measures the velocity of his ball to
be , and Ann measures velocity of her ball to be the same, but because of the strangeness of velocity, neither agrees that the other
ball is moving that fast. Bob says that the -component of velocity of Ann's ball is (  and  are the  and  components of Ann's
ball, respectively, according to Ann):

This is smaller than the vertical speed that Bob measures for his own ball, which means that Ann's ball (which has the same mass
as his ball) had to have less momentum going into the collision than his ball. But he sees is own ball come back at the same speed
that it left, and the collision is elastic (his ball isn't any warmer), and these are properties of a head-on collision with an identical
ball moving at the same speed in the opposite direction if momentum is conserved. So something is wrong here.

A New-and-Improved Momentum
There are only three possible conclusions we can draw from the discrepancy shown in this thought experiment:

Momentum conservation is not a fundamental principal of physics, since one observer measuring no change in momentum (in
the example above, Chu) for a closed system does not ensure that every other observer (Ann and Bob) gets that same result.
Mass is measured differently in different reference frames. If Bob measures the mass of Ann's ball to be greater than his own,
then that could compensate for the lower velocity so that their two balls once again have equal -components of momenta.
Our definition of momentum, while useful for low velocities, needs a facelift to handle relativistic speeds.

For physicists, stopping at the first of these was never an option – conservation principles and momentum in particular had been
revered for far too long. In the early years (and for quite some time afterward), the second option was the accepted explanation, and
it works fine. In modern times, however, the physics community has instead embraced the third option – we prefer to characterize
mass as an invariant quantity that is inherent to matter, and simply admit that our original definition of momentum was insufficient.

Deriving the correct form of the momentum is challenging until we get to 4-vectors in a future chapter, so right now we will just be
given this formula and confirm that it works for the Ann/Bob/Chu thought experiment above. For an object moving at a speed 
relative to an observer, the momentum of the object in the frame of that observer is defined to be:

Alert
Up to now, we have usually dealt with  that relates the frames of two observers, whose relative speed we define as ' ,' but here
the  relates the frame of the observer to that of the moving object, not another observer. As we will be relating the momenta in
frames of observers, it will be important to keep straight the difference between  and . As one example, if we have two
observers, the  that relates their frames are the same for both of them, but the  that one observer uses for a moving object is
not the same as the  used by the other observer for the same moving object, since .

As a first check, it is clear that at slow velocities, momentum reduces to our usual definition of momentum, since for , 
.
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Proving that this form of momentum is conserved in the thought experiment above requires careful accounting of velocities, as
there are many involved here. In an effort to not have to carry primes on all our variables through the calculation, we will look at
this collision from Ann's perspective – clearly the collision has all the same features for her that it has for Bob. We will use the
subscript 'A' whenever referring to a quantity specifically related to Ann's ball, and use a 'B' for Bob's ball. We seek to write all of
these quantities in terms of the value , the speed that each measures for their own ball; and , the relative speed of their two
frames.

We need the 's for the two balls from Ann's perspective in order to compare momenta in her frame. The  for her ball is easy, as
she sees it moving with a speed of :

When Ann looks at the ball thrown by Bob, she sees that it has an -component equal to , and its -component is determined
from the velocity addition formula. Bob sees no  component for his ball's velocity , and he measures the  component
for his ball's velocity to be , so using the velocity addition formula to determine the two components of velocity of Bob's
ball in Ann's frame gives:

We now need to construct the  for Bob's ball as seen by Ann, which means we first need to construct the square of the speed for
Bob's ball according to Ann:

Plugging this in gives the -component of momentum of Bob's ball as measured by Ann, which we can then compare to the
momentum of Ann's ball (which is entirely in the -direction):

Showing that momentum is conserved with its new definition is now a matter of showing that this equals the magnitude of
Equation 4.1.4:

Inverting and squaring both sides of the equation and simplifying completes the proof:

Due to the symmetry of the two cases, it should be clear that Bob will get the same result, and from Chu's perspective, the new
version of momentum changes the magnitude of the momenta of both balls equally, so he will naturally again witness momentum
conservation. Indeed, with this new definition of momentum, every frame will agree that it is conserved before and after the
collision.

This page titled 4.1: Momentum Conservation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom
Weideman directly on the LibreTexts platform.
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4.2: Energy Conservation

One Last Thought Experiment
With an understanding of relativistic momentum conservation now firmly in hand, we will have a look at an inelastic collision. When we
first encountered these in Physics 9A, we said that no energy was actually "lost," it was just converted into another form (thermal). Given
that thermal energy is at its core "microscopically mechanical," this assessment of it changing form is really just a shortcut, and in fact the
only things that change  in terms of energy is how it is packaged. For example, we could model a simple (perfectly) inelastic collision
between two equal masses this way:

Figure 4.2.1 – A Simple Model of an Inelastic Collision

In this collision, if we can see what is going-on inside the boxed system after the collision, we can account for all of the incoming energy –
part of it goes to the kinetic energy of the boxed system, and part of it to the potential and kinetic energy associated with the oscillation of
the two particles. If we can't see what's going on, then we can only see the kinetic energy of the boxed system, and we call the leftover
energy "internal energy" within the boxed system.

In Physics 9A, for the non-relativistic case of a collision of this kind, we showed that the fraction of the initial kinetic energy the box
system has after the collision is given by:

Put another way, for this case (non-relativistically, when the masses are equal), the energy contained in the oscillation of the two masses
equals the kinetic energy of the box system after the collision.

Let's see how all this works out for relativity with our new definition of momentum. We will watch this collision from two different
perspectives. The first is Ann, who sees the collision from the perspective shown above, and who cannot see inside the boxed system, so
she doesn't even know the system's mass after the collision (she calls it ' '). Here is the before/after diagram she uses for momentum
conservation:

Figure 4.2.2 – Ann's Before/After Diagram for a Perfectly Inelastic Collision

Bob will view the very same collision from another frame that is moving to the right with a speed of , which is in the rest frame of the
system after the collision. Unlike Ann, we'll say that he is able to see what is going on inside the box. With the two parts having equal mass,
and coming to rest after the collision, he naturally must see both halves moving at the same speed, so from his perspective, the collision
looks like this:

Figure 4.3.3 – Bob's Before/After Diagram for a Perfectly Inelastic Collision

Okay, so let's invoke relativistic momentum conservation for Ann. If she uses this to determine the unknown mass , she finds:
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Next all we have to do is relate  and  to each other using velocity addition:

Writing  in terms of :

Plugging everything back into Equation 4.2.2 reveals the mass that Ann measures for the combined system:

Wait, Ann finds that the mass of the combined system is actually larger than ? This doesn't seem to agree with what Bob knows about
the combined system. If the two masses were just held together, then Bob would be certain that the combined system would have a mass of 

, but perhaps there is something about the fact that the masses are oscillating on the spring that adds to the mass of the system?

Perhaps we can get a clue about what is going on by looking at the mass discrepancy in the case of our familiar slow-moving world. The
apparent additional mass is:

Now using the usual  approximation:

For this low-velocity case of two equal masses, we said above that the kinetic energy of the box system after the collision equals the
internal energy contained in the oscillations, we therefore have:

It appears that the energy that starts as kinetic and becomes internal due to an inelastic collision is manifested – according to relativity – as
an increase in the mass of the system where the internal energy is contained, with a conversion factor of .

Total, Kinetic, and Rest Energy
What constitutes "internal energy" is determined by what we define as a system: Just aggregate a group of particles, and that group's
collective mass is not simply the sum of the masses of the particles in the group, but must also include the mass that is equivalent to the
energy of all their internal motion and interactions according to . This famous equation is known as mass-energy equivalence, and
it has interesting implications. For example, if we make an object hotter, then it contains more internal energy and therefore has more mass
than when it is cooler.

In the example above, let's suppose Bob can't see inside the box. As we have said before, observers agree on masses, so he and Ann agree
that the box has a mass of . The box isn't moving in Bob's frame, so internal energy is the only energy the box has. The energy of a
system measured in its rest frame is called the rest energy, and it comes from the system's total mass and mass-energy equivalence:

If the energy of a system is instead measured in a frame in which it is not at rest, then there is a kinetic energy component that needs to be
added to the rest energy to get the total energy. Naturally the total energy of a given system will be greater in frames in which the velocity
of the system is greater. We can write the total energy as an unknown function of the velocity of the system in the frame, multiplied by the
rest energy:

To obtain this function, let's look at the collision above from Bob's perspective. The energy is conserved, and at the end it is just the rest
energy. Before the collision, the two particles have equal total energies whose sum is the final energy:
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The final equality comes courtesy of Equation 4.2.5. So we conclude that the total energy of an object with mass  moving at a speed of 
is given by:

Example 
Show that energy is conserved for the collision above when measured in Ann's frame.

Solution

The total energy of the system before the collision comes in two pieces – the total energy of the incoming mass, and the rest energy of
the target mass. After the collision the system's energy consists of the total energy of the moving total mass. We seek to show that
these are equal:

Now substitute for  using Equation 4.2.5, giving:

Now use Equation 4.2.4 to put everything in terms of  and , and do the algebra:

With the total energy and the rest energy of a system now in hand, it is easy to define the kinetic energy as the difference of the two:

Example 
Show that the relativistic kinetic energy is consistent with the non-relativistic definition of kinetic energy for speeds much less than .

Solution

Whenever we see the phrase "speeds much less than ," we immediately think of expanding  to first order in , as we did in
Equation 2.5.7:

Combining Energy and Momentum
Back in Physics 9A, we found a very useful formula that relates kinetic energy to momentum. It's clear that the same formula does not work
for relativity:

This doesn't mean that there is no formula that relates these two quantities. Indeed:

So the alternative ways of writing the total energy are:
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Massless Particles
With the  multiplying  in the energy equation, we have another reason to insist that the speed of light is unobtainable – for a system
to attain the speed of light, it would need to acquire infinite energy. But if this is true, does that mean that light has infinite energy? Of
course not – we can measure the energy in light by absorbing it in matter and measuring the temperature change of the matter. So then how
does light get away with moving at the cosmic speed limit? The answer is that while  for light goes to infinity, the mass of a light
"particle" (called a photon) turns out to be zero. The product of these two numbers turns out to result in a finite value.

Using the other energy equation tells us even more. Setting the mass equal to zero gives us a very simple relationship between the energy of
a photon and its momentum:

So yes, light has both energy and momentum. Again, it might seem strange that something without mass can have momentum, but with 
exploding to infinity and the mass vanishing, this is again possible. The difference between light and matter in this regard is that photons
don't have any rest energy – all of the energy comes from its momentum.

This page titled 4.2: Energy Conservation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly
on the LibreTexts platform.

2.5: Energy Conservation by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
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5.1: Blackbody Radiation

What is a "Blackbody"?
In Physics 9B we briefly discussed the idea of a blackbody when we discussed heat transfer by radiation.  Now that you have taken
Physics 9C, you can understand a little more detail about this concept, and see why it was causing physicists fits right at the turn of
the century.

We know that EM radiation consists of fluctuating electric and magnetic fields.  These fluctuations need to be at least of second-
order (since the derivatives in the wave equation are second order), which means that they can only be created by accelerating
electric charges.  We often model electric charges in matter as being held in a lattice with spring-like bonds.  So if those charges are
oscillating in those bonds, they can give off light.  There are essentially two ways that a piece of matter does this.  One is for EM
radiation to strike the matter and the fluctuating fields of the radiation cause the charges to vibrate, which in turn gives off more
radiation.  Another is to simply heat the matter, which we know causes the particles comprising it to vibrate. The former version is
essentially just transmission or reflection.   In the case of a blackbody, we ignore this transmission/reflection mode.   Instead, we
assume that all of the incoming EM radiation is totally absorbed by the matter, which then redistributes the energy throughout its
mass in the form of thermal energy, and then the only EM radiation it emits is due to thermal vibrations of the charges.

Figure 5.1.1 – Blackbodies "Thermalize" Radiation

One might ask where the name "blackbody" comes from. Imagine some yellow light striking such an object. If it is totally
reflected, then yellow light is emitted by it. But if the light's energy is absorbed by the object, and that energy is distributed
randomly through the atoms which then emit light in a wide spectrum of frequencies, then the light that comes out will not all be in
the visible spectrum, and if the amount in the visible specturm is small, then the object's appearance is black.

Of course, an object's ability to turn incoming light into randomly-partitioned energy amongst its atoms depends upon a number of
factors.  In Physics 9B, we lumped all those factors into a single factor we called the emissivity. Mostly this quantity depends upon
the surface properties of the object, as this is where reflection occurs, and reflection needs to be avoided for the incoming light's
energy to be absorbed and distributed within the object. As we stated in Physics 9B, a blackbody is an object with emissivity of 1,
which means that every joule of radiation that strikes the object is converted into thermal energy (none is reflected). The
subsequently emitted radiation comes out in a spectrum distributed in a specific way that depends upon the body's temperature.
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Physicists in the 19th century devised a clever way to construct an object that imitates very closely the properties of a blackbody.
They cut out a cavity from a block of material and left a small hole as an entrance, so that any radiation that enters that hole would
be partially absorbed (turned into thermal energy), and partially reflected, but the reflected part is not likely to return out the hole. 
Instead, it will strike another interior wall of the cavity, again being partially absorbed.   By the time the radiation has reflected
enough times to accidentally return out the hole, pretty much all of its energy has been converted to thermal.   Therefore, for the
region where the hole exists, the cavity behaves exactly like a blackbody – all of the incoming radiation is converted to thermal
energy, and the only energy that comes out of that hole is due to thermal motions of the charged particles in the material.

Figure 5.1.2 – Radiative Cavity as a Blackbody

In the late 1800’s, experiments were performed with these makeshift blackbodies.  Note that since the charged particles are moving
thermally, their motions can have any of a wide range of frequencies (and therefore so can the EM waves they emit). Physicists
were interested in explaining how the outgoing energy was distributed among the emerging EM waves of various wavelengths, and
how this distribution depended upon the temperature of the material. The theory that attempts to explain this frequency distribution
is steeped in statistical physics (a field of physics that handles issues like the randomness exhibited by the vibrational frequencies
of thermally-excited electrons in our blackbody material) that we will not cover in detail in this course. We'll say something about
the shape of this distribution shortly, but it should first be noted that the range of frequencies that represent the biggest share of the
energy emitted depends upon the temperature of the blackbody. The lower its temperature, the lower the range of peak frequencies
lies.

We are already somewhat familiar with this fact. We know that when we heat a piece of metal, we can first start to feel heat
radiating from it (infrared radiation – lower frequency than visible light), then when it gets hotter it starts to “glow” red, then hotter
still, red starts to be accompanied by other, shorter wavelengths, making it “white hot,” and so on.

Figure 5.1.3 – Glowing Hot Metal

So we would (correctly) guess that the most populated wavelength emitted by a blackbody gets shorter as the temperature rises.  If
we were to plot the distribution of energy as a function of wavelength, we would expect it to peak at the wavelength ordained by
the temperature to be the most common, and re-plotting this graph for a new temperature would shift the peak. The figure below
shows several plots of intensity (brightness) of light emitted by a blackbody, as a function of wavelength. Each plot represents the
distribution for a blackbody of a different temperature. The range of wavelengths on the horizontal axis that corresponds to the
visible spectrum is shown.
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Figure 5.1.4 – Blackbody Radiation Curve

The lowest curve on in this figure corresponds to the lowest temperature of the group, and the highest (white) curve corresponds to
the hottest ( ). The temperature for the white curve is the surface temperature of the Sun, and as you can see, this
corresponds to peaks emission in the visible spectrum. This is no coincidence, as what is "visible" is defined by what creatures on
Earth are able to perceive with their senses, and these senses evolved in the presence of this very light.

Let's say a few words about the mathematical meaning of the curves shown in the graph above. Above we stated that this was a plot
of intensity vs. frequency, but that is not quite right. One cannot attribute a brightness to a single, precise wavelength, as the total
light energy is finite and it is distributed throughout an infinite number of wavelengths. Each wavelength is therefore responsible
for an infinitesimal amount of energy, and therefore has zero intensity. What this curve instead shows is a spectral density of light
intensity. "Spectral" loosely means "as a function of wavelength" (or equivalently, frequency). With any density, we integrate it
over some range to get a total quantity. For example, to get total electric charge in a line segment of charge, we integrate the linear
charge density over the range of that segment:

Well, the curves above are plots of spectral density , which means that the "  to " range is between wavelengths, and the stuff
that is added together is light intensity. So let's suppose that we measure the brightness of light coming from a blackbody of a given
temperature (which defines one of those curves). Suppose further that we filter the contributions to this brightness, so that we only
include light possessing wavelengths in the range  to . This total brightness is the area under the curve above, integrated from 

 to :

Back in Physics 9B, we saw that intensity for 3-dimensional waves is power (watts) per area (square meter). This quantity  is the
density of this quantity within a wavelength range. The spectral density is a function of both wavelength (the horizontal axis) and
the temperature (the five curves shown in the diagram are all different temperatures.

5500K
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Wien, Rayleigh-Jeans, and the "Ultraviolet Catastrophe"
A fellow named Wilhelm Wien used principles of thermodynamics to show that the relationship between the wavelength with the
maximum contribution to the energy output and the temperature is in fact inverse.  That is:

As you can see in the series of diagrams for various temperatures, as the temperature goes up, the wavelength at which the peak
occurs goes down.   Wien goes further, and approximates this curve with a pure guess regarding the function that defines it.   He
does so with a couple of adjustable constants that can be determined from experiments, but his function breaks down a bit at long
wavelengths.

Perhaps a few words here are appropriate regarding techniques of scientific exploration.  What Wien did in creating his radiation
curve is essentially to reverse-engineer a branch of physics known as “phenomenology.”  In physics, phenomenology is the field
where the theory is bridged to experiment – coming up with ways to test theories in a lab.  The reverse-engineering aspect of this
discipline consists of admitting for the moment that we don’t understand the exact mechanism involved in an observation (i.e. we
don’t have a theory, either because we are missing a piece to the puzzle, or the problem is too complicated to create an adequate
model), but we can still create a mathematical model that reasonably predicts what we experimentally observe.  It is clearly not an
“answer,” and is obviously far less satisfying than a theory from first principles, but it can lead to progress nonetheless.

A couple of British physicists named Rayleigh and Jeans set out to derive this radiation curve from first principles.  There are two
key elements to this calculation.   The first is that the energy of any given EM wave depends only upon the amplitude, not the
frequency.  That is, waves of blue light carry the same energy as waves of red light if their amplitudes are the same – a standard
principle from wave mechanics that we learned in Physics 9B.  And second, we need a good model for determining the expected
populations of waves of various wavelengths, given a certain temperature.   It turns out that the (at the time) recently-developed
field of thermodynamics had an answer to this second element using something called the Boltzmann distribution and equipartition
of energy.  But when Rayleigh and Jeans applied this using a standing wave model within the blackbody cavity, they found that the
fraction of the total energy that goes to the shorter wavelengths does not rapidly taper-down as the experiments indicated (i.e. as
shown in the graphs we have seen), but rather continues to grow!  The lack of agreement between the calculation of Rayleigh and
Jeans and the sharp drop of the blackbody radiation curve (which occurs at wavelengths just shorter than visible violet light)
became known as the “ultraviolet catastrophe.”

Planck’s Solution
A German physicist named Max Planck spent several years at the end of the 19th century working on the problem of the blackbody
radiation curve.  He first found that he could get the right formula by making a small tweak to Wien’s “pure guess” function, and
then tried to reverse-engineer it back to the first principles of Rayleigh and Jeans.  He found he couldn’t do that, so there had to be
something wrong with the fundamentals behind the Rayleigh-Jeans solution.

He finally hit upon a solution right at the century’s turn, but it involved changing what seemed to be an immutable assumption. 
Rather than assume that the energy density of an EM wave is independent of its frequency, he found that assuming that EM waves
occur in individual packets of energy proportional to their frequencies gave the correct blackbody radiation law.  In particular, he
found that if he assumed that if an individual EM wave of frequency  carried an energy of   (where  is  a constant, and of
course ), then using Boltzmann’s statistics, the equation of the spectral energy density curve would come out to what he had
already determined must be correct:

It's worth emphasizing how radical this was: Planck knew that the curve expressed by the function above matched the experimental
data, and he was able to derive it from physical principles, but the idea that the energy of an EM wave could be proportional to the
frequency was so far outside the understanding of the time that Planck was certain there was a problem somewhere that would
eventually be worked-out. He published the result nonetheless.

It should be clear intuitively why this assumption would help avert the ultraviolet catastrophe.   With the Rayleigh-Jeans
assumption, there was no “energy penalty” for producing EM waves in higher and higher frequencies (shorter and shorter
wavelengths), and since Boltzmann statistics allowed for more EM waves of higher frequencies than of lower frequencies, the
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equipartition theorem assured that a disproportionate amount of energy would go to those high frequency waves.   But with the
assumption of Planck, the higher the frequency we choose, the greater slice out of the total energy pie must be taken, leaving less
remaining pie for other high frequency waves.   This changes the statistics, weighting them against the higher frequencies, and
causing the max value to hit a peak.  Put another way, eventually the frequency will be so large (wavelength so small), that there
simply isn’t enough energy in the whole blackbody to equal , so that wave will never be created.  The constant  is now referred
to as Planck’s constant, and has the value:

The idea that light energy is proportional to frequency obviously begged to be explained, but this would have to wait for awhile. In
the meantime, there was other evidence emerging that it is true. We will look at a couple more of these clues.

This page titled 5.1: Blackbody Radiation is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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5.2: The Photoelectric Effect

Light Interacting with Conductors

The common denominator of the problems that would plague physics for the early years of the 20th century involved light’s
interaction with matter.  As the blackbody radiation puzzle showed, the simple view developed from Maxwell’s EM and
Boltzmann’s thermodynamics, were not sufficient to handle these problems.  A whole new way of thinking about light and matter
was needed.  Planck started the revolution (without thinking it was correct), and the next bit of evidence would come from a second
1905 paper by Einstein, explaining a phenomenon relating to light striking a conducting surface.

When we studied EM in Physics 9C, we always assumed that charges on the surfaces of conductors remained on those conductors. 
But this belied the fact that we would sometimes see charges leap from a conducting surface (a spark) due to a strong external
field.  So we know that given enough additional energy (in the case of the spark, electrical potential energy), an electron will exit
the surface of a metal (the protons are of course fixed within the lattice of the metal).  Different metals will hold their electrons
with differing degrees of “tightness,” and this tightness is measured in terms of the minimum amount of energy needed to just
barely free the most loosely-held electrons.  This minimum energy for a given metal is called the metal’s work function, typically
represented by the symbol .  Naturally an external static electric field is not the only way to give additional energy to these
electrons, and it was known for quite some time that shining light on the metal can also add enough energy to the electrons to kick
some off. When light accomplishes this, it is called the photoelectric effect.

At first glance, this phenomenon makes perfect sense – there is no sign of any of the "weirdness" that came out of Planck's
explanation of the blackbody radiation curve a few years earlier. When light is shone onto the negative plate of a capacitor, some
electrons are ejected and make their way to the positive plate. When the the missing electrons are replaced on the plate form the
battery, the electron flow can be measured by an ammeter. If we turn up the brightness of the light, the measured current rises.

Figure 5.2.1 - Photoelectric Effect (Unsurprising)

Digging Deeper
Physics is uninteresting if we are never surprised, so let’s dig a little deeper and determine two other pieces of information, namely:

Does this effect have any frequency dependence?
What determines how much kinetic energy the electrons have after they exit the conductor?

So rather than just use white light, let’s compare some monochromatic cases.

Figure 5.2.2 - Frequency Dependence of Photoelectric Effect
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The blue light ejects electrons even when dim, as the white light did, but dim red light does not.  This tells us that it was the blue
part of the spectrum that was ejecting the electrons when the white light was shone on the metal earlier.  While this result is
peculiar from our standard understanding of EM, we can simply look at it as a confirmation of Planck’s result from blackbody
radiation: Blue light carries more energy than red light, since it is providing enough energy for the electrons to overcome the work
function.  So in order to see the same effect with red light as we saw  with blue light, we just need to crank up the intensity of the
red light to make up for the energy deficiency, right?  No, it turns out it doesn’t work this way at all!

Einstein explained the phenomenon in the following way: Notwithstanding light’s obvious wavelike nature, in this setting it
behaves like a particle (which we now call a photon), inasmuch as it can only be absorbed by a single electron, and only one photon
strikes an electron at a time.  We can call this the “one per customer” rule.  This photon has an energy equal to  (just as Planck
found), and it gives all this energy to the electron it strikes.

Notice how perfectly this explains what we see.  Any given electron must receive an amount of energy greater than the work
function in order to be set free, but the most it can receive is , and if  is too low, then it won’t be enough.  The light doesn’t
behave like a wave in this case, which could continuously and gradually add energy to the electron until it has enough, but rather
like a particle, in an all-or-nothing fashion.  Furthermore, the intensity of the light is simply determined by the number of photons
arriving per second.  If the photons have enough energy to kick off electrons, then greater intensity means more electrons will be
kicked per second, but if the individual photons don’t have enough energy to kick off electrons, then adding more of them will not
have any effect – they cannot "double-up" on an electron – there's only one per customer. Furthermore, a particularly energetic
(high frequency) photon cannot split its energy between two electrons and eject them both.

This answers the effect of frequency, but what about the second "digging deeper" question regarding the energy of the electrons
that are ejected?  Einstein’s solution gives us that answer as well.  Applying conservation of energy to this process gives us
immediately what we seek:

Figure 5.2.3 - Photoelectric Effect Energy Accounting
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From conservation of energy, we see immediately that of the energy introduced by the photon, some of it goes into the potential
energy that is the work function of the metal (freeing the charge), and the remainder into the electron’s kinetic energy. It should be
noted that the work function is not a constant that applies to every electron – some will be bound more tightly to the metal than
others. The work function is defined as the minimum binding energy for that metal – the energy required to tear away the easiest-to-
remove electrons. This work function is found by measured something called the stopping potential, which works like this:

Figure 5.2.4 - Stopping Potential

Here we are shining onto the positively-charged plate, ejecting electrons. The electrons come off the plate with some kinetic
energy, but the electric field opposes their motion. If the field between the plates is weak, then some electrons will get across, and
we can measure the flow. As we dial-up the strength of the field, however, fewer and fewer of the electrons will successfully make
the journey. When the field is just barely strong enough to stop even the most energetically-ejected particles, then the potential
energy that those electrons have to climb equals the kinetic energy at which they were ejected. As monochromatic light was used,
every electron was given the same energy, so those that are ejected with the most kinetic energy are the ones held most weakly to
the conductor. This minimum potential energy of the conductor is what we define to be its work function. Mathematically, the
energy accounting looks like this:

This equation is read this way: "The electron charge multiplied by the stopping (electrostatic) potential is the potential energy
change that barely stops the electrons with the greatest amount of kinetic energy, and this equals the energy given to the electron by
the photon, minus the work function (the potential energy holding the electron to the surface of the conductor)."

Applications
The applications of this effect are of course endless, as you can undoubtedly think of countless devices that involve detection of
light. One interesting application is a device known as a photomultiplier tube. Suppose you wish to be able to detect and amplify
very low intensities of light (in any part of the spectrum). Assuming you can find a metal with a low enough work function for the
frequency of light you want to see, at low intensities the photons are only going to knock off a handful of electrons, which may not
be particularly easy to detect. But the nice thing about converting a signal from photons to electrons is that we can add energy to
electrons using electric fields, and electrons are also quite good (when propelled at sufficient KE) at knocking more electrons off a
surface. Then those can do the same, and so on.

This device is indispensable for high-energy particle physics experimentation, when it is important to see where even a single
photon produced in a certain collision lands.  But it also works for common-use devices, such as night vision goggles.  In this case,
you have lots of photons landing in different places (i.e. an image focused by a lens), and each place where the photon lands has its
own tiny photomultiplier tube.  Each tube constitutes one pixel, so all the tubes put together form an amplified image.  This device
is a step above an infrared sensing apparatus for applications that require better resolution of the image (we’ll see why this is later),
though it is constructed specifically for the visible spectrum, so it can’t see through objects opaque to visible light, while some of
those same objects may be (partly) transparent to infrared light.

eΔ = = hf −ϕVstopping KEmax (5.2.1)
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5.3: Compton Effect

Scattering

In Physics 9A, we spend some time talking about collisions in two dimensions, such as two billiard balls. Since then, we have
learned that to treat these properly for fast-moving, tiny particles, we need to incorporate the corrected momentum from special
relativity. We also learned in relativity that light carries momentum. This is not a property typically exhibited by waves, so it seems
like studying momentum conservation in collisions between light and matter (called scattering of light off matter) might give us
some insight into the new emerging idea from Planck and Einstein that light comes in individual packets with energy equal to .

We start with what we found in Equation 4.2.7:

It can be shown that it is not possible for both energy and momentum to be conserved in the case of a free particle, but if the photon
scatters off the electron, these conservation laws can be obeyed. Of course, the photon will in general give some of its energy to the
particle, so the resulting scattered photon is not really the same photon as before (it has a different frequency!). A before/after
picture of the event is helpful:

Figure 5.3.1 – Photon Scatters off a Particle

There is of course no reason to make this calculation more difficult than it needs to be, so choosing the "lab frame" (reference
frame where the target particle is at rest) makes sense.

Just when a collision between a photon and an electron appears to be just like a collision between two billiard balls, the photon
remembers that it is also a wave!  If a cue ball collides with an eight ball, after it bounces off, it doesn’t become a different ball, but
a photon loses some of its energy (given to the electron), so since , its frequency goes down!  In other words, the photon
that leaves the collision is a totally different photon from the one that came in! 

Compton Wavelength
Using the figure above, we can invoke momentum and energy conservation to relate the change in the photon's wavelength as a
function of the scattering angle . Calling the momentum of the incoming photon , the momentum of the outgoing
momentum , and using the relativistic momentum for the particle, we have the following two conserved momentum
components:

We can also have energy conservation at our disposal. The energy of the photons satisfy , and the particle initially has only
it's rest energy, so:

After much algebra to eliminate the angle  from the simultaneous equations, the result is:
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We can take this a step further and compare the incoming and outgoing photon wavelengths, by using Planck's equation for the
relationship between photon energy and frequency:

Putting this in above gives:

Let's take a moment to interpret what this means. We shine light of a known wavelength into a cloud of stationary particles (say
electrons), and we measure the wavelengths of the light that come out at the various angles. From this data we can determine the

mass of the particles in the cloud. The quantity  is often written as " ", and is called the Compton wavelength of the

particle with mass . Notice that the most energy that the photon can lose is when it is backscattered, i.e. when it comes straight
back the way it came in. In this case, , which means that the wavelength of the incoming light is increased
by two Compton wavelengths.

Another thing to note is that if the scattering is off a heavier particle (such as a proton rather than an electron), then the effect is far
less pronounced, meaning the scattered light is closer in wavelength to that of the incoming light than if the particle were lighter.
 This makes sense, since heavier particles will take less of the photon's energy than lighter ones, so the outgoing photon energy will
be closer to the incoming photon energy.  A common way of stating this is to say that if the wavelength of the light is much greater
than the Compton wavelength of the target particle, then the scattered light experiences a negligible wavelength shift compared to
the incident light.

This page titled 5.3: Compton Effect is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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5.4: Double-Slit Experiment

Wave-Particle Duality
Okay, so we have established that light can behave as a particle (photon) or as a wave (Maxwell).   It seems as though how it
behaves simply depends upon the context we put it into.  If we do the experiments of 9B (polaroids, double slit interference, etc.)
then it is clearly a wave, but if we do the experiments of the 20th century (blackbody radiation curve, photoelectric effect, Compton
scattering), then it acts very much like a particle.   But how can a single entity simultaneously act like two such opposite
phenomena?   Is light localized into little packets of energy, or is it spread out and able to exhibit interference?   IT CAN’T BE
BOTH!!  This mystery is what physicists refer to as wave-particle duality.  Giving it a name helps us manage our sanity, as it fools
us into thinking it is reasonable.  Okay, so we have actually done more than just give it a name, but the reader should understand at
the outset that ultimately this is just another one of the incomprehensible wonders that comes from modern physics.

Very Low Intensity Double Slit Interference
Perhaps nothing demonstrates the wave nature of light better than the phenomenon of double slit interference.  Let’s start with a
quick refresher…

Light (a wave) arrives in phase at two slits, and part of the wave originated from each slit.  The light (a wave) from each slit source
spreads out to all parts of the screen and at each point on the screen the two waves arrive at some relative phase.  If the phases are
different by an even integer times  (because of the path length difference), then the light (a wave) interferes constructively,
doubling the amplitude and quadrupling the intensity.  If the phases are different by an odd integer times , then the light (a wave)
interferes destructively, resulting in zero intensity.

This seems like a phenomenon that can't possibly accommodate photons as particles. But our study of the photoelectric effect gives
us a way to test this possibility. In the photoelectric effect, we said that the overall energy that hits a metal plate has two factors that
play a role: The energy of each photon, which is proportional to that photon's frequency (the color of the light), and the total
number of photons landing on the plate per second (the intensity, or brightness of the light). Suppose we greatly reduce the
intensity of the light, to the point where only one photon is fired through a double-slit apparatus per hour. Only a wave can pass
through both slits at once and interfere with itself on the other side. A particle has to pick one slit or the other to go through. So by
reducing the intensity to one photon per hour, we should not see a light interference pattern. But if the light is actually a wave,
we should see n interference pattern, albeit an extremely dim one.

So what happens when we do this? Well, in fact we do see the one-photon-per-hour scheme demonstrate that photons are particles.
Every time a photon is fired through the double-slit, a single dot appears on the screen behind the slit, not a continuous distribution
of light brightness displaying the interference pattern!  So that settles it, light is a particle, and apparently when many particles are
fired together, they affect each other's paths (maybe by bumping into each other) in a manner that they replicate a wave interference
pattern, tricking us into thinking that light is a wave.

Well this interpretation certainly seems reasonable until someone accidentally leaves the machine on during the month-long winter
break. When they come back, they see the dots on the screen where the hundreds of photons landed after passing through the
double slit. They don't land in the same place every time, but they don't land perfectly randomly, either – they form a pattern...
a familiar pattern. Below is a simulation of what is seen, sped up many times the actual one-dot-per-hour rate.

Figure 5.4.1 – One-Photon-at-a-Time Through a Double Slit
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Our perfectly reasonable idea that light as particles can exhibit wavelike interference behavior by having particles interact with
each other fails miserably! The photons travel alone, free from being affected by any other photons, and yet when all the photon
landings are aggregated, the interference pattern emerges! We are foiled once again from definitively showing that light is either a
particle or a wave.

The only explanation left to us requires a statistical argument: The pattern shown on the screen  must  represent a probability
distribution for the landing points of the individual photons. The places dense with dots are places where a single photon has a very
high probability of landing, while those less dense are less probable landing points (and those with no dots have zero probability of
a photon landing there!).

The strange part of all this is that these probabilities appear to obey wave mechanics. That is, when we change the spacing between
the slits, and the wavelength of the photons, the pattern changes in a manner that is precisely consistent with wave interference.
This puzzle of something as abstractly mathematical as probabilities being subject to the rules that exist for waves is one of the
most fundamental aspects of what is known as quantum theory. Indeed the use of the very word "quantum" goes to the heart of this.
As we will see, wave-particle duality is not the only place where something we expect to be smooth and continuous (like a light
wave's interference pattern) turns out to be discrete (like a single dot on a screen). This probabilistic/statistical interplay between
what we see in the big picture as continuous, and what we see in the small scale as discrete leads us to invent new language to
describe quantities that doesn't imbue them with inherently "particle" or "wave" properties. We then generically refer to these
quantities as "quanta".
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6.1: From Light to Electrons

The Davisson-Germer Experiment
Light’s apparent dual nature as a wave and a particle might lead one to wonder, “If something we always thought was just a wave
has particle properties, might not things we always thought to be particles have wave properties?” In our discussion of Compton
scattering, we made an association between momentum and wavelength for light. Well, clearly particles like electrons have
momentum, so maybe they have equivalent wavelengths, and therefore wave behavior. We'll explore this possibility with the results
of series of experiments, accompanied by a particularly enlightening narrative first delivered by the late Richard Feynman.

Consider firing electrons at a double-slit apparatus, with one of the two slits blocked. With one path to the screen, we see a
distribution of electron-caused dots on the screen exactly as we would expect – in a cluster centered directly opposite the slit. Next
the slits are reversed – the previously-closed slit is opened, and the previous open slit is closed. Unsurprisingly, we see the same
result – a cluster of dots on the screen centered across from the slit.

Figure 6.1.1 – Electrons Through a Double Slit with One Slit Blocked

Given these results, the natural prediction of what happens when both slits are open is that we see both of the patterns we saw
previously, at the same time. All the electrons that pass through the top slit should end up across from it, and all of those that pass
through the bottom slit end up across that that slit.

Figure 6.1.2 – Electrons Through a Double Slit with Both Slits Open (Expected)
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But the result (if the slits are spaced appropriately), is completely different. Rather than clusters of dots across from the slits, there
are virtually no dots at all, and places where we expected very few dots are quite populous. In short, we see an interference pattern!

Figure 6.1.3 – Electrons Through a Double Slit with Both Slits Open (Actual)

The first attempt to explain this is naturally to say that the electrons are interacting with each other after they pass through the slits.
But like the case of photons discussed in the previous section, the interference pattern emerges even if the electrons are sent
through one at a time, once all the electron landings have occurred.

So the puzzling question is, "How does an electron, while going through the bottom slit, know whether or not the top slit is open?"
If it is open, it's destination is different than if it is closed, but how can it tell where is is "supposed" to go? Like the case of
photons, we can only conclude that the electron somehow passes through both slits at once, in the form of a wave. But that wave is
not like any other wave, in that it carries information about the  probabilities  of landing at various points on the screen. This
"probability wave" has the usual wave property that it can interfere with itself, creating some positions of zero probability, and
others of relatively high probability, and these probabilities reflect the populations of the electron landing dots.

In an attempt to solve this puzzle, we might try to simply watch the electrons as they pass through the slits. To do this, let’s put a
bright light source between the slits, so that when electrons pass, by the light scatters off them and we see a small flash of light
coming from the location of the electron, thereby telling us which slit it went through.

Figure 6.1.4 – Watching the Electrons as They Pass Through the Slits
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When we do this, we find we have a problem.  The interference pattern disappears, and the previous “expected” pattern of electrons
landing either opposite one slit or the other emerges.   Apparently we have affected the motion of the electrons after they pass
through the slit with our detection device.  But of course we have!  Light has momentum, and when we scatter it off the electrons,
the momenta of the electrons are altered, apparently ruining the interference effect we were trying to study.   So the obvious
solution?  Use light with less momentum, so that it doesn’t transfer so much to the electrons.  The means we have to use light of
long wavelengths.

According to Compton scattering, the scattered light always has a longer wavelength than the light sent in, so we will be looking at
very long wavelength light coming from the electron flashes.   The flashes are separated by a distance roughly equal to the slit
separation, and we find that the effect of the light on the interference pattern starts to diminish when the wavelength of the light we
use gets longer than the slit separation.  But then something new becomes a problem for our experiment. To determine where the
light flash occurs, we need the light to carry with it some information about the distance scale – the wavelength of the light is a
rough measure of the uncertainty of the position of its source. Just as we make the wavelength long enough for the interference
pattern to return, it becomes too long to distinguish which slit the electron goes through. Infuriating... and amazing.

Comparing "Matter Waves" and Light Waves
We already have a mathematical description for light waves – Maxwell's equations. These don't explain why photons also act like
particles, but one step at a time! Despite sharing the property of wave-particle duality, electrons and photons have some distinct
differences, the two most notable being mass and electric charge. To keep these straight, we will employ the rather poor name
of matter waves to describe the waves for electrons (and other particles), to distinguish them from light waves.

The fact that we get the same result for electrons as for light tells us that matter waves for free electrons (i.e. not under the
influences of forces, like from electric or magnetic fields) must look very similar to those for light waves.  For light, we found (by
utilizing our Physics 9B wave function skills in Physics 9C), the following expression for the time and position dependence of the
electric field magnitude for a light wave moving in the -direction (we’ll choose phase equal to zero at , :

Since we now know how this wave relates to physical properties of the photon (i.e. its momentum and energy), let’s rewrite it in
terms of those quantities:

The quantity \(\frac{h}{2\pi} comes up frequently in quantum physics, so it is given its own symbol:  (pronounced "h-bar"). This
makes our expression for the electric field:

We know that the matter waves and light wave functions should have the same form, because when it comes to interference, waves
are waves.  So we expect that matter wave functions at least look similar to this.  But what about the wave equation?  We know that
Maxwell showed that light waves can be described by the “usual” wave equation (again, simplifying to a wave traveling along the
x-axis):

It's easy to show that this wave equation works perfectly for light, because when we plug in our wave function from above, we get

But as we saw in relativity, matter is very different from light – it has mass, and therefore this relationship between energy and
momentum doesn’t hold for matter.  That means we need a different wave equation for matter waves than for light waves.
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Schrödinger's Equation for Free Particles
We technically should find a wave equation for matter that satisfies the energy/momentum relation for relativity, but this turns out
to be tougher to do mathematically, and historically this was not done, either.  Instead, we’ll assume that the particles we will be
dealing with will be moving at speeds that are not relativistic, and we’ll use the Physics 9A-level relationship between kinetic
energy and momentum:

Matter waves are not waves in electric and magnetic fields, so we need a symbol to describe the wave function, and the standard
choice for this is the Greek letter psi: .  So for a freely-moving electron (we’ll deal with electrons under the influence of forces
later), we need a wave equation that gives us the correct relation between energy and momentum, but still gives us a harmonic
wave that interferes in the same way that a light wave does.  Notice that if our wave function has the same coefficients for  and 
as for light, then we need two derivatives with respect to  (to give us the -squared), but only one with respect to  (so that we get
only one factor of ).  Also, each derivative brings out a factor of , so we need to multiply by a factor of  for each derivative. 
And finally, we need a factor of  introduced into the denominator to construct the kinetic energy/momentum relation.  So let’s
try this:

The chain rules for the derivatives all work out nicely, but this wave equation falls short in the derivative itself – the derivative of
cosine is (negative) sine, so while all the constants work out fine in front of the trig function, the trig functions themselves don’t
match.

A guy named Erwin Schrödinger didn’t give up when he got this close.  He realized that just as light waves have two parts (electric
and magnetic), so too should matter waves.  Here’s how he incorporated two parts to the wave function: He allowed it to be a
complex number.  The real part of the wave function would be one part of the matter wave, and the imaginary part another.  And
just like for EM waves where changing electric fields give rise to magnetic fields and vice-versa, the real and imaginary parts of
this wave function also mix.  His solution is now known as Schrödinger’s equation (for a free particle):

We can shorten the formula for the wave function by using a famous identity attributed to Euler:

This page titled 6.1: From Light to Electrons is shared under a CC BY-SA license and was authored, remixed, and/or curated by Tom Weideman.
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6.2: Interpreting Matter Waves

de Broglie Wavelength
We have described matter waves in terms of the momentum and energy of the particle, but it is still a wave, and as such possesses
wave properties like wavelength and frequency.  We can extract these quantities directly from the wave function by comparing it to
a wave function of a general harmonic wave.  We’ll start with the matter wave’s wavelength, known as the de Broglie wavelength:

This is the wavelength we need to use in (for example) a double slit calculation to predict interference patterns.  Notice that unlike
the photon, this wavelength depends upon the mass of the particle and its speed.

An Application
Obviously observations in science are highly-dependent upon light – telescopes collect light from outer space, and microscopes
collect light from very small dimensions, for example. The microscope in particular runs into a limitation that comes from the wave
nature of light. In the discussion in the previous section of trying to watch electrons as they go from the double slit to the screen,
we said that the ability of the light to resolve the location of the electron depends on the wavelength of the light – the shorter the
wavelength, the finer the granularity of the resolution.

So what if we use electrons for imaging, rather than light? They behave like waves like light does, but they have other features that
light doesn’t have, such as our ability to alter their speed and direction with electric and magnetic fields (so for example, we can
focus them with magnetic fields to achieve the same effect as focusing light with a lens).   But the real kicker is their resolving
power thanks to their short de Broglie wavelengths. Such a device is known as an electron microscope. Let's do the math to see
why these work so well...

Imagine accelerating a stream of electrons through a voltage of say 1000 volts (CRT televisions accelerated electrons with voltages
over 10 times this great, and the best electron microscopes are much higher still).  We can calculate the wavelength (and therefore
the resolving power) of the matter waves thus created:

This is on the atomic scale!  If we wanted to use light to probe the same dimensions, we would need to use some serious X-rays
(not the garden-variety dentist chair kind), and the energy per photon to achieve this wavelength would be:

This is more than 30 times greater than the  of energy required by an electron, for the same result!

Probability Density
After associating the wave property of wavelength with a physical property (momentum), and the wave property of frequency with
the physical property of energy, we turn our attention to wave amplitude. With light waves, we know that the amplitude-squared is
a measure of intensity. When we first discussed wave-particle duality, we decided that in a particle context, intensity at a given
position is a measure of the number of particles arriving at that position per second. With our one-photon-per-hour double-slit
experiment, we concluded that this particle arrival rate is really a measure of the probability of a single particle arriving at that
position.

Of course, the probability of arriving at a specific exact position is zero, since the sum of all the probabilities has to equal 1, and
there is an infinite number of positions available. If we define a small range of positions , then we can reasonably talk about the
probability of landing in that range. The intensity is proportional to the square of the wave function, so we have:
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We are taking one liberty here, in that we are ignoring the time dependence of this wave function. The point is that we are waiting
"long enough" for the electrons to get to the screen after passing through the double slit, and interpreting the distribution of the dots
on the screen as a probability distribution – we are not (yet) considering the time evolution of the wave function as it makes the
trip.

Closer examination of the equation above reveals that it can't quite be right. The reason is that our wave function is  complex-
valued, and complex numbers do not necessarily have squares that are positive, and all probabilities must be positive! We therefore
make a small adjustment to the "square the amplitude" prescription for intensity in this case: We take the square of the magnitude:

The magnitude-squared of a complex number is the product of that number with its complex conjugate. The complex conjugate of
a complex number is found by changing the sign of the imaginary part of the number:

The probability of the particle landing in a finite range (say between  and ) is simply the sum of all the probabilities of landing
in all the tiny ranges between those two points:

The quantity  is called the probability density, for obvious reasons – integrating it over a range of positions
gives the probability of the particle landing in that range.

Some Matter Wave Definitions
It's helpful to define some quantities that will help us manage the bookkeeping of rather complicated-looking wave functions (also
so that we can understand what we read elsewhere!). There is no new physics here, just new language.

These definitions make the expression of the wave function for a free particle (also called a plane wave, as it only moves in one
direction, and regions of fixed phase form planes perpendicular to that direction):

[Note: By "free", we mean that it is not under the influence of any forces. We will later see how to deal with these situations – the
wave equation (and therefore the wave functions that come from it) is different.]

Alert
We have to be careful about associating matter waves too closely to “standard waves.”  For example, the speed of a standard
wave is simply the wavelength divided by the period.  This is known as the “phase velocity” of the matter wave, and it should
not be confused with the speed of the particle (when it is observed as a particle).  Indeed:

For light, the phase and particle velocities do come out to be equal, but this is not so for massive particles.  The way to think of
it is this: The phase velocity is the rate at which the probability wave travels, but if we were to actually watch the particle (by
reflecting light off it as it moves), it travels at a different rate.  The phase velocity is not important in that it is not measurable –
but be careful not to confuse these two quantities.

probability of particle landing in tiny range of positions from x to x+dx :

P (x ↔ x+dx) = dx[ψ (x)]2
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CHAPTER OVERVIEW

7: Quantum Mechanics in 1-Dimension
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