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3.2: Lorentz Transformation

Transformations Between Inertial Frames
When we first studied relative motion in Physics 9HA, we wrote down a way of translating between the values measured in the two
frames. This set of equations was called the Galilean transformation equations. As sensible as these are, they clearly are not correct
in light of what we now know about relativity. Most notably, the Galilean transformation assumes a universal time variable that is
common to all frames.

So now we seek a new set of transformation equations to relate the spacetime coordinates of frames in relative motion. We will
start with a couple of simplifying assumptions. First, the two frames in question share a spatial origin at the moment in time we will
call  – we will define "event A" as occurring at this spacetime point. The effect of doing this is that distances and time
intervals between this event and a second event are now just the spacetime coordinates themselves. For example: 
and  .

For our second assumption, we will continue to define the relative motion as the primed frame moving at a speed  in the -
direction relative to the unprimed frame.

In order to get a set of equations that gives us a translation between the ( ) spacetime coordinates measured in one
frame and the ( ) spacetime coordinates measured in the other, we begin by noting that with motion only along the 

-axis, the  and  coordinates will remain unchanged. For example, we know that lengths along those directions do not contract,
so we would not expect the coordinates to be related in any way other than  and . But what about the  and 
coordinates?

We start by assuming that the transformation is a linear one, not unlike the Galilean transformation (after all, the Galilean
transformation does work for frames whose relative speed is low). This means that the primed values can be written as linear
combinations of the unprimed values:

Our goal is to determine the unknown constants , , , and  that work for relativity. Let's start by defining "event B" viewed
by the primed observer. Let's say that this event occurs at this observer's time , and takes place at the origin of the unprimed
frame. Since the primed observer sees this frame moving in the -direction for a time period of  after starting at the origin, the
primed observer sees this event occur at the position . Plugging  (the event occurs at the unprimed origin) into the
first equation above and comparing gives us the constant :

Events A and B both occur at the origin of the unprimed frame, so the time span between them is the proper time, and the frame is
inertial, so it is the spacetime interval. Therefore the time measured between these events in the primed and unprimed frames are
related according to the usual time dilation formula:

Plugging this in above gives us the constant :

Using this same event B, we can obtain the constant  as well. Plugging in  gives:
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Now to determine the other two constants, define "event B" as occurring at the origin of the primed frame, . The unprimed
observer will see this event occur at the position , which we can plug back in to get:

To find the final constant  requires noting that the time measured in the primed frame for event B is now the proper time, and a bit
more algebra than was needed for the previous constants (which is omitted here):

Putting everything together gives us the Lorentz transformation equations:

The symmetry between the  and  variable is apparent, and shows the important difference between relativity and galilean physics
– time is not universal and unaffected by the position of an event. Notice that when the velocity is very small compared to the
speed of light (as it is in our everyday experience), then letting  changes the Lorentz transformation equations into the
Galilean transformation equations.

Finally, it should be noted that these transformations can also be written in terms of changes in these variables from one event to
another. In effect, this is hidden in the equations themselves, as event A simply has all the variables equal to zero.

These equations give the spacetime coordinates of an event in the primed frame given the spacetime coordinates of the same event
in the unprimed frame. But what if we want to do the reverse – find the coordinates of the event in the unprimed frame from those
in the primed frame? [This is called the inverse of this transformation.] It's actually quite easy to do – the only difference in
perspectives between these two frames is the sign of the velocity. We get the inverse transformation by simply replacing the 
everywhere in the equations with .

Example 
We have said that the interval-squared  is an invariant, which means that it is the same in
every inertial frame. Use the Lorentz transformation equations to show that this is true.

Solution

We want to show that , which makes this a pure plug-in. Clearly the  and  changes are equal in both frames,
so we will ignore them and deal with just the  and  changes:

Revisiting Previous Results
After all that struggle with thought experiments and spacetime diagrams, only now do we have a simple, powerful tool for
achieving the same results. Time dilation is downright trivial. If (unprimed) Ann sees two events occur at the same place ( )
separated by a time interval , then the time span that (primed) Bob measures between these events is:
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We can also look at simultaneity. Events that are simultaneous in Ann's frame ( ) are not simultaneous in Bob's:

Looking at this expression, we also see that  is negative (i.e. ) when  is positive (i.e. ). This means that for
the two events that Ann sees as simultaneous, Bob sees the event with the greater -value as occurring first (note that we are still
assuming that Bob is moving in the -direction relative to Ann). So is Ann flies by Bob in a spaceship where she sees lights on
the front and rear of her ship flashing in sync, Bob sees the light on the rear of her ship flashing ahead of the light on the front.

Reproducing length contraction is a bit more difficult to obtain from the Lorentz transformation equations. the reason is that the
length that is measured by one observer depends upon different events than the length measured by the other observer. That is, the
length of an object in a given frame is the distance between events located at both ends of the object that occur at the same time,
and as just noted, events simultaneous in one frame are not simultaneous in the other. Nevertheless, we can get the length
contraction result with some care.

Two events that are simultaneous at both ends of an object according to Bob gives:

Plugging this back into the transformation for the length measured by Bob gives the length contraction:
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