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5.8: Rolling and Slipping Motion
When you slide an object over a surface (say, a book over a table), it will typically slow down quickly, due to frictional forces.
When you do the same with a round object, like a water bottle, it may initially slide a little (especially if you push it hard), but will
quickly start to rotate. You can easily check that when rotating, the object loses much less kinetic energy to work than when sliding
- take the same water bottle, either on its bottom (sliding only) or on its side (a little sliding plus rolling), push it with the same
initial force, and let go: the rolling bottle gets much further. However, somewhat ironically, the bottle can only roll thanks to
friction. To start rolling, it needs to change its angular momentum, which requires a torque, which is provided by the frictional
force acting on the bottle.

When a bottle (or ball, or any round object) rolls, the instantaneous speed of the point touching the surface over which it rolls is
zero. Consequently, its rotational speed  and the translational speed of its center of rotation  (where the r subscript is to indicate
rolling) are related by , with R the relevant radius of our object. If the object’s center of rotation moves faster than , the
rotation can’t ‘keep up’, and the object slides over the surface. We call this type of motion slipping. Due to friction, objects
undergoing slipping motion typically quickly slow down to , at which point they roll without slipping.

Figure : Five types of billiard shots. (a-c) The type of motion depends on where the cue hits the ball. (a) If the cue hits the ball
at exactly  above the table, the ball will exhibit pure rolling motion, . (b) If the cue hits the ball above the critical spot,
it will rotate faster than translate  and exhibit a slipping rotation. Friction will slow down the rotation until rolling motion is
achieved. (c) If the cue hits the ball below the critical spot, it will translate faster than rotate  and initially slide, until
friction both slows down the translational speed and accelerate the rotational speed to the point where rolling motion is achieved.
Note that the rotational motion may even be retrograde, i.e., backwards compared to the translational motion. (d-e) Behavior of the
incident billiard ball before and after collision with a stationary ball of equal mass. Since the collision is elastic, all linear
momentum is transferred to the other ball. If the incident ball was initially rolling, immediately after the collision it will continue
rotating with complete slipping. Friction then causes the ball to pick up linear speed again, with a direction depending on the
direction of the rotational motion, resulting in a follow (d) or draw (e) shot.

Suppose we started our object with a velocity . If there is no rotation, the only force changing its velocity is the constant
frictional force

with  the mass of the object (Equation 2.2.7). The constant force results in a linear decrease in the translational speed (see
Section 2.3): . However, if our object can roll, there is a second contribution to the motion, due to the torque 

 of the frictional force. Using the rotational analog of Newton’s second law, Equation 5.4.1 (or writing 
and using Equation 5.7.1), we get an equation of motion for the rotational velocity:
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Integrating Equation  with initial condition  we get . While the object undergoes slipping motion,
the translational speed thus linearly decreases with time, whereas the rotational speed linearly increases. To find the time and
velocity at which the object enters a purely rolling motion, we simply equate  with , which gives

Note that the time  until fully rolling motion is achieved scales inversely with the friction coefficient, but the final rolling speed 
 is independent of the frictional force. The rolling speed does depend on the moment of inertia of your object - for a hollow

cylinder it’s , whereas for a solid cylinder it’s . Once the object is rolling, its surface no longer moves with
respect to the surface that it’s rolling on (as its instantaneous speed at the point of touching is zero). Consequently, the frictional
force is much reduced, and the object can roll a large distance before it stops; in fact, the main force slowing it down once it is
rolling is drag with the ambient air, which we could safely ignore when (kinetic) friction was still in the picture.

A massive cylinder with mass m and radius R rolls without slipping down a plane inclined at an angle . The coefficient of
(static) friction between the cylinder and the plane is . Find the linear acceleration of the cylinder.

Figure : Free body diagram of a cylinder rolling down a plane.

Solution

There are at least three ways to tackle this problem. For all three, it helps (as always) to make a sketch, indicating the relevant
forces - see Figure 5.8.2.

Method 1: Forces and torques.

Let the friction force  be positive in the direction up the plane. Then we have:

The last two equations give . Plugging this into the first equation gives

Method 2: Energy.
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5.8.1 Worked Example: A Cylinder Rolling Down a Slope
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The total energy of the system is given by

If the cylinder rolls down the slope without slipping, its angular and linear velocities are related through . Also,
if it moves a distance , its height decreases by . Conservation of energy then gives:

where we used  for a massive cylinder in the last line. The linear acceleration a is thus given by 
.

Method 3: Rotational version of Newton’s second law.

At a given point in time, we can apply the rotational version of Newton’s second law to rotations about the point where
the cylinder touches the surface (as the cylinder is rolling without slipping, this is the only motion at that point). Of the
three forces in the system, two act at that point, so they have no lever arm. Only gravity has a nonzero lever arm of
length , leading to a torque given by . By the rotational version of Newton’s second law, we have 

, where I is the moment of inertia about the pivot. Applying the parallel-axis theorem, we find 
 in this case, so we get an angular acceleration of

The linear acceleration of the center of the cylinder due to the ‘rotation’ about this pivot is given by .

This page titled 5.8: Rolling and Slipping Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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