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11.3: Some Consequences of the Lorentz Transformations

LOSS OF SIMULTANEITY

If two events are simultaneous for a moving observer in S, the observer measures their time interval as At'. If the two events
happen at the same position (Az’' = 0), the Lorentz transformations give Az = 0, At =0 as well. However, if the two events in
S’ are spatially separate (Az # 0), we find that for an observer in S At = ~(u)(u/c?)Az’, and therefore the two events are not
simultaneous. Things even get worse: suppose two events A and B happen in S a distance Az apart, and a time interval At after
each other. Now if Az > (¢/u)cAt, a moving observer in S” will conclude that At' < 0, which means that event B happens
before event A! Fortunately, this does not violate causality, as a signal from A to B (or vice versa) will at most travel with the speed
of light, which, as we will see in the next section, means that for the conditions given, A and B cannot be causally connected - i.e.,
you cannot reverse cause and effect, no matter how fast you run.

TIME DILATION AND LORENTZ CONTRACTION

A stationary observer in frame S’ measures the time difference between two points to be At' on his/her own clock, while an
observer in S will measure the time difference on that (moving) clock to be At =~y(u)At’, exactly the time dilation result we
found in equation (10.2.1). Likewise, an observer in S’ will measure the length of a stationary stick to be AL’. For an observer in
S, using a method that reaches the ends of the stick simultaneously (so At =0), the length is AL. We have
Az’ = AL =~(u)AL,so AL = AL’ /~y(u), which (unsurprisingly) is the Lorentz contraction result of equation (10.2.5).

VELOCITY ADDITION

We calculated the speed of an object v as measured in S as a function of the speed v/ in S’ and the speed u of S’ in equation
(11.2.5). Substituting the values of the constants we found later, we get the following equation:
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Equation (11.3.1) thus follows directly from the light postulate - that is all we used to derive it. It mathematically shows you can
never add velocities in such a way as to exceed the speed of light. Setting u = v = ¢ gives v=c, and for any values u < c,
v’ < ¢, you’ll always getv < c.

Equation 11.3.1holds for motion in the same direction as the motion of the reference frame - for example, if you’re on a moving
train, and rolling a ball down the length of the train. However, you could also roll the ball in the transverse direction (say y if we
call the direction in which the train is moving ). You might think that the observed velocity for the comoving and stationary
observer is the same in that case (it is for Galilean transformations), but that’s not the case. We have v, = dy/dt, and although dy
is invariant, dt is not. Calculating v, in terms of vy (the speed at which the moving observer rolls the ball) is straightforward
though, we simply apply the Lorentz transformation to dt:
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EXAMPLE APPLICATION: RELATIVISTIC HEADLIGHT EFFECT

Suppose you have a light source that radiates isotropically (i.e., with the same intensity in all directions). What happens if we put
the light source on a moving train? Remarkably, according to a stationary observer, the light source is not isotropic anymore. To
understand what happens, let us as usual call the direction in which the train moves z and its speed u. A ray of light emitted by the
light source in S’ has a velocity v" with magnitude ¢ (on which both observers agree), and components (v}, vy, v;) (figure
11.3.1a). Now let’s consider the ray of light that moves along the y' axis. Its velocity is given by v = (0, ¢, 0\). We can calculate
the velocity components of this ray of light in frame .S using the velocity transformation Equations 11.3.1and 11.3.2 which gives
v = (u,y(u),0) (which of course still has magnitude c). The ray of light thus picks up a component in the positive z direction, and
consequently gets a smaller component in the y direction. Figure 11.3.1b shows the resulting light cone in the positive = direction.
Its opening angle p can be easily calculated:

sin(6) = %" == —(u) (11.3.3)
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For reasons that you will probably find easy to guess, this phenomenon is known as the relativistic headlight effect. It is observed
in the radiation emitted by electrons rotating around magnetic field lines orbiting Jupiter and the sun, as well as in particle
accelerators on earth.
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Figure 11.3.1: Relativistic headlight effect. (a) Isotropic light source in the comoving frame S’. (b) The same light source as
observed from a stationary frame S. The opening angle p is given by sin(u) = y(u).
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