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11.3: Some Consequences of the Lorentz Transformations

LOSS OF SIMULTANEITY

If two events are simultaneous for a moving observer in , the observer measures their time interval as . If the two events
happen at the same position ( ), the Lorentz transformations give  as well. However, if the two events in 

 are spatially separate ( ), we find that for an observer in  , and therefore the two events are not
simultaneous. Things even get worse: suppose two events A and B happen in  a distance  apart, and a time interval  after
each other. Now if , a moving observer in  will conclude that , which means that event B happens
before event A! Fortunately, this does not violate causality, as a signal from A to B (or vice versa) will at most travel with the speed
of light, which, as we will see in the next section, means that for the conditions given, A and B cannot be causally connected - i.e.,
you cannot reverse cause and effect, no matter how fast you run.

TIME DILATION AND LORENTZ CONTRACTION
A stationary observer in frame  measures the time difference between two points to be  on his/her own clock, while an
observer in  will measure the time difference on that (moving) clock to be , exactly the time dilation result we
found in equation (10.2.1). Likewise, an observer in  will measure the length of a stationary stick to be . For an observer in 

, using a method that reaches the ends of the stick simultaneously (so ), the length is . We have 
, so , which (unsurprisingly) is the Lorentz contraction result of equation (10.2.5).

VELOCITY ADDITION
We calculated the speed of an object  as measured in  as a function of the speed  in  and the speed  of  in equation
(11.2.5). Substituting the values of the constants we found later, we get the following equation:

Equation ( ) thus follows directly from the light postulate - that is all we used to derive it. It mathematically shows you can
never add velocities in such a way as to exceed the speed of light. Setting  gives , and for any values , 

, you’ll always get .

Equation  holds for motion in the same direction as the motion of the reference frame - for example, if you’re on a moving
train, and rolling a ball down the length of the train. However, you could also roll the ball in the transverse direction (say  if we
call the direction in which the train is moving ). You might think that the observed velocity for the comoving and stationary
observer is the same in that case (it is for Galilean transformations), but that’s not the case. We have , and although 
is invariant,  is not. Calculating  in terms of  (the speed at which the moving observer rolls the ball) is straightforward
though, we simply apply the Lorentz transformation to :

EXAMPLE APPLICATION: RELATIVISTIC HEADLIGHT EFFECT
Suppose you have a light source that radiates isotropically (i.e., with the same intensity in all directions). What happens if we put
the light source on a moving train? Remarkably, according to a stationary observer, the light source is not isotropic anymore. To
understand what happens, let us as usual call the direction in which the train moves  and its speed . A ray of light emitted by the
light source in  has a velocity  with magnitude  (on which both observers agree), and components ( , , ) (figure 

a). Now let’s consider the ray of light that moves along the  axis. Its velocity is given by \). We can calculate
the velocity components of this ray of light in frame  using the velocity transformation Equations  and , which gives 

 (which of course still has magnitude ). The ray of light thus picks up a component in the positive  direction, and
consequently gets a smaller component in the  direction. Figure b shows the resulting light cone in the positive  direction.
Its opening angle  can be easily calculated:
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For reasons that you will probably find easy to guess, this phenomenon is known as the relativistic headlight effect. It is observed
in the radiation emitted by electrons rotating around magnetic field lines orbiting Jupiter and the sun, as well as in particle
accelerators on earth.

Figure : Relativistic headlight effect. (a) Isotropic light source in the comoving frame . (b) The same light source as
observed from a stationary frame . The opening angle  is given by .
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