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16.A: Math

Vector Basics

Classical mechanics describes the motion of bodies as they move through space. To describe a motion in space it is not sufficient to
give a position and a speed: you need a direction as well. Therefore we work with vectors: mathematical objects that have both a
magnitude and a direction. If you tell me you’re moving, I know something, but not much; I’ll know more if you tell me you’re
moving at walking speed, and have full information of your velocity once you tell me that you’re moving at walking speed towards
the coffee machine. Although in principle we could make do with specifying a magnitude and direction of every vector in this way,
it is often more convenient to express our vectors in a basis. To do so, we choose an (arbitrary) origin, and as many basis vectors as
we have spatial dimensions, in such a way that they are not parallel to one another, and usually mutually perpendicular (orthogonal)
and of unit length (orthonormal). Then we decompose our vector by giving its components along each of the basis vectors. The
most common choice is to use a Cartesian basis, of two or three (depending on spatial dimension) basis vectors of unit length
pointing in the standard x, y and z directions, and indicated as  and , or (rather annoyingly) sometimes as  and , the latter
especially in American textbooks. Other often encountered systems are polar coordinates (2D) and cylindrical and spherical
coordinates (3D), see the mathematical appendix for more background on those. To write our vectors, we now specify the
components in each direction, writing for example  for a vector (in boldface) representing a speed of  and a
direction making an angle of  with the horizontal.

Vectors can be added and subtracted just like scalars - simply add and subtract them by component. Graphically, you add two
vectors by putting them head-to-tail: you can find the sum of two vectors  and  by putting the start of  at the end of , the sum

 then points from the start of  to the end of . You can also multiply a vector by a scalar, by multiplying every component
of the vector with that scalar. Graphically, this means that you extend the length of the vector with the scalar factor you just
multiplied with.

You can’t take the product of two vectors like you would two scalars. There are however two vector operations that closely
resemble the product, known as the inner (or dot) and outer (or cross) product, see Figure 16.A.1. The dot product represents the
length of the projection of one vector on another (and thus gives a scalar); it is zero for perpendicular vectors, and the dot product
of a vector with itself gives the square of its length. To calculate the dot product of two vectors, sum the products of their
components: if  and , then . You can use the dot product to find the angle
between two vectors, using standard geometry, which gives

where  and  are the lengths of vectors  and , respectively. The cross product is only defined for three-dimensional vectors,
say  and . The result is another vector, with a direction perpendicular to the plane
spanned by  and , and a magnitude equal to the area of the parallelogram bounded by them. The cross product is most easily
expressed in column vector form:

The cross product of a vector with itself is zero.
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Figure : Products and derivatives of vectors. (a) The dot product of two vectors  and  gives the length of the projection of
 on  (or vice versa). (b) The cross product of two vectors  and  gives a vector perpendicular to the plane spanned by  and 

and with a magnitude equal to the area of the parallelogram spanned by  and . (c-f ) Acceleration as a change in velocity. In
every panel, the original velocity is shown in black, the velocity a short time ∆t later is shown in blue, and the acceleration is
shown in red. (c) Acceleration for an increase in the magnitude of the velocity. (d) Acceleration for a decrease in the magnitude of
the velocity. (e) Acceleration for a change in direction of the velocity at constant magnitude. (f ) Acceleration for a change in
velocity that involves both a change in direction and a decrease in magnitude.

Vectors can be functions, just like scalar quantities: they can depend on one or more parameters, like position or time. Also, again
just like scalar functions, you can calculate a rate of change of vector function as you move through parameter values, for instance
asking how the velocity of a car changes as a function of time. An instantaneous rate of change is simply a derivative, which is
calculated in exactly the same manner as the derivative of a scalar function. For example, the rate of change of the velocity, known
as the acceleration , is defined as:

Since the velocity itself is the derivative of the position , the acceleration is also the second derivative of the position. Time
derivatives occur so frequently in classical mechanics that we use a special notation for them: a first derivative is indicated by a dot
on top of the quantity, and a second derivative by a double dot - so we have .

Vector derivatives are somewhat richer than those of scalar functions, since there are more ways that a vector can change. Like a
scalar function, the magnitude of a vector can increase or decrease. Moreover, its direction can also change, which also means that
it has a nonzero derivative, and of course, you can have a combination of a change in magnitude and a change in direction, see
Figure 16.A.1.

Figure : Examples of scalar and vector fields. (a) Temperature (a scalar) at every point in the Netherlands at 11:30 on
October 28, 2013. Lines of equal temperature are drawn in black; the gradient of the temperature field is everywhere perpendicular
to these lines. (b) Wind velocity (a vector) at every point in the Netherlands at the same time as the temperature map. Colors
correspond to the magnitude of the velocity. (a and b) from [30]. (c) Example of a vector field with a large divergence and zero
curl. (d) Example of a vector field with a large curl (and low but nonzero divergence).

Functions (scalar or vector) that are defined at every point in space are sometimes called fields. Examples are the temperature
(scalar) and wind (vector) at every point on the planet, see Figure 16.A.2. Just like you can calculate the rate of change of a
function in time, you can also consider how a function changes in space. For a scalar function, this quantity is a vector, known as
the gradient, defined as the vector of partial derivatives. For a function f (x, y, z), we have:
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16.A. 2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17466?pdf


16.A.3 https://phys.libretexts.org/@go/page/17466

The direction of  is the direction of maximal change, and its magnitude tells you how quickly the function changes in that
direction. For a vector field , we can’t take the gradient, but we can use the ‘vector’  of partial derivatives combined with either
the dot or cross product. The first option is known as the divergence of , and tells you how quickly  spreads out; the second is
the curl of  and tells you how much  rotates:

where , and so on.

Polar Coordinates
You can specify any point in the plane by specifying its projection on two perpendicular axes - we typically call these the x and y-
axes and x and y coordinates. In this Cartesian system (named after Descartes), we identify unit vectors  and , pointing along
their respective axes, and being of unit length. A position  can then be decomposed in the two directions: , with 

 and . Alternatively, we can write  and , which gives for :

Instead of specifying the x and y coordinates of our position, we could also uniquely identify it by giving two different numbers: its
distance to the origin r, and the angle  the line to the origin makes with a fixed reference axis (typically the x-axis), see Figure
16.A.3. Invoking the Pythagorean theorem and basic trigonometry, 

we readily find  and . We call r the length of the vector . We could also invert the relations for r and 

so we can get the Cartesian components if the length and angle are known:  and .

Like the Cartesian basis vectors  and (\hat{\boldsymbol{y}}\), which point in the direction of increasing x and y values, we can
also define unit vectors pointing in the direction of increasing r and . These directions do depend on our position in space, but they
do have a clear geometrical interpretation: \hat{\boldsymbol{r}} always points radially outward from the origin, and
\hat{\boldsymbol{\theta}} in the direction you’d move if you’d be making a counterclockwise rotation about the origin. Given a
position vector , finding the vector in the direction of increasing r is very easy: . The expression for r in our new polar
basis  is almost tautological: .

Relating the polar basis vectors to the Cartesian ones is straightforward. We have:

and using  we also have

We thus find that .

For \(\hat{\boldsymbol{\theta}\) we note that to rotate around the origin, the direction of motion needs to be perpendicular to .
There are of course two such directions - we pick the sign by demanding that the counterclockwise rotation is positive. This gives 

. Written out as vectors, we have:
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r r = +rxx̂ ryŷ
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Naturally, we can also express the Cartesian basis in terms of the polar ones:

Figure : Polar coordinate system and polar unit vectors. A position  in the plane can be specified either by giving its
projections on two reference axes (along the  and  direction), or by giving its distance r to the origin, and the angle  the line to
the origin makes with the x axis. The polar basis vectors are defined as pointing in the direction of increasing r (i.e., radially
outward), and increasing  (i.e., rotating counterclockwise around the origin).

Solving Differential Equations
A differential equation is an equation which contains derivatives of the function to be determined. They can be very simple. For
example, you may be given the (constant) velocity of a car, which is the derivative of its position, which we’d write mathematically
as:

To determine where the car ends up after one hour, we need to solve this differential equation. We also need a second piece of
information: where the car was at some reference time (usually t = 0), the initial condition. If , you don’t need advanced
maths skills to figure out that . Unfortunately, things aren’t usually this easy.

Before we proceed to a few techniques for solving differential equations, we need some terminology. The order of a differential
equation is the order of the highest derivative found in the equation; Equation  is thus of first order. A differential equation
is called ordinary if it only contains derivatives with respect to one variable, and partial if it contains derivatives to multiple
variables. The equation is linear if it does not contain any products of (derivatives of) the unknown function. Finally, a differential
equation is homogeneous if it only contains terms that contain the unknown function, and inhomogeneous if it also contains other
terms. Equation  is ordinary and inhomogeneous, as the  term on the right does not contain the unknown function .
In the sections below,we discuss the various cases you’ll encounter in this book; there are many others (many of which can’t be
solved explicitly) to which a whole subfield of mathematics is dedicated.

A.3.1. FIRST-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Suppose we have a general equation of the form

where  and  are known functions of , and  is our unknown function. Equation  is a first-order, ordinary,
linear, inhomogeneous differential equation. In order to solve it we will use two techniques that are tremendously useful: separation
of variables and separation into homogeneous and particular solutions.

Suppose we had . Then, if we had two solutions  and  of Equation , we could construct a third as 
 (or any linear combination of  and  ), since the equation is linear. Now since  is not zero, we can’t do
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this, but we can do something else. First, we find the most general solution to the equation where , which we call the
homogeneous solution . Second, we find a solution (any at all) of the full Equation , which we call the particular
solution . The full solution is then the sum of these two solutions, . You may worry that there may be
multiple particular solutions: how would we pick the ‘right’ one? Fortunately, we don’t need to worry: the homogeneous solution
will contain an unknown variable, which will be set by the initial condition. Changing the particular solution will change the value
of the variable, such that the final solution will be the same and satisfy both the differential equation and the initial condition.

To find the solution to the homogeneous equation

we’re going to use a technique called separation of variables. There are two variables in this system: the independent parameter t
and the dependent parameter x. The trick is to get everything depending on t on one side of the equals sign, and everything
depending on x on the other. To do so, we’re going to treat dx/dt as if it were an actual fraction . In that case, it’s not hard to see
that we can re-arrange Equation  to

By itself, Equation  means little, but if we integrate both sides, we get something that makes sense:

or

where  is an integration constant (the unknown constant that will be set by our initial condition). Of course, in
principle it may not be possible to evaluate the integral in Equation , but even then the solution is valid. In practice, you’ll
often encounter situations in which  and  are simple functions or even constants, and the evaluation of the integral is
straightforward. Now that we have our homogeneous solution, we still need a particular one. Sometimes you’re lucky, and you can
easily guess one - for instance one in which  doesn’t depend on  at all. In case you’re not lucky, there’s are two other
techniques you may try, either using variation of constants or finding an integrating factor. To demonstrate variation of constants,
we’ll pick a specific example, to not get lost in a bunch of abstract functions. Let  be a constant and  be linear.
The homogeneous solution then becomes . The constant we’re going to vary is our integration constant ,
so our guess for the particular solution will be

We substitute  back into the full differential Equation , which gives:

A big part of the left-hand side thus cancels, and that’s not a coincidence - that’s because it is based on the homogeneous equation.
What remains is a differential equation in  that can be trivially solved by direct integration:

Again, it may not be possible to evaluate the integral in Equation , but in principle the solution could be inserted in
Equation  to give us our particular solution, and the whole differential equation will be solved.

Alternatively, we may try to find an integration factor for Equation . This means that we try to rewrite the left hand side of
the equation as a total derivative, after which we can simply integrate to get the solution. To do so, we first divide the whole
equation by , then look for a function  that satisfies the condition that
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from which we can read off that we need to solve the homogeneous equation

We can solve  by separation of constants, which gives us

where we set the integration constant to one, as it drops out of the equation for  anyway. With this function , we can
rewrite Equation  as

which we can integrate to find :

A.3.2. SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Second order ordinary differential equations are essential for the study of mechanics, as its central equation, Newton’s second law
of motion (Equation 2.1.4) is of this type. In the case that the equation is also linear, we have some hopes of solving it analytically.
There are several examples of this type of equation in the main text, especially in Section 2.6, where we solve the equation of
motion resulting from Newton’s second law for three special cases, and Section 8.1, where we study a number of variants of the
harmonic oscillator. For the case that the equation is homogeneous and has constant coefficients, we can write down the general
solution . The equation to be solved is of the form

For the case that , we retrieve a first-order differential equation, whose solution is an exponential (as can be found by
separation of variables and integration): . In many cases an exponential is also a solution of Equation .
To figure out which exponential, let’s start with the trial function (or ‘Ansatz’) , where  is an unknown parameter.
Substituting this Ansatz into Equation  yields the characteristic polynomial for this ode:

which almost always has two solutions:

Note that the solutions can be real or complex. If there are two of them, we can write the general solution  of Equation  as
a linear combination of the Ansatz with the two cases:

where A and B are set by either initial or boundary conditions. Since the  may be complex, so may A and B; it’s their
combination that should give a real number (as  is real), see problem A.3.1a.

In the case that Equation  gives only one solution, the corresponding exponential function is still a solution of Equation 
, but it is not the most general one, as we only can put a single undetermined constant in front of it. We therefore need a

second, independent solution. To guess one, here’s a third useful trick : take the derivative of our known solution, , with respect
to the parameter . This gives a second Ansatz: , where . Substituting this Ansatz into Equation  for the
case that , we find:
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so our Ansatz is again a solution. For this special case, the general solution is therefore given by

In Section 8.2, where we discuss the damped harmonic oscillator, the special case corresponds to the critically damped oscillator.
We get an underdamped oscillator when the roots of the characteristic polynomial are complex, and an overdamped one when they
are real.

A.3.3. SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF EULER TYPE

There’s a second class of linear ordinary differential equations that we can solve explicitly: those of Euler (or Cauchy-Euler) type,
where the coefficient in front of a derivative contains the variable to the power of the derivative, i.e., for a second-order differential
equation, we have as the most general form:

Note that we are now solving for ; we do so because this type of equation typically occurs in the context of position- rather
than time-dependent functions. An example is the Laplace equation  in polar coordinates. Like for the second order ode
with constant coefficients, the ode of Euler type can be generalized to higher-order equations.

There are (at least) two ways to solve Equation : through an Ansatz, and through a change of variables. For the Ansatz,
note that for any polynomial, the derivative of each term reduces the power by one, and here we’re multiplying each such term with
the variable to the power the number of derivatives . This suggests we simply try a polynomial, so our Ansatz here will be 

. Substituting in Equation  gives:

so we get another second order polynomial to solve, this time in :

If the roots in Equation  are both real (the most common case in physics problems), we have two independent solutions,
and we are done. If the roots are complex, we also have two independent solutions, though they involve complex powers of ; like
for the equation with constant coefficients, we can rewrite these as real functions with Euler’s formula (see problem A.3.1b). For
the case that we have only one root, we again apply our trick to get a second: we try , which turns out to be indeed
a solution (problem A.3.1c), and the general solution is again a linear combination of the two solutions found.

Alternatively, we could have solved Equation  by a change of variables. Although this method is occasionally useful (and
so it’s good to be aware of its existence), there is no systematic way of deriving which change of variables will do the trick, so
you’ll have to go by trial-and-error (without a priori guarantee of success). In this case, this process leads to the following
substitution:

where we introduce  for convenience. Taking derivatives of  with the chain rule gives

which is a second order differential equation with constant coefficients, and thus of the form given in Equation . We
therefore know how to find its solutions, and can use Equation  to transform those solutions back to functions .

A.3.4. Reduction of Order

If you find yourself with a non-homogeneous second order differential equation where the homogeneous equation either has
constant coefficients or is of Euler type, you can again use the technique of variation of constants to find a particular solution. A
similar technique, known as reduction of order, may help you find solutions to a second (or higher) order equation where the
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coefficients are not constant. In order to be able to use this technique, you need to know a solution to the homogeneous equation, so
it is not as universally applicable as the techniques in the previous two sections, but still frequently very helpful.

Let us write the general non-homogeneous second-order linear differential equation as

Note that this is the most general form: if there is a coefficient (constant or otherwise) in front of the second derivative, we simply
divide the whole equation by that coefficient and redefine the coefficients to match Equation . Now suppose we have a
solution  of the homogeneous equation (so for the case that  ). As the equation is homogeneous, for any constant 
the function  will also be a solution. As an Ansatz for the second solution, we’ll try a variant of variation of constants, and
take

where  is an arbitrary function. Substituting  back into , we find

We recognize the prefactor of  as exactly the homogeneous equation, which  satisfies, so this term vanishes. Now
defining , we are left with a first-order equation for :

Equation  is a first-order linear differential equation, and can be solved by the techniques from Section A.3.1. Integrating
the equation  then gives us , and hence the second solution  of the (inhomogeneous) second order
differential equation.

A.3.5. POWER SERIES SolutionS

If none of the techniques in the sections above apply to your differential equation, there’s one last Ansatz you can try: a power
series expansion of your solution. To illustrate, we’ll again pick a concrete example: Legendre’s differential equation, given by

where  is an integer. As an Ansatz for the solution, we’ll try a power series expansion of :

Our task is now to find numbers  (many of which may be zero) such that  is a solution of . Fortunately, we can
simply substitute our trial solution and re-arrange to get

where in the last line, we ‘shifted’ the index of the last term . We do so in order to get at an expression for the coefficient of  for
any value of . As the functions  are linearly independent  (i.e., you can’t write  as a linear combination of other functions 

+p(t) +q(x)y(x) = r(x)
yd2

dx2

dy

dx
(16.A.38)

16.A.38
(x)y1 r(x) = 0 v

v (x)y1

(x) = v(x) (x)y2 y1 (16.A.39)

v(x) 16.A.39 16.A.38

(x) +[2 +p(x) (x)] +[ +p(x) +q(x) (x)] v(x) = r(x)y1
vd2

dx2

dy1

dx
y1

dv

dx

d2y1

dx2

dy1

dx
y1 (16.A.40)

v(x) (x)y1

w(x) = dv
dx

w(x)

(x) +[2 +p(x) (x)]w(x) = r(x)y1
dw

dx

dy1

dx
y1 (16.A.41)

16.A.41
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[(1 − ) ]+n(n+1)y(x) = (1 − ) −2x +n(n+1)y(x) = 0
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dx
x2 dy

dx
x2 yd2

dx2
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dx
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∑
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k=0

∞

akx
k akx

k−2

= [(−k(k+1) +n(n+1)) +(k+2)(k+1) ]∑
k=0

∞

ak ak+2 xk

(16.A.44)

(16.A.45)

(16.A.46)

(16.A.47)

6 xi

k xk 7 xk xm

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17466?pdf


16.A.9 https://phys.libretexts.org/@go/page/17466

where ), the coefficient of each of the powers in the sum in Equation  has to vanish for the sum to be identically
zero. This gives us a recurrence relation between the coefficients :

Given the values of  and  (the two degrees of freedom that our second-order differential equation allows us), we can
repeatedly apply Equation  to get all coefficients. Note that for  the coefficient equals zero. Therefore, if for an even
value of , we set , and for an odd value of , we set , we get a finite number of nonzero coefficients. The resulting
solutions are polynomials, characterized by the number ; in this case, they’re known as the Legendre polynomials, typically
denoted , and normalized (by setting the value of the remaining free coefficient) such that . Table A.1 lists the first
five, which are also plotted in Figure 16.A.4a.

Legendre polynomials have many other interesting properties (many of which can be found in either math textbooks or on their
Wikipedia page). They occur frequently in physics, for example in solving problems involving Newtonian gravity or Laplace’s
equation from electrostatics.

If we replace the  factor in the Legendre differential equation with an arbitrary number , the series solution remains a
solution, but it no longer terminates . There are many other differential equations that lead to both infinite series and polynomial
solutions. A well-known example is the Bessel differential equation:

The solutions to this equation are known as the Bessel functions of the first and second kind (see Problem A.3.3, where you’ll
prove that for these functions the series never terminates). These functions generalize the sine and cosine function and occur in the
vibrations of two-dimensional surfaces. Other examples include the Hermite and Laguerre polynomials, which feature in quantum
mechanics, and Airy functions, which you can encounter when studying optics.

Table A.1: : The first five (and zeroth, for good measure) Legendre polynomials, the solutions of Equation  for the given value of n and
the appropriate choice of  and .

0 1
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Figure : Solutions to the Legendre and Bessel differential equations. (a) The first five Legendre polynomials (Table A.1).
Note that the polynomials with even n are all even, and those with odd n are all odd. (b-c) The first five Bessel functions of the first
(b) and second (c) kind.

A.3.6. Problems

A.3.1

a. Suppose we have a solution of Equation  where the roots  of the characteristic polynomial (Equation ) are
complex, so . Rewrite the general solution  in real functions with real coefficients C and D, and express C
and D in terms of A and B. Hint: use Euler’s formula .

b. Suppose we have a solution of Equation  where the roots  are complex, so . To get a solution of
Equation  without complex numbers, we make the substitution , so

Use Euler’s formula again to rewrite the complex exponential in terms of sines and cosines, and make the back-substitution to x
to show that the general solution of Equation  in this case is given by

c. Suppose we have a solution of Equation  for which there is only a single root n. Show that the derivative of  with
respect to n is in this case also a solution of Equation , and that the general solution is given by

A.3.2 Use the method of reduction of order to obtain a second solution of Equation  for the case that the characteristic
polynomial (Equation ) has only a single root.

A.3.3

a. Use the power series technique to find a solution to Bessel’s differential Equation . Why doesn’t the series terminate in
this case? Why do you only get one family of solutions? We’ll call these solutions ‘Bessel functions of the first kind’ and label
them as  (see Figure 16.A.4b).

b. Use the method of reduction of order to find a second family of solutions to the Bessel differential equation, known as ‘Bessel
functions of the second kind’ ( , see Figure 16.A.4c).

This page titled 16.A: Math is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU Delft
Open) via source content that was edited to the style and standards of the LibreTexts platform.
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