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Summary and Author Biography

Summary
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CHAPTER OVERVIEW

1: Introduction to Classical Mechanics

Classical mechanics is the study of the motion of bodies under the action of physical forces. A force is any influence that can cause
an object to change its velocity. The object can be anything from an elementary particle to a galaxy. Of course anything larger than
an elementary particle is ultimately a composite of elementary particles, but fortunately we usually don’t have to consider all those,
and can coarse-grain to the scale of the objects at hand. As is true for any physical model, classical mechanics is an approximation
and has its limits - it breaks down at very small scales, high speeds and large gravitational fields - but within its range of
applicability (which includes pretty much every single phenomenon in everyday life) it is extremely useful.

Classical mechanics is based on a small number of physical laws, which are mathematical formulations of a physical observation.
Some laws can be derived from others, but you cannot derive all of them from scratch. Some laws are axioms, and we’ll assume
they are valid. The laws we’ll encounter can be divided up in three classes: Newton’s laws of motion, conservation laws and force
laws. As we’ll see, the three conservation laws of classical mechanics (of energy, momentum and angular momentum) can be
derived from Newton’s second and third laws of motion, as can Newton’s first law. The force laws give us the force exerted by a
certain physical system - a compressed spring (Hooke’s law) or two charged particles (Coulomb’s law) for example. These also
feed back into Newton’s laws of motion, although they cannot be derived from these and are axioms by themselves.

In addition to the physical laws, there is a large number of definitions - which should not be confused with the laws. Definitions are
merely convenient choices. A good example is the definition of the number n: half the ratio of the circumference to the radius of a
circle. As you have no doubt noticed, it is very convenient that this number has gotten its own symbol that is universally
recognized, as it pops up pretty much everywhere. However, there is no axiom here, as we are simply taking a ratio and giving it a
name.

1.1: Dimensions and Units
1.2: Dimensional Analysis

1.E: Introduction to Classical Mechanics (Exercises)

This page titled 1: Introduction to Classical Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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1.1: Dimensions and Units

In physics in general, we are interested in relating different physical quantities to one another - we want to answer questions like
‘how much work do I need to do to get this box up to the third floor’? In order to be able to give an answer, we need certain
measurable quantities as input - in the present case, the mass of the box and the height of a floor. Then, using our laws of physics,
we will be able to produce another measurable quantity as our answer - here the amount of work needed. Of course, you could
check this answer, and thus validate our physical model of reality, by measuring the quantity in question.

Measurable (or ‘physical’, or ‘observational’) quantities aren’t just numbers - the fact that they correspond to something physical
matters, and 10 seconds is something very different from 10 meters, or 10 kilograms. The term we use to express this is, rather
unfortunately, to say that physical quantities have a dimension - not to be confused with length, height and width. Anything that has
a dimension can be measured, and to do so we use units - though there may be different units in which we measure the same
quantity, such as centimeters and inches for length. When measuring the same quantity in different units, you can always convert
between them - there are 2.54 centimeters in an inch - but it’s meaningless to try to convert centimeters into seconds, because
length and time are different quantities - they have different dimensions.

Table 1.1.1: Overview of the SI quantities and units, and the physical constants they are (or are proposed to be) based on.

quantity symbol unit symbol based on
length L meter m speed of light
time T second s caesium atom oscillation
mass M kilogram kg Planck's constant!
current I Ampere A electron charge
temperature T Kelvin K Boltzmann's constant
luminosity J candela cd monochromatic radiation
particle count N mole mol Avogadro's constant

We will encounter only three different basic quantities, which have the dimensions of length (L), time (T), and mass (M). Thanks to
the Napoleonic conquest of Europe in the early 1800s, we have a basic unit for each of these: meters (m) for length, seconds (s) for
time, and kilograms (kg) for mass. Although we won’t encounter them here, the standard system of units (called the Systéme
International, or SI) has four more of these basic pairs: (electric) current I, measured in Ampéres (A), temperature T, measured in
Kelvin (K), luminosity J, measured in candelas (cd), and ‘amount of stuff’, measured in moles (mol), see Table 1.1.1
Unfortunately, although this system is commonly used in (continental) Europe and in many other parts of the world, it is not
everywhere, notably in the US, where people persist in using such things as inches and pounds, so you’ll often have to convert
between units.

From the seven basic quantities in the SI, all others can be derived. For example, speed is defined as the distance traveled (length)
divided by the time it took, so speed has the dimension of L/T and is measured in units of m/s. Note that in order to be able to
compare two quantities, they must have the same dimension. This simple observation has an important consequence: in any physics
equation, the dimensions on both sides of the equality sign always have to be the same. There’s no bargaining on this point:
equating two quantities with different dimensions does not make any kind of sense, so if you find that that’s what you’re doing at
any point, backtrack and find where things went wrong.

1 At the time of writing, the unit of mass is still determined using a prototype in Paris, however, a redefined unit based on the value
of Planck’s constant is expected to be adopted on May 20, 2019.
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1.2: Dimensional Analysis

Although you will of course need a complete physical model (represented as a set of mathematical equations) to fully describe a
physical system, you can get surprisingly far with a simple method that requires no detailed knowledge at all. This method is
known as dimensional analysis , and based on the observation in the previous section that the two sides of any physical equation
have to have the same dimension. You can use this principle to qualitatively understand a system, and make predictions on how it
will respond quantitatively if you change some parameter. To understand how dimensional analysis works, an example is probably
the most effective - we’ll take one that is ubiquitous in classical mechanics: a mass oscillating on a spring (known as the harmonic
oscillator), see Figure 1.2.1.

} [l

Figure 1.2.1: A harmonic oscillator: a mass m suspended on a spring with spring constant k, oscillating with a frequency w.

Example 1.2.1: Dimensional Analysis of the Harmonic Oscillator

Consider the harmonic oscillator consisting of a mass of magnitude m, suspended on a spring with spring constant k. If you
pull down the mass a bit and release, it will oscillate with a frequency w. Can we predict how this frequency will change if we
double the mass?

Solution

There are two ways to answer this question. One is to consider all the forces acting on the mass, then use Newton’s second law
to derive a differential equation (known as the equation of motion) for the mass, solve it, and from the solution determine what
happens if we change the mass. The second is to consider the dimensions of the quantities involved. We have a mass, which
has dimension of mass (M), as it is one of our basic quantities. We have a spring with spring constant k, which has dimensions
of force per unit length, or mass per unit time squared:

==t — (1.2.1)

Note the notation [k] for the dimension of k. For the frequency, we have [w] = % Now we know that the frequency is a
function of the spring constant and the mass, and that both sides of that equation must have the same sign. Since there is no
mass in the dimension of the frequency, but it exists in the dimension of both the spring constant and the mass, we know that w

must depend on the ratio of k and m: w ~ % . Now [%] = %, and from [w] = % , we conclude that we must have
k
~al— 1.2.2
w2 (12.2)

Equation 1.2.2 allows us to answer our question immediately: if we double the mass, the frequency will decrease by a factor of

V2.

Note that in Equation 1.2.2 I did not write an equals sign, but a ‘scales as’ sign (~, sometimes also written as ). That is
because dimensional analysis will not tell us about any numerical factor that may appear in the expression, as those numerical
factors have no unit (or, more correctly, have no dimension - they are dimensionless).

You may object that there might be another factor at play: shouldn’t gravity matter? The answer is no, as we can also quickly
see from dimensional analysis. The force of gravity is given by mg, introducing another parameter g (the gravitational
acceleration) with dimension [g] = # . Now if the frequency were to depend on g, there has to be another factor to cancel the

dependence on the length, as the frequency itself is length-independent. Neither m nor k has a length-dependence in its
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dimension, and so they cannot ‘kill’ the L in the dimension of g; the frequency therefore also cannot depend on g - which we
have now figured out without invoking any (differential) equations!

Above, I’ve sketched how you can use dimensional analysis to arrive at a physical scaling relation through inspection: we’ve
combined the various factors to arrive at the right dimension. Such combinations are not always that easy to see, and in any
case, you may wonder if you’ve correctly spotted them all. Fortunately,there is a more robust method, that we can also use to
once again show that the frequency is independent of the gravitational acceleration. Suppose that in general w could depend on
k, m and g. The functional dependence can then be written as?

M L”
[w] = [K*mPg"] = vl Mﬂﬁ = MetBp 2t (1.2.3)
which leads to three equations for the exponents:
a+p=0
—2(a—v)=-1
7=0
which you can easily solve to find o = % , 8= —% ,v¥ =0, which gives us Equation 1.2.2, This method? will allow you to get

dimensional relations in surprisingly many different cases, and is used by most physicists as a first line of attack when they
first encounter an unknown system.

2 The actual function may of course contain multiple terms which are summed, but all those must have the same dimension.
Operators like sines and exponentials must be dimensionless, as there are no dimensions of the form sin(M) or e*. The only
allowable dimensional dependencies are thus power laws.

3 The method is sometimes referred to as the Rayleigh algorithm, after John William Strutt, Lord Rayleigh (1842-1919), who
applied it, among other things, to light scattering in the air. The result of Rayleigh’s analysis can be used to explain why the sky is
blue.
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1.E: Introduction to Classical Mechanics (Exercises)

1.1 Harmonic oscillator revisited Suppose you have a small object of mass m, which you attach to a spring of spring constant k
(which itself is fixed to a wall at its other end, figure 1.1). Above, we derived an expression for the frequency of oscillation of the
mass. We also argued that it should be the same for both a horizontally-positioned and a vertically-positioned oscillator, i.e., that
the frequency is independent of the gravitational acceleration g.

a. Show that the frequency of oscillation is also independent of its amplitude A (the maximum distance from the equilibrium
position the oscillating mass reaches).

b. Use dimensional analysis to derive an expression for the maximum velocity of the mass during the oscillation, as a function of
m, k, and A.

1.2 In physics, we assume that quantities like the speed of light (c) and Newton’s gravitational constant (G) have the same value
throughout the universe, and are therefore known as physical constants. A third such constant from quantum mechanics is Planck’s
constant (k, an h with a bar). In high-energy physics, people deal with processes that occur at very small length scales, so our
regular SI-units like meters and seconds are not very useful. Instead, we can combine the fundamental physical constants into
different basis values.

a. Combine ¢, G and & into a quantity that has the dimensions of length.

b. Calculate the numerical value of this length in SI units (this is known as the Planck length). You can find the numerical values
of the physical constants in appendix B

c. Similarly, combine ¢, G and A into a quantity that has the dimensions of energy (indeed, known as the Planck energy) and
calculate its numerical value.

1.3 Reynolds numbers Physicists often use dimensionless quantities to compare the magnitude of two physical quantities. Such
numbers have two major advantages over quantities with numbers. First, as dimensionless quantities carry no units, it does not
matter which unit system you use, you’ll always get the same value. Second, by comparing quantities, the concepts ‘big’ and
‘small’ are well-defined, unlike for quantities with a dimension (for example, a distance may be small on human scales, but very
big for a bacterium). Perhaps the best known example of a dimensionless quantity is the Reynolds number in fluid mechanics,
which compares the relative magnitude of inertial and drag forces acting on a moving object:

inertial forces  pvL

= 1.E.1

drag forces n ( )
where p is the density of the fluid (either a liquid or a gas), v the speed of the object, L its size, and 7 the viscosity of the fluid.
Typical values of the viscosity are 1.0 mPa - s for water, 50 mPa - s for ketchup, and 1.0 4 Pa - s for air.

a. Estimate the typical Reynolds number for a duck when flying and when swimming (you may assume that the swimming
happens entirely submerged). NB: This will require you looking up or making educated guesses about some properties of these
birds in motion. In either case, is the inertial or the drag force dominant?

b. Estimate the typical Reynolds number for a swimming bacterium. Again indicate which force is dominant.

c. Oil tankers that want to make port in Rotterdam already put their engines in reverse halfway across the North sea. Explain why
they have to do so.

d. Express the Reynolds number for the flow of water through a (circular) pipe as a function of the radius R of the pipe, the
volumetric flow rate (i.e., volume per second that flows through the pipe) Q,and the kinematic viscosity v = % .

e. For low Reynolds number, fluids will typically exhibit so-called laminar flow, in which the fluid particles all follow paths that
nicely align (this is the transparent flow of water from a tap at low flux). For higher Reynolds number, the flow becomes
turbulent, with many eddies and vortices (the white-looking flow of water from the tap you observe when increasing the flow
rate). The maximum Reynolds number for which the flow is typically laminar is experimentally measured to be about 2300.
Estimate the flow velocity and volumetric flow rate of water from a tap with a 1.0 cm diameter in the case that the flow is just
laminar.

1.4 The escape velocity of a planet is defined as the minimal initial velocity an object must have to escape its gravitational pull
completely (and thus go fast enough to defy the rule that ‘what goes up must come down’).

a. From Newton’s universal law of gravitation (equation 2.9), determine the dimension of the gravitational constant G.

MG

b. Use dimensional analysis to show that for a planet of mass M and radius R, the escape velocity scales as v ~ R
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c. A more detailed calculation shows that in fact we have Vescape = 26M

5 - Express this value of the escape velocity in terms of

the (mass) density p of the planet, instead of its mass M.

d. The average density of the moon is about 16—0th that of the Earth, and the Moon’s radius is about % times that of the Earth. From
these numbers and your answer at (c), calculate the ratio of the escape velocities of the Moon and the Earth, and explain why
the Apollo astronauts needed a huge rocket to get to the Moon, and only a tiny one to get back.
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2.1: Newton's Laws of Motion

As described in Chapter 1, classical mechanics is based on a set of axioms, which in turn are based on (repeated) physical
observations. In order to formulate the first three axioms, we will need to first define three quantities: the (instantaneous) velocity,
acceleration and momentum of a particle. If we denote the position of a particle as x(t) - indicating a vector! quantity with the
dimension of length that depends on time, we define its velocity as the time derivative of the position:

o) = #(t) = d”;it) (2.1.1)

Note that we use an overdot to indicate a time derivative, we will use this convention throughout these notes. The acceleration is
the time derivative of the velocity, and thus the second derivative of the position:

_ du(t) _ d?z(t)

t) =&(t 2.1.2
alt) = i(t) = = = — (2.1.2)
Finally the momentum of a particle is its mass times its velocity:

p(t) = mu(t) = ma(t) (2.1.3)

We are now ready to give our next three axioms. You may have encountered them before; they are known as Newton’s three laws
of motion.

Axiom 1 (Newton’s first law of motion). As long as there is no external action, a particle’s velocity will remain constant. Note that
the first law includes particles at rest, i.e., v = 0. We will define the general ‘external action’ as a force, therefore a force is now
anything that can change the velocity of a particle. The second law quantifies the force.

Axiom 2 (Newton’s second law of motion). If there is a net force acting on a particle, then its instantaneous change in momentum
due to that force is equal to that force:

dp(t)
F(t) = 2.1.4
==L (2.1.4)
Now since p =mwv and a = % , if the mass is constant we can also write Equation 2.1.4 as F' = ma, or
F(t) = mi(t) (2.1.5)

which is the form in we will use most. Based on the second law, we see that a force has the physical dimension of a mass times a
length divided by a time squared - since this is quite a lot to put in every time, we define the dimension of force as such:
F = MLT 2. Likewise, we define a unit, the Newton (N), as a kilogram times a meter per second squared: N = kgsfm . Therefore,
in principle Newton’s second law of motion can also be used to measure forces, though we will often use it the other way around,
and calculate changes in momentum due to a known force.

Note how Newton’s first law follows from the second: if the force is zero, there is no change in momentum, and thus (assuming
constant mass) a constant velocity. Note also that although the second law gives us a quantification of the force, by itself it will not
help us achieve much, as we at present have no idea what the force is (though you probably have some intuitive ideas from
experience) - for that we will use the force laws of the next section. Before we go there, there is another important observation on
the nature of forces in general.

Axiom 3 (Newton’s third law of motion). If a body exerts a force F; on a second body, the second body exerts an equal but
opposite force F,, on the first, i.e., the forces are equal in magnitude but opposite in direction:

F =-F (2.1.6)

Isaac Newton

Isaac Newton (1642-1727) was a British physicist, astronomer and mathematician, who is widely regarded as one of the most
important scientists in history. Newton was a professor at Cambridge from 1667 till 1702, where he held the famous Lucasian
chair in mathematics. Newton invented infinitesimal calculus to be able to express the laws of mechanics that now bear his
name in mathematical form. He also gave a mathematical description of gravity (Equation 2.2.3), from which he could derive
Kepler’s laws of planetary motion (Section 6.4). In addition to his work on mechanics, Newton made key contributions to
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optics and invented the reflection telescope, which uses a mirror rather than a lens to gather light. Having retired from his
position in Cambridge, Newton spend most of the second half of his life in London, as warden and later master of the Royal
mint, and president of the Royal society.

Figure 2.1.1: Portrait of Isaac Newton by Godfrey Kneller (1689) [2].
! Appendix A.1 lists some basic properties of vectors that you may find useful.

This page titled 2.1: Newton's Laws of Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon
Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: Force Laws

Newton’s second law of motion tells us what a force does: it causes a change in momentum of any particle it acts upon. It does not
tell us where the force comes from, nor does it care - which is a very useful feature, as it means that the law applies to all forces.
However, we do of course need to know what to put down for the force, so we need some rule to determine it independently. This
is where the force laws come in.

Springs: Hooke's Law

One very familiar example of a force is the spring force: you need to exert a force on something to compress it, and (in accordance
with Newton’s third law), if you press on something you’ll feel it push back on you. The simplest possible object that you can
compress is an ideal spring, for which the force necessary to compress it scales linearly with the compression itself. This relation is
known as Hooke’s law:

F,=—kz (2.2.1)

where x is now the displacement (from rest) and & is the spring constant, measured in newtons per meter.The value of k depends
on the spring in question - stiffer springs having higher spring constants.

Hooke’s law gives us another way to measure forces. We have already defined the unit of force using Newton’s second law of
motion, and we can use that to calibrate a spring, i.e., determine its spring constant, by determining the displacement due to a
known force. Once we have k, we can simply measure forces by measuring displacements - this is exactly what a spring scale does.

Robert Hooke

Robert Hooke (1635-1703) was a British all-round natural scientist and architect. He discovered the force law named after him
in 1660, which he published first as an anagram: ‘ceiiinosssttuv’, so he could claim the discovery without actually revealing it
(a fairly common practice at the time); he only provided the solution in 1678: ‘ut tensio, sic vis’ (‘as the extension, so the
force’). Hooke made many contributions to the development of microscopes, using them to reveal the structure of plants,
coining the word cell for their basic units. Hooke was the curator of experiments of England’s Royal Society for over 40 years,
combining this position with a professorship in geometry and the job of surveyor of the city of London after the great fire of
1666. In the latter position he got a strong reputation for a hard work and great honesty. At the same time, he was frequently at
odds with his contemporaries Isaac Newton and Christiaan Huygens; it is not unlikely that they independently developed
similar notions on, among others on the inverse-square law of gravity.

Figure 2.2.1: Drawing of the cell structure of cork by Hooke, from his 1665 book Micrographia [3]. No portraits of Hooke
survive.

Gravity: Newton's Law of Gravity

A second and probably even more familiar example is force due to gravity, at the local scale, i.e., around you, in the approximation
that the Earth is flat. Anything that has mass attracts everything else that has mass, and since the Earth is very massive, it attracts
all objects in the space around you, including yourself. Since the force of gravity is weak, you won’t feel the pull of your book, but
since the Earth is so massive, you do feel its pull. Therefore if you let go of something, it will be accelerated towards the Earth due
to its attracting gravitational force. As demonstrated by Galilei (and some guys in spacesuits on a rock we call the moon?), the
acceleration of any object due to the force of gravity is the same, and thus the force exerted by the Earth on any object equals the
mass of that object times this acceleration, which we call g:

F,=mg (2.2.2)
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Because the Earth’s mass is not exactly uniformly distributed, the magnitude of g varies slightly from place to place, but to good
approximation equals 9.81 sﬂZ It always points down.

Although Equation 2.2.2 for local gravity is handy, its range of application is limited to everyday objects at everyday altitudes - say
up to a couple thousand kilograms and a couple kilometers above the surface of the Earth, which is tiny compared to Earth’s mass
and radius. For larger distances and bodies with larger mass- say the Earth-Moon, or Earth-Sun systems - we need something else,
namelyNewton’s law of gravitation between two bodies with masses m and mg and a distance r apart:

mime

Fo =G4

7 (2.2.3)
;

where 7 is the unit vector pointing along the line connecting the two masses, and the proportionality constant
2
G=6.67-1071! ]V];‘T’;‘ is known as the gravitational constant (or Newton’s constant). The minus sign indicates that the force is

attractive. Equation 2.2.3 allows you to actually calculate the gravitational pull that your book exerts on you, and understand why
you don’t feel it. It also lets you calculate the value of g - simply fill in the mass and radius of the Earth. If you wish to know the
value of g on any other celestial body, you can put in its particulars, and compare with Earth. You’ll find you’d ‘weigh’ 3 times less
on Mars and 6 times less on the Moon. Most of the time we can safely assume the Earth is flat and use Equation 2.2.2, but in
particular for celestial mechanics and when considering satellites we’ll need to use Equation 2.2.3.

Galileo galilei

Galileo Galilei (1564-1642) was an Italian physicist and astronomer, who is widely regarded as one of the founding figures of
modern science. Unlike classical philosophers, Galilei championed the use of experiments and observations to validate (or
disprove) scientific theories, a practice that is the cornerstone of the scientific method. He pioneered the use of the telescope
(newly invented at the time) for astronomical observations, leading to his discovery of mountains on the moon an the four
largest moons of Jupiter (now known as the Galilean moons in his honor). On the theoretical side, Galilei argued that
Aristotle’s argument that heavy objects fall faster than light ones is incorrect, and that the acceleration due to gravity is equal
for all objects (Equation 2.2.2). Galilei also strongly advocated the heliocentric worldview introduced by Copernicus in 1543,
as opposed to the widely-held geocentric view. Unfortunately, the Inquisition thought otherwise, leading to his conviction for
heresy with a sentence of life-long house arrest in 1633, a position that was only recanted by the church in 1995.

Figure 2.2.2: Portrait of Galileo Galilei by Justus Sustermans (1636) [4].

Electrostatics: Coulomb's Law

Like two masses interact due to the gravitational force, two charged objects interact via Coulomb’s force. Because charge has two
possible signs, Coulomb’s force can both be attractive (between opposite charges) and repulsive (between identical charges). Its
mathematical form strongly resembles that of Newton’s law of gravity:

9192
Fc =ke—r2 T (2.2.4)

where ¢; and g are the signed magnitudes of the charges, r is again the distance between them, and k., = 8.99 - 109]\]0'—’;12 is

Coulomb’s constant. For everyday length and force scales, Coulomb’s force is much larger than the force of gravity.

Charles-augustin de Coulomb

Charles-Augustin de Coulomb (1736-1806) was a French physicist and military engineer. For most of his working life,
Coulomb served in the French army, for which he supervised many construction projects. As part of this job, Coulomb did
research, first in mechanics (leading to his law of kinetic friction, Equation 2.2.7), and later in electricity and magnetism, for
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which he discovered that the force between charges (and those between magnetic poles) drops off quadratically with their
distance (Equation 2.2.4). Near the end of his life, Coulomb participated in setting up the SI system of units.

Figure 2.2.3: Portrait of Charles de Coulomb [5].

Friction and Drag

Why did it take the genius of Galilei and Newton to uncover Newton’s first law of motion? Because everyday experience seems to
contradict it: if you don’t exert a force, you won’t keep moving, but gradually slow down. You know of course why this is: there’s
drag and friction acting on a moving body, which is why it’s much easier (though not necessarily handier) for a car to keep moving
on ice than on a regular tarmac road (less friction on ice), and why walking through water is so much harder than walking through
air (more drag in water). The medium in which you move can exert a drag force on you, and the surface over which you move
exerts friction forces. These of course are the forces responsible for slowing you down when you stop exerting force yourself, so
the first law doesn’t apply, as there are forces acting.

For low speeds, the drag force typically scales linearly with the velocity of the moving object. Drag forces for objects moving
through a (fluid) medium moreover depend on the properties of the medium (its viscosity 1) and the cross-sectional area of the
moving object. For a sphere of radius R moving at velocity v, the drag force is given by Stokes’ law:

Fy = —6mnRv (2.2.5)

The more general version for an object of arbitrary shape is F; = (v, where ( is a proportionality constant. Stokes’ law breaks
down at high velocities, for which the drag force scales quadratically with the speed:

1
Fy= Epchv2 (2.2.6)

where p is the density of the fluid, A the cross-sectional area of the object, v its speed, and cq its dimensionless drag coefficient,
which depends on the object’s shape and surface properties. Typical values for the drag coefficient are 1.0 for a cyclist, 1.2 for a
running person, 0.48 for a Volkswagen Beetle, and 0.19 for a modern aerodynamic car. The direction of the drag force is still
opposite that of the motion.

Frictional forces are due to two surfaces sliding past each other. It should come as no surprise that the direction of the frictional
force is opposite that of the motion, and its magnitude depends on the properties of the surfaces. Moreover, the magnitude of the
frictional force also depends on how strongly the two surfaces are pushed against each other - i.e., on the forces they exert on each
other, perpendicular to the surface. These forces are of course equal (by Newton’s third law) and are called normal forces, because
they are normal (that is, perpendicular) to the surface. If you stand on a box, gravity exerts a force on you pulling you down, which
you ‘transfer’ to a force you exert on the top of the box, and causes an equal but opposite normal force exerted by the top of the
box on your feet. If the box is tilted, the normal force is still perpendicular to the surface (it remains normal), but is no longer equal
in magnitude to the force exerted on you by gravity. Instead, it will be equal to the component of the gravitational force along the
direction perpendicular to the surface (see figure 2.6). We denote normal forces as F},. Now according to the Coulomb friction
law (not to be confused with the Coulomb force between two charged particles), the magnitude of the frictional force between two
surfaces satisfies

F; < uF, (2.2.7)

Here p is the coefficient of friction, which of course depends on the two surfaces, but also on the question whether the two surfaces
are moving with respect to each other or not. If they are not moving, i.e., the con-figuration is static, the appropriate coefficient is
called the coefficient of static friction and denoted by ps.The actual magnitude of the friction force will be such that it balances the
other forces (more on that in section 2.4). Equation 2.2.7 tells us that this is only possible if the required magnitude of the friction
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force is less than usF;,. When things start moving, the static friction coefficient is replaced by the coefficient of kinetic friction py,
which is usually smaller than p; also in that case the inequality in Equation gets replaced by an equals sign, and we have

Ff = uF,. (2.2.8)

2 To be precise, astronaut David Scott of the Apollo 15 mission in 1971, who dropped both a hammer and a feather and saw them
fall at exactly the same rate, as shown in this
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2.3: Equations of Motion

Now that we have set our axioms - Newton’s laws of motion and the various force laws - we are ready to start combining them to
get useful results, things that we did not put into the axioms in the first place but follow from them. The first thing we can do is
write down equations of motion: an equation that describes the motion of a particle due to the action of a certain type of force. For
example, suppose you take a rock of a certain mass m and let go of it at some height h above the ground, then what will happen?
Once you’ve let go of the rock, there is only one force acting on the rock, namely Earth’s gravity, and we are well within the regime
where Equation 2.2.2 applies, so we know the force. We also know that this net force will result in a change of momentum
(Equation 2.1.4), which, because the rock won’t lose any mass in the process of falling, can be rewritten as Equation 2.1.5. By
equating the forces we arrive at an equation of motion for the rock, which in this case is very simple:

mg=me (2.3.1)

We immediately see that the mass of the rock does not matter (Galilei was right! - though of course he was in our set of axioms,
because we arrived at them by assuming he was right...). Less trivially, Equation ( ) is a second-order differential equation for
the motion of the rock, which means that in order to find the actual motion, we need two initial conditions - which in our present
example are that the rock starts at height h and zero velocity.

Figure 2.3.1: Dropping under the force of gravity. (a and b) A ball released from rest drops with a constant acceleration, resulting
in a constantly increasing velocity. Images in (a) are taken every 0.05 s; distances are multiples of 12 mm. In (b), the trajectory of
the ball resulting from repeated bounces is shown with intervals of 0.04 s [6], CC BY-SA 3.0. (c) Paragliders need to balance the
force of gravity and that of drag to stop accelerating and fall at a continuous speed (known as their terminal velocity) [7], CC BY-
SA 3.0.

Equation ( ) is essentially one-dimensional - all motion occurs along the vertical line. Solving it is therefore straightforward -
you simply integrate over time twice. The general solution is:

x(t) = x(0)+v(0)t + %gt2 (2.3.2)

which with our boundary conditions becomes

2(t) = (h - %gﬁ) E (2.3.3)

where g is the magnitude of g (which points down, hence the minus sign). Of course Equation breaks down when the rock
hits the ground at t = 2—: , which is easily understood because at that point gravity is no longer the only force acting on it.

We can also immediately write down the equation of motion for a mass on a spring (no gravity at present), in which the net force is
given by Hooke’s law. Equating that force to the net force in Newton’s second law of motion gives:

—ka(t) = mi(t) (2.3.4)
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Of course, we find another second-order differential equation, so we again need the initial position and velocity to specify a
solution. The general solution of Equation 2.3.4 is a combination of sines and cosines, with a frequency w = 4/ % (as we already
know from the dimensional analysis in Section 1.2):

v(0)

z(t) = 2(0) cos(wt) + sin(wt) (2.3.5)

We’ll study this case in more detail in Section 8.1. In general, the force in Newton’s second law may depend on time and position,
as well as on the first derivative of the position, i.e., the velocity. For the special case that it depends on only one of the three
variables, we can write down the solution formally, in terms of an integral over the force. These formal solutions are given in
Section 2.6. To see how they work in practice, let’s consider a slightly more involved problem, that of a stone falling with drag.

Example 2.3.1: Falling Stone with Drag

Suppose we have a spherical stone of radius a that you drop from a height h at t=0. At what time, and with which velocity, will
the stone hit the ground?

Solution

We already solved this problem in the simple case without drag above, but now let’s include drag. There are then two forces
acting on the stone: gravity (pointing down) with magnitude mg, and drag (pointing in the direction opposite the motion, in
this case up) with magnitude 67nav = bv, as given by Stokes’ law (Equation 2.2.5). Our equation of motion is now given by
(with x as the height of the particle, and the downward direction as positive):

mi = —bt +mg (2.3.6)

We see that our force does not depend on time or position, but only on velocity - so we have case 3 of Appendix 2.6. We could
invoke either Equation (2.33) or (2.34) to write down a formal solution, but there is an easier way, which will allow us to
evaluate the relevant integrals without difficulty. Since our equation of motion is linear, we know that the sum of two solutions
is again a solution. One of the terms on the right hand side of Equation (2.19) is constant, which means that our equation is not
homogeneous (we can rewrite it to mZ +bxz =mg to see this), so a useful thing to do is to split our solution in a
homogeneous and a particular part. Rewriting our equation in terms of v = z instead of x, we get mv 4+ bv = mg , from which

we can immediately get a particular solution: v, = % , as the time derivative of this constant v, vanishes. Subtracting v,,we
are left with a homogeneous equation: mdy, + buy, , which we now solve by separation of variables. First we write v, = % s

then re-arrange so that all factors containing vy, are on one side and all factors containing t are on the other, which gives

—(%)(%)dvh = dt . We can now integrate to get:

Y1 m v
= —dv' = ——1 — ) =t—t 2.3.7
b 2 v ? b Og<v0) ’ ( )

which is an example of Equation (2.33). After rearranging and setting £y = 0:

un(t) = v exp(—%t) (2.3.8)

Note that this homogeneous solution fits our intuition: if there is no extra force on the particle, the drag force will slow it down
exponentially. Also note that we didn’t set vy = 0, as the homogeneous solution does not equal the total solution. Instead vq is
an integration constant that we’ll need to set once we’ve written down the full solution, which is:

v(t) = vn(t) +vp(t) = vo exp(—%t) —|—% (2.3.9)

Now setting v(0) = 0 gives vg = — =, so

o(t) = % [1 —exp(—%t)] (2.3.10)

To get x(t), we simply integrate v(t) over time, to get:
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2(t) = % [t+ %exp(—%t)] (2.3.11)

We can find when the stone hits the ground by setting x(t)=h and solving for t; we can find how fast it is going at that point by
substituting that value of t back into v(t).

This page titled 2.3: Equations of Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon
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2.4: Multiple Forces

In the examples in Section 2.3 there was only a single force acting on the particle of interest. Usually there will be multiple forces
acting at the same time, not necessarily pulling in the same direction. This is where vectors come into play.

Suppose you put a book on a table. The Earth’s gravity pulls it down with a force of magnitude F;,. Consequently the book exerts a
normal force down on the table with the same magnitude, and the table reciprocates with an identical but oppositely directed
normal force of magnitude F,, = F,,. Now suppose you push against the book from the side with a force of magnitude F. As we’ve
seen in Section 2.2, there will then be a friction force between the book and the table in the opposite direction, which, as long as it
doesn’t exceed p,F),,equals the force you push with. However, once F is larger than u,F},, there will be a net force acting on the
book. It is the net force that we substitute into Newton’s second law, and from which the book will get a net acceleration.

In the situation described above, things are still simple - you get the net force by subtracting the kinetic friction Fy = psF, from
the force F you exert on the book, because these are horizontal and thus perpendicular to the vertical normal and gravitational
forces. But what happens if you lift the table on one end, so that it becomes slanted? To help organize our thoughts, we’ll draw a
free body diagram, shown in Figure 2.4.1.

Figure 2.4.1: Free body diagram of the forces acting on a book on a slanted table. Gravity always points down, normal forces

always perpendicular to the surface, and frictional forces always parallel to the surface. The force of gravity can be decomposed in

directions perpendicular and parallel to the surface as well.
Gravity still acts downward, and the mass of the book stays the same, so F,; doesn’t change. However, the orientation of the contact
plane between the book and table does change, so the normal force (remember,normal to the surface) changes as well. Its direction
will remain perpendicular to the surface, and as long as you don’t push on the book (or push along the surface only), the only other
force having a component perpendicular to the surface is gravity, so the magnitude of the normal force better be equal to that (or
the book would either spontaneously start to float, or fall through the table). You can find this component by decomposing the
gravitational force along the directions perpendicular and parallel to the slanted surface. The remaining component of the
gravitational force points downward along the surface of the table, and is comparable to the force you were exerting on the book in
the flat case. Up to some point it is balanced by a static frictional force, but once it gets too large (because the slant angle of the
table gets too large), friction reaches its maximum and gravity results in a net force on the book, which will start to slide down (as
you no doubt guessed already).

This page titled 2.4: Multiple Forces is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema
(TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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2.5: Statics

When multiple forces act on a body, the (vector) sum of those forces gives the net force, which is the force we substitute in
Newton’s second law of motion to get the equation of motion of the body. If all forces sum up to zero, there will be no acceleration,
and the body retains whatever velocity it had before. Statics is the study of objects that are neither currently moving nor
experiencing a net force, and thus remain stationary. You might expect that this study is easier than the dynamical case when bodies
do experience a net force, but that just depends on context. Imagine, for example, a jar filled with marbles: they aren’t moving, but
the forces acting on the marbles are certainly not zero, and also not uniformly distributed.

Even if there is no net force, there is no guarantee that an object will exhibit no motion: if the forces are distributed unevenly along
an extended object, it may start to rotate. Rotations always happen around a stationary point, known as the pivot. Only a force that
has a component perpendicular to the line connecting its point of action to the pivot (the arm) can make an object rotate. The
corresponding angular acceleration due to the force depends on both the magnitude of that perpendicular component and the length
of the arm,and is known as the moment of the force or the torque 7. The magnitude of the torque is therefore given by F'rsind,
where F' is the magnitude of the force, r the length of the arm, and @ the angle between the force and the arm. If we write the arm
as a vector r pointing from the pivot to the point where the force acts, we find that the magnitude of the torque equals the cross
product of r and F":

T=rxF (2.5.1)

The direction of rotation can be found by the right-hand rule from the direction of the torque: if the thumb of your right hand points
along the direction of 7, then the direction in which your fingers curve will be the direction in which the object rotates due to the
action of the corresponding force F'.

We will study rotations in detail in Chapter 5. For now, we’re interested in the case that there is no motion, neither linear nor
rotational, which means that the forces and torques acting on our object must satisfy the stability condition: for an extended object
to be stationary, both the sum of the forces and the sum of the torques acting on it must be zero.

Example 2.5.1: Suspended Sign

A sign of mass M hangs suspended from a rod of mass m and length L in a symmetric way and such that the centers of mass of
the sign and rod nicely align (Figure 2.5.1a). One end of the rod is anchored to a wall directly, while the other is supported by
a wire with negligible mass that is attached to the same wall a distance h above the anchor.

a b

L

Figure 2.5.1: A suspended sign (example of a calculation in statics). (a) Problem setting. (b) Free-body diagram.

a. If the maximum tension the wire can support is T, find the minimum value of h.
b. For the case that the tension in the wire equals the maximum tension, find the force (magnitude and direction) exerted by
the anchor on the rod.

Solution

(a) We first draw a free-body diagram, Figure 2.5.1b Force balance on the sign tells us that the tensions in the two lower wires
sum to the gravitational force on the sign. The rod is stationary, so we know that the sum of the torques on it must vanish. To
get torques, we first need a pivot; we pick the point where the rod is anchored to the wall. We then have three forces
contributing a clockwise torque, and one contributing a counterclockwise torque. We’re not told exactly where the wires are
attached to the rod, but we are told that the configuration is symmetric and that the center of mass of the sign aligns with that of
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the rod. Let the first wire be a distance L from the wall, and the second a distance (1 — a) L. The total (clockwise) torque due
to the gravitational force on the sign and rod is then given by:

(m+M)gL.

N |~

1 1 1
T = EmgL + EMgaL + EMg(l —a)L =
The counterclockwise torque comes from the tension in the wire, and is given by

1 1 1 1
EmgL-i- EMgaL + EMg(l —a)L = a(m +M)gL.

Equating the two torques allows us to solve for has a function of F, as requested, which gives:

h2=<l (m+M)g)2(h2+L2) Y h=— (m+ M)gL
2 \/4F§—(m+M)292

(2.5.2)

We find the minimum value of h by substituting Frr = T4, -

(b) As the rod is stationary, all forces on it must cancel. In the horizontal direction, we have the horizontal component of the
tension, Ty, cos@ to the left, which must equal the horizontal component of the force exerted by the wall, F,cos¢. In the
vertical direction, we have the gravitational force and the two forces from the wires on which the sign hangs in the downward
direction, and the vertical component of the tension in the wire in the upward direction, the sum of which must equal the
vertical component of the force exerted by the wall (which may point either up or down). We thus have

Fy cos¢p = Tipaxcosf
Fysing = (m+ M)g+ Tiaxsinf
where tanf = % and h is given in the answer to (a). We find that
F2 =T2.+2(m+ M)gTpaysin+ (m + M) g2

Trnax cOSO
(m+ M)g+ Tiaxsiné

tan¢g =

Note that the above expressions give the complete answer (magnitude and direction). We could eliminate A and 6, but that’d
just be algebra, leading to more complicated expressions, and not very useful in itself.If we’d been asked to calculate the height
or force for any specific values of M, m, and L, we could get the answers easily by substituting the numbers in the expressions
given here.

This page titled 2.5: Statics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU Delft
Open) via source content that was edited to the style and standards of the LibreTexts platform.
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2.6: Solving the Equations of Motion in Three Special Cases

In Section 2.3 we saw some examples of equations of motion originating from Newton’s second law of motion. For the quite
common case that the mass of our object of interest is constant, its trajectory will be given as the solution of a second-order
ordinary differential equation, with time as our variable. In general, the force in Newton’s second law may depend on time and
position, as well as on the first derivative of the position, i.e., the velocity. In one dimension, we thus have

mi = F(z,,t) (2.6.1)

Equation 2.6.1 can be hard to solve for complicated functions F. However, in each of the special cases that the force only depends
on one of the three variables, we can write down a general solution - albeit as an integral over the force, which we may or may not
be able to calculate explicitly.

Case 1: F=F(t)

If the force only depends on time, we can solve Equation (2.6.1) by direct integration. Using that v =2 we have mv = F'(¢),
which we integrate to find

t v

P(t)dt :m/ v = m [u(t) — vo] (2.6.2)
to Vo
where at the initial time ¢t = ¢y the object has velocity v = vy . We can now find the position by integrating the velocity:

z(t) = /tv(t')dt' (2.6.3)

to

Case 2: F=F(x)

If the force depends only on the position in space (as is the case for the harmonic oscillator), we cannot integrate over time, as to do
so we would already need to know x(t). Instead, we invoke the chain rule to rewrite our differential equation as an equation in
which the position is our variable. We have:

_dv_dvd_a: dv

-_—=— = v— 2.6.4
T T wd "d (2.6.4)
and so our equation of motion becomes
dv
—=F 2.6.5
mv > = F(z) (2.6.5)

which we again solve by direct integration:

/I :F(w’)dw' —m / : vay = 2 [1?(a) ] 2.66)

To get x(t), we use the relation that Z—f = v(z). Separation of variables gives % = dt , which we can integrate to get

T 1 ,
t—t0:/zo @) dz (2.6.7)

which gives us t(x). In principle we can invert this expression to give us x(t), although in practice this may not be easy.

Case 3: F=F(v)

If the force depends only on the velocity, there are two ways we can proceed. We can write the equation of motion as m% = F(v)

and use separation of variables to get:

v 1
t—ty = do' 2.6.8
. m/yo et (2.6.8)

from which we can get v(¢) after inverting, and z(¢) after integrating v(t) as in Equation (2.6.3). Alternatively, we could again
rewrite our equation of motion as an equation in space instead of time, and arrive at:
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v '
v /

dv
w F V)

T—xzg=m (2.6.9)

From Equation (2.6.9) we can get v(x) by inverting, and x(t) from Equation (2.6.7). Note that Equation (2.6.9) does not give us
z(t) directly, as z is the variable in that equation.

example 2.6.4: velocity of the harmonic oscillator

It may seem that what we’ve done so far in this section has hardly helped matters: the ‘solutions’ we found contain integrals
and often need to be inverted to get our desired function z(¢) (or, depending on the problem we’re studying, v(¢) or v(z)). To
show you how these solutions may be useful, let’s consider a specific example: a harmonic oscillator, consisting of a mass on a
Hookean spring, with

F=F(z)=—ka.
Solution

We already wrote down the equation of motion (Equation 2.3.4) and its general solution (Equation 2.3.5). The general solution
can be found through the substitution of exponentials, as we’ll do in Section 8.1. However, we can also learn something useful
from writing the equation of motion in the form (2.6.5). Its solution, formally given by equation (2.6.6), can be calculated
explicitly for our force as

% [v?(z) —v3] = /xw (—ka')dz' = —g [2? — 23] (2.6.10)

which gives

for v(z). Although x(t) and v(¢) are more easily obtained from the solution given in Equation 2.3.5, that solution will not give
you v(z), and deriving it is tricky. Here we get it almost for free. Moreover, as you have probably noted, Equation 2.6.10
relates the kinetic to the potential energy of the harmonic oscillator - a special case of conservation of energy, which we’ll
discuss in the next section.

This page titled 2.6: Solving the Equations of Motion in Three Special Cases is shared under a CC BY-NC-SA 4.0 license and was authored,
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2.E: Forces (Exercises)

2.1 The terminal velocity is the maximum (constant) velocity a dropping object reaches. In this problem, we use Equation (2.2.6)
for the drag force.

a. Use dimensional analysis to relate the terminal velocity of a falling object to the various relevant parameters.

b. Estimate the terminal velocity of a paraglider (Figure 2.3.1c).

¢. Use the concept of terminal velocity to predict whether a mouse (without a parachute) is likely to survive a fall from a high
tower.

2.2 When you cook rice, some of the dry grains always stick to the measuring cup. A common way to get them out is to turn the
measuring cup upside-down and hit the bottom (now on top) with your hand so that the grains come off [32].

a. Explain why static friction is irrelevant here.
b. Explain why gravity is negligible.
c. Explain why hitting the cup works, and why its success depends on hitting the cup hard enough.

2.3 A ball is thrown at speed v from zero height on level ground. We want to find the angle 6 at which it should be thrown so that
the area under the trajectory is maximized.

a. Sketch of the trajectory of the ball.

b. Use dimensional analysis to relate the area to the initial speed v and the gravitational acceleration g.

¢. Write down the x and y coordinates of the ball as a function of time.

d. Find the total time the ball is in the air.

e. The area under the trajectory is given by A = f ydx . Make a variable transformation to express this integral as an integration
over time.

f. Evaluate the integral. Your answer should be a function of the initial speed v and angle 6.

g. From your answer at (f ), find the angle that maximizes the area, and the value of that maximum area. Check that your answer is
consistent with your answer at (b).

2.4 1f a mass m is attached to a given spring, its period of oscillation is T. If two such springs are connected end to end, and the

same mass m is attached, find the new period 7", in terms of the old period T.

2.5 Two blocks, of mass m and 2m, are connected by a massless string and slide down an inclined plane at angle 6. The coefficient
of kinetic friction between the lighter block and the plane is u, and that between the heavier block and the plane is 2x. The lighter
block leads.

a. Find the magnitude of the acceleration of the blocks.
b. Find the tension in the taut string.

2.6 A 1000 kg boat is traveling at 100 kTm when its engine is shut off. The magnitude Fy of the drag force between the boat and the
water is proportional to the speed v of the boat, with a drag coefficient { = 70 % Find the time it takes the boat to slow to 45 kTm

2.7 Two particles on a line are mutually attracted by a force F=-ar, where a is a constant and r the distance of separation. At time
t=0, particle A of mass m is located at the origin, and particle B of mass % is located at r=5.0 cm.

a. If the particles are at rest at t=0, at what value of r do they collide?
b. What is the relative velocity of the two particles at the moment the collision occurs?

2.8 In drag racing, specially designed cars maximize the friction with the road to achieve maximum acceleration. Consider a drag
racer (or ‘dragster’) as shown in Figure 2.E.1, for which the center of mass is close to the rear wheels.
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— === _
Figure 2.E.1: A drag racer or dragster [8], CC BY-SA 3.0.

a. Draw a free-body diagram of the dragster in side view. Draw the wheels as circles, and approximate the shape of the dragster
body as a triangle with a horizontal line between the wheels, a vertical line going up from the rear axis, and a diagonal line
connecting the top to the front wheels. NB: consider carefully the direction of the friction force!

b. On which of the wheels is the frictional force the largest?

c. The frictional force is maximized if the wheels just don’t slip (because, as usual, the coefficient of kinetic friction is smaller
than that of static friction). Find the maximal possible frictional force on the rear wheels.

d. Find the maximal possible acceleration of the dragster.(e) For a coefficient of (static) friction of 1.0 (a fairly realistic value for
rubber and concrete) and a track of 500 m, find the maximal velocity a drag racer can achieve at the end of the track when
starting from rest.

2.9 Blocks A, B and C are placed as shown in the figure, and connected by ropes of negligible mass. Both A and B weigh 20.0 N
each, and the coefficient of kinetic friction between each block and the surface is 0.3. The slope’s angle 6 equals 42.0°. The disks
in the pulleys are of negligible mass. After the blocks are released, block C descends with constant velocity.

(sl

a. Find the tension in the rope connecting blocks A and B.
b. What is the weight of block C?
c. If the rope connecting blocks A and B were cut, what would be the acceleration of C?

2.10 The figure below shows a common present-day seesaw design. In addition to a beam with two seats, this seesaw also contains
two identical springs that connect the beam to the ground. The distance between the pivot and each of the springs is 30.0 cm, the
distance between the pivot and each of the seats is 1.50 m.

a)

e 150 cm
cm

3.00m

a. A 4-year-old weighing 20.0 kg sits on one of the seats, causing it to drop by 20.0 cm. Draw a free-body diagram of the seesaw
with the child, in which you include all relevant forces (to scale).
b. Use your diagram and the provided data to calculate the spring constant of the two springs present in the seesaw.
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2.11 Two marbles of identical mass m and radius r are dropped in a cylindrical container with radius 3r, as shown in the figure.
Find the force exerted by the marbles on points A, B and C, and the force the marbles exert on each other.

B
N
Figure 2.E.2. Suppose you have a crate with a square base that is exactly five oranges wide. You stack 25 oranges in the crate, then
put another 16 on top in the holes, and then add a second layer of 25 oranges, held in place by the sides of the crate. Find the total
force on the sides of the crate in this configuration. Assume all oranges are spheres with a diameter of 8.0 cm and a mass of 250 g.

Figure 2.E. 2: Stacked fruit. (a) Stacked mandarins at a fruit stand [9]. (b) Cross-section of stacked oranges in a crate.

2.13 Objects with densities less than that of water float, and even objects that have higher densities are ‘lighter’ in the water. The
force that’s responsible for this is known as the buoyancy force, which is equal but opposite to the gravitational force on the
displaced water: F'yyoyancy = PwgVw , Where p,, is the water’s density and V,, the displaced volume. In parts (a) and (b), we
consider a block of wood with density p < p,, which is floating in water.

a. Which fraction of the block of wood is submerged when floating?

b. You push down the block somewhat more by hand, then let go. The block then oscillates on the surface of the water. Explain
why, and calculate the frequency of the oscillation.

¢. You take out the piece of wood, and now float a piece of ice in a bucket of water. On top of the ice, you place a small stone.
When everything has stopped moving, you mark the water level. Then you wait till the ice has melted, and the stone has
dropped to the bottom of the bucket. What has happened to the water level? Explain your answer (you can do so either
qualitatively through an argument or quantitatively through a calculation).

d. Rubber ducks also float, but, despite the fact that they have a flat bottom, they usually do not stay upright in water. Explain
why.

e. You drop a 5.0 kg ball with a radius of 10 cm and a drag coefficient ¢4 of 0.20 in water (viscosity 1.002m Pa - s). This ball has
a density higher than that of water, so it sinks. After a while, it reaches a constant velocity, known as its terminal velocity. What
is the value of this terminal velocity?

f. When the ball in (e) has reached terminal velocity, what is the value of its Reynolds number (see Problem 1.3)?

2.14 A uniform stick of mass M and length L=1.00 m has a weight of mass m hanging from one end. The stick and the weight hang
in balance on a force scale at a point x=20.0 cm from the end of the stick. The measured force equals 3.00 N. Find both the mass M
of the stick and m of the weight.
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m
2.15 A uniform rod with a length of 4.25 m and a mass of 47.0 kg is attached to a wall with a hinge at one end. The rod is held in a
horizontal position by a wire attached to its other end. The wire makes an angle of 30.0° with the horizontal and is bolted to the

wall directly above the hinge. If the wire can support a maximum tension of 1250 N before breaking, how far from the wall can a
75.0 kg person sit without breaking the wire?

2.16 A wooden bar of uniform density but varying thickness hangs suspended on two strings of negligible mass. The strings make
angles 0 and 6y with the horizontal, as shown. The bar has total mass m and length L. Find the distance x between the center of
mass of the bar and its (thickest) end.

2.17 A bicycle wheel of radius R and mass M is at rest against a step of height %R, as shown in the figure. Find the minimum
horizontal force F that must be applied to the axle to make the wheel start to rise over the step.

2.18 A block of mass M is pressed against a vertical wall, with a force F applied at an angle 6 with respect to the horizontal (
—% <0< % ), as shown in the figure. The friction coefficient of the block and the wall is . We start with the case # =0, i.e., the
force is perpendicular to the wall.

a. Draw a free-body diagram showing all forces.

b. If the block is to remain stationary, the net force on it should be zero. Write down the equations for force balance (i.e., the sum
of all forces is zero, or forces in one direction equal the forces in the opposite direction) for the x and y directions.

c¢. From the two equations you found in (b), solve for the force F needed to keep the book in place.

d. Now repeat the steps you took in (a)-(c) for a force under a given angle 8, and find the required force F.

e. For what angle @ is this minimum force F the smallest? What is the corresponding minimum value of F?
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f. What is the limiting value of 8, below which it is not possible to keep the block up (independent of the magnitude of the force)?

2.19 A spherical stone of mass m=0.250 kg and radius R=5.0 cm is launched vertically from ground level with an initial speed of
v =15.02. As it moves upwards, it experiences drag from the air as approximated by Stokes drag, F' = 6mnRuv, where the
viscosity 1 of air is 1.002mPa - s.

a. Which forces are acting on the stone while it moves upward?

b. Using Newton’s second law of motion, write down an equation of motion for the stone (this is a differential equation). Be
careful with the signs. Hint: Newton’s second law of motion relates force and acceleration, and the drag force is in terms of the
velocity. What is the relation between the two? Simplify the equation by introducing the characteristic time 7 = WLR .

c. Find a particular solution v, (¢) of your inhomogeneous differential equation from (19b).

d. Find the solution vy (t) of the homogeneous version of your differential equation.

e. Use the results from (19c) and (19d) and the initial condition to find the general solution v(t) of your differential equation.

f. From (19e), find the time at which the stone reaches its maximum height.

g. From v(t), find h(t) for the stone (height as a function of time).(h) Using your answers to (19f) and (19g), find the maximum

height the stone reaches.
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3.1: Work

How much work do you need to do to move a box? Well, that depends on two things: how heavy the box is,and how far you have
to move it. Multiply the two, and you’ve got a good measure of how much work will be required. Of course, work can be done in
other contexts as well - pulling a spring from equilibrium, or cycling against the wind. In each case, there’s a force and a
displacement. To be fair, we will only count the part of the force that is in the direction of the displacement (when cycling, you
don’t do work due to the fact that there’sa gravitational force pulling you down, since you don’t move vertically; you do work
because there’s a drag force due to your moving through the air). We define work as the product of the component of the force in
the direction of the displacement, times the displacement itself. We calculate this component by projecting the force vector on the
displacement vector, using the dot product (see Appendix A.1 for an introduction in to vector math):

W=F -z (3.1.1)

Note that work is a scalar quantity - it has a magnitude but no direction. Work is measured in Joules (J), with one Joule being equal
to one Newton times one meter.

Of course the force acting on our object need not be constant everywhere. Take for example the extension of a spring: the further
you pull, the larger the force gets, as given by Hooke’s law (2.2.1). To calculate the work done when extending the spring, we chop
up the path (here a straight line) into many small pieces. For each piece, we approximate the force by the average value on that
piece, then multiply with the length of the piece and sum. In the limit that we have infinitely many pieces, this approximation
becomes exact, and the sum becomes an integral: for one dimension, we thus have:

W:/w2 F(z)dz (3.1.2)

Likewise, the path along which we move need not be a straight line. If the path consists of multiple straight segments, on each of
which the force is constant, we can calculate the total work by adding the work done on the different segments. Taking the limit to
infinitely many infinitesimally small segments dr, on each of which the force is given by the value F(r), the sum again becomes an
integral:

W:/” F(r)-dr (3.1.3)

Equation (3.1.3) is the most general version of the definition of work; it simplifies to (3.1.2) for movement along a straight line,
and to (3.1.1) if both the path is straight and the force constant’.

In general, the work done depends on the path taken - for example, it’s more work to take a detour when biking from home to work,
assuming the air drag is the same everywhere. However, in many important cases the work done in getting from one point to
another depends on the endpoints only. Forces for which this is true are called conservative forces. As we’ll see below, the force
exerted by a spring and that exerted by gravity are both conservative.

Sometimes we will not be interested in how much work is done in generating a certain displacement, but over a certain amount of
time - for instance, a generator generates work by getting something to move, like a wheel or a valve, but we don’t typically care
about those details, we want to know how much work we can expect to get out of the generator, i.e., how much power it has. Power
is defined as the amount of work per unit time, or

p-
dt

Power is measured in Joules per second, or Watts (W). To find out how much work is done by an engine that has a certain power
output, we need to integrate that output over time:

(3.1.4)

Wz/Pdt (3.1.5)

LIf you feel intimidated by the vector form of Equation (3.1.3), it may help to rewrite it in terms of the magnitudes of the force F(r)
and the (infinitesimal) displacement dr, and the angle 0 between them. In terms of F =|F|, dr=|dr| and 6, we have
F - dr = F cos@dr , an expression you may have seen before for a force not pointing in the same direction as the displacement. If
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we now make the force and displacements functions of the position r, then so become the magnitude of the force and the angle, so
we can also write Equation (3.1.3) as

W:/r2 F(r)cosf(r)-dr (3.1.6)

This page titled 3.1: Work is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU Delft
Open) via source content that was edited to the style and standards of the LibreTexts platform.
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3.2: Kinetic Energy

Newton’s first law told us that a moving object will stay moving unless a force is acting on it - which holds for moving with any
speed, including zero. Now if you want to start moving something that is initially at rest, you’ll need to accelerate it, and Newton’s
second law tells you that this requires a force - and moving something means that you’re displacing it. Therefore, there is work
involved in getting something moving. We define the kinetic energy (K) of a moving object to be equal to the work required to
bring the object from rest to that speed, or equivalently, from that speed to rest:

1
K= Emvz (3.2.1)

Because the kinetic energy is equal to an amount of work, it is also a scalar quantity, has the same dimension, and is measured in
the same unit. The factor v? is the square of the magnitude of the velocity of the moving object, which you can calculate with the
dot product: v2 =v-v . You may wonder where Equation (3.2.1) comes from. Newton’s second law tells us that F' = m‘;—;’,
relating the force to an infinitesimal change in the velocity. In the definition for work, Equation (3.1.3), we multiply the force with
an infinitesimal change in the position dr. That infinitesimal displacement takes an infinitesimal amount of time dt, which is related

to the displacement by the instantaneous velocity v: dr = vdt . We can now calculate the work necessary to accelerate from zero to

a finite speed:
d d 1
K:/F-drz/m—v-vdt:/mv-—vdt:/mv-dv: E/d(v-v)z—m’v2 (3.2.2)
dt dt 2 2

where we used that the dot product is commutative and the fact that the integral over the derivative of a function is the function
itself.

Of course, now that we know that the kinetic energy is given by Equation (3.2.1), we no longer need to use a complicated integral
to calculate it. However, because the kinetic energy is ultimately given by this integral,which is equal to a net amount of work, we
arrive at the following statement, sometimes referred to as the Work-energy theorem: the change in kinetic energy of a system
equals the net amount of work done on or by it (in case of increase/decrease of K):

AK = Why (3.2.3)

Figure 3.2.1: Examples of high power resulting in high kinetic energy. (a) Running cheetah, the fastest land animal, which can
reach speeds over 100 km/h in 2-3 seconds, corresponding to an enormous increase in its kinetic energy [10], CC BY-SA 3.0. (b)
Allyson Felix running second in the women’s 4x 400 relay of the 2012 London Summer Olympics [11], CC BY-SA 3.0. (c) Robert
Garrett preparing to throw the discus at the 1896 Athens Summer Olympics [12]. Unlike the runners, the goal of discus throwing is
to maximize the distance, not the speed, but to get the largest possible distance, the discus must still get the maximal possible
kinetic energy.
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3.3: Potential Energy

We already encountered conservative forces in Section 3.1. The work done by a conservative force is (by definition) path-
independent; that means that in particular the work done when moving along any closed path? must be zero:

y{F~dr:O (3:3.1)

For a conservative force, we can thus define a potential energy difference between points 1 and 2 as the work necessary to move an
object from point 1 to point 2:

AUy, = f/ F-dr (3.3.2)

Note the minus sign in the definition - this is a choice of course, and you’ll see below why we made this choice. Note also that the
potential energy is defined only between two points. Often we will choose a convenient reference point and calculate the potential
energy at any other point with respect to that point. The reference point is typically either the origin or infinity, if the force happens
to be zero at either of these. Let’s suppose we have set such a point, and know the potential energy difference with that point at any
other point in space- this defines a (scalar) function U(r). If we now want to know the force acting on a particle at 7, all we need to
do is take the derivative of U(r) - that is the gradient in three dimensions (which simplifies to the ordinary derivative in one
dimension):

F(r)=—VU(r) (3.3.3)

Equation 3.3.3 is extremely useful, as it gives us a means to calculate the force, which is a vector quantity, from the potential
energy function, which is a scalar quantity - and therefore much simpler to work with. For instance, since energies are scalars, they
can simply be added, as we’ll do in the next section, whereas for forces you need to do vector addition. Equation 3.3.3 also reflects
that we are free to choose a reference point for the potential energy, since the force does not change if we add a constant to the
potential energy.

Gravitational Potential Energy

We saw in Section 2.2.2 that for low altitudes, the gravitational force is given by F; =mg, where g is a vector of constant
magnitude g ~ 9.815—”2 and always points down. Therefore, the gravitational force does no work when you move horizontally, and
if you first move up and then the same amount down again, it doesn’t do any net work either, as the two contributions exactly
cancel. Fy is therefore an example of a conservative force, and we can define and calculate the gravitational potential energy U,
between a point at height 0 (our reference point) and one at height h:

z=h
Ug(h) = — /:0 m(—g)dz =mgh (3.3.4)

Note that by choosing a minus sign in the definition of the potential energy, we end up with a positive value of the energy here.

What about larger distances, i.e., Newton’s law of gravity, Equation 2.2.3? Well, there the distances are measured radially, so any
movement perpendicular to the radial direction doesn’t matter, and if you move out and back in again, the net work done is zero, so
by the same reasoning as before we again have a conservative force. This force vanishes at infinity, so it makes sense to set that as
a reference point - though notice that that will make our potential energy always negative in this case:

GMm

Us(r) = —— (3.3.5)

where 1 is the distance between m and M, and M sits at the origin. Of course we can also calculate gravitational potential
differences between two distances r; and 79 from M:

1 1
AUg (r1,72) = GMm (———) (3.3.6)
T T2

https://phys.libretexts.org/@go/page/17377



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17377?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/03%3A_Energy/3.03%3A_Potential_Energy
https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Vector_Calculus/1%3A_Vector_Basics/2%3A_The_Gradient

LibreTextsw

Emmy Noether (1882-1935) was a German mathematician, who made key contribution both to the development of abstract
algebra and to ideas in theoretical physics. In physics, she uncovered a deep connection between symmetry and conservation
laws (now known as Noether’s theorem, considered by many as the most important theorem for the development of modern
physics): for every continuous symmetry of a system, there exists a conserved quantity. A continuous symmetry is one that
leaves a system invariant for an arbitrarily large given transformation; for example,the rotation of a circle under any angle.
Applications of Noether’s theorem include conservation of energy (corresponding to invariance under time translation, i.e., it
doesn’t matter where you set t=0, Section 3.4), conservation of momentum (invariance under space translation, i.e., it
doesn’tmatter where you put the origin, Section 4.2) and conservation of angular momentum (invariance under space rotation,
i.e., it doesn’t matter in which direction you choose your x-axis, Section 5.7). Similar conservation laws are found in special
and general relativity, quantum mechanics, and quantum field theory. Unfortunately, even in the early 20th century, women
were still excluded from most academic positions. Noether therefore initially worked for free at the university of Erlangen,
getting a paid position in Gottingen in 1915 at the invitation of Hilbert and Klein,who had both been convinced by the quality
of her work. Her fame grew through the 1910s and 1920s, gaining worldwide recognition. Due to her Jewish descent, she was
dismissed from her academic position by the Nazi government in 1933, and moved to the United States, where she died two
years later at age 53. Various institutes and scholarship programs, mostly in Germany, are now named in her honor.

Figure 3.3.1: Emmy Noether [13].

Spring Potential Energy

Like the gravitational force, the Hookean spring force (Equation 2.2.1) also depends on displacement alone, and by the same
reasoning is conservative (notice the pattern?). Calculating its associated potential energy is straight-forward, and taking the
equilibrium position of the spring as the reference point, we find:

Us(z) = %kzz (3.3.7)

The minus sign in Hooke’s Law gives us a positive spring potential energy. Note that x stands for displacement here; as we only
consider one-dimensional springs the 1D-version is sufficient.

General Conservative Forces

In the case of the gravitational and spring force it was easy to reason that they had to be conservative. It is also easy to see that the
friction force is not conservative: if you take a longer path, you need to do more net work against friction, which you can moreover
never recover as mechanical energy. For more complicated systems,especially in three dimensions, it may not be so easy to see
whether a force is conservative. Fortunately, there is an easy test you can perform: if the curl of a force is zero everywhere, it will
be a conservative force, or expressed mathematically:

VXxF=0 @fp-drzo & F=-VU (3.3.8)

It is straightforward to show that if a force is conservative, its curl must vanish: a conservative force can be written as the gradient
of some scalar function U(x), and V x VU(z) =0 for any function U(z), as you can easily check for yourself. The proof the
other way around is more complicated, and can be found in advanced mechanics textbooks.
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2 The integral sign with the circle in Equation (3.3.1) represents an integral over a closed path.

This page titled 3.3: Potential Energy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema
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3.4: Conservation of Energy

Work, kinetic energy and potential energy are all quantities with the same dimension - so we can do arithmetic with them. One
particularly useful quantity is the total energy E of a system, which is simply the sum of the kinetic and potential energy:

E=K+U (3.4.1)

& Theorem 3.4.1: Law of Conservation of Energy

If all forces in a system are conservative, the total energy in that system is conserved.

Proof. For simplicity, we’ll look at the 1D case (3D goes analogously). Conserved means not changing in time, so in order to prove
the statement, we only need to calculate the time derivative of E and check that it is always zero.

B _dK  dU

dt  dt  dt
_dGm?) | U de
B dt dz dt

dv
= ——F
mvdt v

dv
= — F— —_—
( mdt)v

=0 by Newton’s second law.

Conservation of energy means that the total energy of a system cannot change, but of course the potential and kinetic energy can -
and by conservation of total energy we know that they get converted directly into one another. Exploiting this fact will allow us to
analyze and easily solve many problems in classical mechanics - this conservation law is an immensely useful tool.

Note that conservation of energy is not the same as the work-energy theorem of Section 3.2. For the total energy to be conserved,
all forces need to be conservative. In the work-energy theorem, this is not the case.You can therefore calculate changes in kinetic
energy due to the work done by non-conservative forces using the latter.

This page titled 3.4: Conservation of Energy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon
Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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3.5: Energy Landscapes

In the previous section we proved that the total energy is conserved. In the section before that, we looked at potential energies.
Typically, the potential energy is a function of your position in space. When we plot it as a function of spatial coordinates, we get
an energy landscape, measuring an amount of energy on the vertical axis. Of course we can also plot the total energy of the system
- and since that is conserved, it is the same everywhere, and thus becomes a horizontal line or plane. Because kinetic energy cannot
be negative, any point where the potential energy is higher than the total energy is not allowed: the system cannot reach this point.
When the potential energy equals the total energy, the kinetic energy (and thus the speed) has to be zero. Whenever the potential
energy is lower than the total energy, there is a positive kinetic energy and thus a positive speed.

Uix)

Figure 3.5.1: An example of a potential energy landscape. In this figure, the total energy would be represented by a horizontal line;
the kinetic energy by the distance between the potential and total energy. Equilibrium points (dots) occur at extrema of the potential
energy,when its derivative (the force) is zero. The green dots indicate unstable equilibrium points (maxima, where the second
derivative is negative), the orange points metastable equilibria (local minima) and the red point the single globally stable
equilibrium of this system.
Probably the simplest energy landscape is that of the harmonic oscillator (mass on a spring) - it’s a simple parabola. The point at
which the horizontal line representing the total energy crosses the parabola corresponds to the extrema of the oscillation: these are
its turning points. The bottom of the parabola is its mid-point, and you can immediately see that that’s where the kinetic energy

(and thus the speed) will be highest.

Of course you can have more complex energy landscapes than that. In particular, you can have a landscape with multiple extrema,
see for example Figure 3.5.1 A particle that is being acted upon by forces described by this potential energy, follows a trajectory in
this landscape, which can be visualized as a ball rolling over the hills and valleys of the landscape. Think back to the harmonic
oscillator example. If we let go of a ball in a parabolic vase at some point on the slope, the ball will roll down and pick up speed,
then roll up the opposite slope and lose speed, until it reaches the same height where its speed will again be zero. The same is true
in more complicated landscapes. Particularly interesting are local maxima. If you put a ball exactly on top of one of them, it will
stay there - it is a fixed point, but an unstable one, as any arbitrarily small perturbation will push it down. If you let go of a ball at a
level above a local maximum, it may hop over it to the next minimum,but if your initial position (your initial energy) was too low,
your ball can get stuck oscillating about a local minimum - a metastable point.

Energy landscapes are even useful when the total energy is not conserved - for example because of friction terms. Friction causes
energy to dissipate from the system, which is equivalent to having your ball move in the landscape with friction. For low friction,
your ball will oscillate, but get less high every time, until it comes to rest at the minimum. For high friction, it won’t even oscillate,
but just get to the minimum - exactly what an over damped system in real life does.

Example 3.5.1: Worked example: the Lennard-Jones Potential

The Lennard-Jones potential energy is a commonly used model to describe the interactions between uncharged atoms and
molecules. This potential energy can be written in two equivalent ways:

0= = =) ()]
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where 7 is the distance between the atoms or molecules, and A, B, €, and o are positive constants.

a. Find the dimensions of A, B, ¢, and o.

b. Express € and o in A and B.

c. Sketch the potential (in its second form) as a function of %, and use this sketch to give a physical interpretation of £ and o.
d. Does the Lennard-Jones potential lead to attractive or repulsive forces at short distances? And what about long distances?
e. Find all equilibrium points of this potential energy, and determine their stability.

Solution
0 1 ' 2 o
Figure 3.5.2: Sketch of the Lennard-Jones potential energy.
a [U]:Energy:>[U]:M><#><L—]\;{LZ2
[A] = Energy x Length ' — [A4] = MT—L22
ML?

Because the powers of the terms ((%) 12) and ((%)6) are different, while we add them together, they haveto be

dimensionless, so

0] = Land [¢] = [U] = ]‘ﬁ

b. 4e0'? = A and 4e0b = B

1/6
4=t —o=(4)

By substituting o in the expressions for either A or B we can derive an expression for €:
406% =B

_ 2 _ B

deA=B"=e=";

c. (c) Figure 3.5.2. Interpretation:<is a measure for the depth of the potential well.zsets the length scale andtherefore the
position of the equilibrium point.
d. Method 1: We calculate the force as minus the derivative of the potential energy:

12 6
po B (s o)

or ri3 r7

For small r we have 713 >> r~7  so F is positive and therefore repulsive. Conversely, for larger we have 713 << =7 so
F is negative and therefore attractive. Method 2: Use the sketch in (c) to to see that the slope of the potential is negative for
small r, which implies a repulsive force, and the slope of the potential is positive for larger, which implies an attractive
force.

e. For an equilibrium point we have
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oUu 126" 60° 6 (20°
0:_:45( g _L) :24£<L_1>
or
so there is only one equilibrium point, at
Pz = 21/64

To determine the stability at this point, we consider the second derivative of U(r):

z 42 1
6(2] =4€(—— 56 )=—36-22/3%<0
or r=req 24/30'2 27/30'2 o

0.6 0.12
=A4¢ <42r_8 — 156ﬁ)

which means that the equilibrium point is stable. Alternatively, we could have determined the stability by considering the
graph drawn at (c), from which we can see that the equilibrium point corresponds toa global minimum of the potential
energy and hence is stable.

T=Teq
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3.E: Energy (Exercises)
3.1

a. Show that, if you ignore drag, a projectile fired at an initial velocity vy and angle # has a range R given by

b. A target is situated 1.5 km away from a cannon across a flat field. Will the target be hit if the firing angle is 42° and the
cannonball is fired at an initial velocity of 121 m/s? (Cannonballs, as you know,do not bounce).

¢. To increase the cannon’s range, you put it on a tower of height h¢. Find the maximum range in this case, as a function of the
firing angle and velocity, assuming the land around is still flat.

3.2 You push a box of mass m up a slope with angle 8 and kinetic friction coefficient x. Find the minimum initial speed v you must
give the box so that it reaches a height h.

3.3 A uniform board of length L. and mass M lies near a boundary that separates two regions. In region 1, the coefficient of kinetic
friction between the board and the surface is p;, and in region 2, the coefficient is u2. Our objective is to find the net work W done
by friction in pulling the board directly from region 1 to region 2, under the assumption that the board moves at constant velocity.

Before L
”I_ .uz
region 1 region 2
During |i|
i, My
After
H H,

a. Suppose that at some point during the process, the right edge of the board is a distance x from the boundary, as shown. When
the board is at this position, what is the magnitude of the force of friction acting on the board, assuming that it’s moving to the
right? Express your answer in terms of all relevant variables (L, M, g, x, 1, and p2).

b. As we’ve seen in Section 3.1, when the force is not constant, you can determine the work by integrating the force over the
displacement, W = [ F(z)dz . Integrate your answer from (a) to get the net work you need to do to pull the board from region
1 to region 2.

3.4 The government wishes to secure votes from car-owners by increasing the speed limit on the highway from 120 to 140 km/h.
The opposition points out that this is both more dangerous and will cause more pollution. Lobbyists from the car industry tell the
government not to worry: the drag coefficients of the cars have gone down significantly and their construction is a lot more solid
than in the time that the 120 km/h speed limit was set.

a. Suppose the 120 km/h limit was set with a Volkswagen Beetle (c¢; = 0.48) in mind, and the lobbyist’scar has a drag coefficient
of 0.19. Will the new car need to do more or less work to maintain a constant speed of 140 km/h than the Beetle at 120 km/h?

b. What is the ratio of the total kinetic energy released in a full head-on collision (resulting in an immediate standstill) between
two cars both at 140 km/h and two cars both at 120 km/h?

c¢. The government dismisses the opposition’s objections on safety by stating that on the highway, all cars move in the same
direction (opposite direction lanes are well separated), so if they all move at 140 km/h, it would be just as safe as all at 120
km/h. The opposition then points out that running a Beetle (those are still around) at 120 km/h is already challenging, so there
would be speed differences between newer and older cars. The government claims that the 20 km/h difference won’t matter, as
clearly even a Beetle can survive a 20 km/h collision. Explain why their argument is invalid.

3.5 Nuclear fusion, the process that powers the Sun, occurs when two low-mass atomic nuclei fuse together to make a larger
nucleus, releasing substantial energy. Fusion is hard to achieve because atomic nuclei carry positive electric charge, and their
electrical repulsion makes it difficult to get them close enough for the short-range nuclear force to bind them into a single nucleus.
The figure below shows the potential-energy curve for fusion of two deuterons (heavy hydrogen nuclei, consisting of a proton and
a neutron).The energy is measured in million electron volts (MeV,1leV =1.6- 107°J), a unit commonly used in nuclear
physics, and the separation is in femtometers (1 fm = 10~5m).
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a. Find the position(s) (if any) at which the force between two deuterons is zero.

b. Find the kinetic energy two initially widely separated deuterons need to have to get close enough to fuse.

c. The energy available in fusion is the energy difference between that of widely separated deuterons and the bound deutrons after
they’ve ‘fallen’ into the deep potential well shown in the figure. About how big is that energy?

d. Determine whether the force between two deuterons that are 4 fm apart is repulsive, attractive, or zero.

3.6 A pigeon in flight experiences a drag force due to air resistance given approximately by F' = bv?, where v is the flight speed
and b is a constant.

a. What are the units of b?
b. What is the largest possible speed of the pigeon if its maximum power output is P?
c. By what factor does the largest possible speed increase if the maximum power output is doubled

3.7

a. For which value(s) of the parameters «, 8, and -y is the force given by

F= (a:3y3 +az?, Bzty?, 'y:z:z) (3.E.1)
conservative?
b. Find the force for the potential energy given by U(z, y, z) = z—zy -

3.8 A point mass is connected to two opposite walls by two springs, as shown in the figure. The distance between the walls is 2L.
The left spring has rest length [; = % and spring constant k; = k, the right spring has rest length [y = % and spring constant
ko =3k.

2L

o

x=1L

a. Determine the magnitude of the force acting on the point mass if it is at x=0.

b. Determine the equilibrium position of the point mass.

c. Find the potential energy of the point mass as a function of x. Use the equilibrium point from (b) as your point of reference.

d. If the point mass is displaced a small distance from its equilibrium position and then released, it will oscillate. By comparing the
equation of the net force on the mass in this system with a simple harmonic oscillator, determine the frequency of that
oscillation. (We’ll return to systems oscillating about the minimum of a potential energy in Section 8.1.4, feel free to take a
sneak peak ahead).

3.9 A block of mass m=3.50 kg slides from rest a distance d down a frictionless incline at angle § = 30.0° ,where it runs into a
spring of spring constant 450 N/m. When the block momentarily stops, it has com-pressed the spring by 25.0 cm.

a. Find d.
b. What is the distance between the first block-spring contact and the point at which the block’s speed is greatest?

3.10 Playground slides frequently have sections of varying slope: steeper ones to pick up speed, less steep ones to lose speed, so
kids (and students) arrive at the bottom safely. We consider a slide with two steep sections (angle o) and two less steep ones (angle
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B). Each of the sections has a width L. The slide has a coefficient of kinetic friction p.

iﬁn_

L L L L

a. Kids start at the top of the slide with velocity zero. Calculate the velocity of a kid of mass m at the end of the first steep section.

b. Now calculate the velocity of the kid at the bottom of the entire slide.

c. f L=1.0 m, & = 30° and g = 0.5, find the minimum value 8 must have so that kids up to 30 kg can enjoy the slide (Hint: what
is the minimum requirement for the slide to be functional)?

d. A given slide has & = 30°, 8 =20°, and . = 0.5. A young child of 10 kg slides down, while its cousin of 20 kg sits at the
bottom. When the sliding kid reaches the end, the two children collide, and together slide further over the ground. The
coefficient of kinetic friction with the ground is 0.70. How far do the two children slide before they come to a full stop?

3.11 In this problem, we consider the anharmonic potential given b

U(z) = ($*$0)2+§($*$0)3 (3.E.2)

| e

where a, b, and z are positive constants.

a. Find the dimensions of a, b, and z.

b. Determine whether the force on a particle at a position £ >>> x is attractive or repulsive (taking the origin as your point of
reference).

c. Find the equilibrium point(s) (if any) of this potential, and determine their stability.

d. For b=0, the potential given in Equation (3.24) becomes harmonic (i.e., the potential of a harmonic oscillator), in which case a
particle that is initially located at a non-equilibrium point will oscillate. Are there initial values for x for which a particle in this
anharmonic potential will oscillate? If so,find them,and find the approximate oscillation frequencys; if not, explain why not.
(NB: As the problem involves a third order polynomial function, you may find yourself having to solve a third order problem.
When that happens, for your answer you can simply say: the solution x to the problem X).

3.12 After you have successfully finished your mechanics course, you decide to launch the book into an orbit around the Earth.
However, the teacher is not convinced that you do not need it anymore and asks the following question: What is the ratio between
the kinetic energy and the potential energy of the book in its orbit?

Let m be the mass of the book, Mg and Rg the mass and the radius of the Earth respectively. The gravitational pull at distance r
from the center is given by Newton’s law of gravitation (Equation 2.2.3):

mM@
2

Fy(r)=—-G 7 (3.E.3)

r

a. Find the orbital velocity v of an object at height h above the surface of the Earth.

b. Express the work required to get the book at height h.

c¢. Calculate the ratio between the kinetic and the potential energy of the book in its orbit.

d. What requires more work, getting the book to the International Space Station (orbiting at h=400 km)or giving it the same speed
as the ISS?

3.13 Using dimensional arguments, in Problem 1.4 we found the scaling relation of the escape velocity (the minimal initial velocity
an object must have to escape the gravitational pull of the planet/moon/other object it’s on completely) with the mass of the radius
of the planet. Here, we’ll re-derive the result, including the numerical factor that dimensional arguments cannot give us.

a. Derive the expression of the gravitational potential energy,Ug, of an object of mass m due to a gravitational force Fy given by
Newton’s law of gravitation (Equation 2.2.3)

GmM
2

F,=— 7 (3.E.4)

T

Set the value of the integration constant by U; — 0 as 7 — oo
b. Find the escape velocity on the surface of a planet of mass M and radius R by equating the initial kinetic energy of your object
(when launched from the surface of the planet) to the total gravitational potential energy it has there.
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3.14 A cannonball is fired upwards from the surface of the Earth with just enough speed such that it reaches the Moon. Find the
speed of the cannonball as it crashes on the Moon’s surface, taking the gravity of both the Earth and the Moon into account. Table
B.3 contains the necessary astronomical data.

3.15 The draw force F(x) of a Turkish bow as a function of the bowstring displacement x (for x \gt 0) is approximately given by a

quadrant of the ellipse
F(z)\® z+d\?
(F( )) +< = ) =1 (3.E.5)

In rest, the bowstring is at x=0; when pulled all the way back, it’s at x=-d.

a. Calculate the work done by the bow in accelerating an arrow of mass m=37 g, for d=0.85 m, and Fp,,x=360 N.

b. Assuming that all of the work is converted to kinetic energy of the arrow, find the maximum distance the arrow can fly.Hint:
which variable can you control when shooting? Maximize the distance with respect to that variable.

c. Compare the result of (b) with the range of a bow that acts like a simple (Hookean) spring with the same values of Fy,x and d.
How much further does the arrow shot from the Turkish bow fly than that of the simple spring bow?

3.16 A massive cylinder with mass M and radius R is connected to a wall by a spring at its center (see figure).The cylinder can roll
back-and-forth without slipping.

a. Determine the total energy of the system consisting of the cylinder and the spring.

b. Differentiate the energy of problem (16a) to obtain the equation of motion of the cylinder and spring system.

c. Find the oscillation frequency of the cylinder by comparing the equation of motion at (16b) with that of a simple harmonic
oscillator (a mass-spring system).

3.17 A small particle (blue dot) is placed atop the center of a hemispherical mount of ice of radius R (see figure). It slides down the
side of the mount with negligible initial speed. Assuming no friction between the ice and the particle, find the height at which the
particle loses contact with the ice.

Hint: To solve this problem, first draw a free body diagram, and combine what you know of energy and forces.
3.18 Pulling membrane tubes

The (potential) energy of a cylindrical membrane tube of length L and radius R is given by
e (R, L) = 2nRL &1 3.E.6
tube (B, L) =2 Eﬁ"‘” (3.E.6)

Here « is the membrane’s bending modulus and ¢ its surface tension.
a. Find the dimensions of the bending modulus and the surface tension.
b. Find the forces acting on the tube along its radial and axial direction.
¢. Membrane tubes are often pulled by membrane motors pulling along the axial direction, as sketched in Figure 3.5. For that case,
we add the work done by the motors to the total energy of the tube, so we get:

1
Evabe (R, L) =21RL (g =t 0) ~FL (3.E.7)

Show that for a stable tube, the motors need to exert a force of magnitude F' = 27v/2k0
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d. Can the force of (c) be considered to be an effective spring force? If so, find its associated spring constant. If not, explain why
not.

s
wwwwwwwwwff@

—F =
S3

tube

AN
bt A2

microtubule

fdepaﬂure

Figure 3.E. 1: Cartoon of molecular motors together pulling a membrane tube.
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4.1: Center of Mass

Center of Mass of a Collection of Particles

So far we’ve only considered two cases - single particles on which a force is acting (like a mass on a spring), and pairs of particles
exerting a force on each other (like gravity). What happens if more particles enter the game? Well, then we have to calculate the
total force, by vector addition, and total energy, by regular addition. Let’s label the particles with a number ¢, then the total force is
given by:

" d? (X, MaTa d
Ftotal :ZFa:Zmara:M@ (T) :M@Tcm (411)
a a

where we’ve defined the total mass ) ., m, and the center of mass
1
Tem = M;mara (412)

Center of Mass of an Object

Equation (4.1.2) gives the center of mass of a discrete set of particles. Of course, in the end, every object is built out of a discrete
set of particles, its molecules, but summing them all is going to be a lot of work. Let’s try to do better. Consider a small sub-unit of
the object of volume dV(much smaller than the object, but much bigger than a molecule). Then the mass of that sub-unit is
dm = pdV , where p is the density (mass per unit volume) of the object. Summation over all these masses gives us the center of
mass of the object, by Equation (4.1.2). Now taking the limit that the volume of the sub-units goes to zero, this becomes an infinite
sum over infinitesimal volumes - an integral. So for the center of mass of a continuous object we find:

Tem :% Vp-rdV (4.1.3)
Note that in principle we do not even need to assume that the density p is constant - if it depends on the position in space, we can
also absorb that in the discussion above, and end up with the same equation, but now with p(r). That will make the integral a lot
harder to evaluate, but not necessarily impossible. Also note that the total mass M of the object is simply given by p- V', where V
is the total volume, if the density is constant, and by fV p(r)dV otherwise. Therefore, if the density is constant, it drops out of
Equation (4.1.3), and we can rewrite it as

1
Tem = 37 / rdV  for constant density p (4.1.4)
v

Unfortunately, many textbooks introduce the confusing concept of a infinitesimal mass element dm, instead of a volume element
dV with mass pdV'. This strange habit often throws students off, and the concept is wholly unnecessary, so we won’t adapt it here.

Equation (4.1.3) holds for any continuous object, but it might be confusing if you consider a linear or planar object - as you may
wonder how the density p and volume element dV are defined in one and two dimensions. There are two ways out. One is to say
that all physical objects are three-dimensional - even a very thin stick has a cross section. If you say that cross section has area A
(which is constant along the stick, or the thin stick approximation would be invalid), and the coordinate along the stick is x, the
volume element simply becomes dV=Adx, and the integral in Equation (4.1.3) reduces to a one-dimensional integral. You can
approach two-dimensional objects in the same way, by giving them a small thickness §z and writing the volume element as
dV = d0zdA . Alternatively, you can define one- and two-dimensional analogs of the density: the mass per unit length A and mass
per unit area o, respectively. With those, the one- and two-dimensional equivalents of equation (4.1.3) are given by

1 [k 1
ZTem = M/ Azdz, and 7oy = M/Ap-rdA (4.1.5)
0

where M is still the total mass of the object.
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4.1.3. Worked example: center of mass of a solid hemisphere

N

-[ 4 =dz

Figure 4.1.1: Coordinate system for the calculation of the center of mass for a solid hemisphere.
Solution

By symmetry, the center of mass of a solid sphere must lie at its center. The center of mass of a hemisphere cannot be guessed
so easily, so we must calculate it. Of course, it must still lie on the axis of symmetry, but to calculate where on that axis, we’ll
use Equation 4.1.5. To carry out the integral, we’ll make use of the symmetry the system still has, and chop our hemisphere up
into thin slices of equal thickness dz, see Figure 4.1.1. The volume of such a slice will then depend on its position z, and be
given by dV = mr(z)2dz, where r(z) is the radius at height z. Putting the origin at the bottom of the hemisphere, we easily
obtain 7(2) = V. R? — 2% , where R is the radius of the hemisphere. The position vector r in Equation 4.1.5 simply becomes (0,
0, z), so we get:

1 = 3 [1 1,]0% 3
Zom = 5 / zm (R? —2%) dz = — [—zsz — —z4] =-=-R (4.1.6)
smR? Jo 2R° |2 4 1, 8
The center of mass of the solid hemisphere thus lies at r.,, = (0, 0, %

This page titled 4.1: Center of Mass is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU
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4.2: Conservation of Momentum

In Equation (4.1.1), what is the total force acting on all the particles? Well, that’s the sum of all the forces the particles exert on
each other, plus all external forces: Fiotal = . Fiint i + D _; Fext i - Now Newton’s third law of motion tells us that the internal
forces come in opposite pairs, so when we sum them, they all cancel, and the total net force acting on the particles is equal to the
sum of the external forces acting on the particles.Therefore, by Equation (4.1.1), the center of mass of a system of particles obeys
Newton’s second law of motion. What about the momentum of the center of mass? Like the force, the total momentum of the
system of the system is given by the vector sum of the individual particle momenta:

) d d
Piotal = Zpa = Zmara =% Zmara = EMrcm (4.2.1)

so the total momentum of the system equals that of the center of mass. Moreover, as long as the mass of the system is conserved,
we can rewrite Equation (4.1.1) as

dP total
dit

Not only does the center of mass of a system of particles obey Newton’s second law of motion, its total momentum does too.
Moreover, unlike in the single-particle case, Equation (4.2.2) has an important consequence for the case that there is no external
force acting on the system. For one particle, that would simply mean that the momentum does not change - Newton’s first law of
motion. But for multiple particles, Equation (4.2.2) tells us that no external forces means that the total momentum does not change.
We have therefore arrived at our second conservation law:

Ftotal - (422)

Theorem 4.1 (Law of conservation of momentum). When no external forces act on a system of particles, the total momentum of the
system is conserved.

We derived the law of conservation of momentum by applying both Newton’s second and third laws of motion, so like
conservation of energy, it is not an independent result, but follows from our axioms. Note that the law allows for the momenta of
the individual particles in the system to change, as long as their total stays the same - this is what happens when you play billiards,
and why the number of balls bouncing in a Newton’s cradle is fixed.

This page titled 4.2: Conservation of Momentum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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4.3: Reference Frames

Center of Mass Frame

The center of mass need not be fixed in space, so it can have a nonzero velocity, which of course is simply given by ven = 7 ¢, -
For each of the particles in a multi-particle system, we can decompose its velocity by writing it as the sum of the center of mass
velocity and a velocity relative to the center of mass:

Vo = Uem + Va,rel (431)

In many applications, the information is in the velocity component relative to the center of mass. After all, conservation of
momentum implies that for a system with no external forces acting on it, the center of mass velocity cannot change, even if all the
individual momenta do change (as happens in collisions). Therefore, it is often convenient to analyze your system in a frame that
moves with the center of mass, known (unsurprisingly), as the center of mass frame. In this frame, the center of mass velocity is
identically zero, and again because of conservation of momentum, all other velocities in this frame must sum to zero. The ‘real-
world’ frame with nonzero center of mass velocity is referred to as the lab frame.

Galilean Transformations and Inertial Frames

As Equation (4.3.1) shows, if you know a particle’s velocity in the center of mass frame, you can easily calculate the velocity in the
lab frame by adding the velocity of the center of mass. Going the other way, to calculate the velocity in the center of mass frame,
you subtract v, from the velocity in the lab frame. Moreover, if the center of mass moves at constant velocity, we can also easily
relate positions in both frames. If we denote coordinates in the lab frame by r and those in the center of mass frame by r', we readily
obtain:

r=74ovgt (4.3.2)
v=v+vem (4.3.3)

Equation (4.3.2) is an example of a Galilean transformation between frames of reference (here the lab frame and the center of mass
frame). It actually holds for any pair of reference frames that move with constant velocity with respect to each other. Such frames
of reference are known as inertial frames if Newton’s first law of motion holds in them; by Newton’s second law, if one of the
frames is an inertial frame, then the one obtained from it by a Galilean transformation (i.e., one moving at constant velocity with
respect to the first frame) is also an inertial frame. The reason for this is that a constant velocity plays no role in Newton’s second
law, as it relates the derivative of the velocity (i.e., the acceleration) to a force. Consequently, not only is Newton’s first law of
motion valid in both inertial frames - all laws of physics are the same in two such frames. This fact is known as the principle of
relativity. It does not apply to, for example, frames that rotate with respect to each other, as we’ll see in Chapter 7. Moreover,
although the principle of relativity is universally valid (it is in fact one of the two basic assumptions behind Einstein’s theory of
relativity), the Galilean transformations are not.They break down at velocities that approach the speed of light, as we’ll explore in
detail in Part II.

Kinetic Energy of a Collection of Particles

We’ve established above that both the total momentum and energy are conserved in closed systems, but the components can of
course change. Momentum can be transferred from one particle to another, and so can (kinetic) energy; moreover kinetic energy
can be generated from potential energy. Unfortunately, unlike momentum, the kinetic energy of a collection of particles does not
equal that of the center of mass - this is because kinetic energy depends quadratically rather than linearly on the velocity. The total
kinetic energy does of course equal the sum of the individual particles’ kinetic energies. Moreover, here too the decomposition (
4.3.1) is useful:

1
K= Z Ema (Ucm +va,rel) . (vcm +va,rel) (434)
a

-y

«

N | =

1
mavgm + Z MqVem * Va,rel T Z Emavi,rel (435)
a a
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= Koo+ Kin (4.3.6)

Because the center of mass velocity is the same for all particles, it can be taken out of the sum in equation (4.3.5). Therefore, the
first term equals %M v2n = Ko , and in the second term we end up with the sum overall velocities relative to the center of mass -
which is zero. We find that the total kinetic energy of a collection of particles equals the kinetic energy of the center of mass plus

the total internal kinetic energy - which can change in both collisions and when potential energy gets converted into kinetic energy
(or vice versa).

This page titled 4.3: Reference Frames is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema
(TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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4.4: Rocket Science

Although designing a rocket that will follow a desired trajectory (say to Ceres, Pluto, or Planet Nine) with great accuracy is an
enormous engineering challenge, the basic principle behind rocket propulsion is remarkably simple. It essentially boils down to
conservation of momentum, or, equivalently, the observation that the velocity of center of mass of a system does not change if no
external forces are acting on the system. To understand how a rocket works, imagine! the following experiment: you sit on a
initially stationary cart with a large amount of small balls. You then pick up the balls one by one, and throw them all in the same
direction with the same (preferably high) speed (relative to yourself and thus the cart). What will happen is that you,the cart, and
the remaining balls slowly pick up speed, in the opposite direction from the one you’re throwing the balls in. This is exactly what a
rocket engine does: it thrusts out small particles (molecules, actually) at high velocities, gaining a small velocity itself in the
opposite direction. Note that this is completely different from most other engines, which drive the rotation of wheels (that depend
on friction to work) or propellers(that depend on drag to work).

Rocket Equation

To understand what happens in our thought experiment, let’s first consider the first ball you throw. Let’s call the mass of yourself
plus the cart M, the total mass of the balls m, and the (small) mass of a single ball dm. If you trow the ball with a speed u (with
respect to yourself ), we can calculate your resulting speed in two ways:

1. The center of mass must remain stationary. Let’s putxcmAQ. Before the throw, we then have & a1 dm + Zear (M +m) =0 ,
—udm

(M+m)

2. The total momentum must be conserved. Before the throw, the total momentum is zero, as nothing is moving. After the throw,

whereas after the throw we have —utdm + vea, t(M +m) =0, 0T Veay =

—udm
(M+m) *

we get: Phall +Pcar = —udm + v oy (M +m) . Equating this to zero again gives ve,y =

Now for the second, third, etc. ball, the situation gets more complicated, as the car (including the ball that is about to be thrown) is
already moving. Naturally, the center of mass of the car plus all the balls remains fixed,as does the total momentum of the car plus
all the balls. However, to calculate how much extra speed the car picks up from the n ball, it is easier to not consider the balls
already thrown. Instead, we consider a car(including the remaining balls) that is already moving at speed v, and thus has total
momentum (M=m)v.Throwing the next ball will reduce the mass of the car plus balls by dm, and increase its velocity by
dv.Conservation of momentum then gives:

(M+m)v=M+m—dm)(v+dv)+ (v—u)dm = (M +m)v+ (M +m)dv—udm (4.4.1)
where we dropped the second-order term dmdv. Equation (4.4.1) can be rewritten to
(M +m)dv=wudm (4.4.2)

Note that here both u (the speed of each thrown ball) and M (the mass of yourself plus the car, or the shell of a rocket) are
constants, whereas m changes, ending up at zero when you’ve thrown all your balls. To find the velocity of our car, we can
integrate Equation (4.4.2), but there is an important, and rather subtle, point to consider. The left-hand side of Equation (4.4.2)
applies to the car, but the right-hand side to the thrown ball, with a (positive) mass dm. The mass m of the balls remaining in the
car, however, has decreased by dm,so if we wish to know the final velocity of the car, we need to include a minus sign on the right-
hand side of Equation (4.4.2). Dividing through by M+m and integrating, we then obtain:

M+m0>

7 (4.4.3)

Av=vr — 1y ulog(
where v, is the final velocity of the car, and my the initial total mass of all the balls. Equation (4.4.3) is known as the Tsiolkovsky
rocket equation?.

Konstantin Eduardovich Tsiolkovsky

Konstantin Eduardovich Tsiolkovsky (1857-1935) was a Russian rocket scientist, who is considered to be one of the
pioneers of cosmonautics.Self-taught, Tsiolkovsky became interested in spaceflight both through‘cosmic’ philosopher Nikolai
Fyodorov and science-fiction author Jules Verne and considered the construction of a space elevator inspired by the then newly
built Eiffel tower in Paris. Working as a teacher, he spent much of his free time on research, developing the rocket equation
named after him (Equation 4.4.3) as well as developing designs for rockets, including multi-stage ones. Tsiolkovsky also
worked on designing airplanes and air-ships (dirigibles), but did not get support from the authorities to develop these further.
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He kept working on rockets though, while also continuing as a mathematics teacher. Only late in life did he receive recognition
for his work at home (then the Soviet Union), but his ideas would go on to influence other rocket pioneers in both the Soviet
and American space programs.

Figure 4.4.1: Konstantin Tsiolkovsky [14].

Multi-Stage Rockets

Because of the logarithmic factor in the Tsiolkovsky rocket equation, rockets need a lot of fuel compared to the mass of the object
they intend to deliver (the payload - say a probe, or a capsule with astronauts). Even so, the effectiveness of rockets is limited. A
fuel to payload ratio of 9:1 (already quite high) and an initial speed of zero gives a final speed v =ulog(10) ~ 2.3u, and
increasing the ratio to 99:1 only doubles this result: vf = ulog(100) ~ 4.6w To get around these limitations and give rockets (or
rather their payloads) the speed necessary to leave Earth, or even the solar system, rockets are built with multiple stages -
essentially a number of rockets stacked one upon the next. If these stages all have the same fuel to payload ratio and exhaust
velocity, the final velocity of the payload simply is that of a single stage times the number of stages n: vf = nu log(l + %) . To
see this, consider that the remaining stages are the payload of the current stage. Having multiple stages thus allows rockets to pick
up speed more efficiently, essentially by shedding a part oft he ‘payload’ (casing of an empty stage). For example, the Saturn V
rocket that was used to send the Apollo astronauts to the moon had three stages, plus a small rocket engine on the capsule itself
(used to break moon orbit and send the astronauts back to Earth), see Figure 4.4.2.

https://phys.libretexts.org/@go/page/17385


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17385?pdf

LibreTextsm

Figure 4.4.2: Rockets and related spacecraft that took people to the moon in the late 1960’s and early 1970’s [15]. (a) Aerial view
of a Saturn V rocket on its launch pad. This rocket carries the Apollo 15, the fourth mission to make it to the moon. The three
rocket stages are separated by rings around the engine of the next stage. The total height of the rocket at launch was 110.6 m; it had
a total mass of 2.97million kg, and could take a payload of 140000 kg to low-Earth orbit or a payload of 48600 kg to the moon. (b)
View from the launch tower of the Saturn V carrying Apollo 11 (the famous first mission to the moon in 1969) at ignition. The little
rocket on top was to be used for an emergency escape of the manned module immediately below if anything went wrong at launch.
The manned ‘command module’ is the little conical structure; the cylindrical structure directly below it contained its engine, and
the conical part below that contained the lunar lander (figure d). (c) Jettisoned third stage of the Saturn V rocket that carried the
Apollo 17 mission (the sixth and last(!) to make itto the moon in 1972). The empty space at the front contained the lunar lander
module at launch. (d) Lunar lander of the 1969 Apollo 11 mission, photographed from the command module after separation. This
module contained two rockets: one to slow the descent to the moon on the lower part, and one to return to moon orbit with just the
upper part. The lower part of the lander remains on the moon and was photographed there in 2012 by the Lunar Reconnaisance
Orbiter, an unmanned spacecraft in Moon orbit.

Impulse

When you’re crashing into something, there are two factors that determine how much your momentum changes: the amount of
force acting on you, and the time the force is acting. The product is known as the impulse, which by Newton’s second law equals
the change in momentum:

J=Ap= / F(t)dt (4.4.4)

The specific impulse, defined as I, = , or the impulse per unit mass of fuel, is a measure of the efficiency of jet engines

Mpropellant
and rockets.

L Or carry out, as you please.

2 Though Tsiolkovsky certainly deserves credit for his pioneering work, and he likely derived the equation independently, he was
not the first to do so. Both the British mathematician William Moore in 1813 and the Scottish minister and mathematician William
Leitch in 1861 preceded him.

This page titled 4.4: Rocket Science is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU
Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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4.5: Collisions

Collisions occur when two (or more) particles hit each other. During a collision, those particles exert forces on each other, but in
general, there are no external forces acting on the system consisting of the colliding particles. Consequently, the total momentum of
all particles involved in the collision is conserved. Typically,we know the initial velocities and the masses of the particles, and want
to calculate their final velocities - though of course you could also do it the other way around.

Although the total momentum of colliding particles is conserved, the total (kinetic) energy of all particles typically is not, as
irreversible processes (such as plastic deformations of the particles) occur that are associated with non-conservative forces. In the
special case that kinetic energy is conserved in a collision, we call the collision (totally) elastic. All other collisions are called
inelastic, with the extreme case of a totally inelastic collision, in which the colliding objects stick together.

This page titled 4.5: Collisions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU
Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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4.6: Totally Inelastic Collisions
For the case of two particles colliding totally inelastically, conservation of momentum gives:
m1v; +mavg = (Mmy +m2) vt (4.6.1)

If the masses and initial velocities of the particles are known, calculating the final velocity of the composite particle is thus
straightforward.

4.6.1. Worked Example: Bike Crash

You’re late for class and it’s raining to boot, so you cycle as fast as you possibly can, without paying attention in which
direction you’re going. A classmate, similarly late, comes towards you from a side street that makes an angle ¢ with yours.
When your streets cross, you crash into each other, moving together in a big clutch of people and bikes, see Figure 4.6.1.
Suppose you’re about equally heavy, but you’re the faster biker, with initially twice the speed of your classmate. Find the
velocity (i.e., magnitude and direction) you and your classmate have immediately after the collision.

Figure 4.6.1: Two colliding cyclists.

Solution

Let’s call your (and your classmate’s) mass m, your initial speed 2v (so your classmate’s speed is v), and your combined final
speed vy, with an angle 8 with your initial direction. After the collision you move as one object, so the collision is completely
inelastic. During the collision we have conservation of momentum in both the x and y directions, which gives:

0+vsing =v¢siné (4.6.2)
2v—wvcos¢ = v cosf (4.6.3)
We need to solve for both v¢ and 6. To eliminate 8, we square both (4.6.2) and (4.6.3) and add them, which gives
v} =v?sin® ¢ +0v?(2 —cos ¢)? = v?(5 — 4 cos ¢) (4.6.4)
or vg =v,/5 —4 cos ¢ . To get 6, we divide (4.6.2) by (4.6.3), which gives

We can easily check that these answers make sense when ¢ = 0, which gives vy = v and § = 0, as it should.

This page titled 4.6: Totally Inelastic Collisions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon
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4.7: Totally Elastic Collisions

For a totally elastic collision, we can invoke both conservation of momentum and (by definition of a totally elastic collision) of
kinetic energy. We also have an additional variable, as compared to the totally inelastic case, because in this case the objects do not
stick together and thus get different end speeds. The two equations governing a totally elastic collision are:

myvy i+ Moz = M1V £+ MoUs (4.7.1)
for momentum conservation, and
1 1 1 1
§m1’l}ii+ §m2v§7i = Emlvif—l—amgv%’f (472)

for kinetic energy conservation.

When the collision occurs in one dimension, we can combine equations (4.7.1) and (4.7.2) to calculate the final velocities as
functions of the initial ones. We first rewrite the two equations so that everything associated with particle 1 is on the left, and the
terms for particle 2 are on the right:

mq (Ul,i - ULf) =ma (U27f — 1)271) (473)

and

my (vii —vif) =My (vgyf - v§’i> (4.7.4)
We can expand the terms in parentheses in Equation (4.7.4), which gives:
my (V1 — i) (Vi +v1e) =ma (Vo —va,) (V26 +v25) (4.7.5)
Dividing Equation (4.7.5) by Equation (4.7.3), we get a relation between the velocities alone:
V1T UL =V + Vo (4.7.6)
From Equation (4.7.6) we can isolate v, r and substitute back in (4.7.3) to find v f in terms of the initial velocities:

m1p —mg mo
v+ 2 V2.i 4.7.7
L2, (4.7.7)

V1t =
mi +mo

Naturally, we could just as well have calculated v3 ¢, the equation for which is just (4.7.7) with the 1’s and 2’s swapped:

mq mo — My
v1i+ V2.i 4.7.8
S (4.7.8)

vy r =2
mi +ms

We note that in the limit case that my >> m;, v is hardly affected, and vy f ~ —v1;+2va ¢ .
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4 .8: Elastic Collisions in the COM Frame

Equations (4.7.7) and (4.7.8) give the final velocities of two particles after a totally elastic collision. We did the calculation in the
lab frame, i.e., from the point of view of a stationary observer. We could of course just as well have done the calculation in the
center-of-mass (COM) frame of Section 4.3. Within that frame, as we’ll see below, the relation between the initial and final
velocities in an elastic collision is much simpler than in the lab frame. We will use Equation (4.3.1) to calculate velocities in the
COM frame. For notational simplicity, we’ll work in one dimension, and use an overbar to indicate velocities in the COM frame, so
we get

Vi = Vem + 5 (481)
for each particle 7. The velocity of the center of mass is simply the time derivative of its position. For two particles, it is given by

Vg = AL 22 (4.8.2)
my +my

The velocities of the two particles in the COM frame is then

_ mo mo

= — = ——— — = —— 4.8-3
U1 = U1 —Uem e~ (v1 —v2) el ( )
_ m1 my

e P L S 4.8.4
Vg =V — Ve — (va —v1) e ( )

where v,y =v; —vy =0, — vy s the relative velocity of the two particles®. Note that it does not matter whether we calculate the
relative velocity in the lab or COM frame. Equations (4.8.3) and (4.8.4) have a nice symmetry in their velocity components, but
not in their mass components. The symmetry is more complete if instead of velocities, we consider momenta in the COM frame,
where p =muv:

— — mima
PL=mavL = S Ukl = Hurel (4.8.5)
— — mime
Dy =MV = ———————Urel = —HUrel (486)
mi +mg
where we introduced a new variable p, the reduced mass
myms
_ e 4.8.7
. (4.8.7)

Clearly the total momentum in the center of mass frame is zero* (as it should be), both before and after a collision, and is thus

conserved. To find out what happens with the relative velocity in an elastic collision, we invoke conservation of kinetic energy,
2

which we calculate using K = $muv? = £

m

) ) —2 —2
Py Py Py Po¢

’ — = ’ 4.8.8
2m1 + 2m2 2m1 + 2m2 ( )

27,2 27,2 27,2 27,2
K vrel,i K vrel,i _ K Vrel,f K vrel,f

4.8.9
2m1 2m2 2m1 2m2 ( )
—2 —2
vrel,i :vrel,f (4810)
We find that either v;e1 t = Vrel i, in which case there would be no collision (as nothing changes), or Vyel.f = —rel,i, Which means
that in an elastic collision in the COM frame, the velocities (and momenta) of the colliding particles reverse. We get:
_ _ my ma
V=V ;=—————(V1i—Voi) = —————— Vel 4.8.11
1,f 1,i my +my ( 1,i 2,1) my +my rel,i ( )
_ — my my
Vgt =—Ugj=———(Vgj—V1j) = ——— Vrel i 4.8.12
= == T (i1 = b (1.8.12)

We can of course transform these expressions back to the lab frame by adding the center of mass velocity (4.8.2), which gives
Equations (4.7.7) and (4.7.8), the same as our calculation in the lab frame.
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3 Equations (4.8.3) and (4.8.4) hold in multiple dimensions as well.

4 Since the total momentum in the COM frame is zero, the frame is sometimes also referred to as the zero-momentum frame.
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4.E: Momentum (Exercises)

4.1 Celestial centers of mass We say that the Moon orbits the Earth, because the Earth’s gravity pulls on the Moon, causing it to
orbit. However, by Newton’s third law, the Moon exerts a force back on the Earth.Therefore, the Earth should move in response to
the Moon. Thus a more accurate statement would be that the Moon and the Earth both orbit the center of mass of the Earth-Moon
system. Useful values:
Mg =5.97-10**kg, Rp = 6.37- 10°m, RE orpie = 1.50 - 101t m, My = 7.35 - 102%kg, Ry = 1.74 - 10°m, Ray orpit
=3.84-10%m, Mg =1.99-10%kg, Rg =6.96 - 10°m

a. Find the center of mass of the Earth-Moon system (in an appropriately chosen, and clearly defined,coordinate system). Does
this center of mass lie inside the Earth?

b. Find the location of the center of mass of the Earth-Moon-Sun system during a full Moon.

c. Find the location of the center of mass of the Earth-Moon-Sun system when the Moon is in its first quarter.

4.2 A shell is shot with an initial velocity of 20 m/s, at an angle of 60°with the horizontal. At the top of the trajectory, the shell
explodes into two fragments of equal mass. One fragment, whose speed immediately after the explosion is zero, drops to the
ground vertically. How far from the gun does the other fragment land (assuming no air drag and level terrain)?

4.3 Two cannonballs with masses m; and my are simultaneously fired from two cannons situated a distance L apart.

a. Find the equations of motion for the horizontal and vertical components of the vector describing the center of mass of the
cannonballs.
b. Show that the motion of the center of mass is a parabola through space.

4.4 Center of mass of some solid objects

a. Find the center of mass of an isosceles triangle with a base width w and height h(see figure a).

b. Find the center of mass of a pentagon with five equal sides of length a, but with one triangle missing(see figure b). Hint: use
your result from (a).

c. Find the position of the center of mass of a semicylinder (half of a solid cylinder, i.e., a solid cylinder sliced in two along a
plane containing its symmetry axis). Hint: first calculate the center of mass of half a solid disk.

4.5 A dog (black dot in the sketch below) of mass m stands at the end of a boat of mass M and length L at an initial distance D
from the shore. The dog then walks to the other end of the boat and stops there. Assuming no friction between the boat and the
water, how far is the dog then from the shore? (Hint:what is conserved?).

D

4.6 [For optional Section 4.4] Every point in a tennis match stars with one of the players serving. The most commonly used service
involves the player tossing the ball in the air and hitting it with their racket. To get the ball to move as fast as possible, players
commonly swing the racket to give it a large momentum,and deliver a maximal impulse to the ball.

Figure 4.E.1 shows Serena Williams serving during the 2008 Wimbledon championships. Williams is widely regarded as one of the
best women tennis players and holds the record of most aces (scoring a point from a serve without the opponent touching the ball)
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by a female player at a Grand Slam tournament.

Williams is 175 cm tall. As you can see in the figure, at the top of its trajectory, the ball is about twice Williams’ height above the
ground. Also, as the span of people’s arms is about the same as their height, and the shoulders of an adult are at about 5/6 of their
height, we can estimate Williams’ arms to be about 75 cm long and her shoulders to be at 145 cm above the ground. The distance
between the point where a player holds the racket and where they hit the ball is typically about 40 cm.

Figure 4.E. 1: Serena Williams serving at the 2008 Wimbledon championships [18]

a. Find the speed of the ball coming down at the moment Williams hits it, assuming that she hits it with a fully upward stretched
arm.

b. Williams’s personal record for serve speed (speed of the ball after it was hit by the racket) is 207 km/h. Determine the impulse
she delivered with her racket on the 58.0 g tennis ball as she hit it.

¢. Assuming a typical racket weight of 360 g, calculate the change in speed of the racket from just before to just after Williams hit
the ball.

d. Calculate the magnitude of the force on Williams’ hand at the moment she hits the ball with her racket.

4.7 A 2.75 g bullet embeds itself in a 1.50 kg block, which is attached to a spring of force constant 850 N/m. The maximum
compression of the spring is 4.30 cm.

a. Determine the initial speed of the bullet.
b. Find the time it takes the bullet-block system to come to rest.

4.8 Head-on collision between two balls A ball of mass m has velocity v when it makes a head-on collision with another ball of
mass M that is originally at rest. After the collision the ball of mass m rebounds straight back along its path with 2/3 of its initial
kinetic energy. We assume that the collision is totally elastic.

a. Sketch the situation before and after the collision, indicating directions of velocity, and values (if known, give symbols
otherwise).

b. Write down all applicable conservation laws for this case.

c¢. From the conservation laws, solve for the mass M of the ball that is initially at rest.

d. Also solve for the velocity of that ball after the collision.

4.9 A small ball of mass m is aligned above a larger ball of mass M with a slight separation, and the two are dropped
simultaneously from a height h. Assume the radii of the two balls and the initial separation are negligible compared to h.

a. If the larger ball rebounds elastically from the floor and then the small ball rebounds elastically from the larger ball, what value
of m (as a fraction of M) results in the larger ball stopping when it collides with the small ball?
b. What height does the small ball then reach?
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5.1: Rotation Basics

So far, we’ve been looking at motion that is easily described in Cartesian coordinates, often moving along straight lines. Such kind
of motion happens a lot, but there is a second common class as well: rotational motion. It won’t come as a surprise that to describe
rotational motion, polar coordinates (or their 3D counterparts the cylindrical and spherical coordinates) are much handier than
Cartesian ones'. For example, if we consider the case of a disk rotating with a uniform velocity around its center, the easiest way to
do so is to specify over how many degrees (or radians) a point on the boundary advances per second. Compare this to linear motion
- that is specified by how many meters you advance in the linear direction per second, which is the speed (with dimension L/T).
The change of the angle per second gives you the angular speed!, where a counterclockwise rotation is taken to be in the positive
direction. The angular speed has dimension 1/T, so it is a frequency. It is measured in degrees per second or radians per second. If
the angle at a point in time is denoted by 6(t), then obviously w = ] , just like v = & in linear motion.

In three dimensions, w becomes a vector, where the magnitude is still the rotational speed, and the direction gives you the direction
of the rotation, by means of a right-hand rule: rotation is in the plane perpendicular to!, and in the direction the fingers of your right
hand point if your thumb points along w (this gives w in the positive Z direction for rotational motion in the xy plane).Going back
to 2D for the moment, let’s call the angular position 6(¢), then

d )
—— =0 1.1
w m (5.1.1)

If we want to know the positionrin Cartesian coordinates, we can simply use the normal conversion from polar to Cartesian
coordinates, and write

53

r(t) = rcos(wt)@ + rsin(wt)y = rr (5.1.2)
where 7 is the distance to the origin. Note that r points in the direction of the polar unit vector . Equation 5.1.2 gives us an
interpretation of w as a frequency: if we consider an object undergoing uniform rotation (i.e., constant radius and constant velocity),

in its x and y-directions it oscillates with frequency w. As long as our motion remains purely rotational, the radial distance r does
not change, and we can find the linear velocity by taking the time derivative of 5.1.2:

v(t) = 7 (t) = —wrsin(wt)d +wr cos(wt)j = wrb (5.1.3)

so in particular we have v = wr. Note that both v and w denote instantaneous speeds, and Equation 5.1.2 only holds when w is
constant. However, the relation v =wr always holds. To see that this is true, express 6 in radians, 6 = £, where s is the distance
traveled along the rotation direction. Then

dd 1ds v
2 _ = _Z 5.1.4
v dt r dt r ( )
In three dimensions, we find
V=wXT (5.1.5)

where r points from the rotation axis to the rotating point.

Unlike in linear motion, in rotational motion there is always acceleration, even if the rotational velocity w is constant. This
acceleration originates in the fact that the direction of the (linear) velocity always changes as points revolve around the center, even
if its magnitude, the net linear speed, is constant. In that special case, taking another derivative gives us the linear acceleration,
which points towards the center of rotation:

a(t) = #(t) = —w?rcos(wt)Z +w’rsin(wt)j = —w?rp (5.1.6)

In Section 5.2 below we will use Equation 5.1.6 in combination with Newton’s second law of motion to calculate the net
centripetal force required to maintain rotation at a constant rate. Of course the angular velocity w need not be constant at all. If it is
not, we can define an angular acceleration by taking its time derivative:

a=-=0 (5.1.7)

or in three dimensions, where w is a vector:

@ 0 g @ 51.1 https://phys.libretexts.org/@go/page/17389


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17389?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/05%3A_Rotational_Motion_Torque_and_Angular_Momentum/5.01%3A_Rotation_Basics

LibreTextsm

_ dw
Tat
Note that when a is parallel to w, it simply represents a change in the rotation rate (i.e., a speeding up/slowing down of the
rotation), but when it is not, it also represents a change of the plane of rotation. In both two and three dimensions, a change in
rotation rate causes the linear acceleration to have a component in the tangential direction in addition to the radial acceleration (
5.1.6). The tangential component of the acceleration is given by the derivative of the linear velocity:

b dw
At dt

a (5.1.8)

ro (5.1.9)

ag

In two dimensions, a; points along the 6 direction.

Naturally, there are even more complicated possibilities - the radius of the rotational motion can change as well. We’ll look at that
case in more detail in Chapter 6, but first we consider ‘pure’ rotations, where the distance to the rotation axis is fixed.

1 If you need a refresher on polar coordinates, or are unfamiliar with polar basis vectors, check out appendix A.2.
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5.2: Centripetal Force

When you’re rotating at constant angular velocity, the magnitude of your velocity is always the same, but its direction constantly
changes - so you’re constantly undergoing an acceleration, as indicated in Equation 5.1.6. Therefore there must be a net force
acting on you. We can calculate that net force using Newton’s second law of motion. It is known as the centripetal force and given
by:

mv? | 5

Fy,=ma=———7r=—muw
r

i (5.2.1)

‘Centripetal’ means ‘center-seeking’ (from Latin ‘centrum’ = center and ‘petere’ = to seek). It is important to remember that this is
a net resulting force, not a ‘new’ force like that exerted by gravity or a compressed spring. Equation 5.2.1 is after all just a special

case of Newton’s second law of motion.

This page titled 5.2: Centripetal Force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema
(TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/17390


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17390?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/05%3A_Rotational_Motion_Torque_and_Angular_Momentum/5.02%3A_Centripetal_Force
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/05%3A_Rotational_Motion_Torque_and_Angular_Momentum/5.02%3A_Centripetal_Force
https://creativecommons.org/licenses/by-nc-sa/4.0
http://idemalab.tudelft.nl/idema.html
https://textbooks.open.tudelft.nl/index.php/textbooks/index
https://textbooks.open.tudelft.nl/textbooks/catalog/book/14

LibreTextsm

5.3: Torque

Anyone who has ever used a lever - that is everyone, presumably - knows how useful they are at augmenting force: you push with a
small force at the long end, to produce a large force at the short end, and make the crank turn, stone lift or bottle cap pop off. If the
force is at straight angles with the lever arm (the line connecting the point at which you exert the force to the pivot around which
your lever rotates), the effect is largest. In that case we define the torque (or moment of force) 7 as the product of the force and the
lever arm length. As only the perpendicular component of the force counts (you’ll simply push or pull on your lever with a parallel
component, not make it turn), in a vector setting you need to project on that perpendicular component, so if r (from the pivot to the
point at which the force acts) makes an angle 6 with the force vector F, the magnitude of the torque becomes 7 = rF'sinf. That’s
exactly the magnitude of the cross product of r and F, which also has directional information - useful as a torque can be clockwise
or counterclockwise. In general we’ll therefore define the torque by:

r=rxF (5.3.1)

which makes a counterclockwise torque positive, in correspondence with the definition of the rotation vector w.
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5.4: Moment of Inertia
Suppose we have a mass m at the end of a massless stick of length r, rotating around the other end of the stick. If we want to
increase the rotation rate, we need to apply a tangential acceleration at
ay =ro

for which by Newton’s second law of motion we need a force

F =ma; =mra.
This force in turn generates a torque of magnitude

r=r-F=mra. (5.4.1)

The last equality is reminiscent of Newton’s second law of motion, but with force replaced by torque, acceleration by angular
acceleration, and mass by the quantity mr2. In analog with mass representing the inertia of a body undergoing linear acceleration,
we’ll identify this quantity as the inertia of a body undergoing rotational acceleration, which we’ll call the moment of inertia and
denote by I:

T=Ia (5.4.2)

Equation 5.4.2 is the rotational analog of Newton’s second law of motion. By extending our previous example, we can find the
moment of inertia of an arbitrary collection of particles of masses m,, and distances to the rotation axis r, (where a runs over all
particles), and write:

1= mar? (5.4.3)

which like the center of mass in Section 4.1 easily generalizes to continuous objects as’

I:/V(r-r)pdV:/Vpr2dV (5.4.4)

Note that it matters where we choose the rotation axis. For example, the moment of inertia of a rod of length L and mass m around
an axis through its center perpendicular to the rod is ﬁmﬂ, whereas the moment of inertia around an axis perpendicular to the
rod but located at one of its ends is %mLZ. Also, moments of inertia are different for hollow and solid objects - a hollow sphere of
mass m and radius R has %mR2 whereas a solid sphere has %mRZ, and for hollow and solid cylinders (or hoops and disks) around
the long axis through the center we find mR? and %mR2 respectively. These and some other examples are listed in Table 5.1.
Below we’ll relate the moment of inertia to the kinetic energy of a moving-and-rolling object, but first we present two handy
theorems that will help in calculating them.

Table 5.1: Moments of inertia for some common objects, all with total mass M and length L / radius R

Object Rotation Axis Moment of Inertia
Stick Center, perpendicular to stick % MIL?
Stick End, perpendicular to stick %M L?
Cylinder, hollow Center, parallel to axis MR?
Cylinder, solid Center, parallel to axis %M R?
Sphere, hollow Any axis through center %M R?
Sphere, solid Any axis through center 2 MR?

5

Axis through center, in plane, parallel to

Planar object, size a X b L pv?
) side with length a 12
Planar object, size @ X b Axis through center, perpendicular to plane %M (a® +b%)
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Theorem 5.1: Parallel axis theorem

If the moment of inertia of a rigid body about an axis through its center of mass is given by I.m, then the moment of inertia
around an axis parallel to the original axis and separated from it by a distance d is given by

ot m? (5.45)

where m is the object’s mass.

Choose coordinates such that the center of mass is at the origin, and the original axis coincides with the Z axis. Denote the
position of the point in the xy plane through which the new axis passes by d, and the distance from that point for any other
point in space by 74, such that r = d +r4 . Now calculate the moment of inertia about the new axis through d:

I =/ (’I"d~7'd)pdv (5.4.6)
1%
:/(r~r+d~d—2d~r)pdV (5.4.7)
14
:Lm+nm2—2d:/rmﬂ’ (5.4.8)
174

Here d?> = d - d . The last integral in the last line of 5.4.8 is equal to the position of the center of mass, which we chose to be at
the origin, so the last term vanishes, and we arrive at 5.4.5. Note that the first two lines of Table 5.1 (moments of inertia of a
stick) satisfy the perpendicular-axis theorem.

Theorem 5.2: Perpendicular axis theorem

If a rigid object lies entirely in a plane, and the moments of inertia around two perpendicular axes x and y in that plane are I,
and I, respectively, then the moment of inertia around the axis z perpendicular to the plane and passing through the
intersection point, is given by

L=I+1I, (5.4.9)

We simply calculate the moment of inertia around the z-axis (where A is the area of the object, and o the mass per unit area):
Izz/ (ac2—|—y2) UdA:/ $20dA+/ y’'odA=1I,+1, (5.4.10)
A A A

Note that the last two lines of Table 5.1 (moments of inertia of a thin planar rectangle) satisfy the parallel axis theorem.

2 Like the one- and two-dimensional analogs of the center of mass of a continuous object (4.1.3), there are one- and two-
dimensional analogs of 5.4.4, which you get by replacing p with A or o and dV by dx or dA, respectively.
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5.5: Kinetic Energy of Rotation

Naturally, a rotating object has kinetic energy - its parts are moving after all (even if they’re just rotating around a fixed axis). The
total kinetic energy of rotation is simply the sum of the kinetic energies of all rotating parts, just like the total translational kinetic
energy was the sum of the individual kinetic energies of the constituent particles in Section 4.5. Using that v = wr, we can write for
a discrete collection of particles:

1 1 1
- - 2 _ = 2,2 _ 27,2
Kot = Ea 5 Mava = Ea 5 MaTa” = 2Iw (5.5.1)
by the definition 5.4.2 of the moment of inertia I. Analogously we find for a continuous object, using 5.4.3:
L, Lo Loy
K= [ =vpdV = [ —wr‘pdV =—=Iw (5.5.2)
v 2 v 2 2
so we arrive at the general rule:
1.5
Krot = EIUJ (553)

Naturally, the work-energy theorem (Equation 3.2.3) still holds, so we can use it to calculate the work necessary to effect a change
in rotational velocity, which by Equation 5.4.1 can also be expressed in terms of the torque (in 2D):

Ofinal

lI(u.)2 —wWliial) = 7d6 (5.5.4)

2 final initia

W= AI{rot =

Oinitial
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5.6: Angular Momentum

In analogy with the definition of torque, 7 =7 X F' as the rotational counterpart of the force, we define the angular momentum
L as the rotational counterpart of momentum:

L=rxp (5.6.1)

For a rigid body rotating around an axis of symmetry, the angular momentum is given by
L=]w (5.6.2)

where I is the moment of inertia of the body with respect to the symmetry axis around which it rotates. Equation 5.6.2 also holds
for a collection of particles rotating about a symmetry axis through their center of mass, as readily follows from 5.4.2 and 5.6.1.
However, it does not hold in general, as in general, L does not have to be parallel to w. For the general case, we need to consider a
moment of inertia tensor I (represented as a 3 x 3 matrix) and write L = I - w . We’ll consider this case in more detail in Section
7.3.
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5.7: Conservation of Angular Momentum

Given that the torque is the rotational analog of the force, and the angular momentum is that of the linear momentum, it will not
come as a surprise that Newton’s second law of motion has a rotational counterpart that relates the net torque to the time derivative
of the angular momentum. To see that this is true, we simply calculate that time derivative:

&L _dr S
dt_dtxp+rxdt—r (5.7.1)

because » X p =v x mv =0 . Some texts even use Equation 5.7.1 as the definition of torque and work from there. Note that in
the case that there is no external torque, we arrive at another conservation law:

Theorem 5.3: Law of conservation of angular momentum

When no external torques act on a rotating object, its angular momentum is conserved.

Conservation of angular momentum is why a rolling hoop keeps rolling, and why a balancing a bicycle is relatively easy once you
go fast enough.

What about collections of particles? Here things are a little more subtle. Writing L = 3; L; and again taking the derivative, we
arrive at

%:Zrixﬂzzn (5.7.2)
(2 7

Now the sum on the right hand side of 5.7.2 includes both external torques exerted on the system, and internal torques exerted by
the particles on each other. When we discussed conservation of linear momentum, the internal momenta all canceled pairwise
because of Newton’s third law of motion. For torques this is not necessarily true, and we need the additional condition that the
internal forces between two particles act along the line connecting those particles - then the internal torques are zero, and Equation
5.7.1holds for the collection as well. Consequently, if the net external torque is zero, angular momentum is again conserved.

This page titled 5.7: Conservation of Angular Momentum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
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5.8: Rolling and Slipping Motion

When you slide an object over a surface (say, a book over a table), it will typically slow down quickly, due to frictional forces.
When you do the same with a round object, like a water bottle, it may initially slide a little (especially if you push it hard), but will
quickly start to rotate. You can easily check that when rotating, the object loses much less kinetic energy to work than when sliding
- take the same water bottle, either on its bottom (sliding only) or on its side (a little sliding plus rolling), push it with the same
initial force, and let go: the rolling bottle gets much further. However, somewhat ironically, the bottle can only roll thanks to
friction. To start rolling, it needs to change its angular momentum, which requires a torque, which is provided by the frictional
force acting on the bottle.

When a bottle (or ball, or any round object) rolls, the instantaneous speed of the point touching the surface over which it rolls is
zero. Consequently, its rotational speed w and the translational speed of its center of rotation v, (where the r subscript is to indicate
rolling) are related by v,, = wR, with R the relevant radius of our object. If the object’s center of rotation moves faster than v, the
rotation can’t ‘keep up’, and the object slides over the surface. We call this type of motion slipping. Due to friction, objects
undergoing slipping motion typically quickly slow down to v,, at which point they roll without slipping.

a rolling shot b high shot C low shot

d follow shot e draw shot
before after before after

F

“K

Figure 5.8.1: Five types of billiard shots. (a-c) The type of motion depends on where the cue hits the ball. (a) If the cue hits the ball
at exactly %R above the table, the ball will exhibit pure rolling motion, w = vR. (b) If the cue hits the ball above the critical spot,

it will rotate faster than translate w > vR and exhibit a slipping rotation. Friction will slow down the rotation until rolling motion is
achieved. (c) If the cue hits the ball below the critical spot, it will translate faster than rotate w < vR and initially slide, until
friction both slows down the translational speed and accelerate the rotational speed to the point where rolling motion is achieved.
Note that the rotational motion may even be retrograde, i.e., backwards compared to the translational motion. (d-e) Behavior of the
incident billiard ball before and after collision with a stationary ball of equal mass. Since the collision is elastic, all linear
momentum is transferred to the other ball. If the incident ball was initially rolling, immediately after the collision it will continue
rotating with complete slipping. Friction then causes the ball to pick up linear speed again, with a direction depending on the
direction of the rotational motion, resulting in a follow (d) or draw (e) shot.

Suppose we started our object with a velocity vg. If there is no rotation, the only force changing its velocity is the constant
frictional force

Ffriction = ,lLkFN = Hpmg (581)

with m the mass of the object (Equation 2.2.7). The constant force results in a linear decrease in the translational speed (see
Section 2.3): v(t) = vg — purgt . However, if our object can roll, there is a second contribution to the motion, due to the torque
Triction = Fhrictiondl Of the frictional force. Using the rotational analog of Newton’s second law, Equation 5.4.1 (or writing L = Jw
and using Equation 5.7.1), we get an equation of motion for the rotational velocity:
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dw
Ta = IE = Ttriction = F friction I (582)

Integrating Equation 5.8.2 with initial condition w(t =0) =0 we get w(t) = &Igm . While the object undergoes slipping motion,
the translational speed thus linearly decreases with time, whereas the rotational speed linearly increases. To find the time and

velocity at which the object enters a purely rolling motion, we simply equate v(t) with w(t)R, which gives

Vo

fo— % (5.8.3)
m 2
Hig (1 + TR)
v = UOI (5.8.4)
1+ mR?

Note that the time ¢, until fully rolling motion is achieved scales inversely with the friction coefficient, but the final rolling speed
v, is independent of the frictional force. The rolling speed does depend on the moment of inertia of your object - for a hollow
cylinder it’s v, = %vg, whereas for a solid cylinder it’s v, = %vg. Once the object is rolling, its surface no longer moves with
respect to the surface that it’s rolling on (as its instantaneous speed at the point of touching is zero). Consequently, the frictional
force is much reduced, and the object can roll a large distance before it stops; in fact, the main force slowing it down once it is

rolling is drag with the ambient air, which we could safely ignore when (kinetic) friction was still in the picture.

5.8.1 Worked Example: A Cylinder Rolling Down a Slope

A massive cylinder with mass m and radius R rolls without slipping down a plane inclined at an angle 8. The coefficient of
(static) friction between the cylinder and the plane is . Find the linear acceleration of the cylinder.

w

<\

Figure 5.8.2: Free body diagram of a cylinder rolling down a plane.
Solution

There are at least three ways to tackle this problem. For all three, it helps (as always) to make a sketch, indicating the relevant
forces - see Figure 5.8.2.

e Method 1: Forces and torques.
Let the friction force F' be positive in the direction up the plane. Then we have:
F =ma = mgsinf— F; =ma
T=Ia = FfR= %mR2a
no slipping = a=aR
The last two equations give Fy = %ma. Plugging this into the first equation gives

inf 2
a=2227 —gsinf (5.8.5)
1+3 3
T3

e Method 2: Energy.
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The total energy of the system is given by

1 1
Eiot :K+V=5mv2+5Iw2+mgh (5.8.6)
If the cylinder rolls down the slope without slipping, its angular and linear velocities are related through v = wR . Also,
if it moves a distance A, its height decreases by Ax - sinf. Conservation of energy then gives:

i dEtot . d|[1 2 1 v\ 2 g
= [2mv +2I(R) mgx sin 0

0 dt dt

zmm}—l—I% —mgusin 6

1 .
= [a—l—;a—gsmﬁ] mu

where we used I = %mR2 for a massive cylinder in the last line. The linear acceleration a is thus given by
_ 2
a=$gsinf.

e Method 3: Rotational version of Newton’s second law.

At a given point in time, we can apply the rotational version of Newton’s second law to rotations about the point where
the cylinder touches the surface (as the cylinder is rolling without slipping, this is the only motion at that point). Of the
three forces in the system, two act at that point, so they have no lever arm. Only gravity has a nonzero lever arm of
length Rsin @, leading to a torque given by 7, = mgRsinf . By the rotational version of Newton’s second law, we have
7=1Ia, where 1 is the moment of inertia about the pivot. Applying the parallel-axis theorem, we find
I=1I.,+md?= %mR2 in this case, so we get an angular acceleration of

7. mgRsinf  2g

o = T W = ﬁmnG (587)

The linear acceleration of the center of the cylinder due to the ‘rotation’ about this pivot is given by a = Ra = % gsinf .

This page titled 5.8: Rolling and Slipping Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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5.9: Precession and Nutation

The action of a torque causes a change in angular momentum, as expressed by Equation 5.7.1. A special case arises when the
torque is perpendicular to the angular momentum: in that case the change affects only the direction of the angular momentum
vector, not its magnitude. Since the torque is given by the cross product of the arm and the force, this case arises when the angular
momentum is parallel to either arm or force, or more generally, lies in the plane spanned by the force and arm. As a result, the
angular momentum vector may start rotating about a fixed axis, a process known as precession. Due to the action of a second force
(with associated torque), the angle between the angular momentum vector and the fixed axis (which we’ll call the z-axis) may also
change, a process known as nutation.

o

Figure 5.9.1: Precession of a spinning top. The top rotates about an axis which makes an angle ¢ with the vertical z-axis. The
angular momentum of the top is parallel to the rotation vector. The arm between the pivot (where the top touches the supporting
surface) and the center of mass is parallel to the angular momentum as well. Consequently, the torque of the gravitational force
(which as always is pointed downward from the center of mass) is perpendicular to the angular momentum, and causes it to precess
about the z-axis with a precession frequency w;,.

The simplest example of a precessing system is that of a rotationally symmetric top, spinning about an axis that is not the vertical z-
axis, (Figure 5.9.1). In this case, the arm of gravitational force (pointing from the pivot at the origin to the center of mass of the
top) is parallel to the angular momentum, which itself is parallel to the rotation vector, as L = Iw. The torque of gravity is thus
perpendicular to the angular momentum. If we call the angle between L and the z-axis ¢, and work in cylindrical coordinates
(p,0,2), we can write L = L,yp+ L.z, where L,, = Lsin¢ is the projection of L on the xy-plane, and p is the radial unit
vector in the xy-plane (i.e., p = cos 6z +sin fy ). The gravitational torque is then given by:

17 =1 x Fj = mgrsin ¢ (5.9.1)
where 7 is the arm pointing from the origin to the center of mass, r its length, and 0 the angular unit vector in the xy-plane (i.e.,
6 = —sin 6z + cos 0y ). For the time derivative of L, we get:
dL szy ~ s A sz ~
— = L,,00 5.9.2
& @ PO (5.9.2)
where we used (Equation A.8)
dp dpdd .-
—=——=00 5.9.3
dt dé dit ( )
Fquating 5.9.1and 5.9.2, we find that 2 — = — ¢ and
dé i
wp = — = mgrS1n¢ = mgr (5.9-4)
di Ly Tw

Equation 5.9.4 gives us the frequency of the precession about the z-axis. The associated precession rotation vector is given by

Wp = WpZ.

Where precession, in terms of the angles used in this section, represents a change in 6, nutation is associated with a change in the
tilt angle ¢. It comes about in several cases, most commonly due to the action of a second force, and often results in a periodic
motion (hence the name nutation, ‘nodding’). One example is the change in the Earth’s axis. As the axis is not perpendicular to the
plane of Earth’s orbit (it presently makes an angle of about 23.4¢), gravity from the sun exerts a net torque on the Earth’s rotation
axis, causing it to precess with a period of about 25000 years. Consequently, the current polar star will only remain the polar star

https://phys.libretexts.org/@go/page/17611



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17611?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/05%3A_Rotational_Motion_Torque_and_Angular_Momentum/5.09%3A_Precession_and_Nutation

LibreTextsw

for a couple of centuries. Due to the torques exerted by the moon and the other planets, the Earth’s axis also nutates - with
amplitudes from arcseconds to a few degrees, and periods that range widely, from 18.6 years due to the gravitational pull of the
moon up to millennia due to other effects.

This page titled 5.9: Precession and Nutation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon
Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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5.E: Rotational Motion, Torque and Angular Momentum (Exercises)
5.1 Figure 5.E.1 shows two hand powered drills.

a. With which of the two drills shown in Figure 5.E.1 will you be able to exert a greater torque on the drill bit?
b. With which of the two drills shown in Figure 5.E.1 will you be able to exert a greater rotational speed?

Figure 5.E.1: Two hand-powered drills. (a) A brace [16], CC BY-SA 3.0. (b) An egg-beater drill [17].

5.2 An Atwood’s machine consists of two masses m; and mgy, connected by a string that passes over a pulley. If the pulley is a disk
of radius R and mass M, find the acceleration of the masses.

5.3 You hold a uniform pen with a mass of 25.0 g horizontal with your thumb pushing down on one end and your index finger
pushing upward 2.0 cm from your thumb. The pen is 14 cm long.

a. Which of your fingers exerts the greater force?
b. Find the two forces.

5.4 A wagon wheel is constructed as shown in the figure below. The radius of the wheel is R. Each of the spokes that lie along the
diameter has a mass m, and the rim has mass M (you may assume the thickness of the rim and spokes are negligible compared to
the radius R).

-—

2R

a. What is the moment of inertia of the wheel about an axis through the center, perpendicular to theplane of the wheel (figure a)?
b. For the same wheel, what is the moment of inertia for an axis through the center and two of the spokes, in the plane of the
wheel (figure b)?

5.5 A sphere with radius R=0.200 m has a density p that decreases with distance r from the center of the sphere, according to
p(r) = a—br, where a = 1.00 - 103kg/m? and b = 4.00 - 103kg/m*.

(a) Calculate the total mass of the sphere.

(b) Calculate the moment of inertia of the sphere for an axis through its center.

5.6 A 0.10 kg yo-yo has an outer radius R that is 5.0 times greater than the radius r of its axle. The yo-yo is in equilibrium if a mass
m is suspended from its outer edge, as shown in Figure 5.E.1. Find the tensions 77 and 75 in the two strings, and the mass m.
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Figure 5.E.1: A yo-yo with a mass suspended from its outer edge.

5.7 A table consists of three pieces: a tabletop which is a circular disk of radius R, thickness d=R/50, and mass M; a single leg that
supports the tabletop in its center and consists of a hollow cylinder of height h=R/2 and mass m=M/5, and a foot, which consists of
a solid cylinder of radius R/3, mass M and height h=R/4.

a. Find the position of the center of mass of this table.

b. With what force should you push down on the edge of the table to make it tip over?

c. A stone of mass m=M/2 is placed on the table. How far out from the center can it be positioned before the table tips over? You
may approximate the stone as a point mass.

5.8 A set-square protractor made of plastic with density p =1.2¢g/ em?®, thickness 2.0 mm and sides of 10 cm is placed in a
coordinate system as shown in the figure. The z-axis (not shown) is coming out of the paper.

b

10 cm

-
[l

10 cm X

a. Find the position of the center of mass of the protractor.

b. Find the moment of inertia of the protractor when rotating it along the y-axis.

c¢. Find the moment of inertia of the protractor when rotating it along the z-axis (i.e., the axis through the origin and perpendicular
to the xy-plane).

d. Find the moment of inertia of the protractor when rotating it along an axis through its center of mass,and parallel to the z-axis
(i.e., perpendicular to the xy-plane).

e. You pick up the protractor and balance it on your finger in its center of mass. You then tap one of the points with a small force
F, directed in the plane of the protractor. For which of the three forces shown in figure b is the rotational speed the protractor
gets the largest? (As always, explain your answer; the magnitude of all three forces is the same, the three indicated angles are all
45°).

f. You bring in three friends, who now push on the protractor along the directions indicated by F}, F5 and Fj in the figure. If F}
and F5 are both 1.0 N, how large must F3 be so that the protractor does not move?
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5.9 In this problem, we consider an object which consists of a frame with four balls, as depicted in the figure below. Each of the
balls has a radius R=5.0 cm. Their masses are m 4 = 3.0kg, mp = 3.0kg, m¢ = 2.0kg and mp = 1.0kg. The rods of the frame
(which run from the edge of one ball to the edge of the next) have lengths L; = 20cm and Ls = 30cm and a linear density
A =10g/cm. (The distance between the centers of balls A and B is thus 30 cm, and between the centers of balls B and C is 40
cm). The thickness of the rods is negligible. We use the xyz-frame indicated in the figure, with a z-axis coming out of the paper in
the origin.

y

a. Find the position of the center of mass of the object.

b. Find the moment of inertia of the object with respect to rotations about they-axis.

¢. We apply a torque of 10 Nm to set the object spinning about they-axis. Calculate the magnitude of the resulting angular
velocity.

d. Find the moment of inertia of the object with respect to rotations about an axis through its center of mass, and parallel to they-
axis.

e. Find the moment of inertia of the object with respect to rotations about an axis through its center of mass, and parallel to the z-
axis.

5.10 Three uniform bars with linear density (i.e., mass per unit length) A are welded together into the shape of an isosceles triangle
with sides of length 5L, 5L, and 6L (figure a).

(a) (b)

5L 5L

6L

The moment of inertia of a rod with mass m and length L about an axis that goes through one of its endpoints at an angle 8 with the
rod itself (figure b) is given by

1
Lo = EmL2 sin? 0 (5.E.1)

a. Find the position of the center of mass of the triangle.

b. Find the moment of inertia of the triangle about its axis of symmetry. To do so, you may use the given expression for the
moment of inertia of a bar at an angle.

c. Find the moment of inertia of the triangle about its longest side.

d. Find the moment of inertia of the triangle about the axis through its center of mass, perpendicular to the triangle’s plane. Use
the theorems proved in this section to do so.

e. Are rotations of this triangle about its symmetry axis stable?

f. [Challenging] Derive the given expression for the moment of inertia of the rod under an angle.

5.11 We consider the same setting as in the worked example in Section 5.8. A massive cylinder with mass m and radius R rolls
without slipping down a plane inclined at an angle 6 (see figure a). The coefficient of (static) friction between the cylinder and the
plane is p.
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a. Find the largest angle 6 for which the cylinder doesn’t slip.
b. Suppose now that we accelerate the plane upwards (along its direction) with acceleration a, see figure b. For what value of a
does the center of mass of the cylinder not move? (You may assume that the cylinder still is not slipping).

5.12 We consider a wheel with mass m and radius R which rolls without slipping on a flat (problems a and b) and an inclined
(problems c-i) plane.

a) b) ¥
w

=\

a. Draw a free-body diagram of the wheel rolling on a horizontal surface (figure a). Also indicate the (linear) velocity vector v of
the wheel.

b. How much work is done by the friction force on the wheel? What effect does this work have on the linear and angular velocity
of the wheel?

We now consider the case that the wheel rolls up an inclined plane (angle «, see figure b) with initial velocity vg.

c. Again draw a free-body diagram of the wheel and indicate the linear velocity v.
d. Determine the equation of motion for both the linear and the rotational velocity of the wheel (i.e.apply Newton’s second law to

the translational and rotational motion ot the wheel). For this problem, you can describe the wheel as a cylindrical ring (and thus
ignore the mass of the spokes).

e. Solve the equations of motion from (12d) to obtain the linear acceleration of the wheel.

f. From the equations of motion, determine the magnitude and the direction of the frictional force acting on the wheel.
g. Determine the total energy of the wheel.

h. Take the derivative of the total energy of problem (12g) to again arrive at an equation of motion for the wheel.
i. Is the energy of the wheel rolling up the incline conserved? Does the frictional force do any work in this case?

5.13 We consider a solid cone of uniform density p, height h and base radius R.
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1

Figure 5.E. 2: Sketch of the cone. (a) Dimensions. (b) Tilt angle 6.

a. Taking the origin to be at the center of the base, and the symmetry axis along the z (vertical) axis, show that the center of mass
of the cone is located at (0, 0, h/4). Hint: consider the cone as a stack of disks and pick your origin carefully.

b. Over what maximum angle can you tilt the cone such that it just doesn’t fall over?

¢. Qualitatively sketch the potential energy landscape U(6) of the cone as a function of this tilt angle 6. Indicate the stationary
points and their stability. Assume the cone is narrow, i.e., the radius of the base is less than a quarter of the height.

d. Going back to the upright position, show that the moment of inertia of the cone around its axis of symmetry is given by

= 13—0M R?, where M is the total mass of the cone.

e. Consider a cone which is 100 cm high, has a base radius of 20 cm, and a mass density of 700 kg/m3. If the cone is standing
with its base on a perfectly slippery surface (no friction), and you want to set it spinning at 1 revolution per minute, starting
from rest, how much work do you have to do?

5.14 A hockey stick of mass ms, length L, and moment of inertia (with respect to its center of mass) I0 is at rest on the ice (which
we assume to be frictionless). A puck with mass mp hits the stick a distance D from the middle (i.e., center of mass) of the stick.
Before the collision, the puck was moving with speed vy in a direction perpendicular to the stick, as indicated in the figure. The
collision is completely inelastic, and the puck remains attached to the stick after the collision.

a) b)
| centerof mass ___ 1 __centerof mass
stick bt stick
D "7 center of mass
stick + puck
vb )

a. Find the speed vy of the center of mass of the stick + puck combination after the collision, in terms of vg, m;,, ms, and L.

b. After the collision, the stick and puck will rotate about their combined center of mass, which lies a distance b from the center of
mass of the stick. Find b.

c. What is the angular momentum L.m of the system before the collision, with respect to the center of mass of the final system?
Use your answer at (b) to eliminate the value of b from your answer.

d. What is the angular velocity w of the stick + puck combination after the collision? Your answer should be independent of the
variable b.

e. Are the kinetic energy, linear momentum, and angular momentum conserved in this collision?

5.15 We consider the same situation as in problem 5.14, but now the collision is fully elastic. Find the velocity of the ball after the
collision, as well as the translational and rotational velocity of the stick after the collision. Hint: You have to solve for three
unknowns, so you need three equation - what are they?
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5.16 In Greek mythology Sisyphus by life was the king of Ephyra (Corinth). After he died, he was punished for his self-
aggrandizing craftiness and deceitfulness in Tartarus (Greek hell) by being forced to roll an immense boulder up a hill only for it to
roll down when it nears the top, repeating this action for all eternity. We take the original rock to have a diameter of 1.00 m and a
mass of 2000 kg; the hill is 1.00 km high and has a slope of 30°.

a. Suppose Sisyphus somehow managed to replace this rock with one made of aerogel with a mass of only 1.0 kg covered by a
thin layer of rock which also has a mass of 1.0 kg. To hide his deceit, he still walks uphill slowly, and kicks the rock when it
‘slips” down again. What speed must Sisyphus give the fake rock such that it has the same speed at the bottom as the real rock
would have? You may assume that both rocks roll all the way down without slipping.

b. Hades, being not amused with Sisyphus’ trickery in part (a), decides to repay him using his own measures. He sends Sisyphus
off to Helheim (Norse hell), strapped to the original rock, which he kicks so hard that it reaches escape velocity (11.2 km/s)
while also spinning at a rate of 1.0 revolutions per second. How much energy did Hades put into the rock (you may ignore
Sisyphus’ mass, he’s a ghost anyway)?

c. Hel, the ruler of Helheim, doesn’t want him either, so she picks up the capstone of a dolmen, with a mass ten times that of
Sisyphus’ rock, and hurls it towards the oncoming Sisyphus. As it happens, Hel throws just hard enough that after the collision,
Sisyphus (now stuck between the two rocks) is spinning in place. How fast did Hel throw her stone?

d. At what angular velocities do Sisyphus and his two rocks spin after the collision?

e. Dante finally finds a place for Sisyphus in Inferno (Christian hell). To get him there, he first needs to remove the capstone.
Taking pity on Sisyphus, Dante wishes to do so in a way that the original rock stops spinning. He stands on Sisyphus’ rock,
pushing on the capstone. What torque must he exert on that stone to stop Sisyphus’ rock?

f. Dante then ties a 100 km long rope to the rock, which at the other end is connected to Lucifer (down at the center of Inferno).
Lucifer then hauls in the rope, with a speed of 1.0 m/s. Unfortunately for Sisyphus, the removal of the capstone, although it has
stopped him from spinning, has resulted in him getting a small linear velocity of 1.0 cm/s in the direction perpendicular to the
rope. When Lucifer has hauled in enough rope to put Sisyphus in the fourth circle of Inferno at about 5 km from himself, what
is the angular velocity of Sisyphus’ rock?

5.17 Two children, with masses m; = 10kg and my = 10kg sit on a simple merry-go-round that consists of a massive disk with a
mass of 100 kg and a radius of 2.0 m. The disk can rotate freely about its center, and is doing so at a frequency wy of 5.0
revolutions per minute. A third child with mass m3 = 10kg runs towards the merry-go-round with a speed vy of 1.0 m/s, at an
angle of 30° with the tangent to the merrygo-round’s edge (see figure). Once it reaches the merry-go-round, the child jumps on it,
and continues rotating with the other two. Find the resulting rotational velocity of the merry-go-round with the three children.
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CHAPTER OVERVIEW

6: General Planar Motion

Although Newton’s laws of motion, the various force laws, and the three conservation laws we have derived, are all valid in three
dimensions, we have so far restricted our study of motion almost exclusively to two special cases: linear motion in one dimension,
and rotational motion in a plane, where the radius of the rotation is constant. Although for the second case we do need two
directions to describe it, the motion itself is constricted to a circle, and thus essentially one-dimensional. In this section, we’ll look
at general motion in a plane - which turns out to capture a large number of important nontrivial cases.

6.1: Projectile Motion

6.2: General Planar Motion in Polar Coordinates
6.3: Motion Under the Action of a Central Force
6.4: Kepler's Laws

6.E: General Planar Motion (Exercises)

Thumbnail: Stock cars racing in the Grand National Divisional race at Towa Speedway in May, 2015. Cars often reach speeds of
200 mph (320 km/h).
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6.1: Projectile Motion

The simplest case of two-dimensional motion occurs when a particle experiences a force only in one direction. The prime example
of this case is the motion of a projectile in Earth’s (or any other planet’s) gravitational field as locally described by Galilean gravity
(Equation 2.2.2): F'=mg. Once a projectile has been fired with a certain initial velocity v, we can find its trajectory by solving
the equation of motion that follows from Newton’s second law: mg = m7. We can decompose 7 and vy in horizontal (x) and
vertical (z) components; each of them has its own one-dimensional equation of motion, which we already solved in Section 2.3.
The horizontal component experiences no force and thus executes a simple linear motion with uniform velocity v, cos 6y, where
6y = arccos(vg - &) /vy is the angle with the horizontal under which the projectile was fired and vy = |vg| the initial speed.
Likewise, because the acceleration due to gravitation is constant, our projectile will execute a uniformly accelerated motion in the
vertical direction with initial velocity vg sin . If the projectile’s initial position is (zo, 2o), its motion is thus described by:

0 (2)-(2) () (1)

This page titled 6.1: Projectile Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema
(TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/17396


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17396?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/06%3A_General_Planar_Motion/6.01%3A_Projectile_Motion
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/06%3A_General_Planar_Motion/6.01%3A_Projectile_Motion
https://creativecommons.org/licenses/by-nc-sa/4.0
http://idemalab.tudelft.nl/idema.html
https://textbooks.open.tudelft.nl/index.php/textbooks/index
https://textbooks.open.tudelft.nl/textbooks/catalog/book/14

LibreTextsw

6.2: General Planar Motion in Polar Coordinates

Although in principle all planar motion can be described in Cartesian coordinates, they are not always the easiest choice. Take, for
example, a central force field (a force field whose magnitude only depends on the distance to the origin, and points in the radial
direction), as we’ll study in the next section. For such a force field polar coordinates are a more natural choice than Cartesians.
However, polar coordinates do carry a few subtleties not present in the Cartesian system, because the direction of the axes depends
on position. We will therefore first derive the relevant expressions for the position, velocity and acceleration vector, as well as the
components of the force vector, in polar coordinates for the general case.

As we already know (see Appendix A.2), the position vector 7 = x®+yy has a particularly simple expression in polar
coordinates: » =77, where r = y/x? +y2 . To find the velocity and acceleration vectors in polar coordinates, we take time
derivatives of 7. Note that because the orientation of the polar basis vectors depends on the position in space, the time derivative
acts on both the distance to the origin r and the basis vector 7. Because the two polar basis vectors are each other’s derivatives with
respect to 0 (see Equation A.8), we find for their time derivatives:

d? d# df
T (6.2.1)
=06 (6.2.2)
d6  dé do
ey iy (6.2.3)
=07 (6.2.4)
For the velocity and acceleration vectors we then find:
dr
- 6.2.5
” (6.2.5)
4008 (6.2.6)
dv
= — 2.
a= (6.2.7)
- (f—ref) 7+ (rf +270)0 (6.2.8)

Note that Equations 5.1.3 and 5.1.6 are the special cases of Equations 6.2.6 and 6.2.8 for which both the radius r and the angular

velocity w = 6 are constant. Using Equation 6.2.8 for 7 in Newton’s second law, we get an expression decomposing the net force
F' into a radial and an angular part, each of which consists of two terms:

F=mi =F,#+F,0 (6.2.9)
F, :m(is—r(f) (6.2.10)
Fy =m(rf +270) (6.2.11)

The two terms in F, are readily identified as the radial acceleration 7 (acting along the line through the origin) and the centripetal
force (which causes objects to rotate around the origin, see Equation 5.2.1). The first term 76 in Fy is the tangential acceleration o
of a rotating object whose angular velocity is changing (Equation 5.1.8). The last term in Fj we have not encountered before; it is
known as the Coriolis force

Foor = 2mi60 (6.2.12)

and is associated with a velocity in both the radial and the angular direction. It is fairly weak on everyday length scales, but gets
large on global length scales. In particular, if you move over the surface of the Earth (necessarily with a nonzero angular
component of your velocity), it tends to deflect you from a straight path. On the Northern hemisphere, if you move horizontally, it
tends to push you to the right; it also pushes you west when going up, and east when going down. Coriolis forces are responsible
for the rotational movement of air around high and low pressure zones, causing respectively clockwise and counterclockwise
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currents around them on the Northern hemisphere (Figure 6.2.1). We’ll encounter the Coriolis force again in the more general
three-dimensional setting in Section 7.2.

e T S

Coriolis pressure
force gradient

Figure 6.2.1: The Coriolis force causes clockwise and counterclockwise currents around high and low pressure zones on the
Northern hemisphere. (a) Pressure gradient (blue), Coriolis force (red) and resulting air flow (black) around a low pressure zone.

(b) Typical satellite picture of a low-pressure zone and associated winds over Iceland. Picture by NASA’s Aqua/MODIS satellite
[20].
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6.3: Motion Under the Action of a Central Force

A central force is a force that points along the (positive or negative) radial direction 7, and whose magnitude depends only on the
distance r to the origin - so F(r) = F(r)r . Central forces can be defined in both two and three dimensions, with the three-
dimensional concept of the radial distance (to the origin) and direction (direction of increasing r) completely analogous to the two-
dimensional case. Two important examples of central forces are (general) Newtonian gravity (2.2.2) and the Coulomb force (2.2.4)
between two charged objects. Although these forces are three-dimensional examples, discussing them here is appropriate, as the
following theorem shows.

Theorem 6.3.1

The motion of a particle under the action of a central force takes place in a plane.

We first note that a central force can exert no torque on an object:
T=rxF=F(r)(rx7)=0.
Consequently, under the action of a central force, angular momentum is conserved. Moreover, we have
r-L=r-(rxp)=0
and
v-L=v-(rxmv)=0.

Both the position vector 7 and the velocity vector v thus lie in the plane perpendicular to L. As L is conserved » and v must
be confined to the plane perpendicular to L and through the origin.

O

Applying the results of the previous section to the motion of a single particle under the action of a central force, we find (for the
plane in which the particle moves):
. -2 . L?
F(r)=F,=mr —mrf =mr — — (6.3.1)
mr
where we used that for a single particle, the magnitude of the angular momentum is given by L = mr20. Rewriting Equation 6.3.1
gives
L2

mf :F(T)—i_W =F(r)+ Fyg (6.3.2)

where Fi s is known as the centrifugal force, as it tends to move our particle away from the origin. We can write the centrifugal
force as the derivative of a potential:

dU ¢ d L?
Fo—_ - 6.3.3
of dr dr (2mr2 ( )
Writing the original force as the derivative of a potential U(r) as well, we can write down an equation for the total energy of the
system:
1 2
E=K+U=—-mi*+U(r)+ (6.3.4)
2 2mr?
For both Newtonian gravity and the Coulomb force, the potential can be written as U (r) = —a//r, where @« = Gmymy for gravity
and o = —keq1 g2 for Coulomb’s law. We can then rewrite the energy equation as a differential equation for r(¢):
1 dr\? a L?
— — | =E+—— 6.3.5
2 m ( dt ) + T 2m1~2 ( )
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To describe the motion of the particle, rather than specifying r(¢) and 6(t), we would like to express r as a function of §. We can
rewrite Equation 6.3.5 to a differential equation for r(#) by invoking the chain rule:

(&) -(E%) (%) Gs) 020

where we again used that L = mr20. Equation 6.3.5 now becomes:

1 2 1 2 omE
( dr) _ ma  2m (6.3.7)

r? dg 2 I
We can simplify Equation 6.3.7 further by introducing a new variable, z = % —ma/ L? . We also introduce a dimensionless
constant € = /1 +2EL?/ma? and an inverse length ¢ = mae/L?. With these substitutions, our equation becomes:

2
(:—Z) =22 +4* (6.3.8)

We can solve Equation 6.3.8 by separation of variables:

1
———dz= [ df= arccos( = =60—-06, (6.3.9)
/q2 — 22 q

Taking the reference angle 6 (our integration constant) to be zero, we find z(6) = g cos(6) . Translating back to 7(), we obtain a
fairly simple solution:

1

" ma 1+ecosf

r(6) (6.3.10)

What the solution 6.3.10 (the orbit of our particle under the action of the central force) actually looks like, depends on the value of
our dimensionless variable €, known as the eccentricity of the orbit. To find out which orbits we can get, we translate Equation
6.3.10back to Cartesian coordinates, using x = 7 cos . Defining k = L? /ma, we get k =r+ercos@ =r+ex ,orr=k—ex .
Now using r? =2 —|—y2 , we get

2?4+ y? = (k—ex)? = k* — 2cka + &2 (6.3.11)
We can now distinguish four possibilities:

1. € = 0: In this case, Equation 6.3.11becomes x2 +y? = k? , so our orbit is a circle with the origin at its center.
2.0 < e < 1: For this case, with some algebra, we can rewrite Equation 6.3.11as

((z —20) /a)* +(y/b)* =1,

wherea =k/ (1—¢*),20 = —ca ,and b=k/ /1 —¢2 . These orbits are cllipses, with the center of the ellipse at (zg, 0),
semi-major axis a, semi-minor axis b, and focal length f = v'a? —b? =ke/ (1 —€?) = —z . One of the foci thus lies at the
origin.

3. & = 1: Equation 6.3.11now becomes 3% = k?> — 2kz , which is the equation for a parabola (extending along the negative x-
axis) with its ‘top’ (in this case, rightmost point) at (k/2, 0) and focal length k/2, so the (single) focus is again located at the
origin.

4. ¢ > 1: This case again requires some algebra to rewrite Equation 6.3.11in a recognizable standard form:

((z —x0) /a)® — (y/b)2 =1, wherea=k/ (¢2—1) ,z9 =ea and b="k/+/e2 —1 . These orbits are hyperbola, crossing the
x-axis at (zg, 0), and approaching asymptotes y = +b((z/a) — €) , which meet at (z¢ + a, 0) . The focal length is now
f=va2+bt =ke/ (52 — 1) =ea=xz9+a ,so the focus of the hyperbola is also located at the origin.

In mathematics, these four possible types of orbits are known as conic sections: the curves you can get by intersecting a cone with a
plane. Specifically, when the central force is gravity, such as in the solar system (where the sun is so much heavier than everything
else combined that to good approximation we can describe orbits as being determined by the sun’s gravitational field alone), the
four cases listed above are the only possible orbits bodies can have. The planets, dwarf planets, asteroids, and many minor objects
in our solar system all follow elliptical orbits around the sun, albeit with different eccentricity’ - Earth’s is almost zero (0.017), but
that of Mars is significantly higher (0.09), and of Pluto much higher still (0.25). Comets, on the other hand, typically parabolic or
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hyperbolic orbits. Spacecraft such as the Voyager and New Horizons probes are often put on trajectories past planets that are not
their final destination, to pick up (or loose) speed through a gravitational assist (in which they take a little bit of momentum from
the planet’s orbit); those paths past planets are typically hyperbola. Getting a spacecraft to orbit another planet (i.e., in a bound, so
elliptical) orbit is actually much harder, but again, the resulting orbit is described by the maths presented above.

1 See table B.4 for data on the orbits of all planets and a number of their moons.
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6.4: Kepler's Laws

The fact that the planets move in elliptical orbits was first discovered by Kepler, based on observational data alone (he didn’t have
the benefit, as we do, of living after Newton and thus knowing about Newton’s law of gravity). Kepler summarized his
observational facts in three laws, which we can, with the benefit of hindsight, prove to be corollaries of Newton’s laws.

Theorem 6.4.1:Kepler’s first law

The planets move in elliptical orbits, with the sun at one of the foci.

This is case two of the general result given by Equations 6.3.10 and 6.3.11.

Theorem 6.4.2: Kepler’s second law

A line segment joining a planet and the sun sweeps out equal areas during equal intervals of time.

This law is nothing but a special case of conservation of angular momentum. Consider a small piece of the orbit, in which the
planet moves a distance dz. The lines connecting the initial and final points of this piece of orbit with the sun make an angle
dé. If the initial distance from the planet to the sun was r, and the final distance r 4 dr, we have, to first order, dz = rdf. The
infinitesimal area the planet has swiped out is then given by (area of a triangle): dA =12 rdx =12 r 2 df. If we want to know
how much area was swept out over an amount of time, we need to know the time derivative of A, which is thus given by

dA = %rdz = %rzde . Now using that the angular momentum of the planet is given by L = mrzé, we find

dA rdd L

—_— s et = — (6.4.1)
dt 2 dt 2m
which is constant if L is conserved.
Theorem 6.4.3: Kepler’s third law
The square of the period T of an orbit is proportional to the cube of its semi-major axis length a:
47’
T2 — 3 6.4.2
YT (6.4.2)

where My, is the mass of the sun.

We integrate Equation 6.4.1 over the period of a whole orbit, which gives A = % By Kepler’s first law, the orbit is an
ellipse, so its area equals A = mab, with a and b the ellipse’s semi-major and semi-minor axes. The two axes are related by
b=a+/1—¢€?, with £ again the eccentricity of the ellipse. Making these substitutions and squaring the resulting relation, we

get:
L? T?
2 4
e = ————— 6.4.3
m(1—¢%) 4m (6.4.3)
Using k = 7% , like in Equation 6.3.11, and the observation that for an elliptical orbit ﬁ =a, we get m(lL—ja2) = aa. Now

for orbits in the solar system, & = GMgm, so we arrive at Equation 6.4.2.
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Johannes Kepler

Johannes Kepler (1571-1630) was a German astronomer and mathematician who made major contributions to understanding
the motion of the planets. Copernicus had published his heliocentric (rather than geocentric) view of the universe
posthumously in 1543, but the two systems were still heavily debated in Kepler’s time. Having been convinced that Copernicus
was right, Kepler set out to construct a geometric description of the solar system. He initially tried to do so using polyhedra and
Platonic solids, but found that these could not accurately describe the data. In 1600, Kepler met with astronomer Tycho Brahe,
who had made meticulous observations of the known planets, and, having been convinced of Kepler’s skills in mathematics,
shared his data with him. After Tycho’s death in 1601, Kepler succeeded him as imperial mathematician in Prague, where he
developed his laws over the next decade. Unfortunately, Kepler’s Calvinist views got him in trouble frequently with both the
Catholic and the Lutheran church, which led to his excummunication, but he managed to avoid further persecution by moving
frequently, and he always could continue his scientific work. The Kepler spacecraft and mission, launched in 2009 to hunt for
extrasolar terrestial planets, is named in his honor.

Figure 6.4.1: Portrait of Johannes Kepler (1610) [21].
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6.E: General Planar Motion (Exercises)

6.1 A particularly useful orbit for satellites is the geosynchronous one: the orbit in which the satellite rotates around the Earth in
exactly one day, so with respect to the ground, it is always in the same position. Find the altitude (i.e., distance above the Earth’s
surface) for a circular geosynchronous orbit.

6.2 Kepler’s laws apply to the case that an object with relatively small mass m orbits an object with large mass M, which we
assume stays fixed. Technically, this is incorrect: both objects rotate about their common center of mass. Fortunately, we can still
use the expressions derived in this section, with a small modification. To see how this works, we write down the equations of
motion for the two objects, due to the force they exert on each other:

. 1 .. 1
i =——F(r), & =-F(r) (6.E.1)
where @, is the position of the object with mass m, &2 that of the object with mass M, and » = @3 — @ their separation. We

denote the position of the center of mass of the system by R.

a. As there is no external force acting on the system, the total momentum is conserved and therefore the center of mass cannot
accelerate. Argue that this implies that

(m+M)R=0 (6.E.2)

and combine Equations 6.F.1 and 6.5.2 into an expression for R in terms of @1, &5, and the masses of the two objects.

b. From Equation 6.E.1, also derive an equation of motion for the separation 7 between the two objects. The equations you found
in (a) and (b) together are equivalent to the equations of motion in 6.F.1, but only one is a differential equation, and they are
uncoupled: we don’t need to know the position of the center of mass to find the separation, and vice versa.

c. Show that you can re-write the equation of motion for the separation between the two objects as F'(r) = u# , where p is the
reduced mass that we also encountered when studying collisions in the center of mass frame, Equation 4.8.7, given by

mM

m (6.E.3)

/J/ =

Note that solving the final equation for the separation # is entirely equivalent to solving the equation of motion of a single
particle under the action of a central force, with the modification that the mass of the particle is replaced by the reduced mass.
For the case that m << M, the reduced mass is approximately equal to m.

d. Calculate the reduced mass of the Earth-Moon two body problem. Can we state that the Moon revolves around the Earth?

e. Nowhere in the derivations in this problem did we assume that m << M . The same rules apply to any two objects. Consider
the opposite limit: two objects (these might for instance be binary stars) of equal mass M that rotate around their common
center of mass. Show that for this case, for circular orbits the orbital period is given by

_ 2m2d3

T2
GM

(6.E.4)

where d is the distance between the two objects.

6.3 A student with mass 65.0 kg stands at the center of a simple merry-go-round that consists of a large disk of radius 1.5 m and
mass 25 kg and is making a full rotation every 2.0 s. The student walks out to a distance of 0.50 m from the center.

a. Find the rotational frequency of the merry-go-round with the student at this point.
b. What are the forces acting on the student at this point?
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Thumbnail: A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or
disc in which the axis of rotation (spin axis) is free to assume any orientation by itself. When rotating, the orientation of this axis is
unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum. (Public Domain; LucasVB).

This page titled 7: General Rotational Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon
Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.



https://libretexts.org/
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/07%3A_General_Rotational_Motion/7.01%3A_Linear_and_Angular_Velocity
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/07%3A_General_Rotational_Motion/7.02%3A_Rotating_Reference_Frames
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/07%3A_General_Rotational_Motion/7.03%3A_Rotations_About_an_Arbitrary_Axis
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/07%3A_General_Rotational_Motion/7.E%3A_General_Rotational_Motion_(Exercises)
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/07%3A_General_Rotational_Motion
https://creativecommons.org/licenses/by-nc-sa/4.0
http://idemalab.tudelft.nl/idema.html
https://textbooks.open.tudelft.nl/index.php/textbooks/index
https://textbooks.open.tudelft.nl/textbooks/catalog/book/14

LibreTextsm

7.1: Linear and Angular Velocity

We related the linear and angular velocities of a rotating object in two dimensions in Section 5.1. There, we also already stated the
relation between the linear velocity vector and rotation vector in three dimensions (Equation 5.1.5):

V=wXr (7.1.1)

It is not hard to see that this expression indeed simplifies to the scalar relationship v = wr for rotations in a plane, with the right
sign for the linear velocity. That’s hardly a proof though, so let’s put this on some more solid footing. Suppose  makes an angle ¢
with w. Suppose also that it changes by d» in a time interval d¢, then if we have pure rotation, d» is perpendicular to both = and w,
and its magnitude is given by |dr| = wrsin¢dt = |w X |dt , where w and 7 are the lengths of their respective vectors. Finally, as
seen from the top (i.e., looking down the vector w), the rotation should be counter-clockwise (by definition of the direction of w),
which corresponds with the direction of w x r. We thus find that both the magnitude and direction of v = dr/dt¢ indeed equal
w X 7, and Equation 5.1.5 holds.

This page titled 7.1: Linear and Angular Velocity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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7.2: Rotating Reference Frames

In Section 4.3, we considered what happens if we considered the (linear) motion of an object from a stationary (‘lab frame”) or co-
moving point of view, with special attention for the center of mass frame. These frames were moving with constant velocity with
respect to each other, and were all inertial frames - Newton’s first and second laws hold in all inertial frames. In this section, we’ll
consider a rotating reference frame, where instead of co-moving with a linear velocity, we co-rotate with a constant angular
velocity. Rotating reference frames are not inertial frames, as to keep something rotating (and thus change the direction of the linear
velocity) requires the application of a net force. Instead, as we’ll see, in a rotating frame of reference we’ll get all sorts of fictitious
forces - forces that have no real physical source, like gravity or electrostatics, but originate from the fact that we’re in a rotating
reference frame.

In a rotating reference frame, the direction of the basis vectors changes over time (as measured with respect to the stationary lab
frame - this is different from the linearly co-moving frames, where the directions of the basis vectors remained constant). To see
how the basis vectors change over time, we can simply calculate their linear velocity, using Equation 5.1.5:

de . dy . dz R
d—f:wxm, d—?:zwxy, d—'::wxz (7.2.1)
We can now easily determine the change of an arbitrary vector w = u, & +u,y +u.z over time:
du Ou, . Ouy . Ou, . dx dy dz Su
— = = e Uy Uy — | = — 7.2.2
at (6tm+6ty+8t >+(u @ e tw ) T T (7.22)

where * is defined by Equation 7.2.2, and represents the time derivative of u in the rotating basis!. We see that in addition to the
regular time derivative, acting on the components of u, we get an additional term w X w due to the rotation of the system. Note
that for u = w, we find that ‘31‘;’ = ‘;‘: = w, i.e., the time derivative of the rotation vector is the same in the stationary and rotating
frames.

The prime example of a vector is of course the position vector r of a particle, the second derivative of which appears in Newton’s
second law of motion. We’ll calculate that second derivative for a position vector in a rotating coordinate frame. The first
derivative is a simple application of Equation 7.2.2:

dr or

To get the second derivative, we apply 7.2.2 to the velocity vector found in 7.2.3:

&Pr d or
dt2 dt(dt
é  or
Jt(ét

82r  dw or
*FJra—t ><r+2w><5—t+w><(w><r)

Like in the two-dimensional case given by Equation 6.2.3, we find that the acceleration in a rotating reference frame picks up extra
terms compared to a stationary (or more general, inertial) frame. To get a complete picture, we also allow the origin of the rotating
frame to be different from that of the stationary lab frame. Let 715}, be the position vector in the lab frame, R the vector pointing
from the origin of the lab frame to that of the rotating frame, and 7 the position vector in the rotating frame. We then have
7r1ab = R + 7, and for the second derivative of 7,, we find:

+wxr)

or
twxr)+wx(—

5 +wxr)

dr,  dr  d°R

= — 7.2.4
de? de2  de? ( )
8*r or  dw d’R
=— 2 — 4+ 2.
=52 twx (wxr)+ wx6t+ 5t X T+ o (7.2.5)

We can substitute Equation 7.2.5 in Newton’s second law of motion in the lab frame (i.e., just F' = d;% ) to find the expression for

that law in the rotating frame:
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§* : ’R
m#:F—m[wx(wxr)+2w><'v+w><r+ 2 ] (7.2.6)
where we defined v = 9= as the velocity in the rotating frame, and used that the time derivative of w is the same in both the

ot
stationary and the rotating frame. We find that we get four correction terms to the force due to our transition to a rotating frame.

They are not ‘real’ forces like gravity or friction, as they vanish in the lab frame, but you can easily experience their effects, when
you’re in a turning car or rotating carousel. As they have no physical origin, we call these forces fictitious. They are known as the
centrifugal, Coriolis, azimuthal, and translational force, respectively:

Fy=—mwx(wxr) (7.2.7)
Foor = —2mw X v (7.2.8)
F,=—-mwxr (7.2.9)
d’R
Frans = - 7.2.10
t m a2 ( )

We encountered the centrifugal, Coriolis and azimuthal force before in Section 6.2. To see how the expressions above connect to
the planar versions, let us pick the coordinates of the rotating frame such that the direction of w coincides with the z-axis. The
rotational motion and the forces can then be described in terms of the cylindrical coordinates consisting of the polar coordinates
(p, 0) in the xy-plane and z along the z-axis (note that we use p = /x? +y? for the radial distance in the xy-plane instead of 1, as
r is now the distance from the origin to our point in three dimensions). For the centrifugal force we have w - Fs =0, so it lies in
our newly defined xy-plane, and in cylindrical coordinates it can be expressed as

Fe=-m[ww-r) 7w2r} = mw? (22 +yy) = mw’pp (7.2.11)
The centrifugal force is thus nothing but minus the centripetal force, which we already encountered for uniform rotational motion
in Equation 5.2.1, and as the second term in 6.2.5. The centrifugal force is the force you ‘feel’ pushing you sidewards when your
car makes a sharp turn, and is also responsible for creating the parabolic shape of the water surface in a spinning bucket, see
Problem 7.4.

The Coriolis force is present whenever a particle is moving with respect to the rotating coordinates, and tends to deflect particles
from a straight line (which you’d get in an inertial reference frame). We have w-Fgo, = \boldsymbol{v} \cdot
\boldsymbol{F}_{\mathrm{Cor}}\) = 0\), so the Coriolis force is perpendicular to both the rotation and velocity vectors - note that
this is the velocity in the rotating frame. In the two-dimensional case, we had Futhrmcor = 2mp5wé (Equation 6.2.7), which for a
velocity in the radial direction, p, gives a force in the angular direction 0.

The azimuthal force occurs when the rotation vector of our rotating system changes - i.e., when the rotation speeds up or
decelerates, or the plane of rotation alters. In either case we have - F,, = 0, so the force is perpendicular to the position vector.

If it is the magnitude of the rotation vector that changes, and we again take the rotation vector to lie along the z-axis in the rotating
frame, w also lies along the z-axis, and we get

F,, = —maz xr=—mrf (7.2.12)
so the azimuthal force is minus m times the tangential acceleration a (see Equation 5.1.8), or minus the first term of 6.2.6.

The translational force finally occurs when the rotating reference frame’s origin accelerates with respect to that of the stationary lab
frame. You also feel it if the ‘rotating’ reference frame is actually not rotating, but only accelerating linearly - it’s the force that
pushes you back in your seat when your car or train accelerates.
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Figure 7.2.1: Rotation of a dumbbell, consisting of two equal masses m separated by a distance d = 2r about an axis which is not a
symmetry axis of the system.

1 Some authors use the notation (i—’t‘)mt for ‘;—'t‘.
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7.3: Rotations About an Arbitrary Axis

In Chapter 5, we studied the rotation of rigid bodies about an axis of symmetry. For these cases, we have L = Iw, where I is the
moment of inertia with respect to the rotation axis. We already noted that I depends on which axis we pick, and that the
proportional relation between the rotation vector and angular momentum is not the most general possibility. In this section, we’ll
derive the more general form, in which the number I is replaced by a 2-tensor, i.e., a map from a vector space (here R?) into itself,
represented by a 3x3 matrix.

Moment of Inertia Tensor

To arrive at the more general relation between L and w, we go back to the original definition of L = X p , and consider the
motion of a dumbbell around an axis which is not a symmetry axis (see Figure 7.2.1). If the dumbbell makes an angle 8 with the
rotation axis, and rotates counter-clockwise as seen from the top, we get:

L =mrxv+m(—r)x(—v) (7.3.1)
=2mr X (wXxr) (7.3.2)
=2mw(r-r)—r(r w)) (7.3.3)
= 2mr?w — 2muwr cos Or (7.3.4)

where we used Equation 5.1.5 relating the linear velocity v to the rotational velocity w through v = w X 7. Equation 7.3.4 shows
that for a rotation about an arbitrary axis through the center of the dumbbell, we get two terms in L. The first term, 2mr?w, is the
rotation about an axis perpendicular to the dumbbell, and equals Iw for I = 2m?, as we found in Section 5.4. The second term, (
—2muwr cos Or), tells us that in general we also get a component of L along the axis pointing from the rotation center to the
rotating mass (i.e., the arm). Note that the two terms cancel when § = 7 /2, as we’d expect for in that case the moment of inertia of
the dumbbell is zero.

We can easily generalize Equation 7.3.4 to any set of masses m, with position vectors r, (where the index o runs over all
particles), and with a rotation w about an arbitrary axis:

L= marox(wxre)=T-w (7.3.5)

The moment of inertia tensor is defined by Equation 7.3.5. It is a symmetric tensor, mapping a vector w in R? onto another vector
L in R®. In Cartesian coordinates, we can express its nine components as three moments of inertia about the x, y and z axes, which
will be the diagonal terms of I:

Lo =) ma (¥a+23) Iy=) ma(zh+22) L.=) ma(cd+yd) (7.3.6)
« « «

and three products of inertia for the off-diagonal components:

Iy=1I,=— Zmamaya I,=1,=— Zmawaza I.=I,=— Zmayaza (7.3.7)
[e]3 [e]3 (e}

We can also write Equations 7.3.6 and 7.3.7 more succinctly using index notation, where ¢ and j run over z,y and z, and we use
the Kronecker delta d;; which is one if ¢ = j and zero if ¢ # j:

I,'j = Z mMe (7'2(51']' —’I"i?"j) (738)

Equations 7.3.6 and 7.3.7 generalize to continuous objects in the same way Equation 5.4.2 generalized to 5.4.3. Using the index
notation again, we can explicitly write:

Iij = /V (7’251']' —’I’Z'T’j) p(’l‘)dV (739)

The moment of inertia tensor contains all information about the rotational inertia of an object (or a collection of particles) about
any axis. In particular, if one of the axes (say the z-axis) is an axis of symmetry, we get that I, = I,,, = 0, and for rotations about
that axis (so w = wz ), we retrieve L = Iw.
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In addition to calculating the angular momentum, we can also use the moment of inertia tensor for calculating the kinetic energy for
rotations about an arbitrary axis. We have:

K :%;mava-va

1
:§;ma(wxra)~(w><'l'a)

w - Zmara X (W X7y)
(e}

N~ N

1
w-L:§w~I-w

Euler's Equations

In the lab frame, we have Equation 5.7.1 relating the torque and the angular momentum. We used this equation to prove
conservation of angular momentum in the absence of a net external torque, and to study precession. However, for rotations about an
arbitrary axis, it is easier to transform to a frame in which we rotate with the object, much like moving with the center of mass
makes the study of collisions much easier. We’ve already done the math for transforming to a co-rotating frame in Section 7.2; here
we only need the result in Equation 7.2.2 to find the time derivative of the angular momentum in the rotating frame. Equation 5.7.1
then translates to:

L
T :(;—t—i—wXL (7.3.10)
=l wtwx (I w) (7.3.11)

Now since I is symmetric, all its eigenvalues are real, and its eigenvectors are a basis for R3; moreover, for distinct eigenvalues the
eigenvectors are orthogonal, so from the eigenvector basis we can easily construct an orthonormal basis (€1, és,€3) of
eigenvectors corresponding to the three eigenvalues I1, I> and I3. If we express the moment of inertia tensor in this orthonormal
eigenvector basis, its representation becomes a simple diagonal matrix, I = diag(I;, I, I3). We call the directions €; the principal
axes of our rotating object, and the associated eigenvalues the principal moments of inertia. The construction of the principal
axes and moments of inertia works for any object - including ones that do not exhibit any kind of symmetry. If an object does have
a symmetry axis, that axis is usually also a principal axis, as can easily be checked by calculating the products of inertia with
respect to that axis (they vanish for a principal axis).

Leonhard Euler

Leonhard Euler (1707-1783) was a Swiss mathematician who made major contributions to many different branches of
mathematics, and, by application, physics. He also introduced much of the modern mathematical terminology and notation,
including the concept of (mathematical) functions. Euler was possibly the most prolific mathematician who ever lived, and
likely is the person with the most equations and formula’s named after him. Although his father, who was a pastor, encouraged
Euler to follow in his footsteps, Euler’s tutor, famous mathematician (and family friend) Johann Bernoulli convinced both
father and son that Euler’s talent for mathematics would make him a giant in the field. Famous examples of Euler’s work
include his contributions to graph theory (the Koningsberg bridges problem), the relation e +1 =0 between five
fundamental mathematical numbers named after him, his work on power series, a method for numerically solving differential
equations, and his work on fluid mechanics (in which there is also an ‘Euler’s equation’).
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Figure 7.3.1: Portrait of Leonhard Euler by Jakob Handmann (1753) [22].

If we express our rotational quantities in the principal axis basis {unitvece;} of our rotating object, our equations become much
simpler. We have

I1 0 0 w1 Ilwl
L = I W = O I2 0 w9 = I2(,U2 (7.3.12)
0 0 I w3 T3ws

or in components: L; = I;w; . Equation 7.3.11simplifies to:

Ty w1 Tiwy
T=| hwy | +| ws | X | Lws (7313)
Iws w3 Lws

which gives for the three components of the torque:

T1 :Il(bl + (I3 7[2)(&)3(&12
Ty = Iy + (I1 — I3) wiws (7.3.14)
T3 — I3u.)3 + (I2 fIl)wgwl

Equations 7.3.14 are known as Euler’s equations (of a rotating object - the classification is necessary as there are many equations
associated with Euler).

As an example, let’s apply Euler’s equations to our dumbbell. We take the origin at the pivot, i.e., where the rotation axis crosses
the dumbbell’s own axis. The dumbbell does have rotational symmetry, about the axis connecting the two masses - let’s call that the
3-axis. The other two axes then span the plane perpendicular to the dumbbell; we can pick any orthonormal pair for the 1 and 2-
axes. The rotation vector in this basis is given by

w1 0
w=|w | =w| sinf (7.3.15)
ws cosf

The products of inertia vanish; the principal moments are given by I = I, = %md2 (with d the distance between the two masses)
and Is =0. As long as the rotational velocity is constant (w =0), we get from Euler’s equations that , =73 =0, and
™= —%mdzw2 sinfcosf . We can thus rotate our dumbbell about an axis that’s not a symmetry axis, but at a price: it exerts a
torque on its support, which in turn exerts a countertorque to keep the dumbbell’s rotation axis in place. This torque will change the
angular momentum of our dumbbell over time. If we remove the force exerting the counter-torque (e.g., if our dumbbell is
supported at the pivot, remove the support), the dumbbell will turn, in our example about axis 2, until the rotation vector w has
become parallel with the angular momentum vector L.

For the dumbbell, as it has a rotational symmetry, two of the principal moments are identical. There are many objects that have no
such symmetry, but they still have three well-defined principal axes. While for the dumbbell rotation about any of the principal
axes is stable, this is not the case for an object with three different principal moments. A good example is a tennis racket, whose
principal axes are sketched in Figure 7.3.1. The accompanying theorem about the stability of rotations about these axes is easily
demonstrated with a tennis racket, and bears its name.
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Theorem 7.3.1: Tennis Racket Theorem

If the three principal moments of inertia of an object are different (say /; < I < I3 ), then rotations about the principal axes 1
and 3 associated with the maximum and minimum moments I; and I3 are stable, but those about the principal axis 2
associated with the intermediate moment I, are unstable.

For rotations about a principal axis, the torque is zero (by construction), so Euler’s equations read
. LI
w1 + SI_IZU.)gLUz =0

gt 11;213 wiws =0 777 (7.3.16)

. I—1,
ws + 21—31w2w1 =0

If we rotate about axis 1, then wy and w3 are (at least initially) very small, so the first line in 777 gives w; = 0. We can then
derive an equation for wo by taking the time derivative of the second line of 77”7 and using the third line for w3, which gives:

I —1I L —1I3 I, T
0=&>2+ ! 3 (d)lw?, +w1w3) :wz—ggw%m (7317)
T L I
Now (111—213) <0, (121_311) >0, and w? > 0, and wy satisfies the differential equation &s = —cws , with ¢ > 0. Solutions to this

equation are of course sines and cosines with constant amplitude. Although ws can thus be finite, its amplitude does not grow
over time (and will in fact decrease due to drag), so rotations about axis 2 are opposed. Similarly, we find that rotations about
axis 3 cannot grow in amplitude either, and rotations about axis 1 are stable. We can repeat the same argument for axes 2 and 3.
For axis 3, we find that rotations about the other two axes are likewise opposed, so rotations about this axis are stable as well.
For axis 2 on the other hand, we find that

L-0L, L1
== W

0o
U A

2wy (7.3.18)
or @ = cwp, with ¢ another positive constant. Solutions to this equation are not sines and cosines, but exponential:
w1 (t) = Aexp(y/ct) + Bexp(—+/ct) , which means that for any finite initial rotation about the 1 axis, the amplitude of this
rotation will grow over time, and rotations about the 2-axis are thus unstable.

l-axis I-axis

Figure 7.3.2: The three principal axes of a tennis racket.
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7.E: General Rotational Motion (Exercises)

7.1 Two Delft students wish to re-create Galilei’s experiment dropping objects with different mass from a high tower. They use the
tower of the Old Church in Delft, which, like the more famous one in Pisa supposedly used by Galilei, leans over somewhat. The
tip of the tower is 75 m above street level, and 2.0 m removed from the vertical. The student who will drop the objects stands on
the trans at 60 m. The base of the tower is a square of 10x10 m.

a. How far from the base of the tower do you expect the stone to fall?

b. The second student, who has done the same calculation you did in (a), has put a camera close to the floor aimed at the spot
where the objects will drop. Surprisingly, in a test drop of a single stone, he observes that the actual position the stone hits the
ground deviates from this spot. The student at the top however insists that she dropped the stone straight down from the tower
trans, as agreed. The students therefore go back to their Mechanics books and realize that they forgot to account for the rotation
of the Earth. Which of the (fictional) forces described in this section could cause the stone to deviate from its straight path
down?

c. Delft is located on the Northern hemisphere. In which direction will the trajectory of the stone be deflected?

d. Delft is at 52.0° N. What is the magnitude of the deflection of the dropped stone on the ground? You may neglect air resistance
in this calculation.

7.2 Foucault’s pendulum A well-known (and conclusive) proof of the fact that the Earth is rotating is provided by a Foucault
pendulum, first presented by French physicist Léon Foucault in 1851 (a replica of his device is on permanent exhibit in the
Panthéon in Paris, as well as in many other science musea around the world, see Figure 7.E.1). A key part of this pendulum is the
way its pivot is constructed: it has to be rotationally symmetric and frictionless, so it can’t exert any torques on the pendulum itself.
Consequently, the plane in which the pendulum oscillates will remain unchanged?, even as the Earth rotates. Therefore, for
observers on Earth, the plane of the pendulum seems to rotate over time. To see how this works, consider putting this pendulum at
the North pole. Then for an external observer, the plane of the pendulum stays fixed (there are no forces acting on it), while the
Earth (looking down on the North pole) rotates counterclockwise; for an Earth-bound observer, the pendulum’s plane thus seems to
move clockwise (again as seen from the top), making one full revolution in one day.

Paris is not on the North pole, but it does lie on the Northern hemisphere, so the pendulum will still appear to rotate clockwise, just
at a slower frequency. We’ll calculate this precession frequency in this problem.

a) w

Figure 7.E.1: Foucault’s pendulum. (a) Coordinates in Paris. (b) For a pendulum with a long string and small amplitude, the
velocity of the bob will be almost horizontal. (c) The replica of Foucault’s original pendulum at the Panthéon [19].

a. First, we need the angular velocity in Paris, in a useful coordinate system. Define the 2 axis as pointing upwards in Paris, and &
as the tangent to the planet due North (see Figure 7.E.1a). Express w in these coordinates.

b. If the pendulum has a very long string (the original Foucault one is 67 m) compared to its amplitude, the velocity v of the
weight will be roughly in the horizontal direction, see Figure 7.E.1b. Argue why, in this case, the component of w in the &
direction will not change the frequency at which the plane of the pendulum precesses.

¢. The pendulum’s plane rotates with a (precession) frequency wp = wp 2 with respect to the Earth’s frame fixed in Paris. This
precession frequency must exactly compensate for the Earth’s rotation in the frame of the pendulum (as in that frame, there are
no forces acting on the pendulum, and thus its plane of oscillation stays fixed). Show that these considerations imply that
wp = —wcosf.

d. Suppose that you enter the Panthéon at noon, and mark the direction in which the pendulum is oscillating. When you return an
hour later, by how much will this plane have rotated? Will this be enough to be visible by eye? The Panthéon is at 48°50'46"” N
(note that degrees, like hours, are divided in (arc)minutes and seconds that run up to 60, not 100).

(cc)(§ )0$AD) 7.E.1 https://phys.libretexts.org/@go/page/17406



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17406?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/07%3A_General_Rotational_Motion/7.E%3A_General_Rotational_Motion_(Exercises)

LibreTextsw

7.3 An alternative way to show the effect of the rotation of the Earth involves only a smooth horizontal plane and a particle that can
slide over it. Show that if the particle’s velocity is v, its trajectory will be a circle with radius r = % , where Q is the Earth’s

rotational velocity.

7.4 The centrifugal force emerges in a rotating coordinate frame, and famously causes the parabolic shape of the surface of water in
a rotating bucket. As the centrifugal force is always perpendicular to the rotation axis, we can pick coordinates such that the
rotation axis coincides with the z-axis, w =wz, and we can express the centrifugal force in cylindrical coordinates as
F; = mw?pp (Equation 7.2.11).

We now consider a small volume of water at the rotating surface (in steady-state). There are two forces acting on this mass of
water: gravity (pointing down, as always) and the centrifugal force, pointing outward, see Figure 7.E.2. The resulting net force
cannot have a component along the surface, as this would result in an acceleration of the water (and hence a water flow); therefore,
the force must be perpendicular to the surface, and counterbalance the pressure in the water (just like it would for the flat surface of
water in a bucket that is not rotating).

The gravitational and centrifugal force add up to what is known as an effective gravity, given by

et = —gz +w’pp (7.E.1)

Figure 7.E. 2: Parabolic water surface in a rotating bucket. The axis of rotation coincides with the axis of symmetry. For a small
volume of water at the surface, the gravitational force and the centrifugal force add up to an effective gravitational force, which
must be perpendicular to the water surface in steady-state. This net force is counterbalanced by the pressure in the water (F").

a. Find the angle 6 the direction of the effective gravitational force makes with the vertical (see Figure 7.E.2).
b. If the gravitational force is to be perpendicular to the water surface, we must have

d
£ _tand (7.E.2)
dp
Integrate this equation to find z(p) (and thus the shape of the surface).
c. Find the potential energy corresponding to the effective gravitational force, Futr = mgegs -
d. Argue why the potential energy must be constant on the water surface, and from this condition, again derive the shape of the

water surface.
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8: Oscillations

8.1: Oscillatory Motion

8.2: Damped Harmonic Oscillator
8.3: Driven Harmonic Oscillator
8.4: Coupled Oscillators

8.E: Oscillations (Exercises)

Thumbnail: A picture of the first Tacoma Narrows Bridge. The 1940 Tacoma Narrows Bridge, the first Tacoma Narrows Bridge,
was a suspension bridge in the U.S. state of Washington that spanned the Tacoma Narrows strait of Puget Sound between Tacoma
and the Kitsap Peninsula. It dramatically collapsed into Puget Sound on November 7 of the same year.
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8.1: Oscillatory Motion

Harmonic Oscillator

We’ve already encountered two examples of oscillatory motion - the rotational motion of Chapter 5, and the mass-on-a-spring
system in Section 2.3 (see Figure 1.1.1). The latter is the quintessential oscillator of physics, known as the harmonic oscillator.
Recapping briefly, we get its equation of motion by considering a mass m that is being pulled on by a massless ideal spring of
spring constant k. Equating the resulting spring force (Hooke’s law) to the net force in Newton’s second law of motion, we get:

mi = —kz (8.1.1)

The harmonic oscillator is characterized by its natural frequency wy:

wy = \/g (8.1.2)

as follows readily by dimensional arguments (or, of course, by solving the differential equation). Because Equation 8.1.1 is second-
order, its solution has two unknowns; moreover, as it has to be minus its own derivative we readily see that it should be a linear
combination of sines and cosines (for a formal derivation, see Appendix A.3.2). We can write the solution in two different ways:

z(t) = z(0) cos(wot) + %Sin(wgt) (8.1.3)
= Acos(wot +¢) (8.1.4)

:Eg; and the amplitude A by A = %. Unsurprisingly, as they are both simple
periodic motions, there is a direct relationship between a harmonic oscillator with natural frequency wy, and a point on a disk
rotating with uniform angular velocity wy in the xy-plane - the motion of the harmonic oscillator is that of the disk projected on the

x (or y) axis.

where the phase ¢ is given by tan¢ = —%

Torsional Oscillator

A torsional oscillator is the rotational analog of a harmonic oscillator - imagine a disk with moment of inertia I suspended by a
massless, frictionless rope that has a torsional constant «, i.e., the force to twist the rope is given by F' = —k8, with 6 the twist
angle. By invoking the rotational analog of Newton’s second law of motion, Equation 5.4.1, we readily find for the equation of
motion of the torsional oscillator:

I6 = —k6 (8.1.5)

so the torsional oscillator indeed is the exact rotational analog of the harmonic oscillator, and has a natural frequency of wy = ﬁ

Christiaan Huygens

Christiaan Huygens (1629-1695) was a Dutch physicist and astronomer, and one of the major figures in the scientific
revolution. Huygens invented the pendulum clock in 1656, which revolutionized timekeeping and remained the most accurate
clock for 300 years. Huygens was also the first to cast the laws of physics in mathematical form, writing down an early
(quadratic) version of Newton’s second law of motion, the equation for the centripetal force (Eq. 5.2.1), and the correct form of
the laws of elastic collisions (Section 4.7). Observing two pendulum clocks on the same wall, Huygens observed that they
synchronized (see Section 8.4). Huygens’ study of optics led him to formulate the wave theory of light, which can correctly
predict light diffraction. In astronomy, he discovered the first feature on the surface of Mars, the largest moon of Saturn (Titan),
and that the previously observed ‘shape changes’ of Saturn were due to the presence of its rings. The Huygens probe that
landed on Titan in 2005 was very appropriately named in his honor.
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Figure 8.1.1: 1671 portrait of Huygens by Caspar Netscher [23].

Pendulum

A pendulum is an object that is suspended on a horizontal peg through any point xp but its center of mass xcy (it won’t oscillate if
you pin it at the center of mass). If the center of mass of the pendulum is pulled sideways, gravity will exert a torque around the
position of the peg, pulling the pendulum back down. If the distance between xp and zcy is L, and the line connecting them
makes an angle 6 with the vertical through xp, then the torque exerted by gravity around zp equals —mgL sin 6, where as usual m
is the mass of the pendulum. Now again invoking Equation 5.4.1, we can write for the equation of motion of the pendulum (with I
its moment of inertia about zp):

160 = —mgLsin6 (8.1.6)
Unfortunately we can’t solve Equation 8.1.6. For small angles however, we can Taylor-expand the sine, and write sin 8 ~ 6, which
takes us back to the harmonic oscillator equation. From that we find that for this pendulum (called the physical pendulum), the

natural frequency is wy = 4/ m—;]L . For the special case that the pendulum consists of a mass m suspended on a massless rope of
length L (the simple pendulum), we have I = mL? and thus wy = VL.

Oscillations in a Potential Energy Landscape

The potential energy associated with a mass on a spring has a very simple form: Us(z) = %k:ﬁ (see Equation 3.3.7). The potential
energy landscape of a harmonic oscillator thus has the shape of a parabola. Now that’s a shape that we encounter very often: the
shape of pretty much every landscape about a minimum closely resembles a parabola’. To see why this is the case, simply Taylor-
expand the potential energy about a minimum at zo: because the function has a minimum at zg, U’ (zo) =0, and the Taylor

expansion gives
1
U(x) :U(wo)—FEU" (mo)x2—|—ﬁ(w3) (8.1.7)

Around a minimum in the potential energy, any potential energy thus resembles that of a harmonic oscillator. Any particle placed in
such a potential energy landscape close to a minimum (i.e., a particle on which a force acts close to the point where the force
vanishes) will therefore tend to oscillate. By comparing Equation &.1.7 with the potential energy of the harmonic oscillator, we can
immediately read off that the resulting oscillatory motion is identical to that of a harmonic oscillator with spring constant
kE=U"(zy). A particle released close to a minimum of the potential energy will thus oscillate with a frequency

w=4/U"(z0) /m.

1 The only exception being functions of the form z*" for n > 1.
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8.2: Damped Harmonic Oscillator

x(t)
1 \

af

Figure 8.2.1: Position as function of time for four types of oscillation: undamped (¢ = 0, blue), underdamped (0 < ¢ < 1, orange),
critically damped (¢ = 1, green) and overdamped (¢ > 1, red). In all cases the initial conditions are z(0) = 1 and v(0) = 0.
So far we’ve disregarded damping on our harmonic oscillators, which is of course not very realistic. The main source of damping
for a mass on a spring is due to drag of the mass when it moves through air (or any fluid, either gas or liquid). For relatively low
velocities, drag forces on an object scale linearly with the object’s velocity, as illustrated by Stokes’ law (Equation 2.2.5). For an

object of arbitrary shape moving through an arbitrary fluid we’ll write Fyag = —y, with +y the drag coefficient, and of course
opposing the direction of motion. Adding this to the spring force gives for the equation of motion of the damped harmonic
oscillator:

mi = —y& —kz (8.2.1)

We now have two numbers that determine the motion: the undamped frequency wg = +/k/m and the damping ratio
¢ =~/2+/mk. In terms of these parameters, we can rewrite Equation 8.2.1 as:

T +2(wot +wjz =0 (8.2.2)

The solution of Equation 8.2.2 depends strongly on the value of ¢, see Figure 8.2.1. We can find it? by substituting the Ansatz
z(t) = e, which gives a characteristic equation for \:

AN+ 2¢wod +wi =0 (8.2.3)

A= —CwpFwpy/¢(2—1 (8.2.4)

For ¢ < 1, there are two complex solutions for A, and we find that (¢) undergoes an oscillation with an exponentially decreasing
amplitude:

SO

z(t) = e ' [A cos(wqt) + Bsin(wat)] (8.2.5)

where wg = wg4/1 —¢? and A and B follow from the initial conditions. Because there is still an oscillation, this type of motion is
called underdamped. In contrast, if { > 1, the roots Ay in Equation &.2.4 are real, and we get qualitatively different, overdamped
behavior, in which x returns to 0 with an exponential decay without any oscillations:

z(t) = Ae™' + BeM ! = e [Ae + Be ] (8.2.6)

where € = wy+/¢2 —1 . Naturally the boundary case is when ¢ = 1, which is a critically damped oscillator - the fastest return to 0
without oscillations. Because in this case Equation &.2.4 only has one root, we again get a qualitatively different solution:

z(t) = (A+ Bt)e " (8.2.7)
The three different cases and the undamped oscillation are shown in Figure 8.2.1.

2 See appendix A.3.2 for the mathematical details on how to solve general equations of this type.
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8.3: Driven Harmonic Oscillator

A mass on a spring, displaced out of its equilibrium position, will oscillate about that equilibrium for all time if undamped, or relax
towards that equilibrium when damped. Its amplitude will remain constant in the first case, and decrease monotonically in the
second. However, if we give the mass a periodic small push at the right moment in its oscillation cycle, its amplitude can increase,
and even diverge. To see how this works we study the driven oscillator, where we apply a periodic driving force

1 ) .
Fp(t) = Fp cos(wpt) = 5 Fb (e™rt 4 e=rt) (8.3.1)
Adding this driving force to the equation of motion 8.2.1 of a damped harmonic oscillator, we obtain:
. . FD iwpt —iwpt
&4 2wolE +wiz = 2—(3“‘”3 + e nt) (8.3.2)
m

We already know the homogeneous solution to Equation 8.3.2 - that’s just the damped oscillator again, so depending on the value
of ¢, we get one of the three possible solutions of the previous section. To find a particular solution, we first note that we can split
the driving term in two - if we have a particular solution for each of the oscillating exponentials, we can simply add them. Also,
these exponentials themselves look very similar to the underdamped solutions, so they may make a good guess for a particular
solution. For a right-hand side of (Fp/2m)e*™pt we therefore try x, = Ae*™p? . Substituting this into Equation &.3.2 with the
appropriate right-hand side, we get:

. ; o
A (—wd +2iwolwp +wf) et = %eim)t (8.3.3)

so we find that we have indeed a solution if the amplitude is given by

Fp
A(wp) = 8.3.4
(wn) 2m (wg + 2w lwp —wlz)) ( )
The full particular solution of Equation &.3.2 is then given by
FD eith efith
mp(t) = % 9 . 92 + 2 . 2
wj + 2iweCwp — Wi wj — 2iwoCwp — wp
Fp | (wj —wd) cos(wpt) + 2wolwp sin(wpt) ]
m (wf —ad) * +dufciud
Fp
= ——cos(wpt — ¢ (w
R (@) (wpt — ¢ (wp))
where the factor R(wp) in the amplitude is defined by
2
R? (wp) = (wf —w}) +4wiPw? (8.3.5)
and the phase ¢ (wp) by cos ¢ = (wf —w}) /R (wp),sin¢ = 2woCwp /R (wp) , s
2wo(wp
tan(¢ (wp)) = TS oy (8.3.6)
(wh —wp)

Resonance, a large response of the harmonic oscillator to a small driving force, occurs when x,(¢) blows up, or R (wp) goes to
zero. That does not always happen, but R (wp) can reach a minimum at which the amplitude becomes large:

dR?
0__:

s —4 (w} —w}) wp +8w2(wp (8.3.7)

which is at

w? = w? — 222 8.3.8
D 0 0

or wp ~ wy if the damping factor ¢ is small. Note that in this same limit (small {), we find that when wp ~ wq, tan¢ — oo, so
¢ — m/2. Therefore, in this case the driving happens out of phase with the response, that is to say, you push hardest when the mass
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is at its point of maximum speed, increasing that speed even further, and leading to an increase in amplitude. In practice, this is
what kids do when they sit on a swing: they fling back their legs when they go through the lowest point (maximum speed) going
backwards, and fling their legs forward at the same point when going forwards, increasing their speed and thus amplitude.

This page titled 8.3: Driven Harmonic Oscillator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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8.4: Coupled Oscillators

Two Coupled Pendulums

A beautiful demonstration of how energy can be transferred from one oscillator to another is provided by two weakly coupled
pendulums. Imagine we have two identical pendulums of length L and mass m, which are connected by a weak spring with spring
constant k (Figure 8.4.1a).

a1
= -

Figure 8.4.1: Motion of two coupled pendulums. (a) Sketch of the setup. Two identical pendulums of length L and mass m are
connected through a weak spring of spring constant k. As our initial condition, we choose both pendulums at rest, with the right
one in its equilibrium position and the left one given a finite amplitude. (b) Resulting motion of the two pendulums: left (blue) and
right (orange).

The equation of motion of the combined system is then given by:
L6, = —gsinf; — kL (sinf; —sinfy) (8.4.1
Lo, = —gsinfy + kL (sinf; —sinfs) (8.4.2

~— ~—

We will once again use the small angle expansion in which we can approximate sin ~ 6, and identify wy = 4/ % as the frequency

of each of the (uncoupled) pendulums. Equations 8.4.1 and &.4.2 then become
01 = —w20 — kb1 + k6, (8.4.3)
b5 = —wiby + kO — kb (8.4.4)

We can solve the system of coupled differential equations in Equations 8.4.3 and 8.4.4 easily by introducing two new variables:
a =0;+6, and 8 =6, — 6, , which gives us two uncoupled equations:

a=-wla (8.4.5)
B =—wB—2kB=—()’B (8.4.6)

where (/')? = w?+2k orw' =,/2k+g/L . Since Equations 8.4.5 and 8.4.6 are simply the equations of harmonic oscillators,
we can write down their solutions immediately:

a(t) = Acos(wot + o) (8.4.7)
B(t) = Beos(w't +¢') (8.4.8)
Converting back to the original variables 6; and s is also straightforward, and gives
1 A B
0, = E(a +8) = ?cos(wot—i—%)—l— Ecos(w’t—l—df) (8.4.9)
1 A B
6y = E(a -B)= ?cos(wot +¢o) — Ecos(w't +¢) (8.4.10)

Let’s put in some specific initial conditions: we leave pendulum number 2 at rest in its equilibrium position (65 (0) = 65(0) = 0)

and give pendulum number 1 a finite amplitude but also release it at rest (61 (0) = 6y, 81(0) = 0) . Working out the four unknowns
(4, B, ¢g and ¢') is straightforward, and we get:
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/ g
6, = 62—0cos(w0t) + e—;cos(w’t) =6, cos( 0 —2i—w t) cos(%t) (8.4.11)

6 0 / !
0y = Eocos(wgt) - %cos(w't) =6 sin( 0 ;Lw t) sin<w2—w0t) (8.4.12)

The solution given by Equations 8.4.11and 8.4.12is plotted in Figure 8.4.1. Note that the solutions have two frequencies (known
as the eigenfrequencies of the system). The fast one, %(wg +w'), which for a weak coupling constant k is very close to the
eigenfrequency wy of a single pendulum, is the frequency at which the pendulums oscillate. The do so in anti-phase, as expressed
mathematically by the fact that one oscillation has a sine and the other a cosine (which is of course just a sine shifted over %). The
second frequency, %(w’ —uwyp) is much slower, and represents the frequency at which the two pendulums transfer energy to each
other, through the spring that couples them. In Figure 8.4.1% it is the frequency of the envelope of the amplitude of the oscillation
of either of the pendulums. All these phenomena will return in the next section, in the study of waves, which travel in a medium in
which many oscillators are coupled to one another (Figure 8.4.2).

Figure 8.4.2: Two pendula hanging from a string is an example of a pair of coupled oscillators. Notice the amplitude shift from one
pendulum to the other in time (Public Domain; [.ucas V. Barbosa via Wikipedia)

Normal Modes

For a system with only two oscillators, the technique we used above for solving the system of coupled Equations 8.4.1 and 8.4.2 is
straightforward. It does however not generalize easily to systems with many oscillators. Instead, we can exploit the fact that the
equations are linear and use techniques from linear algebra (as you may have guessed from the term eigenfrequency). We can
rewrite Equations 8.4.1 and 8.4.2 in matrix form:

j_;(g;) B ( _(wi+k) (w§+k) ) (Z;) (8.4.13)

Equation 8.4.131s a homogeneous, second-order differential equation with constant coefficients, strongly resembling the equation
for a simple, one-dimensional harmonic oscillator. Consequently, we may expect the solutions to look similar as well, so we try our

<Z:> - <g:> e (8.4.14)

where C; and C; are constants. Substituting 8.4.14in 8.4.13 gives

24k —k
w 2 <Cl) =u’ (Cl> (8.4.15)
—k UJO +k 02 02

which you hopefully recognize as an eigenvalue problem. Solving for the eigenvalues w? gives:

usual Ansatz:

(o +w?+k) K =0 (8.4.16)
The solutions of Equation 8.4.16unsurprisingly reproduce the frequencies of the uncoupled equations in Section 8.4.1:
Wt =wd, w? =wit2k. (8.4.17)

The eigenvectors of 8.4.15are given by
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1 /1 1 1
C,=— for w and C_=—— for w_ 8.4.18

Y (1) " V2 (—1) (5419
Note that the eigenvectors are orthogonal; this is a general property of the eigenvectors of symmetric matrices. Each eigenvector
corresponds to a possible steady-state of motion of the system; these states are known as the normal modes (‘normal’ referring to
the orthogonality of the eigenvectors). We can now immediately write down the most general solution of Equation 8.4.13 as a
linear combination of the eigenmodes:

el(t)) At oitra) (1) A it >( 1 >
= —— W+ + —l\v- - 8.4.19
(92(15) 3 1) T2 1 (8.4.19)

where the amplitudes A and phases ¢ are determined by the initial conditions.

Writing our system of equations in matrix form allows us to easily generalize both to asymmetric configurations (see Problem 8.7)
and to systems with many coupled oscillators. An important example of the latter case is the study of vibrations in solids. Atoms or
ions in solids typically form a crystal lattice, that can be modeled as a large number of masses coupled by springs. Such crystals
can have complicated vibrational properties, that can be analyzed in terms of its normal modes. In particular the modes with a low
energy can typically be accessed easily. They are known as phonons, and correspond to sound waves in the solid.

This page titled 8.4: Coupled Oscillators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema
(TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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8.E: Oscillations (Exercises)
8.1

An object undergoes simple harmonic motion of amplitude A and angular frequency w about the equilibrium point = 0. Find the
speed v of the object in terms of A, w, and z. Hint: use conservation of energy.

8.2

A disk of radius R and mass M is suspended from a pivot somewhere between its center and its edge, see figure below. For what
pivot point (i.e., which distance d) will the period of this physical pendulum be a minimum (or equivalently the frequency a
maximum)? You may find one of the theorems we proved in Chapter 5 useful in answering this question.

8.3

Figure 8.4 shows a common present-day seesaw design, also featured in Problem 2.10. In addition to a beam with two seats, this
seesaw also contains two identical springs (with spring constant 10kN /m) that connect the beam to the ground. The distance
between the pivot and each of the springs is 30.0cm, the distance between the pivot and each of the seats is 1.50m. Two children
sit on the two seats. Both children kick off against the ground a couple of time, putting the seesaw in an oscillating motion with an
amplitude of 50.0cm. At¢ = 0 the children stop kicking. The plot in figure c shows the height of one of the seats as a function of
time afterwards.

a) b) 9

s 150cm A 04

30cm 02

3.00m 0.0 05 1.0 1_5!(3)2.0

Figure 8.E.1: Seesaw with two springs.
a. In what type of motion is the seesaw after the children stop kicking?
b. You could model the seesaw with the two children as a simple mass-on-a-spring, with a spring constant twice that of the
individual spring in the seesaw. Using the graph in figure c, estimate the effective mass of this system.
c. After a while, the children resume kicking, slowly bringing their amplitude back up to 50.0cm. Using the mass-spring system
of (b), estimate the amount of energy the children have to put in per period to achieve this.

8.4

A block with mass my = 1.5kg block is supported by a frictionless surface and attached to a horizontal spring of constant
k =22N /m, as shown in the figure. The block oscillates with an amplitude of 10.0cm, executing a simple harmonic motion.
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a. Find the frequency w of the oscillation of the block.
b. Write down the equation for the position of the block as a function of time, (), in such a form that it is at its rightmost
position att =0.

A second block of mass 0.80kg moves in from the right at 2.5m /s and hits the first block at ¢ =0, i.e., when it is in its rightmost
position. The two blocks then stick together and continue moving as one.

a. Which quantity / quantities are conserved during the collision?
b. Determine the frequency of the motion of the two blocks after the collision.
c. Determine the amplitude of the motion of the two blocks after the collision.

8.5

Suppose you are stranded on an unknown planet with nothing but a physical pendulum and a stopwatch. You determined the
properties of the pendulum back on Earth, and found m = 2.0kg, h = 0.50m and I = 3.0kg-m? . Having nothing better to do,
you measure the time it takes your pendulum to complete 50 cycles, and find that this time equals 170s. Use this information to
compute the value of the gravitational acceleration g on your new home world.

8.6

For a damped harmonic oscillator driven by a sinusoidal force (as in Equation 8.3.1), find the average power dissipated per
(driving) period. Hint: use P =F - v.

8.7

Consider a system of two coupled harmonic oscillators, where one (with mass 2m and spring constant 2k) is suspended from the
ceiling, and the other (with mass m and spring constant k) is suspended from the first, as shown in the figure.

a. Find the equation of motion of this system of coupled oscillators, and write it in matrix form. For each mass, use coordinates in
which the zero is at the equilibrium position.
b. Find the frequencies of the normal modes of this coupled system.

This page titled 8.E: Oscillations (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon

Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/17414


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17414?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/08%3A_Oscillations/8.E%3A_Oscillations_(Exercises)
https://creativecommons.org/licenses/by-nc-sa/4.0
http://idemalab.tudelft.nl/idema.html
https://textbooks.open.tudelft.nl/index.php/textbooks/index
https://textbooks.open.tudelft.nl/textbooks/catalog/book/14

@5@Lﬂm1ﬂ%»dsw
CHAPTER OVERVIEW

9: Waves

In physics a wave is a disturbance or oscillation that travels through space accompanied by a transfer of energy, and may be
propagated with little or no net motion of the medium involved. In this section we will consider mechanical waves, in which the
particles in a material are oscillating. Examples are the waves in the sea, the wave in the crowd at a stadium, and sound. Later on
we will encounter electromagnetic waves in which electric and magnetic fields are oscillating, and which can travel through
vacuum. Examples are light and radio signals. In quantum mechanics, we will also encounter what are sometimes referred to as
matter waves, where fundamental objects that we usually think of as particles, such as electrons and protons, can also be considered
as waves. Finally, recently gravitational waves were discovered, which are vibrations of space time itself.

By observing a particle, we know in which direction it moves at any given time. However, as I just stated,the particles in a
mechanical wave have no, or almost no, net motion as the wave passes. The wave does have a well-defined direction though: the
direction in which energy is transferred. Some waves spread out uniformly, such as a sound wave emanating from a point source.
Others are restricted in their motion by the properties of the material they travel in, such as a wave in a string, or by boundary
conditions, such as the end of that string. For waves that move (predominantly) in one direction, we can distinguish two
fundamental types, illustrated in Figure 9.1.1. The first type is the case that the particles oscillate in the same direction as the wave
is moving (Figure 9.1.1a), which we call a longitudinal wave; sound is an example. The second case is that the particles oscillate in
a direction perpendicular to the wave motion, which we call a transverse wave (Figure 9.1.1b), of which the waves in a pond are an
example.

9.1: Sinusoidal Waves

9.2: The Wave Equation

9.3: Solution of the One-Dimensional Wave Equation
9.4: Wave Superposition

9.5: Amplitude Modulation

9.6: Sound Waves

9.7: The Doppler Effect

9.E: Waves (Exercises)

Thumbnail: Surfer at Mavericks, one of the world's premier big wave surfing locations. (Surfer: Andrew Davis). (CC SA-BY 2.0;
Shalom Jacobovitz).
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9.1: Sinusoidal Waves

Probably the simplest kind of wave is a transverse sinusoidal wave in a one-dimensional string. In such a wave each point of the
string undergoes a harmonic oscillation. We will call the displacement from equilibrium u, then we can plot » as a function of
position on the string at a given point in time, Figure 9.2.1a, which is a snapshot of the wave. Alternatively, we can plot u as a
function of time for a given point (with given position)on the string, Figure 9.2.1b. Because the oscillation is harmonic, the
displacement as a function of time is a sine function, with an amplitude (maximum displacement)A and a period (time between
maxima) 7.

By definition, each point of the string undergoing a sinusoidal wave undergoes a harmonic oscillation,so for each point we can
write u(t) = Acos(wt+¢) (Equation 8.1.4) where as before w=27/T is the (angular) frequency and ¢ the phase. Two
neighboring points on the string are slightly out of phase - if the wave is traveling to the right, then your right-hand neighbor will
reach maximum slightly later than you, and thus has a slightly larger phase. The difference in phase is directly proportional to the
distance between two points, coming to a full 27 (which is of course equivalent to zero) after a distance A, the wavelength. The
wavelength this thus the distance between two successive points with the same phase, in particular between two maxima. In
between these maxima, the phase runs over the full 27, so the wave is also a sinusoid in space, with a ‘spatial frequency’ or
wavenumber k = 27 /\. Combining the dependencies on space and time in a single expression, we can write for the sinusoidal
wave:

u(z,t) = Acos(kz —wt) (9.1.1)

time

fime

Figure 9.1.1: Two basic types of waves. (a) Longitudinal wave, where the oscillatory motion of the particles is in the same
direction as that of the wave. (b) Transverse wave, where the oscillatory motion of the particles is perpendicular to that of the wave.
The speed of the wave is the distance the wave travels per unit time. A unit time for a wave is one period, as that is the time it takes
the oscillation to return to its original point. The distance traveled in one period is one wavelength, as that is the distance between
two maxima. The speed is therefore simply their ratio, which can also be expressed in terms of the wave number and frequency:

(9.1.2)

vw:—_

ot
T &
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9.2: The Wave Equation

As with all phenomena in classical mechanics, the motion of the particles in a wave, for instance the masses on springs in Figure
9.1.1, are governed by Newton’s laws of motion and the various force laws. In this section we will use these laws to derive an
equation of motion for the wave itself, which applies quite generally to wave phenomena. To do so, consider a series of particles of
equal mass m connected by springs of spring constant k, again as in Figure 9.1.1a, and assume that at rest the distance between any
two masses is h. Let the position of particle ¢ be x, and w the distance that particle is away from its rest position; then
U = Zrest — & 1 a function of both position z and time ¢. Suppose particle 7 has moved to the left, then it will feel a restoring force
to the right due to two sources: the compressed spring on its left, and the extended spring on its right.The total force to the right is

then given by:
Fi =Fip1i — Fi (9.2.1)
=k[u(z +h,t) —u(z,t)] — k[u(z,t) —u(z —h, t)] (9.2.2)
=k[u(z +h,t) —2u(z,t) +u(z — h,t)) (9.2.3)

Equation 9.2.3 gives the net force on particle ¢, which by Newton’s second law of motion (Equation 2.1.5) equals the particle’s
mass times its acceleration. The acceleration is the second time derivative of the position z,but since the equilibrium position is a
constant, it is also the second time derivative of the distance from the equilibrium position u(z, t), and we have:
0%u(z,t)

Fre :mT2, =klu(z +h,t) —2u(z,t) +u(z —h,t)] (9.2.4)
Equation 9.2.4 holds for particle ¢, but just as well for particle 2 + 1, or ¢ — 10. We can get an equation for N particles by simply
adding their individual equations, which we can do because these equations are linear.We thus find for a string of particles of length
L = Nh hand total mass M = Nm:

0?u(z,t) _ KL* u(z+h,t)—2u(z,t)+u(z—h,t)

92 M 12 . (9.2.5)
2 uw) —
X
A
b
u() ——

Figure 9.2.1: A sinusoidal transverse wave in space (a) and time (b). The distance between two successive maxima (or any two
successive points with equal phase is the wavelength A of the wave. The maximum displacement is the amplitude A, and the time it
takes a single point to go through a full oscillation is the period T .
Here K = k/N is the effective spring constant of the N springs in series. Now take a close look at the fraction on the right hand
side of Equation 9.2.5: if we take the limit A — 0, this is the second derivative of u(z, t) with respect to x. However, taking h to
zero also takes L to zero - which we can counteract by simultaneously taking N — oo, in such a way that their product L remains
the same. What we end up with is a string of infinitely many particles connected by infinitely many springs - so a continuum of
particles and springs, for which the equation of motion is given by the wave equation:
?u(x,t)  , 0%u(z,t)
=2

ot? Ox?

(9.2.6)
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In Equation 9.2.6, vy, = KTLZ (sometimes also denoted by c) is the wave speed.

For a wave in a taut string, the one-dimensional description is accurate, and we can relate our quantities K, L and M to more
familiar properties of the string: its tension 7' = K L with the dimension of a force (this is simply Hooke’s law again) and its mass
per unit length y = % , SO we get

T
string L
In two or three dimensions, the spatial derivative in Equation 9.2.6 becomes a Laplacian operator, and the wave equation is given
by:
0?u(z,t) 5

As can be readily seen by writing Equation 9.2.8 in terms of spherical coordinates, if the wave is radial (i.e., only depends on the
distance to the source r, and not on the angle), the quantity ru(r) obeys the one-dimensional wave equation, so we can write down
the equation for u(r) immediately. An important application are sound waves, which spread uniformly in a uniform medium. To
find their speed, we characterize the medium in a similar fashion as we did for the string: we take the mass per unit volume, which
is simply the density p, and the medium’s bulk medulus, which is a measure for the medium’s resistance to compression (i.e., a
kind of three-dimensional analog of the spring constant), defined as:

dp _ dp

B=-V-%

v = 3, (9.2.9)

where p is the pressure (force per unit area) and V' the volume. The bulk modulus is also sometimes denoted as K. The dimensions
of the bulk modulus are those of a pressure, or force per unit area, and those of the density are mass per unit volume, so their ratio
has the dimension of a speed squared, and the speed of sound is given by:

B
_ 9.2.10
P ( )

Usound —

Equation 9.2.8 describes a wave characterized by a one-dimensional displacement (either longitudinal or transverse) in three
dimensions. In general a wave can have components of both, and the displacement itself becomes a vector quantity, w(z, t). In that
case the three-dimensional wave equation takes on a more complex form:

> l;if’t) = <B+§G> V(V-u(®,1)) - GV x (V x u(z, 1)) (9.2.11)

where f is the driving force (per unit volume), B again the bulk modulus, and G the material’s shear modulus. Equation 9.2.11is
used for the description of seismic waves in the Earth and the ultrasonic waves with which solid materials are probed for defects.
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9.3: Solution of the One-Dimensional Wave Equation

The one-dimensional wave Equation 9.2.6 has a surprisingly generic solution, due to the fact that it contains second derivatives in
both space and time. As you can readily see by inspection, the function g(z,t) =z — vyt is a solution, as is the same function
with a plus instead of a minus sign. These functions represent waves traveling to the right (minus) or left (plus) at speed v,,.
However, the shape of the wave does not matter - any function F'(q) = F (z —vyt) is a solution of 9.2.6, as is any function
G (z +vyt), and the general solution is the sum of these:

u(z,t) =F (x —vgt) + G (z +vyt) (9.3.1)

To find a specific solution, we need to look at the initial conditions of the wave, i.e., the conditions at £ = 0. Because the wave
equation is second order in time, we need to specify both the initial displacement and the displacement’s initial velocity, which can
be functions of the position. For the most general case we write:

u(z,0) =ug(z)

9.3.2
u(z,0) =vo(x) ( )
The resulting solution of the one-dimensional wave equation is known as d’Alembert’s equation:
1 1 T+vwt
u(z,t) = E(ug (x —vwt)+up (z +th))+2—/ v(y)dy (9.3.3)
Vw Jz—u,t
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9.4: Wave Superposition

The wave equation 9.2.6 is linear in the function we’re interested in, the displacement u(z, t). This simple mathematical statement
has important consequences, because it means that if we know any set of solutions, we can create more solutions by making linear
combinations of them - so if u(z,t) and us(z, t) are solutions, then so are au;(x,t) +buz(z,t) for any choice of a and b. In
physics, this useful property of linear differential equations is known as the principle of superposition. Thanks to this principle, we
can study how different waves interact with each other without having to do (much) extra math.

Figure 9.4.1: Two interacting wave packets. The sequence of images shows four snapshots. The blue wave is traveling to the right,

the red wave to the left (a). When the waves overlap, the total displacement of the particle is given by the sum of the displacements

due to both waves, shown in green. This can lead to both constructive interference (b), when the two waves are in phase, and

destructive interference (c), when their phases are opposite. The waves themselves are not affected by the interaction and

afterwards travel on as if nothing has happened (d).
To illustrate, let us consider two one-dimensional waves traveling in opposite directions, Figure 9.4.1. As long as the waves do not
overlap, the oscillation of any given particle is due to only one wave, and there is no interaction. However, as soon as the waves
start overlapping, the oscillations add up, which leads to interference. At some points, the two oscillations will be in phase,
resulting in a much larger oscillation amplitude, which we call constructive interference (Figure 9.4.1%). At other points, the two
oscillations will be out of phase, resulting in a much smaller, or even vanishing oscillation amplitude, which we call destructive
interference (Figure 9.4.1c). However, the waves themselves remain unaffected, and transmit right through each other, continuing
their path as if nothing had happened (Figure 9.4.1d).

Waves reaching the end of a string, or edge of a pond, or any type of boundary, will not simply disappear. Remember, waves carry
energy, and that energy is conserved, so it has to go somewhere once the wave reaches the boundary. If there’s nothing at the
boundary, the waves are reflected back into the material. This happens in two cases: a (perfectly) fixed boundary, and a (perfectly)
free boundary; in other cases, some of the energy may be transmitted to material on the other side of the boundary (starting a new
wave there), whereas the remainder is reflected back into the original material with less energy, resulting in a smaller wave
amplitude. A reflected wave travels in the opposite direction to the original wave, so it can interfere with itself. In fact, this
interference is a crucial point for being able to meet the boundary conditions. A fixed boundary cannot move, so there must be
destructive interference keeping the amplitude there zero at all times - so it follows that a wave reflecting on a fixed boundary
undergoes a 7 phase shift. Free boundaries on the other hand are perfectly free to move, so there is nothing holding it back from
reaching the maximal displacement that can be achieved by constructive interference, and the wave reflects without a phase shift.

If you put boundaries on both ends of a string, the wave keeps reflecting back and forth, continuously interfering with itself. To
find the resulting shape of the string, we’re going to use the principle of superposition for a simple sinusoidal wave. Let

uy(z,t) = Acos(kz —wt)
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be the part of the wave traveling to the right, and
uz(z,t) = —Acos(kz + wt)

be the part traveling to the left. Note the differences: the waves have opposite signs for their speeds, and opposite signs for their
displacements, the latter because of the 7 phase shift (we could also write uz(z,t) = A cos(kz +wt + ) ). The shape of the string
is now simply the sum of these two waves:

u(z,t) =ui(z,t) +us(z,t) (9.4.1)
= Alcos(kz —wt) — cos(kz + wt)] (9.4.2)
= 2Asin(kz) sin(wt) (9.4.3)

Equation 9.4.3 tells us that for a self-interfering wave, the wave no longer moves - instead, each point simply oscillates with
frequency w at a position-dependent amplitude 2A sin(kz). We call such a wave a standing wave. Standing waves are very
common - you’ll get one every time you’ll touch the string of a guitar or violin. Naturally, they are not restricted to one-
dimensional systems - the skin of a drum, constrained at the drum’s edge, is put in a standing wave every time someone hits it.

Equation 9.4.3 describes the shape of a standing wave on a string clamped at both ends. If the string has length L, then by the
nature of the boundary conditions, we must have u(0,t) = u(L,t) =0 for all ¢. The first condition follows for free (which is of
course just due to a good choice of coordinates), but the second puts a constraint on our wave. The displacement can only be zero at
all times if the amplitude is identically zero, so we demand that

sin(kL) =0 (9.4.4)
or
mnr mA
_mm _ mA 4.
. 5 (9.4.5)

where m is any positive integer. There are thus infinitely many allowed standing waves, but they are characterized by a discrete
number. The allowed waves are known as modes, and the associated number m is the mode number. The simplest wave, with the
lowest possible value, m =1, is known as the fundamental mode. In the fundamental mode, the oscillation of the string has
nonzero amplitude everywhere but at the fixed ends; for higher modes, there are also points in between that have zero amplitude,
which are known as nodes; points where the amplitude is maximum are sometimes referred to as antinodes.

A discrete spectrum of allowed solutions, characterized by integer numbers, does not only appear in standing mechanical waves,
but is also a fundamental aspect of quantum mechanics.
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9.5: Amplitude Modulation

So far, we’ve mostly considered simple sinusoidal waves with fixed amplitudes. However, the general solution to the wave
equation allows for many more interesting wave shapes. An important, and often encountered one is where the wave itself is used
as the medium, by changing the amplitude over time:

u(z,t) = Az, t) cos(kzx — wt) (9.5.1)

The wave now consists of two waves: the carrier wave, which travels with the phase velocity v,, = % , and the envelope, which

travels with the group velocity v,. An illustration of a modulated wave is shown in Figure 9.5.1. In the common case that the
group velocity is independent of the wavelength of the carrier wave, we can rewrite 9.5.1 to reflect the fact that the amplitude is
now also a wave, with speed v,:

u(z,t) = A (z —vgt) cos(kx —wt) (9.5.2)

Figure 9.5.1: Amplitude-modulated wave. The amplitude of the carrier wave (blue, traveling at phase velocity v, = w/k) is
changed over time, resulting in an envelope (red) which travels at the lower group velocity v,.
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9.6: Sound Waves

So far, we mostly considered transversal waves, which include waves in strings and waves on the surface of a pond, and are easily
visualized. Longitudinal waves, on the other hand, are somewhat harder to draw, but easily heard - as sound is the prime example
of a longitudinal wave. Other examples include (some forms of) seismic waves and ultrasound. Many people simply lump all of
these together, and use the terms ‘sound waves’ and ‘longitudinal waves’ as synonyms
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Figure 9.6.1: Snapshots of the wave patterns for the first three modes of a standing wave in (a) a string with two clamped ends, (b)
a string with one clamped end, or a tube with one closed and one open end, and (c) a tube with two open ends. In each case, the plot
shows the amplitude of the standing wave, as a fraction of the amplitude of the traveling wave. At nodes, the amplitude of the
standing wave vanishes: destructive interference causes these points to always stand still. At antinodes, the amplitude of the
standing wave is maximal, and equals that of the traveling wave. Note that (a) and (b) will occur for transversal waves, whereas (b)
and (c) will occur for sound waves. For cases (a) and (c) allowed wavelengths are A = %, whereas for case (b), allowed

4L
@2n-1) °

wavelengths are A =

We already touched upon the speed of sound waves in Section 9.2 (Equation 9.2.10). This speed indicates how fast the wavefronts
of a sound wave travel; a wavefront is defined as the surface (in three dimensions) where all points have the same phase.! To
visualize a sound wave we draw a succession of wavefronts one wavelength (or one period) apart. Simple examples include a point
source (generating spherical wavefronts) and a planar wave, in which all wave fronts are parallel planes (Figure 9.6.2). The (local)
direction of propagation of the wave is the direction perpendicular to the wavefronts, sometimes depicted by a ray.

a v b

A A
H H

Figure 9.6.2: Snapshots of the wavefronts (points with equal phase) of a longitudinal wave for (a) a point source (with spherical
wavefronts) and (b) a planar wave (where all wavefronts are parallel planes). Successive wavefronts are separated by one
wavelength.
Like transversal waves, longitudinal waves exhibit interference, both with other waves they encounter, and by their own reflections.
There can therefore be traveling and standing sound waves. Unlike transversal waves on strings however, longitudinal sound waves
are typically created in tubes that are open on either one or both ends. A closed end represents a fixed point, just like the fixed end
of a string does, resulting in a stringent boundary condition: the interference between the incoming and outgoing wave must be
such that the net displacement at the closed end is zero. An open end corresponds to a transversal wave in a string that is not

clamped. As the string in that case is free to move, its maximum displacement will equal the amplitude of the wave. In other words,
while a closed end corresponds to a node, the open end corresponds to an antinode. For a string (or pipe) with one clamped / closed
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and one open end, the wavelength of the lowest order mode (known as the fundamental mode or first harmonic) therefore equals
four times the length L of the string / pipe. The next mode (second harmonic) will have a wavelength of 4L /3, and so on (Figure

9.6.2¥), resulting in A =4L/(2n — 1) for the nth mode. For a tube with two open ends, the fundamental mode is the inverse of
that of a string with two clamped ends - so two antinodes at the ends, and a node in the middle (Figure 9.6.1c). Like for a clamped
string, the allowed wavelengths are therefore A = 2L /n.

1 A wavefront corresponding to the maximum extension u is sometimes called a wavecrest.
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9.7: The Doppler Effect

The Doppler effect is a physical phenomenon that most people have experienced many times: when a moving source of sound (say
an ambulance, or more exactly its siren) is approaching you, its pitch sounds noticeably higher then after it passed you by and is
moving away. The effect is due to the fact that the observed wavelength (and therefore frequency / pitch) of sound corresponds to
the distance between two points of equal phase (i.e., two sequential wavefronts). Ultimately, the Doppler effect thus originates in a
change in reference frame (the same frames we encountered in Section 4.3): what you hear is indeed different from what the
ambulance’s driver hears. The latter is easy: the driver is not moving with respect to the siren, so (s)he simply hears it at whatever
frequency it is emitting. For the stationary observer however, the ambulance moves between emitting the first and second wave
crest, and so their distance (and hence the observed wavelength / frequency) changes (Figure 9.7.1).

a b

A A A A
i H — b

Figure 9.7.1: Doppler effect. The source emits waves with a fixed time interval At between successive wavefronts. (a) For
observers that are stationary with respect to the source, the distance between wavefronts (in red) is fixed, so they measure the same
wavelength as the one emitted by the source. (b) If the source is moving with respect to the observers (here to the right), the
observers measure a different distance between arriving wavefronts - compressed (so shorter wavelength / higher frequency) if the
source is approaching (green dot), expanded if the source is receding (purple dot).

Christian doppler

Christian Doppler (1803-1853) was an Austrian physicist. Doppler was a professor of physics at Prague where he developed
the notion that the observed frequency of a wave depends on the relative speed of the source and the observer, now known as
the Doppler effect. Doppler used this principle to explain the observed colors of binary stars. The principle was developed
independently by French physicist Armand Fizeau (1819-1896), and is therefore sometimes referred to as the Doppler-Fizeau
effect. In 1847, Doppler moved to Selmecbéanya in Hungary, but was forced to leave again soon afterwards due to political
unrest in 1848, moving to the University of Vienna. During a visit to Venice in 1853, Doppler died of pulmonary disease, aged
only 49.

Figure 9.7.2: Christian Doppler [24].

https://phys.libretexts.org/@go/page/17634


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17634?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/09%3A_Waves/9.07%3A_The_Doppler_Effect

LibreTextsw

ernst mach

Ernst Mach (1838-1916) was an Austrian physicist. Mach was a professor of mathematics and later physics at Graz, Prague
and Vienna. His experimental work focused on the properties of waves, especially in light, as well as on the Doppler effect in
both light and sound. In 1888, Mach used photography to capture the shock waves created by a supersonic bullet. In addition to
physics, Mach was highly interested in philosophy, holding the position that only sensations are real. Consequently, Mach
refused to accept that atoms are real, as they could not be observed directly at the time; it was Einstein’s 1905 work on
Brownian motion that eventually proved him wrong. The ratio of an object’s speed to the speed of sound is now known as the
Mach number in his honor.

Figure 9.7.3: Left: Mach’s picture of the shockwave of a supersonic bullet [25]. Right: Ernst Mach (1902) [26].

Calculating the shift in wavelength is straightforward. Let us call the speed of sound v and the speed of the source u. The time
interval between two wavefronts, as emitted by the source, is At. In this time interval, the first wavefronts travels a distance
As = vAt, while the source travels a distance Az = uAt. For the observer to which the source is approaching, the actual distance
between two emitted wavefronts is thus

Az’ =As— Az
=(v—u)At
The actual distance between the wavefronts is the observed wavelength, A5, while the emitted wavelength is
A =As =vAt, (9.7.1)
so the two are related through
Aobs = = (9.7.2)

For a source that is moving away, we simply flip the sign of u; naturally for a stationary source we have A\,;; = A. Note that we
could also consider a stationary source and a moving observer: the effect would be exactly the same, where in Equation 9.7.2we
define motion towards the source to be the positive direction.

The Doppler effect is usually expressed in terms of frequency instead of wavelength, but that is a trivial step from Equation 9.7.2,
as fobs = U/ Aobs and f = v/, which gives:
v

fobs = f (973)

v—Uu

Although we discussed the Doppler effect here in the context of sound waves, it occurs for any kind of waves - most notably also
light. We will encounter it again when we discuss waves in special relativity (where speeds become comparable to that of light) in
Section 15.3. Note that Equation 9.7.2 predicts that the wavelength is zero if the speed of the source equals the speed of the emitted
waves. This case is illustrated in Figure 9.7.4a, which shows that the wavefronts pile up. For a source moving faster than the wave
speed (Figure 9.7.4b), the waves follow the source, creating a conical shock wave, with opening angle given by

oI v

Both the bow wave of a boat and the sonic boom of a supersonic jet are examples of shock waves.
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Figure 9.7.4: the source emits wavefronts with a fixed time interval At. (a) If the source is moving at the same speed as the
emitted wave, the wavefronts all collide, creating a shock wave. (b) For a source moving faster than the speed of the waves, the
waves all travel behind the source, creating a conical (shock) wave front (as you may have heard after seeing a jet fighter pass
overhead). The blue dot indicates the current position of the source, the green dot that one period ago, the red dot two periods ago.
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9.E: Waves (Exercises)

9.1 Sound waves in a spring. In Section 9.2, we found that the speed of a wave in a string is given by v="T/u, with T the
tension in the string and g its mass density (Equation 9.2.7).

a. A spring of mass m and spring constant k has an unstretched length L. Find an expression for the speed of transverse waves on
this spring when it’s been stretched to a length L.

b. You measure the speed of transverse waves in an ideal spring under stretch. You find that at a certain length L, it has a value v,
and at length 2 L; the wavespeed has value 3v. Find an expression for the unstretched length of the spring in terms of L.

¢. A uniform cable hangs vertically under its own weight. Show that the speed of waves on the cable is given by v = ,/zg , where
z is the distance from the bottom of the cable. You may assume that the stretching of the cable is small enough that its mass
density can be taken to be uniform.

d. Show that the time it takes a wave to propagate up the cable in (1c) ist =2 \/% , with L the cable length.

9.2 In deep water, the speed of surface waves depends on their wavelength:

Ag

V= E

(9.E.1)

a. Apart from satellite images, offshore storms can also be detected by watching the waves at the beach. Equation 9.1.1 tells us
that the longest-wavelength waves will travel the fastest, so the arrival of such waves, if their amplitude is high, is a foreboding
of the possible arrival of a storm (the friction between the wind and the water being the source of the waves). A typical storm
may be thus detected from a distance of 500 km, and travel at 50 km/h. Suppose the detected waves have crests 200 m apart.
Estimate the time interval between the detection of these waves and the arrival of the storm (in the case the storm moves
straight towards the beach).

b. In shallow water, the speed of surface waves becomes (to first order) independent of the wavelength, but scales with the depth
of the water instead

v=/gd (9.E.2)

. Next to storms, a possible source of surface waves in the ocean are underwater earthquakes. While storms are typically more
dangerous at sea, the waves generated by earthquakes are more dangerous on land, as they may result in tsunamis: huge
wavecrests that carry a lot of energy. At open sea, the amplitude of the waves that will create the tsunami may be modest, on the
order of 1 m. What will happen with this wave’s speed, amplitude, and wavelength when it approaches the land?

9.3 Because the wave equation is linear, any linear combination of solutions is again a solution; this is known as the principle of
superposition, see Section 9.4. We will consider several examples of superposition in this problem. First, consider the two one-
dimensional sinusoidal traveling waves u. (z,t) = Asin(kz £+ wt)

a. Which wave is traveling in which direction?
b. Find an expression for the combined wave, u(z,t) = u, (z,t) +u_(z, ). You may use that
sin(a) +sin(8) = 2sin((a +8)/2) cos((a — 8)/2) .
c. The combined wave is a standing wave - how can you tell?
d. Find the positions at which u(z,¢) = 0 for all ¢. These are known as the nodes of the standing wave.
e. Find the positions at which u(z, t) reaches its maximum value. These are known as the antinodes of the standing wave.

Next, consider two sinusoidal waves which have the same angular frequency w, wave number k, and amplitude A, but they differ
in phase:

ui(z,t) = Acos(kz —wt) and wug(z,t) = Acos(kx —wt+ @) (9.E.3)
a. Show that the superposition of these two waves is also a simple harmonic (i.e., sinusoidal) wave, and determine its amplitude as

a function of the phase difference ¢.

Finally consider two sources of sound that have slightly different frequencies. If you listen to these, you’ll notice that the sound
increases and decreases in intensity periodically: it exhibits a beating pattern, due to interference of the two waves in time. In case
the two sources can be described as emitting sound according to simple harmonics with identical amplitudes, their waves at your
position can be described by u; (t) = A cos(w1t) and uz(t) = A cos(wst) .
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a. Find an expression for the resulting wave you’re hearing.

b. What is the frequency of the beats you’re hearing? NB: because the human ear is not sensitive to the phase, only to the
amplitude or intensity of the sound, you only hear the absolute value of the envelope. What effect does this have on the
observed frequency?

c. You put some water in a glass soda bottle, and put it next to a 440 Hz tuning fork. When you strike both, you hear a beat
frequency of 4 Hz. After adding a little water to the soda bottle, the beat frequency has increased to 5 Hz. What are the initial
and final frequencies of the bottle?

9.4 One of your friends stands in the middle of a rectangular 10.0 X 6.0 m swimming pool, his hands 1.0 meter apart in the
direction parallel to the long edge of the pool. He produces surface waves in the water of the pool by oscillating his hands. At the
edge, you find that at the point closest to your friend, the water is rough, then if you move to the side, it gets quiet, rough again, and
quiet again. That point, where the water gets quiet for the second time, lies 1.0 m from your starting point (facing your friend).

a. What is the wavelength of the surface waves in the pool?
b. At which distance does the water get quiet for the first time?
c. And at which distance do you find rough water for the third time (counting the initial point)?

9.5 The Doppler effect is the shift in observed frequency of a wave due to either a moving observer or moving source, as discussed
in Section 9.7. We will consider a sound wave emitted by some noisy source and observed by you.

a. If you are standing still and the source is moving towards you, will the frequency you hear be higher or lower than the
frequency emitted by the source?

b. If you move towards a stationary source, will the frequency you hear be higher or lower than the frequency emitted by the
source?

c. The observed frequency f,»s depends on the actual frequency emitted by the source fs,urce (0bviously), the speed of the source
Usource » the speed of the observer v, and the speed of sound vs,,,,4. Take the observer to be stationary. What happens if the
source is stationary also? And what if the source moves at the speed of sound?

d. Based on your answers to the previous items, guess a functional form for fobs as a function of fspurce » Vsource > and Vsound .-

This page titled 9.E: Waves (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema
(TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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10.1: An Old and a New Axiom

The theory of special relativity is built on two postulates (our axioms for this chapter). The first one also applies to classical
mechanics, and simply states that:

Axiom 1 (Principle of relativity). The laws of physics are identical in every inertial reference frame.

You probably haven’t heard of ‘inertial reference frames’ before. Quite likely, you’ve not given this principle much thought either,
but nonetheless, you are (almost certainly) intimately familiar with it on an intuitive level. Consider an example we’ll use a lot in
this chapter. Suppose you’re in a train car with no windows. Is there any experiment you can devise within the confines of the car
that will tell you whether the train is standing still or moving at constant velocity (both direction and magnitude)? The answer is no,
of course - that’s a direct consequence of Newton’s first law. A pendulum will hang straight down in a stationary train and in one
moving at constant velocity, and a ball you roll will trace out a straight line in both cases. Things change of course when the train
accelerates (that’s where Newton’s second law comes in), but as long as you keep your speed (zero or not) and direction fixed, you
might as well be stationary as far as physics is concerned.

Now what’s an inertial reference frame? A reference frame is simply the set of measures you use to describe the world: your
coordinate system. For the person on the platform, the system will be fixed to the platform, with the origin (for example) at the
point they’re standing. For someone on the train, it’d be convenient to have the origin at the corner of the car, and of course the
frame co-moving with the car. An inertial reference frame could be defined either as any reference frame that moves at constant
velocity with respect to another inertial reference frame, or (as is most often done), by inverting the principle of relativity, stating
that an inertial reference frame is one in which the laws of physics (i.e., Newton’s laws in classical mechanics, or more specifically
Newton’s first law) hold without modifications. To illustrate that this is not a trivial point, consider a rotating reference frame: there
the laws of physics actually change (you experience additional forces like the centrifugal and Coriolis force), and you could figure
out you’re rotating from a simple experiment (a pendulum at rest will no longer point down, but slightly outward).

Returning to inertial reference frames, there is one more point to be made, which you also already know. Both position and velocity
are relative concepts, in the sense that they depend on the observer. In the train example this is obvious. From the point of view of a
person sitting on the train, other objects on the train are stationary in their comoving reference frame, so at a fixed position and zero
velocity; the observer on the platform however will tell you that the same object has a changing position and a velocity equal to
that of the moving train. In classical mechanics, what is not relative is acceleration. As Newton’s second law holds in both inertial
reference frames, the same force gives the same acceleration according to both observers. What Einstein discovered is that although
this observation still holds at relatively low velocities, it is not true at higher speeds. Instead, both observers will agree on the value
of a different observable quantity: the speed of light c.

Axiom 2 (Light postulate). The speed of light in vacuum is the same in all inertial reference frames.

The light postulate has an important consequence: it sets the speed of light as the ultimate speed limit in the universe. Worse, you
(or any other object with mass), cannot even travel at the speed of light. We’ll show this mathematically further on, but a simple
thought experiment suffices to show that this point is true. Assume the opposite: suppose you can (and do) travel at light speed with
respect to a stationary observer. Next, suppose you emit a light pulse, for instance by switching a flashlight on and off. From your
point of view, the pulse travels at light speed, so it speeds ahead of you quickly. However, from the stationary observer’s point of
view, the pulse also travels at light speed - which is the same speed you travel at, so the photon would never leave you. As the
photon needs to either leave you or stay with you (but cannot do both), we arrive at a logical contradiction, and conclude that you
cannot travel at the speed of light.

Albert Einstein (1879-1955) was a German physicist, and quite likely the most widely known scientist in the world today.
Einstein studied physics in Ziirich, but could not find a research position after he graduated, so he combined his research work
with a position at the Swiss patent office in Bern. In 1905, his ‘miracle year’, Einstein published four papers, all with enormous
impact on physics: one explaining Brownian motion of small particles in water, one on the (quantum-mechanical) photo-
electric effect, one on special relativity, and one on the energy-matter relation (the famous E =mc?). This work led to
Einstein becoming a professor in 1909, and receiving the Nobel prize (for the photo-electric effect) in 1921. Einstein extended
the theory of relativity to include gravity, resulting in the prediction of the bending of light by gravity (1911, confirmed 1919)
and the existence of gravitational waves (1915, confirmed 2015). Einstein became a public figure in the 1920s, visiting many
places around the world. When the Nazi’s seized power in Germany in 1933, Einstein, who was Jewish and living in Berlin,
became one of the first targets. He left Germany and gave up his citizenship, eventually moving to Princeton in the US, and
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advocating for the active extraction of fellow Jewish German scientists. Having been a pacifist all his life, Einstein vehemently
opposed war, but also realized that Nazi Germany would not hesitate to build and use an atomic bomb, so he argued that the
US should develop one also (though he was horrified when it was used against Japan). In his years in Princeton, Einstein tried
to find a theory unifying gravity and quantum mechanics, but failed to do so (we still haven’t succeeded); he did not like the
random nature inherent in quantum mechanics and tried to prove it was incomplete (formulating the Einstein-Podolsky-Rosen
paradox), which, though later proven incorrect, led to the study of quantum entanglement that is the foundation of a future
quantum internet.

Figure 10.1: Official 1921 Nobel prize portrait of Albert Einstein [27].

This page titled 10.1: An Old and a New Axiom is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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10.2: Consequences of Einstein's Postulates

The combination of the two postulates in section 10.1 leads to a number of consequences that appear to be at odds with everyday
experience. They imply that there are no such things as universal measures of time and length, nor even agreement on whether
events are simultaneous or not. The reason why we do not observe these consequences all the time is that their effects are very
small for objects which are moving slowly (as compared to the speed of light). Nonetheless, they do exist, and can be measured -
and matter a lot in situations where speeds are high, such as in particle accelerators and cosmic radiation.

LOSS OF SIMULTANEITY

Consider the following (thought) experiment. Somebody stands in the middle of a train car with mirrors at either end. The car
moves with constant speed v with respect to the platform, at which we place a second observer. The person on the train holds two
laser pointers, which she presses at the same time (or perhaps a device with a single button that sends out two beams, to avoid
experimenter bias). According to the person on the train, the beams reach both mirrors simultaneously, as they travel at the same
speed, and cover the same distance. Now according to the person on the platform, the beams also travel at the same speed(!) -
Einstein’s light postulate tells us that all observers measure the speed of light to be the same. However, according to this stationary
observer, the train also moves, and thus the light beam traveling to the front of the train has to cover a greater distance than the one
going to the back of the train. Consequently, the backwards-traveling beam arrives at its mirror before the forwards-traveling one
does. We are forced to conclude that events that are simultaneous in one inertial reference frame are not necessarily simultaneous in
another.

Fortunately, there is an event that both observers agree on: the fact that the two light beams, once reflected, return to the person in
the middle of the train at the same time. From the point of view of the person on the train this is obvious. For the person on the
platform, a simple calculation shows that the distance that the backwards-traveling beam gains on the outbound trip equals the
distance it looses on the return trip, and vice versa. Different observers don’t in general agree on the simultaneity (or even order) of
events happening at different points in space, but they do agree on the order of events at a given point in space - which means that
relativity preserves causality (the concept that causes precede effects).

a) at rest/ comoving b) moving
V.
——
L
——— v At

Figure 10.2.1: The light clock according to (a) the comoving observer and (b) a stationary observer (if the clock moves at speed
vin the direction parallel to the plane of the mirrors).

TIME DILATION

Since everybody agrees on the speed of light (and very little else), it makes sense to use the speed of light to determine other
physical quantities, such as the time interval between two events. To that end, we can construct a light clock: we place two mirrors
in parallel, and let a beam of light bounce back and forth between them (Figure 10.2.1). Since we agree on at least the order of
events at the same point in space, let’s take as our time interval the time it takes for the light to travel back and forth between the
mirrors once (i.e., one round trip). According to the comoving observer (whose coordinates we’ll denote with primes, and whose
system of coordinates we’ll call S"), this time interval is given by At' = 2L /¢, as the distance traveled by the light is simply twice
the perpendicular distance between the mirrors. However, for the stationary observer it seems that the light has moved in the
direction parallel to the mirrors as well (see figure 10.2.(1)b). We’ll denote his coordinate system as .S, with time interval A. The
total distance traveled by the light is (invoking the Pythagorean theorem) +/(2L)2 + (vAt)2), which should equal cAt. Solving
for At, we find (At)? = (2L)?/(c® —v?) , which is longer than the time interval measured by the comoving observer (that makes
sense - if the light travels at the same speed, a larger distance should take longer). The two time intervals are related by:

1
At = ———— At/ = y(v)Al! (10.2.1)

Ve

The factor -y(v) will return frequently in this chapter. Its value is one if v =0, and becomes progressively larger as v increases, to
blow up at v = c. For ‘small’ (compared to c) values of v the value of y(v) is very close to one, which is why the effects of special
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relativity hardly ever show up in everyday life.

We have established that time intervals between two events are different for two different (comoving and stationary) observers.
There is a subtle but important point to make about how time is perceived to progress according to a single observer. Let’s start out
with the stationary observer. Suppose this observer both measures time with a light clock in his own frame of reference, and
observes an identical light clock on a moving train. Since the time interval for the roundtrip of the light in the comoving (or in this
case, co-stationary) light clock is measured to be less than that of the moving clock, the stationary observer concludes that the
moving clock is running slow. This observation is universal, and known as time dilation. To stress how universal time dilation is,
consider the point of view of the person on the train: according to her, her clock is running ‘normal’, while the clock on the
platform runs slow - which is in perfect agreement with the above statement, as from the point of view of the train, it’s the platform
that’s moving.

Michelson-Morley experiment

The Michelson-Morley experiment (1887) was an attempt to measure the relative motion of the Earth with respect to the
aether, a substance that was postulated to fill all of space. It was well known in the 19th century that the Earth’s atmosphere
only extends to about 100 km up, and since sunlight can reach the Earth, it was postulated that there must be another substance
that acted as the medium for the propagation of light (much like sound propagates through air, water, or even solids, but not
through vacuum). Since the Earth moves around the sun, it should move relatively to the aether, or from the point of view of an
observer on Earth, the aether should flow through space (‘aether wind’). Consequently the aether should affect the speed of
light for a beam traveling in the same direction as the wind, but not one traveling perpendicular to this direction. Michelson
and Morley attempted to use this principle to measure the speed of the aether wind, with a device now known as a Michelson
interferometer (pictured). However, they found no difference at all, for any angle of the interferometer arms. Lorentz (see next
box) initially attempted to explain this result by introducing the concept of ‘local time’, which would lead to a Lorentz
contraction of one of the arms with respect to the other, canceling the effect of the aether wind. Einstein took a more radical
approach, dropping the concept of the aether altogether, and replacing it with his two postulates, which have Lorentz
contraction as one of their consequences. Three (very sensitive) Michelson interferometers have recently been used to detect
small vibrations in spacetime itself, the gravitational waves predicted by Einstein’s general theory of relativity.

If the apparatus moves to the right with speed v, the speed of light on path 1 (up-down) is given by u; = |u;| = vV'¢? —v? . If
the distance between the beamsplitter and the mirror is L, the time it takes to traverse path 1 (back and forth) is then given by

oL 2L 2Lje
il -2 J1-(v/e)?

For path 2, the speed of the light on the way out to the mirror equals u,,; = ¢ — v, while the speed on the return path equals
Ui, = c~+v . The total time for the trajectory (also of length L) thus equals

b —

(10.2.2)

L L 2L 1
ty = + _ /e _ t, (10.2.3)
c—v c+v 1—(v/c)? 1—(v/c)?

so path 2 always takes less time than path 1. (Note that the proportionality factor is exactly the same as the one we’ll find
relating the time observed by a comoving and a stationary observer in the relativistic picture - Lorentz wasn’t that far off!). If
however the speed of light is identical in paths 1 and 2, the time it takes to traverse either of them is identical too, and we
expect no interference.
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mirror

beam
splitter

mirror

Figure 10.2.2: A Michelson interferometer splits a light beam in two, then measures the interference of the two beams after
they have returned. If the whole system moves with speed v in the direction indicated by the blue arrow, the time it takes the
light to traverse path 1 is longer than it takes to traverse path 2, resulting in interference fringes.

A rather famous example of the effect of time dilation is the observation of the number of high-velocity muons (particles similar to
electrons, but much heavier and unstable) at the surface of the earth. The muons are created in the upper atmosphere (about 20 km
up), when cosmic rays collide with atmospheric atoms. The muons have a decay half-time of 2.2 s (meaning that after this time
half of the original muons have decayed). The muons are created at very high speed, close to that of light (v =0.999c¢). Even so,
classically they can only travel about 650 m before half of them are gone, and almost none will reach the surface of the earth.
However, since according to us stationary observers on earth the muons’ clocks run slow, we expect the half-time to be effectively
extended with a factor ¥(0.999¢) = 22, resulting in a distance of about 15 km before half of them have decayed, and a significant
number reaching the surface - as is observed.

a) atrest/comoving b)  moving

I

[
[

|:|\| t=At=At,, + Al
[
—L

Figure 10.2.3: The horizontal light clock according to (a) the comoving observer and (b) a stationary observer (if the clock moves
at speed v in the direction perpendicular to the plane of the mirrors).

LORENTZ CONTRACTION

Not only do observers in different inertial frames not agree on the duration on time intervals, they do not agree on the length of
objects (i.e., the size of space intervals) either. For distances perpendicular to a direction of motion there is no issue - for the light
clock in figure 10.2.1, both observers measure a distance L between the two mirrors. However, if they were to be asked about say
the length of the wagon of the train we’re imagining the moving observer to be in, their answers wouldn’t agree.

To see how this difference in measured length comes about and how lengths are related, we return to the light clock, but now turn it
on its side (figure 10.2.3)!. For both observers, measuring the distance between the mirrors can be done by measuring the time it
takes a lightbeam to make a roundtrip between them. For the comoving observer, we find that L' = %cAt’ . For the stationary
observer, the picture is more complicated, as the mirrors move while the light travels. On the way out, the distance the light has to
travel is the distance L between the mirrors, plus the distance vAt,;g; the far mirror moves. This total distance should equal
cAtright , 50 we get Atyigy = L/(c—wv) . On the way back, we get a traveled distance of L minus vAtef, which should equal
cAtyepy, so we get Atjes = L/(c+v) . The total time traveled is the sum of these two, which is given by:
L L 2Lc

- A _ _ 10.2.4
t tmght + tleft c—v + c+v c —v? ( ’ )
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or

— 1
L= —At=—r0 'y(fU)At':%y(v)L': r (10.2.5)

The two lengths are thus related by the inverse of the -y factor that relates two time intervals. Using an argument similar to that of
the clocks (relating the length of two identical sticks, one stationary and one moving), we can conclude that moving lengths
contract, an effect known as Lorentz contraction. There is an interesting symmetry between time dilation and Lorentz contraction,
which gives an alternative way of getting equation (10.2.5) once the effect of time dilation is known. Consider again the example
of the muons, but now go to the frame co-moving with the muons. In this frame, the decay half-time is still 2.2 us, but the same
number of muons reach the surface of the earth as in the stationary frame. The reason is that according to the muons, the distance
from the upper atmosphere to the surface is contracted, by exactly a factor 1/y(v), which gives the same distance of 15 km at which
half of them have decayed.

1 Alternatively, we may say that we measure the length of the train wagon by sending a light beam back and forth in the wagon,

bouncing off a mirror at the end.

This page titled 10.2: Consequences of Einstein's Postulates is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
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10.E: Einstein's Postulates (Exercises)

10.1

Suppose you wake up in Rotterdam (10 km from Delft) 1 minute before class in Delft starts (i.e., at 8:44). You dress quickly, but
have only 10 seconds left to get to Delft. You happen to be a very fast biker, making it exactly when your watch shows 8:45. Will
the rest of the class agree that you arrived just in the nick of time?

10.2

A well-known (but probably apocryphal) Einstein quote is ‘Sit on a hot stove for five minutes, and it feels like an hour. Talk to a
pretty girl for an hour, and it feels like five minutes. That’s relativity.’

(a) Einstein (at rest, frame .S) sits on pins and needles for five minutes. Could there be a moving frame Sy in which this same
period lasts an hour? If so, determine the velocity of that frame with respect to .S, if not, explain why not.

(b) Einstein talks with Marilyn Monroe for an hour. (According to another well-known anecdote, during this conversation Marilyn
Monroe would have said to Einstein ‘If we were to have children, and they’d have your brains and my looks, wouldn’t that be
fantastic?’, to which Einstein replied “Yes, but what if they’d have your brains and my looks?’). Both Einstein and Monroe are at
rest in frame S. Could there be a moving frame Sy in which this same period lasts five minutes? If so, determine the velocity of
that frame with respect to S, if not, explain why not.

10.3

How fast would you have to fly such that you cover exactly one lightyear (as measured by a stationary observer) in one year (as
measured on your clock)?

10.4

Adding velocities Einstein postulated that the speed of light (in vacuum, but we’ll ignore that point) is the same in any inertial
reference frame. Consequently, for any object with mass, the speed of light is also the absolute limit: you can never reach it, let
alone exceed it. That doesn’t fit well with everyday experience: if you’re on a train moving at speed u, and throw a ball at speed v,
an outside (stationary) observer will measure the ball’s speed to be u +wv. There seems to be no fundamental reason why we
couldn’t take, say, u = v = 0.8¢c, which would imply that the outside observer measures the ball to go at 1.6¢. The strange thing is
that (s)he doesn’t - the outside observer will tell you that they measured a speed of only 0.976¢ The reason is that although both
you and the outside observer consider speed to be the distance traveled divided by the time it took to travel that distance, you no
longer measure either the same distance or the same time at such high speeds. In this exercise, we’ll derive a new equation for
adding speeds, which shows that you can never break the speed-of-light limit.

We consider the situation sketched in figure 10.E. 1. A train is moving with speed u. Someone standing at the back of the train car
fires a photon (yellow, speed c) and a bullet (blue) at the same time. As measured on the train, the bullet has speed v; for an outside
observer, the bullet has speed w. The photon is reflected by a mirror at the front of the car, and meets up with the bullet at a point a
distance ¢L from the front. Note that L, the length of the car, is measured differently by the comoving and stationary (outside)
observer, as is the time interval between firing and meeting of the photon and bullet. However, both observers agree that at the
events of firing and meeting the photon and bullet are at the same place in space and time. We’ll use these two points to find a
relation between the speeds of the bullet as observed in the stationary and comoving frame, and the speed of the train.

(a) First, you’ll take the point of view (and spacetime coordinates) of the outside observer. Denote the length of the train (as
observed by you) by L, the time it takes the photon to reach the front of the train by ¢;, and the time it takes to return to the
meeting point by 2. The train moves at speed u, the observed velocity of the bullet is w and that of the photon is (obviously) c.
Express ct1, the distance traveled by the photon in ¢;, in terms of L, u, and #;.

(b) Now express cts, the distance traveled by the photon in s, in terms of L, u, t5, and ¢.

(c) From the two equations you have, eliminate L and then rewrite the resulting equation in an expression for ¢5 /¢;.
(d) Argue that w (t; +t2) =c(t; —t2) by considering where the bullet and photon meet up.

(e) Rewrite the expression in (4d) to also give an expression for £5 /1.

(f) Equate the expressions you found in (4c) and (4e), then rewrite them as an expression for ¢.
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(g) Now we’ll take the comoving point of view. Find another expression for ¢. Hint: you can either repeat the procedure above for
the comoving observer, or ‘translate’ the expression in (4f) directly to the comoving frame.

(h) Equate the two expressions for ¢ to get an expression for w that only contains u, v and c.

(i) The rest is algebra: show that the expression you found in (4h) can be rewritten as:

v+u

= 10.E.1
YT +uv/c? ( )

— v (or w) >
o0 o0

<€
—

Figure 10.E. 1: A person standing at the back of a moving train car fires a photon and a bullet at the same time. The photon reflects
off a mirror at the front of the train, and meets up with the bullet sometime later.

10.5

[Challenging] Three bars are welded together into the shape of an isosceles triangle with side ratios 5:5:6. An observer looks at our
triangle from a direction perpendicular to the plane it spans, as in figure a. The observer moves with relativistic velocity v in a
direction parallel to the plane of the triangle.

(a) In which direction and at which speed should the observer be moving so that according to him, the triangle is equilateral?

(b) We now rotate the triangle in such a way that all its corners and the observer are in one plane. The longest side of the triangle is
arranged perpendicular to the observer’s line of sight, and at the far end, as in figure b. The observer moves with speed v (not
necessarily the same speed as in part (a) in the direction parallel to this long edge. Show that the observer sees a distorted triangle.

(c) As the observer keeps moving along the same line as in (b), show that it seems to him as if the triangle is rotating, and
determine in which direction it rotates.

a) b)
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11.1: Classical Case- Galilean Transformations

To figure out how velocities add in our new reality set by the light postulate, we need to reconsider the world-view of a stationary
and moving observer, each in their own inertial reference frame. In classical mechanics, for an observer moving at speed w in the
z-direction, we can find the coordinates of this observer’s reference frame with respect to those of a stationary observer using a
simple set of transformation rules:

' =z —ut, (11.1.1)
Y =y,
2 =z,
t =t.

Here the primed variables denote the coordinates of the moving observer, and the unprimed variables the stationary ones. We’ll call
the stationary frame .S, and the moving frame S’. Of course we could also express the coordinates of S in those of S’ - that is just
equation (11.1.1) with the sign of u flipped. Note that we included the observation that time, as measured by both observers, is the
same, as well as the y and z coordinates (since the train moves in the x direction - and we can just pick the z direction to be the
one the train moves in). Equation (11.1.1) is known as the Galilean coordinate transformation. Note that it fits with the classical
statement that accelerations are the same as measured in any reference frame:

2z d(z—ut) d [dx d’z
d(#')? de? de \ dt de?
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11.2: Derivation of the Lorentz Transformations

Instead of constant acceleration, in the theory of relativity we have a constant speed of light in each inertial reference frame. That means
that the transformation rules (11.1.1) change. One thing that will not change is that spatial directions in which there is no motion are
measured the same by all observers (our observers are after all both stationary in the y and z directions), so we’ll only consider the z
direction, and time. To treat space and time on an equal footing, they should of course have the same dimensions. Fortunately, the one
universal constant in special relativity, the speed of light ¢, converts a time to a space (or vice versa), so we’ll consider a transformation on
position x and ‘time’ ct. A second thing that won’t change is that the transformations have to be linear. If they were not, they would
violate the principle of relativity, because then the length of an object (or of a time interval) would depend on the choice of origin of our
coordinate frames S and S’.

Hendrik Antoon Lorentz

1853-1928) was a Dutch physicist, considered widely as the leading theoretical physicist of his time. At age 24, Lorentz became a
professor at Leiden university where he initally worked on electromagnetism. He provided the theoretical explanation for the recently
discovered (quantum-mechanical) Zeeman effect, for which he and Zee- man shared the Nobel prize in 1902. Around 1900, Lorentz
developed the set of transformations now named after him in an attempt to interpret the results of the Michelson-Morley experiment.
As Einstein built the theory of relativity on the mathematical tools provided by Lorentz, it was originally referred to as the Lorentz-
Einstein theory; Lorentz himself quickly appreciated Einstein’s insights and consistently referred to ‘Einstein’s principle of relativity’.
Lorentz resigned from his position in Leiden in 1912 to have more time to do research, moving to the Teylers museum in Haarlem
(still open today); Lorentz’ successor in Leiden, Paul Ehrenfest, founded an institute for theoretical physics there that is now known
as the Lorentz institute. From 1918 till 1926 Lorentz focussed his efforts on maritime engineering, as chair of the committee charged
with designing the Afsluitdijk, a 32 km dike that closes off the former Zuiderzee in the north of the Netherlands. Lorentz solved the
various necessary hydrodynamic problems numerically by hand, one of the first engineering problems approached in this way; when
construction was finished, it turned out that his calculations had been highly accurate. One of the two sets of locks in the dyke is
named after him.
P

Figure 11.2.1 Hendrik Antoon Lorentz, around 1916 [28]

For a general linear transformation, we write:

!
(ml) :A<m), with A:(a“ a”). (11.2.1)
ct ct as1 Q29

We want our transformation to be invertible, so det(A) # 0 and

<xt) - detl(A) (_“i; _aiz) (i) ' (11.2.2)

We can find' the coefficients of A by simply demanding that S’ moves relative to S at constant speed u, and the value of c is the same in
S and S’. To start with the first condition, consider a stationary point in S’, so 2’ =¥'. From (11.2.1) we have ' = a1z +ajsct, or
z = (&' —ajzct)/ay1 . On the other hand, in S this point moves at speed u, so the same point is described by an equation of the form
x =ut+xo. Therefore, we have —ajoc/a;; =u. Naturally we can also consider a stationary point in S,

z =b = (age’ —aract’/ det(A) , which is moving at speed —u in S’, so &' = —ut’ + | , which gives —u = a1a¢/ags. It follows that
asy = —ajac/u = ayy, and we can rewrite our transformations (11.2.1) and (11.2.2) as:

a
2 =an <z+ ﬁct) =ay1(z —ut)
aii

' az1
ct =agx+agzpct=a;1 | —x+ct

a1 (11.2.3)

aii

¥ 7 det(4)

aii a1 , ’
t = ——1z +ct
det(A) ( ajy )
Note that with a;; =1 and ag; =0, these are simply the Galilean transformations again. We’ll allow as; # 0 to accommodate for the

light postulate. To see how that works, we first calculate the velocity of a moving object in either reference frame, and relate them to each
other:

(z' +ut')
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, _ da a11d(z — ut) dz —udt dz/dt —u v—u
v =—

dt’ N and((a21/a11) ($/6)+t) (a21/ca11)d:v+dt - 1+(a21/ca11)dw/dt B 1+(a21/a11) (U/C)

where we used v = dx /dt. Inversely, we have:

(11.2.4)

\[v=\frac{\mathrm{d} x}{\mathrm{d} t}=\frac{vA{\prime}+u}{1-\left(a_{21} / a_{11}\right)\left(vA{\prime} / c\right) }\]

As the light postulate states, it doesn’t matter if we measure c in S or S’, we always get the same number. So for light, we should have
v' = ¢ =wv, which we can use in equation (11.2.4) to determine as;/a11:

so — =-—

cC—u a1 u
c=—"7"—""—— —
1+ (a21/a11) an c

(11.2.5)

The transforms now become:
z' =ay1(z —ut)
, uT
ct =aq |ct——
c

11 ,
_ 1 Y (11.2.6)
T 1—u?/c? (@' +ut)

; 1 1 oo uz’
ct=———7—|ct+— ).

a; 1—u?/c? c
In equations (11.2.6) we used det(A) = a?, (1 —u?/c?) . We are left with one undetermined parameter, the value of a;;. We’ll use it to
make the transformation symmetric - after all, we could have started with .S’ as stationary and S as moving (with speed —u), and we
should get the same transforms, except for the sign of u. Equating the prefactor in equations (11.2.6a) and (11.2.69, we find that
a1 =y(u), withy(u) again defined as

1

VI=(u/c)?
Note that y(u) = y(—u), in accordance with the earlier notion that it doesn’t matter whether you are in S watching S’ move at u, or in S’
watching S move at —u. We have now arrived at the Lorentz transformations:

y(u) = (11.2.7)

2 = ()@ —ut)
ct’ =v(u) (ct - %)
2 =) (& +ut)

!
ct =v(u) (ct' + %)

The Lorentz transformations transform both space and time. Consequently, our two observers do not only measure space differently, as in
the classical system (recall the stationary and comoving coordinates), but they also measure time differently! For small speeds, vy(u) is
(very) close to one and the effect negligible, but for high speeds it certainly is not. As we have already seen in the previous section based
on the train argument, and see again below, these different time measurements lead to potentially confusing results: the two observers no
longer agree on which events are simultaneous, how long a meter stick is, or how long it took to travel from one place to another.

(11.2.8)

Before going to the applications, we have a few closing remarks about the Lorentz transformations. First, we put in some effort to make
the transformation symmetric between going from S to S’ and vice versa. We can do more though. Since time and space now both
transform, and get mingled up in the transformation, it is no longer appropriate to separate them; instead, we’ll consider a combined
system of four dimensions known as spacetime. As proper physicists, we should however not compare apples and oranges, or time and
space. We already converted the time coordinate to a space coordinate by multiplying it with c. In equations (11.2.8a) and (11.2.89 we
canceled that ¢ in front of {with a ¢ in the denominator, but it is cleaner to put it back, so we get an even better sense of the equality of
space and time in the Lorentz transformation:

¥ =AW — (u/eet)
ct' = y(u)(ct — (u/c)z) (11.2.9)

Note that in equations (11.2.9) the velocity u only appears as a fraction of ¢: we only have expressions of the form u /¢, making all the
coefficients of our transforms nicely dimensionless.

Second, all equations in this section are for a transformation between a stationary frame and one moving in the positive z-direction with
speed u. Since we’re in principle free to choose our coordinates, we can always re-label or construct our axes to match this setup. In
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practice, that may not always be handy though, so we could also consider movement into a different direction. Of course, moving in either
the y or z direction just makes those axes swap with the = axis considered here, so we won’t bother to explicitly write down those
transformations. We can also write down the transformation for movement in a general direction u:

@uct

o =2+ (y(u) —1) 2
ct’ =~(u) (ct —£2)

where u = |u] is the speed of the moving frame, and x = (z, y, 2).

(11.2.10)

Finally, we note that the collection of Lorentz transformations in the z direction? form a group under composition. If a system S’ moves
with respect to S with velocity u, and S” moves with respect to S’ with velocity v, then you can make a Lorentz transformation from S
to S’ and from S’ to S§”, but also from S to S” directly®. As you can check for yourself (Problem 11.1), the transformation from s to s”
is indeed another Lorentz transformation. The velocity of S” with respect to S is again not u + v, but (u +v)/(1 +uv/c?), as given by
the relativistic velocity addition equation (11.14) derived below.

IThe derivation that follows is not mathematically difficult (these are all linear equations, after all), but it contains a fairly large number of
steps. The easiest way to get your head around them is to take a piece of paper and do them yourself.

2These transformations in a given direction are sometimes also referred to as Lorentz boosts.
3Think, for example, of S as a stationary platform, S’ as a moving train, and S” as a toy train in the moving train.

This page titled 11.2: Derivation of the Lorentz Transformations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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11.3: Some Consequences of the Lorentz Transformations

LOSS OF SIMULTANEITY

If two events are simultaneous for a moving observer in S, the observer measures their time interval as At'. If the two events
happen at the same position (Az’' = 0), the Lorentz transformations give Az = 0, At =0 as well. However, if the two events in
S’ are spatially separate (Az # 0), we find that for an observer in S At = ~(u)(u/c?)Az’, and therefore the two events are not
simultaneous. Things even get worse: suppose two events A and B happen in S a distance Az apart, and a time interval At after
each other. Now if Az > (¢/u)cAt, a moving observer in S” will conclude that At' < 0, which means that event B happens
before event A! Fortunately, this does not violate causality, as a signal from A to B (or vice versa) will at most travel with the speed
of light, which, as we will see in the next section, means that for the conditions given, A and B cannot be causally connected - i.e.,
you cannot reverse cause and effect, no matter how fast you run.

TIME DILATION AND LORENTZ CONTRACTION

A stationary observer in frame S’ measures the time difference between two points to be At' on his/her own clock, while an
observer in S will measure the time difference on that (moving) clock to be At =~y(u)At’, exactly the time dilation result we
found in equation (10.2.1). Likewise, an observer in S’ will measure the length of a stationary stick to be AL’. For an observer in
S, using a method that reaches the ends of the stick simultaneously (so At =0), the length is AL. We have
Az’ = AL =~(u)AL,so AL = AL’ /~y(u), which (unsurprisingly) is the Lorentz contraction result of equation (10.2.5).

VELOCITY ADDITION

We calculated the speed of an object v as measured in S as a function of the speed v/ in S’ and the speed u of S’ in equation
(11.2.5). Substituting the values of the constants we found later, we get the following equation:

u+v

= — 11.3.1
Y 1+uv'/c? ( )

Equation (11.3.1) thus follows directly from the light postulate - that is all we used to derive it. It mathematically shows you can
never add velocities in such a way as to exceed the speed of light. Setting u = v = ¢ gives v=c, and for any values u < c,
v’ < ¢, you’ll always getv < c.

Equation 11.3.1holds for motion in the same direction as the motion of the reference frame - for example, if you’re on a moving
train, and rolling a ball down the length of the train. However, you could also roll the ball in the transverse direction (say y if we
call the direction in which the train is moving ). You might think that the observed velocity for the comoving and stationary
observer is the same in that case (it is for Galilean transformations), but that’s not the case. We have v, = dy/dt, and although dy
is invariant, dt is not. Calculating v, in terms of vy (the speed at which the moving observer rolls the ball) is straightforward
though, we simply apply the Lorentz transformation to dt:
d dy’ 1 dy'/dt/ 1 v}
W= ; T 1 zc/i T @) T (11.3.2)
S (¢+ar) 700 T EAA () ke

EXAMPLE APPLICATION: RELATIVISTIC HEADLIGHT EFFECT

Suppose you have a light source that radiates isotropically (i.e., with the same intensity in all directions). What happens if we put
the light source on a moving train? Remarkably, according to a stationary observer, the light source is not isotropic anymore. To
understand what happens, let us as usual call the direction in which the train moves z and its speed u. A ray of light emitted by the
light source in S’ has a velocity v" with magnitude ¢ (on which both observers agree), and components (v}, vy, v;) (figure
11.3.1a). Now let’s consider the ray of light that moves along the y' axis. Its velocity is given by v = (0, ¢, 0\). We can calculate
the velocity components of this ray of light in frame .S using the velocity transformation Equations 11.3.1and 11.3.2 which gives
v = (u,y(u),0) (which of course still has magnitude c). The ray of light thus picks up a component in the positive z direction, and
consequently gets a smaller component in the y direction. Figure 11.3.1b shows the resulting light cone in the positive = direction.
Its opening angle p can be easily calculated:

sin(6) = %" == —(u) (11.3.3)
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For reasons that you will probably find easy to guess, this phenomenon is known as the relativistic headlight effect. It is observed
in the radiation emitted by electrons rotating around magnetic field lines orbiting Jupiter and the sun, as well as in particle
accelerators on earth.

a) y' b) y

Figure 11.3.1: Relativistic headlight effect. (a) Isotropic light source in the comoving frame S’. (b) The same light source as
observed from a stationary frame S. The opening angle p is given by sin(u) = y(u).

This page titled 11.3: Some Consequences of the Lorentz Transformations is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.

@ 0 e @ 11.3.2 https://phys.libretexts.org/@go/page/17433


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17433?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/11%3A_Lorentz_Transformations/11.03%3A_Some_Consequences_of_the_Lorentz_Transformations
https://creativecommons.org/licenses/by-nc-sa/4.0
http://idemalab.tudelft.nl/idema.html
https://textbooks.open.tudelft.nl/index.php/textbooks/index
https://textbooks.open.tudelft.nl/textbooks/catalog/book/14

LibreTextsw

11.4: Rapidity and Repeated Lorentz Transformations

As stated at the end of section 11.2, the composition of two Lorentz transformations is again a Lorentz transformation, with a
velocity boost given by the ‘relativistic addition’ equation (11.3.1) (you’re asked to prove this in problem 11.1). You could of
course repeat this process for successive transformations, but the repeated addition of velocities quickly leads to impractical
expressions. You could also investigate whether the combination of a Lorentz transformation in the = direction and one in the y
direction again gives a Lorentz transformation. The answer is, in general, no: it is the combination of a Lorentz transformation and
a rotation. In some sense, we can also consider Lorentz transformations themselves as ‘rotations’ in (4-dimensional) spacetime.
We’ll discuss spacetime in more detail in the next two sections. Here, we’ll work out a different way of writing the Lorentz
transformations that shows their relation to rotations. As a bonus, it will allow us to easily calculate the speed of the n the Lorentz
transformation (starting from rest, all in the positive z direction).

Let us again write the Lorentz transformation as a matrix. Using the y(u) factor and introducing 8(u) = u/c, we have

(:t) =7(u) <[1-; f) (:tlf) (11.4.1)

again beautifully illustrating the symmetry between time and space. We now define! the rapidity ¢ by
U

tanh(¢) = B(u) = - (11.4.2)

We then have

1 1
u) = = = cosh ¢, 11.4.3
)= T T (11.43)
¥(u)B(u) P) __ _ tenhd g, (11.4.4)

- \/1—5(1‘)2 a \/l—tanh2¢

Substituting these expressions back into the Lorentz transformations (11.4.1), we get

( y ) = (C.OSM Sinh¢) ( xl,) (11.4.5)
ct sinh¢ cosh¢ ct

which closely resembles the expression for a rotation.

We can likewise rewrite the equation for velocity addition in terms of the rapidity. Suppose we want to add velocities w and v, let
the resulting velocity be w, then:
w _ u/c+v/c _ ﬂu +Bv _ tanh(¢u) +tanh(¢v)

tanh(¢y) = P 1+uv/c?  1+B.8, 1+tanh(¢,)tanh(s,)

= tanh(¢, + ¢y) (11.4.6)

(in problem 11.9 you get to prove the last equality). We thus find a very simple addition rule for the rapidities:

v = Pu+ Py. (11'4‘7)

Suppose now that we have a (stationary) reference system S, a system .S’ that moves with speed u (and rapidity ¢) with respect to
S, a system S” that moves with speed u with respect to S’, and so on. By equation (11.4.7), the system S (") then moves with
rapidity ¢, =n¢ with respect to S. To find the relative speed w,, at which S () moves in S, we invert the definition of the

rapidity, which gives us
1 148
= -1 — 11.4.
o=310(15 ). (11.48)

SO u,, is given by
1-u/c\"
1- <1+u/c)

(e c (11.4.9)
+ (1+u/c)
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Note that equation (11.4.9) provides another proof of the statement that no inertial object can move at the speed of light: for
arbitrary large values of n, u,, remains less than ¢, so no matter how many velocity boosts you give your massive particle, you can
never make it move at the speed of light, let alone exceed that speed.

11f you’re unfamiliar with the hypergeometric functions: they’re defined like the trigonometric functions as combinations of powers

of e, except that we drop the complex number ¢, so we have
. 1 1 sinh(¢) e?—e?
sinh(¢) = = (e? —e™?), cosh(¢)=—=(e?+e?), tanh(¢)= = 11.4.10
(9)=5( =), cohlg) =5 (e e, tanb(9) = TH S = S (11.4.10)

Note that d sinh ¢/d¢ = cosh ¢ like the trigonometric counterpart, but d cosh ¢/d¢ = sinh ¢, so no minus sign in this case.
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11.E: Lorentz Transformations (Exercises)

111

Suppose system S’ moves with respect to .S with velocity u, and S” moves with respect to S’ with velocity v. Show that system
S and S are related through a Lorentz transformation with velocity
u+v
w= .
uv
1+ pry

(1L.E.1)

11.2
Equation (11.13) gives the Lorentz transformation for an observer moving in an arbitrary direction u.

(a) Show that if a ray of light is emitted in the rest frame S in an arbitrary direction, such that its trajectory is described by x = ct
(where ¢ - ¢ = c¢?), then in the moving frame S’, the trajectory of the ray of light is also a straight line, given by x’ = ct’, with

cd-c=¢2%.

(b) What is the direction of the ray of light in §'?

11.3

(a) A male and a female student both attend lectures on relativity. Afterwards, they return home by train, moving in opposite
directions, each at (4/5)c. Before they left, they promised to send each other messages while on the train. Unfortunately there is
interference in the phone network, so they can’t use their phones to do so. They do have pen and paper though, so they could write
down their message and throw it to the other train. The boy, having only paid attention during the first part of the lecture (being
distracted by the girl afterwards) remembers that nothing can go faster than the speed of light, and concludes that throwing
something is pointless, as the (classical) relative speed of the trains exceeds the speed of light. The girl, who paid attention
throughout, realizes this is not the case, and explains why in her note to the boy. At which minimum velocity should she throw the
note so that it can reach the boy’s train?

(b) The boy, having received the girl’s message, realizes that he has a much better chance of completing the assignments if he can
ask her some more questions. He therefore leaves his train, and takes the next one back (so now traveling in the same direction as
the girl). Unfortunately, this train only moves at (3/5)c, so it won’t catch up with the girl’s train. The boy consoles himself with the
thought that relative to him, the girl is moving, so her clock is running slow, and at least she won’t have forgotten about him by the
time she leaves her train. An hour passes on the boy’s watch. How much time (according to him) has the girl’s watch advanced in
that period (assuming they both stay on their trains)?

11.4

An observer on Earth sees two spaceships (or trains, whatever you prefer) approaching from opposite directions. The observer
measures their velocities in his/her own rest frame, and not knowing about relativity, uses Galilean velocity addition to conclude
that the two spaceships have a relative speed of (7/5)v. However, an observer on one of the spaceships measures the relative speed
of the other as (35/37)c Find the speeds of the two spaceships relative to the Earth.

11.5

A male and a female student both attend relativity lectures. The boy however is more interested in the girl than in the lecture.
Frustrated, the teacher throws a wet sponge towards him, at speed c¢/2. The girl, hoping to save the boy, tries to intercept the
sponge, throwing her marker at it from the side (making a right angle, i.e., coming at the sponge from a direction perpendicular to
its direction of motion, as seen in the (stationary) reference frame of the lecture hall) with speed ¢/3. For a spider who happens to
sit on the sponge, what is the measured speed of the marker?

11.6

A spaceship flies away from Earth with speed ¢/3. After some time a small shuttle departs from the spaceship, in a direction that
makes a right angle with that of the main ship, and a speed of ¢/4, as measured in the rest frame of the main ship. What are the
magnitude and direction of the velocity of the shuttle as measured from Earth?
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Angles in Lorentz transformations

(a) A rod moves with velocity v in a straight line relative to an inertial frame S. In its rest frame the rod makes an angle of 8" with
the forward direction of its motion. Find the angle @ the rod appears to make with the direction of motion as measured in the frame
S. Determine the numerical value of this angle for = 60° and v=3¢/5.

(b) As observed from an inertial frame S, a mirror is moving with speed v in the  direction with its plane surface perpendicular to
z. Also as observed in frame S, a photon traveling in the zy-plane is incident on the mirror surface with an angle theta to the
mirror’s normal. Show that, as seen from S, the reflected photon has an angle # with the mirror normal, where

cosf — Cosftcosa (11.E.2)

1+cosfcosa’

and cosa = 2(v/c)/ (1 + (v/c)?).

LV v

At

E

Figure 11.E. 1: Observing the explosion of a quasar at large distance.

11.8

Quasars are active galactic nuclei that can emit large amounts of matter, usually gas. Fortunately they are far enough away to never
affect us, but close enough that we can measure e.g. the velocity of the emitted gas. These velocities occasionally seem to exceed
the speed of light. To see how this can happen, consider a quasar a distance d away from Earth (as measured in the collective rest
frame of the Earth and the quasar), and an explosion on the quasar resulting in such an emission at ¢ = 0, see figure 11.E. 1. The
light emitted at the moment of the explosion reaches Earth at ¢ =d/c. If the emitted gas is moving on a trajectory like the one
shown in the figure below, light emitted from the gas has to travel a shorter distance to Earth than the light emitted at the moment
of the explosion. Light emitted by an explosion on a distant quasar reaches Earth after a time interval d/c. Light emitted from the
expelled gas has to travel a shorter distance. Note that the distance traveled by the gas is much smaller than the distance between
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Earth and the quasar, so the light arriving from both can be taken as coming from the same direction. Suppose that the gas travels at
speed v.

(a) Determine the interval Atg between the events ‘Earth observer sees the initial explosion’ (which happens at the quasar at
t =0, but is observed later) and 'Earth observer sees the light emitted by the gas at time ¢".

(b) Determine the speed of the gas an Earth astronomer would measure if they don’t take the angle theta into account (we call this
speed Vops)-

(c) Show that the observed velocity can exceed the speed of light.

(d) Show that for given actual velocity v of the gas, the observed velocity is maximized if sin = v/c, and that in that case we get
Vops = Y(V)v.

(e) What is the minimum speed v for the gas at which it can appear to have a speed equal to that of light?

11.9

[For section 11.4] Prove the last equality in equation (11.4.6) by expanding the hyperbolic tangents in the fraction in exponential
functions.

11.10

[For section 11.4] Prove equation (11.4.9) by induction. If this is the first time you prove something by induction: step 1 is to prove
that the equation holds for n =1 (completely trivial in most cases); step 2 is to prove that if the equation holds for all values up to
n, it also holds for n + 1. In this case, you thus have to calculate u,; by (relativistically) adding v and w,,.
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13.1: The Position Four-Vector

As we’ve seen in the previous section, we can define a ‘length’ ¢s that is invariant under Lorentz transformations as seen by
Equation 12.2.2 (repeated again below):

(As)? = (cAt)? — (Azx) - (Az) = (cAt)? — (Az)? — (Ay)? — (Az)? (13.1.1)

As is clear from the definition of As, to get invariant quantities, we should not think of space as measured in three dimensions, but
of spacetime, measured in four dimensions. This four-dimensional world of special relativity is called Minkowski space, and its
vectors have four components: one for time and three for space. Conventionally, we add the time component as the zeroth
component of the vector. To distinguish between ‘ordinary’, three-dimensional vectors (which are represented in bold) and four-
vectors, we’ll put a line on top of the latter. The position four-vector is then given by:

x = (zg, 21, T2, 23) = (ct, z, Y, 2) (13.1.2)

We would like to be able to determine the length of the position four-vector by taking the inner product of the vector with itself.

However, the regular inner product is not going to work, because instead of (ct)? +x2 +y2 +22 , the quantity that is independent

2

of the reference frame is(ct)2 —z? - y2 —z° . We, therefore, define the inner product of two four-vectors a and b as

6-5=a0b0—a1b1—a2b2—a3b3 (1313)

As we’ve already seen, the magnitude of the position four-vectors, as determined by its inner product with itself (Equation (12.2.2))
is independent of the inertial reference frame you use to measure it in. In problem 13.3 you’ll show that consequently, the value of
the inner product of any two four-vectors is reference frame independent.

It may seem that we’re back to normal - we’ve added a dimension and introduced a new inner product, but with those, we should
be able to do calculations just as easily as in ordinary 3D space. The last part is true, but the new inner product is actually different
from the regular one in one very important respect: the value in equation (12.2.2) can be zero or even negative for nonzero four-
vectors ! To see what’s going on, we return to the spacetime diagram, in particular, figure 12.1.1c. Suppose we have a particle
traveling in the z-direction (taking y = 2 =0 for convenience). What speed does it need for the length of its four-vector to vanish?
For that to happen we need ¢t =z, orv=2x/t =c, so - & becomes zero for something traveling at the speed of light. Likewise,
x -z is positive for a particle traveling slower than light, and negative for a particle traveling faster than light (which is of course
impossible, since such a particle would need to first reach the speed of light, which as we’ve seen can never be done). However, we
can consider the four-vector & between any two points in spacetime, and from the sign of = - = tell whether they can be connected
through regular (slower than light) travel, by a light beam, or not at all. The first we call timelike, the second lightlike, and the third

spacelike:
z-x >0 timelike
z-z=0 lightlike (13.1.4)
xz-x <0 spacelike

Two events which are connected by a spacelike four-vector cannot influence each other: there is no way to send a signal between
them, and therefore there is no way to transfer information.
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13.2: Lorentz Transformation Matrix and Metric Tensor

In this section, we’ve joined space and time in a single four-vector and defined a new inner product on the space of those four-
vectors. In Chapter 11 we defined the Lorentz transformations of the space and time coordinates, which are linear transformations.
Linear transformations can, of course, be represented by matrices, and for our four-vectors, we can write down the appropriate
Lorentz transformation matrix, rewriting equation (11.12) as a vector equation:

T =Lz (13.2.1)
Here L is a 4 X 4 matrix:
M) A 0 0
_ u
L= | we At 00 (13.2.2)
0 0 1 0
0 0 0 1

Likewith the four-vectors, we start labeling the rows and columns of L with index 0. To indicate the difference with matrices in
regular space, it is conventional to indicate indices of regular-space vectors and matrices with Roman letters (like w; for the ith
component of vector v, and A;; for the ith row, jth column of matrix A), and those of Minkowski-space vectors and matrices with
Greek letters - so we write z,, for the th component of the four-vector &, where y can be 0, 1, 2, or 3.

We can also write Equation 777 in index form:

This page titled 13.2: Lorentz Transformation Matrix and Metric Tensor is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
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13.4: Relativistic Energy

The last three (or ‘spatial’) components of the momentum four-vector give us the regular components of the momentum, times the
factor y(v). What about the zeroth (or ‘temporal’) component? To interpret it, we expand +(v), and find:

cpo = y(v)me? (13.4.1)
1 /v\2 3 /v\4 9

= [”5(;) +5(3) +] me (13.4.2)

:mc2+%mv2+... (13.4.3)

The second term in this expansion should be familiar: it’s the kinetic energy of the particle. The third and higher terms are
corrections to the classical kinetic energy - just like the higher-order terms in the spatial components are corrections to the classical
momenta. The first term, however, is new: an extra energy contribution due to the mass of the particle. The whole term can now be
interpreted as the relativistic energy of the particle:

E =~(v)mc’ (13.4.4)
=mc? +K (13.4.5)

We can now write the zeroth component of the momentum four-vector as pg = E/c. Based on this interpretation, the four-vector is
sometimes referred to as the energy-momentum four-vector.

A very useful relation can now easily be derived by calculating the length of the energy-momentum four-vector in two ways. On
the one hand, it’s given by (leaving out the square root for convenience)

p-p=m>v-v=m2c? (13.4.6)

while on the other hand, we could also simply expand in the components of p itself to get:
_ __(E\?
ppP= (—) -p'p (13.4.7)

c
where p is again the spatial part of p. Combining Equations 13.4.6and 13.4.7, we get:
E? =m?ct +p?c? (13.4.8)

where p? = p-p . Equation 13.4.8 is the general form of Einstein's famous formula E = mc?, to which it reduces for stationary
particles (i.e. whenv=p =0).
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13.5: Conservation of Energy and Momentum

In classical mechanics, energy and momentum were separate entities, each obeying its own conservation law. In special relativity,
they are two parts of the same quantity (the energy-momentum four-vector), just like time and space are two parts of the same
position four-vector. Consequently, energy and momentum have to obey the same rules in special relativity. Fortunately, a
conservation law on a vector quantity applies to each of its components, and so conservation of energy and momentum translates to
conservation of the energy-momentum four-vector p. However, unlike in classical mechanics, mass is no longer conserved: since it
is now interpreted as a part of the total energy of a system (Equation 13.4.2), it can be converted into or created from kinetic
energy. The equivalence of mass and energy has important consequences for collision experiments, including a whole new type of
‘collisions’: radioactive decay of matter.

You might complain that we haven’t actually proved that the energy-momentum four-vector is conserved in special relativity (and
you would be right). What we have done is define the relativistic energy E = y(v)mc? and three-momentum p = y(v)mwv, as well
as the energy-momentum four-vector p. We have also shown that with these definitions, p is a proper four-vector, in the sense that
it is invariant under Lorentz transformations. Therefore, we know that if it is conserved in one inertial frame, it must also be
conserved in all others. We also know that our relativistic energy and momentum revert to the classical kinetic energy (plus a
constant, mc?) and the classical momentum muv at low velocities. The conservation laws for these classical quantities follow from
Newton’s second and third laws of motion, respectively. In special relativity, we no longer take these laws as our axioms, only
retaining Newton’s first law of motion in inertial reference frame. We therefore cannot prove conservation of the energy-
momentum four-vector mathematically, and must take it as an axiom. As I’ve just argued, this axiom is consistent with the laws of
classical mechanics in the low-velocity limit. It is also consistent with experimental data - which, like Einstein’s postulates and
Newton’s laws in classical mechanics, is the ultimate test of our physical model.
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13.E: Position, Energy and Momentum in Special Relativity (Exercises)

13.1 In high-energy physics, it is customary to express the mass of elementary particles not in kilograms but in MeV /c?,
expressing the fact that (rest) mass is a form of energy. An MeV or mega-electron-Volt is one million (the ‘mega’) times the
(kinetic) energy an electron gains when it moves through an electric field between two positions with an electric potential
difference of 1 volt, or 1 joule per coulomb. One electron-volt thus corresponds to an amount of energy (in joules) equal in number
to the charge of the electron in coulombs. Express the mass of both the electron and the proton in MeV /c?; you may find the
numbers in Table B.1 useful.

13.2 For an arbitrary particle of (rest) mass m, find the speed at which its kinetic energy equals its rest energy.

13.3 We constructed four vectors in such a way that their length is invariant under Lorentz transformations. The length of a four-
vector is defined as the square root of its dot product with itself: |Z| = vz - = 2% —22 — 22 —z} . In Equation 13.1.2 we also
defined the dot product of two arbitrary four-vectors a and b.
a. Show that the sum of two four-vectors is again a four-vector (i.e., show that the length is invariant under Lorentz
transformations, and the components transform the same way that those of the position four-vector do).
b. Calculate the square of the length of the four-vectors @ +b and @ —b.
c. Use your answer at (b) to write the dot product of a and b as a linear combination of quantities that are invariant under Lorentz
transformations (thus showing that the dot product is also invariant).
13.4 A particle with mass m has three-momentum p as measured in an inertial lab frame S. Find the particle’s energy as measured
by an observer with three-velocity w. Hint: Determine the four-vectors of the particle’s momentum and the observer’s motion both
in the lab frame S and the observer’s rest frame S’, then use the fact that inner products of four-vectors are invariant under Lorentz

transformations.
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14.1: Prelude to Relativistic Collisions

In supercolliders such as the ones at CERN in Geneva and (formerly) Fermilab in Chicago, small particles like electrons and
protons are accelerated to speeds near that of light, then made to collide with each other in an attempt to create exotic types of
matter (i.e., non-common particles). The very reason why this can be done is the relation between energy, mass, and momentum
given by the general version of Einstein’s famous equation.

E =mc? (14.1.1)

Einstein's equation tells us that if the incoming particles have sufficiently high kinetic energy, we can create new particles with
more mass than the originals had. The process by which this happens is the realm quantum field theory, but the mechanics of the
collisions can be studied within special relativity.

Just like in classical mechanics, we can define a totally inelastic collision as any collision in which the particles stick together. We
define a totally elastic collision as a collision in which the momentum, kinetic energy, and mass of all particles are conserved.
We’ll have one more type, that has no classical counterpart: radioactive decay, in which a particle falls apart into multiple particles
- a sort of time-reversed inelastic collision. All cases can be analyzed using the conservation of energy-momentum. Although that
basic concept is in principle sufficient, there are many cases for which writing out the components of the energy-momentum four-
vector as four equations are not the easiest way to find (say) the energies or momenta of the outgoing particles. There are some
other tricks that you can use - in particular, the invariance of the length of the energy-momentum four-vector, both in a collision
process and under a Lorentz transformation. A few examples will help to illustrate this point.
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14.2: Photons

Before we dive into the examples, there’s one particle that requires special attention: the photon, or quantum of light - from that
other early-20th-century theory known as quantum mechanics. Photons travel (by definition) at the speed of light, and need
therefore be massless. They do carry energy though, which is related to their frequency f (or wavelength A, or color) through

he
E photon =hf = Y (14.2.1)

where h is Planck’s constant. Since photons have nonzero energy, they also have nonzero momentum through Einstein’s equation
(13.16), despite the fact that they have no mass!

E phot h h
D photon = - _f =T (1422)

c c
A photon with frequency f (and thus energy E = hf) traveling in the positive x direction has a very simple energy-momentum

four-vector:
5photon = (E/C, E/C,0,0) (1423)

The length of this four-vector, unsurprisingly, is zero.

Note that relativistic momentum is given by p = ~(v)muv; substituting v = ¢ gives y(c) = oo, and so this expression gives us the
product of infinity with zero for the momentum of the photon - that could be anything and thus is meaningless. The way to
calculate the momentum of the photon is through Equation 14.2.2. Although the photon momentum is small, it is large enough to
be measured and even useful in devices known as optical tweezers, where focused laser beams are used to move micron-sized
objects around.
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14.3: Totally Inelastic Collision

In a totally inelastic collision, particles stick together. A possible example is the absorption of a photon by a massive particle,
resulting in an increase in its mass, as well as possibly a change in its momentum. Let’s consider, as an example, a particle of mass
m that is initially at rest, and absorbs an incoming photon with energy E.,. There are now three ways to calculate the energy and
momentum of the particle after this collision.

Method 1

We have conservation of both (total) energy and momentum. Before the collision, the massive particle has energy F; = mc? (as it
is standing still), and the total energy of the system E, +mc?, which must be conserved. The total energy of the particle after the
collision is B¢ = ')/(v)mfc2 , where both the velocity v and the mass m¢ are unknown. The total momentum before the collision is
E, /c, as the particle is initially standing still (and thus has momentum zero), while after the collision it is y(v)m¢v. We thus have:

E, +mc® =y(v)mgc? (14.3.1)
E, =~v(v)mguc (14.3.2)

We thus have two equations with two unknowns (v and my). If we divide Equation 14.3.2by 14.3.1, we get an expression for the
final velocity v, which we can substitute back in either equation to solve for m¢ (and potentially use to calculate the momentum
after the collision). This is not pretty though, as we’ll have complicated factors due to the presence of y(v).

Method 2

The four-momentum of the system is conserved during the collision. We have p,, for the photon, p; for the massive particle before
the collision, and p; for that particle after the collision, given by the following equations:

_ E, E,
=== 0,0 14.3.3
Dy ( c’' ¢c '’ ) ( )
51 = (’ITLC,0,0,0) (1434)
_ E;
Dr = (Tf,pf,0,0) (1435)
From p,, +p; = p; we can read off two equations:
E7+mc2 =E; (14.3.6)
E,/c=ps (14.3.7)

which immediately give us the final energy and momentum in terms of the initial ones. We can now find the final mass through
Einstein’s equation (13.16):

mict = B —pc® = (E,+mdc®)’ — B2 (14.3.8)
= (B, +mc?) mc? (14.3.9)

This approach circumvents the use of the (v) factor because we only use energy and momentum, not (classical) velocity. If we
now want the velocity, we could still calculate it from the combination of my and either Ef or pf, but since it was the mass and
momentum we were after, there’s no need to do so.

Method 3

Since the total energy-momentum four-vector is conserved in the collision, so must be its length (or the square of the length), which
is trivial to calculate (remember that p-p = m?2c? ). We can often exploit this fact to make the maths much simpler. To see how
this works, let’s consider the full four-vector equation for our example: p, +p; = p; , s0

(ﬁ'y +51) : (1_77 +I_71) :I_)f ‘I_)f (14.3.10)
Dy Py +Pi P +2p, Py =PsPs (14.3.11)
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0-+m?c® +2E,m =m2c? (14.3.12)
which immediately gives us m;. If we also want Ef or pg, we can again use Equations 14.3.10and 14.3.11for the components, but
if we only wanted the final mass, we’re done in one step.

Note that although method 3 usually is the easiest route to your answer, it is not always - and it is a good idea to at least be aware of

the other options.
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14.4: Radioactive Decay and the Center-of-Momentum Frame

Radioactive decay is the process by which unstable particles with high mass; fall apart into more stable particles with lower mass.
Although the process itself is quantum mechanical in nature, the dynamics of radioactive decay are described by special relativity
and are essentially identical to those of an inelastic collision in reverse. Decay may occur spontaneously (as a random process), but
can also be stimulated, by the absorption of a (typically small, e.g. a photon or electron) particle by the unstable one - a process
used in nuclear reactors. Because the absorbed particle also carries energy, in stimulated decay the masses of the resulting particles
can add up to something more than the rest mass of the original particle. An important question in nuclear physics is what the
threshold energy of a given reaction is, i.e., the minimum energy the incoming particle must have for the process to be possible.
This is not simply the differences in the mass-energy of the original and the resulting particles, as in the collision process
momentum must also be conserved. To illustrate how to approach such a problem, let’s again consider a concrete example: the
threshold energy for the reaction in which a proton (m, =938MeV/ c?), initially at rest, absorbs a photon, and then emits a
neutral pion (m, = 135MeV /c?), see Figure 14.3.1 below.

before after
a) A
@’\j\ @ LAB frame
b)
@\j\ 4—@ @ COM frame
™

Figure 14.4.1: Example of stimulated radioactive decay: a proton, initially at rest, absorbs a photon and then emits a neutral pion.

The reaction is shown in the lab frame in (a), and in the center-of-momentum frame in (b).
Figuring out what the minimum required energy is in the lab frame is not easy, as you have to account for the kinetic energy of the
particles after the reaction. There is however a system in which the reaction products are standing still: the center-of-momentum
frame, the relativistic analog of the center-of-mass frame of classical mechanics'. The center-of-momentum frame is defined as the
frame in which the total momentum of all particles adds up to zero. In our specific example, before the collision, only the photon
carries a momentum, equal to its energy E., divided by the speed of light. In general, the total momentum in the system can be a
three-vector, equal to pr =), p; , while the total energy is given by Et =), E; . If we choose our coordinates such that the z-
direction coincides with that of pr, the energy-momentum four-vector of the entire system becomes pr = (Et/¢, pr, 0,0), where
pr = |pr|. If we go to any different inertial frame S’ moving with velocity v in the positive z direction, the components of the
energy-momentum four-vector are given by the Lorentz transform of pr:

— ET v v ET
= _——— - ——,0,0 14.4.1
Pr 7(’0) ( c CPTaPT c ¢ 'Yy ( )
so we end up in a frame in which the total momentum is zero if we pick
C2PT
VOOM = (14.4.2)
Er
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for our velocity. In particular, we see that we can always make this transformation, and that the center-of-momentum frame is an
inertial frame.

Back to our example: why do we care? The answer is almost tautological: if the total momentum is zero before the collision, it is
also zero afterward - and so in the COM frame, the particles can all be standing still (see Figure 14.3.1b). That certainly
corresponds to the lowest possible kinetic energy of the system, so the energy of the incoming photon is all converted to mass - and
that must thus be the threshold energy we’re looking for. Interestingly, to answer our original question, we don’t even need to
calculate what the actual velocity of the COM frame is, just the fact that it exists is sufficient. In the COM frame, we have, by
conservation of four-momentum:

P, +Py; =Py ' +Pr (14.4.3)

and therefore also

(B, +Pps) = (B £ +85)" = (mpe+mac)’ (14.4.4)

where the last equality follows from the fact that the reactants are standing still. Now the left-hand-side
of equation (/ref{14.3.4}) is the length of a four-vector, and we’ve proven that these lengths are invariant under

Lorentz transformations - so it’s value is equal to that of (ﬁ,y +ﬁp7i) ? in the lab frame. In that frame, we have
p, = (E,/c)(1,1,0,0) and p,; = (m;c,0,0,0), so we end up with an easy equation form E,:

(mp +mz)’c® =P’ + P +2P. Py =0 +mic? +2E,m, (14.4.5)
or

m,2,+2m,,mp 9
=—¢

= — 145MeV (14.4.6)

2m,
In this example, we thus need at least 10MeV of energy more than the mass of the particle we’ve created.

Note that in finding the threshold energy in the example, we again heavily relied on the four-vector properties of p - not only it’s
length (like in the third method of section 14.2), but also the invariance of that length under Lorentz transformations. Using these
properties results in easy equations to solve, while if you’d ignore them, you’d probably get stuck trying to figure out what the
kinetic energy of the reaction products is.

1 As our system includes a photon, a center-of-mass frame doesn’t make sense here, as the photon has no mass - but it has nonzero
momentum, so we can make a transformation to a system in which the total momentum vanishes.
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14.5: Totally Elastic Collision - Compton Scattering

As a final example of a collision in special relativity, we consider the totally elastic case: a collision in which the total momentum,
total kinetic energy, and the mass of all particles are conserved. An example of such a collision is Compton scattering: the collision
between a photon and an electron, resulting in a transfer of energy from one to the other, visible in a change of wavelength of the
photon. For our example, we’ll take the electron to be initially stationary, and the photon to be coming in along the z-axis; after the
collision, both particles have nonzero velocities in both the x and y directions (see Figure 14.4.1).

before after

O (o)

Figure 14.5.1: Compton scattering between a photon and an electron, resulting in a transfer of energy of the photon to the electron,
measurable as a change in the photon’s wavelength.

The four-momenta of the electron and photon before and after the collision are given by:

mecC 1 E.t/c 1
_ 0 _ E |1 _ Pe.f COS P _ E; cos@
.= , == , ot = ’ == 14.5.1
pe,l 0 p’y, c 0 D, £ Dot sin¢> p’y,f c _sin® ( )
0 0 0 0

We can now solve for the energy E; of the outgoing photon (and thus its wavelength) in terms of that of the incoming photon (Ej;)
and the scattering angle 6. There are again (at least) two ways to do this. One is to compare the components of the initial and final
energy-momentum four-vector term by term. The other is to again use the fact that we know about the length of the four-vector to
immediately eliminate the scattering angle ¢ of the electron. To do so, we first rewrite the conservation of energy-momentum
equation, P, ; +P,; = P + P, (0 isolate the term of the outgoing electron, and then take the square, to get:

— — — 2 -2
(Pei +Pyi —Pyt) =Dy (14.5.2)
2 -2 -2 - 2 — — - — 9
PeitPyi+ Pyt Pei Pyi—2Pei Pys— 2Py Pyt = P (14.5.3)
E.E
m2c2+0+0+42m.E; — 2meEs — 2 > £ (1 —cosh) = m2c? (14.5.4)
c

from which we can solve for E¢. Rewriting to wavelengths (throughE = hf = hc/)), we get

A=A+ (1 —cosb) (14.5.5)

eC
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14.E: Relativistic Collisions (Exercises)

14.1 A photon with frequency f collides with a stationary atom with rest mass m. In the collision, the photon is absorbed by the
atom. Determine the mass and speed of the atom after the collision.

14.2 A particle with mass m and kinetic energy 2mc? collides with a stationary particle with mass 2m. After the collision, the two
particles are fused into a single particle. Find both the mass and the speed of this new particle.

14.3 A stationary atomic nucleus undergoes a radioactive process known as -decay, in which one of its neutrons (with rest mass
my = 939.6MeV) falls apart into a proton (which remains in the nucleus, rest mass m, = 938.3MeV), an electron (rest mass
me = 0.5MeV), and an anti-neutrino. Neutrinos are very light particles; we’ll take the emitted neutrino to be effectively massless
and thus travel at the speed of light with momentum p,,. The nucleus remains stationary. Find the momenta p,, and p. of the emitted
neutrino and electron, as well as the speed of the emitted electron.

14.4 A proton with rest mass mp and momentum p, is moving in the positive z-direction. A photon with frequency f is traveling
in the negative z-direction and collides head-on with the proton. After the collision, both proton and photon are traveling in the
positive z-direction. Show that the frequency f’ of the photon after the collision is given by

E, +cpp

f= mf (14.E.1)

where E), is the energy of the proton before the collision.

14.5 Particles like the electrons in atomic orbitals can be in a low-energy ground state (with energy Ej), or, by absorbing a photon,
be put in a higher-energy excited state (with energy FE7). The particle can return to the ground state by emitting another photon.
Quantum mechanics tells us that only very specific states with very specific, discrete (or ‘quantized’) energies, are allowed.

a. If the particle is initially at rest, the energy of an incoming photon with frequency v (and energy £ = hv ) has to be slightly
larger than the energy difference AE = E; — E, between the particle’s ground and excited states if the particle is to absorb the
photon. Explain why.

b. Show that for an incoming photon that is absorbed by an initially stationary particle, we have

AFE
hv,=AFE 1+ — 14.E.2
* ( 2E, ) ( )
c. Likewise, show that for an initially stationary particle in the excited state with energy E1, the energy of the emitted photon is
given by
AFE
hve=AFE|1—— 14.E.3
Y ( 2E, ) ( )

d. Suppose we have two identical atoms, one of which contains an electron in the excited state, and the other only electrons in the
ground state. The atom with the electron in the excited state emits a photon. Is there a possible scenario in which the other atom
absorbs the photon (resonant absorption)?

14.6 Matter-antimatter annihilation and creation. As you may have heard, for every elementary particle of ‘ordinary’ matter,
there exists an antiparticle of ‘antimatter’, which shares many characteristics with its ordinary counterpart (such as the mass),
whereas others are opposite (such as the charge). When a particle and its antiparticle meet, they completely annihilate, converting
all of their combined mass into pure energy, in the form of radiation (i.e. photons). The most common antiparticle is that of the
electron, which is known as the positron. First, we consider an experiment in which an ordinary electron of mass m. with
momentum p, hits a positron (mass m, ) at rest, at which point the two annihilate, producing two photons.

a. Argue why such an annihilation must produce at least two photons.
b. One of the two produced photons emerges at an angle of 60° to the direction of the incident electron. What is its energy?
c. Find the angle (with the direction of the incident electron) at which the other photon emerges.

The opposite of annihilation, spontaneous creation of matter, can also happen: then a photon spontaneously converts to a particle-
antiparticle pair.

d. Why must the photon convert to a particle-antiparticle pair, rather than simply convert to a single particle?
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e. Find the minimum wavelength a photon must have to create an electron-positron pair. Where is this photon in the
electromagnetic spectrum?

14.7 A neutral kaon (or K meson) with a mass of 498MeV /c? and an initial velocity of ¢/2 decays into two pions (one with a
positive and one with a negative charge), each of which has a mass of 135MeV /c2.

before after (lab frame) after (lab frame)

a. Find the speeds and the angles of the pions in the lab frame if, in the rest frame of the kaon, they are emitted in opposite
directions, whose line makes an angle of 90° with the propagation direction of the kaon?

b. Answer the same question as in (a), for the case that the pions are emitted one in the same and one in the opposite direction as
the kaon.

c. Sometimes a kaon decays into more than two pions (there are also neutral pions; the charges, of course, need to add up to the
kaon charge). Determine the maximum number of pions that our kaon can decay into.

d. Prove that in any situation, the trajectories of the created pions are in one plane. Hint: do this in the kaon’s rest frame first.
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CHAPTER OVERVIEW

15: Relativistic Forces and Waves

As we’ve previously discussed in Chapter 14, you can analyze all types of collisions in special relativity without ever making a
reference to the forces they exert on each other. In fact, we haven’t talked about force at all so far, and there’s a good reason for
that: forces, already frequently less practical than energies in classical mechanics, become veritable nightmares in special relativity.
Nonetheless, there are some questions you can only answer with reference to forces - for example, what velocity a particle will get
if you exert a certain force on it for a given period of time.

15.1: The Force Four-Vector

15.2: The Four-Acceleration

15.3: Relativistic Waves

15.E: Relativistic Forces and Waves (Exercises)

Thumbnail: Two-dimensional representation of gravitational waves generated by two neutron stars orbiting each other. (Public
Domain; NASA).
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15.1: The Force Four-Vector

In classical mechanics, Newton’s second law relates momenta and forces, through the time derivative of the momentum. In
relativity, we’ll therefore simply define the force four-vector as the derivative of the energy-momentum four-vector with respect to
the proper time (which gives a four-vector, as you can check easily):

— dp 1dE

We define the components of the three-force! F as the (‘regular’ or ‘coordinate’) time derivative of the three momentum:
F =dp/dt, so Newton’s second law holds as long as you don’t change your frame of reference. Likewise, Newton’s third law

holds, if you consider the three-force F' in a fixed frame of reference. The zeroth term of F contains the time derivative of the
energy, which we defined as the power in Section 3.1: P = dE/d¢t, again within the context of a fixed frame of reference.

There is a classical result that involves the force that does translate to special relativity for arbitrary reference frames: the work-
energy theorem. To see how that comes about, consider a Lorentz transform from a comoving system (or instantaneous inertial
frame S”) to an arbitrary inertial frame S. In S’, y(u) =~(0) =1, so the space components of the force four-vector are just the
components of the force three-vector (and Newton’s second law holds); moreover, in this frame,

- d(m/ 1—(u’)2/02)

& = 5 =0 (15.1.2)

—f
because the derivative contains a factor ', which (by choice of frame) is zero. We thus haveF' = (0, Fy, F), F?). The force is a
four-vector, and therefore transforms according to Equation (13.7):

Fy () (w)% 0 0 0 Y(u)LFy
— 2 F! /
Fo| B[t A 0 0| E|_| y(wE (15.1.3)
F, 0 0 1 0 Fy Fy
F3 0 0 01 F] F!
so, comparing the components of Fin Equations 15.1.1and 15.1.3 we get
E Ey F}
d—:uFZ’, F,=F),, F,=—X, F=—-— (15.1.4)
de v(w) v(w)

The longitudinal force is thus the same in both frames, but the transversal force is not! Forces thus behave differently than you
might naively expect under Lorentz transformations. Moreover, the transformation is not symmetric: we don’t get Fy = F,, /y(—u)
(which would indeed directly contradict Equation 15.1.3. The reason why we’ve lost this symmetry is that for forces, there is a
special frame: that of the particle (here S’), where Newton’s second law holds. In all other frames, we have to transform the forces
according to Equation 15.1.4

There is a silver lining: the zero component in Equation 15.1.3 gives us that dE = wFj}dt = Fjdxz = F,dz , which integrated
gives the work-energy theorem:

AE =FAz =AW.
As long as we stay away from the forces, work and energy will behave as we’ve come to expect.

1Some authors use f to avoid confusion with the four-force F'; others use F' for the three-force and K for the four-force.
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15.2: The Four-Acceleration

We can of course also define a four-vector version of the acceleration, by taking the derivative of the four-velocity with respect to
the proper time. As with the forces, we’ll see that we’re in for some nasty surprises, this time because the proper time derivative
acts on the y(u) factor in the velocity as well as on the components:
d% d 4 v 2 4 a-v

= =10 10 (0,00, v,,0.) = (7 0) =2, 7 (a+74(0) =) (15.2.1)
dr dt c c

a

where we used the time derivative of the () function

d’)’ii;771 1 ‘ 7£d_'v B vlv'a
Eidtmi 2 (1 (v/c)2)*? < c? dt)’y:i() c (15.2.2)

and we’ve introduced the (classical) acceleration three-vector as the coordinate time derivative of the velocity three-vector:
a =dv/dt. As you can see in equation (15.2.1), the four-acceleration has terms that scale with 2 and terms that scale with 74,
making it an inconvenient object to work with. Geometrically though, it has a clean interpretation, which comes into view once you
consider the inner product between the acceleration and velocity four-vectors:

a5 = )(a-v) -7’ (W)(a-v) 70 (- )
)@ ) [ 1]
=0

These four-vectors are therefore (in the four-vector sense) always perpendicular! That seems odd from a classical point of view: if
you move in the x-direction, and speed up, both velocity and acceleration point in the same direction and are thus certainly not
perpendicular. We do have a perpendicular case of course: circular motion (with a velocity along the circle, and acceleration
inwards). Something similar happens here, if you consider the world line of a particle in a spacetime diagram (see Figure 15.2.1).
You can think of this line as a curve that’s parametrized by the proper time 7; points on the curve are then given by the position
four-vector at time 7. The velocity four-vector is the normalized tangent to this line (and indeed, by construction, has a fixed length
¢). When you’re moving at constant velocity, the line is straight, but if you change your velocity (i.e., you accelerate), the line
curves. The acceleration four-vector both quantifies that curvature, and points in the direction that the curve is bending? .

Because by definition p = mv, and F = dp/dr, as long as the mass is conserved (dm/dr =0), we do have F Ama , so
Newton’s second law does hold for four-vectors. This result is not nearly as useful as in classical mechanics though since as we’ve
seen, forces transform in unwieldy manners between inertial frames, and the acceleration can only curve the trajectory in
spacetime.

To see how forces and accelerations can be used for a case where you have no choice but to use them?, consider a particle that is
under constant acceleration, due to a constant three-force acting on it in the (noninertial!) co-moving frame of the particle (e.g. due
to a rocket engine attached to the particle). From the point of view of an inertial rest frame, we have

dp dF

E = a,nd E :O (15.2.3)
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Figure 15.2.1: Spacetime diagram showing accelerated motion. The position four-vector gives the collection of points in spacetime
that the world line passes through, parametrized by the proper time 7. The velocity four-vector (red) is the normalized tangent to
that line, and the acceleration four-vector (green), which is always perpendicular to the velocity four-vector, its curvature.

Choose the z-axis to be along the direction of F', and define a = a_{x} = F_{x}/m\). Then

d(pe/m)  dw,
a=—— =3 (15.2.4)

where w = p/m = vy(v)v, and, as we have only motion in the positive z-direction here, we have w, = w, (v_{x}=v\). Solving
equation (15.2.4) for w, we get the velocity of a uniformly accelerated particle: w(t) = w(0) +at . Now solving for the actually
measured velocity in the inertial frame (taking w(0) = 0), we find

’U2 Q
YE)o(t) =w(t) =at = o = a2t (1_0_2) = vzﬁ (15.2.5)

Figure 15.2.2 compares the relativistic velocity with the classical result. Unsurprisingly, they are initially identical, but once the
speed starts picking up, we see that the classical results starts to deviate significantly. In particular, the relativistic result confirms
that no matter how long we accelerate, our particle will never exceed the speed of light.
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Figure 15.2.2: Velocity, as measured in an inertial rest frame, for a particle that undergoes constant acceleration, according to
classical mechanics (orange) and special relativity (blue).

On a side note, we can also solve for the actual trajectory of our particle: simply integrate dz /d¢ = v(t), which gives

2 242
a(t)= (4 1+5- 1 (15.2.6)
a C

For small values of ¢, we (again) recover the classical result, x = %at2 .

! There is a one-on-one correspondence between these ‘world curves’ and affinely parametrized curves in real space of two or more
dimensions. There too, you can define a tangent vector as the derivative of the position vector, which for an affinely parametrized
curve

is always of unit length. The derivative of the tangent vector, known as the normal, is always perpendicular to the tangent, and
points

in the direction in which the curve is bending; its magnitude quantifies the curvature.

2I'm sure you’ve noted the obvious pun here.
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15.3: Relativistic Waves

We’ve seen that in special relativity, space and time are intimately coupled. There is a classical phenomenon for which this is also
the case: the waves we discussed in Chapter 9. In Section 9.1 we introduced the sinusoidal wave, described by Equation 9.1.1:

u(z,t) = Acos(k-z —wt) (15.3.1)

In Equation 15.3.1 we made the wave a function of all three space coordinates, introducing a wave vector k rather than just the
wave number k of equation (9.1.1). The magnitude of the wave vector is simply that of the wave number, |k| =k = 27/, while
its direction represents the direction the (traveling) wave is moving in. When written like Equation 15.3.1, you may guess that
there exists a wave four-vector combining the temporal and spatial properties of the wave, and you would be correct. If we define

k= (w/c, k) (15.3.2)

then the argument of the cosine in equation (15.11), i.e., the phase ¢(, t) of the wave at the given point in space and time, is given
by

p(x,t) =k & —wt=—(k-x) (15.3.3)

We’ve already shown that dot products of two four-vectors are invariant under Lorentz transformations; as ¢ is a scalar (and thus

invariant) and @ a four-vector, it follows that k is indeed also a four-vector.

The main application of relativistic waves is light itself - in its occurrence as a wave. The wave four-vector of a light beam
traveling in the positive z-direction is given by

k= (k,k,0,0) (15.3.4)
where we used that for light, w = ck (Equation 9.1.2). Unsurprisingly, this looks exactly like Equation 14.1.3 for the four-
momentum of a photon - especially because that the energy of a photon is E E' = hc/A = hek/2m. Up to a physical constant, the
wave and momentum four-vectors of light are thus identical:

_ h - _
D photon — %kphoton = hkphoton (1535)

The combination h /2 occurs so often that it got its own symbol, & (‘h-bar’). Note that Equation 15.3.5holds for light only.

You might expect that there is little more to say about light. After all, the light postulate ensures that the speed of light will be the
same for all observers. Yet, different observers can observe the same ray of light (or the same photon) differently: although its
speed is invariant, its frequency (and thus its color, as well as its momentum) is not! To see what happens, let us start with a
stationary light source emitting rays in the positive z-direction in some system S, so the wave four-vector is given by Equation
15.3.4. We now Lorentz transform to a system .S’ moving with speed u in the z-direction. The wave four-vector as measured by an
observer in S’ is simply the Lorentz transform of Equation 15.3.4;

yw) ) 0 0\ [k y(uk (1-%) K

_ — K -2 '

o | @ @ 0 0| | k|| awra-2) | _|* (15.3.6)
0 o 10f]o0 0 0
0 o o0 1/ \0 0 0

We find that the moving observer still sees the light moving in the positive z-direction with speed ¢, but with a different wave
number &', and thus a different frequency «’ = ck’, given by

W =~(u) <1f%>w: ‘/1;—2;2(41 (15.3.7)

Equation 15.3.7 gives the relativistic Doppler effect: a shift in observed frequency due to the motion of the observer, just as we
found for sound in Section 9.7. In fact, Equation 15.3.7 reduces to equation (9.7.2) for small velocities u << c. In addition to the
‘sound effect’ where we account for the stretching or compression of the waves due to the motion of the observer, the relativistic
Doppler effect also accounts for the time dilation between the two observers (it can also be derived by combining these two effects,
as is done in many textbooks, see Problem 15.2.b). Unlike for sound, there is also a transverse relativistic Doppler effect (entirely
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due to the time dilation), for which we can find the expression by replacing the ray traveling in the positive z-direction in Equation
15.3.6with one traveling in the positive y-direction.

This page titled 15.3: Relativistic Waves is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema
(TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/17461


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/17461?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/15%3A_Relativistic_Forces_and_Waves/15.03%3A_Relativistic_Waves
https://creativecommons.org/licenses/by-nc-sa/4.0
http://idemalab.tudelft.nl/idema.html
https://textbooks.open.tudelft.nl/index.php/textbooks/index
https://textbooks.open.tudelft.nl/textbooks/catalog/book/14

LibreTextsw

15.E: Relativistic Forces and Waves (Exercises)

15.1 Two spaceships are connected by a strong cable. Both ships are initially at rest, and ignite their engines at the same time. Their
accelerations are identical at every point in time. Does the cable stay intact? Hint: use a spacetime diagram to analyze what
happens.

15.2 In classical mechanics, the Doppler shift in the wavelength of an object moving towards the observer at
speed u is given by equation (9.7.1) repeated again below:

v—Uu

Aobs = A (15.E.1)
v

where v is the speed of the wave (usually sound). To get this result, we compared what happens with the source and the wave in a
fixed time interval At. As you now know, this result cannot hold at speeds close to that of light, because in that case there will be a
significant effect due to time dilation. In this problem, we’ll, therefore, redo the calculation to account for relativistic effects.

We consider a distant source of light that moves with velocity w. At time £ =0 (for both the source and the stationary observer),
the source emits a signal (this could be a wave crest, but the argument holds for any signal). A time At') later, as measured on the
clock moving with the source, the source emits a second signal, see Figure 15.E.1.

u

to distant observer

Figure Pagelndex1: Setting for calculating the relativistic Doppler effect. As the (stationary) observer is distant, the signals
traveling to the observer from the source can be taken parallel to each other; they make an angle 6 with the direction in which the
source moves. Note that both the distance between the position of the source at the emission of the first and second signal and the
difference in distance traveled by the signal matter.

a. Determine the time interval At between the emission of the first and second signal as measured on the clock of the stationary
observer.

b. Determine the change in distance Az between the (stationary) observer and the (moving) source in the time interval between
the two signals, as measured by the stationary observer.

c. Now determine the time interval At,;s between the arrival of the first and second signal at the location of the observer.

d. From your answers at (a-c), show that the observed frequency v, is related to the source’s frequency v, through

V1—u?/c?

1—|—(u/c)cos€vS 15.8.2)

Vobs =
Note that equation (15.5.2) reduces to (15.E.1) in the case that the source is moving radially away from the observer.
e. From equation (15.F.2), find the expression for the (relativistic) transverse Doppler shift for the case that the source is moving
in a direction perpendicular to the observer’s line of sight (i.e., 8 = 90° ). How can you tell that in this case, the Doppler shift is
exclusively due to time dilation?
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16.A: Math

Vector Basics

Classical mechanics describes the motion of bodies as they move through space. To describe a motion in space it is not sufficient to
give a position and a speed: you need a direction as well. Therefore we work with vectors: mathematical objects that have both a
magnitude and a direction. If you tell me you’re moving, I know something, but not much; I’ll know more if you tell me you’re
moving at walking speed, and have full information of your velocity once you tell me that you’re moving at walking speed towards
the coffee machine. Although in principle we could make do with specifying a magnitude and direction of every vector in this way,
it is often more convenient to express our vectors in a basis. To do so, we choose an (arbitrary) origin, and as many basis vectors as
we have spatial dimensions, in such a way that they are not parallel to one another, and usually mutually perpendicular (orthogonal)
and of unit length (orthonormal). Then we decompose our vector by giving its components along each of the basis vectors. The
most common choice is to use a Cartesian basis, of two or three (depending on spatial dimension) basis vectors of unit length
pointing in the standard x, y and z directions, and indicated as &, ¥ and 2, or (rather annoyingly) sometimes as %, j and k, the latter
especially in American textbooks. Other often encountered systems are polar coordinates (2D) and cylindrical and spherical
coordinates (3D), see the mathematical appendix for more background on those. To write our vectors, we now specify the
components in each direction, writing for example v = 3& + 3% for a vector (in boldface) representing a speed of 3v/2 and a
direction making an angle of 45° with the horizontal.

Vectors can be added and subtracted just like scalars - simply add and subtract them by component. Graphically, you add two
vectors by putting them head-to-tail: you can find the sum of two vectors v and w by putting the start of w at the end of v, the sum
v 4w then points from the start of v to the end of w. You can also multiply a vector by a scalar, by multiplying every component
of the vector with that scalar. Graphically, this means that you extend the length of the vector with the scalar factor you just
multiplied with.

You can’t take the product of two vectors like you would two scalars. There are however two vector operations that closely
resemble the product, known as the inner (or dot) and outer (or cross) product, see Figure 16.A.1. The dot product represents the
length of the projection of one vector on another (and thus gives a scalar); it is zero for perpendicular vectors, and the dot product
of a vector with itself gives the square of its length. To calculate the dot product of two vectors, sum the products of their
components: if v =v, & +v,§ and w = w, & +wyF , then v - w = v, w, +v,wy . You can use the dot product to find the angle
between two vectors, using standard geometry, which gives

cosf= —— = (16.A.1)

where |v| and |w| are the lengths of vectors v and w, respectively. The cross product is only defined for three-dimensional vectors,
say v = v, & + vy ¥ +v,2 and w = w, & +wyY +w,Z . The result is another vector, with a direction perpendicular to the plane
spanned by v and w, and a magnitude equal to the area of the parallelogram bounded by them. The cross product is most easily
expressed in column vector form:

Vg Wy VyW, — UV, Wy
vVXwWw= Uy X Wy = V, Wy — VW, (16.A.2)
v, w, Vg Wy — Vy Wy

The cross product of a vector with itself is zero.
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Figure 16.A. 1: Products and derivatives of vectors. (a) The dot product of two vectors @ and b gives the length of the projection of

a on b (or vice versa). (b) The cross product of two vectors @ and b gives a vector perpendicular to the plane spanned by @ and b

and with a magnitude equal to the area of the parallelogram spanned by @ and b. (c-f ) Acceleration as a change in velocity. In

every panel, the original velocity is shown in black, the velocity a short time At later is shown in blue, and the acceleration is

shown in red. (c) Acceleration for an increase in the magnitude of the velocity. (d) Acceleration for a decrease in the magnitude of

the velocity. (e) Acceleration for a change in direction of the velocity at constant magnitude. (f ) Acceleration for a change in

velocity that involves both a change in direction and a decrease in magnitude.
Vectors can be functions, just like scalar quantities: they can depend on one or more parameters, like position or time. Also, again
just like scalar functions, you can calculate a rate of change of vector function as you move through parameter values, for instance
asking how the velocity of a car changes as a function of time. An instantaneous rate of change is simply a derivative, which is
calculated in exactly the same manner as the derivative of a scalar function. For example, the rate of change of the velocity, known

as the acceleration a, is defined as:

o v(t+ AL —
a= lim

a0 At (16.4.3)

Since the velocity itself is the derivative of the position @(t), the acceleration is also the second derivative of the position. Time
derivatives occur so frequently in classical mechanics that we use a special notation for them: a first derivative is indicated by a dot
on top of the quantity, and a second derivative by a double dot - so we havea=& =& .

Vector derivatives are somewhat richer than those of scalar functions, since there are more ways that a vector can change. Like a
scalar function, the magnitude of a vector can increase or decrease. Moreover, its direction can also change, which also means that
it has a nonzero derivative, and of course, you can have a combination of a change in magnitude and a change in direction, see
Figure 16.A.1.
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Figure 16.A.2: Examples of scalar and vector fields. (a) Temperature (a scalar) at every point in the Netherlands at 11:30 on

October 28, 2013. Lines of equal temperature are drawn in black; the gradient of the temperature field is everywhere perpendicular

to these lines. (b) Wind velocity (a vector) at every point in the Netherlands at the same time as the temperature map. Colors

correspond to the magnitude of the velocity. (a and b) from [30]. (c) Example of a vector field with a large divergence and zero

curl. (d) Example of a vector field with a large curl (and low but nonzero divergence).
Functions (scalar or vector) that are defined at every point in space are sometimes called fields. Examples are the temperature
(scalar) and wind (vector) at every point on the planet, see Figure 16.A.2. Just like you can calculate the rate of change of a
function in time, you can also consider how a function changes in space. For a scalar function, this quantity is a vector, known as
the gradient, defined as the vector of partial derivatives. For a function f (x, y, z), we have:
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of  of of df |0z
Vf=a:%+8—yy+52: df /9y (16.A.4)
Of 0z

The direction of V f is the direction of maximal change, and its magnitude tells you how quickly the function changes in that
direction. For a vector field v, we can’t take the gradient, but we can use the ‘vector’ V of partial derivatives combined with either
the dot or cross product. The first option is known as the divergence of v, and tells you how quickly v spreads out; the second is
the curl of v and tells you how much v rotates:

Ov, Ovy Ov,

div(v) =V-v= o oy o (16.A.5)
Oyv, — 0,y

curl(v) =V xv=| 8,v, —O,v, (16.A.6)
OpVy — Oy

where 8, = % , and so on.

Polar Coordinates

You can specify any point in the plane by specifying its projection on two perpendicular axes - we typically call these the x and y-
axes and x and y coordinates. In this Cartesian system (named after Descartes), we identify unit vectors & and gy, pointing along
their respective axes, and being of unit length. A position = can then be decomposed in the two directions: r = r, & + 7,y , with

. N . 1 N 0
r, =7-& and 7y =7 -y . Alternatively, we can write & = ( 0) and y = ( 1 ) , which gives for 7:

I (:’”) (16.A.7)
Yy

Instead of specifying the x and y coordinates of our position, we could also uniquely identify it by giving two different numbers: its
distance to the origin r, and the angle 6 the line to the origin makes with a fixed reference axis (typically the x-axis), see Figure
16.A.3. Invoking the Pythagorean theorem and basic trigonometry,

we readily find r = 1/7‘% + 7’5 and tanf = :—y . We call r the length of the vector 7. We could also invert the relations for r and

so we can get the Cartesian components if the length and angle are known: r, =rcos6 and ry =rsinf.

Like the Cartesian basis vectors & and (\hat{\boldsymbol{y}}\), which point in the direction of increasing x and y values, we can
also define unit vectors pointing in the direction of increasing r and €. These directions do depend on our position in space, but they
do have a clear geometrical interpretation: \hat{\boldsymbol{r}} always points radially outward from the origin, and
\hat{\boldsymbol{\theta}} in the direction you’d move if you’d be making a counterclockwise rotation about the origin. Given a
position vector 7, finding the vector in the direction of increasing r is very easy: # = 7/r. The expression for r in our new polar
basis (7, @) is almost tautological: » = 7.
Relating the polar basis vectors to the Cartesian ones is straightforward. We have:
P =T, & +Tyy =17 (16.A.8)

and using r, =rcosf,r, =rsinf we also have

r =rcosfz +rsinfy (16.A.9)
We thus find that 7 = cos & +sin 6y .

For \(\hat{\boldsymbol{\theta}\) we note that to rotate around the origin, the direction of motion needs to be perpendicular to 7.
There are of course two such directions - we pick the sign by demanding that the counterclockwise rotation is positive. This gives
0 = (ry/r)@x —(r;/r)y =sinbx — cosfy . Written out as vectors, we have:

ﬁ:(cf’sg), é:( sinf ) (16.A.10)
sin @ —cos@

Note that
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o . or
5 9% (16.A.11)

Naturally, we can also express the Cartesian basis in terms of the polar ones:

r=

& = cosOF +sinfh, ¢ =sinfr —cos 0 (16.A.12)

D>

7
3 .
: r
YA | !
9) :
x %

Figure 16.A.3: Polar coordinate system and polar unit vectors. A position 7 in the plane can be specified either by giving its
projections on two reference axes (along the & and & direction), or by giving its distance r to the origin, and the angle @ the line to
the origin makes with the x axis. The polar basis vectors are defined as pointing in the direction of increasing r (i.e., radially
outward), and increasing 6 (i.e., rotating counterclockwise around the origin).

Solving Differential Equations

A differential equation is an equation which contains derivatives of the function to be determined. They can be very simple. For
example, you may be given the (constant) velocity of a car, which is the derivative of its position, which we’d write mathematically
as:

dz

v=— =1 16.A.13
= (16.4.13)
To determine where the car ends up after one hour, we need to solve this differential equation. We also need a second piece of
information: where the car was at some reference time (usually t = 0), the initial condition. If 2(0) = 0, you don’t need advanced
maths skills to figure out that (1hour) =0 - (Lhour). Unfortunately, things aren’t usually this easy.

Before we proceed to a few techniques for solving differential equations, we need some terminology. The order of a differential
equation is the order of the highest derivative found in the equation; Equation 16.A .13 is thus of first order. A differential equation
is called ordinary if it only contains derivatives with respect to one variable, and partial if it contains derivatives to multiple
variables. The equation is linear if it does not contain any products of (derivatives of) the unknown function. Finally, a differential
equation is homogeneous if it only contains terms that contain the unknown function, and inhomogeneous if it also contains other
terms. Equation 16.A.13 is ordinary and inhomogeneous, as the vy term on the right does not contain the unknown function z(t).
In the sections below,we discuss the various cases you’ll encounter in this book; there are many others (many of which can’t be
solved explicitly) to which a whole subfield of mathematics is dedicated.

A.3.1. FIRST-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Suppose we have a general equation of the form

d
alt) 5 +b(t)a(t) = £(2) (16.A.14)
where a(t), b(t) and f(¢) are known functions of ¢, and z(¢) is our unknown function. Equation 16.A.14 is a first-order, ordinary,
linear, inhomogeneous differential equation. In order to solve it we will use two techniques that are tremendously useful: separation

of variables and separation into homogeneous and particular solutions.

Suppose we had f(¢) =0. Then, if we had two solutions z; (¢) and x2(¢) of Equation 16.A.14, we could construct a third as
x1(t) +x2(t) (or any linear combination of ; (¢) and x2(¢) ), since the equation is linear. Now since f(t) is not zero, we can’t do
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this, but we can do something else. First, we find the most general solution to the equation where f(¢) =0, which we call the
homogeneous solution z,(t). Second, we find a solution (any at all) of the full Equation 16.A.14, which we call the particular
solution x,(t). The full solution is then the sum of these two solutions, z(¢) = (t) +z(¢) . You may worry that there may be
multiple particular solutions: how would we pick the ‘right’ one? Fortunately, we don’t need to worry: the homogeneous solution
will contain an unknown variable, which will be set by the initial condition. Changing the particular solution will change the value
of the variable, such that the final solution will be the same and satisfy both the differential equation and the initial condition.

To find the solution to the homogeneous equation

()dciitthb() W(£) =0 (16.A.15)

we’re going to use a technique called separation of variables. There are two variables in this system: the independent parameter t
and the dependent parameter x. The trick is to get everything depending on t on one side of the equals sign, and everything
depending on x on the other. To do so, we’re going to treat dx/dt as if it were an actual fraction!. In that case, it’s not hard to see
that we can re-arrange Equation 16.A.15to

1 b(t)

Edm‘h = —%dt (16.A.16)

By itself, Equation 16.A .16 means little, but if we integrate both sides, we get something that makes sense:

/mihdwh =log(zn)+C = —/%dt (16.A.17)

or

zn(t) = Aexp [ / %dt} (16.A.18)

where A =exp(C) is an integration constant (the unknown constant that will be set by our initial condition). Of course, in
principle it may not be possible to evaluate the integral in Equation 16.A.18& but even then the solution is valid. In practice, you’ll
often encounter situations in which a(t) and b(¢) are simple functions or even constants, and the evaluation of the integral is
straightforward. Now that we have our homogeneous solution, we still need a particular one. Sometimes you’re lucky, and you can
easily guess one - for instance one in which z,(¢) doesn’t depend on ¢ at all. In case you’re not lucky, there’s are two other
techniques you may try, either using variation of constants or finding an integrating factor. To demonstrate variation of constants,
we’ll pick a specific example, to not get lost in a bunch of abstract functions. Let a(t) = a be a constant and b(¢) = b¢ be linear.
The homogeneous solution then becomes zy, (t) = A exp[ ] The constant we’re going to vary is our integration constant A,
so our guess for the particular solution will be

z,(t) = A(t) exp [—%Sﬁ] (16.A.19)
We substitute 16.A.19back into the full differential Equation 16.A.14, which gives:
dA bt 1b, dA 16,
a s —aA(t ) +btA(t )] exp{ 5 at ] aEexp[ 5 at ] =f(t) (16.A.20)

A big part of the left-hand side thus cancels, and that’s not a coincidence - that’s because it is based on the homogeneous equation.
What remains is a differential equation in A(t) that can be trivially solved by direct integration:

A(t) = —dt*—/f exp[—ﬁt ]dt (16.A.21)

Again, it may not be possible to evaluate the integral in Equation 16.A.21, but in principle the solution could be inserted in
Equation 16.A.19to give us our particular solution, and the whole differential equation will be solved.

Alternatively, we may try to find an integration factor for Equation 16.A.14. This means that we try to rewrite the left hand side of
the equation as a total derivative, after which we can simply integrate to get the solution. To do so, we first divide the whole
equation by a(t), then look for a function p(¢) that satisfies the condition that
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%[,u(t)w(t)] = u(t)flj_:: +m(t)((11—'l: mod els,u(t)i—f +u(t)%w(t) (16.A.22)

from which we can read off that we need to solve the homogeneous equation

dp  b(t)
— =—u(t 16.A.23
=" (16.A.23)
We can solve 16.A.23by separation of constants, which gives us
b(t
u(t) = exp(/ﬁdt> (16.A.24)
a(t)

where we set the integration constant to one, as it drops out of the equation for z(t) anyway. With this function p(t), we can
rewrite Equation 16.A.14 as

O] =023 (16.4.25)
which we can integrate to find z(t):
2(t) = —— / FOEACE (16.A.26)
p(t) a(t)

A.3.2. SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Second order ordinary differential equations are essential for the study of mechanics, as its central equation, Newton’s second law
of motion (Equation 2.1.4) is of this type. In the case that the equation is also linear, we have some hopes of solving it analytically.
There are several examples of this type of equation in the main text, especially in Section 2.6, where we solve the equation of
motion resulting from Newton’s second law for three special cases, and Section 8.1, where we study a number of variants of the
harmonic oscillator. For the case that the equation is homogeneous and has constant coefficients, we can write down the general
solution?. The equation to be solved is of the form

a—+b—+cz(t)=0 (16.A.27)

For the case that a =0, we retrieve a first-order differential equation, whose solution is an exponential (as can be found by
separation of variables and integration): z(¢) = Cezp(ct/b). In many cases an exponential is also a solution of Equation 16.A.27.
To figure out which exponential, let’s start with the trial function (or ‘Ansatz’) z(t) = ezp(At), where X is an unknown parameter.
Substituting this Ansatz into Equation 16.A .27 yields the characteristic polynomial for this ode:

aX +bA+c=0 (16.A.28)
which almost always has two solutions:
b Vb2-4
Ap = - b 20 (16.A.29)
2a 2a

Note that the solutions can be real or complex. If there are two of them, we can write the general solution® of Equation 16.A.27 as
a linear combination of the Ansatz with the two cases:

z(t) = AeM' + BeM! (16.A.30)

where A and B are set by either initial or boundary conditions. Since the Ay may be complex, so may A and B; it’s their
combination that should give a real number (as (¢) is real), see problem A.3.1a.

In the case that Equation 16.A.29 gives only one solution, the corresponding exponential function is still a solution of Equation
16.A.27, but it is not the most general one, as we only can put a single undetermined constant in front of it. We therefore need a
second, independent solution. To guess one, here’s a third useful trick?: take the derivative of our known solution, e’\t, with respect
to the parameter A. This gives a second Ansatz: te, where A = —b/2a. Substituting this Ansatz into Equation 16.A.27 for the
case that ¢ = b?/2a, we find:
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P’z de b b b\ » b\ x B m
+b—+ ax(t)—a<—a+4a2t>e % +b(1—2at)e % —|—4ate 2 =0 (16.A.31)

so our Ansatz is again a solution. For this special case, the general solution is therefore given by

;z;(t) = A67% +Bt€7§_£ (16A32)

In Section 8.2, where we discuss the damped harmonic oscillator, the special case corresponds to the critically damped oscillator.
We get an underdamped oscillator when the roots of the characteristic polynomial are complex, and an overdamped one when they
are real.

A.3.3. SECOND-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF EULER TYPE

There’s a second class of linear ordinary differential equations that we can solve explicitly: those of Euler (or Cauchy-Euler) type,
where the coefficient in front of a derivative contains the variable to the power of the derivative, i.e., for a second-order differential
equation, we have as the most general form:

d’y . dy

2
ax”"—= +br— +cy(z)=0 16.A.33

Y ba st eyla) (16.4.33)
Note that we are now solving for y(z); we do so because this type of equation typically occurs in the context of position- rather
than time-dependent functions. An example is the Laplace equation (V2y = 0) in polar coordinates. Like for the second order ode
with constant coefficients, the ode of Euler type can be generalized to higher-order equations.

There are (at least) two ways to solve Equation 16.A.33: through an Ansatz, and through a change of variables. For the Ansatz,
note that for any polynomial, the derivative of each term reduces the power by one, and here we’re multiplying each such term with
the variable to the power the number of derivatives®. This suggests we simply try a polynomial, so our Ansatz here will be
y(x) = 2. Substituting in Equation 16.A.33 gives:

az’n(n—1)z" 2 +bznz" 1 +cz" = [an(n —1) +bn+clz" =0 (16.A.34)

so we get another second order polynomial to solve, this time in n:
1
an*+(b-ant+c=0 = nizg——:ﬁ:— (a—b)* —4ac (16.A.35)

If the roots in Equation 16.A .35 are both real (the most common case in physics problems), we have two independent solutions,
and we are done. If the roots are complex, we also have two independent solutions, though they involve complex powers of z; like
for the equation with constant coefficients, we can rewrite these as real functions with Euler’s formula (see problem A.3.1b). For
the case that we have only one root, we again apply our trick to get a second: we try ddL: = 2" In(z), which turns out to be indeed

a solution (problem A.3.1c), and the general solution is again a linear combination of the two solutions found.

Alternatively, we could have solved Equation 16.A.33 by a change of variables. Although this method is occasionally useful (and
so it’s good to be aware of its existence), there is no systematic way of deriving which change of variables will do the trick, so
you’ll have to go by trial-and-error (without a priori guarantee of success). In this case, this process leads to the following
substitution:

z=¢, y@)=y(e)=¢(t) (16.A.36)

where we introduce ¢(t) for convenience. Taking derivatives of y(z) with the chain rule gives

dy dydt 1dp dy 1 (d2¢ d¢)

16.A.37
dez2 dt ( )

dz  dt dz =z dt ' de? 22

which is a second order differential equation with constant coefficients, and thus of the form given in Equation 16.A.27. We
therefore know how to find its solutions, and can use Equation 16.A .36 to transform those solutions back to functions y(z).

A.3.4. Reduction of Order

If you find yourself with a non-homogeneous second order differential equation where the homogeneous equation either has
constant coefficients or is of Euler type, you can again use the technique of variation of constants to find a particular solution. A
similar technique, known as reduction of order, may help you find solutions to a second (or higher) order equation where the
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coefficients are not constant. In order to be able to use this technique, you need to know a solution to the homogeneous equation, so
it is not as universally applicable as the techniques in the previous two sections, but still frequently very helpful.

Let us write the general non-homogeneous second-order linear differential equation as

dy
— +p(t)£

Note that this is the most general form: if there is a coefficient (constant or otherwise) in front of the second derivative, we simply
divide the whole equation by that coefficient and redefine the coefficients to match Equation 16.A.38 Now suppose we have a
solution y; (x) of the homogeneous equation (so for the case that 7(z) = 0 ). As the equation is homogeneous, for any constant v
the function vy; (z) will also be a solution. As an Ansatz for the second solution, we’ll try a variant of variation of constants, and

+q(@)y(z) =r(z) (16.A.38)

take
y2(z) = v(z)y1 (2) (16.A.39)
where v(z) is an arbitrary function. Substituting 16.A .39 back into 16.A.38 we find
d*v dy; dv d*y dy;
2—— — = 16.A.4
n(o) Ty + [P @ ()| T [ ) e @) o) =r@)  (10.040)

We recognize the prefactor of v(x) as exactly the homogeneous equation, which y; (z) satisfies, so this term vanishes. Now

defining w(z) = <%, we are left with a first-order equation for w(z):

d
dz ’
y1(z)— ((11: [2% +p(z )yl(x)} w(z) =r(z) (16.A.41)

Equation 16.A.41 is a first-order linear differential equation, and can be solved by the techniques from Section A.3.1. Integrating

the equation w(z) = % then gives us v(z), and hence the second solution 16.A.39 of the (inhomogeneous) second order

differential equation.

A.3.5. POWER SERIES SolutionS

If none of the techniques in the sections above apply to your differential equation, there’s one last Ansatz you can try: a power
series expansion of your solution. To illustrate, we’ll again pick a concrete example: Legendre’s differential equation, given by

%{(1—41”2) %] +n(n+1)y($):(1_$);1?—213:—4'71(’”4-1) () =0 (16.A.42)

where n is an integer. As an Ansatz for the solution, we’ll try a power series expansion of y(z):
o0
z) =Y aat (16.A.43)
k=0

Our task is now to find numbers aj (many of which may be zero) such that 16.A.43is a solution of 16.A.42. Fortunately, we can
simply substitute our trial solution and re-arrange to get

0 =(1- ?) — <Z arx ) f2mi (Z akmk) +n(n+1)2akxk (16.A.44)
d dz \ = =1
( k(k—1)apz” ) —2z (Z kakxk1> +n(n+1)2akxk (16.A.45)
k=0 =1

_ f: bk~ 1) — 2k +n(n+1))ape” +k(k— Dagae* 2] (16.4.46)
k=0
= i [(—k(k+1) +n(n+1))ax + (k+2)(k+1)as] (16.A.47)

T
o

where in the last line, we ‘shifted” the index of the last term®. We do so in order to get at an expression for the coefficient of 2 for
any value of k. As the functions ¥ are linearly independent” (i.e., you can’t write z* as a linear combination of other functions =™
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where m # k), the coefficient of each of the powers in the sum in Equation 16.A.47 has to vanish for the sum to be identically
zero. This gives us a recurrence relation between the coefficients ay:
k(k+1)—n(n+1)

Ap4+2 = (k—|—2)(k—|—]_) ag (16A48)

Given the values of ag and a; (the two degrees of freedom that our second-order differential equation allows us), we can
repeatedly apply Equation 16.A.48to get all coefficients. Note that for k =n the coefficient equals zero. Therefore, if for an even
value of n, we set a; =0, and for an odd value of n, we set ag = 0, we get a finite number of nonzero coefficients. The resulting
solutions are polynomials, characterized by the number n; in this case, they’re known as the Legendre polynomials, typically
denoted P, (x), and normalized (by setting the value of the remaining free coefficient) such that P, (1) = 1. Table A.1 lists the first
five, which are also plotted in Figure 16.A.4a.

Legendre polynomials have many other interesting properties (many of which can be found in either math textbooks or on their
Wikipedia page). They occur frequently in physics, for example in solving problems involving Newtonian gravity or Laplace’s
equation from electrostatics.

If we replace the n(n+1) factor in the Legendre differential equation with an arbitrary number A, the series solution remains a
solution, but it no longer terminates®. There are many other differential equations that lead to both infinite series and polynomial
solutions. A well-known example is the Bessel differential equation:

d’y dy

2 2 _ 2
r*—+tz—+(z°—n z)=0 16.A.49

o7 0 T (@) y() ( )
The solutions to this equation are known as the Bessel functions of the first and second kind (see Problem A.3.3, where you’ll
prove that for these functions the series never terminates). These functions generalize the sine and cosine function and occur in the
vibrations of two-dimensional surfaces. Other examples include the Hermite and Laguerre polynomials, which feature in quantum
mechanics, and Airy functions, which you can encounter when studying optics.

Table A.1: : The first five (and zeroth, for good measure) Legendre polynomials, the solutions of Equation 16.A .42 for the given value of n and
the appropriate choice of ay and a; .

n P (z)

0 1

1 X

2 $(3z—-1)

3 - (52% — 32)

4 + (352" — 3022 + 3)
5 < (632° — 702° + 15z)
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Figure 16.A.4: Solutions to the Legendre and Bessel differential equations. (a) The first five Legendre polynomials (Table A.1).
Note that the polynomials with even n are all even, and those with odd n are all odd. (b-c) The first five Bessel functions of the first
(b) and second (c) kind.

A.3.6. Problems
A3.1

a. Suppose we have a solution of Equation 16.A .27 where the roots Ay of the characteristic polynomial (Equation 16.A.29) are
complex, so A = o+ . Rewrite the general solution 16.A.30in real functions with real coefficients C and D, and express C
and D in terms of A and B. Hint: use Euler’s formula e = cos(x) + 1 sin(z).

b. Suppose we have a solution of Equation 16.A.35 where the roots n.. are complex, so n. = a +i8. To get a solution of
Equation 16.A.33 without complex numbers, we make the substitution = et so

g = gotih — got it (16.A.50)

Use Euler’s formula again to rewrite the complex exponential in terms of sines and cosines, and make the back-substitution to x
to show that the general solution of Equation 16.A .33 in this case is given by

y(x) = z*[Acos(fIn(x)) +sin(FIn(x))] (16.A.51)
¢. Suppose we have a solution of Equation 16.A .35 for which there is only a single root n. Show that the derivative of ™ with
respect to n is in this case also a solution of Equation 16.A .33, and that the general solution is given by
y(z) =z"[A+ Bln(z)] (16.A.52)
A.3.2 Use the method of reduction of order to obtain a second solution of Equation 16.A.27 for the case that the characteristic
polynomial (Equation 16.A.29) has only a single root.
A.3.3
a. Use the power series technique to find a solution to Bessel’s differential Equation 16.A.49, Why doesn’t the series terminate in

this case? Why do you only get one family of solutions? We’ll call these solutions ‘Bessel functions of the first kind” and label
them as J,, (z) (see Figure 16.A.4b).

b. Use the method of reduction of order to find a second family of solutions to the Bessel differential equation, known as ‘Bessel
functions of the second kind” (Y;, (), see Figure 16.A.4c).

This page titled 16.A: Math is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU Delft
Open) via source content that was edited to the style and standards of the LibreTexts platform.
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16.B: Some Equations and Constants

Physical Constants
Table B.1: Physical constants

Name Symbol Value
Speed of light c 3.00-10%m/s
Elementary charge e 1.60-107°C
Electron mass me 9.11-1031 kg = 0.511MeV /c?
Proton mass m, 1.67-1072"kg = 938 MeV /c?
Gravitational constant G 6.67-1071 N -m?/kg?
Gravitational acceleration g 9.81m/ s
Boltzmann's Constant kp 1.38-10°BJ/K

h 6.63-107%4J s

Planck's Constant
ancies Lonstan h=h/2n 1.05-1073 7.5

Moments of Inertia
Table B.2: Moments of inertia, all about axes of symmetry through the center of mass.

Object Moment of Inertia
Thin stick (length L) LML

Ring of hollow cylinder (radius R) MR?

Disk or solid cylinder (radius R) %M R?

Hollow sphere (radius R) %M R?

Solid sphere (radius R) %M R?

Rectangle (size a x b), perpendicular axis 11—2M (a® +b7)
Rectangle (size a x b), axis parallel to side b 11—2M a’

Solar System Objects
Table B.3: Characteristics of the Sun, Earth and Moon.

Sun Earth Moon
Mass (kg) 1.99 -10% 5.97-10% 7.35-10%2
Mean radius (m) 6.96 - 10° 6.37-10° 1.74-10°
Orbital period (5 6-10% 3.16-107 2.36-10°

(200 My) (365.25 days) (27.3 days)
Mean orbital radius (m) 2.6-10% 1.50-10" 3.85-10°
Mean density (kg/m?) 1.4-10° 5.5-10° 3.3-10°

Table B.4: Properties of a number of solar system objects. Equatorial radii and masses are compared to those of Earth (see Table B.3). Orbital
properties are around primary (the sun for (dwarf) planets, the planet for moons). Orbital radii and periods for planets again compared to
Earth, for moons in kilograms and days. Rotation period for all objects in days. Inclination and axial tilt in degrees. Data from NASA
planetary fact sheets [31].

Equatorial Mean orbit Orbital L Orbltal’ . Rotation Confirmed L
Name Symbol . Mass . . Inclination eccentricit . Axial tilt
radius radius period period moons
y
Mercury E.? 0.382 0.06 0.39 0.24 3.38 0.206 58.64 0 0.04
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Name

Venus

Earth
Moon

Mars
Ceres
Jupiter
Io
Europa

Ganymede

Callisto
Saturn
Titan
Uranus
Oberon
Neptune
Triton
Pluto
Charon

Haumea

Makemak
e

Eris

Equations

Symbol

Equatorial
radius

0.949

1

0.272

0.532
0.0742
11.209

0.285
0.246
0.423

0.378
9.449
0.404
4.007
0.119
3.883
0.212
0.186
0.095
0.13

0.11

0.18

B.4.1 Vector Derivatives

Gradient:

Divergence:

Curl:

Vf('l‘) :Vf(m,y,z) =

Mass

0.82

0.0123

0.107

0.00016

317.8

0.015
0.008
0.025

0.018

95.2

0.023

14.6

0.00051

17.2

0.00358

0.0022

0.00025

0.0007

unknown

0.0028

V-v=(0;,08,0.)-

Mean orbit
radius

0.72

1

384399

1.52

2.766

5.2

421600
670900
1070400

1882700

9.54

1221870

19.22

583519

30.06

354759

39.482

17536

43.335

45.792

67.668

Orbital
period

0.62

1
27.32158

1.88
4.599
11.86
1.769
3.551
7.155
16.689
29.46
15.945
84.01
13.46
164.8
5.877
247.9
6.387
285.4

309.9

557

O f
0y f
0.f

Vg
Uy

2

Orbital

Inclination eccentricit Rot.ation

period
y

3.86 0.007 -243.02

7.25 0.017 1

;gég 0.0549 27.32158

5.65 0.093 1.03

10.59 0.08 0.3781

6.09 0.048 0.41

0.04 0.0041 1.769

0.47 0.009 3.551

1.85 0.0013 7.155

0.2 0.0074 16.689

5.51 0.054 0.43

0.33 0.0288 15.945

6.48 0.047 -0.72

0.1 0.0014 13.46

6.43 0.009 0.67

157 0.00002 5.877

17.14 0.25 6.39

0.001 0.0022 6.387

28.19 0.19 0.167

28.96 0.16 unknown

44.19 0.44 unknown

of .. oOf. Of.
(8_£$ + 8_£y + a—]zcz)
v, Ovy O,
= g + a_y + E
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Confirmed
moons

62

27

14

Axial tilt
177.36
23.44
6.68

25.19

3.13

26.73

97.77

28.32

0
119.59

unknown

unknown
unknown

unknown
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A, 9,A, — 8.4,
VxA=(0;,0y,0.)x | 4y | =| 0:4: -0, A, (16.B.3)
Az axAy _ayAac

B.4.2 Special Relativity

Lorentz transformations for the coordinates of a frame S' that moves with a speed u in the positive x-direction of frame S:

' =~(u) (:c - %ct) (16.B.4)
ct' =7(u) (ct — %x) (16.B.5)
1
u) = —— 16.B.6
) =~ (16.B.6)
Velocity addition in a relativistic system:
u+vh 1 vy

(longitudinal) , v, = (transversal) (16.B.7)

Ve = 1+uvy/c?

This page titled 16.B: Some Equations and Constants is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.
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Image, Data and Problem Credits

Images

1. Close-up of the Prague astronomical clock by Fabrizio Verrecchia, from Unsplash, public domain.
2. Portrait of Isaac Newton by Godfrey Kneller, painted in 1689. Picture is a faithful reproduction of a two dimensional public
domain work, retrieved from Wikimedia commons.
3. Drawing by Robert Hooke of the cell structure of cork from two different angles, as published in his 1665 book Micrographia.
Picture is a faithful reproduction of a two dimensional public domain work,retrieved from Wikimedia commons.
4. Portrait of Galileo Galilei by Justus Sustermans, painted in 1636, currently located at the National Maritime Museum in
London, UK. Picture is a faithful reproduction of a two dimensional public domain work, retrieved from Wikimedia commons.
5. Portrait of Charles de Coulomb. Picture is a faithful reproduction of a two dimensional public domain work, retrieved from
Wikimedia commons.
. Images by Michael Maggs, Wikimedia commons, falling ball and Wikimedia commons, bouncing ball, CC BY-SA 3.0.
. Image by Amber Turner, Unsplash, public domain.
. Image by GSenkow, Wikimedia commons, CC BY-SA 3.0.
. Image cropped from fruit stand image by Redd Angelo, Unsplash, public domain.
10. Image by Malene Thyssen, Wikimedia commons, CC BY-SA 3.0.
11. Image of Allyson Felix at the 2012 Summer Olympics by Citizen59, Wikimedia commons, CC BY-SA 3.0.
12. Tmage of Robert Garrett throwing the discus at the 1896 Summer Olympics; picture by Albert Meyer, shared by the Bulgarian
Archives State Agency (file BASA-3K-7-422-22) through Wikimedia commons, public domain.
13. Photograph of Emmy Noether, unknown date and photographer, obtained from Wikimedia commons, public domain.
14. Photograph of Konstantin Eduardovich Tsiolkovsky, unknown date and photographer, obtained from Wikimedia commons,
public domain.
15. Images from NASA, public domain.
16. Image by Securiger, Wikimedia commons, CC BY-SA 3.0.
17. Image by Jayess, Wikimedia commons, public domain.
18. Image by Markmcgee, Wikimedia commons, public domain.
19. Image by Arnaud 25, Wikimedia commons, public domain.
20. Image from NASA’s Aqua/MODIS satellite, retreived from Wikimedia commons, public domain.
21. Portrait of Johannes Kepler by an unknown artist, 1610. Picture is a faithful reproduction of a two dimensional public domain
work, retrieved from Wikimedia commons.
22. Portrait of Leonhard Euler by Jakob Emanuel Handmann, 1753. Picture is a faithful reproduction of a two dimensional public
domain work (now in the Kunstmuseum Basel), retrieved from Wikimedia commons.
23. Portrait of Christiaan Huygens by Caspar Netscher, painted in 1671, currently located at museum Boerhave in Leiden, The
Netherlands. Picture is a faithful reproduction of a two dimensional public domain work, retrieved from Wikimedia commons.
24. Photograph of Christian Doppler, unknown date and photographer, obtained from Wikimedia commons, public domain.
25. Mach’s 1888 photograph of the shockwaves created by a supersonic brass bullet. This photo was taken in Prague, using
Schlieren Photography on a 5 mm-diameter negative. Obtained from Wikimedia commons, public domain.
26. Photograph of Ernst Mach from the Zeitschrift fiir Physikalische Chemie, Band 40, 1902, obtained from Wikimedia commons,
public domain.
27. Official 1921 Nobel prize photograph of Albert Einstein, obtained from Nobelprize.org, public domain.
28. Photograph of Lorentz from the collection of Museum Boerhaave, Leiden, The Netherlands, obtained from Wikimedia
commons, public domain.
29. Photograph of Minkowski from the book Raum und Zeit (Jahresberichte der Deutschen Mathematiker Vereinigung, Leipzig,
1909), obtained from Wikimedia commons, public domain.
30. Screen shots from buienradar.nl, taken on October 28, 2013.
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Data
31. Data from NASA planetary fact sheets at https://nssdc.gsfc.nasa.gov/planetary/planetfact.html.
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Problems

32. Problem inspired by problem 4-s1 from ‘Problems in introductory physics’ by Crowell and Shotwell, available on Light and
matter, CC BY-SA 3.0.

https://phys.libretexts.org/@go/page/17468
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Glossary

absolute pressure | sum of gauge pressure and
atmospheric pressure [OpenStax]

acceleration due to gravity | acceleration of an
object as a result of gravity [OpenStax]

acceleration vector | instantaneous acceleration
found by taking the derivative of the velocity function
with respect to time in unit vector notation [OpenStax]

accuracy | the degree to which a measured value
agrees with an accepted reference value for that
measurement [OpenStax]

Achimedes' principle | buoyant force on an object
equals the weight of the fluid it displaces [OpenStax]

action-at-a-distance force | type of force exerted
without physical contact [OpenStax]

amplitude (A) | maximum displacement from the
equilibrium position of an object oscillating around the
equilibrium position [OpenStax]

angular acceleration | time rate of change of
angular velocity [OpenStax]

angular frequency | o, rate of change of an angle
with which an object that is moving on a circular path
[OpenStax]

angular momentum | rotational analog of linear
momentum, found by taking the product of moment of
inertia and angular velocity [OpenStax]

angular position | angle a body has rotated through
in a fixed coordinate system [OpenStax]

angular velocity | time rate of change of angular
position [OpenStax]

anticommutative property | change in the order
of operation introduces the minus sign [OpenStax]

antinode | location of maximum amplitude in
standing waves [OpenStax]

antiparallel vectors | two vectors with directions
that differ by 180° [OpenStax]

aphelion | farthest point from the Sun of an orbiting
body; the corresponding term for the Moon’s farthest
point from Earth is the apogee [OpenStax]

apparent weight | reading of the weight of an
object on a scale that does not account for acceleration
[OpenStax]

associative | terms can be grouped in any fashion
[OpenStax]

average acceleration | the rate of change in
velocity; the change in velocity over time [OpenStax]

average power | work done in a time interval
divided by the time interval [OpenStax]

average speed | the total distance traveled divided
by elapsed time [OpenStax]

average velocity | the displacement divided by the
time over which displacement occurs [OpenStax]

banked curve | curve in a road that is sloping in a
manner that helps a vehicle negotiate the curve
[OpenStax]

base quantity | physical quantity chosen by
convention and practical considerations such that all
other physical quantities can be expressed as algebraic
combinations of them [OpenStax]

base unit | standard for expressing the measurement
of a base quantity within a particular system of units;
defined by a particular procedure used to measure the
corresponding base quantity [OpenStax]

beat frequency | frequency of beats produced by
sound waves that differ in frequency [OpenStax]

beats | constructive and destructive interference of
two or more frequencies of sound [OpenStax]

Bernoulli's equation | equation resulting from
applying conservation of energy to an incompressible
frictionless fluid:

1
p+ Epv2 + pgh = constant,

throughout the fluid [OpenStax]

Bernoulli's principle | Bernoulli's

applied at constant depth:

equation

1 5_ 2
P1+ 5PVI =Pyt 5PV)

[OpenStax]

black hole | mass that becomes so dense, that it
collapses in on itself, creating a singularity at the
center surround by an event horizon [OpenStax]

bow wake | v-shaped disturbance created when the
wave source moves faster than the wave propagation
speed [OpenStax]

breaking stress (ultimate stress) | value of
stress at the fracture point [OpenStax]

bulk modulus | elastic modulus for the bulk stress
[OpenStax]

bulk strain (or volume strain) | strain under the
bulk stress, given as fractional change in volume
[OpenStax]

bulk stress (or volume stress) | stress caused by
compressive forces, in all directions [OpenStax]

buoyant force | net upward force on any object in
any fluid due to the pressure difference at different
depths [OpenStax]

center of gravity | point where the weight vector is
attached [OpenStax]

center of mass | weighted average position of the
mass [OpenStax]

centripetal acceleration | component of
acceleration of an object moving in a circle that is
directed radially inward toward the center of the circle
[OpenStax]

centripetal force | any net force causing uniform
circular motion [OpenStax]

closed system | system for which the mass is
constant and the net external force on the system is
zero [OpenStax]

commutative | operations can be performed in any
order [OpenStax]

component form of a vector | a vector written as
the vector sum of its components in terms of unit
vectors [OpenStax]

compressibility | reciprocal of the bulk modulus
[OpenStax]

compressive strain | strain that occurs when forces
are contracting an object, causing its shortening
[OpenStax]

compressive stress | stress caused by compressive
forces, only in one direction [OpenStax]

conservative force | force that does work
independent of path [OpenStax]

conserved quantity | one that cannot be created or
destroyed, but may be transformed between different
forms of itself [OpenStax]

constructive interference | when two waves
arrive at the same point exactly in phase; that is, the
crests of the two waves are precisely aligned, as are the
troughs [OpenStax]

conversion factor | a ratio that expresses how
many of one unit are equal to another unit [OpenStax]

Coriolis force | inertial force causing the apparent
deflection of moving objects when viewed in a rotating
frame of reference [OpenStax]

corkscrew right-hand rule | a rule used to
determine the direction of the vector product
[OpenStax]

critically damped | condition in which the
damping of an oscillator causes it to return as quickly
as possible to its equilibrium position without

oscillating back and forth about this position
[OpenStax]
cross product | the result of the vector

multiplication of vectors is a vector called a cross
product; also called a vector product [OpenStax]

density | mass per unit volume of a substance or
object [OpenStax]

derived quantity | physical quantity defined using
algebraic combinations of base quantities [OpenStax]

derived units | units that can be calculated using
algebraic combinations of the fundamental units
[OpenStax]

destructive interference | when two identical
waves arrive at the same point exactly out of phase;
that is, precisely aligned crest to trough [OpenStax]

difference of two vectors | vector sum of the first
vector with the vector antiparallel to the second
[OpenStax]

dimension | expression of the dependence of a
physical quantity on the base quantities as a product of
powers of symbols representing the base quantities; in
general, the dimension of a quantity has the form
LOMPT19@°N 79 for some powers a, b, ¢, d, e, f, and g
[OpenStax]

dimensionally consistent | equation in which
every term has the same dimensions and the arguments
of any mathematical functions appearing in the
equation are dimensionless [OpenStax]

dimensionless | quantity with a dimension of
LOMOTO199eN0j0=  1; also called quantity of
dimension 1 or a pure number [OpenStax]

direction angle | in a plane, an angle between the
positive direction of the x-axis and the vector,
measured counterclockwise from the axis to the vector
[OpenStax]

discrepancy | the difference between the measured
value and a given standard or expected value
[OpenStax]

displacement | the change in position of an object
[OpenStax]

displacement | change in position [OpenStax]

displacement vector | vector from the initial
position to a final position on a trajectory of a particle
[OpenStax]

distance traveled | the total length of the path
traveled between two positions [OpenStax]

distributive | multiplication can be distributed over
terms in summation [OpenStax]
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Doppler effect | alteration in the observed
frequency of a sound due to motion of either the
source or the observer [OpenStax]

Doppler shift | actual change in frequency due to
relative motion of source and observer [OpenStax]

dot product | the result of the scalar multiplication
of two vectors is a scalar called a dot product; also
called a scalar product [OpenStax]

drag force | force that always opposes the motion of
an object in a fluid; unlike simple friction, the drag
force is proportional to some function of the velocity
of the object in that fluid [OpenStax]

dynamics | study of how forces affect the motion of
objects and systems [OpenStax]

elapsed time | the difference between the ending
time and the beginning time [OpenStax]

elastic | object that comes back to its original size
and shape when the load is no longer present
[OpenStax]

elastic | collision that conserves kinetic energy
[OpenStax]

elastic limit | stress value beyond which material no
longer behaves elastically and becomes permanently
deformed [OpenStax]

elastic modulus | proportionality constant in linear
relation between stress and strain, in SI pascals
[OpenStax]

elastic potential energy | potential energy stored
as a result of deformation of an elastic object, such as
the stretching of a spring [OpenStax]

energy conservation | total energy of an isolated
system is constant [OpenStax]

English units | system of measurement used in the
United States; includes units of measure such as feet,
gallons, and pounds [OpenStax]

equal vectors | two vectors are equal if and only if
all their corresponding components are equal;
alternately, two parallel vectors of equal magnitudes
[OpenStax]

equilibrium | body is in equilibrium when its linear
and angular accelerations are both zero relative to an
inertial frame of reference [OpenStax]

equilibrium peint | position where the assumed
conservative, net force on a particle, given by the slope
of its potential energy curve, is zero [OpenStax]

equilibrium position | position where the spring is
neither stretched nor compressed [OpenStax]

escape velocity | initial velocity an object needs to
escape the gravitational pull of another; it is more
accurately defined as the velocity of an object with
zero total mechanical energy [OpenStax]

estimation | using prior experience and sound
physical reasoning to arrive at a rough idea of a
quantity’s value; sometimes called an “order-of-
magnitude approximation,” a “guesstimate,” a “back-
of-the-envelope calculation”, or a “Fermi calculation”
[OpenStax]

event horizon | location of the Schwarzschild
radius and is the location near a black hole from within
which no object, even light, can escape [OpenStax]

exact differential | is the total differential of a
function and requires the use of partial derivatives if
the function involves more than one dimension
[OpenStax]

explosion | single object breaks up into multiple
objects; kinetic energy is not conserved in explosions
[OpenStax]

external force | force applied to an extended object
that changes the momentum of the extended object as a
whole [OpenStax]

external force | force acting on an object or system
that originates outside of the object or system
[OpenStax]

first equilibrium condition | expresses
translational equilibrium; all external forces acting on
the body balance out and their vector sum is zero
[OpenStax]

fixed boundary condition | when the medium at
a boundary is fixed in place so it cannot move
[OpenStax]

flow rate | abbreviated Q, it is the volume V that
dv
flows past a particular point during a time t, or Q = =

[OpenStax]

fluids | liquids and gases; a fluid is a state of matter
that yields to shearing forces [OpenStax]

force | push or pull on an object with a specific
magnitude and direction; can be represented by vectors
or expressed as a multiple of a standard force
[OpenStax]

force constant (k) | characteristic of a spring
which is defined as the ratio of the force applied to the
spring to the displacement caused by the force
[OpenStax]

free boundary condition | exists when the
medium at the boundary is free to move [OpenStax]

free fall | situation in which the only force acting on
an object is gravity [OpenStax]

free fall | the state of movement that results from
gravitational force only [OpenStax]

free-body diagram | sketch showing all external
forces acting on an object or system; the system is
represented by a single isolated point, and the forces
are represented by vectors extending outward from that
point [OpenStax]

frequency (f) | number of events per unit of time
[OpenStax]

friction | force that opposes relative motion or
attempts at motion between systems in contact
[OpenStax]

fundamental | the lowest-frequency resonance
[OpenStax]

fundamental frequency | lowest frequency that
will produce a standing wave [OpenStax]

gauge pressure | pressure relative to atmospheric
pressure [OpenStax]

gravitational field | vector field that surrounds the
mass creating the field; the field is represented by field
lines, in which the direction of the field is tangent to
the lines, and the magnitude (or field strength) is
inversely proportional to the spacing of the lines; other
masses respond to this field [OpenStax]

gravitational torque | torque on the body caused
by its weight; it occurs when the center of gravity of
the body is not located on the axis of rotation
[OpenStax]

gravitationally bound | two object are
gravitationally bound if their orbits are closed;
gravitationally bound systems have a negative total
mechanical energy [OpenStax]

harmonics | the term used to refer collectively to the
fundamental and its overtones [OpenStax]

hearing | perception of sound [OpenStax]

Hooke's law | in a spring, a restoring force
proportional to and in the opposite direction of the
imposed displacement [OpenStax]

hydraulic jack | simple machine that uses cylinders
of different diameters to distribute force [OpenStax]

hydrostatic equilibrium | state at which water is
not flowing, or is static [OpenStax]

ideal banking | sloping of a curve in a road, where
the angle of the slope allows the vehicle to negotiate
the curve at a certain speed without the aid of friction
between the tires and the road; the net external force
on the vehicle equals the horizontal centripetal force in
the absence of friction [OpenStax]

ideal fluid |
[OpenStax]

fluid with negligible viscosity

impulse | effect of applying a force on a system for a
time interval; this time interval is usually small, but
does not have to be [OpenStax]

impulse-momentum theorem | change of
momentum of a system is equal to the impulse applied
to the system [OpenStax]

inelastic | collision that does not conserve kinetic
energy [OpenStax]

inertia | ability of an object to resist changes in its
motion [OpenStax]

inertial force | force that has no physical origin
[OpenStax]

inertial reference frame | reference frame
moving at constant velocity relative to an inertial
frame is also inertial; a reference frame accelerating
relative to an inertial frame is not inertial [OpenStax]

instantaneous acceleration | acceleration at a
specific point in time [OpenStax]

instantaneous angular acceleration |
derivative of angular velocity with respect to time
[OpenStax]

instantaneous angular velocity | derivative of
angular position with respect to time [OpenStax]

instantaneous speed | the absolute value of the
instantaneous velocity [OpenStax]

instantaneous velocity | the velocity at a specific
instant or time point [OpenStax]

intensity (I) | power per unit area [OpenStax]

interference | overlap of two or more waves at the
same point and time [OpenStax]

internal force | force that the simple particles that
make up an extended object exert on each other.
Internal forces can be attractive or repulsive
[OpenStax]

Kepler’s first law | law stating that every planet
moves along an ellipse, with the Sun located at a focus
of the ellipse [OpenStax]

Kepler’s second law | law stating that a planet
sweeps out equal areas in equal times, meaning it has a
constant areal velocity [OpenStax]

Kepler’s third law | law stating that the square of
the period is proportional to the cube of the semi-major
axis of the orbit [OpenStax]

kilogram | SI unit for mass, abbreviated kg
[OpenStax]

kinematics | the description of motion through
properties such as position, time, velocity, and
acceleration [OpenStax]

kinematics of rotational motion | describes the
relationships among rotation angle, angular velocity,
angular acceleration, and time [OpenStax]
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kinetic energy | energy of motion, one-half an
object’s mass times the square of its speed [OpenStax]

kinetic friction | force that opposes the motion of
two systems that are in contact and moving relative to
each other [OpenStax]

laminar flow | type of fluid flow in which layers do
not mix [OpenStax]

law | description, using concise language or a
mathematical formula, of a generalized pattern in
nature supported by scientific evidence and repeated
experiments [OpenStax]

law of conservation of angular momentum |
angular momentum is conserved, that is, the initial
angular momentum is equal to the final angular
momentum when no external torque is applied to the
system [OpenStax]

Law of Conservation of Momentum | total
momentum of a closed system cannot change
[OpenStax]

law of inertia | see Newton’s first law of motion
[OpenStax]

lever arm | perpendicular distance from the line that
the force vector lies on to a given axis [OpenStax]

linear mass density | the mass per unit length A of
a one dimensional object [OpenStax]

linear mass density | A, expressed as the number
of kilograms of material per meter [OpenStax]

linear wave equation | equation describing waves
that result from a linear restoring force of the medium;
any function that is a solution to the wave equation
describes a wave moving in the positive x-direction or
the negative x-direction with a constant wave speed v
[OpenStax]

linearity limit (proportionality limit) | largest
stress value beyond which stress is no longer
proportional to strain [OpenStax]

longitudinal wave | wave in which the disturbance
is parallel to the direction of propagation [OpenStax]

loudness | perception of sound intensity [OpenStax]
magnitude | length of a vector [OpenStax]

mechanical energy | sum of the kinetic and
potential energies [OpenStax]

mechanical wave | wave that is governed by
Newton’s laws and requires a medium [OpenStax]

meter | SI unit for length, abbreviated m [OpenStax]

method of adding percents | the percent
uncertainty in a quantity calculated by multiplication
or division is the sum of the percent uncertainties in
the items used to make the calculation [OpenStax]

metric system | system in which values can be
calculated in factors of 10 [OpenStax]

model | representation of something often too
difficult (or impossible) to display directly [OpenStax]

moment of inertia | rotational mass of rigid bodies
that relates to how easy or hard it will be to change the
angular velocity of the rotating rigid body [OpenStax]

momentum | measure of the quantity of motion that
an object has; it takes into account both how fast the
object is moving, and its mass; specifically, it is the
product of mass and velocity; it is a vector quantity
[OpenStax]

natural angular frequency | angular frequency
of a system oscillating in SHM [OpenStax]

neap tide | low tide created when the Moon and the
Sun form a right triangle with Earth [OpenStax]

net external force | vector sum of all external
forces acting on an object or system; causes a mass to
accelerate [OpenStax]

net work | work done by all the forces acting on an
object [OpenStax]

neutron star | most compact object known—
outside of a black hole itself [OpenStax]

newton | SI unit of force; 1 N is the force needed to
accelerate an object with a mass of 1 kg at a rate of 1
m/s2 [OpenStax]

Newton’s first law of motion | body at rest
remains at rest or, if in motion, remains in motion at
constant velocity unless acted on by a net external
force; also known as the law of inertia [OpenStax]

Newton’s law of gravitation | every mass
attracts every other mass with a force proportional to
the product of their masses, inversely proportional to
the square of the distance between them, and with
direction along the line connecting the center of mass
of each [OpenStax]

Newton’s second law for rotation | sum of the
torques on a rotating system equals its moment of
inertia times its angular acceleration [OpenStax]

Newton’s second law of motion | acceleration
of a system is directly proportional to and in the same
direction as the net external force acting on the system
and is inversely proportional to its mass [OpenStax]

Newton’s third law of motion | whenever one
body exerts a force on a second body, the first body
experiences a force that is equal in magnitude and
opposite in direction to the force that it exerts
[OpenStax]

node | point where the string does not move; more
generally, nodes are where the wave disturbance is
zero in a standing wave [OpenStax]

non-conservative force | force that does work
that depends on path [OpenStax]

non-Euclidean geometry | geometry of curved
space, describing the relationships among angles and
lines on the surface of a sphere, hyperboloid, etc.
[OpenStax]

non-renewable | energy source that is not
renewable, but is depleted by human consumption
[OpenStax]

noninertial frame of reference | accelerated
frame of reference [OpenStax]

normal force | force supporting the weight of an
object, or a load, that is perpendicular to the surface of
contact between the load and its support; the surface
applies this force to an object to support the weight of
the object [OpenStax]

normal mode | possible standing wave pattern for a
standing wave on a string [OpenStax]

normal pressure | pressure of one atmosphere,
serves as a reference level for pressure [OpenStax]

notes | basic unit of music with specific names,
combined to generate tunes [OpenStax]

null vector | a vector with all its components equal
to zero [OpenStax]

orbital period | time required for a satellite to
complete one orbit [OpenStax]

orbital speed | speed of a satellite in a circular
orbit; it can be also be used for the instantaneous speed
for noncircular orbits in which the speed is not
constant [OpenStax]

order of magnitude | the size of a quantity as it
relates to a power of 10 [OpenStax]

orthogonal vectors | two vectors with directions
that differ by exactly 90°, synonymous with
perpendicular vectors [OpenStax]

oscillation | single fluctuation of a quantity, or
repeated and regular fluctuations of a quantity,
between two extreme values around an equilibrium or
average value [OpenStax]

overdamped | condition in which damping of an
oscillator causes it to return to equilibrium without
oscillating; oscillator moves more slowly toward
equilibrium than in the critically damped system
[OpenStax]

overtone | frequency that produces standing waves
and is higher than the fundamental frequency
[OpenStax]

overtones | all resonant frequencies higher than the
fundamental [OpenStax]

parallel axis | axis of rotation that is parallel to an
axis about which the moment of inertia of an object is
known [OpenStax]

parallel vectors | two vectors with exactly the
same direction angles [OpenStax]

parallel-axis theorem | if the moment of inertia is
known for a given axis, it can be found for any axis
parallel to it [OpenStax]

parallelogram rule | geometric construction of the
vector sum in a plane [OpenStax]

pascal (Pa) | SI unit of stress, SI unit of pressure
[OpenStax]

Pascal's principle | change in pressure applied to
an enclosed fluid is transmitted undiminished to all
portions of the fluid and to the walls of its container
[OpenStax]

percent uncertainty | the ratio of the uncertainty
of a measurement to the measured value, expressed as
a percentage [OpenStax]

perfectly inelastic | collision after which all
objects are motionless, the final kinetic energy is zero,
and the loss of kinetic energy is a maximum
[OpenStax]

perihelion | point of closest approach to the Sun of
an orbiting body; the corresponding term for the
Moon’s closest approach to Earth is the perigee
[OpenStax]

period (T) | time taken to complete one oscillation
[OpenStax]

periodic motion | motion that repeats itself at
regular time intervals [OpenStax]

phase shift | angle, in radians, that is used in a
cosine or sine function to shift the function left or
right, used to match up the function with the initial
conditions of data [OpenStax]

phon | numerical unit of loudness [OpenStax]

physical pendulum | any extended object that
swings like a pendulum [OpenStax]

physical quantity | characteristic or property of an
object that can be measured or calculated from other
measurements [OpenStax]

physics | science concerned with describing the
interactions of energy, matter, space, and time;
especially interested in what fundamental mechanisms
underlie every phenomenon [OpenStax|

pitch | perception of the frequency of a sound
[OpenStax]

plastic behavior | material deforms irreversibly,
does not go back to its original shape and size when
load is removed and stress vanishes [OpenStax]
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Poiseuille’'s law | rate of laminar flow of an
incompressible fluid in a tube:

(y ~ppmrt
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[OpenStax]

Poiseuille’s law for resistance | resistance to
laminar flow of an incompressible fluid in a tube:
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[OpenStax]

polar coordinate system | an orthogonal
coordinate system where location in a plane is given
by polar coordinates [OpenStax]

polar coordinates | a radial coordinate and an
angle [OpenStax]

position | the location of an object at a particular
time [OpenStax]

Pposition vector | vector from the origin of a chosen
coordinate system to the position of a particle in two-
or threedimensional space [OpenStax]

potential energy | function of position, energy
possessed by an object relative to the system
considered [OpenStax]

potential energy diagram | graph of a particle’s
potential energy as a function of position [OpenStax]

potential energy difference | negative of the
work done acting between two points in space
[OpenStax]

power | (or instantaneous power) rate of doing work
[OpenStax]

precession | circular motion of the pole of the axis
of a spinning object around another axis due to a
torque [OpenStax]

precision | the degree to which repeated
measurements agree with each other [OpenStax]

pressure | force per unit area exerted perpendicular
to the area over which the force acts [OpenStax]

pressure | force pressing in normal direction on a
surface per the surface area, the bulk stress in fluids
[OpenStax]

principle of equivalence | part of the general
theory of relativity, it states that there no difference
between free fall and being weightless, or a uniform
gravitational field and wuniform acceleration
[OpenStax]

projectile motion | motion of an object subject
only to the acceleration of gravity [OpenStax]

pulse | single disturbance that moves through a
medium, transferring energy but not mass [OpenStax]

radical coordinate | distance to the origin in a
polar coordinate system [OpenStax]

range | maximum horizontal distance a projectile
travels [OpenStax]

reference frame | coordinate system in which the
position, velocity, and acceleration of an object at rest
or moving is measured [OpenStax]

relative velocity | velocity of an object as observed
from a particular reference frame, or the velocity of
one reference frame with respect to another reference
frame [OpenStax]

renewable | energy source that is replenished by
natural processes, over human time scales [OpenStax]

resonance | large amplitude oscillations in a system
produced by a small amplitude driving force, which
has a frequency equal to the natural frequency
[OpenStax]

restoring force | force acting in opposition to the
force caused by a deformation [OpenStax]

resultant vector | vector sum of two (or more)
vectors [OpenStax]

Reynolds number | dimensionless parameter that
can reveal whether a particular flow is laminar or
turbulent [OpenStax]

rocket equation | derived by the Soviet physicist
Konstantin Tsiolkovsky in 1897, it gives us the change
of velocity that the rocket obtains from burning a mass
of fuel that decreases the total rocket mass from mi
down to m [OpenStax]

rolling motion | combination of rotational and
translational motion with or without slipping
[OpenStax]

rotational dynamics | analysis of rotational
motion using the net torque and moment of inertia to
find the angular acceleration [OpenStax]

rotational kinetic energy | kinetic energy due to
the rotation of an object; this is part of its total kinetic
energy [OpenStax]

rotational work | work done on a rigid body due to
the sum of the torques integrated over the angle
through with the body rotates [OpenStax]

scalar | a number, synonymous with a scalar quantity
in physics [OpenStax]

scalar component | a number that multiplies a unit
vector in a vector component of a vector [OpenStax]

scalar equation | equation in which the left-hand
and right-hand sides are numbers [OpenStax]

scalar product | the result of the scalar
multiplication of two vectors is a scalar called a scalar
product; also called a dot product [OpenStax]

scalar quantity | quantity that can be specified
completely by a single number with an appropriate
physical unit [OpenStax]

Schwarzschild radius | critical radius (RS) such
that if a mass were compressed to the extent that its
radius becomes less than the Schwarzschild radius,
then the mass will collapse to a singularity, and
anything that passes inside that radius cannot escape
[OpenStax]

second | the SI unit for time, abbreviated s
[OpenStax]

second equilibrium condition | expresses
rotational equilibrium; all torques due to external
forces acting on the body balance out and their vector
sum is zero [OpenStax]

shear modulus | elastic modulus for shear stress
[OpenStax]

shear strain | strain caused by shear stress
[OpenStax]

shear stress | stress caused by shearing forces
[OpenStax]

shock wave | wave front that is produced when a
sound source moves faster than the speed of sound
[OpenStax]

SI units | the international system of units that
scientists in most countries have agreed to use;
includes units such as meters, liters, and grams
[OpenStax]

significant figures | used to express the precision
of a measuring tool used to measure a value
[OpenStax]

simple harmonic motion (SHM) | oscillatory
motion in a system where the restoring force is
proportional to the displacement, which acts in the
direction opposite to the displacement [OpenStax]

simple harmonic oscillator | a device that
oscillates in SHM where the restoring force is
proportional to the displacement and acts in the
direction opposite to the displacement [OpenStax]

simple pendulum | point mass, called a pendulum
bob, attached to a near massless string [OpenStax]

sonic boom | loud noise that occurs as a shock wave
as it sweeps along the ground [OpenStax]

sound | traveling pressure wave that may be periodic;
the wave can be modeled as a pressure wave or as an
oscillation of molecules [OpenStax]

sound intensity level | unitless quantity telling
you the level of the sound relative to a fixed standard
[OpenStax]

sound pressure level | ratio of the pressure
amplitude to a reference pressure [OpenStax]

space-time | concept of space-time is that time is
essentially another coordinate that is treated the same
way as any individual spatial coordinate; in the
equations that represent both special and general
relativity, time appears in the same context as do the
spatial coordinates [OpenStax]

specific gravity | ratio of the density of an object to
a fluid (usually water) [OpenStax]

spring tide | high tide created when the Moon, the
Sun, and Earth are along one line [OpenStax]

stable equilibrium point | point where the net
force on a system is zero, but a small displacement of
the mass will cause a restoring force that points toward
the equilibrium point [OpenStax]

standing wave | wave that can bounce back and
forth through a particular region, effectively becoming
stationary [OpenStax]

static equilibrium | body is in static equilibrium
when it is at rest in our selected inertial frame of
reference [OpenStax]

static friction | force that opposes the motion of
two systems that are in contact and are not moving
relative to each other [OpenStax]

strain | dimensionless quantity that gives the amount
of deformation of an object or medium under stress
[OpenStax]

stress | quantity that contains information about the
magnitude of force causing deformation, defined as
force per unit area [OpenStax]

stress-strain diagram | graph showing the
relationship between stress and strain, characteristic of
a material [OpenStax]

superposition | phenomenon that occurs when two
or more waves arrive at the same point [OpenStax]

surface mass density | mass per unit area o of a
two dimensional object [OpenStax]

system | object or collection of objects whose motion
is currently under investigation; however, your system
is defined at the start of the problem, you must keep
that definition for the entire problem [OpenStax]

tail-to-head geometric construction |
geometric construction for drawing the resultant vector
of many vectors [OpenStax]

tangential accleration | magnitude of which is the
time rate of change of speed. Its direction is tangent to
the circle. [OpenStax]
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tensile strain | strain under tensile stress, given as
fractional change in length, which occurs when forces
are stretching an object, causing its elongation
[OpenStax]

tensile stress | stress caused by tensile forces, only
in one direction, which occurs when forces are
stretching an object, causing its elongation [OpenStax]

tension | pulling force that acts along a stretched
flexible connector, such as a rope or cable [OpenStax]

terminal velocity | constant velocity achieved by a
falling object, which occurs when the weight of the
object is balanced by the upward drag force
[OpenStax]

theory | testable explanation for patterns in nature
supported by scientific evidence and verified multiple
times by various groups of researchers [OpenStax]

theory of general relativity | Einstein’s theory
for gravitation and accelerated reference frames; in this
theory, gravitation is the result of mass and energy
distorting the space-time around it; it is also often
referred to as Einstein’s theory of gravity [OpenStax]

thrust | reaction force that pushes a body forward in
response to a backward force [OpenStax]

tidal force | difference between the gravitational
force at the center of a body and that at any other
location on the body; the tidal force stretches the body
[OpenStax]

timbre | number and relative intensity of multiple
sound frequencies [OpenStax]

time of flight | elapsed time a projectile is in the air
[OpenStax]

torque | cross product of a force and a lever arm to a
given axis [OpenStax]

torsional pendulum | any suspended object that
oscillates by twisting its suspension [OpenStax]

total accleration | vector sum of centripetal and
tangential accelerations [OpenStax]

total displacement | the sum of individual
displacements over a given time period [OpenStax]

total linear acceleration | vector sum of the
centripetal acceleration vector and the tangential
acceleration vector [OpenStax]

trajectory | path of a projectile through the air
[OpenStax]

transducer | device that converts energy of a signal
into measurable energy form, for example, a
microphone converts sound waves into an electrical
signal [OpenStax]

transverse wave | wave in which the disturbance is
perpendicular to the direction of propagation
[OpenStax]

turbulence | fluid flow in which layers mix together
via eddies and swirls [OpenStax]

turbulent flow | type of fluid flow in which layers
mix together via eddies and swirls [OpenStax]

turning point | position where the velocity of a
particle, in one-dimensional motion, changes sign
[OpenStax]

two-body pursuit problem | a kinematics
problem in which the unknowns are calculated by
solving the kinematic equations simultaneously for
two moving objects [OpenStax]

uncertainty | a quantitative measure of how much
measured values deviate from one another [OpenStax]

underdamped | condition in which damping of an
oscillator causes the amplitude of oscillations of a
damped harmonic oscillator to decrease over time,
eventually approaching zero [OpenStax]

unit vector | vector of a unit magnitude that
specifies direction; has no physical unit [OpenStax]

unit vectors of the axes | unit vectors that define
orthogonal directions in a plane or in space [OpenStax]

units | standards used for expressing and comparing
measurements [OpenStax]

universal gravitational constant | constant
representing the strength of the gravitational force, that
is believed to be the same throughout the universe
[OpenStax]

vector | mathematical object with magnitude and
direction [OpenStax]

vector components | orthogonal components of a
vector; a vector is the vector sum of its vector
components [OpenStax]

vector equation | equation in which the left-hand
and right-hand sides are vectors [OpenStax]

vector product | the result of the vector
multiplication of vectors is a vector called a vector
product; also called a cross product [OpenStax]

vector quantity | physical quantity described by a
mathematical vector—that is, by specifying both its
magnitude and its direction; synonymous with a vector
in physics [OpenStax]

vector sum | resultant of the combination of two (or
more) vectors [OpenStax]

velocity vector | vector that gives the instantaneous
speed and direction of a particle; tangent to the
trajectory [OpenStax]

viscosity | measure of the internal friction in a fluid
[OpenStax]

wave | disturbance that moves from its source and
carries energy [OpenStax]

wave function | mathematical model of the position
of particles of the medium [OpenStax]

2
wave number | - [OpenStax]

wave speed | magnitude of the wave velocity
[OpenStax]

wave velocity | velocity at which the disturbance
moves; also called the propagation velocity
[OpenStax]

wavelength | distance between adjacent identical
parts of a wave [OpenStax]

weight | force w due to gravity acting on an object of
mass m [OpenStax]

work | done when a force acts on something that
undergoes a displacement from one position to another
[OpenStax]

work done by a force | integral, from the initial
position to the final position, of the dot product of the
force and the infinitesimal displacement along the path
over which the force acts [OpenStax]

work-energy theorem | net work done on a
particle is equal to the change in its kinetic energy
[OpenStax]

work-energy theorem for rotation | the total
rotational work done on a rigid body is equal to the
change in rotational kinetic energy of the body
[OpenStax]

Young’s modulus | elastic modulus for tensile or
compressive stress [OpenStax|
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