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14.16: The Carnot Cycle

4b Learning Objectives

By the end of this section you will be able to:

e Describe the Carnot cycle with the roles of all four processes involved
e Outline the Carnot principle and its implications
o Demonstrate the equivalence of the Carnot principle and the second law of thermodynamics

In the early 1820s, Sadi Carnot (1786—1832), a French engineer, became interested in improving the efficiencies of practical heat
engines. In 1824, his studies led him to propose a hypothetical working cycle with the highest possible efficiency between the same
two reservoirs, known now as the Carnot cycle. An engine operating in this cycle is called a Carnet engine. The Carnot cycle is
of special importance for a variety of reasons. At a practical level, this cycle represents a reversible model for the steam power
plant and the refrigerator or heat pump. Yet, it is also very important theoretically, for it plays a major role in the development of
another important statement of the second law of thermodynamics. Finally, because only two reservoirs are involved in its
operation, it can be used along with the second law of thermodynamics to define an absolute temperature scale that is truly
independent of any substance used for temperature measurement.
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Figure 14.16.1: The four processes of the Carnot cycle. The working substance is assumed to be an ideal gas whose
thermodynamic path MNOP is represented in Figure 14.16.2

With an ideal gas as the working substance, the steps of the Carnot cycle, as represented by Figure 14.16.1, are as follows.
1. Isothermal expansion. The gas is placed in thermal contact with a heat reservoir at a temperature T}. The gas absorbs heat Qp,
from the heat reservoir and is allowed to expand isothermally, doing work W;. Because the internal energy E;,; of an ideal gas

is a function of the temperature only, the change of the internal energy is zero, that is, A E;,; = 0 during this isothermal
expansion. With the first law of thermodynamics, AE;,; = @ — W , we find that the heat absorbed by the gas is

Qh = W1 = TLRTh 1Ilﬁ
Ve

2. Adiabatic expansion. The gas is thermally isolated and allowed to expand further, doing work W5. Because this expansion is
adiabatic, the temperature of the gas falls—in this case, from T} to Ti.. From pV' 7 = constant and the equation of state for an
ideal gas, pV =nRT, we have

TV = constant,

so that
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T,Vy ' =T.V) .

3. Isothermal compression. The gas is placed in thermal contact with a cold reservoir at temperature 7, and compressed
isothermally. During this process, work W3 is done on the gas and it gives up heat @, to the cold reservoir. The reasoning used
in step 1 now yields

Ve
Q.=nRT,In 7:

where @, is the heat dumped to the cold reservoir by the gas.
4. Adiabatic compression. The gas is thermally isolated and returned to its initial state by compression. In this process, work Wy

is done on the gas. Because the compression is adiabatic, the temperature of the gas rises—from T, to 7}, in this particular case.
The reasoning of step 2 now gives

TV, ' =T,V .
The total work done by the gas in the Carnot cycle is given by

W =W +Wy—W3 —Wj.
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Figure 14.16.2: The total work done by the gas in the Carnot cycle is shown and given by the area enclosed by the loop MNOPM.

This work is equal to the area enclosed by the loop shown in the pV diagram of Figure 14.16.2 Because the initial and final states
of the system are the same, the change of the internal energy of the gas in the cycle must be zero, that is, AE;;,; = 0. The first law
of thermodynamics then gives

W=Q—-AEmn =(Qr—Qc) -0,

and

W:Qh_Qc

To find the efficiency of this engine, we first divide Q. by Qp:
Q. T. InVp/Vp

Qn FhanN/VM'

When the adiabatic constant from step 2 is divided by that of step 4, we find

Yo _ Vi
Ve Vi
Substituting this into the equation for Q./Qp, we obtain
Q T
Qn Tn

Finally, with Equation 4.3.6, we find that the efficiency of this ideal gas Carnot engine is given by
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T.
e=1-— Th
An engine does not necessarily have to follow a Carnot engine cycle. All engines, however, have the same net effect, namely the
absorption of heat from a hot reservoir, the production of work, and the discarding of heat to a cold reservoir. This leads us to ask:
Do all reversible cycles operating between the same two reservoirs have the same efficiency? The answer to this question comes
from the second law of thermodynamics discussed earlier: All reversible engine cycles produce exactly the same efficiency.
Also, as you might expect, all real engines operating between two reservoirs are less efficient than reversible engines operating
between the same two reservoirs. This too is a consequence of the second law of thermodynamics shown earlier.

The cycle of an ideal gas Carnot refrigerator is represented by the pV diagram of Figure 14.16.3 It is a Carnot engine operating in
reverse. The refrigerator extracts heat (). from a cold-temperature reservoir at 7, when the ideal gas expands isothermally. The gas
is then compressed adiabatically until its temperature reaches T}, after which an isothermal compression of the gas results in heat
@, being discarded to a high-temperature reservoir at T}. Finally, the cycle is completed by an adiabatic expansion of the gas,
causing its temperature to drop to 7.
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Figure 14.16.3. The work done on the gas in one cycle of the Carnot refrigerator is shown and given by the area enclosed by the
loop MPONM.
The work done on the ideal gas is equal to the area enclosed by the path of the pV diagram. From the first law, this work is given
by
W = Qh - Qc-
An analysis just like the analysis done for the Carnot engine gives
Q _@n
Tc Th ’
When combined with Equation 4.4.1, this yields
T
Kp=—°—
T, —T,

for the coefficient of performance of the ideal-gas Carnot refrigerator. Similarly, we can work out the coefficient of performance for
a Carnot heat pump as

_ @ T
Qh - Qc Th - Tc
We have just found equations representing the efficiency of a Carnot engine and the coefficient of performance of a Carnot

refrigerator or a Carnot heat pump, assuming an ideal gas for the working substance in both devices. However, these equations are
more general than their derivations imply. We will soon show that they are both valid no matter what the working substance is.

Kp

Carnot summarized his study of the Carnot engine and Carnot cycle into what is now known as Carnot’s principle:

@ 0 14.16.3 https://phys.libretexts.org/@go/page/18329


https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/18329?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/04%3A_The_Second_Law_of_Thermodynamics/4.04%3A_Refrigerators_and_Heat_Pumps#Eq.+4.3

LibreTextsw

X Carnot’s Principle

No engine working between two reservoirs at constant temperatures can have a greater efficiency than a reversible engine.

This principle can be viewed as another statement of the second law of thermodynamics and can be shown to be equivalent to the
Kelvin statement and the Clausius statement.

v/ Example 14.16.1: The Carnot Engine

A Carnot engine has an efficiency of 0.60 and the temperature of its cold reservoir is 300 K. (a) What is the temperature of the
hot reservoir? (b) If the engine does 300 J of work per cycle, how much heat is removed from the high-temperature reservoir
per cycle? (c) How much heat is exhausted to the low-temperature reservoir per cycle?

Strategy

From the temperature dependence of the thermal efficiency of the Carnot engine, we can find the temperature of the hot
reservoir. Then, from the definition of the efficiency, we can find the heat removed when the work done by the engine is given.
Finally, energy conservation will lead to how much heat must be dumped to the cold reservoir.

Solution
1. From e =1 —T,/T} we have

300 K
60=1—
0.60 T,
so that the temperature of the hot reservoir is
300 K
T, =—= K.
=T 060

2. By definition, the efficiency of the engine is e = W /@, so that the heat removed from the high-temperature reservoir per
cycle is

W 300J

@rn= "= .60

3. From the first law, the heat exhausted to the low-temperature reservoir per cycle by the engine is

=500J.

Q.=Qn—W =500J—300.J=200.J.

Significance

A Carnot engine has the maximum possible efficiency of converting heat into work between two reservoirs, but this does not
necessarily mean it is 100% efficient. As the difference in temperatures of the hot and cold reservoir increases, the efficiency
of a Carnot engine increases.

v/ Example 14.16.2: A Carnot Heat Pump

Imagine a Carnot heat pump operates between an outside temperature of 0°C' and an inside temperature of 20.0°C'. What is the
work needed if the heat delivered to the inside of the house is 30.0 kJ?

Strategy

Because the heat pump is assumed to be a Carnot pump, its performance coefficient is given by
Kp=Qy/W =T}, /(Ty, —T¢) . Thus, we can find the work W from the heat delivered Qp,.

Solution
The work needed is obtained from

W =Qu/Kp=Qu(Th—T,)/Ty =30kJ x (293 K —273 K)/293 K =2 kJ.

Significance
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We note that this work depends not only on the heat delivered to the house but also on the temperatures outside and inside. The
dependence on the temperature outside makes them impractical to use in areas where the temperature is much colder outside
than room temperature.

In terms of energy costs, the heat pump is a very economical means for heating buildings (Figure 14.16.4). Contrast this method
with turning electrical energy directly into heat with resistive heating elements. In this case, one unit of electrical energy furnishes
at most only one unit of heat. Unfortunately, heat pumps have problems that do limit their usefullness. They are quite expensive to
purchase compared to resistive heating elements, and, as the performance coefficient for a Carnot heat pump shows, they become
less effective as the outside temperature decreases. In fact, below about —10°C, the heat they furnish is less than the energy used to
operate them.

Figure 14.16.4. A photograph of a heat pump (large box) located outside a house. This heat pump is located in a warm climate
area, like the southern United States, since it would be far too inefficient located in the northern half of the United States. (credit:
modification of work by Peter Stevens).

? Exercise 14.16.1

A Carnot engine operates between reservoirs at 400°C and 30°C.

a. What is the efficiency of the engine?

b. If the engine does 5.0 J of work per cycle, how much heat per cycle does it absorb from the high-temperature reservoir?
¢. How much heat per cycle does it exhaust to the cold-temperature reservoir?

d. What temperatures at the cold reservoir would give the minimum and maximum efficiency?

Answer a
e=1 —Tc/Th =0.55

Answer b

Qpr=eW =9.1J
Answer ¢

Q.=Qp—W=41J
Answer d

—273°C and 400°C

? Exercise 14.16.2

A Carnot refrigerator operates between two heat reservoirs whose temperatures are 0°C' and 25°C.

a. What is the coefficient of performance of the refrigerator?
b. If 200 J of work are done on the working substance per cycle, how much heat per cycle is extracted from the cold
reservoir?
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c. How much heat per cycle is discarded to the hot reservoir?

Answer a

Kr=T,/(T, —T.) =10.9
Answer b

Q.=KpW =2.18kJ
Answer ¢

Qn=0Q.+W =2.38kJ

This page titled 14.16: The Carnot Cycle is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

e 4.6: The Carnot Cycle by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-2.

@ 0 14.16.6 https://phys.libretexts.org/@go/page/18329


https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/18329?pdf
https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/14%3A_Thermodynamics/14.16%3A_The_Carnot_Cycle
https://creativecommons.org/licenses/by/
https://openstax.org/
https://phys.libretexts.org/@go/page/4369
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-2

