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10.3: Examples of Static Equilibrium

Identify and analyze static equilibrium situations
Set up a free-body diagram for an extended object in static equilibrium
Set up and solve static equilibrium conditions for objects in equilibrium in various physical situations

All examples in this chapter are planar problems. Accordingly, we use equilibrium conditions in the component form of Equation
12.2.9 to Equation 12.2.11. We introduced a problem-solving strategy in Example 12.1 to illustrate the physical meaning of the
equilibrium conditions. Now we generalize this strategy in a list of steps to follow when solving static equilibrium problems for
extended rigid bodies. We proceed in five practical steps.

1. Identify the object to be analyzed. For some systems in equilibrium, it may be necessary to consider more than one object.
Identify all forces acting on the object. Identify the questions you need to answer. Identify the information given in the
problem. In realistic problems, some key information may be implicit in the situation rather than provided explicitly.

2. Set up a free-body diagram for the object. (a) Choose the xy-reference frame for the problem. Draw a free-body diagram for
the object, including only the forces that act on it. When suitable, represent the forces in terms of their components in the
chosen reference frame. As you do this for each force, cross out the original force so that you do not erroneously include
the same force twice in equations. Label all forces—you will need this for correct computations of net forces in the x- and
y-directions. For an unknown force, the direction must be assigned arbitrarily; think of it as a ‘working direction’ or
‘suspected direction.’ The correct direction is determined by the sign that you obtain in the final solution. A plus sign (+)
means that the working direction is the actual direction. A minus sign (−) means that the actual direction is opposite to the
assumed working direction. (b) Choose the location of the rotation axis; in other words, choose the pivot point with respect
to which you will compute torques of acting forces. On the free-body diagram, indicate the location of the pivot and the
lever arms of acting forces—you will need this for correct computations of torques. In the selection of the pivot, keep in
mind that the pivot can be placed anywhere you wish, but the guiding principle is that the best choice will simplify as much
as possible the calculation of the net torque along the rotation axis.

3. Set up the equations of equilibrium for the object. (a) Use the free-body diagram to write a correct equilibrium condition
Equation 12.2.9 for force components in the x-direction. (b) Use the free-body diagram to write a correct equilibrium
condition Equation 12.2.13 for force components in the y-direction. (c) Use the free-body diagram to write a correct
equilibrium condition Equation 12.2.11 for torques along the axis of rotation. Use Equation 12.2.12 to evaluate torque
magnitudes and senses.

4. Simplify and solve the system of equations for equilibrium to obtain unknown quantities. At this point, your work involves
algebra only. Keep in mind that the number of equations must be the same as the number of unknowns. If the number of
unknowns is larger than the number of equations, the problem cannot be solved.

5. Evaluate the expressions for the unknown quantities that you obtained in your solution. Your final answers should have
correct numerical values and correct physical units. If they do not, then use the previous steps to track back a mistake to its
origin and correct it. Also, you may independently check for your numerical answers by shifting the pivot to a different
location and solving the problem again, which is what we did in Example 12.1.

Note that setting up a free-body diagram for a rigid-body equilibrium problem is the most important component in the solution
process. Without the correct setup and a correct diagram, you will not be able to write down correct conditions for equilibrium.
Also note that a free-body diagram for an extended rigid body that may undergo rotational motion is different from a free-body
diagram for a body that experiences only translational motion (as you saw in the chapters on Newton’s laws of motion). In
translational dynamics, a body is represented as its CM, where all forces on the body are attached and no torques appear. This does
not hold true in rotational dynamics, where an extended rigid body cannot be represented by one point alone. The reason for this is
that in analyzing rotation, we must identify torques acting on the body, and torque depends both on the acting force and on its lever
arm. Here, the free-body diagram for an extended rigid body helps us identify external torques.

 Learning Objectives

 Problem-Solving Strategy: Static Equilibrium
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Three masses are attached to a uniform meter stick, as shown in Figure . The mass of the meter stick is 150.0 g and the
masses to the left of the fulcrum are m  = 50.0 g and m  = 75.0 g. Find the mass m3 that balances the system when it is
attached at the right end of the stick, and the normal reaction force at the fulcrum when the system is balanced.

Figure : In a torque balance, a horizontal beam is supported at a fulcrum (indicated by S) and masses are attached to both
sides of the fulcrum. The system is in static equilibrium when the beam does not rotate. It is balanced when the beam remains
level.

Strategy

For the arrangement shown in the figure, we identify the following five forces acting on the meter stick:

1. w  = m g is the weight of mass m ;
2. w  = m g is the weight of mass m ;
3. w = mg is the weight of the entire meter stick;
4. w  = m g is the weight of unknown mass m ;
5. F  is the normal reaction force at the support point S.

We choose a frame of reference where the direction of the y-axis is the direction of gravity, the direction of the xaxis is along
the meter stick, and the axis of rotation (the z-axis) is perpendicular to the x-axis and passes through the support point S. In
other words, we choose the pivot at the point where the meter stick touches the support. This is a natural choice for the pivot
because this point does not move as the stick rotates. Now we are ready to set up the free-body diagram for the meter stick. We
indicate the pivot and attach five vectors representing the five forces along the line representing the meter stick, locating the
forces with respect to the pivot Figure . At this stage, we can identify the lever arms of the five forces given the
information provided in the problem. For the three hanging masses, the problem is explicit about their locations along the stick,
but the information about the location of the weight w is given implicitly. The key word here is “uniform.” We know from our
previous studies that the CM of a uniform stick is located at its midpoint, so this is where we attach the weight w, at the 50-cm
mark.

Figure : Free-body diagram for the meter stick. The pivot is chosen at the support point S.

Solution
With Figure  and Figure  for reference, we begin by finding the lever arms of the five forces acting on the stick:

Now we can find the five torques with respect to the chosen pivot:

 Example 12.3: The Torque Balance

10.3.1
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r3

= 30.0 cm+40.0 cm = 70.0 cm

= 40.0 cm

= 50.0 cm−30.0 cm = 20.0 cm

= 0.0 cm (because is attached at the pivot)FS

= 30.0 cm.
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The second equilibrium condition (equation for the torques) for the meter stick is

When substituting torque values into this equation, we can omit the torques giving zero contributions. In this way the second
equilibrium condition is

Selecting the +y-direction to be parallel to , the first equilibrium condition for the stick is

Substituting the forces, the first equilibrium condition becomes

We solve these equations simultaneously for the unknown values m  and F . In Equation , we cancel the g factor and
rearrange the terms to obtain

To obtain m  we divide both sides by r , so we have

To find the normal reaction force, we rearrange the terms in Equation , converting grams to kilograms:

Significance
Notice that Equation  is independent of the value of g. The torque balance may therefore be used to measure mass, since
variations in g-values on Earth’s surface do not affect these measurements. This is not the case for a spring balance because it
measures the force.

Repeat Example 12.3 using the left end of the meter stick to calculate the torques; that is, by placing the pivot at the left end of
the meter stick.

In the next example, we show how to use the first equilibrium condition (equation for forces) in the vector form given by Equation
12.2.9 and Equation 12.2.10. We present this solution to illustrate the importance of a suitable choice of reference frame. Although
all inertial reference frames are equivalent and numerical solutions obtained in one frame are the same as in any other, an
unsuitable choice of reference frame can make the solution quite lengthy and convoluted, whereas a wise choice of reference frame
makes the solution straightforward. We show this in the equivalent solution to the same problem. This particular example illustrates
an application of static equilibrium to biomechanics.

τ1

τ2

τ

τS

τ3

=+ sin =+ g (counterclockwise rotation, positive sense)r1w1 90o r1m1

=+ sin =+ g (counterclockwise rotation, positive sense)r2w2 90o r2m2

=+rw sin =+rmg (gravitational torque)90o

= sin = 0 (because = 0 cm)rSFS θS rS

=− sin =− g (counterclockwise rotation, negative sense)r3w3 90o r3m3

+ +τ + + = 0.τ1 τ2 τS τ3 (10.3.1)

+ g+ g+rmg− g= 0.r1m1 r2m2 r3m3 (10.3.2)

F ⃗ 
S

− − −w+ − = 0.w1 w2 FS w3 (10.3.3)

− g− g−mg+ − g= 0.m1 m2 FS m3 (10.3.4)

3 S 10.3.2

= + +rm.r3m3 r1m1 r2m2 (10.3.5)

3 3

m3 = + + m
r1

r3
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r3
m2

r

r3

= (50.0 g)+ (75.0 g)+ (150.0 g) = 315.0( ) g≃ 317 g.
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3

10.3.4

FS = ( + +m+ )gm1 m2 m3

= (50.0+75.0+150.0+316.7)×( kg)×(9.8 m/ ) = 5.8 N .10−3 s2

10.3.2

 Exercise 12.3
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A weightlifter is holding a 50.0-lb weight (equivalent to 222.4 N) with his forearm, as shown in Figure . His forearm is
positioned at  = 60° with respect to his upper arm. The forearm is supported by a contraction of the biceps muscle, which
causes a torque around the elbow. Assuming that the tension in the biceps acts along the vertical direction given by gravity,
what tension must the muscle exert to hold the forearm at the position shown? What is the force on the elbow joint? Assume
that the forearm’s weight is negligible. Give your final answers in SI units.

Figure : The forearm is rotated around the elbow (E) by a contraction of the biceps muscle, which causes tension .

Strategy

We identify three forces acting on the forearm: the unknown force  at the elbow; the unknown tension  in the muscle; and
the weight  with magnitude w = 50 lb. We adopt the frame of reference with the x-axis along the forearm and the pivot at the
elbow. The vertical direction is the direction of the weight, which is the same as the direction of the upper arm. The x-axis
makes an angle  = 60° with the vertical. The y-axis is perpendicular to the x-axis. Now we set up the free-body diagram for
the forearm. First, we draw the axes, the pivot, and the three vectors representing the three identified forces. Then we locate the
angle  and represent each force by its x- and y-components, remembering to cross out the original force vector to avoid
double counting. Finally, we label the forces and their lever arms. The free-body diagram for the forearm is shown in Figure 

. At this point, we are ready to set up equilibrium conditions for the forearm. Each force has x- and y-components;
therefore, we have two equations for the first equilibrium condition, one equation for each component of the net force acting on
the forearm.

Figure : Free-body diagram for the forearm: The pivot is located at point E (elbow).

Notice that in our frame of reference, contributions to the second equilibrium condition (for torques) come only from the y-
components of the forces because the x-components of the forces are all parallel to their lever arms, so that for any of them we
have sin  = 0 in Equation 12.2.12. For the y-components we have  = ± 90° in Equation 12.2.12. Also notice that the torque of
the force at the elbow is zero because this force is attached at the pivot. So the contribution to the net torque comes only from
the torques of T  and of w .

Solution
We see from the free-body diagram that the x-component of the net force satisfies the equation

and the y-component of the net force satisfies

 Example 12.4: Forces in the Forearm

10.3.3
β

10.3.3 T ⃗ 
M

F ⃗  T ⃗ 
M

w⃗ 

β

β

10.3.4

10.3.4

θ θ

y y

+ + − = 0Fx Tx wx (10.3.6)

+ + − = 0.Fy Ty wy (10.3.7)
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Equation  and Equation  are two equations of the first equilibrium condition (for forces). Next, we read from the
free-body diagram that the net torque along the axis of rotation is

Equation  is the second equilibrium condition (for torques) for the forearm. The free-body diagram shows that the lever
arms are r  = 1.5 in. and r  = 13.0 in. At this point, we do not need to convert inches into SI units, because as long as these
units are consistent in Equation 12.23, they cancel out. Using the free-body diagram again, we find the magnitudes of the
component forces:

We substitute these magnitudes into Equation , Equation , and Equation  to obtain, respectively,

When we simplify these equations, we see that we are left with only two independent equations for the two unknown force
magnitudes, F and T, because Equation  for the x-component is equivalent to Equation  for the y-component. In
this way, we obtain the first equilibrium condition for forces

and the second equilibrium condition for torques

The magnitude of tension in the muscle is obtained by solving Equation :

The force at the elbow is obtained by solving Equation :

The negative sign in the equation tells us that the actual force at the elbow is antiparallel to the working direction adopted for
drawing the free-body diagram. In the final answer, we convert the forces into SI units of force. The answer is

Significance
Two important issues here are worth noting. The first concerns conversion into SI units, which can be done at the very end of
the solution as long as we keep consistency in units. The second important issue concerns the hinge joints such as the elbow. In
the initial analysis of a problem, hinge joints should always be assumed to exert a force in an arbitrary direction, and then

10.3.6 10.3.7

+ − = 0.rTTy rwwy (10.3.8)

10.3.8
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T
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√
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10.3.6 10.3.7

F +T −w = 0 (10.3.9)

T − w = 0.rT rw (10.3.10)

10.3.10

T = w = frac13.01.5(50 lb) = 433 lb ≃ 433.3 lb.
rw

rT

1

3
(10.3.11)

10.3.9

F =w−T = 50.0 lb−433.3 lb =−383.3 lb. (10.3.12)

F = 383.3 lb = 383.3(4.448 N) = 1705 N downward (10.3.13)

T = 433.3 lb = 433.3(4.448 N) = 1927 N upward. (10.3.14)
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you must solve for all components of a hinge force independently. In this example, the elbow force happens to be vertical
because the problem assumes the tension by the biceps to be vertical as well. Such a simplification, however, is not a general
rule.

Solution 2

Suppose we adopt a reference frame with the direction of the y-axis along the 50-lb weight and the pivot placed at the elbow.
In this frame, all three forces have only y-components, so we have only one equation for the first equilibrium condition (for
forces). We draw the free-body diagram for the forearm as shown in Figure , indicating the pivot, the acting forces and
their lever arms with respect to the pivot, and the angles  and  that the forces  and  (respectively) make with their
lever arms. In the definition of torque given by Equation 12.2.12, the angle  is the direction angle of the vector , counted
counterclockwise from the radial direction of the lever arm that always points away from the pivot. By the same convention,
the angle  is measured counterclockwise from the radial direction of the lever arm to the vector . Done this way, the non-
zero torques are most easily computed by directly substituting into Equation 12.2.12 as follows:

Figure : Free-body diagram for the forearm for the equivalent solution. The pivot is located at point E (elbow).

The second equilibrium condition,  +  = 0, can be now written as

From the free-body diagram, the first equilibrium condition (for forces) is

Equation  is identical to Equation  and gives the result T = 433.3 lb. Equation  gives

We see that these answers are identical to our previous answers, but the second choice for the frame of reference leads to an
equivalent solution that is simpler and quicker because it does not require that the forces be resolved into their rectangular
components.

Repeat Example 12.4 assuming that the forearm is an object of uniform density that weighs 8.896 N.

A uniform ladder is L = 5.0 m long and weighs 400.0 N. The ladder rests against a slippery vertical wall, as shown in Figure 
. The inclination angle between the ladder and the rough floor is  = 53°. Find the reaction forces from the floor and

from the wall on the ladder and the coefficient of static friction  at the interface of the ladder with the floor that prevents the
ladder from slipping.

10.3.5

θT θw T ⃗ 
M w⃗ 

θT T ⃗ 
M

θw w⃗ 

= T sin = T sinβ = T sin =+τT rT θT rT rT 60o
TrT 3

–
√

2
(10.3.15)

= w sin = w sin(β+ ) =− w sinβ =− .τw rw θw rw 180o rw
wrw 3

–
√

2
(10.3.16)

10.3.5

τT τw

− = 0.
TrT 3

–
√

2

wrw 3
–

√

2
(10.3.17)

−F +T −w = 0. (10.3.18)

10.3.17 10.3.10 10.3.18

F = T −w = 433.3 lb−50.0 lb = 383.3 lb (10.3.19)

 Exercise 12.4

 Example 12.5: A Ladder Resting Against a Wall
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Figure  A 5.0-m-long ladder rests against a frictionless wall.

Strategy

We can identify four forces acting on the ladder. The first force is the normal reaction force N from the floor in the upward
vertical direction. The second force is the static friction force f = N directed horizontally along the floor toward the wall—
this force prevents the ladder from slipping. These two forces act on the ladder at its contact point with the floor. The third
force is the weight w of the ladder, attached at its CM located midway between its ends. The fourth force is the normal reaction
force F from the wall in the horizontal direction away from the wall, attached at the contact point with the wall. There are no
other forces because the wall is slippery, which means there is no friction between the wall and the ladder. Based on this
analysis, we adopt the frame of reference with the y-axis in the vertical direction (parallel to the wall) and the x-axis in the
horizontal direction (parallel to the floor). In this frame, each force has either a horizontal component or a vertical component
but not both, which simplifies the solution. We select the pivot at the contact point with the floor. In the free-body diagram for
the ladder, we indicate the pivot, all four forces and their lever arms, and the angles between lever arms and the forces, as
shown in Figure . With our choice of the pivot location, there is no torque either from the normal reaction force N or
from the static friction f because they both act at the pivot.

Figure : Free-body diagram for a ladder resting against a frictionless wall.

Solution
From the free-body diagram, the net force in the x-direction is

the net force in the y-direction is

and the net torque along the rotation axis at the pivot point is

where  is the torque of the weight w and  is the torque of the reaction F. From the free-body diagram, we identify that the
lever arm of the reaction at the wall is r  = L = 5.0 m and the lever arm of the weight is r  =  = 2.5 m. With the help of the
free-body diagram, we identify the angles to be used in Equation 12.2.12 for torques:  = 180° −  for the torque from the
reaction force with the wall, and  = 180° + (90° − ) for the torque due to the weight. Now we are ready to use Equation
12.2.12 to compute torques:

10.3.6

μs

10.3.7

10.3.7

+f −F = 0 (10.3.20)

+N −w = 0 (10.3.21)

+ = 0.τw τF (10.3.22)

τw τF

F w
L
2

θF β

θw β

= w sin = w sin( + −β) =− w sin( −β) =− w cosβτw rw θw rw 180o 90o
L

2
90o

L

2
(10.3.23)
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We substitute the torques into Equation  and solve for F :

We obtain the normal reaction force with the floor by solving Equation : N = w = 400.0 N. The magnitude of friction is
obtained by solving Equation : f = F = 150.7 N. The coefficient of static friction is  =  =  = 0.377.

The net force on the ladder at the contact point with the floor is the vector sum of the normal reaction from the floor and the
static friction forces:

Its magnitude is

and its direction is

We should emphasize here two general observations of practical use. First, notice that when we choose a pivot point, there is
no expectation that the system will actually pivot around the chosen point. The ladder in this example is not rotating at all but
firmly stands on the floor; nonetheless, its contact point with the floor is a good choice for the pivot. Second, notice when we
use Equation 12.2.12 for the computation of individual torques, we do not need to resolve the forces into their normal and
parallel components with respect to the direction of the lever arm, and we do not need to consider a sense of the torque. As
long as the angle in Equation 12.2.12 is correctly identified—with the help of a free-body diagram—as the angle measured
counterclockwise from the direction of the lever arm to the direction of the force vector, Equation 12.2.12 gives both the
magnitude and the sense of the torque. This is because torque is the vector product of the lever-arm vector crossed with the
force vector, and Equation 12.2.12 expresses the rectangular component of this vector product along the axis of rotation.

Significance
This result is independent of the length of the ladder because L is canceled in the second equilibrium condition, Equation 

. No matter how long or short the ladder is, as long as its weight is 400 N and the angle with the floor is 53°, our results
hold. But the ladder will slip if the net torque becomes negative in Equation . This happens for some angles when the
coefficient of static friction is not great enough to prevent the ladder from slipping.

For the situation described in Example 12.5, determine the values of the coefficient  of static friction for which the ladder
starts slipping, given that β is the angle that the ladder makes with the floor.

A swinging door that weighs w = 400.0 N is supported by hinges A and B so that the door can swing about a vertical axis
passing through the hinges Figure . The door has a width of b = 1.00 m, and the door slab has a uniform mass density.
The hinges are placed symmetrically at the door’s edge in such a way that the door’s weight is evenly distributed between
them. The hinges are separated by distance a = 2.00 m. Find the forces on the hinges when the door rests half-open.

ta = F sin = F sin( −β) =LF sinβ.uF rF θF rF 180o (10.3.24)

10.3.22

− w cosβ+LF sinβ = 0
L

2
(10.3.25)

F = cotβ = cot = 150.7 N
w

2

400.0 N

2
53o (10.3.26)

10.3.21

10.3.20 μs
f

N

150.7
400.0

= + = (150.7 N)(− )+(400.0 N)(+ ) = (−150.7 +400.0 )N .F ⃗ 
floor f ⃗  N ⃗  î ĵ î ĵ (10.3.27)

= = N = 427.4 NFfloor +f 2 N 2
− −−−−−−

√ +150.72 400.02
− −−−−−−−−−−−√ (10.3.28)

φ = ( ) = ( ) = above the floor.tan−1 N

f
tan−1 400.0

150.7
69.3o (10.3.29)

10.3.25
10.3.25

 Exercise 12.5
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 Example 12.6: Forces on Door Hinges
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Figure : A 400-N swinging vertical door is supported by two hinges attached at points A and B.

Strategy

The forces that the door exerts on its hinges can be found by simply reversing the directions of the forces that the hinges exert
on the door. Hence, our task is to find the forces from the hinges on the door. Three forces act on the door slab: an unknown
force  from hinge A, an unknown force  from hinge B, and the known weight  attached at the center of mass of the door
slab. The CM is located at the geometrical center of the door because the slab has a uniform mass density. We adopt a
rectangular frame of reference with the y-axis along the direction of gravity and the x-axis in the plane of the slab, as shown in
panel (a) of Figure , and resolve all forces into their rectangular components. In this way, we have four unknown
component forces: two components of force  (A  and A ), and two components of force  (B  and B ). In the free-body
diagram, we represent the two forces at the hinges by their vector components, whose assumed orientations are arbitrary.
Because there are four unknowns (A , B , A , and B ), we must set up four independent equations. One equation is the
equilibrium condition for forces in the x-direction. The second equation is the equilibrium condition for forces in the y-
direction. The third equation is the equilibrium condition for torques in rotation about a hinge. Because the weight is evenly
distributed between the hinges, we have the fourth equation, A  = B . To set up the equilibrium conditions, we draw a free-
body diagram and choose the pivot point at the upper hinge, as shown in panel (b) of Figure . Finally, we solve the
equations for the unknown force components and find the forces.

Figure : (a) Geometry and (b) free-body diagram for the door.

Solution
From the free-body diagram for the door we have the first equilibrium condition for forces:

in the x-direction,

in y-direction, $$+ A_{y} + B_{y} - w = 0 \Rightarrow A_{y} = B_{y} = \frac{w}{2} = \frac{400.0\; N}{2} = 200.0\; N
\ldotp\]

We select the pivot at point P (upper hinge, per the free-body diagram) and write the second equilibrium condition for torques
in rotation about point P:

10.3.8

A ⃗  B⃗  w⃗ 

10.3.9

A ⃗ 
x y B⃗  x y

x x y y

y y
10.3.9

10.3.9

− + = 0 ⇒ +Ax Bx Ax Bx (10.3.30)
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pivot at P: $$\tau_{w} + \tau_{Bx} + \tau_{By} = 0 \ldotp \label{12.32}\]

We use the free-body diagram to find all the terms in this equation:

In evaluating sin , we use the geometry of the triangle shown in part (a) of the figure. Now we substitute these torques into
Equation  and compute B :

pivot at P: $$-w \frac{b}{2} + a B_{x} = 0 \Rightarrow B_{x} = w \frac{b}{2a} = (400.0\; N) \frac{1}{2\; \cdotp 2} = 100.0\;
N \ldotp\]

Therefore the magnitudes of the horizontal component forces are A  = B  = 100.0 N. The forces on the door are

at the upper hinge:

at the lower hinge: $$\vec{F}_{B\; on\; door} = +100.0\; N\; \hat{i} + 200.0\; N\; \hat{j} \ldotp\]

The forces on the hinges are found from Newton’s third law as

on the upper hinge:

on the lower hinge: $$\vec{F}_{door\; on\; B} = - 100.0\; N\; \hat{i} - 200.0\; N\; \hat{j} \ldotp\]

Significance
Note that if the problem were formulated without the assumption of the weight being equally distributed between the two
hinges, we wouldn’t be able to solve it because the number of the unknowns would be greater than the number of equations
expressing equilibrium conditions.

Solve the problem in Example 12.6 by taking the pivot position at the center of mass.

A 50-kg person stands 1.5 m away from one end of a uniform 6.0-m-long scaffold of mass 70.0 kg. Find the tensions in the two
vertical ropes supporting the scaffold.

A 400.0-N sign hangs from the end of a uniform strut. The strut is 4.0 m long and weighs 600.0 N. The strut is supported by a
hinge at the wall and by a cable whose other end is tied to the wall at a point 3.0 m above the left end of the strut. Find the
tension in the supporting cable and the force of the hinge on the strut.

τw

τBx
τBy

= dw sin(−β) =−dw sinβ =−dw =−w
b
2

d

b

2
= a sin =+aBx 90o Bx

= a sin = 0.By 180o

β

??? x

x x

=−100.0 N +200.0 NF ⃗ 
A on door î ĵ (10.3.31)

= 100.0 N −200.0 NF ⃗ 
door on A î ĵ (10.3.32)

 Exercise 12.6
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 Exercise 12.8
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