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5.3: Acceleration Vector

Calculate the acceleration vector given the velocity function in unit vector notation.
Describe the motion of a particle with a constant acceleration in three dimensions.
Use the one-dimensional motion equations along perpendicular axes to solve a problem in two or three dimensions with a
constant acceleration.
Express the acceleration in unit vector notation.

Instantaneous Acceleration
In addition to obtaining the displacement and velocity vectors of an object in motion, we often want to know its acceleration
vector at any point in time along its trajectory. This acceleration vector is the instantaneous acceleration and it can be obtained
from the derivative with respect to time of the velocity function, as we have seen in a previous chapter. The only difference in two
or three dimensions is that these are now vector quantities. Taking the derivative with respect to time (t), we find

The acceleration in terms of components is

Also, since the velocity is the derivative of the position function, we can write the acceleration in terms of the second derivative of
the position function:

A particle has a velocity of .

a. What is the acceleration function?
b. What is the acceleration vector at t = 2.0 s? Find its magnitude and direction.

Solution
a. We take the first derivative with respect to time of the velocity function to find the acceleration. The derivative is taken

component by component:

b. Evaluating  gives us the direction in unit vector notation. The magnitude of the
acceleration is

Significance
In this example we find that acceleration has a time dependence and is changing throughout the motion. Let’s consider a
different velocity function for the particle.

A particle has a position function: .

a. What is the velocity?
b. What is the acceleration?
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 Example 4.4: Finding an Acceleration Vector

(t) = 5.0t + −2.0 m/sv ⃗  î t2 ĵ t3k̂

(t) = 5.0 +2.0t −6.0 m/ .a⃗  î ĵ t2 k̂ s2

(2.0 s) = 5.0 +4.0 −24.0 m/a⃗  î ĵ k̂ s2

| (2.20 s)| = = 24.8 m/ .a⃗  + +(−24.05.02 4.02 )2
− −−−−−−−−−−−−−−−−−

√ s
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 Example 4.5: Finding a Particle Acceleration

(t) = (10t− ) +5t +5t mr ⃗  t2 î ĵ k̂
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c. Describe the motion from .

Strategy

We can gain some insight into the problem by looking at the position function. It is linear in y and z, so we know the
acceleration in these directions is zero when we take the second derivative. Also, note that the position in the x direction is zero
for t = 0 s and t = 10 s.

Solution
a. Taking the derivative with respect to time of the position function, we find . The

velocity function is linear in time in the x direction and is constant in the y and z directions.
b. Taking the derivative of the velocity function, we find

The acceleration vector is a constant in the negative x-direction.
c. The trajectory of the particle can be seen in Figure . Let’s look in the y and z directions first. The particle’s position

increases steadily as a function of time with a constant velocity in these directions. In the x direction, however, the particle
follows a path in positive x until t = 5 s, when it reverses direction. We know this from looking at the velocity function,
which becomes zero at this time and negative thereafter. We also know this because the acceleration is negative and
constant—meaning, the particle is decelerating, or accelerating in the negative direction. The particle’s position reaches 25
m, where it then reverses direction and begins to accelerate in the negative x direction. The position reaches zero at t = 10 s.

Figure : The particle starts at point (x, y, z) = (0, 0, 0) with position vector  = 0. The projection of the trajectory onto the
xy-plane is shown. The values of y and z increase linearly as a function of time, whereas x has a turning point at t = 5 s and 25
m, when it reverses direction. At this point, the x component of the velocity becomes negative. At t = 10 s, the particle is back
to 0 m in the x direction.

Suppose the acceleration function has the form (t) = a  + b  + c  m/s , where a, b, and c are constants. What can be said
about the functional form of the velocity function?

Constant Acceleration
Multidimensional motion with constant acceleration can be treated the same way as shown in the previous chapter for one-
dimensional motion. Earlier we showed that three-dimensional motion is equivalent to three one-dimensional motions, each along
an axis perpendicular to the others. To develop the relevant equations in each direction, let’s consider the two-dimensional problem
of a particle moving in the xy plane with constant acceleration, ignoring the z-component for the moment. The acceleration vector
is

t = 0 s

(t) = (10 −2t) +5 +5 m/sv ⃗  î ĵ k̂

(t) = −2 m/ .a⃗  î s2
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Each component of the motion has a separate set of equations similar to Equation 3.10–Equation 3.14 of the previous chapter on
one-dimensional motion. We show only the equations for position and velocity in the x- and y-directions. A similar set of kinematic
equations could be written for motion in the z-direction:

Here the subscript 0 denotes the initial position or velocity. Equation  to  can be substituted into Equation 4.2 and
Equation 4.5 without the z-component to obtain the position vector and velocity vector as a function of time in two dimensions:

and

The following example illustrates a practical use of the kinematic equations in two dimensions.

Figure  shows a skier moving with an acceleration of 2.1 m/s  down a slope of 15° at t = 0. With the origin of the
coordinate system at the front of the lodge, her initial position and velocity are

and

a. What are the x- and y-components of the skier’s position and velocity as functions of time?
b. What are her position and velocity at t = 10.0 s?

Figure : A skier has an acceleration of 2.1 m/s  down a slope of 15°. The origin of the coordinate system is at the ski
lodge.

Strategy
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5.3.5 5.3.12

(t) = x(t) +y(t)r ⃗  î ĵ (5.3.13)

(t) = (t) + (t) .v ⃗  vx î vy ĵ (5.3.14)

 Example 4.6: A Skier

5.3.2 2

(0) = (7.50 −50.0 )mr ⃗  î ĵ

(0) = (4.1 −1.1 )m/sv ⃗  î ĵ
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Since we are evaluating the components of the motion equations in the x and y directions, we need to find the components of
the acceleration and put them into the kinematic equations. The components of the acceleration are found by referring to the
coordinate system in Figure . Then, by inserting the components of the initial position and velocity into the motion
equations, we can solve for her position and velocity at a later time t.

Solution
a. The origin of the coordinate system is at the top of the hill with y-axis vertically upward and the x-axis horizontal. By

looking at the trajectory of the skier, the x-component of the acceleration is positive and the y-component is negative. Since
the angle is 15° down the slope, we find

Inserting the initial position and velocity into Equations  and  for x, we have

For y, we have

b. Now that we have the equations of motion for x and y as functions of time, we can evaluate them at t = 10.0 s:

The position and velocity at t = 10.0 s are, finally

The magnitude of the velocity of the skier at 10.0 s is 25 m/s, which is 60 mi/h.

Significance
It is useful to know that, given the initial conditions of position, velocity, and acceleration of an object, we can find the
position, velocity, and acceleration at any later time.

With Equations -  we have completed the set of expressions for the position, velocity, and acceleration of an object
moving in two or three dimensions. If the trajectories of the objects look something like the “Red Arrows” in the opening picture
for the chapter, then the expressions for the position, velocity, and acceleration can be quite complicated. In the sections to follow
we examine two special cases of motion in two and three dimensions by looking at projectile motion and circular motion.

At this University of Colorado Boulder website, you can explore the position velocity and acceleration of a ladybug with an
interactive simulation that allows you to change these parameters.

This page titled 5.3: Acceleration Vector is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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