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8.2: Work

4b Learning Objectives

o Represent the work done by any force
¢ Evaluate the work done for various forces

In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one
position to another. Forces can vary as a function of position, and displacements can be along various paths between two points. We

first define the increment of work dW done by a force F' acting through an infinitesimal displacement dr as the dot product of
these two vectors:

dW = F- dF = | F||dF| cosf. (8.2.1)

Then, we can add up the contributions for infinitesimal displacements, along a path between two positions, to get the total work.

# Work Done by a Force

The work done by a force is the integral of the force with respect to displacement along the path of the displacement:

Wag :/ F-dF. (8.2.2)
path AB

The vectors involved in the definition of the work done by a force acting on a particle are illustrated in Figure 8.2.1.
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Figure 8.2.1: Vectors used to define work. The force acting on a particle and its infinitesimal displacement are shown at one point

along the path between A and B. The infinitesimal work is the dot product of these two vectors; the total work is the integral of the

dot product along the path.
We choose to express the dot product in terms of the magnitudes of the vectors and the cosine of the angle between them, because
the meaning of the dot product for work can be put into words more directly in terms of magnitudes and angles. We could equally
well have expressed the dot product in terms of the various components introduced in Vectors. In two dimensions, these were the x-
and y-components in Cartesian coordinates, or the r- and ¢p-components in polar coordinates; in three dimensions, it was just x-, y-,
and z-components. Which choice is more convenient depends on the situation. In words, you can express Equation 8.2.1 for the
work done by a force acting over a displacement as a product of one component acting parallel to the other component. From the
properties of vectors, it doesn’t matter if you take the component of the force parallel to the displacement or the component of the
displacement parallel to the force—you get the same result either way.

Recall that the magnitude of a force times the cosine of the angle the force makes with a given direction is the component of the
force in the given direction. The components of a vector can be positive, negative, or zero, depending on whether the angle
between the vector and the component-direction is between 0° and 90° or 90° and 180°, or is equal to 90°. As a result, the work
done by a force can be positive, negative, or zero, depending on whether the force is generally in the direction of the displacement,
generally opposite to the displacement, or perpendicular to the displacement. The maximum work is done by a given force when it
is along the direction of the displacement (cos € = + 1), and zero work is done when the force is perpendicular to the displacement
(cos 8 =0).

The units of work are units of force multiplied by units of length, which in the SI system is newtons times meters, N * m. This
combination is called a joule, for historical reasons that we will mention later, and is abbreviated as J. In the English system, still
used in the United States, the unit of force is the pound (Ib) and the unit of distance is the foot (ft), so the unit of work is the foot-
pound (ft « 1b).
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Work Done by Constant Forces and Contact Forces

The simplest work to evaluate is that done by a force that is constant in magnitude and direction. In this case, we can factor out the
force; the remaining integral is just the total displacement, which only depends on the end points A and B, but not on the path
between them:

B
WAB:F-/ dr =F-(fp—74) =|F||rp —T 4| cos (constant force).
A

We can also see this by writing out Equation 8.2.2 in Cartesian coordinates and using the fact that the components of the force are
constant:

B B B
Wz :/ F-d?z/ (Fgcdx+Fydy+dez):Fx/ dac+Fy/ dy+Fz/ dz
path AB path AB A A A
=Fy(zp—24) + Fy(yp —ya) + Fa(zp —24) = F- (Tp —Ty).

Figure 8.2.2a shows a person exerting a constant force F along the handle of a lawn mower, which makes an angle 6 with the

horizontal. The horizontal displacement of the lawn mower, over which the force acts, is d. The work done on the lawn mower is
W =F-d = Fdcos9,
which the figure also illustrates as the horizontal component of the force times the magnitude of the displacement.

[ & W= Fd cos 6

(b ©

Figure 8.2.2: Work done by a constant force. (a) A person pushes a lawn mower with a constant force. The component of the force

parallel to the displacement is the work done, as shown in the equation in the figure. (b) A person holds a briefcase. No work is

done because the displacement is zero. (c) The person in (b) walks horizontally while holding the briefcase. No work is done

because cos 6 is zero.
Figure 8.2.2bshows a person holding a briefcase. The person must exert an upward force, equal in magnitude to the weight of the
briefcase, but this force does no work, because the displacement over which it acts is zero. So why do you eventually feel tired just
holding the briefcase, if you’re not doing any work on it? The answer is that muscle fibers in your arm are contracting and doing
work inside your arm, even though the force your muscles exert externally on the briefcase doesn’t do any work on it. (Part of the
force you exert could also be tension in the bones and ligaments of your arm, but other muscles in your body would be doing work
to maintain the position of your arm.)

In Figure 8.2.2¢ where the person in (b) is walking horizontally with constant speed, the work done by the person on the briefcase

is still zero, but now because the angle between the force exerted and the displacement is 90° (13 perpendicular to d ) and cos 90° =
0.
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v/ Example 8.2.1: Calculating the Work You Do to Push a Lawn Mower

How much work is done on the lawn mower by the person in Figure 8.2.2aif he exerts a constant force of 75.0 N at an angle
35° below the horizontal and pushes the mower 25.0 m on level ground?

Strategy

We can solve this problem by substituting the given values into the definition of work done on an object by a constant force,
stated in the equation W = Fd cos 6. The force, angle, and displacement are given, so that only the work W is unknown.

Solution
The equation for the work is

W = Fdcosé.
Substituting the known values gives
W = (75.0 N)(25.0 m) cos(35.0°) = 1.54 x 10% J.

Significance
Even though one and a half kilojoules may seem like a lot of work, we will see in Potential Energy and Conservation of Energy
that it’s only about as much work as you could do by burning one sixth of a gram of fat.

When you mow the grass, other forces act on the lawn mower besides the force you exert—namely, the contact force of the ground
and the gravitational force of Earth. Let’s consider the work done by these forces in general. For an object moving on a surface, the
displacement d 7 is tangent to the surface. The part of the contact force on the object that is perpendicular to the surface is the
normal force V. Since the cosine of the angle between the normal and the tangent to a surface is zero, we have

dWy = N-di =0

The normal force never does work under these circumstances. (Note that if the displacement d 7 did have a relative component
perpendicular to the surface, the object would either leave the surface or break through it, and there would no longer be any normal
contact force. However, if the object is more than a particle, and has an internal structure, the normal contact force can do work on
it, for example, by displacing it or deforming its shape. This will be mentioned in the next chapter.)

The part of the contact force on the object that is parallel to the surface is friction, f For this object sliding along the surface,

kinetic friction f « is opposite to d 7, relative to the surface, so the work done by kinetic friction is negative. If the magnitude of _f &
is constant (as it would be if all the other forces on the object were constant), then the work done by friction is

B B
Wfr:/ fk'dF:—fk/ |dr| = —fillas|. (8.2.3)
A A

where |Iap| is the path length on the surface. (Note that, especially if the work done by a force is negative, people may refer to the
work done against this force, where dWagainst = ~dWyy. The work done against a force may also be viewed as the work required to
overcome this force, as in “How much work is required to overcome...?”) The force of static friction, however, can do positive or
negative work. When you walk, the force of static friction exerted by the ground on your back foot accelerates you for part of each
step. If you’re slowing down, the force of the ground on your front foot decelerates you. If you’re driving your car at the speed
limit on a straight, level stretch of highway, the negative work done by kinetic friction of air resistance is balanced by the positive
work done by the static friction of the road on the drive wheels. You can pull the rug out from under an object in such a way that it
slides backward relative to the rug, but forward relative to the floor. In this case, kinetic friction exerted by the rug on the object
could be in the same direction as the displacement of the object, relative to the floor, and do positive work. The bottom line is that
you need to analyze each particular case to determine the work done by the forces, whether positive, negative or zero.

v/ Example 8.2.2: Moving a Couch

You decide to move your couch to a new position on your horizontal living room floor. The normal force on the couch is 1 kN
and the coefficient of friction is 0.6. (a) You first push the couch 3 m parallel to a wall and then 1 m perpendicular to the wall
(A to B in Figure 8.2.3). How much work is done by the frictional force? (b) You don’t like the new position, so you move the
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couch straight back to its original position (B to A in Figure 8.2.3). What was the total work done against friction moving the
couch away from its original position and back again?

Path (b) 8
N 1

e

Ap=—

e m__-!{-_/pam @)

Figure 8.2.3: Top view of paths for moving a couch.
Strategy

The magnitude of the force of kinetic friction on the couch is constant, equal to the coefficient of friction times the normal
force, fx = px N. Therefore, the work done by it is Wg. = —fxd, where d is the path length traversed. The segments of the paths
are the sides of a right triangle, so the path lengths are easily calculated. In part (b), you can use the fact that the work done
against a force is the negative of the work done by the force.

Solution
a. The work done by friction is

W =—(0.6)(1 kN)(3 m+1m) = —2.4 kJ.
b. The length of the path along the hypotenuse is /10 m, so the total work done against friction is
W =(0.6)(1 kN)(3m+1m++/10m)=4.3 kJ.

Significance

The total path over which the work of friction was evaluated began and ended at the same point (it was a closed path), so that
the total displacement of the couch was zero. However, the total work was not zero. The reason is that forces like friction are
classified as nonconservative forces, or dissipative forces, as we discuss in the next chapter.

Can kinetic friction ever be a constant force for all paths?

The other force on the lawn mower mentioned above was Earth’s gravitational force, or the weight of the mower. Near the surface
of Earth, the gravitational force on an object of mass m has a constant magnitude, mg, and constant direction, vertically down.
Therefore, the work done by gravity on an object is the dot product of its weight and its displacement. In many cases, it is
convenient to express the dot product for gravitational work in terms of the x-, y-, and z-components of the vectors. A typical
coordinate system has the x-axis horizontal and the y-axis vertically up. Then the gravitational force is —mg 3’, so the work done by
gravity, over any path from A to B, is

Waav, 48 = —mgj- (FB —T4) = —mg(ys —ya). (8.2.4)

The work done by a constant force of gravity on an object depends only on the object’s weight and the difference in height through
which the object is displaced. Gravity does negative work on an object that moves upward (yg > y4), or, in other words, you must
do positive work against gravity to lift an object upward. Alternately, gravity does positive work on an object that moves downward
(yg < ya), or you do negative work against gravity to “lift” an object downward, controlling its descent so it doesn’t drop to the
ground. (“Lift” is used as opposed to “drop”.)

v Example 8.2.3: Shelving a Book

You lift an oversized library book, weighing 20 N, 1 m vertically down from a shelf, and carry it 3 m horizontally to a table
(Figure 8.2.4). How much work does gravity do on the book? (b) When you’re finished, you move the book in a straight line
back to its original place on the shelf. What was the total work done against gravity, moving the book away from its original
position on the shelf and back again?
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Path (b)

B (table)

Path (a)
Figure 8.2.4: Side view of the paths for moving a book to and from a shelf.

Strategy

We have just seen that the work done by a constant force of gravity depends only on the weight of the object moved and the
difference in height for the path taken, Wag = -mg(yB — ya). We can evaluate the difference in height to answer (a) and (b).

Solution
a. Since the book starts on the shelf and is lifted down yg — ya = —1 m, we have
W =—(20 N)(—1 m) =20J.
b. There is zero difference in height for any path that begins and ends at the same place on the shelf, so W = 0.

Significance

Gravity does positive work (20 J) when the book moves down from the shelf. The gravitational force between two objects is an
attractive force, which does positive work when the objects get closer together. Gravity does zero work (0 J) when the book
moves horizontally from the shelf to the table and negative work (-20 J) when the book moves from the table back to the shelf.
The total work done by gravity is zero [20 J + 0 J + (=20 J) = 0].

Unlike friction or other dissipative forces, described in Example 8.2.2, the total work done against gravity, over any closed
path, is zero. Positive work is done against gravity on the upward parts of a closed path, but an equal amount of negative work
is done against gravity on the downward parts. In other words, work done against gravity, lifting an object up, is “given back”
when the object comes back down. Forces like gravity (those that do zero work over any closed path) are classified as
conservative forces and play an important role in physics.

Can Earth’s gravity ever be a constant force for all paths?

Work Done by Forces that Vary

In general, forces may vary in magnitude and direction at points in space, and paths between two points may be curved. The
infinitesimal work done by a variable force can be expressed in terms of the components of the force and the displacement along
the path,

dW = F,dz + F,dy + F.dz.

Here, the components of the force are functions of position along the path, and the displacements depend on the equations of the
path. (Although we chose to illustrate dW in Cartesian coordinates, other coordinates are better suited to some situations.) Equation
8.2.2 defines the total work as a line integral, or the limit of a sum of infinitesimal amounts of work. The physical concept of work
is straightforward: you calculate the work for tiny displacements and add them up. Sometimes the mathematics can seem
complicated, but the following example demonstrates how cleanly they can operate.

v Example 8.2.4: Work Done by a Variable Force over a Curved Path

An object moves along a parabolic path y = (0.5 m™1)x? from the origin A = (0, 0) to the point B = (2 m, 2 m) under the action
of a force F = (5 N/m)y i+ (10 N/m)x 3 (Figure 8.2.5). Calculate the work done.
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Figure 8.2.5: The parabolic path of a particle acted on by a given force.
Strategy

The components of the force are given functions of x and y. We can use the equation of the path to express y and dy in terms of
x and dx; namely,

y=(0.5m )22 and dy =2(0.5 m!)zdz.
Then, the integral for the work is just a definite integral of a function of x.

Solution

The infinitesimal element of work is

dW = F,dz+ F,dy = (5 N/m)ydz + (10 N/m)zdy
= (5 N/m)(0.5 m ")z’dz + (10 N/m)2(0.5 m *)z’dz = (12.5 N/m?*)z*dz.

3
The integral of x? is 3,50

2m 312m
8
w :/ (12.5 N/m?)atdz = (12.5 N/mz)% = (12.5 N/m2) (5) =33.3 J.
0 0

Significance
This integral was not hard to do. You can follow the same steps, as in this example, to calculate line integrals representing
work for more complicated forces and paths. In this example, everything was given in terms of x- and y-components, which
are easiest to use in evaluating the work in this case. In other situations, magnitudes and angles might be easier.

? Exercise 8.2.4

Find the work done by the same force in Example 8.2.4 over a cubic path, y = (0.25 m™2)x>, between the same points A = (0,
0) and B = (2 m, 2 m).

You saw in Example 8.2.4 that to evaluate a line integral, you could reduce it to an integral over a single variable or parameter.
Usually, there are several ways to do this, which may be more or less convenient, depending on the particular case. In Example
8.2.4, we reduced the line integral to an integral over x, but we could equally well have chosen to reduce everything to a function
of y. We didn’t do that because the functions in y involve the square root and fractional exponents, which may be less familiar, but
for illustrative purposes, we do this now. Solving for x and dx, in terms of y, along the parabolic path, we get

= /—2 = m)y and dr = m ldy _ dy
z = /(0.5m*1)_1/(2 )y and dz = /(2 )><2\/§_ Ty

The components of the force, in terms of y, are
F,=(5 N/m)y and F, = (10 N/m)z = (10 N/m),/(2m)y,

so the infinitesimal work element becomes

_ _ (6 N/m)ydy
dW =F,dx+F,dy= Ty +(10 N/m), /(2 m)ydy

1 —
— —|—2\/§) Vydy = (17.7 N- mfl/z)ylmdy.

V2

, so the work done from A to B is

=5 N-m™?) (

The integral of y'/? is % y>?
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2m
W= / (17.7 N-m~Y/?)y'/2dy = (17.7 N- m*l/Q)g(z m)?/® =33.3 J.
0

As expected, this is exactly the same result as before.

One very important and widely applicable variable force is the force exerted by a perfectly elastic spring, which satisfies Hooke’s
law F = ~kAZ, where k is the spring constant, and AZ = Z — Z, is the displacement from the spring’s unstretched (equilibrium)
position (Newton’s Laws of Motion). Note that the unstretched position is only the same as the equilibrium position if no other
forces are acting (or, if they are, they cancel one another). Forces between molecules, or in any system undergoing small
displacements from a stable equilibrium, behave approximately like a spring force.

To calculate the work done by a spring force, we can choose the x-axis along the length of the spring, in the direction of increasing
length, as in Figure 8.2.6, with the origin at the equilibrium position x.q = 0. (Then positive x corresponds to a stretch and negative
X to a compression.) With this choice of coordinates, the spring force has only an x-component, F, = —kx, and the work done when
x changes from x, to xg is

B B 1:2 B 1
Wspring, AB :/ de.’L' = _k/ zdr = —k—‘ = ——k(QEQB —202 ) (825)
A A 2 1A 2
IINP e

|
x=0
@ |

1 AX
IS Ffefn £ =

©
Figure 8.2.6: (a) The spring exerts no force at its equilibrium position. The spring exerts a force in the opposite direction to (b) an
extension or stretch, and (c) a compression.
Notice that Wap depends only on the starting and ending points, A and B, and is independent of the actual path between them, as
long as it starts at A and ends at B. That is, the actual path could involve going back and forth before ending.

Another interesting thing to notice about Equation &8.2.5 is that, for this one-dimensional case, you can readily see the
correspondence between the work done by a force and the area under the curve of the force versus its displacement. Recall that, in
general, a one-dimensional integral is the limit of the sum of infinitesimals, f(x)dx , representing the area of strips, as shown in
Figure 8.2.7. In Equation 8.2.5, since F = —kx is a straight line with slope —k, when plotted versus x, the “area” under the line is
just an algebraic combination of triangular “areas,” where “areas” above the x-axis are positive and those below are negative, as
shown in Figure 8.2.8. The magnitude of one of these “areas” is just one-half the triangle’s base, along the x-axis, times the
triangle’s height, along the force axis. (There are quotation marks around “area” because this base-height product has the units of
work, rather than square meters.)

Strip area /

Sum of

‘5— strip areas

Figure 8.2.7: A curve of f(x) versus x showing the area of an infinitesimal strip, f(x)dx, and the sum of such areas, which is the
integral of f(x) from x; to x.
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fix}y = —hx
b Xy *g
X4 S x
Positive
area Negative
areas

Figure 8.2.8: Curve of the spring force f(x) = —kx versus x, showing areas under the line, between x, and xp, for both positive and
negative values of x5. When x, is negative, the total area under the curve for the integral in Equation 8.2.5 is the sum of positive
and negative triangular areas. When x, is positive, the total area under the curve is the difference between two negative triangles.

v/ Example 8.2.5: Work Done by a Spring Force

A perfectly elastic spring requires 0.54 J of work to stretch 6 cm from its equilibrium position, as in Figure 8.2.6b (a) What is
its spring constant k? (b) How much work is required to stretch it an additional 6 cm?

Strategy

Work “required” means work done against the spring force, which is the negative of the work in Equation 8.2.5, that is

1
W= Ek(x% — 7))
For part (a), x5 = 0 and xg = 6 cm; for part (b), xg = 6 cm and xg = 12 cm. In part (a), the work is given and you can solve for
the spring constant; in part (b), you can use the value of k, from part (a), to solve for the work.

Solution
a. \[W = 0.54\; J =\frac{1}{2} k [(6\; cm)*{2} - 0],\; so\; k = 3\; N/cm \Idotp \nonumber$$
b.\[W =\frac{1}{2} (3\; N/cm) [(12\; cm) {2} - (6\; cm) M {2}],\; so\; k = 1.62\; J \Idotp \nonumber$$

Significance

Since the work done by a spring force is independent of the path, you only needed to calculate the difference in the quantity
%kx2 at the end points. Notice that the work required to stretch the spring from 0 to 12 cm is four times that required to stretch
it from 0 to 6 cm, because that work depends on the square of the amount of stretch from equilibrium, %kxz. In this
circumstance, the work to stretch the spring from 0 to 12 cm is also equal to the work for a composite path from 0 to 6 cm
followed by an additional stretch from 6 cm to 12 cm. Therefore, 4W(0 cm to 6 cm) = W(0 cm to 6 cm) + W(6 cm to 12 ¢cm) ,
or W(6 cm to 12 cm) = 3W(0 cm to 6 cm) , as we found above.

? Exercise 8.2.5

The spring in Example 8.2.5 is compressed 6 cm from its equilibrium length. (a) Does the spring force do positive or negative
work and (b) what is the magnitude?
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