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3.1: The Work - Energy Theorem

Ignoring Directional Changes

For a large number of applications in mechanics, we are not interested in how a force causes the direction of motion of an object to
change. In these cases, we only care about how that force changes the speed of the object. By now we know how much of a pain
vectors can be, so having an alternative to Newton’s second law to solve problems where only changes in speed are of interest is a
welcome improvement. To see how we get to such a place, we need to go back to what we previously said about acceleration, and
how it breaks into perpendicular parts – one that is parallel to the velocity (the “speeding-up/slowing-down” part), and the part that
is perpendicular to the velocity (the “changing direction” part). We expressed this mathematically in Equation 1.6.12. We will now
restrict our attention to the first term. Note that restricting ourselves to the part of the acceleration parallel to the direction of motion
means we also restrict ourselves only to the component of the net force parallel to the motion.

Kinetic Energy and the Work-Energy Theorem
We have a neat trick that allows us to relate the change of the speed to the net force. The net force is proportional to the time
derivative of the velocity vector, and we can use the product rule for derivatives of dot products of vectors, so let's take a derivative
of the square of the velocity:

To get to the net force, we multiply both sides by the mass of the object and divide both sides by 2:

This makes some sense. The rate of change on the left side of this equation only depends upon the rate at which the speed changes
(it is insensitive to changes in direction), and the dot product on the right side ensures that only the projection of the net force along
the direction of motion (i.e. the direction of the velocity) plays a role. The part of the net force that causes the object to change
direction is thrown away. We can take this a little bit further by expressing the velocity vector on the right side as a tiny

displacement (which we will call ) divided by the tiny time interval. Multiplying both sides by  then gives an equation that
expresses a small change in the quantity  (called the kinetic energy) due to a net force acting on the object as it displaces a

small amount .

Suppose the object now undergoes several displacements, so that the change in the kinetic energy is no longer infinitesimal. This is
tricky business, as each displacement may be the same (if it moves in a straight line), or it may change direction (if it follows a
curvy path). Also, the net force on the object might change as the object moves from one place to another. We express the sum of
many infinitesimals as an integral, and since the sum of the right side of this equation depends upon the directions of many
displacements, this particular type of integral is called a line integral. This does not mean that the displacements are along a
straight line, however – here the word "line" is rather misleading – the word "trajectory" might be better.

Of course, the left side of this equation is simply a small number, and adding those up does not depend upon anything as
complicated as a trajectory, so it ends up being just a change from the beginning of the path to the end. If we call the start of the
journey  and the end , then we can express the totals for the whole journey as:

The line integral on the right side of this equation is called the work done (by the net force) going from the initial to final positions.
We can (and later, will) discuss the work done by individual forces, and the work done by the net force is the total of all of those
works. We will often write the above equation with the following abbreviated notation:
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In words, this reads: "The change of an object's kinetic energy when it changes its position from  to  equals the work done on it
by all forces on it, computed over a well-defined path connecting those endpoints." This is known as the work-energy theorem. It
does exactly what we set out to do – it expresses the effect forces have on the change in an object's speed, with no regard to its
directional changes. It doesn't solve any problem that can't be solved by Newton's second law, and in fact for some cases it isn't
even any easier to work with. But for other cases is it much easier to work with, as we will see, and these are the cases for which
this approach was invented.

These new quantities of kinetic energy and work have units of what we will more generically refer to as energy, and we give energy
units their own name:

Example 

A single force which varies in magnitude and direction in space acts upon an object, and is given by the equation below. Find
the change in the object's kinetic energy as it moves from the origin along the -axis a distance of 2m.

Solution

This is a direct application of the work-energy theorem, which means it consists entirely of computing a line integral. To do

this, we first need to define the path mathematically, and all of the tiny displacements  along that path. The path in this
case is pretty simple – it is a straight line along the -axis from the origin ( ) to the point ( ). Along this path,
the value of  remains a constant zero. The direction of every infinitesimal displacement is the  direction, and the
magnitude of each displacement is simply . The work integral therefore becomes:

Now we just need to plug in for the force. The force must be evaluated at each point on the path, and since the value of  is
zero on the entire path, we can set  in the force vector, simplifying things greatly:

The dot product of this vector with the tiny displacement vector simplifies things even more:

Finally, we just perform the integral and apply the work-energy theorem:

Line Integrals
As you can tell from the example above, the hardest part of using the work-energy theorem is setting up the line integral. There are
several elements that need to be kept in mind:

1. define a direction for the tiny displacement vectors for every point on the path

The direction of the tiny displacement vectors (which we will assume to be in the ( ) plane will have components equal to the
displacements in the  and  directions:
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2. write the magnitude of the tiny displacements in terms of the integration variable

The displacement vector as written above doesn't tell us much. We also need to include the path for this to be useful. Since we are
assuming that everything is in the ( ) plane, the path can be expressed as a relationship between the variables  and . For
example, if the path is a straight line, then we can write . In this case, we can replace the  in the displacement
vector:

This puts the displacement vector in terms of a single variable ( ) for integration (we could of course have instead chosen our
integration variable to be ). More generally, the path could be a function: , in which case the  above would be replaced
by the derivative of the function. Note also that the path may not even be a function, since it could have multiple  values for each 

 value. [Suffice to say that path integrals have a lot more going on than we will cover in this course, and we'll leave coverage of
the more nuanced details to a course in vector calculus.]

3. evaluate the force vector at each point in the path

The force vector will be in terms of  and  (i.e. it is defined at all points in space), but in the integral only its value along the path
matters, so we can substitute the equation that defines the path (such as  in the case of a straight-line) into the force
vector so that it is a function of only one variable, allowing us to do the integral.

4. take the dot product

We of course know how to do this by now, but it is important to remember that it must be done. This step goes back to the start of
our discussion of this method. This dot product assures that we are only using the part of the force vector that lies along the tiny
displacement, which means we are only using the part of the force vector that changes the speed of the object.

Of course, much more complicated paths than straight lines are possible. The following example illustrates how this is handled.

Example 

Compute the work done on an object by the force given below, along a parabolic path  connecting the origin to the
point on the path with an  value of 1m, where .

Solution

Start by determining the displacement vector as a function of  along the path:

Next write the force vector along the path only (in terms of ):

Now for the dot product:

And finally integrate between the two endpoints, defined in terms of the  variable that we have put everything in terms of:
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î ĵ (3.1.7)

x

y y = f (x) m

y

x

x y

y = mx+b

3.1.2

y = λx2

x λ = 0.4m−1

(x, y) = α +βy , where : α = 1.5 and β = 3.0F
→

x2 î ĵ
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Lost Information
It is important to note that while the introduction of the work-energy theorem will simplify things for us with a subset of problems,
we do sacrifice some information. By throwing out the part of the force that acts to change the direction of the object, we cannot
use this method to determine which way the object is moving after the force acts on it – we only know how fast it is going. Also,
we lose information about the time element of the motion between the starting and ending points. This should not be surprising –
just because we know how fast something is moving, if we don’t know the directions it takes to get from start to finish, we still
don’t know anything about the elapsed time. For example, a projectile thrown into the air will reach the same speed at two different
points of time – once on the way up and once on the way down. If we don't know anything about the direction of motion, we don't
know which time we are looking at.

To see this another way, consider a situation we are very familiar with – an object moving in a straight line, accelerating at a
constant rate. We know that we can write its acceleration in terms of the starting and final velocities using Equation 1.4.3:

By Newton’s second law, the acceleration here must have been caused by a (net) force in the same direction, so substituting the
ratio of force/mass for the acceleration gives:

This is once again the work-energy theorem (in one dimension, for a constant net force), and we see that it came directly from the
kinematics equation from which the time variable had been eliminated.

Work Contributions of Individual Forces
It probably isn’t immediately clear what is to be gained from this work-energy approach. After all, one still has to determine the net
force at each point in the path of the object’s motion, so our attempt to escape the tyranny of vectors would appear to be a failure.
But there is much more to this story. It begins with the recognition that total work done can be broken into a sum of works done by
individual forces:

There are a number of advantages to this, but the one we can see immediately is that if one of the individual forces happens to be
everywhere perpendicular to the path of the object from A to B, then the work it contributes is zero, and we can simply ignore it –
no need to do the vector addition to add it to the other forces. Consider the following example of pushing a block across a rough
horizontal surface. Figure 3.1.1 shows a diagram of what is happening and a FBD of the block.

Figure 3.1.1 – Pushing Block Across a Rough Horizontal Surface

The work done by the net force can be broken down into a sum of the works done by each individual force:
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Just by looking at the physical situation it is clear that the gravity and contact forces will play no role in the total work done, as they
are always perpendicular to the motion. This greatly reduces the number of forces (and vector addition) we would otherwise have
to deal with. Let’s look at some even more compelling examples:

Figure 3.1.2 – Loop-de-Loop

For a block sliding around a frictionless loop-de-loop track, the path it follows is quite complicated. The FBD of the block as it
travels along the track includes only two forces – gravity and the normal force by the track. The motion of the block is parallel to
the track everywhere, which means it is perpendicular to the normal force everywhere. That means that no matter what our starting
and ending points are, the normal force does no work on the block! Of the two forces involved, the normal force is by far the
hardest to deal with, since its direction and magnitude change everywhere on the track. but if we are only interested in the speed of
the block, we only need to worry about the work done by the gravity force, which has a constant direction and magnitude. We'll
come back to the simple result that comes from this shortly.

Figure 3.1.3 – Simple Pendulum
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For the simple pendulum, we see the same result for the tension as we found for the normal force in the loop-de-loop example. The
tension force remains at right angles to the motion of the bob at the end of the string, so there is no work done by the tension force.
If all we care about is the speed of the bob, then we only need to compute the work done by gravity.
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