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5.6: The Ideal Bose Gas
Crystalline solids support propagating waves called phonons, which are quantized vibrations of the lattice. Recall that the quantum mechanical Hamiltonian for a single harmonic oscillator, 

, may be written as , where  and  are ‘ladder operators’ satisfying commutation relations .

One-dimensional chain
Consider the linear chain of masses and springs depicted in Figure [lchain]. We assume that our system consists of  mass points on a large ring of circumference . In equilibrium, the masses are
spaced evenly by a distance . That is,  is the equilibrium position of particle . We define  to be the difference between the position of mass  and The Hamiltonian is
then

where  is the unstretched length of each spring,  is the mass of each mass point,  is the force constant of each spring, and  is the total number of mass points. If  the springs are under
tension in equilibrium, but as we see this only leads to an additive constant in the Hamiltonian, and hence does not enter the equations of motion.

The classical equations of motion are

Taking the time derivative of the first equation and substituting into the second yields

We now write

where periodicity  requires that the  values are quantized so that ,  where . The inverse of this discrete Fourier transform is

Note that  is in general complex, but that . In terms of the , the equations of motion take the form

Thus, each  is a normal mode, and the normal mode frequencies are

The density of states for this band of phonon excitations is

where  is the phonon bandwidth. The step functions require ; outside this range there are no phonon energy levels and the density of states accordingly vanishes.
[lchain] A linear chain of masses and springs. The black circles represent the
equilibrium positions of the masses. The displacement of mass n relative to

its equilibrium value is u_n.

[lchain] A linear chain of masses and springs. The black circles represent the equilibrium positions of the masses. The displacement of mass  relative to its equilibrium value is .

The entire theory can be quantized, taking . We then define

in which case . Note that  and . We then define the ladder operator

and its Hermitean conjugate , in terms of which the Hamiltonian is

which is a sum over independent harmonic oscillator modes. Note that the sum over  is restricted to an interval of width , , which is the first Brillouin zone for the one-dimensional
chain structure. The state at wavevector  is identical to that at , as we see from Equation [uFT].

General theory of lattice vibrations
The most general model of a harmonic solid is described by a Hamiltonian of the form

where the dynamical matrix is
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where  is the potential energy of interaction among all the atoms. Here we have simply expanded the potential to second order in the local displacements . The lattice sites  are elements of
a Bravais lattice. The indices  and  specify basis elements with respect to this lattice, and the indices  and  range over , the number of possible directions in space. The subject of
crystallography is beyond the scope of these notes, but, very briefly, a Bravais lattice in  dimensions is specified by a set of  linearly independent primitive direct lattice vectors , such that any
point in the Bravais lattice may be written as a sum over the primitive vectors with integer coefficients: . The set of all such vectors  is called the direct lattice. The direct lattice
is closed under the operation of vector addition: if  and  are points in a Bravais lattice, then so is .

[basis] A crystal structure with an underlying square Bravais lattice and a
three element basis.

[basis] A crystal structure with an underlying square Bravais lattice and a three element basis.

A crystal is a periodic arrangement of lattice sites. The fundamental repeating unit is called the unit cell. Not every crystal is a Bravais lattice, however. Indeed, Bravais lattices are special crystals in
which there is only one atom per unit cell. Consider, for example, the structure in Figure [basis]. The blue dots form a square Bravais lattice with primitive direct lattice vectors  and 

, where  is the lattice constant, which is the distance between any neighboring pair of blue dots. The red squares and green triangles, along with the blue dots, form a basis for the crystal
structure which label each sublattice. Our crystal in Figure [basis] is formally classified as a square Bravais lattice with a three element basis. To specify an arbitrary site in the crystal, we must
specify both a direct lattice vector  as well as a basis index , so that the location is . The vectors  are the basis vectors for our crystal structure. We see that a general
crystal structure consists of a repeating unit, known as a unit cell. The centers (or corners, if one prefers) of the unit cells form a Bravais lattice. Within a given unit cell, the individual sublattice sites
are located at positions  with respect to the unit cell position .

Upon diagonalization, the Hamiltonian of Equation [Hcrystal] takes the form

where

The eigenfrequencies are solutions to the eigenvalue equation

where

Here,  lies within the first Brillouin zone, which is the unit cell of the reciprocal lattice of points  satisfying  for all  and . The reciprocal lattice is also a Bravais lattice, with
primitive reciprocal lattice vectors , such that any point on the reciprocal lattice may be written . One also has that . The index  ranges from  to  and labels

the mode of oscillation at wavevector . The vector  is the polarization vector for the  phonon branch. In solids of high symmetry, phonon modes can be classified as longitudinal or
transverse excitations.

For a crystalline lattice with an -element basis, there are then  phonon modes for each wavevector  lying in the first Brillouin zone. If we impose periodic boundary conditions, then the  points
within the first Brillouin zone are themselves quantized, as in the  case where we found . There are  distinct  points in the first Brillouin zone – one for every direct lattice site.
The total number of modes is than , which is the total number of translational degrees of freedom in our system:  total atoms (  unit cells each with an  atom basis) each free to vibrate in

 dimensions. Of the  branches of phonon excitations,  of them will be acoustic modes whose frequency vanishes as . The remaining  branches are optical modes and oscillate at
finite frequencies. Basically, in an acoustic mode, for  close to the (Brillouin) zone center , all the atoms in each unit cell move together in the same direction at any moment of time. In an
optical mode, the different basis atoms move in different directions.

There is no number conservation law for phonons – they may be freely created or destroyed in anharmonic processes, where two photons with wavevectors  and  can combine into a single phonon
with wavevector , and vice versa. Therefore the chemical potential for phonons is . We define the density of states  for the  phonon mode as

where  is the number of unit cells,  is the unit cell volume of the direct lattice, and the  sum and integral are over the first Brillouin zone only. Note that  here has dimensions of frequency. The
functions  is normalized to unity:

The total phonon density of states per unit cell is given by

[phonons] Upper panel: phonon spectrum in elemental rhodium (Rh) at T=297\,K measured
by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57,

324 (1998). Note the three acoustic branches and no optical branches, corresponding to d=3 and
r=1. Lower panel: phonon spectrum in gallium arsenide (GaAs) at T=12\,K, comparing
theoretical lattice-dynamical calculations with INS results of D. Strauch and B. Dorner, J.
Phys.: Condens. Matter 2, 1457 (1990). Note the three acoustic branches and three optical
branches, corresponding to d=3 and r=2. The Greek letters along the x-axis indicate points of
high symmetry in the Brillouin zone.

[phonons] Upper panel: phonon spectrum in elemental rhodium (Rh) at K measured by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324 (1998).
Note the three acoustic branches and no optical branches, corresponding to  and . Lower panel: phonon spectrum in gallium arsenide (GaAs) at K, comparing theoretical lattice-
dynamical calculations with INS results of D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990). Note the three acoustic branches and three optical branches, corresponding to 
and . The Greek letters along the -axis indicate points of high symmetry in the Brillouin zone.

The grand potential for the phonon gas is
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Note that  since there are  unit cells, each of volume . The entropy is given by  and thus the heat capacity is

Note that as  we have , and therefore

This is the classical Dulong-Petit limit of  per quadratic degree of freedom; there are  atoms moving in  dimensions, hence  positions and an equal number of momenta, resulting in a
high temperature limit of .

Einstein and Debye models
HIstorically, two models of lattice vibrations have received wide attention. First is the so-called Einstein model, in which there is no dispersion to the individual phonon modes. We approximate 

, in which case

At low temperatures, the contribution from each branch vanishes exponentially, since . Real solids don’t behave this way.

A more realistic model. due to Debye, accounts for the low-lying acoustic phonon branches. Since the acoustic phonon dispersion vanishes linearly with  as , there is no temperature at which
the acoustic phonons ‘freeze out’ exponentially, as in the case of Einstein phonons. Indeed, the Einstein model is appropriate in describing the  optical phonon branches, though it fails
miserably for the acoustic branches.

In the vicinity of the zone center  (also called  in crystallographic notation) the  acoustic modes obey a linear dispersion, with . This results in an acoustic phonon density of
states in  dimensions of

where  is an average acoustic phonon velocity ( speed of sound) defined by

and  is a cutoff known as the Debye frequency. The cutoff is necessary because the phonon branch does not extend forever, but only to the boundaries of the Brillouin zone. Thus, 
 should roughly be equal to the energy of a zone boundary phonon. Alternatively, we can define  by the normalization condition

This allows us to write .

The specific heat due to the acoustic phonons is then

where  is the Debye temperature and

Therefore,

Thus, the heat capacity due to acoustic phonons obeys the Dulong-Petit rule in that , corresponding to the three acoustic degrees of freedom per unit cell. The remaining
contribution of  to the high temperature heat capacity comes from the optical modes not considered in the Debye model. The low temperature  behavior of the heat capacity of
crystalline solids is a generic feature, and its detailed description is a triumph of the Debye model.

Melting and the Lindemann criterion

Atomic fluctuations in a crystal

For the one-dimensional chain, Equation [siva] gives

Therefore the RMS fluctuations at each site are given by

where  is the Bose occupancy function.

[debtab] Debye temperatures (at ) and melting points for some common elements (carbon is assumed to be diamond and not graphite). (Source: the internet!)

Element Ag Al Au C Cd Cr Cu Fe Mn

(K)
227 433 162 2250 210 606 347 477 409

 (K) 962 660 1064 3500 321 1857 1083 1535 1245
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Element Ag Al Au C Cd Cr Cu Fe Mn

Element Ni Pb Pt Si Sn Ta Ti W Zn

(K)
477 105 237 645 199 246 420 383 329

 (K) 1453 327 1772 1410 232 2996 1660 3410 420

Let us now generalize this expression to the case of a -dimensional solid. The appropriate expression for the RMS position fluctuations of the  basis atom in each unit cell is

Here we sum over all wavevectors  in the first Brilliouin zone, and over all normal modes . There are  normal modes per unit cell  branches of the phonon dispersion . (For the one-
dimensional chain with  and  there was only one such branch to consider). Note also the quantity , which has units of mass and is defined in terms of the polarization vectors 

 as

The dimensions of the polarization vector are , since the generalized orthonormality condition on the normal modes is

where  is the mass of the atom of species  within the unit cell ( ). For our purposes we can replace  by an appropriately averaged quantity which we call  ; this ‘effective
mass’ is then independent of the mode index  as well as the wavevector . We may then write

where we have dropped the site label  since translational invariance guarantees that the fluctuations are the same from one unit cell to the next. Note that the fluctuations  can be divided into a
temperature-dependent part  and a temperature-independent quantum contribution  , where

Let’s evaluate these contributions within the Debye model, where we replace  by

We then find

where

We can now extract from these expressions several important conclusions:

The  contribution to the the fluctuations, , diverges in  dimensions. Therefore there are no one-dimensional quantum solids.
The thermal contribution to the fluctuations, , diverges for any  whenever . This is because the integrand of  goes as  as . Therefore, there are no two-
dimensional classical solids.
Both the above conclusions are valid in the thermodynamic limit. Finite size imposes a cutoff on the frequency integrals, because there is a smallest wavevector , where  is the
(finite) linear dimension of the system. This leads to a low frequency cutoff , where  is the appropriately averaged acoustic phonon velocity from Equation [DMcave], which
mitigates any divergences.

Lindemann melting criterion

An old phenomenological theory of melting due to Lindemann says that a crystalline solid melts when the RMS fluctuations in the atomic positions exceeds a certain fraction  of the lattice constant 
. We therefore define the ratios

with .

Let’s now work through an example of a three-dimensional solid. We’ll assume a single element basis . We have that

According to table [DMtemps], the melting temperature always exceeds the Debye temperature, and often by a great amount. We therefore assume , which puts us in the small 
limit of . We then find
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The total position fluctuation is of course the sum . Consider for example the case of copper, with amu and Å. The Debye temperature is 
. From this we find , which says that at  the RMS fluctuations of the atomic positions are not quite three percent of the lattice spacing ( the distance

between neighboring copper atoms). At room temperature, , one finds , which is about twice as large as the quantum contribution. How big are the atomic position fluctuations
at the melting point? According to our table,  for copper, and from our formulae we obtain . The Lindemann criterion says that solids melt when .

We were very lucky to hit the magic number  with copper. Let’s try another example. Lead has amu and Å. The Debye temperature is 
(‘soft phonons’), and the melting point is . From these data we obtain ,  and . Same ballpark.

We can turn the analysis around and predict a melting temperature based on the Lindemann criterion , where . We obtain

We call  the Lindemann temperature. Most treatments of the Lindemann criterion ignore the quantum correction, which gives the  contribution inside the above parentheses. But if we
are more careful and include it, we see that it may be possible to have . This occurs for any crystal where .

Consider for example the case of He, which at atmospheric pressure condenses into a liquid at  and remains in the liquid state down to absolute zero. At , it never solidifies!
Why? The number density of liquid He at atm and  is . Let’s say the Helium atoms want to form a crystalline lattice. We don’t know a priori what the lattice
structure will be, so let’s for the sake of simplicity assume a simple cubic lattice. From the number density we obtain a lattice spacing of Å. OK now what do we take for the Debye
temperature? Theoretically this should depend on the microscopic force constants which enter the small oscillations problem ( the spring constants between pairs of helium atoms in equilibrium).
We’ll use the expression we derived for the Debye frequency, , where  is the unit cell volume. We’ll take , which is the speed of
sound in liquid helium at . This gives . We find , and if we take  this gives , which significantly exceeds .
Thus, the solid should melt because the RMS fluctuations in the atomic positions at absolute zero are huge: . By applying pressure, one can get 
He to crystallize above atm (at absolute zero). Under pressure, the unit cell volume  decreases and the phonon velocity  increases, so the Debye temperature itself increases.

It is important to recognize that the Lindemann criterion does not provide us with a theory of melting per se. Rather it provides us with a heuristic which allows us to predict roughly when a solid
should melt.

Goldstone bosons
The vanishing of the acoustic phonon dispersion at  is a consequence of Goldstone’s theorem which says that associated with every broken generator of a continuous symmetry there is an
associated bosonic gapless excitation ( one whose frequency  vanishes in the long wavelength limit). In the case of phonons, the ‘broken generators’ are the symmetries under spatial translation in
the , , and  directions. The crystal selects a particular location for its center-of-mass, which breaks this symmetry. There are, accordingly, three gapless acoustic phonons.

Magnetic materials support another branch of elementary excitations known as spin waves, or magnons. In isotropic magnets, there is a global symmetry associated with rotations in internal spin
space, described by the group . If the system spontaneously magnetizes, meaning there is long-ranged ferromagnetic order , or long-ranged antiferromagnetic order , then
global spin rotation symmetry is broken. Typically a particular direction is chosen for the magnetic moment (or staggered moment, in the case of an antiferromagnet). Symmetry under rotations about
this axis is then preserved, but rotations which do not preserve the selected axis are ‘broken’. In the most straightforward case, that of the antiferromagnet, there are two such rotations for , and
concomitantly two gapless magnon branches, with linearly vanishing dispersions . The situation is more subtle in the case of ferromagnets, because the total magnetization is conserved by the
dynamics (unlike the total staggered magnetization in the case of antiferromagnets). Another wrinkle arises if there are long-ranged interactions present.

For our purposes, we can safely ignore the deep physical reasons underlying the gaplessness of Goldstone bosons and simply posit a gapless dispersion relation of the form . The
density of states for this excitation branch is then

where  is a constant and  is the cutoff, which is the bandwidth for this excitation branch.  Normalizing the density of states for this branch results in the identification .

The heat capacity is then found to be

where  and

which is a generalization of our earlier results. Once again, we recover Dulong-Petit for , with .

In an isotropic ferromagnet, a ferromagnetic material where there is full SU(2) symmetry in internal ‘spin’ space, the magnons have a  dispersion. Thus, a bulk three-dimensional isotropic
ferromagnet will exhibit a heat capacity due to spin waves which behaves as  at low temperatures. For sufficiently low temperatures this will overwhelm the phonon contribution, which behaves
as .
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