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7.6: Mean Field Theory of Fluctuations

Correlation and response in mean field theory
Consider the Ising model,

where the local magnetic field on site  is now . We assume without loss of generality that the diagonal terms vanish: . Now

consider the partition function  as a function of the temperature  and the local field values . We have

Thus,

Expressions such as , , are in general called correlation functions. For example, we define the spin-spin correlation function  as

Expressions such as  and  are called response functions. The above relation between correlation functions and response functions, 

, is valid only for the equilibrium distribution. In particular, this relationship is invalid if one uses an approximate distribution,
such as the variational density matrix formalism of mean field theory.

The question then arises: within mean field theory, which is more accurate: correlation functions or response functions? A simple argument
suggests that the response functions are more accurate representations of the real physics. To see this, let’s write the variational density matrix 

 as the sum of the exact equilibrium (Boltzmann) distribution  plus a deviation :

Then if we calculate a correlator using the variational distribution, we have

Thus, the variational density matrix gets the correlator right to first order in . On the other hand, the free energy is given by

Here  denotes a state of the system, , where every spin polarization is specified. Since the free energy is an extremum
(and in fact an absolute minimum) with respect to the distribution, the second term on the RHS vanishes. This means that the free energy is
accurate to second order in the deviation .

Calculation of the response functions
Consider the variational density matrix

where
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The variational energy  is

and the entropy  is

Setting the variation , with , we obtain the mean field equations,

where we use the summation convention: . Suppose  and  is small. Then we can expand the RHS of the above
mean field equations, obtaining

Thus, the susceptibility tensor  is the inverse of the matrix :

where  is the identity. Note also that so-called connected averages of the kind in Equation [connavg] vanish identically if we compute them
using our variational density matrix, since all the sites are independent, hence

and therefore  if we compute the correlation functions themselves from the variational density matrix, rather than from the free energy 
. As we have argued above, the latter approximation is more accurate.

Assuming , where  is a Bravais lattice site, we can Fourier transform the above equation, resulting in

Once again, our definition of lattice Fourier transform of a function  is

where  is the unit cell in real space, called the Wigner-Seitz cell, and  is the first Brillouin zone, which is the unit cell in reciprocal space.
Similarly, we have

where

Here we have assumed inversion symmetry for the lattice, in which case

On cubic lattices with nearest neighbor interactions only, one has , where  is the lattice constant and  is the dimension of
space.
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Thus, with the identification , we have

where

is the correlation length. With the definition

as , we obtain the mean field correlation length exponent . The exact result for the two-dimensional Ising model is ,
whereas  for the  Ising model. Note that  diverges as  for .

In real space, we have

where

Note that  is properly periodic under , where  is a reciprocal lattice vector, which satisfies  for any direct
Bravais lattice vector . Indeed, we have

where  is a nearest neighbor separation vector, and where in the second line we have assumed nearest neighbor interactions only. On cubic
lattices in  dimensions, there are  nearest neighbor separation vectors, , where . The real space susceptibility is
then

where  is a general direct lattice vector for the cubic Bravais lattice in  dimensions, and the  are integers.

The long distance behavior was discussed in chapter 6 (see §6.5.9 on Ornstein-Zernike theory ). For convenience we reiterate those results:

In ,

In , with  and  fixed,

where the  are dimensionless constants.
In , with  and  fixed (  at fixed separation ),

In  dimensions we obtain
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where the  are dimensionless constants.

Beyond the Ising model
Consider a general spin model, and a variational density matrix  which is a product of single site density matrices:

where  is the local magnetization and  , which may be a scalar (,  in the Ising model previously discussed), is the local

spin operator. Note that  depends parametrically on the variational parameter(s) . Let the Hamiltonian be

The variational free energy is then

where the single site free energy  in the absence of an external field is given by

We then have

For the noninteracting system, we have  , and the weak field response must be linear. In this limit we may write 
, and we conclude

Note that this entails the following expansion for the single site free energy in zero field:

Finally, we restore the interaction term and extremize  by setting . To linear order, then,

Typically the local susceptibility is a scalar in the internal spin space, , in which case we obtain

In Fourier space, then,

where  is the matrix whose elements are . If , then the susceptibility is isotropic in spin space, with

Consider now the following illustrative examples:

Quantum spin  with  : We take the  axis to be that of the local external magnetic field,  . Write 
, where  is obtained implicitly from the relation . The normalization
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μν
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The relation between , , and  is then given by

The free-field single-site free energy is then

whence

and we thereby obtain the result

which is the Curie susceptibility.
Classical spin  with  and  an -component unit vector : We take the single site density matrix to be 

. The single site field-free partition function is then

and therefore

from which we read off . Note that this agrees in the classical ( ) limit, for , with our previous result.
Quantum spin  with  : This corresponds to so-called easy plane anisotropy, meaning that the single site energy  is
minimized when the local spin vector  lies in the  plane. As in example (i), we write , yielding the
same expression for  and the same relation between  and . What is different is that we must evaluate the local energy,

We now have , from which we obtain the susceptibility

Note that the local susceptibility no longer diverges as , because there is always a gap in the spectrum of .
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