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Summary
 Distributions: Equilibrium statistical mechanics describes systems of particles in terms of time-independent statistical

distributions. Where do these distributions come from? How does a system with a given set of initial conditions come to have time-
independent properties which can be described in this way?

 Master equation: Let  be the probability that a system is in state  at time . The evolution of the  is given by 
, where the rates  are nonnegative. Conservation of probability means 

 for all , hence  is a left eigenvector with eigenvalue zero. The corresponding right eigenvector is
the equilibrium distribution: . Detailed balance, , is a more stringent condition than the
requirement of a stationary distribution alone. Boltzmann’s -theorem: , where . Thus, the ME
dynamics are irreversible. But the underlying microscopic laws are reversible!

 Hamiltonian evolution: , where  is a point in -dimensional phase space, and 

. Phase space flow is then incompressible: , hence phase space densities  obey Liouville’s

equation,  (follows from continuity and incompressibility). Any function , where each  is
conserved by the phase space dynamics, will be a stationary solution to Liouville’s equation. In particular, the microcanonical
distribution,  is such a solution, where  is the density of states.

 Poincaré Recurrence: Let  be the -advance mapping for a dynamical system . If (i)  is
invertible, (ii)  preserves phase space volumes, and (iii) the volume of phase accessible given the dynamics and initial conditions
is finite, then in any finite neighborhood  of phase space there exists a point  such that  with  finite. This
means all the perfume molecules eventually go back inside the bottle (if it is opened in a sealed room).

 Kac ring model: Normally the recurrence time is orders of magnitude greater than the age of the Universe, but for the Kac ring
model, one can simulate the recurrence phenomenon easily. The model consists of a ring of  sites, and a quenched ( fixed)
random distribution of flippers on  of the links . On each site lies a discrete spin variable which is polarized either up or
down. The system evolves discretely by all spins advancing clockwise by one site during a given time step. All spins which pass
through a flipper reverse their polarization. Viewed probabilistically, if  is the probability any given spin is up at time , then
under the assumptions of the Stosszahlansatz , where  is the flipper density. This leads to
exponential relaxation with a time scale , but the recurrence time is clearly  (if  is even) or  (if  is
odd).

 Ergodicity and mixing: A dynamical system is ergodic if

This means long time averages are equal to phase space averages. This does not necessarily mean that the phase space distribution
will converge to the microcanonical distribution. A stronger condition, known as mixing, means that the distribution spreads out
’evenly’ over the phase space hypersurface consistent with all conservation laws. Thus, if  is a phase space map, and if 

 is the fraction of the energy hypersurface (assume no conserved quantities other than ) contained in
, then  is mixing if . An example of a mixing map on a two-dimensional torus is the Arnold

’cat map’,
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 Thermalization of quantum systems: This is a current research topic. One proposal, due to Deutsch (1991) and Srednicki (1994) is
the eigenstate thermalization hypothesis (ETH). This says that thermal information is encoded in each eigenstate, such that if 

, then

the expectation value of some local, translationally-invariant, few-body operator  in the state , is given by its average over a
small energy window containing . If this is the case, then so long as we prepare an initial state such that the spread of energies is
within  of some value , where  with  the ground state energy, then , and time averages
become energy averages. Equivalently, the reduced density matrix  corresponding to a system  which is a subset of a universe 

, with  (  is the ’world’), is a thermal density matrix: , where  is the Hamiltonian restricted to 
, and with temperature fixed by the requirement , where the last factor is a ratio of volumes. ETH

does not hold for so-called integrable models with an extensive number of independent conserved quantities. But it has been
shown, both perturbatively as well as numerically, to hold for certain model nonintegrable systems. An interesting distinction
between classical and quantum thermalization: in the quantum case, time evolution does not create the thermal state. Rather, it
reveals the thermal distribution which is encoded in each eigenstate after sufficient time that dephasing has occurred and all
correlations between the different wavefunction expansion coefficients is lost.

Endnotes
1. Exceptions involve quantities which are conserved by collisions, such as overall particle number, momentum, and energy. These

quantities relax to equilibrium in a special way called hydrodynamics.↩
2. ‘Compact’ in the parlance of mathematical analysis means ‘closed and bounded’.↩
3. The equality  is most easily proven by bringing the matrix to diagonal form via a similarity

transformation, and proving the equality for diagonal matrices.↩
4. Actually, the microscopic laws of physics are not time-reversal invariant, but rather are invariant under the product ,

where  is parity,  is charge conjugation, and  is time reversal.↩
5. The natural numbers  is the set of non-negative integers .↩
6. In the nonrelativistic limit, . For relativistic particles, we have .↩
7. Actually, what the recurrence theorem guarantees is that there is a configuration arbitrarily close to the initial one which recurs,

to within the same degree of closeness.↩
8. Unfortunately, many important physicists were German and we have to put up with a legacy of long German words like

Gedankenexperiment, Zitterbewegung, Brehmsstrahlung, Stosszahlansatz, Kartoffelsalat,↩
9. The cat map gets its name from its initial application, by Arnold, to the image of a cat’s face.↩

10. There is something beyond mixing, called a -system. A -system has positive Kolmogorov-Sinai entropy. For such a system,
closed orbits separate exponentially in time, and consequently the Liouvillian  has a Lebesgue spectrum with denumerably
infinite multiplicity.↩

11. More generally, we could project onto a -dimensional subspace, in which case there would be  eigenvalues of  and 
 eigenvalues of , where  is the dimension of the entire vector space.↩

12. Recall that in systems with no disorder, eigenstates exhibit Bloch periodicity in space.↩
13. Since the probability  is real, if the eigenvalue with the smallest ( largest negative) real part is complex, there will be a

corresponding complex conjugate eigenvalue, and summing over all eigenvectors will result in a real value for .↩

This page titled 3.S: Summary is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

( ) =( )( )  mod   .
q ′

p′

1

1

1

2

q

p
Z

2 (3.S.2)

∙

∈ [E,E+ΔE]Eα

⟨ |A | ⟩ = ⟨A  ,Ψα Ψα ⟩
Eα

(3.S.3)

A | ⟩Ψα

Eα

ΔE E ΔE ≪ E−E0 E0 ⟨A = ⟨A⟩T ⟩E
ρS S

U W ∪S = U W =ρS Z−1
S e−βĤS ĤS
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