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7.8: Ginzburg-Landau Theory

Ginzburg-Landau free energy

Including gradient terms in the free energy, we write

In principle, any term which does not violate the appropriate global symmetry will turn up in such an expansion of the free energy,
with some coefficient. Examples include  (both  and  are odd under time reversal), , We now ask: what function

 extremizes the free energy functional ? The answer is that  must satisfy the corresponding Euler-
Lagrange equation, which for the above functional is

If  and  is small (we assume  and ), we may neglect the  and  terms and write

whose solution is obtained by Fourier transform as

which, with  appropriately defined, recapitulates the result in Equation [mhqeqn]. Thus, we conclude that

which should be compared with Equation [xhiheqn]. For continuous functions, we have

We can then derive the result

where

where the correlation length is , as before.

If  then there is a spontaneous magnetization and we write . Assuming  is weak, we then have two
equations

If  is small, we have  and
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Domain wall profile
A particularly interesting application of Ginzburg-Landau theory is its application toward modeling the spatial profile of defects
such as vortices and domain walls. Consider, for example, the case of Ising ( ) symmetry with . We expand the free energy
density to order :

We assume , corresponding to . Consider now a domain wall, where  and 
, where  is the equilibrium magnetization, which we obtain from the Euler-Lagrange equation,

assuming a uniform solution where . This gives . It is useful to scale  by , writing 

. The scaled order parameter function  interpolates between  and .

It also proves useful to rescale position, writing . Then we obtain

We assume  is only a function of one coordinate, . Then the Euler-Lagrange equation becomes

where

The ‘potential’  is an inverted double well, with maxima at . The equation , where dot denotes
differentiation with respect to , is simply Newton’s second law with time replaced by space. In order to have a stationary solution

at  where , the total energy must be , where . This leads to the first order
differential equation

with solution

Restoring the dimensionful constants,

where the coherence length  diverges at the Ising transition .

Derivation of Ginzburg-Landau free energy

We can make some progress in systematically deriving the Ginzburg-Landau free energy. Consider the Ising model,

where now  and  are the interaction energies and local magnetic fields in units of . The last term
on the RHS above cancels out any contribution from diagonal elements of . Our derivation makes use of a generalization of the
Gaussian integral,

Z2 h = 0
m4
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The generalization is \[\int\limits_{-\infty}^\infty\!\!\!dx\ns_1\cdots\!\!\!\int\limits_{-\infty}^\infty\!\!\!dx\ns_N\> e^{-{1\over 2}
A\ns_{ij} x\ns_ix\ns_j - b\ns_i x\ns_i}={(2\pi)^{N/2}\over \sqrt

\ e^\Tra \bigg[e^\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_1 \cdots\!\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_N\> e^{-{1\over 2}
K^{-1}_{ij}\phi\ns_i\phi\ns_j}\,\Tra e^{(\phi\ns_i+h\ns_i)\sigma\ns_i}\\ &={det}^{-1/2}(2\pi K)\> e^{-{1\over 2}
K\ns_{ii}}\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_1 \cdots\!\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_N\> e^{-{1\over 2}
K^{-1}_{ij}\phi\ns_i\phi\ns_j}\,e^{\sum_i \ln\left[2\cosh(\phi\ns_i+h\ns_i)\right]}\\ &\equiv \int\limits_{-
\infty}^\infty\!\!\!d\phi\ns_1\cdots\!\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_N\> e^{-\RPhi(\phi\ns_1,\ldots,\phi\ns_N)}\ ,
\end{split}\] where

We assume the model is defined on a Bravais lattice, in which case we can write . We can then define the Fourier
transforms,

and

A few remarks about the lattice structure and periodic boundary conditions are in order. For a Bravais lattice, we can write each
direct lattice vector  as a sum over  basis vectors with integer coefficients, viz.

where  is the dimension of space. The reciprocal lattice vectors  satisfy

and any wavevector  may be expressed as

We can impose periodic boundary conditions on a system of size  by requiring

This leads to the quantization of the wavevectors, which must then satisfy

and therefore  , where  is an integer. There are then  independent values of , which can
be taken to be those corresponding to .

Let’s now expand the function  in powers of the , and to first order in the external fields . We obtain

dx =(  .∫
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On a -dimensional lattice, for a model with nearest neighbor interactions  only, we have , where  is a
nearest neighbor separation vector. These are the eigenvalues of the matrix . We note that  is then not positive definite, since
there are negative eigenvalues . To fix this, we can add a term  everywhere along the diagonal. We then have

Here we have used the inversion symmetry of the Bravais lattice to eliminate the imaginary term. The eigenvalues are all positive
so long as , where  is the lattice coordination number. We can therefore write  for small , with 

. Thus, we can write

To lowest order in  the RHS is isotropic if the lattice has cubic symmetry, but anisotropy will enter in higher order terms. We’ll
assume isotropy at this level. This is not necessary but it makes the discussion somewhat less involved. We can now write down
our Ginzburg-Landau free energy density:

valid to lowest nontrivial order in derivatives, and to sixth order in .

One might wonder what we have gained over the inhomogeneous variational density matrix treatment, where we found

Surely we could expand  and obtain a similar expression for . However, such a derivation using the
variational density matrix is only approximate. The method outlined in this section is exact.

Let’s return to our complete expression for :

where

Here we have defined

and
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where

We expand the second exponential factor in a Taylor series, allowing us to write

where

and

To evaluate the various terms in the expansion of Equation [ZZZ], we invoke Wick’s theorem, which says

where the sets  are all permutations of the set . In particular, we have

In our case, we have

Thus, if we write  and retain only the quartic term in , we obtain

Note that if we set  to be diagonal, then  and hence  are constant functions of . The  term then vanishes,
which is required since the free energy cannot depend on the diagonal elements of .

Ginzburg criterion

Let us define  to be the usual ( thermodynamic) Helmholtz free energy. Then

where the functional  is of the Ginzburg-Landau form, given in Equation [DWFE]. The integral above is a functional
integral. We can give it a more precise meaning by defining its measure in the case of periodic functions  confined to a
rectangular box. Then we can expand
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and we define the measure

Note that the fact that  means that . We’ll assume  and  and we’ll explore limit  from
above to analyze the properties of the critical region close to . In this limit we can ignore all but the quadratic terms in , and we
have

Thus,

We now assume that , where  is the dimensionless quantity

known as the reduced temperature.

We now compute the heat capacity . We are really only interested in the singular contributions to , which means
that we’re only interested in differentiating with respect to  as it appears in . We divide by  where  is the number of
unit cells of our system, which we presume is a lattice-based model. Note  where  is the volume and  the lattice
constant. The dimensionless heat capacity per lattice site is then

where  is the correlation length, and where  is an ultraviolet cutoff. We define , in
which case

where . Thus,

For , mean field theory is qualitatively accurate, with finite corrections. In dimensions , the mean field result is
overwhelmed by fluctuation contributions as  ( as ). We see that MFT is sensible provided the fluctuation
contributions are small, provided

which entails , where
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≡ qξq̄
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d > 4 d ≤ 4
t → 0+ T → T +

c

≪ 1 ,R−4
∗ a

d ξ4−d (7.8.46)

t\gg t\ns_\ssr{G}

t\ns_\ssr{G}=\bigg({\Sa\over R\ns_*}\bigg)^{\!{2d\over 4-d}}
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is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely , is known as
the Ginzburg criterion. The region  is known as the critical region.

In a lattice ferromagnet, as we have seen,  is on the scale of the lattice spacing itself, hence  and the
critical regime is very large. Mean field theory then fails quickly as . In a (conventional) three-dimensional superconductor,

 is on the order of the Cooper pair size, and , hence  is
negligibly narrow. The mean field theory of the superconducting transition – BCS theory – is then valid essentially all the way to 

.
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