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4.S: Summary
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Summary

e Distributions: Let o(¢) be a normalized distribution on phase space. Then

(F(0)) = Tr o) £(9)] = / dp o(9) £() (45.1)

where dpp = W (p) [, dy; is the phase space measure. For a Hamiltonian system of N identical indistinguishable point particles
in d space dimensions, we have

1 & dip, d,

dp = — .
gy i1 (2mh)?

(4.5.2)

The # prefactor accounts for indistinguishability. Normalization means Tr o = 1.

e Microcanonical ensemble (uCE): o(¢) = §(E — H(p))/D(E) , where D(E) = Tr §(E — H(p)) is the density of states and
H (p) = H (q,p) is the Hamiltonian. The energy F, volume V/, and particle number N are held fixed. Thus, the density of states
D(E,V,N) is a function of all three variables. The statistical entropy is S(E,V,N)=k;InD(E,V,N), where k; is
Boltzmann’s constant. Since D has dimensions of E~!, an arbitrary energy scale is necessary to convert D to a dimensionless
quantity before taking the log. In the thermodynamic limit, one has

S(E,V,N) :Nk[,(b(%, %) . (4.8.3)

The differential of E is defined to be dE =T'dS —pdV +udN ,thus T = (g—g)V’N is the temperature, p = — (g_5>S,N is the

SE
N

the system itself is halved.

pressure, and p = ( ) is the chemical potential. Note that £, S, V, and N are all extensive quantities, they are halved when
A%

)

e Ordinary canonical ensemble (OCE): In the OCE, energy fluctuates, while V, N, and the temperature 7' are fixed. The
distribution is o = Z ' e ## , where 8 = 1/k,T and Z = Tr e P is the partition function. Note that Z is the Laplace transform
of the density of states: Z = [dE D(E) e #F . The Boltzmann entropy is S = —k; Tr (¢In ). This entails F = E —T'S , where
F=—k;TInZ is the Helmholtz free energy, a Legendre transform of the energy E. From this we derive
dF =—-SdT —pdV +udN .

e Grand canonical ensemble (GCE): In the GCE, both E and N fluctuate, while 7', V, and chemical potential x remain fixed.

Then o =21 ¢ BH-uN) , where 2 =Tr e BH-1N) s the grand partition function and Q2 = —k;T" In= is the grand potential.
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Assuming [I—:T , N ] =0, we can label states | n ) by both energy and particle number. Then P, = Z~! e PE—1N) We also have
Q=E—-TS—uN ,hencedQ =—-SdT'—pdV —Ndu .

e Thermodynamics: From E =Tr(gH), we have dE=Tr(Hdg)+Tr(odH)= \mathchar'26Q — \mathchar'26W
where \mathchar'26Q =T dS and

\mathchar' 26W = — Tr (o dH) = Z P, Z F,dX,, (4.8.4)
with P, = Z e Fu/*3T  Here F, = —<g—)€> is the generalized force conjugate to the generalized displacement X ,.

e Thermal contact: In equilibrium, two systems which can exchange energy satisfy T} =T;,. Two systems which can exchange
volume satisfy p, /T} = p, /T,. Two systems which can exchange particle number satisfy p, /T} = i, /T, .

e Gibbs-Duhem relation: Since E(S,V,N) is extensive, Euler’s theorem for homogeneous functions guarantees that
E =TS —pV +uN . Taking the differential, we obtain the equation SdT —Vdp+ Ndu =0 , so there must be a relation
among any two of the intensive quantities 7', p, and p.

o Generalized susceptibilities: Within the OCE', let H(\) = H, — 3, ), Ql , where QZ are observables with [Qw QJ] =0. Then

. oF 10Q, 1 _OF
T,V,N:A\)=(0,) = —— | T,V,N; A - .
@l )= Q) X, X ) =7 X, V 0, OX,

(4.8.5)

The quantities x,, are the generalized susceptibilities.

e Ideal gases: For H = ZZ 1 5 »one finds Z(T,V,N) = 1 (}\%)N , where \(\lambda\ns_T=\sqrt
T

\) is the thermal wavelength. Thus F' = Nk;T In(N/V) — %dN kzTInT + Na , where a is a constant. From this one finds

p=— (g—g)T N nkgT , which is the ideal gas law, with n = % the number density. The distribution of velocities in d = 3
dimensions is ’given by
1 N m 3/2 ,
_ /= _ _ —mv?/2kpT
5= (5 2o v)) = (5z) o™, (4.5.6)

and this leads to a speed distribution f (v) = 47v® f(v).

e Example: For N noninteracting spins in an external magnetic field H, the Hamiltonian is H= —poH ZfL o;, where o, = £1.
The spins, if on a lattice, are regarded as distinguishable. Then Z = (%, where (=3, _., e®7 =2 cosh(Bu,H). The
magnetization and magnetic susceptibility are then

H N, H
M:_(a_F> =Ny, tanh(uo ) , X = oM _ NO sech? (,uo_) . (4.8.7)
OH ) kT O0H kT kT

2
e Example: For noninteracting particles with kinetic energy zp_m and internal degrees of freedom, Z,, = # (}\%)NﬁN (T"), where
° T

E&T)=Tr e Phint s the partition function for the internal degrees of freedom, which include rotational, vibrational, and electronic
excitations. One still has pV' = Nk,T, but the heat capacities at constant V and p are

oS

B 1 ., S
C’V_T<8T)VN_2deB NTY'(T) , G, T(

6T) =C, + Nk, , (4.8.8)

where ¢(T) = —k;T In&(T) .

1. The generalization to the GCE is straightforward.<

Endnotes

1. We write the Hamiltonian as H (classical or quantum) in order to distinguish it from magnetic field (H) or enthalpy ().
2. More on this in chapter 5.
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3. The factor of % preceding 2, . in Equation appears because §(u? —1) = % o(u—1)+ % d(u+1) .Since u = |u| >0,
the second term can be dropped.

4. Note that for integer argument, I'(k) = (k —1)!

5. See §2.7.4.

6. See T.-C. Lu and T. Grover, arXiv 1709.08784.

7. In applying Equation to the denominator of Equation , we shift &' by E and integrate over the difference
6&' = &' — E , retaining terms up to quadratic order in §&’ in the argument of the exponent.

8. In deriving Equation , we have used the so-called Feynman-Hellman theorem of quantum mechanics:

d(n|H|n) = (n| dH |n), if |n) is an energy eigenstate.
9. Nota bene we are concerned with classical spin configurations only — there is no superposition of states allowed in this model!

10. Note that while we cannot simultaneously specify the eigenvalues of two components of L along axes fixed in space, we can
simultaneously specify the components of L along one axis fixed in space and one axis rotating with a body. See Landau and
Lifshitz, Quantum Mechanics, §103.

11. See §72 of Landau and Lifshitz, Quantum Mechanics, which, in my humble estimation, is the greatest physics book ever
written.

12. See Landau and Lifshitz, Quantum Mechanics, §86.

13. Note that there is no prime on the k sum for ', as we have divided the logarithm of Z by two and replaced the half sum by the
whole sum.

14. The hyperfine splitting in hydrogen is on the order of (m./m,) a* m.c? ~ 107 eV, which is on the order of 0.01K. Here
a = e? /hc is the fine structure constant.
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