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6.S: Summary
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Summary
 Lattice-based models: Amongst the many lattice-based models of physical interest are

Here  is the coupling between neighboring sites and  (or ) is a polarizing field which breaks a global symmetry (groups  , 
 , and , respectively).  describes a ferromagnet and  an antiferromagnet. One can generalize to include further

neighbor interactions, described by a matrix of couplings . When , the degrees of freedom at each site are independent,
and , where  is the single site partition function. When  it is in general impossible to
compute the partition function analytically, except in certain special cases.

 Transfer matrix solution in : One such special case is that of one-dimensional systems. In that case, one can write 
, where  is the transfer matrix. Consider a general one-dimensional model with nearest-neighbor interactions and

Hamiltonian

where  describes the local degree of freedom, which could be discrete or continuous, single component or multi-component.
Then

The form of the transfer matrix is not unique, although its eigenvalues are. We could have taken 
, for example. The interaction matrix  may or may not be symmetric itself. On

a ring of  sites, one has , where  are the eigenvalues and  the rank of . In the thermodynamic limit, the
partition function is dominated by the eigenvalue with the largest magnitude.

 Higher dimensions: For one-dimensional classical systems with finite range interactions, the thermodynamic properties vary
smoothly with temperature for all . The lower critical dimension  of a model is the dimension at or below which there is
no finite temperature phase transition. For models with discrete global symmetry groups, , while for continuous global
symmetries . In zero external field the ( ) square lattice Ising model has a critical temperature . On the
honeycomb lattice, . For the  model on the cubic lattice, . In general, for unfrustrated systems, one
expects for  that , where  is the lattice coordination number ( number of nearest neighbors).

 Nonideal classical gases: For , one has , where
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ĤIsing
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Ĥ
O(n)

=−J −H∑
⟨ij⟩

σi σj ∑
i

σi

=−J −H∑
⟨ij⟩

δ ,σi σj
∑
i

δσ,1

=−J ⋅ −H ⋅∑
⟨ij⟩

n̂i n̂j ∑
i

n̂i

;

;

;

∈ {−1,+1}σi

∈ {1,… , q}σi

∈  .n̂i Sn−1

J H H Z2

Sq O(n) J > 0 J < 0

Jij J = 0

Z(T ,N , J = 0,H) = ζN ζ(T ,H) J ≠ 0

∙ d = 1

Z = Tr( )RN R

=− U( , )− W ( ) ,Ĥ ∑
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is the configuration integral. For the one-dimensional Tonks gas of  hard rods of length  confined to the region , one
finds , whence the equation of state . For more complicated interactions, or in
higher dimensions, the configuration integral is analytically intractable.

 Mayer cluster expansion: Writing the Mayer function , and assuming  is finite, one can expand the
pressure  and  as power series in the fugacity , viz.

The sum is over unlabeled connected clusters , and  is the number of vertices in . The cluster integral  is obtained by
assigning labels  to all the vertices, and computing

where  appears in the product if there is a link between vertices  and .  is the symmetry factor of the cluster, defined to be the
number of elements from the symmetric group  which, acting on the labels, would leave the product  invariant. By
definition, a cluster consisting of a single site has . Translational invariance implies . One then inverts 
to obtain , and inserting the result into the equation for  one obtains the virial expansion of the equation of state,

where

with  the set of all one-particle irreducible -site clusters. An irreducible cluster is a connected cluster which does not break
apart into more than one piece if any of its sites and all of that site’s connecting links are removed from the graph. Any site whose
removal, along with all its connecting links, would result in a disconnected graph is called an articulation point. Irreducible clusters
have no articulation points.

 Liquids: In the ordinary canonical ensemble,

where  is the total potential energy, and  is the configuration integral,

We can use , or its grand canonical generalization, to compute thermal averages, such as the average local density

and the two particle density matrix, two-particle density matrix  is defined by
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 Pair distribution function: For translationally invariant simple fluids consisting of identical point particles interacting by a two-
body central potential , the thermodynamic properties follow from the behavior of the pair distribution function (pdf),

where  is the total volume and  the average density. The average energy per particle is then

Here  is implicitly dependent on  and  as well In the grand canonical ensemble, the pdf satisfies the compressibility sum
rule, , where  is the isothermal compressibility. Note . The pdf also implies the
virial equation of state,

 Scattering: Scattering experiments are sensitive to momentum transfer  and energy transfer , and allow determination of the
dynamic structure factor

where  and  are (quantum) states of the system being studied, and  is the equilibrium probability for state .  Integrating
over all frequency, one obtains the static structure factor,

 Theories of fluid structure – The BBGKY hierarchy is set of coupled integrodifferential equations relating - and -
particle distribution functions. In order to make progress, a truncation must be performed, expressing higher order distributions in
terms of lower order ones. This results in various theories of fluids, known by their defining equations for the pdf . Examples
include the Born-Green-Yvon equation, the Percus-Yevick equation, the hypernetted chains equation, the Ornstein-Zernike
approximation, Except in the simplest cases (such as the OZ approximation), these equations must be solved numerically. OZ
approximation deserves special mention. There we write  for small , where  is the correlation length and 

 is related to the range of interactions.

 Debye-Hückel theory – Due to the long-ranged nature of the Coulomb interaction, the Mayer function decays so slowly as 
 that it is not integrable, so the virial expansion is problematic. Progress can be made by a self-consistent mean field

approach. For a system consisting of charges , one assumes a local electrostatic potential . Boltzmann statistics then gives a
charge density
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where  and  are the thermal de Broglie wavelengths and fugacities for the  and  species. Assuming overall charge
neutrality at infinity, one has  , and we have . The local potential is then
determined self-consistently, using Poisson’s equation:

If , we can expand the sinh function to obtain  , where the Debye screening wavevector is 
. The self-consistent potential arising from a point charge  is then of the Yukawa form 
 in three space dimensions.

 Thomas-Fermi screening – In an electron gas with , we may take . If the Fermi energy is constant, we write 

, and local electron number density is . Assuming a compensating smeared positive
charge background , Poisson’s equation takes the form

If , we expand in the presence of external sources to obtain , where  is
the Thomas-Fermi screening wavevector. In metals, where the electron dispersion is a more general function of crystal momentum,
the density response to a local potential  is  to lowest order, where  is the density of states at the

Fermi energy. One then finds .

1. In practice, what is measured is  convolved with spatial and energy resolution filters appropriate to the measuring
apparatus.↩

1. Here we modify slightly the discussion in chapter 5 of the book by L. Peliti.
2. See. J. L. Lebowitz and A. E. Mazel, J. Stat. Phys. 90, 1051 (1998).
3. A corresponding mapping can be found between a cubic lattice and the linear chain as well.
4. Not that I personally think there’s anything wrong with that.
5. Disambiguation footnote: Take care not to confuse Philipp Lenard (Hungarian-German, cathode ray tubes, Nazi), Alfred-Marie

Liénard (French, Liénard-Wiechert potentials, not a Nazi), John Lennard-Jones (British, molecular structure, definitely not a
Nazi), and Lynyrd Skynyrd (American, "Free Bird”, possibly killed by Nazis in 1977 plane crash). I thank my colleague Oleg
Shpyrko for setting me straight on this.

6. We assume that the long-ranged behavior of  is integrable.
7. See C. N. Yang and R. D. Lee, Phys. Rev. 87, 404 (1952) and ibid, p. 410
8. See http://en.Wikipedia.org/wiki/Close-packing. For randomly close-packed hard spheres, one finds, from numerical

simulations, .
9. To derive this expression, note that  is directed inward and vanishes away from the surface. Each Cartesian direction 

 then contributes , where  is the corresponding linear dimension. But , where  is
the area of the corresponding face and . is the pressure. Summing over the three possibilities for , one obtains Equation .

10. We may write .
11. So named after Bogoliubov, Born, Green, Kirkwood, and Yvon.
12. I am grateful to Jonathan Lam and Olga Dudko for explaining this to me.
13. There are logarithmic corrections to the SAW result exactly at , but for all  one has .
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