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8.6: Linearized Boltzmann Equation

Linearizing the collision integral

We now return to the classical Boltzmann equation and consider a more formal treatment of the collision term in the linear
approximation. We will assume time-reversal symmetry, in which case

of
(5) = /d3p1/d3p’/d3p’1 w(p’, Py | P, Py) {f(p’)f(p’l) —f(p) f(pl)} : (8.6.1)
coll
The collision integral is nonlinear in the distribution f. We linearize by writing

f®)=rf"(P)+f’(p)¥(p), (8.6.2)

where we assume 1) (p) is small. We then have, to first order in 1,

af __r0 T 2
(E)wu — (p) I+ O, (8.6.3)

where the action of the linearized collision operator is given by
Ly = /d3p1/d3p’/d3p’1 w(P',pi|p,p;) fO(P)) {¢(p’) +1(p}) —¥(p) —df(pl)}
0
= [t fa v vl 5 1)) {$0) +vlo0) ~9(0) - (e}

where we have invoked Equation to write the RHS in terms of the differential scattering cross section. In deriving the
above result, we have made use of the detailed balance relation,
@) ) = 1) () - (8.6.4)
We have also suppressed the r dependence in writing f(p), f°(p), and ¥ (p).
From Equation , we then have the linearized equation
(ﬁ—3>¢—y (8.6.5)
> , .6.
where, for point particles,
1 e(p) —c, T kpe
Y = ®) 4T STt m e Q5 -2 P yv_Fovl. (8.6.6)
kT T g ey
Equation is an inhomogeneous linear equation, which can be solved by inverting the operator L- % .

Linear algebraic properties of L

Although L is an integral operator, it shares many properties with other linear operators with which you are familiar, such as
matrices and differential operators. We can define an inner product’,

(W [92) = [ 1) 6, (0) (P (8.6.7

Note that this is not the usual Hilbert space inner product from quantum mechanics, since the factor fO(p) is included in the

metric. This is necessary in order that Lbe self-adjoint:

<1/)1 ‘ i'7/’2 > = <if1/)1 ‘ 7/’2 > . (8-6-8)

We can now define the spectrum of normalized eigenfunctions of L, which we write as ¢, (p). The eigenfunctions satisfy the
eigenvalue equation,

i’¢n = _)‘n ¢n ) (869)
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and may be chosen to be orthonormal,

Of course, in order to obtain the eigenfunctions ¢, we must have detailed knowledge of the function w(p’, p} | p, P;)-

Recall that there are five collisional invariants, which are the particle number, the three components of the total particle
momentum, and the particle energy. To each collisional invariant, there is an associated eigenfunction ¢,, with eigenvalue A, =0.
One can check that these normalized eigenfunctions are

P~ T

¢-(p) —\/% (2(:;) %) :

If there are no temperature, chemical potential, or bulk velocity gradients, and there are no external forces, then Y = 0 and the only
changes to the distribution are from collisions. The linearized Boltzmann equation becomes

?—;f =Iy. (8.6.11)

We can therefore write the most general solution in the form
/
P(@;t) = Crdn(P)e ™, (8.6.12)

where the prime on the sum reminds us that collisional invariants are to be excluded. All the eigenvalues A, aside from the five
zero eigenvalues for the collisional invariants, must be positive. Any negative eigenvalue would cause ¥ (p, t) to increase without
bound, and an initial nonequilibrium distribution would not relax to the equilibrium f°(p), which we regard as unphysical.
Henceforth we will drop the prime on the sum but remember that C,, = 0 for the five collisional invariants.

Recall also the particle, energy, and thermal (heat) currents,

i = Jtpvie) = [ @) veie) = (v]v)

i = [dve )= [d 1°@)vede) = (ve|w)

b, = [tV ) £0) = [d 1)y - woe) = (vie-w]6).
Note j, =j, — 11 -

Steady state solution to the linearized Boltzmann equation

Under steady state conditions, there is no time dependence, and the linearized Boltzmann equation takes the form
=Y. (8.6.13)

We may expand 9 in the eigenfunctions ¢,, and write 1) = C,, ¢,, . Applying L and taking the inner product with ¢ ;» we have

1
Cj:_)\_j<¢j|Y>' (8.6.14)
Thus, the formal solution to the linearized Boltzmann equation is

vp) ==Y 1 (6l Y) 6a(p). (8.6.15)

This solution is applicable provided | Y") is orthogonal to the five collisional invariants.
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Thermal conductivity
For the thermal conductivity, we take VT = 9,T %, and

1 orT
= -— - X, , 8.6.16
kT2 Oz ( )
where X, = (¢ — ¢,T') v, . Under the conditions of no particle flow (j = 0), we have j =K 0. T % . Then we have
or
(X |¥)=—K —. (8.6.17)
Ox
Viscosity
For the viscosity, we take
m OV,
Y= —- X .6.1
kT 0Oy K (8.6.18)
with X, = v, v, . We then
oV,
oy = (mvg vy |9) =—n— = (8.6.19)
Y
Thus,
n OV,
X =—— . 8.6.20
(X |9) =~ (8.6.20)

Variational approach

Following the treatment in chapter 1 of Smith and Jensen, define H = —L . We have that H is a positive semidefinite operator,
whose only zero eigenvalues correspond to the collisional invariants. We then have the Schwarz inequality,

(W1 H|p) - (¢|H|$)>(¢|H|$)?, (8.6.21)
for any two Hilbert space vectors | ¢ ) and | ¢ ). Consider now the above calculation of the thermal conductivity. We have
- 1 T
Hyp=— — 8.6.22
v k,T2 0z =" ( )
and therefore
kT2 - 1 (@] X)?
k= (Y| H ) > e (8.6.23)
(0T / b) ksT* (9| H|¢)
Similarly, for the viscosity, we have
N m OV,
=————X .6.24
H"Z) k?BT ay n» (8 6 )
from which we derive
T . 2 X, )?
kB H m <¢| "7> (8625)

"= Y T A e

In order to get a good lower bound, we want ¢ in each case to have a good overlap with X, ,,. One approach then is to take
¢ = X, ,, which guarantees that the overlap will be finite (and not zero due to symmetry, for example). We illustrate this method
with the viscosity calculation. We have

m?2  (vpvy | vy >2

n= (8.6.26)

T kT (v, | Hvgv,)

Now the linearized collision operator L acts as
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(8121%) = [ag () 6(0) [, [10. 57 [v—vi] ) {9(0) +¥(0) ~0) — ()} . ($.620)

Here the kinematics of the collision guarantee total energy and momentum conservation, so p’ and p; are determined as in
Equation

Now we have

dQY =sinxdxdyp , (8.6.28)
where x is the scattering angle depicted in Fig. and ¢ is the azimuthal angle of the scattering. The differential
scattering cross section is obtained by elementary mechanics and is known to be

) d(v*/2

9o _|db°/2) )’, (8.6.29)

o0 dsiny
where b is the impact parameter. The scattering angle is

b
x(b,u)=n—2 [ dr =, (8.6.30)
\/ P4 _p2p2 _ 20O
Tp 7;7/“2

where m = %m is the reduced mass, and 7, is the relative coordinate separation at periapsis, the distance of closest approach,

which occurs when 7» =0,
1.
MU =g +U(rp) (8.6.31)

where £ = mub is the relative coordinate angular momentum.

| [scat_impact] Scattering in the CM frame. O is the force center and P is the point of
periapsis. The impact parameter is b, and \chi is the scattering angle. \phi_0 is the
angle through which the relative coordinate moves between periapsis and infinity.

[scat_impact] Scattering in the CM frame. O is the force center and P is the point of periapsis. The impact parameter is b, and x is
the scattering angle. ¢y is the angle through which the relative coordinate moves between periapsis and infinity.

We work in center-of-mass coordinates, so the velocities are
1 1
v=V+=-u v =V+=u
2 2
1 1
v, =V-— Eu vi =V—-——u ,

with [u| = [u| and @ &' = cos x . Then if ¢)(p) = v,v,, we have

1
A($) = () +9(py) — % (') —(P}) = 5 (tary — ) . (8.6.32)
We may write
u =u (sinxcos<p €, +sinysing e, +cosy é3) , (8.6.33)
where €; = 1. With this parameterization, we have
27 1
/d(p 3 (uauﬂ —u{,u/’g) = —msin’y (u2 5aﬁ — 3uauﬂ) . (8.6.34)
0
Note that we have used here the relation
€10 €151 €20 €25 T €34 €35 = 0,55 (8.6.35)

which holds since the LHS is a projector 325, |&;)(&;].

It is convenient to define the following integral:
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R() = / db b sin’x(b, 1) - (8.6.36)
0
Since the Jacobian
ov,ov
det ﬁ =1, (8.6.37)
we have
~ m 3 2 2 3T
(vgvy | L | vy ) = n? ( 5k T) /d3V/d3u eV /keT gmmu’/AkpT g . -5 Ually R(u) - vzvy . (8.6.38)
B
This yields
(vavy | L | vpv, ) = I—O n? (u® R(w)), (8.6.39)
where
(F(u)) = [duv’ e’/ 4ksT F(u)/ /du u? e kT (8.6.40)
0

It is easy to compute the term in the numerator of Equation

m 3/2 2 k;T 2
<'Ux'Uy | Uz'Uy> =n (277k3T) /dgv e "™ /25T 'Ui v32l = n( ’:;l ) : (8641)

Putting it all together, we find

40 (k5T)3
n> (—Bz)/<u5 R(u)) . (8.6.42)
m™m
The computation for & is a bit more tedious. One has ¥(p) = (¢ —¢,T') v, , in which case
1
A(y) = Em[(v u)uy — (V- u')u;} . (8.6.43)
Ultimately, one obtains the lower bound
150 k, (k,T)* 5
K> T <u R(u)> . (8.6.44)
Thus, independent of the potential, this variational calculation yields a Prandtl number of
c 2

which is very close to what is observed in dilute monatomic gases (see Tab. ).

While the variational expressions for 7 and  are complicated functions of the potential, for hard sphere scattering the calculation

is simple, because b = dsin ¢, = d cos( %X) , where d is the hard sphere diameter. Thus, the impact parameter b is independent of

the relative speed u, and one finds R(u) = +d3. Then

=3
1 128 [ k,T\/?
(° R(u)>:§d3<u5>: Tf(km ) d? (8.6.46)
and one finds
5 (mk,T)/? 75k, [ k,T \/?
> — > — — .0.
=6 mdz e 64ﬁd2( m ) (8.6.47)
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