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4.9: Statistical Mechanics of Molecular Gases

Separation of translational and internal degrees of freedom
The states of a noninteracting atom or molecule are labeled by its total momentum  and its internal quantum numbers, which we
will simply write with a collective index , specifying rotational, vibrational, and electronic degrees of freedom. The single particle
Hamiltonian is then

with

The partition function is

Here we have replaced the internal label  with a label  of energy eigenvalues, with  being the degeneracy of the internal state
with energy . To do the  sum, we quantize in a box of dimensions , using periodic boundary conditions.
Then

where each  is an integer. Since the differences between neighboring quantized  vectors are very tiny, we can replace the sum
over  by an integral:

where the volume in momentum space of an elementary rectangle is

Thus,

Here,  is the internal coordinate partition function. The full -particle ordinary canonical partition function is then

Using Stirling’s approximation, we find the Helmholtz free energy  is

where
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is the internal coordinate contribution to the single particle free energy. We could also compute the partition function in the Gibbs 
 ensemble:

Thus, in the thermodynamic limit,

Ideal gas law
Since the internal coordinate contribution to the free energy is volume-independent, we have

and the ideal gas law applies. The entropy is

and therefore the heat capacity is

Thus, any temperature variation in  must be due to the internal degrees of freedom.

The internal coordinate partition function
At energy scales of interest we can separate the internal degrees of freedom into distinct classes, writing

as a sum over internal Hamiltonians governing rotational, vibrational, and electronic degrees of freedom. Then

Associated with each class of excitation is a characteristic temperature . Rotational and vibrational temperatures of a few
common molecules are listed in table tab. [rvftab].

Rotations
Consider a class of molecules which can be approximated as an axisymmetric top. The rotational Hamiltonian is then

φ(T ) = − T lnξ(T )kB (4.9.8)

(T , p,N)

Y (T , p,N) = e−βG(T ,p,N) = dV Z(T ,V ,N)
1

V0

∫

0

∞

e−βpV

=( )( (T ) .
TkB

pV0

TkB

p λd
T

)
N

ξN

μ(T , p) =
G(T , p,N)

N
= T ln( )− T lnξ(T )kB

p λdT

TkB

kB

= T ln( )+φ(T ) .kB

p λd
T

TkB

V = =  ,( )
∂G

∂p T ,N

N TkB

p
(4.9.9)

S = − = N [ ln( )+1 + d ]−N (T ) ,( )
∂G

∂T p,N

kB

TkB

pλdT

1

2
φ′ (4.9.10)

= TCp ( )
∂S

∂T p,N

= TC
V

( )
∂S

∂T V,N

= ( d+1)N −NT (T )
1

2
kB φ′′

= dN −NT (T ) .
1

2
kB φ′′

Cp
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where  are the principal axes, with  the symmetry axis, and  are the components of the angular momentum vector 
about these instantaneous body-fixed principal axes. The components of  along space-fixed axes  are written as .
Note that

which is equivalent to the statement that  is a rotational scalar. We can therefore simultaneously specify the eigenvalues
of , which form a complete set of commuting observables (CSCO) . The eigenvalues of  are  with 

, while those of  are  with . There is a -fold degeneracy associated with the 
quantum number.

We assume the molecule is prolate, so that . We can the define two temperature scales,

Prolateness then means . We conclude that the rotational partition function for an axisymmetric molecule is given by

Table [rvftab]: Some rotational and vibrational temperatures of common molecules.

molecule

 ,  ,  ,  , 

In diatomic molecules,  is extremely small, and  at all relevant temperatures. Only the  term contributes to the
partition sum, and we have

When , only the first few terms contribute, and

In the high temperature limit, we have a slowly varying summand. The Euler-MacLaurin summation formula may be used to
evaluate such a series:

where  is the  Bernoulli number where
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Recall that . We conclude that  for  and  for 
. We have seen that the internal coordinate contribution to the heat capacity is . For diatomic

molecules, then, this contribution is exponentially suppressed for , while for high temperatures we have . One
says that the rotational excitations are ‘frozen out’ at temperatures much below . Including the first few terms, we have

Note that  overshoots its limiting value of  and asymptotically approaches it from above.

Special care must be taken in the case of homonuclear diatomic molecules, for then only even or odd  states are allowed,
depending on the total nuclear spin. This is discussed below in §10.7.

For polyatomic molecules, the moments of inertia generally are large enough that the molecule’s rotations can be considered
classically. We then have

We then have

where  are the Euler angles. Recall , , and . The factor  accounts for physically
indistinguishable orientations of the molecule brought about by rotations, which can happen when more than one of the nuclei is
the same. We then have

This leads to .

Vibrations
Vibrational frequencies are often given in units of inverse wavelength, such as , called a wavenumber. To convert to a
temperature scale , we write , hence , and we multiply by

For example, infrared absorption (  cm  to  cm ) reveals that the ‘asymmetric stretch’ mode of the  molecule has a
vibrational frequency of . The corresponding temperature scale is .

Vibrations are normal modes of oscillations. A single normal mode Hamiltonian is of the form

In general there are many vibrational modes, hence many normal mode frequencies . We then must sum over all of them,
resulting in

For each such normal mode, the contribution is

= + + + ( +…  .ξrot
T

Θ

1

3

1

15

Θ

T

4

315

Θ

T
)

2

(4.9.21)

φ(T ) = − T lnξ(T )kB (T ) ≈ −3 Tφrot kB e−2Θ/T T ≪ Θ (T ) ≈ − T ln(T/Θ)φrot kB

T ≫ Θ Δ = −NT (T )CV φ′′

T ≪ Θ Δ = NCV kB

Θ

Δ (T ≪ Θ)CV

Δ (T ≫ Θ)CV

= 12 N ( +…kB

Θ

T
)

2

e−2Θ/T

= N {1 + ( + ( +…} .kB

1

45

Θ

T
)

2
16

945

Θ

T
)

3

CV NkB

L

ε( , , ) = + +  .La Lb Lc

L
2
a

2I
1

L
2
b

2I
2

L
2
c

2I
3

(4.9.22)

(T ) = ∫  ,ξrot
1

grot

d d d dϕ dθdψLa Lb Lc

(2πℏ)3
e−ε( )/ TLa Lb Lc kB (4.9.23)

(ϕ, θψ) ϕ ∈ [0, 2π] θ ∈ [0, π] ψ ∈ [0, 2π] grot

(T ) =(  .ξrot
2 TkB

ℏ2
)

3/2

πI1I2I3

− −−−−−
√ (4.9.24)

Δ = NC
V

3
2

kB

cm−1

T ∗ = hν = hc/λkBT
∗ = (hc/ )T ∗ kB λ−1

= 1.436 K ⋅ cm .
hc

kB

(4.9.25)

∼ 50 −1 104 −1 OH2

ν = 3756 cm−1 = 5394 KT ∗

= + m = ℏω( a+ ) .ĥ
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where . Then

The contribution to the heat capacity is

Two-level systems : Schottky anomaly
Consider now a two-level system, with energies  and . We define  and assume without loss of generality that 

. The partition function is

The free energy is

The entropy for a given two level system is then

and the heat capacity is ,

Thus,

We find that  has a characteristic peak at . The heat capacity vanishes in both the low temperature and high
temperature limits. At low temperatures, the gap to the excited state is much greater than , and it is not possible to populate it
and store energy. At high temperatures, both ground state and excited state are equally populated, and once again there is no way to
store energy.

ξ = = (∑
n=0

∞

e−(n+ )ℏω/ T
1

2
kB e−ℏω/2 TkB ∑

n=0

∞

e−ℏω/ TkB )
n

= =  ,
e−ℏω/2 TkB

1 −e−ℏω/ TkB

1

2 sinh(Θ/2T )

Θ = ℏω/kB

φ = T ln(2 sinh(Θ/2T ))kB

= Θ+ T ln(1 − ) .
1

2
kB kB e−Θ/T

ΔCV = N (kB

Θ

T
)

2
eΘ/T

( −1eΘ/T )2

={
N (Θ/T exp(−Θ/T )kB )2

NkB

(T → 0)

(T → ∞)

ε0 ε1 Δ ≡ −ε1 ε0

Δ > 0

ζ = + = (1 + ) .e−βε0 e−βε1 e−βε0 e−βΔ (4.9.28)

f = − T lnζ = − T ln(1 + ) .kB ε0 kB e−Δ/ TkB (4.9.29)

s = − = ln(1 + ) + ⋅
∂f

∂T
kB e−Δ/ TkB

Δ

T

1

+1eΔ/ TkB
(4.9.30)

= T (∂s/∂T )

c(T ) = ⋅  .
Δ2

kBT 2

eΔ/ TkB

( +1eΔ/ TkB )
2

(4.9.31)

c (T ≪ Δ)

c (T ≫ Δ)

=
Δ2

kBT 2
e−Δ/ TkB

=  .
Δ2

4kBT 2

c(T ) ≈ 0.42 Δ/T ∗ kB

TkB

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18758?pdf


4.9.6 https://phys.libretexts.org/@go/page/18758

Figure [molgas]: Heat capacity per molecule as a function of temperature for (a) heteronuclear diatomic gases, (b) a single
vibrational mode, and (c) a single two-level system.

If we have a distribution of independent two-level systems, the heat capacity of such a system is a sum over the individual Schottky
functions:

where  is the number of two level systems, , and where  is the normalized distribution function,
which satisfies the normalization condition

 is the total number of two level systems. If  for , then the low temperature heat capacity behaves as 
. Many amorphous or glassy systems contain such a distribution of two level systems, with  for glasses, leading

to a linear low-temperature heat capacity. The origin of these two-level systems is not always so clear but is generally believed to
be associated with local atomic configurations for which there are two low-lying states which are close in energy. The paradigmatic
example is the mixed crystalline solid  which over the range  forms an ‘orientational glass’ at
low temperatures. The two level systems are associated with different orientation of the cyanide (CN) dipoles.

Electronic and Nuclear Excitations
For a monatomic gas, the internal coordinate partition function arises due to electronic and nuclear degrees of freedom. Let’s first
consider the electronic degrees of freedom. We assume that  is small compared with energy differences between successive
electronic shells. The atomic ground state is then computed by filling up the hydrogenic orbitals until all the electrons are used up.
If the atomic number is a ‘magic number’ (  (He),  (Ne),  (Ar),  (Kr),  (Xe), ) then the atom has all shells filled and 

 and . Otherwise the last shell is partially filled and one or both of  and  will be nonzero. The atomic ground state
configuration  is then determined by Hund’s rules:

1. The  multiplet with the largest  has the lowest energy.
2. If the largest value of  is associated with several multiplets, the multiplet with the largest  has the lowest energy.
3. If an incomplete shell is not more than half-filled, then the lowest energy state has . If the shell is more than half-

filled, then .

The last of Hund’s rules distinguishes between the  states which result upon fixing  and  as per rules #1 and
#2. It arises due to the atomic spin-orbit coupling, whose effective Hamiltonian may be written , where  is the
Russell-Saunders coupling. If the last shell is less than or equal to half-filled, then  and the ground state has . If
the last shell is more than half-filled, the coupling is inverted, , and the ground state has .

The electronic contribution to  is then
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where

At high temperatures,  is larger than the energy difference between the different  multiplets, and we have 
, where  is the ground state energy. At low temperatures, a particular value of  is selected – that

determined by Hund’s third rule – and we have . If, in addition, there is a nonzero nuclear spin , then we
also must include a factor , neglecting the small hyperfine splittings due to the coupling of nuclear and electronic
angular momenta.

For heteronuclear diatomic molecules, molecules composed from two different atomic nuclei, the internal partition function simply
receives a factor of , where the first term is a sum over molecular electronic states, and the second two terms arise
from the spin degeneracies of the two nuclei. For homonuclear diatomic molecules, the exchange of nuclear centers is a symmetry
operation, and does not represent a distinct quantum state. To correctly count the electronic states, we first assume that the total
electronic spin is . This is generally a very safe assumption. Exchange symmetry now puts restrictions on the possible values
of the molecular angular momentum , depending on the total nuclear angular momentum . If  is even, then the molecular
angular momentum  must also be even. If the total nuclear angular momentum is odd, then  must be odd. This is so because the
molecular ground state configuration is .

The total number of nuclear states for the molecule is , of which some are even under nuclear exchange, and some are
odd. The number of even states, corresponding to even total nuclear angular momentum is written as , where the subscript
conventionally stands for the (mercifully short) German word gerade, meaning ‘even’. The number of odd (Ger. ungerade) states is
written . Table [nucspin] gives the values of  corresponding to half-odd-integer  and integer .

The final answer for the rotational component of the internal molecular partition function is then

where

For hydrogen, the molecules with the larger nuclear statistical weight are called orthohydrogen and those with the smaller statistical
weight are called parahydrogen. For , we have  hence the ortho state has  and the para state has . In , we
have  and the ortho state has  while the para state has . In equilibrium, the ratio of ortho to para states is then

Table [nucspin]: Number of even ( ) and odd ( ) total nuclear angular momentum states for a homonuclear diatomic molecule.  is the ground
state nuclear spin.

odd

even

Incidentally, how do we derive the results in Table [tabgggu] ? The total nuclear angular momentum  is the quantum mechanical
sum of the two individual nuclear angular momenta, each of which are of magnitude . From elementary addition of angular
momenta, we have

The right hand side of the above equation lists all the possible multiplets. Thus, . Now let us count the total
number of states with even . If  is even, which is to say if  is an integer, we have
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because the degeneracy of each multiplet is . It follows that

On the other hand, if  is odd, which is to say  is a half odd integer, then

It follows that

This page titled 4.9: Statistical Mechanics of Molecular Gases is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
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