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2.5: Heat Engines and the Second Law of Thermodynamics

There’s no free lunch so quit asking
A heat engine is a device which takes a thermodynamic system through a repeated cycle which can be represented as a succession of equilibrium states: . The net result of such
a cyclic process is to convert heat into mechanical work, or vice versa.

Figure [perfect]: A perfect engine would extract heat  from a thermal reservoir at some temperature  and convert it into useful mechanical work . This process is alas impossible, according to
the Second Law of thermodynamics. The inverse process, where work  is converted into heat , is always possible.

For a system in equilibrium at temperature , there is a thermodynamically large amount of internal energy stored in the random internal motion of its constituent particles. Later, when we study
statistical mechanics, we will see how each ‘quadratic’ degree of freedom in the Hamiltonian contributes  to the total internal energy. An immense body in equilibrium at temperature  has an
enormous heat capacity , hence extracting a finite quantity of heat  from it results in a temperature change  which is utterly negligible. Such a body is called a heat bath, or thermal
reservoir. A perfect engine would, in each cycle, extract an amount of heat  from the bath and convert it into work. Since  for a cyclic process, the First Law then gives . This
situation is depicted schematically in Fig. [perfect]. One could imagine running this process virtually indefinitely, slowly sucking energy out of an immense heat bath, converting the random thermal
motion of its constituent molecules into useful mechanical work. Sadly, this is not possible:

A transformation whose only final result is to extract heat froma source at fixed temperature and transform that heat into work is
impossible.

This is known as the Postulate of Lord Kelvin. It is equivalent to the postulate of Clausius,

A transformation whose only result is to transfer heat from a body at a given temperature to a body at higher temperature is
impossible.

These postulates which have been repeatedly validated by empirical observations, constitute the Second Law of Thermodynamics.

Engines and refrigerators
While it is not possible to convert heat into work with 100% efficiency, it is possible to transfer heat from one thermal reservoir to another one, at lower temperature, and to convert some of that heat
into work. This is what an engine does. The energy accounting for one cycle of the engine is depicted in the left hand panel of Fig. [engref]. An amount of heat  is extracted- from the reservoir
at temperature . Since the reservoir is assumed to be enormous, its temperature change  is negligible, and its temperature remains constant – this is what it means for an object to
be a reservoir. A lesser amount of heat, , with , is deposited in a second reservoir at a lower temperature . Its temperature change  is also negligible. The
difference  is extracted as useful work. We define the efficiency, , of the engine as the ratio of the work done to the heat extracted from the upper reservoir, per cycle:

This is a natural definition of efficiency, since it will cost us fuel to maintain the temperature of the upper reservoir over many cycles of the engine. Thus, the efficiency is proportional to the ratio of
the work done to the cost of the fuel.

A refrigerator works according to the same principles, but the process runs in reverse. An amount of heat  is extracted from the lower reservoir – the inside of our refrigerator – and is pumped into
the upper reservoir. As Clausius’ form of the Second Law asserts, it is impossible for this to be the only result of our cycle. Some amount of work  must be performed on the refrigerator in order for
it to extract the heat . Since  for the cycle, a heat  must be deposited into the upper reservoir during each cycle. The analog of efficiency here is called the coefficient of
refrigeration, , defined as

Thus,  is proportional to the ratio of the heat extracted to the cost of electricity, per cycle.

[engref] An engine (left) extracts heat  from a reservoir at temperature  and deposits a smaller amount of heat  into a reservoir at a lower temperature , during each cycle. The difference 
 is transformed into mechanical work. A refrigerator (right) performs the inverse process, drawing heat  from a low temperature reservoir and depositing heat  into a

high temperature reservoir, where  is the mechanical (or electrical) work done per cycle.

Please note the deliberate notation here. I am using symbols  and  to denote the heat supplied to the engine (or refrigerator) and the work done by the engine, respectively, and  and  to denote
the heat taken from the engine and the work done on the engine.

A perfect engine has  and ; a perfect refrigerator has  and . Both violate the Second Law. Sadi Carnot  (1796 – 1832) realized that a reversible cyclic engine operating
between two thermal reservoirs must produce the maximum amount of work , and that the amount of work produced is independent of the material properties of the engine. We call any such engine
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a Carnot engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s observations that the efficiency  can only be a function of the temperatures  and 
: . We can then define

Below, in §6.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine, this temperature scale coincides precisely with the ideal gas temperature scale from §2.4.

Nothing beats a Carnot engine
The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To see this, let’s suppose that an amazing wonder engine has an efficiency even greater than that of
the Carnot engine. A key feature of the Carnot engine is its reversibility – we can just go around its cycle in the opposite direction, creating a Carnot refrigerator. Let’s use our notional wonder engine
to drive a Carnot refrigerator, as depicted in Fig. [NBC].

We assume that

But from the figure, we have , and therefore the heat energy  transferred to the upper reservoir is positive. From

we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is done on the system:

Therefore, the existence of the wonder engine entails a violation of the Second Law. Since the Second Law is correct – Lord Kelvin articulated it, and who are we to argue with a Lord? – the wonder
engine cannot exist.

[NBC] A wonder engine driving a Carnot refrigerator.

We further conclude that all reversible engines running between two thermal reservoirs have the same efficiency, which is the efficiency of a Carnot engine. For an irreversible engine, we must have

Thus,

The Carnot cycle
Let us now consider a specific cycle, known as the Carnot cycle, depicted in Fig. [carnot]. The cycle consists of two adiabats and two isotherms. The work done per cycle is simply the area inside the
curve on our  diagram:

The gas inside our Carnot engine is called the ‘working substance’. Whatever it may be, the system obeys the First Law,

We will now assume that the working material is an ideal gas, and we compute  as well as  and  to find the efficiency of this cycle. In order to do this, we will rely upon the ideal gas
equations,

where , where  is the effective number of molecular degrees of freedom contributing to the internal energy. Recall  for monatomic gases,  for diatomic gases, and 
 for polyatomic gases. The finite difference form of the first law is

where  denotes the initial state and  the final state.
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[carnot] The Carnot cycle consists of two adiabats (dark red) and two isotherms (blue).

This stage is an isothermal expansion at temperature . It is the ‘power stroke’ of the engine. We have

hence

This stage is an adiabatic expansion. We have

The energy change is negative, and the heat exchange is zero, so the engine still does some work during this stage:

This stage is an isothermal compression, and we may apply the analysis of the isothermal expansion, mutatis mutandis:

hence

This last stage is an adiabatic compression, and we may draw on the results from the adiabatic expansion in BC:

The energy change is positive, and the heat exchange is zero, so work is done on the engine:

We now add up all the work values from the individual stages to get for the cycle

Since we are analyzing a cyclic process, we must have , we must have , which can of course be verified explicitly, by computing 
. To finish up, recall the adiabatic ideal gas equation of state, . This tells us that

Dividing these two equations, we find

and therefore

Finally, the efficiency is given by the ratio of these two quantities:

The Stirling cycle
Many other engine cycles are possible. The Stirling cycle, depicted in Fig. [stirling], consists of two isotherms and two isochores. Recall the isothermal ideal gas equation of state, . Thus,
for an ideal gas Stirling cycle, we have

which says

This isothermal expansion is the power stroke. Assuming  moles of ideal gas throughout, we have , hence

Since AB is an isotherm, we have , and from  we conclude .
Isochoric cooling. Since  we have . The energy change is given by

which is negative. Since , we have .

T2

\begin{aligned} W\ns_\ssr{AB}&=\int\limits_{V\subA}^{V\subB}\!\!dV\,{\nu R T\ns_2\over V} = \nu R T\ns_2\, \ln\bigg({V\subB\over V\subA}\bigg)\\ E\subA&=E\subB={\nu R T\ns_2\over \gamma-1}\ ,\end{align

Q\ns_\ssr{AB}=\RDelta E\ns_\ssr{AB}+ W\ns_\ssr{AB} = \nu R T\ns_2\,\ln\bigg({V\subB\over V\subA}\bigg)\ .

\begin{aligned} Q\ns_\ssr{BC}&=0\\ \RDelta E\ns_\ssr{BC}&=E\ns_\ssr{C}-E\subB = {\nu R\over \gamma-1}\,(T\ns_1 - T\ns_2)\ .\end{aligned}

W\subBC=Q\ns_\ssr{BC}-\RDelta E\ns_\ssr{BC}= {\nu R\over \gamma-1}\, (T\ns_2 - T\ns_1)\ .

\begin{aligned} W\ns_\ssr{CD}&=\int\limits_{V\ns_\ssr{C}}^{V\ns_\ssr{D}}\!\!dV\,{\nu R T\ns_1\over V} = \nu R T\ns_1\, \ln\bigg({V\ns_\ssr{D}\over V\ns_\ssr{C}}\bigg)\\ E\ns_\ssr{C}&=E\ns_\ssr{D}={\nu R T

Q\ns_\ssr{CD}=\RDelta E\ns_\ssr{CD}+ W\ns_\ssr{CD} = \nu R T\ns_1\,\ln\bigg({V\ns_\ssr{D}\over V\ns_\ssr{C}}\bigg)\ .

\begin{aligned} Q\ns_\ssr{DA}&=0\\ \RDelta E\ns_\ssr{DA}&=E\ns_\ssr{D}-E\subA= {\nu R\over \gamma-1}\,(T\ns_2 - T\ns_1)\ .\end{aligned}

W\ns_\ssr{DA}=Q\ns_\ssr{DA}-\RDelta E\ns_\ssr{DA}= {\nu R\over \gamma-1}\,(T\ns_1 - T\ns_2)\ .

\begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &=\nu R T\ns_2\,\ln\bigg({V\subB\over V\subA}\bigg)+\nu R T\ns_1\,\ln\bigg({V\ns_\ssr{D}\over V\ns_\ssr{C}}\bigg)\ . \end{split}

ΔE = 0 Q = W

Q=Q\ns_\ssr{AB}+Q\ns_\ssr{BC}+Q\ns_\ssr{CD}+Q\ns_\ssr{DA} d(T ) = 0V γ−1

\begin{aligned} T\ns_2\, V_\ssr{B}^{\gamma-1}&= T\ns_1\, V_\ssr{C}^{\gamma-1} \\ T\ns_2\, V_\ssr{A}^{\gamma-1}&= T\ns_1\, V_\ssr{D}^{\gamma-1} \ .\end{aligned}

{V\subB\over V\subA}={V\ns_\ssr{C}\over V\ns_\ssr{D}}\ ,

\begin{aligned} W&=\nu R(T\ns_2-T\ns_1)\,\ln\bigg({V\subB\over V\subA}\bigg)\\ Q\ns_\ssr{AB}&=\nu R T\ns_2\,\ln\bigg({V\subB\over V\subA}\bigg)\ .\end{aligned}

\eta={W\over Q\ns_\ssr{AB}}=1-{T\ns_1\over T\ns_2}\ .

d(pV ) = 0

p\subA V\ns_1=p\subB V\ns_2 \qquad,\qquad p\ns_\ssr{D} V\ns_1=p\ns_\ssr{C} V\ns_2\ ,

{p\subB\over p\subA}={p\subC\over p\subD}={V\ns_1\over V\ns_2}\ .

ν pV = νR =T2 p1V1

W\subAB=\int\limits_{V\ns_1}^{V\ns_2}\!\!dV\,{\nu R T\ns_2\over V}=\nu R T\ns_2\,\ln\bigg({V\ns_2\over V\ns_1}\bigg)\ .

E\subA=E\subB \RDelta E\subAB=0 Q\subAB=W\subAB
dV = 0 W\subBC=0

\RDelta E\subBC=E\subC-E\subB={\nu R(T\ns_1-T\ns_2)\over\gamma-1} ,

W\subBC=0 Q\subBC=\RDelta E\subBC
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[stirling] A Stirling cycle consists of two isotherms (blue) and two isochores (green).

Isothermal compression. Clearly

Since CD is an isotherm, we have , and from  we conclude .
Isochoric heating. Since  we have . The energy change is given by

which is positive, and opposite to . Since , we have .

We now add up all the work contributions to obtain

The cycle efficiency is once again

The Otto and Diesel cycles
The Otto cycle is a rough approximation to the physics of a gasoline engine. It consists of two adiabats and two isochores, and is depicted in Fig. [otto]. Assuming an ideal gas, along the adiabats we
have . Thus,

which says

[otto] An Otto cycle consists of two adiabats (dark red) and two isochores (green).

Adiabatic expansion, the power stroke. The heat transfer is , so from the First Law we have , thus

Note that this result can also be obtained from the adiabatic equation of state :

Isochoric cooling (exhaust);  hence . The heat  absorbed is then

In a realistic engine, this is the stage in which the old burned gas is ejected and new gas is inserted.

Adiabatic compression;  and :

Isochoric heating, the combustion of the gas. As with BC we have , and thus . The heat  absorbed by the gas is then

W\subCD=\int\limits_{V\ns_2}^{V\ns_1}\!\!dV\,{\nu R T\ns_1\over V}= -\nu R T\ns_1\,\ln\bigg({V\ns_2\over V\ns_1}\bigg)\ .

E\subC=E\subD \RDelta E\subCD=0 Q\subCD=W\subCD
dV = 0 W\subDA=0

\RDelta E\subDA=E\subA-E\subD={\nu R(T\ns_2-T\ns_1)\over\gamma-1}\ ,

\RDelta E\subBC W\subDA=0 Q\subDA=\RDelta E\subDA

\begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &=\nu R (T\ns_2-T\ns_1)\,\ln\bigg({V\ns_2\over V\ns_1}\bigg)\ . \end{split}

\eta={W\over Q\subAB}=1-{T\ns_1\over T\ns_2}\ .

d(p ) = 0V γ

p\subA\,V^\gamma_1=p\subB\,V^\gamma_2 \qquad,\qquad p\ns_\ssr{D}\,V^\gamma_1=p\ns_\ssr{C}\,V^\gamma_2\ ,

{p\subB\over p\subA}={p\subC\over p\subD}= \bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma}\ .

Q\subAB=0 W\subAB=-\RDelta E\subAB=E\subA-E\subB

W\subAB={p\subA V\ns_1-p\subB V\ns_2\over\gamma-1} ={p\subA V\ns_1\over \gamma-1}\Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-1} \Bigg]\ .

pV^\gamma=p\subA V_1^\gamma

W\subAB=\int\limits_{V\ns_1}^{V\ns_2}\!\!p\,dV= p\subA V_1^\gamma\!\int\limits_{V\ns_1}^{V\ns_2}\!dV\,V^{-\gamma} ={p\subA V\ns_1\over \gamma-1}\Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-

dV = 0 W\subBC=0 Q\subBC

Q\subBC=E\subC-E\subB={V\ns_2\over\gamma-1}\,(p\subC-p\subB)\ .

Q\subCD=0 W\subCD=E\subC-E\subD

W\subCD={p\subC V\ns_2 - p\subD V\ns_1\over \gamma-1} =-{p\subD V\ns_1\over \gamma-1}\Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-1} \Bigg]\ .

dV = 0 W\subDA=0 Q\subDA

Q\subDA=E\subA-E\subD={V\ns_1\over\gamma-1}\,(p\subA-p\subD)\ .
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[diesel] A Diesel cycle consists of two adiabats (dark red), one isobar (light blue), and one isochore (green).

The total work done per cycle is then

and the efficiency is defined to be

The ratio  is called the compression ratio. We can make our Otto cycle more efficient simply by increasing the compression ratio. The problem with this scheme is that if the fuel mixture
becomes too hot, it will spontaneously ‘preignite’, and the pressure will jump up before point D in the cycle is reached. A Diesel engine avoids preignition by compressing the air only, and then later
spraying the fuel into the cylinder when the air temperature is sufficient for fuel ignition. The rate at which fuel is injected is adjusted so that the ignition process takes place at constant pressure. Thus,
in a Diesel engine, step DA is an isobar. The compression ratio is , and the cutoff ratio is . This refinement of the Otto cycle allows for higher
compression ratios (of about 20) in practice, and greater engine efficiency.

For the Diesel cycle, we have, briefly,

and

To find the efficiency, we will need to eliminate  and  in favor of  using the adiabatic equation of state . Thus,

where we’ve used  and . Putting it all together, the efficiency of the Diesel cycle is

The Joule-Brayton cycle
Our final example is the Joule-Brayton cycle, depicted in Fig. [jbray], consisting of two adiabats and two isobars. Along the adiabats we have Thus,

which says

This isobaric expansion at  is the power stroke. We have

Adiabatic expansion;  and . The work done by the gas is

[jbray] A Joule-Brayton cycle consists of two adiabats (dark red) and two isobars (light blue).

Isobaric compression at .

Adiabatic expansion;  and . The work done by the gas is

The total work done per cycle is then

and the efficiency is defined to be

\begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &={(p\subA-p\subD)V\ns_1\over\gamma-1} \Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-1}\Bigg]\ , \end{split}

\eta\equiv{W\over Q\subDA}=1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-1}\ .

/V
2
V

1

r\equiv V\subB/V\subD s\equiv V\subA/V\subD

\begin{split} W&=p\subA(V\subA-V\subD) + {p\subA V\subA-p\subB V\subB\over\gamma-1} + {p\subC V\subC-p\subD V\subD\over\gamma-1}\\ &={\gamma\,p\subA(V\subA-V\subD)\over\gamma-1} - {(p\subB-p\sub

Q\subDA={\gamma\,p\subA(V\subA-V\subD)\over\gamma-1}\ .

p\subB p\subC p\subA d(p ) = 0V γ

p\subB=p\subA\cdot\bigg({V\subA\over V\subB}\bigg)^{\!\!\gamma}\qquad,\qquad p\subC=p\subA\cdot\bigg({V\subD\over V\subB}\bigg)^{\!\!\gamma}\ ,

p\subD=p\subA V\subC=V\subB

\eta={W\over Q\subDA}=1-{1\over\gamma}\,{r^{1-\gamma} (s^\gamma-1)\over s-1}\ .

p\ns_2\,V^\gamma_\ssr{A}=p\ns_1\,V^\gamma_\ssr{D} \qquad,\qquad p\ns_2\,V^\gamma_\ssr{B}=p\ns_1\,V^\gamma_\ssr{C}\ ,

{V\subD\over V\subA}={V\subC\over V\subB}= \bigg({p\ns_2\over p\ns_1}\bigg)^{\!\gamma^{-1}}\ .

p = p2

\begin{aligned} W\subAB&=\int\limits_{V\subA}^{V\subB}\!\!dV\,p\ns_2 = p\ns_2\,(V\subB-V\subA)\\ \RDelta E\subAB&=E\subB-E\subA={p\ns_2\,(V\subB-V\subA)\over\gamma-1}\\ Q\subAB&=\RDelta E\subAB

Q\subBC=0 W\subBC=E\subB-E\subC

\begin{split} W\subBC&={p\ns_2 V\subB-p\ns_1 V\subC\over\gamma-1}= {p\ns_2 V\subB\over\gamma-1}\bigg(1-{p\ns_1\over p\ns_2} \cdot{V\subC\over V\subB}\bigg)\\ &={p\ns_2\, V\subB\over \gamma-1}\Bigg

p = p1

\begin{aligned} W\subCD&=\int\limits_{V\subC}^{V\subD}\!\!dV\,p\ns_1 = p\ns_1\,(V\subD-V\subC) =-p\ns_2\,(V\subB-V\subA)\,\bigg({p\ns_1\over p\ns_2}\bigg)^{\!1-\gamma^{-1}}\\ \RDelta E\subCD&=E\subD

Q\subDA=0 W\subDA=E\subD-E\subA

\begin{split} W\subDA&={p\ns_1 V\subD-p\ns_2 V\subA\over\gamma-1}= -{p\ns_2 V\subA\over\gamma-1}\bigg(1-{p\ns_1\over p\ns_2} \cdot{V\subD\over V\subA}\bigg)\\ &=-{p\ns_2\, V\subA\over \gamma-1}\Bi

\begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &={\gamma\,p\ns_2\, (V\subB-V\subA)\over \gamma-1}\Bigg[ 1-\bigg({p\ns_1\over p\ns_2} \bigg)^{\!1-\gamma^{-1}}\Bigg] \end{s
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Carnot engine at maximum power output
While the Carnot engine described above in §6.4 has maximum efficiency, it is practically useless, because the isothermal processes must take place infinitely slowly in order for the working material
to remain in thermal equilibrium with each reservoir. Thus, while the work done per cycle is finite, the cycle period is infinite, and the engine power is zero.

A modification of the ideal Carnot cycle is necessary to create a practical engine. The idea  is as follows. During the isothermal expansion stage, the working material is maintained at a temperature 
. The temperature difference between the working material and the hot reservoir drives a thermal current,

Here,  is a transport coefficient which describes the thermal conductivity of the chamber walls, multiplied by a geometric parameter (which is the ratio of the total wall area to its thickness).
Similarly, during the isothermal compression, the working material is maintained at a temperature , which drives a thermal current to the cold reservoir,

Now let us assume that the upper isothermal stage requires a duration  and the lower isotherm a duration . Then

Since the engine is reversible, we must have

which says

The power is

where we assume that the adiabatic stages require a combined time of . Thus, we find

[pptab] Observed performances of real heat engines, taken from table 1 from Curzon and Albhorn (1975).

Power source  (theor.)  (obs.)

West Thurrock (UK)

Coal Fired Steam Plant

CANDU (Canada)

PHW Nuclear Reactor

Larderello (Italy)

Geothermal Steam Plant

We optimize the engine by maximizing  with respect to the temperatures  and . This yields

The efficiency at maximum power is then \[\eta={Q\ns_2-\CQ\ns_1\over Q\ns_2}=1-{T\ns_{1\Rw}\over T\ns_{2\Rw}}= 1-\sqrt

\ . \label{MCeff}\] One also finds at maximum power \[{\RDelta t\ns_2\over \RDelta t\ns_1}=\sqrt\ .\] Finally, the maximized power is

Table [pptab], taken from the article of Curzon and Albhorn (1975), shows how the efficiency of this practical Carnot cycle, given by Equation [MCeff], rather accurately predicts the efficiencies of
functioning power plants.

This page titled 2.5: Heat Engines and the Second Law of Thermodynamics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

\eta\equiv{W\over Q\subAB}=1-\bigg({p\ns_1\over p\ns_2}\bigg)^{\!1-\gamma^{-1}}\ .
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<T2w T2

= ( − ) .
26d\mathchar′ Q2

dt
κ2 T2 T2w (2.5.10)

κ2

>T1w T1

= ( − ) .
26d\mathchar′

Q1

dt
κ1 T1w T1 (2.5.11)

Δt2 Δt1

Q2

Q1

= Δ ( − )κ2 t2 T2 T2w

= Δ ( − ) .κ1 t1 T1w T1

=  ,
Q1

T1w

Q2

T2w

(2.5.12)

=  .
Δt

1

Δt2

( − )κ2 T1w T2 T2w

( − )κ1 T2w T1w T1

(2.5.13)

P =  ,
−Q

2
Q1

(1 +α) (Δ +Δ )t1 t2

(2.5.14)

α (Δ +Δ )t1 t2

P = ⋅
κ1 κ2

1 +α

( − ) ( − ) ( − )T2w T1w T1w T1 T2 T2w

( − ) + ( − )κ1 T2w T1w T1 κ2 T1w T2 T2w

(2.5.15)

 ( C)T1
∘  ( C)T2

∘ \eta\ns_\ssr{Carnot} η η

∼ 25 565 0.641 0.40 0.36

∼ 25 300 0.480 0.28 0.30

∼ 80 250 0.323 0.175 0.16

P T1w T2w

T2w

T1w

= −T2

−T2 T1T2
− −−−

√

1 + /κ2 κ1

− −−−−
√

= +  .T1

−T1T2
− −−−

√ T1

1 + /κ1 κ2

− −−−−
√

= (  .Pmax

κ1κ2

1 +α

−T2
−−

√ T1
−−

√

+κ1
−−

√ κ2
−−

√
)

2

(2.5.16)
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