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8.12: Appendix III- General Linear Autonomous Inhomogeneous ODEs
We can also solve general autonomous linear inhomogeneous ODEs of the form

We can write this as

where  is the  order differential operator

The general solution to the inhomogeneous equation is given by

where  is the Green’s function. Note that . Thus, in order for eqns. [Leqn] and [time] to be true, we must have
\[{\cal L}\nd_t\, x(t)=\stackrel

{\overbrace +\impi dt'\>{\cal L}\nd_t\,G(t,t')\,\xi(t')=\xi(t)\ ,\] which means that

where  is the Dirac -function.

If the differential equation  is defined over some finite or semi-infinite  interval with prescribed boundary
conditions on  at the endpoints, then  will depend on  and  separately. For the case we are now considering, let the
interval be the entire real line . Then  is a function of the single variable .

Note that  may be considered a function of the differential operator . If we now Fourier transform the equation 
, we obtain

Thus, if we define

then we have

where . According to the Fundamental Theorem of Algebra, the  degree polynomial  may be uniquely
factored over the complex  plane into a product over  roots:

If the  are all real, then , hence if  is a root then so is . Thus, the roots appear in pairs which are
symmetric about the imaginary axis. if  is a root, then so is .
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The general solution to the homogeneous equation is

which involves  arbitrary complex constants . The susceptibility, or Green’s function in Fourier space,  is then

Note that , which is equivalent to the statement that  is a real function of its argument. The general
solution to the inhomogeneous equation is then

where  is the solution to the homogeneous equation, with zero forcing, and where

where we assume that  for all . This guarantees causality – the response  to the influence  is nonzero only for 
.

As an example, consider the familiar case

with , and . This yields

Then according to equation [gfun],

Now let us evaluate the two-point correlation function , assuming the noise is correlated according to 
. We assume  so the transient contribution  is negligible. We then have
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Higher order ODEs
Note that any  order ODE, of the general form

may be represented by the first order system . To see this, define , with . Thus, for 
 we have , and . In other words, \[\stackrel

{\overbrace{ {d\over dt}

}}= \stackrel{\BV(\Bvphi)}{\overbrace{

}}\ .\]

An inhomogeneous linear  order ODE,

may be written in matrix form, as

Thus,

and if the coefficients  are time-independent, the ODE is autonomous.

For the homogeneous case where , the solution is obtained by exponentiating the constant matrix :

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not autonomous, then  is
time-dependent, and the solution is given by the path-ordered exponential,

where  is the path ordering operator which places earlier times to the right. As defined, the equation  is autonomous,
since the -advance mapping  depends only on  and on no other time variable. However, by extending the phase space 
from , which is of dimension , one can describe arbitrary time-dependent ODEs.
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In general, path ordered exponentials are difficult to compute analytically. We will henceforth consider the autonomous case where 
 is a constant matrix in time. We will assume the matrix  is real, but other than that it has no helpful symmetries. We can

however decompose it into left and right eigenvectors:

Or, in bra-ket notation, . The normalization condition we use is

where  are the eigenvalues of . The eigenvalues may be real or imaginary. Since the characteristic polynomial 
 has real coefficients, we know that the eigenvalues of  are either real or come in complex conjugate pairs.

Consider, for example, the  system we studied earlier. Then

The eigenvalues are as before: . The left and right eigenvectors are

The utility of working in a left-right eigenbasis is apparent once we reflect upon the result

for any function . Thus, the solution to the general autonomous homogeneous case is

If  for all , then the initial conditions  are forgotten on time scales . Physicality demands that this is the
case.

Now let’s consider the inhomogeneous case where . We begin by recasting Equation [phiQeqn] in the form

We can integrate this directly:

In component notation,

Note that the first term on the RHS is the solution to the homogeneous equation, as must be the case when .

The solution in Equation [CNsoln] holds for general  and . For the particular form of  and  in Equation [Qxieqn], we
can proceed further. For starters, . We can further exploit a special feature of the  matrix to analytically
determine all its left and right eigenvectors. Applying  to the right eigenvector , we obtain
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We are free to choose  for all  and defer the issue of normalization to the derivation of the left eigenvectors. Thus, we
obtain the pleasingly simple result,

Applying  to the left eigenvector , we obtain

From these equations we may derive

The equality in the above equation is derived using the result . Recall also that . We now impose
the normalization condition,

This condition determines our last remaining unknown quantity (for a given ), :

where  is the first derivative of the characteristic polynomial. Thus, we obtain another neat result,

Now let us evaluate the general two-point correlation function,

We write

When  is constant, we have . This is the case of so-called white noise, when all frequencies
contribute equally. The more general case when  is frequency-dependent is known as colored noise. Appealing to Equation
[CNsoln], we have

In the limit , assuming  for all  ( no diffusion), the exponentials  and  may be neglected, and we
then have
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