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2.6: The Entropy

Entropy and heat

The Second Law guarantees us that an engine operating between two heat baths at temperatures T; and 7', must satisfy
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T, T, =" (2.6.1)
with the equality holding for reversible processes. This is a restatement of Equation 777, after writing @, = —Q, for the heat transferred to the engine from reservoir #1. Consider now an arbitrary
curve in the p — V' plane. We can describe such a curve, to arbitrary accuracy, as a combination of Carnot cycles, as shown in Fig. . Each little Carnot cycle consists of two adiabats and two
isotherms. We then conclude
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with equality holding if all the cycles are reversible. Rudolf Clausius, in 1865, realized that one could then define a new state function, which he called the entropy, S, that depended only on the initial
and final states of a reversible process:

|dS= {\dbar Q\over T} \quad\Longrightarrow\quad S\subB-S\subA=\int\limits_{\RA}*{\RB} \!{\dbar Q\over T}\ . \label{dseqn} |

e

Since @ is extensive, so is S; the units of entropy are [S] = J/K.
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[mcarnot] An arbitrarily shaped cycle in the p — V' plane can be decomposed into a number of smaller Carnot cycles. Red curves indicate isotherms and blue curves adiabats, with v = % .

The Third Law of Thermodynamics

Equation determines the entropy up to a constant. By choosing a standard state T, we can define Sy = 0, and then by taking A = Y in the above equation, we can define the absolute entropy
S for any state. However, it turns out that this seemingly arbitrary constant S in the entropy does have consequences, for example in the theory of gaseous equilibrium. The proper definition of
entropy, from the point of view of statistical mechanics, will lead us to understand how the zero temperature entropy of a system is related to its quantum mechanical ground state degeneracy. Walther
Nernst, in 1906, articulated a principle which is sometimes called the Third Law of Thermodynamics,

Again, this is not quite correct, and quantum mechanics tells us that S(T' = 0) = k; Ing , where g is the ground state degeneracy. Nernst’s law holds when g=1.
‘We can combine the First and Second laws to write

dE + \mathchar' 26W = \mathchar'26Q < TdS, (2.6.3)

where the equality holds for reversible processes.

Entropy changes in cyclic processes

For a cyclic process, whether reversible or not, the change in entropy around a cycle is zero: | \RDelta S\ns_\ssr{ CYC}=0 |. This is because the entropy S is a state function, with a unique value for every
equilibrium state. A cyclical process returns to the same equilibrium state, hence S must return as well to its corresponding value from the previous cycle.

Consider now a general engine, as in Fig. . Let us compute the total entropy change in the entire Universe over one cycle. We have

| (\RDelta S)\ns_\ssr{ TOTAL}=(\RDelta S)\ns_\sst{ENGINE} + (\RDelta S)\ns_\sst{HOT} +(\RDelta S)\ns_\sst{COLD}\, |

written as a sum over entropy changes of the engine itself, the hot reservoir, and the cold reservoir . Clearly [(\RDelta S)\ns_\ssr{ENGINE}=0| The changes in the reservoir entropies are

| \begin{aligned} (\RDelta S)\ns_\ssr{HOT}&=\'\I\int\limits_{ T=T\ns_2 \'\'\!{\dbar Q \ssr{HOT }\over T} = -{Q\ns_2\over T\ns_2}\ <\ O\\ (\RDelta S)\ns_\ssr{ COLD}&=\'\\int\limits_{T=T\ns_1 }\!\!\!{\dbar Q \ssr{ COLL

because the hot reservoir loses heat @, > 0 to the engine, and the cold reservoir gains heat @; = —Q, > 0 from the engine. Therefore,

[(\RDelta S)\ns_\ssr{TOTAL}=-\bigg({Q\ns_I\over T\ns_1} + {Q\ns_2\over T\ns_2}\bigg) \ge O\ . |

Thus, for a reversible cycle, the net change in the total entropy of the engine plus reservoirs is zero. For an irreversible cycle, there is an increase in total entropy, due to spontaneous processes.

Gibbs-Duhem relation

Recall Equation

\mathchar 26W = —> "y, dX; > padN, . (2.6.4)
7 a
For reversible systems, we can therefore write

AE=TdS+Y y;dX;+Y  padN, . (2.6.5)
7 a

This says that the energy E is a function of the entropy S, the generalized displacements { X}, and the particle numbers { N, }:
E=E(S5,{X,;},{N.}). (2.6.6)

Furthermore, we have
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AE =E(AS, {AX,;}, {AN.}) . (2.6.8)

Since E and all its arguments are extensive, we have

We now differentiate the LHS and RHS above with respect to A, setting A = 1 afterward. The result is

OFE OFE OF
E=5— X — No 5
595 +; i X, 2N 5
:TS+Zijj+ZuaNa .
J a
Mathematically astute readers will recognize this result as an example of Euler’s theorem for homogeneous functions. Taking the differential of Equation , and then subtracting Equation
, we obtain
SdT+Y " X;dy;+>  Nydpa =0. (2.6.9)
J a

This is called the Gibbs-Duhem relation. It says that there is one equation of state which may be written in terms of all the intensive quantities alone. For example, for a single component system, we
must have p = p(T', ), which follows from

SdT —Vdp+Ndu=0. (2.6.10)
Entropy for an ideal gas
For an ideal gas, we have E = %kaBT, and
_1 P “
dszdE-#TdV TdN
1 dTl p 1 "
= 2kaE T +TdV+(2kafT)dN.

Invoking the ideal gas equation of state pV = Nk,T', we have

1
dS]N:EkaBdlnT+Ndean. (2.6.11)
Integrating, we obtain
1
S(T,V,N):Ekas InT+ Nky InV +¢(N), (2.6.12)
where ¢ (V) is an arbitrary function. Extensivity of S places restrictions on ¢ (IV), so that the most general case is
1
S(T,V,N):EkaB InT + Nk, In (%>+Na, (2.6.13)
where a is a constant. Equivalently, we could write
S(EVN)flka 1 E + Nk, 1 v +Nb (2.6.14)
vy -3 R N 5 11 N s -0.

where b =a — % ks lu(% fkg) is another constant. When we study statistical mechanics, we will find that for the monatomic ideal gas the entropy is

5 \4
5+1H<N)\3 )] , (2.6.15)
T

where A, = /27h? /mk,T is the thermal wavelength, which involved Planck’s constant. Let’s now contrast two illustrative cases.

S(T,V,N) =Nk,

« Adiabatic free expansion — Suppose the volume freely expands from V; to Vf =1V, withr > 1. Such an expansion can be effected by a removal of a partition between two chambers that are

otherwise thermally insulated (see Fig. ). We have already seen how this process entails
AE=Q=W=0. (2.6.16)
But the entropy changes! According to Equation , we have
AS=8;-8,=Nkylnr. (2.6.17)
e Reversible adiabatic expansion — If the gas expands quasistatically and reversibly, then S = S(F, V, N) holds everywhere along the thermodynamic path. We then have, assuming dN =0,
1 dE dv
0=dS = EkaE FJrNkE N
=Nkydln (VEf/2) .
Integrating, we find
E v, 2/f
—=\|= . 2.6.1
7 (7) w029
Thus,
By=r?"E, = T,=r*/T,. (2.6.19)
Example system
Consider a model thermodynamic system for which
a$®
E(S,V,N)= NV (2.6.20)
where a is a constant. We have
dE=TdS—pdV +pdN, (2.6.21)

https://phys.libretexts.org/@go/page/18858



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18858?pdf

LibreTextsm

and therefore

T (3_E) _ 3a5?
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m= <W>S,V7_N2V .

Choosing any two of these equations, we can eliminate S, which is inconvenient for experimental purposes. This yields three equations of state,

T3 \ T8 N P N
ke R i (2.0:2)
only two of which are independent.
What about CY, and C,,? To find C,, we recast Equation as
NVT\'?
S= . 2.6.23
(%) (26.29)
‘We then have
as 1 (NVT\'? N T?
c, =T = — - (=== - 2.6.24
v (BT)KN 2(311) 18a p ’ ( )
where the last equality on the RHS follows upon invoking the first of the equations of state in Equation . To find C,, we eliminate V' from eqns. and , obtaining
T?/p=9aS/N. From this we obtain
0S 2N T?
C,=T (—) =—— (2.6.25)
oT N 90 P
Thus, C,/Cy, = 4.
We can derive still more. To find the isothermal compressibility ., = —%(%)T n » use the first of the equations of state in Equation . To derive the adiabatic compressibility
Kg=— % (‘Z—‘;)s  » use Equation , and then eliminate the inconvenient variable S.

Suppose we use this system as the working substance for a Carnot engine. Let’s compute the work done and the engine efficiency. To do this, it is helpful to eliminate S in the expression for the
energy, and to rewrite the equation of state: \[E=pV=\sqrt

\>VA{1/2}\,TA{3/2}\qquad , \qquad p=\sqrt\>{TA{3/2}\over VA{1/2} }\ .\] We assume dN = 0 throughout. We now see that for isotherms,

E
dT' =0 : — = constant (2.6.26)
vV
Furthermore, since \[\dbar W\big|\nd_T=\sqrt\>TA{3/2}\>{dV\over VA{1/2}}=2\,dE\big|\nd_T\ ,\] we conclude that
dT =0 : W, = 2(Ef -E) , Qi =E;,—E,+W, = 3(Ef -E). (2.6.27)
For adiabats, Equation says d(TV) =0, and therefore

E
\mathchar'26Q =0 : TV = constant T= constant , EV = constant (2.6.28)

as well as W, ;= E —-E I We can use these relations to derive the following:

| E\subB=\sqrt{ V\subB\over V\subA }\,E\subA\quad,\quad E\subC={T\ns_1\over T\ns_2}\sqrt{ VisubB\over V\subA }\,E\subA\quad,\quad E\subD={T\ns_1\over T\ns_2}\,E\subA\ . |

Now we can write

| \begin{aligned} W\subAB&=2(E\subB-E\subA)=2\Bigg(\sqrt{ V\subB\over V\subA }-1\Bigg)E\subA\\ W\subBC&=(E\subB-E\subC)=\sqrt{ V\subB\over V\subA }\Bigg(1-{T\ns_1\over T\ns_2}\Bigg)E\subA\\ W\subCD&=:

Adding up all the work, we obtain

| \begin{split} W&=W\ns_\ssr{ AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA }\vph\\ &=3\Bigg(\sqrt{ V\subB\over V\subA }-1\Bigg)\Bigg(1-{T\ns_1\over T\ns_2}\Bigg)E\subA\ . \end{split} |

Since

| Q\subAB=3(E\subB-E\subA)=\frac{3} {2} W\subAB=3\Bigg(\sqrt{ V\subB\over V\subA }-1\Bigg)E\subA\ , |

we find once again

[\eta={W\over QisubAB}=1-{T\ns_I\over T\ns_2} \ .|

Measuring the entropy of a substance

If we can measure the heat capacity C,(T') or Cp,(T") of a substance as a function of temperature down to the lowest temperatures, then we can measure the entropy. At constant pressure, for example,
we have T'dS = C,, dT', hence

T
S0.7) = 50,7 =0)+ far' L. (2.6.29)
0

The zero temperature entropy is S(p, T = 0) =k, Ing where g is the quantum ground state degeneracy at pressure p. In all but highly unusual cases, g=1 and S(p, T'=0) =0.
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