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5.3: Entropy and Counting States
Suppose we are to partition  particles among  possible distinct single particle states. How many ways  are there of accomplishing this task? The answer depends on the statistics of the particles.
If the particles are fermions, the answer is easy: . For bosons, the number of possible partitions can be evaluated via the following argument. Imagine that we line
up all the  particles in a row, and we place  barriers among the particles, as shown below in Figure [BEcount]. The number of partitions is then the total number of ways of placing the 
particles among these  objects (particles plus barriers), hence we have . For Maxwell-Boltzmann statistics, we take 
Note that  is not necessarily an integer, so Maxwell-Boltzmann statistics does not represent any actual state counting. Rather, it manifests itself as a common limit of the Bose
and Fermi distributions, as we have seen and shall see again shortly.

[BEcount] Partitioning  bosons into  possible states (  and  shown). The  black dots represent bosons, while the  white dots represent markers separating the different single
particle populations. Here , , , , and .

The entropy in each case is simply . We assume  and , with  finite. Then using Stirling’s approximation, , we have

In the Maxwell-Boltzmann limit, , and all three expressions agree. Note thatR

Now let’s imagine grouping the single particle spectrum into intervals of  consecutive energy states. If  is finite and the spectrum is continuous and we are in the thermodynamic limit, then these
states will all be degenerate. Therefore, using  as a label for the energies, we have that the grand potential  is given in each case by

Now - lo and behold! - treating  as a function of the distribution  and extremizing in each case, subject to the constraint of total particle number , one obtains the Maxwell-
Boltzmann, Bose-Einstein, and Fermi-Dirac distributions, respectively:

As long as  is finite, so the states in each block all remain at the same energy, the results are independent of .
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S = lnΩkB N ≫ 1 J ≫ 1 n ≡ N/J ln(K!) = K lnK −K +O(lnK)

\begin{split} S\ns_\ssr{MB}&=-J\kB \, n\ln n \\ S\ns_\ssr{BE}&=-J\kB\big[ n\ln n - (1+n)\ln (1+n)\big] \bvph \\ S\ns_\ssr{FD}&=-J\kB\big[ n\ln n + (1-n)\ln (1-n)\big]\ . \end{split}

n ≪ 1

\begin{split} \pabc{S\ns_\ssr{MB}}{N}{J} &= -\kB \, \big( 1 + \ln n\big) \\ \pabc{S\ns_\ssr{BE}}{N}{J} &= \kB\ln\!\big(n^{-1}+1\big) \bvph \\ \pabc{S\ns_\ssr{FD}}{N}{J} &= \kB\ln\!\big(n^{-1}-1\big)\ . \end{split}
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α Ω = E −T S −μN

\begin{split} \Omega\ns_\ssr{MB} &= J\sum_\alpha \Big[ (\ve\ns_\alpha-\mu)\,n\ns_\alpha+\kT\,n\ns_\alpha\ln n\ns_\alpha\Big] \\ \Omega\ns_\ssr{BE} &= J\sum_\alpha \Big[ (\ve\ns_\alpha-\mu)\,n\ns_\alpha+\kT\,n\ns_\a

Ω { }nα N = J∑α nα

{\delta\over\delta n\ns_\alpha}\Big(\Omega-\lambda \, J\sum_{\alpha'} n\ns_{\alpha'}\Big) = 0 \quad\Rightarrow \quad \begin{cases} n^\ssr{MB}_\alpha=e^{(\mu-\ve\ns_\alpha)/k\ns_\RB T} \\ \\ n^\ssr{BE}_\alpha=\big[e^
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