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4.8: Selected Examples

Spins in an External Magnetic Field
Consider a system of  spins, each of which can be either up  or down ( ). The Hamiltonian for this system is

where now we write  for the Hamiltonian, to distinguish it from the external magnetic field , and  is the magnetic moment per particle. We treat this system
within the ordinary canonical ensemble. The partition function is

where  is the single particle partition function:

The Helmholtz free energy is then

The magnetization is

The energy is

Hence, , which we already knew, from the form of  itself.

Each spin here is independent. The probability that a given spin has polarization  is

The total probability is unity, and the average polarization is a weighted average of  and  contributions:

At low temperatures , we have . At high temperatures , the two polarizations are equally likely, and 

.

The isothermal magnetic susceptibility is defined as

(Typically this is computed per unit volume rather than per particle.) At , we have , which is known as the Curie law.

Aside
The energy  here is not the same quantity we discussed in our study of thermodynamics. In fact, the thermodynamic energy for this problem
vanishes! Here is why. To avoid confusion, we’ll need to invoke a new symbol for the thermodynamic energy, . Recall that the thermodynamic energy  is a
function of extensive quantities, meaning . It is obtained from the free energy  by a double Legendre transform:

Now from Equation  we derive the entropy

Thus, using Equations  and , we obtain .

The potential confusion here arises from our use of the expression . In thermodynamics, it is the Gibbs free energy  which is a double
Legendre transform of the energy: . By analogy, with magnetic systems we should perhaps write , but in keeping with
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many textbooks we shall use the symbol  and refer to it as the Helmholtz free energy. The quantity we’ve called  in Equation  is in fact 
, which means . The energy  vanishes here because the spins are noninteracting.

Negative Temperature (!)
Consider again a system of  spins, each of which can be either up  or down ( ). Let  be the number of sites with spin , where . Clearly 

. We now treat this system within the microcanonical ensemble.

Figure : When entropy decreases with increasing energy, the temperature is negative. Typically, kinetic degrees of freedom prevent this peculiarity from
manifesting in physical systems.

The energy of the system is

where  is an external magnetic field, and  is the total magnetization. We now compute  using the ordinary canonical ensemble. The
number of ways of arranging the system with  up spins is

hence the entropy is

in the thermodynamic limit: , ,  constant. Now the magnetization is , hence if we define
the maximum energy , then

We therefore have

We now have

We see that the temperature is positive for  and is negative for .

What has gone wrong? The answer is that nothing has gone wrong – all our calculations are perfectly correct. This system does exhibit the possibility of negative
temperature. It is, however, unphysical in that we have neglected kinetic degrees of freedom, which result in an entropy function  which is an increasing
function of energy. In this system,  achieves a maximum of  at  ( ), and then turns over and starts decreasing. In fact, our
results are completely consistent with Equation : the energy  is an odd function of temperature. Positive energy requires negative temperature! Another
example of this peculiarity is provided in the appendix in §11.2.

Adsorption
PROBLEM: A surface containing  adsorption sites is in equilibrium with a monatomic ideal gas. Atoms adsorbed on the surface have an energy  and no
kinetic energy. Each adsorption site can accommodate at most one atom. Calculate the fraction  of occupied adsorption sites as a function of the gas density , the
temperature , the binding energy , and physical constants.

The grand partition function for the surface is

The fraction of occupied sites is
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Since the surface is in equilibrium with the gas, its fugacity  and temperature  are the same as in the gas.

SOLUTION: For a monatomic ideal gas, the single particle partition function is , where  is the thermal wavelength. Thus, the
grand partition function, for indistinguishable particles, is

The gas density is

We can now solve for the fugacity: . Thus, the fraction of occupied adsorption sites is

Interestingly, the solution for  involves the constant .

It is always advisable to check that the solution makes sense in various limits. First of all, if the gas density tends to zero at fixed  and , we have . On the
other hand, if  we have , which also makes sense. At fixed  and , if the adsorption energy is , then once again  since every
adsorption site wants to be occupied. Conversely, taking  results in , since the energetic cost of adsorption is infinitely high.

Figure : The monomers in wool are modeled as existing in one of two states. The low energy undeformed state is A, and the higher energy deformed state is
B. Applying tension induces more monomers to enter the B state.

Elasticity of wool
Wool consists of interlocking protein molecules which can stretch into an elongated configuration, but reversibly so. This feature gives wool its very useful
elasticity. Let us model a chain of these proteins by assuming they can exist in one of two states, which we will call A and B, with energies  and 
and lengths  and . The situation is depicted in Figure . We model these conformational degrees of freedom by a spin variable  for
each molecule, where  in the A state and  in the B state. Suppose a chain consisting of  monomers is placed under a tension . We then have

Similarly, the length is

The Gibbs partition function is , with  :

where  and . At  the A state is preferred for each monomer, but when  exceeds ,
defined by the relation , the B state is preferred. One finds
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Figure : Upper panel: length  for  (blue),  (green),  (dark red), and  (red). Bottom panel: dimensionless force constant 
 versus temperature.

Once again, we have a set of  noninteracting spins. The partition function is , where  is the single monomer partition function, , where

is the single “spin" Hamiltonian. Thus,

It is convenient to define the differences

in which case the partition function  is

The average length is

The polymer behaves as a spring, and for small  the spring constant is

The results are shown in Figure . Note that length increases with temperature for  and decreases with temperature for . Note also that  diverges
at both low and high temperatures. At low , the energy gap  dominates and , while at high temperatures  dominates and 

.

Noninteracting spin dimers
Consider a system of noninteracting spin dimers as depicted in Figure . Each dimer contains two spins, and is described by the Hamiltonian

Here,  is an interaction energy between the spins which comprise the dimer. If  the interaction is ferromagnetic, which prefers that the spins are aligned.
That is, the lowest energy states are  and . If  the interaction is antiferromagnetic, which prefers that spins be anti-aligned:  and .

Suppose there are  dimers. Then the OCE partition function is , where  is the single dimer partition function. To obtain , we sum over
the four possible states of the two spins, obtaining

Thus, the free energy is

The magnetization is
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It is instructive to consider the zero field isothermal susceptibility per spin,

The quantity  is simply the Curie susceptibility for noninteracting classical spins. Note that we correctly recover the Curie result when , since then
the individual spins comprising each dimer are in fact noninteracting. For the ferromagnetic case, if , then we obtain

This has the following simple interpretation. When , the spins of each dimer are effectively locked in parallel. Thus, each dimer has an effective magnetic
moment . On the other hand, there are only half as many dimers as there are spins, so the resulting Curie susceptibility per spin is .

Figure : A model of noninteracting spin dimers on a lattice. Each red dot represents a classical spin for which .

When , the spins of each dimer are effectively locked in one of the two antiparallel configurations. We then have

In this case, the individual dimers have essentially zero magnetic moment.
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