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6.6: Polymers

Basic concepts

Linear chain polymers are repeating structures with the chemical formula (A),, where A is the formula unit and z is the degree of
polymerization. In many cases (polystyrene), z ~ 10° is not uncommon. For a very readable introduction to the subject, see P. G.
de Gennes, Scaling Concepts in Polymer Physics.

Quite often a given polymer solution will contain a distribution of z values; this is known as polydispersity. Various preparation
techniques, such as chromatography, can mitigate the degree of polydispersity. Another morphological feature of polymers is
branching, in which the polymers do not form linear chains.
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Figure 6.6.1: Some examples of linear chain polymers.

Polymers exhibit a static flexibility which can be understood as follows. Consider a long chain hydrocarbon witha —C' — C —C—
backbone. The angle between successive C' —C' bonds is fixed at # ~ 68°, but the azimuthal angle ¢ can take one of three
possible low-energy values, as shown in the right panel of Figure 6.6.2. Thus, the relative probabilities of gauche and trans
orientations are

[Math Processing Error]

where Ae is the energy difference between trans and gauche configurations. This means that the polymer chain is in fact a random
coil with a persistence length

[Math Processing Error]

where £, is a microscopic length scale, roughly given by the length of a formula unit, which is approximately a few Angstroms (see
Figure 6.6.2). Let L be the total length of the polymer when it is stretched into a straight line. If £, > L, the polymer is rigid. If
£, < L, the polymer is rigid on the length scale £, but flexible on longer scales. We have

b 1 Ae/ksT

L N ’

where we now use IV (rather than z) for the degree of polymerization.

(6.6.3)

In the time domain, the polymer exhibits a dynamical flexibility on scales longer than a persistence time. The persistence time 7, is
the time required for a trans-gauche transition. The rate for such transitions is set by the energy barrier B separating trans from
gauche configurations:

T = 1o €B/F0T (6.6.4)
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where 7, ~ 107! s. On frequency scales w <<7'p’1 the polymer is dynamically flexible. If Ae ~ k;T < B the polymer is
flexible from a static point of view, but dynamically rigid. That is, there are many gauche orientations of successive carbon bonds
which reflect a quenched disorder. The polymer then forms a frozen random coil, like a twisted coat hanger.
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Figure 6.6.2: Left: trans and gauche orientations in carbon chains. Right: energy as a function of azimuthal angle ¢. There are
three low energy states: trans (¢ = 0) and gauche (¢ = £¢y).

Polymers as random walks

A polymer can be modeled by a self-avoiding random walk (SAW). That is, on scales longer than £, it twists about randomly in
space subject to the constraint that it doesn’t overlap itself. Before we consider the mathematics of SAWs, let’s first recall some
aspects of ordinary random walks which are not self-avoiding.

We’ll simplify matters further by considering random walks on a hypercubic lattice of dimension d. Such a lattice has coordination
number 2d, there are 2d nearest neighbor separation vectors, given by d =+aé, , aé,, ..., =a&, , where a is the lattice
spacing. Consider now a random walk of N steps starting at the origin. After N steps the position is

N
Ry =) (6.6.5)
j=1

where & ; takes on one of 2d possible values. Now N is no longer the degree of polymerization, but somthing approximating L/,
which is the number of persistence lengths in the chain. We assume each step is independent, hence (45 5Jﬂ,> = (a?/d) 5jj,5‘1ﬁ and
(R%) = Na? . The full distribution P, (R) is given by
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This is a simple Gaussian, with width <R2> =d-(Na®/d) = Na? , as we have already computed. The quantity R defined here is
the end-to-end vector of the chain. The RMS end-to-end distance is then <R2>1/ 2=+/Na= R, .

A related figure of merit is the radius of gyration, R, defined by

Rj = %<§:(Rn_RCM)2> : (6.6.6)

n=1
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where R, = % Zjvzl R; is the center of mass position. A brief calculation yields

N 2
R2=(N+3-4N")a’~ 6“ , (6.6.7)

in all dimensions.

The total number of random walk configurations with end-to-end vector R is then (2d)"V Py (R), so the entropy of a chain at fixed
elongation is

dk,R’
S(R,N) =k, In [(2d)NPN(R)] = 5(0, N) — == (6.6.8)
2Na?
If we assume that the energy of the chain is conformation independent, then E = E(N) and
dk, TR’
FR,N)=F(0,N)+ N2 (6.6.9)
In the presence of an external force F, ,, the Gibbs free energy is the Legendre transform
G(FemwN):F(R?N)_Femt'R ’ (6610)
and 0G/OR =0 then gives the relation
Na?
(R(F oy, N)) = MFM . (6.6.11)

This may be considered an equation of state for the polymer.

Following de Gennes, consider a chain with charges +e at each end, placed in an external electric field of magnitude
E=30,000V/cm.Let N = 10* ,a=2A, and d = 3. What is the elongation? From the above formula, we have
eER,

R
EL 0. 6.12
R, 3hT 0% (6.6.12)

with R, = v/Na as before.
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Figure 6.6.3: The polymer chain as a random coil.

Structure factor

We can also compute the structure factor,

m=1 n=1
2 N m-1 )
-1 +W Z Z <ezk (Rm—Rn)>
m=1 n=1
For averages with respect to a Gaussian distribution,
. 1
(% (RuRu)) — exp {— 3 <(k- R, — Rn))2>} : (6.6.13)
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Now form >n wehave R, —R,, =>7" ., §; , and therefore

(0 B, R = Y (k-8 = % (m—-n)Ka® | (6.6.14)
j=n+1
since (J (553 )y = (a?/d) Jj].,zi“ﬁ . We then have

2 N m-1 -

S =1+ DN e tmomial/z (6.6.15)

m=1 n=1

N (e —1)—2eM (1—e Vi)

N(em—1) ’

where py = k2a? /2d. In the limit where N — co and a — 0 with Na? = R% constant, the structure factor has a scaling form,
S(k) = Nf(Nm) = (R,/a) f(k*R2/2d) , where

f@) =2 (e —1ta)=1-S4Z (6.6.16)

Rouse model

Consider next a polymer chain subjected to stochastic forcing. We model the chain as a collection of mass points connected by
springs, with a potential energy U = %k o (xn = x") ® This reproduces the distribution of Equation 777 if we take the spring
constant to be k = 3k,T'/a” and set the equilibrium length of each spring to zero. The equations of motion are then

Mx, +v%, = —k(2x, —x,_; —x,.¢) +£,(t) , (6.6.17)
where n € {1,..., N} and {f} (t)} a set of Gaussian white noise forcings, each with zero mean, and
(fr (&) fu @) =29k, T6,,,, 6" (t —t') . (6.6.18)

We define x; =x,; and x,,; =x, so that the end mass points » =1 and n = N experience a restoring force from only one
neighbor. We assume the chain is overdamped and set M — 0. We then have

N
YR, =-kY A, %, +E,(t) (6.6.19)
n'=1
where
1 -1 0 0 0
-1 2 -1 0 0
o -1 2 -1 .-~ 0
A= . . . (6.6.20)
o 0 -1 . .-
2 -1
0 0o -1 1
The matrix A is real and symmetric. Its eigenfunctions are labeled 9, (n), withj€{0,...,N—1}
1
n) =——
%o(n) N

¥, (n) :\/%cos(%> , je{l,...,N-1}

The completeness and orthonormality relations are

N-1 N
Z wj (’I’L) d)j (’I’L/) = énn’ ) Z d)j (n) 1/)3'/ (TL) = Jjj’ ) (6621)
=0 n=1
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with eigenvalues A; = 4 sin’ (71' j/2N ) Note that A, =0.

We now work in the basis of normal modes {17;‘ }, where

N N-1
n!(t) = Zl Bn)ant) . k()= 0 b ()i (t) (6.6.22)
n= j=
We then have
dn; 1
J _
7j
where the j* relaxation time is
v
= 6.6.24
4ksin® (mj/2N) ( )
and
N
g ®) =y ) FEE) (6.6.25)
n=1
Note that
(g5 (t) g4 ') =27 kT g, 0mat—t) . (6.6.26)
Integrating Equation 6.6.23 we have for, j =0,
¢
m0) =m0) + [t g(¢) - (6.6.27)
0
For the j > 0 modes,
¢
n;(t) =n,;(0)e ™" + / dt' g;(t) e . (6.6.28)
0

Thus,

(@) my (X)), =27 ksT 6 min(t, t')
Oy (E)), = kT (1017 =)

where the ‘connected average’ is defined to be (A(t) B(t')). = (A(t) B(t')) — (A(¢))(B(¥')) . Transforming back to the original
real space basis, we then have

2k, T

(aht) s (), =

v kT VN71 —|t—t'| /7. — /T
s mln(t,t/)—i—BTé" ZlTj P;(n) ¢, (n') (e t=t1/7; _ gt/ J) . (6.6.29)
j:

In particular, the ‘connected variance’ of x,, (t) is

N-1
CVar[x,(t)] = ([xa()]%), = % tr %TT > r ) (- ) (6.6.30)

From this we see that at long times, when ¢ >> 7, , the motion of x,, (t) is diffusive, with diffusion constant D = k;T'/ Ny B,
which is inversely proportional to the chain length. Recall the Stokes result v = 67nR/M for a sphere of radius R and mass M
moving in a fluid of dynamical viscosity 7. From D =k;T/yM, shouldn’t we expect the diffusion constant to be

D = k,T/6mnR o< N /2, since the radius of gyration of the polymer is R, oc N'*/2 ? This argument smuggles in the assumption
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that the only dissipation is taking place at the outer surface of the polymer, modeled as a ball of radius R,. In fact, for a Gaussian

1/2

random walk in three space dimensions, the density for r < R, is p oc N /< since there are N monomers inside a region of

volume (\/N)S. Accounting for Flory swelling due to steric interactions (see below), the density is p ~ N %5 which is even
smaller. So as N — oo, the density within the r = R, effective sphere gets small, which means water molecules can easily
penetrate, in which case the entire polymer chain should be considered to be in a dissipative environment, which is what the Rouse
model says — each monomer executed overdamped motion.

A careful analysis of Equation 6.6.30 reveals that there is a subdiffusive regime = where CVar [xn (t)] o t1/2. To see this, first
take the N >>1 limit, in which case we may write T = NQTO/j2, where 7, =v/7%k and j€{1,...,N—1}. Let
s=(n—3)/N €0,1] be the scaled coordinate along the chain. The second term in Equation 6.6.30is then

T 7 N1 o (i ,
6k, T 7o w (1 ,e—2ﬂzt/ﬁ) . (6.6.31)
v Nj:1 J

S(s,t) =

Leto = (t/7,)"/?. Whent < 1, , 0 < 1, we have

No
6k,T Ty a/du cos?(rus/o) (1—e)

S(s,t) ~ N -

(6.6.32)
0

Since s/o > 1, we may replace the cosine squared term by its average % . If we further assume No > 1, which means we are in
the regime 1 < t/7, < N 2, after performing the integral we obtain the result

s
S(s,t):3k7 St (6.6.33)

provided s = O(1) , the site n is not on either end of the chain. The result in Equation 6.6.33 dominates the first term on the RHS
of Equation \reF{Rousevar} since 7, <t < 7 . This is the subdiffusive regime.

Whent > 7 =N 27'0 , the exponential on the RHS of Equation 6.6.31 is negligible, and if we again approximate cos?(7js) ~ % ,
and we extend the upper limit on the sum to infinity, we find S(¢) = (3k,T/7)(7;/N)(72/6) o t°, which is dominated by the

leading term on the RHS of Equation 6.6.30. This is the diffusive regime, with D = k; T/ N~.

Finally, when t¢<7,, the factor 1—exp(—2t/ Tj) may be expanded to first order in f. One then obtains
CVar|x,(t)] = (6ksT'/~)t, which is independent of the force constant k. In this regime, the monomers don’t have time to
respond to the force from their neighbors, hence they each diffuse independently. On such short time scales, however, one should
check to make sure that inertial effects can be ignored, that ¢ > M /.

One serious defect of the Rouse model is its prediction of the relaxation time of the j =1 mode, 7, x N 2 The experimentally
observed result is 7, oc N 3/2 We should stress here that the Rouse model applies to ideal chains. In the theory of polymer
solutions, a theta solvent is one in which polymer coils act as ideal chains. An extension of the Rouse model, due to my former
UCSD colleague Bruno Zimm, accounts for hydrodynamically-mediated interactions between any pair of ‘beads’ along the chain.
Specifically, the Zimm model is given by
d_mlnl i 1224 v v v 14
T > H"(x,—x,) [k(:cnurl +a¥,_, —2a%) + fY (t)} , (6.6.34)

n'

where

H"(R) =

w o B pY
= GmR(é +R'R) (6.6.35)

is known as the Oseen hydrodynamic tensor (1927) and arises when computing the velocity in a fluid at position R when a point
force F = f §(r) is applied at the origin. Typically one replaces H(R)) by its average over the equilibrium distribution of polymer
configurations. Zimm’s model more correctly reproduces the behavior of polymers in 8-solvents.
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Flory Theory of Self-Avoiding Walks

What is missing from the random walk free energy is the effect of steric interactions. An argument due to Flory takes these
interactions into account in a mean field treatment. Suppose we have a chain of radius R. Then the average monomer density
within the chain is ¢ = N/ R¢. Assuming short-ranged interactions, we should then add a term to the free energy which effectively
counts the number of near self-intersections of the chain. This number should be roughly N¢. Thus, we write

N? 1 R?
F(R,N)=F,+u(T) F—l—idkBTW (6.6.36)
The effective interaction u(T") is positive in the case of a so-called ‘good solvent’.
The free energy is minimized when
OF duN? R
0= R~ R +dk;T Naz (6.6.37)
which yields the result
wa? \/(@+2)
RL(N)= (kBT> N3/d+2) o NV . (6.6.38)

Thus, we obtain ¥ =3/(d+2) . Ind =1 this says v = 1, which is exactly correct because a SAW in d =1 has no option but to
keep going in the same direction. In d = 2, Flory theory predicts v = %, which is also exact. Ind =3, we have v, , = % , which
is extremely close to the numerical value v = 0.5880. Flory theory is again exact at the SAW upper critical dimension, which is

d=4,wherev = % , corresponding to a Gaussian random walk . Best. Mean. Field. Theory. Ever.
How well are polymers described as SAWs? Figure 6.6.4 shows the radius of gyration Ry versus molecular weight M for
polystyrene chains in a toluene and benzene solvent. The slope is ¥ =dInR,/dIn M = 0.5936. Experimental results can vary

with concentration and temperature, but generally confirm the validity of the SAW model.

For a SAW under an external force, we compute the Gibbs partition function,

ext )

Y(F,_,,N)= / dR Py (R) eFerB/keT — / d% f(z) e™*, (6.6.39)

where £ = R/R, and s=k;,T/R,F,, and n=F,,. One than has R(F,,) =R, ®(R;/&), where £=Fk,T/F,, and

R(F,,)=F,, R%/k,T. For small values of its argument one has ®(u)cu. For large u it can be shown that
R(Fezt) & (FeztRF/kBT)2/3 .
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Figure 6.6.4: Radius of gyration R, of polystyrene in a toluene and benzene solvent, plotted as a function of molecular weight of
the polystyrene. The best fit corresponds to a power law R, oc M¥ with v = 0.5936. From J. Des Cloizeaux and G. Jannink,
Polymers in Solution: Their Modeling and Structure (Oxford, 1990).
On a lattice of coordination number z, the number of IV-step random walks starting from the origin is 2, = 2V . If we constrain
our random walks to be self-avoiding, the number is reduced to

QSAW —C NN (6.6.40)
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where C and ~y are dimension-dependent constants, and we expect y < z— 1, since at the very least a SAW cannot immediately
double back on itself. In fact, on the cubic lattice one has z =6 but y = 4.68, slightly less than z—1. One finds v,_, ~ % and
Vg = % . The RMS end-to-end distance of the SAW is

R,=aN" , (6.6.41)

where a and v are d-dependent constants,withv, ;, =1,v, , ~ % ,and vy g ~ % . The distribution Py (R) has a scaling form,
PR —— f( 2 (a < R< Na) (6.6.42)

=—fl — a a) . .6.

N R%‘ RF

One finds
(6.6.43)
withg=(y—1)/v andd=1/(1-v).

Polymers and Solvents

Consider a solution of monodisperse polymers of length IV in a solvent. Let ¢ be the dimensionless monomer concentration, so
¢/ N is the dimensionless polymer concentration and ¢; =1 —¢ is the dimensionless solvent concentration. (Dimensionless
concentrations are obtained by dividing the corresponding dimensionful concentration by the overall density.) The entropy of
mixing for such a system is given by Equation 2.352. We have
Vk 1
S - B.{F(ﬁ]n(ﬁ—l—(l—(ﬁ)ln(l—(f))}, (6.6.44)

Yy

where v, o a® is the volume per monomer. Accounting for an interaction between the monomer and the solvent, we have that the
free energy of mixing is

1)0 Fmi
VT

= 6Ing+(1-6)In(1—6) + xH(1—4) (6.6.45)

where x is the dimensionless polymer-solvent interaction, called the Flory parameter. This provides a mean field theory of the
polymer-solvent system.

The osmotic pressure II is defined by

OF

miz

="

: (6.6.46)
NP

which is the variation of the free energy of mixing with respect to volume holding the number of polymers constant. The monomer
concentration is ¢ = N Ny, /V,so

2
%‘Np _ _qu\br,, m % . (6.6.47)
Now we have
Frniz = NNy kT { % Ing+ (¢t —1)In(1 —¢)+x(1— d))} , (6.6.48)
and therefore
= k;tr [(N*1 —1)¢—ln(1—¢)—x¢2]. (6.6.49)
In the limit of vanishing monomer concentration ¢ — 0, we recover
ksT
m— ¢N20 , (6.6.50)
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which is the ideal gas law for polymers.
For N-! < ¢ < 1, we expand the logarithm and obtain
v, II
k;T

1 1. 2 3
—N¢+2(1 2x) ¢~ +0(¢°)

~ Loy g2
~2(1 2x) ¢~ .

Note that IT > 0 only if x < % , which is the condition for a ’good solvent’.

In fact, Equation 777 is only qualitatively correct. In the limit where y < %, Flory showed that the individual polymer coils
behave much as hard spheres of radius R . The osmotic pressure then satisfies something analogous to a virial equation of state:

2
1 ¢ +A(i)R§+...

kT Nu, N,
__¢ .
= N M)

This is generalized to a scaling form in the second line, where h(z) is a scaling function, and ¢* = N,/ R} o N~4/% | assuming
d=3 andv = % from Flory theory. As z = ¢/¢* — 0, we must recover the ideal gas law, so h(z) =1+ O(z) in this limit. For
x — 00, we require that the result be independent of the degree of polymerization N. This means h(z) o« P with %p =1,p= %.
The result is known as the des Cloiseaux law:

v, 11
k,T

where C' is a constant. This is valid for what is known as semi-dilute solutions, where ¢* < ¢ < 1. In the dense limit ¢ ~ 1, the
results do not exhibit this universality, and we must appeal to liquid state theory, which is no fun at all.

=C¢'*, (6.6.51)

This page titled 6.6: Polymers is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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