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5.5: Photon Statistics

Thermodynamics of the photon gas

There exists a certain class of particles, including photons and certain elementary excitations in solids such as phonons ( lattice
vibrations) and magnons ( spin waves) which obey bosonic statistics but with zero chemical potential. This is because their overall
number is not conserved (under typical conditions) — photons can be emitted and absorbed by the atoms in the wall of a container,
phonon and magnon number is also not conserved due to various processes, In such cases, the free energy attains its minimum

value with respect to particle number when
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The number distribution, from Equation 777, is then

1
The grand partition function for a system of particles with 4 =0 is
QUT,V)=Vk,T /ds g(e) In (1 —e~/*oT) | (5.5.3)

where g(e) is the density of states per unit volume.

Suppose the particle dispersion is (p) = A|p|”. We can compute the density of states g(¢):
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where g is the internal degeneracy, due, for example, to different polarization states of the photon. We have used the result
Q,= 2742 /T(d/2) for the solid angle in d dimensions. The step function ©(¢) is perhaps overly formal, but it reminds us that
the energy spectrum is bounded from below by € = 0, there are no negative energy states.

For the photon, we have e(p) = ¢p, hence o = 1 and
2g /2 Edfl
I'(d/2) (hc)?

In d =3 dimensions the degeneracy is g = 2, the number of independent polarization states. The pressure p(7T') is then obtained
using 2 = —pV . We have

g(e) = O(e) . (5.5.4)

p(T) = —kBT/ds g(e) In (1 _ e—E/kBT)
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We can make some progress with the dimensionless integral:
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Finally, we invoke a result from the mathematics of the gamma function known as the doubling formula,

2+ z z+1
I'(2) = I'(=)T . .9.
(&)= "=TG)N(=) (5.5.5)
Putting it all together, we find
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The number density is found to be
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For photons in d = 3 dimensions, we have g = 2 and thus
2¢(3) ( kyT )3 2¢(4) (ksT)*
n(T) = , T)= . 5.5.7
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It turns out that {(4) = g—;.
Note that hc/k; = 0.22855 cm - K|, so
ksT
;c =4.3755T[K]em™ — n(T)=20.405 x T*[K*|em™ . (5.5.8)
To find the entropy, we use Gibbs-Duhem:
dp
du=0=—-sdT+vdp = §=V—n (5.5.9)
where s is the entropy per particle and v =n""' is the volume per particle. We then find
d+1
s(T) = (d+1) o ) ks . (5.5.10)
(d)
The entropy per particle is constant. The internal energy is
OlnE= 0
E=— =——(BpV)=d-pV 5.5.11
and hence the energy per particle is
E d-¢(d+1)
e=—=d pv=—--—""k;T. 5.5.12
NPT T (6:512)
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Classical arguments for the photon gas

A number of thermodynamic properties of the photon gas can be determined from purely classical arguments. Here we recapitulate
a few important ones.

 Suppose our photon gas is confined to a rectangular box of dimensions L, x L, x L, . Suppose further that the dimensions are
all expanded by a factor A1/3, the volume is isotropically expanded by a factor of A. The cavity modes of the electromagnetic
radiation have quantized wavevectors, even within classical electromagnetic theory, given by

2mn, 2T, 21n
k= 2 Y 2. 5.1
( L ' I, L ) (5.5.13)

Since the energy for a given mode is (k) = hic|k|, we see that the energy changes by a factor A~1/3 under an adiabatic volume
expansion V' — AV, where the distribution of different electromagnetic mode occupancies remains fixed. Thus,

OF OF 1
VI =— | =A|=) =—<FE. 5.5.14
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Thus,
OF E
__(9E)\ _E 5.5.15
P ( av )S 3V (5.5.15)
as we found in Equation . Since E = E(T,V) is extensive, we must have p = p(T') alone.

« Since p =p(T) alone, we have
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where the second line follows the Maxwell relation (%)p = (?—9;’, ) » after invoking the First Law dE = TdS —pdV . Thus,
dp 4
TL _4p — pT)=AT*, (5.5.16)

dT

where A is a constant. Thus, we recover the temperature dependence found microscopically in Equation
 Given an energy density E/V, the differential energy flux emitted in a direction  relative to a surface normal is

) E dQ
d]efc-v-cos&g , (5.5.17)

where df2 is the differential solid angle. Thus, the power emitted per unit area is
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where o = %CA, with p(T) = AT* as we found above. From quantum statistical mechanical considerations, we have

|\sigma:{\pi/\2 k_\ssr{B}"4\over 60\,cA2\,\hbar"3}=5.67\times 10 {-8}\,{\RW\over\Rm/"2\\RK"4} \label{stefan} |

is Stefan’s constant.

Surface temperature of the earth

We derived the result P =oT*- A where 0 =5.67 x 10~ W /\Rm? K* for the power emitted by an electromagnetic ‘black
body’. Let’s apply this result to the earth-sun system. We’ll need three lengths: the radius of the sun R =6.96 x 108 \Rm, the
radius of the earth R, = 6.38 x 10° \Rm, and the radius of the earth’s orbit a, = 1.50 x 10t \Rm. Let’s assume that the earth
has achieved a steady state temperature of 7,. We balance the total power incident upon the earth with the power radiated by the
earth. The power incident upon the earth is
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Picident = i% roT - 4mR = s fé ol - (5.5.19)
Qe Qag
The power radiated by the earth is
Podiatea = 0Té - 4mRZ . (5.5.20)
Setting P, ... =P . 4> Weobtain
1/2
T, = (f{f )/ T, . (5.5.21)

Thus, we find T, = 0.04817 T®, and with T® = 5780 K, we obtain T, = 278.4 K. The mean surface temperature of the earth is
T . = 287 K, which is only about 10 K higher. The difference is due to the fact that the earth is not a perfect blackbody, an object
which absorbs all incident radiation upon it and emits radiation according to Stefan’s law. As you know, the earth’s atmosphere
retraps a fraction of the emitted radiation — a phenomenon known as the greenhouse effect.

|-Iplanck] Spectral density \rho_\ve(\nu,T) for blackbody radiation at three
temperatures.

[planck] Spectral density p. (v, T') for blackbody radiation at three temperatures.

Distribution of blackbody radiation

Recall that the frequency of an electromagnetic wave of wavevector k is ¥ = ¢/ = ck/2m. Therefore the number of photons
Nz (v, T) per unit frequency in thermodynamic equilibrium is (recall there are two polarization states)

2V % Vo Kdk
Ny = =5 —— = = (5.5.22)

We therefore have

87V v?
N, T)= ra ST 1 (5.5.23)
Since a photon of frequency v carries energy hv, the energy per unit frequency £(v) is
8ThV v3
Ew,T) = 3 ST 1 (5.5.24)
Note what happens if Planck’s constant h vanishes, as it does in the classical limit. The denominator can then be written
h
T 1 = 22 o(h?) (5.5.25)

T kT

and

| \CE\ns_\ssr{CL}(\nu,T)=\lim_{h\to 0} \CE(\nu)=V\cdot{8\pi\kT\over cA3}\\nu/2\ . |

In classical electromagnetic theory, then, the total energy integrated over all frequencies diverges. This is known as the ultraviolet
catastrophe, since the divergence comes from the large v part of the integral, which in the optical spectrum is the ultraviolet
portion. With quantization, the Bose-Einstein factor imposes an effective ultraviolet cutoff k;7'/h on the frequency integral, and
the total energy, as we found above, is finite:

[ ﬂ_g (kBT)4
ET)= |dv&(v)=3pV =V -— 5.5.26
(1)= favew) =spv =v- Tz o (5.5.26)
0
We can define the spectral density p. (v) of the radiation as
Ew, T 1 hv/k,T)3
oo,y = D _ 15 b (hv/kaT) (5.5.27)

E(T)  wt kT ehw/ksT _q
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so that p. (v, T) dv is the fraction of the electromagnetic energy, under equilibrium conditions, between frequencies v and v + dv,
o

Jdvp:(v,T)=1.In Figure we plot this in Figure for three different temperatures. The maximum occurs when
0

s = hv/k;T satisfies

d s° s
T\ o1 =0 — =3 — §=2.82144 . (5.5.28)

What if the sun emitted ferromagnetic spin waves?

We saw in Equation that the power emitted per unit surface area by a blackbody is oT"*. The power law here follows
from the ultrarelativistic dispersion € = hck of the photons. Suppose that we replace this dispersion with the general form

e =e(k) . Now consider a large box in equilibrium at temperature T'. The energy current incident on a differential area dA of
surface normal to Z is

d*k 1 0¢(k) 1
dP —dA. / oy Oleost) £ =0 i (5.5.29)
Let us assume an isotropic power law dispersion of the form e(k) = Ck® . Then after a straightforward calculation we obtain
dP 242
-_ = T a J.
A= C , (5.5.30)
where
2+2 2
2 2, gkp *C7@
a_g(2+a)1“(2+a)« e (5.5.31)

One can check that for g =2, C' = kic, and @ =1 that this result reduces to that of Equation
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