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6.5: Coulomb Systems - Plasmas and the Electron Gas

Electrostatic Potential

Coulomb systems are particularly interesting in statistical mechanics because of their long-ranged forces, which result in the
phenomenon of screening. Long-ranged forces wreak havoc with the Mayer cluster expansion, since the Mayer function is no
longer integrable. Thus, the virial expansion fails, and new techniques need to be applied to reveal the physics of plasmas.

The potential energy of a Coulomb system is

1
U= E/ddr/ddr' p(r)u(r—r')p(x'), (6.5.1)
where p(r) is the charge density and u(r), which has the dimensions of (energy)/(charge)?, satisfies
Viu(r—r') = —4nd(r—1'). (6.5.2)

Thus,
2r|lz—2| ,d=1

u(r)=< 2lnjr—r| ,d=2 (6.5.3)

r—r/|! ,d=3.

For discete particles, the charge density p(r) is given by

:Zqi d(r-x,), (6.5.4)
where g; is the charge of the i'" particle. We will assume two types of charges: ¢ = e, with e > 0. The electric potential is
o(r) :/dd'r’u(r—r’)p(r') :Zqiu(r—xi) . (6.5.5)
This satisfies the Poisson equation,
V2g(r) = —4mp(r). (6.5.6)

The total potential energy can be written as
/ddr¢ =3 qu x;) . (6.5.7)

Debye-Huckel theory
We now write the grand partition function:

2(T,V — eﬂ”+N+ AT L o PR
(T, a/Jurv/"' N
N,=0N_ 0 N1

-/d Tl"'/ddTN . e_ﬂU(rl"”’rNJr*-N,).
N

We now adopt a mean field approach, known as Debye-Hiickel theory, writing

p(r) = o' (x) + 6p(r)
o(r) = 6™(r) + 66 (x) .

We then have
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ignore fluctuation term

-1 /ddr ;““(r) 67 (x) + /ddr 67 () p /d  5p(r)

We apply the mean field approximation in each region of space, which leads to

QT,V,p, i) =—kyTA z+/dd'r exp(— eg®(r )
eqp™’

—kyTA% 2 /ddr exp| +

)

where
27h? My
AL = (mikBT) , zi—exp(kBT . (6.5.8)
The charge density is therefore
50 e¢(r) e¢(r)
= —eXd - —eX? 5.
p(r) 5 () ez, exp( T eX_%z_ exp( + Wt ) (6.5.9)
where we have now dropped the superscript on ¢*(r) for convenience. At r — oo, we assume charge neutrality and ¢(c0) =0.
Thus
Mz =n, (00) =22 =n_(0) =N , (6.5.10)

where n is the ionic density of either species at infinity. Therefore,

e¢(r) )
r) = —2eny sinh| —— | . 6.5.11
o) (S (6.5.11)
We now invoke Poisson’s equation,
V2§ = 8men, sinh(Beg) — 4Tp0 (6.5.12)
where p_ . is an externally imposed charge density.
If ep < kT, we can expand the sinh function and obtain
V3¢ =k} ¢—4mp,, (6.5.13)
where
2\ 1/2 BT\ /2
P . Ap=(—= : (6.5.14)
k,T 8N €?

The quantity Aj, is known as the Debye screening length. Consider, for example, a point charge () located at the origin. We then
solve Poisson’s equation in the weak field limit,

Vi =k% ¢ —4mQ i(r) . (6.5.15)
Fourier transforming, we obtain

- - 47Q

—a’d(a) =rpd(a) —4mQ = ¢(q):q2+%. (6.5.16)

Transforming back to real space, we obtain, in three dimensions, the Yukawa potential,

i) [0 410Gy 6517

271')3 q2+K‘2D T
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This solution must break down sufficiently close to » = 0, since the assumption e¢(r) < kT is no longer valid there. However,
for larger r, the Yukawa form is increasingly accurate.

For another example, consider an electrolyte held between two conducting plates, one at potential ¢(z =0) =0 and the other at
potential ¢(z = L) =V, where X is normal to the plane of the plates. Again assuming a weak field e¢ < k;T', we solve
VZ2¢ = K2, ¢ and obtain

¢(z) =AD"+ Be "D7 . (6.5.18)
We fix the constants A and B by invoking the boundary conditions, which results in
sinh(k )
=V.-—. 5.1
@)=V sinh(kp L) (6.5.19)

Debye-Hiickel theory is valid provided 70, )\% > 1, so that the statistical assumption of many charges in a screening volume is
justified.
The Electron Gas: Thomas-Fermi Screening

Assuming kT < €, thermal fluctuations are unimportant and we may assume 7' = 0. In the same spirit as the Debye-Hiickel
approach, we assume a slowly varying mean electrostatic potential ¢(r). Locally, we can write

th%
& =5 —ep(r). (6.5.20)
Thus, the Fermi wavevector kj, is spatially varying, according to the relation
1/2
2m
kp(r) = [ﬁ <6F—|—e¢(r)>] . (6.5.21)

The local electron number density is

k3. (r ed(r) \ 3/2
= S (1) (65.22)
32 Ep
In the presence of a uniform compensating positive background charge p, = en, , Poisson’s equation takes the form
3/2
ep(r
V3¢ = dmeny, - [(1—}— i )> —1} —4ATp ey (1) (6.5.23)
€r
If ep < €, we may expand in powers of the ratio, obtaining
o 6mnoe’ | o
Vip= 6—¢:;§TF¢747rpemt(r) . (6.5.24)
F
Here, kpp is the Thomas-Fermi wavevector,
6 2\1/2
Ko = (M) : (6.5.25)
€r

Thomas-Fermi theory is valid provided ny, )\% > 1, where A, . =k 5,

screening volume is justified.

so that the statistical assumption of many electrons in a

One important application of Thomas-Fermi screening is to the theory of metals. In a metal, the outer, valence electrons of each

atom are stripped away from the positively charged ionic core and enter into itinerant, plane-wave-like states. These states disperse
with some (k) function (that is periodic in the Brillouin zone, under k — k + G , where G is a reciprocal lattice vector), and at
T = 0 this energy band is filled up to the Fermi level €, as Fermi statistics dictates. (In some cases, there may be several bands at
the Fermi level, as we saw in the case of yttrium.) The set of ionic cores then acts as a neutralizing positive background. In a
perfect crystal, the ionic cores are distributed periodically, and the positive background is approximately uniform. A charged
impurity in a metal, such as a zinc atom in a copper matrix, has a different nuclear charge and a different valency than the host. The
charge of the ionic core, when valence electrons are stripped away, differs from that of the host ions, and therefore the impurity acts
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as a local charge impurity. For example, copper has an electronic configuration of [Ar] 3d*? 4s’. The 4s electron forms an energy
band which contains the Fermi surface. Zinc has a configuration of [Ar] 3d** 4s% and in a Cu matrix the Zn gives up its two 4s
electrons into the 4s conduction band, leaving behind a charge +2 ionic core. The Cu cores have charge +1 since each copper
atom contributed only one 4s electron to the conduction band. The conduction band electrons neutralize the uniform positive
background of the Cu ion cores. What is left is an extra @ = +e nuclear charge at the Zn site, and one extra 4s conduction band
electron. The Q = +e impurity is, however, screened by the electrons, and at distances greater than an atomic radius the potential
that a given electron sees due to the Zn core is of the Yukawa form,

d(r)==-e "TF" . (6.5.26)

We should take care, however, that the dispersion (k) for the conduction band in a metal is not necessarily of the free electron
form e(k) = R2K? /2m. To linear order in the potential, however, the change in the local electronic density is

on(r) = ed(r) gep) s (6.5.27)
where g(e F) is the density of states at the Fermi energy. Thus, in a metal, we should write
V2p = (—4n)(—edn)
=4ne’g(ep) $=rip

where
Kpp = 1/4me? g(ep) - (6.5.28)

The value of g(e) will depend on the form of the dispersion. For ballistic bands with an effective mass m*, the formula in
Equation 6.5.24still applies.
The Thomas-Fermi atom

Consider an ion formed of a nucleus of charge +Ze and an electron cloud of charge —Ne. The net ionic charge is then (Z — N)e.
Since we will be interested in atomic scales, we can no longer assume a weak field limit and we must retain the full nonlinear
screening theory, for which

3/2
V24(r) = 4re- (er)h?, (sF + (3(1)(1'))3/2 —4nZed(r) . (6.5.29)

We assume an isotropic solution. It is then convenient to define
Ze?
epteg(r)=——-x(r/ry), (6.5.30)

where 7 is yet to be determined. As 7 — 0 we expect x — 1 since the nuclear charge is then unscreened. We then have

62 62
v? {ZT-X(T/TO)} :%ZTX"(T/TO), (6.5.31)
o

thus we arrive at the Thomas-Fermi equation,
X' () === x*() (6.5.32)
Vi ’
with r =t 7, provided we take
h? 37

2/3
=——(—==) =o08852"'3 6.5.33
07 ome (4\/2) B> ( )

where ap = TZ—; = 0.529 A is the Bohr radius. The TF equation is subject to the following boundary conditions:
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Figure 6.5.1: The Thomas-Fermi atom consists of a nuclear charge +Ze surrounded by N electrons distributed in a cloud. The
electric potential ¢(r) felt by any electron at position r is screened by the electrons within this radius, resulting in a self-consistent

potential ¢(r) = ¢o + (Ze? /7) x(r/7o).
e At short distances, the nucleus is unscreened,

x(0)=1. (6.5.34)
» For positive ions, with N < Z, there is perfect screening at the ionic boundary R = ¢* r,, where x(t*) = 0. This requires
Ze? Ze? . (Z—N)e ,
E:—V¢: —F (R/r°)+R_1'()X (R/?"O) r= TI‘. (6535)
This requires
N
X () =1-—. (6.5.36)

For an atom, with N = Z, the asymptotic solution to the TF equation is a power law, and by inspection is found to be
x(t) ~Ct~3, where C is a constant. The constant follows from the TF equation, which yields 12 C' = C*/2, hence C' = 144.
Thus, a neutral TF atom has a density with a power law tail, with p ~ 75 . TF ions with N > Z are unstable.
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