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2.12: Entropy of Mixing and the Gibbs Paradox

Computing the entropy of mixing

Entropy is widely understood as a measure of disorder. Of course, such a definition should be supplemented by a more precise
definition of disorder – after all, one man’s trash is another man’s treasure. To gain some intuition about entropy, let us explore the
mixing of a multicomponent ideal gas. Let  be the total number of particles of all species, and let  be the
concentration of species . Note that .

For any substance obeying the ideal gas law , the entropy is

since . Note that in Equation
[STVNideal] we have divided  by  before taking the logarithm. This is essential if the entropy is to be an extensive function
(see §7.5). One might think that the configurational entropy of an ideal gas should scale as , since each particle
can be anywhere in the volume . However, if the particles are indistinguishable, then permuting the particle labels does not result
in a distinct configuration, and so the configurational entropy is proportional to . The origin of
this indistinguishability factor will become clear when we discuss the quantum mechanical formulation of statistical mechanics.
For now, note that such a correction is necessary in order that the entropy be an extensive function.

If we did not include this factor and instead wrote , then we would find 
, the total entropy of two identical systems of particles separated by a barrier will

increase if the barrier is removed and they are allowed to mix. This seems absurd, though, because we could just as well regard the
barriers as invisible. This is known as the Gibbs paradox. The resolution of the Gibbs paradox is to include the indistinguishability
correction, which renders  extensive, in which case .

Consider now the situation in Fig. [boxes], where we have separated the different components into their own volumes . Let the
pressure and temperature be the same everywhere, so . The entropy of the unmixed system is then

[boxes] A multicomponent system consisting of isolated gases, each at temperature  and pressure . Then system entropy
increases when all the walls between the different subsystems are removed.

Now let us imagine removing all the barriers separating the different gases and letting the particles mix thoroughly. The result is
that each component gas occupies the full volume , so the entropy is

Thus, the entropy of mixing is
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where  is the fraction of species . Note that .

What if all the components were initially identical? It seems absurd that the entropy should increase simply by removing some
invisible barriers. This is again the Gibbs paradox. In this case, the resolution of the paradox is to note that the sum in the
expression for  is a sum over distinct species. Hence if the particles are all identical, we have 

, hence .

Entropy and combinatorics
As we shall learn when we study statistical mechanics, the entropy may be interpreted in terms of the number of ways 

 a system at fixed energy and volume can arrange itself. One has

Consider a system consisting of  different species of particles. Now let it be that for each species label ,  particles of that
species are confined among  little boxes such that at most one particle can fit in a box (see Fig. [Smix]). How many ways  are
there to configure  identical particles among  boxes? Clearly

Were the particles distinct, we’d have , which is  times greater. This is because permuting distinct particles

results in a different configuration, and there are  ways to permute  particles.

The entropy for species  is then . We then use Stirling’s approximation,

which is an asymptotic expansion valid for . One then finds for , with ,

This is valid up to terms of order  in Stirling’s expansion. Since , the next term is small and we are safe to stop here.
Summing up the contributions from all the species, we get

where  is the initial dimensionless density of species .

[Smix] Mixing among three different species of particles. The mixed configuration has an additional entropy, .
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Now let’s remove all the partitions between the different species so that each of the particles is free to explore all of the boxes.
There are  boxes in all. The total number of ways of placing  particles of species  through  particles of
species  is

where  is the number of vacant boxes. Again using Stirling’s rule, we find

where  is the fraction of all boxes containing a particle of species , and  is the number of empty boxes. Note that

where . Note that .

Let’s assume all the densities are initially the same, so , so . In this case,  is the fraction of
species  among all the particles. We then have , and

Thus, the entropy of mixing is

where  is the total number of particles among all species (excluding vacancies) and  is the
fraction of all boxes occupied by species .

Weak solutions and osmotic pressure

Suppose one of the species is much more plentiful than all the others, and label it with . We will call this the solvent. The
entropy of mixing is then

where  is the total number of solvent molecules, summed over all species. We assume the solution is weak, which
means . Expanding in powers of  and , we find

Consider now a solution consisting of  molecules of a solvent and  molecules of species  of solute, where . We
begin by expanding the Gibbs free energy , where there are  species of solutes, as a power series in the
small quantities . We have
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The first term on the RHS corresponds to the Gibbs free energy of the solvent. The second term is due to the entropy of mixing.
The third term is the contribution to the total free energy from the individual species. Note the factor of  in the denominator inside
the logarithm, which accounts for the second term in the brackets on the RHS of Equation . The last term is due to
interactions between the species; it is truncated at second order in the solute numbers.

The chemical potential for the solvent is

and the chemical potential for species  is

where  is the concentrations of solute species . By assumption, the last term on the RHS of each of these equations
is small, since , where  is the total number of solute molecules. To lowest order, then, we have

where  is the total solute concentration.

[osmotic] Osmotic pressure causes the column on the right side of the U-tube to rise higher than the column on the left by an
amount .

If we add sugar to a solution confined by a semipermeable membrane , the pressure increases! To see why, consider a situation
where a rigid semipermeable membrane separates a solution (solvent plus solutes) from a pure solvent. There is energy exchange
through the membrane, so the temperature is  throughout. There is no volume exchange, however: , hence the
pressure need not be the same. Since the membrane is permeable to the solvent, we have that the chemical potential  is the same
on each side. This means

where  is the pressure on the left and right sides of the membrane, and  is again the total solute concentration. This
equation once again tells us that the pressure  cannot be the same on both sides of the membrane. If the pressure difference is
small, we can expand in powers of the osmotic pressure, , and we find

But a Maxwell relation (§9) guarantees

e
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where  is the molar volume of the solvent.

which looks very much like the ideal gas law, even though we are talking about dense (but ‘weak’) solutions! The resulting
pressure has a demonstrable effect, as sketched in Fig. [osmotic]. Consider a solution containing  moles of sucrose 
per kilogram ( ) of water at . We find  when .

One might worry about the expansion in powers of  when  is much larger than the ambient pressure. But in fact the next term in
the expansion is smaller than the first term by a factor of , where  is the isothermal compressibility. For water one has 

, hence we can safely ignore the higher order terms in the Taylor expansion.

Effect of impurities on boiling and freezing points
Along the coexistence curve separating liquid and vapor phases, the chemical potentials of the two phases are identical:

Here we write  for  to emphasize that we are talking about a phase with no impurities present. This equation provides a single
constraint on the two variables  and , hence one can, in principle, solve to obtain , which is the equation of the
liquid-vapor coexistence curve in the  plane. Now suppose there is a solute present in the liquid. We then have

where  is the dimensionless solute concentration, summed over all species. The condition for liquid-vapor coexistence now
becomes

This will lead to a shift in the boiling temperature at fixed . Assuming this shift is small, let us expand to lowest order in 
, writing

Note that

from a Maxwell relation deriving from exactness of . Since  is extensive, we can write  , where 
is the molar entropy. Solving for , we obtain

where  is the latent heat of the liquid-vapor transition . The shift  is called the boiling
point elevation.

As an example, consider seawater, which contains approximately 35 g of dissolved per kilogram of . The atomic
masses of Na and Cl are 23.0 and 35.4 , respectively, hence the total ionic concentration in seawater (neglecting everything but
sodium and chlorine) is given by
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[latentheats] Latent heats of fusion and vaporization at atm.

 Latent Heat Melting Latent Heat of Boiling

Substance of Fusion Point Vaporization Point

 

108 -114 855 78.3

339 -75 1369 -33.34

184 -57 574 -78

He – – 21 -268.93

H 58 -259 455 -253

Pb 24.5 372.3 871 1750

25.7 -210 200 -196

13.9 -219 213 -183

334 0 2270 100

The latent heat of vaporization of  at atmospheric pressure is , hence

Put another way, the boiling point elevation of  at atmospheric pressure is about  per percent solute. We can express
this as , where the molality  is the number of moles of solute per kilogram of solvent. For , we find 

.

Similar considerations apply at the freezing point, when we equate the chemical potential of the solvent plus solute to that of the
pure solid. The latent heat of fusion for  is about   We thus predict a freezing
point depression of . This can be expressed once again as , with 

.

Binary solutions

Consider a binary solution, and write the Gibbs free energy  as

The first four terms on the RHS represent the free energy of the individual component fluids and the entropy of mixing. The last
term is an interaction contribution. With , the interaction term prefers that the system be either fully  or fully . The
entropy contribution prefers a mixture, so there is a competition. What is the stable thermodynamic state?
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[binary] : Gibbs free energy per particle for a binary solution as a function of concentration  of the B species (pure A at the
left end ; pure B at the right end  ), in units of the interaction parameter . Dark red curve: ; green
curve: ; blue curve: . We have chosen  and 

. Note that the free energy  is not convex in  for , indicating an instability and
necessitating a Maxwell construction.

It is useful to write the Gibbs free energy per particle, , in terms of , , and the concentration 
 of species B (hence  is the concentration of species A). Then

In order for the system to be stable against phase separation into relatively -rich and -rich regions, we must have that 
be a convex function of . Our first check should be for a local instability, spinodal decomposition. We have

and

The spinodal is given by the solution to the equation , which is

Since  achieves its maximum value of  at , we have .

In Fig. [bing] we sketch the free energy  versus  for three representative temperatures. For , the free energy
is everywhere convex in . When , there free energy resembles the blue curve in Fig. [bing], and the system is unstable
to phase separation. The two phases are said to be immiscible, or, equivalently, there exists a solubility gap. To determine the
coexistence curve, we perform a Maxwell construction, writing

Here,  and  are the boundaries of the two phase region. These equations admit a symmetry of , hence we can set 
 and . We find

and invoking eqns. [binmax] and [gpmax] we obtain the solution
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[binmupd] Upper panels: chemical potential shifts  versus concentration . The dashed black line is the
spinodal, and the solid black line the coexistence boundary. Temperatures range from  (dark blue) to 

 (red) in units of . Lower panels: phase diagram in the  planes. The black
dot is the critical point.

The phase diagram for the binary system is shown in Fig. [binary]. For , the system is unstable, and spinodal
decomposition occurs. For , the system is metastable, just like the van der Waals gas in its corresponding
regime. Real binary solutions behave qualitatively like the model discussed here, although the coexistence curve is generally not
symmetric under , and the single phase region extends down to low temperatures for  and . If  itself is
temperature-dependent, there can be multiple solutions to eqns. [TSPINO] and [TCOEX]. For example, one could take

In this case,  at both high and low temperatures, and we expect the single phase region to be reentrant. Such a
phenomenon occurs in water-nicotine mixtures, for example.
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[binary] Phase diagram for the binary system. The black curve is the coexistence curve, and the dark red curve is the spinodal. A-
rich material is to the left and B-rich to the right.

It is instructive to consider the phase diagram in the  plane. We define the chemical potential shifts,

and their sum and difference, . From the Gibbs-Duhem relation, we know that we can write  as a function
of , , and . Alternately, we could write  in terms of , , and , so we can choose which among  and  we
wish to use in our phase diagram. The results are plotted in Fig. [binmupd]. It is perhaps easiest to understand the phase diagram in
the  plane. At low temperatures, below , there is a first order phase transition at . For 

 and , infinitesimally positive, the system is in the -rich phase, but for , infinitesimally
negative, it is -rich. The concentration  changes discontinuously across the phase boundary. The critical point lies at 

.

If we choose  to be the extensive variable, then fixing  means . So st fixed  and ,

Since , where , we have that the coexistence

boundary in the  plane is simply the line , because .

Note also that there is no two-phase region in the  plane; the phase boundary in this plane is a curve which terminates at a
critical point. As we saw in §12, the same situation pertains in single component  systems. That is, the phase diagram in
the  or  plane contains two-phase regions, but in the  plane the boundaries between phases are one-dimensional
curves. Any two-phase behavior is confined to these curves, where the thermodynamic potentials are singular.

The phase separation can be seen in a number of systems. A popular example involves mixtures of water and ouzo or other anise-
based liqueurs, such as arak and absinthe. Starting with the pure liqueur ( ), and at a temperature below the coexistence curve
maximum, the concentration is diluted by adding water. Follow along on Fig. [binary] by starting at the point 

 and move to the left. Eventually, one hits the boundary of the two-phase region. At this point, the mixture
turns milky, due to the formation of large droplets of the pure phases on either side of coexistence region which scatter light, a
process known as spontaneous emulsification . As one continues to dilute the solution with more water, eventually one passes all
the way through the coexistence region, at which point the solution becomes clear once again, and described as a single phase.

What happens if ? In this case, both the entropy and the interaction energy prefer a mixed phase, and there is no instability to
phase separation. The two fluids are said to be completely miscible. An example would be benzene, , and toluene,  ( 

. The phase diagram would be blank, with no phase boundaries below the boiling transition, because the fluid could
exist as a mixture in any proportion.
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Figure [LVcoex] Gibbs free energy per particle  for an ideal binary solution for temperatures . The Maxwell
construction is shown for the case . Right: phase diagram, showing two-phase region and distillation sequence in 

 space.

Any fluid will eventually boil if the temperature is raised sufficiently high. Let us assume that the boiling points of our A and B
fluids are , and without loss of generality let us take  at some given fixed pressure . This means 

 and . What happens to the mixture

mixture? We begin by writing the free energies of the mixed liquid and mixed vapor phases as

Typically . Consider these two free energies as functions of the concentration , at fixed  and . If the curves never cross,
and  for all , then the liquid is always the state of lowest free energy. This is the situation in the first panel
of Fig. 2.37. Similarly, if  over this range, then the mixture is in the vapor phase throughout. What happens if the
two curves cross at some value of  ? This situation is depicted in the second panel of Fig. 2.37. In this case, there is always a
Maxwell construction which lowers the free energy throughout some range of concentration, i.e. the system undergoes phase
separation.

In an ideal fluid, we have , and setting  requires

where . Expanding the chemical potential about a given temperature ,

where we have used , the entropy per particle, and .
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Figure
Figure

[FAZEO] Negative (left) and positive (right) azeotrope phase diagrams. From Wikipedia.

Thus, expanding  about , we have

We assume , i.e. the vapor phase has greater entropy per particle. Thus,  changes sign from negative to
positive as  rises through . If we assume that these are the only sign changes for  at fixed , then eqn. [muABbin]
can only be solved for . This immediately leads to the phase diagram in the rightmost panel of Fig. [LVcoex].
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Figure [FAZZ]: Free energies before Maxwell constructions for a binary fluid mixture in equilibrium with a vapor .
Panels show (a)  (ideal fluid), (b)  (miscible fluid; negative azeotrope), (c)  (positive azeotrope), (d) 

 (heteroazeotrope). Thick blue and red lines correspond to temperatures  and , respectively, with . Thin
blue and red curves are for temperatures outside the range . The black curves show the locus of points where  is
discontinuous, i.e. where the liquid and vapor free energy curves cross. The yellow curve in (d) corresponds to the coexistence
temperature for the fluid mixture. In this case the azeotrope forms within the coexistence region.

According to the Gibbs phase rule, with , two-phase equilibrium ( ) occurs along a subspace of dimension 
. Thus, if we fix the pressure  and the concentration , liquid-gas equilibrium occurs at

a particular temperature , known as the boiling point. Since the liquid and the vapor with which it is in equilibrium at  may
have different composition, different values of , one may distill the mixture to separate the two pure substances, as follows. First,
given a liquid mixture of  and , we bring it to boiling, as shown in the rightmost panel of Fig. [LVcoex]. The vapor is at a
different concentration  than the liquid (a lower value of  if the boiling point of pure  is less than that of pure , as shown). If
we collect the vapor, the remaining fluid is at a higher value of . The collected vapor is then captured and then condensed,
forming a liquid at the lower  value. This is then brought to a boil, and the resulting vapor is drawn off and condensed, etc The
result is a purified  state. The remaining liquid is then at a higher  concentration. By repeated boiling and condensation,  and 
can be separated. For liquid-vapor transitions, the upper curve, representing the lowest temperature at a given concentration for
which the mixture is a homogeneous vapor, is called the dew point curve. The lower curve, representing the highest temperature at
a given concentration for which the mixture is a homogeneous liquid, is called the bubble point curve. The same phase diagram
applies to liquid-solid mixtures where both phases are completely miscible. In that case, the upper curve is called the liquidus, and
the lower curve the solidus.
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When a homogeneous liquid or vapor at concentration  is heated or cooled to a temperature  such that  lies within the
two-phase region, the mixture phase separates into the the two end components  and , which lie on opposite sides
of the boundary of the two-phase region, at the same temperature. The locus of points at constant  joining these two points is
called the tie line. To determine how much of each of these two homogeneous phases separates out, we use particle number
conservation. If  is the fraction of the homogeneous liquid and homogeneous vapor phases present, then ,
which says  and . This is known as the lever rule.

For many binary mixtures, the boiling point curve is as shown in Fig. [FAZEO]. Such cases are called azeotropes. For negative
azeotropes, the maximum of the boiling curve lies above both . The free energy curves for this case are shown in panel (b) of
Fig. [FAZZ]. For , where  is the azeotropic composition, one can distill A but not B. Similarly, for  one can distill
B but not A . The situation is different for positive azeotropes, where the minimum of the boiling curve lies below both ,
corresponding to the free energy curves in panel (c) of Fig. [FAZZ]. In this case, distillation (i.e. condensing and reboiling the
collected vapor) from either side of  results in the azeotrope. One can of course collect the fluid instead of the vapor. In general,
for both positive and negative azeotropes, starting from a given concentration , one can only arrive at pure A plus azeotrope (if 

 ) or pure B plus azeotrope (if . Ethanol  and water  form a positive azeotrope which is 
ethanol and  water by weight. The individual boiling points are , while the azeotrope
boils at . No amount of distillation of this mixture can purify ethanol beyond the  level. To go beyond this
level of purity, one must resort to azeotropic distillation, which involves introducing another component, such as benzene (or a less
carcinogenic additive), which alters the molecular interactions.

To model the azeotrope system, we need to take , in which case one can find two solutions to the energy crossing condition 
. With two such crossings come two Maxwell constructions, hence the phase diagrams in Fig. [FAZEO]. Generally,

negative azeotropes are found in systems with , whereas positive azeotropes are found when . As we've seen, such
repulsive interactions between the  and  components in general lead to a phase separation below a coexistence temperature 

 given by Equation . What happens if the minimum boiling point lies within the coexistence region?
This is the situation depicted in panel (d) of Fig. [FAZZ]. The system is then a liquid/vapor version of the solid/liquid eutectic (see
Fig. [Feutectic]), and the minimum boiling point mixture is called a heteroazeotrope.
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[Feutectic] Phase diagram for a eutectic mixture in which a liquid   is in equilibrium with two solid phases  and . The same
phase diagram holds for heteroazeotropes, where a vapor is in equilibrium with two liquid phases.
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