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3.2: Phase Flows in Classical Mechanics

Hamiltonian evolution

The master equation provides us with a semi-phenomenological description of a dynamical system’s relaxation to equilibrium. It
explicitly breaks time reversal symmetry. Yet the microscopic laws of Nature are (approximately) time-reversal symmetric. How
can a system which obeys Hamilton’s equations of motion come to equilibrium?

Let’s start our investigation by reviewing the basics of Hamiltonian dynamics. Recall the Lagrangian L = L(q,¢,t) =T -V .
The Euler-Lagrange equations of motion for the action S [q(t)] = [dt L are

) d ( 0L oL
pg: —<—‘) = , (3.2.1)
dt 8q o 6q¢7
where p,, is the canonical momentum conjugate to the generalized coordinate g, :
OL
Po = 2. (3.2.2)
The Hamiltonian, H(g, p) is obtained by a Legendre transformation,
H(g,p) =Y pog,—1L. (3.2.3)
o=1
Note that
: . . OL oL . OL
dH: ad dg'__dg'__.d __dt
; (p do+dqdpr — 5 = dgr = 5= qa) o
- OL oL
= j_dp, — —d ——dt.
; (qg Pr = G0 qa> o
Thus, we obtain Hamilton’s equations of motion,
0H 0H OL
=G§, , —=———0=—p 3.24
apo qa’ 6 qa- aqo_ p s ( )
and
dH OH OL
— = =——. (3.2.5)

dt ot ot

Define the rank 27 vector ¢ by its components,

g if\1<i<r
soi = (3.2.6)
P, if\r<i<2r.

Then we may write Hamilton’s equations compactly as

. OH
=i —, 3.2.7
(Pl J aSD] ( )
where
J: ( O’I'X’I" 17"><’I') (3.2.8)
_]-r><r 07‘><r
is a rank 27 matrix. Note that J¢ = —J , J is antisymmetric, and that J2 = =150,
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Dynamical systems and the evolution of phase space volumes

Consider a general dynamical system,

‘;—f ~V(p), (3.2.9)

where (t) is a point in an n-dimensional phase space. Consider now a compact” region R, in phase space, and consider its
evolution under the dynamics. That is, R, consists of a set of points {ga o€ 'RO}, and if we regard each ¢ € R, as an initial
condition, we can define the time-dependent set R(t) as the set of points ¢(t) that were in R at time ¢ =0:

R(t) = {o(t)|¢(0) € Ry} - (3.2.10)
Now consider the volume Q(¢) of the set R(¢). We have

Q(t) = /m (3.2.11)
R(t)
where
dp=dp, dp, -+ do, , (3.2.12)
for an n-dimensional phase space. We then have
Oy, (t +dt)
Qt+dt :ﬁ ’:/l ‘— , 3.2.13
(t+dt)= fu 0,0 ( )
R(t+dt)  R(Y)
where
9p;(t) pyy---5n)

is a determinant, which is the Jacobean of the transformation from the set of coordinates {gai =, (t)} to the coordinates
{¢; =, (t+dt)} . But according to the dynamics, we have

@, (t+dt) =, (t)+V, (p(t)) dt+O(dt?) (3.2.15)
and therefore
Ay, (t +dt 1%
deilt+dt) =8, + — dt+O(dt?) . (3.2.16)

8‘P]’(t) Y 890]‘

We now make use of the equality

Indet M =TrInM , (3.2.17)
for any matrix M, which gives us’, for small ¢,
1
det (1+eA) =expTrin(1+ed) =1+e TrAd+ 5 e ((Tra)’ —Tr(42) +... (3.2.18)
Thus,
Qt+dt) =Q(t) + /iu V-V dt+0(dt?), (3.2.19)
R(t)
which says
dQ R
o =jé,u \AY =ﬁSn-V (3.2.20)
R(#) aR(Y)

Here, the divergence is the phase space divergence,
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n

v
V~V:; 3o (3.2.21)

and we have used the divergence theorem to convert the volume integral of the divergence to a surface integral of n -V, where n
is the surface normal and dS is the differential element of surface area, and OR denotes the boundary of the region R. We see that
if V-V =0 everywhere in phase space, then €(¢) is a constant, and phase space volumes are preserved by the evolution of the
system.

For an alternative derivation, consider a function (¢, t) which is defined to be the density of some collection of points in phase
space at phase space position ¢ and time ¢. This must satisfy the continuity equation,

0
2L V. (oV)=0. (3.2.22)
ot
This is called the continuity equation. It says that ‘nobody gets lost’. If we integrate it over a region of phase space R, we have
d R
7 d,ug:f/d,uV-(gV):f/dSn-(gV). (3.2.23)
R R R

It is perhaps helpful to think of g as a charge density, in which case J = oV is the current density. The above equation then says

12y

= :—/dSn-J, (3.2.24)

R

where @, is the total charge contained inside the region R. In other words, the rate of increase or decrease of the charge within the
region R is equal to the total integrated current flowing in or out of R at its boundary.

OO0
L@

t=to t=1n
Figure 3.2.1: Time evolution of two immiscible fluids. The local density remains constant.

The Leibniz rule lets us write the continuity equation as

0
EQ+V-VQ+QV-V:0. (3.2.25)
But now suppose that the phase flow is divergenceless, V-V = 0. Then we have
Do 0
—=|=+4+V-V]o=0. 3.2.26
Dt (8t * ) ¢ ( )

The combination inside the brackets above is known as the convective derivative. It tells us the total rate of change of g for an
observer moving with the phase flow. That is
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If Do/ Dt = 0, the local density remains the same during the evolution of the system. If we consider the ‘characteristic function’

lot=0)={¢ e

3.2.27
0 otherwise ( )

then the vanishing of the convective derivative means that the image of the set R, under time evolution will always have the same
volume.

Hamiltonian evolution in classical mechanics is volume preserving. The equations of motion are

0H . 0H

* Op; ’ pi== 0q;

q;= (3.2.28)

A point in phase space is specified by r positions ¢; and 7 momenta p,, hence the dimension of phase space is n = 2r:

() v ()

Hamilton’s equations of motion guarantee that the phase space flow is divergenceless:
" (04, 0p,

V-V = A + i }
X\ o

‘Z{aqz (&) % (_gf>}:°

Thus, we have that the convective derivative vanishes, viz.

Do _ 0o
= ==24V-WW=0, 3.2.30
D =5 TV Ve= ( )

for any distribution (¢, t) on phase space. Thus, the value of the density p(¢(t), t) is constant, which tells us that the phase flow
is incompressible. In particular, phase space volumes are preserved.

Liouville’s equation and the microcanonical distribution

Let o(¢) = o(q, p) be a distribution on phase space. Assuming the evolution is Hamiltonian, we can write

89 " 0 0 S
=—¢-Vo=— =—iLp, 3.2.31
i ;( 6qk+pka )@ iLe ( )
where L is a differential operator known as the Liouvillian:
O0H 0 O0H 0
Z —_- = (3.2.32)
Bpk Oq, 0q Bpk
Equation 3.2.31, known as Liouville’s equation, bears an obvious resemblance to the Schrodinger equation from quantum

mechanics.

Suppose that A, (¢) is conserved by the dynamics of the system. Typical conserved quantities include the components of the total
linear momentum (if there is translational invariance), the components of the total angular momentum (if there is rotational
invariance), and the Hamiltonian itself (if the Lagrangian is not explicitly time-dependent). Now consider a distribution
o(p,t) =0(Ay, Ay, ..., A,) which is a function only of these various conserved quantities. Then from the chain rule, we have

$- Vo= Z 8A VA, =0, (3.2.33)
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since for each a we have

dA, " [ OA, OA,
= ]+ ) | =¢-VA,=0. 3.2.34
dt ; < ag, 17" op, p”) g ( )
We conclude that any distribution o(¢,t) = o(A;, A,, ..., A,) which is a function solely of conserved dynamical quantities is a

stationary solution to Liouville’s equation.
Clearly the microcanonical distribution,

_ 5(E—H(<p)) _ 5(E—H(<p))
D(E) Jdud(E — H(y))

; (3.2.35)

is a fixed point solution of Liouville’s equation.
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