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3.5: Thermalization of Quantum Systems

Quantum Dephasing

Thermalization of quantum systems is fundamentally different from that of classical systems. Whereas time evolution in classical
mechanics is in general a nonlinear dynamical system, the Schrödinger equation for time evolution in quantum mechanics is linear:

where  is a many-body Hamiltonian. In classical mechanics, the thermal state is constructed by time evolution – this is the
content of the ergodic theorem. In quantum mechanics, as we shall see, the thermal distribution must be encoded in the eigenstates
themselves.

Let us assume an initial condition at ,

where  is an orthonormal eigenbasis for  satisfying . The expansion coefficients satisfy 
 and . Normalization requires

The time evolution of  is then given by

The energy is distributed according to the time-independent function

Thus, the average energy is time-independent and is given by

The root mean square fluctuations of the energy are given by

Typically we assume that the distribution  is narrowly peaked about , such that , where  is the
ground state energy. Note that  for , the eigenspectrum of  is bounded from below.

Now consider a general quantum observable described by an operator . We have

where . In the limit of large times, we have

Note that this implies that all coherence between different eigenstates is lost in the long time limit, due to dephasing.
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Eigenstate Thermalization Hypothesis
The essential ideas behind the eigenstate thermalization hypothesis (ETH) were described independently by J. Deutsch (1991) and
by M. Srednicki (1994). The argument goes as follows. If the total energy is the only conserved quantity, and if  is a local,
translationally-invariant, few-body operator, then the time average  is given by its microcanonical value,

where  is an energy interval of width . So once again, time averages are micro canonical averages.

But how is it that this is the case? The hypothesis of Deutsch and of Srednicki is that thermalization in isolated and bounded
quantum systems occurs at the level of individual eigenstates. That is, for all eigenstates  with , one has

This means that thermal information is encoded in each eigenstate. This is called the eigenstate thermalization hypothesis (ETH).

An equivalent version of the ETH is the following scenario. Suppose we have an infinite or extremely large quantum system  (the
‘universe’) fixed in an eigenstate . Then form the projection operator . Projection operators satisfy 
and their eigenspectrum consists of one eigenvalue  and the rest of the eigenvalues are zero . Now consider a partition of 

, where . We imagine  to be the ‘system’ and  the ‘world’. We can always decompose the state  in a
complete product basis for  and , viz.

Here  is the size of the basis for . The reduced density matrix for  is defined as

The claim is that  approximates a thermal density matrix on ,

where  is some Hamiltonian on , and , so that  and  is properly normalized. A number of issues
remain to be clarified:

What do we mean by “approximates"?
What do we mean by ?
What do we mean by the temperature ?

We address these in reverse order. The temperature  of an eigenstate  of a Hamiltonian  is defined by setting its energy
density  to the thermal energy density,

Here,  is the full Hamiltonian of the universe . Our intuition is that  should reflect a restriction of the
original Hamiltonian  to the system . What should be done, though, about the interface parts of  which link  and ? For
lattice Hamiltonians, we can simply but somewhat arbitrarily cut all the bonds coupling  and . But we could easily imagine
some other prescription, such as halving the coupling strength along all such interface bonds. Indeed, the definition of  is
somewhat arbitrary. However, so long as we use  to compute averages of local operators which lie sufficiently far from the
boundary of , the precise details of how we truncate  to  are unimportant. This brings us to the first issue: the
approximation of  by its Gibbs form in Equation  is only valid when we consider averages of local operators lying within
the bulk of . This means that we must only examine operators whose support is confined to regions greater than some distance 
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from , where  is a thermal correlation length. This, in turn, requires that , the region  is very large on the scale of 
. How do we define ? For a model such as the Ising model, it can be taken to be the usual correlation length obtained from the

spin-spin correlation function . More generally, we may choose the largest correlation length from among the correlators
of all the independent local operators in our system. Again, the requirement is that , where  is the
shortest distance from the location of our local operator  to the boundary of . At criticality, the exponential is replaced by a
power law , where  is a critical exponent. Another implicit assumption here is that .

When is the ETH true?

There is no rigorous proof of the ETH. Deutsch showed that the ETH holds for the case of an integrable Hamiltonian weakly
perturbed by a single Gaussian random matrix. Horoi (1995) showed that nuclear shell model wavefunctions reproduce
thermodynamic predictions. Recent numerical work by M. Rigol and collaborators has verified the applicability of the ETH in
small interacting boson systems. ETH fails for so-called integrable models, where there are a large number of conserved quantities,
which commute with the Hamiltonian. Integrable models are, however, quite special, and as Deutsch showed, integrability is
spoiled by weak perturbations, in which case ETH then applies.

ETH also fails in the case of noninteracting disordered systems which exhibit Anderson localization. Single particle energy
eigenstates  whose energies  the localized portion of the eigenspectrum decay exponentially, as 

, where  is some position in space associated with  and  is the localization length.
Within the localized portion of the spectrum,  is finite. As  approaches a mobility edge,  diverges as a power law. In the
delocalized regime, eigenstates are spatially extended and typically decay at worst as a power law . Exponentially localized states
are unable to thermalize with other distantly removed localized states. Of course, all noninteracting systems will violate ETH,
because they are integrable. The interacting version of this phenomenon, many-body localization (MBL), is a topic of intense
current interest in condensed matter and statistical physics. MBL systems also exhibit a large number of conserved quantities, but
in contrast to the case of integrable systems, where each conserved quantity is in general expressed in terms of an integral of a local
density, in MBL systems the conserved quantities are themselves local, although emergent. The emergent nature of locally
conserved quantities in MBL systems means that they are not simply expressed in terms of the original local operators of the
system, but rather are arrived at via a sequence of local unitary transformations.

Note again that in contrast to the classical case, time evolution of a quantum state does not create the thermal state. Rather, it
reveals the thermal distribution which is encoded in all eigenstates after sufficient time for dephasing to occur, so that correlations
between all the wavefunction expansion coefficients  for  are all lost.
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