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1.2: Basic Concepts in Probability Theory

Fundamental definitions
The natural mathematical setting is set theory. Sets are generalized collections of objects. The basics:  is a binary relation
which says that the object  is an element of the set . Another binary relation is set inclusion. If all members of  are in , we
write . The union of sets  and  is denoted  and the intersection of  and  is denoted . The Cartesian
product of  and , denoted , is the set of all ordered elements  where  and .

Some details: If  is not in , we write . Sets may also be objects, so we may speak of sets of sets, but typically the sets
which will concern us are simple discrete collections of numbers, such as the possible rolls of a die {1,2,3,4,5,6}, or the real
numbers , or Cartesian products such as . If  but , we say that  is a proper subset of  and write .
Another binary operation is the set difference , which contains all  such that  and .

In probability theory, each object  is identified as an event. We denote by  the set of all events, and  denotes the set of no
events. There are three basic axioms of probability:

To each set  is associated a non-negative real number , which is called the probability of .
.

If  is a collection of disjoint sets, if  for all , then

From these axioms follow a number of conclusions. Among them, let  be the complement of , the set of all events not
in . Then since , we have . Taking , we conclude .

The meaning of  is that if events  are chosen from  at random, then the relative frequency for  approaches  as
the number of trials tends to infinity. But what do we mean by ’at random’? One meaning we can impart to the notion of
randomness is that a process is random if its outcomes can be accurately modeled using the axioms of probability. This entails the
identification of a probability space  as well as a probability measure . For example, in the microcanonical ensemble of
classical statistical physics, the space  is the collection of phase space points  and the probability
measure is , so that for  the probability of  is , where 

 if  and  if  is the characteristic function of . The quantity  is determined by
normalization: .

Bayesian Statistics
We now introduce two additional probabilities. The joint probability for sets  and  together is written . That is, 

. For example,  might denote the set of all politicians,  the set of all American citizens,
and  the set of all living humans with an IQ greater than 60. Then  would be the set of all politicians who are also
American citizens, Exercise: estimate .

The conditional probability of  given  is written . We can compute the joint probability  in
two ways:

Thus,

a result known as Bayes’ theorem. Now suppose the ‘event space’ is partitioned as . Then

We then have
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a result sometimes known as the extended form of Bayes’ theorem. When the event space is a ‘binary partition’ , we have

Note that  (which follows from ).

As an example, consider the following problem in epidemiology. Suppose there is a rare but highly contagious disease  which
occurs in  of the general population. Suppose further that there is a simple test for the disease which is accurate  of
the time. That is, out of every 10,000 tests, the correct answer is returned 9,999 times, and the incorrect answer is returned only
once. Now let us administer the test to a large group of people from the general population. Those who test positive are
quarantined. Question: what is the probability that someone chosen at random from the quarantine group actually has the disease?
We use Bayes’ theorem with the binary partition . Let  denote the event that an individual tests positive. Anyone from
the quarantine group has tested positive. Given this datum, we want to know the probability that that person has the disease. That
is, we want . Applying Equation [Bayesbinary] with

we find . That is, there is only a  chance that someone who tested positive actually has the disease, despite the
test being  accurate! The reason is that, given the rarity of the disease in the general population, the number of false
positives is statistically equal to the number of true positives.

In the above example, we had , but this is not generally the case. What is true instead is 
. Epidemiologists define the sensitivity of a binary classification test as the fraction of actual positives

which are correctly identified, and the specificity as the fraction of actual negatives that are correctly identified. Thus, 
 is the sensitivity and  is the specificity. We then have . Therefore,

In our previous example, , in which case the RHS above gives . In general, if  is the fraction of the
population which is afflicted, then

For continuous distributions, we speak of a probability density. We then have

and

The range of integration may depend on the specific application.

The quantities  are called the prior distribution. Clearly in order to compute  or  we must know the priors,
and this is usually the weakest link in the Bayesian chain of reasoning. If our prior distribution is not accurate, Bayes’ theorem will
generate incorrect results. One approach to approximating prior probabilities  is to derive them from a maximum entropy
construction.

Random variables and their averages
Consider an abstract probability space  whose elements ( events) are labeled by . The average of any function  is denoted
as  or , and is defined for discrete sets as
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where  is the probability of . For continuous sets, we have

Typically for continuous sets we have  or . Gardiner and other authors introduce an extra symbol, , to denote a
random variable, with  being its value. This is formally useful but notationally confusing, so we’ll avoid it here and
speak loosely of  as a random variable.

When there are two random variables  and , we have  is the product space, and

with the obvious generalization to continuous sets. This generalizes to higher rank products,  with . The
covariance of  and  is defined as

If  is a convex function then one has

For continuous functions,  is convex if  everywhere . If  is convex on some interval  then for 
we must have

where . This is easily generalized to

where , a result known as Jensen’s theorem.
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