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2.11: Phase Transitions and Phase Equilibria
A typical phase diagram of a - -  system is shown in the Fig. [pdiaga](a). The solid lines delineate boundaries between distinct
thermodynamic phases. These lines are called coexistence curves. Along these curves, we can have coexistence of two phases, and
the thermodynamic potentials are singular. The order of the singularity is often taken as a classification of the phase transition. if
the thermodynamic potentials , , , and  have discontinuous or divergent  derivatives, the transition between the
respective phases is said to be  order. Modern theories of phase transitions generally only recognize two possibilities:
first order transitions, where the order parameter changes discontinuously through the transition, and second order transitions,
where the order parameter vanishes continuously at the boundary from ordered to disordered phases . We’ll discuss order
parameters during Physics 140B.

For a more interesting phase diagram, see Fig. [pdiaga](b,c), which displays the phase diagrams for He and He. The only
difference between these two atoms is that the former has one fewer neutron: (2p + 1n + 2e) in He versus (2p + 2n + 2e) in He.
As we shall learn when we study quantum statistics, this extra neutron makes all the difference, because He is a fermion while 
He is a boson.

[pdiaga] (a) Typical thermodynamic phase diagram of a single component - -  system, showing triple point (three phase
coexistence) and critical point. (Source: Univ. of Helsinki.) Also shown: phase diagrams for He (b) and He (c). What a difference
a neutron makes! (Source: Brittanica.)

- -  surfaces
The equation of state for a single component system may be written as

This may in principle be inverted to yield  or  or . The single constraint  on the three
state variables defines a surface in  space. An example of such a surface is shown in Fig. [PVTideal], for the ideal gas.

Real - -  surfaces are much richer than that for the ideal gas, because real systems undergo phase transitions in which
thermodynamic properties are singular or discontinuous along certain curves on the - -  surface. An example is shown in Fig.
[PVTa]. The high temperature isotherms resemble those of the ideal gas, but as one cools below the critical temperature , the
isotherms become singular. Precisely at , the isotherm  becomes perfectly horizontal at , which is the
critical molar volume. This means that the isothermal compressibility,  diverges at . Below , the
isotherms have a flat portion, as shown in Fig. [PVTb], corresponding to a two-phase region where liquid and vapor coexist. In the 

 plane, sketched for  in Fig. [H2Opd] and shown for  in Fig. [PTCO2], this liquid-vapor phase coexistence occurs
along a curve, called the vaporization (or boiling) curve. The density changes discontinuously across this curve; for , the
liquid is approximately 1000 times denser than the vapor at atmospheric pressure. The density discontinuity vanishes at the critical
point. Note that one can continuously transform between liquid and vapor phases, without encountering any phase transitions, by
going around the critical point and avoiding the two-phase region.
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[PVTideal] The surface  corresponding to the ideal gas equation of state, and its projections onto the , 
, and  planes.

In addition to liquid-vapor coexistence, solid-liquid and solid-vapor coexistence also occur, as shown in Fig. [PVTa]. The triple
point  lies at the confluence of these three coexistence regions. For , the location of the triple point and critical point
are given by

[PVTa] A - -  surface for a substance which contracts upon freezing. The red dot is the critical point and the red dashed line is
the critical isotherm. The yellow dot is the triple point at which there is three phase coexistence of solid, liquid, and vapor.

The Clausius-Clapeyron relation

Recall that the homogeneity of  guaranteed , from Euler’s theorem. It also guarantees a relation
between the intensive variables , , and , according to Equation [GDRa]. Let us define , the Gibbs free energy
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per mole. Then

where  and  are the molar entropy and molar volume, respectively. Along a coexistence curve between phase #1
and phase #2, we must have , since the phases are free to exchange energy and particle number, they are in thermal and
chemical equilibrium. This means

Therefore, along the coexistence curve we must have

where

is the molar latent heat of transition. A heat  must be supplied in order to change from phase #1 to phase #2, even without
changing  or . If  is the latent heat per mole, then we write  as the latent heat per gram: , where  is the molar
mass.

[PVTc] Equation of state for a substance which expands upon freezing, projected to the  and  and  planes.

Along the liquid-gas coexistence curve, we typically have , and assuming the vapor is ideal, we may write 
. Thus,

If  remains constant throughout a section of the liquid-gas coexistence curve, we may integrate the above equation to get

Liquid-solid line in 
Life on planet earth owes much of its existence to a peculiar property of water: the solid is less dense than the liquid along the
coexistence curve. For example at  and atm,

dg = −s dT +vdp , (2.11.2)
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The latent heat of the transition is . Thus,

The negative slope of the melting curve is invoked to explain the movement of glaciers: as glaciers slide down a rocky slope, they
generate enormous pressure at obstacles  Due to this pressure, the story goes, the melting temperature decreases, and the glacier
melts around the obstacle, so it can flow past it, after which it refreezes. But it is not the case that the bottom of the glacier melts
under the pressure, for consider a glacier of height km. The pressure at the bottom is , which is only
about 100 atmospheres. Such a pressure can produce only a small shift in the melting temperature of about .

[PVTb] Projection of the - -  surface of Fig. [PVTa] onto the  plane.

Does the Clausius-Clapeyron relation explain how we can skate on ice? When my daughter was seven years old, she had a mass of
about kg. Her ice skates had blades of width about mm and length about cm. Thus, even on one foot, she imparted an
additional pressure of only

So why could my daughter skate so nicely? The answer isn’t so clear!  There seem to be two relevant issues in play. First, friction
generates heat which can locally melt the surface of the ice. Second, the surface of ice, and of many solids, is naturally slippery.
Indeed, this is the case for ice even if one is standing still, generating no frictional forces. Why is this so? It turns out that the Gibbs
free energy of the ice-air interface is larger than the sum of free energies of ice-water and water-air interfaces. That is to say, ice, as
well as many simple solids, prefers to have a thin layer of liquid on its surface, even at temperatures well below its bulk melting
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point. If the intermolecular interactions are not short-ranged , theory predicts a surface melt thickness . In
Fig. [surfmelt] we show measurements by Gilpin (1980) of the surface melt on ice, down to about C. Near  the melt
layer thickness is about nm, but this decreases to nm at C. At very low temperatures, skates stick rather than
glide. Of course, the skate material is also important, since that will affect the energetics of the second interface. The 19th century
novel, Hans Brinker, or The Silver Skates by Mary Mapes Dodge tells the story of the poor but stereotypically decent and
hardworking Dutch boy Hans Brinker, who dreams of winning an upcoming ice skating race, along with the top prize: a pair of
silver skates. All he has are some lousy wooden skates, which won’t do him any good in the race. He has money saved to buy steel
skates, but of course his father desperately needs an operation because – I am not making this up – he fell off a dike and lost his
mind. The family has no other way to pay for the doctor. What a story! At this point, I imagine the suspense must be too much for
you to bear, but this isn’t an American Literature class, so you can use Google to find out what happens (or rent the 1958 movie,
directed by Sidney Lumet). My point here is that Hans’ crappy wooden skates can’t compare to the metal ones, even though the
surface melt between the ice and the air is the same. The skate blade material also makes a difference, both for the interface energy
and, perhaps more importantly, for the generation of friction as well.

Slow melting of ice : a quasistatic but irreversible process
Suppose we have an ice cube initially at temperature  (i.e.  ) and we toss it into a pond of water. We
regard the pond as a heat bath at some temperature . Let the mass of the ice be . How much heat  is absorbed by the ice
in order to raise its temperature to  ? Clearly

where  and  are the specific heats of ice (solid) and water (liquid), respectively , and  is the latent heat of melting per unit
mass. The pond must give up this much heat to the ice, hence the entropy of the pond, discounting the new water which will come
from the melted ice, must decrease:

Now we ask what is the entropy change of the  in the ice. We have
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[PTCO2] Phase diagram for  in the  plane. (Source: www.scifun.org.)

Now since , we have

 
Therefore,

where . Clearly  is negative on the interval , which means that the maximum of 
occurs at  and the minimum at . But  and , which means that  for . Since 

, we conclude .

[surfmelt] Left panel: data from R. R. Gilpin, J. Colloid Interface Sci. 77, 435 (1980) showing measured thickness of the surface
melt on ice at temperatures below C. The straight line has slope , as predicted by theory. Right panel: phase diagram of ,
showing various high pressure solid phases. (Source : Physics Today, December 2005).

Gibbs phase rule
Equilibrium between two phases means that , , and  are identical. From

we derive an equation for the slope of the coexistence curve, the Clausius-Clapeyron relation. Note that we have one equation in
two unknowns , so the solution set is a curve. For three phase coexistence, we have
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which gives us two equations in two unknowns. The solution is then a point (or a set of points). A critical point also is a solution of
two simultaneous equations:

Recall . Note that there can be no four phase coexistence for a simple - -  system.

Now for the general result. Suppose we have  species, with particle numbers , where . It is useful to briefly
recapitulate the derivation of the Gibbs-Duhem relation. The energy  is a homogeneous function of degree
one:

From Euler’s theorem for homogeneous functions (just differentiate with respect to  and then set ), we have

Taking the differential, and invoking the First Law,

we arrive at the relation

of which Equation [GDR] is a generalization to additional internal ‘work’ variables. This says that the  quantities 
 are not all independent. We can therefore write

If there are  different phases, then in each phase , with , there is a chemical potential  for each species . We
then have

Here  is the chemical potential of the  species in the  phase. Thus, there are  such equations relating the 

variables , meaning that only  of them may be chosen as independent. This, then, is the dimension of

'thermodynamic space' containing a maximal number of intensive variables:

To completely specify the state of our system, we of course introduce a single extensive variable, such as the total volume . Note
that the total particle number  may not be conserved in the presence of chemical reactions!

Now suppose we have equilibrium among  phases. We have implicitly assumed thermal and mechanical equilibrium among all
the phases, meaning that  and  are constant. Chemical equilibrium applies on a species-by-species basis. This means

where . This gives  independent equations equations . Thus, we can have phase equilibrium among
the  phases of  species over a region of dimension

Since , we must have . Thus, with two species , we could have at most four phase coexistence.
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If the various species can undergo  distinct chemical reactions of the form

where  is the chemical formula for species , and  is the stoichiometric coefficient for the  species in the  reaction,
with , then we have an additional  constraints of the form

Therefore,

One might ask what value of  are we to use in Equation , or do we in fact have  such equations for each ? The answer is that
Equation [phaseq] guarantees that the chemical potential of species  is the same in all the phases, hence it doesn’t matter what
value one chooses for  in Equation [reacon].

Let us assume that no reactions take place, , so the total number of particles  is conserved. Instead of choosing 
 as  intensive variables, we could have chosen , where  is the

concentration of species .

Why do phase diagrams in the  and  plane look different than those in the  plane?  For example, Fig. [PVTc]
shows projections of the - -  surface of a typical single component substance onto the , , and  planes.
Coexistence takes place along curves in the  plane, but in extended two-dimensional regions in the  and  planes.
The reason that  and  are special is that temperature, pressure, and chemical potential must be equal throughout an equilibrium
phase if it is truly in thermal, mechanical, and chemical equilibrium. This is not the case for an intensive variable such as specific
volume  or chemical concentration .

This page titled 2.11: Phase Transitions and Phase Equilibria is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.
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