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8.1: Equilibrium, Nonequilibrium and Local Equilibrium
Classical equilibrium statistical mechanics is described by the full -body distribution,

We assume a Hamiltonian of the form

typically with , only two-body interactions. The quantity

is the probability, under equilibrium conditions, of finding  particles in the system, with particle #1 lying within  of  and
having momentum within  of , The temperature  and chemical potential  are constants, independent of position. Note
that  is dimensionless.

Nonequilibrium statistical mechanics seeks to describe thermodynamic systems which are out of equilibrium, meaning that the
distribution function is not given by the Boltzmann distribution above. For a general nonequilibrium setting, it is hopeless to make
progress – we’d have to integrate the equations of motion for all the constituent particles. However, typically we are concerned
with situations where external forces or constraints are imposed over some macroscopic scale. Examples would include the
imposition of a voltage drop across a metal, or a temperature differential across any thermodynamic sample. In such cases,
scattering at microscopic length and time scales described by the mean free path  and the collision time  work to establish local
equilibrium throughout the system. A local equilibrium is a state described by a space and time varying temperature  and
chemical potential . As we will see, the Boltzmann distribution with  and  will not be a solution to
the evolution equation governing the distribution function. Rather, the distribution for systems slightly out of equilibrium will be of
the form , where  describes a state of local equilibrium.

We will mainly be interested in the one-body distribution

In this chapter, we will drop the  normalization for phase space integration. Thus,  has dimensions of , and 
 is the average number of particles found within  of  and  of  at time .

In the GCE, we sum the RHS above over . Assuming  so that there is no one-body potential to break translational
symmetry, the equilibrium distribution is time-independent and space-independent:

where  or  is the particle density in the OCE or GCE. From the one-body distribution we can compute
things like the particle current, , and the energy current, :

where . Clearly these currents both vanish in equilibrium, when , since  depends only on  and
not on the direction of . In a steady state nonequilibrium situation, the above quantities are time-independent.

N

( , … , ; , … , ) =f 0
x1 xN p1 pN

⎧

⎩
⎨
⎪⎪

⎪⎪

⋅Z−1
N

1
N !

e−β (p,x)ĤN
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Thermodynamics says that

where , , and  are entropy density, energy density, and particle density, respectively, and  is the differential heat density. This
relation may be case as one among the corresponding current densities:

Thus, in a system with no particle flow,  and the heat current  is the same as the energy current .

When the individual particles are not point particles, they possess angular momentum as well as linear momentum. Following
Lifshitz and Pitaevskii, we abbreviate  for these two variables for the case of diatomic molecules, and 

 in the case of spherical top molecules, where  is the symmetry axis of the top. We then have, in 
dimensions,

where . We will call the set  the ‘kinematic variables’. The instantaneous number density at  is then

One might ask why we do not also keep track of the angular orientation of the individual molecules. There are two reasons. First,
the rotations of the molecules are generally extremely rapid, so we are justified in averaging over these motions. Second, the
orientation of, say, a rotor does not enter into its energy. While the same can be said of the spatial position in the absence of
external fields, (i) in the presence of external fields one must keep track of the position coordinate  since there is physical
transport of particles from one region of space to another, and (iii) the collision process, which as we shall see enters the dynamics
of the distribution function, takes place in real space.
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n(r, t) = ∫ dΓf(r, Γ; t) . (8.1.8)
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