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5.S: Summary
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Summary
\def\tpar{t\ns_\parallel} \def\mhat{\hat\Bm} \parindent=0pt \renewcommand*\rmdefault{ppl}\normalfont\upshape \physgreek
\font\seventeenbf=cmbx10 scaled \magstep3 \setcounter{section}{4} \section{Quantum Statistics : Summary} $\bullet$ {\it
Second-quantized Hamiltonians\/}: A noninteracting quantum system is described by a Hamiltonian
$\HH=\sum_\alpha\ve\ns_\alpha\,\Hn\ns_\alpha$, where $\ve\ns_\alpha$ is the energy eigenvalue for the single particle state
$\psi\ns_\alpha$ (possibly degenerate), and $\Hn\ns_\alpha$ is the number operator. Many-body eigenstates $\tket{\Vn}$ are
labeled by the set of occupancies $\Vn=\{n\ns_\alpha\}$, with $\Hn\ns_\alpha\,\tket{\Vn}=n\ns_\alpha\tket{\Vn}$. Thus,
$\HH\,\tket{\Vn}=E\ns_\Vn\>\tket{\Vn}$, where $E\ns_\Vn=\sum_\alpha n\ns_\alpha\,\ve\ns_\alpha$. $\bullet$ {\it Bosons and
fermions\/}: The allowed values for $n\ns_\alpha$ are $n\ns_\alpha\in\{0,1,2,\ldots,\infty\}$ for bosons and $n\ns_\alpha\in\
{0,1\}$ for fermions. $\bullet$ {\it Grand canonical ensemble\/}: Because of the constraint $\sum_\alpha n\ns_\alpha=N$, the
ordinary canonical ensemble is inconvenient. Rather, we use the grand canonical ensemble, in which case

where the upper sign corresponds to bosons and the lower sign to fermions. The average number of particles occupying the single
particle state $\psi\ns_\alpha$ is then

In the Maxwell-Boltzmann limit, $\mu\ll -\kT$ and $\langle n\ns_\alpha\rangle = z\,e^{-\ve\ns_\alpha/\kT}$, where
$z=e^{\mu/\kT}$ is the fugacity. Note that this low-density limit is common to both bosons and fermions. $\bullet$ {\it Single
particle density of states\/}: The single particle density of states per unit volume is defined to be

where $\Hh$ is the one-body Hamiltonian. If $\Hh$ is isotropic, then $\ve=\ve(k)$, where $k=|\Bk|$ is the magnitude of the
wavevector, and

where $\Sg$ is the degeneracy of each single particle energy state (due to spin, for example). $\bullet$ {\it Quantum virial
expansion\/}: From $\Omega=-pV$, we have
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where

One now inverts $n=n(T,z)$ to obtain $z=z(T,n)$, then substitutes this into $p=p(T,z)$ to obtain a series expansion for the equation
of state,

The coefficients $B\ns_j(T)$ are the {\it virial coefficients\/}. One finds

$\bullet$ {\it Photon statistics\/}: Photons are bosonic excitations whose number is not conserved, hence $\mu=0$. The number
distribution for photon statistics is then $n(\ve)=1/(e^{\beta\ve}-1)$. Examples of particles obeying photon statistics include
phonons (lattice vibrations), magnons (spin waves), and of course photons themselves, for which $\ve(k)=\hbar c k$ with $\Sg=2$.
The pressure and number density for the photon gas obey $p(T) = A\ns_d\,T^{d+1}$ and $n(T)=A'_d\,T^d$, where $d$ is the
dimension of space and $A\ns_d$ and $A'_d$ are constants. $\bullet$ {\it Blackbody radiation\/}: The energy density per unit
frequency of a three-dimensional blackbody is given{P by

The total power emitted per unit area of a blackbody is ${dP\over dA}=\sigma T^4$, where $\sigma=\pi^2 k_\ssr{B}^4/60\hbar^3
c^2 =5.67\times 10^{-8}\,\RW/\Rm^2\,\RK^4$ is Stefan's constant. $\bullet$ {\it Ideal Bose gas\/}: For Bose systems, we must
have $\ve\ns_\alpha > \mu$ for all single particle states. The number density is

This is an increasing function of $\mu$ and an increasing function of $T$. For fixed $T$, the largest value $n(T,\mu)$ can attain is
$n(T,\ve\ns_0)$, where $\ve\ns_0$ is the lowest possible single particle energy, for which $g(\ve)=0$ for $\ve < \ve\ns_0$. If
$n\ns_\Rc(T)\equiv n(T,\ve\ns_0) < \infty$, this establishes a {\it critical density\/} above which there is {\it Bose condensation\/}
into the energy $\ve\ns_0$ state. Conversely, for a given density $n$ there is a {\it critical temperature\/} $T\ns_\Rc(n)$ such that
$n\ns_0$ is finite for $T<t\ns_\rc$\,.>T\ns_\Rc$, $n(T,\mu)$ is given by the integral formula above, with $n\ns_0=0$. For a
ballistic dispersion $\ve(\Bk)=\hbar^2\Bk^2/2m$, one finds $n\lambda_{T\ns_\Rc}^d=\Sg\,\zeta(d/2)$, \ie\ $\kB T\ns_\Rc=
{2\pi\hbar^2\over m} \left(n\big/\Sg\,\zeta(d/2)\right)^{2/d}$. For $T<t\ns_\rc(n)$,>T\ns_\Rc(n)$, one has $n=\Sg\,
{Li}\ns_{d\over 2}(z)\,\lambda_T^{-d}$ and $p=\Sg\,{Li}\ns_{{d\over 2}+1}(z)\,\kT\,\lambda_T^{-d}$, where

$\bullet$ {\it Ideal Fermi gas\/}: The Fermi distribution is $n(\ve)=f(\ve-\mu)=1\big/\!\left(e^{(\ve-\mu)/\kT}+1\right)$. At $T=0$,
this is a step function: $n(\ve)=\RTheta(\mu-\ve)$, and $n=\int\limits_{-\infty}^\mu\!\! d\ve\>g(\ve)$. The chemical potential at
$T=0$ is called the {\it Fermi energy\/}: $\mu(T=0,n)=\veF(n)$. If the dispersion is $\ve(\Bk)$, the locus of $\Bk$ values
satisfying $\ve(\Bk)=\veF$ is called the {\it Fermi surface\/}. For an isotropic and monotonic dispersion $\ve(k)$, the Fermi surface
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is a sphere of radius $\kF$, the {\it Fermi wavevector\/}. For isotropic three-dimensional systems, $\kF=(6\pi^2 n/\Sg)^{1/3}$.
$\bullet$ {\it Sommerfeld expansion\/}: Let $\phi(\ve)={d\Phi\over d\ve}$. Then

where $D=\kT\,{d\over d\mu}$. One then finds, for example, $C\ns_V=\gamma V T$ with $\gamma=\third \pi^2
k_\ssr{B}^2\,g(\veF)$.
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