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1.S: Summary
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Summary

e Discrete distributions: Let n label the distinct possible outcomes of a discrete random process, and let p,, be the probability for
outcome 7. Let A be a quantity which takes values which depend on n, with A,, being the value of A under the outcome n. Then
the expected value of A is (A) =) pn A, where the sum is over all possible allowed values of n. We must have that the
distribution is normalized, (1) =Y, p, =1.

e Continuous distributions: When the random variable ¢ takes a continuum of values, we define the probability density P() to be
such that P(y) dp is the probability for the outcome to lie within a differential volume dy of ¢, where du =W (p) [, do; ,
were o is an n-component vector in the configuration space 2, and where the function W () accounts for the possibility of
different configuration space measures. Then if A(¢) is any function on €, the expected value of A is (4) = [du P(p) A(p).

Q

e Central limit theorem: If {z,, ...,z } are each independently distributed according to P(z), then the distribution of the sum
X=YN z is
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where P(k) = [dz P(z)e ** is the Fourier transform of P(z). Assuming that the lowest moments of P(z) exist,
In[P(k)| = —ipk— %asz +O(k®) , where u = (z) and o2 = (x2) — (x)? are the mean and standard deviation. Then for
N — o0,

Py (X) = (2rNo?) /2 e~ (X-Nw?/2Ne* (1.8.2)
which is a Gaussian with mean (X) = N and standard deviation /(X2) — (X)? =+/N o. Thus, X is distributed as a Gaussian,
even if P(z) is not a Gaussian itself.

e Entropy: The entropy of a statistical distribution is {p,} is S=—>_ p,Inp, . (Sometimes the base 2 logarithm is used, in
which case the entropy is measured in bits.) This has the interpretation of the information content per element of a random
sequence.

e Distributions from maximum entropy: Given a distribution {p,} subject to (K'+1) constraints of the form X* =" X} p,
with a € {0, ..., K}, where X° = X0 =1 (normalization), the distribution consistent with these constraints which maximizes
the entropy function is obtained by extremizing the multivariable function

S ({pa} (0e) = = Xpn npn - ZA (ZX;tpn x°), (1.8.3)

with respect to the probabilities {p, } and the Lagrange multipliers {\, }. This results in a Gibbs distribution,

Pn = —eXP{ Z/\ X“} (1.8.4)
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where Z = e!*% is determined by normalization, > .pn =1 (the a =0 constraint) and the K remaining multipliers determined
by the K additional constraints.

e Multidimensional Gaussian integral:

o 0 9\ 1/2
/da:1 /dwn exp ——x Az +b T, ) = (Eie?A) exp(%bi A;jl bj) . (1.8.5)

e Bayes’ theorem: Let the conditional probability for B given A be P(B|A). Then Bayes’ theorem says
P(A|B)=P(A)-P(B|A)/ P(B).If the ’event space’ is partitioned as { 4, }, then we have the extended form,

P(B|Ai)‘P(Ai)
ZjP(B|Aj)'P(Aj) .

When the event space is a ‘binary partition’ {4, A}, as is often the case in fields like epidemiology ( test positive or test
negative), we have

P(4,|B) = (1.5.6)

P(B|A)-P(4)
P(AB)= . (1.8.7)
P(B|A)-P(A)+ P(B|-A)- P(—A)

Note that P(A|B)+ P(—A|B) =1 (which follows from —-—A4 = A).
e Updating Bayesian priors: Given data in the form of observed values x = {z,,..., 2y} € X and a hypothesis in the form of
parameters 0 = {6,,...,0,} € ©, we write the conditional probability (density) for observing x given 6 as f(x|6). Bayes’

theorem says that the corresponding distribution 7 (6|x) for 6 conditioned on x is

0

r(ofx) = 2070 (158)

de’ f(x|0) = ()
We call 7(8) the prior for 8, f(x|6) the likelihood of x given 6, and 7 (6|x) the posterior for 6 given x. We can use the posterior to
find the distribution of new data points y, called the posterior predictive distribution, f(y|x) f do f(y|0) w(6]x). This is the

update of the prior predictive distribution, f(x f df f(x|0)w(f) . As an example, con51der coin flipping with

f(x|6) = 6% (1 —6)N X , where N is the number of ﬂlps, and X =% j—1 T; with z; a discrete variable which is 0 for tails and 1

for heads. The parameter 6 € [0, 1] is the probability to flip heads. We choose a prior 7(§) = §*~* (1 —6)*~! /B(a, 8) where
1

B(a, ) =T(a)T'(B8)/T(a+p) is the Beta distribution. This results in a normalized prior [df7(6)=1. The posterior
0

distribution for @ is then

f(zy,...,zy]0)7(0) gX+a—1(] _ g)N-X+p-1
m(0zy,..., = = . 1.5.9
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The prior predictive is f(x f dof(x|0) m(0) =B(X +a, N —X+8)/B(c,8) , and the posterior predictive for the total

number of heads Y in M flips is
1

F(ylx) = / d6 £(y10) =(6]x) =

0

B(X+Y+a,N-X+M-Y +p)
B(X+a,N—X+5)

(1.8.10)
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