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7.10: Appendix II- Additional Examples

Blume-Capel model

The Blume-Capel model provides a simple and convenient way to model systems with vacancies. The simplest version of the model is written

The spin variables  range over the values , so this is an extension of the  Ising model. We explicitly separate out the diagonal terms, writing , and placing them in the
second term on the RHS above. We say that site  is occupied if  and vacant if , and we identify  as the vacancy creation energy, which may be positive or negative, depending on
whether vacancies are disfavored or favored in our system.

We make the mean field Ansatz, writing . This results in the mean field Hamiltonian,

Once again, we adimensionalize, writing , , and . We assume . The free energy per site is then

Extremizing with respect to , we obtain the mean field equation,

Note that  is always a solution. Finding the slope of the RHS at  and setting it to unity gives us the critical temperature:

This is an implicit equation for  in terms of the vacancy energy .

[blume] Mean field phase diagram for the Blume-Capel model. The black dot signifies a tricritical point, where the coefficients of  and  in the Landau free energy expansion both vanish. The
dashed curve denotes a first order transition, and the solid curve a second order transition. The thin dotted line is the continuation of the  relation to zero temperature.

Let’s now expand the free energy in terms of the magnetization . We find, to fourth order,

Note that setting the coefficient of the  term to zero yields the equation for . However, upon further examination, we see that the coefficient of the  term can also vanish. As we have seen,
when both the coefficients of the  and the  terms vanish, we have a tricritical point . Setting both coefficients to zero, we obtain

At , it is easy to see we have a first order transition, simply by comparing the energies of the paramagnetic ( ) and ferromagnetic (  or ) states. We have

These results are in fact exact, and not only valid for the mean field theory. Mean field theory is approximate because it neglects fluctuations, but at zero temperature, there are no fluctuations to
neglect!

The phase diagram is shown in Figure [blume]. Note that for  large and negative, vacancies are strongly disfavored, hence the only allowed states on each site have , which is our old friend
the two-state Ising model. Accordingly, the phase boundary there approaches the vertical line , which is the mean field transition temperature for the two-state Ising model.

Ising antiferromagnet in an external field
Consider the following model:

with  and . We’ve solved for the mean field phase diagram of the Ising ferromagnet; what happens if the interactions are antiferromagnetic?

It turns out that under certain circumstances, the ferromagnet and the antiferromagnet behave exactly the same in terms of their phase diagram, response functions, This occurs when , and when
the interactions are between nearest neighbors on a bipartite lattice. A bipartite lattice is one which can be divided into two sublattices, which we call A and B, such that an A site has only B
neighbors, and a B site has only A neighbors. The square, honeycomb, and body centered cubic (BCC) lattices are bipartite. The triangular and face centered cubic lattices are non-bipartite. Now if the
lattice is bipartite and the interaction matrix  is nonzero only when  and  are from different sublattices (they needn’t be nearest neighbors only), then we can simply redefine the spin variables
such that

Then , and in terms of the new spin variables the exchange constant has reversed. The thermodynamic properties are invariant under such a redefinition of the spin variables.

We can see why this trick doesn’t work in the presence of a magnetic field, because the field  would have to be reversed on the B sublattice. In other words, the thermodynamics of an Ising
ferromagnet on a bipartite lattice in a uniform applied field is identical to that of the Ising antiferromagnet, with the same exchange constant (in magnitude), in the presence of a staggered field 

 and .

We treat this problem using the variational density matrix method, using two independent variational parameters  and  for the two sublattices:
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θ = 0 = 0Si = +1Si = −1Si

{E\ns_\ssr{MF}\over N\jhz}=\begin{cases} 0 & {if}\ m=0 \\ \half-\RDelta & {if}\ m=\pm 1\ . \end{cases}
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With the usual adimensionalization, , , and , we have the free energy

where the entropy function is

Note that

[affgraph] Graphical solution to the mean field equations for the Ising antiferromagnet in an external field, here for . Clockwise from upper left: (a) , (b) , (c) , (d) 
.

Differentiating  with respect to the variational parameters, we obtain two coupled mean field equations:

Recognizing , we may write these equations in an equivalent but perhaps more suggestive form:

In other words, the A sublattice sites see an internal field  from their B neighbors, and the B sublattice sites see an internal field  from their A
neighbors.

We can solve these equations graphically, as in Figure [affgraph]. Note that there is always a paramagnetic solution with , where

However, we can see from the figure that there will be three solutions to the mean field equations provided that  at the point of the solution where . This gives
us two equations with which to eliminate  and , resulting in the curve

Thus, for  and  there are three solutions to the mean field equations. It is usually the case, the broken symmetry solutions, which mean those for which  in our case, are
of lower energy than the symmetric solution(s). We show the curve  in Figure [affpd].

[affpd] Mean field phase diagram for the Ising antiferromagnet in an external field. The phase diagram is symmetric under reflection in the  axis.

We can make additional progress by defining the average and staggered magnetizations  and ,

We expand the free energy in terms of :

The term quadratic in  vanishes when , when . It is easy to obtain

from which we learn that the coefficient of the quartic term, , never vanishes. Therefore the transition remains second order down to , where it finally becomes first order.

We can confirm the  limit directly. The two competing states are the ferromagnet, with , and the antiferromagnet, with . The free energies of these states are

There is a first order transition when , which yields .

Canted quantum antiferromagnet

Consider the following model for quantum  spins:

\begin{split} \vrh_\ssr{A}(\sigma)&={1+\msa\over 2} \> \delta\ns_{\sigma,1} + {1-\msa\over 2} \> \delta\ns_{\sigma,-1}\\ \vrh_\ssr{B}(\sigma)&={1+\msb\over 2} \> \delta\ns_{\sigma,1} + {1-\msb\over 2} \> \delta\ns_{\
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θ = 0.6 h = 0.1 h = 0.5 h = 1.1
h = 1.4

f(\msa,\msb)

\begin{split} {\pz f\over\pz\msa}&=0 \quad \Longrightarrow\quad \msb=h-{\theta\over 2}\ln\!\bigg({1+\msa\over 1-\msa}\bigg) \\ {\pz f\over\pz\msb}&=0 \quad \Longrightarrow\quad \msa=h-{\theta\over 2}\ln\!\bigg({1+\
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where  is the vector of Pauli matrices on site . The spins live on a square lattice. The second sum is over all square plaquettes. All the constants , , and  are positive.

Let’s take a look at the Hamiltonian for a moment. The  term clearly wants the spins to align ferromagnetically in the  plane (in internal spin space). The  term prefers antiferromagnetic
alignment along the  axis. The  term discourages any kind of moment along  and works against the  term. We’d like our mean field theory to capture the physics behind this competition.

Accordingly, we break up the square lattice into two interpenetrating  square sublattices (each rotated by  with respect to the original), in order to be able to describe an antiferromagnetic
state. In addition, we include a parameter  which describes the canting angle that the spins on these sublattices make with respect to the -axis. That is, we write

Note that  so these density matrices are normalized. Note also that the mean direction for a spin on the A and B sublattices is given by

Thus, when , the system is an antiferromagnet with its staggered moment lying along the  axis. When , the system is a ferromagnet with its moment lying along the  axis.

Finally, the eigenvalues of  are still , hence

Note that we have taken , unlike the case of the antiferromagnet in a uniform field. The reason is that there remains in our model a symmetry between A and B
sublattices.

The free energy is now easily calculated:

We can adimensionalize by defining , , and . Then the free energy per site is  is

There are two variational parameters:  and . We thus obtain two coupled mean field equations,

Let’s start with the second of the mean field equations. Assuming , it is clear from Equation [cantedferg] that

Suppose . Then we have  and the first mean field equation yields the familiar result

Along the  axis, then, we have the usual ferromagnet-paramagnet transition at .

[cantpd] Mean field phase diagram for the model of Equation [cantham] for the case .

For  we have canting with an angle \[\alpha=\alpha^*(m)=\cos^{-1}\sqrt

\ .\] Substituting this into the first mean field equation, we once again obtain the relation . However, eventually, as  is increased, the magnetization will dip below the value 
. This occurs at a dimensionless temperature \[\theta\ns_0={m\ns_0\over\tanh^{-1}(m\ns_0)} < 1\qquad;\qquad m\ns_0=\sqrt\ .\] For , we have , and we must

take . The first mean field equation then becomes

or, equivalently, . A simple graphical analysis shows that a nontrivial solution exists provided . Since , this solution describes an antiferromagnet, with 
 and . The resulting mean field phase diagram is then as depicted in Figure [cantpd].

Coupled order parameters

Consider the Landau free energy

We write

where

where  is some temperature scale. We assume without loss of generality that . We begin by rescaling:
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We then have

where

It proves convenient to perform one last rescaling, writing

Then

where

Note that we may write

The eigenvalues of the above  matrix are , with corresponding eigenvectors . Since , we are only interested in the first eigenvector , corresponding to the eigenvalue .
Clearly when  the free energy is unbounded from below, which is unphysical.

We now set

and identify four possible phases:

Phase I : , . The free energy is .
Phase II :  with . The free energy is

hence we require  in this phase, in which case

Phase III :  with . The free energy is

hence we require  in this phase, in which case

Phase IV :  and . Varying  yields

with solution

Since  and  must each be nonnegative, phase IV exists only over a yet-to-be-determined subset of the entire parameter space. The free energy is

We now define  and . Note that . There are three possible temperature ranges to consider.

. The only possible phases are I and IV. For phase IV, we must impose the conditions  and . If , then the numerators in eqns. [IVab] must each be positive:

But since either  or its inverse must be less than or equal to unity, this requires , which is unphysical.

If on the other hand we assume , the non-negativeness of  and  requires

Thus,  and we have a contradiction.

Therefore, the only allowed phase for  is phase I.

m ≡( , ϕ ≡(  .
αm

bm
)

1/2

m̃
αm

bm
)

1/2

ϕ̃ (7.10.21)

f = {r ( + )+ ( + )+ λ } ,ε0

1

2
θm m̃2 1

4
m̃4 r−1 1

2
θϕ ϕ̃

2 1

4
ϕ̃

4 1

2
m̃2ϕ̃

2
(7.10.22)

= , r = ( , λ =  .ε0

αm αϕ

(bm bϕ)1/2

αm

α
ϕ

bϕ

bm
)

1/2 Λ

(bm bϕ)1/2
(7.10.23)

≡ m , ≡ φ .m~ r−1/4 ϕ
~

r1/4 (7.10.24)

f = { q + + + + λ } ,ε0

1

2
θm m

2 1

4
m

4 1

2
q−1 θϕ φ

2 1

4
φ4 1

2
m

2 φ2 (7.10.25)

q = =( (  .r√
αm

αϕ

)
1/2 b

ϕ

bm
)

1/4

(7.10.26)

f(m,φ) = ( )( )( )+ ( )( )  .
ε0

4
m

2 φ2 1

λ

λ

1

m
2

φ2

ε0

2
m

2 φ2
q θm

q−1 θϕ
(7.10.27)

2 ×2 1 ±λ ( )1
±1

> 0φ2 ( )1
1

1 +λ

λ < 1

= 0 , = 0 ,
∂f

∂m

∂f

∂φ
(7.10.28)

m = 0 φ = 0 f\ns_\ssr{I}=0
m ≠ 0 φ = 0

f = (q + ) ,
ε0

2
θm m

2 1

2
m

4 (7.10.29)

< 0θm

\Sm\ns_\ssr{II}=\sqrt{-q\,\thm}\qquad,\qquad f\ns_\ssr{II}=-{\ve\ns_0\over 4}\,q^2\,\theta_m^2\ .

m = 0 φ ≠ 0

f = ( + ) ,
ε

0

2
q−1 θϕ φ

2 1

2
φ4 (7.10.30)

< 0θϕ
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. Now the possible phases are I, II, and IV. We can immediately rule out phase I because . To compare phases II and IV, we compute

Thus, phase II has the lower energy if . For , phase IV has the lower energy, but the conditions  and  then entail

Thus,  is restricted to the range

With  and , the condition  is found to be

Thus, phase IV exists and has lower energy when

where .
. In this regime, any phase is possible, however once again phase I can be ruled out since phases II and III are of lower free energy. The condition that phase II have lower free energy

than phase III is

, which means . If  this is true for all , while if  phase II is lower in energy only for .

[FcoupledLandau] Phase diagram for ,  (top) and ,  (bottom). The hatched purple region is unphysical, with a free energy unbounded from below. The blue lines
denote second order transitions. The thick red line separating phases II and III is a first order line.

We next need to test whether phase IV has an even lower energy than the lower of phases II and III. We have

In both cases, phase IV can only be the true thermodynamic phase if . We then require  and , which fixes

The upper limit will be the first term inside the rounded brackets if , if . This is impossible if , hence the upper limit is given by the second term in the rounded
brackets:

If , then the upper limit will be  if , and will be  if .

Representative phase diagrams for the cases  and  are shown in Figure [FcoupledLandau].

1. There is always a solution to  at .↩
2. Don’t confuse the molar free energy ( ) with the number of molecular degrees of freedom ( )!↩
3. Johannes Diderik van der Waals, the eldest of ten children, was the son of a carpenter. As a child he received only a primary school education. He worked for a living until age 25, and was able to

enroll in a three-year industrial evening school for working class youth. Afterward he continued his studies independently, in his spare time, working as a teacher. By the time he obtained his PhD,
he was 36 years old. He received the Nobel Prize for Physics in 1910.↩

4. See www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf↩
5. One could equally well identify the second correspondence as  between density (rather than specific volume) and magnetization. One might object that  is more properly analogous to 

. However, since  it can equally be regarded as analogous to . Note also that  for the ideal gas, in which case  is proportional to .↩
6. Note the distinction between the number of lattice sites  and the number of occupied cells . According to our definitions, .↩
7. In the third of the following exponent equalities,  is the dimension of space and  is the correlation length exponent.↩
8. A Bravais lattice is one in which any site is equivalent to any other site through an appropriate discrete translation. Examples of Bravais lattices include the linear chain, square, triangular, simple

cubic, face-centered cubic, lattices. The honeycomb lattice is not a Bravais lattice, because there are two sets of inequivalent sites – those in the center of a Y and those in the center of an upside
down Y.↩

9. To obtain this result, one writes  and then differentiates twice with respect to , using the chain rule. Along the way, any naked ( undifferentiated) term proportional to  may be
dropped, since this vanishes at any  by the mean field equation.↩

10. Pierre Curie was a pioneer in the fields of crystallography, magnetism, and radiation physics. In 1880, Pierre and his older brother Jacques discovered piezoelectricity. He was 21 years old at the
time. It was in 1895 that Pierre made the first systematic studies of the effects of temperature on magnetic materials, and he formulated what is known as Curie’s Law, , where  is a
constant. Curie married Marie Sklodowska in the same year. Their research turned toward radiation, recently discovered by Becquerel and Röntgen. In 1898, Pierre and Marie Curie discovered
radium. They shared the 1903 Nobel Prize in Physics with Becquerel. Marie went on to win the 1911 Nobel Prize in Chemistry and was the first person ever awarded two Nobel Prizes. Their
daughter Irène Joliot Curie shared the 1935 Prize in Chemistry (with her husband), also for work on radioactivity. Pierre Curie met an untimely and unfortunate end in the Spring of 1906. Walking
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r = q2
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across the Place Dauphine, he slipped and fell under a heavy horse-drawn wagon carrying military uniforms. His skull was crushed by one of the wagon wheels, killing him instantly. Later on that
year, Pierre-Ernest Weiss proposed a modification of Curie’s Law to account for ferromagnetism. This became known as the Curie-Weiss law, .↩

11. The self-interaction terms with  contribute a constant to  and may be either included or excluded. However, this property only pertains to the  model. For higher spin versions of
the Ising model, say where , then  is not constant and we should explicitly exclude the self-interaction terms.↩

12. The sum in the discrete Fourier transform is over all ‘direct Bravais lattice vectors’ and the wavevector  may be restricted to the ‘first Brillouin zone’. These terms are familiar from elementary
solid state physics.↩

13. How do we take the logarithm of a matrix? The rule is this:  if . The exponential of a matrix may be evaluated via its Taylor expansion.↩
14. The denominator of  in the measure is not necessary, and in fact it is even slightly cumbersome. It divides out whenever we take a ratio to compute a thermodynamic average. I introduce this

factor to preserve the relation . I personally find unnormalized traces to be profoundly unsettling on purely aesthetic grounds.↩
15. Note that the coefficient of the quartic term in  is negative for . At , the coefficient is positive, but for larger  one must include higher order terms in the Landau expansion.↩
16. It is always the case that  is bounded from below, on physical grounds. Were  negative, we’d have to consider higher order terms in the Landau expansion.↩
17. We needn’t waste our time considering the  solution, since the cubic term prefers positive .↩
18. There is a sign difference between the particle susceptibility defined in chapter 6 and the spin susceptibility defined here. The origin of the difference is that the single particle potential  as

defined was repulsive for , meaning the local density response  should be negative, while in the current discussion a positive magnetic field  prefers .↩
19. To evoke a negative eigenvalue on a -dimensional cubic lattice, set  for all . The eigenvalue is then .↩
20. It needn’t be an equally spaced sequence, for example.↩
21. The function  may involve one or more adjustable parameters which could correspond, for example, to an external magnetic field . We suppress these parameters when we write the free

energy as .↩
22. We should really check that the coefficient of the sixth order term is positive, but that is left as an exercise to the eager student.↩
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