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5.7: The Ideal Fermi Gas

General formulation for noninteracting systems
Recall that the grand partition function for noninteracting bosons is given by

In order for the sum to converge to the RHS above, we must have  for all single-particle states . The density of particles
is then

where  is the density of single particle states per unit volume. We assume that  for  ;
typically , as is the case for any dispersion of the form , for example. However, in the presence of a magnetic
field, we could have , in which case .

Clearly  is an increasing function of both  and . At fixed , the maximum possible value for , called the critical
density , is achieved for  ,

The above integral converges provided , assuming  is continuous . If , the integral diverges, and 
. In this latter case, one can always invert the equation for  to obtain the chemical potential . In the

former case, where the  is finite, we have a problem – what happens if  ?

In the former case, where  is finite, we can equivalently restate the problem in terms of a critical temperature , defined
by the equation . For  , we apparently can no longer invert to obtain , so clearly something has gone
wrong. The remedy is to recognize that the single particle energy levels are discrete, and separate out the contribution from the
lowest energy state . we write \[n(T,\mu) = \stackrel{n\ns_0}{\overbrace

} + \stackrel{n'}{\overbrace{\int\limits_{\ve\ns_0}^\infty\!\! d\ve\ {g(\ve)\over e^{\beta(\ve-\mu)}-1}}}\ ,\] where  is the
degeneracy of the single particle state with energy . We assume that  is finite, which means that  is extensive. We
say that the particles have condensed into the state with energy . The quantity  is the condensate density. The remaining
particles, with density , are said to comprise the overcondensate. With the total density  fixed, we have . Note that 

 finite means that  is infinitesimally close to :

Note also that if  is finite, then  is infinitesimal.

Thus, for , we have  with , and

For , we have  and

The equation for  is
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For another take on ideal Bose gas condensation see the appendix in §10.

Ballistic dispersion
We already derived, in §3.3, expressions for  and  for the ideal Bose gas (IBG) with ballistic dispersion 

, We found \[\begin{split} n(T,z)&=\Sg\,\lambda_T^{-d}\>\,{Li}\ns_

(z)\vph\\ p(T,z)&=\Sg\,\kT\,\lambda_T^{-d}\>\,{Li}\ns_{{d\over 2}+1}(z) , \end{split}\] where  is the internal ( spin) degeneracy
of each single particle energy level. Here  is the fugacity and

is the polylogarithm function. For bosons with a spectrum bounded below by , the fugacity takes values on the interval 
.

Clearly \(n(T,z)=\Sg\,\lambda_T^{-d}\>\,{Li}\ns_

(z)\) is an increasing function of  for fixed . In Figure [zeta] we plot the function  versus  for three different values of .
We note that the maximum value  is finite if . Thus, for , there is a maximum density \(n\ns_{max}(T)=\Sg\,
{Li}\ns_(z)\,\lambda_T^{-d}\) which is an increasing function of temperature . Put another way, if we fix the density , then
there is a critical temperature  below which there is no solution to the equation . The critical temperature  is
then determined by the relation

What happens for ?
[zeta] The polylogarithm function {Li}_s(z) versus z for s=\half, s=\frac{3}{2}, and
s=\frac{5}{2}. Note that {Li}_s(1)=\zeta(s) diverges for s\le 1.

[zeta] The polylogarithm function  versus  for , , and . Note that  diverges for .

As shown above in §7, we must separate out the contribution from the lowest energy single particle mode, which for ballistic
dispersion lies at . Thus writing

where we have taken . Now  is of course very small, since  is thermodynamically large, but if  then  is
also very small and their ratio can be finite, as we have seen. Indeed, if the density of  bosons  is finite, then their total
number  satisfies

The chemical potential is then

In other words, the chemical potential is infinitesimally negative, because  is assumed to be thermodynamically large.

According to Equation [Oqsm], the contribution to the pressure from the  states is

So the  bosons, which we identify as the condensate, contribute nothing to the pressure.

Having separated out the  mode, we can now replace the remaining sum over  by the usual integral over . We then have
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and \[\begin{split} \ \ \quad T>T\ns_\Rc\qquad :\qquad n&=\Sg\,{Li}\ns_

(z)\,\lambda_T^{-d}\vph\\ p&=\Sg\,{Li}\ns_{{d\over 2}+1}(z)\,\kT\,\lambda_T^{-d}\quad. \end{split}\]

The condensate fraction  is unity at , when all particles are in the condensate with , and decreases with increasing
 until , at which point it vanishes identically. Explicitly, we have

Let us compute the internal energy  for the ideal Bose gas. We have

and therefore

This expression is valid at all temperatures, both above and below . Note that the condensate particles do not contribute to ,
because the  condensate particles carry no energy.

We now investigate the heat capacity . Since we have been working in the GCE, it is very important to note that 
 is held constant when computing . We’ll also restrict our attention to the case  since the ideal Bose gas does not

condense at finite  for  and  is unphysical. While we’re at it, we’ll also set .
[ibgcv] Molar heat capacity of the ideal Bose gas (units of R). Note the cusp at
T=T_\Rc.

[ibgcv] Molar heat capacity of the ideal Bose gas (units of ). Note the cusp at .

The number of particles is

and the energy is

For , we have  and

The molar heat capacity is therefore

For , we have
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where we have invoked Equation [zetarec]. Taking the differential of , we have

We set , which fixes  in terms of , resulting in

To obtain , we must invert the relation

in order to obtain , and then insert this into Equation [ibgcg]. The results are shown in Figure [ibgcv]. There are several
noteworthy features of this plot. First of all, by dimensional analysis the function  is  times a function of the
dimensionless ratio . Second, the high temperature limit is , which is the classical value. Finally, there is a
cusp at .

For another example, see §11.

Isotherms for the ideal Bose gas
Let  be some length scale and define

Then we have

where  is the volume per particle  and  is the condensate number density;  vanishes for , where . One
identifies a critical volume  by setting  and , leading to . For , we set  in
Equation [BGIa] to find a relation between , , and . For , we set  in Equation [BGIa] to relate , , and .
Note that the pressure is independent of volume for . The isotherms in the  plane are then flat for . This
resembles the coexistence region familiar from our study of the thermodynamics of the liquid-gas transition. The situation is
depicted in Fig. [ibgpd]. In the  plane, we identify  as the critical temperature at which condensation
starts to occur.

[ibgpd] Phase diagrams for the ideal Bose gas. Left panel: (p,v) plane. The solid blue curves are
isotherms, and the green hatched region denotes v<v_\Rc(T), where the system is partially

condensed. Right panel: (p,T) plane. The solid red curve is the coexistence curve p_\Rc(T), along
which Bose condensation occurs. No distinct thermodynamic phase exists in the yellow hatched region
above p=p_\Rc(T).

[ibgpd] Phase diagrams for the ideal Bose gas. Left panel:  plane. The solid blue curves are isotherms, and the green hatched
region denotes , where the system is partially condensed. Right panel:  plane. The solid red curve is the
coexistence curve , along which Bose condensation occurs. No distinct thermodynamic phase exists in the yellow hatched
region above .

Recall the Gibbs-Duhem equation,

Along a coexistence curve, we have the Clausius-Clapeyron relation,
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where  is the latent heat per mole, and . For ideal gas Bose condensation, the coexistence curve
resembles the red curve in the right hand panel of Figure [ibgpd]. There is no meaning to the shaded region where .
Nevertheless, it is tempting to associate the curve  with the coexistence of the  condensate and the remaining
uncondensed  bosons .

The entropy in the coexistence region is given by

All the entropy is thus carried by the uncondensed bosons, and the condensate carries zero entropy. The Clausius-Clapeyron
relation can then be interpreted as describing a phase equilibrium between the condensate, for which , and the
uncondensed bosons, for which  and . So this identification forces us to conclude that the specific volume of
the condensate is zero. This is certainly false in an interacting Bose gas!

While one can identify, by analogy, a ‘latent heat’  in the Clapeyron equation, it is important to understand that
there is no distinct thermodynamic phase associated with the region . Ideal Bose gas condensation is a second order
transition, and not a first order transition.

[He4PD] Phase diagram of {}^4He. All phase
boundaries are first order transition lines, with the

exception of the normal liquid-superfluid transition, which
is second order. (Source: University of Helsinki)

[He4PD] Phase diagram of He. All phase boundaries are first order transition lines, with the exception of the normal liquid-
superfluid transition, which is second order. (Source: University of Helsinki)

The -transition in Liquid He
Helium has two stable isotopes. He is a boson, consisting of two protons, two neutrons, and two electrons (hence an even number
of fermions). He is a fermion, with one less neutron than He. Each He atom can be regarded as a tiny hard sphere of mass 

g and diameter Å. A sketch of the phase diagram is shown in Figure [He4PD]. At atmospheric
pressure, Helium liquefies at K. The gas-liquid transition is first order, as usual. However, as one continues to cool, a
second transition sets in at K (at atm). The -transition, so named for the -shaped anomaly in the specific
heat in the vicinity of the transition, as shown in Figure [cphelium], is continuous ( second order).

If we pretend that He is a noninteracting Bose gas, then from the density of the liquid , we obtain a Bose-
Einstein condensation temperature K, which is in the right ballpark. The specific heat  is
found to be singular at , with

 is an example of a critical exponent. We shall study the physics of critical phenomena later on in this course. For now, note that a
cusp singularity of the type found in Figure [ibgcv] corresponds to . The behavior of  in He is very nearly
logarithmic in . In fact, both theory (renormalization group on the  model) and experiment concur that  is almost
zero but in fact slightly negative, with  in the best experiments (Lipa , 2003). The  transition is most
definitely not an ideal Bose gas condensation. Theoretically, in the parlance of critical phenomena, IBG condensation and the -
transition in He lie in different universality classes . Unlike the IBG, the condensed phase in He is a distinct thermodynamic
phase, known as a superfluid.

[cphelium] Specific heat of liquid {}^4He in the vicinity of the \lambda-transition. Data from M. J.
Buckingham and W. M. Fairbank, in Progress in Low Temperature Physics, C. J. Gortner, ed.

(North-Holland, 1961). Inset at upper right: more recent data of J. A. Lipa et al., Phys. Rev. B 68,
174518 (2003) performed in zero gravity earth orbit, to within \RDelta T=2\,nK of the transition.

[cphelium] Specific heat of liquid He in the vicinity of the -transition. Data from M. J. Buckingham and W. M. Fairbank, in
Progress in Low Temperature Physics, C. J. Gortner, ed. (North-Holland, 1961). Inset at upper right: more recent data of J. A. Lipa
et al., Phys. Rev. B 68, 174518 (2003) performed in zero gravity earth orbit, to within nK of the transition.

Note that  for the IBG is not even defined, since for  we have  and therefore  requires 
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Fountain effect in superfluid He
At temperatures , liquid He has a superfluid component which is a type of Bose condensate. In fact, there is an important
difference between condensate fraction  and superfluid density, which is denoted by the symbol . In He, for example,
at  the condensate fraction is only about , while the superfluid fraction . The distinction between  and  is
very interesting but lies beyond the scope of this course.

One aspect of the superfluid state is its complete absence of viscosity. For this reason, superfluids can flow through tiny cracks
called microleaks that will not pass normal fluid. Consider then a porous plug which permits the passage of superfluid but not of
normal fluid. The key feature of the superfluid component is that it has zero energy density. Therefore even though there is a
transfer of particles across the plug, there is no energy exchange, and therefore a temperature gradient across the plug can be
maintained .

The elementary excitations in the superfluid state are sound waves called phonons. They are compressional waves, just like
longitudinal phonons in a solid, but here in a liquid. Their dispersion is acoustic, given by  where .
The have no internal degrees of freedom, hence . Like phonons in a solid, the phonons in liquid helium are not conserved.
Hence their chemical potential vanishes and these excitations are described by photon statistics. We can now compute the height
difference  in a U-tube experiment.

[fountain] The fountain effect. In each case, a temperature gradient is maintained across a porous
plug through which only superfluid can flow. This results in a pressure gradient which can result in

a fountain or an elevated column in a U-tube.

[fountain] The fountain effect. In each case, a temperature gradient is maintained across a porous plug through which only
superfluid can flow. This results in a pressure gradient which can result in a fountain or an elevated column in a U-tube.

Clearly . so we must find  for the helium. In the grand canonical ensemble, we have

Let’s assume K. We’ll need the density of liquid helium, .

a very noticeable effect!

Bose condensation in optical traps
The 2001 Nobel Prize in Physics was awarded to Weiman, Cornell, and Ketterle for the experimental observation of Bose
condensation in dilute atomic gases. The experimental techniques required to trap and cool such systems are a true tour de force,
and we shall not enter into a discussion of the details here .

The optical trapping of neutral bosonic atoms, such as Rb, results in a confining potential  which is quadratic in the atomic
positions. Thus, the single particle Hamiltonian for a given atom is written

where  are the angular frequencies of the trap. This is an anisotropic three-dimensional harmonic oscillator, the solution of
which is separable into a product of one-dimensional harmonic oscillator wavefunctions. The eigenspectrum is then given by a sum
of one-dimensional spectra, viz.

According to Equation [Ntot], the number of particles in the system is
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where we’ve defined

Note that .

Let’s assume that the trap is approximately anisotropic, which entails that the frequency ratios  are all numbers on the order
of one. Let us further assume that . Then

where , with

We then have

where the first term on the RHS is due to  and the second term from  in the previous sum. Since  and since
the sum of inverse cubes is convergent, we may safely extend the limit on the above sum to infinity. To help make more sense of
the first term, write  for the number of particles in the  state. Then

This is true always. The issue vis-a-vis Bose-Einstein condensation is whether . At any rate, we now see that we can write

As for the first term, we have

Thus, as in the case of IBG condensation of ballistic particles, we identify the critical temperature by the condition 
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\bigg)\>N^{1/3} \ [\,{nK}\,]\ ,\] where . We see that  if the number of particles in the trap is large: .
In this regime, we have

It is interesting to note that BEC can also occur in two-dimensional traps, which is to say traps which are very anisotropic, with
oblate equipotential surfaces . This happens when . We then have

N = [ −1∑
=0n1

∞

∑
=0n2

∞

∑
=0n3

∞

y−1 e ℏ / Tn1 ω1 kB e ℏ / Tn2 ω2 kB e ℏ / Tn3 ω3 kB ]
−1

= ( )( )( ) ,∑
k=1

∞

yk
1

1 −e−kℏ / Tω1 kB

1

1 −e−kℏ / Tω2 kB

1

1 −e−kℏ / Tω3 kB

y ≡  .eμ/ TkB e−ℏ /2 Tω1 kB e−ℏ /2 Tω2 kB e−ℏ /2 Tω3 kB (5.7.31)

y ∈ [0, 1]

/ω1 ω2

T ≫ ℏkB ω1,2,3

  ≈  
1

1 −e−kℏ / Tωj kB

⎧

⎩
⎨
⎪⎪

⎪⎪

TkB
kℏωj

1

k ∝ (T )k∗

k > (T )k∗

(5.7.32)

(T ) = T/ℏ ≫ 1k∗ kB ω̄

= (  .ω̄ ω1 ω2 ω3)
1/3

(5.7.33)

N(T , y) ≈ +(  ,
y +1k∗

1 −y

TkB

ℏω̄
)

3

∑
k=1

k∗

yk

k3
(5.7.34)

k > k∗ k ≤ k∗ ≫ 1k∗

= ( −1N0 y−1 )−1
( , , ) = (0, 0, 0)n1 n2 n3

y =  .
N

0

+1N0

(5.7.35)

≫ 1N0

N ≈ (1 + +( (y) .N0 N−1
0 )−k∗ TkB

ℏω̄
)

3

Li3 (5.7.36)

(1 + =N0 N−1
0 )

−k∗
⎧

⎩
⎨
⎪

⎪

0

N0

≪N0 k∗

≫N0 k∗
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y = /( +1) ≈ 1N0 N0

= /2πν̄ ω̄ ≫ ℏkBTc ω̄ N ≫ 1

T <  Tc

T >  Tc

: N = +ζ(3)(N0

TkB

ℏω̄
)

3

: N =( (y) . ]
TkB

ℏω̄
)

3

Li3

V (r) = V0 ℏ ≫ T ≫ω3 kB ω1,2
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with . The particle number then obeys a set of equations like those in eqns. [trapab], mutatis mutandis .

For extremely prolate traps, with , the situation is different because  diverges for . We then have

Here we have simply replaced  by the equivalent expression . If our criterion for condensation is that ,
where  is some fractional value, then we have
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= ⋅(T (d=2)
c

ℏω̄

kB

6N

π2
)

1/2

(5.7.38)

= (ω̄ ω1 ω2)
1/2 13

≪ω3 ω1,2 (y)Li1 y = 1

N = + ln(1 + ) .N0

TkB

ℏω3

N0 (5.7.39)

y /( +1)N0 N0 = αNN0

α

(α) = (1 −α) ⋅  .Tc
ℏω3

kB

N

lnN
(5.7.40)
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