
8.9.1 https://phys.libretexts.org/@go/page/18743

8.9: Stochastic Processes
A stochastic process is one which is partially random, it is not wholly deterministic. Typically the randomness is due to phenomena
at the microscale, such as the effect of fluid molecules on a small particle, such as a piece of dust in the air. The resulting motion
(called Brownian motion in the case of particles moving in a fluid) can be described only in a statistical sense. That is, the full
motion of the system is a functional of one or more independent random variables. The motion is then described by its averages with
respect to the various random distributions.

Langevin equation and Brownian motion
Consider a particle of mass  subjected to dissipative and random forcing. We’ll examine this system in one dimension to gain an
understanding of the essential physics. We write

Here,  is the damping rate due to friction,  is a constant external force, and  is a stochastic random force. This equation,
known as the Langevin equation, describes a ballistic particle being buffeted by random forcing events. Think of a particle of dust as
it moves in the atmosphere;  would then represent the external force due to gravity and  the random forcing due to interaction
with the air molecules. For a sphere of radius  moving with velocity  in a fluid, the Stokes drag is given by ,
where  is the radius. Thus,

where  is the mass of the particle. It is illustrative to compute  in some setting. Consider a micron sized droplet ( cm)
of some liquid of density  moving in air at . The viscosity of air is  at this
temperature . If the droplet density is constant, then , hence the time scale for viscous relaxation of
the particle is . We should stress that the viscous damping on the particle is of course due to the fluid molecules, in
some average ‘coarse-grained’ sense. The random component to the force  would then represent the fluctuations with respect to
this average.

We can easily integrate this equation:

Note that  is indeed a functional of the random function . We can therefore only compute averages in order to describe the
motion of the system.

The first average we will compute is that of  itself. In so doing, we assume that  has zero mean: . Then

On the time scale , the initial conditions  are effectively forgotten, and asymptotically for  we have 
, which is the terminal momentum.

Next, consider

We now need to know the two-time correlator . We assume that the correlator is a function only of the time difference 
, so that the random force  satisfies
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The function  is the autocorrelation function of the random force. A macroscopic object moving in a fluid is constantly buffeted
by fluid particles over its entire perimeter. These different fluid particles are almost completely uncorrelated, hence  is basically
nonzero except on a very small time scale , which is the time a single fluid particle spends interacting with the object. We can take

 and approximate

We shall determine the value of  from equilibrium thermodynamic considerations below.

With this form for , we can easily calculate the equal time momentum autocorrelation:

Consider the case where  and the limit . We demand that the object thermalize at temperature . Thus, we impose
the condition

where  is the particle’s mass. This determines the value of .

We can now compute the general momentum autocorrelator:

The full expressions for this and subsequent expressions, including subleading terms, are contained in an appendix, §14.

Let’s now compute the position . We find

where

Note that for  we have , as is appropriate for ballistic particles moving under
the influence of a constant force. This long time limit of course agrees with our earlier evaluation for the terminal velocity, 

. We next compute the position autocorrelation:

In particular, the equal time autocorrelator is

at long times, up to terms of order unity. Here,
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Γ

ϕ(s)

⟨ (t)⟩p2 = ⟨p(t) +Γ ds⟩
2

∫

0

t

e2γ(s−t)

= ⟨p(t) + (1 − ) .⟩
2 Γ

2γ
e−2γt

F = 0 t ≫ γ−1 T

⟨ ⟩= T ⟹ Γ = 2γM T ,
(t)p2

2M

1

2
kB kB (8.9.5)

M Γ

⟨p(t) p( )⟩ −⟨p(t)⟩⟨p( )⟩t′ t′ = ds d ⟨η(s) η( )⟩∫

0

t

∫

0

t′

s′ eγ(s−t) eγ( − )s′ t′
s′

= M T (t, → ∞ ,  |t− | finite) .kB e−γ|t− |t′

t′ t′

x(t)

 x(t) = ⟨x(t)⟩ + ds d η( )  ,
1

M
∫

0

t

∫

0

s

s1 s1 eγ( −s)s1 (8.9.6)

⟨x(t)⟩ = x(0) + + (v(0) − ) (1 − ) .
Ft

γM

1

γ

F

γM
e−γt (8.9.7)

γt ≪ 1 ⟨x(t)⟩ = x(0) +v(0) t+ F +O( )1
2
M−1 t2 t3

= ⟨p(∞)⟩/M = F/γMv∞

⟨x(t)x( )⟩ −⟨x(t)⟩⟨x( )⟩t′ t′ = ds d d d ⟨η( ) η( )⟩
1

M 2
∫

0

t

∫

0

t′

s′ e−γ(s+ )s′
∫

0

s

s
1
∫

0

s′

s′
1
eγ( + )s1 s2 s

1
s

2

= min(t, ) +O(1) .
2 TkB

γM
t′

⟨ (t)⟩ −⟨x(t) = ≡ 2Dt ,x2 ⟩
2 2 T tkB

γM
(8.9.8)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18743?pdf


8.9.3 https://phys.libretexts.org/@go/page/18743

is the diffusion constant. For a liquid droplet of radius  moving in air at , for which , we
have

This result presumes that the droplet is large enough compared to the intermolecular distance in the fluid that one can adopt a
continuum approach and use the Navier-Stokes equations, and then assuming a laminar flow.

If we consider molecular diffusion, the situation is quite a bit different. As we shall derive below in §10.3, the molecular diffusion
constant is , where  is the mean free path and  is the collision time. As we found in Equation [nutaueqn], the mean free
path , collision time , number density , and total scattering cross section  are related by

where  is the average particle speed. Approximating the particles as hard spheres, we have , where  is
the hard sphere radius. At , and , we have . Since air is predominantly
composed of  molecules, we take cm and , which are appropriate for .
We find an average speed of  and a mean free path of cm. Thus, .
Though much larger than the diffusion constant for large droplets, this is still too small to explain common experiences. Suppose we
set the characteristic distance scale at  and we ask how much time a point source would take to diffuse out to this radius.
The answer is , which is between five and six minutes. Yet if someone in the next seat emits a foul odor, your
sense the offending emission in on the order of a second. What this tells us is that diffusion isn’t the only transport process involved
in these and like phenomena. More important are convection currents which distribute the scent much more rapidly.

Langevin equation for a particle in a harmonic well

Consider next the equation

where  is a constant force. We write  and measure  relative to the potential minimum, yielding

At this point there are several ways to proceed.

Perhaps the most straightforward is by use of the Laplace transform. Recall:

where the contour  proceeds from  to  such that all poles of the integrand lie to the left of . We then have

Thus, we have
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Now we may write

where

Note that  and that .

Performing the inverse Laplace transform, we obtain

where

is the response kernel and  is the step function which is unity for  and zero otherwise. The response is causal, 
depends on  for all previous times , but not for future times . Note that  decays exponentially for , if 

. The marginal case where  and  corresponds to the diffusion calculation we performed in the previous
section.

Discrete random walk
Consider an object moving on a one-dimensional lattice in such a way that every time step it moves either one unit to the right or
left, at random. If the lattice spacing is , then after  time steps the position will be

where

Clearly , so . Now let us compute
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Suppose, however, the random walk is biased, so that the probability for each independent step is given by

where . Then

and

Then

Fokker-Planck equation
Suppose  is a stochastic variable. We define the quantity

and we assume

but  for . The  term is due to drift and the  term is due to diffusion. Now consider the
conditional probability density, , defined to be the probability distribution for  given that . The
conditional probability density satisfies the composition rule,

for any value of . This is also known as the Chapman-Kolmogorov equation. In words, what it says is that the probability density
for a particle being at  at time , given that it was at  at time , is given by the product of the probability density for being at 

 at time  given that it was at  at , multiplied by that for being at  at  given it was at  at , integrated over . This
should be intuitively obvious, since if we pick any time , then the particle had to be somewhere at that time. Indeed, one
wonders how Chapman and Kolmogorov got their names attached to a result that is so obvious. At any rate, a picture is worth a
thousand words: see Figure [FChaKol].

[FChaKol] Interpretive sketch of the mathematics behind the Chapman-Kolmogorov equation.

Proceeding, we may write
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Now

where the average is over the random variables. We now insert this result into Equation [CGEFPE], integrate by parts, divide by ,
and then take the limit . The result is the Fokker-Planck equation,

Brownian motion redux
Let’s apply our Fokker-Planck equation to a description of Brownian motion. From our earlier results, we have

A formal proof of these results is left as an exercise for the reader. The Fokker-Planck equation is then

where  is the average terminal velocity. If we make a Galilean transformation and define

then our Fokker-Planck equation takes the form

This is known as the diffusion equation. Equation [FPEBM] is also a diffusion equation, rendered in a moving frame.

While the Galilean transformation is illuminating, we can easily solve Equation [FPEBM] without it. Let’s take a look at this
equation after Fourier transforming from  to :

Then as should be well known to you by now, we can replace the operator  with multiplication by , resulting in
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where

is the diffusion kernel. We now have a recipe for obtaining  given the initial conditions . If ,
describing a particle confined to an infinitesimal region about the origin, then  is the probability distribution for
finding the particle at  at time . There are two aspects to  which merit comment. The first is that the center of the
distribution moves with velocity . This is due to the presence of the external force. The second is that the standard deviation 

 is increasing in time, so the distribution is not only shifting its center but it is also getting broader as time evolves. This
movement of the center and broadening are what we have called drift and diffusion, respectively.

Master Equation
Another way to model stochastic processes is via the master equation, which was discussed in chapter 3. Recall that if  is the
probability for a system to be in state  at time  and  is the transition rate from state  to state , then

Consider a birth-death process in which the states  are labeled by nonnegative integers. Let  denote the rate of transitions
from  and let  denote the rate of transitions from . The master equation then takes the form

Let us assume we can write  and , where . We assume the distribution  has a time-
dependent maximum at  and a width proportional to . We expand relative to this maximum, writing 

  and we define . We now rewrite the master equation in Equation [MEPab] in terms of .
Since  is an independent variable, we set

Therefore
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Equating terms of order  yields the equation

Equating terms of order  yields the Fokker-Planck equation,

where . If in the limit , Equation [Dphieqn] evolves to a stable fixed point , then the stationary
solution of the Fokker-Planck Equation [FPEPi],  must satisfy

where

Now both  and  are rates, hence both are positive and thus . We see that the condition  , which is necessary for a
normalizable equilibrium distribution, requires , which is saying that the fixed point in Equation [Dphieqn] is stable.
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ᾱ′ ∂Π

∂ξ

1

2
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1

2πσ2
− −−−

√
e− /2ξ2 σ2

(8.9.44)

= −  .σ2 g( )ϕ∗

2 ( )f ′ ϕ∗
(8.9.45)

α β g(ϕ) > 0 > 0σ2

( ) < 0f ′ ϕ∗
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