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4.10: Appendix I- Additional Examples

Three state system
Consider a spin-1 particle where . We model this with the single particle Hamiltonian

We can also interpret this as describing a spin if  and a vacancy if . The parameter  then represents the vacancy formation
energy. The single particle partition function is

With  distinguishable noninteracting spins ( at different sites in a crystalline lattice), we have  and

where  is the free energy of a single particle. Note that

are the vacancy number and magnetization, respectively. Thus,

and

At weak fields we can compute

We thus obtain a modified Curie law. At temperatures , the vacancies are frozen out and we recover the usual Curie behavior. At
high temperatures, where , the low temperature result is reduced by a factor of , which accounts for the fact that one third of the
time the particle is in a nonmagnetic state with .

Spins and vacancies on a surface
A collection of spin-  particles is confined to a surface with  sites. For each site, let  if there is a vacancy,  if there is particle
present with spin up, and  if there is a particle present with spin down. The particles are non-interacting, and the energy for each site is
given by , where  is the binding energy.

Let  be the number of spins, and  be the number of vacancies. The surface magnetization is . Compute, in
the microcanonical ensemble, the statistical entropy .
Let  and  be the dimensionless particle density and magnetization density, respectively. Assuming that we are in the
thermodynamic limit, where , , and  all tend to infinity, but with  and  finite, Find the temperature . Recall Stirling’s
formula

Show explicitly that  can be negative for this system. What does negative  mean? What physical degrees of freedom have been left out
that would avoid this strange property?

There is a constraint on , , and :

The total energy of the system is .
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The number of states available to the system is

Fixing  and , along with the above constraint, is enough to completely determine :

whence

The statistical entropy is :

Now we invoke Stirling’s rule,

to obtain

Combining terms,

where  and . Note that the entropy  is extensive. The statistical entropy per site is thus

The temperature is obtained from the relation

Thus,

We have  and , so  is real (thank heavens!). But it is easy to choose  such that . For example, when 
 we have  and  for all . The reason for this strange state of affairs is that the entropy  is

bounded, and is not an monotonically increasing function of the energy  (or the dimensionless quantity ). The entropy is maximized for 
, which says  and . Increasing  beyond this point (with  fixed) starts to reduce the entropy, and

hence  in this range, which immediately gives . What we’ve left out are kinetic degrees of freedom, such as vibrations
and rotations, whose energies are unbounded, and which result in an increasing  function.
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Fluctuating Interface
Consider an interface between two dissimilar fluids. In equilibrium, in a uniform gravitational field, the denser fluid is on the bottom. Let 

 be the height the interface between the fluids, relative to equilibrium. The potential energy is a sum of gravitational and surface
tension terms, with

We won’t need the kinetic energy in our calculations, but we can include it just for completeness. It isn’t so clear how to model it a priori so we
will assume a rather general form

We assume that the  plane is a rectangle of dimensions . We also assume . We can then Fourier transform

where the wavevectors  are quantized according to

with integer  and , if we impose periodic boundary conditions (for calculational convenience). The Lagrangian is then

where

Since  is real, we have the relation , therefore the Fourier coefficients at  and  are not independent. The canonical
momenta are given by

The Hamiltonian is then

where the prime on the  sum indicates that only one of the pair  is to be included, for each .

We may now compute the ordinary canonical partition function:
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is the normal mode frequency for surface oscillations at wavevector . For deep water waves, it is appropriate to take , where 
 is the difference between the densities of water and air.

It is now easy to compute the thermal average

Note that this result does not depend on , on our choice of kinetic energy. One defines the correlation function

where  is the correlation length, and where  is the Bessel function of imaginary argument. The asymptotic behavior of 
 for small  is , whereas for large  one has . We see that on large length scales the correlations

decay exponentially, but on small length scales they diverge. This divergence is due to the improper energetics we have assigned to short
wavelength fluctuations of the interface. Roughly, it can cured by imposing a cutoff on the integral, or by insisting that the shortest distance
scale is a molecular diameter.

Dissociation of Molecular Hydrogen
Consider the reaction

In equilibrium, we have

What is the relationship between the temperature  and the fraction  of hydrogen which is dissociated?

Let us assume a fraction  of the hydrogen is dissociated. Then the densities of H, p, and e are then

The single particle partition function for each species is

where  is the degeneracy and  the internal energy for a given species. We have  for p and e, and  for H, where 
eV, the binding energy of hydrogen. Neglecting hyperfine splittings , we have , while  because each

has spin . Thus, the associated grand potentials are
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and the fugacity  of a given species is given by

We now invoke , which says , or

which yields

where , with . Note that

where Å is the Bohr radius. Thus, we have

where  and . Consider for example a temperature , for which , and assume
that . We then find , corresponding to a density of . At this temperature, the fraction of
hydrogen molecules in their first excited (2s) state is . This is quite striking: half the hydrogen atoms are
completely dissociated, which requires an energy of , yet the number in their first excited state, requiring energy , is twelve orders of
magnitude smaller. The student should reflect on why this can be the case.
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