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3.4: Remarks on Ergodic Theory

Definition of Ergodicity

A mechanical system evolves according to Hamilton’s equations of motion. We have seen how such a system is recurrent in the
sense of Poincaré.

There is a level beyond recurrence called ergodicity. In an ergodic system, time averages over intervals  with  may be
replaced by phase space averages. The time average of a function  is defined as

For a Hamiltonian system, the phase space average of the same function is defined by

where  is the Hamiltonian, and where  is the Dirac -function. Thus,

for all smooth functions  for which  exists and is finite. Note that we do not average over all of phase space. Rather,
we average only over a hypersurface along which  is fixed, over one of the level sets of the Hamiltonian function. This
is because the dynamics preserves the energy. Ergodicity means that almost all points  will, upon Hamiltonian evolution, move in
such a way as to eventually pass through every finite neighborhood on the energy surface, and will spend equal time in equal
regions of phase space.

Let  be the characteristic function of a region :

where  for all . Then

If the system is ergodic, then

where  is the a priori probability to find , based solely on the relative volumes of  and of the entire phase space. The
latter is given by

called the density of states, is the surface area of phase space at energy , and

is the density of states for the phase space subset . Note that
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Here,  is the differential surface element,  is the constant  hypersurface , and  is the volume of phase
space over which . Note also that we may write

where

is the the invariant surface element.

The Microcanonical Ensemble
The distribution,

defines the microcanonical ensemble ( CE) of Gibbs.

We could also write

integrating over the hypersurface  rather than the entire phase space.

Figure : Constant phase space velocity at an irrational angle over a toroidal phase space is ergodic, but not mixing. A circle
remains a circle, and a blob remains a blob.

Ergodicity and Mixing
Just because a system is ergodic, it does not necessarily mean that , for consider the following motion on the
toroidal space , where we identify opposite edges, we impose periodic boundary conditions.
We also take  and  to be dimensionless, for simplicity of notation. Let the dynamics be given by

The solution is

hence the phase curves are given by
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Now consider the average of some function . We can write  in terms of its Fourier transform,

We have, then,

We can now perform the time average of :

Clearly,

so the system is ergodic.

Figure : The baker’s transformation is a successive stretching, cutting, and restacking.

The situation is depicted in Figure . If we start with the characteristic function of a disc,

then it remains the characteristic function of a disc:

For an example of a transition to ergodicity in a simple dynamical Hamiltonian model, see §9.

A stronger condition one could impose is the following. Let  and  be subsets of . Define the measure
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where  is the characteristic function of . The measure of a set  is the fraction of the energy surface  covered by .
This means , since  is the entire phase space at energy . Now let  be a volume-preserving map on phase space.
Given two measurable sets  and , we say that a system is mixing if

In other words, the fraction of  covered by the  iterate of , , is, as , simply the fraction of  covered by . The
iterated map  distorts the region  so severely that it eventually spreads out ‘evenly’ over the entire energy hypersurface. Of
course by ‘evenly’ we mean ‘with respect to any finite length scale’, because at the very smallest scales, the phase space density is
still locally constant as one evolves with the dynamics.

Figure : The multiply iterated baker’s transformation. The set A covers half the phase space and its area is preserved under the
map. Initially, the fraction of B covered by A is zero. After many iterations, the fraction of B covered by  approaches .

Mixing means that

Physically, we can imagine regions of phase space being successively stretched and folded. During the stretching process, the
volume is preserved, so the successive stretch and fold operations map phase space back onto itself.

An example of a mixing system is the baker’s transformation, depicted in Figure . The baker map is defined by

Note that  is invertible and volume-preserving. The baker’s transformation consists of an initial stretch in which  is expanded by
a factor of two and  is contracted by a factor of two, which preserves the total volume. The system is then mapped back onto the
original area by cutting and restacking, which we can call a ‘fold’. The inverse transformation is accomplished by stretching first in
the vertical ( ) direction and squashing in the horizontal ( ) direction, followed by a slicing and restacking. Explicitly,

(φ)χ
A

A A SE A

ν( ) = 1SE SE E g

A B

mixing ⟺ ν( A∩B) = ν(A) ν(B) .lim
n→∞

gn (3.4.22)

B nth A Agn n → ∞ SE A

gn A

3.4.3

Agn 1
2

⟨f(φ)⟩ = ∫ dμ ϱ(φ, t) f(φ)

  ∫ dμ f(φ) δ(E−H(φ))/∫ dμ δ(E−H(φ))to35pt\rightarrowfill
t→∞

≡ Tr [f(φ) δ(E−H(φ))]/Tr [δ(E−H(φ))] .

3.4.2

g(q, p) =

⎧

⎩
⎨
⎪

⎪

(2q , p)1
2

(2q−1 , p+ )1
2

1
2

if 0 ≤ q < 1
2

if ≤ q < 1 .1
2

(3.4.23)

g q

p

p q

(q, p) =g−1

⎧

⎩
⎨
⎪

⎪

( q , 2p)1
2

( q+ , 2p−1)1
2

1
2

if 0 ≤ p < 1
2

if ≤ p < 1 .1
2

(3.4.24)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18559?pdf


3.4.5 https://phys.libretexts.org/@go/page/18559

Figure : The Arnold cat map applied to an image of  pixels. After 300 iterations, the image repeats itself. (Source:
Wikipedia)

Another example of a mixing system is Arnold’s ‘cat map’

where  denotes the fractional part of . One can write this in matrix form as

The matrix  is very special because it has integer entries and its determinant is . This means that the inverse also has
integer entries. The inverse transformation is then

Now for something cool. Suppose that our image consists of a set of discrete points located at , where the
denominator  is fixed, and where  and  range over the set . Clearly  and its inverse preserve this set, since
the entries of  and  are integers. If there are two possibilities for each pixel (say off and on, or black and white), then there
are  possible images, and the cat map will map us invertibly from one image to another. Therefore it must exhibit Poincaré
recurrence! This phenomenon is demonstrated vividly in Figure , which shows a  pixel (square) image of a cat
subjected to the iterated cat map. The image is stretched and folded with each successive application of the cat map, but after 300
iterations the image is restored! How can this be if the cat map is mixing? The point is that only the discrete set of points 

 is periodic. Points with different denominators will exhibit a different periodicity, and points with irrational
coordinates will in general never return to their exact initial conditions, although recurrence says they will come arbitrarily close,
given enough iterations. The baker’s transformation is also different in this respect, since the denominator of the  coordinate is
doubled upon each successive iteration.

The student should now contemplate the hierarchy of dynamical systems depicted in Figure , understanding the characteristic
features of each successive refinement .
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Figure : The hierarchy of dynamical systems.
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