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2.3: Mathematical Interlude - Exact and Inexact Differentials
The differential

is called exact if there is a function  whose differential gives the right hand side of Equation . In this case, we have

For exact differentials, the integral between fixed endpoints is path-independent:

from which it follows that the integral of  around any closed path must vanish:

When the cross derivatives are not identical, when , the differential is inexact. In this case, the integral of  is path dependent, and does not depend solely on the endpoints.

Figure [work_path] Two distinct paths with identical endpoints.

As an example, consider the differential

Let’s evaluate the integral of , which is the work done, along each of the two paths in Fig. [work_path]:

Note that in general . Thus, if we start at point A, the kinetic energy at point B will depend on the path taken, since the work done is path-dependent.

The difference between the work done along the two paths is

Thus, we see that if , the work is the same for the two paths. In fact, if , the work would be path-independent, and would depend only on the endpoints. This is true for any path,
and not just piecewise linear paths of the type depicted in Fig. [work_path]. Thus, if , we are justified in using the notation  for the differential in Equation [dFe]; explicitly, we then have 

. However, if , the differential is inexact, and we will henceforth write  in such cases.
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\begin{aligned} W^\ssr{(I)}&=K\ns_1\!\int\limits_{x\ns_\RA}^{x\nd_\RB}\!\!dx\>y\subA + K\ns_2\!\int\limits_{y\ns_\RA}^{y\nd_\RB}\!\!dy\>x\subB= K\ns_1\,y\subA \,(x\subB-x\subA) + K\ns_2\,x\subB\,(y\subB-y\sub

W^\ssr{(I)}\ne W^\ssr{(II)}

W^\ssr{(I)}-W^\ssr{(II)}=\oint\!dF=(K\ns_2-K\ns_1)\,(x\subB-x\subA)\,(y\subB-y\subA)\ . \label{Wdiff}
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