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6.6: Polymers

Basic concepts
Linear chain polymers are repeating structures with the chemical formula , where  is the formula unit and  is the degree of
polymerization. In many cases (polystyrene),  is not uncommon. For a very readable introduction to the subject, see P. G.
de Gennes, Scaling Concepts in Polymer Physics.

Quite often a given polymer solution will contain a distribution of  values; this is known as polydispersity. Various preparation
techniques, such as chromatography, can mitigate the degree of polydispersity. Another morphological feature of polymers is
branching, in which the polymers do not form linear chains.

Figure : Some examples of linear chain polymers.

Polymers exhibit a static flexibility which can be understood as follows. Consider a long chain hydrocarbon with a 
backbone. The angle between successive  bonds is fixed at , but the azimuthal angle  can take one of three
possible low-energy values, as shown in the right panel of Figure . Thus, the relative probabilities of gauche and trans
orientations are

where  is the energy difference between trans and gauche configurations. This means that the polymer chain is in fact a random
coil with a persistence length

where  is a microscopic length scale, roughly given by the length of a formula unit, which is approximately a few Ångstroms (see
Figure ). Let  be the total length of the polymer when it is stretched into a straight line. If , the polymer is rigid. If 

, the polymer is rigid on the length scale  but flexible on longer scales. We have

where we now use  (rather than ) for the degree of polymerization.

In the time domain, the polymer exhibits a dynamical flexibility on scales longer than a persistence time. The persistence time  is
the time required for a trans-gauche transition. The rate for such transitions is set by the energy barrier  separating trans from
gauche configurations:
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where . On frequency scales  the polymer is dynamically flexible. If  the polymer is
flexible from a static point of view, but dynamically rigid. That is, there are many gauche orientations of successive carbon bonds
which reflect a quenched disorder. The polymer then forms a frozen random coil, like a twisted coat hanger.

Figure : Left: trans and gauche orientations in carbon chains. Right: energy as a function of azimuthal angle . There are
three low energy states: trans ( ) and gauche ( ).

Polymers as random walks
A polymer can be modeled by a self-avoiding random walk (SAW). That is, on scales longer than , it twists about randomly in
space subject to the constraint that it doesn’t overlap itself. Before we consider the mathematics of SAWs, let’s first recall some
aspects of ordinary random walks which are not self-avoiding.

We’ll simplify matters further by considering random walks on a hypercubic lattice of dimension . Such a lattice has coordination
number , there are  nearest neighbor separation vectors, given by  , where  is the lattice
spacing. Consider now a random walk of  steps starting at the origin. After  steps the position is

where  takes on one of  possible values. Now  is no longer the degree of polymerization, but somthing approximating ,
which is the number of persistence lengths in the chain. We assume each step is independent, hence   and 

. The full distribution  is given by

This is a simple Gaussian, with width , as we have already computed. The quantity  defined here is
the end-to-end vector of the chain. The RMS end-to-end distance is then .

A related figure of merit is the radius of gyration,  , defined by

∼ sτ0 10−11 ω≪ τ−1
p Δε∼ T ≪BkB
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where  is the center of mass position. A brief calculation yields

in all dimensions.

The total number of random walk configurations with end-to-end vector  is then , so the entropy of a chain at fixed
elongation is

If we assume that the energy of the chain is conformation independent, then  and

In the presence of an external force , the Gibbs free energy is the Legendre transform

and  then gives the relation

This may be considered an equation of state for the polymer.

Following de Gennes, consider a chain with charges  at each end, placed in an external electric field of magnitude 
. Let , Å, and . What is the elongation? From the above formula, we have

with  as before.

Figure : The polymer chain as a random coil.

Structure factor

We can also compute the structure factor,

For averages with respect to a Gaussian distribution,
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Now for  we have  , and therefore

since  . We then have

where . In the limit where  and  with  constant, the structure factor has a scaling form, 
 , where

Rouse model

Consider next a polymer chain subjected to stochastic forcing. We model the chain as a collection of mass points connected by
springs, with a potential energy . This reproduces the distribution of Equation  if we take the spring
constant to be  and set the equilibrium length of each spring to zero. The equations of motion are then

where  and  a set of Gaussian white noise forcings, each with zero mean, and

We define  and  so that the end mass points  and  experience a restoring force from only one
neighbor. We assume the chain is overdamped and set . We then have

where

The matrix  is real and symmetric. Its eigenfunctions are labeled , with :
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m > n − =Rm Rn ∑m
j=n+1 δj

⟨(k ⋅ ( − ) ⟩= ⟨(k ⋅ ⟩ = (m−n) ,Rm Rn )
2

∑
j=n+1

m

δj)
2 1

d
k
2a2 (6.6.14)

⟨ ⟩ = ( /d)δαj δβ
j′

a2 δ
jj′
δαβ

S(k) = 1+
2
N

∑
m=1

N

∑
n=1

m−1

e−(m−n) /2dk2a2

= ,
N ( −1)−2 (1− )e2μk eμk e−Nμk

N( −1eμk )
2

(6.6.15)

= /2dμk k2a2 N →∞ a→0 N =a2 R2
0

S(k) =Nf(N ) = ( /a) f( /2d)μk R0 k2R2
0

f(x) = ( −1+x) = 1− + +… .
2
x2

e−x
x

3
x2

12
(6.6.16)

U = k ( −1
2 ∑n xn+1 xn)

2
???

k= 3 T/kB a2
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with eigenvalues . Note that .

We now work in the basis of normal modes , where

We then have

where the  relaxation time is

and

Note that

Integrating Equation , we have for, ,

For the  modes,

Thus,

where the ‘connected average’ is defined to be . Transforming back to the original
real space basis, we then have

In particular, the ‘connected variance’ of  is

From this we see that at long times, when  , the motion of  is diffusive, with diffusion constant ,
which is inversely proportional to the chain length. Recall the Stokes result  for a sphere of radius  and mass 
moving in a fluid of dynamical viscosity . From , shouldn’t we expect the diffusion constant to be 

, since the radius of gyration of the polymer is  ? This argument smuggles in the assumption
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that the only dissipation is taking place at the outer surface of the polymer, modeled as a ball of radius . In fact, for a Gaussian
random walk in three space dimensions, the density for  is  since there are  monomers inside a region of
volume . Accounting for Flory swelling due to steric interactions (see below), the density is , which is even
smaller. So as , the density within the  effective sphere gets small, which means water molecules can easily
penetrate, in which case the entire polymer chain should be considered to be in a dissipative environment, which is what the Rouse
model says – each monomer executed overdamped motion.

A careful analysis of Equation  reveals that there is a subdiffusive regime  where . To see this, first
take the  limit, in which case we may write , where  and . Let 

 be the scaled coordinate along the chain. The second term in Equation  is then

Let . When  , , we have

Since , we may replace the cosine squared term by its average  . If we further assume , which means we are in
the regime , after performing the integral we obtain the result

provided  , the site  is not on either end of the chain. The result in Equation  dominates the first term on the RHS
of Equation \reF{Rousevar} since . This is the subdiffusive regime.

When , the exponential on the RHS of Equation  is negligible, and if we again approximate ,
and we extend the upper limit on the sum to infinity, we find , which is dominated by the
leading term on the RHS of Equation . This is the diffusive regime, with .

Finally, when , the factor  may be expanded to first order in . One then obtains 
, which is independent of the force constant . In this regime, the monomers don’t have time to

respond to the force from their neighbors, hence they each diffuse independently. On such short time scales, however, one should
check to make sure that inertial effects can be ignored, that .

One serious defect of the Rouse model is its prediction of the relaxation time of the  mode, . The experimentally
observed result is . We should stress here that the Rouse model applies to ideal chains. In the theory of polymer
solutions, a theta solvent is one in which polymer coils act as ideal chains. An extension of the Rouse model, due to my former
UCSD colleague Bruno Zimm, accounts for hydrodynamically-mediated interactions between any pair of ‘beads’ along the chain.
Specifically, the Zimm model is given by

where

is known as the Oseen hydrodynamic tensor (1927) and arises when computing the velocity in a fluid at position  when a point
force  is applied at the origin. Typically one replaces  by its average over the equilibrium distribution of polymer
configurations. Zimm’s model more correctly reproduces the behavior of polymers in -solvents.
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Flory Theory of Self-Avoiding Walks
What is missing from the random walk free energy is the effect of steric interactions. An argument due to Flory takes these
interactions into account in a mean field treatment. Suppose we have a chain of radius . Then the average monomer density
within the chain is . Assuming short-ranged interactions, we should then add a term to the free energy which effectively
counts the number of near self-intersections of the chain. This number should be roughly . Thus, we write

The effective interaction  is positive in the case of a so-called ‘good solvent’.

The free energy is minimized when

which yields the result

Thus, we obtain . In  this says , which is exactly correct because a SAW in  has no option but to
keep going in the same direction. In , Flory theory predicts , which is also exact. In , we have , which
is extremely close to the numerical value . Flory theory is again exact at the SAW upper critical dimension, which is 

, where , corresponding to a Gaussian random walk . Best. Mean. Field. Theory. Ever.

How well are polymers described as SAWs? Figure  shows the radius of gyration  versus molecular weight  for
polystyrene chains in a toluene and benzene solvent. The slope is . Experimental results can vary
with concentration and temperature, but generally confirm the validity of the SAW model.

For a SAW under an external force, we compute the Gibbs partition function,

where  and  and . One than has , where  and 
. For small values of its argument one has . For large  it can be shown that 

.

Figure : Radius of gyration  of polystyrene in a toluene and benzene solvent, plotted as a function of molecular weight of
the polystyrene. The best fit corresponds to a power law  with . From J. Des Cloizeaux and G. Jannink,
Polymers in Solution: Their Modeling and Structure (Oxford, 1990).

On a lattice of coordination number , the number of -step random walks starting from the origin is . If we constrain
our random walks to be self-avoiding, the number is reduced to
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where  and  are dimension-dependent constants, and we expect , since at the very least a SAW cannot immediately
double back on itself. In fact, on the cubic lattice one has  but , slightly less than . One finds  and 

. The RMS end-to-end distance of the SAW is

where  and  are -dependent constants,with , , and . The distribution  has a scaling form,

One finds

with  and .

Polymers and Solvents
Consider a solution of monodisperse polymers of length  in a solvent. Let  be the dimensionless monomer concentration, so 

 is the dimensionless polymer concentration and  is the dimensionless solvent concentration. (Dimensionless
concentrations are obtained by dividing the corresponding dimensionful concentration by the overall density.) The entropy of
mixing for such a system is given by Equation 2.352. We have

where  is the volume per monomer. Accounting for an interaction between the monomer and the solvent, we have that the
free energy of mixing is

where  is the dimensionless polymer-solvent interaction, called the Flory parameter. This provides a mean field theory of the
polymer-solvent system.

The osmotic pressure  is defined by

which is the variation of the free energy of mixing with respect to volume holding the number of polymers constant. The monomer
concentration is , so

Now we have

and therefore
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ϕ−1 (6.6.48)

Π = [( −1)ϕ−ln(1−ϕ)−χ ] .
TkB

v0
N−1 ϕ2 (6.6.49)

ϕ→0

Π=  ,
ϕ TkB

Nv0
(6.6.50)
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which is the ideal gas law for polymers.

For , we expand the logarithm and obtain

Note that  only if , which is the condition for a ’good solvent’.

In fact, Equation  is only qualitatively correct. In the limit where , Flory showed that the individual polymer coils
behave much as hard spheres of radius . The osmotic pressure then satisfies something analogous to a virial equation of state:

This is generalized to a scaling form in the second line, where  is a scaling function, and , assuming 
 and  from Flory theory. As , we must recover the ideal gas law, so  in this limit. For 

, we require that the result be independent of the degree of polymerization . This means  with , .
The result is known as the des Cloiseaux law:

where  is a constant. This is valid for what is known as semi-dilute solutions, where . In the dense limit , the
results do not exhibit this universality, and we must appeal to liquid state theory, which is no fun at all.
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≪ ϕ≪1N−1

Πv0

TkB

= ϕ+ (1−2χ) +O( )
1
N

1
2

ϕ2 ϕ3

≈ (1−2χ)  .
1
2

ϕ2

Π> 0 χ< 1
2

??? χ≪ 1
2

RF

Π
TkB

= +A( +…
ϕ

Nv0

ϕ

Nv0
)
2

R3
F

= h(ϕ/ ) .
ϕ

Nv0
ϕ∗

h(x) =N / ∝ϕ∗ v0 R3
F N−4/5

d = 3 ν = 3
5 x = ϕ/ → 0ϕ∗ h(x) = 1+O(x)

x →∞ N h(x) ∝ xp p = 14
5 p = 5

4

=C  ,
Πv0

TkB

ϕ9/4 (6.6.51)

C ≪ ϕ≪1ϕ∗ ϕ∼ 1
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