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7.9: Appendix |- Equivalence of the Mean Field Descriptions

In both the variational density matrix and mean field Hamiltonian methods as applied to the Ising model, we obtained the same result m = tanh ((m +h)/ 0) . What is perhaps not obvious is whether
these theories are in fact the same, if their respective free energies agree. Indeed, the two free energy functions,

| \begin{split} f\nd_\ssr{A}(m,h,\theta)&=-\half\,m"2 -h m + \theta\> \bigg\{\bigg({1+m\over 2}\bigg) \In \bigg({1+m\over 2}\bigg) +\bigg({1- m\over 2}\bigg) \In \bigg({1-m\over 2}\bigg) \bigg\}\\ find_\ssr{B}(m,h,\theta):

where is the variational density matrix result and is the mean field Hamiltonian result, clearly are different functions of their arguments. However, it turns out that upon
minimizing with respect to m in each cast, the resulting free energies obey [ f\nd_\ssr{A}(h,\theta)=f\nd_\ssr{B} (h,\theta)]. This agreement may seem surprising. The first method utilizes an approximate
(variational) density matrix applied to the exact Hamiltonian H. The second method approximates the Hamiltonian as , but otherwise treats it exactly. The two Landau expansions
seem hopelessly different:

| \begin{split} f\nd_\ssr{A}(m,h,\theta)&=-\theta\\In 2 - hm +\half\, (\theta-1) \,mA2 + \frac{\theta} {12}\,m"4 + \frac{\theta} {30}\,m"6 + \Idots\vph\\ find_\ssr{B}(m,h,\theta)&=-\theta\,\In 2 + \half m/2 - {(m+h)A2\over 2\,\t

We shall now prove that these two methods, the variational density matrix and the mean field approach, are in fact equivalent, and yield the same free energy f(h, 6).

Let us generalize the Ising model and write

H=-Y"U; s(ai,a'j)—zé(a'i). (7.9.1)

1<j
Here, each ‘spin’ o; may take on any of K possible values, {s,, ..., s }. For the § =1 Ising model, we would have K =3 possibilities, with s, =—1, s, =0, and s; = +1. But the set {5},
witha € {1,..., K}, is completely arbitrary . The ‘local field’ term ® (o) is also a completely arbitrary function. It may be linear, with ® (o) = Ho, for example, but it could also contain terms

quadratic in o, or whatever one desires.

The symmetric, dimensionless interaction function e(c, 0’) = e(¢’, o) is a real symmetric K x K matrix. According to the singular value decomposition theorem, any such matrix may be written in
the form

€0,0) =Y Ay hlo) (), (7.9.2)

where the {4,} are coefficients (the singular values), and the {)\p(a)} are the singular vectors. The number of terms N, in this decomposition is such that Ny < K. This treatment can be
generalized to account for continuous o.

Variational Density Matrix

The most general single-site variational density matrix is written

K
o(0) :Zza brran - (7.9.3)

Thus, , is the probability for a given site to be in state o, with o = s,. The {z } are the K variational parameters, subject to the single normalization constraint, ), Z, = 1. We now have

f= N.;(O) { Tr (oH) +k,T Tr (glng)}

= 7%22&, Ap(8a) Ap(80) Ta Ty 7Z<p(sa)ma+92za Inz,,

P ad a

where ¢(a) = ®(c)/J (0). We extremize in the usual way, introducing a Lagrange undetermined multiplier ¢ to enforce the constraint. This means we extend the function f ({zq}), writing

K
Feneagn O = faneenz) +¢ (Y1), (7.9.4)
=i
and freely extremizing with respect to the (K +1) parameters {z,, ..., 2, (}. This yields K nonlinear equations,
af*
e i XP: %:Ap Ap(80) Ap(80) Ty = 0(0) +0 Inza +C+6, (7.9.5)

for each «, and one linear equation, which is the normalization condition,

_M N,
=% —Ea: W1, (7.9.6)

We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them, as

To = % exp {% [ZZAP Ap(8a) Ap(80y) T +§"(3a):| } B (7.9.7)

0

with

Z =041 =Y exp {% [Z Z Ay Ap(8a) Ap(5,) oy + Ap(sa):| } . (7.9.8)

From the logarithm of z,, we may compute the entropy, and, finally, the free energy:
1
1(6)= EZZA,, Mp(8a) Ap(s,) Ta z,, —0InZ (7.9.9)
P aa
which is to be evaluated at the solution of L {za(h,0)}
Mean Field Approximation
‘We now derive a mean field approximation in the spirit of that used in the Ising model above. We write

Ap(0) = (Ap(0)) +8Xp(0) , (7.9.10)

and abbreviate \labar, = (\,(c)), the thermodynamic average of ), (") on any given site. We then have
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Ap(0) Xp(0') = \laba!f, +\labar, A, (o) + \labar, 6, (0") + 38X, () S, (o)

= —\labar’ +\labaz, (A(0) + A, (0)) + 8, (0) Xy () -

The product §A, (o) 6A, (o) is of second order in fluctuations, and we neglect it. This leads us to the mean field Hamiltonian,

| \HH\ns_\ssr{MF}=+\half N \jhz\sum_p A_p\\labar_pA2 -\sum_i \bigg[\jhz\sum_p A_p\\labar_p\,\lambda_p(\sigma_i) + \RPhi(\sigma_i)\bigg]\ .

The free energy is then
1 1
F({\labar,},6) = 3 Z A, \labarz -0 anexp { ] [Z Ay \labar, Ap(sq) + cp(sa)] } . (7.9.11)
» « »

The variational parameters are the mean field values {\labarp}.

The single site probabilities {z, } are then

1 1
Ta = exp { 3 [Z,,: Ay \labar, A (sa) +<,a(sa):| } , (7.9.12)
with Z implied by the normalization ), z, = 1. These results reproduce exactly what we found in Equation , since the mean field equation here, 9f/0\labar, =0, yields
K
\labar, = Z Ap(8a) Za - (7.9.13)
a=1
The free energy is immediately found to be
1
f(6)= EXP:AP \labaxifaan, (7.9.14)
which again agrees with what we found using the variational density matrix.
Thus, whether one extremizes with respect to the set {z,, ..., 2, {}, or with respect to the set {\labarp}, the results are the same, in terms of all these parameters, as well as the free energy f(6).

Generically, both approaches may be termed ‘mean field theory’ since the variational density matrix corresponds to a mean field which acts on each site independently .
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