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4.1: Microcanonical Ensemble (μCE)

The microcanonical distribution function
We have seen how in an ergodic dynamical system, time averages can be replaced by phase space averages:

where

and

Here  is the Hamiltonian, and where  is the Dirac -function . Thus, averages are taken over a constant
energy hypersurface which is a subset of the entire phase space.

We’ve also seen how any phase space distribution  which is a function of conserved quantitied  is
automatically a stationary (time-independent) solution to Liouville’s equation. Note that the microcanonical distribution,

is of this form, since  is conserved by the dynamics. Linear and angular momentum conservation generally are broken by
elastic scattering off the walls of the sample.

So averages in the microcanonical ensemble are computed by evaluating the ratio

where  means ‘trace’, which entails an integration over all phase space:

Here  is the total number of particles and  is the dimension of physical space in which each particle moves. The factor of ,
which cancels in the ratio between numerator and denominator, is present for indistinguishable particles . The normalization factor

 renders the trace dimensionless. Again, this cancels between numerator and denominator. These factors may then seem
arbitrary in the definition of the trace, but we’ll see how they in fact are required from quantum mechanical considerations. So we
now adopt the following metric for classical phase space integration:

Density of States
The denominator,

is called the density of states. It has dimensions of inverse energy, such that
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D(E) = Tr δ(E− ) ,Ĥ (4.1.8)
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Let us now compute  for the nonrelativistic ideal gas. The Hamiltonian is

We assume that the gas is enclosed in a region of volume , and we’ll do a purely classical calculation, neglecting discreteness of
its quantum spectrum. We must compute

We shall calculate  in two ways. The first method utilizes the Laplace transform, :

The inverse Laplace transform is then

where  is such that the integration contour is to the right of any singularities of  in the complex -plane. We then have

The inverse Laplace transform is then

exactly as before. The integration contour for the inverse Laplace transform is extended in an infinite semicircle in the left half -
plane. When  is even, the function  has a simple pole of order  at the origin. When  is odd, there is a branch
cut extending along the negative  axis, and the integration contour must avoid the cut, as shown in Figure . One can
check that this results in the same expression above, we may analytically continue from even values of  to all positive values of 

.

For a general system, the Laplace transform,  also is called the partition function. We shall again meet up with 
 when we discuss the ordinary canonical ensemble.

D(E) ΔE = d ∫ dμ δ( − ) = dμ∫

E

E+ΔE

E ′ E ′ Ĥ ∫
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Figure : Complex integration contours  for inverse Laplace transform . When the product  is odd,
there is a branch cut along the negative  axis.

Our final result, then, is

Here we have emphasized that the density of states is a function of , , and . Using Stirling’s approximation,

we may define the statistical entropy,

where

Recall  is Boltzmann’s constant.

Second method

The second method invokes a mathematical trick. First, let’s rescale . We then have

Here we have written  with  as a -dimensional vector. We’ve also used the rule 
 for -functions. We can now write

where  is the -dimensional differential solid angle. We now have our answer:

What remains is for us to compute , the total solid angle in  dimensions. We do this by a nifty mathematical trick. Consider
the integral
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S(E,V ,N) ≡ lnD(E,V ,N) = N ϕ( , )+O(lnN) ,kB kB
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= 1.3806503 × erg/KkB 10−16
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u = ( , , … , )u1 u2 uM M = Nd M

δ(Ex) = δ(x)E−1 δ

u = du d  ,dM uM−1 ΩM (4.1.19)

dΩM M 3

D(E) = ( ⋅  .
V N

N !

2m
−−−

√

h
)

Nd

E
Nd−1

1

2
1

2
ΩNd (4.1.20)

ΩM M

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18562?pdf


4.1.4 https://phys.libretexts.org/@go/page/18562

where , and where

is the Gamma function, which satisfies  On the other hand, we can compute  in Cartesian coordinates,
writing

Therefore

We thereby obtain , , , , the first two of which are familiar.

Arbitrariness in the definition of 
Note that  has dimensions of inverse energy, so one might ask how we are to take the logarithm of a dimensionful quantity in
Equation . We must introduce an energy scale, such as  in Equation , and define  and 

. The definition of statistical entropy then involves the arbitrary parameter , however this only
affects  in an additive way. That is,

Note that the difference between the two definitions of  depends only on the ratio , and is independent of , , and 
.

Ultra-relativistic ideal gas
Consider an ultrarelativistic ideal gas, with single particle dispersion . We then have

The statistical entropy is , with

Discrete systems
For classical systems where the energy levels are discrete, the states of the system  are labeled by a set of discrete quantities 

, where each variable  takes discrete values. The number of ways of configuring the system at fixed energy  is
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then

where the sum is over all possible configurations. Here  labels the total number of particles. For example, if we have  spin-
particles on a lattice which are placed in a magnetic field , so the individual particle energy is , where , then
in a configuration in which  particles have  and  particles have , the energy is 

. The number of configurations at fixed energy  is

since . The statistical entropy is .
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Ω(E,N) =  ,∑
σ

δ
(σ),EĤ
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