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1.2: Basic Concepts in Probability Theory

Fundamental definitions

The natural mathematical setting is set theory. Sets are generalized collections of objects. The basics: w € A is a binary relation
which says that the object w is an element of the set A. Another binary relation is set inclusion. If all members of A are in B, we
write A C B. The union of sets A and B is denoted AU B and the intersection of A and B is denoted AN B. The Cartesian
product of A and B, denoted A x B, is the set of all ordered elements (a, b) where a € A and b € B.

Some details: If w is not in A, we write w ¢ A. Sets may also be objects, so we may speak of sets of sets, but typically the sets
which will concern us are simple discrete collections of numbers, such as the possible rolls of a die {1,2,3,4,5,6}, or the real
numbers R, or Cartesian products such as R, If A C B but A # B, we say that A is a proper subset of B and write A C B.
Another binary operation is the set difference A\ B, which contains all w such thatw € A and w ¢ B.

In probability theory, each object w is identified as an event. We denote by € the set of all events, and () denotes the set of no
events. There are three basic axioms of probability:

« To each set A is associated a non-negative real number P(A), which is called the probability of A.
« P(N)=1.
o If {A;} is a collection of disjoint sets, if ;N A; =0 foralli # j, then

P(UAi) = P(4)). (1.2.1)

From these axioms follow a number of conclusions. Among them, let =4 = Q\ A be the complement of A, the set of all events not
in A. Then since AU—-A =Q, we have P(—A) =1 — P(A) . Taking A = Q, we conclude P(0) =0.

The meaning of P(A) is that if events w are chosen from € at random, then the relative frequency for w € A approaches P(A) as
the number of trials tends to infinity. But what do we mean by ’at random’? One meaning we can impart to the notion of
randomness is that a process is random if its outcomes can be accurately modeled using the axioms of probability. This entails the
identification of a probability space €} as well as a probability measure P. For example, in the microcanonical ensemble of
classical statistical physics, the space €2 is the collection of phase space points ¢ ={q;,...,qn,P;,...,Pn} and the probability
measure is du = X! (E) []7; dg; dp; §(E — H(g, p)) , so that for A € © the probability of A is P(A) = [du x ,(¢), where
X4(p)=1if p€ A and x,(p) =0 if ¢ ¢ A is the characteristic function of A. The quantity X(E) is determined by
normalization: [dp=1.

Bayesian Statistics

We now introduce two additional probabilities. The joint probability for sets A and B together is written P(AN B). That is,
P(ANB)=Problw e Aandw € B] . For example, A might denote the set of all politicians, B the set of all American citizens,
and C the set of all living humans with an IQ greater than 60. Then AN B would be the set of all politicians who are also
American citizens, Exercise: estimate P(ANBNC) .

The conditional probability of B given A is written P(B|A). We can compute the joint probability P(ANB)=P(BNA) in

two ways:
P(ANB) = P(A|B)- P(B) = P(B|A)- P(A). (1.2.2)
Thus,
_ P(B|4) P(4)
P(A|B) = 5 (1.2.3)

aresult known as Bayes’ theorem. Now suppose the ‘event space’ is partitioned as { A, }. Then

P(B)=)_P(B|A,) P(4,). (1.2.4)

We then have
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P(BJ|A,) P(A,
P(A,|B) = (B4, P(4,) , (1.2.5)
>.; P(B|A;) P(4))
a result sometimes known as the extended form of Bayes’ theorem. When the event space is a ‘binary partition” { A, ~A}, we have
P(B|A) P(4)
P(A|B) = . 1.2.6
(41B) P(B|A)P(A)+ P(B|-A) P(—4) ( )

Note that P(A|B)+ P(—A|B) =1 (which follows from ——A = A).

As an example, consider the following problem in epidemiology. Suppose there is a rare but highly contagious disease A which
occurs in 0.01% of the general population. Suppose further that there is a simple test for the disease which is accurate 99.99% of
the time. That is, out of every 10,000 tests, the correct answer is returned 9,999 times, and the incorrect answer is returned only
once. Now let us administer the test to a large group of people from the general population. Those who test positive are
quarantined. Question: what is the probability that someone chosen at random from the quarantine group actually has the disease?
We use Bayes’ theorem with the binary partition { A, ~A}. Let B denote the event that an individual tests positive. Anyone from
the quarantine group has tested positive. Given this datum, we want to know the probability that that person has the disease. That

is, we want P(A|B). Applying Equation with
P(A)=0.0001 , P(-A)=0.9999 , P(B|A)=0.9999 , P(B|—A)=0.0001, (1.2.7)
we find P(A|B) = % That is, there is only a 50% chance that someone who tested positive actually has the disease, despite the

test being 99.99% accurate! The reason is that, given the rarity of the disease in the general population, the number of false
positives is statistically equal to the number of true positives.

In the above example, we had P(B|A)+P(B|-A)=1, but this is not generally the case. What is true instead is
P(B|A)+ P(—B|A) =1. Epidemiologists define the sensitivity of a binary classification test as the fraction of actual positives
which are correctly identified, and the specificity as the fraction of actual negatives that are correctly identified. Thus,
se = P(BJA) is the sensitivity and sp = P(—B|—A) is the specificity. We then have P(B|=A) =1 — P(—B|—A) . Therefore,

P(B|A)+ P(B|~A) =1+ P(B|A) — P(~B|~A) =1 +se—sp. (1.2.8)

In our previous example, se = sp = 0.9999, in which case the RHS above gives 1. In general, if P(A) = f is the fraction of the
population which is afflicted, then

. . f-se
P(infected | positive) = Fer (-7 05 (1.2.9)
For continuous distributions, we speak of a probability density. We then have
Ply) :/dm P(y|z) P(z) (1.2.10)
and
P(zly) = Plyle) Plz) (1.2.11)

[dz' P(y|z') P(z')
The range of integration may depend on the specific application.

The quantities P(A,) are called the prior distribution. Clearly in order to compute P(B) or P(A,|B) we must know the priors,
and this is usually the weakest link in the Bayesian chain of reasoning. If our prior distribution is not accurate, Bayes’ theorem will
generate incorrect results. One approach to approximating prior probabilities P(4;) is to derive them from a maximum entropy
construction.

Random variables and their averages

Consider an abstract probability space X whose elements ( events) are labeled by z. The average of any function f(z) is denoted
as Ef or (f), and is defined for discrete sets as

Ef=(f)=) fl&)P(z), (1.2.12)

zeX
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where P(z) is the probability of z. For continuous sets, we have
Bf =) = [dz f(e) Pla). (1.2.13)
X

Typically for continuous sets we have X =R or X =R, . Gardiner and other authors introduce an extra symbol, X, to denote a
random variable, with X (z) = z being its value. This is formally useful but notationally confusing, so we’ll avoid it here and
speak loosely of z as a random variable.

When there are two random variables x € X and y € ), we have 2 = X' x ) is the product space, and

Ef(z,y) = (f(,9)) = 3.3 f(2,9) Pla,y), (1.2.14)

zeX ye)

with the obvious generalization to continuous sets. This generalizes to higher rank products, z; € X; with ¢ € {1,..., N'}. The
covariance of z; and 5 is defined as

G, = ((; — (=;)) (a:]. — (wj>)> = (z;z;) — (z;)(z;) - (1.2.15)
If f(z) is a convex function then one has
Ef(z) > f(Ez). (1.2.16)

For continuous functions, f(x)is convex if f”() > 0 everywhere . If f(z) is convex on some interval [a, b] then for z, , € [a, b]

we must have
FQz +(1=XN)zy) <Af(z)+(1 =) f(=,), (1.2.17)

where A € [0, 1]. This is easily generalized to
f(anwn) <> paf(zn), (1.2.18)
n n

where p, = P(x,), a result known as Jensen’s theorem.

This page titled 1.2: Basic Concepts in Probability Theory is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
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