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6.3: Lee-Yang Theory

Analytic Properties of the Partition Function
How can statistical mechanics describe phase transitions? This question was addressed in some beautiful mathematical analysis by
Lee and Yang . Consider the grand partition function ,

where

is the contribution to the -particle partition function from the potential energy  (assuming no momentum-dependent potentials).
For two-body central potentials, we have

Suppose further that these classical particles have hard cores. Then for any finite volume, there must be some maximum number 
 such that  vanishes for . This is because if  at least two spheres must overlap, in which case the

potential energy is infinite. The theoretical maximum packing density for hard spheres is achieved for a hexagonal close packed
(HCP) lattice , for which . If the spheres have radius , then  is the maximum particle

number.

Thus, if  itself is finite, then  is a finite degree polynomial in , and may be factorized as

where  is one of the  zeros of the grand partition function. Note that the  term is fixed to be unity. Note also that
since the configuration integrals  are all positive,  is an increasing function along the positive real  axis. In
addition, since the coefficients of  in the polynomial  are all real, then  implies , so the zeros of 

 are either real and negative or else come in complex conjugate pairs.

Figure : In the thermodynamic limit, the grand partition function can develop a singularity at positive real fugacity . The set
of discrete zeros fuses into a branch cut.

For finite , the situation is roughly as depicted in the left panel of Figure , with a set of  zeros arranged in complex
conjugate pairs (or negative real values). The zeros aren’t necessarily distributed along a circle as shown in the figure, though.
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They could be anywhere, so long as they are symmetrically distributed about the  axis, and no zeros occur for  real and
nonnegative.

Lee and Yang proved the existence of the limits

and notably the result

which amounts to the commutativity of the thermodynamic limit  with the differential operator . In particular, 
is a smooth function of  in regions free of roots. If the roots do coalesce and pinch the positive real axis, then then density  can
be discontinuous, as in a first order phase transition, or a higher derivative  can be discontinuous or divergent, as in a
second order phase transition.

Electrostatic Analogy
There is a beautiful analogy to the theory of two-dimensional electrostatics. We write

where

is the complex potential due to a line charge of linear density  located at origin. The number density is then

to be evaluated for physical values of , . Since  is analytic,

If we decompose the complex potential  into real and imaginary parts, the condition of analyticity is recast as the
Cauchy-Riemann equations,

Thus,
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where  is the electric field. Suppose, then, that as  a continuous charge distribution develops, which crosses
the positive real  axis at a point . Then

where  is the linear charge density (assuming logarithmic two-dimensional potentials), or the two-dimensional charge density (if
we extend the distribution along a third axis).

Example
As an example, consider the function

The  degree polynomial has an  order zero at  and  simple zeros at , where 
. Since  serves as the maximum particle number , we may assume that , and the  limit

may be taken as . We then have

The limit depends on whether  or , and we obtain

Figure : Fugacity  and  versus dimensionless specific volume  for the example problem discussed in the text.

Thus,

If we solve for , where , we find
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We then obtain the equation of state,
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