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7.1: The van der Waals system

Equation of state

Recall the van der Waals equation of state,

where  is the molar volume. Solving for , we have

Let us fix the temperature  and examine the function . Clearly  is a decreasing function of volume for  just above the
minimum allowed value , as well as for . But is  a monotonic function for all ?

We can answer this by computing the derivative,

Setting this expression to zero for finite , we obtain the equation

where  is dimensionless. It is easy to see that the function  has a unique minimum for . Setting 
 yields , and so . Thus, for , the LHS of Equation  lies below the

minimum value of the RHS, and there is no solution. This means that  is a monotonically decreasing function of .

At  there is a saddle-node bifurcation. Setting  and evaluating ), we have that the location of
the critical point for the van der Waals system is

For , there are two solutions to Equation , corresponding to a local minimum and a local maximum of the function 
. The locus of points in the  plane for which  is obtained by setting Equation  to zero and solving for 

, then substituting this into Equation . The result is

Expressed in terms of dimensionless quantities  and , this equation becomes
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Figure : Pressure versus molar volume for the van der Waals gas at temperatures in equal intervals from  (red) to 
 (blue). The purple curve is .

Along the curve , the isothermal compressibility,  diverges, heralding a thermodynamic instability. To
understand better, let us compute the free energy of the van der Waals system, . Regarding the energy , we showed
back in chapter 2 that

which entails

where  is the molar internal energy. The first term is the molar energy of an ideal gas, where  is the number of molecular
freedoms, which is the appropriate low density limit. The molar specific heat is then , which means that the
molar entropy is

We then write , and we fix the function  by demanding that  . This yields ,
where  is a constant. Thus ,

Table : van der Waals parameters for some common gases. (Source: Wikipedia)

7.1.1 T = 1.10Tc
T = 0.85Tc ( )p̄∗ v̄

p = (v)p∗ = − (κT
1
v

∂v
∂p
)
T

F = E−TS E

= T −p =  ,( )
∂ε

∂v T

( )
∂p

∂T V

a

v2
(7.1.8)

ε(T , v) = fRT −  ,
1

2

a

v
(7.1.9)

ε = E/ν f

= ( = RcV
∂ε
∂T
)
v

f

2

s(T , v) = d   = R ln(T/ ) + (v) .∫
T

T ′
cV

T ′

f

2
Tc s1 (7.1.10)

f = ε−Ts (v)s1 p = −( ∂f

∂v
)
T

(v) = R ln(v−b) +s1 s0

s0
2

f(T , v) = RT (1 −ln(T/ ))− −RT ln(v−b) −T  .
f

2
Tc

a

v
s0 (7.1.11)

7.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18583?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Physical_Chemistry_(Fleming)/4%3A_Putting_the_First_Law_to_Work/4.2%3A_Compressibility_and_Expansivity


7.1.3 https://phys.libretexts.org/@go/page/18583

gas  (bar)  (K)  ( )gas  (bar)  (K)  ( )

Acetone 14.09 0.0994 52.82 505.1 0.2982

Argon 1.363 0.03219 48.72 150.9 0.0966

Carbon dioxide 3.640 0.04267 7404 304.0 0.1280

Ethanol 12.18 0.08407 63.83 516.3 0.2522

Freon 10.78 0.0998 40.09 384.9 0.2994

Helium 0.03457 0.0237 2.279 5.198 0.0711

Hydrogen 0.2476 0.02661 12.95 33.16 0.0798

Mercury 8.200 0.01696 1055 1723 0.0509

Methane 2.283 0.04278 46.20 190.2 0.1283

Nitrogen 1.408 0.03913 34.06 128.2 0.1174

Oxygen 1.378 0.03183 50.37 154.3 0.0955

Water 5.536 0.03049 220.6 647.0 0.0915

We know that under equilibrium conditions,  is driven to a minimum by spontaneous processes. Now suppose that  over
some range of  at a given temperature . This would mean that one mole of the system at volume  and temperature  could
lower its energy by rearranging into two half-moles, with respective molar volumes , each at temperature . The total

volume and temperature thus remain fixed, but the free energy changes by an amount . This means that the
system is unstable – it can lower its energy by dividing up into two subsystems each with different densities ( molar volumes). Note
that the onset of stability occurs when

which is to say when . As we saw, this occurs at , given in Equation [pstar].

However, this condition, , is in fact too strong. That is, the system can be unstable even at molar volumes where 

. The reason is shown graphically in Figure . At the fixed temperature , for any molar volume  between 
 and , the system can lower its free energy by phase separating into regions of different molar volumes. In

general we can write

so  when  and  when . The free energy upon phase separation is simply

where . This function is given by the straight black line connecting the points at volumes  and  in Figure .
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Figure  Molar free energy  of the van der Waals system , with dot-dashed black line showing Maxwell
construction connecting molar volumes  on opposite sides of the coexistence curve.

The two equations which give us  and  are

Equivalently, in terms of the pressure,  , these equations are equivalent to

This procedure is known as the Maxwell construction, and is depicted graphically in Figure . When the Maxwell construction
is enforced, the isotherms resemble the curves in Figure . In this figure, all points within the purple shaded region have 

, hence this region is unstable to infinitesimal fluctuations. The boundary of this region is called the spinodal, and the
spontaneous phase separation into two phases is a process known as spinodal decomposition. The dot-dashed orange curve, called
the coexistence curve, marks the instability boundary for nucleation. In a nucleation process, an energy barrier must be overcome in
order to achieve the lower free energy state. There is no energy barrier for spinodal decomposition – it is a spontaneous process.

Analytic form of the coexistence curve near the critical point
We write  and . One of our equations is . Taylor expanding in powers
of  and  , we have

where
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The second equation we write as

Expanding in powers of  and , this becomes

Subtracting the LHS from the RHS, we find that we can then divide by , resulting in

We now define . In terms of these variables, Equations  and  become

Figure : Maxwell construction in the  plane. The system is absolutely unstable between volumes  and . For 
 of , the solution is unstable with respect to phase separation. Source: Wikipedia.

We now evaluate  to order . Note that , since the critical point is an inflection point in the 
plane. Thus, we have , where  and . We can then see that  is of
leading order , while  is of leading order . This allows us to write
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We then have

Suppose we follow along an isotherm starting from the high molar volume (gas) phase. If , the volume  decreases
continuously as the pressure  increases. If , then at the instant the isotherm first intersects the orange boundary curve in
Figure , there is a discontinuous change in the molar volume from high (gas) to low (liquid). This discontinuous change is the
hallmark of a first order phase transition. Note that the volume discontinuity, . This is an example of a
critical behavior in which the order parameter , which in this case may be taken to be the difference , behaves as a
power law in , where  is the critical temperature. In this case, we have , where  is the
exponent, and where  is defined to be  if  and  otherwise. The isothermal compressibility is 

. This is finite along the coexistence curve – it diverges only along the spinodal. It therefore diverges at the
critical point, which lies at the intersection of the spinodal and the coexistence curve.

Figure : Pressure-volume isotherms for the van der Waals system, as in Figure , but corrected to account for the Maxwell
construction. The boundary of the purple shaded region is the spinodal line . The boundary of the orange shaded region is the
stability boundary with respect to phase separation.

It is convenient to express the equation of state and the coexistence curve in terms of dimensionless variables. Write

The van der Waals equation of state then becomes

Further expressing these dimensionless quantities in terms of distance from the critical point, we write
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Note that the LHS and the RHS of this equation vanish identically for . We can then write

History of the van der Waals equation
The van der Waals equation of state first appears in van der Waals’ 1873 PhD thesis , “Over de Continuïteit van den Gas - en
Vloeistoftoestand” (“On the continuity of the gas and liquid state”). In his Nobel lecture , van der Waals writes of how he was
inspired by Rudolf Clausius’ 1857 treatise on the nature of heat, where it is posited that a gas in fact consists of microscopic
particles whizzing around at high velocities. van der Waals reasoned that liquids, which result when gases are compressed, also
consist of ’small moving particles’: "Thus I conceived the idea that there is no essential difference between the gaseous and the
liquid state of matter…"

Figure [Gugg1945] ‘Universality’ of the liquid-gas transition for eight different atomic and molecular fluids, from E. A.
Guggenheim, J. Chem. Phys. 13, 253 (1945). Dimensionless temperature  versus dimensionless density  is
shown. The van der Waals / mean field theory gives , while experiments show a result closer to 

. Here  is the dimensionless temperature deviation with respect to the critical point.
Image used without permission.

Clausius’ treatise showed how his kinetic theory of heat was consistent with Boyle’s law for gases (  at fixed
temperature). van der Waals pondered why this might fail for the non-dilute liquid phase, and he reasoned that there were two
principal differences: inter-particle attraction and excluded volume. These considerations prompted him to posit his famous
equation,
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The first term on the RHS accounts for excluded volume effects, and the second for mutual attractions.

In the limiting case of , the molar volume approaches . On physical grounds, one might expect , where 
 is  times the volume  of a single molecule, and the packing fraction is , which is the ratio of

the total molecular volume to the total system volume. In three dimensions, the maximum possible packing fraction is for fcc and
hcp lattices, each of which have coordination number , with . Dense random packing results in 

. Expanding the vdW equation of state in inverse powers of  yields

and we read of the second virial coefficient . For hard spheres, , and the result  from the
Mayer cluster expansion corresponds to  , which is larger than the result from even the loosest regular sphere packing,
that for a cubic lattice, with .

Another of van der Waals’ great achievements was his articulation of the law of corresponding states. Recall that the van der Waals
equation of state, when written in terms of dimensionless quantities  ,  , and , takes the form of
Equation . Thus, while the  and  parameters are specific to each fluid – see Table  – when written in terms of these
scaled dimensionless variables, the equation of state and all its consequent properties ( the liquid-gas phase transition) are
universal.

The van der Waals equation is best viewed as semi-phenomenological. Interaction and excluded volume effects surely are present,
but the van der Waals equation itself only captures them in a very approximate way. It is applicable to gases, where it successfully
predicts features that are not present in ideal systems ( throttling). It is of only qualitative and pedagogical use in the study of fluids,
the essential physics of which lies in the behavior of quantities like the pair distribution function . As we saw in chapter 6, any
adequate first principles derivation of  - a function which can be measured in scattering experiments - involves rather
complicated approximation schemes to close the BBGKY hierarchy. Else one must resort to numerical simulations such as the
Monte Carlo method. Nevertheless, the lessons learned from the van der Waals system are invaluable and they provide us with a
first glimpse of what is going on in the vicinity of a phase transition, and how nonanalytic behavior, such as 
with noninteger exponent  may result due to singularities in the free energy at the critical point.

This page titled 7.1: The van der Waals system is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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