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2.10: Applications of Thermodynamics
A discussion of various useful mathematical relations among partial derivatives may be found in the appendix in §17. Some facility
with the differential multivariable calculus is extremely useful in the analysis of thermodynamics problems.

Adiabatic free expansion revisited
Consider once again the adiabatic free expansion of a gas from initial volume  to final volume . Since the system is not
in equilibrium during the free expansion process, the initial and final states do not lie along an adiabat, they do not have the same
entropy. Rather, as we found, from , we have that , which means they have the same energy, and, in the case
of an ideal gas, the same temperature (assuming  is constant). Thus, the initial and final states lie along an isotherm. The situation
is depicted in Fig. [AFEgraph]. Now let us compute the change in entropy  by integrating along this isotherm. Note
that the actual dynamics are irreversible and do not quasistatically follow any continuous thermodynamic path. However, we can
use what is a fictitious thermodynamic path as a means of comparing  in the initial and final states.

[AFEgraph] Adiabatic free expansion via a thermal path. The initial and final states do not lie along an adabat! Rather, for an ideal
gas, the initial and final states lie along an isotherm.
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But from a Maxwell equation deriving from , we have
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The integral can now be computed:

as we found before, in Equation [AFEdS] What is different about this derivation? Previously, we derived the entropy change from
the explicit formula for . Here, we did not need to know this function. The Maxwell relation allowed us to compute the
entropy change using only the equation of state.

Energy and volume

We saw how  for an ideal gas, independent of the volume. In general we should have

For the ideal gas,  is a function of  alone and is independent on the other intensive quantity . How does
energy vary with volume? At fixed temperature and particle number, we have, from ,

where we have used the Maxwell relation , derived
from the mixed second derivative . Another way to derive this result is as follows. Write  and
then express  in terms of , , and , resulting in

Now read off  and use the same Maxwell relation as before to recover Equation [pEVTN].
Applying this result to the ideal gas law  results in the vanishing of the RHS, hence for any substance obeying the
ideal gas law we must have

van der Waals equation of state
It is clear that the same conclusion follows for any equation of state of the form , where  is an
arbitrary function of its argument: the ideal gas law remains valid . This is not true, however, for the van der Waals equation of
state,

where  is the molar volume. We then find (always assuming constant ),

where . We can integrate this to obtain

where  is arbitrary. From Equation [cveqn], we immediately have
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[vdwab] Van der Waals parameters for some common gases. (Source: Wikipedia.)

gas  (bar)  (K)  ( )

Acetone 14.09 0.0994 52.82 505.1 0.2982

Argon 1.363 0.03219 48.72 150.9 0.0966

Carbon dioxide 3.640 0.04267 7404 304.0 0.1280

Ethanol 12.18 0.08407 63.83 516.3 0.2522

Freon 10.78 0.0998 40.09 384.9 0.2994

Helium 0.03457 0.0237 2.279 5.198 0.0711

Hydrogen 0.2476 0.02661 12.95 33.16 0.0798

Mercury 8.200 0.01696 1055 1723 0.0509

Methane 2.283 0.04278 46.20 190.2 0.1283

Nitrogen 1.408 0.03913 34.06 128.2 0.1174

Oxygen 1.378 0.03183 50.37 154.3 0.0955

Water 5.536 0.03049 220.6 647.0 0.0915

What about ? This requires a bit of work. We start with Equation [cpeqn],

We next take the differential of the equation of state (at constant ):

We can now read off the result for the volume expansion coefficient,

We now have for ,

where  is the molar volume.

To fix , we consider the  limit, where the density of the gas vanishes. In this limit, the gas must be ideal, hence
Equation [EVT] says that . Therefore , just as in the case of an ideal gas. However, rather than 

, which holds for ideal gases,  is given by Equation [cpvdw]. Thus,
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Note that , which is the ideal gas result.

As we shall see in chapter 7, the van der Waals system in unstable throughout a region of parameters, where it undergoes phase
separation between high density (liquid) and low density (gas) phases. The above results are valid only in the stable regions of the
phase diagram.

Thermodynamic response functions
Consider the entropy  expressed as a function of , , and :

Dividing by , multiplying by , and assuming  throughout, we have

Appealing to a Maxwell relation derived from , and then appealing to Equation [boxtwob], we have

This allows us to write

We define the response functions,

Thus,
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This above relation generalizes to any conjugate force-displacement pair :
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Dividing by , multiplying by , and keeping  constant, we have

Again we appeal to a Maxwell relation, writing

and after invoking the chain rule,

we obtain

Comparing eqns. [inta] and [intb], we find

This result entails

The corresponding result for magnetic systems is

where  is the magnetization per mole of substance, and

Here the enthalpy and Gibbs free energy are

Remark: The previous discussion has assumed an isotropic magnetic system where  and  are collinear, hence .

In this case, the enthalpy and Gibbs free energy are
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Joule effect: free expansion of a gas
Previously we considered the adiabatic free expansion of an ideal gas. We found that  hence , which means
the process is isothermal, since  is volume-independent. The entropy changes, however, since 

. Thus,

What happens if the gas is nonideal?

We integrate along a fictitious thermodynamic path connecting initial and final states, where  along the path. We have

hence

We also have

Thus,

Note that the term in square brackets vanishes for any system obeying the ideal gas law. For a nonideal gas,

which is in general nonzero.

Now consider a van der Waals gas, for which

We then have

In §11.3 we concluded that  for the van der Waals gas, hence

Thus, if , we have  and the gas cools upon expansion.

Consider  gas with an initial specific volume of , which is the STP value for an ideal gas, freely expanding to a
volume  for maximum cooling. According to table [vdwab], , and we have 

, which is a pitifully small amount of cooling. Adiabatic free expansion is a very inefficient way to
cool a gas.
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[throttle] In a throttle, a gas is pushed through a porous plug separating regions of different pressure. The change in energy is the
work done, hence enthalpy is conserved during the throttling process.

Throttling: the Joule-Thompson effect
In a throttle, depicted in Fig. [throttle], a gas is forced through a porous plug which separates regions of different pressures.
According to the figure, the work done on a given element of gas is

Now we assume that the system is thermally isolated so that the gas exchanges no heat with its environment, nor with the plug.
Then  so , and

where  is enthalpy. Thus, the throttling process is isenthalpic. We can therefore study it by defining a fictitious thermodynamic
path along which . The, choosing  and  as state variables,

hence

The numerator on the RHS is computed by writing  and then dividing by , to obtain
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From the van der Waals equation of state, we obtain, from Equation ,

Assuming , we have

Thus, for , we have  and the gas heats up upon an isenthalpic pressure decrease. For , the gas

cools under such conditions.

[itvdw] Inversion temperature  for the van der Waals gas. Pressure and temperature are given in terms of  and 
, respectively.

In fact, there are two inversion temperatures  for the van der Waals gas. To see this, we set , which is the criterion for
inversion. From Equation  it is easy to derive \[{b\over v}=1-\sqrt

\ .\] We insert this into the van der Waals equation of state to derive a relationship  at which  holds. After a
little work, we find

This is a quadratic equation for , the solution of which is

In Fig. [itvdw] we plot pressure versus temperature in scaled units, showing the curve along which . The volume,

pressure, and temperature scales defined are

Values for , , and  are provided in table [vdwab]. If we define , , and , then the van der Waals
equation of state may be written in dimensionless form:
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In terms of the scaled parameters, the equation for the inversion curve  becomes

Thus, there is no inversion for . We are usually interested in the upper inversion temperature, , corresponding to the
upper sign in Equation [invtemp]. The maximum inversion temperature occurs for , where . For ,
from the data in table [vdwab], we find , which is within 10% of the experimentally measured value of .

What happens when  gas leaks from a container with ? Since  and , we have . The gas

warms up, and the heat facilitates the reaction , which releases energy, and we have a nice explosion.
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