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5.2: Quantum Ideal Gases - Low Density Expansions

Expansion in powers of the fugacity
From Equation [numeqn], we have that the number density  is

where  is the fugacity and

From  and our expression above for , we have

Virial expansion of the equation of state
Eqns.  and  express  and  as power series in the fugacity , with -dependent coefficients. In principal, we
can eliminate  using Equation , writing  as a power series in the number density , and substitute this into
Equation  to obtain an equation of state  of the form

Note that the low density limit  yields the ideal gas law independent of the density of states . This follows from
expanding  and  to lowest order in , yielding  and . Dividing the second
of these equations by the first yields , which is the ideal gas law. Note that  can formally
be written as a power series in .

Unfortunately, there is no general analytic expression for the virial coefficients  in terms of the expansion coefficients 
. The only way is to grind things out order by order in our expansions. Let’s roll up our sleeves and see how this is done. We

start by formally writing  as a power series in the density  with -dependent coefficients :

We then insert this into the series for :

Let’s expand the RHS to order . Collecting terms, we have

In order for this equation to be true we require that the coefficient of  on the RHS be unity, and that the coefficients of  for all 
 must vanish. Thus,
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The first of these yields :

We now insert this into the second equation to obtain :

Next, insert the expressions for  and  into the third equation to obtain :

This procedure rapidly gets tedious!

And we’re only half way done. We still must express  in terms of :

We can now write

It is easy to derive the general result that , where the superscripts denote Fermi (F) or Bose (B)
statistics.

We remark that the equation of state for classical (and quantum) interacting systems also can be expanded in terms of virial
coefficients. Consider, for example, the van der Waals equation of state,

This may be recast as

where . Thus, for the van der Waals system, we have  and  for all .

Ballistic Dispersion
For the ballistic dispersion  we computed the density of states in Equation . One finds
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We then have

Note that  is negative for bosons and positive for fermions. This is because bosons have a tendency to bunch and under
certain circumstances may exhibit a phenomenon known as Bose-Einstein condensation (BEC). Fermions, on the other hand, obey
the Pauli principle, which results in an extra positive correction to the pressure in the low density limit.

We may also write

and

where

is the polylogarithm function . Note that  obeys a recursion relation in its index, viz.

and that
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