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5.2: Quantum ldeal Gases - Low Density Expansions

Expansion in powers of the fugacity

From Equation , we have that the number density n = N/V is
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where z = exp(u/k;T') is the fugacity and
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From Q = —pV and our expression above for Q(T', V, u), we have
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Virial expansion of the equation of state

Eqns. 777 and 777 express n(T, z) and p(T, z) as power series in the fugacity z, with T-dependent coefficients. In principal, we
can eliminate z using Equation 777, writing 2= 2(T,n) as a power series in the number density n, and substitute this into
Equation 777 to obtain an equation of state p = p(T", n) of the form

p(T,n) =nk,T (1 +B2(T)n+B3(T)n2+...). (5.2.2)

Note that the low density limit n — 0 yields the ideal gas law independent of the density of states g(e). This follows from
expanding n(T', 2) and p(T', z) to lowest order in 2, yielding n = C, 2+ O(2?) and p = k,T C, z+ O(2?) . Dividing the second
of these equations by the first yields p = n k,T +O(n?), which is the ideal gas law. Note that z=n/C, + O(n?) can formally
be written as a power series in 7.

Unfortunately, there is no general analytic expression for the virial coefficients Bj (T') in terms of the expansion coefficients
n; (T"). The only way is to grind things out order by order in our expansions. Let’s roll up our sleeves and see how this is done. We
start by formally writing 2(T', n) as a power series in the density n with 7'-dependent coefficients A,(T'):

z=An+A,n+A,nd+. ... (5.2.3)
We then insert this into the series for n(T, z):
n =C); z£C, z2+03z3—|—...
=C (A n+A,n2+ A0 +...)+£Cy (A n+4yn> +A,n° +...)°
+Cy (A n+An2+And 4. ) ...
Let’s expand the RHS to order n3. Collecting terms, we have

n=C, A n+(C, Ay £Cy A2)n® + (C) A3 £2C, A Ay +Cy AP +... . (5.2.4)

In order for this equation to be true we require that the coefficient of 7 on the RHS be unity, and that the coefficients of n/ for all
7> 1 must vanish. Thus,
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CiA =1
ClA,£C, A2 =0
C, A, +2C, A/ A, +C, A} =0.
The first of these yields A, :
1
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We now insert this into the second equation to obtain A.,:
A, =F—=%. (5.2.6)
Y
Next, insert the expressions for A, and A, into the third equation to obtain A,:
207 G,
=— —— 5.2.7

This procedure rapidly gets tedious!
And we’re only half way done. We still must express p in terms of n:
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We can now write
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It is easy to derive the general result that | BA\ssr{F}_j=(-1)A{j-1} BA\ssr{B}_j|, where the superscripts denote Fermi (F) or Bose (B)
statistics.

We remark that the equation of state for classical (and quantum) interacting systems also can be expanded in terms of virial
coefficients. Consider, for example, the van der Waals equation of state,

(p+ a‘]/\zz)(V—Nb) = Nk,T. (5.2.8)

This may be recast as

_ nk;T —an?
T 1-bn

=nk,T + (b kBT—a) n? +k,THn® +k,TH3n* 4. ..,
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where n = N /V. Thus, for the van der Waals system, we have B, = (bk;T —a) and B, =k,T b*-1 forallk > 3.

Ballistic Dispersion

For the ballistic dispersion £(p) = p?/2m we computed the density of states in Equation 7?7 . One finds
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C,(T) =

g5 \r” /oo dt 421 it \=d j-d/2 (5.2.9)
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We then have

44

B,(T) = qcz’(? ) -gg' A
(4
B,(T) = (2—(d+1> ~3 (2“)) -2gg" A
Note that B, (T') is negative for bosons and positive for fermions. This is because bosons have a tendency to bunch and under

certain circumstances may exhibit a phenomenon known as Bose-Einstein condensation (BEC). Fermions, on the other hand, obey
the Pauli principle, which results in an extra positive correction to the pressure in the low density limit.

We may also write

n(T, z) = +gg A" Liy (£2) (5.2.10)
2
and
p(T,2) =+gg kT A" Lia , (+2), (5.2.11)
2
where
. o~ 2"
qu(z)zzF (5.2.12)
n=1
is the polylogarithm function-. Note that L3 q(z) obeys a recursion relation in its index, viz.
0 . .
zaqu(z)szq_l(z), (5.2.13)
and that
. = 1
qu(l)ZZ; =¢(q). (5.2.14)
n=1
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