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8.5: Diffusion and the Lorentz model

Failure of the relaxation time approximation
As we remarked above, the relaxation time approximation fails to conserve any of the collisional invariants. It is therefore
unsuitable for describing hydrodynamic phenomena such as diffusion. To see this, let  be the distribution function, here
written in terms of position, velocity, and time rather than position, momentum, and time as befor . In the absence of external
forces, the Boltzmann equation in the relaxation time approximation is

The density of particles in velocity space is given by

In equilibrium, this is the Maxwell distribution times the total number of particles: . The
number of particles as a function of time, , should be a constant.

Integrating the Boltzmann equation one has

Thus, with , we have

Thus,  decays exponentially to zero with time constant , from which it follows that the total particle number exponentially
relaxes to . This is physically incorrect; local density perturbations can’t just vanish. Rather, they diffuse.

Modified Boltzmann equation and its solution
To remedy this unphysical aspect, consider the modified Boltzmann equation,

where  is a projector onto a space of isotropic functions of :  for any function . Note that  is a
function of the speed . For this modified equation, known as the Lorentz model, one finds .

The model in Equation [Lormod] is known as the Lorentz model . To solve it, we consider the Laplace transform,

Taking the Laplace transform of Equation [Lormod], we find

We now solve for :

which entails

Now we have
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Thus,

We now have the solution to Lorentz’s modified Boltzmann equation:

Let us assume an initial distribution which is perfectly localized in both  and :

For these initial conditions, we find

We further have that

and therefore

We are interested in the long time limit  for . This is dominated by , and we assume that  is dominant
over  and . We then have

Performing the inverse Laplace and Fourier transforms, we obtain

where the diffusion constant is

The units are . Integrating over velocities, we have the density
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Note that

for all time. Total particle number is conserved!

This page titled 8.5: Diffusion and the Lorentz model is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.

∫ r n(r, t) = 1d3 (8.5.18)
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