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4.2: The Quantum Mechanical Trace

Thus far our understanding of ergodicity is rooted in the dynamics of classical mechanics. A Hamiltonian flow which is ergodic is
one in which time averages can be replaced by phase space averages using the microcanonical ensemble. What happens, though, if
our system is quantum mechanical, as all systems ultimately are?

The Density Matrix
First, let us consider that our system S will in general be in contact with a world W. We call the union of S and W the universe,
U=WUS.Let |N > denote a quantum mechanical state of W, and let | n> denote a quantum mechanical state of .S. Then the
most general wavefunction we can write is of the form

w)=> ¥, [N)x|n). (4.2.1)
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Now let us compute the expectation value of some operator A which acts as the identity within W, meaning
(N|A|N')=As

v » where A is the ‘reduced’ operator which acts within S alone. We then have
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where
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is the density matrix. The time-dependence of ¢ is easily found:
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where H is the Hamiltonian for the system S. Thus, we find

L 00
o =

Note that the density matrix evolves according to a slightly different equation than an operator in the Heisenberg picture, for which

[H, 5] . (4.2.3)

A(t) = e HIR gl ih% =[A,H]=-[H,4]. (4.2.4)
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Figure 4.2.1: A system S in contact with a ‘world” W. The union of the two, universe U = WU S, is said to be the ‘universe’.

For Hamiltonian systems, we found that the phase space distribution o(g, p, t) evolved according to the Liouville equation,

i—=Lp, (4.2.5)
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where the Liouvillian L is the differential operator

Nd
OH 0 O0H 0
= (%P5 99 99 °P;
Accordingly, any distribution o(A, ..., A,) which is a function of constants of the motion A, (g, p) is a stationary solution to the
Liouville equation: 8, o(A4,...,A;)=0. Similarly, any quantum mechanical density matrix which commutes with the
Hamiltonian is a stationary solution to Equation 4.2.3. The corresponding microcanonical distribution is
op=0(E—H). (4.2.7)

Averaging the DOS

If our quantum mechanical system is placed in a finite volume, the energy levels will be discrete, rather than continuous, and the
density of states (DOS) will be of the form

DE)=Tr§(E—H)=> §E-E), (4.2.8)
1
where {El} are the eigenvalues of the Hamiltonian H. In the thermodynamic limit, V' — oo, and the discrete spectrum of kinetic

energies remains discrete for all finite V' but must approach the continuum result. To recover the continuum result, we average the
DOS over a window of width AE:

E+AE
D(E) = ﬁ /dE’ D(E'). (4.2.9)
E

If we take the limit AE — 0 but with AE > §FE, where JE is the spacing between successive quantized levels, we recover a
smooth function, as shown in Figure 4.2.2. We will in general drop the bar and refer to this function as D(E). Note that
SE~1/D(E)=¢e" #(=v) s (typically) exponentially small in the size of the system, hence if we took AE oc V~' which
vanishes in the thermodynamic limit, there are still exponentially many energy levels within an interval of width AE.

D(E) D(E) = (D(E))ap
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Figure 4.2.2: Averaging the quantum mechanical discrete density of states yields a continuous curve.

D(E)=) 3(E~E)
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Coherent States

The quantum-classical correspondence is elucidated with the use of coherent states. Recall that the one-dimensional harmonic

oscillator Hamiltonian may be written
2
5 D 1 2 2
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1
= hw, (aTa + 5) ,
where @ and a' are ladder operators satisfying [a, aT] =1, which can be taken to be

a={—+— , al=——+—=

(4.2.10)
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with £ = /h/2muw, . Note that

h
qzﬂ(a—i—aT) , p=—— (a—aT) . (4.2.11)
2i¢
The ground state satisfies a 1y(q) = 0, which yields
Wy(q) = (2mf2) /4 e a /AL (4.2.12)
The normalized coherent state | z ) is defined as
|z)=e 317 ' [0) =3 EDY (4.2.13)
The overlap of coherent states is given by
(21]2) =e 315l e3lal efim (4.2.14)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent states allow a simple resolution of
the identity,

d% dRezdImz
1= —_—=— 4.2.15
/ 27 27 T ( )
which is straightforward to establish.
To gain some physical intuition about the coherent states, define
/P
ZE%JrT (4.2.16)
and write | z) =| @, P ). One finds (exercise!)
_ 3 i ()2 2
Yo p(a) = (q] 2) = (2m2) /4 e iPQI2M iPU/R o (a-Q /A2 (4.2.17)

hence the coherent state wQ P (q) is a wavepacket Gaussianly localized about ¢ = @, but oscillating with average momentum P.
For example, we can compute
(Q,P|q|Q,P) =(z|t(a+a)|z)=20Rez=Q
h h
, P ,PY=(z|—(a—al)|2)==Imz=P
(@.P|p|Q,P) =(2| 5 (a—a)|) = %
as well as

(Q,P|¢*|Q,P) =(z|(a+al)?|z)=Q*+£

) hZ T 2 h2
(QPI1]Q,P) = (2| z(a—a)?|2) = PP+
Thus, the root mean square fluctuations in the coherent state | @, P ) are
h 13 mhw,

4.2.1
2muw ( 8)

and Aq-Ap = % h . Thus we learn that the coherent state '¢JQ P(q) is localized in phase space, in both position and momentum. If

we have a general operator fl(q, p), we can then write
(Q,P|A(q,p)|Q,P)=AQ,P)+0O(h), (4.2.19)

where A(Q, P) is formed from A(q, p) by replacing ¢ — @ and p — P.

Since
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d_2z: dRezdImz dQdP

= = 4.2.2
27 g 2wk ( 0)
we can write the trace using coherent states as
Trfi:ﬁ dQ [dP (Q,P|A|Q,P). (4.2.21)
T

We now can understand the origin of the factor 27/ in the denominator of each (g;,p;) integral over classical phase space in
Equation /7.

Note that wj, is arbitrary in our discussion. By increasing wj,, the states become more localized in g and more plane wave like in p.
However, so long as wj is finite, the width of the coherent state in each direction is proportional to K'/2, and thus vanishes in the
classical limit.

This page titled 4.2: The Quantum Mechanical Trace is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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