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2.10: Applications of Thermodynamics

A discussion of various useful mathematical relations among partial derivatives may be found in the appendix in § | 7. Some facility
with the differential multivariable calculus is extremely useful in the analysis of thermodynamics problems.

Adiabatic free expansion revisited

Consider once again the adiabatic free expansion of a gas from initial volume V; to final volume Vf =rV, . Since the system is not
in equilibrium during the free expansion process, the initial and final states do not lie along an adiabat, they do not have the same
entropy. Rather, as we found, from Q =W =0, we have that E;, = F D which means they have the same energy, and, in the case
of an ideal gas, the same temperature (assuming N is constant). Thus, the initial and final states lie along an isotherm. The situation
is depicted in Fig. . Now let us compute the change in entropy AS =5 o S, by integrating along this isotherm. Note
that the actual dynamics are irreversible and do not quasistatically follow any continuous thermodynamic path. However, we can
use what is a fictitious thermodynamic path as a means of comparing .S in the initial and final states.

initial

VT¥/? = const.

temperature T

[AFEgraph] Adiabatic free expansion via a thermal path. The initial and final states do not lie along an adabat! Rather, for an ideal
gas, the initial and final states lie along an isotherm.

We have
4
AS=S —S.:/dV B_S . (2.10.1)
for v Jon
V,i )
But from a Maxwell equation deriving from F', we have
(3_5) :<@) , (2.10.2)
oV Jrn oT Jyn
hence
Vi
9p
AS= [dV| = . 2.10.
s /V(6T>VN (2.10.3)
7 )

For an ideal gas, we can use the equation of state pV = Nk;T to obtain
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(%)V,N _ N‘fB , (2.10.4)
The integral can now be computed:
Vi
AS = dV% =Nk Inr, (2.10.5)
V;
as we found before, in Equation What is different about this derivation? Previously, we derived the entropy change from

the explicit formula for S(E, V, N). Here, we did not need to know this function. The Maxwell relation allowed us to compute the
entropy change using only the equation of state.

Energy and volume

We saw how E(T,V,N) = 3 L fNk,T for an ideal gas, independent of the volume. In general we should have

E(T,V,N)=N ¢(T, %) . (2.10.6)

For the ideal gas, ¢(T, %) = % fksT is a function of T alone and is independent on the other intensive quantity V' /N. How does
energy vary with volume? At fixed temperature and particle number, we have, from E = F +T'S,

(a_E) _ (B_F) +T(E) - +T<8p) (2.10.7)
ov T,N ov T,N ov TN oT VN

where we have used the Maxwell relation [\big({\pz S\over\pz V}\big)\ns_\sss{T.N}=\big({\pz p\over\pz T}\big)\ns_\sss{V,N}|, derived
Another way to derive this result is as follows. Write dE =TdS —pdV +udN and

from the mixed second derivative 55—

8T BV
then express dS in terms of dT', dV, and dN, resulting in
oS oS ou
dE = T( ) dT + T<—> —p|dV — T(—) +u|dN . (2.10.8)
T Jyn WV Jrn T Jyn

Now read off [\big({\pz E\over\pz V}\big)\ns_\sss{V,N} | and use the same Maxwell relation as before to recover Equation
Applying this result to the ideal gas law pV = Nk;T results in the vanishing of the RHS, hence for any substance obeying the
ideal gas law we must have

E(T,V,N)=ve(T)=Ne(T)/Ny . (2.10.9)

van der Waals equation of state

It is clear that the same conclusion follows for any equation of state of the form p(T,V,N) =T f(V/N), where f(V/N) is an
arbitrary function of its argument: the ideal gas law remains valid''. This is not true, however, for the van der Waals equation of
state,

(p—l—v%)(v—b):RT, (2.10.10)

where v= N3V /N is the molar volume. We then find (always assuming constant V'),

OE Oe Op a
— == =T|=) —p=— 2.10.11
(aV)T (6U)T (8T)V P=a ( )
where E(T,V,N) =ve(T,v). We can integrate this to obtain
e(T,v) :w(T)—%, (2.10.12)
where w(T') is arbitrary. From Equation , we immediately have
Oe ) ,
ey == ) =u'(T). (2.10.13)
= (o)
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[vdwab] Van der Waals parameters for some common gases. (Source: Wikipedia.)

gas a (E2) b (&) pe (bar) T, (K) ve (L /mol)
Acetone 14.09 0.0994 52.82 505.1 0.2982
Argon 1.363 0.03219 48.72 150.9 0.0966
Carbon dioxide 3.640 0.04267 7404 304.0 0.1280
Ethanol 12.18 0.08407 63.83 516.3 0.2522
Freon 10.78 0.0998 40.09 384.9 0.2994
Helium 0.03457 0.0237 2.279 5.198 0.0711
Hydrogen 0.2476 0.02661 12.95 33.16 0.0798
Mercury 8.200 0.01696 1055 1723 0.0509
Methane 2.283 0.04278 46.20 190.2 0.1283
Nitrogen 1.408 0.03913 34.06 128.2 0.1174
Oxygen 1.378 0.03183 50.37 154.3 0.0955
Water 5.536 0.03049 220.6 647.0 0.0915

What about ¢,? This requires a bit of work. We start with Equation ,

(%Y, (&
®=\ar) "P\or)

We next take the differential of the equation of state (at constant NV ):
2
RdT = (p—l— %) dv+ (v—b) (dp— = dv)
v v
a 2ab
= (p— v—2+v—3> dv+ (v—>)dp.

We can now read off the result for the volume expansion coefficient,

1 1

o L(ov\_1 __ R (2.10.14)
4 oT a 2ab
v p U p—i4id

We now have for ¢,

N L

c, =w (T)+
' P+
R2T®
W (T)+ -

RTv3 —2a(v—0)2 °
where v=V N4 /N is the molar volume.

To fix w(T'), we consider the v — oo limit, where the density of the gas vanishes. In this limit, the gas must be ideal, hence
Equation says that w(T') = % fRT . Therefore ¢, (T, v) = % fR, just as in the case of an ideal gas. However, rather than
¢p = ¢, + R, which holds for ideal gases, ¢, (T, v) is given by Equation . Thus,

| \begin{aligned} c_VM\ssr{ VDW }&=\half f R \\ c_pMssr{ VDW}&=\half f R +{RA2TvA3\over RTv/3-2a(v-b)A2}\ .\end{aligned} |
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Note that ¢,(a — 0) = ¢;, + R , which is the ideal gas result.

As we shall see in chapter 7, the van der Waals system in unstable throughout a region of parameters, where it undergoes phase
separation between high density (liquid) and low density (gas) phases. The above results are valid only in the stable regions of the
phase diagram.

Thermodynamic response functions

Consider the entropy S expressed as a function of 7', V, and N:

ds = (ﬁ) dT + (£> dv + (ﬁ) dN . (2.10.15)
T Jy N oV Jr.n ON )y
Dividing by dT', multiplying by 7', and assuming d/N = 0 throughout, we have
08 ov
-C, =T = — . 2.10.1
o-cv=7(57) (57 (21019
Appealing to a Maxwell relation derived from F/(T', V', N), and then appealing to Equation , we have
(3_3) - (@) :_<@> (3_‘/)_ (2.10.17)
ov oT ), oV jp\ 0T },
This allows us to write
ap\ [V \?
—-C,=-T| = — | . 2.10.1
%-cv=-1(5%) (5r) (2:10.18)

We define the response functions,

isothermal compressibility: k., = —
adiabatic compressibility: kg = —

v
. 1 |4
thermal expansivity: ap =viar )
D

Thus,
To2
C,—Cy=V—2, (2.10.19)
Kp
or, in terms of intensive quantities,
vTo?
cp— ey =— L (2.10.20)
T

where, as always, v=V Ny /N is the molar volume.

This above relation generalizes to any conjugate force-displacement pair (—p, V') — (y, X):

B Oy 0X
CvmCx=- (ﬁ)x(a—f)y

-o(2) (%)

A similar relationship can be derived between the compressibilities k. and £ ¢. We then clearly must start with the volume, writing

For example, we could have (y, X) = (H*, M?).
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ov ov ov
dV = — dp+ | == dS+(—> dN .
( op )S,N b ( a8 >p,N 9 Js,

Dividing by dp, multiplying by —V ~1, and keeping N constant, we have
o= L (3_‘/) (5_5>
T s V\0S )\ p '

Again we appeal to a Maxwell relation, writing
s\ __(ov
o) \0T )’

and after invoking the chain rule,

we obtain

Comparing eqns. and , we find

This result entails

The corresponding result for magnetic systems is

(e —ear) X = O — Xs) €4 =T(6—m)2 ,

where m = M /v is the magnetization per mole of substance, and

. . o1 aM 1 82G
isothermal susceptibility: x, = OH ).~ U 0H?2
T
M 19
adiabatic susceptibility: x4 = <Z_H> -7 gH?—; :
s v

Here the enthalpy and Gibbs free energy are

H=E—-HM
G=E-TS—-HM

dH =TdS—-MdH
dG =-SdI'-MdH .

(2.10.21)

(2.10.22)

(2.10.23)

(2.10.24)

(2.10.25)

(2.10.26)

(2.10.27)

(2.10.28)

Remark: The previous discussion has assumed an isotropic magnetic system where M and H are collinear, hence H-M = HM .

aﬂ_(aMa)_ 1 0G

Xt =\'6H? ).~ v 0H8H?
aﬂ_(aMa) _ 1 A
Xs =\ 8HP ),~ v oHe0HF

In this case, the enthalpy and Gibbs free energy are

H=E-HM dH =TdS—-M-dH
G=E-TS-HM dG =-SdI'-M-dH .
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Joule effect: free expansion of a gas

Previously we considered the adiabatic free expansion of an ideal gas. We found that @ = W =0 hence AE =0, which means
the process is isothermal, since E =wve(T) is volume-independent. The entropy changes, however, since
S(E,V,N)=Nk;In(V/N)+ 1 fNk,In(E/N)+ Ns, . Thus,

Vi
S, =Si+NkBln(7) : (2.10.29)

1
What happens if the gas is nonideal?

We integrate along a fictitious thermodynamic path connecting initial and final states, where dE' = 0 along the path. We have

OFE OF
=dE == — | dT 2.10.
0=d (BV)TdV+(8T)Vd (2.10.30)
hence
OE/8V
(ﬁ) :_w:_i(a_ff) . (2.10.31)
oV Jg (OE/0T),, Cy, \ OV )
We also have
OFE 0S5 Op
— | =T\7=) —p=T| = | —»- 2.10.32
(av),=7(av) o=r(ar), 1032
Thus,
oT 1 Op
— || == \p-T| = . 2.10.
(%) -z ()] @103
Note that the term in square brackets vanishes for any system obeying the ideal gas law. For a nonideal gas,
Vs
or
AT = [dV| — 2.10.34
[ (57), (21039
Vi
which is in general nonzero.
Now consider a van der Waals gas, for which
(p+ %) (v—b)=RT. (2.10.35)
v
We then have
Op a av?
T =)|=——=—7=". 2.10.
P (8T)V 2 V2 (2.10.36)

In§ we concluded that C, = % fVR for the van der Waals gas, hence

AT = (2.10.37)

v,

Vi
2av dV_2a 1 1
v, )

fRJ vz fR\v, v,
V;
Thus, if Vf >V, , we have Tf < T and the gas cools upon expansion.

Consider O, gas with an initial specific volume of v; =22.4 L /meol, which is the STP value for an ideal gas, freely expanding to a
volume v ;=00 for maximum cooling. According to table . a=1.378L2% bar / molz, and we have
AT = —2a/fRv; = —0.296 K, which is a pitifully small amount of cooling. Adiabatic free expansion is a very inefficient way to
cool a gas.
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[throttle] In a throttle, a gas is pushed through a porous plug separating regions of different pressure. The change in energy is the
work done, hence enthalpy is conserved during the throttling process.

Throttling: the Joule-Thompson effect

In a throttle, depicted in Fig. , a gas is forced through a porous plug which separates regions of different pressures.
According to the figure, the work done on a given element of gas is

Vi |4

W:/def —/dei =p/V;—p;V; . (2.10.38)
0 0

Now we assume that the system is thermally isolated so that the gas exchanges no heat with its environment, nor with the plug.
Then @ =0so AE=—-W,and

Ei +pi‘/i :Ef +prf
H’i :Hf )

where H is enthalpy. Thus, the throttling process is isenthalpic. We can therefore study it by defining a fictitious thermodynamic
path along which dH = 0. The, choosing T" and p as state variables,

oH oH
0=dH= (—) dTl + (—) dp (2.10.39)
or A op Jr
hence
oH/0
(6’_T) __(0H/op)y (2.10.40)
Op Ju  (9H/OT),
The numerator on the RHS is computed by writing dH =T dS +V dp and then dividing by dp, to obtain
oH 08 ov
— | =V+T|—— | =V-T| = | . 2.10.41
( op )T ( op )T ( 3T)p ( )
The denominator is
(@) _ (ﬁ) (%)
or ), a8 J,\ oT ),
oS
or ), P
Thus,
or 1 Ov
— | =—|T|( == | —v
(&), =)
v
=—(Ta,-1
cp( a,—1),
where o, = 7 (%)ﬁ is the volume expansion coefficient.
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From the van der Waals equation of state, we obtain, from Equation 2.10.14

T/0 RT /v -b
ro,~L(55) - oy (2.10.42)
v p Pt vﬁ%ﬁa(v;b)
Assuming v > 2=, b, we have
or 1/2
(—) = —(—a—b). (2.10.43)
Op f, ¢ \RT
Thus, for T >T* = % , we have (%)H < 0 and the gas heats up upon an isenthalpic pressure decrease. For T' < T'*, the gas
cools under such conditions.
].2 L 1 1 1 I I I 1 1 | I 1 i
10 - -
I H i
8 - 7]
D:) L i
~ 6 7
o} B ]
4 7
A .
0 - L]
0 8

[itvdw] Inversion temperature 7*(p) for the van der Waals gas. Pressure and temperature are given in terms of p, = a/27b* and
T. = 8a/27bR, respectively.

In fact, there are two inversion temperatures T}*, for the van der Waals gas. To see this, we set T'ay, = 1, which is the criterion for
inversion. From Equation 2.10.42it is easy to derive \[{b\over v}=1-\sqrt

\'.\] We insert this into the van der Waals equation of state to derive a relationship T' =T"*(p) at which T'a, = 1 holds. After a
little work, we find

3RT 8aRT «a
p—*z—bJr R (2.10.44)

This is a quadratic equation for T, the solution of which is

2
2 2
T*(p)zﬁ(ﬁ,/l—?’%p ) . (2.10.45)

In Fig. we plot pressure versus temperature in scaled units, showing the curve along which (%)ﬂ = 0. The volume,

pressure, and temperature scales defined are

a 8a

v, =3b , = , T. = . 2.10.46
c Dc 27 b2 c 27bR ( )
Values for p,, T, and v, are provided in table . If we define v=v/v., p =p/p., and T =T /T, then the van der Waals
equation of state may be written in dimensionless form:
3
(p—l——2) (3v—1)=8T. (2.10.47)
v
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In terms of the scaled parameters, the equation for the inversion curve (%)H =0 becomes

p:9—36(1— %T)2 — T=3(1i,/1—%p)2. (2.10.48)

Thus, there is no inversion for p > 9 p.. We are usually interested in the upper inversion temperature, 7-*, corresponding to the
upper sign in Equation . The maximum inversion temperature occurs for p =0, where T}y, = z—}’; = % T . For H,,
from the data in table , we find T34, (H,) = 224 K, which is within 10% of the experimentally measured value of 205 K.
What happens when H, gas leaks from a container with T' > T.* ? Since (%)H <0 and Ap <0, we have AT > 0. The gas
warms up, and the heat facilitates the reaction 2 H, + O, — 2 H, O, which releases energy, and we have a nice explosion.

This page titled 2.10: Applications of Thermodynamics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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