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1.1: Statistical Properties of Random Walks

One-Dimensional Random Walk
Consider the mechanical system depicted in Fig. , a version of which is often sold in novelty shops. A ball is released from the
top, which cascades consecutively through  levels. The details of each ball’s motion are governed by Newton’s laws of motion.
However, to predict where any given ball will end up in the bottom row is difficult, because the ball’s trajectory depends sensitively
on its initial conditions, and may even be influenced by random vibrations of the entire apparatus. We therefore abandon all hope of
integrating the equations of motion and treat the system statistically. That is, we assume, at each level, that the ball moves to the
right with probability  and to the left with probability . If there is no bias in the system, then . The position 

 after  steps may be written

where  if the ball moves to the right at level , and  if the ball moves to the left at level . At each level, the
probability for these two outcomes is given by

This is a normalized discrete probability distribution of the type discussed in section 4 below. The multivariate distribution for all
the steps is then

Our system is equivalent to a one-dimensional random walk. Imagine an inebriated pedestrian on a sidewalk taking steps to the
right and left at random. After  steps, the pedestrian’s location is .

Figure : The falling ball system, which mimics a one-dimensional random walk.

Now let’s compute the average of :

This could be identified as an equation of state for our system, as it relates a measurable quantity  to the number of steps  and
the local bias . Next, let’s compute the average of :
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Here we have used

Note that , which must be so because

This is called the variance of . We have . The root mean square deviation, , is the square root of the
variance: . Note that the mean value of  is linearly proportional to , but the RMS fluctuations 
are proportional to . In the limit  then, the ratio  vanishes as . This is a consequence of the central
limit theorem (see §4.2 below), and we shall meet up with it again on several occasions.We can do even better. We can find the
complete probability distribution for . It is given by

where  are the numbers of steps taken to the right/left, with , and 
. There are many independent ways to take  steps to the right. For example, our first 

 steps could all be to the right, and the remaining  steps would then all be to the left. Or
our final  steps could all be to the right. For each of these independent possibilities, the probability is 

. How many possibilities are there? Elementary combinatorics tells us this number is

Note that , so we can replace . Thus,

Thermodynamic Limit
Consider the limit  but with  finite. This is analogous to what is called the thermodynamic limit in statistical
mechanics. Since  is large,  may be considered a continuous variable. We evaluate  using Stirling’s asymptotic
expansion

We then have

Notice that the terms proportional to  have all cancelled, leaving us with a quantity which is linear in . We may therefore
write , where
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Figure : Comparison of exact distribution of Equation  (red squares) with the Gaussian distribution of Equation 
(blue line).

We have just shown that in the large  limit we may write

where  is a normalization constant . Since  is by assumption large, the function  is dominated by the minimum (or
minima) of , where the probability is maximized. To find the minimum of , we set , where

Setting , we obtain

We also have

so invoking Taylor’s theorem,

Putting it all together, we have

where . The constant  is determined by the normalization condition,

and thus . Why don’t we go beyond second order in the Taylor expansion of ? We will find out in §4.2 below.

Entropy and energy
The function  can be written as a sum of two contributions, , where
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The function  is analogous to the statistical entropy of our system . We have

Thus, the statistical entropy is the logarithm of the number of ways the system can be configured so as to yield the same value of 
(at fixed ). The second contribution to  is the energy term. We write

The energy term biases the probability  so that low energy configurations are more probable than high energy
configurations. For our system, we see that when  ( ), the energy is minimized by taking  as small as possible
(meaning as negative as possible). The smallest possible allowed value of  is . Conversely, when  ( ),
the energy is minimized by taking  as large as possible, which means . The average value of , as we have computed
explicitly, is , which falls somewhere in between these two extremes.

In actual thermodynamic systems, entropy and energy are not dimensionless. What we have called  here is really , which is
the entropy in units of Boltzmann’s constant. And what we have called  here is really , which is energy in units of
Boltzmann’s constant times temperature.

This page titled 1.1: Statistical Properties of Random Walks is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.
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