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4.S: Summary
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Summary
 Distributions: Let  be a normalized distribution on phase space. Then

where  is the phase space measure. For a Hamiltonian system of  identical indistinguishable point particles
in  space dimensions, we have

The  prefactor accounts for indistinguishability. Normalization means .

 Microcanonical ensemble ( CE): , where  is the density of states and 
 is the Hamiltonian. The energy , volume , and particle number  are held fixed. Thus, the density of states 

 is a function of all three variables. The statistical entropy is , where  is
Boltzmann’s constant. Since  has dimensions of , an arbitrary energy scale is necessary to convert  to a dimensionless
quantity before taking the log. In the thermodynamic limit, one has

The differential of  is defined to be , thus  is the temperature,  is the

pressure, and  is the chemical potential. Note that , , , and  are all extensive quantities, they are halved when

the system itself is halved.

 Ordinary canonical ensemble (OCE): In the OCE, energy fluctuates, while , , and the temperature  are fixed. The
distribution is , where  and  is the partition function. Note that  is the Laplace transform
of the density of states: . The Boltzmann entropy is . This entails , where 

 is the Helmholtz free energy, a Legendre transform of the energy . From this we derive 
.

 Grand canonical ensemble (GCE): In the GCE, both  and  fluctuate, while , , and chemical potential  remain fixed.

Then , where  is the grand partition function and  is the grand potential.
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Assuming , we can label states  by both energy and particle number. Then . We also have 
, hence .

 Thermodynamics: From , we have ,
where  and

with . Here  is the generalized force conjugate to the generalized displacement .

 Thermal contact: In equilibrium, two systems which can exchange energy satisfy . Two systems which can exchange
volume satisfy . Two systems which can exchange particle number satisfy .

 Gibbs-Duhem relation: Since  is extensive, Euler’s theorem for homogeneous functions guarantees that 
. Taking the differential, we obtain the equation , so there must be a relation

among any two of the intensive quantities , , and .

 Generalized susceptibilities: Within the OCE , let , where  are observables with . Then

The quantities  are the generalized susceptibilities.

 Ideal gases: For , one finds , where \(\lambda\ns_T=\sqrt

\) is the thermal wavelength. Thus , where  is a constant. From this one finds 

, which is the ideal gas law, with  the number density. The distribution of velocities in 

dimensions is given by

and this leads to a speed distribution .

 Example: For  noninteracting spins in an external magnetic field , the Hamiltonian is , where .
The spins, if on a lattice, are regarded as distinguishable. Then , where . The
magnetization and magnetic susceptibility are then

 Example: For noninteracting particles with kinetic energy  and internal degrees of freedom, , where 

 is the partition function for the internal degrees of freedom, which include rotational, vibrational, and electronic
excitations. One still has , but the heat capacities at constant  and  are

where .

1. The generalization to the GCE is straightforward.↩

Endnotes
1. We write the Hamiltonian as  (classical or quantum) in order to distinguish it from magnetic field ( ) or enthalpy .↩
2. More on this in chapter 5.↩

[ , ] = 0Ĥ N̂ | n ⟩ =Pn Ξ−1 e−β( −μ )En Nn

Ω = E−TS−μN dΩ = −S dT −p dV −N dμ
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3. The factor of  preceding  in Equation [nrdos] appears because . Since ,
the second term can be dropped.↩

4. Note that for integer argument, ↩

5. See §2.7.4.↩
6. See T.-C. Lu and T. Grover, arXiv 1709.08784.↩
7. In applying Equation [EminusTS] to the denominator of Equation [PEOCE], we shift  by  and integrate over the difference 

, retaining terms up to quadratic order in  in the argument of the exponent.↩
8. In deriving Equation [thermforce], we have used the so-called Feynman-Hellman theorem of quantum mechanics: 

, if  is an energy eigenstate.↩
9. Nota bene we are concerned with classical spin configurations only – there is no superposition of states allowed in this model!
↩

10. Note that while we cannot simultaneously specify the eigenvalues of two components of  along axes fixed in space, we can
simultaneously specify the components of  along one axis fixed in space and one axis rotating with a body. See Landau and
Lifshitz, Quantum Mechanics, §103.↩

11. See §72 of Landau and Lifshitz, Quantum Mechanics, which, in my humble estimation, is the greatest physics book ever
written.↩

12. See Landau and Lifshitz, Quantum Mechanics, §86.↩
13. Note that there is no prime on the  sum for , as we have divided the logarithm of  by two and replaced the half sum by the

whole sum.↩
14. The hyperfine splitting in hydrogen is on the order of eV, which is on the order of K. Here 

 is the fine structure constant.↩
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