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2.4: The First Law of Thermodynamics

Conservation of energy

The first law is a statement of energy conservation, and is depicted in Fig. [firstlaw]. It says, quite simply, that during a thermodynamic process, the
change in a system’s internal energy  is given by the heat energy  added to the system, minus the work  done by the system:

The differential form of this, the First Law of Thermodynamics, is

We use the symbol  in the differentials  and  to remind us that these are inexact differentials. The
energy , however, is a state function, hence  is an exact differential.

Consider a volume  of fluid held in a flask, initially at temperature , and held at atmospheric pressure. The internal energy is then 
. Now let us contemplate changing the temperature in two different ways. The first method (A) is to place the flask on a hot plate

until the temperature of the fluid rises to a value . The second method (B) is to stir the fluid vigorously. In the first case, we add heat  but
no work is done, so . In the second case, if we thermally insulate the flask and use a stirrer of very low thermal conductivity, then no heat is
added, . However, the stirrer does work  on the fluid (remember  is the work done by the system). If we end up at the same
temperature , then the final energy is  in both cases. We then have

[firstlaw] The first law of thermodynamics is a statement of energy conservation.

It also follows that for any cyclic transformation, where the state variables are the same at the beginning and the end, we have

Single component systems
A single component system is specified by three state variables. In many applications, the total number of particles  is conserved, so it is useful to
take  as one of the state variables. The remaining two can be  or  or . The differential form of the first law says

The quantity  is called the chemical potential. We ask: how much heat is required in order to make an infinitesimal change in temperature, pressure,
volume, or particle number? We start by rewriting Equation [DFL] as

We now must roll up our sleeves and do some work with partial derivatives.

  systems : If the state variables are , we write

Then

  systems : If the state variables are , we write

We also write

E Q W
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Then

  systems : If the state variables are , we write

Then

The heat capacity of a body, , is by definition the ratio  of the amount of heat absorbed by the body to the associated
infinitesimal change in temperature . The heat capacity will in general be different if the body is heated at constant volume or at constant pressure.
Setting  gives, from Equation [QTVN],

Similarly, if we set , then Equation [QTpN] yields

Unless explicitly stated as otherwise, we shall assume that  is fixed, and will write  for  and  for .

[cptab] Specific heat (at C, unless otherwise noted) of some common substances. (Source: Wikipedia.)

SUBSTANCE ( ) ( ) SUBSTANCE ( ) ( )

Air 29.07 1.01  ( C) 75.34 4.181

Aluminum 24.2 0.897  ( C) 37.47 2.08

Copper 24.47 0.385 Iron 25.1 0.450

36.94 0.839 Lead 26.4 0.127

Diamond 6.115 0.509 Lithium 24.8 3.58

Ethanol 112 2.44 Neon 20.786 1.03

Gold 25.42 0.129 Oxygen 29.38 0.918

Helium 20.786 5.193 Paraffin (wax) 900 2.5

Hydrogen 28.82 5.19 Uranium 27.7 0.116

 ( C) 38.09 2.05 Zinc 25.3 0.387

The units of heat capacity are energy divided by temperature, . The heat capacity is an extensive quantity, scaling with the size of the system. If we
divide by the number of moles , we obtain the molar heat capacity, sometimes called the molar specific heat: , where  is the
number of moles of substance. Specific heat is also sometimes quoted in units of heat capacity per gram of substance. We shall define

Here  is the mass per particle and  is the mass per mole: .

Suppose we raise the temperature of a body from  to . How much heat is required? We have
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where  or  depending on whether volume or pressure is held constant. For ideal gases, as we shall discuss below,  is constant, and
thus

In metals at very low temperatures one finds , where  is a constant . We then have

Ideal gases
The ideal gas equation of state is . In order to invoke the formulae in Equations , , and , we need to know the state function

. A landmark experiment by Joule in the mid-19th century established that the energy of a low density gas is independent of its volume .
Essentially, a gas at temperature  was allowed to freely expand from one volume  to a larger volume , with no added heat  and no work 
done. Therefore the energy cannot change. What Joule found was that the temperature also did not change. This means that 
cannot be a function of the volume.

[CVH2] Heat capacity  for one mole of hydrogen ( ) gas. At the lowest temperatures, only translational degrees of freedom are relevant, and 
. At around , two rotational modes are excitable and . Above , the vibrational excitations begin to contribute. Note the

logarithmic temperature scale. (Data from H. W. Wooley et al., Jour. Natl. Bureau of Standards, 41, 379 (1948).)

Since  is extensive, we conclude that

where  is the number of moles of substance. Note that  is an extensive variable. From eqns. [cveqn] and [cpeqn], we conclude

where we invoke the ideal gas law to obtain the second of these. Empirically it is found that  is temperature independent over a wide range of ,
far enough from boiling point. We can then write , where  is the number of moles, and where  is the molar heat capacity. We
then have

where  is the gas constant. We denote by  the ratio of specific heat at constant pressure and at constant
volume.

From the kinetic theory of gases, one can show that

Digression : kinetic theory of gases

We will conclude in general from noninteracting classical statistical mechanics that the specific heat of a substance is , where  is the
number of phase space coordinates, per particle, for which there is a quadratic kinetic or potential energy function. For example, a point particle has

C = CV C = Cp C(T )

Q=C(\TB-\TA) \quad\Longrightarrow\quad \TB=\TA+{Q\over C}\ .

C = γT γ 6

\begin{aligned} Q&=\int\limits_\TA^\TB\!\!dT\,C(T)=\half\gamma\big(T_\ssr{B}^2 - T_\ssr{A}^2\big)\\ \TB&=\sqrt{T_\ssr{A}^2 + 2\gamma^{-1} Q}\ .\end{aligned}
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three translational degrees of freedom, and the kinetic energy is a quadratic function of their conjugate momenta: . Thus, 
. Diatomic molecules have two additional rotational degrees of freedom – we don’t count rotations about the symmetry axis – and their conjugate

momenta also appear quadratically in the kinetic energy, leading to . For polyatomic molecules, all three Euler angles and their conjugate
momenta are in play, and .

[CVsolids] Molar heat capacities  for three solids. The solid curves correspond to the predictions of the Debye model, which we shall discuss later.

The reason that  for diatomic molecules rather than  is due to quantum mechanics. While translational eigenstates form a continuum, or are
quantized in a box with  being very small, since the dimensions  are macroscopic, angular momentum, and hence rotational kinetic
energy, is quantized. For rotations about a principal axis with very low moment of inertia , the corresponding energy scale  is very large, and a
high temperature is required in order to thermally populate these states. Thus, degrees of freedom with a quantization energy on the order or greater
than  are ‘frozen out’ for temperatures .

In solids, each atom is effectively connected to its neighbors by springs; such a potential arises from quantum mechanical and electrostatic
consideration of the interacting atoms. Thus, each degree of freedom contributes to the potential energy, and its conjugate momentum contributes to the
kinetic energy. This results in . Assuming only lattice vibrations, then, the high temperature limit for  for any solid is predicted to be 

. This is called the Dulong-Petit law. The high temperature limit is reached above the so-called Debye temperature, which is
roughly proportional to the melting temperature of the solid.

In table [cptab], we list  and  for some common substances at C (unless otherwise noted). Note that  for the monatomic gases He and
Ne is to high accuracy given by the value from kinetic theory, . For the diatomic gases oxygen ( ) and air (mostly 
and ), kinetic theory predicts , which is close to the measured values. Kinetic theory predicts  for polyatomic
gases; the measured values for  and  are both about 10% higher.

Adiabatic transformations of ideal gases
Assuming  and , Equation [QTVN] tells us that

Invoking the ideal gas law to write , and remembering , we have, setting ,

We can immediately integrate to obtain

where the second two equations are obtained from the first by invoking the ideal gas law. These are all adiabatic equations of state. Note the difference
between the adiabatic equation of state  and the isothermal equation of state . Equivalently, we can write these three conditions
as
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It turns out that air is a rather poor conductor of heat. This suggests the following model for an adiabatic atmosphere. The hydrostatic pressure decrease
associated with an increase  in height is , where  is the density and  the acceleration due to gravity. Assuming the gas is ideal, the
density can be written as , where  is the molar mass. Thus,

If the height changes are adiabatic, then, from , we have

with the solution

where  is the temperature at the earth’s surface, and

With  and  for air, and assuming , we find km, and . Note that in
this model the atmosphere ends at a height km.

Again invoking the adiabatic equation of state, we can find :

Recall that

Thus, in the limit , where , we have . Finally, since  from the ideal gas law, we have

Adiabatic free expansion
Consider the situation depicted in Fig. [AFE]. A quantity (  moles) of gas in equilibrium at temperature  and volume  is allowed to expand freely
into an evacuated chamber of volume  by the removal of a barrier. Clearly no work is done on or by the gas during this process, hence . If the
walls are everywhere insulating, so that no heat can pass through them, then  as well. The First Law then gives , and there is
no change in energy.

If the gas is ideal, then since , then  gives , and there is no change in temperature. (If the walls are insulating
against the passage of heat, they must also prevent the passage of particles, so .) There is of course a change in volume: , hence there
is a change in pressure. The initial pressure is  and the final pressure is .

[AFE] In the adiabatic free expansion of a gas, there is volume expansion with no work or heat exchange with the environment: .

If the gas is nonideal, then the temperature will in general change. Suppose , where , , and  are constants. This form
is properly extensive: if  and  double, then  doubles. If the volume changes from  to  under an adiabatic free expansion, then we must have,
from ,
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If , the temperature decreases upon the expansion. If , the temperature increases. Without an equation of state, we can’t say precisely
what happens to the pressure, although we know on general grounds that it must decrease because, as we shall see, thermodynamic stability entails a
positive isothermal compressibility:  .

Adiabatic free expansion of a gas is a spontaneous process, arising due to the natural internal dynamics of the system. It is also irreversible. If we wish
to take the gas back to its original state, we must do work on it to compress it. If the gas is ideal, then the initial and final temperatures are identical, so
we can place the system in thermal contact with a reservoir at temperature  and follow a thermodynamic path along an isotherm. The work done on
the gas during compression is then

The work done by the gas is . During the compression, heat energy  is transferred to the gas from the reservoir. Thus, 
 is given off by the gas to its environment.
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