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4.3: Thermal Equilibrium

Two Systems in Thermal Contact
Consider two systems in thermal contact, as depicted in Figure . The two subsystems #1 and #2 are free to exchange energy,
but their respective volumes and particle numbers remain fixed. We assume the contact is made over a surface, and that the energy
associated with that surface is negligible when compared with the bulk energies  and . Let the total energy be .
Then the density of states  for the combined system is

The probability density for system #1 to have energy  is then

Note that  is normalized: . We now ask: what is the most probable value of ? We find out by
differentiating  with respect to  and setting the result to zero. This requires

We conclude that the maximally likely partition of energy between systems #1 and #2 is realized when

This guarantees that

is a maximum with respect to the energy , at fixed total energy .

Figure : Two systems in thermal contact.

The temperature  is defined as

a result familiar from thermodynamics. The difference is now we have a more rigorous definition of the entropy. When the total
entropy  is maximized, we have that . Once again, two systems in thermal contact and can exchange energy will in
equilibrium have equal temperatures.

According to Equations \ref{phinrel} and \ref{phiurel}, the entropies of nonrelativistic and ultrarelativistic ideal gases in  space
dimensions are given by
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Invoking Equation , we then have

We saw that the probability distribution  is maximized when , but how sharp is the peak in the distribution? Let us
write , where  is the solution to Equation . We then have

where . We must now evaluate

where  is the heat capacity. Thus,

where

The distribution is therefore a Gaussian, and the fluctuations in  can now be computed:

The individual heat capacities  and  scale with the volumes  and , respectively. If , then , in

which case . Therefore the RMS fluctuations in  are proportional to the square root of the system size, whereas 
itself is extensive. Thus, the ratio  scales as the inverse square root of the volume. The distribution 

 is thus extremely sharp.

Thermal, mechanical and chemical equilibrium

We have  , but in general . Equivalently, we may write . The full differential of 

 is then , with  and  and . As we shall

discuss in more detail,  is the pressure and  is the chemical potential. We may thus write the total differential  as

Employing the same reasoning as in the previous section, we conclude that entropy maximization for two systems in contact
requires the following:

If two systems can exchange energy, then . This is thermal equilibrium.
If two systems can exchange volume, then . This is mechanical equilibrium.
If two systems can exchange particle number, then . This is chemical equilibrium.

Gibbs-Duhem Relation
The energy  is an extensive function of extensive variables, it is homogeneous of degree one in its arguments.
Therefore , and taking the derivative with respect to  yields
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Taking the differential of each side, using the Leibniz rule on the RHS, and plugging in , we arrive at
the Gibbs-Duhem relation ,

This, in turn, says that any one of the intensive quantities  can be written as a function of the other two, in the case of a
single component system.
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