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2.5: Heat Engines and the Second Law of Thermodynamics

There’s no free lunch so quit asking

A heat engine is a device which takes a thermodynamic system through a repeated cycle which can be represented as a succession of equilibrium states: A — B — C'--- — A . The net result of such
a cyclic process is to convert heat into mechanical work, or vice versa.
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Figure [perfect]: A perfect engine would extract heat @ from a thermal reservoir at some temperature 7" and convert it into useful mechanical work W. This process is alas impossible, according to

the Second Law of thermodynamics. The inverse process, where work W is converted into heat Q, is always possible.
For a system in equilibrium at temperature 7', there is a thermodynamically large amount of internal energy stored in the random internal motion of its constituent particles. Later, when we study
statistical mechanics, we will see how each ‘quadratic’ degree of freedom in the Hamiltonian contributes %kET to the total internal energy. An immense body in equilibrium at temperature 7" has an
enormous heat capacity C, hence extracting a finite quantity of heat @ from it results in a temperature change AT = —Q/C which is utterly negligible. Such a body is called a heat bath, or thermal
reservoir. A perfect engine would, in each cycle, extract an amount of heat @ from the bath and convert it into work. Since AE =0 for a cyclic process, the First Law then gives W = Q. This
situation is depicted schematically in Fig. . One could imagine running this process virtually indefinitely, slowly sucking energy out of an immense heat bath, converting the random thermal
motion of its constituent molecules into useful mechanical work. Sadly, this is not possible:

A transformation whose only final result is to extract heat froma source at fixed temperature and transform that heat into work is
impossible.

This is known as the Postulate of Lord Kelvin. It is equivalent to the postulate of Clausius,

A transformation whose only result is to transfer heat from a body at a given temperature to a body at higher temperature is
impossible.

These postulates which have been repeatedly validated by empirical observations, constitute the Second Law of Thermodynamics.

Engines and refrigerators

While it is not possible to convert heat into work with 100% efficiency, it is possible to transfer heat from one thermal reservoir to another one, at lower temperature, and to convert some of that heat
into work. This is what an engine does. The energy accounting for one cycle of the engine is depicted in the left hand panel of Fig. . An amount of heat Q, > 0 is extracted- from the reservoir
at temperature T}, Since the reservoir is assumed to be enormous, its temperature change AT, = —Q,/C, is negligible, and its temperature remains constant — this is what it means for an object to
be a reservoir. A lesser amount of heat, Q;, with 0 < Q; <@, is deposited in a second reservoir at a lower temperature T;. Its temperature change AT, =+Q,/C, is also negligible. The
difference W = Q, — Q; is extracted as useful work. We define the efficiency, 7, of the engine as the ratio of the work done to the heat extracted from the upper reservoir, per cycle:

—— (2.5.1)

This is a natural definition of efficiency, since it will cost us fuel to maintain the temperature of the upper reservoir over many cycles of the engine. Thus, the efficiency is proportional to the ratio of
the work done to the cost of the fuel.

A refrigerator works according to the same principles, but the process runs in reverse. An amount of heat @Q; is extracted from the lower reservoir — the inside of our refrigerator — and is pumped into
the upper reservoir. As Clausius’ form of the Second Law asserts, it is impossible for this to be the only result of our cycle. Some amount of work Y/ must be performed on the refrigerator in order for
it to extract the heat Q. Since AE =0 for the cycle, a heat @, =W+ Q1 must be deposited into the upper reservoir during each cycle. The analog of efficiency here is called the coefficient of
refrigeration, k, defined as
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Thus, & is proportional to the ratio of the heat extracted to the cost of electricity, per cycle.
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[engref] An engine (left) extracts heat Q, from a reservoir at temperature T and deposits a smaller amount of heat Q; into a reservoir at a lower temperature 77, during each cycle. The difference

W = Q, — Q, is transformed into mechanical work. A refrigerator (right) performs the inverse process, drawing heat @, from a low temperature reservoir and depositing heat @, = @; + W into a

high temperature reservoir, where W is the mechanical (or electrical) work done per cycle.
Please note the deliberate notation here. I am using symbols  and W' to denote the heat supplied to the engine (or refrigerator) and the work done by the engine, respectively, and Q and W to denote
the heat taken from the engine and the work done on the engine.

A perfect engine has @; =0 and n = 1; a perfect refrigerator has Q; = @, and x = co. Both violate the Second Law. Sadi Carnot" (1796 — 1832) realized that a reversible cyclic engine operating
between two thermal reservoirs must produce the maximum amount of work W, and that the amount of work produced is independent of the material properties of the engine. We call any such engine
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a Carnot engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s observations that the efficiency |\eta_\ssr{C} | can only be a function of the temperatures 7} and
T,: [\eta_\ssr{C}=\eta_\ssr{C}(T\ns_1,T\ns_2)|. We can then define

| {T\ns_1\over T\ns_2}\equiv 1-\eta\ns_\ssr{C}(T\ns_1,T\ns_2)\ . |

Below, in §©.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine, this temperature scale coincides precisely with the ideal gas temperature scale from §

Nothing beats a Carnot engine

The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To see this, let’s suppose that an amazing wonder engine has an efficiency even greater than that of
the Carnot engine. A key feature of the Carnot engine is its reversibility — we can just go around its cycle in the opposite direction, creating a Carnot refrigerator. Let’s use our notional wonder engine
to drive a Carnot refrigerator, as depicted in Fig.

‘We assume that

| {W\over Q\ns_2} = \eta\ns_\ssr{wonder} > \eta\ns_\ssr{Carnot} = {\CW"over \CQ'_2}\. |

But from the figure, we have W =W, and therefore the heat energy Q% — @, transferred to the upper reservoir is positive. From

W=0Q,-Q=9-Q, =W, (2.5.3)
we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is done on the system:
-0, =Q) -9, >0. (2.5.4)

Therefore, the existence of the wonder engine entails a violation of the Second Law. Since the Second Law is correct — Lord Kelvin articulated it, and who are we to argue with a Lord? — the wonder
engine cannot exist.

h h
eat bat T,
heatl Q, heat I Q,
W=0Q-Q=2%-Q =W
work
heatl Q, heatl Q!
7,
heat bath
wonder engine Carnot refrigerator

[NBC] A wonder engine driving a Carnot refrigerator.

We further conclude that all reversible engines running between two thermal reservoirs have the same efficiency, which is the efficiency of a Carnot engine. For an irreversible engine, we must have

| \eta={W\over Q\ns_2}=1-{\CQ\ns_1\over Q\ns_2} \le 1-{T\ns_1\over T\ns_2}= \eta\ns_\ssr{C}\ . |

Thus,

Q, 9

—= - —==<0. 2.5.5
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The Carnot cycle
Let us now consider a specific cycle, known as the Carnot cycle, depicted in Fig. . The cycle consists of two adiabats and two isotherms. The work done per cycle is simply the area inside the
curve on our p — V' diagram:

W= ¢pdV. (2.5.6)

The gas inside our Carnot engine is called the ‘working substance’. Whatever it may be, the system obeys the First Law,

dE = \mathchar'26Q — \mathchar'26W = \mathchar'26Q —pdV . (2.5.7)
We will now assume that the working material is an ideal gas, and we compute W as well as Q; and @, to find the efficiency of this cycle. In order to do this, we will rely upon the ideal gas
equations,
vRT
= =vRT 2.5.
P s pV =vRT, (2.5.8)

where y=¢,/c, =1+ % , where f is the effective number of molecular degrees of freedom contributing to the internal energy. Recall f =3 for monatomic gases, f =5 for diatomic gases, and
f =6 for polyatomic gases. The finite difference form of the first law is

AE=E,—E,=Q,-W,, (2.5.9)

where ¢ denotes the initial state and f the final state.
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CARNOT CYCLE

pressure p

2 T=T, C

volume V
[carnot] The Carnot cycle consists of two adiabats (dark red) and two isotherms (blue).

e This stage is an isothermal expansion at temperature T, . It is the ‘power stroke’ of the engine. We have

| \begin{aligned} W\ns_\ssr{ AB}&=\int\limits_{ V\subA }*{ V\subB}\'\!dV\,{\nu R T\ns_2\over V} =\nu R T\ns_2\, \In\bigg({ V\subB\over V\subA }\bigg)\\ E\subA&=E\subB={\nu R T\ns_2\over \gamma-1}\ ,\end{aligr

hence

|Q\ns_\ssr(AB}=\RDelta E\ns_\ssr{AB}+ W\ns_\ssr{AB} = \nu R T\ns_2\\In\bigg({V\subB\over V\subA}\bigg)\ .

« This stage is an adiabatic expansion. We have

|\begin{aligned} Q\ns_\ssr{BC}&=0\\ \RDelta E\ns_\ssr{BC}&=E\ns_\ssr{C}-E\subB = {\nu R\over \gamma-1}\,(T\ns_1 - T\ns_2)\ .\end{aligned} |

The energy change is negative, and the heat exchange is zero, so the engine still does some work during this stage:

| W\subBC=Q\ns_\ssr{BC}-\RDelta E\ns_\ssr{BC}= {\nu R\over \gamma-1}\, (T\ns_2 - T\ns_1)\ . |

o This stage is an isothermal compression, and we may apply the analysis of the isothermal expansion, mutatis mutandis:

| \begin{aligned} W\ns_\ssr{CD}&=\int\limits_{V\ns_\ssr{C} }A{V\ns_\ssr{D} N\!dV\,{\nu R T\ns_1\over V} =\nu R T\ns_1\, \In\bigg({ V\ns_\ssr{D}\over V\ns_\ssr{C}}\bigg)\\ E\ns_\ssr{C}&=E\ns_\ssr{D}={\nu R 1

hence

|Q\ns_\ssr(CD}=\RDeha E\ns_\ssr{CD}+ W\ns_\ssr{CD} = \nu R T\ns_1\,\In\bigg({ V\ns_\ssr{D}\over V\ns_\ssr{C} }\bigg)\ .

o This last stage is an adiabatic compression, and we may draw on the results from the adiabatic expansion in BC:

|\begin( aligned} Q\ns_\ssr{DA}&=0\\ \RDelta E\ns_\ssr{DA }&=E\ns_\ssr{D}-E\subA= {\nu R\over \gamma-1}\,(T\ns_2 - T\ns_1)\ .\end{aligned} |

The energy change is positive, and the heat exchange is zero, so work is done on the engine:

|W\ns_\ssr(DA}=Q\ns_\ssr(DA)-\RDelta E\ns_\ssr{DA}= {\nu R\over \gamma-1}\,(T\ns_1 - T\ns_2)\ . |

‘We now add up all the work values from the individual stages to get for the cycle

| \begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &=\nu R T\ns_2\,\In\bigg({V\subB\over V\subA }\bigg)+\nu R T\ns_1\,\In\bigg({ V\ns_\ssr{D}\over V\ns_\ssr{C} }\bigg)\ . \end{split

Since we are analyzing a cyclic process, we must have AE=0, we must have Q =W, which can of course be verified explicitly, by computing
[Q=Qns_\ssr{AB}+Qins_\ssr{BC}+Q\ns_\ssr{CD}+Q\ns_\ssr{DA} ]. To finish up, recall the adiabatic ideal gas equation of state, d(TV7~1) = 0. This tells us that

|\begin{aligned} T\ns_2\, V_\ssr{B}"{\gamma-1}&= T\ns_1\, V_\ssr{C}*{\gamma-1} \\ T\ns_2\, V_\ssr{A}*{\gamma-1}&= T\ns_1\, V_\ssr{D}"{\gamma-1} \ .\end{aligned} |

Dividing these two equations, we find

[{v\subB\over V\subA}={V\ns_\ssr{C}\over V\ns_\ssr{D} }\, |

and therefore

[\begin{aligned} W&=\nu R(T\ns_2-T\ns_1)\,\In\bigg({ V\subB\over V\subA}\bigg)\ Q\ns \ssr{AB}&=\nu R T\ns_2\,\In\bigg({V\subB\over V\subA}\bigg)\ .\end{aligned} |

Finally, the efficiency is given by the ratio of these two quantities:

|\eta={W\0ver Q\ns_\ssr{AB}}=1-{T\ns_1\over T\ns_2}\. |

The Stirling cycle

Many other engine cycles are possible. The Stirling cycle, depicted in Fig. , consists of two isotherms and two isochores. Recall the isothermal ideal gas equation of state, d(pV') = 0. Thus,
for an ideal gas Stirling cycle, we have

|p\subA Vins_1=p\subB V\ns_2 \qquad,\qquad p\ns_\ssr{D} V\ns_1=p\ns_\ssr{C} V\ns_2\, |

which says

| {p\subB\over p\subA }={p\subC\over p\subD}={V\ns_1\over V\ns_2}\. |

« This isothermal expansion is the power stroke. Assuming v moles of ideal gas throughout, we have pV' = vRT, = p, V; , hence

| WisubAB=\int\limits_{ V\ns_1}A{V\ns_2}\'\!dV\,{\nu R T\ns_2\over V}=\nu R T\ns_2\,\In\bigg({ V\ns_2\over V\ns_1}\bigg)\ .

Since AB is an isotherm, we have | E\subA=E\subB |, and from |\RDelta E\subAB=0 | we conclude | Q\subAB=W\subAB

« Isochoric cooling. Since dV =0 we have [W\subBC=0] The energy change is given by

[\RDelta E\subBC=E\subC-E\subB={\nu R(T\ns_1-T\ns_2)\over\gamma-1} , |

which is negative. Since [W\subBC=0], we have [ Q'subBC=\RDelta E\subBC]|.
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STIRLING CYCLE

pressure p

volume V
[stirling] A Stirling cycle consists of two isotherms (blue) and two isochores (green).

o Isothermal compression. Clearly

| W\subCD=\int\limits_{ V\ns_2}*{V\ns_1\'\!1dV\,{\nu R T\ns_1\over V}= -\nu R T\ns_1\,\In\bigg({ V\ns_2\over V\ns_1}\bigg)\ .
Since CD is an isotherm, we have | E\subC=E\subD |, and from |\RDelta E\subCD=0 | we conclude | Q\subCD=W\subCD
o Isochoric heating. Since dV =0 we have [ W\subDA=0|. The energy change is given by

[\RDelta E\subDA=F\subA-E\subD={\nu R(T\ns_2-T\ns_1)\over\gamma-1}\,|

which is positive, and opposite to [\RDelta E\subBC|. Since [ W\subDA=0], we have [ QisubDA=\RDelta E\subDA |.

‘We now add up all the work contributions to obtain

| \begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{ CD}+W\ns_\ssr{DA}\\ &=\nu R (T\ns_2-T\ns_1)\\In\bigg({ V\ns_2\over V\ns_1}\bigg)\ . \end{split} |

The cycle efficiency is once again

| \eta={W\over Q\subAB}=1-{T\ns_1\over T\ns_2}\ . |

The Otto and Diesel cycles
The Otto cycle is a rough approximation to the physics of a gasoline engine. It consists of two adiabats and two isochores, and is depicted in Fig. . Assuming an ideal gas, along the adiabats we
have d(pV"”) = 0. Thus,

| p\subA\,VA\gamma_1=p\subB\,VA\gamma_2 \qquad,\qquad p\ns_\ssr{D}\,VA\gamma_1=p\ns_\ssr{C}\,VA\gamma_2\, |

which says

| {p\subB\over p\subA }={p\subC\over p\subD}= \bigg({V\ns_1\over V\ns_2}\bigg){\!\gamma}\ . |

OTTO CYCLE

pressure p

volume V
[otto] An Otto cycle consists of two adiabats (dark red) and two isochores (green).
« Adiabatic expansion, the power stroke. The heat transfer is [Q\subAB=0], so from the First Law we have [W\subAB=-RDelta E\subAB=E\subA-E\subB |, thus

[W\subAB={p\subA V\ns_1-p\subB V\ns_2\over\gamma-1} ={p\subA V\ns_I\over \gamma-1}\Bigg[ 1-\bigg({V\ns_I\over V\ns_2}\bigg)"{\\gamma-1} \Bigg]\ .

Note that this result can also be obtained from the adiabatic equation of state [ pV/A\gamma=p\subA V_1A\gamma:

| WisubAB=\int\limits_{V\ns_1}*{V\ns_2}1\\Ip\,dV= p\subA V_1Mgamma\l\int\limits_{V\ns_1}{V\ns_2}\!dV\,VA{-\gamma} ={p\subA V\ns_1\over \gamma-1}\Bigg[ 1-\bigg({ V\ns_1I\over V\ns_2}\bigg)*{\!\gamma-

« Isochoric cooling (exhaust); dV = 0 hence [W\subBC=0] The heat [Q\subBC | absorbed is then

[Q\subBC=E\subC-E\subB={V\ns_2\over\gamma-1}\,(p\subC-p\subB)\ .|

In a realistic engine, this is the stage in which the old burned gas is ejected and new gas is inserted.

« Adiabatic compression; [Q\subCD=0] and [ W\subCD=E\subC-E\subD |:

[W\subCD={p\subC V\ns_2 - p\subD V\ns_I\over \gamma-1} =-{p\subD V\ns_I\over \gamma-1}\Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)*{\!\gamma-1} \Bigg]\ .

o TIsochoric heating, the combustion of the gas. As with BC we have dV = 0, and thus [ W\subDA=0]. The heat absorbed by the gas is then
| Q\subDA=E\subA-E\subD={V\ns_1\over\gamma-1}\,(p\subA-p\subD)\ . |
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D  dp=0 A DIESEL CYCLE

pressure p

volume V

[diesel] A Diesel cycle consists of two adiabats (dark red), one isobar (light blue), and one isochore (green).

The total work done per cycle is then

| \begin{split} W&=W\ns_\ssr{ AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{ DA }\\ &={(p\subA-p\subD)V\ns_1\over\gamma-1} \Bigg[ 1-\bigg({ V\ns_1\over V\ns_2}\bigg)"{\!\gamma-1}\Bigg]\ , \end{split} |

and the efficiency is defined to be

| \eta\equiv{W\over Q\subDA}=1-\bigg({V\ns_I\over V\ns_2}\bigg)\{\!\gamma-1}\ . |

The ratio Vz/ V, is called the compression ratio. We can make our Otto cycle more efficient simply by increasing the compression ratio. The problem with this scheme is that if the fuel mixture
becomes too hot, it will spontaneously ‘preignite’, and the pressure will jump up before point D in the cycle is reached. A Diesel engine avoids preignition by compressing the air only, and then later
spraying the fuel into the cylinder when the air temperature is sufficient for fuel ignition. The rate at which fuel is injected is adjusted so that the ignition process takes place at constant pressure. Thus,

in a Diesel engine, step DA is an isobar. The compression ratio is |r\equiv V\subB/V\subD|, and the cutoff ratio is | s\equiv V\subA/V\subD|. This refinement of the Otto cycle allows for higher

compression ratios (of about 20) in practice, and greater engine efficiency.

For the Diesel cycle, we have, briefly,

[\begin{split} W&=p\subA(V\subA-V\subD) + {p\subA V\subA-p\subB V\subB\over\gamma-1} + {p\subC V\subC-p\subD V\subD\over\gamma-1}\\ &={\gamma\,p\subA(V\subA-V\subD)\over\gamma-1} - {(p\subB-p\sut

and

| Q\subDA={\gamma\,p\subA(V\subA-V\subD)\over\gamma-1}\ . |

To find the efficiency, we will need to eliminate [p\subB] and [ p\subC] in favor of [ p\subA ] using the adiabatic equation of state d(pV'?) = 0. Thus,

|p\subB:p\subA\cdot\bigg((V\subA\over V\subB}\bigg)"{\!\!\gamma}\qquad,\qquad p\subC=p\subA\cdot\bigg({ V\subD\over V\subB}\bigg)"{\!\!\gamma}\ ,|

where we’ve used [p\subD=p\subA | and [ V\subC=V\subB ]. Putting it all together, the efficiency of the Diesel cycle is

| \eta={W\over Q\subDA }=1-{1\over\gamma}\ {r\ {1-\gamma} (s\\gamma-1)\over s-1}\. |

The Joule-Brayton cycle
Our final example is the Joule-Brayton cycle, depicted in Fig. , consisting of two adiabats and two isobars. Along the adiabats we have Thus,

| p\ns_2\,VAM\gamma_\ssr{A}=p\ns_1\,VA\gamma_\ssr{D} \qquad,\qquad p\ns_2\,VA\gamma_\ssr{B}=p\ns_1\,VA\gamma_\ssr{C}\, |

which says

| {V\subD\over V\subA}={V\subC\over V\subB}= \bigg({p\ns_2\over p\ns_1}\bigg){\'\gamman{-1} }\ . |

 This isobaric expansion at p = p, is the power stroke. We have

| \begin{aligned} W\subAB&=\int\limits_{V\subA }*{V\subB \\!dV\,p\ns_2 = p\ns_2\,(V\subB-V\subA)\\ \RDelta E\subAB&=E\subB-E\subA={p\ns_2\,(V\subB-V\subA)\over\gamma-1}\\ Q\subAB&=\RDelta E\subA

« Adiabatic expansion; [Q\subBC=0] and [W\subBC=E\subB-E\subC]. The work done by the gas is

| \begin{split} W\subBC&={p\ns_2 V\subB-p\ns_1 V\subC\over\gamma-1}= {p\ns_2 V\subB\over\gamma-1}\bigg(1-{p\ns_1\over p\ns_2} \cdot{ V\subC\over V\subB}\bigg)\\ &={p\ns_2\, V\subB\over \gamma-1}\Bigg

= JOULE—BRAYTON

(R CYCLE
o,
0

B dQ=0
g dQ=0
n
0}
~
o,

D P=P, C
volume V

[jbray] A Joule-Brayton cycle consists of two adiabats (dark red) and two isobars (light blue).

e Isobaric compression at p = p, .

| \begin{aligned} W\subCD&=\int\limits_{V\subC}M{ V\subD \\!dV\,p\ns_1 = p\ns_1\,(V\subD-V\subC) =-p\ns_2\,(V\subB-V\subA)\\bigg({p\ns_1\over p\ns_2}\bigg) M {\!1-\gamma~{-1} }\\ \RDelta E\subCD&=E\subD

« Adiabatic expansion; [Q\subDA=0] and [ W\subDA=FE\subD-E\subA |. The work done by the gas is

| \begin{split} W\subDA&={p\ns_1 V\subD-p\ns_2 V\subA\over\gamma-1}= -{p\ns_2 V\subA\over\gamma-1}\bigg(1-{p\ns_1\over p\ns_2} \cdot{V\subD\over V\subA }\bigg)\\ &=-{p\ns_2\, V\subA\over \gamma-1}\B

The total work done per cycle is then

| \begin{split} W&=W\ns_\ssr{ AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &={\gamma\,p\ns_2\, (V\subB-V\subA)\over \gamma-1}\Bigg[ 1-\bigg({p\ns_1\over p\ns_2} \bigg)"{\!1-\gamma~{-1} }\Bigg] \end{:

and the efficiency is defined to be
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Carnot engine at maximum power output

| \eta\equiv{W\over Q\subAB}=1-\bigg({p\ns_1\over p\ns_2}\bigg) {\!1-\gamma/{-1}}\. |

While the Carnot engine described above in §6. has maximum efficiency, it is practically useless, because the isothermal processes must take place infinitely slowly in order for the working material
to remain in thermal equilibrium with each reservoir. Thus, while the work done per cycle is finite, the cycle period is infinite, and the engine power is zero.

A modification of the ideal Carnot cycle is necessary to create a practical engine. The idea is as follows. During the isothermal expansion stage, the working material is maintained at a temperature
T,,, <T,. The temperature difference between the working material and the hot reservoir drives a thermal current,
\mathchar' 26Q,
sk (T, —Ty,) - (2.5.10)

Here, k., is a transport coefficient which describes the thermal conductivity of the chamber walls, multiplied by a geometric parameter (which is the ratio of the total wall area to its thickness).
Similarly, during the isothermal compression, the working material is maintained at a temperature 7}, > T}, which drives a thermal current to the cold reservoir,

\mathchar’ 260,

o =y (T, —T4) - (2.5.11)
Now let us assume that the upper isothermal stage requires a duration At, and the lower isotherm a duration At,. Then

Q, =5, ALy (T, - T,)
Q) =k Aty (Ty,, —T7) -

Since the engine is reversible, we must have

2 _9 (2.5.12)
le T21.u

which says
ﬁ _k Ty, (T, ~ T5,) (2.5.13)
Aty Ky Ty, (Th, —Ty)

The power is

Q,-Q
-2 7 (2.5.14)
(1+a) (At +At,)
where we assume that the adiabatic stages require a combined time of a (At, + At,) . Thus, we find
p— Rk (Ty = Tho) (Th, = 1)) (T, = Ty, (2.5.15)
Tta K Ty (T —Ty) + 6y Ty (T, — Ty,)
[pptab] Observed performances of real heat engines, taken from table 1 from Curzon and Albhorn (1975).
Power source T, (°0) T, (°C) \eta\ns_\ssr{Carnot} 7 (theor.) 7 (obs.)
West Thurrock (UK)
Coal Fired Steam Plant ~ 25 565 0.641 0.40 0.36
CANDU (Canada)
PHW Nuclear Reactor ~ 25 300 0.480 0.28 0.30
Larderello (Italy)
Geothermal Steam Plant ~ 80 250 0.323 0.175 0.16
We optimize the engine by maximizing P with respect to the temperatures T} and T}, . This yields
T, —/T,T,
T, =T, 2 112
14+4/kKy /Ky
VI T, - T,
T, =T + vtz T
144 /ky /Ky
The efficiency at maximum power is then \[\eta={Q\ns_2-\CQ\ns_1\over Q\ns_2}=1-{T\ns_{1\Rw }\over T\ns_{2\Rw} }= 1-\sqrt
\ . \label{MCeff}\] One also finds at maximum power \[{\RDelta t\ns_2\over \RDelta t\ns_1}=\sqrt\ .\] Finally, the maximized power is
2
p e (VhoVh (2.5.16)
maz = T \/’i—l I \/—K; . 5.

Table , taken from the article of Curzon and Albhorn (1975), shows how the efficiency of this practical Carnot cycle, given by Equation , rather accurately predicts the efficiencies of
functioning power plants.
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