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7.2: Fluids, Magnets, and the Ising Model

Lattice Gas Description of a Fluid

The usual description of a fluid follows from a continuum Hamiltonian of the form

The potential  is typically central, depending only on the magnitude , and short-ranged. Now consider a discretized version
of the fluid, in which we divide up space into cells (cubes, say), each of which can accommodate at most one fluid particle (due to
excluded volume effects). That is, each cube has a volume on the order of , where  is the diameter of the fluid particles. In a
given cube  we set the occupancy  if a fluid particle is present and  if there is no fluid particle present. We then have
that the potential energy is

where , where  is the position at the center of cube . The grand partition function is then approximated as

where

where  is the side length of each cube (chosen to be on the order of the hard sphere diameter). The  factor arises from the
integration over the momenta. Note  is the total number of fluid particles, so

Figure : The lattice gas model. An occupied cell corresponds to  ( ), and a vacant cell to  ( ).

Thus, we can write a lattice Hamiltonian,
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where  is a spin variable taking the possible values , and

where the prime on the sum indicates that  is to be excluded. For the Lennard-Jones system,  is
due to the attractive tail of the potential, hence  is positive, which prefers alignment of the spins  and . This interaction
is therefore ferromagnetic. The spin Hamiltonian in Equation  is known as the Ising model.

Phase diagrams and critical exponents
The physics of the liquid-gas transition in fact has a great deal in common with that of the transition between a magnetized and
unmagnetized state of a magnetic system. The correspondences are

where  is the magnetization density, defined here to be the total magnetization  divided by the number of lattice sites :

Sketches of the phase diagrams are reproduced in Figure . Of particular interest is the critical point, which occurs at 
in the fluid system and  in the magnetic system, with  by symmetry.

In the fluid, the coexistence curve in the  plane separates high density (liquid) and low density (vapor) phases. The specific
volume  (or the density ) jumps discontinuously across the coexistence curve. In the magnet, the coexistence curve in the 

 plane separates positive magnetization and negative magnetization phases. The magnetization density  jumps
discontinuously across the coexistence curve. For , the latter system is a paramagnet, in which the magnetization varies
smoothly as a function of . This behavior is most apparent in the bottom panel of the figure, where  and  curves are
shown.

For , the fluid exists in a two phase region, which is spatially inhomogeneous, supporting local regions of high and low
density. There is no stable homogeneous thermodynamic phase for  within the two phase region shown in the middle left
panel. Similarly, for the magnet, there is no stable homogeneous thermodynamic phase at fixed temperature  and magnetization 

 if  lies within the coexistence region. Rather, the system consists of blobs where the spin is predominantly up, and blobs
where the spin is predominantly down.

Note also the analogy between the isothermal compressibility  and the isothermal susceptibility :
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Figure : Comparison of the liquid-gas phase diagram with that of the Ising ferromagnet.

The ‘order parameter’ for a second order phase transition is a quantity which vanishes in the disordered phase and is finite in the
ordered phase. For the fluid, the order parameter can be chosen to be , the difference in the specific volumes of
the vapor and liquid phases. In the vicinity of the critical point, the system exhibits power law behavior in many physical quantities,
viz.

The quantities , , , and  are the critical exponents associated with the transition. These exponents satisfy certain equalities,
such as the Rushbrooke and Griffiths relations and hyperscaling,

Originally such relations were derived as inequalities, and only after the advent of scaling and renormalization group theories it was
realized that they held as equalities. We shall have much more to say about critical behavior later on, when we discuss scaling and
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renormalization.

Gibbs-Duhem relation for magnetic systems
Homogeneity of  means , and, after invoking the First Law ,
we have

Now consider two magnetic phases in coexistence. We must have , hence

where  is the magnetization per site and  is the specific entropy. Thus, we obtain the Clapeyron equation for
magnetic systems,

Thus, if  and , then we must have , which says that there is no latent heat associated with the
transition. This absence of latent heat is a consequence of the symmetry which guarantees that .

Order-disorder transitions
Another application of the Ising model lies in the theory of order-disorder transitions in alloys. Examples include Cu Au, CuZn,
and other compounds. In CuZn, the Cu and Zn atoms occupy sites of a body centered cubic (BCC) lattice, forming an alloy known
as -brass. Below , the atoms are ordered, with the Cu preferentially occupying one simple cubic sublattice and the Zn
preferentially occupying the other.

The energy is a sum of pairwise interactions, with a given link contributing , , or , depending on whether it is an A-A,
B-B, or A-B/B-A link. Here A and B represent Cu and Zn, respectively. Thus, we can write the energy of the link  as

where

The Hamiltonian is then

where the exchange constant  and the magnetic field  are given by

and , where  is the total number of lattice sites and  is the lattice coordination number,
which is the number of nearest neighbors of any given site.
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Ĥ =∑
⟨ij⟩

Eij

= { ( + −2 ) + ( − ) ( + ) + ( + +2 )}∑
⟨ij⟩

1

4
ε
AA

εBB ε
AB

σi σj
1

4
ε
AA

εBB σi σj
1

4
ε
AA

εBB ε
AB

= −J −H +  ,∑
⟨ij⟩

σi σj ∑
i

σi E0

J H

J

H

= (2 − − )
1

4
ε
AB

ε
AA

εBB

= ( − ) ,
1

4
εBB εAA

= Nz( + +2 )E0
1
8

ε
AA

εBB ε
AB

N z = 8

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18584?pdf


7.2.5 https://phys.libretexts.org/@go/page/18584

Figure : Order-disorder transition on the square lattice. Below , order develops spontaneously on the two 
sublattices. There is perfect sublattice order at  (left panel).

Note that

The antiferromagnetic case is depicted in Figure .
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