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4.4: Ordinary Canonical Ensemble (OCE)

Canonical Distribution and Partition Function
Consider a system  in contact with a world , and let their union  be called the ‘universe’. The situation is depicted
in Figure [universe]. The volume  and particle number  of the system are held fixed, but the energy is allowed to fluctuate by
exchange with the world . We are interested in the limit , , with , with similar relations holding
for the respective volumes and energies. We now ask what is the probability that  is in a state  with energy . This is given
by the ratio

Then

The constant  is given by

Thus, we find . The constant  is fixed by the requirement that :

We’ve already met  in Equation  – it is the Laplace transform of the density of states. It is also called the partition function
of the system . Quantum mechanically, we can write the ordinary canonical density matrix as

which is known as the Gibbs distribution. Note that , hence the ordinary canonical distribution is a stationary solution
to the evolution equation for the density matrix. Note that the OCE is specified by three parameters: , , and .

The difference between  and 
Let the total energy of the Universe be fixed at . The joint probability density  for the system to have energy 
and the world to have energy  is

where

which ensures that . The probability density  is defined such that  is the
(differential) probability for the system to have an energy in the range . The units of  are . To obtain 

, we simply integrate the joint probability density  over all possible values of , obtaining
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T V N

P( )En Pn

E
U

P ( , )E
S
E

W
E

S

EW

P ( , ) = ( ) ( ) δ( − − )/ ( ) ,ES EW DS ES DW EW EU ES EW DU EU (4.4.9)

( ) = d ( ) ( − ) ,DU EU ∫

−∞

∞

ES DS ES DW EU ES (4.4.10)

∫d ∫d P ( , ) = 1ES EW ES EW P ( )ES P ( )dES ES

[ , +d ]E
S
E

S
E

S
P ( )E

S
E−1

P ( )ES P ( , )ES EW EW

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18565?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04%3A_Statistical_Ensembles/4.04%3A_Ordinary_Canonical_Ensemble_(OCE)


4.4.2 https://phys.libretexts.org/@go/page/18565

as we have in Equation .

Now suppose we wish to know the probability  that the system is in a particular state  with energy . Clearly

Additional remarks
The formula of Equation  is quite general and holds in the case where , so long as we are in the
thermodynamic limit, where the energy associated with the interface between S and W may be neglected. In this case, however, one
is not licensed to perform the subsequent Taylor expansion, and the distribution  is no longer of the Gibbs form. It is also valid
for quantum systems , in which case we interpret  as a diagonal element of the density matrix . The density of
states functions may then be replaced by

The off-diagonal matrix elements of  are negligible in the thermodynamic limit.

Averages within the OCE
To compute averages within the OCE,

where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we have

with  for identical particles (‘Maxwell-Boltzmann statistics’). Thus,

Entropy and Free Energy
The Boltzmann entropy is defined by

The Boltzmann entropy and the statistical entropy  are identical in the thermodynamic limit. We define the
Helmholtz free energy  as

hence
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∑n e
−βEn

(4.4.13)

ϱ(φ) = , Z = Tr = ∫ dμ  ,
1

Z
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Therefore the entropy is

which is to say , where

is the average energy. We also see that

Thus,  is a Legendre transform of , with

which means

Fluctuations in the OCE
In the OCE, the energy is not fixed. It therefore fluctuates about its average value . Note that

Thus, the heat capacity is related to the fluctuations in the energy, just as we saw at the end of §4:

For the nonrelativistic ideal gas, we found , hence the ratio of RMS fluctuations in the energy to the energy itself is

and the ratio of the RMS fluctuations to the mean value vanishes in the thermodynamic limit.

The full distribution function for the energy is

Thus,
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where  is the statistical entropy. Let’s write , where  extremizes the combination , the
solution to , where the energy derivative of  is performed at fixed volume  and particle number . We now
expand  to second order in , obtaining

Recall that . Thus,

Applying this to both numerator and denominator of Equation , we obtain

where  is a normalization constant which guarantees . Once again, we see that the

distribution is a Gaussian centered at , and of width . This is a consequence of the Central Limit

Theorem.

Thermodynamics revisited
The average energy within the OCE is

and therefore

where

Finally, from , we can write
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so the generalized force  conjugate to the generalized displacement  is

This is the force acting on the system . In the chapter on thermodynamics, we defined the generalized force conjugate to  as 
.

Figure : Microscopic, statistical interpretation of the First Law of Thermodynamics.

Thus we see from Equation  that there are two ways that the average energy can change; these are depicted in the sketch of
Figure . Starting from a set of energy levels  and probabilities , we can shift the energies to . The resulting
change in energy  is identified with the work done on the system. We could also modify the probabilities to 
without changing the energies. The energy change in this case is the heat absorbed by the system: . This provides us
with a statistical and microscopic interpretation of the First Law of Thermodynamics.

Generalized Susceptibilities
Suppose our Hamiltonian is of the form

where  is an intensive parameter, such as magnetic field. Then

and
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Typically we will take  to be an extensive quantity. We can now define the susceptibility  as

The volume factor in the denominator ensures that  is intensive.

It is important to realize that we have assumed here that , the ‘bare’ Hamiltonian  and the operator  commute. If
they do not commute, then the response functions must be computed within a proper quantum mechanical formalism, which we
shall not discuss here.

Note also that we can imagine an entire family of observables  satisfying  and , for all  and 
. Then for the Hamiltonian

we have that

and we may define an entire matrix of susceptibilities,
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