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8.8: Nonequilibrium Quantum Transport

Boltzmann equation for quantum systems

Almost everything we have derived thus far can be applied, mutatis mutandis, to quantum systems. The main difference is that the
distribution  corresponding to local equilibrium is no longer of the Maxwell-Boltzmann form, but rather of the Bose-Einstein or
Fermi-Dirac form,

where the top sign applies to bosons and the bottom sign to fermions. Here we shift to the more common notation for quantum
systems in which we write the distribution in terms of the wavevector  rather than the momentum . The quantum
distributions satisfy detailed balance with respect to the quantum collision integral

where , , , , and , and where we have assumed time-reversal and
parity symmetry. Detailed balance requires

where  is the equilibrium distribution. One can check that

which is the Boltzmann distribution, which we have already shown to satisfy detailed balance. For the streaming term, we have \
[\begin{split} df^0&=\kT\,{\pz f^0\over\pz\ve}\>d\!\left({\ve-\mu\over\kT}\right)\\ &=\kT\>{\pz f^0\over\pz\ve}\left\{-
{d\mu\over\kT}-{(\ve-\mu)\,dT\over\kB T^2} +{d\ve\over\kT}\right\}\\ &=-{\pz f^0\over\pz \ve}\left\

|\expect{\Bk'}{U}{\Bk}|^2\,\big(f(\Bk')-f(\Bk)\big)\,\delta\big(\ve(\Bk)-\ve(\Bk')\big)\label{qobc}\\ &={2\pi\over\hbar
V}\int\limits_{\hat\ROmega}\!\!{d^3\!k\over (2\pi)^3}\> |\,{\hat U}(\Bk-\Bk')|^2\,\big(f(\Bk')-f(\Bk)\big)\,\delta\big(\ve(\Bk)-
\ve(\Bk')\big)\ . \end{split}\] The wavevectors are now restricted to the first Brillouin zone, and the dispersion  is no longer the
ballistic form  but rather the dispersion for electrons in a particular energy band (typically the valence band) of a
solid . Note that  satisfies detailed balance with respect to one-body collisions as well .

In the presence of a weak electric field  and a (not necessarily weak) magnetic field , we have, within the relaxation time
approximation,  with

where  is the gradient of the ‘electrochemical potential’ . In deriving
the above equation, we have worked to lowest order in small quantities. This entails dropping terms like  (higher order in

spatial derivatives) and  (both  and  are assumed small). Typically  is energy-dependent, .

We can use Equation [qlbe] to compute the electrical current  and the thermal current ,

Here the factor of  is from spin degeneracy of the electrons (we neglect Zeeman splitting).
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In the presence of a time-independent temperature gradient and electric field, linearized Boltzmann equation in the relaxation time
approximation has the solution

We now consider both the electrical current   as well as the thermal current density . One readily obtains

where the transport coefficients  are matrices:

If we define the hierarchy of integral expressions

then we may write

The linear relations in Equation ([linrel1]) may be recast in the following form:

where the matrices , , , and  are given by

or, in terms of the ,

[thermocouple] A thermocouple is a junction
formed of two dissimilar metals. With no

electrical current passing, an electric field is
generated in the presence of a temperature
gradient, resulting in a voltage V=V_\RA-V_\RB.

[thermocouple] A thermocouple is a junction formed of two dissimilar metals. With no electrical current passing, an electric field is
generated in the presence of a temperature gradient, resulting in a voltage .

These equations describe a wealth of transport phenomena:

( ) An electrical current  will generate an electric field , where  is the electrical resistivity.
( ) An electrical current  will generate an heat current , where  is the Peltier coefficient.
( ) A temperature gradient  gives rise to a heat current , where  is the thermal conductivity.
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( ) A temperature gradient  gives rise to an electric field , where  is the Seebeck
coefficient.

One practical way to measure the thermopower is to form a junction between two dissimilar metals, A and B. The junction is held
at temperature  and the other ends of the metals are held at temperature . One then measures a voltage difference between the
free ends of the metals – this is known as the Seebeck effect. Integrating the electric field from the free end of A to the free end of
B gives

What one measures here is really the difference in thermopowers of the two metals. For an absolute measurement of , replace B
by a superconductor (  for a superconductor). A device which converts a temperature gradient into an emf is known as a
thermocouple.

The Peltier effect has practical applications in refrigeration technology. Suppose an electrical current  is passed through a junction
between two dissimilar metals, A and B. Due to the difference in Peltier coefficients, there will be a net heat current into the
junction of . Note that this is proportional to , rather than the familiar  result
from Joule heating. The sign of  depends on the direction of the current. If a second junction is added, to make an ABA
configuration, then heat absorbed at the first junction will be liberated at the second. 

[peltier] A sketch of a Peltier effect refrigerator. An electrical current I
is passed through a junction between two dissimilar metals. If the

dotted line represents the boundary of a thermally well-insulated body,
then the body cools when \bsqcap_\RB >\bsqcap_\RA, in order to
maintain a heat current balance at the junction.

[peltier] A sketch of a Peltier effect refrigerator. An electrical current  is passed through a junction between two dissimilar metals.
If the dotted line represents the boundary of a thermally well-insulated body, then the body cools when 

, in order to maintain a heat current balance at the junction.

The Heat Equation
We begin with the continuity equations for charge density  and energy density :

where  is the electric field . Now we invoke local thermodynamic equilibrium and write

where  is the electron number density ( ) and  is the specific heat. We may now write

Invoking , we see that if there is no electrical current ( ), we obtain the heat equation

This results in a time scale  for temperature diffusion , where  is a typical length scale and  is a numerical
constant. For a cube of size  subjected to a sudden external temperature change,  is the side length and  (solve by
separation of variables).
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Calculation of Transport Coefficients
We will henceforth assume that sufficient crystalline symmetry exists ( cubic symmetry) to render all the transport coefficients
multiples of the identity matrix. Under such conditions, we may write  with

The low-temperature behavior is extracted using the Sommerfeld expansion,

where  is a dimensionless differential operator.

Let us now perform some explicit calculations in the case of a parabolic band with an energy-independent scattering time . In this
case, one readily finds

where . Thus,

from which we obtain the low-  results ,

and of course . The predicted universal ratio

is known as the Wiedemann-Franz law. Note also that our result for the thermopower is unambiguously negative. In actuality,
several nearly free electron metals have positive low-temperature thermopowers (Cs and Li, for example). What went wrong? We
have neglected electron-phonon scattering!

Onsager Relations
Transport phenomena are described in general by a set of linear relations,

where the  are generalized forces and the  are generalized currents. Moreover, to each force  corresponds a unique
conjugate current , such that the rate of internal entropy production is

The Onsager relations (also known as Onsager reciprocity) state that

where  describes the parity of  under time reversal:
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i

Fi Ji Fi

∂Ṡ
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where  is the time reverse of . To justify the Onsager relations requires a microscopic description of our nonequilibrium
system.

The Onsager relations have some remarkable consequences. For example, they require, for , that the thermal conductivity
tensor  of any crystal must be symmetric, independent of the crystal structure. In general,this result does not follow from
considerations of crystalline symmetry. It also requires that for every ‘off-diagonal’ transport phenomenon, the Seebeck effect,
there exists a distinct corresponding phenomenon, the Peltier effect.

For the transport coefficients studied, Onsager reciprocity means that in the presence of an external magnetic field,

Let’s consider an isotropic system in a weak magnetic field, and expand the transport coefficients to first order in :

Onsager reciprocity requires  and . We can now write

There are several new phenomena lurking:

( ) An electrical current  and a field  yield an electric field . The Hall

coefficient is .
( ) An electrical current  and a field  yield a temperature gradient . The Ettingshausen

coefficient is .

( ) A temperature gradient  and a field  yield an electric field . The

Nernst coefficient is .

( ) A temperature gradient  and a field  yield an orthogonal temperature gradient .

The Righi-Leduc coefficient is .
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