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6.4: Liquid State Physics

The many-particle Distribution Function

The virial expansion is typically applied to low-density systems. When the density is high, when , where  is a typical molecular or atomic length scale,
the virial expansion is impractical. There are to many terms to compute, and to make progress one must use sophisticated resummation techniques to investigate the
high density regime.

To elucidate the physics of liquids, it is useful to consider the properties of various correlation functions. These objects are derived from the general -body
Boltzmann distribution,

We assume a Hamiltonian of the form

The quantity

is the propability of finding  particles in the system, with particle #1 lying within  of  and having momentum within  of , If we compute averages
of quantities which only depend on the positions  and not on the momenta , then we may integrate out the momenta to obtain, in the OCE,

where  is the total potential energy,

and  is the configuration integral,

We will, for the most part, consider only two-body central potentials as contributing to , which is to say we will only retain the middle term on the RHS. Note
that  is invariant under any permutation of the particle labels.

Averages over the Distribution
To compute an average, one integrates over the distribution:

The overall -particle probability density is normalized according to

The average local density is

Note that the local density obeys the sum rule

In a translationally invariant system,  is a constant independent of position. The boundaries of a system will in general break translational invariance,
so in order to maintain the notion of a translationally invariant system of finite total volume, one must impose periodic boundary conditions.

The two-particle density matrix  is defined by
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i=1

N p2
i

2m
x1 xN (6.4.2)

f( ,… , ; ,… , ) ⋯x
1

x
N

p
1

p
N

ddx1 d
dp1

hd

ddxN ddpN

hd
(6.4.3)

N d3x1 x1 ddp1 p1

{ }xj { }pj

P ( ,… , ) = ⋅  ,x1 xN Q−1
N

1

N !
e−βW( , … , )x1 xN (6.4.4)

W

W ( ,… , ) = v( )+ u( − )+ w( − , − )+…  ,x1 xN ∑
i

xi ∑
i<j

xi xj ∑
i<j<k

xi xj xj xk (6.4.5)

QN

(T ,V ) = ∫ ⋯ ∫  .QN

1

N !
ddx1 ddxN e−βW( , … , )x1 xN (6.4.6)

W

P ( ,… , )x1 xN

⟨F ( ,… , )⟩ = ∫ ⋯∫ P ( , … , )F ( , … , ) .x1 xN ddx1 ddxN x1 xN x1 xN (6.4.7)

N

∫ P ( ,… , ) = 1 .ddxN x1 xN (6.4.8)

(r)n1 = ⟨ δ(r− )⟩∑
i

xi

=N∫ ⋯∫ P (r, ,… , ) .ddx2 ddxN x2 xN

∫ r (r) =N  .dd n1 (6.4.9)

= n=n1
N
V

( , )n2 r1 r2

( , )n2 r1 r2 = ⟨ δ( − ) δ( − )⟩∑
i≠j

r1 xi r2 xj

=N(N −1)∫ ⋯∫ P ( , , ,… , ) .ddx3 ddxN r1 r2 x3 xN

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18579?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.04%3A_Liquid_State_Physics


6.4.2 https://phys.libretexts.org/@go/page/18579

As in the case of the one-particle density matrix, the local density , the two-particle density matrix satisfies a sum rule:

Generalizing further, one defines the -particle density matrix as

where the prime on the sum indicates that all the indices  are distinct. The corresponding sum rule is then

The average potential energy can be expressed in terms of the distribution functions. Assuming only two-body interactions, we have

As the separations  get large, we expect the correlations to vanish, in which case

The -particle distribution function is defined as the ratio

For large separations, then,

For isotropic systems, the two-particle distribution function  depends only on the magnitude . As a function of this scalar separation, the
function is known as the radial distribution function:

The radial distribution function is of great importance in the physics of liquids because

thermodynamic properties of the system can be related to 
 is directly measurable by scattering experiments

For example, in an isotropic system the average potential energy is given by

For a three-dimensional system, the average internal ( potential) energy per particle is
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∫ ∫ ( , ) =N(N −1) .ddr1 ddr2 n2 r1 r2 (6.4.10)
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Intuitively,  is the average number of particles lying at a radial distance between  and  from a given reference particle. The total
potential energy of interaction with the reference particle is then . Now integrate over all  and divide by two to avoid double-counting. This recovers
Equation .

Figure : Pair distribution functions for hard spheres of diameter  at filling fraction  (left) and for liquid Argon at K (right).
Molecular dynamics data for hard spheres (points) is compared with the result of the Percus-Yevick approximation (see below in §5.8). Reproduced (without
permission) from J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, fig 5.5. Experimental data on liquid argon are from the neutron scattering work of J.
L. Yarnell , Phys. Rev. A 7, 2130 (1973). The data (points) are compared with molecular dynamics calculations by Verlet (1967) for a Lennard-Jones fluid.

In the OCE,  obeys the sum rule

hence

The function  is called the pair correlation function.

In the grand canonical formulation, we have

where  is the isothermal compressibility. Note that in an ideal gas we have  and . Self-condensed systems, such as liquids and
solids far from criticality, are nearly incompressible, hence , and therefore . For incompressible systems, where , this
becomes an equality.

As we shall see below in §5.4, the function , or rather its Fourier transform , is directly measured in a scattering experiment. The question then arises as to
which result applies: the OCE result from Equation  or the GCE result from Equation . The answer is that under almost all experimental conditions it is
the GCE result which applies. The reason for this is that the scattering experiment typically illuminates only a subset of the entire system. This subsystem is in
particle equilibrium with the remainder of the system, hence it is appropriate to use the grand canonical ensemble. The OCE results would only apply if the
scattering experiment were to measure the entire system.
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Figure : Monte Carlo pair distribution functions for liquid water. From A. K. Soper, Chem Phys. 202, 295 (1996).

Virial Equation of State

The virial of a mechanical system is defined to be

where  is the total force acting on particle . If we average  over time, we obtain

Here, we have made use of

as well as ergodicity and equipartition of kinetic energy. We have also assumed three space dimensions. In a bounded system, there are two contributions to the
force . One contribution is from the surfaces which enclose the system. This is given by

The remaining contribution is due to the interparticle forces. Thus,

Invoking the definition of , we have

As an alternate derivation, consider the First Law of Thermodynamics,

from which we derive
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Now

6.4.2

G= ⋅  ,∑
i

xi Fi (6.4.17)

Fi i G

⟨G⟩ = dt ⋅lim
T→∞

1

T
∫

0

T

∑
i

xi Fi

=− dt mlim
T→∞

1

T
∫

0

T

∑
i

ẋ
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Thus,

Finally, from  we have

and hence

Note that the density  enters the equation of state explicitly on the RHS of the above equation, but also implicitly through the pair distribution function ,
which has implicit dependence on both  and .

Correlations and Scattering
Consider the scattering of a light or particle beam ( photons or neutrons) from a liquid. We label the states of the beam particles by their wavevector  and we
assume a general dispersion . For photons, , while for neutrons . We assume a single scattering process with the liquid, during which
the total momentum and energy of the liquid plus beam are conserved. We write

where  is the final state of the scattered beam particle. Thus, the fluid transfers momentum  and energy  to the beam.

Figure : In a scattering experiment, a beam of particles interacts with a sample and the beam particles scatter off the sample particles. A momentum  and
energy  are transferred to the beam particle during such a collision. If , the scattering is said to be elastic. For , the scattering is inelastic.

Now consider the scattering process between an initial state  and a final state , where these states describe both the beam and the liquid. According to
Fermi’s Golden Rule, the scattering rate is

where  is the scattering potential and  is the initial internal energy of the liquid. If  is the position of the beam particle and  are the positions of the liquid
particles, then
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The differential scattering cross section (per unit frequency per unit solid angle) is

where

is the density of states for the beam particle and

Consider now the matrix element

where we have assumed that the incident and scattered beams are plane waves. We then have

where  is the dynamic structure factor,

Note that for an arbitrary operator ,

Thus,

where the angular brackets in the last line denote a thermal expectation value of a quantum mechanical operator. If we integrate over all frequencies, we obtain the
equal time correlator,

known as the static structure factor . Note that , since all the phases  are then unity. As , the phases oscillate rapidly with changes
in the distances , and average out to zero. However, the ‘diagonal’ terms in the sum, those with , always contribute a total of  to . Therefore in
the  limit we have .

In general, the detectors used in a scattering experiment are sensitive to the energy of the scattered beam particles, although there is always a finite experimental
resolution, both in  and . This means that what is measured is actually something like
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where  and  are essentially Gaussian functions of their argument, with width given by the experimental resolution. If one integrates over all frequencies , if
one simply counts scattered particles as a function of  but without any discrimination of their energies, then one measures the static structure factor . Elastic
scattering is determined by , no energy transfer.

Figure : Comparison of the static structure factor as determined by neutron scattering work of J. L. Yarnell , Phys. Rev. A 7, 2130 (1973) with molecular
dynamics calculations by Verlet (1967) for a Lennard-Jones fluid.

Correlation and Response
Suppose an external potential  is also present. Then

where

The Helmholtz free energy is then

Now consider the functional derivative
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hence

which is the local density at .

Next, consider the response function,
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Taking the Fourier transform,

We may also write

.

What does this all mean? Suppose we have an isotropic system which is subjected to a weak, spatially inhomogeneous potential . We expect that the density 
 in the presence of the inhomogeneous potential to itself be inhomogeneous. The first corrections to the  value  are linear in , and given by

Note that if  it becomes energetically more costly for a particle to be at . Accordingly, the density response is negative, and proportional to the ratio 
 – this is the first term in the above equation. If there were no correlations between the particles, then  and this would be the entire story. However,

the particles in general are correlated. Consider, for example, the case of hard spheres of diameter , and let there be a repulsive potential at . This means that
it is less likely for a particle to be centered anywhere within a distance  of the origin. But then it will be more likely to find a particle in the next ‘shell’ of radial
thickness .

BBGKY Hierarchy
The distribution functions satisfy a hierarchy of integro-differential equations known as the BBGKY hierarchy . In homogeneous systems, we have

where

Taking the gradient with respect to , we have

where  means to sum on indices  and  such that  and ,

Now

hence

− T (q) = n+ (q) = nS(q) .kB χ̂ n2 ĥ (6.4.38)

= 1+n (0) =−n T (0) ,
κT

κ0
T

ĥ kB χ̂ (6.4.39)

=− (0)κT χ̂

v(r)

n(r) v= 0 n= n0 v

δn(r) = ∫ χ(r, ) v( )ddr′ r′ r′

=−β v(r)−β ∫ h(r−r) v( ) .n0 n2
0 ddr′ r

′

v(r) > 0 r

v(r)/ TkB h = 0

a r = 0

a

a

11

( , … , ) = ∫ ⋯∫ P ( , … , , , … , ) ,g
k

r1 r
k

N !

(N −k)!

1

nk
ddx

k+1
ddx

N
r1 r

k
x
k+1

x
N

(6.4.40)

P ( , … , ) = ⋅  .x1 xN

1

QN

1

N !
e−βW( , … , )x1 xN (6.4.41)

r1

( , … , )
∂

∂r1
gk r1 rk = ⋅ ∫ ⋯∫

1

QN

n−k

(N −k)!
ddxk+1 ddxN e−β u( )∑k<i<j xij

× [ ⋅ ] ,
∂

∂r1
e−β u( )∑i<j≤k rij e−β u( − )∑i≤k<j ri xj

∑k<i<j i j i < j k< i

u( )∑
k<i<j

xij

u( )∑
i<j≤k

rij

u( − )∑
i≤k<j

ri xj

≡ u( − )∑
i=k+1

N−1

∑
j=i+1

N

xi xj

≡ u( − )∑
i=1

k−1

∑
j=i+1

k

ri rj

= u( − ) .∑
i=1

k

∑
j=k+1

N

ri xj

[ ⋅ ]=
∂

∂r1
e−β u( )∑i<j≤k rij e−β u( − )∑i≤k<j ri xj

β {  + } ⋅ [ ⋅ ]  ,∑
1<j≤k

∂u( − )r1 rj

∂r
1

∑
k<j

∂u( − )r1 rj

∂r
1

e−β u( )∑i<j≤k rij e−β u( − )∑i≤k<j ri xj

( , … , )
∂

∂r1
gk r1 rk =−β ( , … , )∑

j=2

k ∂u( − )r1 rj

∂r1
gk r1 rk

−β(N −k)∫ P ( , … , , , … , )ddxk+1

∂u( − )r1 xk+1

∂r1
r1 rk xk+1 xN

=−β ( , … , )∑
j=2

k ∂u( − )r1 rj

∂r1
g
k

r1 r
k

+n∫ ( , … , , ) .ddxk+1

∂u( − )r1 xk+1

∂r1
gk+1 r1 rk xk+1
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Thus, we obtain the BBGKY hierarchy:

The BBGKY hierarchy is an infinite tower of coupled integro-differential equations, relating  to  for all . If we approximate  at some level  in terms of
equal or lower order distributions, then we obtain a closed set of equations which in principle can be solved, at least numerically. For example, the Kirkwood
approximation closes the hierarchy at order  by imposing the condition

This results in the single integro-differential equation

This is known as the Born-Green-Yvon (BGY) equation. In practice, the BGY equation, which is solved numerically, gives adequate results only at low densities.

Ornstein-Zernike Theory
The direct correlation function  is defined by the equation

where  and we assume an isotropic system. This is called the Ornstein-Zernike equation. The first term, , accounts for local correlations,
which are then propagated in the second term to account for long-ranged correlations.

The OZ equation is an integral equation, but it becomes a simple algebraic one upon Fourier transforming:

the solution of which is

The static structure factor is then

In the grand canonical ensemble, we can write

where  is the ideal gas isothermal compressibility.

At this point, we have merely substituted one unknown function, , for another, namely . To close the system, we need to relate  to  again in some
way. There are various approximation schemes which do just this.

Percus-Yevick Equation

In the Percus-Yevick approximation, we take

Note that  vanishes whenever the potential  itself vanishes. This results in the following integro-differential equation for the pair distribution function 
:

This is the Percus-Yevick equation. Remarkably, the Percus-Yevick (PY) equation can be solved analytically for the case of hard spheres, where  for 
 and  for , where  is the hard sphere diameter. Define the function , in which case

Here,  is the Mayer function. We remark that the definition of  may cause some concern for the hard sphere system, because of the 
term, which diverges severely for . However,  vanishes in this limit, and their product  is in fact finite! The PY equation may then be written for the
function  as

− T ( , … , )kB

∂

∂r1
gk r1 rk = ( , … , )∑

j=2

k ∂u( − )r1 rj

∂r1
gk r1 rk

+n∫ ( , … , , ) .ddr′
∂u( − )r1 r′

∂r1
gk+1 r1 rk r′

gk gk+1 k gk k

k= 2

( , , ) ≡ g( − ) g( − ) g( − ) .g3 r1 r2 r3 r1 r2 r1 r3 r2 r2 (6.4.42)

− T ∇g(r) = g(r)∇u+n∫ g(r) g( ) g(r− )∇u(r− ) .kB ddr′ r
′

r
′

r
′ (6.4.43)

c(r)

h(r) = c(r)+n∫ h(r− ) c( ) ,d3r′ r
′

r
′ (6.4.44)

h(r) = g(r)−1 c(r)

(q) = (q)+n (q) (q) ,ĥ ĉ ĥ ĉ (6.4.45)

(q) =  .ĥ
(q)ĉ

1−n (q)ĉ
(6.4.46)

S(q) = 1+n (q) =  .ĥ
1

1−n (q)ĉ
(6.4.47)

= = ⋅ ⟹ n (0) = 1−  ,κT
1+n (0)ĥ

n TkB

1

n TkB

1

1−n (0)ĉ
ĉ

κ0
T

κT
(6.4.48)

= 1/n Tκ0
T kB

h(r) c(r) c(r) h(r)

c(r) = [1− ] ⋅ g(r) .eβu(r) (6.4.49)

c(r) u(r)

g(r)

g(r) = +n ∫ [g(r− )−1] ⋅ [1− ] g( ) .e−βu(r) e−βu(r) d3r′ r
′ eβu( )r′

r
′ (6.4.50)

u(r) =∞

r≤ a u(r) = 0 r> a a y(r) = g(r)eβu(r)

c(r) = y(r) f(r) ={−y(r)
0

,  r≤ a

,  r> a .
(6.4.51)

f(r) = −1e−βu(r) y(r) eβu(r)

r≤ a g(r) y(r)

y(r)
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This has been solved using Laplace transform methods by M. S. Wertheim, J. Math. Phys. 5, 643 (1964). The final result for  is

where  is the packing fraction and

This leads to the equation of state

This gets  and  exactly right. The accuracy of the PY approximation for higher order virial coefficients is shown in table [pytab].

To obtain the equation of state from Equation ref{PYdcf}, we invoke the compressibility equation,

We therefore need

With  and using the definitions of  in Equation , one finds

We then have, from the compressibility equation,

Integrating, we obtain  up to a constant. The constant is set so that  when . The result is Equation .

Table [pytab]: Comparison of exact (Monte Carlo) results to those of the Percus-Yevick (PY) and hypernetted chains approximation (HCA) for hard spheres in three
dimensions. Sources: Hansen and McDonald (1990) and Reichl (1998)

quantity exact PY HNC

0.28695 0.2969 0.2092

0.1103 0.1211 0.0493

0.0386 0.0281 0.0449

0.0138 0.0156 –

Another commonly used scheme is the hypernetted chains (HNC) approximation, for which

The rationale behind the HNC and other such approximation schemes is rooted in diagrammatic approaches, which are extensions of the Mayer cluster expansion
to the computation of correlation functions. For details and references to their application in the literature, see Hansen and McDonald (1990) and Reichl (1998).

Ornstein-Zernike Approximation at Long Wavelengths

Let’s expand the direct correlation function  in powers of the wavevector , viz.

Here we have assumed spatial isotropy. Then

y(r) = 1+n y( )−n y( ) y(r− ) .∫

<ar′

d3r′ r
′ ∫

<ar′

|r− |>ar′

d3r′ r
′

r
′ (6.4.52)

c(r)

c(r) =−{ +6η ( )+ η ( } ⋅ Θ(a−r) ,λ1 λ2
r

a

1

2
λ1

r

a
)
3

(6.4.53)

η = π n1
6

a3

= , =−  .λ1

(1+2η)2

(1−η)4
λ2

(1+ η1
2

)2

(1−η)4
(6.4.54)

p = n T ⋅  .kB

1+η+η2

(1−η)3
(6.4.55)

B2 B3

n T = =  .kB κT ( )
∂n

∂p T

1

1−n (0)ĉ
(6.4.56)

(0)ĉ = ∫ r c(r)d3

=−4π dx [ +6 η x+ η ]a3∫

0

1

x2 λ1 λ2

1

2
λ1 x

3

=−4π [ + η + η ]  .a3
1

3
λ1

3

2
λ2

1

12
λ1

η = π n1
6

a3 λ1,2 6.4.54

1−n (0) =  .ĉ
1+4η+4η2

(1−η)4
(6.4.57)

=  .
6 TkB

πa3
∂p

∂η

1+4η+4η2

(1−η)4
(6.4.58)

p(η) p = 0 n= 0 6.4.55

/B4 B3
2

/B5 B4
2

/B6 B5
2

/B7 B6
2

c(r) =−βu(r)+h(r)−ln(1+h(r)) . (6.4.59)

(q)ĉ q

(q) = (0)+ + +… .ĉ ĉ c2 q
2 c4 q

4 (6.4.60)

1−n (q)ĉ = = 1−n (0)−n +…
1

S(q)
ĉ c2 q

2

≡ + +O( ) ,ξ−2R2 q2R2 q4
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where

and

The quantity  tells us something about the effective range of the interactions, while  is the correlation length. As we approach a critical point, the
correlation length diverges as a power law:

The susceptibility is given by

In the Ornstein-Zernike approximation, one drops the  terms in the denominator and retains only the long wavelength behavior. in the direct correlation
function. Thus,

We now apply the inverse Fourier transform back to real space to obtain . In  dimension the result can be obtained exactly:

In higher dimensions  we can obtain the result asymptotically in two limits:

Take  with  fixed. Then

where the  are dimensionless constants.
Take  with  fixed; this is the limit  at fixed . In dimensions  we obtain

In  dimensions we obtain

where the  are dimensionless constants.

At criticality, , and clearly our results in  and  dimensions are nonsensical, as they are divergent. To correct this behavior, M. E. Fisher in 1963
suggested that the OZ correlation functions in the  limit be replaced by

a result known as anomalous scaling. Here,  is the anomalous scaling exponent.

Recall that the isothermal compressibility is given by . Near criticality, the integral in  is dominated by the  part, since . Thus, using
Fisher’s anomalous scaling,

where , , and  are temperature-dependent constants which are nonsingular at . Thus, since , we conclude

a result known as hyperscaling.

This page titled 6.4: Liquid State Physics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

=−n = 2πn dr c(r)R2 c2 ∫

0

∞

r4 (6.4.61)

= =  .ξ−2 1−n (0)ĉ

R2

1−4πn dr c(r)∫ ∞
0 r2

2πn dr c(r)∫ ∞
0 r4

(6.4.62)

R(T ) ξ(T )

ξ(T ) ∼A|T −  .Tc|
−ν (6.4.63)

(q) =−nβ S(q) =−χ̂
nβR−2

+ +O( )ξ−2 q2 q4
(6.4.64)

O( )q4

\xhihOZ(q) =−  .
nβR−2

+ξ−2 q2
(6.4.65)

\xhiOZ(\Br) d = 1

\begin{split} \xhiOZ_{d=1}(x)&=-{n\over\kT R^2}\!\int\limits_{-\infty}^\infty\!\!{dq\over 2\pi}\>{e^{iqx}\over \xi^{-2}+q^2}\\ &=-{n\xi\over 2\kT R^2}\,e^{-|x|/\xi}\ . \end{split}

d > 1

r→∞ ξ

\xhiOZ_d(\Br)\simeq -C\ns_d \,n\cdot{\xi^{(3-d)/2}\over \kT\,R^2}\cdot{e^{-r/\xi}\over r^{(d-1)/2}}\cdot\left\{1+\CO\bigg({d-3\over r/\xi}\bigg)\right\}\ ,

Cd

ξ→∞ r T → Tc r d > 2

\xhiOZ_d(\Br)\simeq -{C'_d\, n\over\kT R^2}\cdot{e^{-r/\xi}\over r^{d-2}}\cdot \left\{1+\CO\bigg({d-3\over r/\xi}\bigg)\right\}\ .

d = 2

\xhiOZ_{d=2}(\Br)\simeq-{C'_2\,n\over\kT R^2}\cdot\ln\!\bigg({r\over\xi}\bigg)\,e^{-r/\xi}\cdot\left\{1+\CO\bigg({1\over\ln(r/\xi)}\bigg)\right\}\ ,

C ′
d

ξ→∞ d = 1 d = 2

r≪ ξ

χ(r) ≃− n ⋅ ⋅  ,C ′′
d

ξη

TkB R2

e−r/ξ

rd−2+η
(6.4.66)

η

=− (0)κT χ̂ (0)χ̂ r≪ ξ ξ→∞

=− (0)κ
T

χ̂ =−∫ r χ(r)dd

∼A∫ r ∼B ∼C T −  ,dd
e−r/ξ

rd−2+η
ξ2−η ∣∣ Tc∣∣

−(2−η)ν

A B C T = Tc ∝ |T −κ
T

Tc|
−γ

γ = (2−η) ν , (6.4.67)
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