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7.10: Appendix II- Additional Examples

Blume-Capel model

The Blume-Capel model provides a simple and convenient way to model systems with vacancies. The simplest version of the model is written
- 1
H=-53 ;55 +A) 8. (7.10.1)
J i

The spin variables S; range over the values {—1, 0, +1} so this is an extension of the S =1 Ising model. We explicitly separate out the diagonal terms, writing J; =0, and placing them in the
second term on the RHS above. We say that site ¢ is occupied if S; = 1 and vacant if S; = 0, and we identify —A as the vacancy creation energy, which may be positive or negative, depending on
whether vacancies are disfavored or favored in our system.

‘We make the mean field Ansatz, writing S'i =m+ §Si . This results in the mean field Hamiltonian,

|\HH\ns_\ssr(MF}=\half N \jhz\, mA2 - \jhz\, m \sum_i S\ns_i + \RDelta\sum_i SA2_i\ . |

Once again, we adimensionalize, writing f = F//N.J (0), 8 = k,T/J (0), and § = A/.J (0). We assume J (0) > 0. The free energy per site is then

1
£(6,6,m)= §m2 —61n (1 +2¢79/¢ cosh(m/é')) . (7.10.2)
Extremizing with respect to m, we obtain the mean field equation,
2sinh(m /6
e sinh(m/6) (7.10.3)
exp(d/6) +2 cosh(m/6)
Note that m = 0 is always a solution. Finding the slope of the RHS at m = 0 and setting it to unity gives us the critical temperature:
0. = 2 (7.10.4)
“ exp(8/0.)+2 o

This is an implicit equation for . in terms of the vacancy energy d.

[blume] Mean field phase diagram for the Blume-Capel model. The black dot signifies a tricritical point, where the coefficients of m? and m* in the Landau free energy expansion both vanish. The
dashed curve denotes a first order transition, and the solid curve a second order transition. The thin dotted line is the continuation of the 6,.(J) relation to zero temperature.

Let’s now expand the free energy in terms of the magnetization m. We find, to fourth order,

1 2
= fln(1+2e %)+ — (- ——=—— \m?
f=tn(+2e “29( 2+exp(6/e))m

1 6
+ - 1) mi+...
12 (2 +exp(5/6))63 ( 2 +exp(d/6)
Note that setting the coefficient of the m? term to zero yields the equation for 6. However, upon further examination, we see that the coefficient of the mm* term can also vanish. As we have seen,
when both the coefficients of the m? and the m?* terms vanish, we have a tricritical point . Setting both coefficients to zero, we obtain
1 2
96:5 , 6= §1n2. (7.10.5)

At 6 =0, it is easy to see we have a first order transition, simply by comparing the energies of the paramagnetic (S; = 0) and ferromagnetic (S; = +1 or S; = —1) states. We have

| {E\ns_\ssr{ MF}\over N\jhz}=\begin{cases} 0 & {if}\ m=0 \\ \half-\RDelta & {if}\ m=\pm 1\ . \end{cases} |

These results are in fact exact, and not only valid for the mean field theory. Mean field theory is approximate because it neglects fluctuations, but at zero temperature, there are no fluctuations to
neglect!

The phase diagram is shown in Figure . Note that for § large and negative, vacancies are strongly disfavored, hence the only allowed states on each site have S; = 1, which is our old friend
the two-state Ising model. Accordingly, the phase boundary there approaches the vertical line 8, = 1, which is the mean field transition temperature for the two-state Ising model.
Ising antiferromagnet in an external field
Consider the following model:
H=7Y 0,0,—HY 0;, (7.10.6)
(i) i
with J >0 and o; = +1. We’ve solved for the mean field phase diagram of the Ising ferromagnet; what happens if the interactions are antiferromagnetic?

It turns out that under certain circumstances, the ferromagnet and the antiferromagnet behave exactly the same in terms of their phase diagram, response functions, This occurs when H = 0, and when
the interactions are between nearest neighbors on a bipartite lattice. A bipartite lattice is one which can be divided into two sublattices, which we call A and B, such that an A site has only B
neighbors, and a B site has only A neighbors. The square, honeycomb, and body centered cubic (BCC) lattices are bipartite. The triangular and face centered cubic lattices are non-bipartite. Now if the
lattice is bipartite and the interaction matrix J;; is nonzero only when ¢ and j are from different sublattices (they needn’t be nearest neighbors only), then we can simply redefine the spin variables

such that
+o, ifjeA
o =4 T i (7.10.7)
4 —0; i fjeB.
Then o/0’ = —0; 0;, and in terms of the new spin variables the exchange constant has reversed. The thermodynamic properties are invariant under such a redefinition of the spin variables.

We can see why this trick doesn’t work in the presence of a magnetic field, because the field H would have to be reversed on the B sublattice. In other words, the thermodynamics of an Ising
ferromagnet on a bipartite lattice in a uniform applied field is identical to that of the Ising antiferromagnet, with the same exchange constant (in magnitude), in the presence of a staggered field
[H\ns_\ssr{A}=+H |and [Hwns_\ssr{B}=-H|.

‘We treat this problem using the variational density matrix method, using two independent variational parameters and for the two sublattices:
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| \begin{split} \vrh_\ssr{A}(\sigma)&={1+\msa\over 2} \> \delta\ns_{\sigma,1} + {1-\msa\over 2} \> \delta\ns_{\sigma,-1}\\ \vrh_\ssr{B}(\sigma)&={1+\msb\over 2} \> \delta\ns_{\sigma,1} + {1-\msb\over 2} \> \delta\ns_{

With the usual adimensionalization, f = F/NzJ, 0 = kT /zJ , and h = H/2J , we have the free energy

| f(\msa,\msb)=\half\msa\msb-\half\, h\, (\msa+\msb) -\half\\theta \, s(\msa) -\half\,\theta\,s(\msb)\ , |

where the entropy function is

1+m 1+m 1-m 1-m
s(m)77|: 3 ln( 3 )+ 3 ln( 3 )] . (7.10.8)
Note that
ds 1. (1+m d’s 1
dm7_21n<17m) ’ dm? ~  1-m?’ (7.10.9)

[affgraph] Graphical solution to the mean field equations for the Ising antiferromagnet in an external field, here for § = 0.6. Clockwise from upper left: (a) h = 0.1, (b) h =0.5, (c) h =1.1, (d)
h=14.

Differentiating | f(\msa,\msb) | with respect to the variational parameters, we obtain two coupled mean field equations:

| \begin{split} {\pz flover\pz\msa}&=0 \quad \Longrightarrow\quad \msb=h-{\theta\over 2}\In\!\bigg({1-+\msa\over 1-\msa}\bigg) \\ {\pz flover\pz\msb}&=0 \quad \Longrightarrow\quad \msa=h-{\theta\over 2 \In\!\bigg({ 1+

Recognizing tanh ™ (z) = %ln [(1 +z)/(1—x)| , we may write these equations in an equivalent but perhaps more suggestive form:

[ \msa=\tanh\bigg({h-\msb\over\theta }\bigg)\qquad,\qquad \msb=\tanh\bigg({ h-\msa\over\theta }\bigg)\ .

In other words, the A sublattice sites see an internal field | H\ns_{\ssr{A},{int} }=-zJ\msb | from their B neighbors, and the B sublattice sites see an internal field |H\ns_(\ssr(B},(int}}=-zJ\msa | from their A

neighbors.
‘We can solve these equations graphically, as in Figure . Note that there is always a paramagnetic solution with where
0 1+m h—m
=h——1 — =tanh | —— | . 7.10.10
m 3 n( Tom ) m = ta; ( 7 ) ( )

However, we can see from the figure that there will be three solutions to the mean field equations provided that [ {\pz \msa\over\pz \msb}<-1] at the point of the solution where [\msa=\msb=m|. This gives
us two equations with which to eliminate and resulting in the curve

h*(e):m+§ m(ifZ) with m=/T_8 . (7.10.11)

Thus, for < 1 and |h| < h*(6) there are three solutions to the mean field equations. It is usually the case, the broken symmetry solutions, which mean those for which in our case, are
of lower energy than the symmetric solution(s). We show the curve h*(6) in Figure

[affpd] Mean field phase diagram for the Ising antiferromagnet in an external field. The phase diagram is symmetric under reflection in the h = 0 axis.

‘We can make additional progress by defining the average and staggered magnetizations m and ms,

|m\equiv \half(\msa+\msb) \qquad,\quad \mss\equiv\half (\msa-\msb)\ . |

‘We expand the free energy in terms of m:

1 1 1 1
fim,m,s) = 5m2 - Emﬁ —hm-— 3 0s(m+m,)— 3 0s(m —m;)
_ l 2 l " 2 i " 4
=gm hm —0s(m) 2(1+93 (m))mS 2493 (m)mg+....
The term quadratic in m, vanishes when 6s”(m) = —1, when m = /1 —8 . It is easy to obtain

Fe 9 d4 2 (1+3m?
oS ___ em R _‘g=,¥ R (7.10.12)
dm? (1—m?2)? dm? (1—-m?)3

from which we learn that the coefficient of the quartic term, — 21—4 6s"""(m), never vanishes. Therefore the transition remains second order down to § = 0, where it finally becomes first order.
We can confirm the # — 0 limit directly. The two competing states are the ferromagnet, with [ \msa=\msb=\pm 1, and the antiferromagnet, with | \msa=-\msb=\pm 1 | The free energies of these states are
[ #A\ssr{FM}=\half-h \qquad,\qquad fA\ssr{ AFM}=-\half\ . |

There is a first order transition when | fA\ssr{FM}=f\ssr{ AFM} |, which yields h = 1.

Canted quantum antiferromagnet

Consider the following model for quantum S = % spins:

N 1
H= Z [—J(a’fﬂ}” +af’cr;-‘) +Aafa']z-] + ZK Z ofoioiof (7.10.13)
(i) (ijkl)
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where o is the vector of Pauli matrices on site i. The spins live on a square lattice. The second sum is over all square plaquettes. All the constants J, A, and K are positive.

Let’s take a look at the Hamiltonian for a moment. The J term clearly wants the spins to align ferromagnetically in the (z, y) plane (in internal spin space). The A term prefers antiferromagnetic
alignment along the z axis. The K term discourages any kind of moment along % and works against the A term. We’d like our mean field theory to capture the physics behind this competition.

Accordingly, we break up the square lattice into two interpenetrating v/2 X v/2 square sublattices (each rotated by 45° with respect to the original), in order to be able to describe an antiferromagnetic
state. In addition, we include a parameter o which describes the canting angle that the spins on these sublattices make with respect to the x-axis. That is, we write

|\begin(split) \vrh\ns_\ssr{A}&=\half + \half m\,\big(\sin\alpha\>\sigma/x +\cos\alpha\>\sigma”z )\\ \vrh\ns_\ssr{B}&=\half + \half m\,\big(\sin\alpha\>\sigma”\x - \cos\alpha\>\sigma~z )\ .\vph \end{split} |

Note that | \Tra\vrh\ns_\ssr{A}=\Tra\vrh\ns_\ssr{B}=1 |so these density matrices are normalized. Note also that the mean direction for a spin on the A and B sublattices is given by

| \Bm\ns_\ssr{A,B}=\Tra(\vrh\ns_\ssr{A,B}\,\Bsigma)=\pm\, m\cos\alpha\,\HBz + m\sin\alpha\>\HBx\ . |

Thus, when o = 0, the system is an antiferromagnet with its staggered moment lying along the 2 axis. When a = %7(, the system is a ferromagnet with its moment lying along the X axis.

Finally, the eigenvalues of are still A, = %(1 +m), hence

| \begin{split} s(m)&\equiv-\Tra (\vrh\ns_\ssr{A}\In\vrh\ns_\ssr{A})=-\Tra (\vrh\ns_\ssr{B}\In\vrh\ns_\ssr{B})\\ &=-\Bigg[ { 1+m\over 2}\>\In\!\bigg({1+m\over 2}\bigg) +{1-m\over 2}\> \In\\bigg({ 1-m\over 2}\bigg) \Bigg

Note that we have taken |m\nsi\ssr(A):m\nsi\ssr(B}:m|, unlike the case of the antiferromagnet in a uniform field. The reason is that there remains in our model a symmetry between A and B
sublattices.

The free energy is now easily calculated:
F=Tr (gI;AI) +k;TTr(olnp)
= 72N(J sina+ A cosza) m*+ iNK‘m4 cos*a — Nk,T s(m)
We can adimensionalize by defining § = A/J, k = K/4J, and 0 = k,T'/4J . Then the free energy per site is f = F/4NJ is
f(m,a)= —%mz + % (1 —4) m? cos’a + inm‘l cos*a —0s(m). (7.10.14)

There are two variational parameters: m and 6. We thus obtain two coupled mean field equations,

0. 1 1
of =0 :—m+(1 76)m cos2a+nmscos4a+§€ 1n< +:)

om 1—
0,
—f =0= (1 —6+rm’ cosza) m?sina cosa .
O
Let’s start with the second of the mean field equations. Assuming m # 0, it is clear from Equation that
0 if <1
cosa =4 (6—1)/km? if 1<§<1+rm? (7.10.15)
1 if 6>1+xm?.

Suppose § < 1. Then we have cosa = 0 and the first mean field equation yields the familiar result
m =tanh (m/6) . (7.10.16)

Along the 6 axis, then, we have the usual ferromagnet-paramagnet transition at 6, = 1.

[cantpd] Mean field phase diagram for the model of Equation for the case k = 1.
For1 < < 14xm? we have canting with an angle \[\alpha=\alpha’*(m)=\cosA{-1}\sqrt

\ .\] Substituting this into the first mean field equation, we once again obtain the relation m = tanh (m / 0) . However, eventually, as 6 is increased, the magnetization will dip below the value
mo = /(6 —1)/k . This occurs at a dimensionless temperature \[\theta\ns_0={m\ns_0\over\tanh"{-1}(m\ns_0)} < 1\qquad;\qquad m\ns_0=\sqrt\ .\] For § > 60 ,wehave § > 1+xm? , and we must
take cosa = 1. The first mean field equation then becomes

0 1+m
_ 3_ 27
dm —Kkm’ 3 1n< 1—m) s (7.10.17)

or, equivalently, m = tanh ((Jm —xm3)/ 9) . A simple graphical analysis shows that a nontrivial solution exists provided 6 < § . Since cosa = =+1, this solution describes an antiferromagnet, with
[\Bm\ns_\ssr{A}=\pm m\zhat | and [\Bm\ns_\ssr{B}=\mp m\zhat | The resulting mean field phase diagram is then as depicted in Figure

Coupled order parameters

Consider the Landau free energy

1 1 1 1 1
f(m,¢) = Eammz+mem4+§a¢¢2+zb¢¢4+5Am2 ¢ . (7.10.18)
‘We write
Am = O s ay=0a,0,, (7.10.19)
where
T-Tom -7,
0 = —To , 0,= —To R (7.10.20)

where T}, is some temperature scale. We assume without loss of generality that Te,m > T, ;. We begin by rescaling:
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1/2 1/2
mz(‘l’:—:) o ¢E(‘Z—"‘) 5. (7.10.21)

‘We then have

1, 1 __y 1,1, ~2 14 1. __o~2
ffso{r(EG +Zm)+r (50¢¢> +Z¢)+§)\m¢ , (7.10.22)
where
am @ b, \l/2 A
= 4;2 , ,:_m(_"*) , - — (7.10.23)
(bm by) / ag b (b by) /
It proves convenient to perform one last rescaling, writing
m=rYim , ¢=rp. (7.10.24)
Then
1 2, 1 4 1 - 2, 1 4 1y 5 o
fzso{gqamm +Zm +Eq 19¢ga +Z<p +E)\m o0, (7.10.25)
where
1/2 /b \1/4
= Qm [3
=Jr=(2 = . .10.2
o=vi=(2) () (7.10.26)
Note that we may write
€, 5 o f1 A m? €, 5 on[ I0m
o)== 40 . 7.10.27
s =T (3 1) (W) 3 o () (7.10.27

The eigenvalues of the above 2 x 2 matrix are 1 =\, with corresponding eigenvectors ( ill ) Since ¢? > 0, we are only interested in the first eigenvector (}) corresponding to the eigenvalue 1+ .
Clearly when A <1 the free energy is unbounded from below, which is unphysical.

‘We now set
of of
— —0 = =0 7.10.28
prom S Pl ( )
and identify four possible phases:
o PhaseI:m =0, ¢ = 0. The free energy is [ f\ns_\ssr{1}=0].
o Phase IT: m # 0 with ¢ = 0. The free energy is
&o 2.1 4
f:7 (g0mm +5m ), (7.10.29)
hence we require 6,, < 0 in this phase, in which case
|\Sm\ns_\ssr(ll)=\sqrt{—q\,\lhm}\qquad,\qquad f\ns_\ssr{I1}=-{\ve\ns_O\over 4}\,g"2\\theta_mA2\ . |
o Phase III : . = 0 with ¢ # 0. The free energy is
S (1 2 L 4
f:?(q 6,9 +§¢), (7.10.30)

hence we require 9¢ < 0 in this phase, in which case

| \vphi\ns_\ssr{II1}=\sqrt{-q{-1}\,\thp}\qquad,\qquad f\ns_\ssr{IIT}=-{\ve\ns_0\over 4 }\,qA {-2}\,\theta_\phi/2\ . |

e Phase IV :m # 0 and ¢ # 0. Varying f yields
1 A m? q0m
(A 1)( 2):—( g , (7.10.31)
¥ q°Y

with solution

-1

2 q0m—q 0, A
A2-1
-1

¢2:q 05 —qbm A
A2—1

Since m? and ¢? must each be nonnegative, phase IV exists only over a yet-to-be-determined subset of the entire parameter space. The free energy is

| f\ns_\ssr{IV}={g/2\\theta_mA2 + gA{-2}\,\theta_\phiA2 - 2\lambda\,\thm\,\thp\over 4(\lambda’2-1)}\ . |

‘We now define = 6,, and 7 =6 s~ Op = (Teom — Tc 5 / T, . Note that 7 > 0. There are three possible temperature ranges to consider.

. 94, > 6, > 0. The only possible phases are I and IV. For phase IV, we must impose the conditions m? > 0 and ¢? > 0. If A2 > 1, then the numerators in eqns. must each be positive:
2 0, 2 0
D (- aCa (7.10.32)
0 q% 6, [ q%b,
¢ m [3 m

But since either ¢%6,,, / Gd, or its inverse must be less than or equal to unity, this requires A < —1, which is unphysical.
If on the other hand we assume A\? < 1, the non-negativeness of m? and (? requires
045

2
9 On
A> e

L oA>
6¢

2 9
= )\>maz<q69m, ¢ )>1. (7.10.33)
¢

Thus, A > 1 and we have a contradiction.

Therefore, the only allowed phase for 6 > 0 is phase I.

https://phys.libretexts.org/@go/page/18785


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18785?pdf

LibreTextsm

. 9¢ >0 > 6,, . Now the possible phases are I, II, and IV. We can immediately rule out phase I because |f\ns_\ssr{II} < fins_\ssr{I} |. To compare phases II and IV, we compute

|\RDella f = f\ns_\ssr{IV}-Ans_\ssr{II}={(q\,\lambda\,\thm - g"{-1}\,\thp)A2\over 4(\lambda’2-1)}\ . |

Thus, phase II has the lower energy if A > 1. For A2 < 1, phase IV has the lower energy, but the conditions m? >0 and ¢ > 0 then entail

@*0m €¢ 2
0—<)\< 220 = ¢ |0n|>0,>0. (7.10.34)
¢ m
Thus, A is restricted to the range
€¢
Ae| -1, ——|. 7.10.35
o] ( )
With §,, =6 <0 and 0¢ =0+7>0 , the condition ¢2|0,,| > 0¢ is found to be
-
—T<f<— . 7.10.36
<0<y (7.1036)

Thus, phase IV exists and has lower energy when

0+1

r
—T<O0< —— d —1<A<-— s 7.10.37
T r+1 an r0 ( )
where 7 = ¢2.
¢ 0> 9¢ > 6,,, . In this regime, any phase is possible, however once again phase I can be ruled out since phases II and III are of lower free energy. The condition that phase II have lower free energy
than phase III is

|f\nsi\ssr( 11} - fins_\ssr{IIT} = {\ve\ns_0\over 4}\big(q/{-2}\theta_\phi\2-g/2\theta_m~2\big) < 0\, |

|0, <7|0m|, which means r|6] > 6] —7 . 1f r > 1 this is true for all § < 0, while if r < 1 phase Il is lower in energy only for || <7/(1—r).

[FcoupledLandau] Phase diagram for 7 = 0.5, r = 1.5 (top) and 7 = 0.5, 7 = 0.25 (bottom). The hatched purple region is unphysical, with a free energy unbounded from below. The blue lines
denote second order transitions. The thick red line separating phases II and III is a first order line.

‘We next need to test whether phase IV has an even lower energy than the lower of phases II and III. We have

| \begin{split} f\ns_\ssr{IV}-f\ns_\ssr{II}&={(q\,\lambda\,\thm - g\ {-1}\,\thp)A2\over 4(\lambda’2-1)}\vph\\ f\ins_\ssr{IV}-f\ns_\ssr{II[}&={(q\,\thm - gA{-1}\,\lambda\,\thp)A2\over 4(\lambda’2-1)}\ . \end{split} |

In both cases, phase IV can only be the true thermodynamic phase if A> < 1. We then require m? >0 and ¢? > 0, which fixes

2 "] )
Ae 71,min<q m, =2 ) . (7.10.38)
0¢ q*0,
The upper limit will be the first term inside the rounded brackets if ¢*|6,,| < 0y, if r|6] < |6 — . This is impossible if 7 > 1, hence the upper limit is given by the second term in the rounded
brackets:
0-+1 .
r>1:Xe|-1, v (condition for phase IV) . (7.10.39)
If 7 < 1, then the upper limit will be 112197,1/0'zs =7r0/(0+7) if|6] >7/(1—r), and will be 6’¢/q2€m =(0+7)/r0 if |6 <T/(1—7).
rel, - cbe—r :xe|-1, 82T (phase IV)
P 1-r . T orf P
T rf
r<1,9<7ﬁ t e 71,m (phase IV) .

Representative phase diagrams for the cases 7 > 1 and r < 1 are shown in Figure

1. There is always a solution to (Op/8v); =0 atv=o0.

2. Don’t confuse the molar free energy (f) with the number of molecular degrees of freedom (f)!

3. Johannes Diderik van der Waals, the eldest of ten children, was the son of a carpenter. As a child he received only a primary school education. He worked for a living until age 25, and was able to
enroll in a three-year industrial evening school for working class youth. Afterward he continued his studies independently, in his spare time, working as a teacher. By the time he obtained his PhD,
he was 36 years old. He received the Nobel Prize for Physics in 1910.

4. See www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf

5. One could equally well identify the second correspondence as n <— m between density (rather than specific volume) and magnetization. One might object that H is more properly analogous to
. However, since u = p(p, T') it can equally be regarded as analogous to p. Note also that Sp = z)\}'i for the ideal gas, in which case { = z(a/)\T)d is proportional to p.

6. Note the distinction between the number of lattice sites Ng and the number of occupied cells V. According to our definitions, N = %(M +Ng) .

7. In the third of the following exponent equalities, d is the dimension of space and v is the correlation length exponent.

8. A Bravais lattice is one in which any site is equivalent to any other site through an appropriate discrete translation. Examples of Bravais lattices include the linear chain, square, triangular, simple
cubic, face-centered cubic, lattices. The honeycomb lattice is not a Bravais lattice, because there are two sets of inequivalent sites — those in the center of a Y and those in the center of an upside
down Y.

©

To obtain this result, one writes f = f (9, m(é))) and then differentiates twice with respect to 8, using the chain rule. Along the way, any naked ( undifferentiated) term proportional to % may be
dropped, since this vanishes at any € by the mean field equation.

10. Pierre Curie was a pioneer in the fields of crystallography, magnetism, and radiation physics. In 1880, Pierre and his older brother Jacques discovered piezoelectricity. He was 21 years old at the
time. It was in 1895 that Pierre made the first systematic studies of the effects of temperature on magnetic materials, and he formulated what is known as Curie’s Law, x = C/T, where C is a
constant. Curie married Marie Sklodowska in the same year. Their research turned toward radiation, recently discovered by Becquerel and Rontgen. In 1898, Pierre and Marie Curie discovered
radium. They shared the 1903 Nobel Prize in Physics with Becquerel. Marie went on to win the 1911 Nobel Prize in Chemistry and was the first person ever awarded two Nobel Prizes. Their
daughter Iréne Joliot Curie shared the 1935 Prize in Chemistry (with her husband), also for work on radioactivity. Pierre Curie met an untimely and unfortunate end in the Spring of 1906. Walking
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across the Place Dauphine, he slipped and fell under a heavy horse-drawn wagon carrying military uniforms. His skull was crushed by one of the wagon wheels, killing him instantly. Later on that
year, Pierre-Ernest Weiss proposed a modification of Curie’s Law to account for ferromagnetism. This became known as the Curie-Weiss law, x = C /(T —T¢) .
1

s

. The self-interaction terms with ¢ = j contribute a constant to H and may be either included or excluded. However, this property only pertains to the o; = £1 model. For higher spin versions of
the Ising model, say where S; € {—1,0,+1}, then Siz is not constant and we should explicitly exclude the self-interaction terms.

12. The sum in the discrete Fourier transform is over all ‘direct Bravais lattice vectors’ and the wavevector q may be restricted to the ‘first Brillouin zone’. These terms are familiar from elementary
solid state physics.

13. How do we take the logarithm of a matrix? The rule is this: A =In B if B = exp(A) . The exponential of a matrix may be evaluated via its Taylor expansion.

14. The denominator of 27 in the measure is not necessary, and in fact it is even slightly cumbersome. It divides out whenever we take a ratio to compute a thermodynamic average. I introduce this
factor to preserve the relation Tr 1 = 1. I personally find unnormalized traces to be profoundly unsettling on purely aesthetic grounds.

15. Note that the coefficient of the quartic term in € is negative for § > % LAt0=6, = % , the coefficient is positive, but for larger § one must include higher order terms in the Landau expansion.

16. It is always the case that f is bounded from below, on physical grounds. Were b negative, we’d have to consider higher order terms in the Landau expansion.

17. We needn’t waste our time considering the m =m_ solution, since the cubic term prefers positive m.

18. There is a sign difference between the particle susceptibility defined in chapter 6 and the spin susceptibility defined here. The origin of the difference is that the single particle potential v as
defined was repulsive for v > 0, meaning the local density response dn should be negative, while in the current discussion a positive magnetic field H prefers m > 0.

19. To evoke a negative eigenvalue on a d-dimensional cubic lattice, set g, = % for all p. The eigenvalue is then —2dK; .

2

2

o !

(=1

. It needn’t be an equally spaced sequence, for example.
The function ® (o) may involve one or more adjustable parameters which could correspond, for example, to an external magnetic field &. We suppress these parameters when we write the free

energy as f(6).
22. We should really check that the coefficient of the sixth order term is positive, but that is left as an exercise to the eager student.
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