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8.4: Relaxation Time Approximation

Approximation of Collision Integral

We now consider a very simple model of the collision integral,

This model is known as the relaxation time approximation. Here,  is a distribution function which describes a local equilibrium at each
position  and time . The quantity  is the relaxation time, which can in principle be momentum-dependent, but which we shall first consider to be
constant. In the absence of streaming terms, we have

The distribution  then relaxes to the equilibrium distribution  on a time scale . We note that this approximation is obviously flawed in that all
quantities – even the collisional invariants – relax to their equilibrium values on the scale . In the Appendix, we consider a model for the collision
integral in which the collisional invariants are all preserved, but everything else relaxes to local equilibrium at a single rate.

Computation of the scattering time

Consider two particles with velocities  and . The average of their relative speed is

where  is the Maxwell velocity distribution,

which follows from the Boltzmann form of the equilibrium distribution . It is left as an exercise for the student to verify that

Note that , where  is the average particle speed. Let  be the total scattering cross section, which for hard spheres is , where  is
the hard sphere diameter. Then the rate at which particles scatter is

The particle mean free path is simply

While the scattering length is not temperature-dependent within this formalism, the scattering time is -dependent, with

As , the collision time diverges as , because the particles on average move more slowly at lower temperatures. The mean free path,
however, is independent of , and is given by .

Figure : Graphic representation of the equation , which yields the scattering time  in terms of the number density , average
particle pair relative velocity , and two-particle total scattering cross section . The equation says that on average there must be one particle within
the tube.
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Thermal conductivity
We consider a system with a temperature gradient  and seek a steady state ( time-independent) solution to the Boltzmann equation. We assume 

. Appealing to Equation , and using the relaxation time approximation for the collision integral, we have

We are now ready to compute the energy and particle currents. In order to compute the local density of any quantity , we multiply by the
distribution  and integrate over momentum:

For the energy (thermal) current, we let , in which case . Note that  since  is isotropic in  even when 
and  depend on . Thus, only  enters into the calculation of the various currents. Thus, the energy (thermal) current is

where the repeated index  is summed over, and where momentum averages are defined relative to the equilibrium distribution,

In this context, it is useful to point out the identity

where

is the Maxwell velocity distribution.

Note that if  is a function of the energy, and if , then

where

is the Maxwellian distribution of single particle energies. This distribution is normalized with . Averages with respect to this distribution

are given by

If  is homogeneous, then for any  we have

Due to spatial isotropy, it is clear that we can replace

in Equation . We then have , with

where we have used  and . The quantity  is called the thermal conductivity. Note that .
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Viscosity
Consider the situation depicted in Figure . A fluid filling the space between two large flat plates at  and  is set in motion by a force 

 applied to the upper plate; the lower plate is fixed. It is assumed that the fluid’s velocity locally matches that of the plates. Fluid particles at the
top have an average -component of their momentum . As these particles move downward toward lower  values, they bring their -
momenta with them. Therefore there is a downward ( -directed) flow of . Since -momentum is constantly being drawn away from  plane,
this means that there is a -directed viscous drag on the upper plate. The viscous drag force per unit area is given by , where 

 is the velocity gradient and  is the shear viscosity. In steady state, the applied force balances the drag force, . Clearly
in the steady state the net momentum density of the fluid does not change, and is given by , where  is the fluid mass density. The momentum per
unit time injected into the fluid by the upper plate at  is then extracted by the lower plate at . The momentum flux density 
is the drag force on the upper surface per unit area: . The units of viscosity are .

We now provide some formal definitions of viscosity. As we shall see presently, there is in fact a second type of viscosity, called second viscosity or
bulk viscosity, which is measurable although not by the type of experiment depicted in igure .

The momentum flux tensor  is defined to be the current of momentum component  in the direction of increasing . For a gas in
motion with average velocity , we have

where  is the particle velocity in a frame moving with velocity , and where we have invoked the ideal gas law . The mass density is 
.

Figure : Gedankenexperiment to measure shear viscosity  in a fluid. The lower plate is fixed. The viscous drag force per unit area on the upper
plate is . This must be balanced by an applied force .

When  is spatially varying,

where  is the viscosity stress tensor. Any symmetric tensor, such as , can be decomposed into a sum of (i) a traceless component, and (ii) a
component proportional to the identity matrix. Since  should be, to first order, linear in the spatial derivatives of the components of the velocity field

, there is a unique two-parameter decomposition:

The coefficient of the traceless component is , known as the shear viscosity. The coefficient of the component proportional to the identity is , known
as the bulk viscosity. The full stress tensor  contains a contribution from the pressure:

The differential force  that a fluid exerts on on a surface element  is

where we are using the Einstein summation convention and summing over the repeated index . We will now compute the shear viscosity  using the
Boltzmann equation in the relaxation time approximation.

Appealing again to Equation , with  and , we find
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We assume , and we compute the momentum flux:

Thus, if , we have

from which we read off the viscosity,

Note that .

Figure : Left: thermal conductivity (  in figure) of Ar between  and . The best fit to a single power law  results
in . Source: G. S. Springer and E. W. Wingeier, J. Chem Phys. 59, 1747 (1972). Right: log-log plot of shear viscosity (  in figure) of He
between  and . The red line has slope . The slope of the data is approximately . Source: J. Kestin and W. Leidenfrost,
Physica 25, 537 (1959).

How well do these predictions hold up? In igure , we plot data for the thermal conductivity of argon and the shear viscosity of helium. Both show a
clear sublinear behavior as a function of temperature, but the slope  is approximately  and  is approximately .
Clearly the simple model is not even getting the functional dependence on  right, let alone its coefficient. Still, our crude theory is at least qualitatively
correct.

Why do both  as well as  decrease at low temperatures? The reason is that the heat current which flows in response to  as well as the
momentum current which flows in response to  are due to the presence of collisions, which result in momentum and energy transfer between
particles. This is true even when total energy and momentum are conserved, which they are not in the relaxation time approximation. Intuitively, we
might think that the viscosity should increase as the temperature is lowered, since common experience tells us that fluids ‘gum up’ as they get colder –
think of honey as an extreme example. But of course honey is nothing like an ideal gas, and the physics behind the crystallization or glass transition
which occurs in real fluids when they get sufficiently cold is completely absent from our approach. In our calculation, viscosity results from collisions,
and with no collisions there is no momentum transfer and hence no viscosity. If, for example, the gas particles were to simply pass through each other,
as though they were ghosts, then there would be no opposition to maintaining an arbitrary velocity gradient.

Oscillating External Force
Suppose a uniform oscillating external force  is applied. For a system of charged particles, this force would arise from an external
electric field , where  is the charge of each particle. We’ll assume . The Boltzmann equation is then written
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We again write , and we assume  is spatially constant. Thus,

If we assume  then the above differential equation is converted to an algebraic equation, with solution

We now compute the particle current:

If the particles are electrons, with charge , then the electrical current is  times the particle current. We then obtain

where

is the frequency-dependent electrical conductivity tensor. Of course for fermions such as electrons, we should be using the Fermi distribution in place of
the Maxwell-Boltzmann distribution for . This affects the relation between  and  only, and the final result for the conductivity tensor  is
unchanged.

Quick and Dirty Treatment of Transport
Suppose we have some averaged intensive quantity  which is spatially dependent through  or  or . For simplicity we will write 

. We wish to compute the current of  across some surface whose equation is . If the mean free path is , then the value of  for
particles crossing this surface in the  direction is , where  is the angle the particle’s velocity makes with respect to , .
We perform the same analysis for particles moving in the  direction, for which . The current of  through this surface is then

where  is the average particle speed. If the -dependence of  comes through the dependence of  on the local temperature , then we have

where

is the transport coefficient. If , then , where  is the heat capacity per particle at constant pressure. We then find  with
thermal conductivity

Our Boltzmann equation calculation yielded the same result, but with a prefactor of  instead of .

We can make a similar argument for the viscosity. In this case  is spatially varying through its dependence on the flow velocity . Clearly 
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from which we identify the viscosity, . Once again, this agrees in its functional dependences with the Boltzmann equation calculation in the
relaxation time approximation. Only the coefficients differ. The ratio of the coefficients is  in both
cases .

Thermal diffusivity, kinematic viscosity, and Prandtl number
Suppose, under conditions of constant pressure, we add heat  per unit volume to an ideal gas. We know from thermodynamics that its temperature will
then increase by an amount . If a heat current  flows, then the continuity equation for energy flow requires

In a system where there is no net particle current, the heat current  is the same as the energy current , and since , we obtain a diffusion
equation for temperature,

The combination

is known as the thermal diffusivity. Our Boltzmann equation calculation in the relaxation time approximation yielded the result . Thus,
we find  via this method. Note that the dimensions of  are the same as for any diffusion constant , namely .

[Prandtl] Viscosities, thermal conductivities, and Prandtl numbers for some common gases at  and atm. (Source: Table 1.1 of Smith and Jensen, with
data for triatomic gases added.)

Gas  ( )  ( )

He

Ar

Xe

Another quantity with dimensions of  is the kinematic viscosity, , where  is the mass density. We found  from the
relaxation time approximation calculation, hence . The ratio , called the Prandtl number, , is dimensionless. According
to our calculations, . According to table [Prandtl], most monatomic gases have .
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