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7.6: Mean Field Theory of Fluctuations

Correlation and response in mean field theory

Consider the Ising model,
- 1
H:—E; ZH o s (7.6.1)

where the local magnetic field on site k is now H, . We assume without loss of generality that the diagonal terms vanish: J,, = 0. Now

consider the partition function Z = Tr ePH as a function of the temperature 7' and the local field values { H, }. We have

(‘;95 =pTr [a e ﬂH} =BZ-(o;)
%‘gﬂ_j =p6"Tr [‘Tz‘ "jeiﬂﬁ] =B’Z-(o,0)).
Thus,
m; =—§_£2<Ui>
X = 55 =g = - { o)~ o))

Expressions such as (0;), (0, o), are in general called correlation functions. For example, we define the spin-spin correlation function C’ij as

C, = (0,0, —(0,) (o). (7.6.2)

ij t)

Expressions such as g? and are called response functions. The above relation between correlation functions and response functions,

aH 8H
Cij =k;T X;j» s valid only for the equilibrium distribution. In particular, this relationship is invalid if one uses an approximate distribution,
such as the variational density matrix formalism of mean field theory.

The question then arises: within mean field theory, which is more accurate: correlation functions or response functions? A simple argument
suggests that the response functions are more accurate representations of the real physics. To see this, let’s write the variational density matrix
0" as the sum of the exact equilibrium (Boltzmann) distribution ¢® = Z~! exp(—BH) plus a deviation do:

0’ =0"+dp. (7.6.3)
Then if we calculate a correlator using the variational distribution, we have
(o; 0']>vm =Tr [ Y g, aj]

=Tr [Q 00]+Tr [5900].

Thus, the variational density matrix gets the correlator right to first order in dg. On the other hand, the free energy is given by

1 O’F
Fuar Feq 4 Q + = _ 59 4. (7.6.4)
Z aga AEP> %, %%, :
Here o denotes a state of the system, |0 ) =|0y,...,0, ), where every spin polarization is specified. Since the free energy is an extremum

(and in fact an absolute minimum) with respect to the distribution, the second term on the RHS vanishes. This means that the free energy is
accurate to second order in the deviation §g.

Calculation of the response functions

Consider the variational density matrix

:Hgi(ai)7 (7.6.5)

where

14+m, 1-m,
0;(0;) = ( D) - ) 0o,1+ ( 2 * ) 05,1 - (7.6.6)
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The variational energy E = Tr (g H ) is
:—2ZJ Jm,m, ZHm (7.6.7)
and the entropy S = —k;T Tr (¢lnp) is

seon B () ()« (F)(1))

Setting the variation 6m =0, with F = E—TS, we obtain the mean field equations,

i

m; = tanh (8J;; m; + BH,) (7.6.9)

where we use the summation convention: Jij m; = > ; ng m;;. Suppose T > T, and m, is small. Then we can expand the RHS of the above

mean field equations, obtaining

(6, —BJ;) m; = BH, . (7.6.10)
Thus, the susceptibility tensor x is the inverse of the matrix (k;T-1—7J) :
om,

Xij = BH, = (kT 1-1),; (7.6.11)
where [ is the identity. Note also that so-called connected averages of the kind in Equation vanish identically if we compute them
using our variational density matrix, since all the sites are independent, hence

<0i 0']-> =Tr (gva’f o; O'j) =Tr (gz G‘i) - Tr (Q] a'j) = <0-1> . <Jj> , (7612)

and therefore ;; = 0 if we compute the correlation functions themselves from the variational density matrix, rather than from the free energy
F'. As we have argued above, the latter approximation is more accurate.

Assuming Jl.j =JR, - Rj) , where R, is a Bravais lattice site, we can Fourier transform the above equation, resulting in

H(a) A

m(q) = —— =x(q) H(a) - (7.6.13)
kBT -J (q)

Once again, our definition of lattice Fourier transform of a function ¢(R) is
(@) =D o(R)e ™™
R

d ~ .

0
where €2 is the unit cell in real space, called the Wigner-Seitz cell, and € is the first Brillouin zone, which is the unit cell in reciprocal space.
Similarly, we have

:ZJ(R)(l—z’q-R— %(q-R)2+...)
R
=f(0)'{1—q2R3+0(q4)},

where
R’J(R
RI= 2nRJR) (7.6.14)
2d3 r J(R)
Here we have assumed inversion symmetry for the lattice, in which case
ZR“R”J(R = 6’“’ZR2J(R). (7.6.15)

On cubic lattices with nearest neighbor interactions only, one has R, = a/ v/2d, where @ is the lattice constant and d is the dimension of
space.
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Thus, with the identification kT, = J (0), we have

B 1

k(T —T,)+k,T, R2q%+O(q*)
1 1

T RTLR 2+ +0(¢h) ]

x(a)

where

T-T. —-1/2
§:R*-< T ) (7.6.16)

is the correlation length. With the definition

) x|T-Tc|™ (7.6.17)
as T'— T, , we obtain the mean field correlation length exponent v = % The exact result for the two-dimensional Ising model is v =1,
whereas v ~ 0.6 for the d = 3 Ising model. Note that x(q = 0, T') diverges as (T —T,)~! for T >T,.

In real space, we have

m, = inj Hj s (7618)
J
where
d%q . | o R-R
Xij = Q/(zw)d X(q) e (RR) (7.6.19)

Note that ¥(q) is properly periodic under q — q+ G , where G is a reciprocal lattice vector, which satisfies /R =1 for any direct
Bravais lattice vector R. Indeed, we have

% (@) =k:T—J (q)
=k,T—J) e’
)

where § is a nearest neighbor separation vector, and where in the second line we have assumed nearest neighbor interactions only. On cubic
lattices in d dimensions, there are 2d nearest neighbor separation vectors, § = +a éu , where p € {1,...,d}. The real space susceptibility is
then

™

d@l ded einlﬁl . eindﬁd
X(R) = / Y [Za
2m 2r kT —(2Jcosf; +...+2Jcosb,)

—T

(7.6.20)

d A . . . . S . . .
where R=a} =1 €, Is a general direct lattice vector for the cubic Bravais lattice in d dimensions, and the {n,} are integers.

The long distance behavior was discussed in chapter 6 (see §6.5.9 on Ornstein-Zernike theory ). For convenience we reiterate those results:

e Ind=1,

Xy () = (ﬁ) elel/e . (7.6.21)

e Ind>1, withr — oo and £ fixed,

| \xhiOZ_d(\Br)\simeq C\ns_d\cdot{\xi’{(3-d)/2 }\over \kT\,R_*A2}\cdot{ e/ {-r/\xi}\over r\{(d-1)/2} }\cdot\left\{ 1-\CO\bigg({ d-3\over r/\xi }\bigg)\right\}\ ,

where the C; are dimensionless constants.
e Ind > 2, with& — oo and r fixed (T — T, at fixed separation r),

C} /¢ d—3
X, () ~ kBTdR% : ‘;H .{1+0<7>} . (7.6.22)

In d = 2 dimensions we obtain

Xy (T) = k;éRz ~ln(§) e/t {1 +O<ln(:/£)>} ) (7.6.23)
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where the Cc’l are dimensionless constants.

Beyond the Ising model

Consider a general spin model, and a variational density matrix g, which is a product of single site density matrices:
ovar[{S;}] Hg“) , (7.6.24)

where Tr (Q,m S) =m, is the local magnetization and S; , which may be a scalar (, o, in the Ising model previously discussed), is the local

spin operator. Note that ggi) (S;) depends parametrically on the variational parameter(s) m,. Let the Hamiltonian be

N 1 .
H:—EZJ;;. sk S]’.’—i-Zh(S,»)—ZHi-Si : (7.6.25)
%] % %
The variational free energy is then
1 v v I
FW:—EZJ ml m? +Z<p m,, T)— ZH , (7.6.26)

where the single site free energy ¢(m,, T') in the absence of an external field is given by
o(m,, T) =Tr [g@ (S) h(S)} kT Tr [ggﬂ (S)In!? (S)] (7.6.27)

We then have
dp(m,;, T)

“‘":—Zﬂ”mv H! + >
om;

(7.6.28)

For the noninteracting system, we have Ji’jf" =0, and the weak field response must be linear. In this limit we may write
m} =x0,(T) H' + O(H?) , and we conclude

3<P(m,~ , 1)

o = (D)), mY +0(m?) . (7.6.29)

Note that this entails the following expansion for the single site free energy in zero field:

go(mi,T):;[ ()] Ly my +O(mt) (7.6.30)

Finally, we restore the interaction term and extremize Fq, by setting 0F,q,/ 8mf = 0. To linear order, then,

mi =X (T (H”—FZJ”)‘ ) (7.6.31)

Typically the local susceptibility is a scalar in the internal spin space, X%, (T') = X°(T’) 6,..., in which case we obtain
(676, =X°(T) ") my =x"(T) H) . (7.6.32)

In Fourier space, then,
-1

K@ T) =) (1-X D) @) (7.6.33)

"%
where J (q) is the matrix whose elements are J W(q). It J W(q) =J (q) 6", then the susceptibility is isotropic in spin space, with
. 1
X(a,T) = a— : (7.6.34)
X)) = J(a)

Consider now the following illustrative examples:

« Quantum spin S with h(S) = 0 : We take the z axis to be that of the local external magnetic field, IZIZ . Write
0,(S) =2"" exp(uS?/k;T), where u = u(m, T is obtained implicitly from the relation m(u, T') = Tr(g; S*). The normalization
constant is

sinh[(S+ 2)u/k,T)]

5
z=Tre /BT — Z eu/ksT — (7.6.35)

% sinh[u/2k,T]
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The relation between m, u, and T is then given by

. Olnz 1 1 1
m =(S*) =k,T S = (S+ 5) ctnh[(S+ §)u/k3T} -3 ctnh[u/2k;T)|
_ S(5+1) 3
T u+O(u?)
The free-field single-site free energy is then
¢(m,T) =k,TTr (g, Ing,) =um—k,Tlnz , (7.6.36)
whence
Op ou Olnz Ou 1 3
— = — kT ———=u= T .6.
T u—l—mam P S (T)ym+0(m*) , (7.6.37)
and we thereby obtain the result
S(S+1)
xo(T) = ST (7.6.38)
which is the Curie susceptibility.
e Classical spin S = Sn with h =0 and n an N-component unit vector : We take the single site density matrix to be
0,(S) =z"'exp(u-S/k,T) . The single site field-free partition function is then
dﬁ SZ u2 4
= [ — S/kT) =14+ ——7+— -6.
z /QN exp(u-S/k;T) +N(kBT)2 +0(u) (7.6.39)
and therefore
Olnz S%u 3
=k, T = .6.4
m=k, 7 NET +0®w’) , (7.6.40)

from which we read off x,(T') = 5?/Nk,T . Note that this agrees in the classical (S — o) limit, for N = 3, with our previous result.

« Quantum spin S with h(S) = A(S%)? : This corresponds to so-called easy plane anisotropy, meaning that the single site energy h(S) is
minimized when the local spin vector S lies in the (z,y) plane. As in example (i), we write o, (S) = z ™! exp(uS?/k,T), yielding the
same expression for z and the same relation between z and u. What is different is that we must evaluate the local energy,

0%Inz
e(u,T) =Tr (g, h(S)) = A (k,T)? 52
A 1 (25+1)2 S(S+1)Au? o
[ — _ = u
4 | sinh?[u/2k,T]  sinh?[(25+ 1)u/2k,;T] 6(k;T)2
We now have ¢ = e+um — kT Inz , from which we obtain the susceptibility
S(S+1)
0
T=—7"—"7""— . .6.41
XTI =30, T+a) (7.6.41)

Note that the local susceptibility no longer diverges as T' — 0, because there is always a gap in the spectrum of A(S).

This page titled 7.6: Mean Field Theory of Fluctuations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
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