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5.11: Appendix III- Example Bose Condensation Problem
A three-dimensional gas of noninteracting bosonic particles obeys the dispersion relation .

Obtain an expression for the density  where  is the fugacity. Simplify your expression as best you can,
adimensionalizing any integral or infinite sum which may appear. You may find it convenient to define

Note , the Riemann zeta function.
Find the critical temperature for Bose condensation, . Your expression should only include the density , the constant ,
physical constants, and numerical factors (which may be expressed in terms of integrals or infinite sums).
What is the condensate density  when ?
Do you expect the second virial coefficient to be positive or negative? Explain your reasoning. (You don’t have to do any
calculation.)

We work in the grand canonical ensemble, using Bose-Einstein statistics.

The density for Bose-Einstein particles are given by

where we have changed integration variables from  to , and we have defined the functions  as above, in
Equation [zetadef]. Note , the Riemann zeta function.
Bose condensation sets in for , . Thus, the critical temperature  and the density  are related by

or

For , we have

where  is the condensate density. Thus, at ,

The virial expansion of the equation of state is
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p = n T(1 + (T )n+ (T ) +… ) .kB B2 B3 n2 (5.11.5)
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We expect  for noninteracting bosons, reflecting the tendency of the bosons to condense. (Correspondingly, for
noninteracting fermions we expect .)

For the curious, we compute  by eliminating the fugacity  from the equations for  and . First, we find 
:

Expanding in powers of the fugacity, we have

Solving for  using the first equation, we obtain, to order ,

Plugging this into the equation for , we obtain the first nontrivial term in the virial expansion, with

which is negative, as expected. Note that the ideal gas law is recovered for , for fixed .

1. For a review of the formalism of second quantization, see the appendix in §9.↩
2. Several texts, such as Pathria and Reichl, write  for . I adopt the latter notation since we are already using the

symbol  for the density of states function  and for the internal degeneracy .↩
3. Note the dimensions of  are . By contrast, the dimensions of  in Equation [BDOS] are 

. The difference lies in the a factor of , where  is the unit cell volume.↩

4. If , then .↩
5. OK, that isn’t quite true. For example, if , then the integral has a very weak  divergence, where  is the

lower cutoff. But for any power law density of states  with , the integral converges.↩
6. It is easy to see that the chemical potential for noninteracting bosons can never exceed the minimum value  of the single

particle dispersion.↩
7. Note that in the thermodynamics chapter we used  to denote the molar volume, .↩
8. The  particles are sometimes called the overcondensate.↩
9. IBG condensation is in the universality class of the spherical model. The -transition is in the universality class of the 

model.↩
10. Recall that two bodies in thermal equilibrium will have identical temperatures if they are free to exchange energy.↩
11. The phonon velocity  is slightly temperature dependent.↩
12. Many reliable descriptions may be found on the web. Check Wikipedia, for example.↩
13. Explicitly, one replaces  with ,  with , and  with .↩
14. Note that writing  we have  We then expand 

 to find the residue: .↩
15. I thank my colleague Tarun Grover for this observation.↩
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16. We’ve used .↩

17. Note that we have written , which explains the sign of the coefficient of .↩
18. The Gibbs-Duhem relation guarantees that such an equation of state exists, relating any three intensive thermodynamic

quantities.↩
19. A theorem due to Nagaoka establishes that the ground state is ferromagnetic for the case of a single hole in the  system

on bipartite lattices.↩
20. See J. P. F. LeBlanc , Phys. Rev. X 5, 041041 (2015) and B. Zheng , Science 358, 1155 (2017).↩
21. The best case for stripe order has been made at , , and hold doping  ( ).↩
22. In the normalization integrals, each  implicitly includes a sum  over any internal indices that may be present.↩
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