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2.7: Thermodynamic Potentials
Thermodynamic systems may do work on their environments. Under certain constraints, the work done may be bounded from
above by the change in an appropriately defined thermodynamic potential.

Energy 
Suppose we wish to create a thermodynamic system from scratch. Let’s imagine that we create it from scratch in a thermally
insulated box of volume . The work we must to to assemble the system is then  . After we bring all the constituent
particles together, pulling them in from infinity (say), the system will have total energy . After we finish, the system may not be
in thermal equilibrium. Spontaneous processes will then occur so as to maximize the system’s entropy, but the internal energy
remains at .

We have, from the First Law,   and combining this with the Second Law in the form 
 yields

Rearranging terms, we have  . Hence, the work done by a thermodynamic system under conditions
of constant entropy is bounded above by , and the maximum  is achieved for a reversible process. It is
sometimes useful to define the quantity

which is the differential work done by the system other than that required to change its volume. Then we have

and we conclude for systems at fixed  that .

In equilibrium, the equality in Equation [dEeqn] holds, and for single component systems where 
 we have  with

These expressions are easily generalized to multicomponent systems, magnetic systems,

Now consider a single component system at fixed . We conclude that  , which says that spontaneous processes in
a system with  always lead to a reduction in the internal energy . Therefore, spontaneous processes drive
the internal energy  to a minimum in systems at fixed .

Helmholtz free energy 
Suppose that when we spontaneously create our system while it is in constant contact with a thermal reservoir at temperature .
Then as we create our system, it will absorb heat from the reservoir. Therefore, we don’t have to supply the full internal energy ,
but rather only , since the system receives heat energy  from the reservoir. In other words, we must perform work 

 to create our system, if it is constantly in equilibrium at temperature . The quantity  is known as the
Helmholtz free energy, , which is related to the energy  by a Legendre transformation,

The general properties of Legendre transformations are discussed in Appendix II, §16.

Again invoking the Second Law, we have

Rearranging terms, we have  , which says that the work done by a thermodynamic system under
conditions of constant temperature is bounded above by , and the maximum  is achieved for a reversible
process. We also have the general result
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and we conclude, for systems at fixed , that .

Under equilibrium conditions, the equality in Equation [dFeqn] holds, and for single component systems where 
 we have  . This says that  with

For spontaneous processes,  says that spontaneous processes drive the Helmholtz free energy  to a
minimum in systems at fixed .

Enthalpy 
Suppose that when we spontaneously create our system while it is thermally insulated, but in constant mechanical contact with a
‘volume bath’ at pressure . For example, we could create our system inside a thermally insulated chamber with one movable wall
where the external pressure is fixed at . Thus, when creating the system, in addition to the system’s internal energy , we must
also perform work  in order to make room for it. In other words, we must perform work . The quantity  is
known as the enthalpy, . (We use the calligraphic font for  for enthalpy to avoid confusing it with magnetic field, .) The
enthalpy is obtained from the energy via a different Legendre transformation than that used to obtain the Helmholtz free energy  ,

Again invoking the Second Law, we have

hence with , we have in general

and we conclude, for systems at fixed , that .

In equilibrium, for single component systems,

which says , with

For spontaneous processes, , which says that spontaneous processes drive the enthalpy  to a
minimum in systems at fixed .

Gibbs free energy 
If we create a thermodynamic system at conditions of constant temperature  and constant pressure , then it absorbs heat energy 

 from the reservoir and we must expend work energy  in order to make room for it. Thus, the total amount of work we
must do in assembling our system is . This is the Gibbs free energy, . The Gibbs free energy is obtained
from  after two Legendre transformations,

Note that . The Second Law says that

which we may rearrange as  . Accordingly, we conclude, for systems at fixed ,
that .

For equilibrium one-component systems, the differential of  is
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therefore , with

Recall that Euler’s theorem for single component systems requires   which says , Thus, the
chemical potential  is the Gibbs free energy per particle. For spontaneous processes,  , hence
spontaneous processes drive the Gibbs free energy  to a minimum in systems at fixed .

Grand potential 
The grand potential, sometimes called the Landau free energy, is defined by

Under equilibrium conditions, its differential is

hence

Again invoking Equation [ETS], we find , which says that the pressure is the negative of the grand potential per unit
volume.

The Second Law tells us

hence

We conclude, for systems at fixed , that .
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