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5.3: Entropy and Counting States

Suppose we are to partition N particles among J possible distinct single particle states. How many ways €2 are there of accomplishing this task? The answer depends on the statistics of the particles.
If the particles are fermions, the answer is easy: [\ROmega\ns_\ssr{FD}={J\choose N}]. For bosons, the number of possible partitions can be evaluated via the following argument. Imagine that we line
up all the NV particles in a row, and we place J —1 barriers among the particles, as shown below in Figure . The number of partitions is then the total number of ways of placing the N
particles among these N +.J —1 objects (particles plus barriers), hence we have [\ROmega\ns_\ssr{BE}={N+J-1\choose N} | For Maxwell-Boltzmann statistics, we take [\ROmega\ns_\ssr{MB}=JAN/N! |
Note that is not necessarily an integer, so Maxwell-Boltzmann statistics does not represent any actual state counting. Rather, it manifests itself as a common limit of the Bose
and Fermi distributions, as we have seen and shall see again shortly.
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[BEcount] Partitioning IV bosons into J possible states (N = 14 and J = 5 shown). The IV black dots represent bosons, while the J —1 white dots represent markers separating the different single
particle populations. Here ny = 3, ny =1,n3 =4, n4 =2, and n5 =4.

The entropy in each case is simply S = k; InQ. We assume N >> 1 and J > 1, with n = N/ J finite. Then using Stirling’s approximation, In(K!) = KIn K — K + O(InK) , we have

|\begin( split} S\ns_\ssr{MB}&=-I\kB \, n\ln n \\ S\ns_\ssr{BE}&=-J\kB\big[ n\In n - (1+n)\In (1+n)\big] \bvph \\ S\ns_\ssr{FD}&=-J\kB\big[ n\In n + (1-n)\In (1-n)\big]\ . \end{split} |

In the Maxwell-Boltzmann limit, n < 1, and all three expressions agree. Note thatR

| \begin{split} \pabc{S\ns_\ssr{MB}}{N}{J} &= -\kB\, \big( 1 +\In n\big) \\ \pabc{S\ns_\ssr{BE} }{N}{J} &= \kB\n\'\big(n*{-1}+1\big) \bvph \\ \pabc{S\ns_\ssr{FD} }{N}{J} &= \kB\In\\big(nA{-1}-1\big)\ . \end{split} |

Now let’s imagine grouping the single particle spectrum into intervals of J consecutive energy states. If J is finite and the spectrum is continuous and we are in the thermodynamic limit, then these
states will all be degenerate. Therefore, using « as a label for the energies, we have that the grand potential Q@ = E —T'S — uN is given in each case by

| \begin{split} \Omega\ns_\ssr{MB} &= J\sum_\alpha \Big[ (\ve\ns_\alpha-\mu)\,n\ns_\alpha+\kT\,n\ns_\alpha\ln n\ns_\alpha\Big] \\ \Omega\ns_\ssr{BE} &= J\sum_\alpha \Big[ (\ve\ns_\alpha-\mu)\,n\ns_\alpha+\kT\,n\ns_\a

Now - lo and behold! - treating €2 as a function of the distribution {n,} and extremizing in each case, subject to the constraint of total particle number N = JY_  nq , one obtains the Maxwell-
Boltzmann, Bose-Einstein, and Fermi-Dirac distributions, respectively:

| {\delta\over\delta n\ns_\alpha}\Big(\Omega-\lambda \, J\sum_{\alpha'} n\ns_{\alpha'}\Big) = 0 \quad\Rightarrow \quad \begin{cases} n\ssr{MB}_\alpha=e/{(\mu-\ve\ns_\alpha)/k\ns_\RB T} \\\\ n\\ssr{BE} _\alpha=\big[e

As long as J is finite, so the states in each block all remain at the same energy, the results are independent of J.
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