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5.9: Appendix I- Second Quantization

Basis States and Creation/Annihilation Operators
Second quantization is a convenient scheme to label basis states of a many particle quantum system. We are ultimately interested in
solutions of the many-body Schrödinger equation,

where the Hamiltonian is

To the coordinate labels  we may also append labels for internal degrees of freedom, such as spin polarization,
denoted . Since  for all permutations , the many-body wavefunctions may be chosen to transform
according to irreducible representations of the symmetric group . Thus, for any ,

where the upper choice is for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics. Here  may include not only
the spatial coordinates of particle , but its internal quantum number(s) as well, such as .

A convenient basis for the many body states is obtained from the single-particle eigenstates  of some single-particle
Hamiltonian  , with  and . The basis may be taken as orthonormal, . Now
define

Here  is the number of times the index  appears among the set . For BE statistics,  , whereas
for FD statistics,  . Note that the above states are normalized :

Note that

which stand for permanent and determinant, respectively. We may now write

where

Note that  , where by  we mean  in the case of BE statistics and  in the case
of FD statistics.
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We may express  as a product of creation operators acting on a vacuum  in Fock space. For bosons,

with

where  is the commutator. For fermions,

with

where  is the anticommutator.

Second Quantized Operators

Now consider the action of permutation-symmetric first quantized operators such as  and 
. For a one-body operator such as , we have

One may verify that any permutation-symmetric one-body operator such as  is faithfully represented by the second quantized
expression,

where  is  or  as the application determines, and

Similarly, two-body operators such as  are represented as

where

The general form for an -body operator is then

Finally, if the Hamiltonian is noninteracting, consisting solely of one-body operators , then
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18766?pdf


5.9.3 https://phys.libretexts.org/@go/page/18766

where  is the spectrum of each single particle Hamiltonian .

This page titled 5.9: Appendix I- Second Quantization is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
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