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5.1: Statistical Mechanics of Noninteracting Quantum Systems

Bose and Fermi systems in the grand canonical ensemble

A noninteracting many-particle quantum Hamiltonian may be written as

where  is the number of particles in the quantum state  with energy . This form is called the second quantized representation of the Hamiltonian. The number eigenbasis is therefore also an
energy eigenbasis. Any eigenstate of  may be labeled by the integer eigenvalues of the  number operators, and written as . We then have

and

The eigenvalues  take on different possible values depending on whether the constituent particles are bosons or fermions, viz.

In other words, for bosons, the occupation numbers are nonnegative integers. For fermions, the occupation numbers are either 0 or 1 due to the Pauli principle, which says that at most one fermion
can occupy any single particle quantum state. There is no Pauli principle for bosons.

The -particle partition function  is then

where the sum is over all allowed values of the set , which depends on the statistics of the particles. Bosons satisfy Bose-Einstein (BE) statistics, in which . Fermions satisfy
Fermi-Dirac (FD) statistics, in which .

The OCE partition sum is difficult to perform, owing to the constraint  on the total number of particles. This constraint is relaxed in the GCE, where

Note that the grand partition function  takes the form of a product over contributions from the individual single particle states.

We now perform the single particle sums:

Therefore we have

and

We can combine these expressions into one, writing

where we take the upper sign for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics. Note that the average occupancy of single particle state  is

and the total particle number is then

We will henceforth write  for the thermodynamic average of this occupancy.

Quantum statistics and the Maxwell-Boltzmann limit

Consider a system composed of  noninteracting particles. The Hamiltonian is

The single particle Hamiltonian  has eigenstates  with corresponding energy eigenvalues . What is the partition function? Is it

where  is the single particle partition function,
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\begin{split} \XBE&=\prod_\alpha {1\over 1-e^{-(\ve\ns_\alpha-\mu)/\kT}}\\ \OBE&=\kT\sum_\alpha\ln\!\Big(1-e^{-(\ve\ns_\alpha-\mu)/\kT}\Big) \end{split}

\begin{split} \XFD&=\prod_\alpha \Big(1+e^{-(\ve\ns_\alpha-\mu)/\kT}\Big)\\ \OFD&=-\kT\sum_\alpha\ln\!\Big(1+e^{-(\ve\ns_\alpha-\mu)/\kT}\Big). \end{split}
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For systems where the individual particles are distinguishable, such as spins on a lattice which have fixed positions, this is indeed correct. But for particles free to move in a gas, this equation is
wrong. The reason is that for indistinguishable particles the many particle quantum mechanical states are specified by a collection of occupation numbers , which tell us how many particles are in
the single-particle state . The energy is

and the total number of particles is

That is, each collection of occupation numbers  labels a unique many particle state . In the product , the collection  occurs many times. We have therefore overcounted the
contribution to  due to this state. By what factor have we overcounted? It is easy to see that the overcounting factor is

which is the number of ways we can rearrange the labels  to arrive at the same collection . This follows from the multinomial theorem,

Thus, the correct expression for  is

In the high temperature limit, almost all the  are either  or , hence

This is the classical Maxwell-Boltzmann limit of quantum statistical mechanics. We now see the origin of the  term which is so important in the thermodynamics of entropy of mixing.

Finally, starting with the expressions for the grand partition function for Bose-Einstein or Fermi-Dirac particles, and working in the low density limit where  , we have ,
and consequently

This is the Maxwell-Boltzmann limit of quantum statistical mechanics. The occupation number average in the Maxwell-Boltzmann limit is then

Single particle density of states

The single particle density of states per unit volume  is defined as

We can then write

For particles with a dispersion , with , we have

where  is the spin degeneracy, and where we assume that  is both isotropic and a monotonically increasing function of . Thus, we have

In order to obtain  as a function of the energy  one must invert the dispersion relation  to obtain .

Note that we can equivalently write

to derive .

For a spin-  particle with ballistic dispersion , we have

where  is the step function, which takes the value  for  and  for . The appearance of  simply says that all the single particle energy eigenvalues are nonnegative. Note that we
are assuming a box of volume  but we are ignoring the quantization of kinetic energy, and assuming that the difference between successive quantized single particle energy eigenvalues is negligible
so that  can be replaced by the average in the above expression. Note that
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\begin{split} \Omega\ns_{\ssr{BE}/\ssr{FD}}&=\pm\kT\,\sum_\alpha\ln\!\Big(1\mp e^{-(\ve\ns_\alpha-\mu)/\kT}\Big)\\ &\longrightarrow-\kT\sum_\alpha e^{-(\ve\ns_\alpha-\mu)/\kT}\equiv \Omega\ns_\ssr{MB}\ . \end{
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This result holds true independent of the form of . The average total number of particles is then

which does depend on .
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