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8.S: Summary
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Summary
 Boltzmann equation: The full phase space distribution for a Hamiltonian system, , where , satisfies 

. This is not true, however, for the one-particle distribution . Rather,  is related to two-, three-, and higher order
particle number distributions in a chain of integrodifferential equations known as the BBGKY hierarchy. We can lump our ignorance of these
other terms into a collision integral and write \[{\pz f\over\pz t}=\stackrel

{\overbrace{\vphantom{\Bigg(}-{\dot\Br}\cdot{\pz f\over\pz\Br} - {\dot\Bp}\cdot{\pz f\over\pz\Bp}}}+\stackrel{\overbrace{\coll}}\ .\] In
the absence of collisions, the distribution evolves solely due to the streaming term with  and  . If  is
constant, we have the general solution

valid for any initial condition . We write the convective derivative as . Then the

Boltzmann equation may be written .

 Collisions: We are concerned with two types of collision processes: single-particle scattering, due to a local potential, and two-particle
scattering, due to interparticle forces. Let  denote the set of single particle kinematic variables,  for point particles and 

 for diatomic molecules. Then

for single particle scattering, and

for two-body scattering, where  is the two-body distribution, and where the approximation  in the
second line closes the equation. A quantity  which is preserved by the dynamics between collisions then satisfies

Quantities which are conserved by collisions satisfy  and are called collisional invariants. Examples include  (particle number), 
 (linear momentum, if translational invariance applies), and  (energy).

 Time reversal, parity, and detailed balance: With , we define the actions of time reversal and parity as
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where  is the combined operation. Time reversal symmetry of the underlying equations of motion requires 
.

Under conditions of detailed balance, this leads to , where 
 is the equilibrium distribution. For systems with both  and  symmetries, 

, whence  for point particles.

 Boltzmann’s -theorem: Let . Invoking the Boltzmann equation, it can be shown that , which
means , where  is Boltzmann’s -function.  is everywhere decreasing or constant, due to collisions.

 Weakly inhomogeneous gas: Under equilibrium conditions,  can be a function only of collisional invariants, and takes the Gibbs form 
. Assume now that , , and  are all weakly dependent on  and .  then describes a local equilibrium and

as such is annihilated by the collision term in the Boltzmann equation, but not by the streaming term. Accordingly, we seek a solution 
. A lengthy derivation results in

where  is the particle velocity,  is the enthalpy per particle, , and  is an external force. For an ideal gas, 

. The RHS is to be evaluated to first order in . The simplest model for the collision integral is the relaxation time approximation,
where . Note that this form does not preserve any collisional invariants. The scattering time is obtained from the relation 

, where  is the two particle total scattering cross section and  is the average relative speed of a pair of particles. This says
that there is on average one collision within a tube of cross sectional area  and length . For the Maxwellian distribution, \({\bar
v}\ns_{rel}=\sqrt{2}\,{\bar v}=\sqrt

\), so . The mean free path  is defined as .

 Transport coefficients: Assuming  and steady state, Eq. [bwig] yields

The energy current is given by

For a monatomic gas, one finds  with . A similar result follows by considering any intensive quantity 
which is spatially dependent through the temperature . The -current across the surface  is

Thus, , with  the associated transport coefficient. If , then , yielding . If 

, then , where  is the shear viscosity. Using the Boltzmann equation in the relaxation time
approximation, one obtains . From  and , we can form a dimensionless quantity , known as the Prandtl number.
Within the relaxation time approximation, . Most monatomic gases have .

 Linearized Boltzmann equation: To go beyond the phenomenological relaxation time approximation, one must grapple with the collision
integral,

which is a nonlinear functional of the distribution  (we suppress the  index here). Writing , we have 
, with
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The linearized Boltzmann equation (LBE) then takes the form , where

for point particles. To solve the LBE, we must invert the operator . Various useful properties follow from defining the inner product 
, such as the self-adjointness of : . We then have , with 

 and real eigenvalues . There are five zero eigenvalues corresponding to the collisional invariants:

When , the formal solution to  is . Aside from the collisional invariants, all the eigenvalues 
must be positive, corresponding to relaxation to the equilibrium state. One can check that the particle, energy, and heat currents are given by 

, , and .

In steady state, the solution to  is . This is valid provided  is orthogonal to each of the collisional invariants, in which
case

Once we have , we may obtain the various transport coefficients by computing the requisite currents. For example, to find the thermal
conductivity  and shear viscosity ,

 Variational approach: The Schwarz inequality, , holds for the positive semidefinite operator 
. One therefore has

Using variational functions  and , one finds, after tedious calculations,

Taking the lower limit in each case, we obtain a Prandtl number , which is close to what is observed for monatomic gases.

 Quantum transport: For quantum systems, the local equilibrium distribution is of the Bose-Einstein or Fermi-Dirac form,

with , and

where , , , , and , and where we have assumed time-reversal and parity
symmetry. The most important application is to electron transport in metals and semiconductors, in which case  is the Fermi distribution.
With , one has, within the relaxation time approximation,

where  is the gradient of the ‘electrochemical potential’ . For steady state
transport with , one has
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where , , and , with

These results entail

or, in terms of the ,

These results describe the following physical phenomena:

( ): An electrical current  will generate an electric field , where  is the electrical resistivity.

( ): An electrical current  will generate an heat current , where  is the Peltier coefficient.

( ): A temperature gradient  gives rise to a heat current , where  is the thermal conductivity.

( ): A temperature gradient  gives rise to an electric field , where  is the Seebeck coefficient.

For a parabolic band with effective electron mass , one finds

with , where  is the Fermi energy. The ratio  is then predicted to be
universal, a result known as the Wiedemann-Franz law. This also predicts all metals to have negative thermopower, which is not the case. In
the presence of an external magnetic field , additional transport effects arise:

( ): An electrical current  and a field  yield an electric field . The Hall coefficient is 

.

( ): An electrical current  and a field  yield a temperature gradient . The Ettingshausen coefficient is 

.

( ): A temperature gradient  and a field  yield an electric field . The Nernst

coefficient is .

( ): A temperature gradient  and a field  yield an orthogonal gradient . The Righi-Leduc

coefficient is .

 Stochastic processes: Stochastic processes involve a random element, hence they are not wholly deterministic. The simplest example is the
Langevin equation for Brownian motion, , where  is a particle’s momentum,  a damping rate due to friction,  an
external force, and  a stochastic random force. We can integrate this first order equation to obtain

We assume that the random force  has zero mean, and furthermore that

in which case one finds . If there is no external force, we expect the particle thermailzes at long times,

. This fixes , where  is the particle’s mass. One can integrate again to find the position. At late times ,
one finds  , corresponding to a mean velocity . The RMS fluctuations in position, however, grow as
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where  is the diffusion constant. Thus, after the memory of the initial conditions is lost , the mean position advances
linearly in time due to the external force, and the RMS fluctuations in position also increase linearly.

 Fokker-Planck equation: Suppose  is a stochastic variable, and define

Furthermore, assume  and , but that  for . One can then show that
the probability density  satisfies the Fokker-Planck equation,

For Brownian motion,  and . The resulting Fokker-Planck equation is then , where 
 ,  , The Galilean transformation  then results in , which is known as the diffusion equation, a

general solution to which is given by , where

is the diffusion kernel. Thus, .

Endnotes
1. Indeed, any arbitrary function of  alone would be a solution. Ultimately, we require some energy exchanging processes, such as

collisions, in order for any initial nonequilibrium distribution to converge to the Boltzmann distribution.↩
2. Recall from classical mechanics the definition of the Poisson bracket, . Then from Hamilton’s equations 

 and , where  is the Hamiltonian, we have . Invariants have zero Poisson bracket with the
Hamiltonian.↩

3. See Lifshitz and Pitaevskii, Physical Kinetics, §2.↩
4. The function  satisfies , hence  on the interval  and  on .

Thus,  monotonically decreases from  to , and then monotonically increases to , never becoming
negative.↩

5. In the chapter on thermodynamics, we adopted a slightly different definition of  as the heat capacity per mole. In this chapter  is the
heat capacity per particle.↩

6. Here we abbreviate QDC for ‘quick and dirty calculation’ and BRT for ‘Boltzmann equation in the relaxation time approximation’.↩
7. The difference is trivial, since .↩
8. See the excellent discussion in the book by Krapivsky, Redner, and Ben-Naim, cited in §8.1.↩
9. The requirements of an inner product  are symmetry, linearity, and non-negative definiteness.↩

10. We neglect interband scattering here, which can be important in practical applications, but which is beyond the scope of these notes.↩
11. The transition rate from  to  is proportional to the matrix element and to the product . The reverse process is proportional

to . Subtracting these factors, one obtains , and therefore the nonlinear terms felicitously cancel in Equation [qobc].↩
12. In this section we use  to denote electrical current, rather than particle number current as before.↩
13. To create a refrigerator, stick the cold junction inside a thermally insulated box and the hot junction outside the box.↩
14. Note that it is  and not  which is the source term in the energy continuity equation.↩
15. Remember that physically the fixed quantities are temperature and total carrier number density (or charge density, in the case of electron

and hole bands), and not temperature and chemical potential. An equation of state relating , , and  is then inverted to obtain ,
so that all results ultimately may be expressed in terms of  and .↩

16. The cgs unit of viscosity is the Poise (P). .↩
17. We further demand  and  at all times.↩
18. A discussion of measure for functional integrals is found in R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals.↩
19. In this section, we use the notation  for the susceptibility, rather than ↩
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⟨ (t)⟩− ⟨x(t) = ≡ 2Dt ,x2 ⟩2 2 TtkB

γm
(8.S.23)

D = T/γmkB (t ≫ )γ−1

∙ x(t)

δx(t) ≡ x(t+δt) −x(t) . (8.S.24)

⟨δx(t)⟩ = (x(t))δtF1 ⟨[δx(t) ⟩ = (x(t))δt]2 F2 ⟨[δx(t) ⟩ −O(δ )]n t2 n > 2
P (x, t) = ⟨δ(x−x(t))⟩

= − [ (x)P (x, t)] + [ (x)P (x, t)] .
∂P

∂t

∂

∂x
F1

1

2

∂2

∂x2
F2 (8.S.25)

(x) = F/γm ≡ uF1 (x) = 2DF2 = −u +DPt Px Pxx

=Pt
∂P
∂t

=Pxx
P∂

2

∂x2
x → x−ut = DPt Pxx

P (x, t) = d K(x− , t− )P ( , )∫
−∞

∞

x′ x′ t′ x′ t′

K(Δx, Δt) = (4πDΔt)−1/2e−(Δx /4DΔt)2

(8.S.26)

\RDelta x\ns_\ssr{RMS}=\sqrt{2D\RDelta t}

p

{A,B} = ⋅ − ⋅∂A
∂r

∂B
∂p

∂B
∂r

∂A
∂p

=ṙ
∂H
∂p

= −ṗ
∂H
∂r

H(p, r, t) = {A,H}dA

dt

g(x) = x lnx−x+1 (x) = lnxg′ (x) < 0g′ x ∈ [0, 1) (x) > 0g′ x ∈ (1, ∞]
g(x) g(0) = 1 g(1) = 0 g(∞) = ∞

cp cp

p = mv

⟨f |g⟩

| ⟩k
′ |k⟩ (1 −f)f ′

f(1 − )f ′ −ff ′

j

E ⋅ j \boldmath{E}⋅ j

n μ T μ(n,T )
n T

1 P = 1 g/cm⋅s
= 0βn=0 (t) = 0P−1

(ω)χ̂ (ω)Ĝ
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