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2.9: Equilibrium and Stability

Equilibrium
Suppose we have two systems, A and B, which are free to exchange energy, volume, and particle number, subject to overall
conservation rules

where , , and  are fixed. Now let us compute the change in the total entropy of the combined systems when they are allowed
to exchange energy, volume, or particle number. We assume that the entropy is additive,

Note that we have used , , and . Now we know from the Second Law that spontaneous
processes result in , which means that  tends to a maximum. If  is a maximum, it must be that the coefficients of ,

, and  all vanish, else we could increase the total entropy of the system by a judicious choice of these three differentials.
From , we have

Thus, we conclude that in order for the system to be in equilibrium, so that  is maximized and can increase no further under
spontaneous processes, we must have

Stability
Next, consider a uniform system with energy , volume , and particle number . We wish to check that
this system is not unstable with respect to spontaneously becoming inhomogeneous. To that end, we imagine dividing the system in
half. Each half would have energy , volume , and particle number . But suppose we divided up these quantities differently, so
that the left half had slightly different energy, volume, and particle number than the right, as depicted in Figure  . Does the
entropy increase or decrease? We have

Thus, we can write

where
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is the matrix of second derivatives, known in mathematical parlance as the Hessian, and . Note that  is a
symmetric matrix.

Figure  : To check for an instability, we compare the energy of a system to its total energy when we reapportion its energy,
volume, and particle number slightly unequally.

Since  must be a maximum in order for the system to be in equilibrium, we are tempted to conclude that the homogeneous system
is stable if and only if all three eigenvalues of  are negative. If one or more of the eigenvalues is positive, then it is possible to
choose a set of variations  such that , which would contradict the assumption that the homogeneous state is one of
maximum entropy. A matrix with this restriction is said to be negative definite. While it is true that  can have no positive
eigenvalues, it is clear from homogeneity of  that one of the three eigenvalues must be zero, corresponding to the
eigenvector . Homogeneity means . Now let us take , where  is
infinitesimal. Then , , and , and homogeneity says 

 and . We then have a slightly
weaker characterization of  as negative semidefinite.

However, if we fix one of the components of  to be zero, then  must have some component orthogonal to the
zero eigenvector, in which case . Suppose we set  and we just examine the stability with respect to
inhomogeneities in energy and volume. We then restrict our attention to the upper left  submatrix of . A general symmetric 

 matrix may be written

It is easy to solve for the eigenvalues of . One finds

In order for  to be negative definite, we require  and . Thus,  and 
. Taken together, these conditions require

Going back to thermodynamic variables, this requires

Thus the entropy is a concave function of  and  at fixed . Had we set  and considered the lower right 
submatrix of , we’d have concluded that  is concave at fixed . Since , we have 

 and we conclude  for stability.

Q =

⎛

⎝

⎜⎜
⎜⎜⎜⎜
⎜⎜⎜

S∂ 2

∂E2

S∂ 2

∂E ∂V

S∂ 2

∂E ∂N

S∂ 2

∂E ∂V

S∂ 2

∂V 2

S∂ 2

∂V ∂N

S∂ 2

∂E ∂N

S∂ 2

∂V ∂N

S∂ 2

∂N 2

⎞

⎠

⎟⎟
⎟⎟⎟⎟
⎟⎟⎟

(2.9.4)

Ψ = (ΔE, ΔV , ΔN) Q

2.9.1

S

Q

Ψ ΔS > 0

Q

S(E,V ,N)

Ψ = (E,V ,N) S(λE,λV ,λN) = λS(E,V ,N) λ = 1 +η η

ΔE = ηE ΔV = ηV ΔN = ηN

S(E±ΔE,V ±ΔV ,N ±ΔN) = (1 ±η)S(E,V ,N) ΔS = (1 +η)S+(1 −η)S−2S = 0

Q

(ΔE, ΔV , ΔN) Ψ

ΔS < 0 ΔN = 0

2 ×2 Q

2 ×2

Q =( )
a

b

b

c
(2.9.5)

Q

=( )±  .λ±

a+c

2
+( )

a−c

2

2

b2

− −−−−−−−−−−

√ (2.9.6)

Q < 0λ+ < 0λ− Tr Q = a+c = + < 0λ+ λ−

det Q = ac− = > 0b2 λ+ λ−

a < 0 , c < 0 , ac >  .b2 (2.9.7)

< 0 , < 0 , ⋅ >(  .
S∂2

∂E2

S∂2

∂V 2

S∂2

∂E2

S∂2

∂V 2

S∂2

∂E ∂V
)

2

(2.9.8)

E V N ΔE = 0 2 ×2

Q S(V ,N) E ( =∂S
∂E

)
V

T −1

= − ( = − < 0S∂ 2

∂E2
1

T 2

∂T

∂E
)
V

CV

T 2 > 0CV

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18861?pdf


2.9.3 https://phys.libretexts.org/@go/page/18861

Many thermodynamic systems are held at fixed , which suggests we examine the stability criteria for .
Suppose our system is in equilibrium with a reservoir at temperature  and pressure . Then, suppressing  (which is assumed
constant), we have

Now suppose there is a fluctuation in the entropy and the volume of our system, which is held at fixed particle number. Going to
second order in  and , we have

Equilibrium requires that the coefficients of  and  both vanish, that  and  . The
condition for stability is that  for all . Stability therefore requires that the Hessian matrix  be positive definite,
with

Thus, we have the following three conditions:

As we shall discuss below, the quantity  is the adiabatic thermal expansivity coefficient. We therefore conclude
that stability of any thermodynamic system requires
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