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5.S: Summary
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Summary
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\font\seventeenbf=cmbx10 scaled \magstep3 \setcounter{section}{4} \section{Quantum Statistics : Summary} $\bullet$ {\it
Second-quantized ~ HamiltoniansV}: A noninteracting  quantum  system is described by a  Hamiltonian
$\HH=\sum_\alpha\ve\ns_\alpha\,\Hn\ns_\alpha$, where $\ve\ns_\alpha$ is the energy eigenvalue for the single particle state
$\psi\ns_\alpha$ (possibly degenerate), and $\Hn\ns_\alpha$ is the number operator. Many-body eigenstates $\tket{\Vn}$ are
labeled by the set of occupancies $\Vn=\{n\ns_\alpha\}$, with $\Hn\ns_\alpha\\tket{\Vn}=n\ns_\alpha\tket{\Vn}$. Thus,
$\HH\,\tket{\Vn}=E\ns_\Vn\>\tket{\Vn}$, where $E\ns_\Vn=\sum_\alpha n\ns_\alpha\,\ve\ns_\alpha$. $\bullet$ {\it Bosons and
fermionsV/}: The allowed values for $n\ns_\alpha$ are $n\ns_\alpha\in\{0,1,2,\ldots\infty\}$ for bosons and $n\ns_\alpha\in\
{0,1\}$ for fermions. $\bullet$ {\it Grand canonical ensembleV}: Because of the constraint $\sum_\alpha n\ns_\alpha=N$, the
ordinary canonical ensemble is inconvenient. Rather, we use the grand canonical ensemble, in which case

Q(Ta V, /«L) =+k,T Zln(]_ :Fe_(sa_ﬂ)/kBT) ,

where the upper sign corresponds to bosons and the lower sign to fermions. The average number of particles occupying the single
particle state $\psi\ns_\alpha$ is then

o0N 1

() = Oeq  eleaw)/ksT 1

In the Maxwell-Boltzmann limit, $\muMl -\kT$ and $\langle n\ns_\alpha\rangle = z\,eA{-\ve\ns_\alpha/\kT}$, where
$z=erM{\mu/\kT}$ is the fugacity. Note that this low-density limit is common to both bosons and fermions. $\bullet$ {\it Single
particle density of states\/}: The single particle density of states per unit volume is defined to be

g(s):%Tr 6(5—%):%26(6—%),

where $\Hh$ is the one-body Hamiltonian. If $\Hh$ is isotropic, then $\ve=\ve(k)$, where $k=]\Bk|$ is the magnitude of the
wavevector, and
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g(e) =

where $\Sg$ is the degeneracy of each single particle energy state (due to spin, for example). $\bullet$ {\it Quantum virial
expansionV}: From $\Omega=-pV$, we have
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where

= /ds g(e) ek

One now inverts $n=n(T,z)$ to obtain $z=z(T,n)$, then substitutes this into $p=p(T,z)$ to obtain a series expansion for the equation
of state,

(T, n) :nkBT(l +B2(T)n+B3(T)n2+...) .

The coefficients $B\ns_j(T)$ are the {\it virial coefficients\/}. One finds
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$\bullet$ {\it Photon statistics\/}: Photons are bosonic excitations whose number is not conserved, hence $\mu=0$. The number
distribution for photon statistics is then $n(\ve)=1/(e/{\beta\ve}-1)$. Examples of particles obeying photon statistics include
phonons (lattice vibrations), magnons (spin waves), and of course photons themselves, for which $\ve(k)=\hbar c k$ with $\Sg=2$.
The pressure and number density for the photon gas obey $p(T) = A\ns_d\,TA{d+1}$ and $n(T)=A'_d\,TAd$, where $d$ is the
dimension of space and $A\ns_d$ and $A' d$ are constants. $\bullet$ {\it Blackbody radiationVV}: The energy density per unit
frequency of a three-dimensional blackbody is given{P by

8mh V3
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The total power emitted per unit area of a blackbody is ${dP\over dA}=\sigma TA4$, where $\sigma=\pi*2 k_\ssr{B }"4/60\hbar"3
cA2 =5.67\times 10" {-8}\,\RW/ARmMA2\,\\RK”4$ is Stefan's constant. $\bullet$ {\it Ideal Bose gas\/}: For Bose systems, we must
have $\ve\ns_\alpha > \mu$ for all single particle states. The number density is
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This is an increasing function of $imu$ and an increasing function of $T$. For fixed $T$, the largest value $n(T,\mu)$ can attain is
$n(T,\ve\ns_0)$, where $\ve\ns_0$ is the lowest possible single particle energy, for which $g(\ve)=0$ for $\ve < \ve\ns_0$. If
$n\ns_\Rc(T)\equiv n(T,\ve\ns_0) < \infty$, this establishes a {\it critical densityV/} above which there is {\it Bose condensation\/}
into the energy $\ve\ns_0$ state. Conversely, for a given density $n$ there is a {\it critical temperature\/} $T\ns_\Rc(n)$ such that
$n\ns_0$ is finite for $T<t\ns_\rc$\,.>T\ns_\Rc$, $n(T,\mu)$ is given by the integral formula above, with $n\ns_0=0$. For a
ballistic dispersion $\ve(\Bk)=\hbarA2\BkA2/2m$, one finds $n\lambda_{T\ns_\Rc} d=\Sg\\zeta(d/2)$, \ie\ $\kB T\ns_\Rc=
{2\pi\hbarA2\over m} \left(n\big\Sg\,\zeta(d/2)\right)A{2/d}$. For $T<t\ns_\rc(n)$,>T\ns_\Rc(n)$, one has $n=\Sg\,
{Li}X\ns_{d\over 2}(z)\\lambda_TA{-d}$ and $p=\Sg\,{Li}\ns_{{d\over 2}+1}(z)\,\kT\,\lambda_TA{-d}$, where

n=1
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$\bullet$ {\it Ideal Fermi gasV/}: The Fermi distribution is $n(\ve)=f(\ve-\mu)=1\big\"\left(eAr{(\ve-\mu)A\KT }+1\right)$. At $T=0$,
this is a step function: $n(\ve)=\RTheta(\mu-\ve)$, and $n=\int\limits_{-\infty}\mu\\! d\ve\>g(\ve)$. The chemical potential at
$T=0$ is called the {\it Fermi energyV}: $\mu(T=0,n)=\veF(n)$. If the dispersion is $\ve(\Bk)$, the locus of $\Bk$ values
satisfying $\ve(\Bk)=\veF$ is called the {\it Fermi surfaceV}. For an isotropic and monotonic dispersion $\ve(k)$, the Fermi surface
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is a sphere of radius $\kF$, the {\it Fermi wavevector\/}. For isotropic three-dimensional systems, $\kF=(6\piA2 n\Sg)A{1/3}$.
$\bullet$ {\it Sommerfeld expansionV/}: Let $\phi(\ve)={d\Phi\over d\ve}$. Then
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where $D=\kT\,{d\over d\mu}$. One then finds, for example, $C\ns_V=\gamma V T$ with $\gamma=\third \pi’2
k_\ssr{B}A2\,g(\veF)$.
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