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5.8: The Ideal Fermi Gas

Grand potential and particle number
The grand potential of the ideal Fermi gas is, per Equation [Oqsm],

The average number of particles in a state with energy  is

hence the total number of particles is

The Fermi distribution
We define the function

known as the Fermi distribution. In the  limit,  for all finite values of . As ,  approaches a step function . The average number of particles in a state of energy  in
a system at temperature  and chemical potential  is . In Figure [fermidist] we plot  versus  for three representative temperatures.

 and the Fermi surface
At , we therefore have , which says that all single particle energy states up to  are filled, and all energy states above  are empty. We call  the Fermi
energy: . If the single particle dispersion  depends only on the wavevector , then the locus of points in -space for which  is called the Fermi surface. For isotropic
systems,  is a function only of the magnitude , and the Fermi surface is a sphere in  or a circle in . The radius of this circle is the Fermi wavevector, . When there is
internal ( spin) degree of freedom, there is a Fermi surface and Fermi wavevector (for isotropic systems) for each polarization state of the internal degree of freedom.

[fermidist] The Fermi distribution, f(\eps)=\big[\exp(\eps/k_\ssr{B}T)+1\big]^{-1}.
Here we have set k_\ssr{B}=1 and taken \mu=2, with T={1\over 20} (blue), T=

{3\over 4} (green), and T=2 (red). In the T\to 0 limit, f(\eps) approaches a step function
\RTheta(-\eps).

[fermidist] The Fermi distribution, . Here we have set  and taken , with  (blue),  (green), and  (red). In the 
limit,  approaches a step function .

Let’s compute the Fermi wavevector  and Fermi energy  for the IFG with a ballistic dispersion . The number density is

where  is the area of the unit sphere in  space dimensions. Note that the form of  is independent of the dispersion relation, so long as it remains isotropic. Inverting the
above expressions, we obtain :

The Fermi energy in each case, for ballistic dispersion, is therefore

Another useful result for the ballistic dispersion, which follows from the above, is that the density of states at the Fermi level is given by

For the electron gas, we have . In a metal, one typically has  to , and . Due to the effects of the crystalline lattice, electrons in a solid behave as if they
had an effective mass  which is typically on the order of the electron mass but very often about an order of magnitude smaller, particularly in semiconductors.

Nonisotropic dispersions  are more interesting in that they give rise to non-spherical Fermi surfaces. The simplest example is that of a two-dimensional ‘tight-binding’ model of electrons hopping
on a square lattice, as may be appropriate in certain layered materials. The dispersion relation is then

where  and  are confined to the interval . The quantity  has dimensions of energy and is known as the hopping integral. The Fermi surface is the set of points  which satisfies 
. When  achieves its minimum value of , the Fermi surface collapses to a point at . For energies just above this minimum value, we can expand the

dispersion in a power series, writing

If we only work to quadratic order in  and , the dispersion is isotropic, and the Fermi surface is a circle, with . As the energy increases further, the continuous  rotational
invariance is broken down to the discrete group of rotations of the square, . The Fermi surfaces distort and eventually, at , the Fermi surface is itself a square. As  increases further, the
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g(\veF)={\Sg\,\Omega\ns_d\over (2\pi)^d}\cdot{m k_\ssr{F}^{d-2}\over\hbar^2}={d\over 2}\cdot{n\over\veF}\ .
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square turns back into a circle, but centered about the point . Note that everything is periodic in  and  modulo . The Fermi surfaces for this model are depicted in the upper right panel of
Figure [fermisurfs].

[fermisurfs] Fermi surfaces for two and three-dimensional structures. Upper
left: free particles in two dimensions. Upper right: ‘tight binding’ electrons on

a square lattice. Lower left: Fermi surface for cesium, which is predominantly
composed of electrons in the 6s orbital shell. Lower right: the Fermi surface of
yttrium has two parts. One part (yellow) is predominantly due to 5s electrons,
while the other (pink) is due to 4d electrons. (Source:
www.phys.ufl.edu/fermisurface/)

[fermisurfs] Fermi surfaces for two and three-dimensional structures. Upper left: free particles in two dimensions. Upper right: ‘tight binding’ electrons on a square lattice. Lower left: Fermi surface
for cesium, which is predominantly composed of electrons in the  orbital shell. Lower right: the Fermi surface of yttrium has two parts. One part (yellow) is predominantly due to  electrons,
while the other (pink) is due to  electrons. (Source: www.phys.ufl.edu/fermisurface/)

Fermi surfaces in three dimensions can be very interesting indeed, and of great importance in understanding the electronic properties of solids. Two examples are shown in the bottom panels of Figure
[fermisurfs]. The electronic configuration of cesium (Cs) is . The  electrons ‘hop’ from site to site on a body centered cubic (BCC) lattice, a generalization of the simple two-dimensional
square lattice hopping model discussed above. The elementary unit cell in  space, known as the first Brillouin zone, turns out to be a dodecahedron. In yttrium, the electronic structure is 

, and there are two electronic energy bands at the Fermi level, meaning two Fermi surfaces. Yttrium forms a hexagonal close packed (HCP) crystal structure, and its first Brillouin zone is
shaped like a hexagonal pillbox.

Spin-split Fermi surfaces

Consider an electron gas in an external magnetic field . The single particle Hamiltonian is then

where  is the Bohr magneton,

where  is the electron mass. What happens at  to a noninteracting electron gas in a magnetic field?

Electrons of each spin polarization form their own Fermi surfaces. That is, there is an up spin Fermi surface, with Fermi wavevector , and a down spin Fermi surface, with Fermi wavevector 
. The individual Fermi energies, on the other hand, must be equal, hence

which says

The total density is

Clearly the down spin Fermi surface grows and the up spin Fermi surface shrinks with increasing . Eventually, the minority spin Fermi surface vanishes altogether. This happens for the up spins
when . Solving for the critical field, we obtain

In real magnetic solids, like cobalt and nickel, the spin-split Fermi surfaces are not spheres, just like the case of the (spin degenerate) Fermi surfaces for Cs and Y shown in Figure [fermisurfs].

The Sommerfeld expansion
In dealing with the ideal Fermi gas, we will repeatedly encounter integrals of the form

The Sommerfeld expansion provides a systematic way of expanding these expressions in powers of  and is an important analytical tool in analyzing the low temperature properties of the ideal Fermi
gas (IFG).

We start by defining

so that . We then have

where we assume . Next, we invoke Taylor’s theorem, to write
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with , where

is a dimensionless differential operator. The integral can now be done using the methods of complex integration:

[vcontour] Deformation of the complex integration contour in Equation [vcon].

[vcontour] Deformation of the complex integration contour in Equation [vcon].

Thus,

which is to be understood as the differential operator  acting on the function . Appealing once more to Taylor’s theorem, we have

Thus,

If  is a polynomial function of its argument, then each derivative effectively reduces the order of the polynomial by one degree, and the dimensionless parameter of the expansion is . This
procedure is known as the Sommerfeld expansion.

Chemical potential shift
As our first application of the Sommerfeld expansion formalism, let us compute  for the ideal Fermi gas. The number density  is

Let us write , where  is the Fermi energy, which is the chemical potential at . We then have

from which we derive

Note that . For a ballistic dispersion, assuming ,

Thus,  and , so
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The energy of the electron gas is
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where . is the ground state energy density ( ground state energy per unit volume). Thus, to order ,

where  . Note that the molar heat capacity is

where in the last expression on the RHS we have assumed a ballistic dispersion, for which

The molar heat capacity in Equation [mhceg] is to be compared with the classical ideal gas value of . Relative to the classical ideal gas, the IFG value is reduced by a fraction of 
, which in most metals is very small and even at room temperature is only on the order of . Most of the heat capacity of metals at room temperature is due to the energy

stored in lattice vibrations.

A niftier way to derive the heat capacity : Starting with Equation [dmueqn] for , note that , so we may write . Next, use
the Maxwell relation  to arrive at

where  is the entropy per unit volume. Now use  and integrate with respect to the density  to arrive at , where  is defined above.

Magnetic susceptibility

Pauli paramagnetism

Magnetism has two origins: (i) orbital currents of charged particles, and (ii) intrinsic magnetic moment. The intrinsic magnetic moment  of a particle is related to its quantum mechanical spin via

where  is the particle’s -factor,  its magnetic moment, and  is the vector of quantum mechanical spin operators satisfying , SU  commutation relations. The
Hamiltonian for a single particle is then

where in the last line we’ve restricted our attention to the electron, for which . The -factor for an electron is  at tree level, and when radiative corrections are accounted for using
quantum electrodynamics (QED) one finds . For our purposes we can take , although we can always absorb the small difference into the definition of , writing 

. We’ve chosen the -axis in spin space to point in the direction of the magnetic field, and we wrote the eigenvalues of  as , where . The
quantity  is the effective mass of the electron, which we mentioned earlier. An important distinction is that it is  which enters into the kinetic energy term , but it is the electron mass 
itself ( keV) which enters into the definition of the Bohr magneton. We shall discuss the consequences of this further below.

In the absence of orbital magnetic coupling, the single particle dispersion is

At , we have the results of §8.3.1. At finite , we once again use the Sommerfeld expansion. We then have

We now invoke the Sommerfeld expension to find the temperature dependence:

Note that the density of states for spin species  is

where  is the total density of states per unit volume, for both spin species, in the absence of a magnetic field. We conclude that the chemical potential shift in an external field is
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[FSmag] Fermi distributions in the presence of an external Zeeman-coupled
magnetic field.

[FSmag] Fermi distributions in the presence of an external Zeeman-coupled magnetic field.

We next compute the difference  in the densities of up and down spin electrons:

We needn’t go beyond the trivial lowest order term in the Sommerfeld expansion, because  is already assumed to be small. Thus, the magnetization density is

in which the magnetic susceptibility is

This is called the Pauli paramagnetic susceptibility.

Landau Diamagnetism

When orbital effects are included, the single particle energy levels are given by

Here  is a Landau level index, and  is the cyclotron frequency. Note that

Accordingly, we define the ratio . We can then write

The grand potential is then given by

A few words are in order here regarding the prefactor. In the presence of a uniform magnetic field, the energy levels of a two-dimensional ballistic charged particle collapse into Landau levels. The
number of states per Landau level scales with the area of the system, and is equal to the number of flux quanta through the system: , where  is the Dirac flux quantum. Note
that

hence we can write

where

We now invoke the Euler-MacLaurin formula,

resulting in

We next expand in powers of the magnetic field  to obtain

Thus, the magnetic susceptibility is

where  is the isothermal compressibility . In most metals we have  and the term in brackets is positive (recall ). In semiconductors, however, we can have ; for example in
GaAs we have . Thus, semiconductors can have a diamagnetic response. If we take  and , we see that the orbital currents give rise to a diamagnetic contribution to the

δμ(T ,n,H) = −{ ( T +( H }  +…  .
π2

6
kB )2 μ~ )2

( )g′ εF

g( )εF
(5.8.26)

−n↑ n↓

−n
↑

n
↓

= dε { (ε) − (ε)} f(ε−μ)∫

−∞

∞

g
↑

g
↓

= dε {g(ε− H) −g(ε+ H)} f(ε−μ)
1

2
∫

−∞

∞

μ~ μ~

= − H ⋅ πD csc(πD) g(μ) +O( ) .μ~ H 3

H

M=-\mutB(n\ns_\uar-n\ns_\dar)={\tilde \mu}^2_\ssr{B}\,g(\veF)\, H\ .

\xhi=\bigg({\pz M\over\pz H}\bigg)\nd_{T,N}={\tilde \mu}^2_\ssr{B}\,g(\veF)\ .

ε(n, , σ) = (n+ )ℏ + + H σ .kz
1

2
ωc

ℏ2k2
z

2m∗
μ~ (5.8.27)

n = eH/ cωc m∗

= ⋅ = ⋅  .
Hμ~

ℏωc

geℏH

4mc

cm∗

ℏeH

g

4

m∗

m
(5.8.28)

r ≡ (g/2) ×( /m)m∗

ε(n, , σ) = (n+ + rσ)ℏ +  .kz
1

2

1

2
ωc

ℏ2k2
z

2m∗
(5.8.29)

Ω = − ⋅ ⋅ T ln[1 + ] .
HA

ϕ0

Lz kB ∫

−∞

∞
dkz

2π
∑
n=0

∞

∑
σ=±1

eμ/ TkB e−(n+ + rσ)ℏ / T1
2

1
2

ωc kB e− /2 Tℏ2k2
z m∗kB (5.8.30)

= HA/Nϕ ϕ0 = hc/eϕ0

⋅ ⋅ T = ℏ ⋅  ,
HA

ϕ0

Lz kB ωc

V

λ3
T

(5.8.31)

Ω(T ,V ,μ,H) = ℏ Q((n+ + rσ)ℏ −μ) ,ωc∑
n=0

∞

∑
σ=±1

1

2

1

2
ωc (5.8.32)

Q(ε) = − ln[1 + ] .
V

λ2
T

∫

−∞

∞
dkz

2π
e−ε/ TkB e− /2 Tℏ2k2

z m∗kB (5.8.33)

F (n) = dx F (x) + F (0) − (0) +…  ,∑
n=0

∞

∫

0

∞
1

2

1

12
F ′ (5.8.34)

Ω = { dε Q(ε−μ) + ℏ Q( (1 +rσ)ℏ −μ)∑
σ=±1

∫

(1+rσ)ℏ
1

2
ωc

∞
1

2
ωc

1

2
ωc

− (ℏ ( (1 +rσ)ℏ −μ)+…}
1

12
ωc)

2 Q′ 1

2
ωc

H

Ω(T ,V ,μ,H) = 2 dε Q(ε−μ) +( − ) (ℏ (−μ) +…  .∫

0

∞
1

4
r2 1

12
ωc)

2 Q′ (5.8.35)

\begin{split} \xhi&=-{1\over V}{\pz^2\!\Omega\over\pz H^2}=\big(r^2-\third\big)\cdot{\tilde\mu}_\ssr{B}^2\cdot \big(m/m^*\big)^2\cdot \Big(\!-{2\over V}\,Q'(-\mu)\Big)\bvph\\ &=\bigg({g^2\over 4}-{m^2\over 3{m^*

κT
16 ≈ mm∗ g ≈ 2 ≪ mm∗

= 0.067 mm∗ g = 2 = mm∗
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magnetic susceptibility which is exactly  times as large as the contribution arising from Zeeman coupling. The net result is then paramagnetic ( ) and  as large as the Pauli susceptibility.
The orbital currents can be understood within the context of Lenz’s law.

Exercise : Show that .

Moment formation in interacting itinerant electron systems

The Hubbard model

A noninteracting electron gas exhibits paramagnetism or diamagnetism, depending on the sign of , but never develops a spontaneous magnetic moment: . What gives rise to
magnetism in solids? Overwhelmingly, the answer is that Coulomb repulsion between electrons is responsible for magnetism, in those instances in which magnetism arises. At first thought this might
seem odd, since the Coulomb interaction is spin-independent. How then can it lead to a spontaneous magnetic moment?

To understand how Coulomb repulsion leads to magnetism, it is useful to consider a model interacting system, described by the Hamiltonian

This is none other than the famous Hubbard model, which has served as a kind of Rosetta stone for interacting electron systems. The first term describes hopping of electrons along the links of some
regular lattice (the symbol  denotes a link between sites  and ). The second term describes the local (on-site) repulsion of electrons. This is a single orbital model, so the repulsion exists when one
tries to put two electrons in the orbital, with opposite spin polarization. Typically the Hubbard  parameter is on the order of electron volts. The last term is the Zeeman interaction of the electron
spins with an external magnetic field. Orbital effects can be modeled by associating a phase  to the hopping matrix element  between sites  and , where the directed sum of  around a
plaquette yields the total magnetic flux through the plaquette in units of . We will ignore orbital effects here. Note that the interaction term is short-ranged, whereas the Coulomb interaction
falls off as . The Hubbard model is thus unrealistic, although screening effects in metals do effectively render the interaction to be short-ranged.

Within the Hubbard model, the interaction term is local and written as  on any given site. This term favors a local moment. This is because the chemical potential will fix the mean value of the

total occupancy , in which case it always pays to maximize the difference .

Stoner mean field theory

There are no general methods available to solve for even the ground state of an interacting many-body Hamiltonian. We’ll solve this problem using a mean field theory due to Stoner. The idea is to
write the occupancy  as a sum of average and fluctuating terms:

Here,  is the thermodynamic average; the above equation may then be taken as a definition of the fluctuating piece, . We assume that the average is site-independent. This is a significant
assumption, for while we understand why each site should favor developing a moment, it is not clear that all these local moments should want to line up parallel to each other. Indeed, on a bipartite
lattice, it is possible that the individual local moments on neighboring sites will be antiparallel, corresponding to an antiferromagnetic order of the pins. Our mean field theory will be one for
ferromagnetic states.

We now write the interaction term as

where  and  are the average occupancy per spin and average spin polarization, each per unit cell:

. The mean field grand canonical Hamiltonian , may then be written as

where we’ve quantized spins along the direction of , defined as . You should take note of two things here. First, the chemical potential is shifted downward (or the electron energies shifted upward)
by an amount , corresponding to the average energy of repulsion with the background. Second, the effective magnetic field has been shifted by an amount , so the effective field is

The bare single particle dispersions are given by , where

and . For nearest neighbor hopping on a -dimensional cubic lattice, , where  is the lattice constant. Including the mean field effects, the effective single
particle dispersions become

We now solve the mean field theory, by obtaining the free energy per site, . First, note that , where  is the Landau, or grand canonical, free energy per site. This
follows from the general relation ; note that the total electron number is , since  is the electron number per unit cell (including both spin species). If  is the density of
states per unit cell (rather than per unit volume), then we have

where  and . From this free energy we derive two self-consistent equations for  and . The first comes from demanding that  be a function of  and
not of , , which leads to

where  is the Fermi function. The second equation comes from minimizing  with respect to average moment :

− 1
3

χ > 0 2
3

− (−μ) =2
V
Q′ n2κ

T

χ M(H = 0) = 0

\HH=-t\sum_{\ij,\sigma}\Big(c\yd_{i\sigma}c\nd_{j\sigma} + c\yd_{j\sigma}c\nd_{i\sigma}\Big) +U\sum_i n\nd_{i\uar}\,n\nd_{i\dar}+ \muB\BH\cdot\sum_{i,\alpha,\beta} c\yd_{i\alpha}\,\Bsigma\nd_{\alpha\beta}\,c\nd

\ij i j

U

exp(i )Aij t i j Aij

= hc/eϕ0

1/| − |Ri Rj

Un↑n↓

+n↑ n↓ | − |n↑ n↓

niσ

= ⟨ ⟩+δ  .niσ niσ niσ (5.8.36)

⟨ ⟩niσ δniσ

ni↑ni↓ = ⟩ ⟩+ ⟨ ⟩ + ⟩ +\langlen↑ \langlen↓ n↑ \deltani↓ \langlen↓ \deltani↑ \deltani↑ \deltani↓

  
(flucts)

2

= − ⟩ ⟩+ ⟩ + ⟩ +O((δn )\langlen
↑

\langlen
↓

\langlen
↑
n
i↓

\langlen
↓
n
i↑

)2

= ( − ) + n ( + ) + m ( − ) +O((δn ) ,
1

4
m2 n2 1

2
ni↑ ni↓

1

2
ni↑ ni↓ )2

n m

n

m

= ⟨ ⟩+ ⟨ ⟩n
↓

n
↑

= ⟨ ⟩− ⟨ ⟩ ,n↓ n↑

⟨ ⟩= (n−σm)nσ
1
2

K= −μNĤ

\begin{split} \CK^\ssr{MF}&=-\half\sum_{i,j,\sigma} t\nd_{ij} \Big(c\yd_{i\sigma}c\nd_{j\sigma} + c\yd_{j\sigma}c\nd_{i\sigma}\Big) - \big(\mu-\half Un\big)\sum_{i\sigma} c\yd_{i\sigma}c\nd_{i\sigma}\\ &\qquad +

H ẑ

Un1
2

\half Um/\muB

H\ns_{eff}=H + {Um\over 2\muB}\ .

\ve\ns_\sigma(\Bk)=-{\hat t}(\Bk)+\sigma\muB H

(k) = t(R)  ,t̂ ∑
R

e−ik⋅R (5.8.37)

= t( − )tij Ri Rj d (k) = −t cos( a)t̂ ∑d

μ=1 kμ a

{\widetilde\ve}\ns_\sigma(\Bk)=-{\hat t}(\Bk) - \half U n + \big(\muB H + \half U m\big)\,\sigma\ .

φ(n,T ,H) φ = ω+μn ω = Ω/Nsites

Ω = F −μN N = nNsites n g(ε)
17

φ = U( + ) + n− T dε g(ε){ ln(1 + )+ln(1 + )}
1

4
m2 n2 μ̄

1

2
kB ∫

−∞

∞

e( −ε−Δ)/ Tμ̄ kB e( −ε+Δ)/ Tμ̄ kB (5.8.38)

≡ μ− Unμ̄ 1
2

\Delta\equiv\muB H + \half Um μ m φ n

μ ∂φ/∂μ = 0

n = dε g(ε){f(ε−Δ − ) +f(ε+Δ − )} ,
1

2
∫

−∞

∞

μ̄ μ̄ (5.8.39)

f(y) = [ exp(y/ T ) +1kB ]
−1

f m

m = dε g(ε){f(ε−Δ − ) −f(ε+Δ − )} .
1

2
∫

−∞

∞

μ̄ μ̄ (5.8.40)
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Here, we will solve the first equation, eq. [neqn], and use the results to generate a Landau expansion of the free energy  in powers of . We assume that  is small, in which case we may write

We write  and expand in . Since  is fixed in our (canonical) ensemble, we have

which defines .  The remaining terms in the  expansion of Equation [nexpan] must sum to zero. This yields

where

is the thermally averaged bare density of states at energy . Note that the  derivative is

Solving for , we obtain

where

After integrating by parts and inserting this result for  into our expression for the free energy , we obtain the expansion

where prime denotes differentiation with respect to argument, at , and

where , so  is the integrated bare density of states per unit cell in the absence of any magnetic field (including both spin species).

We assume that  and  are small, in which case

where  is the Pauli susceptibility, and

where the argument of each  above is . The magnetization density (per unit cell, rather than per unit volume) is given by

Minimizing with respect to  yields

which gives, for small ,

We therefore obtain  with

where

The denominator of  increases the susceptibility above the bare Pauli value , and is referred to as – I kid you not – the Stoner enhancement (see Fig. [stenfig]).
[stenfig] A graduate student experiences the Stoner enhancement.

[stenfig] A graduate student experiences the Stoner enhancement.

It is worth emphasizing that the magnetization per unit cell is given by

This is an operator identity and is valid for any value of , and not only small .

When  we can still get a magnetic moment, provided . This is a consequence of the simple Landau theory we have derived. Solving for  when  gives  when  and

φ m2 Δ

n = dε g(ε){f(ε− ) + (ε− ) + (ε− ) +…} .∫

−∞

∞

μ̄
1

2
Δ2 f ′′ μ̄

1

24
Δ4 f ′′′′ μ̄ (5.8.41)

(Δ) = +δμ̄ μ̄0 μ̄ δμ̄ n

n = dε g(ε) f(ε− ) ,∫

−∞

∞

μ̄0 (5.8.42)

(n,T )μ̄0
18 δμ̄

D( ) δ + ( ) + (δ ( ) + ( ) δ + ( ) +O( ) = 0 ,μ̄0 μ̄
1

2
Δ2 D′ μ̄0

1

2
μ̄)2 D′ μ̄0

1

2
D′′ μ̄0 Δ2 μ̄

1

24
D′′′ μ̄0 Δ4 Δ6 (5.8.43)

D(μ) = − dε g(ε) (ε−μ)∫

−∞

∞

f ′ (5.8.44)

μ kth

(μ) = − dε (ε) (ε−μ) .D(k) ∫

−∞

∞

g(k) f ′ (5.8.45)

δμ̄

δ = − − (3 −6 + ) +O( ) ,μ̄
1

2
a1Δ2 1

24
a3

1 a1a2 a3 Δ4 Δ6 (5.8.46)

≡  .a
k

( )D(k) μ̄0

D( )μ̄0

(5.8.47)

δμ̄ f

φ(n,T ,m) = (n,T ) + U − D( ) + ( − ( )) +…  ,φ0

1

4
m2 1

2
μ̄0 Δ2 1

8

[ ( )D′ μ̄0 ]
2

D( )μ̄0

1

3
D′′ μ̄0 Δ4

m = 0

(n,T ) = U +n − dεN (ε) f(ε− ) ,φ0

1

4
n2 μ̄0 ∫

−∞

∞

μ̄0 (5.8.48)

g(ε) = (ε)N
′

N (ε)

H m

\vphi=\vphi\ns_0 + \half a m^2 + \fourth b m^4 -\half\xhi\ns_0\,H^2 - {U\xhi\ns_0\over 2\muB}\,Hm +\ldots\ ,

\xhi\ns_0=\mu_\ssr{B}^2\, D({\bar\mu}\ns_0)

a = U(1 − UD) , b = ( − ) ,
1

2

1

2

1

32

( )D′ 2

D

1

3
D′′ U 4 (5.8.49)

D(k) (n,T )μ̄0

M=-{\pz \vphi\over\pz H}=\xhi\ns_0 H + {U\xhi\ns_0\over 2\muB}\,m\ .

m

am + bm^3 - {U\xhi\ns_0\over 2\muB}\,H=0\ ,

m

m={\xhi\ns_0\over \muB}\,{H\over 1-\half UD}\ .

M = χH

χ =  ,
χ0

1 − U

Uc

(5.8.50)

=  .Uc

2

D( )μ̄0

(5.8.51)

χ χ0

M=-{1\over N_{sites}}\,{\delta\HH\over\delta H}=\muB m\ .

m m

H = 0 U > Uc m H = 0 m = 0 U < Uc

m(U) = ±(  ,
U

2b Uc

)
1/2

U −Uc
− −−−−−

√ (5.8.52)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18811?pdf


5.8.8 https://phys.libretexts.org/@go/page/18811

when , and assuming . Thus we have the usual mean field order parameter exponent of .

Antiferromagnetic solution

In addition to ferromagnetism, there may be other ordered states which solve the mean field theory. One such example is antiferromagnetism. On a bipartite lattice, the antiferromagnetic mean field
theory is obtained from

where  is the antiferromagnetic ordering wavevector. The grand canonical Hamiltonian is then

where , as before. On a bipartite lattice, with nearest neighbor hopping only, we have . The above matrix is diagonalized by a unitary transformation, yielding the
eigenvalues

with  and  as before. The free energy per unit cell is then

The mean field equations are then

As in the case of the ferromagnet, a paramagnetic solution with  always exists, in which case the second of the above equations is no longer valid.

Mean field phase diagram of the Hubbard model

Let us compare the mean field theories for the ferromagnetic and antiferromagnetic states at  and . Due to particle-hole symmetry, we may assume  without loss of generality.
(The solutions repeat themselves under .) For the paramagnet, we have

with  is the ‘renormalized’ Fermi energy and  is the density of states per unit cell in the absence of any explicit ( ) or implicit ( ) symmetry breaking, including both spin
polarizations.

For the ferromagnet,

Here,  is nonzero in the ordered phase.

Finally, the antiferromagnetic mean field equations are \[\begin{aligned} n\ns_

\label{dela}\\ \vphi&=\fourth U n^2+{\Delta^2\over U} -\!\int\limits_{\ve\ns_0}^\infty\!\!d\ve\,g(\ve)\, \sqrt{\ve^2+\Delta^2}\quad ,\end{aligned}\] where  and  as
before. Note that  for these solutions. Exactly at half-filling, we have  and . We then set .

The paramagnet to ferromagnet transition may be first or second order, depending on the details of . If second order, it occurs at , where 
 is the paramagnetic solution for . The paramagnet to antiferromagnet transition is always second order in this mean field theory, since the RHS of Equation ([dela]) is a

monotonic function of . This transition occurs at \(U_\Rc^\ssr{A}=2\bigg/\!\!\int\limits_

^\infty\!\!d\ve\,g(\ve) \,\ve^{-1}\). Note that  logarithmically for , since  at half-filling.

For large , the ferromagnetic solution always has the lowest energy, and therefore if , there will be a first-order antiferromagnet to ferromagnet transition at some
value . In Figure [hpd], I plot the phase diagram obtained by solving the mean field equations assuming a semicircular density of states . Also shown is
the phase diagram for the  square lattice Hubbard model obtained by J. Hirsch (1985).

[hpd] Mean field phase diagram of the Hubbard model, including paramagnetic (P), ferromagnetic (F), and
antiferromagnetic (A) phases. Left panel: results using a semicircular density of states function of half-

bandwidth W. Right panel: results using a two-dimensional square lattice density of states with nearest
neighbor hopping t, from J. E. Hirsch, Phys. Rev. B 31, 4403 (1985). The phase boundary between F and A
phases is first order.

[hpd] Mean field phase diagram of the Hubbard model, including paramagnetic (P), ferromagnetic (F), and antiferromagnetic (A) phases. Left panel: results using a semicircular density of states
function of half-bandwidth . Right panel: results using a two-dimensional square lattice density of states with nearest neighbor hopping , from J. E. Hirsch, Phys. Rev. B 31, 4403 (1985). The
phase boundary between F and A phases is first order.

How well does Stoner theory describe the physics of the Hubbard model? Quantum Monte Carlo calculations by J. Hirsch (1985) found that the actual phase diagram of the  square lattice
Hubbard Model exhibits no ferromagnetism for any  up to . Furthermore, he found the antiferromagnetic phase to be entirely confined to the vertical line . For  and ,

U > Uc b > 0 β = 1
2

⟨ ⟩= n+ σ m ,niσ

1

2

1

2
eiQ⋅Ri (5.8.53)

Q = (π/a, π/a, … , π/a)

\begin{aligned} \CK^\ssr{MF}&=-\half\sum_{i,j,\sigma} t\ns_{ij} \Big(c\yd_{i\sigma}c\nd_{j\sigma} + c\yd_{j\sigma}c\nd_{i\sigma}\Big) -\big(\mu-\half Un\big)\sum_{i\sigma} c\yd_{i\sigma}c\nd_{i\sigma} \nonumbe

ε(k) = − (k)t̂ ε(k +Q) = −ε(k)

= ± −λ± (k) +ε2 Δ2
− −−−−−−−−

√ μ̄ (5.8.54)
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2

= μ− Unμ̄ 1
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∞
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g(ε) U_\Rc^\ssr{F}=1\big/g({\bar\mu}\ns_\ssr{P})
{\bar\mu}_\ssr{P}(n) μ̄

Δ

U_\Rc^\ssr{A}\to 0 n → 1 {\bar\mu}\ns_\ssr{P}=0

U U_\Rc^\ssr{A} < U_\Rc^\ssr{F}
U^*>U_\Rc^\ssr{F} g(ε) = 2
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d = 2
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the system is a paramagnet . These results were state-of-the art at the time, but both computing power as well as numerical algorithms for interacting quantum systems have advanced considerably
since 1985. Yet as of 2018, we still don’t have a clear understanding of the  Hubbard model’s  phase diagram! There is an emerging body of numerical evidence  that in the underdoped (

) regime, there are portions of the phase diagram which exhibit a stripe ordering, in which antiferromagnetic order is interrupted by a parallel array of line defects containing excess holes ( the
absence of an electron) . This problem has turned out to be unexpectedly rich, complex, and numerically difficult to resolve due to the presence of competing ordered states, such as -wave
superconductivity and spiral magnetic phases, which lie nearby in energy with respect to the putative stripe ground state.

In order to achieve a ferromagnetic solution, it appears necessary to introduce geometric frustration, either by including a next-nearest-neighbor hopping amplitude  or by defining the model on non-
bipartite lattices. Numerical work by M. Ulmke (1997) showed the existence of a ferromagnetic phase at  on the FCC lattice Hubbard model for  and  (approximately).

White dwarf stars

There is a nice discussion of this material in R. K. Pathria, Statistical Mechanics. As a model, consider a mass  of helium at nuclear densities of  and temperature 
. This temperature is much larger than the ionization energy of He, hence we may safely assume that all helium atoms are ionized. If there are  electrons, then the number of  particles

( He nuclei) must be . The mass of the  particle is . The total stellar mass  is almost completely due to  particle cores.

The electron density is then

since . From the number density  we find for the electrons

Since , we conclude that the electrons are relativistic. The Fermi temperature will then be . Thus,  which says that the electron gas is
degenerate and may be considered to be at . So we need to understand the ground state properties of the relativistic electron gas.

The kinetic energy is given by

The velocity is

The pressure in the ground state is

where we use the substitution

Note that , and that

Now in equilibrium the pressure  is balanced by gravitational pressure. We have

This must be balanced by gravity:

where  depends on the radial mass distribution. Equilibrium then implies

[whitedwarf] Mass-radius relationship for white dwarf stars. (Source: Wikipedia).

[whitedwarf] Mass-radius relationship for white dwarf stars. (Source: Wikipedia).

To find the relation , we must solve

Note that

Thus, we may write

19

d = 2 T = 0 20

n < 1
21 d

t′

T = 0 U = 6 n ∈ [0.15, 0.87]

M ∼ g1033 ρ ∼ g/107 cm3

T ∼ K107 4 N α
4 N1

2
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n = = = ≈  ,
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1030 cm−3 (5.8.55)
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= 2.14 ×1010 cm−1

= 2.26 × g cm/s10−17
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(5.8.57)
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5.8.10 https://phys.libretexts.org/@go/page/18811

In the limit , we solve for  and find

In the opposite limit , the  factors divide out and we obtain

To find the  dependence, we must go beyond the lowest order expansion of Equation [cases], in which case we find

The value  is the limiting size for a white dwarf. It is called the Chandrasekhar limit.
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