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2.6: The Entropy

Entropy and heat

The Second Law guarantees us that an engine operating between two heat baths at temperatures  and  must satisfy

with the equality holding for reversible processes. This is a restatement of Equation , after writing  for the heat transferred to the engine from reservoir #1. Consider now an arbitrary
curve in the  plane. We can describe such a curve, to arbitrary accuracy, as a combination of Carnot cycles, as shown in Fig. [mcarnot]. Each little Carnot cycle consists of two adiabats and two
isotherms. We then conclude

with equality holding if all the cycles are reversible. Rudolf Clausius, in 1865, realized that one could then define a new state function, which he called the entropy, , that depended only on the initial
and final states of a reversible process:

Since  is extensive, so is ; the units of entropy are .

[mcarnot] An arbitrarily shaped cycle in the  plane can be decomposed into a number of smaller Carnot cycles. Red curves indicate isotherms and blue curves adiabats, with .

The Third Law of Thermodynamics

Equation [dseqn] determines the entropy up to a constant. By choosing a standard state , we can define , and then by taking  in the above equation, we can define the absolute entropy
 for any state. However, it turns out that this seemingly arbitrary constant  in the entropy does have consequences, for example in the theory of gaseous equilibrium. The proper definition of

entropy, from the point of view of statistical mechanics, will lead us to understand how the zero temperature entropy of a system is related to its quantum mechanical ground state degeneracy. Walther
Nernst, in 1906, articulated a principle which is sometimes called the Third Law of Thermodynamics,

Again, this is not quite correct, and quantum mechanics tells us that , where  is the ground state degeneracy. Nernst’s law holds when .

We can combine the First and Second laws to write

where the equality holds for reversible processes.

Entropy changes in cyclic processes
For a cyclic process, whether reversible or not, the change in entropy around a cycle is zero: . This is because the entropy  is a state function, with a unique value for every
equilibrium state. A cyclical process returns to the same equilibrium state, hence  must return as well to its corresponding value from the previous cycle.

Consider now a general engine, as in Fig. [engref]. Let us compute the total entropy change in the entire Universe over one cycle. We have

written as a sum over entropy changes of the engine itself, the hot reservoir, and the cold reservoir . Clearly . The changes in the reservoir entropies are

because the hot reservoir loses heat  to the engine, and the cold reservoir gains heat  from the engine. Therefore,

Thus, for a reversible cycle, the net change in the total entropy of the engine plus reservoirs is zero. For an irreversible cycle, there is an increase in total entropy, due to spontaneous processes.

Gibbs-Duhem relation
Recall Equation [dwork]:

For reversible systems, we can therefore write

This says that the energy  is a function of the entropy , the generalized displacements , and the particle numbers :

Furthermore, we have
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Since  and all its arguments are extensive, we have

We now differentiate the LHS and RHS above with respect to , setting  afterward. The result is

Mathematically astute readers will recognize this result as an example of Euler’s theorem for homogeneous functions. Taking the differential of Equation [ETS], and then subtracting Equation
[dErev], we obtain

This is called the Gibbs-Duhem relation. It says that there is one equation of state which may be written in terms of all the intensive quantities alone. For example, for a single component system, we
must have , which follows from

Entropy for an ideal gas
For an ideal gas, we have , and

Invoking the ideal gas equation of state , we have

Integrating, we obtain

where  is an arbitrary function. Extensivity of  places restrictions on , so that the most general case is

where  is a constant. Equivalently, we could write

where  is another constant. When we study statistical mechanics, we will find that for the monatomic ideal gas the entropy is

where  is the thermal wavelength, which involved Planck’s constant. Let’s now contrast two illustrative cases.

Adiabatic free expansion – Suppose the volume freely expands from  to , with . Such an expansion can be effected by a removal of a partition between two chambers that are
otherwise thermally insulated (see Fig. [AFE]). We have already seen how this process entails

But the entropy changes! According to Equation [SEVN], we have

Reversible adiabatic expansion – If the gas expands quasistatically and reversibly, then  holds everywhere along the thermodynamic path. We then have, assuming ,

Integrating, we find

Thus,

Example system

Consider a model thermodynamic system for which

where  is a constant. We have
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and therefore

Choosing any two of these equations, we can eliminate , which is inconvenient for experimental purposes. This yields three equations of state,

only two of which are independent.

What about  and ? To find , we recast Equation [EXA] as

We then have

where the last equality on the RHS follows upon invoking the first of the equations of state in Equation [TEOS]. To find , we eliminate  from eqns. [EXA] and [EXB], obtaining 
. From this we obtain

Thus, .

We can derive still more. To find the isothermal compressibility  , use the first of the equations of state in Equation [TEOS]. To derive the adiabatic compressibility 

 , use Equation [EXB], and then eliminate the inconvenient variable .

Suppose we use this system as the working substance for a Carnot engine. Let’s compute the work done and the engine efficiency. To do this, it is helpful to eliminate  in the expression for the
energy, and to rewrite the equation of state: \[E=pV=\sqrt

\>V^{1/2}\,T^{3/2}\qquad , \qquad p=\sqrt\>{T^{3/2}\over V^{1/2}}\ .\] We assume  throughout. We now see that for isotherms,

Furthermore, since \[\dbar W\big|\nd_T=\sqrt\>T^{3/2}\>{dV\over V^{1/2}}=2\,dE\big|\nd_T\ ,\] we conclude that

For adiabats, Equation [EXA] says , and therefore

as well as . We can use these relations to derive the following:

Now we can write

Adding up all the work, we obtain

Since

we find once again

Measuring the entropy of a substance

If we can measure the heat capacity  or  of a substance as a function of temperature down to the lowest temperatures, then we can measure the entropy. At constant pressure, for example,
we have , hence

The zero temperature entropy is  where  is the quantum ground state degeneracy at pressure . In all but highly unusual cases,  and .
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S(p,T = 0) = lngkB g p g= 1 S(p,T = 0) = 0
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