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8.2: Boltzmann Transport Theory

Derivation of the Boltzmann equation

For simplicity of presentation, we assume point particles. Recall that

f particles with positions within d* of
tydrdlp= | F\#O 8.2.1
f@p,t)drdp r and momenta within d’ of p at time t. ( )
We now ask how the distribution functions f(r, p, t) evolves in time. It is clear that in the absence of collisions, the distribution function must satisfy the continuity equation,
0
U v (uf)=0. (8.2.2)
ot
This is just the condition of number conservation for particles. Take care to note that V and u are six-dimensional phase space vectors:
u=(&,y, %, Py, Py, P:)
v _ ( o 0 0 o0 0 0 )
oz’ Oy’ 8z’ dp, Op, Op.)
The continuity equation describes a distribution in which each constituent particle evolves according to a prescribed dynamics, which for a mechanical system is specified by
dr 0H dp O0H
— == — = —=F 8.2.3
O (8:2.3)
where F is an external applied force. Here,
H(p,r)=¢e(p)+U,,(r). (8.2.4)

For example, if the particles are under the influence of gravity, then Uy (r) =mg-r and F = -VU,,, = —mg.

Note that as a consequence of the dynamics, we have V-u = 0, phase space flow is incompressible, provided that (p) is a function of p alone, and not of r. Thus, in the absence of collisions, we
have
of

5 TuVi=0. (8.2.5)

The differential operator D; = 0; +u -V is sometimes called the ‘convective derivative’, because D, f is the time derivative of f in a comoving frame of reference.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical dynamics. In a collision process, a particle with momentum p and one with momentum p can
instantaneously convert into a pair with momenta p’ and p’, provided total momentum is conserved: p +p = p’ +p’ . This means that D, f # 0. Rather, we should write

of of . of ( of )
e —+p-=—=| = 8.2.6
ot or op ot ). ( )
where the right side is known as the collision integral. The collision integral is in general a function of r, p, and ¢ and a functional of the distribution f.
After a trivial rearrangement of terms, we can write the Boltzmann equation as
o (%) () 52
ot Ot Jun Ot Jeon”
where
0 0 0
(Ef) E_f.gf_p.—f (8.2.8)
str op
is known as the streaming term. Thus, there are two contributions to 8 /8t : streaming and collisions.
Collisionless Boltzmann equation
In the absence of collisions, the Boltzmann equation is given by
of 0 Of of
-~ 4 .= VU, -—=0. 8.2.9
at  dp or “t’ Jp (8.2.9)
In order to gain some intuition about how the streaming term affects the evolution of the distribution f(r, p, ), consider a case where F,,, = 0. We then have
0 0,
Ef+%'a_f:0‘ (8.2.10)
Clearly, then, any function of the form
fr,p,t)=¢(r—v(p)t, p) (8-2.11)
will be a solution to the collisionless Boltzmann equation, where v(p) = % . One possible solution would be the Boltzmann distribution,
F(r,p,t) = e/l P/ 2mbal (8.2.12)
which is time-independent . Here we have assumed a ballistic dispersion, e(p) = p?/2m.
For a slightly less trivial example, let the initial distribution be ¢(r, p) = A e r'/20% ¢ P*/26 5o that
2
Fr,p,t) = Ae (5) /207 gopipant (8.2.13)
Consider the one-dimensional version, and rescale position, momentum, and time so that
f(z,p,t):Aefé(l’; R (8.2.14)

Consider the level sets of f, where f(z,p,t) =Ae 2 * The equation for these sets is

Z=ptLq/a?—p>. (8.2.15)

For fixed £ , these level sets describe the loci in phase space of equal probability densities, with the probability density decreasing exponentially in the parameter . For £ = 0, the initial distribution
describes a Gaussian cloud of particles with a Gaussian momentum distribution. As £ increases, the distribution widens in  but not in p — each particle moves with a constant momentum, so the set
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of momentum values never changes. However, the level sets in the (%, p) plane become elliptical, with a semimajor axis oriented at an angle § = ctn ! (t) with respect to the Z axis. For £ >0, he
particles at the outer edges of the cloud are more likely to be moving away from the center. See the sketches in Figure

Suppose we add in a constant external force F,_, . Then it is easy to show (and left as an exercise to the reader to prove) that any function of the form

Fot? Feut >

— 2.1
o poo (8.2.16)

f(r,p,t) =Aw(r7p—t +
m

satisfies the collisionless Boltzmann equation (ballistic dispersion assumed).

[Fstreaming] Level sets for a sample f(Z,p,%) = A e 3@ P - %52, for values f = A e witha in equally spaced intervals from a = 0.2 (red) to a = 1.2 (blue). The time variable ¢ is taken
to be ¢ = 0.0 (upper left), 0.2 (upper right), 0.8 (lower right), and 1.3 (lower left).

Collisional invariants

Consider a function A(r, p) of position and momentum. Its average value at time ¢ is
A@) = i d'p AGr,p) frp.1) (8.2.17)
Taking the time derivative,

“_ /d‘”*rdsp A(r,p) Zt—f

dt
= /d3rd3p A(r,p) {_% ()~ c‘)_(z) "(Bf)+ <%)mu}

. o4 dr 04 db o
_/d&rdsp{(af dt+3p dt)erA(r’p)(at)wu}.

dA 9A dr 0A dp
E_K'E+%'E_U' (8.2.18)

Hence, if A is preserved by the dynamics between collisions, then

We therefore have that the rate of change of A is determined wholly by the collision integral

dA 9,
— = /daTdSp A(r,p) (Ef)w” . (8.2.19)

Quantities which are then conserved in the collisions satisfy A=0. Such quantities are called collisional invariants. Examples of collisional invariants include the particle number (A =1), the
components of the total momentum (A = p,,) (in the absence of broken translational invariance, due to the presence of walls), and the total energy (A = &(p)).
Scattering processes

What sort of processes contribute to the collision integral? There are two broad classes to consider. The first involves potential scattering, where a particle in state |T") scatters, in the presence of an
external potential, to a state |I""). Recall that I is an abbreviation for the set of kinematic variables, I' = (p, L) in the case of a diatomic molecule. For point particles, I' = (p, py, p) and dT' = d%p.

We now define the function w(I" \F) such that

rate at which a particle within dI" of (r,T")

'l T; = 2.
w(T'IT) £ (r, T52) dT T { scatters to within dI"” of (r,I") at time ¢. (8.2.20)
The units of w dT" are therefore 1/T'. The differential scattering cross section for particle scattering is then
w(IV|T)
g =—— dI’, (8.2.21)
n|vl

where v = p/m is the particle’s velocity and n the density.
The second class is that of two-particle scattering processes, |TT;) — |T'T). We define the scattering function w (I'T"} | TT, ) by

rate at which two particles within dI" of (r, T')
w(I'T} |IT,) f,(r, T3, T ; t) dT dT, dI' dT; = { and within dT'; of (r,T;) scatter into states within (8.2.22)
dI" of (r,I") and dI'; of (r,I'}) at time ¢\,

where
Faleps 05 1) = (D 8(x,(8) — ) 6(py(£) —P) 6(x;(t) — ') S(p,(8) —P) ) (8.2.23)
iJ
is the nonequilibrium two-particle distribution for point particles. The differential scattering cross section is
do = %{\Fl) dr'dr . (8.2.24)

‘We assume, in both cases, that any scattering occurs locally, the particles attain their asymptotic kinematic states on distance scales small compared to the mean interparticle separation. In this case we
can treat each scattering process independently. This assumption is particular to rarefied systems, gases, and is not appropriate for dense liquids. The two types of scattering processes are depicted in
Figure
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[FCIscatt] Left: single particle scattering process |T') — [I). Right: two-particle scattering process [['T';) — [I'T%) .

In computing the collision integral for the state |r, I'), we must take care to sum over contributions from transitions out of this state, |I') — |I"'), which reduce f(r,T), and transitions into this state,
|T") — |T'), which increase f(r,T"). Thus, for one-body scattering, we have

% F(r,T;t) = <%)mn - /dI" {w(I‘|1’")f(r, s t)—w( |T) f(r,T; t)} . (8.2.25)

For two-body scattering, we have

D (O
B 710 = (5 )mu

= /dl"l/dl'"/dl"’l {w(rr1 [T'T) f,(r, T 1, T t)
—w(I'Ty [TT,) £, (5, 5w, Dy ) -

Unlike the one-body scattering case, the kinetic equation for two-body scattering does not close, since the LHS involves the one-body distribution f = f, and the RHS involves the two-body
distribution f,. To close the equations, we make the approximation

£, T8, T t) ~ f(r,T5t) (5, T58) . (8.2.26)
‘We then have
D
o FT5e) = /dl“l /dF’ /dl“’l {w(rr1 [T'TY) £(r, T ¢) F(r, ;)
—w(I'Ty | TT) £, T5) T30} -

Detailed balance

Classical mechanics places some restrictions on the form of the kernel w (1"1"1 | 1'"1'"1)4 In particular, if [\Gamman\sss{T}=(~\Bp,~\BL) | denotes the kinematic variables under time reversal, then

w\big(\Gamma'\Gamma'_1 \, |\, \Gamma\Gamma_1\big)= w\big(\Gamma™sss{T}\GammaMsss{T} 1\, |\\Gamma'{}Nsss{THGamma'_1{}Msss{T}big)\ . \label{TRw} |

This is because the time reverse of the process |IT';) — |T'T%) is [\tket{\Gamma'{}M\ssr{T)\Gamma'_1{}M\ssr{T} }\to\tket{\Gamma\ssr{T}\GammaA\ssr{T}_1} ]

In equilibrium, we must have

w\big(\Gamma'\Gamma'_1\, |\, \Gamma\Gamma_1\big)\,\,fA0(\Gamma)\,fA0(\Gamma\ns_1) \,d"4\\Gamma= w\big(\GammaM\sss{T)\Gammasss{T} 1\, | \\Gamma'{}Msss{T}\Gamma'_1{}Msss{T}\big)\,fA0(\Gamma'{

where

|d/\4\!\Gamma\equiv d\Gamma\,d\Gamma\ns_1\,d\Gamma' d\Gamma'_1\qquad,\qquad d"4\'\Gamma\sss{T}\equiv d\GammaMsss{T}\,d\Gamma_1Msss{T}\,d\Gamma'{}Msss{T} d\Gamma'_1{}"Msss{T}\. |

Since [d\Gamma=d\Gamma/\sss{T} |, we may cancel the differentials above, and after invoking Equation and suppressing the common r label, we find

| fA0(\Gamma)\,fA\0(\Gamma\ns_1)=fA0(\Gamma'{ }\sss{T})\,{A\0(\Gamma'_1{}MNsss{T})\ . |

This is the condition of detailed balance. For the Boltzmann distribution, we have

o) = Aee/ksT | (8.2.27)

where A is a constant and where & = (I") is the kinetic energy, e(I') = p?/2m in the case of point particles. Note that [\ve({\Gamma~\sss{T}})=\ve(\Gamma)]. Detailed balance is satisfied because the
kinematics of the collision requires energy conservation:

ete =¢'+¢). (8.2.28)
Since momentum is also kinematically conserved,
p+p, =p +p;, (8.2.29)
any distribution of the form
) = Ae (=P V)/kaT (8.2.30)

also satisfies detailed balance, for any velocity parameter V. This distribution is appropriate for gases which are flowing with average particle V.

In addition to time-reversal, parity is also a symmetry of the microscopic mechanical laws. Under the parity operation P, we have r — —r and p — —p. Note that a pseudovector suchas L =r x p
is unchanged under P. Thus, [\Gammar\sss{P}=(-\Bp,\BL) | Under the combined operation of C' = PT, we have [\Gamma\sss{C}=(\Bp,-\BL)]. If the microscopic Hamiltonian is invariant under C, then
we must have

w\big(\Gamma"Gamma'_1 \, | \, \Gamma\Gamma\ns_1\big)=w\big(\Gamma/\sss{ C}\Gamma_1/M\sss{C} \, |\, \Gamma'{}sss{C}\Gamma'_1{} \sss{C}\big)\ . |

For point particles, invariance under 7" and P then means

w(P', P} |p,p;) =w(p,p, [P,P), (8.2.31)

and therefore the collision integral takes the simplified form,

Dip) _ ( o )
coll

Dt
— [, at g wiet v 1.00) {1061) £00) -~ 10) 101}

where we have suppressed both r and ¢ variables.

The most general statement of detailed balance is

https://phys.libretexts.

/@go/page/1859



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18591?pdf

LibreTextsm

) @) _ w(C'Ty|IT)

= . (8.2.32)
o) fory) - w(IT, |T'TY)
Under this condition, the collision term vanishes for f = £, which is the equilibrium distribution.
Kinematics and cross section
‘We can rewrite Equation in the form
p) do
= [, fa v —v,] 55 {16 1) - ) S0} (8.2.33)

where o 1s the differential scattering cross section. If we recast the scattering problem in terms of center-of-mass and relative coordinates, we conclude that the total momentum is conserved by the
colhslon, and furthermore that the energy in the CM frame is conserved, which means that the magnitude of the relative momentum is conserved. Thus, we may write p’ —p} = |p — p;| Q , where

€ is a unit vector. Then p’ and p/ are determined to be

p' (P+p+lp—p,| Q)

/

Py = (p+p1 ‘P—Pl‘ﬂ)'

m|>—\m|n—~

H-theorem

Let’s consider the Boltzmann equation with two particle collisions. We define the local ( r-dependent) quantity
polrt)= [dT (L. 1) FEr,1). (8.2.34)

At this point, (T, f) is arbitrary. Note that the (T, ) factor has r and ¢ dependence through its dependence on f, which itself is a function of r, T, and ¢. We now compute

Do [ Ael) _ [ HeD) 2

ot at
oo fuS2(2)

]{dﬁn (wef) /dF 3(‘”")( )w”‘

The first term on the last line follows from the divergence theorem, and vanishes if we assume f = 0 for infinite values of the kinematic variables, which is the only physical possibility. Thus, the rate
of change of p,, is entirely due to the collision term. Thus,

a”*" /dI‘ dr /dF/dI" w(I'T} | IT, )fflx—w(FI‘l\F'F'l)f'f{X}

= /dI‘/dI‘l/dI‘/dI"l w(I'T, |TT,) £f, (x—X),

where f = £(T), f' = f(I'), fy = £(Ty), f{ = F(T1), x = x(T'), with

ANef) dp
=—"= —. 8.2.35
o ¥ 3 7 ( )
‘We now invoke the symmetry
w(I'TY |TIT,) =w(y T[T, T), (8.2.36)
which allows us to write
BPV’ _ v ]
dr [dT, [dI" [dT} w I"I‘ |TT, )ff1 (x+x1—X —x1) - (8.2.37)
This shows that p,, is preserved by the collision term if x(I") is a collisional invariant.
Now let us consider ¢(f) =In f. We define h = plzp:lnf . We then have
oh 1 , ,
%-"3 dr' [dT, [dT" [dT) w f'f] -z Inx, (8.2.38)
where w = w(I'T} |IT,) and = = f £,/ ' f{. We next invoke the result
/dl"’/dI"1 w(I'T} |IT,) :/dI" dr w(I'T, |T'T) (8.2.39)

which is a statement of unitarity of the scattering matrix . Multiplying both sides by f(I") f(T';), then integrating over I and T, and finally changing variables (I',T';) <+ (I, T} ), we find

0 :/alr/drl/dr’/drf1 w (ff,—f'fl) :/clr/drl/dr’/drf1 wf'fi(x-1). (8.2.40)

Multiplying this result by % and adding it to the previous equation for h, we arrive at our final result,

1
75/d1‘/dI‘l/dI"/dF’1wf’fl' (zlnz—z+1). (8.2.41)
Note that w, f’, and f| are all nonnegative. It is then easy to prove that the function g(z) =z Inz — +1 is nonnegative for all positive z values', which therefore entails the important result
Bh(r,t)
<0. 8.2.42
< (8:2.42)

Boltzmann’s H function is the space integral of the h density: H= [d% h.
Thus, everywhere in space, the function h(r, t) is monotonically decreasing or constant, due to collisions. In equilibrium, h=0 everywhere, which requires z =1,
PO =), (8.2.43)

or, taking the logarithm,

In fO(T) +1n fO(T,) = In fO(T") +In (%) . (8.2.44)
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But this means that In f° is itself a collisional invariant, and if 1, p, and € are the only collisional invariants, then In f® must be expressible in terms of them. Thus,

V-p [
Inf = __&
0 =T TR Wl

(8.2.45)

where 1, V, and T are constants which parameterize the equilibrium distribution f° (p), corresponding to the chemical potential, flow velocity, and temperature, respectively.

This page titled 8.2: Boltzmann Transport Theory is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Danicl Arovas.
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