
8.14.1 https://phys.libretexts.org/@go/page/18748

8.14: Appendix V- Kramers-Krönig Relations
Suppose  is analytic in the UHP . Then for all , we must have

where  is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming  vanishes sufficiently
rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak restriction on , given the fact that the
denominator already causes the integrand to vanish as .

Let us examine the function

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the limit , is equivalent to
taking a principal part of the integral. That is, for any function  which is regular at ,

The principal part symbol  means that the singularity at  is elided, either by smoothing out the function  as
above, or by simply cutting out a region of integration of width  on either side of .

The imaginary part is more interesting. Let us write

For , , which vanishes as . For ,  which diverges as . Thus,  has a huge peak
at  and rapidly decays to  as one moves off the peak in either direction a distance greater that . Finally, note that

a result which itself is easy to show using contour integration. Putting it all together, this tells us that

Thus, for positive infinitesimal ,

a most useful result.

We now return to our initial result [kka], and we separate  into real and imaginary parts:

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore have, for every real value of ,

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig relations:
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℘ ν = ω 1/(ν − ϵ)

ϵ ν = ω

h(u) ≡  .
ϵ

+u2 ϵ2
(8.14.4)
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