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4.2: The Quantum Mechanical Trace
Thus far our understanding of ergodicity is rooted in the dynamics of classical mechanics. A Hamiltonian flow which is ergodic is
one in which time averages can be replaced by phase space averages using the microcanonical ensemble. What happens, though, if
our system is quantum mechanical, as all systems ultimately are?

The Density Matrix
First, let us consider that our system  will in general be in contact with a world . We call the union of  and  the universe, 

. Let  denote a quantum mechanical state of , and let  denote a quantum mechanical state of . Then the
most general wavefunction we can write is of the form

Now let us compute the expectation value of some operator  which acts as the identity within , meaning 
, where  is the ‘reduced’ operator which acts within  alone. We then have

where

is the density matrix. The time-dependence of  is easily found:

where  is the Hamiltonian for the system . Thus, we find

Note that the density matrix evolves according to a slightly different equation than an operator in the Heisenberg picture, for which

Figure : A system  in contact with a ‘world’ . The union of the two, universe , is said to be the ‘universe’.

For Hamiltonian systems, we found that the phase space distribution  evolved according to the Liouville equation,
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= ⟩ ⟨nϱ̂ ∑
N

∑
,n n′

Ψ∗
N ,nΨN ,n′ ∣∣n

′ ∣∣ (4.2.2)

ϱ̂

(t)ϱ̂ = (t) ⟩ ⟨n(t)∑
N

∑
,n n′

Ψ∗
N ,nΨN ,n′ ∣∣n

′ ∣∣

=  ,e−i t/ℏĤ ϱ̂ e+i t/ℏĤ
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where the Liouvillian  is the differential operator

Accordingly, any distribution  which is a function of constants of the motion  is a stationary solution to the
Liouville equation: . Similarly, any quantum mechanical density matrix which commutes with the
Hamiltonian is a stationary solution to Equation . The corresponding microcanonical distribution is

Averaging the DOS
If our quantum mechanical system is placed in a finite volume, the energy levels will be discrete, rather than continuous, and the
density of states (DOS) will be of the form

where  are the eigenvalues of the Hamiltonian . In the thermodynamic limit, , and the discrete spectrum of kinetic
energies remains discrete for all finite  but must approach the continuum result. To recover the continuum result, we average the
DOS over a window of width :

If we take the limit  but with , where  is the spacing between successive quantized levels, we recover a
smooth function, as shown in Figure . We will in general drop the bar and refer to this function as . Note that 

 is (typically) exponentially small in the size of the system, hence if we took  which
vanishes in the thermodynamic limit, there are still exponentially many energy levels within an interval of width .

Figure : Averaging the quantum mechanical discrete density of states yields a continuous curve.

Coherent States
The quantum-classical correspondence is elucidated with the use of coherent states. Recall that the one-dimensional harmonic
oscillator Hamiltonian may be written

where  and  are ladder operators satisfying , which can be taken to be
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with  . Note that

The ground state satisfies , which yields

The normalized coherent state  is defined as

The overlap of coherent states is given by

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent states allow a simple resolution of
the identity,

which is straightforward to establish.

To gain some physical intuition about the coherent states, define

and write . One finds (exercise!)

hence the coherent state  is a wavepacket Gaussianly localized about , but oscillating with average momentum .

For example, we can compute

as well as

Thus, the root mean square fluctuations in the coherent state  are

and . Thus we learn that the coherent state  is localized in phase space, in both position and momentum. If

we have a general operator , we can then write

where  is formed from  by replacing  and .
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we can write the trace using coherent states as

We now can understand the origin of the factor  in the denominator of each  integral over classical phase space in
Equation .

Note that  is arbitrary in our discussion. By increasing , the states become more localized in  and more plane wave like in .
However, so long as  is finite, the width of the coherent state in each direction is proportional to , and thus vanishes in the
classical limit.

This page titled 4.2: The Quantum Mechanical Trace is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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