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6.5: Coulomb Systems - Plasmas and the Electron Gas

Electrostatic Potential
Coulomb systems are particularly interesting in statistical mechanics because of their long-ranged forces, which result in the
phenomenon of screening. Long-ranged forces wreak havoc with the Mayer cluster expansion, since the Mayer function is no
longer integrable. Thus, the virial expansion fails, and new techniques need to be applied to reveal the physics of plasmas.

The potential energy of a Coulomb system is

where  is the charge density and , which has the dimensions of (energy) (charge) , satisfies

Thus,

For discete particles, the charge density  is given by

where  is the charge of the  particle. We will assume two types of charges: , with . The electric potential is

This satisfies the Poisson equation,

The total potential energy can be written as

Debye-Hückel theory
We now write the grand partition function:

We now adopt a mean field approach, known as Debye-Hückel theory, writing

We then have
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We apply the mean field approximation in each region of space, which leads to

where

The charge density is therefore

where we have now dropped the superscript on  for convenience. At , we assume charge neutrality and .
Thus

where  is the ionic density of either species at infinity. Therefore,

We now invoke Poisson’s equation,

where  is an externally imposed charge density.

If , we can expand the  function and obtain

where

The quantity  is known as the Debye screening length. Consider, for example, a point charge  located at the origin. We then
solve Poisson’s equation in the weak field limit,

Fourier transforming, we obtain

Transforming back to real space, we obtain, in three dimensions, the Yukawa potential,

U = ∫ r [ (r) +δρ(r)] ⋅ [ (r) +δϕ(r)]
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This solution must break down sufficiently close to , since the assumption  is no longer valid there. However,
for larger , the Yukawa form is increasingly accurate.

For another example, consider an electrolyte held between two conducting plates, one at potential  and the other at
potential , where  is normal to the plane of the plates. Again assuming a weak field , we solve 

 and obtain

We fix the constants  and  by invoking the boundary conditions, which results in

Debye-Hückel theory is valid provided , so that the statistical assumption of many charges in a screening volume is
justified.

The Electron Gas: Thomas-Fermi Screening
Assuming , thermal fluctuations are unimportant and we may assume . In the same spirit as the Debye-Hückel
approach, we assume a slowly varying mean electrostatic potential . Locally, we can write

Thus, the Fermi wavevector  is spatially varying, according to the relation

The local electron number density is

In the presence of a uniform compensating positive background charge , Poisson’s equation takes the form

If , we may expand in powers of the ratio, obtaining

Here,  is the Thomas-Fermi wavevector,

Thomas-Fermi theory is valid provided , where , so that the statistical assumption of many electrons in a
screening volume is justified.

One important application of Thomas-Fermi screening is to the theory of metals. In a metal, the outer, valence electrons of each
atom are stripped away from the positively charged ionic core and enter into itinerant, plane-wave-like states. These states disperse
with some  function (that is periodic in the Brillouin zone, under , where  is a reciprocal lattice vector), and at 

 this energy band is filled up to the Fermi level , as Fermi statistics dictates. (In some cases, there may be several bands at
the Fermi level, as we saw in the case of yttrium.) The set of ionic cores then acts as a neutralizing positive background. In a
perfect crystal, the ionic cores are distributed periodically, and the positive background is approximately uniform. A charged
impurity in a metal, such as a zinc atom in a copper matrix, has a different nuclear charge and a different valency than the host. The
charge of the ionic core, when valence electrons are stripped away, differs from that of the host ions, and therefore the impurity acts

r = 0 eϕ(r) ≪ TkB

r

ϕ(x = 0) = 0
ϕ(x = L) = V x̂ eϕ ≪ TkB

ϕ = ϕ∇2 κ2
D

ϕ(x) = A +B  .e xκ
D e− xκ

D (6.5.18)

A B

ϕ(x) = V ⋅  .
sinh( x)κD

sinh( L)κD
(6.5.19)

≫ 1n∞ λ3
D

T ≪kB εF T = 0
ϕ(r)

= −eϕ(r) .εF
ℏ2k2

F

2m
(6.5.20)

kF

(r) = [ ( +eϕ(r))  .kF
2m

ℏ2
εF ]

1/2

(6.5.21)

n(r) = = (1 +  .
(r)k3

F

3π2
n∞

eϕ(r)

εF
)

3/2

(6.5.22)

= eρ+ n∞

ϕ = 4πe ⋅ [(1 + −1]−4π (r) .∇2 n∞
eϕ(r)

εF
)

3/2

ρext (6.5.23)

eϕ ≪ εF

ϕ = ϕ ≡ ϕ−4π (r) .∇2 6πn∞e2

εF
κ2
TF ρext (6.5.24)

κTF

=(  .κTF
6πn∞e2

εF
)

1/2

(6.5.25)

≫ 1n∞ λ3
TF

=λ
TF

κ−1
TF

ε(k) k → k +G G

T = 0 εF

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18580?pdf


6.5.4 https://phys.libretexts.org/@go/page/18580

as a local charge impurity. For example, copper has an electronic configuration of . The  electron forms an energy
band which contains the Fermi surface. Zinc has a configuration of , and in a Cu matrix the Zn gives up its two 
electrons into the  conduction band, leaving behind a charge  ionic core. The Cu cores have charge  since each copper
atom contributed only one  electron to the conduction band. The conduction band electrons neutralize the uniform positive
background of the Cu ion cores. What is left is an extra  nuclear charge at the Zn site, and one extra  conduction band
electron. The  impurity is, however, screened by the electrons, and at distances greater than an atomic radius the potential
that a given electron sees due to the Zn core is of the Yukawa form,

We should take care, however, that the dispersion  for the conduction band in a metal is not necessarily of the free electron
form . To linear order in the potential, however, the change in the local electronic density is

where  is the density of states at the Fermi energy. Thus, in a metal, we should write

where

The value of  will depend on the form of the dispersion. For ballistic bands with an effective mass , the formula in
Equation  still applies.

The Thomas-Fermi atom

Consider an ion formed of a nucleus of charge  and an electron cloud of charge . The net ionic charge is then .
Since we will be interested in atomic scales, we can no longer assume a weak field limit and we must retain the full nonlinear
screening theory, for which

We assume an isotropic solution. It is then convenient to define

where  is yet to be determined. As  we expect  since the nuclear charge is then unscreened. We then have

thus we arrive at the Thomas-Fermi equation,

with , provided we take

where Å is the Bohr radius. The TF equation is subject to the following boundary conditions:
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Figure : The Thomas-Fermi atom consists of a nuclear charge  surrounded by  electrons distributed in a cloud. The
electric potential  felt by any electron at position  is screened by the electrons within this radius, resulting in a self-consistent
potential .

At short distances, the nucleus is unscreened,

For positive ions, with , there is perfect screening at the ionic boundary , where . This requires

This requires

For an atom, with , the asymptotic solution to the TF equation is a power law, and by inspection is found to be 
, where  is a constant. The constant follows from the TF equation, which yields , hence .

Thus, a neutral TF atom has a density with a power law tail, with . TF ions with  are unstable.
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