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1.3: Entropy and Probability

Entropy and Information Theory
It was shown in the classic 1948 work of Claude Shannon that entropy is in fact a measure of information . Suppose we observe
that a particular event occurs with probability . We associate with this observation an amount of information . The
information  should satisfy certain desiderata:

Information is non-negative, .
If two events occur independently so their joint probability is , then their information is additive,

.
 is a continuous function of .

There is no information content to an event which is always observed, .

From these four properties, it is easy to show that the only possible function  is

where  is an arbitrary constant that can be absorbed into the base of the logarithm, since . We will take 
and use  as the base, so . Another common choice is to take the base of the logarithm to be , so .
In this latter case, the units of information are known as bits. Note that . This means that the observation of an extremely
rare event carries a great deal of information

Now suppose we have a set of events labeled by an integer  which occur with probabilities . What is the expected amount of
information in  observations? Since event  occurs an average of  times, and the information content in  is , we
have that the average information per observation is

which is known as the entropy of the distribution. Thus, maximizing  is equivalent to maximizing the information content per
observation.

Consider, for example, the information content of course grades. As we shall see, if the only constraint on the probability
distribution is that of overall normalization, then  is maximized when all the probabilities  are equal. The binary entropy is then

, since . Thus, for pass/fail grading, the maximum average information per grade is 
bit. If only A, B, C, D, and F grades are assigned, then the maximum average information per grade is  bits. If we
expand the grade options to include {A+, A, A-, B+, B, B-, C+, C, C-, D, F}, then the maximum average information per grade is 

 bits.

Equivalently, consider, following the discussion in vol. 1 of Kardar, a random sequence  where each element 
takes one of  possible values. There are then  such possible sequences, and to specify one of them requires 

 bits of information. However, if the value  occurs with probability , then on average it will occur 
 times in a sequence of length , and the total number of such sequences will be

In general, this is far less that the total possible number , and the number of bits necessary to specify one from among these 
 possibilities is

up to terms of order unity. Here we have invoked Stirling’s approximation. If the distribution is uniform, then we have  for
all , and .
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Probability distributions from maximum entropy
We have shown how one can proceed from a probability distribution and compute various averages. We now seek to go in the other
direction, and determine the full probability distribution based on a knowledge of certain averages.

At first, this seems impossible. Suppose we want to reproduce the full probability distribution for an -step random walk from
knowledge of the average , where  is the probability of moving to the right at each step (see §1 above). The
problem seems ridiculously underdetermined, since there are  possible configurations for an -step random walk:  for 

. Overall normalization requires

but this just imposes one constraint on the  probabilities , leaving  overall parameters. What principle
allows us to reconstruct the full probability distribution

corresponding to  independent steps?

The principle of maximum entropy

The entropy of a discrete probability distribution  is defined as

where here we take  as the base of the logarithm. The entropy may therefore be regarded as a function of the probability
distribution: . One special property of the entropy is the following. Suppose we have two independent normalized
distributions  and . The joint probability for events  and  is then . The entropy of the joint distribution is
then

Thus, the entropy of a joint distribution formed from two independent distributions is additive.

Suppose all we knew about  was that it was normalized. Then . This is a constraint on the values . Let us now
extremize the entropy  with respect to the distribution , but subject to the normalization constraint. We do this using
Lagrange’s method of undetermined multipliers. We define

and we freely extremize  over all its arguments. Thus, for all  we have

From the first of these equations, we obtain , and from the second we obtain

where  is the total number of possible events. Thus, , which says that all events are equally probable.
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Now suppose we know one other piece of information, which is the average value  of some quantity. We now
extremize  subject to two constraints, and so we define

We then have

which yields the two-parameter distribution

To fully determine the distribution  we need to invoke the two equations  and , which come from
extremizing  with respect to  and , respectively:

General formulation

The generalization to  extra pieces of information (plus normalization) is immediately apparent. We have

and therefore we define

with . Then the optimal distribution which extremizes  subject to the  constraints is

where  is determined by normalization: . This is a -parameter distribution, with 
determined by the  constraints in Equation [Kpoc].

Example

As an example, consider the random walk problem. We have two pieces of information:

Here the discrete label  from §3.2 ranges over  possible values, and may be written as an  digit binary number ,
where  is  or . Extremizing  subject to these constraints, we obtain

where  and . Normalization then requires
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hence . We then have

where

We then have , which determines , and we have recovered the Bernoulli distribution.

Of course there are no miracles , and there are an infinite family of distributions for which  that are not Bernoulli.
For example, we could have imposed another constraint, such as . This would result in the distribution

with  determined by normalization: . This is the one-dimensional Ising chain of classical equilibrium
statistical physics. Defining the transfer matrix  with  ,

where  and  are Pauli matrices, we have that

where  ,

The appropriate case here is that of the chain, but in the thermodynamic limit  both chain and ring yield identical results,
so we will examine here the results for the ring, which are somewhat easier to obtain. Clearly  , where  are the
eigenvalues of :

In the thermodynamic limit, the  eigenvalue dominates, and . We now have

We also have . These two equations determine the Lagrange multipliers  and . In the
thermodynamic limit, we have . Thus, if we fix  alone, there is a continuous one-parameter
family of distributions, parametrized , which satisfy the constraint on .

So what is it about the maximum entropy approach that is so compelling? Maximum entropy gives us a calculable distribution
which is consistent with maximum ignorance given our known constraints. In that sense, it is as unbiased as possible, from an
information theoretic point of view. As a starting point, a maximum entropy distribution may be improved upon, using Bayesian
methods for example (see §5.2 below).
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Continuous probability distributions
Suppose we have a continuous probability density  defined over some set . We have observables

where  is the appropriate integration measure. We assume , where  is the dimension of . Then we extremize
the functional

with respect to  and with respect to . Again, . This yields the following result:

The  Lagrange multipliers  are then determined from the  constraint equations in Equation [constcont].

As an example, consider a distribution  over the real numbers . We constrain

Extremizing the entropy, we then obtain

where . We already know the answer:

In other words,  and , with .
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