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3.6: Appendices

Appendix I: Formal Solution of the Master Equation

Recall the master equation . The matrix  is real but not necessarily symmetric. For such a matrix, the left
eigenvectors  and the right eigenvectors  are not the same: general different:

Note that the eigenvalue equation for the right eigenvectors is  while that for the left eigenvectors is . The
characteristic polynomial is the same in both cases:

which means that the left and right eigenvalues are the same. Note also that , hence the eigenvalues are either
real or appear in complex conjugate pairs. Multiplying the eigenvector equation for  on the right by  and summing over , and
multiplying the eigenvector equation for  on the left by  and summing over , and subtracting the two results yields

where the inner product is

We can now demand

in which case we can write

We have seen that  is a left eigenvector with eigenvalue , since . We do not know a priori the
corresponding right eigenvector, which depends on other details of . Now let’s expand  in the right eigenvectors of ,
writing

Then

This allows us to write
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It is now easy to see that  for all , or else the probabilities will become negative. For suppose  for some 
. Then as , the sum in Equation  will be dominated by the term for which  has the largest negative real part; all

other contributions will be subleading. But we must have  since  must be orthogonal to the left eigenvector 

. Therefore, at least one component of  ( for some value of ) must have a negative real part, which means
a negative probability!  As we have already proven that an initial nonnegative distribution  will remain nonnegative
under the evolution of the master equation, we conclude that  as , relaxing to the  right eigenvector, with

 for all .

Appendix II: Radioactive Decay
Consider a group of atoms, some of which are in an excited state which can undergo nuclear decay. Let  be the probability
that  atoms are excited at some time . We then model the decay dynamics by

Here,  is the decay rate of an individual atom, which can be determined from quantum mechanics. The master equation then tells
us

The interpretation here is as follows: let  denote a state in which  atoms are excited. Then . Then 
will increase due to spontaneous transitions from  to , and will decrease due to spontaneous transitions from  to 

.

The average number of particles in the system is

Note that

Thus,

The relaxation time is , and the equilibrium distribution is

Note that this satisfies detailed balance.

We can go a bit farther here. Let us define

This is sometimes called a generating function. Then
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Thus,

We now see that any function  satisfies the above equation, where . Thus, we can write

Setting  we have , and inverting this result we obtain ,

The total probability is , which clearly is conserved: . The average particle number is

Appendix III: Transition to Ergodicity in a Simple Model
A ball of mass  executes perfect one-dimensional motion along the symmetry axis of a piston. Above the ball lies a mobile piston
head of mass  which slides frictionlessly inside the piston. Both the ball and piston head execute ballistic motion, with two types
of collision possible: (i) the ball may bounce off the floor, which is assumed to be infinitely massive and fixed in space, and (ii) the
ball and piston head may engage in a one-dimensional elastic collision. The Hamiltonian is

where  is the height of the piston head and  the height of the ball. Another quantity is conserved by the dynamics: . ,
the ball always is below the piston head.

Choose an arbitrary length scale , and then energy scale , momentum scale , and time scale 
. Show that the dimensionless Hamiltonian becomes

with , and with equations of motion , (Here the bar indicates dimensionless variables: 
, , ) What special dynamical consequences hold for ?

Compute the microcanonical average piston height . The analogous dynamical average is

When computing microcanonical averages, it is helpful to use the Laplace transform, discussed toward the end of §3.3 of the
notes. (It is possible to compute the microcanonical average by more brute force methods as well.)
Compute the microcanonical average of the rate of collisions between the ball and the floor. Show that this is given by

The analogous dynamical average is
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where  is the set of times at which the ball hits the floor.
How do your results change if you do not enforce the dynamical constraint ?
Write a computer program to simulate this system. The only input should be the mass ratio  (set  to fix the energy).
You also may wish to input the initial conditions, or perhaps to choose the initial conditions randomly (all satisfying energy
conservation, of course!). Have your program compute the microcanonical as well as dynamical averages in parts (b) and (c).
Plot out the Poincaré section of  vs.  for those times when the ball hits the floor. Investigate this for several values of . Just
to show you that this is interesting, I’ve plotted some of my own numerical results in Figure .

Figure : Poincaré sections for the ball and piston head problem. Each color corresponds to a different initial condition. When
the mass ratio  exceeds unity, the system apparently becomes ergodic.

{ }ti
X ≥ x

r = 10Ē

P X r

3.6.1

3.6.1
r = m/M

r X(0) ⟨X(t)⟩ ⟨X⟩μce ⟨γ(t)⟩ ⟨γ⟩μce r X(0) ⟨X(t)⟩ ⟨X⟩μce ⟨γ(t)⟩ ⟨γ⟩μce

0.3 0.1 6.1743 5.8974 0.5283 0.4505 1.2 0.1 4.8509 4.8545 0.3816 0.3812

0.3 1.0 5.7303 5.8974 0.4170 0.4505 1.2 1.0 4.8479 4.8545 0.3811 0.3812

0.3 3.0 5.7876 5.8974 0.4217 0.4505 1.2 3.0 4.8493 4.8545 0.3813 0.3812

0.3 5.0 5.8231 5.8974 0.4228 0.4505 1.2 5.0 4.8482 4.8545 0.3813 0.3812

0.3 7.0 5.8227 5.8974 0.4228 0.4505 1.2 7.0 4.8472 4.8545 0.3808 0.3812

0.3 9.0 5.8016 5.8974 0.4234 0.4505 1.2 9.0 4.8466 4.8545 0.3808 0.3812

0.3 9.9 6.1539 5.8974 0.5249 0.4505 1.2 9.9 4.8444 4.8545 0.3807 0.3812

r X(0) Nb ⟨X(t)⟩ ⟨X⟩μce ⟨γ(t)⟩ ⟨γ⟩μce

1.2 7.0 104 4.8054892 4.8484848 0.37560388 0.38118510

1.2 7.0 105 4.8436969 4.8484848 0.38120356 0.38118510
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r X(0) Nb ⟨X(t)⟩ ⟨X⟩μce ⟨γ(t)⟩ ⟨γ⟩μce

1.2 7.0 106 4.8479414 4.8484848 0.38122778 0.38118510

1.2 7.0 107 4.8471686 4.8484848 0.38083749 0.38118510

1.2 7.0 108 4.8485825 4.8484848 0.38116282 0.38118510

1.2 7.0 109 4.8486682 4.8484848 0.38120259 0.38118510

1.2 1.0 109 4.8485381 4.8484848 0.38118069 0.38118510

1.2 9.9 109 4.8484886 4.8484848 0.38116295 0.38118510
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