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6.2: Nonideal Classical Gases
Let’s switch gears now and return to the study of continuous classical systems described by a Hamiltonian . In the
next chapter, we will see how the critical properties of classical fluids can in fact be modeled by an appropriate lattice gas Ising
model, and we’ll derive methods for describing the liquid-gas phase transition in such a model.

The Configuration Integral
Consider the ordinary canonical partition function for a nonideal system of identical point particles interacting via a central two-
body potential . We work in the ordinary canonical ensemble. The -particle partition function is

Here, we have assumed a many body Hamiltonian of the form

in which massive nonrelativistic particles interact via a two-body central potential. As before,  is the thermal
wavelength. We can now write

where the configuration integral  is given by

There are no general methods for evaluating the configurational integral exactly.

One-dimensional Tonks gas

The Tonks gas is a one-dimensional generalization of the hard sphere gas. Consider a one-dimensional gas of indistinguishable
particles of mass  interacting via the potential

Thus, the Tonks gas may be considered to be a gas of hard rods. The above potential guarantees that the portion of configuration
space in which any rods overlap is forbidden in this model . Let the gas be placed in a finite volume . The hard sphere nature of
the particles means that no particle can get within a distance  of the ends at  and . That is, there is a one-body
potential  acting as well, where

The configuration integral of the 1D Tonks gas is given by

where  is zero if any two ‘rods’ (of length ) overlap, or if any rod overlaps with either boundary at  and ,
and  otherwise. Note that  does not depend on temperature. Without loss of generality, we can integrate over the subspace
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i=1

N p2
i

2m
∑
i<j

xi xj (6.2.1)

=λ
T

2π /m Tℏ2 kB

− −−−−−−−−−
√

Z(T ,V ,N) = (T ,V ) ,λ−Nd
T QN (6.2.2)

(T ,V )QN

(T ,V ) = ∫ ⋯ ∫  .Q
N

1

N !
ddx1 ddx

N
∏
i<j

e−βu( )rij (6.2.3)

m

u(x− ) ={x′ ∞

0

 if |x− | < ax′

 if |x− | ≥ a .x′ (6.2.4)

4 L

a1
2

x = 0 x = L

v(x)

v(x) =

⎧

⎩
⎨
⎪⎪

⎪⎪

∞

0

∞

 if x < a1
2

 if  a ≤ x ≤ L− a1
2

1
2

 if x > L− a .1
2

(6.2.5)

(T ,L) = d ⋯ d χ( , … , ) ,QN

1

N !
∫

0

L

x1 ∫

0

L

xN x1 xN (6.2.6)

χ = e−U/ TkB a x = 0 x = L

χ = 1 χ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18577?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.02%3A_Nonideal_Classical_Gases


6.2.2 https://phys.libretexts.org/@go/page/18577

where  and then multiply the result by  . Clearly  must lie to the right of  and to the left of 
. Thus, the configurational integral is

The partition function is  , and so the free energy is

where we have used Stirling’s rule to write . The pressure is

where  is the one-dimensional density. Note that the pressure diverges as  approaches . The usual one-dimensional
ideal gas law, , is replaced by , where  is the ‘free’ volume obtained by subtracting
the total "excluded volume"  from the original volume . Note the similarity here to the van der Waals equation of state, 

, where  is the molar volume. Defining  and , we have

where  is the number density. The term involving the constant  is due to the long-ranged attraction of atoms due to their
mutual polarizability. The term involving  is an excluded volume effect. The Tonks gas models only the latter.

Mayer Cluster Expansion

Let us return to the general problem of computing the configuration integral. Consider the function , where 
. We assume that at very short distances there is a strong repulsion between particles,  as 

, and that  as . Thus,  vanishes as  and approaches unity as . For our
purposes, it will prove useful to define the function

called the Mayer function after Josef Mayer. We may now write
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Figure : Bottom panel: Lennard-Jones potential , with  and . Note the weak attractive
tail and the strong repulsive core. Top panel: Mayer function  for  (blue), 
(green), and  (red).

A typical potential we might consider is the semi-phenomenological Lennard-Jones potential,

This accounts for a long-distance attraction due to mutually induced electric dipole fluctuations, and a strong short-ranged
repulsion, phenomenologically modelled with a  potential, which mimics a hard core due to overlap of the atomic electron
distributions. Setting  we obtain  at the minimum, where . In contrast to the
Boltzmann weight , the Mayer function  vanishes as , behaving as . The Mayer function also
depends on temperature. Sketches of  and  for the Lennard-Jones model are shown in Figure .

The Lennard-Jones potential  is realistic for certain simple fluids, but it leads to a configuration integral which is in general
impossible to evaluate. Indeed, even a potential as simple as that of the hard sphere gas is intractable in more than one space
dimension. We can however make progress by deriving a series expansion for the equation of state in powers of the particle density.
This is known as the virial expansion. As was the case when we investigated noninteracting quantum statistics, it is convenient to
work in the grand canonical ensemble and to derive series expansions for the density  and the pressure  in terms of
the fugacity , then solve for  to obtain . These expansions in terms of fugacity have a nifty diagrammatic
interpretation, due to Mayer.

We begin by expanding the product in Equation  as

As there are  possible pairings, there are  terms in the expansion of the above product. Each such term may
be represented by a graph, as shown in Figure . For each such term, we draw a connection between dots representing different
particles  and  if the factor  appears in the term under consideration. The contribution for any given graph may be written as a
product over contributions from each of its disconnected component clusters. For example, in the case of the term in Figure ,
the contribution to the configurational integral would be

We will refer to a given product of Mayer functions which arises from this expansion as a term.
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Figure : Diagrammatic interpretation of a term involving a product of eight Mayer functions.

Figure 6.6: Left: John Lennard-Jones. Center: Catherine Zeta-Jones. Right: James Earl Jones.

The particular labels we assign to each vertex of a given graph don’t affect the overall value of the graph. Now a given unlabeled
graph consists of a certain number of connected subgraphs. For a system with  particles, we may then write

where  ranges over all possible connected subgraphs, and

Note that the single vertex  counts as a connected subgraph, with . We now ask: how many ways are there of assigning the 
 labels to the  vertices of a given unlabeled graph? One might first thing the answer is simply , however this is too big,

because different assignments of the labels to the vertices may not result in a distinct graph. To see this, consider the examples in
Figure . In the first example, an unlabeled graph with four vertices consists of two identical connected subgraphs. Given any
assignment of labels to the vertices, then, we can simply exchange the two subgraphs and get the same term. So we should divide 

 by the product  . But even this is not enough, because within each connected subgraph  there may be permutations
which leave the integrand unchanged, as shown in the second and third examples in Figure . We define the symmetry factor 
as the number of permutations of the labels which leaves a given connected subgraphs  invariant. Examples of symmetry factors
are shown in Figure . Consider, for example, the third subgraph in the top row. Clearly one can rotate the figure about its
horizontal symmetry axis to obtain a new labeling which represents the same term. This twofold axis is the only symmetry the
diagram possesses, hence . For the first diagram in the second row, one can rotate either of the triangles about the horizontal
symmetry axis. One can also rotate the figur e in the plane by  so as to exchange the two triangles. Thus, there are 

 symmetry operations which result in the same term, and . Finally, the last subgraph in the second row
consists of five vertices each of which is connected to the other four. Therefore any permutation of the labels results in the same
term, and . In addition to dividing by the product , we must then also divide by .
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Figure : Different assignations of labels to vertices may not result in a distinct term in the expansion of the configuration
integral.

We can now write the partition function as

where the product  is over all links in the subgraph . The final Kronecker delta enforces the constraint .
We have defined the cluster integrals  as

where we assume the limit . Since , the product  is invariant under simultaneous translation of
all the coordinate vectors by any constant vector, and hence the integral over the  position variables contains exactly one factor
of the volume, which cancels with the prefactor in the above definition of . Thus, each cluster integral is intensive , scaling as 

.

If we compute the grand partition function, then the fixed  constraint is relaxed, and we can do the sums:
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where  is the fugacity, and where . As in the case of ideal quantum gas statistical mechanics, we can
systematically invert the relation  to obtain , and then insert this into the equation for  to obtain the
equation of state . This yields the virial expansion of the equation of state,

Figure : The symmetry factor  for a connected subgraph  is the number of permutations of its indices which leaves the
term  invariant.

Lowest order expansion
We have

and

and

We may now write

We invert by writing
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We therefore conclude

We now insert Equation  with the determined values of  into the equation for , obtaining

Thus,

Note that  does not contribute to  – only  appears. As we shall see, this is because the virial coefficients  involve only
cluster integrals  for one-particle irreducible clusters, those clusters which remain connected if any of the vertices plus all its
links are removed.

One-particle irreducible clusters and the virial expansion
We start with Equation  for  and ,

where  for the connected cluster  is given by

It is convenient to work with dimensionless quantities, using  as the unit of volume. To this end, define

so that

where

is the sum over all connected clusters with  vertices. Here and henceforth, the functional dependence on  is implicit;  and  are
regarded here as explicit functions of . We can, in principle, invert to obtain . Let us write this inverse as
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where  is the dimensionless  virial coefficient. Thus,  and

for . We may also obtain the cluster integrals  in terms of the  . To this end, note that  is the coefficient of  in the
function  , hence

Irreducible clusters

The clusters which contribute to  are all connected, by definition. However, it is useful to make a further distinction based on the
topology of connected clusters and define a connected cluster  to be irreducible if, upon removing any site in  and all the links
connected to that site, the remaining sites of the cluster are still connected. The situation is depicted in Figure .

Figure : Connected versus irreducible clusters. Clusters (a) through (d) are irreducible in that they remain connected if any
component site and its connecting links are removed. Cluster (e) is connected, but is reducible. Its integral  may be reduced to a
product over its irreducible components, each shown in a unique color.

For a reducible cluster , the integral  is proportional to a product of cluster integrals over its irreducible components. Let us
define the set  as the set of all irreducible clusters of  vertices. It turns out that

Thus, the virial coefficients  are obtained by summing a restricted set of cluster integrals, viz.

In the end, it turns out we don’t need the symmetry factors at all!
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Cookbook Recipe
Just follow these simple steps!

The pressure and number density are written as an expansion over unlabeled connected clusters , viz.

For each term in each of these sums, draw the unlabeled connected cluster .
Assign labels  to the vertices, where  is the total number of vertices in the cluster . It doesn’t matter how you
assign the labels.
Write down the product . The factor  appears in the product if there is a link in your (now labeled) cluster between
sites  and .
The symmetry factor  is the number of elements of the symmetric group  which leave the product  invariant. The
identity permutation leaves the product invariant, so .
The cluster integral is

Due to translation invariance, . One can therefore set , eliminate the volume factor from the denominator,
and perform the integral over the remaining  coordinates.
This procedure generates expansions for  and  in powers of the fugacity . To obtain something useful
like , we invert the equation  to find , and then substitute into the equation  to
obtain . The result is the virial expansion,

where

with  the set of all one-particle irreducible -site clusters.

Hard sphere gas in three dimensions

The hard sphere potential is given by

Here  is the diameter of the spheres. The corresponding Mayer function is then temperature independent, and given by

We can change variables

The calculation of  is more challenging. We have

γ

βp

n

= (z∑
γ

λ−d
T )nγ bγ

= (z  .∑
γ

nγ λ−d
T

)nγ bγ

γ

1 , 2 , … , nγ nγ γ

∏γ
i<j fij fij

i j

sγ Snγ
∏γ

i<j fij
≥ 1sγ

(T ) ≡ ⋅ ∫ ⋯  .bγ
1

sγ

1

V
ddx1 ddxnγ

∏
i<j

γ

fij (6.2.30)

(T ) ∝bγ V 0 ≡ 0xnγ

−1nγ

p(T , z) n(T , z) z = eβμ

p(T ,n) n = n(T , z) z = z(T ,n) p = p(T , z)

p = p(T , z(T ,n)) = p(T ,n)

p = n T {1 + (T )n+ (T ) +…} ,kB B
2

B
3

n2 (6.2.31)

(T ) = − ∫ ⋯∫Bk

1

k(k−2)!
∑
γ∈Γk

ddx1 ddxk−1 ∏
⟨ij⟩

γ

fij (6.2.32)

Γ
k

j

u(r) ={
∞
0

 if r ≤ a

 if r > a\ .
(6.2.33)

a

f(r) ={
−1
0

 if r ≤ a

 if r > a\ .
(6.2.34)

(T ) = ∫ r f(r) = − π  .b−

1

2
d3 2

3
a3 (6.2.35)

b△

= ∫ ρ∫ r f(ρ) f(r) f(|r −ρ|) .b△
1

6
d3 d3 (6.2.36)
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We must first compute the volume of overlap for spheres of radius  (recall  is the diameter of the constituent hard sphere
particles) centered at  and at :

We then integrate over region , to obtain

Thus,

Figure : The overlap of hard sphere Mayer functions. The shaded volume is .

Weakly attractive tail
Suppose

Then the corresponding Mayer function is

Thus,

Thus, the second virial coefficient is

a a

0 ρ

V = ∫ r f(r) f(|r −ρ|)d3

= 2 dz π( − ) = −π ρ+  .∫

ρ/2

a

a2 z2 4π

3
a3 a2 π

12
ρ3

|ρ| < a

= − ⋅ 4π dρ ⋅{ −π ρ+ } = −  .b△
1

6
∫

0

a

ρ2 4π

3
a3 a2 π

12
ρ3 5π2

36
a6 (6.2.37)

p = n T {1 + n+ +O( )} .kB

2π

3
a3 5π2

18
a6n2 n3 (6.2.38)

6.2.6 V

u(r) ={
∞
− (r)u0

 if r ≤ a

 if r > a\ .
(6.2.39)

f(r) ={
−1

−1eβ (r)u0

 if r ≤ a

 if r > a\ .
(6.2.40)

(T ) = ∫ r f(r) = − +2π dr [ −1] .b−

1

2
d3 2π

3
a3 ∫

a

∞

r2 eβ (r)u0 (6.2.41)

(T ) = − (T ) ≈ − dr (r) ,B2 b−

2π

3
a3 2π

TkB

∫

a

∞

r2 u0 (6.2.42)
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where we have assumed . We see that the second virial coefficient changes sign at some temperature , from a
negative low temperature value to a positive high temperature value.

Spherical Potential Well
Consider an attractive spherical well potential with an infinitely repulsive core,

Then the corresponding Mayer function is

Writing , we have

To find the temperature  where  changes sign, we set  and obtain

Recall in our study of the thermodynamics of the Joule-Thompson effect in §1.10.6 that the throttling process is isenthalpic. The
temperature change, when a gas is pushed (or escapes) through a porous plug from a high pressure region to a low pressure one is

where

Appealing to the virial expansion, and working to lowest order in corrections to the ideal gas law, we have

and we compute  by seting

T ≪ (r)kB u0 T0

u(r) =
⎧

⎩⎨
∞
−ϵ

0

 if r ≤ a

 if a < r < R

 if r > R .

(6.2.43)

f(r) =
⎧

⎩
⎨

−1
−1eβϵ

0

 if r ≤ a

 if a < r < R

 if r > R .

(6.2.44)

s ≡ R/a

(T )B2 = − (T ) = − ∫ r f(r)b−

1

2
d3

= − {(−1) ⋅ +( −1) ⋅ ( −1)}
1

2

4π

3
a3 eβϵ

4π

3
a3 s3

= {1 −( −1)( −1)} .
2π

3
a3 s3 eβϵ

T0 (T )B2 ( ) = 0B2 T0

= ϵ/ ln( ) .kBT0

s3

−1s3
(6.2.45)

ΔT = dp  ,∫

p1

p2

( )
∂T

∂p H

(6.2.46)

= [T −V ] .( )
∂T

∂p H

1

Cp

( )
∂V

∂T p

(6.2.47)

p = T + T (T ) +…
N

V
kB

N 2

V 2
kB B2 (6.2.48)

( ∂V
∂T

)
p

0 = dp = − dV + dT − T (T )dV + d( T (T )) +…  .
N TkB

V 2

NkB

V

2N 2

V 3
kB B2

N 2

V 2
kB B2 (6.2.49)
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Figure : An attractive spherical well with a repulsive core  and its associated Mayer function .

Dividing by , we find

The temperature where  changes sign is called the inversion temperature . To find the inversion point, we set 

,

If we approximate , then the inversion temperature follows simply:

Hard spheres with a hard wall
Consider a hard sphere gas in three dimensions in the presence of a hard wall at . The gas is confined to the region .
The total potential energy is now

where

and  is given in Equation . The grand potential is written as a series in the total particle number , and is given by

where , with  the fugacity. Taking the logarithm, and invoking the Taylor series 
, we obtain

The volume is . Dividing by , we have, in the thermodynamic limit,

The number density is

6.2.7 u(r) f(r)

dT

T −V = N[T − ] .( )
∂V

∂T p

∂B2

∂T
B

2
(6.2.50)

( ∂T
∂p

)
H

T ∗

( ) = ( )T ∗ B′
2 T ∗ B2 T ∗

= 1 .
d lnB2

d lnT
∣
∣
∣
T ∗

(6.2.51)

(T ) ≈ A−B2
B
T

= A− ⟹ =  .
B

T ∗

B

T ∗
T ∗ 2B

A
(6.2.52)

z = 0 z > 0

W ( , … , ) = v( ) + u( − ) ,x1 xN ∑
i

xi ∑
i<j

xi xj (6.2.53)

v(r) = v(z) ={
∞

0

if z ≤ a1
2

if z > a ,1
2

(6.2.54)

u(r) 6.2.33 N

Ξ = = 1 +ξ∫ r + ∫ r∫ +…  ,e−βΩ d3 e−βv(z) 1

2
ξ2 d3 d3r′ e−βv(z) e−βv( )z ′

e−βu(r− )r′

(6.2.55)

ξ = zλ−3
T z = eμ/ TkB

ln(1 +δ) = δ− + −…1
2
δ2 1

3
δ3

−βΩ = ξ r+ r [ −1]+…∫

z> a

2

d3 1

2
ξ2∫

z> a

2

d3 ∫

>z ′ a

2

d3r′ e−βu(r− )r
′

(6.2.56)

V = r∫
z>0

d3 V

− = βp
βΩ

V
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1

2
ξ2 1

V
∫
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2

d3 ∫
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2
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and inverting to obtain  and then substituting into the pressure equation, we obtain the lowest order virial expansion for the
equation of state,

As expected, the presence of the wall does not affect a bulk property such as the equation of state.

Figure : In the presence of a hard wall, the Mayer sphere is cut off on the side closest to the wall. The resulting density 
vanishes for  since the center of each sphere must be at least one radius  away from the wall. Between  and 

 there is a density enhancement. If the calculation were carried out to higher order,  would exhibit damped spatial
oscillations with wavelength .

Next, let us compute the number density , given by

Due to translational invariance in the  plane, we know that the density must be a function of  alone. The presence of the wall
at  breaks translational symmetry in the  direction. The number density is

Note that the term in square brackets in the last line is the Mayer function . Consider the function

Now consider the integral of the above function with respect to . Clearly the result depends on the value of . If , then
there is no excluded region in  and the integral is  times the full Mayer sphere volume, . If  the integral
vanishes due to the  factor. For  infinitesimally larger than , the integral is  times half the Mayer sphere volume, 

. For  the integral interpolates between  and . Explicitly, one finds by elementary integration,

n = ξ (βp) = ξ− π +O( ) ,
∂

∂ξ

4

3
a3 ξ2 ξ3 (6.2.57)

ξ(n)

p = T {n+ π +…} .kB

2

3
a3 n2 (6.2.58)

6.2.8 n(z)
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n(z)
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n(z) = ⟨ δ(r − ) ⟩ .∑
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ri (6.2.59)
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⎪
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2

z′ 1
2

r
′

(6.2.60)
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After substituting  to relate  to the bulk density , we obtain the desired result:

A sketch is provided in the right hand panel of Figure . Note that the density  vanishes identically for  due to the
exclusion of the hard spheres by the wall. For  between  and , there is a density enhancement, the origin of which has a
simple physical interpretation. Since the wall excludes particles from the region , there is an empty slab of thickness 
coating the interior of the wall. There are then no particles in this region to exclude neighbors to their right, hence the density
builds up just on the other side of this slab. The effect vanishes to the order of the calculation past , where  returns
to its bulk value. Had we calculated to higher order, we’d have found damped oscillations with spatial period .

This page titled 6.2: Nonideal Classical Gases is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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