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8.10: Appendix I- Boltzmann Equation and Collisional Invariants

Problem : The linearized Boltzmann operator L is a complicated functional. Suppose we replace L by £, where
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Show that £ shares all the important properties of L. What is the meaning of 4? Expand (v, t) in spherical harmonics and Sonine
polynomials,

Y(V,t) =D Grem (t) 5;+%(z)xf/2 Y,i(n), (8.10.1)
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with £ = mv? /2k,T, and thus express the action of the linearized Boltzmann operator algebraically on the expansion coefficients
Qrim (t) .

The Sonine polynomials S&(z) are a complete, orthogonal set which are convenient to use in the calculation of transport
coefficients. They are defined as
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and satisfy the generalized orthogonality relation
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Solution : The ‘important properties’ of L are that it annihilate the five collisional invariants, 1, v, and v?, and that all other
eigenvalues are negative. That this is true for £ can be verified by an explicit calculation.

Plugging the conveniently parameterized form of (v, ) into £, we have
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where we’ve used

2k,T k;T
u=,/—— w}m , du = | —— x;1/2 dz, (8.10.4)
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Now recall Y’ (n) = —= and
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which allows us to write
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We can do the integrals by appealing to the orthogonality relations for the spherical harmonics and Sonine polynomials:
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Integrating first over the direction vector ny,
Ly =7 A (t) S;.1 (@) @ i (8)
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we obtain the intermediate result
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Appealing now to the orthogonality of the Sonine polynomials, and recalling that
1
F(E):\/Tr , T1)=1 , I(z4+1)=2I(2), (8.10.5)

we integrate over z;. For the first term in brackets, we invoke the orthogonality relation with n =0 and a = %, giving
I'(3) = 1+/m. For the second bracketed term, we have n=0 but a = 2, and we obtain I'(2) =3 I'(2), while the third
bracketed term involves leads ton =1 and o = % , also yielding 1"(%) = g F( 5 ). Thus, we obtain the simple and pleasing result
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where the prime on the sum indicates that the set
c1={(0,0,0), (1,0,0), (0,1,1), (0,1,0), (0,1,-1)} (8.10.7)

are to be excluded from the sum. But these are just the functions which correspond to the five collisional invariants! Thus, we learn
that

Yrem (V) = Noem 5] 1 (2) 2"/ Vi (1), (810.8)

is an eigenfunction of £ with eigenvalue — if (7, £,m) does not correspond to one of the five collisional invariants. In the latter
case, the eigenvalue is zero. Thus, the algebraic action of £ on the coefficients a,¢y, is
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The quantity 7 =~ is the relaxation time.

It is pretty obvious that £ is self-adjoint, since
(91L0) = [0 ') () Ll (V)
m /2 3 mv?
—n(ghg) [atves (- 5 ) o) ve)
m Y\ 3 (43 mu? mv?

+7"(2nk3T> /d ”/d exp ( N 2kBT) P ( N 2kBT)

m 2 (mu? 3 mv?: 3

x¢(v) |1+ T VTS (—2kBT - 5) (_2kBT —§>] ¥(u)

=(Lo|Y),

where n is the bulk number density and f°(v) is the Maxwellian velocity distribution.
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