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7.1: The van der Waals system

Equation of state

Recall the van der Waals equation of state,

(p—l—%)(v—b):RT, (7.1.1)
where v =N,V /N is the molar volume. Solving for p(v, T'), we have
RT a
= - —. 1.2
p v—b 2 (7.1.2)

Let us fix the temperature 7' and examine the function p(v). Clearly p(v) is a decreasing function of volume for v just above the
minimum allowed value v =, as well as for v — co. But is p(v) a monotonic function for all v € [b, 00]?

We can answer this by computing the derivative,

Op 2a RT
- | =—-— 7.1.3
( v )T v (v—0b)? ( )
Setting this expression to zero for finite v, we obtain the equation
2a u?
—_—=— 7.1.4
= T (7.1.4)

where u = v/b is dimensionless. It is easy to see that the function f(u) =u3/(u —1)? has a unique minimum for u > 1. Setting
f'(u*) =0 yields u* =3, and so f, . = f(3) = % . Thus, for T' > T, = 8a/27bR, the LHS of Equation 7.1.4 lies below the

mu
minimum value of the RHS, and there is no solution. This means that p(v, T > T, ) is a monotonically decreasing function of v.

At T =T, there is a saddle-node bifurcation. Setting v. = bu* = 3b and evaluating p. = p(v., T¢.), we have that the location of
the critical point for the van der Waals system is

a 8a
S 0 w3 L=5on

For T' < T,, there are two solutions to Equation 7.1.4, corresponding to a local minimum and a local maximum of the function
p(v). The locus of points in the (v, p) plane for which (8p/dv), =0 is obtained by setting Equation 7.1.3 to zero and solving for
T, then substituting this into Equation 7.1.2. The result is

Pe (7.1.5)

. a 2ab
v v

Expressed in terms of dimensionless quantities p = p/p, and v = v/ v, , this equation becomes

e 3 2
() === (7.1.7)
v v
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Figure 7.1.1: Pressure versus molar volume for the van der Waals gas at temperatures in equal intervals from 7' = 1.10 7} (red) to
T = 0.85T, (blue). The purple curve is p*(v).

Along the curve p = p*(v), the isothermal compressibility, K, = —% (g—;)T diverges, heralding a thermodynamic instability. To
understand better, let us compute the free energy of the van der Waals system, F' = E —T'S . Regarding the energy E, we showed
back in chapter 2 that
Oe Op a
— ) =T|= | -p=—, 7.1.8
(8U)T (8T>V P v? ( )
which entails
1
(T, v) = 5 fRT - % , (7.1.9)

where ¢ = FE /v is the molar internal energy. The first term is the molar energy of an ideal gas, where f is the number of molecular
freedoms, which is the appropriate low density limit. The molar specific heat is then ¢;, = (%)v = gR, which means that the
molar entropy is

S(T,v) = / ar x = gRln(T/Tc) s, (0). (7.1.10)

We then write f =¢ —T's , and we fix the function s, (v) by demanding that p = — (g—i)T . This yields s, (v) = RIn(v—b) +s, ,

where s, is a constant. Thus",
f a
H(T,0) = RT (1 —ln(T/Tc)) — = —RTIn(v—b)—Ts,. (7.1.11)

Table 7.1.1: van der Waals parameters for some common gases. (Source: Wikipedia)
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gas a (%@%’i) b (%) p. (bar) T. (K) v (L/mol)

Acetone 14.09 0.0994 52.82 505.1 0.2982
Argon 1.363 0.03219 48.72 150.9 0.0966
Carbon dioxide 3.640 0.04267 7404 304.0 0.1280
Ethanol 12.18 0.08407 63.83 516.3 0.2522
Freon 10.78 0.0998 40.09 384.9 0.2994
Helium 0.03457 0.0237 2.279 5.198 0.0711
Hydrogen 0.2476 0.02661 12.95 33.16 0.0798
Mercury 8.200 0.01696 1055 1723 0.0509
Methane 2.283 0.04278 46.20 190.2 0.1283
Nitrogen 1.408 0.03913 34.06 128.2 0.1174
Oxygen 1.378 0.03183 50.37 154.3 0.0955
Water 5.536 0.03049 220.6 647.0 0.0915

We know that under equilibrium conditions, f is driven to a minimum by spontaneous processes. Now suppose that Z—ZJ; 7 < 0 over

some range of v at a given temperature 7'. This would mean that one mole of the system at volume v and temperature 7" could
lower its energy by rearranging into two half-moles, with respective molar volumes v+ dv, each at temperature 7'. The total
1 0% 2 -
357 | (6v)* < 0. This means that the
system is unstable — it can lower its energy by dividing up into two subsystems each with different densities ( molar volumes). Note

that the onset of stability occurs when

volume and temperature thus remain fixed, but the free energy changes by an amount A f =

1

T VKyp

f
ov?

_ %

=5 =0, (7.1.12)

which is to say when k, = co. As we saw, this occurs at p = p*(v), given in Equation

. - 9’ - .
However, this condition, B—UJ;]T <0, is in fact too strong. That is, the system can be unstable even at molar volumes where

2.
% ¢ > 0. The reason is shown graphically in Figure 7.1.2. At the fixed temperature 7', for any molar volume v between

Viiquid = V1 and vg4,; = v, , the system can lower its free energy by phase separating into regions of different molar volumes. In
general we can write

v=>~1-z)v, +zv,, (7.1.13)
sov=v; whenz =0 and v=wv, when z = 1. The free energy upon phase separation is simply

f=0-a)fi+zf,, (7.1.14)

where f]. =f ('vj, T'). This function is given by the straight black line connecting the points at volumes v, and v, in Figure

https://phys.libretexts.org/@go/page/18583


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18583?pdf

LibreTextsw

N
w

volume v/v,

Figure 7.1.2 Molar free energy f(T,v) of the van der Waals system T' = 0.85 T, with dot-dashed black line showing Maxwell
construction connecting molar volumes v; » on opposite sides of the coexistence curve.

The two equations which give us v; and v, are

0 0 T,v,)— f(T,v
off  _of) _ITw)—f(Tv) (7.1.15)
ov v, T ov vy, T (’1)2 _vl)
Equivalently, in terms of the pressure, p = —%] 1 » these equations are equivalent to
Uy
p(T,v,) =p(T,v,) = /dvp(T, v) . (7.1.16)
vy — Vg .
1

This procedure is known as the Maxwell construction, and is depicted graphically in Figure 7.1.3. When the Maxwell construction
is enforced, the isotherms resemble the curves in Figure 7.1.1. In this figure, all points within the purple shaded region have
ki
sz
spontaneous phase separation into two phases is a process known as spinodal decomposition. The dot-dashed orange curve, called
the coexistence curve, marks the instability boundary for nucleation. In a nucleation process, an energy barrier must be overcome in

order to achieve the lower free energy state. There is no energy barrier for spinodal decomposition — it is a spontaneous process.

< 0, hence this region is unstable to infinitesimal fluctuations. The boundary of this region is called the spinodal, and the

Analytic form of the coexistence curve near the critical point

We write v, = v, +w, and v = vc +wg . One of our equations is p(vc +w, T) =p(vc +wg, T') . Taylor expanding in powers
of w, and we, we have

1 1
0=py(ve, T) (we —w ) + Epm,(vc,T) (w2G —wf) + r Dovw(Ve, T) (wz —wﬁ) +.o.., (7.1.17)
where
Op _ 8%p _ 8%p _ 8%p
Dy :% y Pow= 92 Dovy = EER UT:W , ete. (7‘1'18)
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The second equation we write as
We

/dw pvc+w,T) = %(wG —wL)(p(Uc +w,,T)+p(vc —I—wG,T)) . (7.1.19)

w

Expanding in powers of w, and w, this becomes

P(ve, T) (wg —wy) —|—%pv(vc, T) (w% —wf) + % DPow(ve, T) (w% —wﬁ)
+ o Ponle,T) (= ) + s Dt T) (w0 — )+
= %(wG —wL){2p(vc, T) +py(ve, T) (we +w ) + % DPov(ve, T) (wé —i—wE)
5 Donnlves T) (w4 0f) + 5 Poven(ve, T) (w0 +) .. }
Subtracting the LHS from the RHS, we find that we can then divide by % (w% — wE) , resulting in

1 1
0=py(v,,T)+ 3 Powo(ve, T) (wg +w )+ 20 Povun(ve, T) (Bw? + 4w w, +3w?) +(’)(wi’é7l_) . (7.1.20)

We now define w, =w¢ & w), . In terms of these variables, Equations 7.1.17and 7.1.20become

1 1 1
0 va(va) + Epvv('uc:T) w, + gpmw(vc;T) ('wi + §w2—) +O(wi)

1 1 1
0 = pvv(vca T) + 5 pvvv(vca T) w, + § pvvvv(vca T) (wi + g w%) + O(wgi) .

2

Figure 7.1.3: Maxwell construction in the (v,p) plane. The system is absolutely unstable between volumes vy and v.. For
v € [vg,v4] of v € [ve,v,], the solution is unstable with respect to phase separation. Source: Wikipedia.

We now evaluate w, to order T'. Note that p, (vc, T¢) = pyv(ve, Tc) = 0, since the critical point is an inflection point in the (v, p)
plane. Thus, we have p,(ve,T) = p, © + O(©?) , where T =T, +© and p,; = p,;(vc,Tc). We can then see that w_ is of
leading order /—© , while w__ is of leading order ©. This allows us to write

1
0=p, 0+ ﬁpw,w% +0(0%

1 1
0 :pva®+ Epvvvw_;,_ + 4_0pvvvvw2_ +0(®2) .

Thus,
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We then have

6p 1/2 3p DPovvv — 5mep
w, <—T) e +< e - ”“T>@+0(e3/2)
DPvvy S Powvw

wg = ( (;puT )1/2\/5 + ( 3P, pvv;v;5 Povo Pyyr ) (CENG) (@3/2) .
vvv p'U'U’U

Suppose we follow along an isotherm starting from the high molar volume (gas) phase. If T' > T, the volume v decreases
continuously as the pressure p increases. If 7' < T, then at the instant the isotherm first intersects the orange boundary curve in
Figure 7.1.4, there is a discontinuous change in the molar volume from high (gas) to low (liquid). This discontinuous change is the
hallmark of a first order phase transition. Note that the volume discontinuity, Av=w_ (T, — T)l/ 2
critical behavior in which the order parameter ¢, which in this case may be taken to be the difference ¢ = v — v, , behaves as a
power law in ‘T—fl;l , where 1. is the critical temperature. In this case, we have ¢(T) o (T —T)ﬁ , where 3 :% is the
exponent, and where (T, —T'), is defined to be T, —T if T'<T. and 0 otherwise. The isothermal compressibility is
kp = —v/py(v, T') . This is finite along the coexistence curve — it diverges only along the spinodal. It therefore diverges at the
critical point, which lies at the intersection of the spinodal and the coexistence curve.

. This is an example of a

pressure p/p,
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Figure 7.1.4: Pressure-volume isotherms for the van der Waals system, as in Figure 7.1.1, but corrected to account for the Maxwell
construction. The boundary of the purple shaded region is the spinodal line p*(%). The boundary of the orange shaded region is the

stability boundary with respect to phase separation.

It is convenient to express the equation of state and the coexistence curve in terms of dimensionless variables. Write

_ D _ v -~ T
== =— , T=—. 7.1.21
p pC v vC TC ( )
The van der Waals equation of state then becomes
8T 3
p = ——. 7.1.22
P=%—1 @ (7.1.22)
Further expressing these dimensionless quantities in terms of distance from the critical point, we write
p=1l4+7 , v=1+e , T=1+t. (7.1.23)

Thus,
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o8+t 3
(e t) = 273 (11" 1. (7.1.24)

Note that the LHS and the RHS of this equation vanish identically for (7, €,¢) = (0, 0, 0). We can then write

6 1/2 3 6565_5 €€ee
‘e :¢<&) (_t)1/2+< et T T 7r“t)uro((_t)-'fﬂ). (7.1.25)

’ Teee 5 7Te2€e

History of the van der Waals equation

The van der Waals equation of state first appears in van der Waals’ 1873 PhD thesis’, “Over de Continuiteit van den Gas - en
Vloeistoftoestand” (“On the continuity of the gas and liquid state”). In his Nobel lecture’, van der Waals writes of how he was
inspired by Rudolf Clausius’ 1857 treatise on the nature of heat, where it is posited that a gas in fact consists of microscopic
particles whizzing around at high velocities. van der Waals reasoned that liquids, which result when gases are compressed, also

consist of ’small moving particles’: "Thus I conceived the idea that there is no essential difference between the gaseous and the
liquid state of matter..."

T i 1 I 1 1 | | 1 I I I
100
—ygg )
al:P
S5 &
=] £
T .
3
A5
H0
.’f5|_a +Ne
s A
uKr
0 o
v 0;
oCO
55 o CHs
»0
55 1 1 ] I_%'l 1 I ] \ ! | LN
0 2 4 » 6 10 12 14 16 1D W 22 A4 B

Figure [Guggl945] ‘Universality’ of the liquid-gas transition for eight different atomic and molecular fluids, from E. A.

Guggenheim, J. Chem. Phys. 13, 253 (1945). Dimensionless temperature T'/T, versus dimensionless density p/p. = v./v is

shown. The van der Waals / mean field theory gives Av = Vg4 — Viiquia X (—t)l/ 2 | while experiments show a result closer to

Av o (—t)1/3 . Here t=T —1= (T —T,)/T. is the dimensionless temperature deviation with respect to the critical point.

Image used without permission.
Clausius’ treatise showed how his kinetic theory of heat was consistent with Boyle’s law for gases ( pV = constant at fixed
temperature). van der Waals pondered why this might fail for the non-dilute liquid phase, and he reasoned that there were two
principal differences: inter-particle attraction and excluded volume. These considerations prompted him to posit his famous
equation,

T
RT _a (7.1.26)
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The first term on the RHS accounts for excluded volume effects, and the second for mutual attractions.

In the limiting case of p — oo, the molar volume approaches v ="5. On physical grounds, one might expect b = v, /¢, where
vy = Ny w, is N times the volume w), of a single molecule, and the packing fraction is { = Nw,/V = v, /v, which is the ratio of
the total molecular volume to the total system volume. In three dimensions, the maximum possible packing fraction is for fcc and
hcp lattices, each of which have coordination number 12, with (4, = %= =0.74078. Dense random packing results in

3v2
¢ drp = 0.634. Expanding the vdW equation of state in inverse powers of v yields
RT a RT
=— b—— ) - — +0(v3 7.1.27
P= + < RT) v? 07, ( )

and we read of the second virial coefficient B, = (b— %) /Ny . For hard spheres, a =0, and the result B, = 4w, from the
Mayer cluster expansion corresponds to b Mager = 4v, , which is larger than the result from even the loosest regular sphere packing,
s

that for a cubic lattice, with =,
cub 6

Another of van der Waals’ great achievements was his articulation of the law of corresponding states. Recall that the van der Waals
equation of state, when written in terms of dimensionless quantities p =p/p., v =v/v. , and T=T /T., takes the form of
Equation 7.1.22. Thus, while the @ and b parameters are specific to each fluid — see Table 7.1.1 — when written in terms of these
scaled dimensionless variables, the equation of state and all its consequent properties ( the liquid-gas phase transition) are
universal.

The van der Waals equation is best viewed as semi-phenomenological. Interaction and excluded volume effects surely are present,
but the van der Waals equation itself only captures them in a very approximate way. It is applicable to gases, where it successfully
predicts features that are not present in ideal systems ( throttling). It is of only qualitative and pedagogical use in the study of fluids,
the essential physics of which lies in the behavior of quantities like the pair distribution function g(r). As we saw in chapter 6, any
adequate first principles derivation of g(r) - a function which can be measured in scattering experiments - involves rather
complicated approximation schemes to close the BBGKY hierarchy. Else one must resort to numerical simulations such as the
Monte Carlo method. Nevertheless, the lessons learned from the van der Waals system are invaluable and they provide us with a
first glimpse of what is going on in the vicinity of a phase transition, and how nonanalytic behavior, such as v —v, o (T, — T)ﬂ
with noninteger exponent 5 may result due to singularities in the free energy at the critical point.

This page titled 7.1: The van der Waals system is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel

Arovas.
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