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2.11: Phase Transitions and Phase Equilibria

A typical phase diagram of a p-V-T' system is shown in the Fig. (a). The solid lines delineate boundaries between distinct
thermodynamic phases. These lines are called coexistence curves. Along these curves, we can have coexistence of two phases, and
the thermodynamic potentials are singular. The order of the singularity is often taken as a classification of the phase transition. if
the thermodynamic potentials F, F', G, and ‘H have discontinuous or divergent derivatives, the transition between the
respective phases is said to be order. Modern theories of phase transitions generally only recognize two possibilities:
first order transitions, where the order parameter changes discontinuously through the transition, and second order transitions,
where the order parameter vanishes continuously at the boundary from ordered to disordered phases ~. We’ll discuss order
parameters during Physics 140B.

(b,c), which displays the phase diagrams for *He and *He. The only
difference between these two atoms is that the former has one fewer neutron: (2p + 1n + 2e) in ®He versus (2p + 2n + 2e) in *He.
As we shall learn when we study quantum statistics, this extra neutron makes all the difference, because ®He is a fermion while
4 .

He is a boson.

For a more interesting phase diagram, see Fig.
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[pdiaga] (a) Typical thermodynamic phase diagram of a single component p-V-T' system, showing triple point (three phase
coexistence) and critical point. (Source: Univ. of Helsinki.) Also shown: phase diagrams for 3He (b) and *He (c). What a difference
a neutron makes! (Source: Brittanica.)

p-v-T surfaces
The equation of state for a single component system may be written as
flp,v,T)=0.

This may in principle be inverted to yield p = p(v, T') orv=v(T,p) or T = T(p, v) . The single constraint f(p,v,T) on the three
state variables defines a surface in {p, v, T'} space. An example of such a surface is shown in Fig. , for the ideal gas.

(2.11.1)

Real p-v-T surfaces are much richer than that for the ideal gas, because real systems undergo phase transitions in which
thermodynamic properties are singular or discontinuous along certain curves on the p-v-T" surface. An example is shown in Fig.

. The high temperature isotherms resemble those of the ideal gas, but as one cools below the critical temperature T, the
isotherms become singular. Precisely at T' = T, the isotherm p = p(v, T;.) becomes perfectly horizontal at v = v, which is the
%(g—:)T diverges at T =T,. Below T,, the
isotherms have a flat portion, as shown in Fig. , corresponding to a two-phase region where liquid and vapor coexist. In the
(p, T) plane, sketched for H,O in Fig. and shown for CO, in Fig. , this liquid-vapor phase coexistence occurs
along a curve, called the vaporization (or boiling) curve. The density changes discontinuously across this curve; for H,O, the
liquid is approximately 1000 times denser than the vapor at atmospheric pressure. The density discontinuity vanishes at the critical
point. Note that one can continuously transform between liquid and vapor phases, without encountering any phase transitions, by

going around the critical point and avoiding the two-phase region.

critical molar volume. This means that the isothermal compressibility, K, = —
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[PVTideal] The surface p(v,T') = RT'/v corresponding to the ideal gas equation of state, and its projections onto the (p,T),
(p,v), and (T',v) planes.

In addition to liquid-vapor coexistence, solid-liquid and solid-vapor coexistence also occur, as shown in Fig. . The triple
point (T}, p,) lies at the confluence of these three coexistence regions. For H,O, the location of the triple point and critical point
are given by

T, =273.16 K T. =647 K

p, =611.7 Pa=6.037 x 10 *atm  p, =22.06 MPa =217.7 atm

pressure D

molar volume U

[PVTa] A p-v-T surface for a substance which contracts upon freezing. The red dot is the critical point and the red dashed line is
the critical isotherm. The yellow dot is the triple point at which there is three phase coexistence of solid, liquid, and vapor.

The Clausius-Clapeyron relation

Recall that the homogeneity of E(S, V', N) guaranteed E =TS —pV +uN , from Euler’s theorem. It also guarantees a relation
between the intensive variables T', p, and p, according to Equation . Let us define g = G/v = Ny, the Gibbs free energy
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per mole. Then
dg=—sdT +vdp, (2.11.2)

where s =S/v and v=V /v are the molar entropy and molar volume, respectively. Along a coexistence curve between phase #1
and phase #2, we must have g; = g, , since the phases are free to exchange energy and particle number, they are in thermal and
chemical equilibrium. This means

dg, = —s,dT +v, dp = —s, dT +v, dp = dg, . (2.11.3)
Therefore, along the coexistence curve we must have
dp Sy =38 14
— = = 2.11.4
(dT>coex U2 _vl T Av ’ ( )
where
L=TAs=T(s,—5;) (2.11.5)

is the molar latent heat of transition. A heat £ must be supplied in order to change from phase #1 to phase #2, even without

changing p or T'. If £ is the latent heat per mole, then we write { as the latent heat per gram: =1 /M, where M is the molar
mass.

v
[PVTc] Equation of state for a substance which expands upon freezing, projected to the (v,T) and (v, p) and (7', p) planes.

Along the liquid-gas coexistence curve, we typically have vges > vy;,;5, and assuming the vapor is ideal, we may write
Av X vgs = RT/p . Thus,

d L l
A - ~ 2 (2.11.6)
dT' ) iy-gas TOAv  RT?
If £ remains constant throughout a section of the liquid-gas coexistence curve, we may integrate the above equation to get
dp £ dT ¢/RT, —t/RT
?=§ T2 p(T) =p(Ty)e’ e . (2.11.7)

Liquid-solid line in H2O

Life on planet earth owes much of its existence to a peculiar property of water: the solid is less dense than the liquid along the
coexistence curve. For example at 7' =273.1 K and p = 1 atm,
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The latent heat of the transition is £ = 333 J/g = 79.5 cal/g. Thus,

(d_p) ¢ _ 333 J/g (2.11.9)
lig —sol

B, =1.00013cm?/g | B, = 1.0907 cm?/g. (2.11.8)

water

dT - TAG  (273.1K) (—9.05 x 102 cm?/g)
d ¢
— 135 x 1082 _ 1342
cm? K °C

The negative slope of the melting curve is invoked to explain the movement of glaciers: as glaciers slide down a rocky slope, they
generate enormous pressure at obstacles ~ Due to this pressure, the story goes, the melting temperature decreases, and the glacier
melts around the obstacle, so it can flow past it, after which it refreezes. But it is not the case that the bottom of the glacier melts
under the pressure, for consider a glacier of height A = 1 km. The pressure at the bottom is p ~ gh/% ~ 107 Pa, which is only
about 100 atmospheres. Such a pressure can produce only a small shift in the melting temperature of about AT, ,, = —0.75° C'.

pressure P
SOLID
SOLID + LIQUID

triple line

/:v
uple  SOLID +VAPOR \

molar volume U

[PVTb] Projection of the p-v-T' surface of Fig. onto the (v, p) plane.

Does the Clausius-Clapeyron relation explain how we can skate on ice? When my daughter was seven years old, she had a mass of
about M = 20 kg. Her ice skates had blades of width about 5 mm and length about 10 cm. Thus, even on one foot, she imparted an
additional pressure of only

Mg 20 kg x 9.8 m/s?

Ap=—">~
P=a (5x107° m) x (107" m)

=3.9x10° Pa=3.9 atm (2.11.10)

So why could my daughter skate so nicely? The answer isn’t so clear! * There seem to be two relevant issues in play. First, friction
generates heat which can locally melt the surface of the ice. Second, the surface of ice, and of many solids, is naturally slippery.
Indeed, this is the case for ice even if one is standing still, generating no frictional forces. Why is this so? It turns out that the Gibbs
free energy of the ice-air interface is larger than the sum of free energies of ice-water and water-air interfaces. That is to say, ice, as
well as many simple solids, prefers to have a thin layer of liquid on its surface, even at temperatures well below its bulk melting
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point. If the intermolecular interactions are not short-ranged ~, theory predicts a surface melt thickness d o< (T\Rm — T)’l/ 3 In
Fig. we show measurements by Gilpin (1980) of the surface melt on ice, down to about —50° C. Near 0° C' the melt

layer thickness is about 40nm, but this decreases to ~ 1 nm at T'= —35° C. At very low temperatures, skates stick rather than
glide. Of course, the skate material is also important, since that will affect the energetics of the second interface. The 19th century
novel, Hans Brinker, or The Silver Skates by Mary Mapes Dodge tells the story of the poor but stereotypically decent and
hardworking Dutch boy Hans Brinker, who dreams of winning an upcoming ice skating race, along with the top prize: a pair of
silver skates. All he has are some lousy wooden skates, which won’t do him any good in the race. He has money saved to buy steel
skates, but of course his father desperately needs an operation because — I am not making this up — he fell off a dike and lost his
mind. The family has no other way to pay for the doctor. What a story! At this point, I imagine the suspense must be too much for
you to bear, but this isn’t an American Literature class, so you can use Google to find out what happens (or rent the 1958 movie,
directed by Sidney Lumet). My point here is that Hans’ crappy wooden skates can’t compare to the metal ones, even though the
surface melt between the ice and the air is the same. The skate blade material also makes a difference, both for the interface energy
and, perhaps more importantly, for the generation of friction as well.

Slow melting of ice : a quasistatic but irreversible process

Suppose we have an ice cube initially at temperature Ty < ©® =273.15 K (i.e. © =0°C ) and we toss it into a pond of water. We
regard the pond as a heat bath at some temperature 77 > © . Let the mass of the ice be M. How much heat Q) is absorbed by the ice
in order to raise its temperature to 77 ? Clearly

Q = Még (0 —Tp) + ML + Méy, (T —©) (2.11.11)

where g and ¢y, are the specific heats of ice (solid) and water (liquid), respectively ¢, and 7 is the latent heat of melting per unit
mass. The pond must give up this much heat to the ice, hence the entropy of the pond, discounting the new water which will come
from the melted ice, must decrease:

ASpond = 9 (2.11.12)

T

Now we ask what is the entropy change of the Ho O in the ice. We have

d ®  Még M{L T Mé
ASie, :/TQ:/ dT CS+—+/ dT ;L
T, e)

T C)

IPRNCARE AN

The total entropy change of the system is then

AStotal :ASpond +A‘Sice

(e _ (©0-T (11 (T _ (Ti—©
Mcsln<TO)Mcs< T >+MZ(®T1>+McLln<®)MCL< T )
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[PTCO2] Phase diagram for COs in the (p, T') plane. (Source: www.scifun.org.)

Now since Ty < © < T} , we have

- @—T() ~ ®_T0
Mecg ( T ) < Mcg ( ) ) (2.11.13)
Therefore,
AS > ML (%—Ti) +Mésf (Ty/©) +MéLf (0/Ty) (2.11.14)
1

where f(z) =z —1 —Inz . Clearly f'(z) =1 —z ! is negative on the interval (0, 1), which means that the maximum of f(z)
occurs at # =0 and the minimum at ¢ = 1. But f(0) = o0 and f(1) =0, which means that f(z) >0 for = € [0,1]. Since
To < © < T, we conclude ASiota1 > 0.
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[surfmelt] Left panel: data from R. R. Gilpin, J. Colloid Interface Sci. 77, 435 (1980) showing measured thickness of the surface
melt on ice at temperatures below 0°C. The straight line has slope —% , as predicted by theory. Right panel: phase diagram of H,O,

showing various high pressure solid phases. (Source : Physics Today, December 2005).

Gibbs phase rule
Equilibrium between two phases means that p, T', and u(p, T') are identical. From
(P, T) = py(p, T) (2.11.15)

we derive an equation for the slope of the coexistence curve, the Clausius-Clapeyron relation. Note that we have one equation in
two unknowns (T, p), so the solution set is a curve. For three phase coexistence, we have
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(P, T) = py(p, T) = p15(p, T) (2.11.16)

which gives us two equations in two unknowns. The solution is then a point (or a set of points). A critical point also is a solution of
two simultaneous equations:

critical point = v, (p,T)=0v,(0,T) , @ T)=p,(,T). (2.11.17)

Recall v = Ny (%) - Note that there can be no four phase coexistence for a simple p-V-T' system.

Now for the general result. Suppose we have o species, with particle numbers N,, where a =1, ..., 0. It is useful to briefly
recapitulate the derivation of the Gibbs-Duhem relation. The energy E(S,V, Ny,...,N,) is a homogeneous function of degree
one:
E(AS,A\V,AN,,...,AN;) =AE(S,V,N,,...,No). (2.11.18)
From Euler’s theorem for homogeneous functions (just differentiate with respect to A and then set A = 1), we have
E=TS-pV+Y ptaNa. (2.11.19)
a=1

Taking the differential, and invoking the First Law,

dE=TdS—pdV+)_ padN,, (2.11.20)
a=1
we arrive at the relation
[
SdT —Vdp+Y  Nadp, =0, (2.11.21)
a=1
of which Equation is a generalization to additional internal ‘work’ variables. This says that the o +2 quantities
(T,p, g, - - -, Ho) are not all independent. We can therefore write
,u(,:,ug(T,p,ul,...,uail) . (2.11.22)
If there are ¢ different phases, then in each phase j, with j=1,..., ¢, there is a chemical potential ng ) for each species a. We
then have
u =9 (T,p,u(f),...,ufj_) ) . (2.11.23)

gj) h

is the chemical potential of the a'® species in the j'* phase. Thus, there are ¢ such equations relating the 2 + @0

variables (T, D, {,uflj ) }), meaning that only 2 + ¢ (o — 1) of them may be chosen as independent. This, then, is the dimension of

Here p

'thermodynamic space' containing a maximal number of intensive variables:
drp(o,0)=2+¢p(c—1) (2.11.24)

To completely specify the state of our system, we of course introduce a single extensive variable, such as the total volume V. Note
that the total particle number N = >"7_; N, may not be conserved in the presence of chemical reactions!

Now suppose we have equilibrium among ¢ phases. We have implicitly assumed thermal and mechanical equilibrium among all
the phases, meaning that p and T are constant. Chemical equilibrium applies on a species-by-species basis. This means

ud) = pl) (2.11.25)
where 7,7 € {1,...,¢}. This gives o(¢ — 1) independent equations equations 7. Thus, we can have phase equilibrium among

the ¢ phases of o species over a region of dimension

dpe(0,p) =2+¢p(c—1)—0a(p—1)
=240—¢

Since dpg > 0, we must have ¢ < o + 2. Thus, with two species (o = 2), we could have at most four phase coexistence.
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If the various species can undergo p distinct chemical reactions of the form

A+ A+ ¢ A, =0 (2.11.26)
where A, is the chemical formula for species a, and CCST) is the stoichiometric coefficient for the a'® species in the r*® reaction,
withr =1,..., p, then we have an additional p constraints of the form

Zcér)u‘(lj) -0 (2.11.27)
a=1
Therefore,
deg(0,0,p) =2+0—p —p. (2.11.28)
One might ask what value of j are we to use in Equation 7?7, or do we in fact have ¢ such equations for each r? The answer is that
Equation guarantees that the chemical potential of species a is the same in all the phases, hence it doesn’t matter what

value one chooses for j in Equation

Let us assume that no reactions take place, p =0, so the total number of particles 25:1 N, is conserved. Instead of choosing
(T, p, phys- -+ ,,uff_)l) as drp intensive variables, we could have chosen (T,p,pu,,..., m((T]_)l ), where z, =N,/N is the
concentration of species a.

Why do phase diagrams in the (p,v) and (7', v) plane look different than those in the (p,T') plane? ~ For example, Fig.

shows projections of the p-v-T' surface of a typical single component substance onto the (T',v), (p,v), and (p,T') planes.
Coexistence takes place along curves in the (p, T') plane, but in extended two-dimensional regions in the (T, v) and (p, v) planes.
The reason that p and 7" are special is that temperature, pressure, and chemical potential must be equal throughout an equilibrium
phase if it is truly in thermal, mechanical, and chemical equilibrium. This is not the case for an intensive variable such as specific
volume v = N4V /N or chemical concentration z, = N, /N.

This page titled 2.11: Phase Transitions and Phase Equilibria is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.
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