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8.12: Appendix Ill- General Linear Autonomous Inhomogeneous ODEs

We can also solve general autonomous linear inhomogeneous ODEs of the form

drz dnlz dz
W—"anfldtn——l—’—‘“—i_alE"‘aﬂw:&(t)‘ (8.12.1)
We can write this as
L,z(t) =¢(1), (8.12.2)
where L, is the order differential operator
d" n—1 d
L:t_dt"+ 1 W—k...—kal%—kao. (8.12.3)
The general solution to the inhomogeneous equation is given by
o0
z(t) = ach(t)+/dt' G(t, )¢, (8.12.4)
—00
where G(t,t') is the Green’s function. Note that £, z, (t) =0. Thus, in order for eqns. and to be true, we must have

\[{\cal L}\nd_t\, x(t)=\stackrel
{\overbrace +\impi dt">{\cal L }\nd_t\,G(t,t")\,\xi(t")=\xi(t)\ ,\] which means that

L,Gt,t)=6t-t), (8.12.5)
where §(t —¢') is the Dirac d-function.

If the differential equation £, z(t) =&(t) is defined over some finite or semi-infinite ¢ interval with prescribed boundary
conditions on z(¢) at the endpoints, then G(¢,t') will depend on ¢ and ¢’ separately. For the case we are now considering, let the
interval be the entire real line ¢ € (—o0, 00). Then G(¢,t') = G(t —t') is a function of the single variable ¢ —¢' .

Note that £, = C(%) may be considered a function of the differential operator %. If we now Fourier transform the equation

L, z(t) =£(t), we obtain

[y o [y { & @ d
ﬁlte £(t) :/dte {W—Fanlm—i—...—l—ala—i—ao}x(t)

(o]

= /dt et {(—iw)" +a, | (—iw)" " .. ta (—iw) —|—a0} z(t).
Thus, if we define
Lw) =) a, (—iw), (8.12.6)
k=0
then we have
L(w)2(w) =€ (w), (8.12.7)

where a, =1. According to the Fundamental Theorem of Algebra, the degree polynomial ﬁ(w) may be uniquely
factored over the complex w plane into a product over n roots:

L(w) = ()" (w—w)(w—ws) - (w—wy). (8.12.8)
If the {a, } are all real, then [ﬁ(w)] " = £(~w*), hence if € is a root then so is —2*. Thus, the roots appear in pairs which are
symmetric about the imaginary axis. if {2 = a +4b is aroot, then so is —Q* = —a+1b .
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The general solution to the homogeneous equation is
T, () =) Aye it (8.12.9)

which involves n arbitrary complex constants A; . The susceptibility, or Green’s function in Fourier space, G(w) is then

- 1 i
G(w) = fw) e w) e (8.12.10)

Note that [é(w)] " = G(—w), which is equivalent to the statement that G(t —#') is a real function of its argument. The general
solution to the inhomogeneous equation is then

z(t) =z, () + /it’ G(t—t)&(t), (8.12.11)
where z h(t) is the solution to the homogeneous equation, with zero forcing, and where

Tdw . o o
G(t—t) = / 2—“’ e (1) G(w)
™
B oodw e

‘/% (W—w)(w—ws) - (w—wn)

—00

—iw(t—t")

n_ oo (t—t")

N ei—t,
o=1 Zﬁl(wo—)

where we assume that Im w, < 0 for all ¢. This guarantees causality — the response z(t) to the influence &(t') is nonzero only for
t>t.

As an example, consider the familiar case

L(w) = —w? —iyw+w?

=—(w-w) (w-w),

withw, = —%7:&B ,and B = 4 /w? — %72 . This yields

L(w.)=F(w; —w_)=TF28. (8.12.12)

Then according to equation ,

o _ efiw+s N efiw_s o
@ { iL(w,) i) } ©
e—'ys/2 e~ iPs 6—73/2 eibBs
- { 25 2B } O(s)
=Bt e /2 sin(Bs) O(s) .

Now let us evaluate the two-point correlation function (z(t)z(t')), assuming the noise is correlated according to
(€(s)&(s")) =p(s— &) . We assume ¢,t' — oo so the transient contribution z, is negligible. We then have

oo 00

(e(t)2(t)) = /ds /ds’ Gt —5) G(t' — &) (£(s) E(s'))
°°dw 7 A 2 iw(t—t'
% ) G e
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Higher order ODEs

Note that any |nMssr{th} | order ODE, of the general form
d"z dzx d" g
—=F — .., — 2.1
(e G ) (8.12.13)

may be represented by the first order system ¢ =V (p). To see this, define ¢, = d* 1z /dtk= | with k=1,...,n. Thus, for

k <n we have ¢, and ¢, = F'. In other words, \[\stackrel

= Pry1o
{\overbrace{ {d\over dt}

Y1
(8.12.14)
<pn—1
Pn
}}=\stackrel {\BV(\Bvphi)} {\overbrace{
P2
(8.12.15)
Pn
F(gol, ceey gop)
JEANY
An inhomogeneous linear order ODE,
d™r d 'z dzx
W—i—ctrk1 o +...+a1%+aow:§(t) (8.12.16)
may be written in matrix form, as
Q 13
——
Y1 0 1 o .- 0 P1 0
d | ¢ o0 b0 % 0
— = . . . . + . 8.12.17
at | : : : : : : ( )
©On Gy TGO TG | ©On £(t)
Thus,
P=Qp+E¢, (8.12.18)

and if the coefficients ¢, are time-independent, the ODE is autonomous.

For the homogeneous case where £(¢) = 0, the solution is obtained by exponentiating the constant matrix Q¢:

¢(t) =exp(Q1) (0) ; (8.12.19)

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not autonomous, then @ = Q (%) is
time-dependent, and the solution is given by the path-ordered exponential,

t
¢(t) =Pexr>{ /dt’Q(t’)} ¢(0), (8.12.20)

0
where P is the path ordering operator which places earlier times to the right. As defined, the equation ¢ = V(y) is autonomous,

since the t-advance mapping g, depends only on ¢ and on no other time variable. However, by extending the phase space M > ¢
from M — M x R, which is of dimension 4 1, one can describe arbitrary time-dependent ODEs.
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In general, path ordered exponentials are difficult to compute analytically. We will henceforth consider the autonomous case where
Q is a constant matrix in time. We will assume the matrix @ is real, but other than that it has no helpful symmetries. We can
however decompose it into left and right eigenvectors:

n
Q; = 2 veR L, ;- (8.12.21)

Or, in bra-ket notation, Q@ = » v, |R,)(L,|. The normalization condition we use is

<LU‘R(I’>:5¢7

o'

(8.12.22)

where {V,,} are the eigenvalues of (). The eigenvalues may be real or imaginary. Since the characteristic polynomial
P(v) =det (vI—Q) has real coefficients, we know that the eigenvalues of @ are either real or come in complex conjugate pairs.

Consider, for example, the n = 2 system we studied earlier. Then

Q( 02 ! > . (8.12.23)

—wh -y

The eigenvalues are as before: v, = — %’y £,/ %72 - w% . The left and right eigenvectors are

+1 1
Li—ﬁ(—lj; 1) 5 Ri_(l/i> . (81224)

The utility of working in a left-right eigenbasis is apparent once we reflect upon the result
n
F@) =) f() |Rs ) (Lo | (8.12.25)
o=1

for any function f. Thus, the solution to the general autonomous homogeneous case is

o(t)) =3 e

o, (t) = Ze””t R, ZLUJ ¢;(0).
o=1 =

R, ){Ls|¢(0))

If Re (v,) < 0 for all o, then the initial conditions ¢(0) are forgotten on time scales 7, = v, * . Physicality demands that this is the

case.
Now let’s consider the inhomogeneous case where £(t) # 0. We begin by recasting Equation in the form
d, _ _
E(e ) =e@E1). (8.12.26)
We can integrate this directly:
¢
o(t) =e? p(0)+ [dse?t?) £(s). (8.12.27)

0
In component notation,

t

R,; /ds e (L, | €(s) ). (8.12.28)
—1 H

3

ei(t) =Y e R, (Lo |0(0))+
o=1 o

Note that the first term on the RHS is the solution to the homogeneous equation, as must be the case when £(s) =0.

The solution in Equation holds for general @ and &(s). For the particular form of @ and £(s) in Equation , we
can proceed further. For starters, (L,|£(s)) = L, £(s) . We can further exploit a special feature of the @ matrix to analytically
determine all its left and right eigenvectors. Applying @ to the right eigenvector | R, ), we obtain
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R, =v,R,_., (i>1). (8.12.29)

0, 0,j
We are free to choose R_; =1 for all o and defer the issue of normalization to the derivation of the left eigenvectors. Thus, we
obtain the pleasingly simple result,

R  =vkt. (8.12.30)

Applying @ to the left eigenvector (L, |, we obtain
—a, Lop =14 LU,1
L,j1—a; Lon =vsL,; G>1).
From these equations we may derive
n

L k—1 ) L )
L,=—-—2Y avi "' =22 a v, (8.12.31)
J=0

1% U,
o o j=k

The equality in the above equation is derived using the result P(v,) = Z?:o a; vJ =0 . Recall also that a,, = 1. We now impose
the normalization condition,

> LR, =1. (8.12.32)
k=1
This condition determines our last remaining unknown quantity (for a given o), Lg, :
(Lo |Ry)=Lon Y ka,vs ' =P'(Vy) Lon (8.12.33)
k=1

where P’(v) is the first derivative of the characteristic polynomial. Thus, we obtain another neat result,

Lom = ﬁ . (8.12.34)
Now let us evaluate the general two-point correlation function,
O,y (t:8) = (p,(t) 0, (1) — {,(0)) (i, (t)) - (8.12.35)
We write
(66)66) =05 o) = [ 52 bl ™. (8.12.36)

When ¢(w) is constant, we have (€(s)&(s")y =p(t) 8(s—s') . This is the case of so-called white noise, when all frequencies
contribute equally. The more general case when ¢(w) is frequency-dependent is known as colored noise. Appealing to Equation

, we have
Vj71 Vj/_l t t
C..(tt) = g Cal ds e (t9) [ds' ev' (' =) p(s— ')
Y ; P'(y,) P'(%,) 4

0
-1 Vj’—l °°dw qAS(w) (e—iwt _eu,,t)(eiwt' _ez{,,t')

Vg o’
Z 27
—00

0,0’ PI(VG) PI(VO'I)

(w—1i1)(w+iy,)

In the limit ¢,# — oo, assuming Re (v,) < 0 for all o ( no diffusion), the exponentials " and e%'! may be neglected, and we
then have
j—1 i-1 % f —iw(t—t)
7 7 d w)e
C.(t )= = o /—“’ dC) . (8.12.37)
o o7 P'(1p) P'(1) L 2™ (w—in)(wtiy,)

—0o0

8.12.5 https://phys.libretexts.org/@go/page/18746



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18746?pdf

LibreTextsw

This page titled 8.12: Appendix III- General Linear Autonomous Inhomogeneous ODEs is shared under a CC BY-NC-SA license and was
authored, remixed, and/or curated by Daniel Arovas.

https://phys.libretexts.org/@go/page/18746


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18746?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08%3A_Nonequilibrium_Phenomena/8.12%3A_Appendix_III-_General_Linear_Autonomous_Inhomogeneous_ODEs
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5

