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1.4: General Aspects of Probability Distributions

Discrete and Continuous Distributions
Consider a system whose possible configurations  can be labeled by a discrete variable , where  is the set of possible
configurations. The total number of possible configurations, which is to say the order of the set , may be finite or infinite. Next,
consider an ensemble of such systems, and let  denote the probability that a given random element from that ensemble is in the
state (configuration) . The collection  forms a discrete probability distribution. We assume that the distribution is
normalized, meaning

Now let  be a quantity which takes values depending on . The average of  is given by

Typically,  is the set of integers ( ) or some subset thereof, but it could be any countable set. As an example, consider the throw
of a single six-sided die. Then  for each . Let  if  is even and  if  is odd. Then find , on
average half the throws of the die will result in an even number.

It may be that the system’s configurations are described by several discrete variables . We can combine these into
a vector  and then we write  for the discrete distribution, with .

Another possibility is that the system’s configurations are parameterized by a collection of continuous variables, 
. We write , where  is the phase space (or configuration space) of the system. Let  be a measure on

this space. In general, we can write

The phase space measure used in classical statistical mechanics gives equal weight  to equal phase space volumes:

where  is a constant we shall discuss later on below .

Any continuous probability distribution  is normalized according to

The average of a function  on configuration space is then

For example, consider the Gaussian distribution

From the result

we see that  is normalized. One can then compute
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We call  the mean and  the standard deviation of the distribution, Equation [pgauss].

The quantity  is called the distribution or probability density. One has

For example, consider the probability density  normalized on the interval . The probability that some  chosen at
random will be exactly , say, is infinitesimal – one would have to specify each of the infinitely many digits of . However, we can
say that  with probability .

If  is distributed according to , then the probability distribution on the product space  is simply the product of the
distributions: . Suppose we have a function . How is it distributed? Let  be the
distribution for . We then have

where the second line is appropriate if the  are themselves distributed independently. Note that

so  is itself normalized.

Central limit theorem
In particular, consider the distribution function of the sum . We will be particularly interested in the case where  is
large. For general , though, we have

It is convenient to compute the Fourier transform  of :

where

is the Fourier transform of the single variable distribution . The distribution  is a convolution of the individual 
distributions. We have therefore proven that the Fourier transform of a convolution is the product of the Fourier transforms.

OK, now we can write for 
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Thus,

where

We can now write

Now for the inverse transform. In computing , we will expand the term  and all subsequent terms in the above
product as a power series in . We then have

In going from the second line to the third, we have written , in which case , and the non-
Gaussian terms give a subleading contribution which vanishes in the  limit. We have just proven the central limit theorem:
in the limit , the distribution of a sum of  independent random variables  is a Gaussian with mean  and standard
deviation . Our only assumptions are that the mean  and standard deviation  exist for the distribution . Note that 

 itself need not be a Gaussian – it could be a very peculiar distribution indeed, but so long as its first and second moment
exist, where the  moment is simply , the distribution of the sum  is a Gaussian.

Moments and cumulants
Consider a general multivariate distribution  and define the multivariate Fourier transform

The inverse relation is

Acting on , the differential operator  brings down from the exponential a factor of  inside the integral. Thus,

Similarly, we can reconstruct the distribution from its moments, viz.
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The cumulants  are defined by the Taylor expansion of :

There is no general form for the cumulants. It is straightforward to derive the following low order results:

Multidimensional Gaussian integral
Consider the multivariable Gaussian distribution,

where  is a positive definite matrix of rank . A mathematical result which is extremely important throughout physics is the
following:

Here, the vector  is identified as a source. Since , we have that the distribution  is normalized.
Now consider averages of the form

The sum in the last term is over all contractions of the indices . A contraction is an arrangement of the  indices
into  pairs. There are  possible such contractions. To obtain this result for , we start with the first index and
then find a mate among the remaining  indices. Then we choose the next unpaired index and find a mate among the
remaining  indices. Proceeding in this manner, we have

Equivalently, we can take all possible permutations of the  indices, and then divide by  since permutation within a given pair
results in the same contraction and permutation among the  pairs results in the same contraction. For example, for , we have

, and

If we define , we have

from which we read off the cumulants , with all higher order cumulants vanishing.
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