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4.1: Microcanonical Ensemble (UCE)

The microcanonical distribution function

We have seen how in an ergodic dynamical system, time averages can be replaced by phase space averages:

ergodicity <= <f(<p)>t :<f(<p)>s , (4.1.1)
where
((#)), = jim % dt f(e(t)) - (4.1.2)
and

(@) g /duf( §(E-H(p //duéE H(y)) . (4.1.3)

Here H(p) = H(q,p) is the Hamiltonian, and where §(x) is the Dirac §-function'. Thus, averages are taken over a constant
energy hypersurface which is a subset of the entire phase space.

We’ve also seen how any phase space distribution o(A;,...,A;) which is a function of conserved quantitied A.(yp) is
automatically a stationary (time-independent) solution to Liouville’s equation. Note that the microcanonical distribution,

() =3(E -~ A(0) | faus(E - ). (.14

is of this form, since H () is conserved by the dynamics. Linear and angular momentum conservation generally are broken by
elastic scattering off the walls of the sample.

So averages in the microcanonical ensemble are computed by evaluating the ratio

(4=

Tr AS(E— H)

Tr 6(E — H) (#.1.8)

where Tr means ‘trace’, which entails an integration over all phase space:

Tr A(g,p) ——H/ A(g,p) - (4.1.6)

Here N is the total number of particles and d is the dimension of physical space in which each particle moves. The factor of 1/ N1,
which cancels in the ratio between numerator and denominator, is present for indistinguishable particles”. The normalization factor
(2mh) V4 renders the trace dimensionless. Again, this cancels between numerator and denominator. These factors may then seem
arbitrary in the definition of the trace, but we’ll see how they in fact are required from quantum mechanical considerations. So we
now adopt the following metric for classical phase space integration:

N d%p, d%;
L 17 4% (4.1.7)
N' - (27rh)
Density of States
The denominator,
D(E)=Tr §(E—H), (4.1.8)

is called the density of states. It has dimensions of inverse energy, such that
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E+AE

/dE’/dp §E /d,u (4.1.9)

E<H<E+AE
=\ # of states with energies between E and E + AE .

Let us now compute D(E) for the nonrelativistic ideal gas. The Hamiltonian is

N 2

~ p
H(q,p) = ~ . (4.1.10)
; 2m

We assume that the gas is enclosed in a region of volume V/, and we’ll do a purely classical calculation, neglecting discreteness of
its quantum spectrum. We must compute

i )

We shall calculate D(E) in two ways. The first method utilizes the Laplace transform, Z(83):

Z(B) = L[D(E)] = / dE e PP D(E)=Tr e ™2 . (4.1.12)
0
The inverse Laplace transform is then
etioo
DE)=L""'[2(8)] = / ;—fi T Z(8), (4.1.13)

where ¢ is such that the integration contour is to the right of any singularities of Z(§) in the complex S-plane. We then have

e—Bp:/2m
-\ H / 27rh

~ Nd
N
— v d_p e B /2m
N! 2mh
Nd/2
LY (m N
N! \ 27h?

The inverse Laplace transform is then

D(E):ﬁ m Nd/2%d,3 ﬂEﬂ Nd/2
N! \ 27R2 27
c
LNd—1

VN m Nd/2 R
TN (%hz) T'(Nd/2)’

exactly as before. The integration contour for the inverse Laplace transform is extended in an infinite semicircle in the left half -
plane. When Nd is even, the function 8742 has a simple pole of order Nd /2 at the origin. When Nd is odd, there is a branch
cut extending along the negative Re 8 axis, and the integration contour must avoid the cut, as shown in Figure 4.1.1. One can
check that this results in the same expression above, we may analytically continue from even values of Nd to all positive values of
Nd.

For a general system, the Laplace transform, Z(3) = £ [D(E)] also is called the partition function. We shall again meet up with

Z(3) when we discuss the ordinary canonical ensemble.
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Figure 4.1.1: Complex integration contours C for inverse Laplace transform £ *[Z(B)] = D(E). When the product dN is odd,
there is a branch cut along the negative Re § axis.

Our final result, then, is

1

1 —
VN om W42 BT
D(E,V,N) =~ (503

. 4.1.14
N! T(Nd/2) ( )
Here we have emphasized that the density of states is a function of E, V, and IN. Using Stirling’s approximation,
1 1
1nN!:NlnN—N+51nN+51n(27r)+0(N*1), (4.1.15)
we may define the statistical entropy,
E V
S(E,V,N)=k,InD(E,V,N)=Nk; ¢ NN +0O(InN), (4.1.16)
where
E V d E v d m 1
—,—=|==In( = In( — =1 14+ =d). 4.1.17
¢(N’N) > n(N)+n(N)+2 n(dﬂ'h2>+( 39 (4.1.17)
Recall k; = 1.3806503 x 10716 erg/ K is Boltzmann’s constant.
Second method
The second method invokes a mathematical trick. First, let’s rescale p = +/2mE u’ . We then have
vy (VamB\' 1
m M
D(E):W( - ) % /4 wd(ul+ud+...+ui —1). (4.1.18)
Here we have written u = (u;,uy,...,u,,) with M =Nd as a M-dimensional vector. We've also used the rule
§(Ex) = E~16(x) for 6-functions. We can now write
dMu =4 du dQ,, , (4.1.19)
where d€,, is the M-dimensional differential solid angle. We now have our answer:
Nd
vy [vV2m ina-1 1
D(E) = W (T) E . 5 Qg - (4.1.20)

What remains is for us to compute €2,,, the total solid angle in M dimensions. We do this by a nifty mathematical trick. Consider
the integral
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Iy = /dMu eV = Qy /du uM-1 e
0

N =

iM-1 _ 1 1
QM/dss2 eszaﬂMl“(aM),
0

where s = u2, and where

T(z) :/dt t7le (4.1.21)
0
is the Gamma function, which satisfies 2I'(z) =I'(z+1). ~ On the other hand, we can compute Z,, in Cartesian coordinates,
writing
~ M
—? M
Iy = /dul e | =(y7@)" . (4.1.22)
o0
Therefore
27'I'M/2
= 4.1.23
= T0I72) (:4.23)

We thereby obtain Q, = 27, Q; =4, (), = 272, , the first two of which are familiar.

Arbitrariness in the definition of S(FE)

Note that D(E) has dimensions of inverse energy, so one might ask how we are to take the logarithm of a dimensionful quantity in
Equation 4.1.16 We must introduce an energy scale, such as AE in Equation 4.1.9, and define D(E; AE) = D(E) AE and

S(E; AE) = k,In D(E; AE) . The definition of statistical entropy then involves the arbitrary parameter A E, however this only
affects S(E) in an additive way. That is,

AE
S(E,V,N;AE,)=S(E,V,N;AE,) +k, ln<A—E1> : (4.1.24)
2

Note that the difference between the two definitions of S depends only on the ratio AE, / AE,, and is independent of E, V, and
N.

Ultra-relativistic ideal gas

Consider an ultrarelativistic ideal gas, with single particle dispersion (p) = cp. We then have

o N
vy af a1 B
Z(ﬂ)—ﬁth /dpp e P
0
VN (T(d) Qg Y
T NI \pigd)
The statistical entropy is S(E, V, N) =k; In D(E,V,N) = Nk, ¢(£, %) , with
E V E v er(d))
Z o a2 40 =) 410 222 g1 4.1.25
¢(N N) n(N)“(N)“( AN (4.1.25)

Discrete systems

For classical systems where the energy levels are discrete, the states of the system | o) are labeled by a set of discrete quantities
{0'1, Ty - - .}, where each variable o, takes discrete values. The number of ways of configuring the system at fixed energy F is
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then

Q(E,N) = Zaﬁ(a) . (4.1.26)

where the sum is over all possible configurations. Here IV labels the total number of particles. For example, if we have N spin-%
particles on a lattice which are placed in a magnetic field H, so the individual particle energy is €, = —u, Ho, where o = %1, then
in a configuration in which IV, + particles have o, =-+1 and N L= N-N + particles have o, =—1, the energy is
E = (N, —N,)pyH . The number of configurations at fixed energy E is

N N!
Q(E,N)_<NT>_ E B (55 , (4.1.27)

since N, ;| = % F # . The statistical entropy is S(E, N) = k; InQ(E, N).
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