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2.16: Appendix IlI- Useful Mathematical Relations

Consider a set of n independent variables {z,...,®,}, which can be thought of as a point in n-dimensional space. Let
{yy,--. yn}yand {z, ..., z,} be other choices of coordinates. Then
Oz, _ Omi 0y (2.16.1)
0z, Oy; Oz, o

Note that this entails a matrix multiplication: A, = Bl.j Cjk, where A, =0z, / 0z, , Bl.j = Oz, / 8yj, and C].k = Byj / 0z, . We
define the determinant

det oz;\  0(zy,...,2n) 5 16.2
e(azk):a(zl,...,zn)' (2.16.2)
Such a determinant is called a Jacobian. Now if A = BC, then det(A) = det(B) - det(C) . Thus,
0(xy,...,2n) _ 0(xy,...,xp) ‘ OYys--+»Yn) ‘ (2.16.3)
0(2yy--or2n)  OWyy-eorYn) O(25.-.,2n)
Recall also that
0z s 2.16.4
oz, (2.16.4)

Consider the case n = 2. We have

o) B %)(%) ) <Z_> (%) | (2.16.5)

We also have

Oz,y) O(u,v) 9(z,y)

. = . 2.16.6
O(u,v) 9O(r,s) (r, s) ( )
From this simple mathematics follows several very useful results.
1) First, write
-1
O(u,v) | 0(z,y) o
Now letv=1y:
Owy) _ (a_::;) - (2.16.8)
(u,y) \Ou, (@)
Ty
Thus,

(g%)y - 1/(%2 (2.16.9)

2) Second, we have

@ 0 a @ 2.16.1 https://phys.libretexts.org/@go/page/18868


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18868?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/02%3A_Thermodynamics/2.16%3A_Appendix_III-_Useful_Mathematical_Relations

LibreTextsm

which is to say

DIGRE
BAE)E)-

= : : (2.16.12)

#)- ()

This is simply the chain rule of partial differentiation.

Invoking Equation , we conclude that

3) Third, we have

which says

4) Fourth, we have

- EE) -GGG
(5:)(2) - (&)(&) @10

5) Fifth, whenever we differentiate one extensive quantity with respect to another, holding only intensive quantities constant, the
result is simply the ratio of those extensive quantities. For example,

6S>
— ) ==. (2.16.15)
(av by V

The reason should be obvious. In the above example, S(p, V,T) = Vé(p, T'), where ¢ is a function of the two intensive quantities
p and T'. Hence differentiating S with respect to V holding p and T' constant is the same as dividing S by V. Note that this implies

65) (6S> (65) s
D) () =(2) =2, (2.16.16)
(av e NV ), \av ), V

6) Sixth, suppose we have a function ® (y, v) and we write

which says

where n = N /V is the particle density.

d®=zdy+udv. (2.16.17)
That is,
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0 0d
=l— )= =l—]=9, 2.16.18
(&) o () 21019
Now we may write
dz = &, dy+ y, dv
du = ®yydy + Py dv.
If we demand du = 0, this yields
0 d
L T (2.16.19)
Oou ) Py
Note that ®,,, = ®,, . From the equation du = 0 we also derive
9y Puy
—= | =——. 2.16.20
( 81; )u ¢vy ( )
Next, we use Equation with du = 0 to eliminate dy in favor of dv, and then substitute into Equation . This yields
8$ ) ny évv
— | =%, ——. (2.16.21)
( ov ), 4 @,y
Finally, Equation with dv =0 yields
Oy 1
— | = . 2.16.22
( Ou )v Q'Uy ( )
Combining the results of eqns. s s , and , we have
Oz,y) [0z [0y Oz Oy
A(u,v)  \Ou )\ v ), ov ), \ Ou ),
(&) () (o) (50)
P,y @,y e @,y @,y
Thus, if ® = E(S, V), then (z,y) = (T, S) and (u,v) = (—p, V), we have
o, s
M =-1. (2.16.23)
8( —b, V)
Nota bene: It is important to understand what other quantities are kept constant, otherwise we can run into trouble. For example, it
would seem that Equation would also yield
N
owN) (2.16.24)
o(p,V)

But then we should have

o, S) orT,S) o(-p,V)

= . =+1 (WRONG!) (2.16.25)
6(#, N) 6(_]?, V) 6(.“” N)
when according to Equation it should be —1. What has gone wrong?
The problem is that we have not properly specified what else is being held constant. In Equation itis N (or p) which is
being held constant, while in Equation itis S (or T') which is being held constant. Therefore a naive application of the

chain rule for determinants yields the wrong result, as we have seen.

Let’s be more careful. Applying the same derivation to dE = x dy +u dv+rds and holding s constant, we conclude

o(z,y, s) _ Oz Oy ox dy B
8(’LL, v, S) a (%)v,s (g)u,s - (%)u,s <%)v,s =1 (2.1626)
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Thus, if
dE=TdS+ydX +pdN | (2.16.27)
where (y, X) = (—p, V) or (H*, M®) or (E*, P%), the appropriate thermodynamic relations are
o(T,S,N) _ 4 o(T, S, i) _ 4
Oy, X, N) Oy, X, 1)
9, N, X) ,N X _ 4 Ny _
a(T, S, X) a(T, S,y)
Oy, X,S5) Oy, X,T)
ouwN,8)  8wNT)

For example,

o(T,S,N)  d(-p,V,8) 8(u,N,V)

= = =1 2.16.28
6(7pa V7 N) a(y‘) N? S) 6(Ta Sa V) ( )
and
o(T, S, o(—p,V,T O(u, N, —
S _opV,T) OwN,7p) (2.16.29)
(9(—]), v, ,u) 8(“” N, T) 8(T’ S, _p)
If we are careful, then the results in eq. can be quite handy, especially when used in conjunction with Equation

For example, we have \[\pabc{S}{VHT,N}={\pz(T,S,N)\over\pz(T,V,N) } =\stackrel {=\,1} {\overbrace

} \cdot{\pz(p,V,N)\over\pz(T,V,N) }=\pabc{p}{ T}{V,N}\ ,\] which is one of the Maxwell relations derived from the exactness of
dF(T,V,N). Some other examples include \[\begin{aligned} \pabc{V}{S}{p,N}&={\pz(V,p,N)\over\pz(S,p,N) }=\stackrel{=\,1}
{\overbrace }\cdot{\pz(S,T,N)\over\pz(S,p,N) } =\pabc{ T} {p} {S,N}\\ \pabc{SHN}{T,p} &=

{\pz(S,T,p)\over\pz(N,T,p) } =\stackrel{=\,1} {\overbrace} \cdot{\pz(\mu,N,p)\over\pz(N,T,p) } =-\pabc{\mu } { T} {p,N }\
,\bvph\end{aligned}\] which are Maxwell relations deriving from d#(S, p, N) and dG(T, p, N), respectively. Note that due to the
alternating nature of the determinant — it is antisymmetric under interchange of any two rows or columns — we have

a(x7y7z) _ a(y7x’z) _ 8(y’ m’ z) _
Au,v,w)  O(u,v,w) Aw,v,u)

(2.16.30)

In general, it is usually advisable to eliminate S from a Jacobian. If we have a Jacobian involving T, S, and IV, we can write

o(T,5,N) _9(T,S,N) 9p,V,N) _ 6(p,V,N)

d(e,e,N) 0Op,V,N) 8(e,e,N) (e, e,N)’ (2.16.31)
where each e is a distinct arbitrary state variable other than V.
If our Jacobian involves the S, V, and N, we write
o(S,V,N) _ o(S,V,N) ' o(T,V,N) _ & o(T,V,N) . (2.16.32)
O(e,e,N) OT,V,N) O(e,e,N) T O(e,e,N)
If our Jacobian involves the S, p, and IV, we write
o(S,p,N) _ 9(S,p,N) OT,p,N) Cp OT,p,N) (2.16.33)

d(e,e,N) O(T,p,N) d(e,e,N) T 9(e,e,N)’
For example, \[\begin{aligned} \pabc{T}{p}{S,N}&={\pz(T,S,N)\over\pz(p,S,N) } =\stackrel{=\,1} {\overbrace

} \cdot{\pz(p,V,N)\over\pz(p,T,N) }\cdot {\pz(p,T,N)\over\pz(p,S,N)}={T\over C\ns_p}\pabc{V}{ T}{p,N}\bvph\\ \pabc{V}{p}
{S,N}&={\pz(V,S,N)\over\pz(p,S,N)}=
{\pz(V,S,N)\over\pz(V,T,N) \cdot{\pz(V,T,N)\over\pz(p,T,N) }\cdot{\pz(p,T,N)\over\pz(p,S,N) } ={C\ns_V\over C\ns_p}\,\pabc{V}

{pHT,N}\ .\bvph\end{aligned }\] With k = —% ‘Z—Z the compressibility, we see that the second of these equations says

Kp ¢y = Kg Cp , relating the isothermal and adiabatic compressibilities and the molar heat capacities at constant volume and
constant pressure. This relation was previously established in Equation
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This page titled 2.16: Appendix I11- Useful Mathematical Relations is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by Daniel Arovas.

@ 0 e @ 2.16.5 https://phys.libretexts.org/@go/page/18868


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18868?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/02%3A_Thermodynamics/2.16%3A_Appendix_III-_Useful_Mathematical_Relations
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5

