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3.3: Irreversibility and Poincaré Recurrence
The dynamics of the master equation describe an approach to equilibrium. These dynamics are irreversible: , where 
is Boltzmann’s -function. However, the microscopic laws of physics are (almost) time-reversal invariant , so how can we
understand the emergence of irreversibility? Furthermore, any dynamics which are deterministic and volume-preserving in a finite
phase space exhibits the phenomenon of Poincaré recurrence, which guarantees that phase space trajectories are arbitrarily close to
periodic if one waits long enough.

Poincaré Recurrence Theorem
The proof of the recurrence theorem is simple. Let  be the ‘ -advance mapping’ which evolves points in phase space according
to Hamilton’s equations. Assume that  is invertible and volume-preserving, as is the case for Hamiltonian flow. Further assume
that phase space volume is finite. Since energy is preserved in the case of time-independent Hamiltonians, we simply ask that the
volume of phase space at fixed total energy  be finite,

where  is the phase space uniform integration measure.

In any finite neighborhood  of phase space there exists a point  which will return to  after  applications of , where 
is finite.

Figure : Successive images of a set  under the -advance mapping , projected onto a two-dimensional phase plane. The
Poincaré recurrence theorem guarantees that if phase space has finite volume, and  is invertible and volume preserving, then for
any set  there exists an integer  such that .

Assume the theorem fails; we will show this assumption results in a contradiction. Consider the set  formed from the union of all
sets  for all :

We assume that the set  is disjoint . The volume of a union of disjoint sets is the sum of the individual volumes.
Thus,

since  from volume preservation. But clearly  is a subset of the entire phase space, hence we have a
contradiction, because by assumption phase space is of finite volume.
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Thus, the assumption that the set  is disjoint fails. This means that there exists some pair of integers  and , with 
, such that . Without loss of generality we may assume . Apply the inverse  to this relation 

times to get . Now choose any point , where , and define . Then by
construction both  and  lie within  and the theorem is proven.

Poincaré recurrence has remarkable implications. Consider a bottle of perfume which is opened in an otherwise evacuated room, as
depicted in Figure . The perfume molecules evolve according to Hamiltonian evolution. The positions are bounded because
physical space is finite. The momenta are bounded because the total energy is conserved, hence no single particle can have a
momentum such that , where  is the single particle kinetic energy function . Thus, phase space, however large,
is still bounded. Hamiltonian evolution, as we have seen, is invertible and volume preserving, therefore the system is recurrent. All
the molecules must eventually return to the bottle. What’s more, they all must return with momenta arbitrarily close to their initial
momenta!  In this case, we could define the region  as

which specifies a hypercube in phase space centered about the point .

Figure : Poincaré recurrence guarantees that if we remove the cap from a bottle of perfume in an otherwise evacuated room,
all the perfume molecules will eventually return to the bottle! (Here  is the Hubble constant.)

Each of the three central assumptions – finite phase space, invertibility, and volume preservation – is crucial. If any one of these
assumptions does not hold, the proof fails. Obviously if phase space is infinite the flow needn’t be recurrent since it can keep
moving off in a particular direction. Consider next a volume-preserving map which is not invertible. An example might be a
mapping  which takes any real number to its fractional part. Thus, . Let us restrict our attention to
intervals of width less than unity. Clearly  is then volume preserving. The action of  on the interval  is to map it to the
interval . But  remains fixed under the action of , so no point within the interval  will ever return under repeated
iterations of . Thus,  does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract. For a one-dimensional
oscillator obeying  one has , since  for physical damping. Thus the convective
derivative is  which says that the density increases exponentially in the comoving frame, as 

. Thus, phase space volumes collapse: , and are not preserved by the dynamics. The proof of
recurrence therefore fails. In this case, it is possible for the set  to be of finite volume, even if it is the union of an infinite number
of sets , because the volumes of these component sets themselves decrease exponentially, as .
A damped pendulum, released from rest at some small angle , will not return arbitrarily close to these initial conditions.

Kac ring model
The implications of the Poincaré recurrence theorem are surprising – even shocking. If one takes a bottle of perfume in a sealed,
evacuated room and opens it, the perfume molecules will diffuse throughout the room. The recurrence theorem guarantees that after
some finite time  all the molecules will go back inside the bottle (and arbitrarily close to their initial velocities as well). The hitch
is that this could take a very long time, much much longer than the age of the Universe.
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On less absurd time scales, we know that most systems come to thermodynamic equilibrium. But how can a system both exhibit
equilibration and Poincaré recurrence? The two concepts seem utterly incompatible!

A beautifully simple model due to Kac shows how a recurrent system can exhibit the phenomenon of equilibration. Consider a ring
with  sites. On each site, place a ‘spin’ which can be in one of two states: up or down. Along the  links of the system,  of
them contain ‘flippers’. The configuration of the flippers is set at the outset and never changes. The dynamics of the system are as
follows: during each time step, every spin moves clockwise a distance of one lattice spacing. Spins which pass through flippers
reverse their orientation: up becomes down, and down becomes up.

Figure : Left: A configuration of the Kac ring with  sites and  flippers. The flippers, which live on the links, are
represented by blue dots. Right: The ring system after one time step. Evolution proceeds by clockwise rotation. Spins passing
through flippers are flipped.

The ‘phase space’ for this system consists of  discrete configurations. Since each configuration maps onto a unique image under
the evolution of the system, phase space ‘volume’ is preserved. The evolution is invertible; the inverse is obtained simply by
rotating the spins counterclockwise. Figure  depicts an example configuration for the system, and its first iteration under the
dynamics.

Figure : Three simulations of the Kac ring model with  sites and three different concentrations of flippers. The red
line shows the magnetization as a function of time, starting from an initial configuration in which 100% of the spins are up. The
blue line shows the prediction of the Stosszahlansatz, which yields an exponentially decaying magnetization with time constant .
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Suppose the flippers were not fixed, but moved about randomly. In this case, we could focus on a single spin and determine its
configuration probabilistically. Let  be the probability that a given spin is in the up configuration at time . The probability that
it is up at time  is then

where  is the fraction of flippers in the system. In words: a spin will be up at time  if it was up at time  and did
not pass through a flipper, or if it was down at time  and did pass through a flipper. If the flipper locations are randomized at each
time step, then the probability of flipping is simply . Equation  can be solved immediately:

which decays exponentially to the equilibrium value of  with time scale

We identify  as the microscopic relaxation time over which local equilibrium is established. If we define the magnetization 
, then , so . The equilibrium magnetization is . Note that for 

 that the magnetization reverses sign each time step, as well as decreasing exponentially in magnitude.

Figure : Simulations of the Kac ring model. Top:  sites with  flippers. After  iterations, each spin has
flipped an odd number of times, so the recurrence time is . Middle:  with , resulting in a near-complete
reversal of the population with every iteration. Bottom:  with , showing long time equilibration and dramatic
resurgence of the spin population.

The assumption that leads to equation  is called the Stosszahlansatz , a long German word meaning, approximately,
‘assumption on the counting of hits’. The resulting dynamics are irreversible: the magnetization inexorably decays to zero.
However, the Kac ring model is purely deterministic, and the Stosszahlansatz can at best be an approximation to the true dynamics.
Clearly the Stosszahlansatz fails to account for correlations such as the following: if spin  is flipped at time , then spin  will
have been flipped at time . Also if spin  is flipped at time , then it also will be flipped at time . Indeed, since the
dynamics of the Kac ring model are invertible and volume preserving, it must exhibit Poincaré recurrence. We see this most vividly
in Figures  and .
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The model is trivial to simulate. The results of such a simulation are shown in Figure  for a ring of  sites, with 
 and  flippers. Note how the magnetization decays and fluctuates about the equilibrium value , but that

after  iterations  recovers its initial value: . The recurrence time for this system is simply  if  is even, and  if 
 is odd, since every spin will then have flipped an even number of times.

In Figure  we plot two other simulations. The top panel shows what happens when , so that the magnetization wants to
reverse its sign with every iteration. The bottom panel shows a simulation for a larger ring, with  sites. Note that the
fluctuations in  about equilibrium are smaller than in the cases with  sites. Why?

This page titled 3.3: Irreversibility and Poincaré Recurrence is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
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