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8.2: Boltzmann Transport Theory

Derivation of the Boltzmann equation

For simplicity of presentation, we assume point particles. Recall that

We now ask how the distribution functions  evolves in time. It is clear that in the absence of collisions, the distribution function must satisfy the continuity equation,

This is just the condition of number conservation for particles. Take care to note that  and  are six-dimensional phase space vectors:

The continuity equation describes a distribution in which each constituent particle evolves according to a prescribed dynamics, which for a mechanical system is specified by

where  is an external applied force. Here,

For example, if the particles are under the influence of gravity, then  and .

Note that as a consequence of the dynamics, we have , phase space flow is incompressible, provided that  is a function of  alone, and not of . Thus, in the absence of collisions, we
have

The differential operator  is sometimes called the ‘convective derivative’, because  is the time derivative of  in a comoving frame of reference.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical dynamics. In a collision process, a particle with momentum  and one with momentum  can
instantaneously convert into a pair with momenta  and , provided total momentum is conserved: . This means that . Rather, we should write

where the right side is known as the collision integral. The collision integral is in general a function of , , and  and a functional of the distribution .

After a trivial rearrangement of terms, we can write the Boltzmann equation as

where

is known as the streaming term. Thus, there are two contributions to  : streaming and collisions.

Collisionless Boltzmann equation

In the absence of collisions, the Boltzmann equation is given by

In order to gain some intuition about how the streaming term affects the evolution of the distribution , consider a case where . We then have

Clearly, then, any function of the form

will be a solution to the collisionless Boltzmann equation, where . One possible solution would be the Boltzmann distribution,

which is time-independent . Here we have assumed a ballistic dispersion, .

For a slightly less trivial example, let the initial distribution be , so that

Consider the one-dimensional version, and rescale position, momentum, and time so that

Consider the level sets of , where . The equation for these sets is

For fixed , these level sets describe the loci in phase space of equal probability densities, with the probability density decreasing exponentially in the parameter . For , the initial distribution
describes a Gaussian cloud of particles with a Gaussian momentum distribution. As  increases, the distribution widens in  but not in  – each particle moves with a constant momentum, so the set

f(r, p, t) r p ≡{d3 d3 \rm\# of particles with positions within  r ofd3

r and momenta within  p of p at time t.d3 (8.2.1)
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of momentum values never changes. However, the level sets in the  plane become elliptical, with a semimajor axis oriented at an angle  with respect to the  axis. For , he
particles at the outer edges of the cloud are more likely to be moving away from the center. See the sketches in Figure [Fstreaming]

Suppose we add in a constant external force . Then it is easy to show (and left as an exercise to the reader to prove) that any function of the form

satisfies the collisionless Boltzmann equation (ballistic dispersion assumed).

[Fstreaming] Level sets for a sample , for values  with  in equally spaced intervals from  (red) to  (blue). The time variable  is taken
to be  (upper left),  (upper right),  (lower right), and  (lower left).

Collisional invariants
Consider a function  of position and momentum. Its average value at time  is

Taking the time derivative,

Hence, if  is preserved by the dynamics between collisions, then

We therefore have that the rate of change of  is determined wholly by the collision integral

Quantities which are then conserved in the collisions satisfy . Such quantities are called collisional invariants. Examples of collisional invariants include the particle number , the
components of the total momentum  (in the absence of broken translational invariance, due to the presence of walls), and the total energy ( ).

Scattering processes

What sort of processes contribute to the collision integral? There are two broad classes to consider. The first involves potential scattering, where a particle in state  scatters, in the presence of an
external potential, to a state . Recall that  is an abbreviation for the set of kinematic variables,  in the case of a diatomic molecule. For point particles,  and .

We now define the function  such that

The units of  are therefore . The differential scattering cross section for particle scattering is then

where  is the particle’s velocity and  the density.

The second class is that of two-particle scattering processes, . We define the scattering function  by

where

is the nonequilibrium two-particle distribution for point particles. The differential scattering cross section is

We assume, in both cases, that any scattering occurs locally, the particles attain their asymptotic kinematic states on distance scales small compared to the mean interparticle separation. In this case we
can treat each scattering process independently. This assumption is particular to rarefied systems, gases, and is not appropriate for dense liquids. The two types of scattering processes are depicted in
Figure [FCIscatt].
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[FCIscatt] Left: single particle scattering process . Right: two-particle scattering process .

In computing the collision integral for the state , we must take care to sum over contributions from transitions out of this state, , which reduce , and transitions into this state,
, which increase . Thus, for one-body scattering, we have

For two-body scattering, we have

Unlike the one-body scattering case, the kinetic equation for two-body scattering does not close, since the LHS involves the one-body distribution  and the RHS involves the two-body
distribution . To close the equations, we make the approximation

We then have

Detailed balance

Classical mechanics places some restrictions on the form of the kernel . In particular, if  denotes the kinematic variables under time reversal, then

This is because the time reverse of the process  is .

In equilibrium, we must have

where

Since  , we may cancel the differentials above, and after invoking Equation [TRw] and suppressing the common  label, we find

This is the condition of detailed balance. For the Boltzmann distribution, we have

where  is a constant and where  is the kinetic energy,  in the case of point particles. Note that . Detailed balance is satisfied because the
kinematics of the collision requires energy conservation:

Since momentum is also kinematically conserved,

any distribution of the form

also satisfies detailed balance, for any velocity parameter . This distribution is appropriate for gases which are flowing with average particle .

In addition to time-reversal, parity is also a symmetry of the microscopic mechanical laws. Under the parity operation , we have  and . Note that a pseudovector such as 
is unchanged under . Thus, . Under the combined operation of , we have . If the microscopic Hamiltonian is invariant under , then
we must have

For point particles, invariance under  and  then means

and therefore the collision integral takes the simplified form,

where we have suppressed both  and  variables.

The most general statement of detailed balance is
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Under this condition, the collision term vanishes for , which is the equilibrium distribution.

Kinematics and cross section
We can rewrite Equation [BEwp] in the form

where  is the differential scattering cross section. If we recast the scattering problem in terms of center-of-mass and relative coordinates, we conclude that the total momentum is conserved by the

collision, and furthermore that the energy in the CM frame is conserved, which means that the magnitude of the relative momentum is conserved. Thus, we may write , where 
 is a unit vector. Then  and  are determined to be

-theorem

Let’s consider the Boltzmann equation with two particle collisions. We define the local ( -dependent) quantity

At this point,  is arbitrary. Note that the  factor has  and  dependence through its dependence on , which itself is a function of , , and . We now compute

The first term on the last line follows from the divergence theorem, and vanishes if we assume  for infinite values of the kinematic variables, which is the only physical possibility. Thus, the rate
of change of  is entirely due to the collision term. Thus,

where , , , , ), with

We now invoke the symmetry

which allows us to write

This shows that  is preserved by the collision term if  is a collisional invariant.

Now let us consider . We define . We then have

where  and . We next invoke the result

which is a statement of unitarity of the scattering matrix . Multiplying both sides by , then integrating over  and , and finally changing variables , we find

Multiplying this result by  and adding it to the previous equation for , we arrive at our final result,

Note that , , and  are all nonnegative. It is then easy to prove that the function  is nonnegative for all positive  values , which therefore entails the important result

Boltzmann’s  function is the space integral of the  density: .

Thus, everywhere in space, the function  is monotonically decreasing or constant, due to collisions. In equilibrium,  everywhere, which requires ,
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But this means that  is itself a collisional invariant, and if , , and  are the only collisional invariants, then  must be expressible in terms of them. Thus,

where , , and  are constants which parameterize the equilibrium distribution , corresponding to the chemical potential, flow velocity, and temperature, respectively.
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