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7.5: Landau Theory of Phase Transitions
Landau’s theory of phase transitions is based on an expansion of the free energy of a thermodynamic system in terms of an order
parameter, which is nonzero in an ordered phase and zero in a disordered phase. For example, the magnetization  of a
ferromagnet in zero external field but at finite temperature typically vanishes for temperatures , where  is the critical
temperature, also called the Curie temperature in a ferromagnet. A low order expansion in powers of the order parameter is
appropriate sufficiently close to the phase transition, at temperatures such that the order parameter, if nonzero, is still small.

[Landau_a] Phase diagram for the quartic Landau free energy , with . There is a first order
line at  extending from  and terminating in a critical point at . For  (dashed red line) there are
three solutions to the mean field equation, corresponding to one global minimum, one local minimum, and one local maximum.
Insets show behavior of the free energy .

Quartic free energy with Ising symmetry

The simplest example is the quartic free energy,

where , , and . Here,  is a dimensionless measure of the temperature. If for example the local
exchange energy in the ferromagnet is , then we might define , as before. Let us assume , which is necessary if
the free energy is to be bounded from below . The equation of state ,

M

T > Tc Tc

f = + a + b − hmf0
1
2

m2 1
4

m4 b > 0

h = 0 a = −∞ a = 0 |h| < (a)h∗

f(m)

f(m, h = 0, θ) = + a + b  ,f0
1

2
m2 1

4
m4 (7.5.1)

= (θ)f0 f0 a = a(θ) b = b(θ) θ

J θ = T /zJkB b > 0
16

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18587?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07%3A_Mean_Field_Theory_of_Phase_Transitions/7.05%3A_Landau_Theory_of_Phase_Transitions


7.5.2 https://phys.libretexts.org/@go/page/18587

has three solutions in the complex  plane: (i) , (ii) , and (iii) . The latter two solutions lie
along the (physical) real axis if . We assume that there exists a unique temperature  where . Minimizing , we
find

The free energy is continuous at  since . The specific heat, however, is discontinuous across the transition, with

The presence of a magnetic field  breaks the  symmetry of . The free energy becomes

and the mean field equation is

This is a cubic equation for  with real coefficients, and as such it can either have three real solutions or one real solution and two
complex solutions related by complex conjugation. Clearly we must have  in order to have three real roots, since 
is monotonically increasing otherwise. The boundary between these two classes of solution sets occurs when two roots coincide,
which means  as well as . Simultaneously solving these two equations, we find

or, equivalently,

If, for fixed , we have , then there will be three real solutions to the mean field equation , one of which is a
global minimum (the one for which ). For  there is only a single global minimum, at which  also has the
same sign as . If we solve the mean field equation perturbatively in , we find

Cubic terms in Landau theory : first order transitions
Next, consider a free energy with a cubic term,

with  for stability. Without loss of generality, we may assume  (else send ). Note that we no longer have 
 ( ) symmetry. The cubic term favors positive . What is the phase diagram in the  plane?

Extremizing the free energy with respect to , we obtain
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This cubic equation factorizes into a linear and quadratic piece, and hence may be solved simply. The three solutions are 
and

We now see that for  there is only one real solution, at , while for  there are three real solutions. Which
solution has lowest free energy? To find out, we compare the energy  with . Thus, we set

and we now have two quadratic equations to solve simultaneously:

[quartic] Behavior of the quartic free energy . A:  ; B:  ; C and D: 
. The thick black line denotes a line of first order transitions, where the order parameter is discontinuous across the

transition.

Eliminating the quadratic term gives . Finally, substituting  gives us a relation between , , and :
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Thus, we have the following:

The solution  lies at a local minimum of the free energy for  and at a local maximum for . Over the range 

, then, there is a global minimum at , a local minimum at , and a local maximum at , with 

. For , there is a local minimum at , a global minimum at , and a local maximum at 
, again with . For , there is a local maximum at , a local minimum at , and a global

minimum at , with . See Figure [quartic].

With , we have a second order transition at . With , there is a discontinuous (first order) transition at 
 and  . This occurs before  reaches the value  where the curvature at  turns negative. If

we write , then the expected second order transition at  is preempted by a first order transition at 
.

Magnetization dynamics
Suppose we now impose some dynamics on the system, of the simple relaxational type

where  is a phenomenological kinetic coefficient. Assuming  and , it is convenient to adimensionalize by writing

Then we obtain

where the dimensionless free energy function is

We see that there is a single control parameter, . The fixed points of the dynamics are then the stationary points of , where 
, with

The solutions to  are then given by

For  there is one fixed point at , which is attractive under the dynamics  since . At  there
occurs a saddle-node bifurcation and a pair of fixed points is generated, one stable and one unstable. As we see from Figure
[Landau_a], the interior fixed point is always unstable and the two exterior fixed points are always stable. At  there is a
transcritical bifurcation where two fixed points of opposite stability collide and bounce off one another (metaphorically speaking).
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[Landau_b] Fixed points for  and flow under the dynamics . Solid curves represent stable
fixed points and dashed curves unstable fixed points. Magenta arrows show behavior under slowly increasing control parameter 
and dark blue arrows show behavior under slowly decreasing . For  there is a hysteresis loop. The thick black curve shows
the equilibrium thermodynamic value of , that value which minimizes the free energy . There is a first order phase
transition at , where the thermodynamic value of  jumps from  to .

At the saddle-node bifurcation,  and , and we find , which is positive. Thus, the
thermodynamic state of the system remains at  until the value of  crosses zero. This occurs when  and 

, the simultaneous solution of which yields  and .

Suppose we slowly ramp the control parameter  up and down as a function of the dimensionless time . Under the dynamics of
Equation [LBdyn],  flows to the first stable fixed point encountered – this is always the case for a dynamical system with a
one-dimensional phase space. Then as  is further varied,  follows the position of whatever locally stable fixed point it initially
encountered. Thus,  evolves smoothly until a bifurcation is encountered. The situation is depicted by the arrows in Figure
[Landau_b]. The equilibrium thermodynamic value for  is discontinuous; there is a first order phase transition at , as
we’ve already seen. As  is increased,  follows a trajectory indicated by the magenta arrows. For an negative initial value of ,
the evolution as a function of  will be reversible. However, if  is initially positive, then the system exhibits hysteresis, as
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shown. Starting with a large positive value of ,  quickly evolves to , which means a positive infinitesimal value. Then
as  is decreased, the system remains at  even through the first order transition, because  is an attractive fixed point.
However, once  begins to go negative, the  fixed point becomes repulsive, and  quickly flows to the stable fixed point 

. Further decreasing , the system remains on this branch. If  is later increased, then  remains on the

upper branch past , until the  fixed point annihilates with the unstable fixed point at , at which time 

 quickly flows down to  again.

[fsextic] Behavior
of the sextic free energy . A:  and  ; B:  and  ; C:  and  ; D: 

 and  ; E:  and  ; F:  and . The thick dashed line is a
line of second order transitions, which meets the thick solid line of first order transitions at the tricritical point, .

Sixth order Landau theory: tricritical point

Finally, consider a model with  symmetry, with the Landau free energy
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with  for stability. We seek the phase diagram in the  plane. Extremizing  with respect to , we obtain

which is a quintic with five solutions over the complex  plane. One solution is obviously . The other four are

For each  symbol in the above equation, there are two options, hence four roots in all.

If  and , then four of the roots are imaginary and there is a unique minimum at .

For , there are only three solutions to  for real , since the  choice for the  sign under the radical leads to
imaginary roots. One of the solutions is . The other two are

The most interesting situation is  and . If  and , all five roots are real. There must be three minima,
separated by two local maxima. Clearly if  is a solution, then so is . Thus, the only question is whether the outer minima
are of lower energy than the minimum at . We assess this by demanding , where  is the position of the
largest root ( the rightmost minimum). This gives a second quadratic equation,

which together with equation [quintic] gives

Thus, we have the following, for fixed :

The point , which lies at the confluence of a first order line and a second order line, is known as a tricritical point.
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[sexfree] Free energy  for several different values of the control parameter .

Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics . We adimensionalize by writing
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Then we obtain once again the dimensionless equation

where

In the above equation, the coefficient of the quartic term is positive if  and negative if . That is, the coefficient is 
. When  we can ignore the sextic term for sufficiently small , and we recover the quartic free energy studied earlier.

There is then a second order transition at . .

New and interesting behavior occurs for . The fixed points of the dynamics are obtained by setting . We have

Thus, the equation  factorizes into a linear factor  and a quartic factor  which is quadratic in . Thus, we
can easily obtain the roots:

In Figure [Landau_c], we plot the fixed points and the hysteresis loops for this system. At , there are two symmetrically
located saddle-node bifurcations at . We find , which is positive, indicating that the stable

fixed point  remains the thermodynamic minimum for the free energy  as  is decreased through . Setting 

 and  simultaneously, we obtain  and . The thermodynamic value for  therefore jumps

discontinuously from  to  (either branch) at ; this is a first order transition.

Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated in the figure, where the arrows show
the evolution of  for very slowly varying . When the control parameter  is large and positive, the flow is toward the sole
fixed point at . At , two simultaneous saddle-node bifurcations take place at ; the outer branch is stable and

the inner branch unstable in both cases. At  there is a subcritical pitchfork bifurcation, and the fixed point at  becomes
unstable.
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[Landau_c] Fixed
points  for the sextic potential , and corresponding dynamical flow (arrows) under 

. Solid curves show stable fixed points and dashed curves show unstable fixed points. The thick solid black and solid
grey curves indicate the equilibrium thermodynamic values for ; note the overall  symmetry. Within the region 

 the dynamics are irreversible and the system exhibits the phenomenon of hysteresis. There is a first order phase
transition at .
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Suppose one starts off with  with some value . The flow  then rapidly results in . This is the ‘high
temperature phase’ in which there is no magnetization. Now let  increase slowly, using  as the dimensionless time variable. The
scaled magnetization  will remain pinned at the fixed point . As  passes through , two new stable
values of  appear, but our system remains at , since  is a stable fixed point. But after the subcritical pitchfork, 

 becomes unstable. The magnetization  then flows rapidly to the stable fixed point at , and follows the curve 

 for all .

Now suppose we start increasing  ( increasing temperature). The magnetization follows the stable fixed point 

 past , beyond the first order phase transition point at , and all the way up to , at
which point this fixed point is annihilated at a saddle-node bifurcation. The flow then rapidly takes , where it remains
as  continues to be increased further.

Within the region  of control parameter space, the dynamics are said to be irreversible and the behavior of  is said to
be hysteretic.
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