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7.3: Mean Field Theory
Consider the Ising model Hamiltonian,

where the first sum on the RHS is over all links of the lattice. Each spin can be either ‘up’ ( ) or ‘down’ ( ). We
further assume that the spins are located on a Bravais lattice  and that the coupling , where  is the position
of the  spin.

On each site  we decompose  into a contribution from its thermodynamic average and a fluctuation term,

We will write , the local magnetization (dimensionless), and assume that  is independent of position . Then

The last term on the RHS of the second equation above is quadratic in the fluctuations, and we assume this to be negligibly small.
Thus, we obtain the mean field Hamiltonian

where  is the total number of lattice sites. The first term is a constant, although the value of  is yet to be determined. The
Boltzmann weights are then completely determined by the second term, which is just what we would write down for a Hamiltonian
of noninteracting spins in an effective ‘mean field’

In other words, , where the external field is applied field , and the ‘internal field’ is .
The internal field accounts for the interaction with the average values of all other spins coupled to a spin at a given site, hence it is
often called the ‘mean field’. Since the spins are noninteracting, we have

It is a simple matter to solve for the free energy, given the noninteracting Hamiltonian . The partition function is

We now define dimensionless variables:

and obtain the dimensionless free energy

Differentiating with respect to  gives the mean field equation,

which is equivalent to the self-consistency requirement, .
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When  the mean field equation becomes

This nonlinear equation can be solved graphically, as in the top panel of Figure . The RHS in a tanh function which gets steeper
with decreasing . If, at , the slope of  is smaller than unity, then the curve  will intersect 
only at . However, if the slope is larger than unity, there will be three such intersections. Since the slope is , we identify 

 as the mean field transition temperature.

Figure : Results for . Upper panels: graphical solution to self-consistency equation 
 at temperatures  (blue) and  (dark red). Lower panel: mean

field free energy, with energy shifted by  so that .
In the low temperature phase , there are three solutions to the mean field equations. One solution is always at . The
other two solutions must be related by the  symmetry of the free energy (when ). The exact free energies are
plotted in the bottom panel of Figure , but it is possible to make analytical progress by assuming  is small and Taylor
expanding the free energy  in powers of :

Note that the sign of the quadratic term is positive for  and negative for . Thus, the shape of the free energy  as
a function of  qualitatively changes at this point, , the mean field transition temperature, also known as the critical
temperature.

For , the free energy  has a single minimum at . Below , the curvature at  reverses, and 
becomes a local maximum. There are then two equivalent minima symmetrically displaced on either side of . Differentiating
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with respect to , we find these local minima. For , the local minima are found at

Thus, we find for ,

where the  subscript indicates that this solution is only for . For  the only solution is . The exponent with
which  vanishes as  is denoted . .

Specific heat
We can now expand the free energy . We find

Thus, if we compute the heat capacity, we find in the vicinity of 

Thus, the specific heat is discontinuous at . We emphasize that this is only valid near . The general result valid
for all  is

With this expression one can check both limits  and . As  the magnetization saturates and one has 
. The numerator then vanishes as , which overwhelms the denominator that itself vanishes as . As a

result, , as expected. As , invoking  we recover .

In the theory of critical phenomena,  as . We see that mean field theory yields .
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Figure : Results for . Upper panels: graphical solution to self-consistency equation  at
temperatures  (blue),  (dark green), and  (dark red). Lower panel: mean field free energy, with energy
shifted by  so that .

Consider without loss of generality the case . The minimum of the free energy  now lies at  for any . At
low temperatures, the double well structure we found in the  case is tilted so that the right well lies lower in energy than the
left well. This is depicted in Figure . As the temperature is raised, the local minimum at  vanishes, annihilating with the

local maximum in a saddle-node bifurcation. To find where this happens, one sets  and  simultaneously, resulting
in

The solutions lie at . For  and , there are three solutions to the mean field
equation. Equivalently we could in principle invert the above expression to obtain . For , there is only a single
global minimum in the free energy  and there is no local minimum. Note .

Assuming , the mean field solution for  will also be small, and we expand the free energy in , and to
linear order in :

Setting , we obtain

If  then we have a solution . The  term can be ignored because it is higher order in , and we have
assumed . This is known as the Curie-Weiss law . The magnetic susceptibility behaves as
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where the magnetization critical exponent  is . If  then while there is still a solution at , it lies at a
local maximum of the free energy, as shown in Figure . The minimum of the free energy occurs close to the  solution 

, and writing  we find  to linear order in  as . Thus,

Once again, we find that  diverges as  with . The exponent  on either side of the transition is the same.

Finally, we can set  and examine . We find, from Equation ,

where  is a new critical exponent. Mean field theory gives . Note that at  we have , and
inverting we find

which is consistent with what we just found for .

Table : Critical exponents from mean field theory as compared with exact results for the two-dimensional Ising model, numerical results for
the three-dimensional Ising model, and experiments on the liquid-gas transition in CO . Source: H. E. Stanley, Phase Transitions and Critical

Phenomena.

2D Ising 3D Ising CO

Exponent MFT (exact) (numerical) (expt.)

How well does mean field theory do in describing the phase transition of the Ising model? In table  we compare our mean
field results for the exponents , , , and  with exact values for the two-dimensional Ising model, numerical work on the three-
dimensional Ising model, and experiments on the liquid-gas transition in CO . The first thing to note is that the exponents are
dependent on the dimension of space, and this is something that mean field theory completely misses. In fact, it turns out that the
mean field exponents are exact provided , where  is the upper critical dimension of the theory. For the Ising model, 

, and above four dimensions (which is of course unphysical) the mean field exponents are in fact exact. We see that all in all
the MFT results compare better with the three dimensional exponent values than with the two-dimensional ones – this makes sense
since MFT does better in higher dimensions. The reason for this is that higher dimensions means more nearest neighbors, which
has the effect of reducing the relative importance of the fluctuations we neglected to include.

Magnetization dynamics

Dissipative processes drive physical systems to minimum energy states. We can crudely model the dissipative dynamics of a
magnet by writing the phenomenological equation

where  is a dimensionless time variable. Under these dynamics, the free energy is never increasing:
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Clearly the fixed point of these dynamics, where , is a solution to the mean field equation .

Figure : Dissipative magnetization dynamics . Bottom panel shows  from Equation . For 
within the blue shaded region, the free energy  has a global minimum plus a local minimum and a local maximum. Otherwise 

 has only a single global minimum. Top panels show an imperfect bifurcation in the magnetization dynamics at  ,
for which . Temperatures shown:  (blue),  (green), and . The rightmost stable fixed
point corresponds to the global minimum of the free energy. The bottom of the middle two upper panels shows , where both
of the attractive fixed points and the repulsive fixed point coalesce into a single attractive fixed point (supercritical pitchfork
bifurcation).

The phase flow for the equation  is shown in Figure . As we have seen, for any value of  there is a temperature
 below which the free energy  has two local minima and one local maximum. When  the minima are degenerate, but

at finite  one of the minima is a global minimum. Thus, for  there are three solutions to the mean field equations. In the
language of dynamical systems, under the dynamics of Equation , minima of  correspond to attractive fixed points and
maxima to repulsive fixed points. If , the rightmost of these fixed points corresponds to the global minimum of the free
energy. As  is increased, this fixed point evolves smoothly. At , the (metastable) local minimum and the local maximum
coalesce and annihilate in a saddle-note bifurcation. However at  all three fixed points coalesce at  and the bifurcation
is a supercritical pitchfork. As a function of  at finite , the dynamics are said to exhibit an imperfect bifurcation, which is a
deformed supercritical pitchfork.
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Figure : Top panel : hysteresis as a function of ramping the dimensionless magnetic field  at . Dark red arrows
below the curve follow evolution of the magnetization on slow increase of . Dark grey arrows above the curve follow evolution of
the magnetization on slow decrease of . Bottom panel : solution set for  as a function of  at temperatures 
(blue),  (dark green), and  (red).

The solution set for the mean field equation is simply expressed by inverting the  function to obtain . One readily
finds

As we see in the bottom panel of Figure ,  becomes multivalued for , where  is given in
Equation . Now imagine that  and we slowly ramp the field  from a large negative value to a large positive value,
and then slowly back down to its original value. On the time scale of the magnetization dynamics, we can regard  as a
constant. (Remember the time variable is  here.) Thus,  will flow to the nearest stable fixed point. Initially the system starts
with  and  large and negative, and there is only one fixed point, at . As  slowly increases, the fixed point
value  also slowly increases. As  exceeds , a saddle-node bifurcation occurs, and two new fixed points are created at
positive , one stable and one unstable. The global minimum of the free energy still lies at the fixed point with . However,
when  crosses , the global minimum of the free energy lies at the most positive fixed point . The dynamics, however,
keep the system stuck in what is a metastable phase. This persists until , at which point another saddle-note bifurcation
occurs, and the attractive fixed point at  annihilates with the repulsive fixed point. The dynamics then act quickly to drive 

 to the only remaining fixed point. This process is depicted in the top panel of Figure . As one can see from the figure, the
the system follows a stable fixed point until the fixed point disappears, even though that fixed point may not always correspond to a
global minimum of the free energy. The resulting  curve is then not reversible as a function of time, and it possesses a
characteristic shape known as a hysteresis loop. Etymologically, the word hysteresis derives from the Greek , which
means ‘lagging behind’. Systems which are hysteretic exhibit a history-dependence to their status, which is not uniquely
determined by external conditions. Hysteresis may be exhibited with respect to changes in applied magnetic field, changes in
temperature, or changes in other externally determined parameters.

Beyond nearest neighbors
Suppose we had started with the more general model,
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where  is the coupling between spins on sites  and . In the top equation above, each pair  is counted once in the interaction
term; this may be replaced by a sum over all  and  if we include a factor of .  The resulting mean field Hamiltonian is then

Here,  is the Fourier transform of the interaction matrix :

For nearest neighbor interactions only, one has , where  is the lattice coordination number, the number of nearest
neighbors of any given site. The scaled free energy is as in Equation , with , , and 

. The analysis proceeds precisely as before, and we conclude , .

Ising model with long-ranged forces
Consider an Ising model where  for all  and , so that there is a very weak interaction between every pair of spins. The
Hamiltonian is then

The partition function is

We now invoke the Gaussian integral,
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J

2N
∑
i

σi)
2

∑
k

σk (7.3.27)

Z = Tr exp[ ( +βH ] .{ }σi

βJ

2N
∑
i

σi)
2

∑
i

σi (7.3.28)

dx =  .∫

−∞

∞

e−α −βxx2 π

α

−−
√ e /4αβ2

(7.3.29)

exp[ ( ] =( dm  ,
βJ

2N
∑
i

σi)
2

NβJ

2π
)
1/2

∫

−∞

∞

e− NβJ +βJm1
2

m2 ∑i σi (7.3.30)

Z =( dm (
NβJ

2π
)
1/2

∫

−∞

∞

e− NβJ1
2

m2

∑
σ

eβ(H+Jm)σ)
N

=( dm  ,
N

2πθ
)
1/2

∫

−∞

∞

e−NA(m)/θ

θ= T/JkB h =H/J

A(m) = −θ ln[2 cosh( )]  .
1

2
m2 h+m

θ
(7.3.31)

N →∞

=0 ⟹ = tanh( ) .
dA

dm

∣
∣
∣
m∗

m∗ +hm∗

θ
(7.3.32)

m =m∗

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18585?pdf


7.3.9 https://phys.libretexts.org/@go/page/18585

Performing the integrations, we obtain

The corresponding free energy per site

where  is the solution to the mean field equation which minimizes . Mean field theory is exact for this model!
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