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7.8: Ginzburg-Landau Theory

Ginzburg-Landau free energy
Including gradient terms in the free energy, we write
d L oo, 1, 4 1 6 1 2
F[m(x), h(x)] = [d% f0+5am —|—me +gem —hm—l—En (Vm) +... ¢ (7.8.1)

In principle, any term which does not violate the appropriate global symmetry will turn up in such an expansion of the free energy,
with some coefficient. Examples include hm3 (both m and h are odd under time reversal), m?(Vm )2, We now ask: what function
m(x) extremizes the free energy functional F'[m(x), h(x)|? The answer is that m(x) must satisfy the corresponding Euler-
Lagrange equation, which for the above functional is

am+bm?®+em’ —h—kVim=0. (7.8.2)

If a >0 and h is small (we assume b > 0 and ¢ > 0), we may neglect the m® and m?® terms and write

(a—kV*)m=h, (7.8.3)

whose solution is obtained by Fourier transform as
h(a)
m(q) = ——— 7.8.4
(@)= (7.8.4)
which, with h(x) appropriately defined, recapitulates the result in Equation . Thus, we conclude that
1

X(q) = ——, 7.8.5

X(@) = — o (7.8.5)
which should be compared with Equation . For continuous functions, we have

m(q) = /dda: m(x) e 4%

_ ddq b iq-X
m(x) = /W m(q) 4> .

We can then derive the result

m(x) = /dd:c’ X(x—x) h(x) | (7.8.6)

where

X(x—x)=— |5 ——— (7.8.7)

2m)? a®+&72
where the correlation length is £ = /k/a o« (T —T,)"/? , as before.

1 / ddq eiq~(x—x’)

If a <0 then there is a spontaneous magnetization and we write m(x) = m, +dm(x) . Assuming h is weak, we then have two

equations
a—|—bmg —|—cm3 =0
(a+3bm2+5cmi —kV?)dm =h.
If —a > 0 is small, we have mg = —a/3b and
. h(q)
5 = 7.8.8
() = e (7858)

https://phys.libretexts.org/@go/page/18783


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18783?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07%3A_Mean_Field_Theory_of_Phase_Transitions/7.08%3A_Ginzburg-Landau_Theory

LibreTextsw

Domain wall profile

A particularly interesting application of Ginzburg-Landau theory is its application toward modeling the spatial profile of defects
such as vortices and domain walls. Consider, for example, the case of Ising (Z,) symmetry with h = 0. We expand the free energy
density to order m?:

F[m(x)] :/dd:v {f0+%am2+%bm4+%n(Vm)2} . (7.8.9)

We assume a <0, corresponding to T <T.. Consider now a domain wall, where m(z — —o0) = —my and
m(xz — +00) = +m, , where m, is the equilibrium magnetization, which we obtain from the Euler-Lagrange equation,

am—+bm® —kVm=0, (7.8.10)

assuming a uniform solution where Vm =0. This gives m; =4/|a| / b. It is useful to scale m(x) by m,, writing

m(x) = m ¢(x). The scaled order parameter function ¢(x) interpolates between ¢(—o00) = —1 and ¢(+o0) =1.

It also proves useful to rescale position, writing x = (2/{ /|al ) Y 2(. Then we obtain
1
5V2 =—¢+¢°. (7.8.11)

We assume ¢(¢) = ¢(¢) is only a function of one coordinate, ¢ = ¢*. Then the Euler-Lagrange equation becomes

e 3 oU
where
U(g) = —%(sﬁz ~1)%. (7.8.13)

The ‘potential’ U(#) is an inverted double well, with maxima at ¢ = +1. The equation é=-U (¢), where dot denotes
differentiation with respect to , is simply Newton’s second law with time replaced by space. In order to have a stationary solution

at { — to0o where ¢ = +1, the total energy mustbe E =U(¢ = +1) =0 , where E = %¢2 +U(¢) . This leads to the first order
differential equation

d¢ _

=1—¢° 7.8.14
Te1-¢, (7.8.14)
with solution
#(¢) =tanh(¢) . (7.8.15)
Restoring the dimensionful constants,
x
m(z) =m, tanh( ) , (7.8.16)
’ V2§

where the coherence length £ = (x/|al) 1/2 diverges at the Ising transitiona = 0.

Derivation of Ginzburg-Landau free energy
We can make some progress in systematically deriving the Ginzburg-Landau free energy. Consider the Ising model,
H 1 1
T 22 Kijo; Uj_zi:hiai+52i:Kii’ (7.8.17)

,Lﬂ.]

where now K;; = J;; /ksT and h; = H,/k,T are the interaction energies and local magnetic fields in units of k,7". The last term
on the RHS above cancels out any contribution from diagonal elements of K ;- Our derivation makes use of a generalization of the
Gaussian integral,
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o0
1.2 27!‘ 1/2 2
/da: e 20 b — (—) et/?a, (7.8.18)
a
—00
The generalization is \[\int\limits_{-\infty } \inftyA\'\'\!dx\ns_1\cdots\\'\\int\limits_ {-\infty } \infty\l\'\!dx\ns_N\> eA{-{1\over 2}
A\ns_{ij} x\ns_ix\ns_j - b\ns_i x\ns_i}={(2\pi) { N/2\over \sqrt

\ eMTra \bigg[eMN\N\int\limits_{-\infty }\infty\l\'\!d\phi\ns_1 \cdots\\'\Nint\limits_{-\infty }\infty\\'\!d\phi\ns_N\> eA{-{1\over 2}
KA{-1}_{ij}\phi\ns_i\phi\ns_j}\,\Tra eA{(\phi\ns_i+h\ns_i)\sigma\ns_i}\\ &={det} {-1/2}(2\pi K)\> eA{-{1\over 2}

Kins_{ii} \'\N\int\limits_{-\infty }\infty\I\!\!d\phi\ns_1 \cdots\'\\N\int\limits_{-\infty }\infty\I\'\!d\phi\ns_N\> e~ {-{1\over 2}
KA{-1}_{ij}\phi\ns_i\phi\ns_j}\,eA{\sum_i \In\left[2\cosh(\phi\ns_i+h\ns_i)\right] }\\ &\equiv \int\limits_{-

\infty }\infty\I\!\!d\phi\ns_1\cdots\'\'\Nint\limits_ {-\infty } \infty\!\I\!d\phi\ns_N\> eA{-\RPhi(\phi\ns_1,\Idots,\phi\ns_N) }\ ,

\end{split}\] where
1 _ 1 1
b= Z K ; 6;— Zlncosh(qﬁi +hy) + Indet (27K) + = Tr K~ Nln2. (7.8.19)
1,J %
We assume the model is defined on a Bravais lattice, in which case we can write ¢, = ¢, . We can then define the Fourier
transforms,
1 .
br = —= D b P
R m g q
1
by = fg e 9T
"=V ot
and
K@) =) KR)e ™", (7.8.20)
R

A few remarks about the lattice structure and periodic boundary conditions are in order. For a Bravais lattice, we can write each
direct lattice vector R as a sum over d basis vectors with integer coefficients, viz.

R:in” a,, (7.8.21)
p=1
where d is the dimension of space. The reciprocal lattice vectors b, satisfy
a,-b, =276, , (7.8.22)
and any wavevector g may be expressed as
1 ¢
q= %;@ b,. (7.8.23)

We can impose periodic boundary conditions on a system of size M; x M, x --+ x M, by requiring

= . 7.8.24
¢R+ij:1 1,M,a, ¢R ( )

This leads to the quantization of the wavevectors, which must then satisfy
eMudan — M0y — 1 (7.8.25)

and therefore 6, = 27tm, /M, , where m,, is an integer. There are then M, M, --- M, = N independent values of g, which can
be taken to be those corresponding to m,, € {1,...,M,}.

Let’s now expand the function ® (\Vphj) in powers of the ¢,, and to first order in the external fields h;. We obtain
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:ézq:( @)~ 1) g+ 2%:¢§—%:hR¢R+O(¢6,h2)

1 1
—|—§Tr K—l—ETr In(27K) — N1n2

On a d-dimensional lattice, for a model with nearest neighbor interactions K only, we have K(q) =K, >, €49, where 6 is a
nearest neighbor separation vector. These are the eigenvalues of the matrix K, ;- We note that K, ; is then not positive definite, since

there are negative eigenvalues . To fix this, we can add a term K|, everywhere along the diagonal. We then have

K(q) :Ko—l—KlZcos(q-(S) . (7.8.26)
5

Here we have used the inversion symmetry of the Bravais lattice to eliminate the imaginary term. The eigenvalues are all positive
so long as K, > 2K , where z is the lattice coordination number. We can therefore write K(q) = K(0) —a q? for small q, with
a > 0. Thus, we can write

E'(@-1=atrg’+.... (7.8.27)

To lowest order in q the RHS is isotropic if the lattice has cubic symmetry, but anisotropy will enter in higher order terms. We’ll
assume isotropy at this level. This is not necessary but it makes the discussion somewhat less involved. We can now write down
our Ginzburg-Landau free energy density:

1 1
.7-'=a¢2+§n|V¢|2+E¢4—h¢, (7.8.28)

valid to lowest nontrivial order in derivatives, and to sixth order in ¢.

One might wonder what we have gained over the inhomogeneous variational density matrix treatment, where we found

F =537 @) - Ay

s { () ()

Surely we could expand J () = J (0)— éaq2 +... and obtain a similar expression for /. However, such a derivation using the

variational density matrix is only approximate. The method outlined in this section is exact.

Let’s return to our complete expression for ®:

@ (\Vphi) =&, (\Vphi) + ) v(¢g), (7.8.29)
R
where

&, (\Vphi) :%ZG’l (@) |p(q)[’ —l—%Tr (%) it (%) ~Nln2. (7.8.30)

q

Here we have defined

v(p) = %(,252 - lncosh¢

I Ve 17
_12¢ ¢+2520¢+“
and
G(q) = —K(fl) : (7.8.31)
1-K(q)

We now want to compute
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Z= /D\Vphi e ®o(\Vohi) o= 32 v(4g) (7.8.32)
where
D\Vphi =d¢, dp, - - - doy . (7.8.33)
We expand the second exponential factor in a Taylor series, allowing us to write
1
2=2, (1= (o(ér))+5 D > (v(de) o(dg)) +--) (7.8.34)
R R R
where
Z, = /D\Vphi e~ %o(\Vphi)
InZ 1Tr In(14+G) ¢ +Nln2
nz, == n - n
02 1+G
and
Vphi F e~
(F(\Vphi)) = J2VP e T (7.8.35)
JD\Vphi e~%
To evaluate the various terms in the expansion of Equation , we invoke Wick’s theorem, which says
oo o0 o0 o0
_Llglgy g —Llglg .
<mi1 xlz e $1’2L> pr— dwl ... dwN e 2 ) ) wll wlz ... miZL dwl ... dmN e 2 1] 1]
—00 —00 —00 —00
= _ gj1j2 gjsi: o gj?L—ljZL ’
all z?zs:tmct
where the sets {7, ..., j,; } are all permutations of the set {7,,...,4,; }. In particular, we have
(@) =3(G,)" - (7.8.36)

In our case, we have

($R) =3 (% ZG(q)) : (7.8.37)

Thus, if we write v(¢) &~ 11—2 ¢* and retain only the quartic term in v(¢), we obtain

F
ksT

=-InZ, = lTr

2 4N

1 2
T C —In(1 +G)] +—(TrG)" —~NIn2

= —Nln2—|—$(Tr G)’ —iTr (G*)+0(G?).

Note that if we set K; to be diagonal, then K(q) and hence G(q) are constant functions of q. The O(G?) term then vanishes,
which is required since the free energy cannot depend on the diagonal elements of K i

Ginzburg criterion
Let us define A(T, H, V', N) to be the usual ( thermodynamic) Helmholtz free energy. Then

e P4 = /Dm e PFImE)] (7.8.38)

where the functional F'[m(x)] is of the Ginzburg-Landau form, given in Equation . The integral above is a functional
integral. We can give it a more precise meaning by defining its measure in the case of periodic functions m(x) confined to a
rectangular box. Then we can expand
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1 ~ iq-X
m(x) = qu:mqe , (7.8.39)

and we define the measure
Dm = dm, | [dRe g dlm i, . (7.8.40)
gy >0

Note that the fact that m(x) € R means that m_, = i, . We’ll assume 7' > T, and H =0 and we’ll explore limit T — T," from
above to analyze the properties of the critical region close to 7. In this limit we can ignore all but the quadratic terms in m, and we

have
_ 1 .
A :/Dm exp <—5ﬂ2(a+ﬁq2)|mq|2)
q
kT 1/2
()
Thus,

:_kBTZI (aj%q ) (7.8.41)

We now assume that a(7) = at, where ¢ is the dimensionless quantity

T-T
t=—-—+ 7.8.42
Tc ) ( )

known as the reduced temperature.

2
We now compute the heat capacity C|, = —T' % . We are really only interested in the singular contributions to C},, which means
that we’re only interested in differentiating with respect to T as it appears in a(T'). We divide by Ngky where N is the number of

unit cells of our system, which we presume is a lattice-based model. Note Ng ~ V'/ a? where V is the volume and a the lattice
constant. The dimensionless heat capacity per lattice site is then

C 2.,d dd 1
c=-2 = 2/ - (7.8.43)
Ny 2s%) (2m)? (£72+q?)
where £ = (k/at)!/2? o |t|71/2 is the correlation length, and where A ~ a~! is an ultraviolet cutoff. We define R, = (k/a)'/2, in
which case
Ae
B 1 [ d% 1
c=R*al 4d-—/——, 7.8.44
¢ 2 G Wy (7849

where @ = g€. Thus,

const. ifd>4
c(t)~¢ —Int ifd=4 (7.8.45)
£572 ifd<4.
For d >4, mean field theory is qualitatively accurate, with finite corrections. In dimensions d < 4, the mean field result is

overwhelmed by fluctuation contributions as ¢ — 07 ( as T — T:"). We see that MFT is sensible provided the fluctuation
contributions are small, provided

Galetika, (7.8.46)

which entails | t\gg t\ns_\ssr{G} |, where

[t\ns_\ssr{G}=\bigg({\Sa\over R\ns_*}\bigg)\ \!{2d\over 4-d}} |
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is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely | t\gg t\ns_\ssr{G} |, is known as

the Ginzburg criterion. The region | |t<t\ns_\ssr{G} |is known as the critical region.

In a lattice ferromagnet, as we have seen, R, ~ a is on the scale of the lattice spacing itself, hence and the
critical regime is very large. Mean field theory then fails quickly as T — T . In a (conventional) three-dimensional superconductor,
R, is on the order of the Cooper pair size, and R,/a~ 10 —10° , hence |t\ns_\ssr{G}=(a/R\ns_*)/\6\sim 10/ {-18} - 10/\{-12}| is
negligibly narrow. The mean field theory of the superconducting transition — BCS theory — is then valid essentially all the way to
T=T..

This page titled 7.8: Ginzburg-Landau Theory is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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