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6.1: Ising Model

Definition

The simplest model of an interacting system consists of a lattice  of sites, each of which contains a spin  which may be either up ( ) or down ( ). The Hamiltonian is

When , the preferred (lowest energy) configuration of neighboring spins is that they are aligned, . The interaction is then called ferromagnetic. When  the preference
is for anti-alignment, , which is antiferromagnetic.

This model is not exactly solvable in general. In one dimension, the solution is quite straightforward. In two dimensions, Onsager’s solution of the model (with ) is among the most
celebrated results in statistical physics. In higher dimensions the system has been studied by numerical simulations (the Monte Carlo method) and by field theoretic calculations
(renormalization group), but no exact solutions exist.

Ising Model in One Dimension

Consider a one-dimensional ring of  sites. The ordinary canonical partition function is then

where  owing to periodic (ring) boundary conditions, and where  is a  transfer matrix,

where  are the Pauli matrices. Since the trace of a matrix is invariant under a similarity transformation, we have

where

are the eigenvalues of . In the thermodynamic limit, , and the  term dominates exponentially. We therefore have

From the free energy, we can compute the magnetization,

and the zero field isothermal susceptibility,

Note that in the noninteracting limit  we recover the familiar result for a free spin. The effect of the interactions at low temperature is to vastly increase the susceptibility. Rather than
a set of independent single spins, the system effectively behaves as if it were composed of large blocks of spins, where the block size  is the correlation length, to be derived below.

The physical properties of the system are often elucidated by evaluation of various correlation functions. In this case, we define

where , and where

To compute this ratio, we decompose  in terms of its eigenvectors, writing

Then

where
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Zero External Field

Consider the case , where , where  is the Pauli matrix. Then

the eigenvectors of  are

and , while . The corresponding eigenvalues are

The correlation function is then found to be

This result is also valid for , provided . We see that we may write

where the correlation length is

Note that  grows as  as .

Chain with free ends

When the chain has free ends, there are  links, and the partition function is

where . When , we make use of Equation  to obtain

and therefore

There’s a nifty trick to obtaining the partition function for the Ising chain which amounts to a change of variables. We define

Thus, , , Note that each  takes the values . The Hamiltonian for the chain is

The state of the system is defined by the  Ising variables . Note that  doesn’t appear in the Hamiltonian. Thus, the interacting model is recast as 
noninteracting Ising spins, and the partition function is

Ising model in two dimensions: Peierls’ argument
We have just seen how in one dimension, the Ising model never achieves long-ranged spin order. That is, the spin-spin correlation function decays asymptotically as an exponential function
of the distance with a correlation length  which is finite for all . Only for  does the correlation length diverge. At , there are two ground states,  and 

. To choose between these ground states, we can specify a boundary condition at the ends of our one-dimensional chain, where we demand that the spins are up. Equivalently,
we can apply a magnetic field  of order , which vanishes in the thermodynamic limit, but which at zero temperature will select the ‘all up’ ground state. At finite temperature, there is
always a finite probability for any consecutive pair of sites  to be in a high energy state, either  or . Such a configuration is called a domain wall, and in one-dimensional
systems domain walls live on individual links. Relative to the configurations  and , a domain wall costs energy . For a system with  domain walls, the free energy is
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Minimizing the free energy with respect to , one finds , so the equilibrium concentration of domain walls is finite, meaning there can be no long-ranged spin order. In
one dimension, entropy wins and there is always a thermodynamically large number of domain walls in equilibrium. And since the correlation length for  is finite, any boundary
conditions imposed at spatial infinity will have no thermodynamic consequences since they will only be ‘felt’ over a finite range.

As we shall discuss in the following chapter, this consideration is true for any system with sufficiently short-ranged interactions and a discrete global symmetry. Another example is the -
state Potts model,

Here, the spin variables  take values in the set  on each site. The equivalent of an external magnetic field in the Ising case is a field  which prefers a particular value of  (
 in the above Hamiltonian). See the appendix in §8 for a transfer matrix solution of the one-dimensional Potts model.

What about higher dimensions? A nifty argument due to R. Peierls shows that there will be a finite temperature phase transition for the Ising model on the square lattice . Consider the Ising
model, in zero magnetic field, on a  square lattice, with  in the thermodynamic limit. Along the perimeter of the system we impose the boundary condition .
Any configuration of the spins may then be represented uniquely in the following manner. Start with a configuration in which all spins are up. Next, draw a set of closed loops on the lattice.
By definition, the loops cannot share any links along their boundaries, each link on the lattice is associated with at most one such loop. Now flip all the spins inside each loop from up to
down. Identify each such loop configuration with a label . The partition function is

where  is the total perimeter of the loop configuration . The domain walls are now loops, rather than individual links, but as in the one-dimensional case, each link of each domain wall
contributes an energy  relative to the ground state.

Figure : Clusters and boundaries for the square lattice Ising model. Left panel: a configuration  where the central spin is up. Right panel: a configuration  where the interior
spins of a new loop  containing the central spin have been flipped.

Now we wish to compute the average magnetization of the central site (assume  are both odd, so there is a unique central site). This is given by the difference , where 
 is the probability that the central spin has spin polarization . If , then the magnetization per site  is finite in the thermodynamic

limit, and the system is ordered. Clearly

where the restriction on the sum indicates that only those configurations where the central spin is up ( ) are to be included (Figure ). Similarly,

where only configurations in which  are included in the sum. Here we have defined

 is the set of configurations  in which the central spin is always up (down). Consider now the construction in Figure . Any loop configuration  may be associated
with a unique loop configuration  by reversing all the spins within the loop of  which contains the origin. Note that the map from  to  is many-to-one. That is, we can write 

, where  overturns the spins within the loop , with the conditions that (i)  contains the origin, and (ii) none of the links in the perimeter of  coincide with any of the links
from the constituent loops of . Let us denote this set of loops as :

Then

If we can prove that , then we will have established that . Let us ask: how many loops  are there in  with perimeter ? We cannot answer this question
exactly, but we can derive a rigorous upper bound for this number, which, following Peliti, we call . We claim that

To establish this bound, consider any site on such a loop . Initially we have  possible directions to proceed to the next site, but thereafter there are only  possibilities for each subsequent
step, since the loop cannot run into itself. This gives  possibilities. But we are clearly overcounting, since any point on the loop could have been chosen as the initial point, and
moreover we could have started by proceeding either clockwise or counterclockwise. So we are justified in dividing this by . We are still overcounting, because we have not accounted
for the constraint that  is a closed loop, nor that . We won’t bother trying to improve our estimate to account for these constraints. However, we are clearly undercounting due to
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the fact that a given loop can be translated in space so long as the origin remains within it. To account for this, we multiply by the area of a square of side length , which is the maximum
area that can be enclosed by a loop of perimeter . We therefore arrive at Equation . Finally, we note that the smallest possible value of  is , corresponding to a square
enclosing the central site alone. Therefore

where . Note that we have accounted for the fact that the perimeter  of each loop  must be an even integer. The sum is smaller than unity provided ,
hence the system is ordered provided

The exact result is  The Peierls argument has been generalized to higher dimensional lattices as well .

With a little more work we can derive a bound for the magnetization. We have shown that

Thus,

and therefore

where  is given in Equation .

Figure : A two-dimensional square lattice mapped onto a one-dimensional chain.

Two dimensions or one?

We showed that the one-dimensional Ising model has no finite temperature phase transition, and is disordered at any finite temperature , but in two dimensions on the square lattice there is
a finite critical temperature  below which there is long-ranged order. Consider now the construction depicted in Figure , where the sites of a two-dimensional square lattice are
mapped onto those of a linear chain . Clearly we can elicit a one-to-one mapping between the sites of a two-dimensional square lattice and those of a one-dimensional chain. That is, the
two-dimensional square lattice Ising model may be written as a one-dimensional Ising model,

How can this be consistent with the results we have just proven?

The fly in the ointment here is that the interaction along the chain  is long-ranged. This is apparent from inspecting the site labels in Figure . Note that site  is linked to sites
 and , but also to sites  and . With each turn of the concentric spirals in the figure, the range of the interaction increases. To complicate matters further, the

interactions are no longer translationally invariant, . But it is the long-ranged nature of the interactions on our contrived one-dimensional chain which spoils our previous
energy-entropy argument, because now the domain walls themselves interact via a long-ranged potential. Consider for example the linear chain with , where .
Let us compute the energy of a domain wall configuration where  if  and  if . The domain wall energy is then

Here we have written one of the sums in terms of . For asymptotically large  and , we can write  and we obtain an integral over the upper right quadrant of the
plane:

The  integral is convergent, but the  integral diverges for . For a finite system, the upper bound on the  integral becomes the system size . For  the domain wall energy is
finite in the thermodynamic limit . In this case, entropy again wins. the entropy associated with a single domain wall is , and therefore  is always lowered by
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having a finite density of domain walls. For , the energy of a single domain wall scales as . It was first proven by F. J. Dyson in 1969 that this model has a finite temperature
phase transition provided . There is no transition for  or . The case  is special, and is discussed as a special case in the beautiful renormalization group analysis
by J. M. Kosterlitz in Phys. Rev. Lett. 37, 1577 (1976).

High temperature expansion
Consider once again the ferromagnetic Ising model in zero field , but on an arbitrary lattice. The partition function is

where  and  is the number of links. For regular lattices, , where  is the number of lattice sites and  is the lattice coordination number, the
number of nearest neighbors for each site. We have used

We expand Equation  in powers of , resulting in a sum of  terms, each of which can be represented graphically in terms of so-called lattice animals. A lattice animal is
a distinct (including reflections and rotations) arrangement of adjacent plaquettes on a lattice. In order that the trace not vanish, only such configurations and their compositions are
permitted. This is because each  for every given site  must occur an even number of times in order for a given term in the sum not to vanish. For all such terms, the trace is . Let 
represent a collection of lattice animals, and  the multiplicity of . Then

where  is the total number of sites in the diagram , and  is the multiplicity of . Since  vanishes as , this procedure is known as the high temperature expansion (HTE).

Figure : HTE diagrams on the square lattice and their multiplicities.

For the square lattice, he enumeration of all lattice animals with up to order eight is given in Figure . For the diagram represented as a single elementary plaquette, there are  possible
locations for the lower left vertex. For the  plaquette animal, one has , because there are two inequivalent orientations as well as  translations. For two disjoint elementary
squares, one has , which arises from subtracting  ‘illegal’ configurations involving double lines (remember each link in the partition sum appears only once!), shown in
the figure, and finally dividing by two because the individual squares are identical. Note that  is always even for any integer value of . Thus, to lowest interesting order on the
square lattice,

The free energy is therefore

again with . Note that we’ve substituted  to write the final result as a power series in . Notice that the  factor in  has cancelled upon taking
the logarithm, so the free energy is properly extensive.

Note that the high temperature expansion for the one-dimensional Ising chain yields

in agreement with the transfer matrix calculations. In higher dimensions, where there is a finite temperature phase transition, one typically computes the specific heat  and tries to
extract its singular behavior in the vicinity of , where . Since  is analytic in , we have , where . One
assumes  is the singularity closest to the origin and corresponds to the radius of convergence of the high temperature expansion. If we write

then according to the binomial theorem we should expect

Thus, by plotting  versus , one extracts  as the intercept, and  as the slope.
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High temperature expansion for correlation functions

Can we also derive a high temperature expansion for the spin-spin correlation function  ? Yes we can. We have

Recall our analysis of the partition function . We concluded that in order for the trace not to vanish, the spin variable  on each site  must occur an even number of times in the expansion
of the product. Similar considerations hold for , except now due to the presence of  and , those variables now must occur an odd number of times when expanding the product. It is
clear that the only nonvanishing diagrams will be those in which there is a finite string connecting sites  and , in addition to the usual closed HTE loops. See Figure  for an instructive
sketch. One then expands both  as well as  in powers of , taking the ratio to obtain the correlator . At high temperatures , both numerator and denominator are
dominated by the configurations  with the shortest possible total perimeter. For , this means the trivial path , while for  this means finding the shortest length path from  to .
(If there is no straight line path from  to , there will in general be several such minimizing paths.) Note, however, that the presence of the string between sites  and  complicates the
analysis of  for the closed loops, since none of the links of  can intersect the string. It is worth stressing that this does not mean that the string and the closed loops cannot intersect at
isolated sites, but only that they share no common links; see once again Figure .

Figure : HTE diagrams for the numerator  of the correlation function . The blue path connecting sites  and  is the string. The remaining red paths are all closed loops.
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