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Summary
 Discrete distributions: Let  label the distinct possible outcomes of a discrete random process, and let  be the probability for

outcome . Let  be a quantity which takes values which depend on , with  being the value of  under the outcome . Then
the expected value of  is , where the sum is over all possible allowed values of . We must have that the
distribution is normalized, .

 Continuous distributions: When the random variable  takes a continuum of values, we define the probability density  to be
such that  is the probability for the outcome to lie within a differential volume  of , where ,
were  is an -component vector in the configuration space , and where the function  accounts for the possibility of
different configuration space measures. Then if  is any function on , the expected value of  is .

 Central limit theorem: If  are each independently distributed according to , then the distribution of the sum 
 is

where  is the Fourier transform of . Assuming that the lowest moments of  exist, 
, where  and  are the mean and standard deviation. Then for 

,

which is a Gaussian with mean  and standard deviation . Thus,  is distributed as a Gaussian,
even if  is not a Gaussian itself.

 Entropy: The entropy of a statistical distribution is  is . (Sometimes the base 2 logarithm is used, in
which case the entropy is measured in bits.) This has the interpretation of the information content per element of a random
sequence.

 Distributions from maximum entropy: Given a distribution  subject to  constraints of the form 
with , where  (normalization), the distribution consistent with these constraints which maximizes
the entropy function is obtained by extremizing the multivariable function

with respect to the probabilities  and the Lagrange multipliers . This results in a Gibbs distribution,
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where  is determined by normalization,  ( the  constraint) and the  remaining multipliers determined
by the  additional constraints.

 Multidimensional Gaussian integral:

 Bayes’ theorem: Let the conditional probability for  given  be . Then Bayes’ theorem says 
. If the ’event space’ is partitioned as , then we have the extended form,

When the event space is a ‘binary partition’ , as is often the case in fields like epidemiology ( test positive or test
negative), we have

Note that  (which follows from ).

 Updating Bayesian priors: Given data in the form of observed values  and a hypothesis in the form of
parameters , we write the conditional probability (density) for observing  given  as . Bayes’
theorem says that the corresponding distribution  for  conditioned on  is

We call  the prior for ,  the likelihood of  given , and  the posterior for  given . We can use the posterior to
find the distribution of new data points , called the posterior predictive distribution,  This is the

update of the prior predictive distribution,  . As an example, consider coin flipping with 

, where  is the number of flips, and  with  a discrete variable which is  for tails and 
for heads. The parameter  is the probability to flip heads. We choose a prior  where 

 is the Beta distribution. This results in a normalized prior . The posterior

distribution for  is then

The prior predictive is  , and the posterior predictive for the total

number of heads  in  flips is
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