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5.5: Photon Statistics

Thermodynamics of the photon gas
There exists a certain class of particles, including photons and certain elementary excitations in solids such as phonons ( lattice
vibrations) and magnons ( spin waves) which obey bosonic statistics but with zero chemical potential. This is because their overall
number is not conserved (under typical conditions) – photons can be emitted and absorbed by the atoms in the wall of a container,
phonon and magnon number is also not conserved due to various processes, In such cases, the free energy attains its minimum
value with respect to particle number when

The number distribution, from Equation , is then

The grand partition function for a system of particles with  is

where  is the density of states per unit volume.

Suppose the particle dispersion is . We can compute the density of states :

where  is the internal degeneracy, due, for example, to different polarization states of the photon. We have used the result 
 for the solid angle in  dimensions. The step function  is perhaps overly formal, but it reminds us that

the energy spectrum is bounded from below by , there are no negative energy states.

For the photon, we have , hence  and

In  dimensions the degeneracy is , the number of independent polarization states. The pressure  is then obtained
using . We have

We can make some progress with the dimensionless integral:
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Finally, we invoke a result from the mathematics of the gamma function known as the doubling formula,

Putting it all together, we find

The number density is found to be

For photons in  dimensions, we have  and thus

It turns out that .

Note that , so

To find the entropy, we use Gibbs-Duhem:

where  is the entropy per particle and  is the volume per particle. We then find

The entropy per particle is constant. The internal energy is

and hence the energy per particle is
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Classical arguments for the photon gas
A number of thermodynamic properties of the photon gas can be determined from purely classical arguments. Here we recapitulate
a few important ones.

Suppose our photon gas is confined to a rectangular box of dimensions . Suppose further that the dimensions are
all expanded by a factor , the volume is isotropically expanded by a factor of . The cavity modes of the electromagnetic
radiation have quantized wavevectors, even within classical electromagnetic theory, given by

Since the energy for a given mode is , we see that the energy changes by a factor  under an adiabatic volume
expansion , where the distribution of different electromagnetic mode occupancies remains fixed. Thus,

Thus,

as we found in Equation [photE]. Since  is extensive, we must have  alone.
Since  alone, we have

where the second line follows the Maxwell relation , after invoking the First Law . Thus,

where  is a constant. Thus, we recover the temperature dependence found microscopically in Equation [photp].
Given an energy density , the differential energy flux emitted in a direction  relative to a surface normal is

where  is the differential solid angle. Thus, the power emitted per unit area is

where , with  as we found above. From quantum statistical mechanical considerations, we have

is Stefan’s constant.

Surface temperature of the earth
We derived the result  where  for the power emitted by an electromagnetic ‘black
body’. Let’s apply this result to the earth-sun system. We’ll need three lengths: the radius of the sun , the
radius of the earth , and the radius of the earth’s orbit . Let’s assume that the earth
has achieved a steady state temperature of . We balance the total power incident upon the earth with the power radiated by the
earth. The power incident upon the earth is
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The power radiated by the earth is

Setting , we obtain

Thus, we find , and with , we obtain . The mean surface temperature of the earth is 
, which is only about  higher. The difference is due to the fact that the earth is not a perfect blackbody, an object

which absorbs all incident radiation upon it and emits radiation according to Stefan’s law. As you know, the earth’s atmosphere
retraps a fraction of the emitted radiation – a phenomenon known as the greenhouse effect.

[planck] Spectral density \rho_\ve(\nu,T) for blackbody radiation at three
temperatures.

[planck] Spectral density  for blackbody radiation at three temperatures.

Distribution of blackbody radiation
Recall that the frequency of an electromagnetic wave of wavevector  is . Therefore the number of photons 

 per unit frequency in thermodynamic equilibrium is (recall there are two polarization states)

We therefore have

Since a photon of frequency  carries energy , the energy per unit frequency  is

Note what happens if Planck’s constant  vanishes, as it does in the classical limit. The denominator can then be written

and

In classical electromagnetic theory, then, the total energy integrated over all frequencies diverges. This is known as the ultraviolet
catastrophe, since the divergence comes from the large  part of the integral, which in the optical spectrum is the ultraviolet
portion. With quantization, the Bose-Einstein factor imposes an effective ultraviolet cutoff  on the frequency integral, and
the total energy, as we found above, is finite:

We can define the spectral density  of the radiation as
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so that  is the fraction of the electromagnetic energy, under equilibrium conditions, between frequencies  and ,

. In Figure [planck] we plot this in Figure [planck] for three different temperatures. The maximum occurs when 

 satisfies

What if the sun emitted ferromagnetic spin waves?
We saw in Equation [jephoton] that the power emitted per unit surface area by a blackbody is . The power law here follows
from the ultrarelativistic dispersion  of the photons. Suppose that we replace this dispersion with the general form 

. Now consider a large box in equilibrium at temperature . The energy current incident on a differential area  of
surface normal to  is

Let us assume an isotropic power law dispersion of the form . Then after a straightforward calculation we obtain

where

One can check that for , , and  that this result reduces to that of Equation [stefan].
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