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8.13: Appendix IV- Correlations in the Langevin formalism
As shown above, integrating the Langevin equation p +vp = F +n(t) yields

p(t)=p(0)e ”t+ e ) +/dsn : (8.13.1)
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. Thus, the momentum autocorrelator is
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is the lesser of ¢ and ¢'. Here we have used the result
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One way to intuitively understand this result is as follows. The double integral over s and s’ is over a rectangle of dimensions
t x t'. Since the §-function can only be satisfied when s = s’ there can be no contribution to the integral from regions where
s>t ors’ >t.Thus, the only contributions can arise from integration over the square of dimensions ¢, . xt, . . Note also

t+t —2min(t,t') =t —t]. (8.13.3)

[Fssprime] Regions for some of the double integrals encountered in the text.

Let’s now compute the position z(¢). We have
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Note that for vt <1 we have (z(t)) =z(0)+v(0)t+ %M “LFt> + O(#3) , as is appropriate for ballistic particles moving
under the influence of a constant force. This long time limit of course agrees with our earlier evaluation for the terminal velocity,
Voo = (p(00))/ M =F/yM .

We next compute the position autocorrelation:
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We have to be careful in computing the double integral of the first term in brackets on the RHS. We can assume, without loss of

generality, that ¢ > ¢’ . Then
t v v t ¢ s
/ds/ds' e M=l — /ds' e”s’/ds e —l—/ds' e_VSI/ds e’
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We then find, for ¢ > t',

2k,T k;T / , ,
ny _ N\ _ 28— 4, BT -t ' _ o —y(t=t') _ —y(t+t)
(z(t)z(t)) — (2(t)){z(t)) = M '+ 20 (267 +2e —2 €77 e 7)) (8.13.4)
In particular, the equal time autocorrelator is
2 2 2kBT kBT —~t —9~t
) —(z@t)) =——t+—— (4" -3 —-€e"). 8.13.5
We see that for long times
(z2(t)) — (x(t)) ~2Dt, (8.13.6)

where D = k;T' /M is the diffusion constant.
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