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4.4: Ordinary Canonical Ensemble (OCE)

Canonical Distribution and Partition Function

Consider a system .S in contact with a world W, and let their union U = W U S be called the ‘universe’. The situation is depicted
in Figure . The volume V and particle number N of the system are held fixed, but the energy is allowed to fluctuate by
exchange with the world W. We are interested in the limit Ny — 0o, Ny, — oo, with Ng < Ny, with similar relations holding
for the respective volumes and energies. We now ask what is the probability that S is in a state | n ) with energy E,,. This is given
by the ratio

Dy (E, —E,) AE

P, =1 4.4.1
" T apS  Dy(B,)AE (4.4.1)
# of states accessible to W given that B4 = E, 440
o total # of states in U ) (4.4.2)
Then
InP, =InDy,(E; — E,)—InD,(E,) (4.4.3)
0lnDy, (E)
=Dy, (E;)—InDy(E,) - E, ————— +... (4.4.4)
OF B=Ey;
=—a—-0E,. (4.4.5)
The constant S is given by
OlnDy, (E 1
G- w(E) )‘ _ . (4.4.6)
OF B=g; kT
Thus, we find P, = e~ e #F» _ The constant « is fixed by the requirement that S P,=1:
1 ~
P=— e Z(T,V,N)=) e =Tre b, (4.4.7)
n

We’ve already met Z() in Equation /7 — it is the Laplace transform of the density of states. It is also called the partition function
of the system S. Quantum mechanically, we can write the ordinary canonical density matrix as

e PH

=, (4.4.8)
Tr e PH

é:

which is known as the Gibbs distribution. Note that [@, H ] =0, hence the ordinary canonical distribution is a stationary solution
to the evolution equation for the density matrix. Note that the OCE is specified by three parameters: T', V, and V.

The difference between P(E,) and P,

Let the total energy of the Universe be fixed at ;. The joint probability density P (ES, EW) for the system to have energy E¢
and the world to have energy Ey;, is

P(ES’ EW) = DS(ES) DW(EW) 5(EU —Eg _EW)/DU(EU) ) (4-4-9)
where
Dy(Ey) = [dEBs Dy(Es) Dy (B, By, (4.4.10)

which ensures that [dEq [dEy, P(Eg, Ey) =1 . The probability density P(Eg) is defined such that P(Eg)dEg is the
(differential) probability for the system to have an energy in the range [E¢, E¢ +dE]. The units of P(E) are E ~1. To obtain
P(Ey), we simply integrate the joint probability density P(Eg, E;,) over all possible values of Ey;,, obtaining
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Dy(Ey) Dy (Ey — Ey)

P(Eg) = D, (B,) , (4.4.11)
as we have in Equation 4.4.1.
Now suppose we wish to know the probability P, that the system is in a particular state | n ) with energy E,,. Clearly
P, — lim probability that Eg € [E,, E, + AE] _ P(E,)AFE _ Dy, (E,; — Ey) ' (4.4.12)
AE—0 \ \# of Sstates with E¢ € [E,, E, + AE]\ D (E,) AE D, (E,)

Additional remarks

The formula of Equation 4.4.1 is quite general and holds in the case where Ng/Ny, =O(1), so long as we are in the
thermodynamic limit, where the energy associated with the interface between S and W may be neglected. In this case, however, one
is not licensed to perform the subsequent Taylor expansion, and the distribution P, is no longer of the Gibbs form. It is also valid
for quantum systems, in which case we interpret P, = (n|og|n) as a diagonal element of the density matrix og. The density of
states functions may then be replaced by

Ey—E,+AE

Dy, (Ey — E,) AE — 5w Fy=Eu AF) — Twr/a / dE §(E — Hy,)
Ey-E,
Ey+AE

D, (By) AE — SulFy 48 = Tra / dE §(E— H,)

v (Ey
Ey

The off-diagonal matrix elements of gg are negligible in the thermodynamic limit.
Averages within the OCE
To compute averages within the OCE,

>, (n|4|n) e 75

<A> =Tr ([) A) = S , (4.4.13)
where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we have
1 ~ ~ ~
olg) =7 e O, Z=Tr e = /dﬂ PP (4.4.14)
with dy = va 1(d%q; d%p;/h) for identical particles (‘Maxwell-Boltzmann statistics’). Thus,
d A e‘Bﬁ(‘P)
(A) = Tr (0A) = Jap Alp)e 710 (4.4.15)
fdu e_ﬂH(‘p)
Entropy and Free Energy
The Boltzmann entropy is defined by
S=—k,Tr(olng) =k, ZP InP,. (4.4.16)

The Boltzmann entropy and the statistical entropy S = k;ln D(E) are identical in the thermodynamic limit. We define the
Helmholtz free energy F(T',V, N) as

F(T,V,N)=-k;TInZ(T,V,N), (4.4.17)
hence

P, = e e PEn , InP, = BF — BE, . (4.4.18)
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Therefore the entropy is

S=—ky, Y _ P, (BF —BE,) (4.4.19)
n
F  (H)
ST T
whichistosay F = E—T'S , where
Tr He PH
E=Y P E,=—°— (4.4.20)
P Tr e PH

is the average energy. We also see that

_ﬂEn
Lnboe ™ 0 o i(ﬂF) . (4.4.21)

= _ﬂH = _'BE" = =
Z=Tre zﬂ:e — F Zn e—BEn B a8

Thus, F(T,V,N) is a Legendre transform of E(S,V, N), with
dF =—-SdT —pdV + udN , (4.4.22)

oF oF oF
S = — —_— y = — — B = — . 4.4.23
(aT >V,N b (W >T,N H=" ( ON )T,V (4.4.23)

Fluctuations in the OCE

which means

In the OCE, the energy is not fixed. It therefore fluctuates about its average value E = (H) . Note that
E E ’InZ
_6_ — kBT2 6_ — 9" In
)] or 0p2
~2 5 N SN2
_TrH e PH Tr He PH
Tr e #H Tr e #H
~9 )
=(H")—(H)".

Thus, the heat capacity is related to the fluctuations in the energy, just as we saw at the end of §:
OF 1 ) “\ 9
o =(%) = (")) 4.4.24
o= (52 ), = (=) (4420

For the nonrelativistic ideal gas, we found C|, = % Nk, hence the ratio of RMS fluctuations in the energy to the energy itself is

—, 4.4.25
) 4Nk, T N ( )
and the ratio of the RMS fluctuations to the mean value vanishes in the thermodynamic limit.
The full distribution function for the energy is
o Tré(E-Hye P 1
PE)=(§(—H))= r & )Ae =—=D(&)e . (4.4.26)
Tr e PH Z
Thus,
e BlE-TS(E)]
P(¢&) , (4.4.27)

 [dg’ e BlE-TSE)]
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where S(£) = ks InD(€) is the statistical entropy. Let’s write £ = E + € , where E extremizes the combination £ —T S(€) , the
solution to T'S’(E) =1, where the energy derivative of S is performed at fixed volume V and particle number N. We now
expand S(E + 6€) to second order in §€, obtaining

2
S(E+6E)=S(E)+ % _ %) + (4.4.28)
= T 3 C, e 4.
il
Recall that 8" (E) = o= (7) = — TZICV . Thus,
() 3
E-TSE)=E-TS(E)+ +0((8€)°) . (4.4.29)
2T C,
Applying this to both numerator and denominator of Equation 4.4.27, we obtain
(66)*
P€) = -, 4.4.30
©) Nexp[ TR (4.4.30)

where N = (27k,T2C},)"'/? is a normalization constant which guarantees [d€ P(€)=1. Once again, we see that the
distribution is a Gaussian centered at (£) = E, and of width (A&) z,,6 = 1/ksT? Cy, . This is a consequence of the Central Limit

Theorem.

Thermodynamics revisited

The average energy within the OCE is

E=Y E.P,, (4.4.31)

and therefore

dE:ZEndPn+ZPndEn

= \mathchar'26Q — \mathchar'26W ,

where

\mathchar'26W = - P, dE,

n
\mathchar' 26Q = Z E.dP,.
n

Finally, from P, = Z ' e Fn/*sT | we can write
B, = —kTInZ—k,TInp,, (4.4.32)

with which we obtain
\mathchar'26Q =Y E, dP,
n
- —kBTanZ dP, — k,T Z InP, dP,
n

:Td(— kBiPn lnPn) —Tds.

Note also that
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\mathchar'26W =~ P, dE, (4.4.33)
=— an ( gf(" Xm.) (4.4.34)

=— P, (n 0H
s Pn (1] (4.4.35)

0X,|n)dX, =Y, F,dX,,

so the generalized force F; conjugate to the generalized displacement d.X; is

dE,  /OH
E:_;P’La—)ﬁ;_—<8—){i>' (4.4.36)

This is the force acting on the system". In the chapter on thermodynamics, we defined the generalized force conjugate to X, as
y, =—F,.

K3

i

1Ens Po}

mn n

dW = - "P,dE, iQ=> E,dP,

n

Figure 4.4.1: Microscopic, statistical interpretation of the First Law of Thermodynamics.

Thus we see from Equation 777 that there are two ways that the average energy can change; these are depicted in the sketch of
Figure 4.4.1. Starting from a set of energy levels { E,} and probabilities { P, }, we can shift the energies to { E},}. The resulting
change in energy (AE); = —W is identified with the work done on the system. We could also modify the probabilities to { P, }
without changing the energies. The energy change in this case is the heat absorbed by the system: (AE);; = Q. This provides us
with a statistical and microscopic interpretation of the First Law of Thermodynamics.

Generalized Susceptibilities
Suppose our Hamiltonian is of the form
H=H\) =H,-)Q, (4.4.37)
where X is an intensive parameter, such as magnetic field. Then
Z(\) = Tr e A (4.4.38)

and

P A s A
% a_f _5. %Tr (Ge ) =5(). (4.4.39)

But then from Z = e #F we have
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A OF
1= (@) =-(55) - (4.4.40)
T
Typically we will take @ to be an extensive quantity. We can now define the susceptibility x as

100 1 8%F
XSV Vow (440

The volume factor in the denominator ensures that  is intensive.
It is important to realize that we have assumed here that [H 05 Q] =0, the ‘bare’ Hamiltonian H, and the operator () commute. If

they do not commute, then the response functions must be computed within a proper quantum mechanical formalism, which we
shall not discuss here.

Note also that we can imagine an entire family of observables {Qk} satisfying [Qk , ri] =0 and [fI 05 Qk] =0, for all £ and
k'. Then for the Hamiltonian

e

H()) ZI;IO_Z)\k Qk ) (4.4.42)
k
we have that
- - OF
QA T)=(Q;) =_<W) (4.4.43)
k /T, Ny, My
and we may define an entire matrix of susceptibilities,
1 0Q, 1 0%F
=%k __ - 4.4.
X TV N, TV Ox, 0N (4.4.44)
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