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3.2: Phase Flows in Classical Mechanics

Hamiltonian evolution
The master equation provides us with a semi-phenomenological description of a dynamical system’s relaxation to equilibrium. It
explicitly breaks time reversal symmetry. Yet the microscopic laws of Nature are (approximately) time-reversal symmetric. How
can a system which obeys Hamilton’s equations of motion come to equilibrium?

Let’s start our investigation by reviewing the basics of Hamiltonian dynamics. Recall the Lagrangian .
The Euler-Lagrange equations of motion for the action  are

where  is the canonical momentum conjugate to the generalized coordinate :

The Hamiltonian,  is obtained by a Legendre transformation,

Note that

Thus, we obtain Hamilton’s equations of motion,

and

Define the rank  vector  by its components,

Then we may write Hamilton’s equations compactly as

where

is a rank  matrix. Note that ,  is antisymmetric, and that .
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d

dt

∂L

∂q̇ σ

∂L

∂qσ
(3.2.1)

pσ qσ

=  .pσ
∂L

∂q̇ σ

(3.2.2)

H(q, p)

H(q, p) = −L .∑
σ=1

r

pσ q̇ σ (3.2.3)

dH

 

= ( d + d − d − d )− dt∑
σ=1

r

pσ q̇ σ q̇ σ pσ
∂L

∂qσ
qσ

∂L

∂q̇ σ

q̇ σ

∂L

∂t

= ( d − d )− dt .∑
σ=1

r

q̇ σ pσ
∂L

∂qσ
qσ

∂L

∂t

= , = − = −
∂H

∂pσ
q̇ σ

∂H

∂qσ

∂L

∂qσ
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Dynamical systems and the evolution of phase space volumes
Consider a general dynamical system,

where  is a point in an -dimensional phase space. Consider now a compact  region  in phase space, and consider its
evolution under the dynamics. That is,  consists of a set of points , and if we regard each  as an initial
condition, we can define the time-dependent set  as the set of points  that were in  at time :

Now consider the volume  of the set . We have

where

for an -dimensional phase space. We then have

where

is a determinant, which is the Jacobean of the transformation from the set of coordinates  to the coordinates 
. But according to the dynamics, we have

and therefore

We now make use of the equality

for any matrix , which gives us , for small ,

Thus,
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Here, the divergence is the phase space divergence,
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and we have used the divergence theorem to convert the volume integral of the divergence to a surface integral of , where 
is the surface normal and  is the differential element of surface area, and  denotes the boundary of the region . We see that
if  everywhere in phase space, then  is a constant, and phase space volumes are preserved by the evolution of the
system.

For an alternative derivation, consider a function  which is defined to be the density of some collection of points in phase
space at phase space position  and time . This must satisfy the continuity equation,

This is called the continuity equation. It says that ‘nobody gets lost’. If we integrate it over a region of phase space , we have

It is perhaps helpful to think of  as a charge density, in which case  is the current density. The above equation then says

where  is the total charge contained inside the region . In other words, the rate of increase or decrease of the charge within the
region  is equal to the total integrated current flowing in or out of  at its boundary.

Figure : Time evolution of two immiscible fluids. The local density remains constant.

The Leibniz rule lets us write the continuity equation as

But now suppose that the phase flow is divergenceless, . Then we have

The combination inside the brackets above is known as the convective derivative. It tells us the total rate of change of  for an
observer moving with the phase flow. That is
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If , the local density remains the same during the evolution of the system. If we consider the ‘characteristic function’

then the vanishing of the convective derivative means that the image of the set  under time evolution will always have the same
volume.

Hamiltonian evolution in classical mechanics is volume preserving. The equations of motion are

A point in phase space is specified by  positions  and  momenta , hence the dimension of phase space is :

Hamilton’s equations of motion guarantee that the phase space flow is divergenceless:

Thus, we have that the convective derivative vanishes, viz.

for any distribution  on phase space. Thus, the value of the density  is constant, which tells us that the phase flow
is incompressible. In particular, phase space volumes are preserved.

Liouville’s equation and the microcanonical distribution
Let  be a distribution on phase space. Assuming the evolution is Hamiltonian, we can write

where  is a differential operator known as the Liouvillian:

Equation , known as Liouville’s equation, bears an obvious resemblance to the Schrödinger equation from quantum
mechanics.

Suppose that  is conserved by the dynamics of the system. Typical conserved quantities include the components of the total
linear momentum (if there is translational invariance), the components of the total angular momentum (if there is rotational
invariance), and the Hamiltonian itself (if the Lagrangian is not explicitly time-dependent). Now consider a distribution 

 which is a function only of these various conserved quantities. Then from the chain rule, we have
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since for each  we have

We conclude that any distribution  which is a function solely of conserved dynamical quantities is a
stationary solution to Liouville’s equation.

Clearly the microcanonical distribution,

is a fixed point solution of Liouville’s equation.
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