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4.3: Thermal Equilibrium

Two Systems in Thermal Contact

Consider two systems in thermal contact, as depicted in Figure 4.3.1. The two subsystems #1 and #2 are free to exchange energy,
but their respective volumes and particle numbers remain fixed. We assume the contact is made over a surface, and that the energy
associated with that surface is negligible when compared with the bulk energies E; and E,. Let the total energy be E = E, + E, .
Then the density of states D(E) for the combined system is

D(E) :/dEl D,(E,)D,(E—E,). (4.3.1)

The probability density for system #1 to have energy E| is then

D,(E,) Dy(E—E,)
D(E)

P(E)= (4.3.2)
Note that P, (F,) is normalized: [dE, P,(E,)=1. We now ask: what is the most probable value of E;? We find out by
differentiating P, (E;) with respect to F; and setting the result to zero. This requires

1 dP(E) 9

P(E) dB, oF, "1

= i lnDl(El)—i—i InD,(E—E;).

0F, OE,
We conclude that the maximally likely partition of energy between systems #1 and #2 is realized when
Z—;ll = Z—;z . (4.3.3)
This guarantees that
S(E,E,) =S,(E,)+S,(E—E,) (4.3.4)

is a maximum with respect to the energy F,, at fixed total energy E.

Figure 4.3.1: Two systems in thermal contact.

The temperature T' is defined as

1 (08
- (8_E)V,N , (4.3.5)

a result familiar from thermodynamics. The difference is now we have a more rigorous definition of the entropy. When the total
entropy S is maximized, we have that T} =T, . Once again, two systems in thermal contact and can exchange energy will in
equilibrium have equal temperatures.

According to Equations \ref{phinrel} and \ref{phiurel}, the entropies of nonrelativistic and ultrarelativistic ideal gases in d space
dimensions are given by
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1 E 1%
SNR = ENdkB ln(ﬁ) +NkB ln(ﬁ> + const. (436)
E v
SUR =Ndkyln N + Nkyln N +const. . (437)
Invoking Equation 4.3.5, we then have
1
Byp=5NdkT ,  Byg=NdkT. (4.3.8)

We saw that the probability distribution P, (E,) is maximized when T} = T, but how sharp is the peak in the distribution? Let us
write B, = Ef + AE, , where E; is the solution to Equation 777. We then have

1 9%, (AE )2+L 9%s,
1

InP (E +AE )=InP, (E})+
1 (B ) (B 2k; OE? |g; 2k; OEZ |E;

1

(AE)*+..., (4.3.9)

where E = E — E} . We must now evaluate

9% 0 (1 1 /0T 1
o~ (7))~ (aTa)V,N T (#3.10)

where C, = (6E / 6T) v s the heat capacity. Thus,

P, = Py (8B /2ksT*Cy (4.3.11)
where
5 C’V,l CV,2 (4 3 12)
o e 3.
CV,l + CV,Z

The distribution is therefore a Gaussian, and the fluctuations in AE, can now be computed:
(AE)*)=k,T?Cy = (AE1) pass = ksTy/Cy /K - (4.3.13)
The individual heat capacities C’V71 and C’V72 scale with the volumes V| and V,, respectively. If V, >V, then C’V’2 > C’V71 , in

which case C_’V ~ Cy,, . Therefore the RMS fluctuations in AE, are proportional to the square root of the system size, whereas E,

itself is extensive. Thus, the ratio (AE1) g5/ F; V12 scales as the inverse square root of the volume. The distribution
P, (E,) is thus extremely sharp.

Thermal, mechanical and chemical equilibrium

We have d.S |V N= % dE ,but in general S = S(E,V, N). Equivalently, we may write £ = E(S,V, N). The full differential of
E(S,V,N) is then dE=TdS—pdV +udN , with T = (g—g)V’N and p = _(g_‘E/)S,N and p= (g_f’)s,v' As we shall
discuss in more detail, p is the pressure and p is the chemical potential. We may thus write the total differential d.S as

1
dS=—dE+Lav-ELa4n . (4.3.14)
T T T
Employing the same reasoning as in the previous section, we conclude that entropy maximization for two systems in contact

requires the following:

 If two systems can exchange energy, then T} = T, . This is thermal equilibrium.
o If two systems can exchange volume, then p, /T; = p, /T,. This is mechanical equilibrium.
o If two systems can exchange particle number, then p, /T = p, /T, . This is chemical equilibrium.

Gibbs-Duhem Relation

The energy E(S,V,N) is an extensive function of extensive variables, it is homogeneous of degree one in its arguments.
Therefore E(AS, AV, AN) = AE, and taking the derivative with respect to X yields
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B —S(@V,N *V(W)SJN(a—N)S,V
=TS5—-pV+uN

Taking the differential of each side, using the Leibniz rule on the RHS, and plugging in dE =T dS —pdV +udN , we arrive at
the Gibbs-Duhem relation,

SdT —Vdp+Ndu=0 . (4.3.15)

This, in turn, says that any one of the intensive quantities (T", p, xt) can be written as a function of the other two, in the case of a
single component system.
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