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8.3: Weakly Inhomogeneous Gas
Consider a gas which is only weakly out of equilibrium. We follow the treatment in Lifshitz and Pitaevskii, §6. As the gas is only
slightly out of equilibrium, we seek a solution to the Boltzmann equation of the form , where  is describes a local
equilibrium. Recall that such a distribution function is annihilated by the collision term in the Boltzmann equation but not by the
streaming term, hence a correction  must be added in order to obtain a solution.

The most general form of local equilibrium is described by the distribution

where , , and  vary in both space and time. Note that

where we have assumed  on average, and used

where  is the entropy per particle and  is the number density. We have further written , which is the enthalpy per
particle. Here,  is the heat capacity per particle at constant pressure . Finally, note that when  is the Maxwell-Boltzmann
distribution, we have

The Boltzmann equation is written

The RHS of this equation must be of order  because the local equilibrium distribution  is annihilated by the collision integral.
We therefore wish to evaluate one of the contributions to the LHS of this equation,

To simplify this, first note that Newton’s laws applied to an ideal fluid give , where  is the mass density.
Corrections to this result, e.g. viscosity and nonlinearity in , are of higher order.

Next, continuity for particle number means . We assume  is zero on average and that all derivatives are small,
hence . Thus,

where we have invoked the ideal gas law  above.

Next, we invoke conservation of entropy. If  is the entropy per particle, then  is the entropy per unit volume, in which case we
have the continuity equation
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The second bracketed term on the RHS vanishes because of particle continuity, leaving us with  (since 
on average, and any gradient is first order in smallness). Now thermodynamics says

since  and , where . Thus,

We now have in eqns. [ptea] and [pteb] two equations in the two unknowns  and , yielding

Thus Equation [LHSA] becomes

where

Therefore, the Boltzmann equation takes the form

Notice we have dropped the terms  and , since  must already be first order in smallness, and both the  operator

as well as  add a second order of smallness, which is negligible. Typically  is nonzero if the applied force  is time-
dependent. We use the convention of summing over repeated indices. Note that . For ideal gases in which
only translational and rotational degrees of freedom are excited, .
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