LibreTextsw

1.4: General Aspects of Probability Distributions

Discrete and Continuous Distributions

Consider a system whose possible configurations | ) can be labeled by a discrete variable n € C, where C is the set of possible
configurations. The total number of possible configurations, which is to say the order of the set C, may be finite or infinite. Next,
consider an ensemble of such systems, and let P, denote the probability that a given random element from that ensemble is in the
state (configuration) | n). The collection {P,} forms a discrete probability distribution. We assume that the distribution is
normalized, meaning

Y p=1. (1.4.1)
neC
Now let A,, be a quantity which takes values depending on n.. The average of A is given by
(A) :ZPn A, . (1.4.2)
neC

Typically, C is the set of integers (Z) or some subset thereof, but it could be any countable set. As an example, consider the throw
of a single six-sided die. Then P,, = % foreachn € {1,...,6}. Let A, =0 if n is even and 1 if n is odd. Then find (A) = % ,on
average half the throws of the die will result in an even number.

It may be that the system’s configurations are described by several discrete variables {n,, n,,n,,...}. We can combine these into
a vector n and then we write P, for the discrete distribution, with Zn P,=1.

Another possibility is that the system’s configurations are parameterized by a collection of continuous variables,
©={@1,...,n}. We write ¢ € Q, where § is the phase space (or configuration space) of the system. Let du be a measure on
this space. In general, we can write

dpu=WI(py,...,¢n)dp; dpy---doy . (1.4.3)
The phase space measure used in classical statistical mechanics gives equal weight W to equal phase space volumes:
T
dp =] dgo dp , (1.4.4)
o=1
where C is a constant we shall discuss later on below .

Any continuous probability distribution P(¢) is normalized according to

/d,uP(go) =1. (1.4.5)
Q

The average of a function A(p) on configuration space is then

)= [anP(o) Ale). (1.4.6)
Q
For example, consider the Gaussian distribution
1

_ ~(e-p)’ /20"
P(z) — ¢ . (1.4.7)

From the result

oo

/dm e e = A/ g e/t (1.4.8)

—00

we see that P(x) is normalized. One can then compute
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(z) =p
(@) —(2)* =0

We call p the mean and o the standard deviation of the distribution, Equation

2

The quantity P(¢p) is called the distribution or probability density. One has
P(p) du = probability that configuration lies within volume du centered at ¢ (1.4.9)

For example, consider the probability density P =1 normalized on the interval z € [0, 1]. The probability that some = chosen at
random will be exactly %, say, is infinitesimal — one would have to specify each of the infinitely many digits of . However, we can
say that z € [0.45 , 0.55]with probability 11—0.

If « is distributed according to P, (z), then the probability distribution on the product space (z, , x,) is simply the product of the
distributions: P,(x,,z,) = P;(z,) P;(z,) . Suppose we have a function ¢(z,,...,z, ). How is it distributed? Let P(¢) be the
distribution for ¢. We then have

P(¢) —]Zlml---]ZlmNPN(xl,...,mN)5(¢(x1,...,wN)qb)

_ /dml.../dmNpl(ggl)..-Pl(mN)5(¢(w1,...,$N)—¢) ;

where the second line is appropriate if the {x j} are themselves distributed independently. Note that

/d¢ P(¢)=1, (1.4.10)

so P(¢) is itself normalized.

Central limit theorem

In particular, consider the distribution function of the sum X = Eﬁl x, . We will be particularly interested in the case where IV is
large. For general IV, though, we have

Py(X)= /da;l---/dwNPl(acl)-~-P1(wN) S(z 4z +...+zy—X). (1.4.11)

It is convenient to compute the Fourier transform ' of P(X):

Py(k) = /dX Py (X)e "X

= /dX/d:cl---/d:cNPI(:cl)---Pl(:cN)5(a;1+...+a:N—X)e*““X: (B, (k)]"Y,
where
P (k) = /da:Pl(m)e_”“ (1.4.12)

is the Fourier transform of the single variable distribution P, (). The distribution Py (X) is a convolution of the individual P, (z;)
distributions. We have therefore proven that the Fourier transform of a convolution is the product of the Fourier transforms.

OK, now we can write for P, (k)
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. r 1 1
P.(k) = /da:Pl(w) (1—ikm—§k2x2+gik3 4.

1 1
:1—ik(z)—5k2<w2>+gik3<w3)+... .
Thus,
5 ; 1 oo 1. 3.3
lnPl(kz):—zuk—§U k +617 E+.o.., (1.4.13)
where

%) =3 (%) (z) +2(2)’

)

We can now write
[By (k)] = ik Va2 NS (1.4.14)

i 3
Now for the inverse transform. In computing Py (X), we will expand the term eNTK /6 and all subsequent terms in the above

product as a power series in k. We then have

00
dk 1
PN(X) = /% 6lk(X_N”) S_NJ%Z/Z {1 + E 7 N’Y3k3 +... }
—00
3
- (1 I 2 +..-);e_(X_N“)2/2NU2
6 0Xx3 Vv2rNo?

3 3
_ (1 LY g 9 o €200

1
6 ogs ) V2nNo?
In going from the second line to the third, we have written X = Nu++/N &, in which case Oy =N -1/2 85 , and the non-
Gaussian terms give a subleading contribution which vanishes in the N — oo limit. We have just proven the central limit theorem:
in the limit N — oo, the distribution of a sum of N independent random variables z, is a Gaussian with mean Ny and standard
deviation v/N ¢. Our only assumptions are that the mean g and standard deviation ¢ exist for the distribution P, (x). Note that
P, (z) itself need not be a Gaussian — it could be a very peculiar distribution indeed, but so long as its first and second moment

exist, where the [ kA\ssr{th} | moment is simply (z*), the distribution of the sum X = 211 z, is a Gaussian.

Moments and cumulants

Consider a general multivariate distribution P(z,, ..., ) and define the multivariate Fourier transform
. o0 o0 N
P(ky,....ky)= /d:l:1 - ~/d.’13N P(z,,...,xzy) exp (—i ij:cj) . (1.4.15)
—00 —00 =1

The inverse relation is

rdk,  [dk N
P(z,,...,zy) = 2—7: 2—:P(k1,...,kN)exp(—i—iijxj). (1.4.16)
—% =1

—00

Acting on Is(k), the differential operator ¢ % brings down from the exponential a factor of z, inside the integral. Thus,

() (&)

Similarly, we can reconstruct the distribution from its moments, viz.

=(z;" ). (1.4.17)
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Z Z .(—ikN)'mN (@™ g (1.4.18)

m, =0 my=0 mN'

The cumulants ((z" - - - z'y")) are defined by the Taylor expansion of In P (k):

—iky )™
In P(k Z Z M mfjvv), Y™z ) (1.4.19)

m;=0 my=0

There is no general form for the cumulants. It is straightforward to derive the following low order results:
{(z;) = (x;)
(&;z;) = (z;2)) — ;) ()
<<ximjmk>> = <mixjwk> - <$1$]><mk> - <m3mk><xz> - <kaz><mj> +2<mz><m]><xk> .

Multidimensional Gaussian integral

Consider the multivariable Gaussian distribution,

det A \!/? 1
Px) = ex( -z, A, .73), 1.4.20
o= () e (-go4,e, (1.4.20)
where A is a positive definite matrix of rank n. A mathematical result which is extremely important throughout physics is the
following:
o0 o0
det A\"? 1 1,
Z(b)= <(27r)") /da:l---/dwn exp(fami A @+, wi) =exp (5 b, Aij1 b].) . (1.4.21)
—00 —00

Here, the vector b = (b, , ... , by) is identified as a source. Since Z(0) =1, we have that the distribution P(x) is normalized.
Now consider averages of the form

0"Z(b

(z.z, V= [dzPx)z.- . __0"z(b)

n J2k J1 Jok ob. --- Ob. b=0
1 Jok
= E At oAt
; Jo(1)do(2) Jo(2k-1)To(2k)
contractions
The sum in the last term is over all contractions of the indices {7, , ..., jy;}. A contraction is an arrangement of the 2k indices

into k pairs. There are C,, = (2k)!/ 2*k! possible such contractions. To obtain this result for C)., we start with the first index and
then find a mate among the remaining 2k —1 indices. Then we choose the next unpaired index and find a mate among the
remaining 2k — 3 indices. Proceeding in this manner, we have

(2k)!

Cyp=(2k—1)-(2k—3)---3-1= o (1.4.22)

Equivalently, we can take all possible permutations of the 2k indices, and then divide by 2¥k! since permutation within a given pair
results in the same contraction and permutation among the k pairs results in the same contraction. For example, for k = 2, we have

C,=3,and
(z.z. .z, )=AL AL AL AL L AL A7L (1.4.23)
Ju J2 I3 Ja J1J2 J3Ja J193" " J2da J1Ja J2J3
If we define b, = ik, , we have
. 1 .
P(k) = exp (f—ki A; k].), (1.4.24)

from which we read off the cumulants ((z;z; ; )= A” , with all higher order cumulants vanishing.

This page titled 1.4: General Aspects of Probability Distributions is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by Daniel Arovas.

@ 0 a @ 1.4.4 https://phys.libretexts.org/@go/page/18544



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18544?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/01%3A_Fundamentals_of_Probability/1.04%3A_General_Aspects_of_Probability_Distributions
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5

