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2.9: Equilibrium and Stability

Equilibrium

Suppose we have two systems, A and B, which are free to exchange energy, volume, and particle number, subject to overall
conservation rules

Es+Eg=E , Vi+Vg=V , Ns+Np=N, (2.9.1)

where E, V, and N are fixed. Now let us compute the change in the total entropy of the combined systems when they are allowed
to exchange energy, volume, or particle number. We assume that the entropy is additive,

<35A> (asB) ] (asA) (asB)
—4 — == dE + || == - =
8EA Va,Na 6EB VB,Np 8VA Ea,Na 8VB EB,Np

( S, ) B ( 0Sp )
aNA EAaVA aNB EB7VB

Note that we have used dEp = —dE, , dVp = —dVy,and dNp = —dN 4 . Now we know from the Second Law that spontaneous
processes result in T'd.S > 0, which means that S tends to a maximum. If S is a maximum, it must be that the coefficients of dE4,
dV4, and dN4 all vanish, else we could increase the total entropy of the system by a judicious choice of these three differentials.
From T dS =dE+pdV —pu,dN , we have
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Thus, we conclude that in order for the system to be in equilibrium, so that S is maximized and can increase no further under
spontaneous processes, we must have

ds = v,

AN, .

Ty =Tg (thermal equilibrium)
Pa _PB (mechanical equilibrium)
Ty Tp

;—j = ;—2 (chemical equilibrium)

Stability

Next, consider a uniform system with energy E’ = 2F, volume V' =2V, and particle number N’ = 2N . We wish to check that
this system is not unstable with respect to spontaneously becoming inhomogeneous. To that end, we imagine dividing the system in
half. Each half would have energy E, volume V, and particle number N. But suppose we divided up these quantities differently, so
that the left half had slightly different energy, volume, and particle number than the right, as depicted in Figure 2.9.1 . Does the
entropy increase or decrease? We have

AS =S(E+AE,V+AV,N+AN)+S(E—AE,V—AV,N—AN)- S(2E,2V,2N)
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Thus, we can write
AS = ZQU v, (2.9.3)
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where
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is the matrix of second derivatives, known in mathematical parlance as the Hessian, and ¥ = (AE, AV, AN). Note that Q is a
symmetric matrix.

E+AE | E-AE
V4AV | VAV
N+AN | N-AN

Figure 2.9.1 : To check for an instability, we compare the energy of a system to its total energy when we reapportion its energy,

volume, and particle number slightly unequally.
Since S must be a maximum in order for the system to be in equilibrium, we are tempted to conclude that the homogeneous system
is stable if and only if all three eigenvalues of () are negative. If one or more of the eigenvalues is positive, then it is possible to
choose a set of variations W such that AS > 0, which would contradict the assumption that the homogeneous state is one of
maximum entropy. A matrix with this restriction is said to be negative definite. While it is true that ) can have no positive
eigenvalues, it is clear from homogeneity of S(E,V, N) that one of the three eigenvalues must be zero, corresponding to the
eigenvector ¥ = (E,V, N). Homogeneity means S(AE, AV,AN)=AS(E,V,N). Now let us take A =1+, where 7 is
infinitesimal. Then AE =nE, AV =qV, and AN =nqN, and homogeneity says
S(E+AE,V+AV,N+AN)=(1£n)S(E,V,N) and AS=(1+n)S+(1—n)S—25=0 . We then have a slightly
weaker characterization of ) as negative semidefinite.

However, if we fix one of the components of (AE, AV, AN) to be zero, then ¥ must have some component orthogonal to the
zero eigenvector, in which case AS < 0. Suppose we set AN =0 and we just examine the stability with respect to
inhomogeneities in energy and volume. We then restrict our attention to the upper left 2 x 2 submatrix of (). A general symmetric

2 X 2 matrix may be written
b
0= (a ) (2.9.5)
b ¢

It is easy to solve for the eigenvalues of (). One finds

)\i:(a;rc)i (“20)2+b2. (2.9.6)

In order for @ to be negative definite, we require A, <0 and A_ <O0. Thus, TrQ =a+c=A, +X_<0 and
det Q =ac—b*> =X, A_ >0 . Taken together, these conditions require

a<0 , c<0 , ac>b?. (2.9.7)

Going back to thermodynamic variables, this requires
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Thus the entropy is a concave function of E and V at fixed N. Had we set AE =0 and considered the lower right 2 x 2
submatrix of @, we’d have concluded that S(V,N) is concave at fixed E. Since (g—g)v =T71, we have
g—;‘i = —# ((,;EE)V = —% <0 and we conclude C, > 0 for stability.
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Many thermodynamic systems are held at fixed (T, p, N), which suggests we examine the stability criteria for G(T, p, N).
Suppose our system is in equilibrium with a reservoir at temperature T;, and pressure p,. Then, suppressing N (which is assumed

constant), we have
G(Ty,p) =E-T,S+p,V . (2.9.9)

Now suppose there is a fluctuation in the entropy and the volume of our system, which is held at fixed particle number. Going to
second order in AS and AV, we have
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Equilibrium requires that the coefficients of AS and AV both vanish, that T' = (Z_E)V, y=T, andp= —(g—f;) s.v =P, - The

condition for stability is that AG > 0 for all (AS, AV'). Stability therefore requires that the Hessian matrix () be positive definite,

with
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Thus, we have the following three conditions:
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As we shall discuss below, the quantity ag = % (%’) g n is the adiabatic thermal expansivity coefficient. We therefore conclude

that stability of any thermodynamic system requires

Cy kg Oy
? >0 , Kg >0 , Qg > W (2911)
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