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4.10: Appendix |- Additional Examples
Three state system
Consider a spin-1 particle where o = —1, 0, +1. We model this with the single particle Hamiltonian
h=—pHo+A(l-0?). (4.10.1)

We can also interpret this as describing a spin if o ==+1 and a vacancy if o = 0. The parameter A then represents the vacancy formation
energy. The single particle partition function is

¢=Tr ePh — =P +2cosh(BuH) . (4.10.2)
With NN, distinguishable noninteracting spins ( at different sites in a crystalline lattice), we have and
F=Ngf = —k,TnZ = —Ng k;Tln [ +2 cosh(Bu, H) | (4.10.3)
where f = —k;T In( is the free energy of a single particle. Note that
. dh
ny =1— o’ = B_A
. oh
S TS
are the vacancy number and magnetization, respectively. Thus,
) —A/ksT
ny = (g )= _ - (4.10.4)
OA e A/ksT 42 cosh(ugH /ksT)
and
R b) 2p, sinh(p H/k;T
m=(m)=—2L o B/kT) (4.10.5)
OH  e~A/ksT 12 cosh(uyH/ksT)
At weak fields we can compute
0 0 2
m al (4.10.6)

Xt = 9H Heo = k, T ’ 2 fe-AksT

We thus obtain a modified Curie law. At temperatures 7' < A/kj, the vacancies are frozen out and we recover the usual Curie behavior. At
high temperatures, where T > A /k;, the low temperature result is reduced by a factor of 2, which accounts for the fact that one third of the
time the particle is in a nonmagnetic state with o = 0.

Spins and vacancies on a surface

A collection of spin-% particles is confined to a surface with IV sites. For each site, let ¢ = 0 if there is a vacancy, o = +1 if there is particle
present with spin up, and ¢ = —1 if there is a particle present with spin down. The particles are non-interacting, and the energy for each site is
given by ¢ = —Wa?, where —W < 0 is the binding energy.

o Let@ = NT +N f be the number of spins, and N, be the number of vacancies. The surface magnetization is M = N, '~ N e Compute, in

the microcanonical ensemble, the statistical entropy S(Q, M).

e Letg=@Q/N and m = M /N be the dimensionless particle density and magnetization density, respectively. Assuming that we are in the
thermodynamic limit, where N, @, and M all tend to infinity, but with g and mn finite, Find the temperature T'(q, m). Recall Stirling’s
formula

In(N!) =NInN — N +O(InN). (4.10.7)

o Show explicitly that 7" can be negative for this system. What does negative 7" mean? What physical degrees of freedom have been left out
that would avoid this strange property?

There is a constraint on IV, . N,,and N, Ik
N, +Ny+N =Q+N,=N. (4.10.8)

The total energy of the system is E = —WQ.
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o The number of states available to the system is

N!

= (4.10.9)
NINGIN|!
Fixing ) and M, along with the above constraint, is enough to completely determine {NT’ Ny, N, l}:
1 1
NT=§(Q+M) , Ny,=N-Q , N¢:§(Q_M)’ (4.10.10)
whence
N!
QQ,M)= T T . (4.10.11)
[LQ+M)'[EQ-M)|'(N-Q)
The statistical entropy is S = kz In{2:
1 1
S(Q, M) =ksIn(N!)—k;In [5(62 +M)!] —kzln [E(Q —M)!] —kzln [(N— Q)!] . (4.10.12)
« Now we invoke Stirling’s rule,
In(N')=NInN-N+O(lnN), (4.10.13)
to obtain
1
InQ(Q,M) =NInN—-N-— —(Q+M)ln [E(Q +M)] + (Q +M)
1
5@ M) (2@~ M)] +5(Q M)
~(N-Qm(N-Q)+ (N—Q)
1 Q+M
— _ = —(0? — _Z
—NInN 2Q1n[4(Q M )} 2Mln<Q_M)
Combining terms,
_ Ly g+m
an(Q,M)——qun[2 qg —m } 2len<q_m> N(1-¢)In(1—gq), (4.10.14)
where @) = Ng and M = Nm. Note that the entropy S = k; InQ is extensive. The statistical entropy per site is thus
1 1
s(g,m) =—kzqln [5 ' —mZ} - 5k3m1n<qi_—m> —k;(1—¢)In(1—gq). (4.10.15)
The temperature is obtained from the relation
1 (98) _1(as
T \0E), WN\dq),
- 1 L= 2
= ln(l—q)—Wln[2 q —m]
Thus,
W/ks (4.10.16)

- ln[2(1—q)/,/q2—m2} .

e Wehave 0 <¢<1 and —q <m <g,so T is real (thank heavens!). But it is easy to choose {g, m} such that T' < 0. For example, when
m=0wehave T =W /k;In(2¢~* —2) and T < 0 forall ¢ € (%, 1] . The reason for this strange state of affairs is that the entropy S is
bounded, and is not an monotonically increasing function of the energy E (or the dimensionless quantity (). The entropy is maximized for
Nt=N,=N = % , which saysm =0 and ¢ = % . Increasing ¢ beyond this point (with m = 0 fixed) starts to reduce the entropy, and
hence (8S/0FE) < 0 in this range, which immediately gives T' < 0. What we’ve left out are kinetic degrees of freedom, such as vibrations
and rotations, whose energies are unbounded, and which result in an increasing S(E) function.

@ 0 a @ 4.10.2 https://phys.libretexts.org/@go/page/18759


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18759?pdf

LibreTextsm

Fluctuating Interface

Consider an interface between two dissimilar fluids. In equilibrium, in a uniform gravitational field, the denser fluid is on the bottom. Let
z=z(z,y) be the height the interface between the fluids, relative to equilibrium. The potential energy is a sum of gravitational and surface

z
Ugaw = /d%/dz’ Apg2

0
Usirs Z/dzw —0(V2)?.

tension terms, with

We won’t need the kinetic energy in our calculations, but we can include it just for completeness. It isn’t so clear how to model it a priori so we
will assume a rather general form

8z(x t) 9z(x',t)
d’z [d% = — 4.10.17
/ / z ,u X, x ot o ( )
We assume that the (z, y) plane is a rectangle of dimensions L, x L, . We also assume p(x,x') = u(\x — x’|) . We can then Fourier transform
(%) = (L. L) Yz e, (4.10.18)
k

where the wavevectors k are quantized according to

2mn, .. N 2y

k= 4.10.1
I X I, v, (4.10.19)

with integer n, and n,, if we impose periodic boundary conditions (for calculational convenience). The Lagrangian is then
1 .2 2
L=3>" [ﬂk|zk| —(98p+0K?) [z] ] (4.10.20)
k
where

= /d% u(|x|) e ™>. (4.10.21)

Since 2(x,t) is real, we have the relation z_y = 2, therefore the Fourier coefficients at k and —k are not independent. The canonical
momenta are given by

OL oL
=—= Z , == 2 4.10.22
PE My Zx Dy 95y Hy Zx ( )

The Hamiltonian is then

H :Xk:’[pkzlt—i—pl’;zk} —-L

2
=X [ka| +(98p+0oK’) |Zk|2] ’
kL Hx

where the prime on the k sum indicates that only one of the pair {k, —k} is to be included, for each k.

We may now compute the ordinary canonical partition function:

7 — H /d?pk d %k e 1P imksT o—(9 8p+0lP) | [ /kpT

27h)?
HI

F) Gart)
h gAp+ok?

Thus,

F=—k TZI <2m ) (4.10.23)

where
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2\1/2
Q= <M> . (4.10.24)
Hy

is the normal mode frequency for surface oscillations at wavevector k. For deep water waves, it is appropriate to take p, = Ap / |k|, where
Ap=p; — P ~ pr, is the difference between the densities of water and air.

It is now easy to compute the thermal average

< |Zk|2 > = /dzzk |Zk\2 (9805 ‘zk‘z/kBT/ /d2zk e (98p+0k") [5*/ksT

ksT
gAp+ok?

Note that this result does not depend on g, on our choice of kinetic energy. One defines the correlation function

Cx)= <z(x) 2(0) > = ﬁ Xk: < |Zk‘2 > elkx _ /‘(;1:)72 ( gA];fakz ) ik

o0 )

kT [ ethlx| k,T

= — q e

dno 2 ¢2 4o
YA B

where £ = y/gAp/o is the correlation length, and where K (z) is the Bessel function of imaginary argument. The asymptotic behavior of
K () for small z is K (2) ~1n(2/z) , whereas for large z one has K (z) ~ (/22)'/2 e~* . We see that on large length scales the correlations
decay exponentially, but on small length scales they diverge. This divergence is due to the improper energetics we have assigned to short
wavelength fluctuations of the interface. Roughly, it can cured by imposing a cutoff on the integral, or by insisting that the shortest distance

scale is a molecular diameter.

Ky (1x|/€)

Dissociation of Molecular Hydrogen
Consider the reaction
H \ooalign{\raiselpt\hbox{\relbar\joinrel — \joinrel}\crer \lowerlpt\hbox{< \joinrel\relbar\joinrel}}p" (4.10.25)
+e .
In equilibrium, we have
Mg = Pp + e - (4.10.26)
What is the relationship between the temperature 7" and the fraction = of hydrogen which is dissociated?
Let us assume a fraction « of the hydrogen is dissociated. Then the densities of H, p, and e are then

n,=(01-z)n , n, =In , Ne=2n. (4.10.27)

H

The single particle partition function for each species is

N N
g (Vv —Ne,, /kgT
(= ﬁ</\—3> e New/ksT (4.10.28)
T
where g is the degeneracy and ¢,,, the internal energy for a given species. We have ¢, , =0 for p and e, and ¢,,, = —A for H, where

A=¢e? /2ap =13.6 eV, the binding energy of hydrogen. Neglecting hyperfine splittings *, we have g, =4, while g. = g, =2 because each
has spin § = % . Thus, the associated grand potentials are

QH =gy Vk,T )\;?H elug+A)/ksT

Q, = —g, VT A ebr/FeT
Qe = =g VE,T A% ere/BsT
where

27h2
A, = i 4.10.2
Ta meksT (4.10.29)

for species a. The corresponding number densities are
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1 o0 -3 _(u—¢; kgT
n==[(=—) =gx2er )kl 4.10.30
V(Bu )T,V 97 ( )

and the fugacity z = et/ksT of o given species is given by

z=g 'n X} /Ml (4.10.31)
We now invoke gty = p, + pte , which says z; = 2, 2., or
gy N e AT = (gp ny A ) (9 e A2 ) (4.10.32)
which yields
2
( — ) nip = e AT (4.10.33)

where Ap = +/27h2 /m*k,T, with m* = mym,/my =~ m, . Note that

- dmmy A
= ‘/— 1/ 4.10.34
)\T ap my kBT ) ( 0.3 )
where a; =0.529 A is the Bohr radius. Thus, we have

2 3/2
<$ >~(47r)3/2u:<T£> e T/T (4.10.35)

1—x 0

where Tj, = A/k; =1.578 x 10°K and v = na3B. Consider for example a temperature T'= 3000 K, for which T, /T =52.6, and assume
that © = % We then find v =1.69 x 10727, corresponding to a density of n=1.14 x 1072 e¢m 3. At this temperature, the fraction of
hydrogen molecules in their first excited (2s) state is z’ ~e /2T =3.8x107'2 . This is quite striking: half the hydrogen atoms are
completely dissociated, which requires an energy of A, yet the number in their first excited state, requiring energy %A, is twelve orders of
magnitude smaller. The student should reflect on why this can be the case.
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