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8.6: Linearized Boltzmann Equation

Linearizing the collision integral

We now return to the classical Boltzmann equation and consider a more formal treatment of the collision term in the linear
approximation. We will assume time-reversal symmetry, in which case

The collision integral is nonlinear in the distribution . We linearize by writing

where we assume  is small. We then have, to first order in ,

where the action of the linearized collision operator is given by

where we have invoked Equation [BEsig] to write the RHS in terms of the differential scattering cross section. In deriving the
above result, we have made use of the detailed balance relation,

We have also suppressed the  dependence in writing , , and .

From Equation [bwig], we then have the linearized equation

where, for point particles,

Equation [LBE] is an inhomogeneous linear equation, which can be solved by inverting the operator .

Linear algebraic properties of 

Although  is an integral operator, it shares many properties with other linear operators with which you are familiar, such as
matrices and differential operators. We can define an inner product ,

Note that this is not the usual Hilbert space inner product from quantum mechanics, since the factor  is included in the
metric. This is necessary in order that  be self-adjoint:

We can now define the spectrum of normalized eigenfunctions of , which we write as . The eigenfunctions satisfy the
eigenvalue equation,
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and may be chosen to be orthonormal,

Of course, in order to obtain the eigenfunctions  we must have detailed knowledge of the function .

Recall that there are five collisional invariants, which are the particle number, the three components of the total particle
momentum, and the particle energy. To each collisional invariant, there is an associated eigenfunction  with eigenvalue .
One can check that these normalized eigenfunctions are

If there are no temperature, chemical potential, or bulk velocity gradients, and there are no external forces, then  and the only
changes to the distribution are from collisions. The linearized Boltzmann equation becomes

We can therefore write the most general solution in the form

where the prime on the sum reminds us that collisional invariants are to be excluded. All the eigenvalues , aside from the five
zero eigenvalues for the collisional invariants, must be positive. Any negative eigenvalue would cause  to increase without
bound, and an initial nonequilibrium distribution would not relax to the equilibrium , which we regard as unphysical.
Henceforth we will drop the prime on the sum but remember that  for the five collisional invariants.

Recall also the particle, energy, and thermal (heat) currents,

Note .

Steady state solution to the linearized Boltzmann equation

Under steady state conditions, there is no time dependence, and the linearized Boltzmann equation takes the form

We may expand  in the eigenfunctions  and write . Applying  and taking the inner product with , we have

Thus, the formal solution to the linearized Boltzmann equation is

This solution is applicable provided  is orthogonal to the five collisional invariants.
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Thermal conductivity

For the thermal conductivity, we take , and

where . Under the conditions of no particle flow ( ), we have . Then we have

Viscosity

For the viscosity, we take

with . We then

Thus,

Variational approach

Following the treatment in chapter 1 of Smith and Jensen, define . We have that  is a positive semidefinite operator,
whose only zero eigenvalues correspond to the collisional invariants. We then have the Schwarz inequality,

for any two Hilbert space vectors  and . Consider now the above calculation of the thermal conductivity. We have

and therefore

Similarly, for the viscosity, we have

from which we derive

In order to get a good lower bound, we want  in each case to have a good overlap with . One approach then is to take 
, which guarantees that the overlap will be finite (and not zero due to symmetry, for example). We illustrate this method

with the viscosity calculation. We have

Now the linearized collision operator  acts as
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(8.6.23)

ψ = −  ,Ĥ
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Here the kinematics of the collision guarantee total energy and momentum conservation, so  and  are determined as in
Equation [finalps].

Now we have

where  is the scattering angle depicted in Fig. [scat_impact] and  is the azimuthal angle of the scattering. The differential
scattering cross section is obtained by elementary mechanics and is known to be

where  is the impact parameter. The scattering angle is

where  is the reduced mass, and  is the relative coordinate separation at periapsis, the distance of closest approach,
which occurs when ,

where  is the relative coordinate angular momentum.
[scat_impact] Scattering in the CM frame. O is the force center and P is the point of
periapsis. The impact parameter is b, and \chi is the scattering angle. \phi_0 is the

angle through which the relative coordinate moves between periapsis and infinity.

[scat_impact] Scattering in the CM frame. O is the force center and  is the point of periapsis. The impact parameter is , and  is
the scattering angle.  is the angle through which the relative coordinate moves between periapsis and infinity.

We work in center-of-mass coordinates, so the velocities are

with  and . Then if , we have

We may write

where . With this parameterization, we have

Note that we have used here the relation

which holds since the LHS is a projector .

It is convenient to define the following integral:
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Since the Jacobian

we have

This yields

where

It is easy to compute the term in the numerator of Equation [varvisc]:

Putting it all together, we find

The computation for  is a bit more tedious. One has , in which case

Ultimately, one obtains the lower bound

Thus, independent of the potential, this variational calculation yields a Prandtl number of

which is very close to what is observed in dilute monatomic gases (see Tab. [Prandtl]).

While the variational expressions for  and  are complicated functions of the potential, for hard sphere scattering the calculation
is simple, because , where  is the hard sphere diameter. Thus, the impact parameter  is independent of
the relative speed , and one finds . Then

and one finds
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