LibreTextsw

9.1: The Program of Renormalization

A statistical mechanical system is defined by a set of degrees of freedom and by a set of coupling constants { K, }. The degrees of
freedom can be discrete, such as Ising spins o;, or continuous, such as a field ¢(r). Additionally, each such system possesses a
microscopic length scale £. For discrete, lattice-based systems, this length scale is simply the lattice spacing: £ = a . For continuous
systems, we can define a microscopic length scale by imposing a cutoff A on the wavevectors we integrate over in all Fourier
transforms. That is, we replace

q d
/ (:nlid Fk) — / (Qd:):d F(k)g, (k), (9.1.1)

where F'(k) is any function and g A (k) is the cutoff function. The simplest such case to imagine is a sharp cutoff which is isotropic

in wavevector, g, (k) = ©(A —[k|) . Other cutoff schemes, however, are possible, including ‘soft cutoffs’ where g (k) is smooth.
The microscopic length scale is then £ ~ A~!, which is the smallest distance in real space over which the system can
independently fluctuate.

The idea behind renormalization is that we can successively winnow degrees of freedom from a system in some exact or
approximate way, and in so doing we generate a new version of the system, at a different length scale £' > £, and with different
couplings { K, }. We then iterate this procedure. The result is a set of equations which tell us how the couplings behave under a
change of the microscopic length scale. As we shall see, the fixed points of this procedure — where couplings do not change under a
change of length scale — are critical points. Such a fixed point is defined by a set of couplings { K }.

If we denote by R, the renormalization procedure
Rb(e’{Ka}) = (e/a{Kt;}) ) (912)

where £/ = b £, then we have the composition law R, R;; =R, . The set of transformations {R} is collectively referred to as
the renormalization group (RG) because of this mathematical structure. It is somewhat of a misnomer, however, since the
transformations are only defined for b > 1, which means that there is no inverse operation, and hence no true group structure'.
Nevertheless we shall use the RG terminology because it has become universally accepted in the literature.
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