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7.4: Variational Density Matrix Method

The variational principle
Suppose we are given a Hamiltonian . From this we construct the free energy, :

Here,  is the density matrix . A physical density matrix must be (i) normalized ( ), (ii) Hermitian, and (iii) non-negative
definite ( all the eigenvalues of  must be non-negative).

Our goal is to extremize the free energy subject to the various constraints on . Let us assume that  is diagonal in the basis of
eigenstates of ,

where  is the probability that the system is in state . Then

Thus, the free energy is a function of the set . We now extremize  subject to the normalization constraint. This means we
form the extended function

and then freely extremize over both the probabilities  as well as the Lagrange multiplier . This yields the Boltzmann
distribution,

where  is the canonical partition function, which is related to  through

Note that the Boltzmann weights are, appropriately, all positive.

If the spectrum of  is bounded from below, our extremum should in fact yield a minimum for the free energy . Furthermore,
since we have freely minimized over all the probabilities, subject to the single normalization constraint, any distribution 
other than the equilibrium one must yield a greater value of .

Alas, the Boltzmann distribution, while exact, is often intractable to evaluate. For one-dimensional systems, there are general
methods such as the transfer matrix approach which do permit an exact evaluation of the free energy. However, beyond one
dimension the situation is in general hopeless. A family of solvable (“integrable") models exists in two dimensions, but their
solutions require specialized techniques and are extremely difficult. The idea behind the variational density matrix approximation is
to construct a tractable trial density matrix  which depends on a set of variational parameters , and to minimize with respect
to this (finite) set.

Variational density matrix for the Ising model
Consider once again the Ising model Hamiltonian,

The states of the system  may be labeled by the values of the spin variables: . We assume the density
matrix is diagonal in this basis,

Ĥ F

F = E−TS

= Tr (ϱ ) + T Tr (ϱ lnϱ) .Ĥ kB
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where

Indeed, this is the case for the exact density matrix, which is to say the Boltzmann weight,

We now write a trial density matrix which is a product over contributions from independent single sites:

where

Note that we’ve changed our notation slightly. We are denoting by  the corresponding diagonal element of the matrix

and the full density matrix is a tensor product over the single site matrices:

Note that  and hence  are appropriately normalized. The variational parameter here is , which, if  is to be non-negative
definite, must satisfy . The quantity  has the physical interpretation of the average spin on any given site, since

We may now evaluate the average energy:

where once again  is the discrete Fourier transform of  at wavevector . The entropy is given by

We now define the dimensionless free energy per site: . We have

where  is the dimensionless temperature, and  the dimensionless magnetic field, as before. We
extremize  by setting

Solving for , we obtain

(γ ) ≡ ϱ(γ)  ,ϱN ∣∣γ ′ δγ,γ ′ (7.4.7)
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( , , …) = ϱ( ) ,ϱ
N

σ1 σ2 ∏
i

σi (7.4.10)
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θ ≡ T/ (0)kB Ĵ h ≡ H/ (0)Ĵ
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which is precisely what we found in Equation [isingmft].

[ferg] Variational field free energy  versus magnetization  at six equally spaced temperatures
interpolating between ‘high’ ( , red) and ‘low’ ( , blue) values. Top panel: . Bottom panel: .

Note that the optimal value of  indeed satisfies the requirement  of non-negative probability. This nonlinear equation
may be solved graphically. For , the unmagnetized solution  always applies. However, for  there are two
additional solutions at , with  for 
close to (but less than) one. These solutions, which are related by the  symmetry of the  model, are in fact the low energy
solutions. This is shown clearly in figure [ferg], where the variational free energy  is plotted as a function of  for a range
of temperatures interpolating between ‘high’ and ‘low’ values. At the critical temperature , the lowest energy state changes
from being unmagnetized (high temperature) to magnetized (low temperature).

For , there is no longer a  symmetry (  ). The high temperature solution now has  (or  if ),
and this smoothly varies as  is lowered, approaching the completely polarized limit  as . At very high temperatures,
the argument of the  function is small, and we may approximate , in which case

This is called the Curie-Weiss law. One can infer  from the high temperature susceptibility  by plotting 
versus  and extrapolating to obtain the -intercept. In our case, . For low  and weak , there are two
inequivalent minima in the free energy.

When  is small, it is appropriate to expand , obtaining

This is known as the Landau expansion of the free energy in terms of the order parameter . An order parameter is a
thermodynamic variable  which distinguishes ordered and disordered phases. Typically  in the disordered (high
temperature) phase, and  in the ordered (low temperature) phase. When the order sets in continuously, when  is continuous
across , the phase transition is said to be second order. When  changes abruptly, the transition is first order. It is also quite
commonplace to observe phase transitions between two ordered states. For example, a crystal, which is an ordered state, may
change its lattice structure, say from a high temperature tetragonal phase to a low temperature orthorhombic phase. When the high 

 phase possesses the same symmetries as the low  phase, as in the tetragonal-to-orthorhombic example, the transition may be
second order. When the two symmetries are completely unrelated, for example in a hexagonal-to-tetragonal transition, or in a
transition between a ferromagnet and an antiferromagnet, the transition is in general first order.

Throughout this discussion, we have assumed that the interactions  are predominantly ferromagnetic, , so that all the
spins prefer to align. When , the interaction is said to be antiferromagnetic and prefers anti-alignment of the spins ( 

). Clearly not every pair of spins can be anti-aligned – there are two possible spin states and a thermodynamically
extensive number of spins. But on the square lattice, for example, if the only interactions  are between nearest neighbors and the
interactions are antiferromagnetic, then the lowest energy configuration (  ground state) will be one in which spins on
opposite sublattices are anti-aligned. The square lattice is bipartite – it breaks up into two interpenetrating sublattices A and B
(which are themselves square lattices, rotated by 45  with respect to the original, and with a larger lattice constant by a factor of 

), such that any site in A has nearest neighbors in B, and vice versa. The honeycomb lattice is another example of a bipartite
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lattice. So is the simple cubic lattice. The triangular lattice, however, is not bipartite (it is tripartite). Consequently, with nearest
neighbor antiferromagnetic interactions, the triangular lattice Ising model is highly frustrated. The moral of the story is this:
antiferromagnetic interactions can give rise to complicated magnetic ordering, and, when frustrated by the lattice geometry, may
have finite specific entropy even at .

Mean Field Theory of the Potts Model
The Hamiltonian for the Potts model is

Here, , with integer . This is the so-called ‘ -state Potts model’. The quantity  is analogous to an external
magnetic field, and preferentially aligns (for ) the local spins in the  direction. We will assume .

The -component set is conveniently taken to be the integers from  to , but it could be anything, such as

The interaction energy is  if sites  and  contain the same object (  possibilities), and  if  and  contain different objects (
 possibilities).

The two-state Potts model is equivalent to the Ising model. Let the allowed values of  be . Then the quantity

\[\delta_{\sigma,\sigma'}=\half + \half\,\sigma\sigma'\\]

equals  if , and is zero otherwise. The three-state Potts model cannot be written as a simple three-state Ising model, one
with a bilinear interaction  where . However, it is straightforward to verify the identity

Thus, the -state Potts model is equivalent to a  (three-state) Ising model which includes both bilinear  and
biquadratic (  interactions, as well as a local field term which couples to the square of the spin, . In general one can find
such correspondences for higher  Potts models, but, as should be expected, the interactions become increasingly complex, with bi-
cubic, bi-quartic, bi-quintic, terms. Such a formulation, however, obscures the beautiful  symmetry inherent in the model, where 

 is the permutation group on  symbols, which has  elements.

Getting back to the mean field theory, we write the single site variational density matrix  as a diagonal matrix with entries

with . Note that . The variational parameter is . When , all states are
equally probable. But for , the state  is preferred, and the other  states have identical but smaller probabilities.
It is a simple matter to compute the energy and entropy:

The dimensionless free energy per site is then

where . We now extremize with respect to  to obtain the mean field equation,

T = 0

= − −H  .Ĥ ∑
i<j

Jij δ ,σi σj ∑
i

δ ,1σi (7.4.20)
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N
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Note that for ,  is a solution, corresponding to a disordered state in which all states are equally probable. At high
temperatures, for small , we expect . Indeed, using Mathematica  one can set

and expand the mean field equation in powers of . One obtains

For weak fields, , and we have

which again is of the Curie-Weiss form. The difference  is the order parameter for the transition.

Finally, one can expand the free energy in powers of , obtaining the Landau expansion,

Note that, for , the coefficients of , , and higher order odd powers of  vanish in the Landau expansion. This is consistent
with what we found for the Ising model, and is related to the  symmetry of that model. For , there is a cubic term in the
mean field free energy, and thus we generically expect a first order transition, as we shall see below when we discuss Landau
theory.

Mean Field Theory of the  Model
Consider the so-called  model, in which each site contains a continuous planar spin, represented by an angular variable 

 :

We write the (diagonal elements of the) full density matrix once again as a product:

Our goal will be to extremize the free energy with respect to the function . To this end, we compute

The entropy is

Note that for any function , we have

We now extremize the functional  with respect to , under the condition that . We therefore use
Lagrange’s method of undetermined multipliers, writing

h = 0 x = q−1

h x− ∝ hq−1

x ≡ +s ,q−1 (7.4.26)
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s
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20
)−4 s5

+ [1 +(q−1 ] +… .
θq5

30
)−5 s6

q = 2 s3 s5 s

Z2 q > 3

XY

XY

∈ [−π, π]ϕi

= − cos( − ) −H cos  .Ĥ
1

2
∑
i≠j

Jij ϕi ϕj ∑
i

ϕi (7.4.29)

( , , …) = ϱ( ) .ϱN ϕ1 ϕ2 ∏
i

ϕi (7.4.30)

ϱ(ϕ)

E = Tr ( ) = − N (0) Tr (ϱ ) −NH Tr (ϱ cosϕ) .ϱ
N
Ĥ

1

2
Ĵ ∣

∣ eiϕ ∣
∣
2

(7.4.31)

S = −N Tr (ϱ lnϱ) .kB (7.4.32)

A(ϕ) 14

Tr (ϱA) ≡ ϱ(ϕ)A(ϕ) .∫

−π

π

dϕ

2π
(7.4.33)

F [ϱ(ϕ)] = E−TS ϱ(ϕ) Tr ϱ = 1

= F −N T λ (Tr ϱ−1) .F ∗ kB (7.4.34)
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Note that  is a function of the Lagrange multiplier  and a functional of the density matrix . The prefactor  which
multiplies  is of no mathematical consequence – we could always redefine the multiplier to be . It is present only to
maintain homogeneity and proper dimensionality of  with  itself dimensionless and of order . We now have

To this end, we note that

Thus, we have

Now let us define

We then have

Clearly the free energy will be reduced if  so that the mean field is maximal and aligns with the external field, which prefers
. Thus, we conclude

where

and . The value of  is then determined by invoking the constraint,

where  is the Bessel function. We are free to define , and treat  as our single variational parameter. We then
have the normalized single site density matrix

We next compute the following averages:

F ∗ λ ϱ(ϕ) N TkB

λ ≡ N Tλλ′ kB

F ∗ λ N 0

δF ∗

δϱ(ϕ)
= {− N (0) Tr(ϱ ) −NH Tr(ϱ cosϕ)

δ

δϱ(ϕ)

1

2
Ĵ ∣

∣ eiϕ ∣
∣
2

+N T Tr (ϱ lnϱ) −N T λ (Tr ϱ−1)} .kB kB

Tr (ϱA) = ϱ(ϕ)A(ϕ) = A(ϕ) .
δ

δϱ(ϕ)

δ

δϱ(ϕ)
∫

−π

π

dϕ

2π

1

2π
(7.4.35)

δF
~

δϱ(ϕ)
= − N (0) ⋅ [ (ϱ ) + (ϱ ) ]−NH ⋅

1

2
Ĵ

1

2π
Tr
ϕ′

eiϕ
′

e−iϕ
Tr
ϕ′

e−iϕ′

eiϕ
cosϕ

2π

+N T ⋅ [ lnϱ(ϕ) +1]−N T ⋅  .kB

1

2π
kB

λ

2π

(ϱ ) = ϱ(ϕ) ≡ m  .Tr
ϕ

eiϕ ∫

−π

π

dϕ

2π
eiϕ eiϕ0 (7.4.36)

lnϱ(ϕ) = m cos(ϕ− ) + cosϕ+λ−1.
(0)Ĵ

TkB

ϕ0

H

TkB

(7.4.37)

= 0ϕ0

ϕ = 0

ϱ(ϕ) = C exp( cosϕ) ,
H

eff

TkB

(7.4.38)

= (0)m+HH
eff

Ĵ (7.4.39)

C = eλ−1 λ

Tr ϱ = 1 = C exp( cosϕ) = C ( / T ) ,∫

−π

π

dϕ

2π

Heff

TkB

I
0
H

eff
kB (7.4.40)

(z)I0 ε ≡ / THeff kB ε

ϱ(ϕ) = =  .
exp(ε cosϕ)

exp(ε cos )∫
−π

π
dϕ′

2π
ϕ′

exp(ε cosϕ)

(ε)I0
(7.4.41)
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as well as

The dimensionless free energy per site is therefore

with  and  and  as before. Note that the mean field equation is 
 ,

For small , we may expand the Bessel functions, using

to obtain

This predicts a second order phase transition at .  Note also the Curie-Weiss form of the susceptibility at high :

 model via neglect of fluctuations method
Consider again the Hamiltonian of Equation [XYmodel]. Define  and write

where  and . Of course we also have the complex conjugate relations  and .
Writing  , by neglecting the terms proportional to  in  we arrive at the mean field Hamiltonian,

It is clear that the free energy will be minimized if the mean field  breaks the  symmetry in the same direction as the external
field , which means  and

The dimensionless free energy per site is then

Differentiating with respect to  , one obtains

⟨ ⟩e±iϕ

⟨cos(ϕ− )⟩ϕ′

= ϱ(ϕ) =∫

−π

π

dϕ

2π
e±iϕ (ε)I1

(ε)I0

= Re ⟨ ⟩ =(  ,eiϕ e−iϕ′ (ε)I1

(ε)I0
)

2

Tr (ϱ lnϱ) = {ε cosϕ−ln (ε)} = ε −ln (ε) .∫
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π

dϕ
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(ε)I1

(ε)I0
I0 (7.4.42)

f(ε,h, θ) = − ( +(θε−h) −θ ln (ε) ,
1

2

(ε)I1

(ε)I0
)

2 (ε)I1

(ε)I0
I0 (7.4.43)

θ = T/ (0)kB Ĵ h = H/ (0)Ĵ f = F/N (0)Ĵ

m = θε−h = ⟨ ⟩eiϕ

θε−h = .
(ε)I1

(ε)I0
(7.4.44)
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(z) = ( z  ,Iν
1

2
)ν∑
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∞ ( 1
4
z2)k

k! Γ(k+ν +1)
(7.4.45)

f(ε,h, θ) = (θ− ) + (2 −3θ) − hε+ h +…  .
1

4

1

2
ε2 1
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ε4 1

2

1

16
ε3 (7.4.46)

=θc
1
2

15 θ

= 0 ⟹ ε = +…  .
∂f

∂ε

h

θ−θc
(7.4.47)

XY

≡ exp(i )zi ϕi

= w+δ ,zi zi (7.4.48)

w ≡ ⟨ ⟩zi δ ≡ −wzi zi = +δz∗
i w∗ z∗

i = ⟨ ⟩w∗ z∗
i

cos( − ) = Re ( )ϕi ϕj z∗
i zj δ δz∗

i zj Ĥ

\HH^\ssr{MF}=\half N \HJ(0)\,|w|^2 - \half\HJ(0)\,|w|\sum_i\big(w^* z\ns_i + w z^*_i\big) - \half H\sum_i \big(z^*_i+z\ns_i\big)

w O(2)
H w ∈ R

\HH^\ssr{MF}=\half N \HJ(0)\,|w|^2 - \big(H+\HJ(0)\,|w|\big)\sum_i\cos\phi\ns_i\quad.

f = |w −θ ln ( ) .
1

2
|2 I0

h+|w|

θ
(7.4.49)
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which is the same equation as Equation [XYvdm]. The two mean field theories yield the same results in every detail (see §10).

This page titled 7.4: Variational Density Matrix Method is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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θ

( )I0
h+m
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(7.4.50)
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