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7.7: Global Symmetries

Symmetries and symmetry groups

Interacting systems can be broadly classified according to their global symmetry group. Consider the following five examples:

The Ising Hamiltonian is left invariant by the global symmetry group , which has two elements,  and , with

 is the identity, and . By simultaneously reversing all the spins , the interactions remain invariant.

The degrees of freedom of the -state clock model are integer variables  each of which ranges from  to . The Hamiltonian is
invariant under the discrete group , whose  elements are generated by the single operation , where

Think of a clock with one hand and  ‘hour’ markings consecutively spaced by an angle . In each site , a hand points to one
of the  hour marks; this determines . The operation  simply advances all the hours by one tick, with hour  advancing to hour 

, just as 23:00 military time is followed one hour later by 00:00. The interaction  is invariant under such an
operation. The  elements of the group  are then

We’ve already met up with the -state Potts model, where each site supports a ‘spin’  which can be in any of  possible states,
which we may label by integers . The energy of two interacting sites  and  is  if  and zero otherwise.
This energy function is invariant under global operations of the symmetric group on  characters, , which is the group of
permutations of the sequence . The group  has  elements. Note the difference between a  symmetry and
an  symmetry. In the former case, the Hamiltonian is invariant only under the -element cyclic permutations,

and its powers  with .

All these models – the Ising, -state clock, and -state Potts models – possess a global symmetry group which is discrete. That is,
each of the symmetry groups , ,  is a discrete group, with a finite number of elements. The  Hamiltonian  on the
other hand is invariant under a continuous group of transformations , where  is the angle variable on site . More to
the point, we could write the interaction term  as , where  is a phase which lives on the unit
circle, and  is the complex conjugate of . The model is then invariant under the global transformation . The phases 

 form a group under multiplication, called , which is the same as . Equivalently, we could write the interaction as 
, where , which explains the , symmetry, since the symmetry operations are global rotations in

the plane, which is to say the two-dimensional orthogonal group. This last representation generalizes nicely to unit vectors in 
dimensions, where
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with . The dot product  is then invariant under global rotations in this -dimensional space, which is the group 
.

[DWonedim] A domain wall in a one-dimensional Ising model.

Lower critical dimension

Depending on whether the global symmetry group of a model is discrete or continuous, there exists a lower critical dimension  at
or below which no phase transition may take place at finite temperature. That is, for , the critical temperature is .
Owing to its neglect of fluctuations, mean field theory generally overestimates the value of  because it overestimates the stability
of the ordered phase. Indeed, there are many examples where mean field theory predicts a finite  when the actual critical
temperature is . This happens whenever .

Let’s test the stability of the ordered (ferromagnetic) state of the one-dimensional Ising model at low temperatures. We consider
order-destroying domain wall excitations which interpolate between regions of degenerate, symmetry-related ordered phase, 
and . For a system with a discrete symmetry at low temperatures, the domain wall is abrupt, on the scale of a single lattice
spacing. If the exchange energy is , then the energy of a single domain wall is , since a link of energy  is replaced with one
of energy . However, there are  possible locations for the domain wall, hence its entropy is . For a system with 
domain walls, the free energy is

where  is the density of domain walls, and where we have used Stirling’s approximation for  when  is large.
Extremizing with respect to , we find

The average distance between domain walls is , which is finite for finite . Thus, the thermodynamic state of the system is
disordered, with no net average magnetization.

[DWIsing] Domain walls in the two-dimensional (left) and three-dimensional (right) Ising model.

Consider next an Ising domain wall in  dimensions. Let the linear dimension of the system be , where  is a real number and 
 is the lattice constant. Then the energy of a single domain wall which partitions the entire system is . The domain wall
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entropy is difficult to compute, because the wall can fluctuate significantly, but for a single domain wall we have .
Thus, the free energy  is dominated by the energy term if , suggesting that the system may be
ordered. We can do a slightly better job in  by writing

where the sum is over all closd loops of perimeter , and  is the number of such loops. An example of such a loop
circumscribing a domain is depicted in the left panel of Figure [DWIsing]. It turns out that

where  with  the lattice coordination number, and  is some exponent. We can understand the  factor in the following
way. At each step along the perimeter of the loop, there are  possible directions to go (since one doesn’t backtrack). The
fact that the loop must avoid overlapping itself and must return to its original position to be closed leads to the power law term 

, which is subleading since  and  for . Thus,

which diverges if , if . We identify this singularity with the phase transition. The high
temperature phase involves a proliferation of such loops. The excluded volume effects between the loops, which we have not taken
into account, then enter in an essential way so that the sum converges. Thus, we have the following picture:

On the square lattice, we obtain

The agreement is better than we should reasonably expect from such a crude argument.

Nota bene : Beware of arguments which allegedly prove the existence of an ordered phase. Generally speaking, any approximation
will underestimate the entropy, and thus will overestimate the stability of the putative ordered phase.

Continuous symmetries

When the global symmetry group is continuous, the domain walls interpolate smoothly between ordered phases. The energy
generally involves a stiffness term,

where  is the angle of a local rotation about a single axis and where  is the spin stiffness. Of course, in  models, the
rotations can be with respect to several different axes simultaneously.

[XYdomainwall] A domain wall in an  ferromagnet.
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In the ordered phase, we have , a constant. Now imagine a domain wall in which  rotates by  across the width of
the sample. We write , where  is the linear size of the sample (here with dimensions of length) and  is an integer
telling us how many complete twists the order parameter field makes. The domain wall then resembles that in Figure
[XYdomainwall]. The gradient energy is

Recall that in the case of discrete symmetry, the domain wall energy scaled as . Thus, with  for a single wall,
we see that the entropy term dominates if , in which case there is no finite temperature phase transition. Thus, the lower
critical dimension  depends on whether the global symmetry is discrete or continuous, with

Note that all along we have assumed local, short-ranged interactions. Long-ranged interactions can enhance order and thereby
suppress .

Thus, we expect that for models with discrete symmetries,  and there is no finite temperature phase transition for . For
models with continuous symmetries, , and we expect  for . In this context we should emphasize that the two-
dimensional  model does exhibit a phase transition at finite temperature, called the Kosterlitz-Thouless transition. However,
this phase transition is not associated with the breaking of the continuous global  symmetry and rather has to do with the
unbinding of vortices and antivortices. So there is still no true long-ranged order below the critical temperature ,
even though there is a phase transition!

Random systems : Imry-Ma argument
Oftentimes, particularly in condensed matter systems, intrinsic randomness exists due to quenched impurities, grain boundaries,
immobile vacancies, How does this quenched randomness affect a system’s attempt to order at ? This question was taken up
in a beautiful and brief paper by J. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975). Imry and Ma considered models in which
there are short-ranged interactions and a random local field coupling to the local order parameter:

where

where  denotes a configurational average over the disorder. Imry and Ma reasoned that a system could try to lower its free
energy by forming domains in which the order parameter takes advantage of local fluctuations in the random field. The size of
these domains is assumed to be , a length scale to be determined. See the sketch in the left panel of Figure [ImryMa].

[ImryMa] Left panel : Imry-Ma domains for an  model. The arrows point in the direction of the local order parameter field 
. Right panel : free energy density as a function of domain size . Keep in mind that the minimum possible value for  is

the lattice spacing .
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There are two contributions to the energy of a given domain: bulk and surface terms. The bulk energy is

where  is the lattice spacing. This is because when we add together  random fields, the magnitude of the result is
proportional to the square root of the number of terms, to . The quantity  is the root-mean-square fluctuation
in the random field at a given site. The surface energy is

We compute the critical dimension  by balancing the bulk and surface energies,

The total free energy is , where . Thus, the free energy per unit cell is

If , the surface term dominates for small  and the bulk term dominates for large  There is global minimum at

For , the relative dominance of the bulk and surface terms is reversed, and there is a global maximum at this value of .

Sketches of the free energy  in both cases are provided in the right panel of Figure [ImryMa]. We must keep in mind that the
domain size  cannot become smaller than the lattice spacing . Hence we should draw a vertical line on the graph at  and
discard the portion  as unphysical. For , we see that the state with , the ordered state, is never the state of
lowest free energy. In dimensions , the ordered state is always unstable to domain formation in the presence of a random
field.

For , there are two possibilities, depending on the relative size of  and . We can see this by evaluating 
 and . Thus, if , the minimum energy state occurs for . In this case, the

system has an ordered ground state, and we expect a finite temperature transition to a disordered state at some critical temperature 
. If, on the other hand, , then the fluctuations in  overwhelm the exchange energy at , and the ground

state is disordered down to the very smallest length scale ( the lattice spacing ).

Please read the essay, “Memories of Shang-Keng Ma,” at sip.clarku.edu/skma.html.
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