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7.9: Appendix I- Equivalence of the Mean Field Descriptions
In both the variational density matrix and mean field Hamiltonian methods as applied to the Ising model, we obtained the same result . What is perhaps not obvious is whether
these theories are in fact the same, if their respective free energies agree. Indeed, the two free energy functions,

where  is the variational density matrix result and  is the mean field Hamiltonian result, clearly are different functions of their arguments. However, it turns out that upon
minimizing with respect to  in each cast, the resulting free energies obey . This agreement may seem surprising. The first method utilizes an approximate
(variational) density matrix applied to the exact Hamiltonian . The second method approximates the Hamiltonian as , but otherwise treats it exactly. The two Landau expansions
seem hopelessly different:

We shall now prove that these two methods, the variational density matrix and the mean field approach, are in fact equivalent, and yield the same free energy .

Let us generalize the Ising model and write

Here, each ‘spin’  may take on any of  possible values, . For the  Ising model, we would have  possibilities, with , , and . But the set ,
with , is completely arbitrary . The ‘local field’ term  is also a completely arbitrary function. It may be linear, with , for example, but it could also contain terms
quadratic in , or whatever one desires.

The symmetric, dimensionless interaction function  is a real symmetric  matrix. According to the singular value decomposition theorem, any such matrix may be written in
the form

where the  are coefficients (the singular values), and the  are the singular vectors. The number of terms  in this decomposition is such that . This treatment can be
generalized to account for continuous .

Variational Density Matrix
The most general single-site variational density matrix is written

Thus,  is the probability for a given site to be in state , with . The  are the  variational parameters, subject to the single normalization constraint, . We now have

where . We extremize in the usual way, introducing a Lagrange undetermined multiplier  to enforce the constraint. This means we extend the function , writing

and freely extremizing with respect to the  parameters . This yields  nonlinear equations,

for each , and one linear equation, which is the normalization condition,

We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them, as

with

From the logarithm of , we may compute the entropy, and, finally, the free energy:

which is to be evaluated at the solution of [nonla], 

Mean Field Approximation

We now derive a mean field approximation in the spirit of that used in the Ising model above. We write

and abbreviate , the thermodynamic average of  on any given site. We then have

m = tanh((m +h)/θ)

\begin{split} f\nd_\ssr{A}(m,h,\theta)&=-\half\,m^2 -h m + \theta\> \bigg\{\bigg({1+m\over 2}\bigg) \ln \bigg({1+m\over 2}\bigg) +\bigg({1- m\over 2}\bigg) \ln \bigg({1-m\over 2}\bigg) \bigg\}\\ f\nd_\ssr{B}(m,h,\theta)&
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\begin{split} f\nd_\ssr{A}(m,h,\theta)&=-\theta\,\ln 2 - hm +\half\, (\theta-1) \,m^2 + \frac{\theta}{12}\,m^4 + \frac{\theta}{30}\,m^6 + \ldots\vph\\ f\nd_\ssr{B}(m,h,\theta)&=-\theta\,\ln 2 + \half m^2 - {(m+h)^2\over 2\,\th
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The product  is of second order in fluctuations, and we neglect it. This leads us to the mean field Hamiltonian,

The free energy is then

The variational parameters are the mean field values .

The single site probabilities  are then

with  implied by the normalization . These results reproduce exactly what we found in Equation [nonla], since the mean field equation here, , yields

The free energy is immediately found to be

which again agrees with what we found using the variational density matrix.

Thus, whether one extremizes with respect to the set , or with respect to the set , the results are the same, in terms of all these parameters, as well as the free energy .
Generically, both approaches may be termed ‘mean field theory’ since the variational density matrix corresponds to a mean field which acts on each site independently .

This page titled 7.9: Appendix I- Equivalence of the Mean Field Descriptions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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