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1.1: Statistical Properties of Random Walks

One-Dimensional Random Walk
Consider the mechanical system depicted in Fig. , a version of which is often sold in novelty shops. A ball is released from the
top, which cascades consecutively through  levels. The details of each ball’s motion are governed by Newton’s laws of motion.
However, to predict where any given ball will end up in the bottom row is difficult, because the ball’s trajectory depends sensitively
on its initial conditions, and may even be influenced by random vibrations of the entire apparatus. We therefore abandon all hope of
integrating the equations of motion and treat the system statistically. That is, we assume, at each level, that the ball moves to the
right with probability  and to the left with probability . If there is no bias in the system, then . The position 

 after  steps may be written

where  if the ball moves to the right at level , and  if the ball moves to the left at level . At each level, the
probability for these two outcomes is given by

This is a normalized discrete probability distribution of the type discussed in section 4 below. The multivariate distribution for all
the steps is then

Our system is equivalent to a one-dimensional random walk. Imagine an inebriated pedestrian on a sidewalk taking steps to the
right and left at random. After  steps, the pedestrian’s location is .

Figure : The falling ball system, which mimics a one-dimensional random walk.

Now let’s compute the average of :

This could be identified as an equation of state for our system, as it relates a measurable quantity  to the number of steps  and
the local bias . Next, let’s compute the average of :

1.1.1
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Here we have used

Note that , which must be so because

This is called the variance of . We have . The root mean square deviation, , is the square root of the
variance: . Note that the mean value of  is linearly proportional to , but the RMS fluctuations 
are proportional to . In the limit  then, the ratio  vanishes as . This is a consequence of the central
limit theorem (see §4.2 below), and we shall meet up with it again on several occasions.We can do even better. We can find the
complete probability distribution for . It is given by

where  are the numbers of steps taken to the right/left, with , and 
. There are many independent ways to take  steps to the right. For example, our first 

 steps could all be to the right, and the remaining  steps would then all be to the left. Or
our final  steps could all be to the right. For each of these independent possibilities, the probability is 

. How many possibilities are there? Elementary combinatorics tells us this number is

Note that , so we can replace . Thus,

Thermodynamic Limit
Consider the limit  but with  finite. This is analogous to what is called the thermodynamic limit in statistical
mechanics. Since  is large,  may be considered a continuous variable. We evaluate  using Stirling’s asymptotic
expansion

We then have

Notice that the terms proportional to  have all cancelled, leaving us with a quantity which is linear in . We may therefore
write , where

⟨ ⟩ = ⟨ ⟩ = (p−q +4Npq .X2 ∑
j=1

N

∑
=1j′

N

σjσj′ N 2 )2 (1.1.5)

⟨ ⟩ = +(1 − )(p−q ={σjσj′ δ
jj′ δ

jj′ )2 1

(p−q)2

 if j= j′

 if j≠  .j′ (1.1.6)

⟨ ⟩ ≥ ⟨XX2 ⟩2

V ar(X) = ⟨(ΔX ⟩ ≡ ⟨(X− ⟨X⟩ ⟩ = ⟨ ⟩− ⟨X  .)2 )2
X2 ⟩2 (1.1.7)

X V ar(X) = 4Np q ΔXrms

Δ =Xrms V ar(X)
− −−−−−

√ X N 1 ΔXrms

N 1/2 N → ∞ Δ /⟨X⟩Xrms N−1/2

X

P\ns_{N,X}={N\choose N\ns_\ssr{R}}\,p^{N\ns_\ssr{R}}\,q^{N\ns_\ssr{L}}\ ,

N\ns_\ssr{R/L} N=N\ns_\ssr{R}+N\ns_\ssr{L}
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p^{N\ns_\ssr{R}}\,q^{N\ns_\ssr{L}}
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=  .PN ,X

N !

( )! ( )!N+X

2
N−X

2

p(N+X)/2 q(N−X)/2 (1.1.8)

N → ∞ x ≡ X/N

N x lnPN ,X

lnN ! ≃ N lnN −N +O(lnN) . (1.1.9)

lnP
N ,X

≃ N lnN −N − N(1 +x) ln[ N(1 +x)]+ N(1 +x)
1

2

1

2

1

2

− N(1 −x) ln[ N(1 −x)]+ N(1 −x) + N(1 +x) lnp+ N(1 −x) lnq
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Figure : Comparison of exact distribution of Equation  (red squares) with the Gaussian distribution of Equation 
(blue line).

We have just shown that in the large  limit we may write

where  is a normalization constant . Since  is by assumption large, the function  is dominated by the minimum (or
minima) of , where the probability is maximized. To find the minimum of , we set , where

Setting , we obtain

We also have

so invoking Taylor’s theorem,

Putting it all together, we have

where . The constant  is determined by the normalization condition,

and thus . Why don’t we go beyond second order in the Taylor expansion of ? We will find out in §4.2 below.

Entropy and energy
The function  can be written as a sum of two contributions, , where

1.1.2 1.1.8 1.1.16

N

= C  ,PN ,X e−Nf(X/N) (1.1.11)

C
2 N PN ,X

f(x) f(x) (x) = 0f ′

(x) = ln( ⋅ ) .f ′ 1

2

q

p

1 +x

1 −x
(1.1.12)

(x) = 0f ′

= ⇒ = p−q .
1 +x

1 −x

p

q
x̄ (1.1.13)

(x) =  ,f ′′ 1

1 −x2
(1.1.14)

f(x) = f( ) + ( ) (x− +…  .x̄
1

2
f ′′ x̄ x̄)2 (1.1.15)

≈ C exp[− ] = C exp[− ] ,PN ,X

N(x− x̄)2

8pq
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8Npq
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2
∫

−∞

∞
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8Npq
2πNpq
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C = 1/ 2πNpq
− −−−−−

√ f(x)
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The function  is analogous to the statistical entropy of our system . We have

Thus, the statistical entropy is the logarithm of the number of ways the system can be configured so as to yield the same value of 
(at fixed ). The second contribution to  is the energy term. We write

The energy term biases the probability  so that low energy configurations are more probable than high energy
configurations. For our system, we see that when  ( ), the energy is minimized by taking  as small as possible
(meaning as negative as possible). The smallest possible allowed value of  is . Conversely, when  ( ),
the energy is minimized by taking  as large as possible, which means . The average value of , as we have computed
explicitly, is , which falls somewhere in between these two extremes.

In actual thermodynamic systems, entropy and energy are not dimensionless. What we have called  here is really , which is
the entropy in units of Boltzmann’s constant. And what we have called  here is really , which is energy in units of
Boltzmann’s constant times temperature.

This page titled 1.1: Statistical Properties of Random Walks is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.

S(N , x) ≡ Ns(x) 3

S(N,x)=N s(x) = \ln\!{N\choose N\ns_\ssr{R}} = \ln\!{N\choose \half N(1+x)}\ .

X

N f(x)

E(N , x) = Ne(x) = − N ln(pq) − Nx ln(p/q) .
1

2

1

2
(1.1.18)
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1.2: Basic Concepts in Probability Theory

Fundamental definitions
The natural mathematical setting is set theory. Sets are generalized collections of objects. The basics:  is a binary relation
which says that the object  is an element of the set . Another binary relation is set inclusion. If all members of  are in , we
write . The union of sets  and  is denoted  and the intersection of  and  is denoted . The Cartesian
product of  and , denoted , is the set of all ordered elements  where  and .

Some details: If  is not in , we write . Sets may also be objects, so we may speak of sets of sets, but typically the sets
which will concern us are simple discrete collections of numbers, such as the possible rolls of a die {1,2,3,4,5,6}, or the real
numbers , or Cartesian products such as . If  but , we say that  is a proper subset of  and write .
Another binary operation is the set difference , which contains all  such that  and .

In probability theory, each object  is identified as an event. We denote by  the set of all events, and  denotes the set of no
events. There are three basic axioms of probability:

To each set  is associated a non-negative real number , which is called the probability of .
.

If  is a collection of disjoint sets, if  for all , then

From these axioms follow a number of conclusions. Among them, let  be the complement of , the set of all events not
in . Then since , we have . Taking , we conclude .

The meaning of  is that if events  are chosen from  at random, then the relative frequency for  approaches  as
the number of trials tends to infinity. But what do we mean by ’at random’? One meaning we can impart to the notion of
randomness is that a process is random if its outcomes can be accurately modeled using the axioms of probability. This entails the
identification of a probability space  as well as a probability measure . For example, in the microcanonical ensemble of
classical statistical physics, the space  is the collection of phase space points  and the probability
measure is , so that for  the probability of  is , where 

 if  and  if  is the characteristic function of . The quantity  is determined by
normalization: .

Bayesian Statistics
We now introduce two additional probabilities. The joint probability for sets  and  together is written . That is, 

. For example,  might denote the set of all politicians,  the set of all American citizens,
and  the set of all living humans with an IQ greater than 60. Then  would be the set of all politicians who are also
American citizens, Exercise: estimate .

The conditional probability of  given  is written . We can compute the joint probability  in
two ways:

Thus,

a result known as Bayes’ theorem. Now suppose the ‘event space’ is partitioned as . Then

We then have

ω ∈ A

ω A A B

A ⊆ B A B A∪B A B A∩B

A B A×B (a, b) a ∈ A b ∈ B

ω A ω ∉ A

R R
N A ⊆ B A ≠ B A B A ⊂ B

A∖B ω ω ∈ A ω ∉ B

ω Ω ∅

A P (A) A

P (Ω) = 1
{ }Ai ∩ = ∅Ai Aj i ≠ j

P( )= P ( ) .⋃
i

Ai ∑
i

Ai (1.2.1)

¬A = Ω∖A A

A A∪ ¬A = Ω P (¬A) = 1 −P (A) A = Ω P (∅) = 0

P (A) ω Ω ω ∈ A P (A)

Ω P

Ω φ = { , … , , , … , }q1 qn p1 pn

dμ = (E) d d δ(E−H(q, p))Σ−1 ∏n
i=1 qi pi A ∈ Ω A P (A) = ∫dμ (φ)χ

A

(φ) = 1χA φ ∈ A (φ) = 0χA φ ∉ A A Σ(E)
∫dμ = 1

A B P (A∩B)
P (A∩B) = Prob[ω ∈ A and ω ∈ B] A B

C A∩B

P (A∩B∩C)

B A P (B|A) P (A∩B) = P (B∩A)

P (A∩B) = P (A|B) ⋅P (B) = P (B|A) ⋅P (A) . (1.2.2)

P (A|B) =  ,
P (B|A)P (A)

P (B)
(1.2.3)

{ }Ai

P (B) = P (B| )P ( ) .∑
i

Ai Ai (1.2.4)
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a result sometimes known as the extended form of Bayes’ theorem. When the event space is a ‘binary partition’ , we have

Note that  (which follows from ).

As an example, consider the following problem in epidemiology. Suppose there is a rare but highly contagious disease  which
occurs in  of the general population. Suppose further that there is a simple test for the disease which is accurate  of
the time. That is, out of every 10,000 tests, the correct answer is returned 9,999 times, and the incorrect answer is returned only
once. Now let us administer the test to a large group of people from the general population. Those who test positive are
quarantined. Question: what is the probability that someone chosen at random from the quarantine group actually has the disease?
We use Bayes’ theorem with the binary partition . Let  denote the event that an individual tests positive. Anyone from
the quarantine group has tested positive. Given this datum, we want to know the probability that that person has the disease. That
is, we want . Applying Equation [Bayesbinary] with

we find . That is, there is only a  chance that someone who tested positive actually has the disease, despite the
test being  accurate! The reason is that, given the rarity of the disease in the general population, the number of false
positives is statistically equal to the number of true positives.

In the above example, we had , but this is not generally the case. What is true instead is 
. Epidemiologists define the sensitivity of a binary classification test as the fraction of actual positives

which are correctly identified, and the specificity as the fraction of actual negatives that are correctly identified. Thus, 
 is the sensitivity and  is the specificity. We then have . Therefore,

In our previous example, , in which case the RHS above gives . In general, if  is the fraction of the
population which is afflicted, then

For continuous distributions, we speak of a probability density. We then have

and

The range of integration may depend on the specific application.

The quantities  are called the prior distribution. Clearly in order to compute  or  we must know the priors,
and this is usually the weakest link in the Bayesian chain of reasoning. If our prior distribution is not accurate, Bayes’ theorem will
generate incorrect results. One approach to approximating prior probabilities  is to derive them from a maximum entropy
construction.

Random variables and their averages
Consider an abstract probability space  whose elements ( events) are labeled by . The average of any function  is denoted
as  or , and is defined for discrete sets as

P ( |B) =  ,Ai

P (B| )P ( )Ai Ai

P (B| )P ( )∑j Aj Aj

(1.2.5)

{A, ¬A}

P (A|B) =  .
P (B|A)P (A)

P (B|A)P (A) +P (B|¬A)P (¬A)
(1.2.6)

P (A|B) +P (¬A|B) = 1 ¬¬A = A

A

0.01% 99.99%

{A, ¬A} B

P (A|B)

P (A) = 0.0001 , P (¬A) = 0.9999 , P (B|A) = 0.9999 , P (B|¬A) = 0.0001 , (1.2.7)

P (A|B) = 1
2

50%

99.99%

P (B|A) +P (B|¬A) = 1
P (B|A) +P (¬B|A) = 1

se = P (B|A) sp = P (¬B|¬A) P (B|¬A) = 1 −P (¬B|¬A)

P (B|A) +P (B|¬A) = 1 +P (B|A) −P (¬B|¬A) = 1 + se − sp . (1.2.8)

se = sp = 0.9999 1 P (A) ≡ f

P (infected | positive) =  .
f ⋅ se

f ⋅ se +(1 −f) ⋅ (1 − sp)
(1.2.9)

P (y) = ∫ dx P (y|x)P (x) (1.2.10)

P (x|y) =  .
P (y|x)P (x)

∫d P (y| )P ( )x′ x′ x′
(1.2.11)

P ( )Ai P (B) P ( |B)Ai

P ( )Ai

X x f(x)
Ef ⟨f⟩

Ef = ⟨f⟩ = f(x)P (x) ,∑
x∈X

(1.2.12)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18542?pdf


1.2.3 https://phys.libretexts.org/@go/page/18542

where  is the probability of . For continuous sets, we have

Typically for continuous sets we have  or . Gardiner and other authors introduce an extra symbol, , to denote a
random variable, with  being its value. This is formally useful but notationally confusing, so we’ll avoid it here and
speak loosely of  as a random variable.

When there are two random variables  and , we have  is the product space, and

with the obvious generalization to continuous sets. This generalizes to higher rank products,  with . The
covariance of  and  is defined as

If  is a convex function then one has

For continuous functions,  is convex if  everywhere . If  is convex on some interval  then for 
we must have

where . This is easily generalized to

where , a result known as Jensen’s theorem.

This page titled 1.2: Basic Concepts in Probability Theory is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.

P (x) x

Ef = ⟨f⟩ = dx f(x)P (x) .∫

X

(1.2.13)

X =R X =R≥0 X

X(x) = x

x

x ∈ X y ∈ Y Ω = X ×Y

Ef(x, y) = ⟨f(x, y)⟩ = f(x, y)P (x, y) ,∑
x∈X

∑
y∈Y

(1.2.14)

∈xi Xi i ∈ {1, … ,N}
xi xj

≡ ⟨( − ⟨ ⟩)( − ⟨ ⟩)⟩ = ⟨ ⟩− ⟨ ⟩⟨ ⟩ .Cij xi xi xj xj xixj xi xj (1.2.15)

f(x)

Ef(x) ≥ f(Ex) . (1.2.16)

f(x) (x) ≥ 0f ′′ 4 f(x) [a, b] ∈ [a, b]x1,2

f(λ +(1 −λ) ) ≤ λf( ) +(1 −λ)f( ) ,x1 x2 x1 x2 (1.2.17)

λ ∈ [0, 1]

f( )≤ f( ) ,∑
n

pnxn ∑
n

pn xn (1.2.18)

= P ( )pn xn
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1.3: Entropy and Probability

Entropy and Information Theory
It was shown in the classic 1948 work of Claude Shannon that entropy is in fact a measure of information . Suppose we observe
that a particular event occurs with probability . We associate with this observation an amount of information . The
information  should satisfy certain desiderata:

Information is non-negative, .
If two events occur independently so their joint probability is , then their information is additive,

.
 is a continuous function of .

There is no information content to an event which is always observed, .

From these four properties, it is easy to show that the only possible function  is

where  is an arbitrary constant that can be absorbed into the base of the logarithm, since . We will take 
and use  as the base, so . Another common choice is to take the base of the logarithm to be , so .
In this latter case, the units of information are known as bits. Note that . This means that the observation of an extremely
rare event carries a great deal of information

Now suppose we have a set of events labeled by an integer  which occur with probabilities . What is the expected amount of
information in  observations? Since event  occurs an average of  times, and the information content in  is , we
have that the average information per observation is

which is known as the entropy of the distribution. Thus, maximizing  is equivalent to maximizing the information content per
observation.

Consider, for example, the information content of course grades. As we shall see, if the only constraint on the probability
distribution is that of overall normalization, then  is maximized when all the probabilities  are equal. The binary entropy is then

, since . Thus, for pass/fail grading, the maximum average information per grade is 
bit. If only A, B, C, D, and F grades are assigned, then the maximum average information per grade is  bits. If we
expand the grade options to include {A+, A, A-, B+, B, B-, C+, C, C-, D, F}, then the maximum average information per grade is 

 bits.

Equivalently, consider, following the discussion in vol. 1 of Kardar, a random sequence  where each element 
takes one of  possible values. There are then  such possible sequences, and to specify one of them requires 

 bits of information. However, if the value  occurs with probability , then on average it will occur 
 times in a sequence of length , and the total number of such sequences will be

In general, this is far less that the total possible number , and the number of bits necessary to specify one from among these 
 possibilities is

up to terms of order unity. Here we have invoked Stirling’s approximation. If the distribution is uniform, then we have  for
all , and .

5

p I(p)
I(p)

I(p) ≥ 0
p1 p2

I( ) = I( ) +I( )p1p2 p1 p2

I(p) p

I(1) = 0

I(p)

I(p) = −A lnp , (1.3.1)

A x = lnx/ lnblogb A = 1
e I(p) = −lnp 2 I(p) = − plog2

I(0) = ∞
6

n { }pn
N n Npn pn −lnpn

S = = − ln  ,
⟨ ⟩I

N

N
∑
n

pn pn (1.3.2)

S

S pn
S = Γlog2 = 1/Γpn − ( ) = 2 = 1log2

1
2

log2

5 = 2.32log2

11 = 3.46log2

{ , , … , }n1 n2 nN nj

K KN

( ) = N Klog2 KN log2 n pn
= NNn pn N

g(N) =  .
N !

!∏K
n=1 Nn

(1.3.3)

KN

g(N)

g(N) = (N !) − ( !) ≈ −N  ,log2 log2 ∑
n=1

K

log2 Nn ∑
n=1

K

pn log2 pn (1.3.4)

=pn
1
K

n ∈ {1, … ,K} g(N) = N Klog2 log2
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Probability distributions from maximum entropy
We have shown how one can proceed from a probability distribution and compute various averages. We now seek to go in the other
direction, and determine the full probability distribution based on a knowledge of certain averages.

At first, this seems impossible. Suppose we want to reproduce the full probability distribution for an -step random walk from
knowledge of the average , where  is the probability of moving to the right at each step (see §1 above). The
problem seems ridiculously underdetermined, since there are  possible configurations for an -step random walk:  for 

. Overall normalization requires

but this just imposes one constraint on the  probabilities , leaving  overall parameters. What principle
allows us to reconstruct the full probability distribution

corresponding to  independent steps?

The principle of maximum entropy

The entropy of a discrete probability distribution  is defined as

where here we take  as the base of the logarithm. The entropy may therefore be regarded as a function of the probability
distribution: . One special property of the entropy is the following. Suppose we have two independent normalized
distributions  and . The joint probability for events  and  is then . The entropy of the joint distribution is
then

Thus, the entropy of a joint distribution formed from two independent distributions is additive.

Suppose all we knew about  was that it was normalized. Then . This is a constraint on the values . Let us now
extremize the entropy  with respect to the distribution , but subject to the normalization constraint. We do this using
Lagrange’s method of undetermined multipliers. We define

and we freely extremize  over all its arguments. Thus, for all  we have

From the first of these equations, we obtain , and from the second we obtain

where  is the total number of possible events. Thus, , which says that all events are equally probable.

N

⟨X⟩ = (2p−1)N p

2N N = ±1σj
j= 1, … ,N

P ( , … , ) = 1 ,∑
{ }σj

σ1 σN (1.3.5)

2N P ( , … , )σ1 σN −12N

P ( , … , ) = (p +q ) =  ,σ1 σN ∏
j=1

N

δ ,1σj
δ ,−1σj

∏
j=1

N

p(1+ )/2σj q(1− )/2σj (1.3.6)

N

{ }pn

S = − ln  ,∑
n

pn pn (1.3.7)

e

S = S({ })pn
{ }pAa { }pB

b
a b =P

a,b
pAa pBb

S = − ln = − ln( ) = − ( ln +ln )∑
a

∑
b

P
a,b

P
a,b

∑
a

∑
b

pAa pBb pAa pBb ∑
a

∑
b

pAa pBb pAa pB
b

= − ln ⋅ − ln ⋅ = − ln − ln∑
a

pAa pAa ∑
b

pB
b

∑
b

pB
b

pB
b
∑
a

pAa ∑
a

pAa pAa ∑
b

pB
b

pB
b

= +  .SA SB

{ }pn = 1∑n pn { }pn
S { }pn

({ },λ) = − ln −λ( −1)S∗ pn ∑
n

pn pn ∑
n

pn (1.3.8)

S∗ n

0

0

= = −( ln +1 +λ)
∂S∗

∂pn
pn

= = −1 .
∂S∗

∂λ
∑
n

pn

=pn e−(1+λ)

= ⋅ 1 = Γ  ,∑
n

pn e−(1+λ) ∑
n

e−(1+λ) (1.3.9)

Γ ≡ 1∑n = 1/Γpn
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Now suppose we know one other piece of information, which is the average value  of some quantity. We now
extremize  subject to two constraints, and so we define

We then have

which yields the two-parameter distribution

To fully determine the distribution  we need to invoke the two equations  and , which come from
extremizing  with respect to  and , respectively:

General formulation

The generalization to  extra pieces of information (plus normalization) is immediately apparent. We have

and therefore we define

with . Then the optimal distribution which extremizes  subject to the  constraints is

where  is determined by normalization: . This is a -parameter distribution, with 
determined by the  constraints in Equation [Kpoc].

Example

As an example, consider the random walk problem. We have two pieces of information:

Here the discrete label  from §3.2 ranges over  possible values, and may be written as an  digit binary number ,
where  is  or . Extremizing  subject to these constraints, we obtain

where  and . Normalization then requires

X =∑n Xn pn
S

({ }, , ) = − ln − ( −1)− ( −X) .S∗ pn λ0 λ1 ∑
n

pn pn λ0 ∑
n

pn λ1 ∑
n

Xn pn (1.3.10)

= −( ln +1 + + ) = 0 ,
∂S∗

∂pn
pn λ0 λ1 Xn (1.3.11)

=  .pn e−(1+ )λ0 e−λ1Xn (1.3.12)

{ }pn = 1∑n pn = X∑n Xn pn
S∗ λ0 λ1

1

X

= e−(1+ )λ0 ∑
n

e−λ1Xn

=  .e−(1+ )λ0 ∑
n

Xn e
−λ1Xn

K

=  ,Xa ∑
n

Xa
n pn (1.3.13)

({ }, { }) = − ln − ( − ) ,S∗ pn λa ∑
n

pn pn ∑
a=0

K

λa ∑
n

Xa
n pn Xa (1.3.14)

≡ = 1X
(a=0)
n X(a=0) S K+1

pn = exp{−1 − }∑
a=0

K

λa Xa
n

= exp{− } ,
1

Z
∑
a=1

K

λa Xa
n

Z = e1+λ0 = 1∑n pn (K+1) { , , … , }λ0 λ1 λ
K

K+1

⋯ P ( , … , )∑
σ1

∑
σN

σ1 σN

⋯ P ( , … , )∑
σ1

∑
σN

σ1 σN ∑
j=1

N

σj

= 1

= X .

n 2N N ⋯rN r1

= (1 + )rj
1
2

σj 0 1 S

P ( , … , ) = C exp{−λ } = C  ,σ1 σN ∑
j

σj ∏
j=1

N

e−λ σj (1.3.15)

C ≡ e−(1+ )λ0 λ ≡ λ1
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hence . We then have

where

We then have , which determines , and we have recovered the Bernoulli distribution.

Of course there are no miracles , and there are an infinite family of distributions for which  that are not Bernoulli.
For example, we could have imposed another constraint, such as . This would result in the distribution

with  determined by normalization: . This is the one-dimensional Ising chain of classical equilibrium
statistical physics. Defining the transfer matrix  with  ,

where  and  are Pauli matrices, we have that

where  ,

The appropriate case here is that of the chain, but in the thermodynamic limit  both chain and ring yield identical results,
so we will examine here the results for the ring, which are somewhat easier to obtain. Clearly  , where  are the
eigenvalues of :

In the thermodynamic limit, the  eigenvalue dominates, and . We now have

We also have . These two equations determine the Lagrange multipliers  and . In the
thermodynamic limit, we have . Thus, if we fix  alone, there is a continuous one-parameter
family of distributions, parametrized , which satisfy the constraint on .

So what is it about the maximum entropy approach that is so compelling? Maximum entropy gives us a calculable distribution
which is consistent with maximum ignorance given our known constraints. In that sense, it is as unbiased as possible, from an
information theoretic point of view. As a starting point, a maximum entropy distribution may be improved upon, using Bayesian
methods for example (see §5.2 below).

Tr P ≡ P ( , … , ) = C ( +  ,∑
{ }σj

σ1 σN eλ e−λ)
N

(1.3.16)

C = (coshλ)−N

P ( , … , ) = = (p +q ) ,σ1 σN ∏
j=1

N
e−λσj

+eλ e−λ
∏
j=1

N

δ ,1σj
δ ,−1σj

(1.3.17)

p = , q = 1 −p =  .
e−λ

+eλ e−λ

eλ

+eλ e−λ
(1.3.18)

X = (2p−1)N p = (N +X)1
2

7 X = (2p−1)N

E =∑N−1
j=1 σj σj+1

P ( , … , ) = exp{− − } ,σ1 σN
1

Z
λ1 ∑

j=1

N

σj λ2∑
j=1

N−1

σj σj+1 (1.3.19)

Z( , )λ1 λ2 P (σ) = 1∑σ

=R
ss′ e− (s+ )/2λ1 s′

e− sλ2 s′
s, = ±1s′

R =( )
e− −λ1 λ2

eλ2

eλ2

e −λ1 λ2

= cosh I+ − sinh  ,e−λ2 λ1 eλ2 τ x e−λ2 λ1 τ
z

τ x τ z

=Tr ( ) , =Tr ( S) ,Zring RN Z
chain

RN−1 (1.3.20)

=S
ss′ e− (s+ )/2λ1 s′

S =( )
e−λ1

1

1

eλ1

= cosh I+ −sinh  .λ1 τ x λ1 τ
z

N → ∞
= +Zring ζN+ ζN− ζ±

R

= cosh ± .ζ± e−λ2 λ1 +e−2λ2 sinh2λ1 e2λ2

− −−−−−−−−−−−−−−
√ (1.3.21)

ζ+ ≃Zring ζN+

X = ⟨ ⟩ = − = −  .∑
j=1

N

σj
∂ lnZ

∂λ1

N sinhλ1

+sinh2λ1 e4λ2

− −−−−−−−−−−
√

(1.3.22)

E = −∂ lnZ/∂λ2 (X,E,N)λ1 (X,E,N)λ2

= (X/N ,E/N)λi λi X/N = 2p−1
ε = E/N X
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Continuous probability distributions
Suppose we have a continuous probability density  defined over some set . We have observables

where  is the appropriate integration measure. We assume , where  is the dimension of . Then we extremize
the functional

with respect to  and with respect to . Again, . This yields the following result:

The  Lagrange multipliers  are then determined from the  constraint equations in Equation [constcont].

As an example, consider a distribution  over the real numbers . We constrain

Extremizing the entropy, we then obtain

where . We already know the answer:

In other words,  and , with .

This page titled 1.3: Entropy and Probability is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.

P (φ) Ω

= dμ (φ)P (φ) ,Xa ∫

Ω

Xa (1.3.23)

dμ dμ = d∏D

j=1 φj D Ω

[P (φ), { }] = − dμ P (φ) lnP (φ) − ( dμ P (φ) (φ) − )S∗ λa ∫

Ω

∑
a=0

K

λa ∫

Ω

Xa Xa (1.3.24)

P (φ) { }λa (φ) ≡ ≡ 1X0 X0

lnP (φ) = −1 − (φ) .∑
a=0

K

λa X
a (1.3.25)

K+1 { }λa K+1

P (x) R

dx P (x) = 1 , dx x P (x) = μ , dx P (x) = +  .∫

−∞

∞

∫

−∞

∞

∫

−∞

∞

x2 μ2 σ2 (1.3.26)

P (x) = C  ,e− x−λ1 λ2x
2

(1.3.27)

C = e−(1+ )λ0

P (x) =  .
1

2πσ2− −−−
√

e−(x−μ /2)2 σ2

(1.3.28)

= −μ/λ1 σ2 = 1/2λ2 σ2
C = (2π exp(− /2 )σ2)−1/2 μ2 σ2
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1.4: General Aspects of Probability Distributions

Discrete and Continuous Distributions
Consider a system whose possible configurations  can be labeled by a discrete variable , where  is the set of possible
configurations. The total number of possible configurations, which is to say the order of the set , may be finite or infinite. Next,
consider an ensemble of such systems, and let  denote the probability that a given random element from that ensemble is in the
state (configuration) . The collection  forms a discrete probability distribution. We assume that the distribution is
normalized, meaning

Now let  be a quantity which takes values depending on . The average of  is given by

Typically,  is the set of integers ( ) or some subset thereof, but it could be any countable set. As an example, consider the throw
of a single six-sided die. Then  for each . Let  if  is even and  if  is odd. Then find , on
average half the throws of the die will result in an even number.

It may be that the system’s configurations are described by several discrete variables . We can combine these into
a vector  and then we write  for the discrete distribution, with .

Another possibility is that the system’s configurations are parameterized by a collection of continuous variables, 
. We write , where  is the phase space (or configuration space) of the system. Let  be a measure on

this space. In general, we can write

The phase space measure used in classical statistical mechanics gives equal weight  to equal phase space volumes:

where  is a constant we shall discuss later on below .

Any continuous probability distribution  is normalized according to

The average of a function  on configuration space is then

For example, consider the Gaussian distribution

From the result

we see that  is normalized. One can then compute

| n ⟩ n ∈ C C

C

Pn

| n ⟩ { }Pn

= 1 .∑
n∈C

Pn (1.4.1)

An n A

⟨A⟩ =  .∑
n∈C

Pn An (1.4.2)

C Z

=Pn
1
6

n ∈ {1, … , 6} = 0An n 1 n ⟨A⟩ = 1
2

{ , , , …}n1 n2 n3

n Pn = 1∑
n
Pn

φ = { , … , }φ1 φn φ ∈ Ω Ω dμ

dμ = W ( , … , )d d ⋯ d  .φ1 φn φ1 φ2 φn (1.4.3)

W

dμ = C d d  ,∏
σ=1

r

qσ pσ (1.4.4)

C
8

P (φ)

dμP (φ) = 1 .∫

Ω

(1.4.5)

A(φ)

⟨A⟩ = dμP (φ)A(φ) .∫

Ω

(1.4.6)

P (x) =  .
1

2πσ2− −−−
√

e−(x−μ /2)
2

σ2

(1.4.7)

9

dx =    ,∫

−∞

∞

e−αx2

e−βx π

α

−−
√ e /4αβ2

(1.4.8)

P (x)
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We call  the mean and  the standard deviation of the distribution, Equation [pgauss].

The quantity  is called the distribution or probability density. One has

For example, consider the probability density  normalized on the interval . The probability that some  chosen at
random will be exactly , say, is infinitesimal – one would have to specify each of the infinitely many digits of . However, we can
say that  with probability .

If  is distributed according to , then the probability distribution on the product space  is simply the product of the
distributions: . Suppose we have a function . How is it distributed? Let  be the
distribution for . We then have

where the second line is appropriate if the  are themselves distributed independently. Note that

so  is itself normalized.

Central limit theorem
In particular, consider the distribution function of the sum . We will be particularly interested in the case where  is
large. For general , though, we have

It is convenient to compute the Fourier transform  of :

where

is the Fourier transform of the single variable distribution . The distribution  is a convolution of the individual 
distributions. We have therefore proven that the Fourier transform of a convolution is the product of the Fourier transforms.

OK, now we can write for 

⟨x⟩

⟨ ⟩− ⟨xx2 ⟩2

= μ

=  .σ2

μ σ

P (φ)

P (φ)dμ = probability that configuration lies within volume dμ centered at φ (1.4.9)

P = 1 x ∈ [0, 1] x
1
2

x

x ∈ [0.45 , 0.55] 1
10

x (x)P1 ( , )x1 x2

( , ) = ( ) ( )P2 x1 x2 P1 x1 P1 x2 ϕ( , … , )x1 x
N

P (ϕ)
ϕ

P (ϕ) = d ⋯ d ( , … , ) δ(ϕ( , … , ) −ϕ)∫

−∞

∞

x1 ∫

−∞

∞

x
N
P
N

x1 x
N

x1 x
N

= d ⋯ d ( ) ⋯ ( ) δ(ϕ( , … , ) −ϕ) ,∫

−∞

∞

x1 ∫

−∞

∞

xN P1 x1 P1 xN x1 xN

{ }xj

dϕ P (ϕ) = 1 ,∫

−∞

∞

(1.4.10)

P (ϕ)

X = ∑N
i=1 xi N

N

(X) = d ⋯ d ( ) ⋯ ( ) δ( + +… + −X) .PN ∫

−∞

∞

x1 ∫

−∞

∞

xN P1 x1 P1 xN x1 x2 xN (1.4.11)

10 P (X)

(k)P̂N = dX (X)∫

−∞

∞

PN e−ikX

= dX d ⋯ d ( ) ⋯ ( ) δ( +… + −X) = [ (k)  ,∫

−∞

∞

∫

−∞

∞

x1 ∫

−∞

∞

xN P1 x1 P1 xN x1 xN e−ikX P̂ 1 ]
N

(k) = dx (x)P̂ 1 ∫

−∞

∞

P1 e−ikx (1.4.12)

(x)P1 (X)PN ( )P1 xi

(k)P̂ 1
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Thus,

where

We can now write

Now for the inverse transform. In computing , we will expand the term  and all subsequent terms in the above
product as a power series in . We then have

In going from the second line to the third, we have written , in which case , and the non-
Gaussian terms give a subleading contribution which vanishes in the  limit. We have just proven the central limit theorem:
in the limit , the distribution of a sum of  independent random variables  is a Gaussian with mean  and standard
deviation . Our only assumptions are that the mean  and standard deviation  exist for the distribution . Note that 

 itself need not be a Gaussian – it could be a very peculiar distribution indeed, but so long as its first and second moment
exist, where the  moment is simply , the distribution of the sum  is a Gaussian.

Moments and cumulants
Consider a general multivariate distribution  and define the multivariate Fourier transform

The inverse relation is

Acting on , the differential operator  brings down from the exponential a factor of  inside the integral. Thus,

Similarly, we can reconstruct the distribution from its moments, viz.

(k)P̂ 1 = dx (x) (1 − ikx− + i +… )∫

−∞

∞

P1

1

2
k2x2 1

6
k3 x3

= 1 − ik⟨x⟩− ⟨ ⟩+ i ⟨ ⟩+…  .
1

2
k2 x2 1

6
k3 x3

ln (k) = −iμk− + i +…  ,P̂ 1
1

2
σ2k2 1

6
γ3 k3 (1.4.13)

μ

σ2

γ3

= ⟨x⟩

= ⟨ ⟩− ⟨xx2 ⟩2

= ⟨ ⟩−3 ⟨ ⟩ ⟨x⟩+2 ⟨xx3 x2 ⟩3

[ (k) = ⋯P̂ 1 ]
N

e−iNμk e−N /2σ2k2

eiN /6γ3k3

(1.4.14)

(X)PN eiN /6γ3k3

k

(X)PN =   {1 + i N +…}∫

−∞

∞
dk

2π
eik(X−Nμ) e−N /2σ2k2 1

6
γ3k3

=(1 − N +…)
γ3

6

∂3

∂X3

1

2πNσ2− −−−−−
√

e−(X−Nμ /2N)
2

σ2

=(1 − +…)  .
γ3

6
N−1/2 ∂3

∂ξ3

1

2πNσ2− −−−−−
√

e− /2ξ2 σ2

X = Nμ+ ξN
−−

√ =∂X N−1/2 ∂ξ

N → ∞
N → ∞ N xi Nμ

σN
−−

√ μ σ (x)P1

(x)P1

k^\ssr{th} ⟨ ⟩xk X = ∑N

i=1 xi

P ( , … , )x1 xN

( , … , ) = d ⋯ d P ( , … , ) exp(− i ) .P̂ k1 kN ∫

−∞

∞

x1 ∫

−∞

∞

xN x1 xN ∑
j=1

N

kjxj (1.4.15)

P ( , … , ) = ⋯ ( , … , ) exp(+ i ) .x1 xN ∫

−∞

∞
dk1

2π
∫

−∞

∞
dk

N

2π
P̂ k1 kN ∑

j=1

N

kjxj (1.4.16)

(k)P̂ i ∂
∂ki

xi

[(i ⋯(i (k) = ⟨ ⋯ ⟩ .
∂

∂k1

)
m1 ∂

∂kN
)
mN

P̂ ]
k=0

x
m1

1 x
mN

N (1.4.17)
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The cumulants  are defined by the Taylor expansion of :

There is no general form for the cumulants. It is straightforward to derive the following low order results:

Multidimensional Gaussian integral
Consider the multivariable Gaussian distribution,

where  is a positive definite matrix of rank . A mathematical result which is extremely important throughout physics is the
following:

Here, the vector  is identified as a source. Since , we have that the distribution  is normalized.
Now consider averages of the form

The sum in the last term is over all contractions of the indices . A contraction is an arrangement of the  indices
into  pairs. There are  possible such contractions. To obtain this result for , we start with the first index and
then find a mate among the remaining  indices. Then we choose the next unpaired index and find a mate among the
remaining  indices. Proceeding in this manner, we have

Equivalently, we can take all possible permutations of the  indices, and then divide by  since permutation within a given pair
results in the same contraction and permutation among the  pairs results in the same contraction. For example, for , we have

, and

If we define , we have

from which we read off the cumulants , with all higher order cumulants vanishing.

This page titled 1.4: General Aspects of Probability Distributions is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by Daniel Arovas.

(k) = ⋯ ⋯ ⟨ ⋯ ⟩ .P̂ ∑
=0m1

∞

∑
=0mN

∞ (−ik1)m1

!m
1

(−ikN )mN

!m
N

x
m1
1 x

mN

N (1.4.18)

⟨⟨ ⋯ ⟩⟩x
m1
1 x

mN

N
ln (k)P̂

ln (k) = ⋯ ⋯ ⟨⟨ ⋯ ⟩⟩ .P̂ ∑
=0m1

∞

∑
=0mN

∞ (−ik1)m1

!m1

(−ikN )mN

!mN

x
m1

1 x
mN

N (1.4.19)

⟨⟨ ⟩⟩xi
⟨⟨ ⟩⟩xixj

⟨⟨ ⟩⟩xixjxk

= ⟨ ⟩xi
= ⟨ ⟩− ⟨ ⟩⟨ ⟩xixj xi xj

= ⟨ ⟩− ⟨ ⟩⟨ ⟩− ⟨ ⟩⟨ ⟩− ⟨ ⟩⟨ ⟩+2⟨ ⟩⟨ ⟩⟨ ⟩ .xixjxk xixj xk xjxk xi xkxi xj xi xj xk

P (x) ≡( exp(− ) ,
detA

(2π)n
)

1/2 1

2
xi Aij xj (1.4.20)

A n

Z(b) =( d ⋯ d exp(− + )= exp( ) .
detA

(2π)n
)

1/2

∫

−∞

∞

x1 ∫

−∞

∞

xn
1

2
xi Aij xj bi xi

1

2
bi A

−1
ij bj (1.4.21)

b = ( , … , )b1 bn Z(0) = 1 P (x)

⟨ ⋯ ⟩x
j1

x
j2k

= ∫ x P (x) ⋯ =dn x
j1

x
j2k

Z(b)∂n

∂ ⋯ ∂bj1
bj2k

∣
∣
∣
b=0

= ⋯  .∑
contractions

A−1
jσ(1)jσ(2)

A−1
jσ(2k−1) jσ(2k)

{ , … , }j1 j2k 2k

k = (2k)!/ k!C2k 2k Ck

2k−1
2k−3

= (2k−1) ⋅ (2k−3) ⋯ 3 ⋅ 1 =  .C2k

(2k)!

k!2k
(1.4.22)

2k k!2k

k k = 2
= 3C4

⟨ ⟩ = + +  .x
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j2
x
j3
x
j4

A−1
j1j2

A−1
j3j4

A−1
j1j3

A−1
j2j4

A−1
j1j4
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j2j3

(1.4.23)

= ibi ki

(k) = exp(− ) ,P̂
1

2
ki A

−1
ij kj (1.4.24)
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1.5: Bayesian Statistical Inference

Frequentists and Bayesians
There field of statistical inference is roughly divided into two schools of practice: frequentism and Bayesianism. You can find
several articles on the web discussing the differences in these two approaches. In both cases we would like to model observable
data  by a distribution. The distribution in general depends on one or more parameters . The basic worldviews of the two
approaches are as follows:

Frequentism: Data  are a random sample drawn from an infinite pool at some
frequency. The underlying parameters , which are to be estimated, remain fixed during
this process. There is no information prior to the model specification. The experimental
conditions under which the data are collected are presumed to be controlled and
repeatable. Results are generally expressed in terms of confidence intervals and
confidence levels, obtained via statistical hypothesis testing. Probabilities have meaning
only for data yet to be collected. Calculations generally are computationally
straightforward.

Bayesianism: The only data  which matter are those which have been observed. The
parameters  are unknown and described probabilistically using a prior distribution,
which is generally based on some available information but which also may be at least
partially subjective. The priors are then to be updated based on observed data . Results
are expressed in terms of posterior distributions and credible intervals. Calculations can
be computationally intensive.

In essence, frequentists say the data are random and the parameters are fixed. while Bayesians say the data are fixed and the
parameters are random . Overall, frequentism has dominated over the past several hundred years, but Bayesianism has been
coming on strong of late, and many physicists seem naturally drawn to the Bayesian perspective.

Updating Bayesian priors
Given data  and a hypothesis , Bayes’ theorem tells us

Typically the data is in the form of a set of values , and the hypothesis in the form of a set of parameters 
. It is notationally helpful to express distributions of  and distributions of  conditioned on  using the symbol 

, and distributions of  and distributions of  conditioned on  using the symbol , rather than using the symbol  everywhere.
We then have

where  is the space of parameters. Note that . The denominator of the RHS is simply , which is
independent of , hence . We call  the prior for ,  the likelihood of  given , and  the
posterior for  given . The idea here is that while our initial guess at the  distribution is given by the prior , after taking
data, we should update this distribution to the posterior . The likelihood  is entailed by our model for the phenomenon
which produces the data. We can use the posterior to find the distribution of new data points , called the posterior predictive
distribution,

x θ

x

θ

x

θ

x

11

D H

P (H|D) =  .
P (D|H)P (H)

P (D)
(1.5.1)

x = { , … , }x1 xN
θ = { , … , }θ1 θK x x θ

f θ θ x π P

π(θ|x) =  ,
f(x|θ)π(θ)

d f(x| )π( )∫
Θ

θ′ θ′ θ′
(1.5.2)

Θ ∋ θ dθ π(θ|x) = 1∫Θ f(x)
θ π(θ|x) ∝ f(x|θ)π(θ) π(θ) θ f(x|θ) x θ π(θ|x)

θ x θ π(θ)
π(θ|x) f(x|θ)

y

f(y|x) = dθ f(y|θ)π(θ|x) .∫

Θ

(1.5.3)
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This is the update of the prior predictive distribution,

Example : Coin Flipping
Consider a model of coin flipping based on a standard Bernoulli distribution, where  is the probability for heads (

) and  the probability for tails ( ). That is,

where  is the observed total number of heads, and  the corresponding number of tails. We now need a
prior . We choose the Beta distribution,

where  is the Beta function. One can check that  is normalized on the unit interval: 
 for all positive . Even if we limit ourselves to this form of the prior, different Bayesians might bring

different assumptions about the values of  and . Note that if we choose , the prior distribution for  is flat, with 
.

We now compute the posterior distribution for :

Thus, we retain the form of the Beta distribution, but with updated parameters,

The fact that the functional form of the prior is retained by the posterior is generally not the case in Bayesian updating. We can
also compute the prior predictive,

The posterior predictive is then

f(x) = dθ f(x|θ)π(θ) .∫

Θ

(1.5.4)

1.5.1

θ ∈ [0, 1]
x = 1 1 −θ x = 0

f( , … , |θ)x1 x
N

= [(1 −θ) +θ ]∏
j=1

N

δ ,0xj
δ ,1xj

= (1 −θ  ,θX )N−X

X = ∑N
j=1 xj N −X

π(θ)

π(θ) =  ,
(1 −θθα−1 )β−1

B(α, β)
(1.5.5)

B(α, β) = Γ(α) Γ(β)/Γ(α+β) π(θ)

dθπ(θ) = 1∫ 1
0

α, β

α β α = β = 1 θ

π(θ) = 1

θ

π(θ| , … , ) = =  .x1 xN
f( , … , |θ)π(θ)x1 xN

d f( , … , | )π( )∫ 1
0 θ′ x1 xN θ′ θ′

(1 −θθX+α−1 )N−X+β−1

B(X+α,N −X+β)
(1.5.6)

α′

β ′
= X+α

= N −X+β .

f( , … , )x1 xN = dθ f( , … , |θ)π(θ)∫

0

1

x1 xN

= dθ (1 −θ =  .
1

B(α, β)
∫

0

1

θX+α−1 )N−X+β−1
B(X+α,N −X+β)

B(α, β)

f( , … , | , … , )y1 y
M

x1 x
N

= dθ f( , … , |θ)π(θ| , … , )∫

0

1

y1 y
M

x1 x
N

= dθ (1 −θ
1

B(X+α,N −X+β)
∫

0

1

θX+Y+α−1 )N−X+M−Y+β−1

=  .
B(X+Y +α,N −X+M −Y +β)

B(X+α,N −X+β)
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Hyperparameters and conjugate priors
In Example ,  is a parameter of the Bernoulli distribution, the likelihood, while quantities  and  are hyperparameters
which enter the prior . Accordingly, we could have written  for the prior. We then have for the posterior

replacing Equation [BayesPost], , where  is the vector of hyperparameters. The hyperparameters can also be distributed,
according to a hyperprior , and the hyperpriors can further be parameterized by hyperhyperparameters, which can have their
own distributions, ad nauseum.

What use is all this? We’ve already seen a compelling example: when the posterior is of the same form as the prior, the Bayesian
update can be viewed as an automorphism of the hyperparameter space , one set of hyperparameters  is mapped to a new set of
hyperparameters .

Definition: A parametric family of distributions  is called
a conjugate family for a family of distributions  if, for all 

 and ,

That is,  for some , with .
As an example, consider the conjugate Bayesian analysis of the Gaussian distribution. We assume a likelihood

The parameters here are . Now consider the prior distribution

Note that the prior distribution is independent of the parameter  and only depends on  and the hyperparameters .
We now compute the posterior:

with  and . This is also a Gaussian distribution for , and after supplying the appropriate
normalization one finds

with

1.5.1 θ α β

π(θ) π(θ|α, β)

π(θ|x,α) =  ,
f(x|θ)π(θ|α)

d f(x| )π( |α)∫
Θ

θ′ θ′ θ′
(1.5.7)

α ∈ A

ρ(α)

A α

α̃

P = {π(θ|α) |θ ∈ Θ, α ∈ A}

{f(x|θ) | x ∈ X, θ ∈ Θ}

x ∈ X α ∈ A

π(θ|x,α) ≡ ∈ P .
f(x|θ)π(θ|α)

d f(x| )π( |α)∫
Θ

θ′ θ′ θ′
(1.5.8)

π(θ|x,α) = π(θ| )α̃ ∈ Aα̃ = (α,x)α̃ α̃

f(x|u, s) = (2π exp{− ( −u } .s2)−N/2 1

2s2
∑
j=1

N

xj )2 (1.5.9)

θ = {u, s}

π(u, s| , ) = (2π exp{− } .μ0 σ0 σ2
0 )−1/2 (u−μ0)2

2σ2
0

(1.5.10)

s u α = ( , )μ0 σ0

π(u, s|x, , )μ0 σ0 ∝ f(x|u, s)π(u, s| , )μ0 σ0

= exp{−( + ) +( + )u−( + )} ,
1

2σ2
0

N

2s2
u2

μ0

σ2
0

N⟨x⟩

s2

μ2
0

2σ2
0

N⟨ ⟩x2

2s2

⟨x⟩ = 1
N
∑N

j=1 xj ⟨ ⟩ =x2 1
N
∑N

j=1 x
2
j u

π(u, s|x, , ) = (2π exp{− } ,μ0 σ0 σ2
1 )−1/2

(u−μ1)2

2σ2
1

(1.5.11)

μ1

σ2
1

= +μ0

N(⟨x⟩− )μ0 σ2
0

+Ns2 σ2
0

= .
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Thus, the posterior is among the same family as the prior, and we have derived the update rule for the hyperparameters 
. Note that  , so the updated Gaussian prior is sharper than the original. The updated mean  shifts in

the direction of  obtained from the data set.

The problem with priors
We might think that the for the coin flipping problem, the flat prior  is an appropriate initial one, since it does not privilege
any value of . This prior therefore seems ’objective’ or ’unbiased’, also called ’uninformative’. But suppose we make a change of
variables, mapping the interval  to the entire real line according to . In terms of the new parameter ,
we write the prior as . Clearly , so . For our example, find , which
is not flat. Thus what was uninformative in terms of  has become very informative in terms of the new parameter . Is there any
truly unbiased way of selecting a Bayesian prior?

One approach, advocated by E. T. Jaynes, is to choose the prior distribution  according to the principle of maximum entropy.
For continuous parameter spaces, we must first define a parameter space metric so as to be able to ’count’ the number of different
parameter states. The entropy of a distribution  is then dependent on this metric: .

Another approach, due to Jeffreys, is to derive a parameterization-independent prior from the likelihood  using the so-called
Fisher information matrix,

The Jeffreys prior  is defined as

One can check that the Jeffries prior is invariant under reparameterization. As an example, consider the Bernoulli process, for
which , where . Then

and since , we have

which felicitously corresponds to a Beta distribution with . In this example the Jeffries prior turned out to be a
conjugate prior, but in general this is not the case.

We can try to implement the Jeffreys procedure for a two-parameter family where each  is normally distributed with mean  and
standard deviation . Let the parameters be . Then

and the Fisher information matrix is

Taking the expectation value, we have  and , hence

( , ) → ( , )μ0 σ0 μ1 σ1 <σ1 σ0 μ1

⟨x⟩

π(θ) = 1
θ

θ ∈ [0, 1] ζ = ln[θ/(1 −θ)] ζ

(ζ)π~ π(θ)dθ = (ζ)dζπ~ (ζ) = π(θ)dθ/dζπ~ (ζ) = (ζ/2)π~ 1
4
sech2

θ ζ

π(θ)

π(θ) S = −∫dμ(θ)π(θ) lnπ(θ)

f(x|θ)

(θ)Iij = − ( )Eθ

lnf(x|θ)∂2

∂ ∂θi θj

= −∫ dx f(x|θ)  .
lnf(x|θ)∂2

∂ ∂θi θj

\pi\ns_\ssr{J}(\Btheta)

\pi\ns_\ssr{J}(\Btheta)\propto\sqrt{\det\! I(\Btheta)}\ .

lnf(x|θ) = X lnθ+(N −X) ln(1 −θ) X = ∑N

j=1 xj

− = +  ,
lnp(x|θ)d2

dθ2

X

θ2

N −X

(1 −θ)2
(1.5.12)

X = NθEθ

I(\theta)={N\over\theta(1-\theta)}\qquad\Rightarrow\qquad \pi\ns_\ssr{J}(\theta)={1\over\pi}\,{1\over\sqrt{\theta(1-\theta)}}\ ,

α = β = 1
2

xj μ

σ ( , ) = (μ, σ)θ1 θ2

−lnf(x|θ) = N ln +N lnσ+ ( −μ  ,2π
−−

√
1

2σ2
∑
j=1

N

xj )2 (1.5.13)

I(θ) = − =  .
lnf(x|θ)∂2

∂ ∂θi θj

⎛

⎝

⎜⎜

Nσ−2

( −μ)σ−3 ∑j xj

( −μ)σ−3 ∑j xj

−N +3 ( −μσ−2 σ−4 ∑j xj )2

⎞

⎠

⎟⎟ (1.5.14)

E ( −μ) = 0xj E ( −μ =xj )2 σ2

E I(θ) =( )
Nσ−2

0

0

2Nσ−2
(1.5.15)
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and the Jeffries prior is . This is problematic because if we choose a flat metric on the 
 upper half plane, the Jeffries prior is not normalizable. Note also that the Jeffreys prior no longer resembles a Gaussian, and

hence is not a conjugate prior.

1. The exception is the unbiased case , where .↩
2. The origin of  lies in the  and  terms in the asymptotic expansion of . We have ignored these terms here.

Accounting for them carefully reproduces the correct value of  in Equation [normC].↩
3. The function  is the specific entropy.↩
4. A function  is concave if  is convex.↩
5. See ‘An Introduction to Information Theory and Entropy’ by T. Carter, Santa Fe Complex Systems Summer School, June 2011.

Available online at astarte.csustan.edu/$\sim$tom/SFI-CSSS/info-theory/info-lec.pdf.↩
6. My colleague John McGreevy refers to  as the surprise of observing an event which occurs with probability . I like this

very much.↩
7. See §10 of An Enquiry Concerning Human Understanding by David Hume (1748).↩
8. Such a measure is invariant with respect to canonical transformations, which are the broad class of transformations among

coordinates and momenta which leave Hamilton’s equations of motion invariant, and which preserve phase space volumes
under Hamiltonian evolution. For this reason  is called an invariant phase space measure.↩

9. Memorize this!↩
10. Jean Baptiste Joseph Fourier (1768-1830) had an illustrious career. The son of a tailor, and orphaned at age eight, Fourier’s

ignoble status rendered him ineligible to receive a commission in the scientific corps of the French army. A Benedictine
minister at the École Royale Militaire of Auxerre remarked, "Fourier, not being noble, could not enter the artillery, although he
were a second Newton." Fourier prepared for the priesthood but his affinity for mathematics proved overwhelming, and so he
left the abbey and soon thereafter accepted a military lectureship position. Despite his initial support for revolution in France, in
1794 Fourier ran afoul of a rival sect while on a trip to Orleans and was arrested and very nearly guillotined. Fortunately the
Reign of Terror ended soon after the death of Robespierre, and Fourier was released. He went on Napoleon Bonaparte’s 1798
expedition to Egypt, where he was appointed governor of Lower Egypt. His organizational skills impressed Napoleon, and upon
return to France he was appointed to a position of prefect in Grenoble. It was in Grenoble that Fourier performed his landmark
studies of heat, and his famous work on partial differential equations and Fourier series. It seems that Fourier’s fascination with
heat began in Egypt, where he developed an appreciation of desert climate. His fascination developed into an obsession, and he
became convinced that heat could promote a healthy body. He would cover himself in blankets, like a mummy, in his heated
apartment, even during the middle of summer. On May 4, 1830, Fourier, so arrayed, tripped and fell down a flight of stairs. This
aggravated a developing heart condition, which he refused to treat with anything other than more heat. Two weeks later, he
died. Fourier’s is one of the 72 names of scientists, engineers and other luminaries which are engraved on the Eiffel Tower.↩

11. "A frequentist is a person whose long-run ambition is to be wrong 5% of the time. A Bayesian is one who, vaguely expecting a
horse, and catching glimpse of a donkey, strongly believes he has seen a mule." – Charles Annis.↩

This page titled 1.5: Bayesian Statistical Inference is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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1.S: Summary
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Summary
 Discrete distributions: Let  label the distinct possible outcomes of a discrete random process, and let  be the probability for

outcome . Let  be a quantity which takes values which depend on , with  being the value of  under the outcome . Then
the expected value of  is , where the sum is over all possible allowed values of . We must have that the
distribution is normalized, .

 Continuous distributions: When the random variable  takes a continuum of values, we define the probability density  to be
such that  is the probability for the outcome to lie within a differential volume  of , where ,
were  is an -component vector in the configuration space , and where the function  accounts for the possibility of
different configuration space measures. Then if  is any function on , the expected value of  is .

 Central limit theorem: If  are each independently distributed according to , then the distribution of the sum 
 is

where  is the Fourier transform of . Assuming that the lowest moments of  exist, 
, where  and  are the mean and standard deviation. Then for 

,

which is a Gaussian with mean  and standard deviation . Thus,  is distributed as a Gaussian,
even if  is not a Gaussian itself.

 Entropy: The entropy of a statistical distribution is  is . (Sometimes the base 2 logarithm is used, in
which case the entropy is measured in bits.) This has the interpretation of the information content per element of a random
sequence.

 Distributions from maximum entropy: Given a distribution  subject to  constraints of the form 
with , where  (normalization), the distribution consistent with these constraints which maximizes
the entropy function is obtained by extremizing the multivariable function

with respect to the probabilities  and the Lagrange multipliers . This results in a Gibbs distribution,
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where  is determined by normalization,  ( the  constraint) and the  remaining multipliers determined
by the  additional constraints.

 Multidimensional Gaussian integral:

 Bayes’ theorem: Let the conditional probability for  given  be . Then Bayes’ theorem says 
. If the ’event space’ is partitioned as , then we have the extended form,

When the event space is a ‘binary partition’ , as is often the case in fields like epidemiology ( test positive or test
negative), we have

Note that  (which follows from ).

 Updating Bayesian priors: Given data in the form of observed values  and a hypothesis in the form of
parameters , we write the conditional probability (density) for observing  given  as . Bayes’
theorem says that the corresponding distribution  for  conditioned on  is

We call  the prior for ,  the likelihood of  given , and  the posterior for  given . We can use the posterior to
find the distribution of new data points , called the posterior predictive distribution,  This is the

update of the prior predictive distribution,  . As an example, consider coin flipping with 

, where  is the number of flips, and  with  a discrete variable which is  for tails and 
for heads. The parameter  is the probability to flip heads. We choose a prior  where 

 is the Beta distribution. This results in a normalized prior . The posterior

distribution for  is then

The prior predictive is  , and the posterior predictive for the total

number of heads  in  flips is

This page titled 1.S: Summary is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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2.1: What is Thermodynamics?
Thermodynamics is the study of relations among the state variables describing a thermodynamic system, and of transformations of
heat into work and vice versa.

Thermodynamic systems and state variables
Thermodynamic systems contain large numbers of constituent particles, and are described by a set of state variables which
describe the system’s properties in an average sense. State variables are classified as being either extensive or intensive.

Extensive variables, such as volume , particle number , total internal energy , magnetization , , scale linearly with the
system size, as the first power of the system volume. If we take two identical thermodynamic systems, place them next to each
other, and remove any barriers between them, then all the extensive variables will double in size.

Intensive variables, such as the pressure , the temperature , the chemical potential , the electric field , , are independent of
system size, scaling as the zeroth power of the volume. They are the same throughout the system, if that system is in an appropriate
state of equilibrium. The ratio of any two extensive variables is an intensive variable. For example, we write  for the
number density, which scales as . Intensive variables may also be inhomogeneous. For example,  is the number density at
position , and is defined as the limit of  of the number of particles  inside a volume  which contains the point ,
in the limit .

Classically, the full motion of a system of  point particles requires  variables to fully describe it (  positions and 
velocities or momenta, in three space dimensions) . Since the constituents are very small,  is typically very large. A typical solid
or liquid, for example, has a mass density on the order of ; for gases, . The constituent atoms have
masses of  to  grams per mole, where one mole of  contains  of , and  is Avogadro’s
number . Thus, for solids and liquids we roughly expect number densities  of  for solids and liquids, and 

 for gases. Clearly we are dealing with fantastically large numbers of constituent particles in a typical
thermodynamic system. The underlying theoretical basis for thermodynamics, where we use a small number of state variables to
describe a system, is provided by the microscopic theory of statistical mechanics, which we shall study in the weeks ahead.

Intensive quantities such as , , and  ultimately involve averages over both space and time. Consider for example the case of a
gas enclosed in a container. We can measure the pressure (relative to atmospheric pressure) by attaching a spring to a moveable
wall, as shown in Fig. [pressure]. From the displacement of the spring and the value of its spring constant  we determine the force 

. This force is due to the difference in pressures, so . Microscopically, the gas consists of constituent atoms or
molecules, which are constantly undergoing collisions with each other and with the walls of the container. When a particle bounces
off a wall, it imparts an impulse , where  is the particle’s momentum and  is the unit vector normal to the wall. (Only
particles with  will hit the wall.) Multiply this by the number of particles colliding with the wall per unit time, and one
finds the net force on the wall; dividing by the area gives the pressure . Within the gas, each particle travels for a distance , called
the mean free path, before it undergoes a collision. We can write , where  is the average particle speed and  is the mean
free time. When we study the kinetic theory of gases, we will derive formulas for  and  (and hence ). For now it is helpful to
quote some numbers to get an idea of the relevant distance and time scales. For  gas at standard temperature and pressure (

C, atm), the mean free path is  cm, the average speed is , and the mean free time is 
s. Thus, particles in the gas undergo collisions at a rate . A measuring device, such as our

spring, or a thermometer, effectively performs time and space averages. If there are  collisions with a particular patch of wall
during some time interval on which our measurement device responds, then the root mean square relative fluctuations in the local
pressure will be on the order of  times the average. Since  is a very large number, the fluctuations are negligible.
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[politics] From microscale to macroscale : physical versus social sciences.

If the system is in steady state, the state variables do not change with time. If furthermore there are no macroscopic currents of
energy or particle number flowing through the system, the system is said to be in equilibrium. A continuous succession of
equilibrium states is known as a thermodynamic path, which can be represented as a smooth curve in a multidimensional space
whose axes are labeled by state variables. A thermodynamic process is any change or succession of changes which results in a
change of the state variables. In a cyclic process, the initial and final states are the same. In a quasistatic process, the system passes
through a continuous succession of equilibria. A reversible process is one where the external conditions and the thermodynamic
path of the system can be reversed; it is both quasi-static and non-dissipative ( no friction). The slow expansion of a gas against a
piston head, whose counter-force is always infinitesimally less than the force  exerted by the gas, is reversible. To reverse this
process, we simply add infinitesimally more force to  and the gas compresses. An example of a quasistatic process which is not
reversible: slowly dragging a block across the floor, or the slow leak of air from a tire. Irreversible processes, as a rule, are
dissipative. Other special processes include isothermal ( ), isobaric ( ), isochoric ( ), and adiabatic (

, no heat exchange):

We shall discuss later the entropy  and its connection with irreversibility.

[pressure] The pressure  of a gas is due to an average over space and time of the impulses due to the constituent particles.

How many state variables are necessary to fully specify the equilibrium state of a thermodynamic system? For a single component
system, such as water which is composed of one constituent molecule, the answer is three. These can be taken to be , , and .
One always must specify at least one extensive variable, else we cannot determine the overall size of the system. For a
multicomponent system with  different species, we must specify  state variables, which may be , where 

 is the number of particles of species . Another possibility is the set , where the concentration of
species  is . Here,  is the total number of particles. Note that .
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If then follows that if we specify more than  state variables, there must exist a relation among them. Such relations are known
as equations of state. The most famous example is the ideal gas law,

relating the four state variables , , , and . Here  is Boltzmann’s constant. Another example
is the van der Waals equation,

where  and  are constants which depend on the molecule which forms the gas. For a third example, consider a paramagnet,
where

where  is the magnetization,  the magnetic field, and  the Curie constant.

Any quantity which, in equilibrium, depends only on the state variables is called a state function. For example, the total internal
energy  of a thermodynamics system is a state function, and we may write . State functions can also serve as
state variables, although the most natural state variables are those which can be directly measured.

Heat
Once thought to be a type of fluid, heat is now understood in terms of the kinetic theory of gases, liquids, and solids as a form of
energy stored in the disordered motion of constituent particles. The units of heat are therefore units of energy, and it is appropriate
to speak of heat energy, which we shall simply abbreviate as heat:

We will use the symbol  to denote the amount of heat energy absorbed by a system during some given thermodynamic process,
and  to denote a differential amount of heat energy. The symbol  indicates an ‘inexact differential’,
about which we shall have more to say presently. This means that heat is not a state function: there is no ‘heat function’ 

.

Work
In general we will write the differential element of work  done by the system as

where  is a generalized force and  a generalized displacement . The generalized forces and displacements are themselves
state variables, and by convention we will take the generalized forces to be intensive and the generalized displacements to be
extensive. As an example, in a simple one-component system, we have . More generally, we write

Here we distinguish between two types of work. The first involves changes in quantities such as volume, magnetization, electric
polarization, area, The conjugate forces  applied to the system are then , the magnetic field , the electric field , the surface
tension , respectively. The second type of work involves changes in the number of constituents of a given species. For example,
energy is required in order to dissociate two hydrogen atoms in an  molecule. The effect of such a process is  and 

.

As with heat,  is an inexact differential, and work  is not a state variable, since it is path-dependent. There is no
‘work function’ .

g+2

pV = N T  ,kB (2.1.1)

T p V N = 1.3806503 × erg/KkB 10−16

(p+ )(V −bN) = N T  ,
aN 2

V 2
kB (2.1.2)

a b

=  ,
M

V

CH

T
(2.1.3)

M H C

E E = E(T , p,V )

3

1 J = erg = 6.242 × eV = 2.390 × kcal = 9.478 × BTU  .107 1018 10−4 10−4 (2.1.4)

Q

26dQ\mathchar′ 26d\mathchar′

Q(T , p,V )

26dW\mathchar
′

26dW = d  ,\mathchar′ ∑
i

Fi Xi (2.1.5)

Fi dXi
4

26dW = p dV\mathchar′

26dW =   −\mathchar′ (p dV −H ⋅ dM −E ⋅ dP−σ dA+… )
  

− d∑j yj Xj

( d + d +… )μ1 N1 μ2 N2

  
d∑a μa Na

(2.1.6)

yi −p H E

σ

H2 d = −1N
H2

d = +2NH

26dW\mathchar′ W

W (T , p,V )
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Pressure and Temperature
The units of pressure ( ) are force per unit area. The SI unit is the Pascal (Pa): . Other units of
pressure we will encounter:

Temperature ( ) has a very precise definition from the point of view of statistical mechanics, as we shall see. Many physical
properties depend on the temperature – such properties are called thermometric properties. For example, the resistivity of a metal 

 or the number density of a gas  are both thermometric properties, and can be used to define a temperature scale.
Consider the device known as the ‘constant volume gas thermometer’ depicted in Fig. [CVGTa], in which the volume or pressure
of a gas may be used to measure temperature. The gas is assumed to be in equilibrium at some pressure , volume , and
temperature . An incompressible fluid of density  is used to measure the pressure difference , where  is the
ambient pressure at the top of the reservoir:

where  is the acceleration due to gravity. The height  of the left column of fluid in the U-tube provides a measure of the change
in the volume of the gas:

where  is the (assumed constant) cross-sectional area of the left arm of the U-tube. The device can operate in two modes:

Constant pressure mode : The height of the reservoir is adjusted so that the height difference  is held constant. This
fixes the pressure  of the gas. The gas volume still varies with temperature , and we can define

where  and  are the reference temperature and volume, respectively.
Constant volume mode : The height of the reservoir is adjusted so that , hence the volume of the gas is held fixed, and
the pressure varies with temperature. We then define

where  and  are the reference temperature and pressure, respectively.

p 1 Pa = 1 N/ = 1 kg/\Rm\Rm
2

s2

1 bar

1 atm

1 torr

≡ Pa105

≡ 1.01325 × Pa105

≡ 133.3 Pa .

T

ρ(T , p) n(T , p)

p V

T ϱ Δp = p−p0 p0

p− = ϱg( − ) ,p0 h2 h1 (2.1.7)

g h1

V ( ) = V (0) −A  ,h1 h1 (2.1.8)

A

−h
2

h
1

p T

=  ,
T

T
ref

V

V
ref

(2.1.9)

T
ref

V
ref

= 0h
1

=  ,
T

T
ref

p

p
ref

(2.1.10)

T
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p
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[CVGTa] The constant volume gas thermometer. The gas is placed in thermal contact with an object of temperature . An
incompressible fluid of density  is used to measure the pressure difference .

What should we use for a reference? One might think that a pot of boiling water will do, but anyone who has gone camping in the
mountains knows that water boils at lower temperatures at high altitude (lower pressure). This phenomenon is reflected in the
phase diagram for , depicted in Fig. [H2Opd]. There are two special points in the phase diagram, however. One is the triple
point, where the solid, liquid, and vapor (gas) phases all coexist. The second is the critical point, which is the terminus of the curve
separating liquid from gas. At the critical point, the latent heat of transition between liquid and gas phases vanishes (more on this
later on). The triple point temperature  at thus unique and is by definition K. The pressure at the triple point is 

.

[H2Opd] A sketch of the phase diagram of  (water). Two special points are identified: the triple point  at which there is
three phase coexistence, and the critical point , where the latent heat of transformation from liquid to gas vanishes. Not
shown are transitions between several different solid phases.

A question remains: are the two modes of the thermometer compatible? it we boil water at atm, do they yield the same
value for ? And what if we use a different gas in our measurements? In fact, all these measurements will in general be
incompatible, yielding different results for the temperature . However, in the limit that we use a very low density gas, all the
results converge. This is because all low density gases behave as ideal gases, and obey the ideal gas equation of state .

T
ϱ Δp = −pgas p0

OH2

Tt = 273.16Tt
611.7 Pa = 6.056 × atm10−3

OH2 ( , )Tt pt
( , )Tc pc

p = = 1p0

T

T

pV = N TkB
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Standard temperature and pressure
It is customary in the physical sciences to define certain standard conditions with respect to which any arbitrary conditions may be
compared. In thermodynamics, there is a notion of standard temperature and pressure, abbreviated STP. Unfortunately, there are
two different definitions of STP currently in use, one from the International Union of Pure and Applied Chemistry (IUPAC), and
the other from the U.S. National Institute of Standards and Technology (NIST). The two standards are:

To make matters worse, in the past it was customary to define STP as  and atm. We will use the NIST definition
in this course. Unless I slip and use the IUPAC definition. Figuring out what I mean by STP will keep you on your toes.

The volume of one mole of ideal gas at STP is then

where  is one liter. Under the old definition of STP as  and atm, the volume of one
mole of gas at STP is , which is a figure I remember from my  grade chemistry class with Mr. Lawrence.

[CVGTb] As the gas density tends to zero, the readings of the constant volume gas thermometer converge.

This page titled 2.1: What is Thermodynamics? is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.

IUPAC  

NIST  

:   = C = 273.15 K   , = PaT0 0∘ p0 105

:   = C = 293.15 K , = 1 atm = 1.01325 × PaT0 20∘ p0 105

= CT0 0∘ = 1p0

V = ={
NAkBT0

p0

22.711 ℓ
24.219 ℓ

(IUPAC)
(NIST ) ,

(2.1.11)

1 ℓ = =106 cm3 10−3 \Rm
3

= CT0 0∘ = 1p0

22.414 ℓ 10th
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2.2: The Zeroth Law of Thermodynamics
Equilibrium is established by the exchange of energy, volume, or particle number between different systems or subsystems:

Equilibrium is transitive, so

If A is in equilibrium with B, and B is in equilibrium with C, then A is in equilibrium with
C.

This known as the Zeroth Law of Thermodynamics .

This page titled 2.2: The Zeroth Law of Thermodynamics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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2.3: Mathematical Interlude - Exact and Inexact Differentials
The differential

is called exact if there is a function  whose differential gives the right hand side of Equation . In this case, we have

For exact differentials, the integral between fixed endpoints is path-independent:

from which it follows that the integral of  around any closed path must vanish:

When the cross derivatives are not identical, when , the differential is inexact. In this case, the integral of  is path dependent, and does not depend solely on the endpoints.

Figure [work_path] Two distinct paths with identical endpoints.

As an example, consider the differential

Let’s evaluate the integral of , which is the work done, along each of the two paths in Fig. [work_path]:

Note that in general . Thus, if we start at point A, the kinetic energy at point B will depend on the path taken, since the work done is path-dependent.

The difference between the work done along the two paths is

Thus, we see that if , the work is the same for the two paths. In fact, if , the work would be path-independent, and would depend only on the endpoints. This is true for any path,
and not just piecewise linear paths of the type depicted in Fig. [work_path]. Thus, if , we are justified in using the notation  for the differential in Equation [dFe]; explicitly, we then have 

. However, if , the differential is inexact, and we will henceforth write  in such cases.

This page titled 2.3: Mathematical Interlude - Exact and Inexact Differentials is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

dF = d∑
i=1

k

Ai xi (2.3.1)

F ( , … , )x
1

x
k

2.3.1

= ⟺ = ∀ i, j .Ai

∂F

∂xi

∂Ai

∂xj

∂Aj

∂xi
(2.3.2)

dF = F ( , … , ) −F ( , … , ) ,∫

A

B

xB1 xBk xA1 xAk (2.3.3)

dF

∮ dF = 0 . (2.3.4)

∂ /∂ ≠ ∂ /∂Ai xj Aj xi dF

dF = y dx+ x dy .K1 K2 (2.3.5)

dF

\begin{aligned} W^\ssr{(I)}&=K\ns_1\!\int\limits_{x\ns_\RA}^{x\nd_\RB}\!\!dx\>y\subA + K\ns_2\!\int\limits_{y\ns_\RA}^{y\nd_\RB}\!\!dy\>x\subB= K\ns_1\,y\subA \,(x\subB-x\subA) + K\ns_2\,x\subB\,(y\subB-y\sub

W^\ssr{(I)}\ne W^\ssr{(II)}

W^\ssr{(I)}-W^\ssr{(II)}=\oint\!dF=(K\ns_2-K\ns_1)\,(x\subB-x\subA)\,(y\subB-y\subA)\ . \label{Wdiff}

=K1 K2 =K1 K2

=K1 K2 dF

F = xyK1 ≠K1 K2 26dF\mathchar′
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2.4: The First Law of Thermodynamics

Conservation of energy

The first law is a statement of energy conservation, and is depicted in Fig. [firstlaw]. It says, quite simply, that during a thermodynamic process, the
change in a system’s internal energy  is given by the heat energy  added to the system, minus the work  done by the system:

The differential form of this, the First Law of Thermodynamics, is

We use the symbol  in the differentials  and  to remind us that these are inexact differentials. The
energy , however, is a state function, hence  is an exact differential.

Consider a volume  of fluid held in a flask, initially at temperature , and held at atmospheric pressure. The internal energy is then 
. Now let us contemplate changing the temperature in two different ways. The first method (A) is to place the flask on a hot plate

until the temperature of the fluid rises to a value . The second method (B) is to stir the fluid vigorously. In the first case, we add heat  but
no work is done, so . In the second case, if we thermally insulate the flask and use a stirrer of very low thermal conductivity, then no heat is
added, . However, the stirrer does work  on the fluid (remember  is the work done by the system). If we end up at the same
temperature , then the final energy is  in both cases. We then have

[firstlaw] The first law of thermodynamics is a statement of energy conservation.

It also follows that for any cyclic transformation, where the state variables are the same at the beginning and the end, we have

Single component systems
A single component system is specified by three state variables. In many applications, the total number of particles  is conserved, so it is useful to
take  as one of the state variables. The remaining two can be  or  or . The differential form of the first law says

The quantity  is called the chemical potential. We ask: how much heat is required in order to make an infinitesimal change in temperature, pressure,
volume, or particle number? We start by rewriting Equation [DFL] as

We now must roll up our sleeves and do some work with partial derivatives.

  systems : If the state variables are , we write

Then

  systems : If the state variables are , we write

We also write

E Q W

ΔE = Q−W  . (2.4.1)

dE = 26dQ− 26dW  .\mathchar
′

\mathchar
′

(2.4.2)

26d\mathchar
′

26dQ\mathchar
′

26dW\mathchar
′

E dE

V T0

= E( , p,V )E0 T0

T1 Q\subA>0
W\subA=0

Q\subB=0 -W\subB>0 W

T1 = E( , p,V )E1 T1

\RDelta E = E\ns_1-E\ns_0 = Q\subA = -W\subB\ .

Δ = Q−W = 0 ⟹ Q = W (cyclic) .E
cyclic

(2.4.3)

N

N (T ,V ) (T , p) (p,V )

dE = 26dQ− 26dW\mathchar
′

\mathchar
′

= 26dQ−p dV +μdN  .\mathchar
′

μ

26dQ = dE+p dV −μdN  .\mathchar′ (2.4.4)

∙ (T ,V ,N) (T ,V ,N)

dE = dT + dV + dN  .( )
∂E

∂T V,N

( )
∂E

∂V T ,N

( )
∂E

∂N T ,V

(2.4.5)

26dQ = dT +[ +p]dV +[ −μ]dN  .\mathchar′ ( )
∂E

∂T V,N

( )
∂E

∂V T ,N

( )
∂E

∂N T ,V

(2.4.6)

∙ (T , p,N) (T , p,N)

dE = dT + dp+ dN  .( )
∂E

∂T p,N

( )
∂E

∂p T ,N

( )
∂E

∂N T ,p

(2.4.7)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18551?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/02%3A_Thermodynamics/2.04%3A_The_First_Law_of_Thermodynamics


2.4.2 https://phys.libretexts.org/@go/page/18551

Then

  systems : If the state variables are , we write

Then

The heat capacity of a body, , is by definition the ratio  of the amount of heat absorbed by the body to the associated
infinitesimal change in temperature . The heat capacity will in general be different if the body is heated at constant volume or at constant pressure.
Setting  gives, from Equation [QTVN],

Similarly, if we set , then Equation [QTpN] yields

Unless explicitly stated as otherwise, we shall assume that  is fixed, and will write  for  and  for .

[cptab] Specific heat (at C, unless otherwise noted) of some common substances. (Source: Wikipedia.)

SUBSTANCE ( ) ( ) SUBSTANCE ( ) ( )

Air 29.07 1.01  ( C) 75.34 4.181

Aluminum 24.2 0.897  ( C) 37.47 2.08

Copper 24.47 0.385 Iron 25.1 0.450

36.94 0.839 Lead 26.4 0.127

Diamond 6.115 0.509 Lithium 24.8 3.58

Ethanol 112 2.44 Neon 20.786 1.03

Gold 25.42 0.129 Oxygen 29.38 0.918

Helium 20.786 5.193 Paraffin (wax) 900 2.5

Hydrogen 28.82 5.19 Uranium 27.7 0.116

 ( C) 38.09 2.05 Zinc 25.3 0.387

The units of heat capacity are energy divided by temperature, . The heat capacity is an extensive quantity, scaling with the size of the system. If we
divide by the number of moles , we obtain the molar heat capacity, sometimes called the molar specific heat: , where  is the
number of moles of substance. Specific heat is also sometimes quoted in units of heat capacity per gram of substance. We shall define

Here  is the mass per particle and  is the mass per mole: .

Suppose we raise the temperature of a body from  to . How much heat is required? We have

dV = dT + dp+ dN  .( )
∂V

∂T p,N

( )
∂V

∂p T ,N

( )
∂V

∂N T ,p

(2.4.8)

26dQ\mathchar
′

= [ +p ]dT +[ +p ]dp( )
∂E

∂T p,N

( )
∂V

∂T p,N

( )
∂E

∂p T ,N

( )
∂V

∂p T ,N

+[ +p −μ]dN  .( )
∂E

∂N T ,p

( )
∂V

∂N T ,p

∙ (p,V ,N) (p,V ,N)

dE = dp+ dV + dN  .( )
∂E

∂p V,N

( )
∂E

∂V p,N

( )
∂E

∂N p,V

(2.4.9)

26dQ = dp+[ +p]dV +[ −μ]dN  .\mathchar
′ ( )

∂E

∂p V,N

( )
∂E

∂V p,N

( )
∂E

∂N p,V

(2.4.10)

C 26dQ/dT\mathchar′

dT

dV = 0

=( =  .CV,N

26dQ\mathchar′

dT
)

V,N

( )
∂E

∂T V,N

(2.4.11)

dp = 0

=( = +p  .Cp,N

26dQ\mathchar′

dT
)

p,N

( )
∂E

∂T p,N

( )
∂V

∂T p,N

(2.4.12)

N CV CV,N Cp Cp,N

25∘

cp c~p cp c~p

J/molK J/gK J/molK J/gK

OH2 25∘

OH2 100∘
+

CO2

OH2 −10∘

J/K

N/NA c = C/ν ν = N/NA

= = =  .c~
C

mN

c

M

heat capacity per mole

mass per mole
(2.4.13)

m M M = mNA

T=\TA T=\TB

Q=\int\limits_\TA^\TB\!\!dT\,C(T)\ ,
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where  or  depending on whether volume or pressure is held constant. For ideal gases, as we shall discuss below,  is constant, and
thus

In metals at very low temperatures one finds , where  is a constant . We then have

Ideal gases
The ideal gas equation of state is . In order to invoke the formulae in Equations , , and , we need to know the state function

. A landmark experiment by Joule in the mid-19th century established that the energy of a low density gas is independent of its volume .
Essentially, a gas at temperature  was allowed to freely expand from one volume  to a larger volume , with no added heat  and no work 
done. Therefore the energy cannot change. What Joule found was that the temperature also did not change. This means that 
cannot be a function of the volume.

[CVH2] Heat capacity  for one mole of hydrogen ( ) gas. At the lowest temperatures, only translational degrees of freedom are relevant, and 
. At around , two rotational modes are excitable and . Above , the vibrational excitations begin to contribute. Note the

logarithmic temperature scale. (Data from H. W. Wooley et al., Jour. Natl. Bureau of Standards, 41, 379 (1948).)

Since  is extensive, we conclude that

where  is the number of moles of substance. Note that  is an extensive variable. From eqns. [cveqn] and [cpeqn], we conclude

where we invoke the ideal gas law to obtain the second of these. Empirically it is found that  is temperature independent over a wide range of ,
far enough from boiling point. We can then write , where  is the number of moles, and where  is the molar heat capacity. We
then have

where  is the gas constant. We denote by  the ratio of specific heat at constant pressure and at constant
volume.

From the kinetic theory of gases, one can show that

Digression : kinetic theory of gases

We will conclude in general from noninteracting classical statistical mechanics that the specific heat of a substance is , where  is the
number of phase space coordinates, per particle, for which there is a quadratic kinetic or potential energy function. For example, a point particle has

C = CV C = Cp C(T )

Q=C(\TB-\TA) \quad\Longrightarrow\quad \TB=\TA+{Q\over C}\ .

C = γT γ 6

\begin{aligned} Q&=\int\limits_\TA^\TB\!\!dT\,C(T)=\half\gamma\big(T_\ssr{B}^2 - T_\ssr{A}^2\big)\\ \TB&=\sqrt{T_\ssr{A}^2 + 2\gamma^{-1} Q}\ .\end{aligned}

pV = N TkB 2.4.6 ??? 2.4.10

E(T ,V ,N) 7

T V > VV ′ Q W
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CV H2
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E

E(T ,V ,N) = ν ε(T ) , (2.4.14)

ν = N/NA ν

(T ) = ν (T ) , (T ) = (T ) +νR ,CV ε′ Cp CV (2.4.15)
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three translational degrees of freedom, and the kinetic energy is a quadratic function of their conjugate momenta: . Thus, 
. Diatomic molecules have two additional rotational degrees of freedom – we don’t count rotations about the symmetry axis – and their conjugate

momenta also appear quadratically in the kinetic energy, leading to . For polyatomic molecules, all three Euler angles and their conjugate
momenta are in play, and .

[CVsolids] Molar heat capacities  for three solids. The solid curves correspond to the predictions of the Debye model, which we shall discuss later.

The reason that  for diatomic molecules rather than  is due to quantum mechanics. While translational eigenstates form a continuum, or are
quantized in a box with  being very small, since the dimensions  are macroscopic, angular momentum, and hence rotational kinetic
energy, is quantized. For rotations about a principal axis with very low moment of inertia , the corresponding energy scale  is very large, and a
high temperature is required in order to thermally populate these states. Thus, degrees of freedom with a quantization energy on the order or greater
than  are ‘frozen out’ for temperatures .

In solids, each atom is effectively connected to its neighbors by springs; such a potential arises from quantum mechanical and electrostatic
consideration of the interacting atoms. Thus, each degree of freedom contributes to the potential energy, and its conjugate momentum contributes to the
kinetic energy. This results in . Assuming only lattice vibrations, then, the high temperature limit for  for any solid is predicted to be 

. This is called the Dulong-Petit law. The high temperature limit is reached above the so-called Debye temperature, which is
roughly proportional to the melting temperature of the solid.

In table [cptab], we list  and  for some common substances at C (unless otherwise noted). Note that  for the monatomic gases He and
Ne is to high accuracy given by the value from kinetic theory, . For the diatomic gases oxygen ( ) and air (mostly 
and ), kinetic theory predicts , which is close to the measured values. Kinetic theory predicts  for polyatomic
gases; the measured values for  and  are both about 10% higher.

Adiabatic transformations of ideal gases
Assuming  and , Equation [QTVN] tells us that

Invoking the ideal gas law to write , and remembering , we have, setting ,

We can immediately integrate to obtain

where the second two equations are obtained from the first by invoking the ideal gas law. These are all adiabatic equations of state. Note the difference
between the adiabatic equation of state  and the isothermal equation of state . Equivalently, we can write these three conditions
as
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It turns out that air is a rather poor conductor of heat. This suggests the following model for an adiabatic atmosphere. The hydrostatic pressure decrease
associated with an increase  in height is , where  is the density and  the acceleration due to gravity. Assuming the gas is ideal, the
density can be written as , where  is the molar mass. Thus,

If the height changes are adiabatic, then, from , we have

with the solution

where  is the temperature at the earth’s surface, and

With  and  for air, and assuming , we find km, and . Note that in
this model the atmosphere ends at a height km.

Again invoking the adiabatic equation of state, we can find :

Recall that

Thus, in the limit , where , we have . Finally, since  from the ideal gas law, we have

Adiabatic free expansion
Consider the situation depicted in Fig. [AFE]. A quantity (  moles) of gas in equilibrium at temperature  and volume  is allowed to expand freely
into an evacuated chamber of volume  by the removal of a barrier. Clearly no work is done on or by the gas during this process, hence . If the
walls are everywhere insulating, so that no heat can pass through them, then  as well. The First Law then gives , and there is
no change in energy.

If the gas is ideal, then since , then  gives , and there is no change in temperature. (If the walls are insulating
against the passage of heat, they must also prevent the passage of particles, so .) There is of course a change in volume: , hence there
is a change in pressure. The initial pressure is  and the final pressure is .

[AFE] In the adiabatic free expansion of a gas, there is volume expansion with no work or heat exchange with the environment: .

If the gas is nonideal, then the temperature will in general change. Suppose , where , , and  are constants. This form
is properly extensive: if  and  double, then  doubles. If the volume changes from  to  under an adiabatic free expansion, then we must have,
from ,

dz dp = −ϱgdz ϱ g

ϱ = Mp/RT M

= − dz .
dp

p
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(2.4.21)
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If , the temperature decreases upon the expansion. If , the temperature increases. Without an equation of state, we can’t say precisely
what happens to the pressure, although we know on general grounds that it must decrease because, as we shall see, thermodynamic stability entails a
positive isothermal compressibility:  .

Adiabatic free expansion of a gas is a spontaneous process, arising due to the natural internal dynamics of the system. It is also irreversible. If we wish
to take the gas back to its original state, we must do work on it to compress it. If the gas is ideal, then the initial and final temperatures are identical, so
we can place the system in thermal contact with a reservoir at temperature  and follow a thermodynamic path along an isotherm. The work done on
the gas during compression is then

The work done by the gas is . During the compression, heat energy  is transferred to the gas from the reservoir. Thus, 
 is given off by the gas to its environment.

This page titled 2.4: The First Law of Thermodynamics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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2.5: Heat Engines and the Second Law of Thermodynamics

There’s no free lunch so quit asking
A heat engine is a device which takes a thermodynamic system through a repeated cycle which can be represented as a succession of equilibrium states: . The net result of such
a cyclic process is to convert heat into mechanical work, or vice versa.

Figure [perfect]: A perfect engine would extract heat  from a thermal reservoir at some temperature  and convert it into useful mechanical work . This process is alas impossible, according to
the Second Law of thermodynamics. The inverse process, where work  is converted into heat , is always possible.

For a system in equilibrium at temperature , there is a thermodynamically large amount of internal energy stored in the random internal motion of its constituent particles. Later, when we study
statistical mechanics, we will see how each ‘quadratic’ degree of freedom in the Hamiltonian contributes  to the total internal energy. An immense body in equilibrium at temperature  has an
enormous heat capacity , hence extracting a finite quantity of heat  from it results in a temperature change  which is utterly negligible. Such a body is called a heat bath, or thermal
reservoir. A perfect engine would, in each cycle, extract an amount of heat  from the bath and convert it into work. Since  for a cyclic process, the First Law then gives . This
situation is depicted schematically in Fig. [perfect]. One could imagine running this process virtually indefinitely, slowly sucking energy out of an immense heat bath, converting the random thermal
motion of its constituent molecules into useful mechanical work. Sadly, this is not possible:

A transformation whose only final result is to extract heat froma source at fixed temperature and transform that heat into work is
impossible.

This is known as the Postulate of Lord Kelvin. It is equivalent to the postulate of Clausius,

A transformation whose only result is to transfer heat from a body at a given temperature to a body at higher temperature is
impossible.

These postulates which have been repeatedly validated by empirical observations, constitute the Second Law of Thermodynamics.

Engines and refrigerators
While it is not possible to convert heat into work with 100% efficiency, it is possible to transfer heat from one thermal reservoir to another one, at lower temperature, and to convert some of that heat
into work. This is what an engine does. The energy accounting for one cycle of the engine is depicted in the left hand panel of Fig. [engref]. An amount of heat  is extracted- from the reservoir
at temperature . Since the reservoir is assumed to be enormous, its temperature change  is negligible, and its temperature remains constant – this is what it means for an object to
be a reservoir. A lesser amount of heat, , with , is deposited in a second reservoir at a lower temperature . Its temperature change  is also negligible. The
difference  is extracted as useful work. We define the efficiency, , of the engine as the ratio of the work done to the heat extracted from the upper reservoir, per cycle:

This is a natural definition of efficiency, since it will cost us fuel to maintain the temperature of the upper reservoir over many cycles of the engine. Thus, the efficiency is proportional to the ratio of
the work done to the cost of the fuel.

A refrigerator works according to the same principles, but the process runs in reverse. An amount of heat  is extracted from the lower reservoir – the inside of our refrigerator – and is pumped into
the upper reservoir. As Clausius’ form of the Second Law asserts, it is impossible for this to be the only result of our cycle. Some amount of work  must be performed on the refrigerator in order for
it to extract the heat . Since  for the cycle, a heat  must be deposited into the upper reservoir during each cycle. The analog of efficiency here is called the coefficient of
refrigeration, , defined as

Thus,  is proportional to the ratio of the heat extracted to the cost of electricity, per cycle.

[engref] An engine (left) extracts heat  from a reservoir at temperature  and deposits a smaller amount of heat  into a reservoir at a lower temperature , during each cycle. The difference 
 is transformed into mechanical work. A refrigerator (right) performs the inverse process, drawing heat  from a low temperature reservoir and depositing heat  into a

high temperature reservoir, where  is the mechanical (or electrical) work done per cycle.

Please note the deliberate notation here. I am using symbols  and  to denote the heat supplied to the engine (or refrigerator) and the work done by the engine, respectively, and  and  to denote
the heat taken from the engine and the work done on the engine.

A perfect engine has  and ; a perfect refrigerator has  and . Both violate the Second Law. Sadi Carnot  (1796 – 1832) realized that a reversible cyclic engine operating
between two thermal reservoirs must produce the maximum amount of work , and that the amount of work produced is independent of the material properties of the engine. We call any such engine
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a Carnot engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s observations that the efficiency  can only be a function of the temperatures  and 
: . We can then define

Below, in §6.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine, this temperature scale coincides precisely with the ideal gas temperature scale from §2.4.

Nothing beats a Carnot engine
The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To see this, let’s suppose that an amazing wonder engine has an efficiency even greater than that of
the Carnot engine. A key feature of the Carnot engine is its reversibility – we can just go around its cycle in the opposite direction, creating a Carnot refrigerator. Let’s use our notional wonder engine
to drive a Carnot refrigerator, as depicted in Fig. [NBC].

We assume that

But from the figure, we have , and therefore the heat energy  transferred to the upper reservoir is positive. From

we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is done on the system:

Therefore, the existence of the wonder engine entails a violation of the Second Law. Since the Second Law is correct – Lord Kelvin articulated it, and who are we to argue with a Lord? – the wonder
engine cannot exist.

[NBC] A wonder engine driving a Carnot refrigerator.

We further conclude that all reversible engines running between two thermal reservoirs have the same efficiency, which is the efficiency of a Carnot engine. For an irreversible engine, we must have

Thus,

The Carnot cycle
Let us now consider a specific cycle, known as the Carnot cycle, depicted in Fig. [carnot]. The cycle consists of two adiabats and two isotherms. The work done per cycle is simply the area inside the
curve on our  diagram:

The gas inside our Carnot engine is called the ‘working substance’. Whatever it may be, the system obeys the First Law,

We will now assume that the working material is an ideal gas, and we compute  as well as  and  to find the efficiency of this cycle. In order to do this, we will rely upon the ideal gas
equations,

where , where  is the effective number of molecular degrees of freedom contributing to the internal energy. Recall  for monatomic gases,  for diatomic gases, and 
 for polyatomic gases. The finite difference form of the first law is

where  denotes the initial state and  the final state.

\eta_\ssr{C} T1

T2 \eta_\ssr{C}=\eta_\ssr{C}(T\ns_1,T\ns_2)

{T\ns_1\over T\ns_2}\equiv 1-\eta\ns_\ssr{C}(T\ns_1,T\ns_2)\ .

{W\over Q\ns_2} = \eta\ns_\ssr{wonder} > \eta\ns_\ssr{Carnot} = {\CW'\over \CQ'_2}\ .
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[carnot] The Carnot cycle consists of two adiabats (dark red) and two isotherms (blue).

This stage is an isothermal expansion at temperature . It is the ‘power stroke’ of the engine. We have

hence

This stage is an adiabatic expansion. We have

The energy change is negative, and the heat exchange is zero, so the engine still does some work during this stage:

This stage is an isothermal compression, and we may apply the analysis of the isothermal expansion, mutatis mutandis:

hence

This last stage is an adiabatic compression, and we may draw on the results from the adiabatic expansion in BC:

The energy change is positive, and the heat exchange is zero, so work is done on the engine:

We now add up all the work values from the individual stages to get for the cycle

Since we are analyzing a cyclic process, we must have , we must have , which can of course be verified explicitly, by computing 
. To finish up, recall the adiabatic ideal gas equation of state, . This tells us that

Dividing these two equations, we find

and therefore

Finally, the efficiency is given by the ratio of these two quantities:

The Stirling cycle
Many other engine cycles are possible. The Stirling cycle, depicted in Fig. [stirling], consists of two isotherms and two isochores. Recall the isothermal ideal gas equation of state, . Thus,
for an ideal gas Stirling cycle, we have

which says

This isothermal expansion is the power stroke. Assuming  moles of ideal gas throughout, we have , hence

Since AB is an isotherm, we have , and from  we conclude .
Isochoric cooling. Since  we have . The energy change is given by

which is negative. Since , we have .

T2

\begin{aligned} W\ns_\ssr{AB}&=\int\limits_{V\subA}^{V\subB}\!\!dV\,{\nu R T\ns_2\over V} = \nu R T\ns_2\, \ln\bigg({V\subB\over V\subA}\bigg)\\ E\subA&=E\subB={\nu R T\ns_2\over \gamma-1}\ ,\end{align

Q\ns_\ssr{AB}=\RDelta E\ns_\ssr{AB}+ W\ns_\ssr{AB} = \nu R T\ns_2\,\ln\bigg({V\subB\over V\subA}\bigg)\ .

\begin{aligned} Q\ns_\ssr{BC}&=0\\ \RDelta E\ns_\ssr{BC}&=E\ns_\ssr{C}-E\subB = {\nu R\over \gamma-1}\,(T\ns_1 - T\ns_2)\ .\end{aligned}

W\subBC=Q\ns_\ssr{BC}-\RDelta E\ns_\ssr{BC}= {\nu R\over \gamma-1}\, (T\ns_2 - T\ns_1)\ .

\begin{aligned} W\ns_\ssr{CD}&=\int\limits_{V\ns_\ssr{C}}^{V\ns_\ssr{D}}\!\!dV\,{\nu R T\ns_1\over V} = \nu R T\ns_1\, \ln\bigg({V\ns_\ssr{D}\over V\ns_\ssr{C}}\bigg)\\ E\ns_\ssr{C}&=E\ns_\ssr{D}={\nu R T

Q\ns_\ssr{CD}=\RDelta E\ns_\ssr{CD}+ W\ns_\ssr{CD} = \nu R T\ns_1\,\ln\bigg({V\ns_\ssr{D}\over V\ns_\ssr{C}}\bigg)\ .

\begin{aligned} Q\ns_\ssr{DA}&=0\\ \RDelta E\ns_\ssr{DA}&=E\ns_\ssr{D}-E\subA= {\nu R\over \gamma-1}\,(T\ns_2 - T\ns_1)\ .\end{aligned}

W\ns_\ssr{DA}=Q\ns_\ssr{DA}-\RDelta E\ns_\ssr{DA}= {\nu R\over \gamma-1}\,(T\ns_1 - T\ns_2)\ .
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[stirling] A Stirling cycle consists of two isotherms (blue) and two isochores (green).

Isothermal compression. Clearly

Since CD is an isotherm, we have , and from  we conclude .
Isochoric heating. Since  we have . The energy change is given by

which is positive, and opposite to . Since , we have .

We now add up all the work contributions to obtain

The cycle efficiency is once again

The Otto and Diesel cycles
The Otto cycle is a rough approximation to the physics of a gasoline engine. It consists of two adiabats and two isochores, and is depicted in Fig. [otto]. Assuming an ideal gas, along the adiabats we
have . Thus,

which says

[otto] An Otto cycle consists of two adiabats (dark red) and two isochores (green).

Adiabatic expansion, the power stroke. The heat transfer is , so from the First Law we have , thus

Note that this result can also be obtained from the adiabatic equation of state :

Isochoric cooling (exhaust);  hence . The heat  absorbed is then

In a realistic engine, this is the stage in which the old burned gas is ejected and new gas is inserted.

Adiabatic compression;  and :

Isochoric heating, the combustion of the gas. As with BC we have , and thus . The heat  absorbed by the gas is then

W\subCD=\int\limits_{V\ns_2}^{V\ns_1}\!\!dV\,{\nu R T\ns_1\over V}= -\nu R T\ns_1\,\ln\bigg({V\ns_2\over V\ns_1}\bigg)\ .

E\subC=E\subD \RDelta E\subCD=0 Q\subCD=W\subCD
dV = 0 W\subDA=0

\RDelta E\subDA=E\subA-E\subD={\nu R(T\ns_2-T\ns_1)\over\gamma-1}\ ,

\RDelta E\subBC W\subDA=0 Q\subDA=\RDelta E\subDA

\begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &=\nu R (T\ns_2-T\ns_1)\,\ln\bigg({V\ns_2\over V\ns_1}\bigg)\ . \end{split}

\eta={W\over Q\subAB}=1-{T\ns_1\over T\ns_2}\ .

d(p ) = 0V γ

p\subA\,V^\gamma_1=p\subB\,V^\gamma_2 \qquad,\qquad p\ns_\ssr{D}\,V^\gamma_1=p\ns_\ssr{C}\,V^\gamma_2\ ,

{p\subB\over p\subA}={p\subC\over p\subD}= \bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma}\ .

Q\subAB=0 W\subAB=-\RDelta E\subAB=E\subA-E\subB

W\subAB={p\subA V\ns_1-p\subB V\ns_2\over\gamma-1} ={p\subA V\ns_1\over \gamma-1}\Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-1} \Bigg]\ .

pV^\gamma=p\subA V_1^\gamma

W\subAB=\int\limits_{V\ns_1}^{V\ns_2}\!\!p\,dV= p\subA V_1^\gamma\!\int\limits_{V\ns_1}^{V\ns_2}\!dV\,V^{-\gamma} ={p\subA V\ns_1\over \gamma-1}\Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-

dV = 0 W\subBC=0 Q\subBC

Q\subBC=E\subC-E\subB={V\ns_2\over\gamma-1}\,(p\subC-p\subB)\ .

Q\subCD=0 W\subCD=E\subC-E\subD

W\subCD={p\subC V\ns_2 - p\subD V\ns_1\over \gamma-1} =-{p\subD V\ns_1\over \gamma-1}\Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-1} \Bigg]\ .

dV = 0 W\subDA=0 Q\subDA

Q\subDA=E\subA-E\subD={V\ns_1\over\gamma-1}\,(p\subA-p\subD)\ .
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[diesel] A Diesel cycle consists of two adiabats (dark red), one isobar (light blue), and one isochore (green).

The total work done per cycle is then

and the efficiency is defined to be

The ratio  is called the compression ratio. We can make our Otto cycle more efficient simply by increasing the compression ratio. The problem with this scheme is that if the fuel mixture
becomes too hot, it will spontaneously ‘preignite’, and the pressure will jump up before point D in the cycle is reached. A Diesel engine avoids preignition by compressing the air only, and then later
spraying the fuel into the cylinder when the air temperature is sufficient for fuel ignition. The rate at which fuel is injected is adjusted so that the ignition process takes place at constant pressure. Thus,
in a Diesel engine, step DA is an isobar. The compression ratio is , and the cutoff ratio is . This refinement of the Otto cycle allows for higher
compression ratios (of about 20) in practice, and greater engine efficiency.

For the Diesel cycle, we have, briefly,

and

To find the efficiency, we will need to eliminate  and  in favor of  using the adiabatic equation of state . Thus,

where we’ve used  and . Putting it all together, the efficiency of the Diesel cycle is

The Joule-Brayton cycle
Our final example is the Joule-Brayton cycle, depicted in Fig. [jbray], consisting of two adiabats and two isobars. Along the adiabats we have Thus,

which says

This isobaric expansion at  is the power stroke. We have

Adiabatic expansion;  and . The work done by the gas is

[jbray] A Joule-Brayton cycle consists of two adiabats (dark red) and two isobars (light blue).

Isobaric compression at .

Adiabatic expansion;  and . The work done by the gas is

The total work done per cycle is then

and the efficiency is defined to be

\begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &={(p\subA-p\subD)V\ns_1\over\gamma-1} \Bigg[ 1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-1}\Bigg]\ , \end{split}

\eta\equiv{W\over Q\subDA}=1-\bigg({V\ns_1\over V\ns_2}\bigg)^{\!\gamma-1}\ .

/V
2
V

1

r\equiv V\subB/V\subD s\equiv V\subA/V\subD

\begin{split} W&=p\subA(V\subA-V\subD) + {p\subA V\subA-p\subB V\subB\over\gamma-1} + {p\subC V\subC-p\subD V\subD\over\gamma-1}\\ &={\gamma\,p\subA(V\subA-V\subD)\over\gamma-1} - {(p\subB-p\sub

Q\subDA={\gamma\,p\subA(V\subA-V\subD)\over\gamma-1}\ .

p\subB p\subC p\subA d(p ) = 0V γ

p\subB=p\subA\cdot\bigg({V\subA\over V\subB}\bigg)^{\!\!\gamma}\qquad,\qquad p\subC=p\subA\cdot\bigg({V\subD\over V\subB}\bigg)^{\!\!\gamma}\ ,

p\subD=p\subA V\subC=V\subB

\eta={W\over Q\subDA}=1-{1\over\gamma}\,{r^{1-\gamma} (s^\gamma-1)\over s-1}\ .

p\ns_2\,V^\gamma_\ssr{A}=p\ns_1\,V^\gamma_\ssr{D} \qquad,\qquad p\ns_2\,V^\gamma_\ssr{B}=p\ns_1\,V^\gamma_\ssr{C}\ ,

{V\subD\over V\subA}={V\subC\over V\subB}= \bigg({p\ns_2\over p\ns_1}\bigg)^{\!\gamma^{-1}}\ .

p = p2

\begin{aligned} W\subAB&=\int\limits_{V\subA}^{V\subB}\!\!dV\,p\ns_2 = p\ns_2\,(V\subB-V\subA)\\ \RDelta E\subAB&=E\subB-E\subA={p\ns_2\,(V\subB-V\subA)\over\gamma-1}\\ Q\subAB&=\RDelta E\subAB

Q\subBC=0 W\subBC=E\subB-E\subC

\begin{split} W\subBC&={p\ns_2 V\subB-p\ns_1 V\subC\over\gamma-1}= {p\ns_2 V\subB\over\gamma-1}\bigg(1-{p\ns_1\over p\ns_2} \cdot{V\subC\over V\subB}\bigg)\\ &={p\ns_2\, V\subB\over \gamma-1}\Bigg

p = p1

\begin{aligned} W\subCD&=\int\limits_{V\subC}^{V\subD}\!\!dV\,p\ns_1 = p\ns_1\,(V\subD-V\subC) =-p\ns_2\,(V\subB-V\subA)\,\bigg({p\ns_1\over p\ns_2}\bigg)^{\!1-\gamma^{-1}}\\ \RDelta E\subCD&=E\subD

Q\subDA=0 W\subDA=E\subD-E\subA

\begin{split} W\subDA&={p\ns_1 V\subD-p\ns_2 V\subA\over\gamma-1}= -{p\ns_2 V\subA\over\gamma-1}\bigg(1-{p\ns_1\over p\ns_2} \cdot{V\subD\over V\subA}\bigg)\\ &=-{p\ns_2\, V\subA\over \gamma-1}\Bi

\begin{split} W&=W\ns_\ssr{AB}+W\ns_\ssr{BC}+W\ns_\ssr{CD}+W\ns_\ssr{DA}\\ &={\gamma\,p\ns_2\, (V\subB-V\subA)\over \gamma-1}\Bigg[ 1-\bigg({p\ns_1\over p\ns_2} \bigg)^{\!1-\gamma^{-1}}\Bigg] \end{s
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Carnot engine at maximum power output
While the Carnot engine described above in §6.4 has maximum efficiency, it is practically useless, because the isothermal processes must take place infinitely slowly in order for the working material
to remain in thermal equilibrium with each reservoir. Thus, while the work done per cycle is finite, the cycle period is infinite, and the engine power is zero.

A modification of the ideal Carnot cycle is necessary to create a practical engine. The idea  is as follows. During the isothermal expansion stage, the working material is maintained at a temperature 
. The temperature difference between the working material and the hot reservoir drives a thermal current,

Here,  is a transport coefficient which describes the thermal conductivity of the chamber walls, multiplied by a geometric parameter (which is the ratio of the total wall area to its thickness).
Similarly, during the isothermal compression, the working material is maintained at a temperature , which drives a thermal current to the cold reservoir,

Now let us assume that the upper isothermal stage requires a duration  and the lower isotherm a duration . Then

Since the engine is reversible, we must have

which says

The power is

where we assume that the adiabatic stages require a combined time of . Thus, we find

[pptab] Observed performances of real heat engines, taken from table 1 from Curzon and Albhorn (1975).

Power source  (theor.)  (obs.)

West Thurrock (UK)

Coal Fired Steam Plant

CANDU (Canada)

PHW Nuclear Reactor

Larderello (Italy)

Geothermal Steam Plant

We optimize the engine by maximizing  with respect to the temperatures  and . This yields

The efficiency at maximum power is then \[\eta={Q\ns_2-\CQ\ns_1\over Q\ns_2}=1-{T\ns_{1\Rw}\over T\ns_{2\Rw}}= 1-\sqrt

\ . \label{MCeff}\] One also finds at maximum power \[{\RDelta t\ns_2\over \RDelta t\ns_1}=\sqrt\ .\] Finally, the maximized power is

Table [pptab], taken from the article of Curzon and Albhorn (1975), shows how the efficiency of this practical Carnot cycle, given by Equation [MCeff], rather accurately predicts the efficiencies of
functioning power plants.

This page titled 2.5: Heat Engines and the Second Law of Thermodynamics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

\eta\equiv{W\over Q\subAB}=1-\bigg({p\ns_1\over p\ns_2}\bigg)^{\!1-\gamma^{-1}}\ .
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2.6: The Entropy

Entropy and heat

The Second Law guarantees us that an engine operating between two heat baths at temperatures  and  must satisfy

with the equality holding for reversible processes. This is a restatement of Equation , after writing  for the heat transferred to the engine from reservoir #1. Consider now an arbitrary
curve in the  plane. We can describe such a curve, to arbitrary accuracy, as a combination of Carnot cycles, as shown in Fig. [mcarnot]. Each little Carnot cycle consists of two adiabats and two
isotherms. We then conclude

with equality holding if all the cycles are reversible. Rudolf Clausius, in 1865, realized that one could then define a new state function, which he called the entropy, , that depended only on the initial
and final states of a reversible process:

Since  is extensive, so is ; the units of entropy are .

[mcarnot] An arbitrarily shaped cycle in the  plane can be decomposed into a number of smaller Carnot cycles. Red curves indicate isotherms and blue curves adiabats, with .

The Third Law of Thermodynamics

Equation [dseqn] determines the entropy up to a constant. By choosing a standard state , we can define , and then by taking  in the above equation, we can define the absolute entropy
 for any state. However, it turns out that this seemingly arbitrary constant  in the entropy does have consequences, for example in the theory of gaseous equilibrium. The proper definition of

entropy, from the point of view of statistical mechanics, will lead us to understand how the zero temperature entropy of a system is related to its quantum mechanical ground state degeneracy. Walther
Nernst, in 1906, articulated a principle which is sometimes called the Third Law of Thermodynamics,

Again, this is not quite correct, and quantum mechanics tells us that , where  is the ground state degeneracy. Nernst’s law holds when .

We can combine the First and Second laws to write

where the equality holds for reversible processes.

Entropy changes in cyclic processes
For a cyclic process, whether reversible or not, the change in entropy around a cycle is zero: . This is because the entropy  is a state function, with a unique value for every
equilibrium state. A cyclical process returns to the same equilibrium state, hence  must return as well to its corresponding value from the previous cycle.

Consider now a general engine, as in Fig. [engref]. Let us compute the total entropy change in the entire Universe over one cycle. We have

written as a sum over entropy changes of the engine itself, the hot reservoir, and the cold reservoir . Clearly . The changes in the reservoir entropies are

because the hot reservoir loses heat  to the engine, and the cold reservoir gains heat  from the engine. Therefore,

Thus, for a reversible cycle, the net change in the total entropy of the engine plus reservoirs is zero. For an irreversible cycle, there is an increase in total entropy, due to spontaneous processes.

Gibbs-Duhem relation
Recall Equation [dwork]:

For reversible systems, we can therefore write

This says that the energy  is a function of the entropy , the generalized displacements , and the particle numbers :

Furthermore, we have

T1 T2

+ ≤ 0 ,
Q1

T1

Q2

T2

(2.6.1)

??? =−Q
1

Q1

p−V

⟶ ≤ 0 ,∑
i

Qi

Ti
∮

C

26dQ\mathchar
′

T
(2.6.2)

S

dS={\dbar Q\over T} \quad\Longrightarrow\quad S\subB-S\subA=\int\limits_{\RA}^{\RB} \!{\dbar Q\over T}\ . \label{dseqn}

Q S [S] = J/K

p−V γ = 5
3

Υ = 0SΥ A=Υ
S SΥ

S(T = 0) = lngkB g g= 1

dE+ 26dW = 26dQ ≤ T dS ,\mathchar′ \mathchar′ (2.6.3)

\RDelta S\ns_\ssr{CYC}=0 S

S

(\RDelta S)\ns_\ssr{TOTAL}=(\RDelta S)\ns_\ssr{ENGINE} + (\RDelta S)\ns_\ssr{HOT} +(\RDelta S)\ns_\ssr{COLD}\ ,

10 (\RDelta S)\ns_\ssr{ENGINE}=0

\begin{aligned} (\RDelta S)\ns_\ssr{HOT}&=\!\!\int\limits_{T=T\ns_2}\!\!\!{\dbar Q_\ssr{HOT}\over T} = -{Q\ns_2\over T\ns_2}\ <\ 0\\ (\RDelta S)\ns_\ssr{COLD}&=\!\!\int\limits_{T=T\ns_1}\!\!\!{\dbar Q_\ssr{COLD

> 0Q2 =− > 0Q1 Q1

(\RDelta S)\ns_\ssr{TOTAL}=-\bigg({Q\ns_1\over T\ns_1} + {Q\ns_2\over T\ns_2}\bigg) \ge 0\ .

26dW =− d − d  .\mathchar
′ ∑

j

yj Xj ∑
a

μa Na (2.6.4)

dE = T dS+ d + d  .∑
j

yj Xj ∑
a

μa Na (2.6.5)

E S { }Xj { }Na

E =E(S, { }, { }) .Xj Na (2.6.6)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18858?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/02%3A_Thermodynamics/2.06%3A_The_Entropy


2.6.2 https://phys.libretexts.org/@go/page/18858

Since  and all its arguments are extensive, we have

We now differentiate the LHS and RHS above with respect to , setting  afterward. The result is

Mathematically astute readers will recognize this result as an example of Euler’s theorem for homogeneous functions. Taking the differential of Equation [ETS], and then subtracting Equation
[dErev], we obtain

This is called the Gibbs-Duhem relation. It says that there is one equation of state which may be written in terms of all the intensive quantities alone. For example, for a single component system, we
must have , which follows from

Entropy for an ideal gas
For an ideal gas, we have , and

Invoking the ideal gas equation of state , we have

Integrating, we obtain

where  is an arbitrary function. Extensivity of  places restrictions on , so that the most general case is

where  is a constant. Equivalently, we could write

where  is another constant. When we study statistical mechanics, we will find that for the monatomic ideal gas the entropy is

where  is the thermal wavelength, which involved Planck’s constant. Let’s now contrast two illustrative cases.

Adiabatic free expansion – Suppose the volume freely expands from  to , with . Such an expansion can be effected by a removal of a partition between two chambers that are
otherwise thermally insulated (see Fig. [AFE]). We have already seen how this process entails

But the entropy changes! According to Equation [SEVN], we have

Reversible adiabatic expansion – If the gas expands quasistatically and reversibly, then  holds everywhere along the thermodynamic path. We then have, assuming ,

Integrating, we find

Thus,

Example system

Consider a model thermodynamic system for which

where  is a constant. We have

T = , = , =( )
∂E

∂S { , }Xj Na

yj ( )
∂E

∂Xj S,{ , }Xi(≠j) Na

μa ( )
∂E

∂Na S,{ , }Xj Nb(≠a)

(2.6.7)

E

λE =E(λS, {λ }, {λ }) .Xj Na (2.6.8)

λ λ = 1

E = S + +
∂E

∂S
∑
j
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∂E
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∑
a

Na

∂E
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j

yj Xj ∑
a

μa Na

S dT + d + d = 0 .∑
j

Xj yj ∑
a

Na μa (2.6.9)

p = p(T ,μ)

S dT −V dp+N dμ= 0 . (2.6.10)
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and therefore

Choosing any two of these equations, we can eliminate , which is inconvenient for experimental purposes. This yields three equations of state,

only two of which are independent.

What about  and ? To find , we recast Equation [EXA] as

We then have

where the last equality on the RHS follows upon invoking the first of the equations of state in Equation [TEOS]. To find , we eliminate  from eqns. [EXA] and [EXB], obtaining 
. From this we obtain

Thus, .

We can derive still more. To find the isothermal compressibility  , use the first of the equations of state in Equation [TEOS]. To derive the adiabatic compressibility 

 , use Equation [EXB], and then eliminate the inconvenient variable .

Suppose we use this system as the working substance for a Carnot engine. Let’s compute the work done and the engine efficiency. To do this, it is helpful to eliminate  in the expression for the
energy, and to rewrite the equation of state: \[E=pV=\sqrt

\>V^{1/2}\,T^{3/2}\qquad , \qquad p=\sqrt\>{T^{3/2}\over V^{1/2}}\ .\] We assume  throughout. We now see that for isotherms,

Furthermore, since \[\dbar W\big|\nd_T=\sqrt\>T^{3/2}\>{dV\over V^{1/2}}=2\,dE\big|\nd_T\ ,\] we conclude that

For adiabats, Equation [EXA] says , and therefore

as well as . We can use these relations to derive the following:

Now we can write

Adding up all the work, we obtain

Since

we find once again

Measuring the entropy of a substance

If we can measure the heat capacity  or  of a substance as a function of temperature down to the lowest temperatures, then we can measure the entropy. At constant pressure, for example,
we have , hence

The zero temperature entropy is  where  is the quantum ground state degeneracy at pressure . In all but highly unusual cases,  and .
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d(TV ) = 0
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E
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E\subB=\sqrt{V\subB\over V\subA}\,E\subA\quad,\quad E\subC={T\ns_1\over T\ns_2}\sqrt{V\subB\over V\subA}\,E\subA\quad,\quad E\subD={T\ns_1\over T\ns_2}\,E\subA\ .

\begin{aligned} W\subAB&=2(E\subB-E\subA)=2\Bigg(\sqrt{V\subB\over V\subA}-1\Bigg)E\subA\\ W\subBC&=(E\subB-E\subC)=\sqrt{V\subB\over V\subA}\Bigg(1-{T\ns_1\over T\ns_2}\Bigg)E\subA\\ W\subCD&=2
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Q\subAB=3(E\subB-E\subA)=\frac{3}{2}W\subAB=3\Bigg(\sqrt{V\subB\over V\subA}-1\Bigg)E\subA\ ,

\eta={W\over Q\subAB}=1-{T\ns_1\over T\ns_2} \ .
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2.7: Thermodynamic Potentials
Thermodynamic systems may do work on their environments. Under certain constraints, the work done may be bounded from
above by the change in an appropriately defined thermodynamic potential.

Energy 
Suppose we wish to create a thermodynamic system from scratch. Let’s imagine that we create it from scratch in a thermally
insulated box of volume . The work we must to to assemble the system is then  . After we bring all the constituent
particles together, pulling them in from infinity (say), the system will have total energy . After we finish, the system may not be
in thermal equilibrium. Spontaneous processes will then occur so as to maximize the system’s entropy, but the internal energy
remains at .

We have, from the First Law,   and combining this with the Second Law in the form 
 yields

Rearranging terms, we have  . Hence, the work done by a thermodynamic system under conditions
of constant entropy is bounded above by , and the maximum  is achieved for a reversible process. It is
sometimes useful to define the quantity

which is the differential work done by the system other than that required to change its volume. Then we have

and we conclude for systems at fixed  that .

In equilibrium, the equality in Equation [dEeqn] holds, and for single component systems where 
 we have  with

These expressions are easily generalized to multicomponent systems, magnetic systems,

Now consider a single component system at fixed . We conclude that  , which says that spontaneous processes in
a system with  always lead to a reduction in the internal energy . Therefore, spontaneous processes drive
the internal energy  to a minimum in systems at fixed .

Helmholtz free energy 
Suppose that when we spontaneously create our system while it is in constant contact with a thermal reservoir at temperature .
Then as we create our system, it will absorb heat from the reservoir. Therefore, we don’t have to supply the full internal energy ,
but rather only , since the system receives heat energy  from the reservoir. In other words, we must perform work 

 to create our system, if it is constantly in equilibrium at temperature . The quantity  is known as the
Helmholtz free energy, , which is related to the energy  by a Legendre transformation,

The general properties of Legendre transformations are discussed in Appendix II, §16.

Again invoking the Second Law, we have

Rearranging terms, we have  , which says that the work done by a thermodynamic system under
conditions of constant temperature is bounded above by , and the maximum  is achieved for a reversible
process. We also have the general result

E

V W = E

E

E

dE = 26dQ− 26dW\mathchar
′

\mathchar
′

26dQ ≤ T dS\mathchar′

dE ≤ T dS− 26dW .\mathchar′ (2.7.1)

26dW ≤ T dS−dE\mathchar′

−dE 26dW\mathchar
′

26d = 26dW −p dV  ,\mathchar′ Wfree \mathchar′ (2.7.2)

26d ≤ T dS−p dV −dE ,\mathchar′ Wfree (2.7.3)

(S,V ) 26d ≤ −dE\mathchar′ Wfree

26dW = p dV −μdN\mathchar
′

E = E(S,V ,N)

T = , −p = , μ = .( )
∂E

∂S V,N

( )
∂E

∂V S,N

( )
∂E

∂N S,V

(2.7.4)

(S,V ,N) dE ≤ 0

dS = dV = dN = 0 E

E (S,V ,N)

F

T

E

E−Q Q

W = E−TS T E−TS

F E

F = E−TS . (2.7.5)

dF ≤ −S dT − 26dW .\mathchar′ (2.7.6)

26dW ≤ −S dT −dF\mathchar′

−dF 26dW\mathchar′
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and we conclude, for systems at fixed , that .

Under equilibrium conditions, the equality in Equation [dFeqn] holds, and for single component systems where 
 we have  . This says that  with

For spontaneous processes,  says that spontaneous processes drive the Helmholtz free energy  to a
minimum in systems at fixed .

Enthalpy 
Suppose that when we spontaneously create our system while it is thermally insulated, but in constant mechanical contact with a
‘volume bath’ at pressure . For example, we could create our system inside a thermally insulated chamber with one movable wall
where the external pressure is fixed at . Thus, when creating the system, in addition to the system’s internal energy , we must
also perform work  in order to make room for it. In other words, we must perform work . The quantity  is
known as the enthalpy, . (We use the calligraphic font for  for enthalpy to avoid confusing it with magnetic field, .) The
enthalpy is obtained from the energy via a different Legendre transformation than that used to obtain the Helmholtz free energy  ,

Again invoking the Second Law, we have

hence with , we have in general

and we conclude, for systems at fixed , that .

In equilibrium, for single component systems,

which says , with

For spontaneous processes, , which says that spontaneous processes drive the enthalpy  to a
minimum in systems at fixed .

Gibbs free energy 
If we create a thermodynamic system at conditions of constant temperature  and constant pressure , then it absorbs heat energy 

 from the reservoir and we must expend work energy  in order to make room for it. Thus, the total amount of work we
must do in assembling our system is . This is the Gibbs free energy, . The Gibbs free energy is obtained
from  after two Legendre transformations,

Note that . The Second Law says that

which we may rearrange as  . Accordingly, we conclude, for systems at fixed ,
that .

For equilibrium one-component systems, the differential of  is

26d ≤ −S dT −p dV −dF  ,\mathchar′ W
free

(2.7.7)

(T ,V ) 26d ≤ −dF\mathchar′ Wfree

26dW = p dV −μdN\mathchar′ dF = −S dT −p dV +μdN F = F (T ,V ,N)

−S = , −p = , μ = .( )
∂F

∂T V,N

( )
∂F

∂V T ,N

( )
∂F

∂N T ,V

(2.7.8)

dF ≤ −S dT −p dV +μdN F

(T ,V ,N)

H

p

p E

pV W = E+pV E+pV

H H H

F

H = E+pV . (2.7.9)

dH ≤ T dS− 26dW +p dV +V dp ,\mathchar
′

(2.7.10)

26d = 26dW −p dV\mathchar
′

Wfree \mathchar
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26d ≤ T dS+V dp−dH ,\mathchar′ W
free

(2.7.11)

(S, p) 26d ≤ −dH\mathchar′ Wfree

dH = T dS+V dp+μdN  , (2.7.12)

H = H(S, p,N)

T = , V = , μ = .( )
∂H

∂S p,N
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∂H

∂p S,N

( )
∂H
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dH ≤ T dS+V dp+μdN H

(S, p,N)

G

T p

Q = TS pV

W = E−TS+pV G

E

G= E−TS+pV (2.7.14)
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therefore , with

Recall that Euler’s theorem for single component systems requires   which says , Thus, the
chemical potential  is the Gibbs free energy per particle. For spontaneous processes,  , hence
spontaneous processes drive the Gibbs free energy  to a minimum in systems at fixed .

Grand potential 
The grand potential, sometimes called the Landau free energy, is defined by

Under equilibrium conditions, its differential is

hence

Again invoking Equation [ETS], we find , which says that the pressure is the negative of the grand potential per unit
volume.

The Second Law tells us

hence

We conclude, for systems at fixed , that .

This page titled 2.7: Thermodynamic Potentials is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.

dG= −S dT +V dp+μdN  , (2.7.16)

G= G(T , p,N)

−S = , V = , μ = .( )
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∂T p,N
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∂p T ,N
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∂N T ,p

(2.7.17)

E = TS−pV +μN G= μN

μ dG≤ −S dT +V dp+μdN

G (T , p,N)

Ω
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dΩ = −S dT −p dV −N dμ , (2.7.19)
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Ω = −pV

dΩ ≤ − 26dW −S dT −μdN −N dμ ,\mathchar′ (2.7.21)

26d ≡ 26d +μdN ≤ −S dT −p dV −N dμ−dΩ .\mathchar′ W̃ free \mathchar′ Wfree (2.7.22)
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2.8: Maxwell Relations
Maxwell relations are conditions equating certain derivatives of state variables which follow from the exactness of the differentials
of the various state functions.

Relations deriving from 
The energy  is a state function, with

and therefore

Taking the mixed second derivatives, we find

Relations deriving from 

The energy  is a state function, with

and therefore

Taking the mixed second derivatives, we find

Relations deriving from 

The enthalpy  satisfies

which says , with

Taking the mixed second derivatives, we find

E(S, V , N)

E(S,V ,N)

dE = T dS−p dV +μdN  , (2.8.1)
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Relations deriving from 
The Gibbs free energy  satisfies

therefore , with

Taking the mixed second derivatives, we find

Relations deriving from 

The grand potential  satisfied

hence

Taking the mixed second derivatives, we find

Relations deriving from 

We can also derive Maxwell relations based on the entropy  itself. For example, we have

Therefore  and
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et cetera.

Generalized thermodynamic potentials
We have up until now assumed a generalized force-displacement pair . But the above results also generalize to
magnetic systems, where . In general, we have

Generalizing , we also obtain, mutatis mutandis, the following Maxwell relations:

This page titled 2.8: Maxwell Relations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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2.9: Equilibrium and Stability

Equilibrium
Suppose we have two systems, A and B, which are free to exchange energy, volume, and particle number, subject to overall
conservation rules

where , , and  are fixed. Now let us compute the change in the total entropy of the combined systems when they are allowed
to exchange energy, volume, or particle number. We assume that the entropy is additive,

Note that we have used , , and . Now we know from the Second Law that spontaneous
processes result in , which means that  tends to a maximum. If  is a maximum, it must be that the coefficients of ,

, and  all vanish, else we could increase the total entropy of the system by a judicious choice of these three differentials.
From , we have

Thus, we conclude that in order for the system to be in equilibrium, so that  is maximized and can increase no further under
spontaneous processes, we must have

Stability
Next, consider a uniform system with energy , volume , and particle number . We wish to check that
this system is not unstable with respect to spontaneously becoming inhomogeneous. To that end, we imagine dividing the system in
half. Each half would have energy , volume , and particle number . But suppose we divided up these quantities differently, so
that the left half had slightly different energy, volume, and particle number than the right, as depicted in Figure  . Does the
entropy increase or decrease? We have

Thus, we can write

where

+ = E , + = V , + = N  ,EA EB VA VB NA NB (2.9.1)
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is the matrix of second derivatives, known in mathematical parlance as the Hessian, and . Note that  is a
symmetric matrix.

Figure  : To check for an instability, we compare the energy of a system to its total energy when we reapportion its energy,
volume, and particle number slightly unequally.

Since  must be a maximum in order for the system to be in equilibrium, we are tempted to conclude that the homogeneous system
is stable if and only if all three eigenvalues of  are negative. If one or more of the eigenvalues is positive, then it is possible to
choose a set of variations  such that , which would contradict the assumption that the homogeneous state is one of
maximum entropy. A matrix with this restriction is said to be negative definite. While it is true that  can have no positive
eigenvalues, it is clear from homogeneity of  that one of the three eigenvalues must be zero, corresponding to the
eigenvector . Homogeneity means . Now let us take , where  is
infinitesimal. Then , , and , and homogeneity says 

 and . We then have a slightly
weaker characterization of  as negative semidefinite.

However, if we fix one of the components of  to be zero, then  must have some component orthogonal to the
zero eigenvector, in which case . Suppose we set  and we just examine the stability with respect to
inhomogeneities in energy and volume. We then restrict our attention to the upper left  submatrix of . A general symmetric 

 matrix may be written

It is easy to solve for the eigenvalues of . One finds

In order for  to be negative definite, we require  and . Thus,  and 
. Taken together, these conditions require

Going back to thermodynamic variables, this requires

Thus the entropy is a concave function of  and  at fixed . Had we set  and considered the lower right 
submatrix of , we’d have concluded that  is concave at fixed . Since , we have 

 and we conclude  for stability.
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Many thermodynamic systems are held at fixed , which suggests we examine the stability criteria for .
Suppose our system is in equilibrium with a reservoir at temperature  and pressure . Then, suppressing  (which is assumed
constant), we have

Now suppose there is a fluctuation in the entropy and the volume of our system, which is held at fixed particle number. Going to
second order in  and , we have

Equilibrium requires that the coefficients of  and  both vanish, that  and  . The
condition for stability is that  for all . Stability therefore requires that the Hessian matrix  be positive definite,
with

Thus, we have the following three conditions:

As we shall discuss below, the quantity  is the adiabatic thermal expansivity coefficient. We therefore conclude
that stability of any thermodynamic system requires

This page titled 2.9: Equilibrium and Stability is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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2.10: Applications of Thermodynamics
A discussion of various useful mathematical relations among partial derivatives may be found in the appendix in §17. Some facility
with the differential multivariable calculus is extremely useful in the analysis of thermodynamics problems.

Adiabatic free expansion revisited
Consider once again the adiabatic free expansion of a gas from initial volume  to final volume . Since the system is not
in equilibrium during the free expansion process, the initial and final states do not lie along an adiabat, they do not have the same
entropy. Rather, as we found, from , we have that , which means they have the same energy, and, in the case
of an ideal gas, the same temperature (assuming  is constant). Thus, the initial and final states lie along an isotherm. The situation
is depicted in Fig. [AFEgraph]. Now let us compute the change in entropy  by integrating along this isotherm. Note
that the actual dynamics are irreversible and do not quasistatically follow any continuous thermodynamic path. However, we can
use what is a fictitious thermodynamic path as a means of comparing  in the initial and final states.

[AFEgraph] Adiabatic free expansion via a thermal path. The initial and final states do not lie along an adabat! Rather, for an ideal
gas, the initial and final states lie along an isotherm.

We have

But from a Maxwell equation deriving from , we have

hence

For an ideal gas, we can use the equation of state  to obtain

Vi = rVf Vi
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f

N
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ΔS = − = dV  .Sf Si ∫
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( )
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∂V T ,N
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The integral can now be computed:

as we found before, in Equation [AFEdS] What is different about this derivation? Previously, we derived the entropy change from
the explicit formula for . Here, we did not need to know this function. The Maxwell relation allowed us to compute the
entropy change using only the equation of state.

Energy and volume

We saw how  for an ideal gas, independent of the volume. In general we should have

For the ideal gas,  is a function of  alone and is independent on the other intensive quantity . How does
energy vary with volume? At fixed temperature and particle number, we have, from ,

where we have used the Maxwell relation , derived
from the mixed second derivative . Another way to derive this result is as follows. Write  and
then express  in terms of , , and , resulting in

Now read off  and use the same Maxwell relation as before to recover Equation [pEVTN].
Applying this result to the ideal gas law  results in the vanishing of the RHS, hence for any substance obeying the
ideal gas law we must have

van der Waals equation of state
It is clear that the same conclusion follows for any equation of state of the form , where  is an
arbitrary function of its argument: the ideal gas law remains valid . This is not true, however, for the van der Waals equation of
state,

where  is the molar volume. We then find (always assuming constant ),

where . We can integrate this to obtain

where  is arbitrary. From Equation [cveqn], we immediately have
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[vdwab] Van der Waals parameters for some common gases. (Source: Wikipedia.)

gas  (bar)  (K)  ( )

Acetone 14.09 0.0994 52.82 505.1 0.2982

Argon 1.363 0.03219 48.72 150.9 0.0966

Carbon dioxide 3.640 0.04267 7404 304.0 0.1280

Ethanol 12.18 0.08407 63.83 516.3 0.2522

Freon 10.78 0.0998 40.09 384.9 0.2994

Helium 0.03457 0.0237 2.279 5.198 0.0711

Hydrogen 0.2476 0.02661 12.95 33.16 0.0798

Mercury 8.200 0.01696 1055 1723 0.0509

Methane 2.283 0.04278 46.20 190.2 0.1283

Nitrogen 1.408 0.03913 34.06 128.2 0.1174

Oxygen 1.378 0.03183 50.37 154.3 0.0955

Water 5.536 0.03049 220.6 647.0 0.0915

What about ? This requires a bit of work. We start with Equation [cpeqn],

We next take the differential of the equation of state (at constant ):

We can now read off the result for the volume expansion coefficient,

We now have for ,

where  is the molar volume.

To fix , we consider the  limit, where the density of the gas vanishes. In this limit, the gas must be ideal, hence
Equation [EVT] says that . Therefore , just as in the case of an ideal gas. However, rather than 

, which holds for ideal gases,  is given by Equation [cpvdw]. Thus,
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\begin{aligned} c_V^\ssr{VDW}&=\half f R \\ c_p^\ssr{VDW}&=\half f R +{R^2Tv^3\over RTv^3-2a(v-b)^2}\ .\end{aligned}
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Note that , which is the ideal gas result.

As we shall see in chapter 7, the van der Waals system in unstable throughout a region of parameters, where it undergoes phase
separation between high density (liquid) and low density (gas) phases. The above results are valid only in the stable regions of the
phase diagram.

Thermodynamic response functions
Consider the entropy  expressed as a function of , , and :

Dividing by , multiplying by , and assuming  throughout, we have

Appealing to a Maxwell relation derived from , and then appealing to Equation [boxtwob], we have

This allows us to write

We define the response functions,

Thus,

or, in terms of intensive quantities,

where, as always,  is the molar volume.

This above relation generalizes to any conjugate force-displacement pair :

For example, we could have .

A similar relationship can be derived between the compressibilities  and . We then clearly must start with the volume, writing
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Dividing by , multiplying by , and keeping  constant, we have

Again we appeal to a Maxwell relation, writing

and after invoking the chain rule,

we obtain

Comparing eqns. [inta] and [intb], we find

This result entails

The corresponding result for magnetic systems is

where  is the magnetization per mole of substance, and

Here the enthalpy and Gibbs free energy are

Remark: The previous discussion has assumed an isotropic magnetic system where  and  are collinear, hence .

In this case, the enthalpy and Gibbs free energy are
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Joule effect: free expansion of a gas
Previously we considered the adiabatic free expansion of an ideal gas. We found that  hence , which means
the process is isothermal, since  is volume-independent. The entropy changes, however, since 

. Thus,

What happens if the gas is nonideal?

We integrate along a fictitious thermodynamic path connecting initial and final states, where  along the path. We have

hence

We also have

Thus,

Note that the term in square brackets vanishes for any system obeying the ideal gas law. For a nonideal gas,

which is in general nonzero.

Now consider a van der Waals gas, for which

We then have

In §11.3 we concluded that  for the van der Waals gas, hence

Thus, if , we have  and the gas cools upon expansion.

Consider  gas with an initial specific volume of , which is the STP value for an ideal gas, freely expanding to a
volume  for maximum cooling. According to table [vdwab], , and we have 

, which is a pitifully small amount of cooling. Adiabatic free expansion is a very inefficient way to
cool a gas.
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[throttle] In a throttle, a gas is pushed through a porous plug separating regions of different pressure. The change in energy is the
work done, hence enthalpy is conserved during the throttling process.

Throttling: the Joule-Thompson effect
In a throttle, depicted in Fig. [throttle], a gas is forced through a porous plug which separates regions of different pressures.
According to the figure, the work done on a given element of gas is

Now we assume that the system is thermally isolated so that the gas exchanges no heat with its environment, nor with the plug.
Then  so , and

where  is enthalpy. Thus, the throttling process is isenthalpic. We can therefore study it by defining a fictitious thermodynamic
path along which . The, choosing  and  as state variables,

hence

The numerator on the RHS is computed by writing  and then dividing by , to obtain

The denominator is

Thus,

where  is the volume expansion coefficient.
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From the van der Waals equation of state, we obtain, from Equation ,

Assuming , we have

Thus, for , we have  and the gas heats up upon an isenthalpic pressure decrease. For , the gas

cools under such conditions.

[itvdw] Inversion temperature  for the van der Waals gas. Pressure and temperature are given in terms of  and 
, respectively.

In fact, there are two inversion temperatures  for the van der Waals gas. To see this, we set , which is the criterion for
inversion. From Equation  it is easy to derive \[{b\over v}=1-\sqrt

\ .\] We insert this into the van der Waals equation of state to derive a relationship  at which  holds. After a
little work, we find

This is a quadratic equation for , the solution of which is

In Fig. [itvdw] we plot pressure versus temperature in scaled units, showing the curve along which . The volume,

pressure, and temperature scales defined are

Values for , , and  are provided in table [vdwab]. If we define , , and , then the van der Waals
equation of state may be written in dimensionless form:
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In terms of the scaled parameters, the equation for the inversion curve  becomes

Thus, there is no inversion for . We are usually interested in the upper inversion temperature, , corresponding to the
upper sign in Equation [invtemp]. The maximum inversion temperature occurs for , where . For ,
from the data in table [vdwab], we find , which is within 10% of the experimentally measured value of .

What happens when  gas leaks from a container with ? Since  and , we have . The gas

warms up, and the heat facilitates the reaction , which releases energy, and we have a nice explosion.

This page titled 2.10: Applications of Thermodynamics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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2.11: Phase Transitions and Phase Equilibria
A typical phase diagram of a - -  system is shown in the Fig. [pdiaga](a). The solid lines delineate boundaries between distinct
thermodynamic phases. These lines are called coexistence curves. Along these curves, we can have coexistence of two phases, and
the thermodynamic potentials are singular. The order of the singularity is often taken as a classification of the phase transition. if
the thermodynamic potentials , , , and  have discontinuous or divergent  derivatives, the transition between the
respective phases is said to be  order. Modern theories of phase transitions generally only recognize two possibilities:
first order transitions, where the order parameter changes discontinuously through the transition, and second order transitions,
where the order parameter vanishes continuously at the boundary from ordered to disordered phases . We’ll discuss order
parameters during Physics 140B.

For a more interesting phase diagram, see Fig. [pdiaga](b,c), which displays the phase diagrams for He and He. The only
difference between these two atoms is that the former has one fewer neutron: (2p + 1n + 2e) in He versus (2p + 2n + 2e) in He.
As we shall learn when we study quantum statistics, this extra neutron makes all the difference, because He is a fermion while 
He is a boson.

[pdiaga] (a) Typical thermodynamic phase diagram of a single component - -  system, showing triple point (three phase
coexistence) and critical point. (Source: Univ. of Helsinki.) Also shown: phase diagrams for He (b) and He (c). What a difference
a neutron makes! (Source: Brittanica.)

- -  surfaces
The equation of state for a single component system may be written as

This may in principle be inverted to yield  or  or . The single constraint  on the three
state variables defines a surface in  space. An example of such a surface is shown in Fig. [PVTideal], for the ideal gas.

Real - -  surfaces are much richer than that for the ideal gas, because real systems undergo phase transitions in which
thermodynamic properties are singular or discontinuous along certain curves on the - -  surface. An example is shown in Fig.
[PVTa]. The high temperature isotherms resemble those of the ideal gas, but as one cools below the critical temperature , the
isotherms become singular. Precisely at , the isotherm  becomes perfectly horizontal at , which is the
critical molar volume. This means that the isothermal compressibility,  diverges at . Below , the
isotherms have a flat portion, as shown in Fig. [PVTb], corresponding to a two-phase region where liquid and vapor coexist. In the 

 plane, sketched for  in Fig. [H2Opd] and shown for  in Fig. [PTCO2], this liquid-vapor phase coexistence occurs
along a curve, called the vaporization (or boiling) curve. The density changes discontinuously across this curve; for , the
liquid is approximately 1000 times denser than the vapor at atmospheric pressure. The density discontinuity vanishes at the critical
point. Note that one can continuously transform between liquid and vapor phases, without encountering any phase transitions, by
going around the critical point and avoiding the two-phase region.
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[PVTideal] The surface  corresponding to the ideal gas equation of state, and its projections onto the , 
, and  planes.

In addition to liquid-vapor coexistence, solid-liquid and solid-vapor coexistence also occur, as shown in Fig. [PVTa]. The triple
point  lies at the confluence of these three coexistence regions. For , the location of the triple point and critical point
are given by

[PVTa] A - -  surface for a substance which contracts upon freezing. The red dot is the critical point and the red dashed line is
the critical isotherm. The yellow dot is the triple point at which there is three phase coexistence of solid, liquid, and vapor.

The Clausius-Clapeyron relation

Recall that the homogeneity of  guaranteed , from Euler’s theorem. It also guarantees a relation
between the intensive variables , , and , according to Equation [GDRa]. Let us define , the Gibbs free energy

p(v,T ) = RT/v (p,T )
(p,v) (T ,v)

( , )Tt pt OH2

Tt
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per mole. Then

where  and  are the molar entropy and molar volume, respectively. Along a coexistence curve between phase #1
and phase #2, we must have , since the phases are free to exchange energy and particle number, they are in thermal and
chemical equilibrium. This means

Therefore, along the coexistence curve we must have

where

is the molar latent heat of transition. A heat  must be supplied in order to change from phase #1 to phase #2, even without
changing  or . If  is the latent heat per mole, then we write  as the latent heat per gram: , where  is the molar
mass.

[PVTc] Equation of state for a substance which expands upon freezing, projected to the  and  and  planes.

Along the liquid-gas coexistence curve, we typically have , and assuming the vapor is ideal, we may write 
. Thus,

If  remains constant throughout a section of the liquid-gas coexistence curve, we may integrate the above equation to get

Liquid-solid line in 
Life on planet earth owes much of its existence to a peculiar property of water: the solid is less dense than the liquid along the
coexistence curve. For example at  and atm,

dg = −s dT +vdp , (2.11.2)
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The latent heat of the transition is . Thus,

The negative slope of the melting curve is invoked to explain the movement of glaciers: as glaciers slide down a rocky slope, they
generate enormous pressure at obstacles  Due to this pressure, the story goes, the melting temperature decreases, and the glacier
melts around the obstacle, so it can flow past it, after which it refreezes. But it is not the case that the bottom of the glacier melts
under the pressure, for consider a glacier of height km. The pressure at the bottom is , which is only
about 100 atmospheres. Such a pressure can produce only a small shift in the melting temperature of about .

[PVTb] Projection of the - -  surface of Fig. [PVTa] onto the  plane.

Does the Clausius-Clapeyron relation explain how we can skate on ice? When my daughter was seven years old, she had a mass of
about kg. Her ice skates had blades of width about mm and length about cm. Thus, even on one foot, she imparted an
additional pressure of only

So why could my daughter skate so nicely? The answer isn’t so clear!  There seem to be two relevant issues in play. First, friction
generates heat which can locally melt the surface of the ice. Second, the surface of ice, and of many solids, is naturally slippery.
Indeed, this is the case for ice even if one is standing still, generating no frictional forces. Why is this so? It turns out that the Gibbs
free energy of the ice-air interface is larger than the sum of free energies of ice-water and water-air interfaces. That is to say, ice, as
well as many simple solids, prefers to have a thin layer of liquid on its surface, even at temperatures well below its bulk melting
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point. If the intermolecular interactions are not short-ranged , theory predicts a surface melt thickness . In
Fig. [surfmelt] we show measurements by Gilpin (1980) of the surface melt on ice, down to about C. Near  the melt
layer thickness is about nm, but this decreases to nm at C. At very low temperatures, skates stick rather than
glide. Of course, the skate material is also important, since that will affect the energetics of the second interface. The 19th century
novel, Hans Brinker, or The Silver Skates by Mary Mapes Dodge tells the story of the poor but stereotypically decent and
hardworking Dutch boy Hans Brinker, who dreams of winning an upcoming ice skating race, along with the top prize: a pair of
silver skates. All he has are some lousy wooden skates, which won’t do him any good in the race. He has money saved to buy steel
skates, but of course his father desperately needs an operation because – I am not making this up – he fell off a dike and lost his
mind. The family has no other way to pay for the doctor. What a story! At this point, I imagine the suspense must be too much for
you to bear, but this isn’t an American Literature class, so you can use Google to find out what happens (or rent the 1958 movie,
directed by Sidney Lumet). My point here is that Hans’ crappy wooden skates can’t compare to the metal ones, even though the
surface melt between the ice and the air is the same. The skate blade material also makes a difference, both for the interface energy
and, perhaps more importantly, for the generation of friction as well.

Slow melting of ice : a quasistatic but irreversible process
Suppose we have an ice cube initially at temperature  (i.e.  ) and we toss it into a pond of water. We
regard the pond as a heat bath at some temperature . Let the mass of the ice be . How much heat  is absorbed by the ice
in order to raise its temperature to  ? Clearly

where  and  are the specific heats of ice (solid) and water (liquid), respectively , and  is the latent heat of melting per unit
mass. The pond must give up this much heat to the ice, hence the entropy of the pond, discounting the new water which will come
from the melted ice, must decrease:

Now we ask what is the entropy change of the  in the ice. We have

 
The total entropy change of the system is then
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[PTCO2] Phase diagram for  in the  plane. (Source: www.scifun.org.)

Now since , we have

 
Therefore,

where . Clearly  is negative on the interval , which means that the maximum of 
occurs at  and the minimum at . But  and , which means that  for . Since 

, we conclude .

[surfmelt] Left panel: data from R. R. Gilpin, J. Colloid Interface Sci. 77, 435 (1980) showing measured thickness of the surface
melt on ice at temperatures below C. The straight line has slope , as predicted by theory. Right panel: phase diagram of ,
showing various high pressure solid phases. (Source : Physics Today, December 2005).

Gibbs phase rule
Equilibrium between two phases means that , , and  are identical. From

we derive an equation for the slope of the coexistence curve, the Clausius-Clapeyron relation. Note that we have one equation in
two unknowns , so the solution set is a curve. For three phase coexistence, we have
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which gives us two equations in two unknowns. The solution is then a point (or a set of points). A critical point also is a solution of
two simultaneous equations:

Recall . Note that there can be no four phase coexistence for a simple - -  system.

Now for the general result. Suppose we have  species, with particle numbers , where . It is useful to briefly
recapitulate the derivation of the Gibbs-Duhem relation. The energy  is a homogeneous function of degree
one:

From Euler’s theorem for homogeneous functions (just differentiate with respect to  and then set ), we have

Taking the differential, and invoking the First Law,

we arrive at the relation

of which Equation [GDR] is a generalization to additional internal ‘work’ variables. This says that the  quantities 
 are not all independent. We can therefore write

If there are  different phases, then in each phase , with , there is a chemical potential  for each species . We
then have

Here  is the chemical potential of the  species in the  phase. Thus, there are  such equations relating the 

variables , meaning that only  of them may be chosen as independent. This, then, is the dimension of

'thermodynamic space' containing a maximal number of intensive variables:

To completely specify the state of our system, we of course introduce a single extensive variable, such as the total volume . Note
that the total particle number  may not be conserved in the presence of chemical reactions!

Now suppose we have equilibrium among  phases. We have implicitly assumed thermal and mechanical equilibrium among all
the phases, meaning that  and  are constant. Chemical equilibrium applies on a species-by-species basis. This means

where . This gives  independent equations equations . Thus, we can have phase equilibrium among
the  phases of  species over a region of dimension

Since , we must have . Thus, with two species , we could have at most four phase coexistence.
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If the various species can undergo  distinct chemical reactions of the form

where  is the chemical formula for species , and  is the stoichiometric coefficient for the  species in the  reaction,
with , then we have an additional  constraints of the form

Therefore,

One might ask what value of  are we to use in Equation , or do we in fact have  such equations for each ? The answer is that
Equation [phaseq] guarantees that the chemical potential of species  is the same in all the phases, hence it doesn’t matter what
value one chooses for  in Equation [reacon].

Let us assume that no reactions take place, , so the total number of particles  is conserved. Instead of choosing 
 as  intensive variables, we could have chosen , where  is the

concentration of species .

Why do phase diagrams in the  and  plane look different than those in the  plane?  For example, Fig. [PVTc]
shows projections of the - -  surface of a typical single component substance onto the , , and  planes.
Coexistence takes place along curves in the  plane, but in extended two-dimensional regions in the  and  planes.
The reason that  and  are special is that temperature, pressure, and chemical potential must be equal throughout an equilibrium
phase if it is truly in thermal, mechanical, and chemical equilibrium. This is not the case for an intensive variable such as specific
volume  or chemical concentration .

This page titled 2.11: Phase Transitions and Phase Equilibria is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.
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2.12: Entropy of Mixing and the Gibbs Paradox

Computing the entropy of mixing

Entropy is widely understood as a measure of disorder. Of course, such a definition should be supplemented by a more precise
definition of disorder – after all, one man’s trash is another man’s treasure. To gain some intuition about entropy, let us explore the
mixing of a multicomponent ideal gas. Let  be the total number of particles of all species, and let  be the
concentration of species . Note that .

For any substance obeying the ideal gas law , the entropy is

since . Note that in Equation
[STVNideal] we have divided  by  before taking the logarithm. This is essential if the entropy is to be an extensive function
(see §7.5). One might think that the configurational entropy of an ideal gas should scale as , since each particle
can be anywhere in the volume . However, if the particles are indistinguishable, then permuting the particle labels does not result
in a distinct configuration, and so the configurational entropy is proportional to . The origin of
this indistinguishability factor will become clear when we discuss the quantum mechanical formulation of statistical mechanics.
For now, note that such a correction is necessary in order that the entropy be an extensive function.

If we did not include this factor and instead wrote , then we would find 
, the total entropy of two identical systems of particles separated by a barrier will

increase if the barrier is removed and they are allowed to mix. This seems absurd, though, because we could just as well regard the
barriers as invisible. This is known as the Gibbs paradox. The resolution of the Gibbs paradox is to include the indistinguishability
correction, which renders  extensive, in which case .

Consider now the situation in Fig. [boxes], where we have separated the different components into their own volumes . Let the
pressure and temperature be the same everywhere, so . The entropy of the unmixed system is then

[boxes] A multicomponent system consisting of isolated gases, each at temperature  and pressure . Then system entropy
increases when all the walls between the different subsystems are removed.

Now let us imagine removing all the barriers separating the different gases and letting the particles mix thoroughly. The result is
that each component gas occupies the full volume , so the entropy is

Thus, the entropy of mixing is

N = ∑a Na = /Nxa Na

a = 1∑a xa

pV = N TkB

S(T ,V ,N) = N ln(V /N) +Nϕ(T ) ,kB (2.12.1)

\big({\pz S\over\pz V}\big)\ns_\sss{T,N}=\big({\pz p\over\pz T}\big)\ns_\sss{V,N}={N\kB\over V}
V N

ln( ) = N lnVV N

V

ln( /N !) ∼ N ln(V /N) −NV N

(T ,V ,N) = N lnV +Nϕ(T )S∗ kB

(T ,V ,N) −2 (T , V , N) = N ln2S∗ S∗ 1
2

1
2

kB

S S(T ,V ,N) = 2S(T , V , N)1
2

1
2

Va
p = TVa NakB

= = [ ln( / ) + (T )] .S
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∑
a

Sa ∑
a

Na kB Va Na Na ϕa (2.12.2)

T p

V
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where  is the fraction of species . Note that .

What if all the components were initially identical? It seems absurd that the entropy should increase simply by removing some
invisible barriers. This is again the Gibbs paradox. In this case, the resolution of the paradox is to note that the sum in the
expression for  is a sum over distinct species. Hence if the particles are all identical, we have 

, hence .

Entropy and combinatorics
As we shall learn when we study statistical mechanics, the entropy may be interpreted in terms of the number of ways 

 a system at fixed energy and volume can arrange itself. One has

Consider a system consisting of  different species of particles. Now let it be that for each species label ,  particles of that
species are confined among  little boxes such that at most one particle can fit in a box (see Fig. [Smix]). How many ways  are
there to configure  identical particles among  boxes? Clearly

Were the particles distinct, we’d have , which is  times greater. This is because permuting distinct particles

results in a different configuration, and there are  ways to permute  particles.

The entropy for species  is then . We then use Stirling’s approximation,

which is an asymptotic expansion valid for . One then finds for , with ,

This is valid up to terms of order  in Stirling’s expansion. Since , the next term is small and we are safe to stop here.
Summing up the contributions from all the species, we get

where  is the initial dimensionless density of species .

[Smix] Mixing among three different species of particles. The mixed configuration has an additional entropy, .

ΔSmix = −S
mixed

S
unmixed

= ln(V / ) = −N ln  ,∑
a

Na kB Va kB ∑
a

xa xa

= =xa
Na

N

Va

V
a Δ ≥ 0Smix

S
mixed

= N ln(V /N) +Nϕ(T ) =S
mixed

kB S
unmixed

Δ = 0Smix

W (E,V ,N)

S(E,V ,N) = lnW (E,V ,N) .kB (2.12.4)
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K ≫ 1 Q,N ≫ 1 x = N/Q ∈ [0, 1]

ln( )
Q

N
= (Q lnQ−Q)−(xQ ln(xQ) −xQ)−((1 −x)Q ln((1 −x)Q)−(1 −x)Q)

= −Q[x lnx+(1 −x) ln(1 −x)] .
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Now let’s remove all the partitions between the different species so that each of the particles is free to explore all of the boxes.
There are  boxes in all. The total number of ways of placing  particles of species  through  particles of
species  is

where  is the number of vacant boxes. Again using Stirling’s rule, we find

where  is the fraction of all boxes containing a particle of species , and  is the number of empty boxes. Note that

where . Note that .

Let’s assume all the densities are initially the same, so , so . In this case,  is the fraction of
species  among all the particles. We then have , and

Thus, the entropy of mixing is

where  is the total number of particles among all species (excluding vacancies) and  is the
fraction of all boxes occupied by species .

Weak solutions and osmotic pressure

Suppose one of the species is much more plentiful than all the others, and label it with . We will call this the solvent. The
entropy of mixing is then

where  is the total number of solvent molecules, summed over all species. We assume the solution is weak, which
means . Expanding in powers of  and , we find

Consider now a solution consisting of  molecules of a solvent and  molecules of species  of solute, where . We
begin by expanding the Gibbs free energy , where there are  species of solutes, as a power series in the
small quantities . We have

Q = ∑a Qa N1 a = 1 Nσ

σ

=  ,W
mixed

Q!

! ! ⋯ !N0 N1 Nσ

(2.12.8)

= Q−N0 ∑σ
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=N ′ ∑σ
a=1 Na

≤ ≪Na N ′ N0 /N ′ N0 /Na N0

Δ = − [ ln( )− ]+O( / ) .Smix kB ∑
a=1

σ

Na

Na

N0

Na N ′2
N0 (2.12.13)

N0 Na a a = 1, … , σ

G(T , p, , , … , )N0 N1 Nσ σ

Na

G(T , p, , { })N0 Na = (T , p) + T ln( )N0 g0 kB ∑
a

Na

Na

eN0

+ (T , p) + (T , p)  .∑
a

Na ψa

1

2N0

∑
a,b

Aab Na Nb

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18864?pdf


2.12.4 https://phys.libretexts.org/@go/page/18864

The first term on the RHS corresponds to the Gibbs free energy of the solvent. The second term is due to the entropy of mixing.
The third term is the contribution to the total free energy from the individual species. Note the factor of  in the denominator inside
the logarithm, which accounts for the second term in the brackets on the RHS of Equation . The last term is due to
interactions between the species; it is truncated at second order in the solute numbers.

The chemical potential for the solvent is

and the chemical potential for species  is

where  is the concentrations of solute species . By assumption, the last term on the RHS of each of these equations
is small, since , where  is the total number of solute molecules. To lowest order, then, we have

where  is the total solute concentration.

[osmotic] Osmotic pressure causes the column on the right side of the U-tube to rise higher than the column on the left by an
amount .

If we add sugar to a solution confined by a semipermeable membrane , the pressure increases! To see why, consider a situation
where a rigid semipermeable membrane separates a solution (solvent plus solutes) from a pure solvent. There is energy exchange
through the membrane, so the temperature is  throughout. There is no volume exchange, however: , hence the
pressure need not be the same. Since the membrane is permeable to the solvent, we have that the chemical potential  is the same
on each side. This means

where  is the pressure on the left and right sides of the membrane, and  is again the total solute concentration. This
equation once again tells us that the pressure  cannot be the same on both sides of the membrane. If the pressure difference is
small, we can expand in powers of the osmotic pressure, , and we find

But a Maxwell relation (§9) guarantees

e

2.12.13
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where  is the molar volume of the solvent.

which looks very much like the ideal gas law, even though we are talking about dense (but ‘weak’) solutions! The resulting
pressure has a demonstrable effect, as sketched in Fig. [osmotic]. Consider a solution containing  moles of sucrose 
per kilogram ( ) of water at . We find  when .

One might worry about the expansion in powers of  when  is much larger than the ambient pressure. But in fact the next term in
the expansion is smaller than the first term by a factor of , where  is the isothermal compressibility. For water one has 

, hence we can safely ignore the higher order terms in the Taylor expansion.

Effect of impurities on boiling and freezing points
Along the coexistence curve separating liquid and vapor phases, the chemical potentials of the two phases are identical:

Here we write  for  to emphasize that we are talking about a phase with no impurities present. This equation provides a single
constraint on the two variables  and , hence one can, in principle, solve to obtain , which is the equation of the
liquid-vapor coexistence curve in the  plane. Now suppose there is a solute present in the liquid. We then have

where  is the dimensionless solute concentration, summed over all species. The condition for liquid-vapor coexistence now
becomes

This will lead to a shift in the boiling temperature at fixed . Assuming this shift is small, let us expand to lowest order in 
, writing

Note that

from a Maxwell relation deriving from exactness of . Since  is extensive, we can write  , where 
is the molar entropy. Solving for , we obtain

where  is the latent heat of the liquid-vapor transition . The shift  is called the boiling
point elevation.

As an example, consider seawater, which contains approximately 35 g of dissolved per kilogram of . The atomic
masses of Na and Cl are 23.0 and 35.4 , respectively, hence the total ionic concentration in seawater (neglecting everything but
sodium and chlorine) is given by
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[latentheats] Latent heats of fusion and vaporization at atm.

 Latent Heat Melting Latent Heat of Boiling

Substance of Fusion Point Vaporization Point

 

108 -114 855 78.3

339 -75 1369 -33.34

184 -57 574 -78

He – – 21 -268.93

H 58 -259 455 -253

Pb 24.5 372.3 871 1750

25.7 -210 200 -196

13.9 -219 213 -183

334 0 2270 100

The latent heat of vaporization of  at atmospheric pressure is , hence

Put another way, the boiling point elevation of  at atmospheric pressure is about  per percent solute. We can express
this as , where the molality  is the number of moles of solute per kilogram of solvent. For , we find 

.

Similar considerations apply at the freezing point, when we equate the chemical potential of the solvent plus solute to that of the
pure solid. The latent heat of fusion for  is about   We thus predict a freezing
point depression of . This can be expressed once again as , with 

.

Binary solutions

Consider a binary solution, and write the Gibbs free energy  as

The first four terms on the RHS represent the free energy of the individual component fluids and the entropy of mixing. The last
term is an interaction contribution. With , the interaction term prefers that the system be either fully  or fully . The
entropy contribution prefers a mixture, so there is a competition. What is the stable thermodynamic state?

p = 1
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f ℓ
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[binary] : Gibbs free energy per particle for a binary solution as a function of concentration  of the B species (pure A at the
left end ; pure B at the right end  ), in units of the interaction parameter . Dark red curve: ; green
curve: ; blue curve: . We have chosen  and 

. Note that the free energy  is not convex in  for , indicating an instability and
necessitating a Maxwell construction.

It is useful to write the Gibbs free energy per particle, , in terms of , , and the concentration 
 of species B (hence  is the concentration of species A). Then

In order for the system to be stable against phase separation into relatively -rich and -rich regions, we must have that 
be a convex function of . Our first check should be for a local instability, spinodal decomposition. We have

and

The spinodal is given by the solution to the equation , which is

Since  achieves its maximum value of  at , we have .

In Fig. [bing] we sketch the free energy  versus  for three representative temperatures. For , the free energy
is everywhere convex in . When , there free energy resembles the blue curve in Fig. [bing], and the system is unstable
to phase separation. The two phases are said to be immiscible, or, equivalently, there exists a solubility gap. To determine the
coexistence curve, we perform a Maxwell construction, writing

Here,  and  are the boundaries of the two phase region. These equations admit a symmetry of , hence we can set 
 and . We find

and invoking eqns. [binmax] and [gpmax] we obtain the solution
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[binmupd] Upper panels: chemical potential shifts  versus concentration . The dashed black line is the
spinodal, and the solid black line the coexistence boundary. Temperatures range from  (dark blue) to 

 (red) in units of . Lower panels: phase diagram in the  planes. The black
dot is the critical point.

The phase diagram for the binary system is shown in Fig. [binary]. For , the system is unstable, and spinodal
decomposition occurs. For , the system is metastable, just like the van der Waals gas in its corresponding
regime. Real binary solutions behave qualitatively like the model discussed here, although the coexistence curve is generally not
symmetric under , and the single phase region extends down to low temperatures for  and . If  itself is
temperature-dependent, there can be multiple solutions to eqns. [TSPINO] and [TCOEX]. For example, one could take

In this case,  at both high and low temperatures, and we expect the single phase region to be reentrant. Such a
phenomenon occurs in water-nicotine mixtures, for example.

(x) = ⋅  .Tcoex
λ

kB

1 −2x

  ln( )1−x

x

(2.12.35)
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[binary] Phase diagram for the binary system. The black curve is the coexistence curve, and the dark red curve is the spinodal. A-
rich material is to the left and B-rich to the right.

It is instructive to consider the phase diagram in the  plane. We define the chemical potential shifts,

and their sum and difference, . From the Gibbs-Duhem relation, we know that we can write  as a function
of , , and . Alternately, we could write  in terms of , , and , so we can choose which among  and  we
wish to use in our phase diagram. The results are plotted in Fig. [binmupd]. It is perhaps easiest to understand the phase diagram in
the  plane. At low temperatures, below , there is a first order phase transition at . For 

 and , infinitesimally positive, the system is in the -rich phase, but for , infinitesimally
negative, it is -rich. The concentration  changes discontinuously across the phase boundary. The critical point lies at 

.

If we choose  to be the extensive variable, then fixing  means . So st fixed  and ,

Since , where , we have that the coexistence

boundary in the  plane is simply the line , because .

Note also that there is no two-phase region in the  plane; the phase boundary in this plane is a curve which terminates at a
critical point. As we saw in §12, the same situation pertains in single component  systems. That is, the phase diagram in
the  or  plane contains two-phase regions, but in the  plane the boundaries between phases are one-dimensional
curves. Any two-phase behavior is confined to these curves, where the thermodynamic potentials are singular.

The phase separation can be seen in a number of systems. A popular example involves mixtures of water and ouzo or other anise-
based liqueurs, such as arak and absinthe. Starting with the pure liqueur ( ), and at a temperature below the coexistence curve
maximum, the concentration is diluted by adding water. Follow along on Fig. [binary] by starting at the point 

 and move to the left. Eventually, one hits the boundary of the two-phase region. At this point, the mixture
turns milky, due to the formation of large droplets of the pure phases on either side of coexistence region which scatter light, a
process known as spontaneous emulsification . As one continues to dilute the solution with more water, eventually one passes all
the way through the coexistence region, at which point the solution becomes clear once again, and described as a single phase.

What happens if ? In this case, both the entropy and the interaction energy prefer a mixed phase, and there is no instability to
phase separation. The two fluids are said to be completely miscible. An example would be benzene, , and toluene,  ( 

. The phase diagram would be blank, with no phase boundaries below the boiling transition, because the fluid could
exist as a mixture in any proportion.
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Figure [LVcoex] Gibbs free energy per particle  for an ideal binary solution for temperatures . The Maxwell
construction is shown for the case . Right: phase diagram, showing two-phase region and distillation sequence in 

 space.

Any fluid will eventually boil if the temperature is raised sufficiently high. Let us assume that the boiling points of our A and B
fluids are , and without loss of generality let us take  at some given fixed pressure . This means 

 and . What happens to the mixture

mixture? We begin by writing the free energies of the mixed liquid and mixed vapor phases as

Typically . Consider these two free energies as functions of the concentration , at fixed  and . If the curves never cross,
and  for all , then the liquid is always the state of lowest free energy. This is the situation in the first panel
of Fig. 2.37. Similarly, if  over this range, then the mixture is in the vapor phase throughout. What happens if the
two curves cross at some value of  ? This situation is depicted in the second panel of Fig. 2.37. In this case, there is always a
Maxwell construction which lowers the free energy throughout some range of concentration, i.e. the system undergoes phase
separation.

In an ideal fluid, we have , and setting  requires

where . Expanding the chemical potential about a given temperature ,

where we have used , the entropy per particle, and .

g T ∈ [ , ]T ∗
A

T ∗
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< T <T ∗
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(x,T )

T ∗
A,B

<T ∗
A

T ∗
B

24
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Figure
Figure

[FAZEO] Negative (left) and positive (right) azeotrope phase diagrams. From Wikipedia.

Thus, expanding  about , we have

We assume , i.e. the vapor phase has greater entropy per particle. Thus,  changes sign from negative to
positive as  rises through . If we assume that these are the only sign changes for  at fixed , then eqn. [muABbin]
can only be solved for . This immediately leads to the phase diagram in the rightmost panel of Fig. [LVcoex].
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Figure [FAZZ]: Free energies before Maxwell constructions for a binary fluid mixture in equilibrium with a vapor .
Panels show (a)  (ideal fluid), (b)  (miscible fluid; negative azeotrope), (c)  (positive azeotrope), (d) 

 (heteroazeotrope). Thick blue and red lines correspond to temperatures  and , respectively, with . Thin
blue and red curves are for temperatures outside the range . The black curves show the locus of points where  is
discontinuous, i.e. where the liquid and vapor free energy curves cross. The yellow curve in (d) corresponds to the coexistence
temperature for the fluid mixture. In this case the azeotrope forms within the coexistence region.

According to the Gibbs phase rule, with , two-phase equilibrium ( ) occurs along a subspace of dimension 
. Thus, if we fix the pressure  and the concentration , liquid-gas equilibrium occurs at

a particular temperature , known as the boiling point. Since the liquid and the vapor with which it is in equilibrium at  may
have different composition, different values of , one may distill the mixture to separate the two pure substances, as follows. First,
given a liquid mixture of  and , we bring it to boiling, as shown in the rightmost panel of Fig. [LVcoex]. The vapor is at a
different concentration  than the liquid (a lower value of  if the boiling point of pure  is less than that of pure , as shown). If
we collect the vapor, the remaining fluid is at a higher value of . The collected vapor is then captured and then condensed,
forming a liquid at the lower  value. This is then brought to a boil, and the resulting vapor is drawn off and condensed, etc The
result is a purified  state. The remaining liquid is then at a higher  concentration. By repeated boiling and condensation,  and 
can be separated. For liquid-vapor transitions, the upper curve, representing the lowest temperature at a given concentration for
which the mixture is a homogeneous vapor, is called the dew point curve. The lower curve, representing the highest temperature at
a given concentration for which the mixture is a homogeneous liquid, is called the bubble point curve. The same phase diagram
applies to liquid-solid mixtures where both phases are completely miscible. In that case, the upper curve is called the liquidus, and
the lower curve the solidus.
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When a homogeneous liquid or vapor at concentration  is heated or cooled to a temperature  such that  lies within the
two-phase region, the mixture phase separates into the the two end components  and , which lie on opposite sides
of the boundary of the two-phase region, at the same temperature. The locus of points at constant  joining these two points is
called the tie line. To determine how much of each of these two homogeneous phases separates out, we use particle number
conservation. If  is the fraction of the homogeneous liquid and homogeneous vapor phases present, then ,
which says  and . This is known as the lever rule.

For many binary mixtures, the boiling point curve is as shown in Fig. [FAZEO]. Such cases are called azeotropes. For negative
azeotropes, the maximum of the boiling curve lies above both . The free energy curves for this case are shown in panel (b) of
Fig. [FAZZ]. For , where  is the azeotropic composition, one can distill A but not B. Similarly, for  one can distill
B but not A . The situation is different for positive azeotropes, where the minimum of the boiling curve lies below both ,
corresponding to the free energy curves in panel (c) of Fig. [FAZZ]. In this case, distillation (i.e. condensing and reboiling the
collected vapor) from either side of  results in the azeotrope. One can of course collect the fluid instead of the vapor. In general,
for both positive and negative azeotropes, starting from a given concentration , one can only arrive at pure A plus azeotrope (if 

 ) or pure B plus azeotrope (if . Ethanol  and water  form a positive azeotrope which is 
ethanol and  water by weight. The individual boiling points are , while the azeotrope
boils at . No amount of distillation of this mixture can purify ethanol beyond the  level. To go beyond this
level of purity, one must resort to azeotropic distillation, which involves introducing another component, such as benzene (or a less
carcinogenic additive), which alters the molecular interactions.

To model the azeotrope system, we need to take , in which case one can find two solutions to the energy crossing condition 
. With two such crossings come two Maxwell constructions, hence the phase diagrams in Fig. [FAZEO]. Generally,

negative azeotropes are found in systems with , whereas positive azeotropes are found when . As we've seen, such
repulsive interactions between the  and  components in general lead to a phase separation below a coexistence temperature 

 given by Equation . What happens if the minimum boiling point lies within the coexistence region?
This is the situation depicted in panel (d) of Fig. [FAZZ]. The system is then a liquid/vapor version of the solid/liquid eutectic (see
Fig. [Feutectic]), and the minimum boiling point mixture is called a heteroazeotrope.
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[Feutectic] Phase diagram for a eutectic mixture in which a liquid   is in equilibrium with two solid phases  and . The same
phase diagram holds for heteroazeotropes, where a vapor is in equilibrium with two liquid phases.

This page titled 2.12: Entropy of Mixing and the Gibbs Paradox is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by Daniel Arovas.

α β

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18864?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/02%3A_Thermodynamics/2.12%3A_Entropy_of_Mixing_and_the_Gibbs_Paradox
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5


2.13.1 https://phys.libretexts.org/@go/page/18865

2.13: Some Concepts in Thermochemistry

Chemical reactions and the law of mass action
Suppose we have a chemical reaction among  species, written as

where

For example, we could have

for which

When , the corresponding  is a product; when , the corresponding  is a reactant. The bookkeeping of the
coefficients  which ensures conservation of each individual species of atom in the reaction(s) is known as stoichiometry

Now we ask: what are the conditions for equilibrium? At constant  and , which is typical for many chemical reactions, the
conditions are that  be a minimum. Now

so if we let the reaction go forward, we have , and if it runs in reverse we have . Thus, setting ,
we have the equilibrium condition

Let us investigate the consequences of this relation for ideal gases. The chemical potential of the  species is

Here  is the partial pressure of species , where  the dimensionless concentration of species .
Chemists sometimes write  for the concentration of species . In equilibrium we must have

which says

Exponentiating, we obtain the law of mass action:

The quantity  is called the equilibrium constant. When  is large, the LHS of the above equation is large. This favors
maximal concentration  for the products ( ) and minimal concentration  for the reactants ( ). This means that the
equation REACTANTS  PRODUCTS is shifted to the right, the products are plentiful and the reactants are scarce. When  is
small, the LHS is small and the reaction is shifted to the left, the reactants are plentiful and the products are scarce. Remember we
are describing equilibrium conditions here. Now we observe that reactions for which  shift to the left with increasing
pressure and shift to the right with decreasing pressure, while reactions for which  the situation is reversed: they shift to

σ

+ +⋯ + = 0 ,ζ1 A1 ζ2 A2 ζσ Aσ (2.13.1)

Aa

ζa

= chemical formula

= stoichiometric coefficient .
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the right with increasing pressure and to the left with decreasing pressure. When  there is no shift upon increasing or
decreasing pressure.

The rate at which the equilibrium constant changes with temperature is given by

Now from Equation [mui] we have that the enthalpy per particle for species  is

since  and . We find

and thus

where  is the enthalpy of the reaction, which is the heat absorbed or emitted as a result of the reaction.

When  the reaction is endothermic and the yield increases with increasing . When  the reaction is exothermic and
the yield decreases with increasing .

As an example, consider the reaction . We have

Suppose our initial system consists of  moles of ,  moles of , and  moles of undissociated  . These mole
numbers determine the initial concentrations , where . Define

in which case we have

Then the law of mass action gives

where . This yields a quadratic equation, which can be solved to find . Note that  for this
reaction since . The enthalpy of this reaction is positive: .

Enthalpy of formation
Most chemical reactions take place under constant pressure. The heat  associated with a given isobaric process is

where  is the enthalpy,

= 0∑a ζa
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a (2.13.10)
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Note that the enthalpy  is a state function, since  is a state function and  and  are state variables. Hence, we can
meaningfully speak of changes in enthalpy: . If  for a given reaction, we call it exothermic – this is the
case when  and thus heat is transferred to the surroundings. Such reactions can occur spontaneously, and, in really fun
cases, can produce explosions. The combustion of fuels is always exothermic. If , the reaction is called endothermic.
Endothermic reactions require that heat be supplied in order for the reaction to proceed. Photosynthesis is an example of an
endothermic reaction.

[dhtab] Enthalpies of formation of some common substances.

Formula Name State Formula Name State

Ag Silver crystal 0.0 NiSO Nickel sulfate crystal -872.9

C Graphite crystal 0.0 Al O
Aluminum

oxide
crystal -1657.7

C Diamond crystal 1.9 Ca P O
Calcium

phosphate
gas -4120.8

O Ozone gas 142.7 HCN
Hydrogen
cyanide

liquid 108.9

H O Water liquid -285.8 SF
Sulfur

hexafluoride
gas -1220.5

H BO Boric acid crystal -1094.3 CaF
Calcium
fluoride

crystal -1228.0

ZnSO Zinc sulfate crystal -982.8 CaCl
Calcium
chloride

crystal -795.4

Suppose we have two reactions

and

Then we may write

with

We can use this additivity of reaction enthalpies to define a standard molar enthalpy of formation. We first define the standard state
of a pure substance at a given temperature to be its state (gas, liquid, or solid) at a pressure bar. The standard reaction
enthalpies at a given temperature are then defined to be the reaction enthalpies when the reactants and products are all in their
standard states. Finally, we define the standard molar enthalpy of formation  of a compound  at temperature  as the
reaction enthalpy for the compound  to be produced by its constituents when they are in their standard state. For example, if 

, then we write

The enthalpy of formation of any substance in its standard state is zero at all temperatures, by definition: 
,
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[rxnenthalpy] Left panel: reaction enthalpy and activation energy (exothermic case shown). Right panel: reaction enthalpy as a
difference between enthalpy of formation of reactants and products.

Suppose now we have a reaction

To compute the reaction enthalpy , we can imagine forming the components  and  from their standard state constituents.
Similarly, we can imagine doing the same for  and . Since the number of atoms of a given kind is conserved in the process, the
constituents of the reactants must be the same as those of the products, we have

A list of a few enthalpies of formation is provided in table [dhtab]. Note that the reaction enthalpy is independent of the actual
reaction path. That is, the difference in enthalpy between  and  is the same whether the reaction is  or 

. This statement is known as Hess’s Law.

Note that

hence

We therefore have

For ideal gases, we have . For real gases, over a range of temperatures, there are small variations:

Two examples ( , atm):

If all the gaseous components in a reaction can be approximated as ideal, then we may write

where the subscript ‘rxn’ stands for ‘reaction’. Here  is the change in energy from reactants to products.

aA+b B  c C +dD .to35pt\rightarrowfill
ΔH

(2.13.25)

ΔH A B

C D

ΔH = −aΔ (A) −bΔ (B) +cΔ (C) +dΔ (D) .H
0
f H

0
f H

0
f H

0
f (2.13.26)

A B A⟶ B

A⟶X⟶ (Y +Z)⟶ B

dH = dE+p dV +V dp = 26dQ+V dp ,\mathchar′ (2.13.27)

=( =(  .Cp

26dQ\mathchar′

dT
)

p

∂H

∂T
)

p

(2.13.28)

H(T , p, ν) =H( , p, ν) +ν d ( ) .T0 ∫

T0

T

T ′ cp T ′ (2.13.29)

(T ) = (1 + f)Rcp
1
2

(T ) = α+β T +γ  .cp T 2 (2.13.30)

300 K < T < 1500 K p = 1

O2

OH2

:

:

α

α

= 25.503
J

molK

= 30.206
J

molK

,

,

β

β

= 13.612 ×10−3 J

molK2

= 9.936 ×10−3 J

molK2

,

,

γ

γ

= −42.553 ×10−7 J

molK3

= 11.14 ×10−7 J

molK3

(ΔH = (ΔE + RT  ,)rxn )rxn ∑
a

ζa (2.13.31)

(ΔE)rxn
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[enthtab] Average bond enthalpies for some common bonds. (Source: L. Pauling, The Nature of the Chemical Bond (Cornell Univ. Press, NY,
1960).)

enthalpy enthalpy enthalpy enthalpy

bond bond bond bond

436 348 259 155

412 612 163 254

388 811 409 219

463 305 945 210

565 613 157 250

431 890 270 193

366 360 200 178

299 743 374 212

338 484 146 151

322 338 497 264

318 276 185 172

238 203 176

Bond enthalpies
The enthalpy needed to break a chemical bond is called the bond enthalpy, . The bond enthalpy is the energy required to
dissociate one mole of gaseous bonds to form gaseous atoms. A table of bond enthalpies is given in Tab. [enthtab]. Bond enthalpies
are endothermic, since energy is required to break chemical bonds. Of course, the actual bond energies can depend on the location
of a bond in a given molecule, and the values listed in the table reflect averages over the possible bond environment.

The bond enthalpies in Tab. [enthtab] may be used to compute reaction enthalpies. Consider, for example, the reaction 
. We then have, from the table,

Thus, 483 kJ of heat would be released for every two moles of  produced, if the  were in the gaseous phase. Since 
is liquid at STP, we should also include the condensation energy of the gaseous water vapor into liquid water. At  the
latent heat of vaporization is , but at , one has , hence with  we have 

. Therefore, the heat produced by the reaction 
 is 

. Since the reaction produces two moles of water, we conclude that the enthalpy of formation of
liquid water at STP is half this value: .

(kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

H−H C −C C −S F −F

H−C C = C N −N F −Cl

H−N C ≡C N = N Cl−Br

H−O C −N N ≡N Cl− I

H−F C = N N −O Cl−S

H−Cl C ≡N N −F Br−Br

H−Br C −O N −Cl Br− I

H− I C = O N −Si Br−S

H−S C −F O−O I − I

H−P C −Cl O = O S −S

H−Si C −Br O−F P −P

C − I O−Cl Si−Si

h[ ∙ ]

2 (g) + (g) ⟶  2 O(l)H2 O2 H2

(ΔH)rxn
 

= 2 h[H−H] +h[O=O] −4 h[H−O]

= −483 kJ/mol  .O2

OH2 OH2 OH2

T = C100∘

= 2270 J/gℓ
~

T = C20∘ = 2450 J/gℓ
~

M = 18

ℓ = 44.1 kJ/mol

2 (g)H2

+ (g) O2 \ooalign{\raise1pt\hbox{\relbar\joinrel ⇀ \joinrel}\crcr  \lower1pt\hbox{↽ \joinrel\relbar\joinrel}}

 2 O(l)H2

(ΔH = −571.2 kJ / mol)rxn O2

Δ [ O] = 285.6 kJ/molH0
f H2
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[ethene] Calculation of reaction enthalpy for the hydrogenation of ethene (ethylene), .

Consider next the hydrogenation of ethene (ethylene): 
. The

product is known as ethane. The energy accounting is shown in Fig. [ethene]. To compute the enthalpies of formation of ethene and
ethane from the bond enthalpies, we need one more bit of information, which is the standard enthalpy of formation of  from 

, since the solid is the standard state at STP. This value is . We may now write

Thus, using Hess’s law, adding up these reaction equations, we have

Thus, the formation of ethene is endothermic. For ethane,

For ethane,

which is exothermic.

This page titled 2.13: Some Concepts in Thermochemistry is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.

C2H4

 C2H4

+   H2 \ooalign{\raise1pt\hbox{\relbar\joinrel ⇀ \joinrel}\crcr  \lower1pt\hbox{↽ \joinrel\relbar\joinrel}}

 C2H6

C(g)

C(s) Δ [C(g)] = 718 kJ/molH
0
f

2 C(g) +4 H(g)     to55pt\rightarrowfill
−2260 kJ

2 C(s)     to55pt\rightarrowfill
1436 kJ

2 (g)     H2 to55pt\rightarrowfill
872 kJ

(g)C2H4

2 C(g)

4 H(g) .

2 C(s) +2 (g)      (g) .H2 to55pt\rightarrowfill
48 kJ

C2H4 (2.13.32)

2 C(g) +6 H(g)     to55pt\rightarrowfill
−2820 kJ

2 C(s)     to55pt\rightarrowfill
1436 kJ

3 (g)     H2 to55pt\rightarrowfill
1306 kJ

(g)C2H6

2 C(g)

6 H(g)

2 C(s) +3 (g)      (g) ,H2 to55pt\rightarrowfill
−76 kJ

C2H6 (2.13.33)
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2.14: Appendix I- Integrating Factors
Suppose we have an inexact differential

Here I am adopting the ‘Einstein convention’ where we sum over repeated indices unless otherwise explicitly stated; 
. An integrating factor   is a function which, when divided into , yields an exact

differential:

Clearly we must have

Applying the Leibniz rule and then multiplying by  yields

If there are  independent variables , then there are  independent equations of the above form – one for
each distinct  pair. These equations can be written compactly as

where

Note that  is antisymmetric, and resembles a field strength tensor, and that  is antisymmetric in the first two
indices (but is not totally antisymmetric in all three).

Can we solve these  coupled equations to find an integrating factor ? In general the answer is no. However, when 
 we can always find an integrating factor. To see why, let’s call  and . Consider now the ODE

This equation can be integrated to yield a one-parameter set of integral curves, indexed by an initial condition. The equation for
these curves may be written as , where  labels the curves. Then along each curve we have

Thus,

This equation defines the integrating factor :

26dW = d  .\mathchar′ Ai xi (2.14.1)

d = dAi xi ∑i Ai xi eL( )x ⃗  26dF\mathchar′

dU = 26dW = d  .e−L \mathchar′ ∂U

∂xi
xi (2.14.2)

= ( ) = ( ) .
U∂2

∂ ∂xi xj

∂

∂xi
e−L Aj

∂

∂xj
e−L Ai (2.14.3)

eL

− = −  .
∂Aj

∂xi
Aj

∂L

∂xi

∂Ai

∂xj
Ai

∂L

∂xj
(2.14.4)

K { , … , }x1 xK K(K−1)1
2

(i, j)

=  ,Ωijk

∂L

∂x
k

Fij (2.14.5)

Ω
ijk

Fij

= −Aj δik Ai δjk

= −  .
∂Aj

∂xi

∂Ai

∂xj

Fij = −Ωijk Ωjik

K(K−1)1
2

L

K = 2 x ≡ x1 y ≡ x2

= −  .
dy

dx

(x, y)Ax

(x, y)Ay

(2.14.6)

(x, y) = 0Uc c

0 =
dUc

dx
= +

∂Ux

∂x

∂Uc

∂y

dy

dx

= −  .
∂Uc

∂x

Ax

Ay

∂Uc

∂y

= ≡  .
∂Uc

∂x
Ay

∂Uc

∂y
Ax e−LAx Ay (2.14.7)

L
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We now have that

and hence

This page titled 2.14: Appendix I- Integrating Factors is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.

L = −ln( ) = −ln( ) .
1

Ax

∂Uc

∂x

1

Ay

∂Uc

∂y
(2.14.8)

= , =  ,Ax eL
∂Uc

∂x
Ay eL

∂Uc

∂y
(2.14.9)

26dW = dx+ dy = d  .e−L \mathchar
′ ∂Uc

∂x

∂Uc

∂y
Uc (2.14.10)
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2.15: Appendix II- Legendre Transformations
A convex function of a single variable  is one for which  everywhere. The Legendre transform of a convex function 

 is a function  defined as follows. Let  be a real number, and consider the line , as shown in Figure . We
define the point  as the value of  for which the difference  is greatest. Then define 

.  The value  is unique if  is convex, since  is determined by the equation

Note that from  we have, according to the chain rule,

From this, we can prove that  is itself convex:

hence

Figure : Construction for the Legendre transformation of a function .

In higher dimensions, the generalization of the definition  is that a function  is convex if the matrix of
second derivatives, called the Hessian,

is positive definite. That is, all the eigenvalues of  must be positive for every . We then define the Legendre transform 
 as

where

Note that

f(x) (x) > 0f ′′

f(x) g(p) p y = px 2.15.1

x(p) x F (x, p) = px−f(x)

g(p) = F (x(p), p) 26 x(p) f(x) x(p)

(x(p)) = p .f ′ (2.15.1)

p = (x(p))f ′

(x(p)) = (x(p)) (p) ⟹ (p) = [ (x(p))  .
d

dp
f ′ f ′′ x′ x′ f ′′ ]

−1
(2.15.2)

g(p)

(p)g′ = [p x(p) −f(x(p))]
d

dp

= p (p) +x(p) − (x(p)) (p) = x(p) ,x′ f ′ x′

(p) = (p) = [ (x(p)) > 0 .g′′ x′ f ′′ ]
−1

(2.15.3)

2.15.1 f(x)

(x) > 0f ′′ F ( , … , )x1 xn

(x) =Hij

F∂2

∂ ∂xi xj
(2.15.4)

(x)Hij x

G(p)

G(p) = p ⋅ x −F (x) (2.15.5)

p = ∇F  . (2.15.6)

dG= x ⋅ dp +p ⋅ dx −∇F ⋅ dx = x ⋅ dp , (2.15.7)
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which establishes that  is a function of  and that

Note also that the Legendre transformation is self dual, which is to say that the Legendre transform of  is : 
 under successive Legendre transformations.

We can also define a partial Legendre transformation as follows. Consider a function of  variables , where 
 and , with . Define , and

where

These equations are then to be inverted to yield

Note that

Thus, from the chain rule,

which says

where the  partial Hessian is

Note that  is symmetric. And with respect to the  coordinates,

where

is the partial Hessian in the  coordinates. Now it is easy to see that if the full  Hessian matrix  is positive definite, then
any submatrix such as  or  must also be positive definite. In this case, the partial Legendre transform is convex in 

 and concave in .

This page titled 2.15: Appendix II- Legendre Transformations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.

G p

=  .
∂G

∂pj
xj (2.15.8)

G(p) F (x)

F → G→ F

q F (x, y)

x = { , … , }x1 xm y = { , … , }y1 yn q = m+n p = { , … , }p1 pm

G(p, y) = p ⋅ x −F (x, y) , (2.15.9)

= (a = 1, … ,m) .pa
∂F

∂xa
(2.15.10)

= (p, y) =  .xa xa
∂G

∂pa
(2.15.11)

= (x(p, y), y) .pa
∂F

∂xa
(2.15.12)

= = =  ,δab
∂pa
∂pb

F∂2

∂ ∂xa xc

∂xc
∂pb

F∂2

∂ ∂xa xc

G∂2

∂ ∂pc pb
(2.15.13)

= =  ,
G∂2

∂ ∂pa pb

∂xa
∂pb

K
−1
ab (2.15.14)

m×m

= =  .
F∂2

∂ ∂xa xb

∂pa

∂xb
Kab (2.15.15)

=Kab Kba y

= − = −  ,
G∂2

∂ ∂yμ yν

F∂2

∂ ∂yμ yν
Lμν (2.15.16)

=Lμν

F∂2

∂ ∂yμ yν
(2.15.17)

y q×q Hij

Kab Lμν

{ , … , }p1 pm { , … , }y1 yn

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18867?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/02%3A_Thermodynamics/2.15%3A_Appendix_II-_Legendre_Transformations
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5


2.16.1 https://phys.libretexts.org/@go/page/18868

2.16: Appendix III- Useful Mathematical Relations
Consider a set of  independent variables , which can be thought of as a point in -dimensional space. Let 

 and  be other choices of coordinates. Then

Note that this entails a matrix multiplication: , where , , and . We
define the determinant

Such a determinant is called a Jacobian. Now if , then . Thus,

Recall also that

Consider the case . We have

We also have

From this simple mathematics follows several very useful results.

1) First, write

Now let  :

Thus,

2) Second, we have

n { , … , }x1 xn n

{ , … , }y1 yn { , … , }z1 zn

=  .
∂xi
∂z

k

∂xi
∂yj

∂yj

∂z
k

(2.16.1)

=A
ik

B
ij
C
jk

= ∂ /∂A
ik

x
i

z
k

= ∂ /∂B
ij

x
i

y
j

= ∂ /∂C
jk

y
j

z
k

det( ) ≡  .
∂xi
∂zk

∂( , … , )x1 xn

∂( , … , )z1 zn
(2.16.2)

A = BC det(A) = det(B) ⋅ det(C)

= ⋅  .
∂( , … , )x1 xn

∂( , … , )z1 zn

∂( , … , )x1 xn

∂( , … , )y1 yn

∂( , … , )y1 yn

∂( , … , )z1 zn
(2.16.3)

=  .
∂x

i

∂x
k

δik (2.16.4)

n = 2

= det = −  .
∂(x, y)

∂(u, v)

⎛

⎝

⎜⎜⎜⎜

( )∂x
∂u v

( )∂y

∂u v

( )∂x
∂v u

( )∂y

∂v u

⎞

⎠

⎟⎟⎟⎟
( )

∂x

∂u v

( )
∂y

∂v u

( )
∂x

∂v u

( )
∂y

∂u v

(2.16.5)

⋅ =  .
∂(x, y)

∂(u, v)

∂(u, v)

∂(r, s)

∂(x, y)

∂(r, s)
(2.16.6)

= [  .
∂(x, y)

∂(u, v)

∂(u, v)

∂(x, y)
]

−1

(2.16.7)

v= y

= =  .
∂(x, y)

∂(u, y)
( )

∂x

∂u y

1

( )∂u
∂x y

(2.16.8)

= 1/( )
∂x

∂u y

( )
∂u

∂x y

(2.16.9)
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which is to say

Invoking Equation [boxone], we conclude that

3) Third, we have

which says

This is simply the chain rule of partial differentiation.

4) Fourth, we have

which says

5) Fifth, whenever we differentiate one extensive quantity with respect to another, holding only intensive quantities constant, the
result is simply the ratio of those extensive quantities. For example,

The reason should be obvious. In the above example, , where  is a function of the two intensive quantities
 and . Hence differentiating  with respect to  holding  and  constant is the same as dividing  by . Note that this implies

where  is the particle density.

6) Sixth, suppose we have a function  and we write

That is,

=
∂(x, y)

∂(u, y)
( )

∂x

∂u y

= ⋅
∂(x, y)

∂(x, u)

∂(x, u)

∂(u, y)

= −  ,( )
∂y

∂u x

( )
∂x

∂y u

= −  .( )
∂x

∂y u

( )
∂y

∂u x

( )
∂x

∂u y

(2.16.10)

= −1 .( )
∂x

∂y u

( )
∂y

∂u x

( )
∂u

∂x y

(2.16.11)

= ⋅  ,
∂(x, v)

∂(u, v)

∂(x, v)

∂(y, v)

∂(y, v)

∂(u, v)
(2.16.12)

=( )
∂x

∂u v

( )
∂x

∂y v

( )
∂y

∂u v

(2.16.13)

∂(x, y)

∂(u, y)
= ⋅

∂(x, y)

∂(u, v)

∂(u, v)

∂(u, y)

= −  ,( )
∂x

∂u v

( )
∂y

∂v u

( )
∂v

∂y u

( )
∂x

∂v u

( )
∂y

∂u v

( )
∂v

∂y u

= −( )
∂x

∂u y

( )
∂x

∂u v

( )
∂x

∂y u

( )
∂y

∂u v

(2.16.14)

=  .( )
∂S

∂V p,T

S

V
(2.16.15)

S(p,V ,T ) = V ϕ(p,T ) ϕ

p T S V p T S V

= = =  ,( )
∂S

∂V p,T

( )
∂S

∂V p,μ

( )
∂S

∂V n,T

S

V
(2.16.16)

n = N/V

Φ(y, v)

dΦ = x dy+u dv . (2.16.17)
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Now we may write

If we demand , this yields

Note that  . From the equation  we also derive

Next, we use Equation [due] with  to eliminate  in favor of , and then substitute into Equation [dxe]. This yields

Finally, Equation [due] with  yields

Combining the results of eqns. [pxuv], [pyvu], [pxvu], and [pyuv], we have

Thus, if , then  and , we have

Nota bene: It is important to understand what other quantities are kept constant, otherwise we can run into trouble. For example, it
would seem that Equation [jacob] would also yield

But then we should have

when according to Equation [jacob] it should be . What has gone wrong?

The problem is that we have not properly specified what else is being held constant. In Equation [detTSpV] it is  (or ) which is
being held constant, while in Equation [detmuNpV] it is  (or ) which is being held constant. Therefore a naive application of the
chain rule for determinants yields the wrong result, as we have seen.

Let’s be more careful. Applying the same derivation to  and holding  constant, we conclude

x = ≡ , u = ≡  .( )
∂Φ

∂y v

Φy ( )
∂Φ

∂v y

Φv (2.16.18)

dx

du

= dy+ dvΦyy Φyv

= dy+ dv .Φvy Φvv

du = 0

=  .( )
∂x

∂u v

Φyy

Φvy

(2.16.19)

=Φvy Φyv du = 0

= −  .( )
∂y

∂v u

Φvv

Φvy

(2.16.20)

du = 0 dy dv

= −  .( )
∂x

∂v u

Φyv

Φyy Φvv

Φvy

(2.16.21)

dv= 0

=  .( )
∂y

∂u v

1

Φvy

(2.16.22)

∂(x, y)

∂(u, v)
= −( )

∂x

∂u v

( )
∂y

∂v u

( )
∂x

∂v u

( )
∂y

∂u v

=( )(− )−( − )( ) = −1 .
Φyy

Φvy

Φvv

Φvy

Φyv

Φyy Φvv

Φvy

1

Φvy

Φ = E(S,V ) (x, y) = (T ,S) (u, v) = (−p,V )

= −1 .
∂(T ,S)

∂(−p,V )
(2.16.23)

= 1 .
∂(μ,N)

∂(p,V )
(2.16.24)

= ⋅ = +1 (WRONG!)
∂(T ,S)

∂(μ,N)

∂(T ,S)

∂(−p,V )

∂(−p,V )

∂(μ,N)
(2.16.25)

−1

N μ

S T

dE = x dy+u dv+r ds s

= −  = −1 .
∂(x, y, s)

∂(u, v, s)
( )

∂x

∂u v,s

( )
∂y

∂v u,s

( )
∂x

∂v u,s

( )
∂y

∂u v,s

(2.16.26)
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Thus, if

where  or  or , the appropriate thermodynamic relations are

For example,

and

If we are careful, then the results in eq. [TSyXN] can be quite handy, especially when used in conjunction with Equation [chain].
For example, we have \[\pabc{S}{V}{T,N}={\pz(T,S,N)\over\pz(T,V,N)}=\stackrel{=\,1}{\overbrace

} \cdot{\pz(p,V,N)\over\pz(T,V,N)}=\pabc{p}{T}{V,N}\ ,\] which is one of the Maxwell relations derived from the exactness of 
. Some other examples include \[\begin{aligned} \pabc{V}{S}{p,N}&={\pz(V,p,N)\over\pz(S,p,N)}=\stackrel{=\,1}

{\overbrace}\cdot{\pz(S,T,N)\over\pz(S,p,N)}=\pabc{T}{p}{S,N}\\ \pabc{S}{N}{T,p}&=
{\pz(S,T,p)\over\pz(N,T,p)}=\stackrel{=\,1}{\overbrace} \cdot{\pz(\mu,N,p)\over\pz(N,T,p)}=-\pabc{\mu}{T}{p,N}\
,\bvph\end{aligned}\] which are Maxwell relations deriving from  and , respectively. Note that due to the
alternating nature of the determinant – it is antisymmetric under interchange of any two rows or columns – we have

In general, it is usually advisable to eliminate  from a Jacobian. If we have a Jacobian involving , , and , we can write

where each  is a distinct arbitrary state variable other than .

If our Jacobian involves the , , and , we write

If our Jacobian involves the , , and , we write

For example, \[\begin{aligned} \pabc{T}{p}{S,N}&={\pz(T,S,N)\over\pz(p,S,N)}=\stackrel{=\,1}{\overbrace

} \cdot{\pz(p,V,N)\over\pz(p,T,N)}\cdot {\pz(p,T,N)\over\pz(p,S,N)}={T\over C\ns_p}\pabc{V}{T}{p,N}\bvph\\ \pabc{V}{p}
{S,N}&={\pz(V,S,N)\over\pz(p,S,N)}=
{\pz(V,S,N)\over\pz(V,T,N)}\cdot{\pz(V,T,N)\over\pz(p,T,N)}\cdot{\pz(p,T,N)\over\pz(p,S,N)} ={C\ns_V\over C\ns_p}\,\pabc{V}
{p}{T,N}\ .\bvph\end{aligned}\] With  the compressibility, we see that the second of these equations says 

 , relating the isothermal and adiabatic compressibilities and the molar heat capacities at constant volume and
constant pressure. This relation was previously established in Equation [cpcvktks]

dE = T dS+y dX+μdN , (2.16.27)

(y,X) = (−p,V ) ( , )Hα M α ( , )Eα P α

∂(T ,S,N)

∂(y,X,N)

∂(μ,N ,X)

∂(T ,S,X)

∂(y,X,S)

∂(μ,N ,S)

= −1

= −1

= −1

∂(T ,S,μ)

∂(y,X,μ)

∂(μ,N , y)

∂(T ,S, y)

∂(y,X,T )

∂(μ,N ,T )

= −1

= −1

= −1

= = = −1
∂(T ,S,N)

∂(−p,V ,N)

∂(−p,V ,S)

∂(μ,N ,S)

∂(μ,N ,V )

∂(T ,S,V )
(2.16.28)

= = = −1 .
∂(T ,S,μ)

∂(−p,V ,μ)

∂(−p,V ,T )

∂(μ,N ,T )

∂(μ,N , −p)

∂(T ,S, −p)
(2.16.29)

dF (T ,V ,N)

dH(S, p,N) dG(T , p,N)

= − = = …  .
∂(x, y, z)

∂(u, v,w)

∂(y, x, z)

∂(u, v,w)

∂(y, x, z)

∂(w, v, u)
(2.16.30)

S T S N

= =  ,
∂(T ,S,N)

∂( ∙ , ∙ ,N)

∂(T ,S,N)

∂(p,V ,N)

∂(p,V ,N)

∂( ∙ , ∙ ,N)

∂(p,V ,N)

∂( ∙ , ∙ ,N)
(2.16.31)

∙ N

S V N

= ⋅ = ⋅  .
∂(S,V ,N)

∂( ∙ , ∙ ,N)

∂(S,V ,N)

∂(T ,V ,N)

∂(T ,V ,N)

∂( ∙ , ∙ ,N)

C
V

T

∂(T ,V ,N)

∂( ∙ , ∙ ,N)
(2.16.32)

S p N

= ⋅ = ⋅  .
∂(S, p,N)

∂( ∙ , ∙ ,N)

∂(S, p,N)

∂(T , p,N)

∂(T , p,N)

∂( ∙ , ∙ ,N)

Cp

T

∂(T , p,N)

∂( ∙ , ∙ ,N)
(2.16.33)
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2.S: Summary
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Summary
 Extensive and intensive variables: The equilibrium state of a thermodynamic system is characterized by specifying a number of

state variables which can be either extensive (scaling linearly with system size), or intensive (scaling as the zeroth power of system
size). Extensive quantities include: energy , entropy , particle number , magnetization , Intensive quantities include
temperature , pressure , number density , magnetic field , The ratio of two extensive quantities is intensive, . In
the thermodynamic limit, all extensive state variables tend to infinity (in whatever units are appropriate), while their various ratios
are all finite. A full description of the state of any thermodynamic system must involve at least one extensive variable (but may or
may not include intensive variables).

 Work: The internal energy of a thermodynamic system can change as a result of a generalized displacement , as a result of
work  done by the system. We write the differential form of  as

where  is the generalized force conjugate to the generalized displacement , and  is the chemical potential of species ,
which is conjugate to the number of particles of that species, . Think of chemical work as the work required to assemble
particles out of infinitely remote constituents. The slash through the differential symbol indicates that  is an
inexact differential, there is no function .

 Heat: Aside from work done by or on the system, there is another way of changing the system’s internal energy, which is by
transferring heat, . Heat is a form of energy contained in the random microscopic motions of the constituent particles. Like 

, the differential  is also inexact, and there is no heat function . Transfer of heat
under conditions of constant volume or pressure and constant particle number results in a change of the the thermodynamic state
via a change in temperature: , where  is the heat capacity of the system at fixed volume/pressure and
particle number.

 First Law: The First Law of Thermodynamics is a statement of energy conservation which accounts for both types of energies: 
, or in differential form .

 Single component systems: A single component system is completely specified by three state variables, which can be taken to be 
, , and , and writing , we have

If, for example, we want to use variables , we write

Proceeding in this way, one can derive expressions like

2nd

∙

E S N M

T p n H n = N/V

∙ dXi

W W

26dW = − d − d  ,\mathchar
′ ∑

i

yi Xi ∑
a

μa Na (2.S.1)

−yi Xi μa a

Na

26dW\mathchar
′

W (T , p,V , …)

∙

Q

26dW\mathchar′ 26dQ\mathchar′ Q(T , p,V , …)

dT = 26dQ/C\mathchar
′

C

∙

ΔE = Q−W dE = 26dQ− 26dW\mathchar′ \mathchar′

∙

E V N 26dW = p dV −μdN\mathchar′

26dQ = dE+p dV −μdN  .\mathchar′ (2.S.2)

(T ,V ,N)

dE = dT + dV + dN  .( )
∂E

∂T V,N

( )
∂E

∂V T ,N

( )
∂E

∂N T ,V

(2.S.3)
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 Equations of state: An equation of state is a relation among state variables. Examples include the familiar ideal gas law, 
, and the van der Waals equation of state, .

 Ideal gases: For ideal gases, one has  and , where  is the number of kinetic degrees of freedom (
 for monatomic,  for diatomic, and  for polyatomic gases, assuming only translational and rotational freedoms are

excited).

 Special thermodynamic processes: Remember adiabatic ( ), isothermal ( ), isobaric ( ), and
isochoric ( ). A quasistatic process is one which follows a continuous path is a space of state variables infinitely slowly, so
that the system is in equilibrium at any instant. A reversible process is necessarily quasistatic, and moreover is nondissipative ( no
friction), so that its thermodynamic path may be followed in reverse.

 Heat engines and the Second Law: A heat engine takes a thermodynamic system through a repeated cycle of equilibrium states 
, the net result of which is to convert heat into mechanical work, or vice versa. A perfect engine, which

would extract heat  from a large thermal reservoir , such as the ocean, and convert it into work  each cycle, is not
possible, according to the Second Law of Thermodynamics. Real engines extract heat  from an upper reservoir at temperature 

, dump heat  into a lower reservoir at temperature , and transform the difference into useful mechanical work 
. A refrigerator is simply an engine operating in reverse: work is done in order to extract heat  from the lower

reservoir, and  is dumped into the upper reservoir in each cycle. The efficiency of the engine cycle is defined to be 

. The engine efficiency is bounded from above by the efficiency of a reversible cycle operating between those two

reservoirs, such as the Carnot cycle (two adiabats and two isotherms). Thus, .

 Entropy: The Second Law guarantees that an engine operating between two reservoirs must satisfy , with the

equality holding for reversible cycles. Here  is the (negative) heat transferred to the engine from reservoir #1. Since an
arbitrary curve in the -  plane (at fixed ) can be composed of a combination of Carnot cycles, one concludes 

, again with equality holding for reversible cycles. Clausius, in 1865, realized that one could thereby define a

new state function, the entropy, , with . Thus, , with equality holding for reversible
processes. The entropy is extensive, with units .

 Gibbs-Duhem relation: For reversible processes, we now have

which says , which is to say  is a function of all the extensive variables. It therefore must be
homogeneous of degree one, , and from Euler’s theorem it then follows that

=( = , =( =CV,N

26dQ\mathchar′

dT
)

V,N

( )
∂E

∂T V,N

Cp,N

26dQ\mathchar′

dT
)

p,N

( )
∂E

∂T p,N

+p  .( )
∂V

∂T p,N

(2.S.4)
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kB f
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= −Q1 Q1

p V N
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′

T

S dS =
26dQ\mathchar′
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26dQ ≤ T dS\mathchar′

[S] = J/K

∙
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i

yi Xi ∑
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This means that there is one equation of state which can be written as a function of all the ’proper’ intensive variables.

 Thermodynamic potentials: Under equilibrium conditions, one can make Legendre transforms to an appropriate or convenient
system of thermodynamic variables. Some common examples:

Under general nonequilibrium conditions, the Second Law says that each of the equalities on the right is replaced by an inequality,
. Thus, under conditions of constant temperature, pressure, and particle number, the Gibbs free

energy  will achieve its minimum possible value via spontaneous processes. Note that Gibbs-Duhem says that  and 
.

 Maxwell relations: Since the various thermodynamic potentials are state variables, we have that the mixed second derivatives can
each be expressed in two ways. This leads to relations of the form

 Thermodynamic stability: Suppose , , and  are fixed. Then

and since in equilibrium  is at a minimum,  requires that the corresponding Hessian matrix of second derivatives be
positive definite:

 Response coefficients: In addition to heat capacities  and  one defines the isothermal

compressibility  and the adiabatic compressibility  , as well as the thermal expansion coefficient

. Invoking the Maxwell relations, one derives certain identities, such as

 Entropy of mixing: The entropy of any substance obeying the ideal gas law is given by the expression 
. If different ideal gases at the same  and  were separated via physical barriers, and the

barriers were then removed, the change in entropy would be , where  with 
being the total number of particles over all species. This is called the entropy of mixing.

 Weak solutions and osmotic pressure: If one species is much more plentiful than the others, we give it a particle label  and
call it the solvent. The Gibbs free energy of a weak solution is then

E

0

= TS+ +∑
i

yi Xi ∑
a

μa Na

= S dT + d + d  .∑
i

Xi yi ∑
a

Na μa

∙

E(S,V ,N)

F (T ,V ,N)
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= E−TS−μN

dE
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dH
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dΩ

= T dS−p dV +μdN

= −S dT −p dV +μdN

= T dS+V dp+μdN

= −S dT +V dp+μdN

= −S dT −p dV −N dμ  .
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G G= μN
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∂T ∂p
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Assuming  for , we have  and . If  on the right side of a
semipermeable membrane and  on the left, then assuming the membrane is permeable to the solvent, we must have 

. This leads to a pressure difference, , called the osmotic pressure,
given by . Since a Maxwell relation guarantees 

, we have the equation of state , where  is the molar volume of the solvent.

 Binary solutions: In a mixture of  and  species, let . The Gibbs free energy per particle is

If , the and components repel, and the mixture becomes unstable. There is a local instability, corresponding to spinodal
decomposition, when . This occurs at a temperature . But for a given , an instability toward
phase separation survives to even higher temperature, and is described by the Maxwell construction. The coexistence boundary is
obtained from , and from the symmetry under , one finds 

, where nucleation of the minority phase sets in.

 Miscible fluids and liquid-vapor coexistence: If , there is no instability toward phase separation, and the and fluids are
said to be completely miscible. Example: benzene C H  and toluene C H CH . At higher temperatures, near the liquid gas
transition, there is an instability toward phase separation. In the vapor phase, , while for the liquid . The free
energy curves  and  are then both convex as a function of , but choosing the minimum 

, one is forced toward a Maxwell construction, hence phase coexistence. In the case of ’ideal liquids’
with different boiling points, we can even take . By successively boiling and then separating and condensing the resulting
vapor, the mixture may be distilled (see Fig. [FIG3]). When , the mixture may be azeotropic in which case the extremum
of the boiling point occurs at an intermediate concentration (see Fig. [FIG4]).

 Thermochemistry: A chemical reaction among  species may be represented

where  is a chemical formula, and  is a stoichiometric coefficient. If , then  is a product, while for ,  is a
reactant. Chemical equilibrium requires . For a mixture of ideal gases, one has the law of mass action,

G(T , p, , { }) = (T , p) + { T ln( )+ (T , p)}+ (T , p)  .N0 Na N0 g0 ∑
a

Na kB

Na

eN0
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2N0

∑
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Aab Na Nb (2.S.9)
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where  is the internal coordinate partition function for molecular species .  is the equilibrium constant of the
reaction. When  is large, products are favored over reactants. When  is small, reactants are favored over products. One may
further show

where  is the enthalpy of the reaction. When , the reaction is exothermic. At finite pressure, this means that heat is
transferred to the environment: , where . When , the reaction is endothermic,
and requires heat be transferred from the environment.

 Clapeyron relation: Across a coexistence curve  separating two phases, the chemical potential  is continuous. This says 
, where , , and  are the Gibbs free energy, entropy, and volume per mole,

respectively. Then

where  is the molar latent heat of transition which must be supplied in order to change from phase #1 to
phase #2, even without changing  or .

 Gibbs phase rule: For a system with  species, Gibbs-Duhem says , so a maximum of 
intensive quantities may be specified. If a system with  species has equilibrium among  phases, then there are 
independent equilibrium conditions , where  labels species and  labels phases, among the  intensive
variables, and so -phase equilibrium can exist over a space of dimension . Since this cannot be negative, we have 

. Thus, for a single species, we can at most have three phase coexistence, which would then occur on a set of dimension
zero, as is the case for the triple point of water, for example.

1. A thermal reservoir, or heat bath, is any very large object with a fixed temperature. Because it is so large, the change in
temperature  which results from a heat transfer  is negligible, since the heat capacity  is an extensive quantity.↩

Endnotes
1. For a system of  molecules which can freely rotate, we must then specify  additional orientational variables – the Euler

angles – and their  conjugate momenta. The dimension of phase space is then .↩
2. Hence, 1 guacamole =  guacas.↩
3. One calorie (cal) is the amount of heat needed to raise  of  from  to  at a pressure of 

atm. One British Thermal Unit (BTU) is the amount of heat needed to raise lb. of  from  to 
 at a pressure of atm.↩

κ(T , p) ≡ = (  ,∏
a=1

σ

x
ζa
a ∏

a=1

σ T (T )kB ξa

pλ3
a

)
ζa

(2.S.12)

(T )ξa a κ(T , p)

κ κ

=  ,( )
∂ lnκ

∂T p

Δh

kBT 2
(2.S.13)

Δh Δh < 0

Q = ΔE+pΔV = ΔH< 0 H= E+pV Δh > 0

∙ p(T ) μ

d = − dT + dp = − dT + dp = dg1 s1 v1 s2 v2 g2 g s v

= =  ,( )
∂p

∂t coex

−s2 s1

−v2 v1

ℓ

T Δv
(2.S.14)

ℓ = T Δs = T ( − )s2 s1

T p

∙ σ = (T , p, , … , )μσ μσ μ1 μσ−1 σ+1

σ φ σ(φ−1)

=μ
(j)
a μ

( )j′

a a j 2 +φ(σ−1)

φ d = 2 +σ−φ

φ ≤ 2 +σ

ΔT = Q/C Q C

N 3N

3N 12N

6.0221415 ×1023
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4. We use the symbol  in the differential  to indicate that this is not an exact differential. More on
this in section 4 below.↩

5. As we shall see further below, thermomechanical equilibrium in fact leads to constant , and thermochemical equilibrium to
constant . If there is thermal equilibrium, then  is already constant, and so thermomechanical and thermochemical
equilibria then guarantee the constancy of  and .↩

6. In most metals, the difference between  and  is negligible.↩
7. See the description in E. Fermi, Thermodynamics, pp. 22-23.↩
8. Carnot died during cholera epidemic of 1832. His is one of the 72 names engraved on the Eiffel Tower.↩
9. See F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975). I am grateful to Professor Asle Sudbø for correcting a typo in one

expression and providing a simplified form of another.↩
10. We neglect any interfacial contributions to the entropy change, which will be small compared with the bulk entropy change in

the thermodynamic limit of large system size.↩
11. Note .↩
12. Some exotic phase transitions in quantum matter, which do not quite fit the usual classification schemes, have recently been

proposed.↩
13. The melting curve has a negative slope at relatively low pressures, where the solid has the so-called Ih hexagonal crystal

structure. At pressures above about 2500 atmospheres, the crystal structure changes, and the slope of the melting curve becomes
positive.↩

14. For a recent discussion, see R. Rosenberg, Physics Today 58, 50 (2005).↩
15. For example, they could be of the van der Waals form, due to virtual dipole fluctuations, with an attractive  tail.↩
16. We assume  and  have no appreciable temperature dependence, and we regard

them both as constants.↩
17. Set  and let  range over the  values .↩
18. The same can be said for multicomponent systems: the phase diagram in the  plane at constant  looks different than the

phase diagram in the  plane at constant .↩
19. ‘Semipermeable’ in this context means permeable to the solvent but not the solute(s).↩
20. We shall discuss latent heat again in §12.2 below.↩
21. See table [latentheats], and recall  is the molar mass of .↩
22. It is more customary to write  in the case of the freezing point depression, in which case  is

positive.↩
23. An emulsion is a mixture of two or more immiscible liquids.↩
24. We assume the boiling temperatures are not exactly equal!↩
25. Antoine Lavoisier, the "father of modern chemistry", made pioneering contributions in both chemistry and biology. In

particular, he is often credited as the progenitor of stoichiometry. An aristocrat by birth, Lavoisier was an administrator of the
Ferme générale, an organization in pre-revolutionary France which collected taxes on behalf of the king. At the age of 28,
Lavoisier married Marie-Anne Pierette Paulze, the 13-year-old daughter of one of his business partners. She would later join her
husband in his research, and she played a role in his disproof of the phlogiston theory of combustion. The phlogiston theory was
superseded by Lavoisier’s work, where, based on contemporary experiments by Joseph Priestley, he correctly identified the
pivotal role played by oxygen in both chemical and biological processes ( respiration). Despite his fame as a scientist, Lavoisier
succumbed to the Reign of Terror. His association with the Ferme générale, which collected taxes from the poor and the
downtrodden, was a significant liability in revolutionary France (think Mitt Romney vis-a-vis Bain Capital). Furthermore – and
let this be a lesson to all of us – Lavoisier had unwisely ridiculed a worthless pseudoscientific pamphlet, ostensibly on the
physics of fire, and its author, Jean-Paul Marat. Marat was a journalist with scientific pretensions, but apparently little in the
way of scientific talent or acumen. Lavoisier effectively blackballed Marat’s candidacy to the French Academy of Sciences, and
the time came when Marat sought revenge. Marat was instrumental in getting Lavoisier and other members of the Ferme
générale arrested on charges of counterrevolutionary activities, and on May 8, 1794, after a trial lasting less than a day,
Lavoisier was guillotined. Along with Fourier and Carnot, Lavoisier’s name is one of the 72 engraved on the Eiffel Tower.
Source: www.vigyanprasar.gov.in/scientists/ALLavoisier.htm.↩

26. Note that  may be a negative number, if the line  lies everywhere below .↩
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3.1: Modeling the Approach to Equilibrium

Equilibrium
A thermodynamic system typically consists of an enormously large number of constituent particles, a typical ‘large number’ being
Avogadro’s number, . Nevertheless, in equilibrium, such a system is characterized by a relatively small number
of thermodynamic state variables. Thus, while a complete description of a (classical) system would require us to account for 

 evolving degrees of freedom, with respect to the physical quantities in which we are interested, the details of the initial
conditions are effectively forgotten over some microscopic time scale , called the collision time, and over some microscopic
distance scale, , called the mean free path . The equilibrium state is time-independent.

The Master Equation
Relaxation to equilibrium is often modeled with something called the master equation. Let  be the probability that the system
is in a quantum or classical state  at time . Then write

Here,  is the rate at which  makes a transition to . Note that we can write this equation as

where

where the prime on the sum indicates that  is to be excluded. The constraints on the  are that  for all , and we
may take  (no sum on ). Fermi’s Golden Rule of quantum mechanics says that

where ,  is an additional potential which leads to transitions, and  is the density of final states at energy 
. The fact that  means that if each , then  for all . To see this, suppose that at some time 

 one of the probabilities  is crossing zero and about to become negative. But then Equation  says that 
. So  can never become negative.

Equilibrium distribution and detailed balance
If the transition rates  are themselves time-independent, then we may formally write

Here we have used the Einstein ‘summation convention’ in which repeated indices are summed over (in this case, the  index).
Note that

which says that the total probability  is conserved:

We conclude that  is a left eigenvector of  with eigenvalue . The corresponding right eigenvector, which
we write as , satisfies , and is a stationary ( time independent) solution to the master equation. Generally, there is

= 6.02 ×NA 1023
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only one right/left eigenvector pair corresponding to , in which case any initial probability distribution  converges to 
 as , as shown in Appendix I (§7).

In equilibrium, the net rate of transitions into a state  is equal to the rate of transitions out of . If, for each state  the
transition rate from  to  is equal to the transition rate from  to , we say that the rates satisfy the condition of detailed
balance. In other words,

Assuming  and , we can divide to obtain

Note that detailed balance is a stronger condition than that required for a stationary solution to the master equation.

If  is symmetric, then the right eigenvectors and left eigenvectors are transposes of each other, hence , where 
is the dimension of . The system then satisfies the conditions of detailed balance. See Appendix II (§8) for an example of this
formalism applied to a model of radioactive decay.

Boltzmann’s -theorem
Suppose for the moment that  is a symmetric matrix, . Then construct the function

Then

where we have used . Now switch  in the above sum and add the terms to get

Note that the  term does not contribute to the sum. For  we have , and using the result

we conclude

In equilibrium,  is a constant, independent of . We write

If , we can still prove a version of the -theorem. Define a new symmetric matrix

and the generalized -function,
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Then
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3.2: Phase Flows in Classical Mechanics

Hamiltonian evolution
The master equation provides us with a semi-phenomenological description of a dynamical system’s relaxation to equilibrium. It
explicitly breaks time reversal symmetry. Yet the microscopic laws of Nature are (approximately) time-reversal symmetric. How
can a system which obeys Hamilton’s equations of motion come to equilibrium?

Let’s start our investigation by reviewing the basics of Hamiltonian dynamics. Recall the Lagrangian .
The Euler-Lagrange equations of motion for the action  are

where  is the canonical momentum conjugate to the generalized coordinate :

The Hamiltonian,  is obtained by a Legendre transformation,

Note that

Thus, we obtain Hamilton’s equations of motion,

and

Define the rank  vector  by its components,

Then we may write Hamilton’s equations compactly as

where

is a rank  matrix. Note that ,  is antisymmetric, and that .
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Dynamical systems and the evolution of phase space volumes
Consider a general dynamical system,

where  is a point in an -dimensional phase space. Consider now a compact  region  in phase space, and consider its
evolution under the dynamics. That is,  consists of a set of points , and if we regard each  as an initial
condition, we can define the time-dependent set  as the set of points  that were in  at time :

Now consider the volume  of the set . We have

where

for an -dimensional phase space. We then have

where

is a determinant, which is the Jacobean of the transformation from the set of coordinates  to the coordinates 
. But according to the dynamics, we have

and therefore

We now make use of the equality

for any matrix , which gives us , for small ,

Thus,
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and we have used the divergence theorem to convert the volume integral of the divergence to a surface integral of , where 
is the surface normal and  is the differential element of surface area, and  denotes the boundary of the region . We see that
if  everywhere in phase space, then  is a constant, and phase space volumes are preserved by the evolution of the
system.

For an alternative derivation, consider a function  which is defined to be the density of some collection of points in phase
space at phase space position  and time . This must satisfy the continuity equation,

This is called the continuity equation. It says that ‘nobody gets lost’. If we integrate it over a region of phase space , we have

It is perhaps helpful to think of  as a charge density, in which case  is the current density. The above equation then says

where  is the total charge contained inside the region . In other words, the rate of increase or decrease of the charge within the
region  is equal to the total integrated current flowing in or out of  at its boundary.

Figure : Time evolution of two immiscible fluids. The local density remains constant.

The Leibniz rule lets us write the continuity equation as

But now suppose that the phase flow is divergenceless, . Then we have

The combination inside the brackets above is known as the convective derivative. It tells us the total rate of change of  for an
observer moving with the phase flow. That is

∇⋅V =  ,∑
i=1

n ∂Vi
∂φi

(3.2.21)

⋅ Vn̂ n̂

dS ∂R R

∇⋅V = 0 Ω(t)

ϱ(φ, t)

φ t

+∇⋅(ϱV) = 0 .
∂ϱ

∂t
(3.2.22)

R

dμ ϱ = − dμ∇⋅(ϱV) = − dS ⋅ (ϱV) .
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∫

R

∫

R

∫

∂R
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∂R
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R R
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If , the local density remains the same during the evolution of the system. If we consider the ‘characteristic function’

then the vanishing of the convective derivative means that the image of the set  under time evolution will always have the same
volume.

Hamiltonian evolution in classical mechanics is volume preserving. The equations of motion are

A point in phase space is specified by  positions  and  momenta , hence the dimension of phase space is :

Hamilton’s equations of motion guarantee that the phase space flow is divergenceless:

Thus, we have that the convective derivative vanishes, viz.

for any distribution  on phase space. Thus, the value of the density  is constant, which tells us that the phase flow
is incompressible. In particular, phase space volumes are preserved.

Liouville’s equation and the microcanonical distribution
Let  be a distribution on phase space. Assuming the evolution is Hamiltonian, we can write

where  is a differential operator known as the Liouvillian:

Equation , known as Liouville’s equation, bears an obvious resemblance to the Schrödinger equation from quantum
mechanics.

Suppose that  is conserved by the dynamics of the system. Typical conserved quantities include the components of the total
linear momentum (if there is translational invariance), the components of the total angular momentum (if there is rotational
invariance), and the Hamiltonian itself (if the Lagrangian is not explicitly time-dependent). Now consider a distribution 

 which is a function only of these various conserved quantities. Then from the chain rule, we have

ϱ(φ(t), t)
d

dt
= +

∂ϱ

∂φi

dφi

dt

∂ϱ

∂t

= + =  .∑
i=1

n

Vi
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∂φi

∂ϱ

∂t

Dϱ

Dt

Dϱ/Dt = 0

ϱ(φ, t = 0) ={
1

0
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otherwise
(3.2.27)
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since for each  we have

We conclude that any distribution  which is a function solely of conserved dynamical quantities is a
stationary solution to Liouville’s equation.

Clearly the microcanonical distribution,

is a fixed point solution of Liouville’s equation.

This page titled 3.2: Phase Flows in Classical Mechanics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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3.3: Irreversibility and Poincaré Recurrence
The dynamics of the master equation describe an approach to equilibrium. These dynamics are irreversible: , where 
is Boltzmann’s -function. However, the microscopic laws of physics are (almost) time-reversal invariant , so how can we
understand the emergence of irreversibility? Furthermore, any dynamics which are deterministic and volume-preserving in a finite
phase space exhibits the phenomenon of Poincaré recurrence, which guarantees that phase space trajectories are arbitrarily close to
periodic if one waits long enough.

Poincaré Recurrence Theorem
The proof of the recurrence theorem is simple. Let  be the ‘ -advance mapping’ which evolves points in phase space according
to Hamilton’s equations. Assume that  is invertible and volume-preserving, as is the case for Hamiltonian flow. Further assume
that phase space volume is finite. Since energy is preserved in the case of time-independent Hamiltonians, we simply ask that the
volume of phase space at fixed total energy  be finite,

where  is the phase space uniform integration measure.

In any finite neighborhood  of phase space there exists a point  which will return to  after  applications of , where 
is finite.

Figure : Successive images of a set  under the -advance mapping , projected onto a two-dimensional phase plane. The
Poincaré recurrence theorem guarantees that if phase space has finite volume, and  is invertible and volume preserving, then for
any set  there exists an integer  such that .

Assume the theorem fails; we will show this assumption results in a contradiction. Consider the set  formed from the union of all
sets  for all :

We assume that the set  is disjoint . The volume of a union of disjoint sets is the sum of the individual volumes.
Thus,

since  from volume preservation. But clearly  is a subset of the entire phase space, hence we have a
contradiction, because by assumption phase space is of finite volume.

dH/dt ≤ 0 H

H
4

gτ τ

gτ

E

∫ dμ δ(E−H(q, p)) < ∞ , (3.3.1)
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Thus, the assumption that the set  is disjoint fails. This means that there exists some pair of integers  and , with 
, such that . Without loss of generality we may assume . Apply the inverse  to this relation 

times to get . Now choose any point , where , and define . Then by
construction both  and  lie within  and the theorem is proven.

Poincaré recurrence has remarkable implications. Consider a bottle of perfume which is opened in an otherwise evacuated room, as
depicted in Figure . The perfume molecules evolve according to Hamiltonian evolution. The positions are bounded because
physical space is finite. The momenta are bounded because the total energy is conserved, hence no single particle can have a
momentum such that , where  is the single particle kinetic energy function . Thus, phase space, however large,
is still bounded. Hamiltonian evolution, as we have seen, is invertible and volume preserving, therefore the system is recurrent. All
the molecules must eventually return to the bottle. What’s more, they all must return with momenta arbitrarily close to their initial
momenta!  In this case, we could define the region  as

which specifies a hypercube in phase space centered about the point .

Figure : Poincaré recurrence guarantees that if we remove the cap from a bottle of perfume in an otherwise evacuated room,
all the perfume molecules will eventually return to the bottle! (Here  is the Hubble constant.)

Each of the three central assumptions – finite phase space, invertibility, and volume preservation – is crucial. If any one of these
assumptions does not hold, the proof fails. Obviously if phase space is infinite the flow needn’t be recurrent since it can keep
moving off in a particular direction. Consider next a volume-preserving map which is not invertible. An example might be a
mapping  which takes any real number to its fractional part. Thus, . Let us restrict our attention to
intervals of width less than unity. Clearly  is then volume preserving. The action of  on the interval  is to map it to the
interval . But  remains fixed under the action of , so no point within the interval  will ever return under repeated
iterations of . Thus,  does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract. For a one-dimensional
oscillator obeying  one has , since  for physical damping. Thus the convective
derivative is  which says that the density increases exponentially in the comoving frame, as 

. Thus, phase space volumes collapse: , and are not preserved by the dynamics. The proof of
recurrence therefore fails. In this case, it is possible for the set  to be of finite volume, even if it is the union of an infinite number
of sets , because the volumes of these component sets themselves decrease exponentially, as .
A damped pendulum, released from rest at some small angle , will not return arbitrarily close to these initial conditions.

Kac ring model
The implications of the Poincaré recurrence theorem are surprising – even shocking. If one takes a bottle of perfume in a sealed,
evacuated room and opens it, the perfume molecules will diffuse throughout the room. The recurrence theorem guarantees that after
some finite time  all the molecules will go back inside the bottle (and arbitrarily close to their initial velocities as well). The hitch
is that this could take a very long time, much much longer than the age of the Universe.
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On less absurd time scales, we know that most systems come to thermodynamic equilibrium. But how can a system both exhibit
equilibration and Poincaré recurrence? The two concepts seem utterly incompatible!

A beautifully simple model due to Kac shows how a recurrent system can exhibit the phenomenon of equilibration. Consider a ring
with  sites. On each site, place a ‘spin’ which can be in one of two states: up or down. Along the  links of the system,  of
them contain ‘flippers’. The configuration of the flippers is set at the outset and never changes. The dynamics of the system are as
follows: during each time step, every spin moves clockwise a distance of one lattice spacing. Spins which pass through flippers
reverse their orientation: up becomes down, and down becomes up.

Figure : Left: A configuration of the Kac ring with  sites and  flippers. The flippers, which live on the links, are
represented by blue dots. Right: The ring system after one time step. Evolution proceeds by clockwise rotation. Spins passing
through flippers are flipped.

The ‘phase space’ for this system consists of  discrete configurations. Since each configuration maps onto a unique image under
the evolution of the system, phase space ‘volume’ is preserved. The evolution is invertible; the inverse is obtained simply by
rotating the spins counterclockwise. Figure  depicts an example configuration for the system, and its first iteration under the
dynamics.

Figure : Three simulations of the Kac ring model with  sites and three different concentrations of flippers. The red
line shows the magnetization as a function of time, starting from an initial configuration in which 100% of the spins are up. The
blue line shows the prediction of the Stosszahlansatz, which yields an exponentially decaying magnetization with time constant .
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Suppose the flippers were not fixed, but moved about randomly. In this case, we could focus on a single spin and determine its
configuration probabilistically. Let  be the probability that a given spin is in the up configuration at time . The probability that
it is up at time  is then

where  is the fraction of flippers in the system. In words: a spin will be up at time  if it was up at time  and did
not pass through a flipper, or if it was down at time  and did pass through a flipper. If the flipper locations are randomized at each
time step, then the probability of flipping is simply . Equation  can be solved immediately:

which decays exponentially to the equilibrium value of  with time scale

We identify  as the microscopic relaxation time over which local equilibrium is established. If we define the magnetization 
, then , so . The equilibrium magnetization is . Note that for 

 that the magnetization reverses sign each time step, as well as decreasing exponentially in magnitude.

Figure : Simulations of the Kac ring model. Top:  sites with  flippers. After  iterations, each spin has
flipped an odd number of times, so the recurrence time is . Middle:  with , resulting in a near-complete
reversal of the population with every iteration. Bottom:  with , showing long time equilibration and dramatic
resurgence of the spin population.

The assumption that leads to equation  is called the Stosszahlansatz , a long German word meaning, approximately,
‘assumption on the counting of hits’. The resulting dynamics are irreversible: the magnetization inexorably decays to zero.
However, the Kac ring model is purely deterministic, and the Stosszahlansatz can at best be an approximation to the true dynamics.
Clearly the Stosszahlansatz fails to account for correlations such as the following: if spin  is flipped at time , then spin  will
have been flipped at time . Also if spin  is flipped at time , then it also will be flipped at time . Indeed, since the
dynamics of the Kac ring model are invertible and volume preserving, it must exhibit Poincaré recurrence. We see this most vividly
in Figures  and .
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The model is trivial to simulate. The results of such a simulation are shown in Figure  for a ring of  sites, with 
 and  flippers. Note how the magnetization decays and fluctuates about the equilibrium value , but that

after  iterations  recovers its initial value: . The recurrence time for this system is simply  if  is even, and  if 
 is odd, since every spin will then have flipped an even number of times.

In Figure  we plot two other simulations. The top panel shows what happens when , so that the magnetization wants to
reverse its sign with every iteration. The bottom panel shows a simulation for a larger ring, with  sites. Note that the
fluctuations in  about equilibrium are smaller than in the cases with  sites. Why?

This page titled 3.3: Irreversibility and Poincaré Recurrence is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.
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3.4: Remarks on Ergodic Theory

Definition of Ergodicity

A mechanical system evolves according to Hamilton’s equations of motion. We have seen how such a system is recurrent in the
sense of Poincaré.

There is a level beyond recurrence called ergodicity. In an ergodic system, time averages over intervals  with  may be
replaced by phase space averages. The time average of a function  is defined as

For a Hamiltonian system, the phase space average of the same function is defined by

where  is the Hamiltonian, and where  is the Dirac -function. Thus,

for all smooth functions  for which  exists and is finite. Note that we do not average over all of phase space. Rather,
we average only over a hypersurface along which  is fixed, over one of the level sets of the Hamiltonian function. This
is because the dynamics preserves the energy. Ergodicity means that almost all points  will, upon Hamiltonian evolution, move in
such a way as to eventually pass through every finite neighborhood on the energy surface, and will spend equal time in equal
regions of phase space.

Let  be the characteristic function of a region :

where  for all . Then

If the system is ergodic, then

where  is the a priori probability to find , based solely on the relative volumes of  and of the entire phase space. The
latter is given by

called the density of states, is the surface area of phase space at energy , and

is the density of states for the phase space subset . Note that
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Here,  is the differential surface element,  is the constant  hypersurface , and  is the volume of phase
space over which . Note also that we may write

where

is the the invariant surface element.

The Microcanonical Ensemble
The distribution,

defines the microcanonical ensemble ( CE) of Gibbs.

We could also write

integrating over the hypersurface  rather than the entire phase space.

Figure : Constant phase space velocity at an irrational angle over a toroidal phase space is ergodic, but not mixing. A circle
remains a circle, and a blob remains a blob.

Ergodicity and Mixing
Just because a system is ergodic, it does not necessarily mean that , for consider the following motion on the
toroidal space , where we identify opposite edges, we impose periodic boundary conditions.
We also take  and  to be dimensionless, for simplicity of notation. Let the dynamics be given by

The solution is

hence the phase curves are given by

D(E) ≡ ∫ dμ δ(E−H(φ)) = ∫

SE

dS

|∇H|

= ∫ dμ Θ(E−H(φ)) =  .
d

dE

dΩ(E)

dE

dS SE H H(φ) = E Ω(E)

H(φ) < E

dμ = dE d  ,ΣE (3.4.9)

d =ΣE

dS

|∇H|
∣
∣
∣
H(φ)=E

(3.4.10)

(φ) = =  ,ϱ
E

δ(E−H(φ))

D(E)

δ(E−H(φ))

∫dμ δ(E−H(φ))
(3.4.11)

μ

⟨f(φ) = d f(φ) ,⟩
S

1

D(E)
∫

SE

Σ
E

(3.4.12)

SE

3.4.1

ϱ(φ, t) → (φ)ϱeq

(φ = (q, p) 0 ≤ q < 1 ,  0 ≤ p < 1}∣∣
q p

= 1 , = α .q̇ ṗ (3.4.13)

q(t) = + t , p(t) = +αt ,q0 p0 (3.4.14)
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Now consider the average of some function . We can write  in terms of its Fourier transform,

We have, then,

We can now perform the time average of :

Clearly,

so the system is ergodic.

Figure : The baker’s transformation is a successive stretching, cutting, and restacking.

The situation is depicted in Figure . If we start with the characteristic function of a disc,

then it remains the characteristic function of a disc:

For an example of a transition to ergodicity in a simple dynamical Hamiltonian model, see §9.

A stronger condition one could impose is the following. Let  and  be subsets of . Define the measure

p = +α(q− ) .p0 q0 (3.4.15)

f(q, p) f(q, p)

f(q, p) =  .∑
m,n

f̂ mn e
2πi(mq+np) (3.4.16)

f(q(t), p(t)) =  .∑
m,n

f̂ mn e
2πi(m +n )q0 p0 e2πi(m+αn)t (3.4.17)

f

⟨f(q, p)⟩
t

= +    f̂ 00 lim
T→∞

1

T
∑
m,n

′
f̂ mn e

2πi(m +n )q0 p0
−1e2πi(m+αn)T

2πi(m+αn)

=  if α irrational.f̂ 00

⟨f(q, p) = dq dp f(q, p) = = ⟨f(q, p)  ,⟩
S

∫

0

1

∫

0

1

f̂ 00 ⟩
t

(3.4.18)

3.4.2

3.4.1

ϱ(q, p, t = 0) = Θ( −(q− −(p− ) ,a2 q
0
)2 p

0
)2 (3.4.19)

ϱ(q, p, t) = Θ( −(q− − t −(p− −αt ) ,a2 q0 )2 p0 )2 (3.4.20)

A B SE

ν(A) = ∫ d (φ)/∫ d =  ,ΣE χA ΣE

(E)DA

D(E)
(3.4.21)
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where  is the characteristic function of . The measure of a set  is the fraction of the energy surface  covered by .
This means , since  is the entire phase space at energy . Now let  be a volume-preserving map on phase space.
Given two measurable sets  and , we say that a system is mixing if

In other words, the fraction of  covered by the  iterate of , , is, as , simply the fraction of  covered by . The
iterated map  distorts the region  so severely that it eventually spreads out ‘evenly’ over the entire energy hypersurface. Of
course by ‘evenly’ we mean ‘with respect to any finite length scale’, because at the very smallest scales, the phase space density is
still locally constant as one evolves with the dynamics.

Figure : The multiply iterated baker’s transformation. The set A covers half the phase space and its area is preserved under the
map. Initially, the fraction of B covered by A is zero. After many iterations, the fraction of B covered by  approaches .

Mixing means that

Physically, we can imagine regions of phase space being successively stretched and folded. During the stretching process, the
volume is preserved, so the successive stretch and fold operations map phase space back onto itself.

An example of a mixing system is the baker’s transformation, depicted in Figure . The baker map is defined by

Note that  is invertible and volume-preserving. The baker’s transformation consists of an initial stretch in which  is expanded by
a factor of two and  is contracted by a factor of two, which preserves the total volume. The system is then mapped back onto the
original area by cutting and restacking, which we can call a ‘fold’. The inverse transformation is accomplished by stretching first in
the vertical ( ) direction and squashing in the horizontal ( ) direction, followed by a slicing and restacking. Explicitly,

(φ)χ
A

A A SE A

ν( ) = 1SE SE E g

A B

mixing ⟺ ν( A∩B) = ν(A) ν(B) .lim
n→∞

gn (3.4.22)

B nth A Agn n → ∞ SE A

gn A

3.4.3

Agn 1
2

⟨f(φ)⟩ = ∫ dμ ϱ(φ, t) f(φ)

  ∫ dμ f(φ) δ(E−H(φ))/∫ dμ δ(E−H(φ))to35pt\rightarrowfill
t→∞

≡ Tr [f(φ) δ(E−H(φ))]/Tr [δ(E−H(φ))] .

3.4.2

g(q, p) =

⎧

⎩
⎨
⎪

⎪

(2q , p)1
2

(2q−1 , p+ )1
2

1
2

if 0 ≤ q < 1
2

if ≤ q < 1 .1
2

(3.4.23)

g q

p

p q

(q, p) =g−1

⎧

⎩
⎨
⎪

⎪
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2
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2

1
2
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2
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Figure : The Arnold cat map applied to an image of  pixels. After 300 iterations, the image repeats itself. (Source:
Wikipedia)

Another example of a mixing system is Arnold’s ‘cat map’

where  denotes the fractional part of . One can write this in matrix form as

The matrix  is very special because it has integer entries and its determinant is . This means that the inverse also has
integer entries. The inverse transformation is then

Now for something cool. Suppose that our image consists of a set of discrete points located at , where the
denominator  is fixed, and where  and  range over the set . Clearly  and its inverse preserve this set, since
the entries of  and  are integers. If there are two possibilities for each pixel (say off and on, or black and white), then there
are  possible images, and the cat map will map us invertibly from one image to another. Therefore it must exhibit Poincaré
recurrence! This phenomenon is demonstrated vividly in Figure , which shows a  pixel (square) image of a cat
subjected to the iterated cat map. The image is stretched and folded with each successive application of the cat map, but after 300
iterations the image is restored! How can this be if the cat map is mixing? The point is that only the discrete set of points 

 is periodic. Points with different denominators will exhibit a different periodicity, and points with irrational
coordinates will in general never return to their exact initial conditions, although recurrence says they will come arbitrarily close,
given enough iterations. The baker’s transformation is also different in this respect, since the denominator of the  coordinate is
doubled upon each successive iteration.

The student should now contemplate the hierarchy of dynamical systems depicted in Figure , understanding the characteristic
features of each successive refinement .

3.4.4 150 × 150

9

g(q, p) = ( [q+p] , [q+2p] ) , (3.4.25)
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Figure : The hierarchy of dynamical systems.
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3.5: Thermalization of Quantum Systems

Quantum Dephasing

Thermalization of quantum systems is fundamentally different from that of classical systems. Whereas time evolution in classical
mechanics is in general a nonlinear dynamical system, the Schrödinger equation for time evolution in quantum mechanics is linear:

where  is a many-body Hamiltonian. In classical mechanics, the thermal state is constructed by time evolution – this is the
content of the ergodic theorem. In quantum mechanics, as we shall see, the thermal distribution must be encoded in the eigenstates
themselves.

Let us assume an initial condition at ,

where  is an orthonormal eigenbasis for  satisfying . The expansion coefficients satisfy 
 and . Normalization requires

The time evolution of  is then given by

The energy is distributed according to the time-independent function

Thus, the average energy is time-independent and is given by

The root mean square fluctuations of the energy are given by

Typically we assume that the distribution  is narrowly peaked about , such that , where  is the
ground state energy. Note that  for , the eigenspectrum of  is bounded from below.

Now consider a general quantum observable described by an operator . We have

where . In the limit of large times, we have

Note that this implies that all coherence between different eigenstates is lost in the long time limit, due to dephasing.

iℏ = Ψ ,
∂Ψ

∂t
Ĥ (3.5.1)

Ĥ

t = 0

|Ψ(0)⟩ = | ⟩ ,∑
α
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{| ⟩}Ψα Ĥ | ⟩ = | ⟩Ĥ Ψα Eα Ψα
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Eigenstate Thermalization Hypothesis
The essential ideas behind the eigenstate thermalization hypothesis (ETH) were described independently by J. Deutsch (1991) and
by M. Srednicki (1994). The argument goes as follows. If the total energy is the only conserved quantity, and if  is a local,
translationally-invariant, few-body operator, then the time average  is given by its microcanonical value,

where  is an energy interval of width . So once again, time averages are micro canonical averages.

But how is it that this is the case? The hypothesis of Deutsch and of Srednicki is that thermalization in isolated and bounded
quantum systems occurs at the level of individual eigenstates. That is, for all eigenstates  with , one has

This means that thermal information is encoded in each eigenstate. This is called the eigenstate thermalization hypothesis (ETH).

An equivalent version of the ETH is the following scenario. Suppose we have an infinite or extremely large quantum system  (the
‘universe’) fixed in an eigenstate . Then form the projection operator . Projection operators satisfy 
and their eigenspectrum consists of one eigenvalue  and the rest of the eigenvalues are zero . Now consider a partition of 

, where . We imagine  to be the ‘system’ and  the ‘world’. We can always decompose the state  in a
complete product basis for  and , viz.

Here  is the size of the basis for . The reduced density matrix for  is defined as

The claim is that  approximates a thermal density matrix on ,

where  is some Hamiltonian on , and , so that  and  is properly normalized. A number of issues
remain to be clarified:

What do we mean by “approximates"?
What do we mean by ?
What do we mean by the temperature ?

We address these in reverse order. The temperature  of an eigenstate  of a Hamiltonian  is defined by setting its energy
density  to the thermal energy density,

Here,  is the full Hamiltonian of the universe . Our intuition is that  should reflect a restriction of the
original Hamiltonian  to the system . What should be done, though, about the interface parts of  which link  and ? For
lattice Hamiltonians, we can simply but somewhat arbitrarily cut all the bonds coupling  and . But we could easily imagine
some other prescription, such as halving the coupling strength along all such interface bonds. Indeed, the definition of  is
somewhat arbitrary. However, so long as we use  to compute averages of local operators which lie sufficiently far from the
boundary of , the precise details of how we truncate  to  are unimportant. This brings us to the first issue: the
approximation of  by its Gibbs form in Equation  is only valid when we consider averages of local operators lying within
the bulk of . This means that we must only examine operators whose support is confined to regions greater than some distance 
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from , where  is a thermal correlation length. This, in turn, requires that , the region  is very large on the scale of 
. How do we define ? For a model such as the Ising model, it can be taken to be the usual correlation length obtained from the

spin-spin correlation function . More generally, we may choose the largest correlation length from among the correlators
of all the independent local operators in our system. Again, the requirement is that , where  is the
shortest distance from the location of our local operator  to the boundary of . At criticality, the exponential is replaced by a
power law , where  is a critical exponent. Another implicit assumption here is that .

When is the ETH true?

There is no rigorous proof of the ETH. Deutsch showed that the ETH holds for the case of an integrable Hamiltonian weakly
perturbed by a single Gaussian random matrix. Horoi (1995) showed that nuclear shell model wavefunctions reproduce
thermodynamic predictions. Recent numerical work by M. Rigol and collaborators has verified the applicability of the ETH in
small interacting boson systems. ETH fails for so-called integrable models, where there are a large number of conserved quantities,
which commute with the Hamiltonian. Integrable models are, however, quite special, and as Deutsch showed, integrability is
spoiled by weak perturbations, in which case ETH then applies.

ETH also fails in the case of noninteracting disordered systems which exhibit Anderson localization. Single particle energy
eigenstates  whose energies  the localized portion of the eigenspectrum decay exponentially, as 

, where  is some position in space associated with  and  is the localization length.
Within the localized portion of the spectrum,  is finite. As  approaches a mobility edge,  diverges as a power law. In the
delocalized regime, eigenstates are spatially extended and typically decay at worst as a power law . Exponentially localized states
are unable to thermalize with other distantly removed localized states. Of course, all noninteracting systems will violate ETH,
because they are integrable. The interacting version of this phenomenon, many-body localization (MBL), is a topic of intense
current interest in condensed matter and statistical physics. MBL systems also exhibit a large number of conserved quantities, but
in contrast to the case of integrable systems, where each conserved quantity is in general expressed in terms of an integral of a local
density, in MBL systems the conserved quantities are themselves local, although emergent. The emergent nature of locally
conserved quantities in MBL systems means that they are not simply expressed in terms of the original local operators of the
system, but rather are arrived at via a sequence of local unitary transformations.

Note again that in contrast to the classical case, time evolution of a quantum state does not create the thermal state. Rather, it
reveals the thermal distribution which is encoded in all eigenstates after sufficient time for dephasing to occur, so that correlations
between all the wavefunction expansion coefficients  for  are all lost.

This page titled 3.5: Thermalization of Quantum Systems is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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3.6: Appendices

Appendix I: Formal Solution of the Master Equation

Recall the master equation . The matrix  is real but not necessarily symmetric. For such a matrix, the left
eigenvectors  and the right eigenvectors  are not the same: general different:

Note that the eigenvalue equation for the right eigenvectors is  while that for the left eigenvectors is . The
characteristic polynomial is the same in both cases:

which means that the left and right eigenvalues are the same. Note also that , hence the eigenvalues are either
real or appear in complex conjugate pairs. Multiplying the eigenvector equation for  on the right by  and summing over , and
multiplying the eigenvector equation for  on the left by  and summing over , and subtracting the two results yields

where the inner product is

We can now demand

in which case we can write

We have seen that  is a left eigenvector with eigenvalue , since . We do not know a priori the
corresponding right eigenvector, which depends on other details of . Now let’s expand  in the right eigenvectors of ,
writing

Then

This allows us to write

Hence, we can write

= −Ṗ i Γij Pj Γij

ϕα
i ψβ

j

ϕα
i Γij

Γij ψ
β
j

= λα ϕ
α
j

=  .λβ ψ
β
i

Γψ = λψ ϕ = λϕΓt

F (λ) ≡ det (λ−Γ) = det (λ− ) ,Γt (3.6.1)

[F (λ) = F ( )]
∗

λ∗

ϕα ψ
β

j j

ψβ ϕα
i i

( − ) ⟨ ⟩ = 0 ,λα λ
β

ϕα ∣∣ψ
β (3.6.2)

⟨ϕ ψ ⟩ =  .∣∣ ∑
i

ϕi ψi (3.6.3)

⟨ ⟩ =  ,ϕα ∣∣ψ
β δ

αβ
(3.6.4)

Γ = ⟩⟨ ⟺ =  .∑
α

λα ∣∣ψ
α ϕα ∣∣ Γij ∑

α

λα ψ
α
i ϕ

α
j (3.6.5)

= (1, 1, … , 1)ϕ ⃗  λ = 0 = 0∑i Γij

Γij (t)Pi Γ

(t) = (t)  .Pi ∑
α

Cα ψα
i (3.6.6)

dPi

dt

 

=∑
α

dCα

dt
ψα
i

= − = −Γij Pj ∑
α

Cα Γij ψ
α
j

= −  .∑
α

λα Cα ψα
i

= − ⟹ (t) = (0)  .
dCα

dt
λα Cα Cα Cα e− tλα (3.6.7)

(t) = (0)  .Pi ∑
α

Cα e− tλα ψα
i (3.6.8)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18554?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03%3A_Ergodicity_and_the_Approach_to_Equilibrium/3.06%3A_Appendices


3.6.2 https://phys.libretexts.org/@go/page/18554

It is now easy to see that  for all , or else the probabilities will become negative. For suppose  for some 
. Then as , the sum in Equation  will be dominated by the term for which  has the largest negative real part; all

other contributions will be subleading. But we must have  since  must be orthogonal to the left eigenvector 

. Therefore, at least one component of  ( for some value of ) must have a negative real part, which means
a negative probability!  As we have already proven that an initial nonnegative distribution  will remain nonnegative
under the evolution of the master equation, we conclude that  as , relaxing to the  right eigenvector, with

 for all .

Appendix II: Radioactive Decay
Consider a group of atoms, some of which are in an excited state which can undergo nuclear decay. Let  be the probability
that  atoms are excited at some time . We then model the decay dynamics by

Here,  is the decay rate of an individual atom, which can be determined from quantum mechanics. The master equation then tells
us

The interpretation here is as follows: let  denote a state in which  atoms are excited. Then . Then 
will increase due to spontaneous transitions from  to , and will decrease due to spontaneous transitions from  to 

.

The average number of particles in the system is

Note that

Thus,

The relaxation time is , and the equilibrium distribution is

Note that this satisfies detailed balance.

We can go a bit farther here. Let us define

This is sometimes called a generating function. Then

Re ( ) ≥ 0λα λ Re ( ) < 0λα
α t → ∞ 3.6.8 λα

= 0∑i ψ
α
i ⟩∣∣ψα

= (1, 1, … , 1)ϕ ⃗ α=0
ψα
i

i
13 { (t = 0)}P

i

(t) →P
i

P eq

i
t → ∞ λ = 0

Re ( ) ≥ 0λα α

(t)Pn

n t

=Wmn

⎧

⎩⎨
0
nγ

0

if  m ≥ n

if  m = n−1
if  m < n−1 .

(3.6.9)

γ

= (n+1)γ −n γ  .
dPn

dt
Pn+1 Pn (3.6.10)

n ⟩∣∣ n (t) = ⟨ψ(t) | n ⟩Pn ∣∣ ∣∣
2

(t)Pn

| n+1 ⟩ | n ⟩ | n ⟩

| n−1 ⟩

N(t) = n (t) .∑
n=0

∞

Pn (3.6.11)

dN

dt
= n[(n+1)γ −n γ ]∑

n=0

∞

Pn+1 Pn

= γ [n(n−1) − ]∑
n=0

∞

Pn n2Pn

= −γ n = −γ N  .∑
n=0

∞

Pn

N(t) = N(0)  .e−γt (3.6.12)

τ = γ−1

=  .P eq
n δn,0 (3.6.13)

P (z, t) ≡ (t) .∑
n=0

∞

zn Pn (3.6.14)
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Thus,

We now see that any function  satisfies the above equation, where . Thus, we can write

Setting  we have , and inverting this result we obtain ,

The total probability is , which clearly is conserved: . The average particle number is

Appendix III: Transition to Ergodicity in a Simple Model
A ball of mass  executes perfect one-dimensional motion along the symmetry axis of a piston. Above the ball lies a mobile piston
head of mass  which slides frictionlessly inside the piston. Both the ball and piston head execute ballistic motion, with two types
of collision possible: (i) the ball may bounce off the floor, which is assumed to be infinitely massive and fixed in space, and (ii) the
ball and piston head may engage in a one-dimensional elastic collision. The Hamiltonian is

where  is the height of the piston head and  the height of the ball. Another quantity is conserved by the dynamics: . ,
the ball always is below the piston head.

Choose an arbitrary length scale , and then energy scale , momentum scale , and time scale 
. Show that the dimensionless Hamiltonian becomes

with , and with equations of motion , (Here the bar indicates dimensionless variables: 
, , ) What special dynamical consequences hold for ?

Compute the microcanonical average piston height . The analogous dynamical average is

When computing microcanonical averages, it is helpful to use the Laplace transform, discussed toward the end of §3.3 of the
notes. (It is possible to compute the microcanonical average by more brute force methods as well.)
Compute the microcanonical average of the rate of collisions between the ball and the floor. Show that this is given by

The analogous dynamical average is

∂P

∂t

 

= γ [(n+1) −n ]∑
n=0

∞

zn Pn+1 Pn

= γ −γz  .
∂P

∂z

∂P

∂z

−(1 −z) = 0 .
1

γ

∂P

∂t

∂P

∂z
(3.6.15)

f(ξ) ξ = γt−ln(1 −z)

P (z, t) = f(γt−ln(1 −z)) . (3.6.16)

t = 0 P (z, 0) = f(−ln(1 −z)) f(u) = P (1 − , 0)e−u

P (z, t) = P (1 +(z−1) , 0) .e−γt (3.6.17)

P (z=1, t) = ∑∞
n=0 Pn P (1, t) = P (1, 0)

N(t) = n (t) = =   P (1, 0) = N(0)  .∑
n=0

∞

Pn

∂P

∂z
∣
∣
∣
z=1

e−γt e−γt (3.6.18)

m

M

H = + +MgX+mgx ,
P 2

2M

p2

2m
(3.6.19)

X x Θ(X−x)

L = MgLE0 = MP0 gL
−−

√
=τ0 L/g

− −−
√

= + + +r  ,H̄
1

2
P̄

2
X̄

p̄2

2r
x̄ (3.6.20)

r = m/M dX/dt = ∂ /∂H̄ P̄

= P/P̄ P0 = t/t̄ τ0 r = 1

⟨X⟩

⟨X = dtX(t) .⟩t lim
T→∞

1

T
∫

0

T

(3.6.21)

⟨ δ(t− )⟩ = ⟨Θ(v) vδ(x− )⟩ .∑
i

ti 0+ (3.6.22)

⟨γ = dt δ(t− ) ,⟩t lim
T→∞

1

T
∫

0

T

∑
i

ti (3.6.23)
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where  is the set of times at which the ball hits the floor.
How do your results change if you do not enforce the dynamical constraint ?
Write a computer program to simulate this system. The only input should be the mass ratio  (set  to fix the energy).
You also may wish to input the initial conditions, or perhaps to choose the initial conditions randomly (all satisfying energy
conservation, of course!). Have your program compute the microcanonical as well as dynamical averages in parts (b) and (c).
Plot out the Poincaré section of  vs.  for those times when the ball hits the floor. Investigate this for several values of . Just
to show you that this is interesting, I’ve plotted some of my own numerical results in Figure .

Figure : Poincaré sections for the ball and piston head problem. Each color corresponds to a different initial condition. When
the mass ratio  exceeds unity, the system apparently becomes ergodic.

{ }ti
X ≥ x

r = 10Ē

P X r

3.6.1

3.6.1
r = m/M

r X(0) ⟨X(t)⟩ ⟨X⟩μce ⟨γ(t)⟩ ⟨γ⟩μce r X(0) ⟨X(t)⟩ ⟨X⟩μce ⟨γ(t)⟩ ⟨γ⟩μce

0.3 0.1 6.1743 5.8974 0.5283 0.4505 1.2 0.1 4.8509 4.8545 0.3816 0.3812

0.3 1.0 5.7303 5.8974 0.4170 0.4505 1.2 1.0 4.8479 4.8545 0.3811 0.3812

0.3 3.0 5.7876 5.8974 0.4217 0.4505 1.2 3.0 4.8493 4.8545 0.3813 0.3812

0.3 5.0 5.8231 5.8974 0.4228 0.4505 1.2 5.0 4.8482 4.8545 0.3813 0.3812

0.3 7.0 5.8227 5.8974 0.4228 0.4505 1.2 7.0 4.8472 4.8545 0.3808 0.3812

0.3 9.0 5.8016 5.8974 0.4234 0.4505 1.2 9.0 4.8466 4.8545 0.3808 0.3812

0.3 9.9 6.1539 5.8974 0.5249 0.4505 1.2 9.9 4.8444 4.8545 0.3807 0.3812

r X(0) Nb ⟨X(t)⟩ ⟨X⟩μce ⟨γ(t)⟩ ⟨γ⟩μce

1.2 7.0 104 4.8054892 4.8484848 0.37560388 0.38118510

1.2 7.0 105 4.8436969 4.8484848 0.38120356 0.38118510
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r X(0) Nb ⟨X(t)⟩ ⟨X⟩μce ⟨γ(t)⟩ ⟨γ⟩μce

1.2 7.0 106 4.8479414 4.8484848 0.38122778 0.38118510

1.2 7.0 107 4.8471686 4.8484848 0.38083749 0.38118510

1.2 7.0 108 4.8485825 4.8484848 0.38116282 0.38118510

1.2 7.0 109 4.8486682 4.8484848 0.38120259 0.38118510

1.2 1.0 109 4.8485381 4.8484848 0.38118069 0.38118510

1.2 9.9 109 4.8484886 4.8484848 0.38116295 0.38118510
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3.S: Summary

References
R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975) An advanced text with an emphasis on fluids
and kinetics.
R. Balian, From Macrophysics to Microphysics (2 vols., Springer-Verlag, 2006) A very detailed discussion of the fundamental
postulates of statistical mechanics and their implications.)

Summary
 Distributions: Equilibrium statistical mechanics describes systems of particles in terms of time-independent statistical

distributions. Where do these distributions come from? How does a system with a given set of initial conditions come to have time-
independent properties which can be described in this way?

 Master equation: Let  be the probability that a system is in state  at time . The evolution of the  is given by 
, where the rates  are nonnegative. Conservation of probability means 

 for all , hence  is a left eigenvector with eigenvalue zero. The corresponding right eigenvector is
the equilibrium distribution: . Detailed balance, , is a more stringent condition than the
requirement of a stationary distribution alone. Boltzmann’s -theorem: , where . Thus, the ME
dynamics are irreversible. But the underlying microscopic laws are reversible!

 Hamiltonian evolution: , where  is a point in -dimensional phase space, and 

. Phase space flow is then incompressible: , hence phase space densities  obey Liouville’s

equation,  (follows from continuity and incompressibility). Any function , where each  is
conserved by the phase space dynamics, will be a stationary solution to Liouville’s equation. In particular, the microcanonical
distribution,  is such a solution, where  is the density of states.

 Poincaré Recurrence: Let  be the -advance mapping for a dynamical system . If (i)  is
invertible, (ii)  preserves phase space volumes, and (iii) the volume of phase accessible given the dynamics and initial conditions
is finite, then in any finite neighborhood  of phase space there exists a point  such that  with  finite. This
means all the perfume molecules eventually go back inside the bottle (if it is opened in a sealed room).

 Kac ring model: Normally the recurrence time is orders of magnitude greater than the age of the Universe, but for the Kac ring
model, one can simulate the recurrence phenomenon easily. The model consists of a ring of  sites, and a quenched ( fixed)
random distribution of flippers on  of the links . On each site lies a discrete spin variable which is polarized either up or
down. The system evolves discretely by all spins advancing clockwise by one site during a given time step. All spins which pass
through a flipper reverse their polarization. Viewed probabilistically, if  is the probability any given spin is up at time , then
under the assumptions of the Stosszahlansatz , where  is the flipper density. This leads to
exponential relaxation with a time scale , but the recurrence time is clearly  (if  is even) or  (if  is
odd).

 Ergodicity and mixing: A dynamical system is ergodic if

This means long time averages are equal to phase space averages. This does not necessarily mean that the phase space distribution
will converge to the microcanonical distribution. A stronger condition, known as mixing, means that the distribution spreads out
’evenly’ over the phase space hypersurface consistent with all conservation laws. Thus, if  is a phase space map, and if 

 is the fraction of the energy hypersurface (assume no conserved quantities other than ) contained in
, then  is mixing if . An example of a mixing map on a two-dimensional torus is the Arnold

’cat map’,

∙

∙ (t)Pi | i ⟩ t (t)Pi

= ( − ) = −
dPi

dt
∑j WijPj WjiPi ∑j Γij Pj ≥ 0Wij

= 0∑i Γij j = (1, 1, … , 1)ψt

= 0Γij P
eq
j =Wij P

eq
j Wji P

eq
i

H ≤ 0Ḣ H = ln( / )∑i Pi Pi P eq
i

∙ =φ̇i Jij
∂H
∂φj

φ = ( , … , , , … , )q1 qr p1 pr 2r

J =( )
0

−I

I

0
∇ ⋅ = 0φ̇ ϱ(φ, t)

ϱ+ ⋅ ∇ϱ = 0∂t φ̇ ϱ( , … , )Λ
1

Λ
k

Λi

(φ) = δ(E−H(φ))/D(E)ϱE D(E) = Tr δ(E−H(φ))

∙ φ(t) = φ(t+τ)gτ τ = V(φ)φ̇ gτ
gτ

R0 ∈φ0 R0 ∈gnτ φ0 R0 n

∙

N

F (F ≤ N)

pn n

= (1 −x) +x(1 − )pn+1 pn pn x = F/N

τ = −1/ ln |1 −2x| N F 2N F

∙

⟨f(φ) = dt f(φ(t)) = = ⟨f(φ)  .⟩
T

lim
T→∞

1

T
∫

0

T
Tr f(φ) δ(E−H(φ))

Tr δ(E−H(φ))
⟩
S

(3.S.1)

g

ν(A) ≡ (E)/D(E)DA H = E

A g ν ( A∩B) = ν(A) ν(B)limn→∞ gn
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 Thermalization of quantum systems: This is a current research topic. One proposal, due to Deutsch (1991) and Srednicki (1994) is
the eigenstate thermalization hypothesis (ETH). This says that thermal information is encoded in each eigenstate, such that if 

, then

the expectation value of some local, translationally-invariant, few-body operator  in the state , is given by its average over a
small energy window containing . If this is the case, then so long as we prepare an initial state such that the spread of energies is
within  of some value , where  with  the ground state energy, then , and time averages
become energy averages. Equivalently, the reduced density matrix  corresponding to a system  which is a subset of a universe 

, with  (  is the ’world’), is a thermal density matrix: , where  is the Hamiltonian restricted to 
, and with temperature fixed by the requirement , where the last factor is a ratio of volumes. ETH

does not hold for so-called integrable models with an extensive number of independent conserved quantities. But it has been
shown, both perturbatively as well as numerically, to hold for certain model nonintegrable systems. An interesting distinction
between classical and quantum thermalization: in the quantum case, time evolution does not create the thermal state. Rather, it
reveals the thermal distribution which is encoded in each eigenstate after sufficient time that dephasing has occurred and all
correlations between the different wavefunction expansion coefficients is lost.

Endnotes
1. Exceptions involve quantities which are conserved by collisions, such as overall particle number, momentum, and energy. These

quantities relax to equilibrium in a special way called hydrodynamics.↩
2. ‘Compact’ in the parlance of mathematical analysis means ‘closed and bounded’.↩
3. The equality  is most easily proven by bringing the matrix to diagonal form via a similarity

transformation, and proving the equality for diagonal matrices.↩
4. Actually, the microscopic laws of physics are not time-reversal invariant, but rather are invariant under the product ,

where  is parity,  is charge conjugation, and  is time reversal.↩
5. The natural numbers  is the set of non-negative integers .↩
6. In the nonrelativistic limit, . For relativistic particles, we have .↩
7. Actually, what the recurrence theorem guarantees is that there is a configuration arbitrarily close to the initial one which recurs,

to within the same degree of closeness.↩
8. Unfortunately, many important physicists were German and we have to put up with a legacy of long German words like

Gedankenexperiment, Zitterbewegung, Brehmsstrahlung, Stosszahlansatz, Kartoffelsalat,↩
9. The cat map gets its name from its initial application, by Arnold, to the image of a cat’s face.↩

10. There is something beyond mixing, called a -system. A -system has positive Kolmogorov-Sinai entropy. For such a system,
closed orbits separate exponentially in time, and consequently the Liouvillian  has a Lebesgue spectrum with denumerably
infinite multiplicity.↩

11. More generally, we could project onto a -dimensional subspace, in which case there would be  eigenvalues of  and 
 eigenvalues of , where  is the dimension of the entire vector space.↩

12. Recall that in systems with no disorder, eigenstates exhibit Bloch periodicity in space.↩
13. Since the probability  is real, if the eigenvalue with the smallest ( largest negative) real part is complex, there will be a

corresponding complex conjugate eigenvalue, and summing over all eigenvectors will result in a real value for .↩

This page titled 3.S: Summary is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

( ) =( )( )  mod   .
q ′

p′

1

1

1

2

q

p
Z

2 (3.S.2)

∙

∈ [E,E+ΔE]Eα

⟨ |A | ⟩ = ⟨A  ,Ψα Ψα ⟩
Eα

(3.S.3)

A | ⟩Ψα

Eα

ΔE E ΔE ≪ E−E0 E0 ⟨A = ⟨A⟩T ⟩E
ρS S

U W ∪S = U W =ρS Z−1
S e−βĤS ĤS
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4.1: Microcanonical Ensemble (μCE)

The microcanonical distribution function
We have seen how in an ergodic dynamical system, time averages can be replaced by phase space averages:

where

and

Here  is the Hamiltonian, and where  is the Dirac -function . Thus, averages are taken over a constant
energy hypersurface which is a subset of the entire phase space.

We’ve also seen how any phase space distribution  which is a function of conserved quantitied  is
automatically a stationary (time-independent) solution to Liouville’s equation. Note that the microcanonical distribution,

is of this form, since  is conserved by the dynamics. Linear and angular momentum conservation generally are broken by
elastic scattering off the walls of the sample.

So averages in the microcanonical ensemble are computed by evaluating the ratio

where  means ‘trace’, which entails an integration over all phase space:

Here  is the total number of particles and  is the dimension of physical space in which each particle moves. The factor of ,
which cancels in the ratio between numerator and denominator, is present for indistinguishable particles . The normalization factor

 renders the trace dimensionless. Again, this cancels between numerator and denominator. These factors may then seem
arbitrary in the definition of the trace, but we’ll see how they in fact are required from quantum mechanical considerations. So we
now adopt the following metric for classical phase space integration:

Density of States
The denominator,

is called the density of states. It has dimensions of inverse energy, such that

ergodicity ⟺ ⟨f(φ) = ⟨f(φ)  ,⟩
t

⟩
S

(4.1.1)

⟨f(φ) = dt f(φ(t)) .⟩
t

lim
T→∞

1

T
∫

0

T

(4.1.2)

⟨f(φ) = ∫ dμ f(φ) δ(E− (φ))/∫ dμ δ(E− (φ)) .⟩
S

Ĥ Ĥ (4.1.3)

(φ) = (q, p)Ĥ Ĥ δ(x) δ 1

ϱ( , … , )Λ1 Λk (φ)Λa

(φ) = δ(E− (φ))/∫ dμ δ(E− (φ)) ,ϱE Ĥ Ĥ (4.1.4)

(φ)Ĥ

⟨A⟩ =  ,
Tr Aδ(E− )Ĥ

Tr δ(E− )Ĥ
(4.1.5)

Tr

Tr A(q, p) ≡ ∫ A(q, p) .
1

N !
∏
i=1

N ddpi d
dqi

(2πℏ)d
(4.1.6)

N d 1/N !
2

(2πℏ)−Nd

dμ =  .
1

N !
∏
i=1

N ddpi d
dqi

(2πℏ)d
(4.1.7)

D(E) = Tr δ(E− ) ,Ĥ (4.1.8)
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Let us now compute  for the nonrelativistic ideal gas. The Hamiltonian is

We assume that the gas is enclosed in a region of volume , and we’ll do a purely classical calculation, neglecting discreteness of
its quantum spectrum. We must compute

We shall calculate  in two ways. The first method utilizes the Laplace transform, :

The inverse Laplace transform is then

where  is such that the integration contour is to the right of any singularities of  in the complex -plane. We then have

The inverse Laplace transform is then

exactly as before. The integration contour for the inverse Laplace transform is extended in an infinite semicircle in the left half -
plane. When  is even, the function  has a simple pole of order  at the origin. When  is odd, there is a branch
cut extending along the negative  axis, and the integration contour must avoid the cut, as shown in Figure . One can
check that this results in the same expression above, we may analytically continue from even values of  to all positive values of 

.

For a general system, the Laplace transform,  also is called the partition function. We shall again meet up with 
 when we discuss the ordinary canonical ensemble.

D(E) ΔE = d ∫ dμ δ( − ) = dμ∫

E

E+ΔE

E ′ E ′ Ĥ ∫

E< <E+ΔEĤ

= \# of states with energies between E and E+ΔE .

(4.1.9)

D(E)

(q, p) =  .Ĥ ∑
i=1

N p2
i

2m
(4.1.10)

V

D(E) = ∫ δ(E− ) .
1

N !
∏
i=1

N ddpi d
dqi

(2πℏ)d
∑
i=1

N p2
i

2m
(4.1.11)

D(E) Z(β)

Z(β) =L[D(E)] ≡ dE D(E) = Tr  .∫

0

∞

e−βE e−βĤ (4.1.12)

D(E) = [Z(β)] ≡ Z(β) ,L
−1 ∫

c−i∞

c+i∞
dβ

2πi
eβE (4.1.13)

c Z(β) β

Z(β) = ∫
1

N !
∏
i=1

N ddxi d
dpi

(2πℏ)d
e−β /2mp2

i

=
V N

N !

⎛

⎝
⎜∫

−∞

∞
dp

2πℏ
e−β /2mp2

⎞

⎠
⎟

Nd

= (  .
V N

N !

m

2πℏ2
)
Nd/2

β−Nd/2

D(E) = (
V N

N !

m

2πℏ2
)
Nd/2

∮

C

dβ

2πi
eβE β−Nd/2

= (  ,
V N

N !

m

2πℏ2
)
Nd/2 E

Nd−11
2

Γ(Nd/2)

β

Nd β−Nd/2 Nd/2 Nd

Reβ 4.1.1
Nd

Nd

Z(β) =L[D(E)]
Z(β)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18562?pdf


4.1.3 https://phys.libretexts.org/@go/page/18562

Figure : Complex integration contours  for inverse Laplace transform . When the product  is odd,
there is a branch cut along the negative  axis.

Our final result, then, is

Here we have emphasized that the density of states is a function of , , and . Using Stirling’s approximation,

we may define the statistical entropy,

where

Recall  is Boltzmann’s constant.

Second method

The second method invokes a mathematical trick. First, let’s rescale . We then have

Here we have written  with  as a -dimensional vector. We’ve also used the rule 
 for -functions. We can now write

where  is the -dimensional differential solid angle. We now have our answer:

What remains is for us to compute , the total solid angle in  dimensions. We do this by a nifty mathematical trick. Consider
the integral

4.1.1 C [Z(β)] = D(E)L
−1 dN

Re β

D(E,V ,N) = (  .
V N

N !

m

2πℏ2
)
Nd/2 E

Nd−1
1

2

Γ(Nd/2)
(4.1.14)

E V N

lnN ! = N lnN −N + lnN + ln(2π) +O( ) ,
1

2

1

2
N−1 (4.1.15)

S(E,V ,N) ≡ lnD(E,V ,N) = N ϕ( , )+O(lnN) ,kB kB

E

N

V

N
(4.1.16)

ϕ( , ) = ln( )+ln( )+ ln( )+(1 + d) .
E

N

V

N

d

2

E

N

V

N

d

2

m

dπℏ2

1

2
(4.1.17)

= 1.3806503 × erg/KkB 10−16

≡pαi 2mE
− −−−

√ uαi

D(E) = ( ∫ u δ( + +… + −1) .
V N

N !

2mE
− −−−

√

h
)

Nd

1

E
dM u2

1 u2
2 u2

M (4.1.18)

u = ( , , … , )u1 u2 uM M = Nd M

δ(Ex) = δ(x)E−1 δ

u = du d  ,dM uM−1 ΩM (4.1.19)

dΩM M 3

D(E) = ( ⋅  .
V N

N !

2m
−−−

√

h
)

Nd

E
Nd−1

1

2
1

2
ΩNd (4.1.20)

ΩM M
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where , and where

is the Gamma function, which satisfies  On the other hand, we can compute  in Cartesian coordinates,
writing

Therefore

We thereby obtain , , , , the first two of which are familiar.

Arbitrariness in the definition of 
Note that  has dimensions of inverse energy, so one might ask how we are to take the logarithm of a dimensionful quantity in
Equation . We must introduce an energy scale, such as  in Equation , and define  and 

. The definition of statistical entropy then involves the arbitrary parameter , however this only
affects  in an additive way. That is,

Note that the difference between the two definitions of  depends only on the ratio , and is independent of , , and 
.

Ultra-relativistic ideal gas
Consider an ultrarelativistic ideal gas, with single particle dispersion . We then have

The statistical entropy is , with

Discrete systems
For classical systems where the energy levels are discrete, the states of the system  are labeled by a set of discrete quantities 

, where each variable  takes discrete values. The number of ways of configuring the system at fixed energy  is

IM = ∫ u = dudM e−u2

ΩM ∫

0

∞

uM−1 e−u2

= ds = Γ( M) ,
1

2
ΩM∫

0

∞

s
M−1

1

2 e−s 1

2
ΩM

1

2

s = u2

Γ(z) = dt∫

0

∞

tz−1 e−t (4.1.21)

zΓ(z) = Γ(z+1). 4
IM

= = (  .IM d
⎛

⎝
⎜∫

−∞

∞

u
1
e−u2

1

⎞

⎠
⎟

M

π−−√ )M (4.1.22)

=  .Ω
M

2πM/2

Γ(M/2)
(4.1.23)

= 2πΩ2 = 4πΩ3 = 2Ω4 π2

S(E)

D(E)

4.1.16 ΔE 4.1.9 (E; ΔE) = D(E) ΔED
~

S(E; ΔE) ≡ ln (E; ΔE)kB D
~

ΔE

S(E)

S(E,V ,N ; Δ ) = S(E,V ,N ; Δ ) + ln( ) .E1 E2 kB

ΔE1

ΔE2

(4.1.24)

S Δ /ΔE1 E2 E V

N

ε(p) = cp

Z(β) =
V N

N !

ΩN
d

dhN
dp

⎛

⎝
⎜∫

0

∞

pd−1 e−βcp
⎞

⎠
⎟

N

= (  .
V N

N !

Γ(d) Ωd

cd hd βd
)
N

S(E,V ,N) = lnD(E,V ,N) = N ϕ( , )kB kB
E
N

V

N

ϕ( , ) = d ln( )+ln( )+ln( )+(d+1)
E

N

V

N

E

N

V

N

Γ(d)Ωd

(dhc)d
(4.1.25)

| σ ⟩
{ , , …}σ

1
σ

2
σi E
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then

where the sum is over all possible configurations. Here  labels the total number of particles. For example, if we have  spin-
particles on a lattice which are placed in a magnetic field , so the individual particle energy is , where , then
in a configuration in which  particles have  and  particles have , the energy is 

. The number of configurations at fixed energy  is

since . The statistical entropy is .

This page titled 4.1: Microcanonical Ensemble (μCE) is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.

Ω(E,N) =  ,∑
σ

δ
(σ),EĤ

(4.1.26)

N N 1
2

H = − Hσεi μ0 σ = ±1
N

↑
= +1σi = N −N

↓
N

↑
= −1σi

E = ( − ) HN↓ N↑ μ0 E

Ω(E,N) =( ) =  ,
N

N↑

N !

( − )! ( + )!N

2
E

2 Hμ0

N

2
E

2 Hμ0

(4.1.27)

= ∓N↑/↓
N

2
E

2 Hμ0
S(E,N) = lnΩ(E,N)kB
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4.2: The Quantum Mechanical Trace
Thus far our understanding of ergodicity is rooted in the dynamics of classical mechanics. A Hamiltonian flow which is ergodic is
one in which time averages can be replaced by phase space averages using the microcanonical ensemble. What happens, though, if
our system is quantum mechanical, as all systems ultimately are?

The Density Matrix
First, let us consider that our system  will in general be in contact with a world . We call the union of  and  the universe, 

. Let  denote a quantum mechanical state of , and let  denote a quantum mechanical state of . Then the
most general wavefunction we can write is of the form

Now let us compute the expectation value of some operator  which acts as the identity within , meaning 
, where  is the ‘reduced’ operator which acts within  alone. We then have

where

is the density matrix. The time-dependence of  is easily found:

where  is the Hamiltonian for the system . Thus, we find

Note that the density matrix evolves according to a slightly different equation than an operator in the Heisenberg picture, for which

Figure : A system  in contact with a ‘world’ . The union of the two, universe , is said to be the ‘universe’.

For Hamiltonian systems, we found that the phase space distribution  evolved according to the Liouville equation,

S W S W

U =W ∪S N ⟩∣∣ W n ⟩∣∣ S

Ψ⟩ = N ⟩⊗ n ⟩ .∣∣ ∑
N ,n

Ψ
N ,n

∣∣ ∣∣ (4.2.1)

Â W

⟨N ⟩ =∣∣ Â ∣∣N ′ Â δ
NN ′ Â S

⟨Ψ Ψ⟩∣∣ Â ∣∣ = ⟨n ⟩∑
N ,N ′

∑
n,n′

Ψ∗
N ,nΨ ,N ′ n′ δNN ′ ∣∣ Â ∣∣n

′

= Tr ( ) ,ϱ̂ Â

= ⟩ ⟨nϱ̂ ∑
N

∑
,n n′

Ψ∗
N ,nΨN ,n′ ∣∣n

′ ∣∣ (4.2.2)

ϱ̂

(t)ϱ̂ = (t) ⟩ ⟨n(t)∑
N

∑
,n n′

Ψ∗
N ,nΨN ,n′ ∣∣n

′ ∣∣

=  ,e−i t/ℏĤ ϱ̂ e+i t/ℏĤ

Ĥ S

iℏ = [ , ] .
∂ϱ̂

∂t
Ĥ ϱ̂ (4.2.3)

(t) = A ⟹ iℏ = [ , ] =−[ , ] .Â e+iHt/ℏ e−i t/ℏĤ ∂Â

∂t
Â Ĥ Ĥ Â (4.2.4)

4.2.1 S W U =W ∪S

ϱ(q, p, t)

i =Lϱ ,
∂ϱ

∂t
(4.2.5)
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where the Liouvillian  is the differential operator

Accordingly, any distribution  which is a function of constants of the motion  is a stationary solution to the
Liouville equation: . Similarly, any quantum mechanical density matrix which commutes with the
Hamiltonian is a stationary solution to Equation . The corresponding microcanonical distribution is

Averaging the DOS
If our quantum mechanical system is placed in a finite volume, the energy levels will be discrete, rather than continuous, and the
density of states (DOS) will be of the form

where  are the eigenvalues of the Hamiltonian . In the thermodynamic limit, , and the discrete spectrum of kinetic
energies remains discrete for all finite  but must approach the continuum result. To recover the continuum result, we average the
DOS over a window of width :

If we take the limit  but with , where  is the spacing between successive quantized levels, we recover a
smooth function, as shown in Figure . We will in general drop the bar and refer to this function as . Note that 

 is (typically) exponentially small in the size of the system, hence if we took  which
vanishes in the thermodynamic limit, there are still exponentially many energy levels within an interval of width .

Figure : Averaging the quantum mechanical discrete density of states yields a continuous curve.

Coherent States
The quantum-classical correspondence is elucidated with the use of coherent states. Recall that the one-dimensional harmonic
oscillator Hamiltonian may be written

where  and  are ladder operators satisfying , which can be taken to be

L

L=−i { − } .∑
j=1

Nd ∂Ĥ

∂pj

∂

∂qj

∂Ĥ

∂qj

∂

∂pj
(4.2.6)

ϱ( ,… , )Λ1 Λk (q, p)Λa

ϱ( ,… , ) = 0∂t Λ1 Λk

4.2.3

= δ(E− ) .ϱ̂E Ĥ (4.2.7)

D(E) = Tr δ(E− ) = δ(E− ) ,Ĥ ∑
l

E
l

(4.2.8)

{ }E
l

Ĥ V →∞
V

ΔE

= d D( ) .D(E)
¯ ¯¯̄¯̄¯̄¯̄¯̄ 1

ΔE
∫

E

E+ΔE

E ′ E ′ (4.2.9)

ΔE →0 ΔE ≫ δE δE

4.2.2 D(E)

δE ∼ 1/D(E) = e−Nϕ(ε,v) ΔE ∝ V −1

ΔE

4.2.2

Ĥ0 = + m
p2

2m

1

2
ω2
0 q

2

= ℏ ( a+ ) ,ω0 a†
1

2

a a† [a, ] = 1a†

a= ℓ + , =−ℓ +  ,
∂

∂q

q

2ℓ
a†

∂

∂q

q

2ℓ
(4.2.10)
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with  . Note that

The ground state satisfies , which yields

The normalized coherent state  is defined as

The overlap of coherent states is given by

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent states allow a simple resolution of
the identity,

which is straightforward to establish.

To gain some physical intuition about the coherent states, define

and write . One finds (exercise!)

hence the coherent state  is a wavepacket Gaussianly localized about , but oscillating with average momentum .

For example, we can compute

as well as

Thus, the root mean square fluctuations in the coherent state  are

and . Thus we learn that the coherent state  is localized in phase space, in both position and momentum. If

we have a general operator , we can then write

where  is formed from  by replacing  and .

Since

ℓ = ℏ/2mω0

− −−−−−−
√

q = ℓ (a+ ) , p = (a− ) .a†
ℏ

2iℓ
a† (4.2.11)

a (q) = 0ψ0

(q) = (2π  .ψ0 ℓ2)−1/4 e− /4q2 ℓ2 (4.2.12)

| z ⟩

| z ⟩= | 0 ⟩= | n ⟩ .e− |z1
2

|2 eza
†

e− |z1
2

|2 ∑
n=0

∞ zn

n!
−−

√
(4.2.13)

⟨ | ⟩=  ,z1 z2 e− |1

2
z1|

2

e− |1

2
z2|

2

ez̄ 1z2 (4.2.14)

1 = ∫ | z ⟩⟨ z | ; ≡
zd2

2πi

zd2

2πi

dRez d Imz

π
(4.2.15)

z≡ +
Q

2ℓ

iℓP

ℏ
(4.2.16)

| z ⟩≡ |Q,P ⟩

(q) = ⟨ q | z ⟩= (2π  ,ψ
Q,P

ℓ2)−1/4 e−iPQ/2ℏ eiPq/ℏ e−(q−Q /4)2 ℓ2 (4.2.17)

(q)ψ
Q,P

q =Q P

⟨Q,P q Q,P ⟩∣∣ ∣∣

⟨Q,P p Q,P ⟩∣∣ ∣∣

= ⟨ z ℓ (a+ ) z ⟩ = 2ℓ Rez=Q∣∣ a† ∣∣

= ⟨ z (a− ) z ⟩ = Im z= P∣∣
ℏ

2iℓ
a† ∣∣

ℏ

ℓ

⟨Q,P Q,P ⟩∣∣ q
2 ∣∣

⟨Q,P Q,P ⟩∣∣ p2 ∣∣

= ⟨ z (a+ z ⟩ = +∣∣ ℓ
2 a†)2 ∣∣ Q2 ℓ2

=−⟨ z (a− z ⟩ = +  .∣∣
ℏ2

4ℓ2
a†)2 ∣∣ P 2 ℏ2

4ℓ2

|Q,P ⟩

Δq = ℓ = , Δp = = ,
ℏ

2mω0

− −−−−

√
ℏ

2ℓ

mℏω0

2

− −−−−−
√ (4.2.18)

Δq ⋅ Δp = ℏ1
2
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we can write the trace using coherent states as

We now can understand the origin of the factor  in the denominator of each  integral over classical phase space in
Equation .

Note that  is arbitrary in our discussion. By increasing , the states become more localized in  and more plane wave like in .
However, so long as  is finite, the width of the coherent state in each direction is proportional to , and thus vanishes in the
classical limit.

This page titled 4.2: The Quantum Mechanical Trace is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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dQ dP
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4.3: Thermal Equilibrium

Two Systems in Thermal Contact
Consider two systems in thermal contact, as depicted in Figure . The two subsystems #1 and #2 are free to exchange energy,
but their respective volumes and particle numbers remain fixed. We assume the contact is made over a surface, and that the energy
associated with that surface is negligible when compared with the bulk energies  and . Let the total energy be .
Then the density of states  for the combined system is

The probability density for system #1 to have energy  is then

Note that  is normalized: . We now ask: what is the most probable value of ? We find out by
differentiating  with respect to  and setting the result to zero. This requires

We conclude that the maximally likely partition of energy between systems #1 and #2 is realized when

This guarantees that

is a maximum with respect to the energy , at fixed total energy .

Figure : Two systems in thermal contact.

The temperature  is defined as

a result familiar from thermodynamics. The difference is now we have a more rigorous definition of the entropy. When the total
entropy  is maximized, we have that . Once again, two systems in thermal contact and can exchange energy will in
equilibrium have equal temperatures.

According to Equations \ref{phinrel} and \ref{phiurel}, the entropies of nonrelativistic and ultrarelativistic ideal gases in  space
dimensions are given by

4.3.1

E1 E2 E = +E1 E2

D(E)

D(E) = ∫ d ( ) (E− ) .E1 D1 E1 D2 E1 (4.3.1)

E
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Invoking Equation , we then have

We saw that the probability distribution  is maximized when , but how sharp is the peak in the distribution? Let us
write , where  is the solution to Equation . We then have

where . We must now evaluate

where  is the heat capacity. Thus,

where

The distribution is therefore a Gaussian, and the fluctuations in  can now be computed:

The individual heat capacities  and  scale with the volumes  and , respectively. If , then , in

which case . Therefore the RMS fluctuations in  are proportional to the square root of the system size, whereas 
itself is extensive. Thus, the ratio  scales as the inverse square root of the volume. The distribution 

 is thus extremely sharp.

Thermal, mechanical and chemical equilibrium

We have  , but in general . Equivalently, we may write . The full differential of 

 is then , with  and  and . As we shall

discuss in more detail,  is the pressure and  is the chemical potential. We may thus write the total differential  as

Employing the same reasoning as in the previous section, we conclude that entropy maximization for two systems in contact
requires the following:

If two systems can exchange energy, then . This is thermal equilibrium.
If two systems can exchange volume, then . This is mechanical equilibrium.
If two systems can exchange particle number, then . This is chemical equilibrium.

Gibbs-Duhem Relation
The energy  is an extensive function of extensive variables, it is homogeneous of degree one in its arguments.
Therefore , and taking the derivative with respect to  yields

SNR

SUR

= Nd ln( )+N ln( )+const.
1

2
kB

E

N
kB

V

N

=Nd ln( )+N ln( )+const. .kB

E

N
kB

V

N

(4.3.6)

(4.3.7)

4.3.5
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Taking the differential of each side, using the Leibniz rule on the RHS, and plugging in , we arrive at
the Gibbs-Duhem relation ,

This, in turn, says that any one of the intensive quantities  can be written as a function of the other two, in the case of a
single component system.

This page titled 4.3: Thermal Equilibrium is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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4.4: Ordinary Canonical Ensemble (OCE)

Canonical Distribution and Partition Function
Consider a system  in contact with a world , and let their union  be called the ‘universe’. The situation is depicted
in Figure [universe]. The volume  and particle number  of the system are held fixed, but the energy is allowed to fluctuate by
exchange with the world . We are interested in the limit , , with , with similar relations holding
for the respective volumes and energies. We now ask what is the probability that  is in a state  with energy . This is given
by the ratio

Then

The constant  is given by

Thus, we find . The constant  is fixed by the requirement that :

We’ve already met  in Equation  – it is the Laplace transform of the density of states. It is also called the partition function
of the system . Quantum mechanically, we can write the ordinary canonical density matrix as

which is known as the Gibbs distribution. Note that , hence the ordinary canonical distribution is a stationary solution
to the evolution equation for the density matrix. Note that the OCE is specified by three parameters: , , and .

The difference between  and 
Let the total energy of the Universe be fixed at . The joint probability density  for the system to have energy 
and the world to have energy  is

where

which ensures that . The probability density  is defined such that  is the
(differential) probability for the system to have an energy in the range . The units of  are . To obtain 

, we simply integrate the joint probability density  over all possible values of , obtaining
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as we have in Equation .

Now suppose we wish to know the probability  that the system is in a particular state  with energy . Clearly

Additional remarks
The formula of Equation  is quite general and holds in the case where , so long as we are in the
thermodynamic limit, where the energy associated with the interface between S and W may be neglected. In this case, however, one
is not licensed to perform the subsequent Taylor expansion, and the distribution  is no longer of the Gibbs form. It is also valid
for quantum systems , in which case we interpret  as a diagonal element of the density matrix . The density of
states functions may then be replaced by

The off-diagonal matrix elements of  are negligible in the thermodynamic limit.

Averages within the OCE
To compute averages within the OCE,

where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we have

with  for identical particles (‘Maxwell-Boltzmann statistics’). Thus,

Entropy and Free Energy
The Boltzmann entropy is defined by

The Boltzmann entropy and the statistical entropy  are identical in the thermodynamic limit. We define the
Helmholtz free energy  as

hence
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Therefore the entropy is

which is to say , where

is the average energy. We also see that

Thus,  is a Legendre transform of , with

which means

Fluctuations in the OCE
In the OCE, the energy is not fixed. It therefore fluctuates about its average value . Note that

Thus, the heat capacity is related to the fluctuations in the energy, just as we saw at the end of §4:

For the nonrelativistic ideal gas, we found , hence the ratio of RMS fluctuations in the energy to the energy itself is

and the ratio of the RMS fluctuations to the mean value vanishes in the thermodynamic limit.

The full distribution function for the energy is

Thus,
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where  is the statistical entropy. Let’s write , where  extremizes the combination , the
solution to , where the energy derivative of  is performed at fixed volume  and particle number . We now
expand  to second order in , obtaining

Recall that . Thus,

Applying this to both numerator and denominator of Equation , we obtain

where  is a normalization constant which guarantees . Once again, we see that the

distribution is a Gaussian centered at , and of width . This is a consequence of the Central Limit

Theorem.

Thermodynamics revisited
The average energy within the OCE is

and therefore

where

Finally, from , we can write

with which we obtain
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so the generalized force  conjugate to the generalized displacement  is

This is the force acting on the system . In the chapter on thermodynamics, we defined the generalized force conjugate to  as 
.

Figure : Microscopic, statistical interpretation of the First Law of Thermodynamics.

Thus we see from Equation  that there are two ways that the average energy can change; these are depicted in the sketch of
Figure . Starting from a set of energy levels  and probabilities , we can shift the energies to . The resulting
change in energy  is identified with the work done on the system. We could also modify the probabilities to 
without changing the energies. The energy change in this case is the heat absorbed by the system: . This provides us
with a statistical and microscopic interpretation of the First Law of Thermodynamics.

Generalized Susceptibilities
Suppose our Hamiltonian is of the form

where  is an intensive parameter, such as magnetic field. Then

and

But then from  we have
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Typically we will take  to be an extensive quantity. We can now define the susceptibility  as

The volume factor in the denominator ensures that  is intensive.

It is important to realize that we have assumed here that , the ‘bare’ Hamiltonian  and the operator  commute. If
they do not commute, then the response functions must be computed within a proper quantum mechanical formalism, which we
shall not discuss here.

Note also that we can imagine an entire family of observables  satisfying  and , for all  and 
. Then for the Hamiltonian

we have that

and we may define an entire matrix of susceptibilities,
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k
λ⃗  Q̂k ( )

∂F
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4.5: Grand Canonical Ensemble (GCE)

Grand canonical distribution and partition function
Consider once again the situation depicted in Figure [universe], where a system  is in contact with a world , their union 

 being called the ‘universe’. We assume that the system’s volume  is fixed, but otherwise it is allowed to exchange
energy and particle number with . Hence, the system’s energy  and particle number  will fluctuate. We ask what is the
probability that  is in a state  with energy  and particle number . This is given by the ratio

Then

The constants  and  are given by

The quantity  has dimensions of energy and is called the chemical potential. Nota bene: Some texts define the ‘grand canonical
Hamiltonian’  as

Thus, . Once again, the constant  is fixed by the requirement that :

Thus, the quantum mechanical grand canonical density matrix is given by

Note that . The quantity  is called the grand partition function. It stands in relation to a corresponding free
energy in the usual way:

where  is the grand potential, also known as the Landau free energy. The dimensionless quantity  is called the
fugacity.

If , the grand potential may be expressed as a sum over contributions from each  sector, viz.

S W
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∣
∣
E=E

U
N=N

U

Nn

∂ ln (E,N)D
W

∂N
∣
∣
∣
E=E

U
N=N

U

≡ −α−β +βμ  .En Nn

β μ
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∂ ln (E,N)D
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∂E
∣
∣
∣
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N=N

U

1

TkB

= − T    .kB

∂ ln (E,N)DW

∂N

∣
∣
∣
E=E

U
N=N

U

μ

K̂

≡ −μ  .K̂ Ĥ N̂ (4.5.1)

=Pn e−α e−β( −μ )En Nn α = 1∑n Pn
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When there is more than one species, we have several chemical potentials , and accordingly we define

with  as before.

Entropy and Gibbs-Duhem relation
In the GCE, the Boltzmann entropy is

which says

where

Therefore,  is a double Legendre transform of , with

which entails

Since  is an extensive quantity, we must be able to write . We identify the function  as the
negative of the pressure:

Therefore,

This is consistent with the result from thermodynamics that . Taking the differential, we recover the
Gibbs-Duhem relation,

Generalized Susceptibilities in the GCE
We can appropriate the results from §5.8 and apply them, mutatis mutandis, to the GCE. Suppose we have a family of observables 

 satisfying  and  and  for all , , and . Then for the grand canonical
Hamiltonian

Ξ(T ,V ,μ) = Z(T ,V ,N) .∑
N

eβμN (4.5.5)

{ }μa

= −  ,K̂ Ĥ ∑
a
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Ω = −pV , p = p(T ,μ) (equation of state)\ . (4.5.10)
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we have that

and we may define the matrix of generalized susceptibilities,

Fluctuations in the GCE
Both energy and particle number fluctuate in the GCE. Let us compute the fluctuations in particle number. We have

Therefore,

Note now that

where  is the isothermal compressibility. Note:

Thus,

which again scales as .

Gibbs ensemble
Let the system’s particle number  be fixed, but let it exchange energy and volume with the world . Mutatis mutandis, we have

Then
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λk Q̂k (4.5.12)

( ,T ) = ⟨ ⟩= −Qk λ⃗  Q̂k ( )
∂Ω

∂λk T , ,μa λ ≠kk′

(4.5.13)

= = −  .χkl

1

V

∂Qk

∂λl

1

V

Ω∂2

∂ ∂λk λl
(4.5.14)

N = ⟨ ⟩= = lnΞ .N̂
Tr N̂ e−β( −μ )Ĥ N̂
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1

β

∂

∂μ
(4.5.15)

1

β

∂N

∂μ
= −

Tr N̂
2
e−β( −μ )Ĥ N̂
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The constants  and  are given by

The corresponding partition function is

where  is a constant which has dimensions of volume. The factor  in front of the integral renders  dimensionless. Note that
, so the difference is not extensive and can be neglected in the thermodynamic limit. In other

words, it doesn’t matter what constant we choose for  since it contributes subextensively to . Moreover, in computing averages,
the constant  divides out in the ratio of numerator and denominator. Like the Helmholtz free energy, the Gibbs free energy 

 is also a double Legendre transform of the energy , viz.

which entails
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4.6: Statistical Ensembles from Maximum Entropy
The basic principle: maximize the entropy,

CE
We maximize  subject to the single constraint

We implement the constraint  with a Lagrange multiplier, , writing

and freely extremizing over the distribution  and the Lagrange multiplier . Thus,

We conclude that  and that

and we fix  by the normalization condition . This gives

Note that  is the number of states with energies between  and .

OCE

We maximize  subject to the two constraints

We now have two Lagrange multipliers. We write

and we freely extremize over  and . We therefore have

Thus,  and

We define  and we fix  by normalization. This yields

S = − ln  .kB ∑
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Pn Pn (4.6.1)
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GCE
We maximize  subject to the three constraints

We now have three Lagrange multipliers. We write

and hence

Thus,  and

We define  and , and we fix  by normalization. This yields
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4.7: Ideal Gas Statistical Mechanics
The ordinary canonical partition function for the ideal gas was computed in Equation [zideal]. We found

where  is the thermal wavelength:

The physical interpretation of  is that it is the de Broglie wavelength for a particle of mass  which has a kinetic energy of .

In the GCE, we have

From , we have the grand potential is

Since  (see §6.2), we have

The number density can also be calculated:

Combined, the last two equations recapitulate the ideal gas law, .

Maxwell velocity distribution

The distribution function for momenta is given by

Note that  is the same for every particle, independent of its label . We compute the average 
. Setting , all the integrals other than that over  divide out between numerator and

denominator. We then have

Textbooks commonly refer to the velocity distribution , which is related to  by
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Hence,

This is known as the Maxwell velocity distribution. Note that the distributions are normalized, viz.

Figure : Maxwell distribution of speeds . The most probable speed is . The average speed is 

. The RMS speed is .

If we are only interested in averaging functions of  which are isotropic, then we can define the Maxwell speed distribution, 
, as

Note that  is normalized according to

It is convenient to represent  in units of , in which case

The distribution  is shown in Figure . Computing averages, we have

Thus, , , , The speed averages are

Note that the average velocity is , but the average speed is . The speed distribution is plotted in Figure 
.
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Equipartition
The Hamiltonian for ballistic (massive nonrelativistic) particles is quadratic in the individual components of each momentum .
There are other cases in which a classical degree of freedom appears quadratically in  as well. For example, an individual normal
mode  of a system of coupled oscillators has the Lagrangian

where the dimensions of  are  by convention. The Hamiltonian for this normal mode is then

from which we see that both the kinetic as well as potential energy terms enter quadratically into the Hamiltonian. The classical
rotational kinetic energy is also quadratic in the angular momentum components.

Let us compute the contribution of a single quadratic degree of freedom in  to the partition function. We’ll call this degree of
freedom  – it may be a position or momentum or angular momentum – and we’ll write its contribution to  as

where  is some constant. Integrating over  yields the following factor in the partition function:

The contribution to the Helmholtz free energy is then

and therefore the contribution to the internal energy  is

We have thus derived what is commonly called the equipartition theorem of classical statistical mechanics:

We now see why the internal energy of a classical ideal gas with  degrees of freedom per molecule is , and 
. This result also has applications in the theory of solids. The atoms in a solid possess kinetic energy due to their

motion, and potential energy due to the spring-like interatomic potentials which tend to keep the atoms in their preferred crystalline
positions. Thus, for a three-dimensional crystal, there are six quadratic degrees of freedom (three positions and three momenta) per
atom, and the classical energy should be , and the heat capacity . As we shall see, quantum mechanics
modifies this result considerably at temperatures below the highest normal mode (phonon) frequency, but the high temperature
limit is given by the classical value  (where  is the number of moles) derived here, known as the Dulong-
Petit limit.

This page titled 4.7: Ideal Gas Statistical Mechanics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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Ĥ

ξ

L = −  ,
1

2
ξ̇

2 1

2
ω2

0 ξ
2 (4.7.14)

ξ [ξ] = LM 1/2

= +  ,Ĥ
p2

2

1

2
ω2

0 ξ
2 (4.7.15)

Ĥ
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4.8: Selected Examples

Spins in an External Magnetic Field
Consider a system of  spins, each of which can be either up  or down ( ). The Hamiltonian for this system is

where now we write  for the Hamiltonian, to distinguish it from the external magnetic field , and  is the magnetic moment per particle. We treat this system
within the ordinary canonical ensemble. The partition function is

where  is the single particle partition function:

The Helmholtz free energy is then

The magnetization is

The energy is

Hence, , which we already knew, from the form of  itself.

Each spin here is independent. The probability that a given spin has polarization  is

The total probability is unity, and the average polarization is a weighted average of  and  contributions:

At low temperatures , we have . At high temperatures , the two polarizations are equally likely, and 

.

The isothermal magnetic susceptibility is defined as

(Typically this is computed per unit volume rather than per particle.) At , we have , which is known as the Curie law.

Aside
The energy  here is not the same quantity we discussed in our study of thermodynamics. In fact, the thermodynamic energy for this problem
vanishes! Here is why. To avoid confusion, we’ll need to invoke a new symbol for the thermodynamic energy, . Recall that the thermodynamic energy  is a
function of extensive quantities, meaning . It is obtained from the free energy  by a double Legendre transform:

Now from Equation  we derive the entropy

Thus, using Equations  and , we obtain .

The potential confusion here arises from our use of the expression . In thermodynamics, it is the Gibbs free energy  which is a double
Legendre transform of the energy: . By analogy, with magnetic systems we should perhaps write , but in keeping with

N
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many textbooks we shall use the symbol  and refer to it as the Helmholtz free energy. The quantity we’ve called  in Equation  is in fact 
, which means . The energy  vanishes here because the spins are noninteracting.

Negative Temperature (!)
Consider again a system of  spins, each of which can be either up  or down ( ). Let  be the number of sites with spin , where . Clearly 

. We now treat this system within the microcanonical ensemble.

Figure : When entropy decreases with increasing energy, the temperature is negative. Typically, kinetic degrees of freedom prevent this peculiarity from
manifesting in physical systems.

The energy of the system is

where  is an external magnetic field, and  is the total magnetization. We now compute  using the ordinary canonical ensemble. The
number of ways of arranging the system with  up spins is

hence the entropy is

in the thermodynamic limit: , ,  constant. Now the magnetization is , hence if we define
the maximum energy , then

We therefore have

We now have

We see that the temperature is positive for  and is negative for .

What has gone wrong? The answer is that nothing has gone wrong – all our calculations are perfectly correct. This system does exhibit the possibility of negative
temperature. It is, however, unphysical in that we have neglected kinetic degrees of freedom, which result in an entropy function  which is an increasing
function of energy. In this system,  achieves a maximum of  at  ( ), and then turns over and starts decreasing. In fact, our
results are completely consistent with Equation : the energy  is an odd function of temperature. Positive energy requires negative temperature! Another
example of this peculiarity is provided in the appendix in §11.2.

Adsorption
PROBLEM: A surface containing  adsorption sites is in equilibrium with a monatomic ideal gas. Atoms adsorbed on the surface have an energy  and no
kinetic energy. Each adsorption site can accommodate at most one atom. Calculate the fraction  of occupied adsorption sites as a function of the gas density , the
temperature , the binding energy , and physical constants.

The grand partition function for the surface is

The fraction of occupied sites is
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Since the surface is in equilibrium with the gas, its fugacity  and temperature  are the same as in the gas.

SOLUTION: For a monatomic ideal gas, the single particle partition function is , where  is the thermal wavelength. Thus, the
grand partition function, for indistinguishable particles, is

The gas density is

We can now solve for the fugacity: . Thus, the fraction of occupied adsorption sites is

Interestingly, the solution for  involves the constant .

It is always advisable to check that the solution makes sense in various limits. First of all, if the gas density tends to zero at fixed  and , we have . On the
other hand, if  we have , which also makes sense. At fixed  and , if the adsorption energy is , then once again  since every
adsorption site wants to be occupied. Conversely, taking  results in , since the energetic cost of adsorption is infinitely high.

Figure : The monomers in wool are modeled as existing in one of two states. The low energy undeformed state is A, and the higher energy deformed state is
B. Applying tension induces more monomers to enter the B state.

Elasticity of wool
Wool consists of interlocking protein molecules which can stretch into an elongated configuration, but reversibly so. This feature gives wool its very useful
elasticity. Let us model a chain of these proteins by assuming they can exist in one of two states, which we will call A and B, with energies  and 
and lengths  and . The situation is depicted in Figure . We model these conformational degrees of freedom by a spin variable  for
each molecule, where  in the A state and  in the B state. Suppose a chain consisting of  monomers is placed under a tension . We then have

Similarly, the length is

The Gibbs partition function is , with  :

where  and . At  the A state is preferred for each monomer, but when  exceeds ,
defined by the relation , the B state is preferred. One finds
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Figure : Upper panel: length  for  (blue),  (green),  (dark red), and  (red). Bottom panel: dimensionless force constant 
 versus temperature.

Once again, we have a set of  noninteracting spins. The partition function is , where  is the single monomer partition function, , where

is the single “spin" Hamiltonian. Thus,

It is convenient to define the differences

in which case the partition function  is

The average length is

The polymer behaves as a spring, and for small  the spring constant is

The results are shown in Figure . Note that length increases with temperature for  and decreases with temperature for . Note also that  diverges
at both low and high temperatures. At low , the energy gap  dominates and , while at high temperatures  dominates and 

.

Noninteracting spin dimers
Consider a system of noninteracting spin dimers as depicted in Figure . Each dimer contains two spins, and is described by the Hamiltonian

Here,  is an interaction energy between the spins which comprise the dimer. If  the interaction is ferromagnetic, which prefers that the spins are aligned.
That is, the lowest energy states are  and . If  the interaction is antiferromagnetic, which prefers that spins be anti-aligned:  and .

Suppose there are  dimers. Then the OCE partition function is , where  is the single dimer partition function. To obtain , we sum over
the four possible states of the two spins, obtaining

Thus, the free energy is

The magnetization is
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It is instructive to consider the zero field isothermal susceptibility per spin,

The quantity  is simply the Curie susceptibility for noninteracting classical spins. Note that we correctly recover the Curie result when , since then
the individual spins comprising each dimer are in fact noninteracting. For the ferromagnetic case, if , then we obtain

This has the following simple interpretation. When , the spins of each dimer are effectively locked in parallel. Thus, each dimer has an effective magnetic
moment . On the other hand, there are only half as many dimers as there are spins, so the resulting Curie susceptibility per spin is .

Figure : A model of noninteracting spin dimers on a lattice. Each red dot represents a classical spin for which .

When , the spins of each dimer are effectively locked in one of the two antiparallel configurations. We then have

In this case, the individual dimers have essentially zero magnetic moment.

This page titled 4.8: Selected Examples is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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4.9: Statistical Mechanics of Molecular Gases

Separation of translational and internal degrees of freedom
The states of a noninteracting atom or molecule are labeled by its total momentum  and its internal quantum numbers, which we
will simply write with a collective index , specifying rotational, vibrational, and electronic degrees of freedom. The single particle
Hamiltonian is then

with

The partition function is

Here we have replaced the internal label  with a label  of energy eigenvalues, with  being the degeneracy of the internal state
with energy . To do the  sum, we quantize in a box of dimensions , using periodic boundary conditions.
Then

where each  is an integer. Since the differences between neighboring quantized  vectors are very tiny, we can replace the sum
over  by an integral:

where the volume in momentum space of an elementary rectangle is

Thus,

Here,  is the internal coordinate partition function. The full -particle ordinary canonical partition function is then

Using Stirling’s approximation, we find the Helmholtz free energy  is

where
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ℏ2k

2

2m
εα ∣∣ (4.9.2)

ζ = Tr =  .e−βĥ ∑
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is the internal coordinate contribution to the single particle free energy. We could also compute the partition function in the Gibbs 
 ensemble:

Thus, in the thermodynamic limit,

Ideal gas law
Since the internal coordinate contribution to the free energy is volume-independent, we have

and the ideal gas law applies. The entropy is

and therefore the heat capacity is

Thus, any temperature variation in  must be due to the internal degrees of freedom.

The internal coordinate partition function
At energy scales of interest we can separate the internal degrees of freedom into distinct classes, writing

as a sum over internal Hamiltonians governing rotational, vibrational, and electronic degrees of freedom. Then

Associated with each class of excitation is a characteristic temperature . Rotational and vibrational temperatures of a few
common molecules are listed in table tab. [rvftab].

Rotations
Consider a class of molecules which can be approximated as an axisymmetric top. The rotational Hamiltonian is then

φ(T ) = − T lnξ(T )kB (4.9.8)
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= ( d+1)N −NT (T )
1

2
kB φ′′

= dN −NT (T ) .
1

2
kB φ′′
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= + +ĥint ĥrot ĥvib ĥelec (4.9.11)

= ⋅ ⋅  .ξ
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ξrot ξ
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ξ
elec
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Θ
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where  are the principal axes, with  the symmetry axis, and  are the components of the angular momentum vector 
about these instantaneous body-fixed principal axes. The components of  along space-fixed axes  are written as .
Note that

which is equivalent to the statement that  is a rotational scalar. We can therefore simultaneously specify the eigenvalues
of , which form a complete set of commuting observables (CSCO) . The eigenvalues of  are  with 

, while those of  are  with . There is a -fold degeneracy associated with the 
quantum number.

We assume the molecule is prolate, so that . We can the define two temperature scales,

Prolateness then means . We conclude that the rotational partition function for an axisymmetric molecule is given by

Table [rvftab]: Some rotational and vibrational temperatures of common molecules.

molecule

 ,  ,  ,  , 

In diatomic molecules,  is extremely small, and  at all relevant temperatures. Only the  term contributes to the
partition sum, and we have

When , only the first few terms contribute, and

In the high temperature limit, we have a slowly varying summand. The Euler-MacLaurin summation formula may be used to
evaluate such a series:

where  is the  Bernoulli number where

Thus,

We have , for which  , hence

(t)n̂a.b,c n̂c La,b,c L

L {x, y, z} Lx,y,z

[ , ] = [ , ] +[ , ] = i + i = 0 ,Lμ
Lc nν

c Lμ Lν Lμ nν
c Lν ϵμνλ n

ν
c L

λ ϵμνλ n
λ
c L

ν (4.9.13)

= ⋅ LLc n̂c

{ , , }L2 Lz
Lc

10 Lz mℏ

m ∈ {−L, … ,L} Lc kℏ k ∈ {−L, … ,L} (2L+1) Lz

<I3 I1

Θ = , =  .
ℏ2

2I1kB

Θ̃
ℏ2

2I3kB

(4.9.14)

> ΘΘ̃

(T ) = (2L+1)ξrot ∑
L=0

∞

e−L(L+1) Θ/T ∑
k=−L

L

e− ( −Θ)/Tk2 Θ̃ (4.9.15)

(K)Θrot (K)Θvib

H2 85.4 6100

N2 2.86 3340

OH2 13.7 21.0 39.4 2290 5180 5400

I3 ≫ TΘ̃ kB k = 0

(T ) = (2L+1)  .ξrot ∑
L=0

∞

e−L(L+1) Θ/T (4.9.16)

T ≪ Θ

(T ) = 1 +3 +5 +…ξrot e−2Θ/T e−6Θ/T (4.9.17)

= dkF (k) + [F (0) +F (n)] + [ (n) − (0)]∑
k=0

n

Fk ∫

0

n

1

2
∑
j=1

∞ B2j

(2j)!
F (2j−1) F (2j−1) (4.9.18)
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= 1 , = − , = , = − , =  .B0 B1

1

2
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1

6
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1
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1

42
(4.9.19)

= dx F (x) + F (0) − (0) − (0) +…  .∑
k=0

∞

Fk ∫

0

∞

1

2

1

12
F ′ 1

720
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Recall that . We conclude that  for  and  for 
. We have seen that the internal coordinate contribution to the heat capacity is . For diatomic

molecules, then, this contribution is exponentially suppressed for , while for high temperatures we have . One
says that the rotational excitations are ‘frozen out’ at temperatures much below . Including the first few terms, we have

Note that  overshoots its limiting value of  and asymptotically approaches it from above.

Special care must be taken in the case of homonuclear diatomic molecules, for then only even or odd  states are allowed,
depending on the total nuclear spin. This is discussed below in §10.7.

For polyatomic molecules, the moments of inertia generally are large enough that the molecule’s rotations can be considered
classically. We then have

We then have

where  are the Euler angles. Recall , , and . The factor  accounts for physically
indistinguishable orientations of the molecule brought about by rotations, which can happen when more than one of the nuclei is
the same. We then have

This leads to .

Vibrations
Vibrational frequencies are often given in units of inverse wavelength, such as , called a wavenumber. To convert to a
temperature scale , we write , hence , and we multiply by

For example, infrared absorption (  cm  to  cm ) reveals that the ‘asymmetric stretch’ mode of the  molecule has a
vibrational frequency of . The corresponding temperature scale is .

Vibrations are normal modes of oscillations. A single normal mode Hamiltonian is of the form

In general there are many vibrational modes, hence many normal mode frequencies . We then must sum over all of them,
resulting in

For each such normal mode, the contribution is

= + + + ( +…  .ξrot
T

Θ

1

3

1

15

Θ

T

4

315

Θ

T
)

2

(4.9.21)

φ(T ) = − T lnξ(T )kB (T ) ≈ −3 Tφrot kB e−2Θ/T T ≪ Θ (T ) ≈ − T ln(T/Θ)φrot kB

T ≫ Θ Δ = −NT (T )CV φ′′
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(4.9.22)

(T ) = ∫  ,ξrot
1

grot

d d d dϕ dθdψLa Lb Lc

(2πℏ)3
e−ε( )/ TLa Lb Lc kB (4.9.23)

(ϕ, θψ) ϕ ∈ [0, 2π] θ ∈ [0, π] ψ ∈ [0, 2π] grot

(T ) =(  .ξrot
2 TkB

ℏ2
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3/2

πI1I2I3
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√ (4.9.24)

Δ = NC
V

3
2

kB

cm−1

T ∗ = hν = hc/λkBT
∗ = (hc/ )T ∗ kB λ−1
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hc
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(4.9.25)

∼ 50 −1 104 −1 OH2

ν = 3756 cm−1 = 5394 KT ∗
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2m
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2
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where . Then

The contribution to the heat capacity is

Two-level systems : Schottky anomaly
Consider now a two-level system, with energies  and . We define  and assume without loss of generality that 

. The partition function is

The free energy is

The entropy for a given two level system is then

and the heat capacity is ,

Thus,

We find that  has a characteristic peak at . The heat capacity vanishes in both the low temperature and high
temperature limits. At low temperatures, the gap to the excited state is much greater than , and it is not possible to populate it
and store energy. At high temperatures, both ground state and excited state are equally populated, and once again there is no way to
store energy.

ξ = = (∑
n=0

∞

e−(n+ )ℏω/ T
1

2
kB e−ℏω/2 TkB ∑

n=0

∞

e−ℏω/ TkB )
n

= =  ,
e−ℏω/2 TkB

1 −e−ℏω/ TkB

1

2 sinh(Θ/2T )

Θ = ℏω/kB

φ = T ln(2 sinh(Θ/2T ))kB

= Θ+ T ln(1 − ) .
1

2
kB kB e−Θ/T

ΔCV = N (kB

Θ

T
)

2
eΘ/T

( −1eΘ/T )2

={
N (Θ/T exp(−Θ/T )kB )2

NkB

(T → 0)

(T → ∞)

ε0 ε1 Δ ≡ −ε1 ε0

Δ > 0

ζ = + = (1 + ) .e−βε0 e−βε1 e−βε0 e−βΔ (4.9.28)

f = − T lnζ = − T ln(1 + ) .kB ε0 kB e−Δ/ TkB (4.9.29)

s = − = ln(1 + ) + ⋅
∂f

∂T
kB e−Δ/ TkB

Δ
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1

+1eΔ/ TkB
(4.9.30)

= T (∂s/∂T )
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kBT 2
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Figure [molgas]: Heat capacity per molecule as a function of temperature for (a) heteronuclear diatomic gases, (b) a single
vibrational mode, and (c) a single two-level system.

If we have a distribution of independent two-level systems, the heat capacity of such a system is a sum over the individual Schottky
functions:

where  is the number of two level systems, , and where  is the normalized distribution function,
which satisfies the normalization condition

 is the total number of two level systems. If  for , then the low temperature heat capacity behaves as 
. Many amorphous or glassy systems contain such a distribution of two level systems, with  for glasses, leading

to a linear low-temperature heat capacity. The origin of these two-level systems is not always so clear but is generally believed to
be associated with local atomic configurations for which there are two low-lying states which are close in energy. The paradigmatic
example is the mixed crystalline solid  which over the range  forms an ‘orientational glass’ at
low temperatures. The two level systems are associated with different orientation of the cyanide (CN) dipoles.

Electronic and Nuclear Excitations
For a monatomic gas, the internal coordinate partition function arises due to electronic and nuclear degrees of freedom. Let’s first
consider the electronic degrees of freedom. We assume that  is small compared with energy differences between successive
electronic shells. The atomic ground state is then computed by filling up the hydrogenic orbitals until all the electrons are used up.
If the atomic number is a ‘magic number’ (  (He),  (Ne),  (Ar),  (Kr),  (Xe), ) then the atom has all shells filled and 

 and . Otherwise the last shell is partially filled and one or both of  and  will be nonzero. The atomic ground state
configuration  is then determined by Hund’s rules:

1. The  multiplet with the largest  has the lowest energy.
2. If the largest value of  is associated with several multiplets, the multiplet with the largest  has the lowest energy.
3. If an incomplete shell is not more than half-filled, then the lowest energy state has . If the shell is more than half-

filled, then .

The last of Hund’s rules distinguishes between the  states which result upon fixing  and  as per rules #1 and
#2. It arises due to the atomic spin-orbit coupling, whose effective Hamiltonian may be written , where  is the
Russell-Saunders coupling. If the last shell is less than or equal to half-filled, then  and the ground state has . If
the last shell is more than half-filled, the coupling is inverted, , and the ground state has .

The electronic contribution to  is then

C(T ) = ( / T ) = N dΔP (Δ) (Δ/T ) ,∑
i

c̃ Δi kB ∫

0

∞

c̃ (4.9.32)

N (x) = /( +1c̃ kB x2 ex ex )2 P (Δ)

dΔP (Δ) = 1 .∫

0

∞

(4.9.33)

N
S
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where

At high temperatures,  is larger than the energy difference between the different  multiplets, and we have 
, where  is the ground state energy. At low temperatures, a particular value of  is selected – that

determined by Hund’s third rule – and we have . If, in addition, there is a nonzero nuclear spin , then we
also must include a factor , neglecting the small hyperfine splittings due to the coupling of nuclear and electronic
angular momenta.

For heteronuclear diatomic molecules, molecules composed from two different atomic nuclei, the internal partition function simply
receives a factor of , where the first term is a sum over molecular electronic states, and the second two terms arise
from the spin degeneracies of the two nuclei. For homonuclear diatomic molecules, the exchange of nuclear centers is a symmetry
operation, and does not represent a distinct quantum state. To correctly count the electronic states, we first assume that the total
electronic spin is . This is generally a very safe assumption. Exchange symmetry now puts restrictions on the possible values
of the molecular angular momentum , depending on the total nuclear angular momentum . If  is even, then the molecular
angular momentum  must also be even. If the total nuclear angular momentum is odd, then  must be odd. This is so because the
molecular ground state configuration is .

The total number of nuclear states for the molecule is , of which some are even under nuclear exchange, and some are
odd. The number of even states, corresponding to even total nuclear angular momentum is written as , where the subscript
conventionally stands for the (mercifully short) German word gerade, meaning ‘even’. The number of odd (Ger. ungerade) states is
written . Table [nucspin] gives the values of  corresponding to half-odd-integer  and integer .

The final answer for the rotational component of the internal molecular partition function is then

where

For hydrogen, the molecules with the larger nuclear statistical weight are called orthohydrogen and those with the smaller statistical
weight are called parahydrogen. For , we have  hence the ortho state has  and the para state has . In , we
have  and the ortho state has  while the para state has . In equilibrium, the ratio of ortho to para states is then

Table [nucspin]: Number of even ( ) and odd ( ) total nuclear angular momentum states for a homonuclear diatomic molecule.  is the ground
state nuclear spin.

odd

even

Incidentally, how do we derive the results in Table [tabgggu] ? The total nuclear angular momentum  is the quantum mechanical
sum of the two individual nuclear angular momenta, each of which are of magnitude . From elementary addition of angular
momenta, we have

The right hand side of the above equation lists all the possible multiplets. Thus, . Now let us count the total
number of states with even . If  is even, which is to say if  is an integer, we have

Δε(L,S, J) = Λ[J(J +1) −L(L+1) −S(S+1)] .
1

2
(4.9.35)

TkB J

∼ (2L+1)(2S+1)ξelec e−βε0 ε0 J

∼ (2J +1)ξ
elec

e−βε0 I

= (2I +1)ξnuc

⋅ ⋅ξelec ξ
(1)
nuc ξ

(2)
nuc

S = 0

L Itot Itot
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1Σ+
\slg

12

(2I +1)2
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gu gg,u I I

(T ) = +  ,ξrot gg ζg gu ζu (4.9.36)

ζg

ζu

= (2L+1)∑
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e−L(L+1) /TΘrot

= (2L+1)  .∑
L odd

e−L(L+1) /TΘrot

H2 I = 1
2

= 3gu = 1gg D2

I = 1 = 6gg = 3gu

= = , = =  .
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N
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because the degeneracy of each multiplet is . It follows that

On the other hand, if  is odd, which is to say  is a half odd integer, then

It follows that

This page titled 4.9: Statistical Mechanics of Molecular Gases is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.

= {2 ⋅ (2n) +1} = (I +1)(2I +1) ,g
(2I=even)
g ∑

n=0

I

(4.9.39)

2 +1Itot

= (2I +1 − = I(2I +1) .g
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u )2 gg (4.9.40)

2I I
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4.10: Appendix I- Additional Examples

Three state system
Consider a spin-1 particle where . We model this with the single particle Hamiltonian

We can also interpret this as describing a spin if  and a vacancy if . The parameter  then represents the vacancy formation
energy. The single particle partition function is

With  distinguishable noninteracting spins ( at different sites in a crystalline lattice), we have  and

where  is the free energy of a single particle. Note that

are the vacancy number and magnetization, respectively. Thus,

and

At weak fields we can compute

We thus obtain a modified Curie law. At temperatures , the vacancies are frozen out and we recover the usual Curie behavior. At
high temperatures, where , the low temperature result is reduced by a factor of , which accounts for the fact that one third of the
time the particle is in a nonmagnetic state with .

Spins and vacancies on a surface
A collection of spin-  particles is confined to a surface with  sites. For each site, let  if there is a vacancy,  if there is particle
present with spin up, and  if there is a particle present with spin down. The particles are non-interacting, and the energy for each site is
given by , where  is the binding energy.

Let  be the number of spins, and  be the number of vacancies. The surface magnetization is . Compute, in
the microcanonical ensemble, the statistical entropy .
Let  and  be the dimensionless particle density and magnetization density, respectively. Assuming that we are in the
thermodynamic limit, where , , and  all tend to infinity, but with  and  finite, Find the temperature . Recall Stirling’s
formula

Show explicitly that  can be negative for this system. What does negative  mean? What physical degrees of freedom have been left out
that would avoid this strange property?

There is a constraint on , , and :

The total energy of the system is .

σ = −1, 0, +1

= − H σ+Δ(1 − ) .ĥ μ
0

σ2 (4.10.1)

σ = ±1 σ = 0 Δ

ζ = Tr = +2 cosh(β H) .e−βĥ e−βΔ μ0 (4.10.2)
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The number of states available to the system is

Fixing  and , along with the above constraint, is enough to completely determine :

whence

The statistical entropy is :

Now we invoke Stirling’s rule,

to obtain

Combining terms,

where  and . Note that the entropy  is extensive. The statistical entropy per site is thus

The temperature is obtained from the relation

Thus,

We have  and , so  is real (thank heavens!). But it is easy to choose  such that . For example, when 
 we have  and  for all . The reason for this strange state of affairs is that the entropy  is

bounded, and is not an monotonically increasing function of the energy  (or the dimensionless quantity ). The entropy is maximized for 
, which says  and . Increasing  beyond this point (with  fixed) starts to reduce the entropy, and

hence  in this range, which immediately gives . What we’ve left out are kinetic degrees of freedom, such as vibrations
and rotations, whose energies are unbounded, and which result in an increasing  function.
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N !
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(4.10.9)
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ln(N !) = N lnN −N +O(lnN) , (4.10.13)
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Fluctuating Interface
Consider an interface between two dissimilar fluids. In equilibrium, in a uniform gravitational field, the denser fluid is on the bottom. Let 

 be the height the interface between the fluids, relative to equilibrium. The potential energy is a sum of gravitational and surface
tension terms, with

We won’t need the kinetic energy in our calculations, but we can include it just for completeness. It isn’t so clear how to model it a priori so we
will assume a rather general form

We assume that the  plane is a rectangle of dimensions . We also assume . We can then Fourier transform

where the wavevectors  are quantized according to

with integer  and , if we impose periodic boundary conditions (for calculational convenience). The Lagrangian is then

where

Since  is real, we have the relation , therefore the Fourier coefficients at  and  are not independent. The canonical
momenta are given by

The Hamiltonian is then

where the prime on the  sum indicates that only one of the pair  is to be included, for each .

We may now compute the ordinary canonical partition function:

Thus,

where

z = z(x, y)

Ugrav

Usurf

= ∫ x d Δρ gd2 ∫

0

z

z′ z′

= ∫ x σ (∇z  .d2 1

2
)2

T = ∫ x∫ μ(x, )  .d2 d2x′ 1

2
x

′ ∂z(x, t)

∂t

∂z( , t)x′

∂t
(4.10.17)

(x, y) ×Lx Ly μ(x, ) = μ(|x − |)x′ x′

z(x) = (  ,Lx Ly)
−1/2

∑
k

zk e
ik⋅x (4.10.18)

k
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nx ny
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= ∫ x μ(|x|)  .μk d2 e−ik⋅x (4.10.21)
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is the normal mode frequency for surface oscillations at wavevector . For deep water waves, it is appropriate to take , where 
 is the difference between the densities of water and air.

It is now easy to compute the thermal average

Note that this result does not depend on , on our choice of kinetic energy. One defines the correlation function

where  is the correlation length, and where  is the Bessel function of imaginary argument. The asymptotic behavior of 
 for small  is , whereas for large  one has . We see that on large length scales the correlations

decay exponentially, but on small length scales they diverge. This divergence is due to the improper energetics we have assigned to short
wavelength fluctuations of the interface. Roughly, it can cured by imposing a cutoff on the integral, or by insisting that the shortest distance
scale is a molecular diameter.

Dissociation of Molecular Hydrogen
Consider the reaction

In equilibrium, we have

What is the relationship between the temperature  and the fraction  of hydrogen which is dissociated?

Let us assume a fraction  of the hydrogen is dissociated. Then the densities of H, p, and e are then

The single particle partition function for each species is

where  is the degeneracy and  the internal energy for a given species. We have  for p and e, and  for H, where 
eV, the binding energy of hydrogen. Neglecting hyperfine splittings , we have , while  because each

has spin . Thus, the associated grand potentials are

where

for species . The corresponding number densities are

=(  .Ω
k

gΔρ+σk2

μk

)
1/2

(4.10.24)
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and the fugacity  of a given species is given by

We now invoke , which says , or

which yields

where , with . Note that

where Å is the Bohr radius. Thus, we have

where  and . Consider for example a temperature , for which , and assume
that . We then find , corresponding to a density of . At this temperature, the fraction of
hydrogen molecules in their first excited (2s) state is . This is quite striking: half the hydrogen atoms are
completely dissociated, which requires an energy of , yet the number in their first excited state, requiring energy , is twelve orders of
magnitude smaller. The student should reflect on why this can be the case.
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4.S: Summary
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Summary
 Distributions: Let  be a normalized distribution on phase space. Then

where  is the phase space measure. For a Hamiltonian system of  identical indistinguishable point particles
in  space dimensions, we have

The  prefactor accounts for indistinguishability. Normalization means .

 Microcanonical ensemble ( CE): , where  is the density of states and 
 is the Hamiltonian. The energy , volume , and particle number  are held fixed. Thus, the density of states 

 is a function of all three variables. The statistical entropy is , where  is
Boltzmann’s constant. Since  has dimensions of , an arbitrary energy scale is necessary to convert  to a dimensionless
quantity before taking the log. In the thermodynamic limit, one has

The differential of  is defined to be , thus  is the temperature,  is the

pressure, and  is the chemical potential. Note that , , , and  are all extensive quantities, they are halved when

the system itself is halved.

 Ordinary canonical ensemble (OCE): In the OCE, energy fluctuates, while , , and the temperature  are fixed. The
distribution is , where  and  is the partition function. Note that  is the Laplace transform
of the density of states: . The Boltzmann entropy is . This entails , where 

 is the Helmholtz free energy, a Legendre transform of the energy . From this we derive 
.

 Grand canonical ensemble (GCE): In the GCE, both  and  fluctuate, while , , and chemical potential  remain fixed.

Then , where  is the grand partition function and  is the grand potential.

3rd
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⟨f(φ)⟩ = Tr [ϱ(φ) f(φ)] = ∫ dμ ϱ(φ) f(φ) , (4.S.1)
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Z = ∫dE D(E) e−βE S = − Tr (ϱ lnϱ)kB F = E−TS

F = − T lnZkB E

dF = −S dT −p dV +μdN

∙ E N T V μ
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Assuming , we can label states  by both energy and particle number. Then . We also have 
, hence .

 Thermodynamics: From , we have ,
where  and

with . Here  is the generalized force conjugate to the generalized displacement .

 Thermal contact: In equilibrium, two systems which can exchange energy satisfy . Two systems which can exchange
volume satisfy . Two systems which can exchange particle number satisfy .

 Gibbs-Duhem relation: Since  is extensive, Euler’s theorem for homogeneous functions guarantees that 
. Taking the differential, we obtain the equation , so there must be a relation

among any two of the intensive quantities , , and .

 Generalized susceptibilities: Within the OCE , let , where  are observables with . Then

The quantities  are the generalized susceptibilities.

 Ideal gases: For , one finds , where \(\lambda\ns_T=\sqrt

\) is the thermal wavelength. Thus , where  is a constant. From this one finds 

, which is the ideal gas law, with  the number density. The distribution of velocities in 

dimensions is given by

and this leads to a speed distribution .

 Example: For  noninteracting spins in an external magnetic field , the Hamiltonian is , where .
The spins, if on a lattice, are regarded as distinguishable. Then , where . The
magnetization and magnetic susceptibility are then

 Example: For noninteracting particles with kinetic energy  and internal degrees of freedom, , where 

 is the partition function for the internal degrees of freedom, which include rotational, vibrational, and electronic
excitations. One still has , but the heat capacities at constant  and  are

where .

1. The generalization to the GCE is straightforward.↩

Endnotes
1. We write the Hamiltonian as  (classical or quantum) in order to distinguish it from magnetic field ( ) or enthalpy .↩
2. More on this in chapter 5.↩
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pV = N TkB V p

= T = dN −NT (T ) , = T = +N  ,C
V

( )
∂S

∂T V,N

1

2
kB φ′′ Cp ( )

∂S

∂T p,N

C
V

kB (4.S.8)

φ(T ) = − T lnξ(T )kB
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3. The factor of  preceding  in Equation [nrdos] appears because . Since ,
the second term can be dropped.↩

4. Note that for integer argument, ↩

5. See §2.7.4.↩
6. See T.-C. Lu and T. Grover, arXiv 1709.08784.↩
7. In applying Equation [EminusTS] to the denominator of Equation [PEOCE], we shift  by  and integrate over the difference 

, retaining terms up to quadratic order in  in the argument of the exponent.↩
8. In deriving Equation [thermforce], we have used the so-called Feynman-Hellman theorem of quantum mechanics: 

, if  is an energy eigenstate.↩
9. Nota bene we are concerned with classical spin configurations only – there is no superposition of states allowed in this model!
↩

10. Note that while we cannot simultaneously specify the eigenvalues of two components of  along axes fixed in space, we can
simultaneously specify the components of  along one axis fixed in space and one axis rotating with a body. See Landau and
Lifshitz, Quantum Mechanics, §103.↩

11. See §72 of Landau and Lifshitz, Quantum Mechanics, which, in my humble estimation, is the greatest physics book ever
written.↩

12. See Landau and Lifshitz, Quantum Mechanics, §86.↩
13. Note that there is no prime on the  sum for , as we have divided the logarithm of  by two and replaced the half sum by the

whole sum.↩
14. The hyperfine splitting in hydrogen is on the order of eV, which is on the order of K. Here 

 is the fine structure constant.↩
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5.1: Statistical Mechanics of Noninteracting Quantum Systems

Bose and Fermi systems in the grand canonical ensemble

A noninteracting many-particle quantum Hamiltonian may be written as

where  is the number of particles in the quantum state  with energy . This form is called the second quantized representation of the Hamiltonian. The number eigenbasis is therefore also an
energy eigenbasis. Any eigenstate of  may be labeled by the integer eigenvalues of the  number operators, and written as . We then have

and

The eigenvalues  take on different possible values depending on whether the constituent particles are bosons or fermions, viz.

In other words, for bosons, the occupation numbers are nonnegative integers. For fermions, the occupation numbers are either 0 or 1 due to the Pauli principle, which says that at most one fermion
can occupy any single particle quantum state. There is no Pauli principle for bosons.

The -particle partition function  is then

where the sum is over all allowed values of the set , which depends on the statistics of the particles. Bosons satisfy Bose-Einstein (BE) statistics, in which . Fermions satisfy
Fermi-Dirac (FD) statistics, in which .

The OCE partition sum is difficult to perform, owing to the constraint  on the total number of particles. This constraint is relaxed in the GCE, where

Note that the grand partition function  takes the form of a product over contributions from the individual single particle states.

We now perform the single particle sums:

Therefore we have

and

We can combine these expressions into one, writing

where we take the upper sign for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics. Note that the average occupancy of single particle state  is

and the total particle number is then

We will henceforth write  for the thermodynamic average of this occupancy.

Quantum statistics and the Maxwell-Boltzmann limit

Consider a system composed of  noninteracting particles. The Hamiltonian is

The single particle Hamiltonian  has eigenstates  with corresponding energy eigenvalues . What is the partition function? Is it

where  is the single particle partition function,

1

=  ,Ĥ ∑
α

εα n̂α (5.1.1)

n̂α α εα

Ĥ n̂α , , … ⟩∣∣n1 n2

⟩ = ⟩n̂α
∣∣ n⃗  nα ∣∣ n⃗  (5.1.2)

⟩ = ⟩ .Ĥ ∣∣ n⃗  ∑
α

nα εα ∣∣ n⃗  (5.1.3)

nα

 bosons:  

 fermions:  

∈ {0 , 1 , 2 , 3 , … }nα

∈ {0 , 1} .nα

N ZN

=  ,Z
N

∑
{ }nα

e−β∑α nαεα δ
N , ∑α nα

(5.1.4)

{ }nα ∈ {0 , 1 , 2 , …}nα

∈ {0 , 1}nα

= N∑α nα

Ξ

 

=∑
N

eβμN ZN

=∑
{ }nα

e−β∑α nαεα eβμ ∑α nα

= ( ) .∏
α

∑
nα

e−β( −μ)εα nα

Ξ

∑
n=0

∞

e−β(ε−μ) n

∑
n=0

1

e−β(ε−μ) n

=  (bosons)
1

1 −e−β(ε−μ)

= 1 +  (fermions) .e−β(ε−μ)

\begin{split} \XBE&=\prod_\alpha {1\over 1-e^{-(\ve\ns_\alpha-\mu)/\kT}}\\ \OBE&=\kT\sum_\alpha\ln\!\Big(1-e^{-(\ve\ns_\alpha-\mu)/\kT}\Big) \end{split}

\begin{split} \XFD&=\prod_\alpha \Big(1+e^{-(\ve\ns_\alpha-\mu)/\kT}\Big)\\ \OFD&=-\kT\sum_\alpha\ln\!\Big(1+e^{-(\ve\ns_\alpha-\mu)/\kT}\Big). \end{split}

Ω(T ,V ,μ) = ± T ln(1 ∓ ),kB ∑
α

e−( −μ)/ Tεα kB (5.1.5)

α

⟨ ⟩ = = ,n̂α

∂Ω

∂εα

1

∓1e( −μ)/ Tεα kB
(5.1.6)

N(T ,V ,μ) = .∑
α

1

∓1e( −μ)/ Tεα kB
(5.1.7)

(μ,T ) = ⟨ ⟩nα n̂α

N

=  .Ĥ ∑
j=1

N

ĥj (5.1.8)

ĥ |α⟩ εα

Z     ⋯   =  ,to10pt=
?

∑
α1

∑
αN

e
−β( +  + … +  )εα

1
εα

2
εα

N ζN (5.1.9)

ζ

ζ =  .∑
α

e−βεα (5.1.10)
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For systems where the individual particles are distinguishable, such as spins on a lattice which have fixed positions, this is indeed correct. But for particles free to move in a gas, this equation is
wrong. The reason is that for indistinguishable particles the many particle quantum mechanical states are specified by a collection of occupation numbers , which tell us how many particles are in
the single-particle state . The energy is

and the total number of particles is

That is, each collection of occupation numbers  labels a unique many particle state . In the product , the collection  occurs many times. We have therefore overcounted the
contribution to  due to this state. By what factor have we overcounted? It is easy to see that the overcounting factor is

which is the number of ways we can rearrange the labels  to arrive at the same collection . This follows from the multinomial theorem,

Thus, the correct expression for  is

In the high temperature limit, almost all the  are either  or , hence

This is the classical Maxwell-Boltzmann limit of quantum statistical mechanics. We now see the origin of the  term which is so important in the thermodynamics of entropy of mixing.

Finally, starting with the expressions for the grand partition function for Bose-Einstein or Fermi-Dirac particles, and working in the low density limit where  , we have ,
and consequently

This is the Maxwell-Boltzmann limit of quantum statistical mechanics. The occupation number average in the Maxwell-Boltzmann limit is then

Single particle density of states

The single particle density of states per unit volume  is defined as

We can then write

For particles with a dispersion , with , we have

where  is the spin degeneracy, and where we assume that  is both isotropic and a monotonically increasing function of . Thus, we have

In order to obtain  as a function of the energy  one must invert the dispersion relation  to obtain .

Note that we can equivalently write

to derive .

For a spin-  particle with ballistic dispersion , we have

where  is the step function, which takes the value  for  and  for . The appearance of  simply says that all the single particle energy eigenvalues are nonnegative. Note that we
are assuming a box of volume  but we are ignoring the quantization of kinetic energy, and assuming that the difference between successive quantized single particle energy eigenvalues is negligible
so that  can be replaced by the average in the above expression. Note that

nα

|α ⟩

E =∑
α

nα εα (5.1.11)

N =  .∑
α

nα (5.1.12)
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{ }nα

e−β∑α nαεα δN ,∑α nα
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nα 0 1
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(5.1.14)

1/N !

(μ,T ) ≪ 1nα −μ ≫ Tεα kB

\begin{split} \Omega\ns_{\ssr{BE}/\ssr{FD}}&=\pm\kT\,\sum_\alpha\ln\!\Big(1\mp e^{-(\ve\ns_\alpha-\mu)/\kT}\Big)\\ &\longrightarrow-\kT\sum_\alpha e^{-(\ve\ns_\alpha-\mu)/\kT}\equiv \Omega\ns_\ssr{MB}\ . \end{

⟨ ⟩ =  .n̂α e−( −μ)/ Tεα kB (5.1.15)
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Ω(T ,V ,μ) = ±V T dε g(ε) ln(1 ∓ ) .kB ∫
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g(ε) ε ε = ε(k) k = k(ε)

g(ε)dε = g = dk
kdd

(2π)d

g Ωd
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S ε(k) = /2mℏ2k
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g(ε) = (  Θ(ε),
2S+1
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2πℏ2
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ε −1d
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Θ(ε) 0 ε < 0 1 ε ≥ 0 Θ(ε)
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This result holds true independent of the form of . The average total number of particles is then

which does depend on .
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n(ε,T ,μ) = .
1

∓1e(ε−μ)/ TkB
(5.1.21)

g(ε)

N(T ,V ,μ) = V dε g(ε) ,∫

−∞

∞

1

∓1e(ε−μ)/ TkB
(5.1.22)
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5.2: Quantum Ideal Gases - Low Density Expansions

Expansion in powers of the fugacity
From Equation [numeqn], we have that the number density  is

where  is the fugacity and

From  and our expression above for , we have

Virial expansion of the equation of state
Eqns.  and  express  and  as power series in the fugacity , with -dependent coefficients. In principal, we
can eliminate  using Equation , writing  as a power series in the number density , and substitute this into
Equation  to obtain an equation of state  of the form

Note that the low density limit  yields the ideal gas law independent of the density of states . This follows from
expanding  and  to lowest order in , yielding  and . Dividing the second
of these equations by the first yields , which is the ideal gas law. Note that  can formally
be written as a power series in .

Unfortunately, there is no general analytic expression for the virial coefficients  in terms of the expansion coefficients 
. The only way is to grind things out order by order in our expansions. Let’s roll up our sleeves and see how this is done. We

start by formally writing  as a power series in the density  with -dependent coefficients :

We then insert this into the series for :

Let’s expand the RHS to order . Collecting terms, we have

In order for this equation to be true we require that the coefficient of  on the RHS be unity, and that the coefficients of  for all 
 must vanish. Thus,

n=N/V
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−∞
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∓1z−1 eε/ TkB

= (±1 (T ) ,∑
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∞

)j−1 Cj zj
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The first of these yields :

We now insert this into the second equation to obtain :

Next, insert the expressions for  and  into the third equation to obtain :

This procedure rapidly gets tedious!

And we’re only half way done. We still must express  in terms of :

We can now write

It is easy to derive the general result that , where the superscripts denote Fermi (F) or Bose (B)
statistics.

We remark that the equation of state for classical (and quantum) interacting systems also can be expanded in terms of virial
coefficients. Consider, for example, the van der Waals equation of state,

This may be recast as

where . Thus, for the van der Waals system, we have  and  for all .

Ballistic Dispersion
For the ballistic dispersion  we computed the density of states in Equation . One finds
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We then have

Note that  is negative for bosons and positive for fermions. This is because bosons have a tendency to bunch and under
certain circumstances may exhibit a phenomenon known as Bose-Einstein condensation (BEC). Fermions, on the other hand, obey
the Pauli principle, which results in an extra positive correction to the pressure in the low density limit.

We may also write

and

where

is the polylogarithm function . Note that  obeys a recursion relation in its index, viz.

and that

This page titled 5.2: Quantum Ideal Gases - Low Density Expansions is shared under a CC BY-NC-SA license and was authored, remixed, and/or
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5.3: Entropy and Counting States
Suppose we are to partition  particles among  possible distinct single particle states. How many ways  are there of accomplishing this task? The answer depends on the statistics of the particles.
If the particles are fermions, the answer is easy: . For bosons, the number of possible partitions can be evaluated via the following argument. Imagine that we line
up all the  particles in a row, and we place  barriers among the particles, as shown below in Figure [BEcount]. The number of partitions is then the total number of ways of placing the 
particles among these  objects (particles plus barriers), hence we have . For Maxwell-Boltzmann statistics, we take 
Note that  is not necessarily an integer, so Maxwell-Boltzmann statistics does not represent any actual state counting. Rather, it manifests itself as a common limit of the Bose
and Fermi distributions, as we have seen and shall see again shortly.

[BEcount] Partitioning  bosons into  possible states (  and  shown). The  black dots represent bosons, while the  white dots represent markers separating the different single
particle populations. Here , , , , and .

The entropy in each case is simply . We assume  and , with  finite. Then using Stirling’s approximation, , we have

In the Maxwell-Boltzmann limit, , and all three expressions agree. Note thatR

Now let’s imagine grouping the single particle spectrum into intervals of  consecutive energy states. If  is finite and the spectrum is continuous and we are in the thermodynamic limit, then these
states will all be degenerate. Therefore, using  as a label for the energies, we have that the grand potential  is given in each case by

Now - lo and behold! - treating  as a function of the distribution  and extremizing in each case, subject to the constraint of total particle number , one obtains the Maxwell-
Boltzmann, Bose-Einstein, and Fermi-Dirac distributions, respectively:

As long as  is finite, so the states in each block all remain at the same energy, the results are independent of .

This page titled 5.3: Entropy and Counting States is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

N J Ω

\ROmega\ns_\ssr{FD}={J\choose N}
N J −1 N

N +J −1 \ROmega\ns_\ssr{BE}={N+J-1\choose N} \ROmega\ns_\ssr{MB}=J^N/N!
\ROmega\ns_\ssr{MB}

N J N = 14 J = 5 N J − 1
= 3n1 = 1n2 = 4n3 = 2n4 = 4n5

S = lnΩkB N ≫ 1 J ≫ 1 n ≡ N/J ln(K!) = K lnK −K +O(lnK)

\begin{split} S\ns_\ssr{MB}&=-J\kB \, n\ln n \\ S\ns_\ssr{BE}&=-J\kB\big[ n\ln n - (1+n)\ln (1+n)\big] \bvph \\ S\ns_\ssr{FD}&=-J\kB\big[ n\ln n + (1-n)\ln (1-n)\big]\ . \end{split}

n ≪ 1

\begin{split} \pabc{S\ns_\ssr{MB}}{N}{J} &= -\kB \, \big( 1 + \ln n\big) \\ \pabc{S\ns_\ssr{BE}}{N}{J} &= \kB\ln\!\big(n^{-1}+1\big) \bvph \\ \pabc{S\ns_\ssr{FD}}{N}{J} &= \kB\ln\!\big(n^{-1}-1\big)\ . \end{split}

J J

α Ω = E −T S −μN

\begin{split} \Omega\ns_\ssr{MB} &= J\sum_\alpha \Big[ (\ve\ns_\alpha-\mu)\,n\ns_\alpha+\kT\,n\ns_\alpha\ln n\ns_\alpha\Big] \\ \Omega\ns_\ssr{BE} &= J\sum_\alpha \Big[ (\ve\ns_\alpha-\mu)\,n\ns_\alpha+\kT\,n\ns_\a

Ω { }nα N = J∑α nα

{\delta\over\delta n\ns_\alpha}\Big(\Omega-\lambda \, J\sum_{\alpha'} n\ns_{\alpha'}\Big) = 0 \quad\Rightarrow \quad \begin{cases} n^\ssr{MB}_\alpha=e^{(\mu-\ve\ns_\alpha)/k\ns_\RB T} \\ \\ n^\ssr{BE}_\alpha=\big[e^

J J
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5.5: Photon Statistics

Thermodynamics of the photon gas
There exists a certain class of particles, including photons and certain elementary excitations in solids such as phonons ( lattice
vibrations) and magnons ( spin waves) which obey bosonic statistics but with zero chemical potential. This is because their overall
number is not conserved (under typical conditions) – photons can be emitted and absorbed by the atoms in the wall of a container,
phonon and magnon number is also not conserved due to various processes, In such cases, the free energy attains its minimum
value with respect to particle number when

The number distribution, from Equation , is then

The grand partition function for a system of particles with  is

where  is the density of states per unit volume.

Suppose the particle dispersion is . We can compute the density of states :

where  is the internal degeneracy, due, for example, to different polarization states of the photon. We have used the result 
 for the solid angle in  dimensions. The step function  is perhaps overly formal, but it reminds us that

the energy spectrum is bounded from below by , there are no negative energy states.

For the photon, we have , hence  and

In  dimensions the degeneracy is , the number of independent polarization states. The pressure  is then obtained
using . We have

We can make some progress with the dimensionless integral:

μ= = 0 .( )
∂F

∂N T .V

(5.5.1)
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−1eβε
(5.5.2)
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Finally, we invoke a result from the mathematics of the gamma function known as the doubling formula,

Putting it all together, we find

The number density is found to be

For photons in  dimensions, we have  and thus

It turns out that .

Note that , so

To find the entropy, we use Gibbs-Duhem:

where  is the entropy per particle and  is the volume per particle. We then find

The entropy per particle is constant. The internal energy is

and hence the energy per particle is

Id ≡− dt ln(1− )∫

0

∞

td−1 e−t

= dt∑
n=1

∞
1

n
∫

0

∞

td−1 e−nt

=Γ(d) = Γ(d) ζ(d+1) .∑
n=1

∞ 1

nd+1

Γ(z) = Γ( )Γ( ) .
2z−1

π−−√

z

2

z+1

2
(5.5.5)

p(T ) = g Γ( ) ζ(d+1)  .π
− (d+1)1

2
d+1

2

( TkB )d+1

(ℏc)d
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n(T ) = dε∫

−∞

∞
g(ε)

−1eε/ TkB

= g Γ( ) ζ(d)(  .π
− (d+1)1

2
d+1

2

TkB

ℏc
)
d

d = 3 g = 2

n(T ) = ( , p(T ) =  .
2 ζ(3)

π2

TkB

ℏc
)
3 2 ζ(4)

π2

( TkB )4

(ℏc)3
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ζ(4) = π4

90

ℏc/ = 0.22855 cm ⋅KkB

= 4.3755 T [K] ⟹ n(T ) = 20.405× [ ]  .
TkB
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dp
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s v= n−1
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Classical arguments for the photon gas
A number of thermodynamic properties of the photon gas can be determined from purely classical arguments. Here we recapitulate
a few important ones.

Suppose our photon gas is confined to a rectangular box of dimensions . Suppose further that the dimensions are
all expanded by a factor , the volume is isotropically expanded by a factor of . The cavity modes of the electromagnetic
radiation have quantized wavevectors, even within classical electromagnetic theory, given by

Since the energy for a given mode is , we see that the energy changes by a factor  under an adiabatic volume
expansion , where the distribution of different electromagnetic mode occupancies remains fixed. Thus,

Thus,

as we found in Equation [photE]. Since  is extensive, we must have  alone.
Since  alone, we have

where the second line follows the Maxwell relation , after invoking the First Law . Thus,

where  is a constant. Thus, we recover the temperature dependence found microscopically in Equation [photp].
Given an energy density , the differential energy flux emitted in a direction  relative to a surface normal is

where  is the differential solid angle. Thus, the power emitted per unit area is

where , with  as we found above. From quantum statistical mechanical considerations, we have

is Stefan’s constant.

Surface temperature of the earth
We derived the result  where  for the power emitted by an electromagnetic ‘black
body’. Let’s apply this result to the earth-sun system. We’ll need three lengths: the radius of the sun , the
radius of the earth , and the radius of the earth’s orbit . Let’s assume that the earth
has achieved a steady state temperature of . We balance the total power incident upon the earth with the power radiated by the
earth. The power incident upon the earth is

× ×Lx Ly Lz

λ1/3 λ

k =( , , ) .
2πnx

Lx

2πny

Ly

2πnz

Lz

(5.5.13)
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\sigma={\pi^2 k_\ssr{B}^4\over 60\,c^2\,\hbar^3}=5.67\times 10^{-8}\,{\RW\over\Rm^2\,\RK^4} \label{stefan}
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The power radiated by the earth is

Setting , we obtain

Thus, we find , and with , we obtain . The mean surface temperature of the earth is 
, which is only about  higher. The difference is due to the fact that the earth is not a perfect blackbody, an object

which absorbs all incident radiation upon it and emits radiation according to Stefan’s law. As you know, the earth’s atmosphere
retraps a fraction of the emitted radiation – a phenomenon known as the greenhouse effect.

[planck] Spectral density \rho_\ve(\nu,T) for blackbody radiation at three
temperatures.

[planck] Spectral density  for blackbody radiation at three temperatures.

Distribution of blackbody radiation
Recall that the frequency of an electromagnetic wave of wavevector  is . Therefore the number of photons 

 per unit frequency in thermodynamic equilibrium is (recall there are two polarization states)

We therefore have

Since a photon of frequency  carries energy , the energy per unit frequency  is

Note what happens if Planck’s constant  vanishes, as it does in the classical limit. The denominator can then be written

and

In classical electromagnetic theory, then, the total energy integrated over all frequencies diverges. This is known as the ultraviolet
catastrophe, since the divergence comes from the large  part of the integral, which in the optical spectrum is the ultraviolet
portion. With quantization, the Bose-Einstein factor imposes an effective ultraviolet cutoff  on the frequency integral, and
the total energy, as we found above, is finite:

We can define the spectral density  of the radiation as
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so that  is the fraction of the electromagnetic energy, under equilibrium conditions, between frequencies  and ,

. In Figure [planck] we plot this in Figure [planck] for three different temperatures. The maximum occurs when 

 satisfies

What if the sun emitted ferromagnetic spin waves?
We saw in Equation [jephoton] that the power emitted per unit surface area by a blackbody is . The power law here follows
from the ultrarelativistic dispersion  of the photons. Suppose that we replace this dispersion with the general form 

. Now consider a large box in equilibrium at temperature . The energy current incident on a differential area  of
surface normal to  is

Let us assume an isotropic power law dispersion of the form . Then after a straightforward calculation we obtain

where

One can check that for , , and  that this result reduces to that of Equation [stefan].

This page titled 5.5: Photon Statistics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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5.6: The Ideal Bose Gas
Crystalline solids support propagating waves called phonons, which are quantized vibrations of the lattice. Recall that the quantum mechanical Hamiltonian for a single harmonic oscillator, 

, may be written as , where  and  are ‘ladder operators’ satisfying commutation relations .

One-dimensional chain
Consider the linear chain of masses and springs depicted in Figure [lchain]. We assume that our system consists of  mass points on a large ring of circumference . In equilibrium, the masses are
spaced evenly by a distance . That is,  is the equilibrium position of particle . We define  to be the difference between the position of mass  and The Hamiltonian is
then

where  is the unstretched length of each spring,  is the mass of each mass point,  is the force constant of each spring, and  is the total number of mass points. If  the springs are under
tension in equilibrium, but as we see this only leads to an additive constant in the Hamiltonian, and hence does not enter the equations of motion.

The classical equations of motion are

Taking the time derivative of the first equation and substituting into the second yields

We now write

where periodicity  requires that the  values are quantized so that ,  where . The inverse of this discrete Fourier transform is

Note that  is in general complex, but that . In terms of the , the equations of motion take the form

Thus, each  is a normal mode, and the normal mode frequencies are

The density of states for this band of phonon excitations is

where  is the phonon bandwidth. The step functions require ; outside this range there are no phonon energy levels and the density of states accordingly vanishes.
[lchain] A linear chain of masses and springs. The black circles represent the
equilibrium positions of the masses. The displacement of mass n relative to

its equilibrium value is u_n.

[lchain] A linear chain of masses and springs. The black circles represent the equilibrium positions of the masses. The displacement of mass  relative to its equilibrium value is .

The entire theory can be quantized, taking . We then define

in which case . Note that  and . We then define the ladder operator

and its Hermitean conjugate , in terms of which the Hamiltonian is

which is a sum over independent harmonic oscillator modes. Note that the sum over  is restricted to an interval of width , , which is the first Brillouin zone for the one-dimensional
chain structure. The state at wavevector  is identical to that at , as we see from Equation [uFT].

General theory of lattice vibrations
The most general model of a harmonic solid is described by a Hamiltonian of the form

where the dynamical matrix is
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Ĥ = [ + κ ( − −a ]∑
n

p2
n

2m

1

2
xn+1 xn )2

= [ + κ ( − ]+ Nκ(b−a  ,∑
n

p2
n

2m

1

2
un+1 un)2 1

2
)2

a m κ N b ≠ a

u̇n

ṗn
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where  is the potential energy of interaction among all the atoms. Here we have simply expanded the potential to second order in the local displacements . The lattice sites  are elements of
a Bravais lattice. The indices  and  specify basis elements with respect to this lattice, and the indices  and  range over , the number of possible directions in space. The subject of
crystallography is beyond the scope of these notes, but, very briefly, a Bravais lattice in  dimensions is specified by a set of  linearly independent primitive direct lattice vectors , such that any
point in the Bravais lattice may be written as a sum over the primitive vectors with integer coefficients: . The set of all such vectors  is called the direct lattice. The direct lattice
is closed under the operation of vector addition: if  and  are points in a Bravais lattice, then so is .

[basis] A crystal structure with an underlying square Bravais lattice and a
three element basis.

[basis] A crystal structure with an underlying square Bravais lattice and a three element basis.

A crystal is a periodic arrangement of lattice sites. The fundamental repeating unit is called the unit cell. Not every crystal is a Bravais lattice, however. Indeed, Bravais lattices are special crystals in
which there is only one atom per unit cell. Consider, for example, the structure in Figure [basis]. The blue dots form a square Bravais lattice with primitive direct lattice vectors  and 

, where  is the lattice constant, which is the distance between any neighboring pair of blue dots. The red squares and green triangles, along with the blue dots, form a basis for the crystal
structure which label each sublattice. Our crystal in Figure [basis] is formally classified as a square Bravais lattice with a three element basis. To specify an arbitrary site in the crystal, we must
specify both a direct lattice vector  as well as a basis index , so that the location is . The vectors  are the basis vectors for our crystal structure. We see that a general
crystal structure consists of a repeating unit, known as a unit cell. The centers (or corners, if one prefers) of the unit cells form a Bravais lattice. Within a given unit cell, the individual sublattice sites
are located at positions  with respect to the unit cell position .

Upon diagonalization, the Hamiltonian of Equation [Hcrystal] takes the form

where

The eigenfrequencies are solutions to the eigenvalue equation

where

Here,  lies within the first Brillouin zone, which is the unit cell of the reciprocal lattice of points  satisfying  for all  and . The reciprocal lattice is also a Bravais lattice, with
primitive reciprocal lattice vectors , such that any point on the reciprocal lattice may be written . One also has that . The index  ranges from  to  and labels

the mode of oscillation at wavevector . The vector  is the polarization vector for the  phonon branch. In solids of high symmetry, phonon modes can be classified as longitudinal or
transverse excitations.

For a crystalline lattice with an -element basis, there are then  phonon modes for each wavevector  lying in the first Brillouin zone. If we impose periodic boundary conditions, then the  points
within the first Brillouin zone are themselves quantized, as in the  case where we found . There are  distinct  points in the first Brillouin zone – one for every direct lattice site.
The total number of modes is than , which is the total number of translational degrees of freedom in our system:  total atoms (  unit cells each with an  atom basis) each free to vibrate in

 dimensions. Of the  branches of phonon excitations,  of them will be acoustic modes whose frequency vanishes as . The remaining  branches are optical modes and oscillate at
finite frequencies. Basically, in an acoustic mode, for  close to the (Brillouin) zone center , all the atoms in each unit cell move together in the same direction at any moment of time. In an
optical mode, the different basis atoms move in different directions.

There is no number conservation law for phonons – they may be freely created or destroyed in anharmonic processes, where two photons with wavevectors  and  can combine into a single phonon
with wavevector , and vice versa. Therefore the chemical potential for phonons is . We define the density of states  for the  phonon mode as

where  is the number of unit cells,  is the unit cell volume of the direct lattice, and the  sum and integral are over the first Brillouin zone only. Note that  here has dimensions of frequency. The
functions  is normalized to unity:

The total phonon density of states per unit cell is given by

[phonons] Upper panel: phonon spectrum in elemental rhodium (Rh) at T=297\,K measured
by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57,

324 (1998). Note the three acoustic branches and no optical branches, corresponding to d=3 and
r=1. Lower panel: phonon spectrum in gallium arsenide (GaAs) at T=12\,K, comparing
theoretical lattice-dynamical calculations with INS results of D. Strauch and B. Dorner, J.
Phys.: Condens. Matter 2, 1457 (1990). Note the three acoustic branches and three optical
branches, corresponding to d=3 and r=2. The Greek letters along the x-axis indicate points of
high symmetry in the Brillouin zone.

[phonons] Upper panel: phonon spectrum in elemental rhodium (Rh) at K measured by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324 (1998).
Note the three acoustic branches and no optical branches, corresponding to  and . Lower panel: phonon spectrum in gallium arsenide (GaAs) at K, comparing theoretical lattice-
dynamical calculations with INS results of D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990). Note the three acoustic branches and three optical branches, corresponding to 
and . The Greek letters along the -axis indicate points of high symmetry in the Brillouin zone.

The grand potential for the phonon gas is
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Note that  since there are  unit cells, each of volume . The entropy is given by  and thus the heat capacity is

Note that as  we have , and therefore

This is the classical Dulong-Petit limit of  per quadratic degree of freedom; there are  atoms moving in  dimensions, hence  positions and an equal number of momenta, resulting in a
high temperature limit of .

Einstein and Debye models
HIstorically, two models of lattice vibrations have received wide attention. First is the so-called Einstein model, in which there is no dispersion to the individual phonon modes. We approximate 

, in which case

At low temperatures, the contribution from each branch vanishes exponentially, since . Real solids don’t behave this way.

A more realistic model. due to Debye, accounts for the low-lying acoustic phonon branches. Since the acoustic phonon dispersion vanishes linearly with  as , there is no temperature at which
the acoustic phonons ‘freeze out’ exponentially, as in the case of Einstein phonons. Indeed, the Einstein model is appropriate in describing the  optical phonon branches, though it fails
miserably for the acoustic branches.

In the vicinity of the zone center  (also called  in crystallographic notation) the  acoustic modes obey a linear dispersion, with . This results in an acoustic phonon density of
states in  dimensions of

where  is an average acoustic phonon velocity ( speed of sound) defined by

and  is a cutoff known as the Debye frequency. The cutoff is necessary because the phonon branch does not extend forever, but only to the boundaries of the Brillouin zone. Thus, 
 should roughly be equal to the energy of a zone boundary phonon. Alternatively, we can define  by the normalization condition

This allows us to write .

The specific heat due to the acoustic phonons is then

where  is the Debye temperature and

Therefore,

Thus, the heat capacity due to acoustic phonons obeys the Dulong-Petit rule in that , corresponding to the three acoustic degrees of freedom per unit cell. The remaining
contribution of  to the high temperature heat capacity comes from the optical modes not considered in the Debye model. The low temperature  behavior of the heat capacity of
crystalline solids is a generic feature, and its detailed description is a triumph of the Debye model.

Melting and the Lindemann criterion

Atomic fluctuations in a crystal

For the one-dimensional chain, Equation [siva] gives

Therefore the RMS fluctuations at each site are given by

where  is the Bose occupancy function.

[debtab] Debye temperatures (at ) and melting points for some common elements (carbon is assumed to be diamond and not graphite). (Source: the internet!)

Element Ag Al Au C Cd Cr Cu Fe Mn

(K)
227 433 162 2250 210 606 347 477 409

 (K) 962 660 1064 3500 321 1857 1083 1535 1245
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\int\limits_0^\infty\!\!d\omega\>{\tilde g}(\omega)=3\quad\Longrightarrow \quad \omega\ns_\ssr{D}=(6\pi^2/\CV\ns_0)^{1/3}\,{\bar c}\ .
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Element Ag Al Au C Cd Cr Cu Fe Mn

Element Ni Pb Pt Si Sn Ta Ti W Zn

(K)
477 105 237 645 199 246 420 383 329

 (K) 1453 327 1772 1410 232 2996 1660 3410 420

Let us now generalize this expression to the case of a -dimensional solid. The appropriate expression for the RMS position fluctuations of the  basis atom in each unit cell is

Here we sum over all wavevectors  in the first Brilliouin zone, and over all normal modes . There are  normal modes per unit cell  branches of the phonon dispersion . (For the one-
dimensional chain with  and  there was only one such branch to consider). Note also the quantity , which has units of mass and is defined in terms of the polarization vectors 

 as

The dimensions of the polarization vector are , since the generalized orthonormality condition on the normal modes is

where  is the mass of the atom of species  within the unit cell ( ). For our purposes we can replace  by an appropriately averaged quantity which we call  ; this ‘effective
mass’ is then independent of the mode index  as well as the wavevector . We may then write

where we have dropped the site label  since translational invariance guarantees that the fluctuations are the same from one unit cell to the next. Note that the fluctuations  can be divided into a
temperature-dependent part  and a temperature-independent quantum contribution  , where

Let’s evaluate these contributions within the Debye model, where we replace  by

We then find

where

We can now extract from these expressions several important conclusions:

The  contribution to the the fluctuations, , diverges in  dimensions. Therefore there are no one-dimensional quantum solids.
The thermal contribution to the fluctuations, , diverges for any  whenever . This is because the integrand of  goes as  as . Therefore, there are no two-
dimensional classical solids.
Both the above conclusions are valid in the thermodynamic limit. Finite size imposes a cutoff on the frequency integrals, because there is a smallest wavevector , where  is the
(finite) linear dimension of the system. This leads to a low frequency cutoff , where  is the appropriately averaged acoustic phonon velocity from Equation [DMcave], which
mitigates any divergences.

Lindemann melting criterion

An old phenomenological theory of melting due to Lindemann says that a crystalline solid melts when the RMS fluctuations in the atomic positions exceeds a certain fraction  of the lattice constant 
. We therefore define the ratios

with .

Let’s now work through an example of a three-dimensional solid. We’ll assume a single element basis . We have that

According to table [DMtemps], the melting temperature always exceeds the Debye temperature, and often by a great amount. We therefore assume , which puts us in the small 
limit of . We then find
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The total position fluctuation is of course the sum . Consider for example the case of copper, with amu and Å. The Debye temperature is 
. From this we find , which says that at  the RMS fluctuations of the atomic positions are not quite three percent of the lattice spacing ( the distance

between neighboring copper atoms). At room temperature, , one finds , which is about twice as large as the quantum contribution. How big are the atomic position fluctuations
at the melting point? According to our table,  for copper, and from our formulae we obtain . The Lindemann criterion says that solids melt when .

We were very lucky to hit the magic number  with copper. Let’s try another example. Lead has amu and Å. The Debye temperature is 
(‘soft phonons’), and the melting point is . From these data we obtain ,  and . Same ballpark.

We can turn the analysis around and predict a melting temperature based on the Lindemann criterion , where . We obtain

We call  the Lindemann temperature. Most treatments of the Lindemann criterion ignore the quantum correction, which gives the  contribution inside the above parentheses. But if we
are more careful and include it, we see that it may be possible to have . This occurs for any crystal where .

Consider for example the case of He, which at atmospheric pressure condenses into a liquid at  and remains in the liquid state down to absolute zero. At , it never solidifies!
Why? The number density of liquid He at atm and  is . Let’s say the Helium atoms want to form a crystalline lattice. We don’t know a priori what the lattice
structure will be, so let’s for the sake of simplicity assume a simple cubic lattice. From the number density we obtain a lattice spacing of Å. OK now what do we take for the Debye
temperature? Theoretically this should depend on the microscopic force constants which enter the small oscillations problem ( the spring constants between pairs of helium atoms in equilibrium).
We’ll use the expression we derived for the Debye frequency, , where  is the unit cell volume. We’ll take , which is the speed of
sound in liquid helium at . This gives . We find , and if we take  this gives , which significantly exceeds .
Thus, the solid should melt because the RMS fluctuations in the atomic positions at absolute zero are huge: . By applying pressure, one can get 
He to crystallize above atm (at absolute zero). Under pressure, the unit cell volume  decreases and the phonon velocity  increases, so the Debye temperature itself increases.

It is important to recognize that the Lindemann criterion does not provide us with a theory of melting per se. Rather it provides us with a heuristic which allows us to predict roughly when a solid
should melt.

Goldstone bosons
The vanishing of the acoustic phonon dispersion at  is a consequence of Goldstone’s theorem which says that associated with every broken generator of a continuous symmetry there is an
associated bosonic gapless excitation ( one whose frequency  vanishes in the long wavelength limit). In the case of phonons, the ‘broken generators’ are the symmetries under spatial translation in
the , , and  directions. The crystal selects a particular location for its center-of-mass, which breaks this symmetry. There are, accordingly, three gapless acoustic phonons.

Magnetic materials support another branch of elementary excitations known as spin waves, or magnons. In isotropic magnets, there is a global symmetry associated with rotations in internal spin
space, described by the group . If the system spontaneously magnetizes, meaning there is long-ranged ferromagnetic order , or long-ranged antiferromagnetic order , then
global spin rotation symmetry is broken. Typically a particular direction is chosen for the magnetic moment (or staggered moment, in the case of an antiferromagnet). Symmetry under rotations about
this axis is then preserved, but rotations which do not preserve the selected axis are ‘broken’. In the most straightforward case, that of the antiferromagnet, there are two such rotations for , and
concomitantly two gapless magnon branches, with linearly vanishing dispersions . The situation is more subtle in the case of ferromagnets, because the total magnetization is conserved by the
dynamics (unlike the total staggered magnetization in the case of antiferromagnets). Another wrinkle arises if there are long-ranged interactions present.

For our purposes, we can safely ignore the deep physical reasons underlying the gaplessness of Goldstone bosons and simply posit a gapless dispersion relation of the form . The
density of states for this excitation branch is then

where  is a constant and  is the cutoff, which is the bandwidth for this excitation branch.  Normalizing the density of states for this branch results in the identification .

The heat capacity is then found to be

where  and

which is a generalization of our earlier results. Once again, we recover Dulong-Petit for , with .

In an isotropic ferromagnet, a ferromagnetic material where there is full SU(2) symmetry in internal ‘spin’ space, the magnons have a  dispersion. Thus, a bulk three-dimensional isotropic
ferromagnet will exhibit a heat capacity due to spin waves which behaves as  at low temperatures. For sufficiently low temperatures this will overwhelm the phonon contribution, which behaves
as .
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5.7: The Ideal Fermi Gas

General formulation for noninteracting systems
Recall that the grand partition function for noninteracting bosons is given by

In order for the sum to converge to the RHS above, we must have  for all single-particle states . The density of particles
is then

where  is the density of single particle states per unit volume. We assume that  for  ;
typically , as is the case for any dispersion of the form , for example. However, in the presence of a magnetic
field, we could have , in which case .

Clearly  is an increasing function of both  and . At fixed , the maximum possible value for , called the critical
density , is achieved for  ,

The above integral converges provided , assuming  is continuous . If , the integral diverges, and 
. In this latter case, one can always invert the equation for  to obtain the chemical potential . In the

former case, where the  is finite, we have a problem – what happens if  ?

In the former case, where  is finite, we can equivalently restate the problem in terms of a critical temperature , defined
by the equation . For  , we apparently can no longer invert to obtain , so clearly something has gone
wrong. The remedy is to recognize that the single particle energy levels are discrete, and separate out the contribution from the
lowest energy state . we write \[n(T,\mu) = \stackrel{n\ns_0}{\overbrace

} + \stackrel{n'}{\overbrace{\int\limits_{\ve\ns_0}^\infty\!\! d\ve\ {g(\ve)\over e^{\beta(\ve-\mu)}-1}}}\ ,\] where  is the
degeneracy of the single particle state with energy . We assume that  is finite, which means that  is extensive. We
say that the particles have condensed into the state with energy . The quantity  is the condensate density. The remaining
particles, with density , are said to comprise the overcondensate. With the total density  fixed, we have . Note that 

 finite means that  is infinitesimally close to :

Note also that if  is finite, then  is infinitesimal.

Thus, for , we have  with , and

For , we have  and

The equation for  is
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α

∑
=0nα

∞

eβ(μ− )εα nα ∏
α

eβ(μ− )εα )
−1

(5.7.1)

μ < εα |α⟩

n(T ,μ) = − = = dε   ,
1

V
( )

∂Ω

∂μ T ,V

1

V
∑
α

1

−1eβ( −μ)εα
∫

ε0

∞
g(ε)

−1eβ(ε−μ)
(5.7.2)

g(ε) = δ(ε− )1
V
∑α εα g(ε) = 0 ε < ε0

= 0ε0 ε(k) = A|k|r

ε(k, σ) = A|k −g Hσ|r μ0 = −g |H|ε0 μ0

n(T ,μ) T μ T n(T ,μ)

(T )nc μ = ε0

(T ) = dε   .nc ∫

ε0

∞
g(ε)

−1eβ(ε− )ε0

(5.7.3)

g( ) = 0ε
0

g(ε) 5 g( ) > 0ε
0

(T ) = ∞nc n(T ,μ) μ(T ,n)

(T )nc n > (T )nc

(T )nc (n)Tc
( ) = nnc Tc T < Tc μ(T ,n)

ε0

g0

ε0 n0 = VN0 n0

ε0 n0

n′ n n = +n0 n′

n0 μ ε0

μ = − T ln(1 + ) ≈ −  .ε0 kB

g0

V n0

ε0

Tg0kB

V n0

(5.7.4)

−με0 ∝n0 V −1

T < (n)Tc μ = ε
0

> 0n
0

n(T , ) = + dε   .n
0

n
0

∫

ε0

∞
g(ε)

−1e(ε− )/ Tε0 kB
(5.7.5)

T > (n)Tc = 0n0

n(T ,μ) = dε   .∫

ε0

∞
g(ε)

−1e(ε−μ)/ TkB
(5.7.6)

(n)Tc

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18765?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/05%3A_Noninteracting_Quantum_Systems/5.07%3A_The_Ideal_Fermi_Gas


5.7.2 https://phys.libretexts.org/@go/page/18765

For another take on ideal Bose gas condensation see the appendix in §10.

Ballistic dispersion
We already derived, in §3.3, expressions for  and  for the ideal Bose gas (IBG) with ballistic dispersion 

, We found \[\begin{split} n(T,z)&=\Sg\,\lambda_T^{-d}\>\,{Li}\ns_

(z)\vph\\ p(T,z)&=\Sg\,\kT\,\lambda_T^{-d}\>\,{Li}\ns_{{d\over 2}+1}(z) , \end{split}\] where  is the internal ( spin) degeneracy
of each single particle energy level. Here  is the fugacity and

is the polylogarithm function. For bosons with a spectrum bounded below by , the fugacity takes values on the interval 
.

Clearly \(n(T,z)=\Sg\,\lambda_T^{-d}\>\,{Li}\ns_

(z)\) is an increasing function of  for fixed . In Figure [zeta] we plot the function  versus  for three different values of .
We note that the maximum value  is finite if . Thus, for , there is a maximum density \(n\ns_{max}(T)=\Sg\,
{Li}\ns_(z)\,\lambda_T^{-d}\) which is an increasing function of temperature . Put another way, if we fix the density , then
there is a critical temperature  below which there is no solution to the equation . The critical temperature  is
then determined by the relation

What happens for ?
[zeta] The polylogarithm function {Li}_s(z) versus z for s=\half, s=\frac{3}{2}, and
s=\frac{5}{2}. Note that {Li}_s(1)=\zeta(s) diverges for s\le 1.

[zeta] The polylogarithm function  versus  for , , and . Note that  diverges for .

As shown above in §7, we must separate out the contribution from the lowest energy single particle mode, which for ballistic
dispersion lies at . Thus writing

where we have taken . Now  is of course very small, since  is thermodynamically large, but if  then  is
also very small and their ratio can be finite, as we have seen. Indeed, if the density of  bosons  is finite, then their total
number  satisfies

The chemical potential is then

In other words, the chemical potential is infinitesimally negative, because  is assumed to be thermodynamically large.

According to Equation [Oqsm], the contribution to the pressure from the  states is

So the  bosons, which we identify as the condensate, contribute nothing to the pressure.

Having separated out the  mode, we can now replace the remaining sum over  by the usual integral over . We then have
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and \[\begin{split} \ \ \quad T>T\ns_\Rc\qquad :\qquad n&=\Sg\,{Li}\ns_

(z)\,\lambda_T^{-d}\vph\\ p&=\Sg\,{Li}\ns_{{d\over 2}+1}(z)\,\kT\,\lambda_T^{-d}\quad. \end{split}\]

The condensate fraction  is unity at , when all particles are in the condensate with , and decreases with increasing
 until , at which point it vanishes identically. Explicitly, we have

Let us compute the internal energy  for the ideal Bose gas. We have

and therefore

This expression is valid at all temperatures, both above and below . Note that the condensate particles do not contribute to ,
because the  condensate particles carry no energy.

We now investigate the heat capacity . Since we have been working in the GCE, it is very important to note that 
 is held constant when computing . We’ll also restrict our attention to the case  since the ideal Bose gas does not

condense at finite  for  and  is unphysical. While we’re at it, we’ll also set .
[ibgcv] Molar heat capacity of the ideal Bose gas (units of R). Note the cusp at
T=T_\Rc.

[ibgcv] Molar heat capacity of the ideal Bose gas (units of ). Note the cusp at .

The number of particles is

and the energy is

For , we have  and

The molar heat capacity is therefore

For , we have
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where we have invoked Equation [zetarec]. Taking the differential of , we have

We set , which fixes  in terms of , resulting in

To obtain , we must invert the relation

in order to obtain , and then insert this into Equation [ibgcg]. The results are shown in Figure [ibgcv]. There are several
noteworthy features of this plot. First of all, by dimensional analysis the function  is  times a function of the
dimensionless ratio . Second, the high temperature limit is , which is the classical value. Finally, there is a
cusp at .

For another example, see §11.

Isotherms for the ideal Bose gas
Let  be some length scale and define

Then we have

where  is the volume per particle  and  is the condensate number density;  vanishes for , where . One
identifies a critical volume  by setting  and , leading to . For , we set  in
Equation [BGIa] to find a relation between , , and . For , we set  in Equation [BGIa] to relate , , and .
Note that the pressure is independent of volume for . The isotherms in the  plane are then flat for . This
resembles the coexistence region familiar from our study of the thermodynamics of the liquid-gas transition. The situation is
depicted in Fig. [ibgpd]. In the  plane, we identify  as the critical temperature at which condensation
starts to occur.

[ibgpd] Phase diagrams for the ideal Bose gas. Left panel: (p,v) plane. The solid blue curves are
isotherms, and the green hatched region denotes v<v_\Rc(T), where the system is partially

condensed. Right panel: (p,T) plane. The solid red curve is the coexistence curve p_\Rc(T), along
which Bose condensation occurs. No distinct thermodynamic phase exists in the yellow hatched region
above p=p_\Rc(T).

[ibgpd] Phase diagrams for the ideal Bose gas. Left panel:  plane. The solid blue curves are isotherms, and the green hatched
region denotes , where the system is partially condensed. Right panel:  plane. The solid red curve is the
coexistence curve , along which Bose condensation occurs. No distinct thermodynamic phase exists in the yellow hatched
region above .

Recall the Gibbs-Duhem equation,

Along a coexistence curve, we have the Clausius-Clapeyron relation,
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where  is the latent heat per mole, and . For ideal gas Bose condensation, the coexistence curve
resembles the red curve in the right hand panel of Figure [ibgpd]. There is no meaning to the shaded region where .
Nevertheless, it is tempting to associate the curve  with the coexistence of the  condensate and the remaining
uncondensed  bosons .

The entropy in the coexistence region is given by

All the entropy is thus carried by the uncondensed bosons, and the condensate carries zero entropy. The Clausius-Clapeyron
relation can then be interpreted as describing a phase equilibrium between the condensate, for which , and the
uncondensed bosons, for which  and . So this identification forces us to conclude that the specific volume of
the condensate is zero. This is certainly false in an interacting Bose gas!

While one can identify, by analogy, a ‘latent heat’  in the Clapeyron equation, it is important to understand that
there is no distinct thermodynamic phase associated with the region . Ideal Bose gas condensation is a second order
transition, and not a first order transition.

[He4PD] Phase diagram of {}^4He. All phase
boundaries are first order transition lines, with the

exception of the normal liquid-superfluid transition, which
is second order. (Source: University of Helsinki)

[He4PD] Phase diagram of He. All phase boundaries are first order transition lines, with the exception of the normal liquid-
superfluid transition, which is second order. (Source: University of Helsinki)

The -transition in Liquid He
Helium has two stable isotopes. He is a boson, consisting of two protons, two neutrons, and two electrons (hence an even number
of fermions). He is a fermion, with one less neutron than He. Each He atom can be regarded as a tiny hard sphere of mass 

g and diameter Å. A sketch of the phase diagram is shown in Figure [He4PD]. At atmospheric
pressure, Helium liquefies at K. The gas-liquid transition is first order, as usual. However, as one continues to cool, a
second transition sets in at K (at atm). The -transition, so named for the -shaped anomaly in the specific
heat in the vicinity of the transition, as shown in Figure [cphelium], is continuous ( second order).

If we pretend that He is a noninteracting Bose gas, then from the density of the liquid , we obtain a Bose-
Einstein condensation temperature K, which is in the right ballpark. The specific heat  is
found to be singular at , with

 is an example of a critical exponent. We shall study the physics of critical phenomena later on in this course. For now, note that a
cusp singularity of the type found in Figure [ibgcv] corresponds to . The behavior of  in He is very nearly
logarithmic in . In fact, both theory (renormalization group on the  model) and experiment concur that  is almost
zero but in fact slightly negative, with  in the best experiments (Lipa , 2003). The  transition is most
definitely not an ideal Bose gas condensation. Theoretically, in the parlance of critical phenomena, IBG condensation and the -
transition in He lie in different universality classes . Unlike the IBG, the condensed phase in He is a distinct thermodynamic
phase, known as a superfluid.

[cphelium] Specific heat of liquid {}^4He in the vicinity of the \lambda-transition. Data from M. J.
Buckingham and W. M. Fairbank, in Progress in Low Temperature Physics, C. J. Gortner, ed.

(North-Holland, 1961). Inset at upper right: more recent data of J. A. Lipa et al., Phys. Rev. B 68,
174518 (2003) performed in zero gravity earth orbit, to within \RDelta T=2\,nK of the transition.

[cphelium] Specific heat of liquid He in the vicinity of the -transition. Data from M. J. Buckingham and W. M. Fairbank, in
Progress in Low Temperature Physics, C. J. Gortner, ed. (North-Holland, 1961). Inset at upper right: more recent data of J. A. Lipa
et al., Phys. Rev. B 68, 174518 (2003) performed in zero gravity earth orbit, to within nK of the transition.

Note that  for the IBG is not even defined, since for  we have  and therefore  requires 
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Fountain effect in superfluid He
At temperatures , liquid He has a superfluid component which is a type of Bose condensate. In fact, there is an important
difference between condensate fraction  and superfluid density, which is denoted by the symbol . In He, for example,
at  the condensate fraction is only about , while the superfluid fraction . The distinction between  and  is
very interesting but lies beyond the scope of this course.

One aspect of the superfluid state is its complete absence of viscosity. For this reason, superfluids can flow through tiny cracks
called microleaks that will not pass normal fluid. Consider then a porous plug which permits the passage of superfluid but not of
normal fluid. The key feature of the superfluid component is that it has zero energy density. Therefore even though there is a
transfer of particles across the plug, there is no energy exchange, and therefore a temperature gradient across the plug can be
maintained .

The elementary excitations in the superfluid state are sound waves called phonons. They are compressional waves, just like
longitudinal phonons in a solid, but here in a liquid. Their dispersion is acoustic, given by  where .
The have no internal degrees of freedom, hence . Like phonons in a solid, the phonons in liquid helium are not conserved.
Hence their chemical potential vanishes and these excitations are described by photon statistics. We can now compute the height
difference  in a U-tube experiment.

[fountain] The fountain effect. In each case, a temperature gradient is maintained across a porous
plug through which only superfluid can flow. This results in a pressure gradient which can result in

a fountain or an elevated column in a U-tube.

[fountain] The fountain effect. In each case, a temperature gradient is maintained across a porous plug through which only
superfluid can flow. This results in a pressure gradient which can result in a fountain or an elevated column in a U-tube.

Clearly . so we must find  for the helium. In the grand canonical ensemble, we have

Let’s assume K. We’ll need the density of liquid helium, .

a very noticeable effect!

Bose condensation in optical traps
The 2001 Nobel Prize in Physics was awarded to Weiman, Cornell, and Ketterle for the experimental observation of Bose
condensation in dilute atomic gases. The experimental techniques required to trap and cool such systems are a true tour de force,
and we shall not enter into a discussion of the details here .

The optical trapping of neutral bosonic atoms, such as Rb, results in a confining potential  which is quadratic in the atomic
positions. Thus, the single particle Hamiltonian for a given atom is written

where  are the angular frequencies of the trap. This is an anisotropic three-dimensional harmonic oscillator, the solution of
which is separable into a product of one-dimensional harmonic oscillator wavefunctions. The eigenspectrum is then given by a sum
of one-dimensional spectra, viz.

According to Equation [Ntot], the number of particles in the system is
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where we’ve defined

Note that .

Let’s assume that the trap is approximately anisotropic, which entails that the frequency ratios  are all numbers on the order
of one. Let us further assume that . Then

where , with

We then have

where the first term on the RHS is due to  and the second term from  in the previous sum. Since  and since
the sum of inverse cubes is convergent, we may safely extend the limit on the above sum to infinity. To help make more sense of
the first term, write  for the number of particles in the  state. Then

This is true always. The issue vis-a-vis Bose-Einstein condensation is whether . At any rate, we now see that we can write

As for the first term, we have

Thus, as in the case of IBG condensation of ballistic particles, we identify the critical temperature by the condition 
, and we have \[T\ns_\Rc={\hbar{\bar\omega}\over\kB}\,\bigg({N\over\zeta(3)}\bigg)^{\!\!1/3} =

4.5\,\bigg(

\bigg)\>N^{1/3} \ [\,{nK}\,]\ ,\] where . We see that  if the number of particles in the trap is large: .
In this regime, we have

It is interesting to note that BEC can also occur in two-dimensional traps, which is to say traps which are very anisotropic, with
oblate equipotential surfaces . This happens when . We then have
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/ω1 ω2

T ≫ ℏkB ω1,2,3

  ≈  
1

1 −e−kℏ / Tωj kB

⎧

⎩
⎨
⎪⎪

⎪⎪

TkB
kℏωj

1

k ∝ (T )k∗

k > (T )k∗

(5.7.32)

(T ) = T/ℏ ≫ 1k∗ kB ω̄

= (  .ω̄ ω1 ω2 ω3)
1/3

(5.7.33)

N(T , y) ≈ +(  ,
y +1k∗

1 −y

TkB

ℏω̄
)

3

∑
k=1

k∗

yk

k3
(5.7.34)

k > k∗ k ≤ k∗ ≫ 1k∗

= ( −1N0 y−1 )−1
( , , ) = (0, 0, 0)n1 n2 n3

y =  .
N

0

+1N0

(5.7.35)

≫ 1N0

N ≈ (1 + +( (y) .N0 N−1
0 )−k∗ TkB

ℏω̄
)

3

Li3 (5.7.36)

(1 + =N0 N−1
0 )

−k∗
⎧

⎩
⎨
⎪

⎪

0

N0

≪N0 k∗

≫N0 k∗

(5.7.37)

y = /( +1) ≈ 1N0 N0

= /2πν̄ ω̄ ≫ ℏkBTc ω̄ N ≫ 1

T <  Tc

T >  Tc

: N = +ζ(3)(N0

TkB

ℏω̄
)

3

: N =( (y) . ]
TkB

ℏω̄
)

3

Li3

V (r) = V0 ℏ ≫ T ≫ω3 kB ω1,2
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with . The particle number then obeys a set of equations like those in eqns. [trapab], mutatis mutandis .

For extremely prolate traps, with , the situation is different because  diverges for . We then have

Here we have simply replaced  by the equivalent expression . If our criterion for condensation is that ,
where  is some fractional value, then we have

This page titled 5.7: The Ideal Fermi Gas is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

= ⋅(T (d=2)
c

ℏω̄

kB

6N

π2
)

1/2

(5.7.38)

= (ω̄ ω1 ω2)
1/2 13

≪ω3 ω1,2 (y)Li1 y = 1

N = + ln(1 + ) .N0

TkB

ℏω3

N0 (5.7.39)

y /( +1)N0 N0 = αNN0

α

(α) = (1 −α) ⋅  .Tc
ℏω3

kB

N

lnN
(5.7.40)
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5.8: The Ideal Fermi Gas

Grand potential and particle number
The grand potential of the ideal Fermi gas is, per Equation [Oqsm],

The average number of particles in a state with energy  is

hence the total number of particles is

The Fermi distribution
We define the function

known as the Fermi distribution. In the  limit,  for all finite values of . As ,  approaches a step function . The average number of particles in a state of energy  in
a system at temperature  and chemical potential  is . In Figure [fermidist] we plot  versus  for three representative temperatures.

 and the Fermi surface
At , we therefore have , which says that all single particle energy states up to  are filled, and all energy states above  are empty. We call  the Fermi
energy: . If the single particle dispersion  depends only on the wavevector , then the locus of points in -space for which  is called the Fermi surface. For isotropic
systems,  is a function only of the magnitude , and the Fermi surface is a sphere in  or a circle in . The radius of this circle is the Fermi wavevector, . When there is
internal ( spin) degree of freedom, there is a Fermi surface and Fermi wavevector (for isotropic systems) for each polarization state of the internal degree of freedom.

[fermidist] The Fermi distribution, f(\eps)=\big[\exp(\eps/k_\ssr{B}T)+1\big]^{-1}.
Here we have set k_\ssr{B}=1 and taken \mu=2, with T={1\over 20} (blue), T=

{3\over 4} (green), and T=2 (red). In the T\to 0 limit, f(\eps) approaches a step function
\RTheta(-\eps).

[fermidist] The Fermi distribution, . Here we have set  and taken , with  (blue),  (green), and  (red). In the 
limit,  approaches a step function .

Let’s compute the Fermi wavevector  and Fermi energy  for the IFG with a ballistic dispersion . The number density is

where  is the area of the unit sphere in  space dimensions. Note that the form of  is independent of the dispersion relation, so long as it remains isotropic. Inverting the
above expressions, we obtain :

The Fermi energy in each case, for ballistic dispersion, is therefore

Another useful result for the ballistic dispersion, which follows from the above, is that the density of states at the Fermi level is given by

For the electron gas, we have . In a metal, one typically has  to , and . Due to the effects of the crystalline lattice, electrons in a solid behave as if they
had an effective mass  which is typically on the order of the electron mass but very often about an order of magnitude smaller, particularly in semiconductors.

Nonisotropic dispersions  are more interesting in that they give rise to non-spherical Fermi surfaces. The simplest example is that of a two-dimensional ‘tight-binding’ model of electrons hopping
on a square lattice, as may be appropriate in certain layered materials. The dispersion relation is then

where  and  are confined to the interval . The quantity  has dimensions of energy and is known as the hopping integral. The Fermi surface is the set of points  which satisfies 
. When  achieves its minimum value of , the Fermi surface collapses to a point at . For energies just above this minimum value, we can expand the

dispersion in a power series, writing

If we only work to quadratic order in  and , the dispersion is isotropic, and the Fermi surface is a circle, with . As the energy increases further, the continuous  rotational
invariance is broken down to the discrete group of rotations of the square, . The Fermi surfaces distort and eventually, at , the Fermi surface is itself a square. As  increases further, the

Ω(T ,V ,μ) = −V T ln(1 + )kB ∑
α

eμ/ TkB e− / Tεα kB

= −V T dε g(ε) ln(1 + ) .kB ∫

−∞

∞

e(μ−ε)/ TkB

ε

n(ε) =  ,
1

+1e(ε−μ)/ TkB
(5.8.1)

N = V dε g(ε)  .∫

−∞

∞
1

+1e(ε−μ)/ TkB
(5.8.2)

f(ϵ) ≡  ,
1

+1eϵ/ TkB
(5.8.3)

T → ∞ f(ϵ) → 1
2

ε T → 0 f(ϵ) Θ(−ϵ) ε

T μ n(ε) = f(ε−μ) f(ε−μ) ε

T = 0

T = 0 n(ε) = Θ(μ−ε) ε = μ ε = μ μ(T = 0)
= μ(T = 0)ε

F
ε(k) k k ε(k) = ε

F

ε(k) = ε(k) k = |k| d = 3 d = 2 k
F

f(\eps)=\big[\exp(\eps/k_\ssr{B}T)+1\big]^{-1} k_\ssr{B}=1 μ = 2 T = 1
20 T = 3

4
T = 2 T → 0

f(ϵ) Θ(−ϵ)

kF εF ε(k) = /2mℏ2k
2

n = g∫ Θ( −k) = ⋅ =
kdd

(2π)d
k
F

g Ωd

(2π)d
kdF
d

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

g /πk
F

g /4πk2
F

g /6k3
F π2

(d = 1)

(d = 2)

(d = 3) ,

(5.8.4)

= 2 /Γ(d/2)Ωd πd/2 d n( )kF
(n)kF

= 2π( =kF
d n

g Ωd

)
1/d

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

πn/g

(4πn/g)1/2

(6 n/gπ2 )1/3

(d = 1)

(d = 2)

(d = 3) .

(5.8.5)

= = ( =εF
ℏ2k2

F

2m

2π2ℏ2

m

dn

g Ω
d

)
2/d

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪

π2ℏ2n2

2 mg2

2π nℏ2

g m

(ℏ2

2m
6 nπ2

g
)

2/3

(d = 1)

(d = 2)

(d = 3) .

(5.8.6)

g(\veF)={\Sg\,\Omega\ns_d\over (2\pi)^d}\cdot{m k_\ssr{F}^{d-2}\over\hbar^2}={d\over 2}\cdot{n\over\veF}\ .

g = 2 ∼ 0.5k
F

Å−1
2 Å−1

∼ 1 eV −10 eVε
F

m∗

ε(k)

ε( , ) = −2t cos( a) −2t cos( a) ,kx ky kx ky (5.8.7)

kx ky [− , ]π
a

π
a t ( , )kx ky

ε( , ) =kx ky εF εF = −4tεmin
F ( , ) = (0, 0)kx ky

ε( , ) = −4t+ t ( + )− t ( + )+…  .kx ky a2 k2
x k2

y

1

12
a4 k4

x k4
y (5.8.8)

kx ky = ( +4t)/tk2
F εF a2 O(2)

C4v = 0εF εF
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square turns back into a circle, but centered about the point . Note that everything is periodic in  and  modulo . The Fermi surfaces for this model are depicted in the upper right panel of
Figure [fermisurfs].

[fermisurfs] Fermi surfaces for two and three-dimensional structures. Upper
left: free particles in two dimensions. Upper right: ‘tight binding’ electrons on

a square lattice. Lower left: Fermi surface for cesium, which is predominantly
composed of electrons in the 6s orbital shell. Lower right: the Fermi surface of
yttrium has two parts. One part (yellow) is predominantly due to 5s electrons,
while the other (pink) is due to 4d electrons. (Source:
www.phys.ufl.edu/fermisurface/)

[fermisurfs] Fermi surfaces for two and three-dimensional structures. Upper left: free particles in two dimensions. Upper right: ‘tight binding’ electrons on a square lattice. Lower left: Fermi surface
for cesium, which is predominantly composed of electrons in the  orbital shell. Lower right: the Fermi surface of yttrium has two parts. One part (yellow) is predominantly due to  electrons,
while the other (pink) is due to  electrons. (Source: www.phys.ufl.edu/fermisurface/)

Fermi surfaces in three dimensions can be very interesting indeed, and of great importance in understanding the electronic properties of solids. Two examples are shown in the bottom panels of Figure
[fermisurfs]. The electronic configuration of cesium (Cs) is . The  electrons ‘hop’ from site to site on a body centered cubic (BCC) lattice, a generalization of the simple two-dimensional
square lattice hopping model discussed above. The elementary unit cell in  space, known as the first Brillouin zone, turns out to be a dodecahedron. In yttrium, the electronic structure is 

, and there are two electronic energy bands at the Fermi level, meaning two Fermi surfaces. Yttrium forms a hexagonal close packed (HCP) crystal structure, and its first Brillouin zone is
shaped like a hexagonal pillbox.

Spin-split Fermi surfaces

Consider an electron gas in an external magnetic field . The single particle Hamiltonian is then

where  is the Bohr magneton,

where  is the electron mass. What happens at  to a noninteracting electron gas in a magnetic field?

Electrons of each spin polarization form their own Fermi surfaces. That is, there is an up spin Fermi surface, with Fermi wavevector , and a down spin Fermi surface, with Fermi wavevector 
. The individual Fermi energies, on the other hand, must be equal, hence

which says

The total density is

Clearly the down spin Fermi surface grows and the up spin Fermi surface shrinks with increasing . Eventually, the minority spin Fermi surface vanishes altogether. This happens for the up spins
when . Solving for the critical field, we obtain

In real magnetic solids, like cobalt and nickel, the spin-split Fermi surfaces are not spheres, just like the case of the (spin degenerate) Fermi surfaces for Cs and Y shown in Figure [fermisurfs].

The Sommerfeld expansion
In dealing with the ideal Fermi gas, we will repeatedly encounter integrals of the form

The Sommerfeld expansion provides a systematic way of expanding these expressions in powers of  and is an important analytical tool in analyzing the low temperature properties of the ideal Fermi
gas (IFG).

We start by defining

so that . We then have

where we assume . Next, we invoke Taylor’s theorem, to write

This last expression involving the exponential of a differential operator may appear overly formal but it proves extremely useful. Since

we can write

( , )π
a

π
a kx ky

2π
a

6s 5s
4d

[Xe] 6s1 6s
k

[Kr] 5 4s2 d1

H

\HH={\Bp^2\over 2m} +\muB H\,\sigma

\muB

\begin{split} \muB&={e\hbar\over 2m c}=5.788\times 10^{-9}\,{eV}/\RG\\ \muB/\kB&=6.717\times 10^{-5}\,\RK/\RG \end{split}

m T = 0

k
F↑

\kFd

{\hbar^2 k_{\RF\uar}^2\over 2m} + \muB H = {\hbar^2 k_{\RF\dar}^2\over 2m} - \muB H,

− =  .k2
F↓ k2

F↑

2eH

ℏc
(5.8.9)

n = + ⟹ + = 6 n.
k3
F↑

6π2

k3
F↓

6π2
k3
F↑ k3

F↓ π2 (5.8.10)

H

= 0kF↑

= ⋅ (6 n .Hc

ℏc

2e
π2 )

1/3
(5.8.11)

I(T ,μ) ≡ dε f(ε−μ)ϕ(ε) .∫

−∞

∞

(5.8.12)

T

Φ(ε) ≡ d ϕ( )∫

−∞

ε

ε′ ε′ (5.8.13)

ϕ(ε) = (ε)Φ′

I = dε f(ε−μ)∫

−∞

∞
dΦ

dε

= − dε (ε) Φ(μ+ε) ,∫

−∞

∞

f ′

Φ(−∞) = 0

Φ(μ+ε) =∑
n=0

∞
εn

n !

Φdn

dμn

= exp(ε )Φ(μ) .
d

dμ

(ε) = −  ,f ′ 1

TkB

eε/ TkB

( +1eε/ TkB )2
(5.8.14)

I = dv Φ(μ) ,∫

−∞

∞
evD

( +1)( +1)ev e−v
(5.8.15)
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with , where

is a dimensionless differential operator. The integral can now be done using the methods of complex integration:

[vcontour] Deformation of the complex integration contour in Equation [vcon].

[vcontour] Deformation of the complex integration contour in Equation [vcon].

Thus,

which is to be understood as the differential operator  acting on the function . Appealing once more to Taylor’s theorem, we have

Thus,

If  is a polynomial function of its argument, then each derivative effectively reduces the order of the polynomial by one degree, and the dimensionless parameter of the expansion is . This
procedure is known as the Sommerfeld expansion.

Chemical potential shift
As our first application of the Sommerfeld expansion formalism, let us compute  for the ideal Fermi gas. The number density  is

Let us write , where  is the Fermi energy, which is the chemical potential at . We then have

from which we derive

Note that . For a ballistic dispersion, assuming ,

Thus,  and , so

where .

Specific heat
The energy of the electron gas is

v= ε/ TkB

D = TkB

d

dμ
(5.8.16)

14

dv∫

−∞

∞
evD

( +1)( +1)ev e−v
= 2πi Res[∑

n=1

∞ evD

( +1)( +1)ev e−v
]
v=(2n+1)iπ

= −2πi D∑
n=0

∞

e(2n+1)iπD

= − = πD cscπD .
2πiDeiπD

1 −e2πiD

I(T ,μ) = πD csc(πD) Φ(μ) , (5.8.17)

πD csc(πD) = πD/ sin(πD) Φ(μ)

πD csc(πD) = 1 + ( T + ( T +…  .
π2

6
kB )2 d2

dμ2

7π4

360
kB )4 d4

dμ4
(5.8.18)

I(T ,μ) = dε f(ε−μ)ϕ(ε)∫

−∞

∞

= dεϕ(ε) + ( T (μ) + ( T (μ) +…  .∫

−∞
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n = dε g(ε) f(ε−μ)∫

−∞
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μ
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6
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n = dε g(ε) + ( T ( +δμ) +…∫
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6
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−∞
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εF
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6
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∣
∣
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ℏ
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(5.8.20)

g(ε) ∝ ε1/2 (lng =)′ 1
2
ε−1

μ(n,T ) = − +…  ,εF
π2
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where . is the ground state energy density ( ground state energy per unit volume). Thus, to order ,

where  . Note that the molar heat capacity is

where in the last expression on the RHS we have assumed a ballistic dispersion, for which

The molar heat capacity in Equation [mhceg] is to be compared with the classical ideal gas value of . Relative to the classical ideal gas, the IFG value is reduced by a fraction of 
, which in most metals is very small and even at room temperature is only on the order of . Most of the heat capacity of metals at room temperature is due to the energy

stored in lattice vibrations.

A niftier way to derive the heat capacity : Starting with Equation [dmueqn] for , note that , so we may write . Next, use
the Maxwell relation  to arrive at

where  is the entropy per unit volume. Now use  and integrate with respect to the density  to arrive at , where  is defined above.

Magnetic susceptibility

Pauli paramagnetism

Magnetism has two origins: (i) orbital currents of charged particles, and (ii) intrinsic magnetic moment. The intrinsic magnetic moment  of a particle is related to its quantum mechanical spin via

where  is the particle’s -factor,  its magnetic moment, and  is the vector of quantum mechanical spin operators satisfying , SU  commutation relations. The
Hamiltonian for a single particle is then

where in the last line we’ve restricted our attention to the electron, for which . The -factor for an electron is  at tree level, and when radiative corrections are accounted for using
quantum electrodynamics (QED) one finds . For our purposes we can take , although we can always absorb the small difference into the definition of , writing 

. We’ve chosen the -axis in spin space to point in the direction of the magnetic field, and we wrote the eigenvalues of  as , where . The
quantity  is the effective mass of the electron, which we mentioned earlier. An important distinction is that it is  which enters into the kinetic energy term , but it is the electron mass 
itself ( keV) which enters into the definition of the Bohr magneton. We shall discuss the consequences of this further below.

In the absence of orbital magnetic coupling, the single particle dispersion is

At , we have the results of §8.3.1. At finite , we once again use the Sommerfeld expansion. We then have

We now invoke the Sommerfeld expension to find the temperature dependence:

Note that the density of states for spin species  is

where  is the total density of states per unit volume, for both spin species, in the absence of a magnetic field. We conclude that the chemical potential shift in an external field is
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{g(\veF)\over n}={\Sg\,m \kF\over 2\pi^2\hbar^2}\cdot{6\pi^2\over\Sg\,k_\ssr{F}^3}={3\over 2\,\veF}\ .
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g g μ0 S [ , ] = iℏSα Sβ ϵαβγ S
γ (2)
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−∞

μ

π2

6
kB )2 g′ μ~ )2 g′

= dε g(ε) +g( ) δμ+ ( T ( ) +( H ( ) +…  .∫

−∞

εF

εF
π2

6
kB )2 g′ εF μ~ )2 g′ εF

σ

(ε) = g(ε− Hσ) ,gσ
1

2
μ~ (5.8.25)
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[FSmag] Fermi distributions in the presence of an external Zeeman-coupled
magnetic field.

[FSmag] Fermi distributions in the presence of an external Zeeman-coupled magnetic field.

We next compute the difference  in the densities of up and down spin electrons:

We needn’t go beyond the trivial lowest order term in the Sommerfeld expansion, because  is already assumed to be small. Thus, the magnetization density is

in which the magnetic susceptibility is

This is called the Pauli paramagnetic susceptibility.

Landau Diamagnetism

When orbital effects are included, the single particle energy levels are given by

Here  is a Landau level index, and  is the cyclotron frequency. Note that

Accordingly, we define the ratio . We can then write

The grand potential is then given by

A few words are in order here regarding the prefactor. In the presence of a uniform magnetic field, the energy levels of a two-dimensional ballistic charged particle collapse into Landau levels. The
number of states per Landau level scales with the area of the system, and is equal to the number of flux quanta through the system: , where  is the Dirac flux quantum. Note
that

hence we can write

where

We now invoke the Euler-MacLaurin formula,

resulting in

We next expand in powers of the magnetic field  to obtain

Thus, the magnetic susceptibility is

where  is the isothermal compressibility . In most metals we have  and the term in brackets is positive (recall ). In semiconductors, however, we can have ; for example in
GaAs we have . Thus, semiconductors can have a diamagnetic response. If we take  and , we see that the orbital currents give rise to a diamagnetic contribution to the

δμ(T ,n,H) = −{ ( T +( H }  +…  .
π2

6
kB )2 μ~ )2

( )g′ εF

g( )εF
(5.8.26)

−n↑ n↓

−n
↑

n
↓

= dε { (ε) − (ε)} f(ε−μ)∫

−∞

∞

g
↑

g
↓

= dε {g(ε− H) −g(ε+ H)} f(ε−μ)
1

2
∫

−∞

∞

μ~ μ~

= − H ⋅ πD csc(πD) g(μ) +O( ) .μ~ H 3

H

M=-\mutB(n\ns_\uar-n\ns_\dar)={\tilde \mu}^2_\ssr{B}\,g(\veF)\, H\ .

\xhi=\bigg({\pz M\over\pz H}\bigg)\nd_{T,N}={\tilde \mu}^2_\ssr{B}\,g(\veF)\ .

ε(n, , σ) = (n+ )ℏ + + H σ .kz
1

2
ωc

ℏ2k2
z

2m∗
μ~ (5.8.27)

n = eH/ cωc m∗

= ⋅ = ⋅  .
Hμ~

ℏωc

geℏH

4mc

cm∗

ℏeH

g

4

m∗

m
(5.8.28)

r ≡ (g/2) ×( /m)m∗

ε(n, , σ) = (n+ + rσ)ℏ +  .kz
1

2

1

2
ωc

ℏ2k2
z

2m∗
(5.8.29)

Ω = − ⋅ ⋅ T ln[1 + ] .
HA

ϕ0

Lz kB ∫

−∞

∞
dkz

2π
∑
n=0

∞

∑
σ=±1

eμ/ TkB e−(n+ + rσ)ℏ / T1
2

1
2

ωc kB e− /2 Tℏ2k2
z m∗kB (5.8.30)

= HA/Nϕ ϕ0 = hc/eϕ0

⋅ ⋅ T = ℏ ⋅  ,
HA

ϕ0

Lz kB ωc

V

λ3
T

(5.8.31)

Ω(T ,V ,μ,H) = ℏ Q((n+ + rσ)ℏ −μ) ,ωc∑
n=0

∞

∑
σ=±1

1

2

1

2
ωc (5.8.32)

Q(ε) = − ln[1 + ] .
V

λ2
T

∫

−∞

∞
dkz

2π
e−ε/ TkB e− /2 Tℏ2k2

z m∗kB (5.8.33)

F (n) = dx F (x) + F (0) − (0) +…  ,∑
n=0

∞

∫

0

∞
1

2

1

12
F ′ (5.8.34)

Ω = { dε Q(ε−μ) + ℏ Q( (1 +rσ)ℏ −μ)∑
σ=±1

∫

(1+rσ)ℏ
1

2
ωc

∞
1

2
ωc

1

2
ωc

− (ℏ ( (1 +rσ)ℏ −μ)+…}
1

12
ωc)

2 Q′ 1

2
ωc

H

Ω(T ,V ,μ,H) = 2 dε Q(ε−μ) +( − ) (ℏ (−μ) +…  .∫

0

∞
1

4
r2 1

12
ωc)

2 Q′ (5.8.35)

\begin{split} \xhi&=-{1\over V}{\pz^2\!\Omega\over\pz H^2}=\big(r^2-\third\big)\cdot{\tilde\mu}_\ssr{B}^2\cdot \big(m/m^*\big)^2\cdot \Big(\!-{2\over V}\,Q'(-\mu)\Big)\bvph\\ &=\bigg({g^2\over 4}-{m^2\over 3{m^*

κT
16 ≈ mm∗ g ≈ 2 ≪ mm∗

= 0.067 mm∗ g = 2 = mm∗
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magnetic susceptibility which is exactly  times as large as the contribution arising from Zeeman coupling. The net result is then paramagnetic ( ) and  as large as the Pauli susceptibility.
The orbital currents can be understood within the context of Lenz’s law.

Exercise : Show that .

Moment formation in interacting itinerant electron systems

The Hubbard model

A noninteracting electron gas exhibits paramagnetism or diamagnetism, depending on the sign of , but never develops a spontaneous magnetic moment: . What gives rise to
magnetism in solids? Overwhelmingly, the answer is that Coulomb repulsion between electrons is responsible for magnetism, in those instances in which magnetism arises. At first thought this might
seem odd, since the Coulomb interaction is spin-independent. How then can it lead to a spontaneous magnetic moment?

To understand how Coulomb repulsion leads to magnetism, it is useful to consider a model interacting system, described by the Hamiltonian

This is none other than the famous Hubbard model, which has served as a kind of Rosetta stone for interacting electron systems. The first term describes hopping of electrons along the links of some
regular lattice (the symbol  denotes a link between sites  and ). The second term describes the local (on-site) repulsion of electrons. This is a single orbital model, so the repulsion exists when one
tries to put two electrons in the orbital, with opposite spin polarization. Typically the Hubbard  parameter is on the order of electron volts. The last term is the Zeeman interaction of the electron
spins with an external magnetic field. Orbital effects can be modeled by associating a phase  to the hopping matrix element  between sites  and , where the directed sum of  around a
plaquette yields the total magnetic flux through the plaquette in units of . We will ignore orbital effects here. Note that the interaction term is short-ranged, whereas the Coulomb interaction
falls off as . The Hubbard model is thus unrealistic, although screening effects in metals do effectively render the interaction to be short-ranged.

Within the Hubbard model, the interaction term is local and written as  on any given site. This term favors a local moment. This is because the chemical potential will fix the mean value of the

total occupancy , in which case it always pays to maximize the difference .

Stoner mean field theory

There are no general methods available to solve for even the ground state of an interacting many-body Hamiltonian. We’ll solve this problem using a mean field theory due to Stoner. The idea is to
write the occupancy  as a sum of average and fluctuating terms:

Here,  is the thermodynamic average; the above equation may then be taken as a definition of the fluctuating piece, . We assume that the average is site-independent. This is a significant
assumption, for while we understand why each site should favor developing a moment, it is not clear that all these local moments should want to line up parallel to each other. Indeed, on a bipartite
lattice, it is possible that the individual local moments on neighboring sites will be antiparallel, corresponding to an antiferromagnetic order of the pins. Our mean field theory will be one for
ferromagnetic states.

We now write the interaction term as

where  and  are the average occupancy per spin and average spin polarization, each per unit cell:

. The mean field grand canonical Hamiltonian , may then be written as

where we’ve quantized spins along the direction of , defined as . You should take note of two things here. First, the chemical potential is shifted downward (or the electron energies shifted upward)
by an amount , corresponding to the average energy of repulsion with the background. Second, the effective magnetic field has been shifted by an amount , so the effective field is

The bare single particle dispersions are given by , where

and . For nearest neighbor hopping on a -dimensional cubic lattice, , where  is the lattice constant. Including the mean field effects, the effective single
particle dispersions become

We now solve the mean field theory, by obtaining the free energy per site, . First, note that , where  is the Landau, or grand canonical, free energy per site. This
follows from the general relation ; note that the total electron number is , since  is the electron number per unit cell (including both spin species). If  is the density of
states per unit cell (rather than per unit volume), then we have

where  and . From this free energy we derive two self-consistent equations for  and . The first comes from demanding that  be a function of  and
not of , , which leads to

where  is the Fermi function. The second equation comes from minimizing  with respect to average moment :

− 1
3

χ > 0 2
3

− (−μ) =2
V
Q′ n2κ

T

χ M(H = 0) = 0

\HH=-t\sum_{\ij,\sigma}\Big(c\yd_{i\sigma}c\nd_{j\sigma} + c\yd_{j\sigma}c\nd_{i\sigma}\Big) +U\sum_i n\nd_{i\uar}\,n\nd_{i\dar}+ \muB\BH\cdot\sum_{i,\alpha,\beta} c\yd_{i\alpha}\,\Bsigma\nd_{\alpha\beta}\,c\nd

\ij i j

U

exp(i )Aij t i j Aij

= hc/eϕ0

1/| − |Ri Rj

Un↑n↓

+n↑ n↓ | − |n↑ n↓

niσ

= ⟨ ⟩+δ  .niσ niσ niσ (5.8.36)

⟨ ⟩niσ δniσ

ni↑ni↓ = ⟩ ⟩+ ⟨ ⟩ + ⟩ +\langlen↑ \langlen↓ n↑ \deltani↓ \langlen↓ \deltani↑ \deltani↑ \deltani↓

  
(flucts)

2

= − ⟩ ⟩+ ⟩ + ⟩ +O((δn )\langlen
↑

\langlen
↓

\langlen
↑
n
i↓

\langlen
↓
n
i↑

)2

= ( − ) + n ( + ) + m ( − ) +O((δn ) ,
1

4
m2 n2 1

2
ni↑ ni↓

1

2
ni↑ ni↓ )2

n m

n

m

= ⟨ ⟩+ ⟨ ⟩n
↓

n
↑

= ⟨ ⟩− ⟨ ⟩ ,n↓ n↑

⟨ ⟩= (n−σm)nσ
1
2

K= −μNĤ

\begin{split} \CK^\ssr{MF}&=-\half\sum_{i,j,\sigma} t\nd_{ij} \Big(c\yd_{i\sigma}c\nd_{j\sigma} + c\yd_{j\sigma}c\nd_{i\sigma}\Big) - \big(\mu-\half Un\big)\sum_{i\sigma} c\yd_{i\sigma}c\nd_{i\sigma}\\ &\qquad +

H ẑ

Un1
2

\half Um/\muB

H\ns_{eff}=H + {Um\over 2\muB}\ .

\ve\ns_\sigma(\Bk)=-{\hat t}(\Bk)+\sigma\muB H

(k) = t(R)  ,t̂ ∑
R

e−ik⋅R (5.8.37)

= t( − )tij Ri Rj d (k) = −t cos( a)t̂ ∑d

μ=1 kμ a

{\widetilde\ve}\ns_\sigma(\Bk)=-{\hat t}(\Bk) - \half U n + \big(\muB H + \half U m\big)\,\sigma\ .

φ(n,T ,H) φ = ω+μn ω = Ω/Nsites

Ω = F −μN N = nNsites n g(ε)
17

φ = U( + ) + n− T dε g(ε){ ln(1 + )+ln(1 + )}
1

4
m2 n2 μ̄

1

2
kB ∫

−∞

∞

e( −ε−Δ)/ Tμ̄ kB e( −ε+Δ)/ Tμ̄ kB (5.8.38)

≡ μ− Unμ̄ 1
2

\Delta\equiv\muB H + \half Um μ m φ n

μ ∂φ/∂μ = 0

n = dε g(ε){f(ε−Δ − ) +f(ε+Δ − )} ,
1

2
∫

−∞

∞

μ̄ μ̄ (5.8.39)

f(y) = [ exp(y/ T ) +1kB ]
−1

f m

m = dε g(ε){f(ε−Δ − ) −f(ε+Δ − )} .
1

2
∫

−∞

∞

μ̄ μ̄ (5.8.40)
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Here, we will solve the first equation, eq. [neqn], and use the results to generate a Landau expansion of the free energy  in powers of . We assume that  is small, in which case we may write

We write  and expand in . Since  is fixed in our (canonical) ensemble, we have

which defines .  The remaining terms in the  expansion of Equation [nexpan] must sum to zero. This yields

where

is the thermally averaged bare density of states at energy . Note that the  derivative is

Solving for , we obtain

where

After integrating by parts and inserting this result for  into our expression for the free energy , we obtain the expansion

where prime denotes differentiation with respect to argument, at , and

where , so  is the integrated bare density of states per unit cell in the absence of any magnetic field (including both spin species).

We assume that  and  are small, in which case

where  is the Pauli susceptibility, and

where the argument of each  above is . The magnetization density (per unit cell, rather than per unit volume) is given by

Minimizing with respect to  yields

which gives, for small ,

We therefore obtain  with

where

The denominator of  increases the susceptibility above the bare Pauli value , and is referred to as – I kid you not – the Stoner enhancement (see Fig. [stenfig]).
[stenfig] A graduate student experiences the Stoner enhancement.

[stenfig] A graduate student experiences the Stoner enhancement.

It is worth emphasizing that the magnetization per unit cell is given by

This is an operator identity and is valid for any value of , and not only small .

When  we can still get a magnetic moment, provided . This is a consequence of the simple Landau theory we have derived. Solving for  when  gives  when  and

φ m2 Δ

n = dε g(ε){f(ε− ) + (ε− ) + (ε− ) +…} .∫

−∞

∞

μ̄
1

2
Δ2 f ′′ μ̄

1

24
Δ4 f ′′′′ μ̄ (5.8.41)

(Δ) = +δμ̄ μ̄0 μ̄ δμ̄ n

n = dε g(ε) f(ε− ) ,∫

−∞

∞

μ̄0 (5.8.42)

(n,T )μ̄0
18 δμ̄

D( ) δ + ( ) + (δ ( ) + ( ) δ + ( ) +O( ) = 0 ,μ̄0 μ̄
1

2
Δ2 D′ μ̄0

1

2
μ̄)2 D′ μ̄0

1

2
D′′ μ̄0 Δ2 μ̄

1

24
D′′′ μ̄0 Δ4 Δ6 (5.8.43)

D(μ) = − dε g(ε) (ε−μ)∫

−∞

∞

f ′ (5.8.44)

μ kth

(μ) = − dε (ε) (ε−μ) .D(k) ∫

−∞

∞

g(k) f ′ (5.8.45)

δμ̄

δ = − − (3 −6 + ) +O( ) ,μ̄
1

2
a1Δ2 1

24
a3

1 a1a2 a3 Δ4 Δ6 (5.8.46)

≡  .a
k

( )D(k) μ̄0

D( )μ̄0

(5.8.47)

δμ̄ f

φ(n,T ,m) = (n,T ) + U − D( ) + ( − ( )) +…  ,φ0

1

4
m2 1

2
μ̄0 Δ2 1

8

[ ( )D′ μ̄0 ]
2

D( )μ̄0

1

3
D′′ μ̄0 Δ4

m = 0

(n,T ) = U +n − dεN (ε) f(ε− ) ,φ0

1

4
n2 μ̄0 ∫

−∞

∞

μ̄0 (5.8.48)

g(ε) = (ε)N
′

N (ε)

H m

\vphi=\vphi\ns_0 + \half a m^2 + \fourth b m^4 -\half\xhi\ns_0\,H^2 - {U\xhi\ns_0\over 2\muB}\,Hm +\ldots\ ,

\xhi\ns_0=\mu_\ssr{B}^2\, D({\bar\mu}\ns_0)

a = U(1 − UD) , b = ( − ) ,
1

2

1

2

1

32

( )D′ 2

D

1

3
D′′ U 4 (5.8.49)

D(k) (n,T )μ̄0

M=-{\pz \vphi\over\pz H}=\xhi\ns_0 H + {U\xhi\ns_0\over 2\muB}\,m\ .

m

am + bm^3 - {U\xhi\ns_0\over 2\muB}\,H=0\ ,

m

m={\xhi\ns_0\over \muB}\,{H\over 1-\half UD}\ .

M = χH

χ =  ,
χ0

1 − U

Uc

(5.8.50)

=  .Uc

2

D( )μ̄0

(5.8.51)

χ χ0

M=-{1\over N_{sites}}\,{\delta\HH\over\delta H}=\muB m\ .

m m

H = 0 U > Uc m H = 0 m = 0 U < Uc

m(U) = ±(  ,
U

2b Uc

)
1/2

U −Uc
− −−−−−

√ (5.8.52)
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when , and assuming . Thus we have the usual mean field order parameter exponent of .

Antiferromagnetic solution

In addition to ferromagnetism, there may be other ordered states which solve the mean field theory. One such example is antiferromagnetism. On a bipartite lattice, the antiferromagnetic mean field
theory is obtained from

where  is the antiferromagnetic ordering wavevector. The grand canonical Hamiltonian is then

where , as before. On a bipartite lattice, with nearest neighbor hopping only, we have . The above matrix is diagonalized by a unitary transformation, yielding the
eigenvalues

with  and  as before. The free energy per unit cell is then

The mean field equations are then

As in the case of the ferromagnet, a paramagnetic solution with  always exists, in which case the second of the above equations is no longer valid.

Mean field phase diagram of the Hubbard model

Let us compare the mean field theories for the ferromagnetic and antiferromagnetic states at  and . Due to particle-hole symmetry, we may assume  without loss of generality.
(The solutions repeat themselves under .) For the paramagnet, we have

with  is the ‘renormalized’ Fermi energy and  is the density of states per unit cell in the absence of any explicit ( ) or implicit ( ) symmetry breaking, including both spin
polarizations.

For the ferromagnet,

Here,  is nonzero in the ordered phase.

Finally, the antiferromagnetic mean field equations are \[\begin{aligned} n\ns_

\label{dela}\\ \vphi&=\fourth U n^2+{\Delta^2\over U} -\!\int\limits_{\ve\ns_0}^\infty\!\!d\ve\,g(\ve)\, \sqrt{\ve^2+\Delta^2}\quad ,\end{aligned}\] where  and  as
before. Note that  for these solutions. Exactly at half-filling, we have  and . We then set .

The paramagnet to ferromagnet transition may be first or second order, depending on the details of . If second order, it occurs at , where 
 is the paramagnetic solution for . The paramagnet to antiferromagnet transition is always second order in this mean field theory, since the RHS of Equation ([dela]) is a

monotonic function of . This transition occurs at \(U_\Rc^\ssr{A}=2\bigg/\!\!\int\limits_

^\infty\!\!d\ve\,g(\ve) \,\ve^{-1}\). Note that  logarithmically for , since  at half-filling.

For large , the ferromagnetic solution always has the lowest energy, and therefore if , there will be a first-order antiferromagnet to ferromagnet transition at some
value . In Figure [hpd], I plot the phase diagram obtained by solving the mean field equations assuming a semicircular density of states . Also shown is
the phase diagram for the  square lattice Hubbard model obtained by J. Hirsch (1985).

[hpd] Mean field phase diagram of the Hubbard model, including paramagnetic (P), ferromagnetic (F), and
antiferromagnetic (A) phases. Left panel: results using a semicircular density of states function of half-

bandwidth W. Right panel: results using a two-dimensional square lattice density of states with nearest
neighbor hopping t, from J. E. Hirsch, Phys. Rev. B 31, 4403 (1985). The phase boundary between F and A
phases is first order.

[hpd] Mean field phase diagram of the Hubbard model, including paramagnetic (P), ferromagnetic (F), and antiferromagnetic (A) phases. Left panel: results using a semicircular density of states
function of half-bandwidth . Right panel: results using a two-dimensional square lattice density of states with nearest neighbor hopping , from J. E. Hirsch, Phys. Rev. B 31, 4403 (1985). The
phase boundary between F and A phases is first order.

How well does Stoner theory describe the physics of the Hubbard model? Quantum Monte Carlo calculations by J. Hirsch (1985) found that the actual phase diagram of the  square lattice
Hubbard Model exhibits no ferromagnetism for any  up to . Furthermore, he found the antiferromagnetic phase to be entirely confined to the vertical line . For  and ,

U > Uc b > 0 β = 1
2

⟨ ⟩= n+ σ m ,niσ

1

2

1

2
eiQ⋅Ri (5.8.53)
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U^*>U_\Rc^\ssr{F} g(ε) = 2

π W −2 −W 2 ε2
− −−−−−−

√
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the system is a paramagnet . These results were state-of-the art at the time, but both computing power as well as numerical algorithms for interacting quantum systems have advanced considerably
since 1985. Yet as of 2018, we still don’t have a clear understanding of the  Hubbard model’s  phase diagram! There is an emerging body of numerical evidence  that in the underdoped (

) regime, there are portions of the phase diagram which exhibit a stripe ordering, in which antiferromagnetic order is interrupted by a parallel array of line defects containing excess holes ( the
absence of an electron) . This problem has turned out to be unexpectedly rich, complex, and numerically difficult to resolve due to the presence of competing ordered states, such as -wave
superconductivity and spiral magnetic phases, which lie nearby in energy with respect to the putative stripe ground state.

In order to achieve a ferromagnetic solution, it appears necessary to introduce geometric frustration, either by including a next-nearest-neighbor hopping amplitude  or by defining the model on non-
bipartite lattices. Numerical work by M. Ulmke (1997) showed the existence of a ferromagnetic phase at  on the FCC lattice Hubbard model for  and  (approximately).

White dwarf stars

There is a nice discussion of this material in R. K. Pathria, Statistical Mechanics. As a model, consider a mass  of helium at nuclear densities of  and temperature 
. This temperature is much larger than the ionization energy of He, hence we may safely assume that all helium atoms are ionized. If there are  electrons, then the number of  particles

( He nuclei) must be . The mass of the  particle is . The total stellar mass  is almost completely due to  particle cores.

The electron density is then

since . From the number density  we find for the electrons

Since , we conclude that the electrons are relativistic. The Fermi temperature will then be . Thus,  which says that the electron gas is
degenerate and may be considered to be at . So we need to understand the ground state properties of the relativistic electron gas.

The kinetic energy is given by

The velocity is

The pressure in the ground state is

where we use the substitution

Note that , and that

Now in equilibrium the pressure  is balanced by gravitational pressure. We have

This must be balanced by gravity:

where  depends on the radial mass distribution. Equilibrium then implies

[whitedwarf] Mass-radius relationship for white dwarf stars. (Source: Wikipedia).

[whitedwarf] Mass-radius relationship for white dwarf stars. (Source: Wikipedia).

To find the relation , we must solve

Note that

Thus, we may write

19

d = 2 T = 0 20

n < 1
21 d

t′

T = 0 U = 6 n ∈ [0.15, 0.87]

M ∼ g1033 ρ ∼ g/107 cm3

T ∼ K107 4 N α
4 N1

2
α ≈ 4mα mp M α

n = = = ≈  ,
N

V

2 ⋅M/4mp

V

ρ

2mp

1030 cm−3 (5.8.55)

M = N ⋅ + N ⋅ 4me
1
2

mp n

= (3 nkF π2 )1/3

= ℏpF kF

mc

= 2.14 ×1010 cm−1

= 2.26 × g cm/s10−17

= (9.1 × g)(3 × \Rm/s) = 2.7 × g cm/s .10−28 1010 10−17

p\ns_\ssr{F}\sim mc ∼ m ∼ eV ∼ KT
F
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f

T ∼ 0

ε(p) = −m  .+p
2c2 m2c4

− −−−−−−−−−
√ c2 (5.8.56)

v = =  .
∂ε

∂p

pc2

+p2c2 m2c4− −−−−−−−−−
√

(5.8.57)

p0 = n⟨p ⋅ v⟩
1

3
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1

3π2ℏ3
∫

0
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0
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M
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π2 9π

8

M

R3 mp
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p
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d = γ ⋅ dR ,Eg

GM 2
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γ

(R) =  .p0

γ

4π

GM 2

R4
(5.8.62)
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In the limit , we solve for  and find

In the opposite limit , the  factors divide out and we obtain

To find the  dependence, we must go beyond the lowest order expansion of Equation [cases], in which case we find

The value  is the limiting size for a white dwarf. It is called the Chandrasekhar limit.

This page titled 5.8: The Ideal Fermi Gas is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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5.9: Appendix I- Second Quantization

Basis States and Creation/Annihilation Operators
Second quantization is a convenient scheme to label basis states of a many particle quantum system. We are ultimately interested in
solutions of the many-body Schrödinger equation,

where the Hamiltonian is

To the coordinate labels  we may also append labels for internal degrees of freedom, such as spin polarization,
denoted . Since  for all permutations , the many-body wavefunctions may be chosen to transform
according to irreducible representations of the symmetric group . Thus, for any ,

where the upper choice is for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics. Here  may include not only
the spatial coordinates of particle , but its internal quantum number(s) as well, such as .

A convenient basis for the many body states is obtained from the single-particle eigenstates  of some single-particle
Hamiltonian  , with  and . The basis may be taken as orthonormal, . Now
define

Here  is the number of times the index  appears among the set . For BE statistics,  , whereas
for FD statistics,  . Note that the above states are normalized :

Note that

which stand for permanent and determinant, respectively. We may now write

where

Note that  , where by  we mean  in the case of BE statistics and  in the case
of FD statistics.

Ψ( , … , ) = E Ψ( , … , )Ĥ x1 x
N

x1 x
N

(5.9.1)

= − + V ( − ) .Ĥ
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2m
∑
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∇2
i ∑
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(5.9.2)
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Ψ( , … , ) ={ }Ψ( , … , ) ,xσ(1) xσ(N)

1

sgn(σ)
x1 xN (5.9.3)
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We may express  as a product of creation operators acting on a vacuum  in Fock space. For bosons,

with

where  is the commutator. For fermions,

with

where  is the anticommutator.

Second Quantized Operators

Now consider the action of permutation-symmetric first quantized operators such as  and 
. For a one-body operator such as , we have

One may verify that any permutation-symmetric one-body operator such as  is faithfully represented by the second quantized
expression,

where  is  or  as the application determines, and

Similarly, two-body operators such as  are represented as

where

The general form for an -body operator is then

Finally, if the Hamiltonian is noninteracting, consisting solely of one-body operators , then

| ⋯ ⟩α1 αN | 0 ⟩
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where  is the spectrum of each single particle Hamiltonian .
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= ,Ĥ ∑
α

εα ψ
†
α ψα (5.9.16)

{ }εα ĥi

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18766?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/05%3A_Noninteracting_Quantum_Systems/5.09%3A_Appendix_I-_Second_Quantization
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5


5.10.1 https://phys.libretexts.org/@go/page/18767

5.10: Appendix II- Ideal Bose Gas Condensation
We begin with the grand canonical Hamiltonian  for the ideal Bose gas,

Here  is the creation operator for a boson in a state of wavevector , hence . The dispersion relation is given by
the function , which is the energy of a particle with wavevector . We must have  for all , lest the spectrum of  be
unbounded from below. The fields  break a global  symmetry.

Students who have not taken a course in solid state physics can skip the following paragraph, and be aware that  is the
total volume of the system in units of a fundamental "unit cell" volume. The thermodynamic limit is then . Note that  is
not the boson particle number, which we’ll call .

Solid state physics boilerplate : We presume a setting in which the real space Hamiltonian is defined by some boson hopping model
on a Bravais lattice. The wavevectors  are then restricted to the first Brillouin zone, , and assuming periodic boundary
conditions are quantized according to the condition  for all , where  is the  fundamental
direct lattice vector and  is the size of the system in the  direction;  is the dimension of space. The total number of unit cells
is  . Thus, quantization entails  , where  is the  elementary reciprocal lattice vector (

) and  ranges over  distinct integers such that the allowed  points form a discrete approximation to  .

To solve, we first shift the boson creation and annihilation operators, writing

where

Note that  so the above transformation is canonical. The Landau free energy  , where 
, is given by

where  is the density of energy states per unit cell,

Note that

In the condensed phase,  is nonzero.

The Landau free energy (grand potential) is a function . We now make a Legendre transformation,

Note that
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by the definition of . Similarly, . We now have

Therefore, the boson particle number per unit cell is given by the dimensionless density,

and the condensate amplitude at wavevector  is

Recall that  acts as an external field. Let the dispersion  be minimized at  . Without loss of generality, we may assume
this minimum value is  . We see that if  then one of two must be true:

 for all 
 , in which case  can be nonzero.

Thus, for  and , we have the usual equation of state,

which relates the intensive variables , , and . When , the equation of state becomes

where now the sum is over only those  for which  . Typically this set has only one member, , but it is quite
possible, due to symmetry reasons, that there are more such  values. This last equation of state is one which relates the intensive
variables , , and  , where

is the dimensionless condensate density. If the integral  in Equation [condeqn] is finite, then for  we must have 
. Note that, for any ,  diverges logarithmically whenever  is finite. This means that Equation [GDE] can always

be inverted to yield a finite , no matter how large the value of , in which case there is no condensation and . If 
 with , the integral converges and  is finite and monotonically increasing for all . Thus, for fixed

dimensionless number , there will be a critical temperature  for which . For  , Equation [GDE] has no
solution for any  and we must appeal to Equation [condeqn]. The condensate density, given by  , is then
finite for  , and vanishes for  .

In the condensed phase, the phase of the order parameter  inherits its phase from the external field , which is taken to zero, in the
same way the magnetization in the symmetry-broken phase of an Ising ferromagnet inherits its direction from an applied field 
which is taken to zero. The important feature is that in both cases the applied field is taken to zero after the approach to the
thermodynamic limit.

This page titled 5.10: Appendix II- Ideal Bose Gas Condensation is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by Daniel Arovas.
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5.11: Appendix III- Example Bose Condensation Problem
A three-dimensional gas of noninteracting bosonic particles obeys the dispersion relation .

Obtain an expression for the density  where  is the fugacity. Simplify your expression as best you can,
adimensionalizing any integral or infinite sum which may appear. You may find it convenient to define

Note , the Riemann zeta function.
Find the critical temperature for Bose condensation, . Your expression should only include the density , the constant ,
physical constants, and numerical factors (which may be expressed in terms of integrals or infinite sums).
What is the condensate density  when ?
Do you expect the second virial coefficient to be positive or negative? Explain your reasoning. (You don’t have to do any
calculation.)

We work in the grand canonical ensemble, using Bose-Einstein statistics.

The density for Bose-Einstein particles are given by

where we have changed integration variables from  to , and we have defined the functions  as above, in
Equation [zetadef]. Note , the Riemann zeta function.
Bose condensation sets in for , . Thus, the critical temperature  and the density  are related by

or

For , we have

where  is the condensate density. Thus, at ,

The virial expansion of the equation of state is

ε(k) = A k∣∣ ∣∣
1/2

n(T , z) z = exp(μ/ T )kB

(z) ≡ dt =  .Liν
1

Γ(ν)
∫

0

∞

tν−1

−1z−1 et
∑
k=1

∞
zk

kν
(5.11.1)
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We expect  for noninteracting bosons, reflecting the tendency of the bosons to condense. (Correspondingly, for
noninteracting fermions we expect .)

For the curious, we compute  by eliminating the fugacity  from the equations for  and . First, we find 
:

Expanding in powers of the fugacity, we have

Solving for  using the first equation, we obtain, to order ,

Plugging this into the equation for , we obtain the first nontrivial term in the virial expansion, with

which is negative, as expected. Note that the ideal gas law is recovered for , for fixed .

1. For a review of the formalism of second quantization, see the appendix in §9.↩
2. Several texts, such as Pathria and Reichl, write  for . I adopt the latter notation since we are already using the

symbol  for the density of states function  and for the internal degeneracy .↩
3. Note the dimensions of  are . By contrast, the dimensions of  in Equation [BDOS] are 

. The difference lies in the a factor of , where  is the unit cell volume.↩

4. If , then .↩
5. OK, that isn’t quite true. For example, if , then the integral has a very weak  divergence, where  is the

lower cutoff. But for any power law density of states  with , the integral converges.↩
6. It is easy to see that the chemical potential for noninteracting bosons can never exceed the minimum value  of the single

particle dispersion.↩
7. Note that in the thermodynamics chapter we used  to denote the molar volume, .↩
8. The  particles are sometimes called the overcondensate.↩
9. IBG condensation is in the universality class of the spherical model. The -transition is in the universality class of the 

model.↩
10. Recall that two bodies in thermal equilibrium will have identical temperatures if they are free to exchange energy.↩
11. The phonon velocity  is slightly temperature dependent.↩
12. Many reliable descriptions may be found on the web. Check Wikipedia, for example.↩
13. Explicitly, one replaces  with ,  with , and  with .↩
14. Note that writing  we have  We then expand 

 to find the residue: .↩
15. I thank my colleague Tarun Grover for this observation.↩
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16. We’ve used .↩

17. Note that we have written , which explains the sign of the coefficient of .↩
18. The Gibbs-Duhem relation guarantees that such an equation of state exists, relating any three intensive thermodynamic

quantities.↩
19. A theorem due to Nagaoka establishes that the ground state is ferromagnetic for the case of a single hole in the  system

on bipartite lattices.↩
20. See J. P. F. LeBlanc , Phys. Rev. X 5, 041041 (2015) and B. Zheng , Science 358, 1155 (2017).↩
21. The best case for stripe order has been made at , , and hold doping  ( ).↩
22. In the normalization integrals, each  implicitly includes a sum  over any internal indices that may be present.↩

This page titled 5.11: Appendix III- Example Bose Condensation Problem is shared under a CC BY-NC-SA license and was authored, remixed,
and/or curated by Daniel Arovas.
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5.S: Summary
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Summary
\def\tpar{t\ns_\parallel} \def\mhat{\hat\Bm} \parindent=0pt \renewcommand*\rmdefault{ppl}\normalfont\upshape \physgreek
\font\seventeenbf=cmbx10 scaled \magstep3 \setcounter{section}{4} \section{Quantum Statistics : Summary} $\bullet$ {\it
Second-quantized Hamiltonians\/}: A noninteracting quantum system is described by a Hamiltonian
$\HH=\sum_\alpha\ve\ns_\alpha\,\Hn\ns_\alpha$, where $\ve\ns_\alpha$ is the energy eigenvalue for the single particle state
$\psi\ns_\alpha$ (possibly degenerate), and $\Hn\ns_\alpha$ is the number operator. Many-body eigenstates $\tket{\Vn}$ are
labeled by the set of occupancies $\Vn=\{n\ns_\alpha\}$, with $\Hn\ns_\alpha\,\tket{\Vn}=n\ns_\alpha\tket{\Vn}$. Thus,
$\HH\,\tket{\Vn}=E\ns_\Vn\>\tket{\Vn}$, where $E\ns_\Vn=\sum_\alpha n\ns_\alpha\,\ve\ns_\alpha$. $\bullet$ {\it Bosons and
fermions\/}: The allowed values for $n\ns_\alpha$ are $n\ns_\alpha\in\{0,1,2,\ldots,\infty\}$ for bosons and $n\ns_\alpha\in\
{0,1\}$ for fermions. $\bullet$ {\it Grand canonical ensemble\/}: Because of the constraint $\sum_\alpha n\ns_\alpha=N$, the
ordinary canonical ensemble is inconvenient. Rather, we use the grand canonical ensemble, in which case

where the upper sign corresponds to bosons and the lower sign to fermions. The average number of particles occupying the single
particle state $\psi\ns_\alpha$ is then

In the Maxwell-Boltzmann limit, $\mu\ll -\kT$ and $\langle n\ns_\alpha\rangle = z\,e^{-\ve\ns_\alpha/\kT}$, where
$z=e^{\mu/\kT}$ is the fugacity. Note that this low-density limit is common to both bosons and fermions. $\bullet$ {\it Single
particle density of states\/}: The single particle density of states per unit volume is defined to be

where $\Hh$ is the one-body Hamiltonian. If $\Hh$ is isotropic, then $\ve=\ve(k)$, where $k=|\Bk|$ is the magnitude of the
wavevector, and

where $\Sg$ is the degeneracy of each single particle energy state (due to spin, for example). $\bullet$ {\it Quantum virial
expansion\/}: From $\Omega=-pV$, we have
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where

One now inverts $n=n(T,z)$ to obtain $z=z(T,n)$, then substitutes this into $p=p(T,z)$ to obtain a series expansion for the equation
of state,

The coefficients $B\ns_j(T)$ are the {\it virial coefficients\/}. One finds

$\bullet$ {\it Photon statistics\/}: Photons are bosonic excitations whose number is not conserved, hence $\mu=0$. The number
distribution for photon statistics is then $n(\ve)=1/(e^{\beta\ve}-1)$. Examples of particles obeying photon statistics include
phonons (lattice vibrations), magnons (spin waves), and of course photons themselves, for which $\ve(k)=\hbar c k$ with $\Sg=2$.
The pressure and number density for the photon gas obey $p(T) = A\ns_d\,T^{d+1}$ and $n(T)=A'_d\,T^d$, where $d$ is the
dimension of space and $A\ns_d$ and $A'_d$ are constants. $\bullet$ {\it Blackbody radiation\/}: The energy density per unit
frequency of a three-dimensional blackbody is given{P by

The total power emitted per unit area of a blackbody is ${dP\over dA}=\sigma T^4$, where $\sigma=\pi^2 k_\ssr{B}^4/60\hbar^3
c^2 =5.67\times 10^{-8}\,\RW/\Rm^2\,\RK^4$ is Stefan's constant. $\bullet$ {\it Ideal Bose gas\/}: For Bose systems, we must
have $\ve\ns_\alpha > \mu$ for all single particle states. The number density is

This is an increasing function of $\mu$ and an increasing function of $T$. For fixed $T$, the largest value $n(T,\mu)$ can attain is
$n(T,\ve\ns_0)$, where $\ve\ns_0$ is the lowest possible single particle energy, for which $g(\ve)=0$ for $\ve < \ve\ns_0$. If
$n\ns_\Rc(T)\equiv n(T,\ve\ns_0) < \infty$, this establishes a {\it critical density\/} above which there is {\it Bose condensation\/}
into the energy $\ve\ns_0$ state. Conversely, for a given density $n$ there is a {\it critical temperature\/} $T\ns_\Rc(n)$ such that
$n\ns_0$ is finite for $T<t\ns_\rc$\,.>T\ns_\Rc$, $n(T,\mu)$ is given by the integral formula above, with $n\ns_0=0$. For a
ballistic dispersion $\ve(\Bk)=\hbar^2\Bk^2/2m$, one finds $n\lambda_{T\ns_\Rc}^d=\Sg\,\zeta(d/2)$, \ie\ $\kB T\ns_\Rc=
{2\pi\hbar^2\over m} \left(n\big/\Sg\,\zeta(d/2)\right)^{2/d}$. For $T<t\ns_\rc(n)$,>T\ns_\Rc(n)$, one has $n=\Sg\,
{Li}\ns_{d\over 2}(z)\,\lambda_T^{-d}$ and $p=\Sg\,{Li}\ns_{{d\over 2}+1}(z)\,\kT\,\lambda_T^{-d}$, where

$\bullet$ {\it Ideal Fermi gas\/}: The Fermi distribution is $n(\ve)=f(\ve-\mu)=1\big/\!\left(e^{(\ve-\mu)/\kT}+1\right)$. At $T=0$,
this is a step function: $n(\ve)=\RTheta(\mu-\ve)$, and $n=\int\limits_{-\infty}^\mu\!\! d\ve\>g(\ve)$. The chemical potential at
$T=0$ is called the {\it Fermi energy\/}: $\mu(T=0,n)=\veF(n)$. If the dispersion is $\ve(\Bk)$, the locus of $\Bk$ values
satisfying $\ve(\Bk)=\veF$ is called the {\it Fermi surface\/}. For an isotropic and monotonic dispersion $\ve(k)$, the Fermi surface
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is a sphere of radius $\kF$, the {\it Fermi wavevector\/}. For isotropic three-dimensional systems, $\kF=(6\pi^2 n/\Sg)^{1/3}$.
$\bullet$ {\it Sommerfeld expansion\/}: Let $\phi(\ve)={d\Phi\over d\ve}$. Then

where $D=\kT\,{d\over d\mu}$. One then finds, for example, $C\ns_V=\gamma V T$ with $\gamma=\third \pi^2
k_\ssr{B}^2\,g(\veF)$.
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6: Classical Interacting Systems
6.1: Ising Model
6.2: Nonideal Classical Gases
6.3: Lee-Yang Theory
6.4: Liquid State Physics
6.5: Coulomb Systems - Plasmas and the Electron Gas
6.6: Polymers
6.7: Appendix I- Potts Model in One Dimension
6.S: Summary

In a scattering experiment, a beam of particles interacts with a sample and the beam particles scatter off the sample particles. A
momentum~q and energy ~ω are transferred to the beam particle during such a collision. If , the scattering is said to be
elastic. For , the scattering is inelastic.

This page titled 6: Classical Interacting Systems is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.

ω = 0

ω ≠= 0

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.01%3A_Ising_Model
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.02%3A_Nonideal_Classical_Gases
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.03%3A_Lee-Yang_Theory
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.04%3A_Liquid_State_Physics
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.05%3A_Coulomb_Systems_-_Plasmas_and_the_Electron_Gas
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.06%3A_Polymers
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.07%3A_Appendix_I-_Potts_Model_in_One_Dimension
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.S%3A_Summary
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5


6.1.1 https://phys.libretexts.org/@go/page/18576

6.1: Ising Model

Definition

The simplest model of an interacting system consists of a lattice  of sites, each of which contains a spin  which may be either up ( ) or down ( ). The Hamiltonian is

When , the preferred (lowest energy) configuration of neighboring spins is that they are aligned, . The interaction is then called ferromagnetic. When  the preference
is for anti-alignment, , which is antiferromagnetic.

This model is not exactly solvable in general. In one dimension, the solution is quite straightforward. In two dimensions, Onsager’s solution of the model (with ) is among the most
celebrated results in statistical physics. In higher dimensions the system has been studied by numerical simulations (the Monte Carlo method) and by field theoretic calculations
(renormalization group), but no exact solutions exist.

Ising Model in One Dimension

Consider a one-dimensional ring of  sites. The ordinary canonical partition function is then

where  owing to periodic (ring) boundary conditions, and where  is a  transfer matrix,

where  are the Pauli matrices. Since the trace of a matrix is invariant under a similarity transformation, we have

where

are the eigenvalues of . In the thermodynamic limit, , and the  term dominates exponentially. We therefore have

From the free energy, we can compute the magnetization,

and the zero field isothermal susceptibility,

Note that in the noninteracting limit  we recover the familiar result for a free spin. The effect of the interactions at low temperature is to vastly increase the susceptibility. Rather than
a set of independent single spins, the system effectively behaves as if it were composed of large blocks of spins, where the block size  is the correlation length, to be derived below.

The physical properties of the system are often elucidated by evaluation of various correlation functions. In this case, we define

where , and where

To compute this ratio, we decompose  in terms of its eigenvectors, writing

Then

where
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Zero External Field

Consider the case , where , where  is the Pauli matrix. Then

the eigenvectors of  are

and , while . The corresponding eigenvalues are

The correlation function is then found to be

This result is also valid for , provided . We see that we may write

where the correlation length is

Note that  grows as  as .

Chain with free ends

When the chain has free ends, there are  links, and the partition function is

where . When , we make use of Equation  to obtain

and therefore

There’s a nifty trick to obtaining the partition function for the Ising chain which amounts to a change of variables. We define

Thus, , , Note that each  takes the values . The Hamiltonian for the chain is

The state of the system is defined by the  Ising variables . Note that  doesn’t appear in the Hamiltonian. Thus, the interacting model is recast as 
noninteracting Ising spins, and the partition function is

Ising model in two dimensions: Peierls’ argument
We have just seen how in one dimension, the Ising model never achieves long-ranged spin order. That is, the spin-spin correlation function decays asymptotically as an exponential function
of the distance with a correlation length  which is finite for all . Only for  does the correlation length diverge. At , there are two ground states,  and 

. To choose between these ground states, we can specify a boundary condition at the ends of our one-dimensional chain, where we demand that the spins are up. Equivalently,
we can apply a magnetic field  of order , which vanishes in the thermodynamic limit, but which at zero temperature will select the ‘all up’ ground state. At finite temperature, there is
always a finite probability for any consecutive pair of sites  to be in a high energy state, either  or . Such a configuration is called a domain wall, and in one-dimensional
systems domain walls live on individual links. Relative to the configurations  and , a domain wall costs energy . For a system with  domain walls, the free energy is

H = 0 R= +eβJ e−βJ τ x τ x

| ± ⟩ = (|↑⟩±|↓⟩) ,
1

2
–

√
(6.1.11)
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σ,σ ′

RN−1)
σσ ′

= { (σ) ( )+ (σ) ( )} ,∑
σ,σ ′

λN−1
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Minimizing the free energy with respect to , one finds , so the equilibrium concentration of domain walls is finite, meaning there can be no long-ranged spin order. In
one dimension, entropy wins and there is always a thermodynamically large number of domain walls in equilibrium. And since the correlation length for  is finite, any boundary
conditions imposed at spatial infinity will have no thermodynamic consequences since they will only be ‘felt’ over a finite range.

As we shall discuss in the following chapter, this consideration is true for any system with sufficiently short-ranged interactions and a discrete global symmetry. Another example is the -
state Potts model,

Here, the spin variables  take values in the set  on each site. The equivalent of an external magnetic field in the Ising case is a field  which prefers a particular value of  (
 in the above Hamiltonian). See the appendix in §8 for a transfer matrix solution of the one-dimensional Potts model.

What about higher dimensions? A nifty argument due to R. Peierls shows that there will be a finite temperature phase transition for the Ising model on the square lattice . Consider the Ising
model, in zero magnetic field, on a  square lattice, with  in the thermodynamic limit. Along the perimeter of the system we impose the boundary condition .
Any configuration of the spins may then be represented uniquely in the following manner. Start with a configuration in which all spins are up. Next, draw a set of closed loops on the lattice.
By definition, the loops cannot share any links along their boundaries, each link on the lattice is associated with at most one such loop. Now flip all the spins inside each loop from up to
down. Identify each such loop configuration with a label . The partition function is

where  is the total perimeter of the loop configuration . The domain walls are now loops, rather than individual links, but as in the one-dimensional case, each link of each domain wall
contributes an energy  relative to the ground state.

Figure : Clusters and boundaries for the square lattice Ising model. Left panel: a configuration  where the central spin is up. Right panel: a configuration  where the interior
spins of a new loop  containing the central spin have been flipped.

Now we wish to compute the average magnetization of the central site (assume  are both odd, so there is a unique central site). This is given by the difference , where 
 is the probability that the central spin has spin polarization . If , then the magnetization per site  is finite in the thermodynamic

limit, and the system is ordered. Clearly

where the restriction on the sum indicates that only those configurations where the central spin is up ( ) are to be included (Figure ). Similarly,

where only configurations in which  are included in the sum. Here we have defined

 is the set of configurations  in which the central spin is always up (down). Consider now the construction in Figure . Any loop configuration  may be associated
with a unique loop configuration  by reversing all the spins within the loop of  which contains the origin. Note that the map from  to  is many-to-one. That is, we can write 

, where  overturns the spins within the loop , with the conditions that (i)  contains the origin, and (ii) none of the links in the perimeter of  coincide with any of the links
from the constituent loops of . Let us denote this set of loops as :

Then

If we can prove that , then we will have established that . Let us ask: how many loops  are there in  with perimeter ? We cannot answer this question
exactly, but we can derive a rigorous upper bound for this number, which, following Peliti, we call . We claim that

To establish this bound, consider any site on such a loop . Initially we have  possible directions to proceed to the next site, but thereafter there are only  possibilities for each subsequent
step, since the loop cannot run into itself. This gives  possibilities. But we are clearly overcounting, since any point on the loop could have been chosen as the initial point, and
moreover we could have started by proceeding either clockwise or counterclockwise. So we are justified in dividing this by . We are still overcounting, because we have not accounted
for the constraint that  is a closed loop, nor that . We won’t bother trying to improve our estimate to account for these constraints. However, we are clearly undercounting due to

x x = 1/( +1)e2J/ TkB

T > 0

q

H =−J −h  .∑
⟨ij⟩

δ ,σi σj
∑
i

δ ,1σi
(6.1.20)
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the fact that a given loop can be translated in space so long as the origin remains within it. To account for this, we multiply by the area of a square of side length , which is the maximum
area that can be enclosed by a loop of perimeter . We therefore arrive at Equation . Finally, we note that the smallest possible value of  is , corresponding to a square
enclosing the central site alone. Therefore

where . Note that we have accounted for the fact that the perimeter  of each loop  must be an even integer. The sum is smaller than unity provided ,
hence the system is ordered provided

The exact result is  The Peierls argument has been generalized to higher dimensional lattices as well .

With a little more work we can derive a bound for the magnetization. We have shown that

Thus,

and therefore

where  is given in Equation .

Figure : A two-dimensional square lattice mapped onto a one-dimensional chain.

Two dimensions or one?

We showed that the one-dimensional Ising model has no finite temperature phase transition, and is disordered at any finite temperature , but in two dimensions on the square lattice there is
a finite critical temperature  below which there is long-ranged order. Consider now the construction depicted in Figure , where the sites of a two-dimensional square lattice are
mapped onto those of a linear chain . Clearly we can elicit a one-to-one mapping between the sites of a two-dimensional square lattice and those of a one-dimensional chain. That is, the
two-dimensional square lattice Ising model may be written as a one-dimensional Ising model,

How can this be consistent with the results we have just proven?

The fly in the ointment here is that the interaction along the chain  is long-ranged. This is apparent from inspecting the site labels in Figure . Note that site  is linked to sites
 and , but also to sites  and . With each turn of the concentric spirals in the figure, the range of the interaction increases. To complicate matters further, the

interactions are no longer translationally invariant, . But it is the long-ranged nature of the interactions on our contrived one-dimensional chain which spoils our previous
energy-entropy argument, because now the domain walls themselves interact via a long-ranged potential. Consider for example the linear chain with , where .
Let us compute the energy of a domain wall configuration where  if  and  if . The domain wall energy is then

Here we have written one of the sums in terms of . For asymptotically large  and , we can write  and we obtain an integral over the upper right quadrant of the
plane:

The  integral is convergent, but the  integral diverges for . For a finite system, the upper bound on the  integral becomes the system size . For  the domain wall energy is
finite in the thermodynamic limit . In this case, entropy again wins. the entropy associated with a single domain wall is , and therefore  is always lowered by

L/4
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< k ⋅ (3 = ≡ r ,∑
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⟨ij⟩

square
lattice

σi σj ∑
n,n′

linear
chain

Jnn′ σn σn′ (6.1.33)

Jn,n′ 6.1.2 n= 15

= 14n′ = 16n′ =−6n′ =−28n′

≠ J(n− )Jnn′ n′

= J |n−Jn,n′ n′|
−α

α > 0

=+1σn n> 0 =−1σn n≤ 0

Δ=  .∑
m=0

∞

∑
n=1

∞ 2J

|m+n|α
(6.1.34)

m =−n′ m n R = (m,n)

dR R dϕ =  .∫

1

∞

∫

0

π/2

2J

(cosϕ+sinϕRα )α
2−α/2∫

−π/4

π/4

dϕ

ϕcosα
∫

1

∞
dR

Rα−1
(6.1.35)

ϕ R α ≤ 2 R L α > 2
L→∞ lnLkB F =E− TkB

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18576?pdf


6.1.5 https://phys.libretexts.org/@go/page/18576

having a finite density of domain walls. For , the energy of a single domain wall scales as . It was first proven by F. J. Dyson in 1969 that this model has a finite temperature
phase transition provided . There is no transition for  or . The case  is special, and is discussed as a special case in the beautiful renormalization group analysis
by J. M. Kosterlitz in Phys. Rev. Lett. 37, 1577 (1976).

High temperature expansion
Consider once again the ferromagnetic Ising model in zero field , but on an arbitrary lattice. The partition function is

where  and  is the number of links. For regular lattices, , where  is the number of lattice sites and  is the lattice coordination number, the
number of nearest neighbors for each site. We have used

We expand Equation  in powers of , resulting in a sum of  terms, each of which can be represented graphically in terms of so-called lattice animals. A lattice animal is
a distinct (including reflections and rotations) arrangement of adjacent plaquettes on a lattice. In order that the trace not vanish, only such configurations and their compositions are
permitted. This is because each  for every given site  must occur an even number of times in order for a given term in the sum not to vanish. For all such terms, the trace is . Let 
represent a collection of lattice animals, and  the multiplicity of . Then

where  is the total number of sites in the diagram , and  is the multiplicity of . Since  vanishes as , this procedure is known as the high temperature expansion (HTE).

Figure : HTE diagrams on the square lattice and their multiplicities.

For the square lattice, he enumeration of all lattice animals with up to order eight is given in Figure . For the diagram represented as a single elementary plaquette, there are  possible
locations for the lower left vertex. For the  plaquette animal, one has , because there are two inequivalent orientations as well as  translations. For two disjoint elementary
squares, one has , which arises from subtracting  ‘illegal’ configurations involving double lines (remember each link in the partition sum appears only once!), shown in
the figure, and finally dividing by two because the individual squares are identical. Note that  is always even for any integer value of . Thus, to lowest interesting order on the
square lattice,

The free energy is therefore

again with . Note that we’ve substituted  to write the final result as a power series in . Notice that the  factor in  has cancelled upon taking
the logarithm, so the free energy is properly extensive.

Note that the high temperature expansion for the one-dimensional Ising chain yields

in agreement with the transfer matrix calculations. In higher dimensions, where there is a finite temperature phase transition, one typically computes the specific heat  and tries to
extract its singular behavior in the vicinity of , where . Since  is analytic in , we have , where . One
assumes  is the singularity closest to the origin and corresponds to the radius of convergence of the high temperature expansion. If we write

then according to the binomial theorem we should expect

Thus, by plotting  versus , one extracts  as the intercept, and  as the slope.
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High temperature expansion for correlation functions

Can we also derive a high temperature expansion for the spin-spin correlation function  ? Yes we can. We have

Recall our analysis of the partition function . We concluded that in order for the trace not to vanish, the spin variable  on each site  must occur an even number of times in the expansion
of the product. Similar considerations hold for , except now due to the presence of  and , those variables now must occur an odd number of times when expanding the product. It is
clear that the only nonvanishing diagrams will be those in which there is a finite string connecting sites  and , in addition to the usual closed HTE loops. See Figure  for an instructive
sketch. One then expands both  as well as  in powers of , taking the ratio to obtain the correlator . At high temperatures , both numerator and denominator are
dominated by the configurations  with the shortest possible total perimeter. For , this means the trivial path , while for  this means finding the shortest length path from  to .
(If there is no straight line path from  to , there will in general be several such minimizing paths.) Note, however, that the presence of the string between sites  and  complicates the
analysis of  for the closed loops, since none of the links of  can intersect the string. It is worth stressing that this does not mean that the string and the closed loops cannot intersect at
isolated sites, but only that they share no common links; see once again Figure .

Figure : HTE diagrams for the numerator  of the correlation function . The blue path connecting sites  and  is the string. The remaining red paths are all closed loops.
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6.2: Nonideal Classical Gases
Let’s switch gears now and return to the study of continuous classical systems described by a Hamiltonian . In the
next chapter, we will see how the critical properties of classical fluids can in fact be modeled by an appropriate lattice gas Ising
model, and we’ll derive methods for describing the liquid-gas phase transition in such a model.

The Configuration Integral
Consider the ordinary canonical partition function for a nonideal system of identical point particles interacting via a central two-
body potential . We work in the ordinary canonical ensemble. The -particle partition function is

Here, we have assumed a many body Hamiltonian of the form

in which massive nonrelativistic particles interact via a two-body central potential. As before,  is the thermal
wavelength. We can now write

where the configuration integral  is given by

There are no general methods for evaluating the configurational integral exactly.

One-dimensional Tonks gas

The Tonks gas is a one-dimensional generalization of the hard sphere gas. Consider a one-dimensional gas of indistinguishable
particles of mass  interacting via the potential

Thus, the Tonks gas may be considered to be a gas of hard rods. The above potential guarantees that the portion of configuration
space in which any rods overlap is forbidden in this model . Let the gas be placed in a finite volume . The hard sphere nature of
the particles means that no particle can get within a distance  of the ends at  and . That is, there is a one-body
potential  acting as well, where

The configuration integral of the 1D Tonks gas is given by

where  is zero if any two ‘rods’ (of length ) overlap, or if any rod overlaps with either boundary at  and ,
and  otherwise. Note that  does not depend on temperature. Without loss of generality, we can integrate over the subspace

({ }, { })Ĥ xi pi

u(r) N

Z(T ,V ,N) = ∫
1

N !
∏
i=1

N ddpi d
dxi

hd
e− / TĤ kB

= ∫ exp(− u(| − |)) .
λ−Nd
T

N !
∏
i=1

N

ddxi
1

TkB

∑
i<j

xi xj

= + u(| − |) ,Ĥ ∑
i=1

N p2
i

2m
∑
i<j

xi xj (6.2.1)

=λ
T

2π /m Tℏ2 kB

− −−−−−−−−−
√

Z(T ,V ,N) = (T ,V ) ,λ−Nd
T QN (6.2.2)

(T ,V )QN

(T ,V ) = ∫ ⋯ ∫  .Q
N

1

N !
ddx1 ddx

N
∏
i<j

e−βu( )rij (6.2.3)

m

u(x− ) ={x′ ∞

0

 if |x− | < ax′

 if |x− | ≥ a .x′ (6.2.4)

4 L
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2
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∞
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∞
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 if  a ≤ x ≤ L− a1
2
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(6.2.5)

(T ,L) = d ⋯ d χ( , … , ) ,QN

1
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∫

0

L

x1 ∫

0

L
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χ = e−U/ TkB a x = 0 x = L
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where  and then multiply the result by  . Clearly  must lie to the right of  and to the left of 
. Thus, the configurational integral is

The partition function is  , and so the free energy is

where we have used Stirling’s rule to write . The pressure is

where  is the one-dimensional density. Note that the pressure diverges as  approaches . The usual one-dimensional
ideal gas law, , is replaced by , where  is the ‘free’ volume obtained by subtracting
the total "excluded volume"  from the original volume . Note the similarity here to the van der Waals equation of state, 

, where  is the molar volume. Defining  and , we have

where  is the number density. The term involving the constant  is due to the long-ranged attraction of atoms due to their
mutual polarizability. The term involving  is an excluded volume effect. The Tonks gas models only the latter.

Mayer Cluster Expansion

Let us return to the general problem of computing the configuration integral. Consider the function , where 
. We assume that at very short distances there is a strong repulsion between particles,  as 

, and that  as . Thus,  vanishes as  and approaches unity as . For our
purposes, it will prove useful to define the function

called the Mayer function after Josef Mayer. We may now write

< < ⋯ <x1 x2 xN N ! xj +axj−1
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Figure : Bottom panel: Lennard-Jones potential , with  and . Note the weak attractive
tail and the strong repulsive core. Top panel: Mayer function  for  (blue), 
(green), and  (red).

A typical potential we might consider is the semi-phenomenological Lennard-Jones potential,

This accounts for a long-distance attraction due to mutually induced electric dipole fluctuations, and a strong short-ranged
repulsion, phenomenologically modelled with a  potential, which mimics a hard core due to overlap of the atomic electron
distributions. Setting  we obtain  at the minimum, where . In contrast to the
Boltzmann weight , the Mayer function  vanishes as , behaving as . The Mayer function also
depends on temperature. Sketches of  and  for the Lennard-Jones model are shown in Figure .

The Lennard-Jones potential  is realistic for certain simple fluids, but it leads to a configuration integral which is in general
impossible to evaluate. Indeed, even a potential as simple as that of the hard sphere gas is intractable in more than one space
dimension. We can however make progress by deriving a series expansion for the equation of state in powers of the particle density.
This is known as the virial expansion. As was the case when we investigated noninteracting quantum statistics, it is convenient to
work in the grand canonical ensemble and to derive series expansions for the density  and the pressure  in terms of
the fugacity , then solve for  to obtain . These expansions in terms of fugacity have a nifty diagrammatic
interpretation, due to Mayer.

We begin by expanding the product in Equation  as

As there are  possible pairings, there are  terms in the expansion of the above product. Each such term may
be represented by a graph, as shown in Figure . For each such term, we draw a connection between dots representing different
particles  and  if the factor  appears in the term under consideration. The contribution for any given graph may be written as a
product over contributions from each of its disconnected component clusters. For example, in the case of the term in Figure ,
the contribution to the configurational integral would be

We will refer to a given product of Mayer functions which arises from this expansion as a term.

6.2.1 u(r) = 4ϵ ( − )x−12 x−6 x = r/σ ϵ = 1

f(r,T ) = − 1e−u(r)/ TkB T = 0.8 ϵkB T = 1.5 ϵkB
T = 5 ϵkB

u(r) = 4 ϵ{( −( } .
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r
)

12 σ

r
)

6

(6.2.12)
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Figure : Diagrammatic interpretation of a term involving a product of eight Mayer functions.

Figure 6.6: Left: John Lennard-Jones. Center: Catherine Zeta-Jones. Right: James Earl Jones.

The particular labels we assign to each vertex of a given graph don’t affect the overall value of the graph. Now a given unlabeled
graph consists of a certain number of connected subgraphs. For a system with  particles, we may then write

where  ranges over all possible connected subgraphs, and

Note that the single vertex  counts as a connected subgraph, with . We now ask: how many ways are there of assigning the 
 labels to the  vertices of a given unlabeled graph? One might first thing the answer is simply , however this is too big,

because different assignments of the labels to the vertices may not result in a distinct graph. To see this, consider the examples in
Figure . In the first example, an unlabeled graph with four vertices consists of two identical connected subgraphs. Given any
assignment of labels to the vertices, then, we can simply exchange the two subgraphs and get the same term. So we should divide 

 by the product  . But even this is not enough, because within each connected subgraph  there may be permutations
which leave the integrand unchanged, as shown in the second and third examples in Figure . We define the symmetry factor 
as the number of permutations of the labels which leaves a given connected subgraphs  invariant. Examples of symmetry factors
are shown in Figure . Consider, for example, the third subgraph in the top row. Clearly one can rotate the figure about its
horizontal symmetry axis to obtain a new labeling which represents the same term. This twofold axis is the only symmetry the
diagram possesses, hence . For the first diagram in the second row, one can rotate either of the triangles about the horizontal
symmetry axis. One can also rotate the figur e in the plane by  so as to exchange the two triangles. Thus, there are 

 symmetry operations which result in the same term, and . Finally, the last subgraph in the second row
consists of five vertices each of which is connected to the other four. Therefore any permutation of the labels results in the same
term, and . In addition to dividing by the product , we must then also divide by .

6.2.2

N

N =  ,∑
γ

mγ nγ (6.2.14)

γ

mγ

nγ

=  number of connected subgraphs of type γ in the unlabeled graph
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Figure : Different assignations of labels to vertices may not result in a distinct term in the expansion of the configuration
integral.

We can now write the partition function as

where the product  is over all links in the subgraph . The final Kronecker delta enforces the constraint .
We have defined the cluster integrals  as

where we assume the limit . Since , the product  is invariant under simultaneous translation of
all the coordinate vectors by any constant vector, and hence the integral over the  position variables contains exactly one factor
of the volume, which cancels with the prefactor in the above definition of . Thus, each cluster integral is intensive , scaling as 

.

If we compute the grand partition function, then the fixed  constraint is relaxed, and we can do the sums:

Thus,

and we can write
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where  is the fugacity, and where . As in the case of ideal quantum gas statistical mechanics, we can
systematically invert the relation  to obtain , and then insert this into the equation for  to obtain the
equation of state . This yields the virial expansion of the equation of state,

Figure : The symmetry factor  for a connected subgraph  is the number of permutations of its indices which leaves the
term  invariant.

Lowest order expansion
We have

and

and

We may now write

We invert by writing

and substituting into the equation for , yielding

Thus,

z = exp(βμ) ≡ 1b∙

n = n(z,T ) z = z(n,T ) p(z,T )
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We therefore conclude

We now insert Equation  with the determined values of  into the equation for , obtaining

Thus,

Note that  does not contribute to  – only  appears. As we shall see, this is because the virial coefficients  involve only
cluster integrals  for one-particle irreducible clusters, those clusters which remain connected if any of the vertices plus all its
links are removed.

One-particle irreducible clusters and the virial expansion
We start with Equation  for  and ,

where  for the connected cluster  is given by

It is convenient to work with dimensionless quantities, using  as the unit of volume. To this end, define

so that

where

is the sum over all connected clusters with  vertices. Here and henceforth, the functional dependence on  is implicit;  and  are
regarded here as explicit functions of . We can, in principle, invert to obtain . Let us write this inverse as

Ultimately we need to obtain expressions for the coefficients , but let us first assume the above form and use it to write  in
terms of . We have
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where  is the dimensionless  virial coefficient. Thus,  and

for . We may also obtain the cluster integrals  in terms of the  . To this end, note that  is the coefficient of  in the
function  , hence

Irreducible clusters

The clusters which contribute to  are all connected, by definition. However, it is useful to make a further distinction based on the
topology of connected clusters and define a connected cluster  to be irreducible if, upon removing any site in  and all the links
connected to that site, the remaining sites of the cluster are still connected. The situation is depicted in Figure .

Figure : Connected versus irreducible clusters. Clusters (a) through (d) are irreducible in that they remain connected if any
component site and its connecting links are removed. Cluster (e) is connected, but is reducible. Its integral  may be reduced to a
product over its irreducible components, each shown in a unique color.

For a reducible cluster , the integral  is proportional to a product of cluster integrals over its irreducible components. Let us
define the set  as the set of all irreducible clusters of  vertices. It turns out that

Thus, the virial coefficients  are obtained by summing a restricted set of cluster integrals, viz.

In the end, it turns out we don’t need the symmetry factors at all!
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Cookbook Recipe
Just follow these simple steps!

The pressure and number density are written as an expansion over unlabeled connected clusters , viz.

For each term in each of these sums, draw the unlabeled connected cluster .
Assign labels  to the vertices, where  is the total number of vertices in the cluster . It doesn’t matter how you
assign the labels.
Write down the product . The factor  appears in the product if there is a link in your (now labeled) cluster between
sites  and .
The symmetry factor  is the number of elements of the symmetric group  which leave the product  invariant. The
identity permutation leaves the product invariant, so .
The cluster integral is

Due to translation invariance, . One can therefore set , eliminate the volume factor from the denominator,
and perform the integral over the remaining  coordinates.
This procedure generates expansions for  and  in powers of the fugacity . To obtain something useful
like , we invert the equation  to find , and then substitute into the equation  to
obtain . The result is the virial expansion,

where

with  the set of all one-particle irreducible -site clusters.

Hard sphere gas in three dimensions

The hard sphere potential is given by

Here  is the diameter of the spheres. The corresponding Mayer function is then temperature independent, and given by

We can change variables

The calculation of  is more challenging. We have

γ

βp

n

= (z∑
γ

λ−d
T )nγ bγ

= (z  .∑
γ

nγ λ−d
T

)nγ bγ

γ

1 , 2 , … , nγ nγ γ

∏γ
i<j fij fij

i j

sγ Snγ
∏γ

i<j fij
≥ 1sγ

(T ) ≡ ⋅ ∫ ⋯  .bγ
1

sγ

1

V
ddx1 ddxnγ

∏
i<j

γ

fij (6.2.30)

(T ) ∝bγ V 0 ≡ 0xnγ

−1nγ

p(T , z) n(T , z) z = eβμ

p(T ,n) n = n(T , z) z = z(T ,n) p = p(T , z)

p = p(T , z(T ,n)) = p(T ,n)

p = n T {1 + (T )n+ (T ) +…} ,kB B
2

B
3

n2 (6.2.31)

(T ) = − ∫ ⋯∫Bk

1

k(k−2)!
∑
γ∈Γk

ddx1 ddxk−1 ∏
⟨ij⟩

γ

fij (6.2.32)

Γ
k

j

u(r) ={
∞
0

 if r ≤ a

 if r > a\ .
(6.2.33)

a

f(r) ={
−1
0

 if r ≤ a

 if r > a\ .
(6.2.34)
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1
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d3 2
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We must first compute the volume of overlap for spheres of radius  (recall  is the diameter of the constituent hard sphere
particles) centered at  and at :

We then integrate over region , to obtain

Thus,

Figure : The overlap of hard sphere Mayer functions. The shaded volume is .

Weakly attractive tail
Suppose

Then the corresponding Mayer function is

Thus,

Thus, the second virial coefficient is

a a

0 ρ

V = ∫ r f(r) f(|r −ρ|)d3

= 2 dz π( − ) = −π ρ+  .∫

ρ/2

a

a2 z2 4π

3
a3 a2 π

12
ρ3

|ρ| < a

= − ⋅ 4π dρ ⋅{ −π ρ+ } = −  .b△
1

6
∫

0

a

ρ2 4π

3
a3 a2 π

12
ρ3 5π2

36
a6 (6.2.37)

p = n T {1 + n+ +O( )} .kB

2π

3
a3 5π2

18
a6n2 n3 (6.2.38)

6.2.6 V

u(r) ={
∞
− (r)u0

 if r ≤ a

 if r > a\ .
(6.2.39)

f(r) ={
−1

−1eβ (r)u0
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 if r > a\ .
(6.2.40)

(T ) = ∫ r f(r) = − +2π dr [ −1] .b−

1

2
d3 2π

3
a3 ∫

a

∞

r2 eβ (r)u0 (6.2.41)

(T ) = − (T ) ≈ − dr (r) ,B2 b−

2π

3
a3 2π
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a

∞
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where we have assumed . We see that the second virial coefficient changes sign at some temperature , from a
negative low temperature value to a positive high temperature value.

Spherical Potential Well
Consider an attractive spherical well potential with an infinitely repulsive core,

Then the corresponding Mayer function is

Writing , we have

To find the temperature  where  changes sign, we set  and obtain

Recall in our study of the thermodynamics of the Joule-Thompson effect in §1.10.6 that the throttling process is isenthalpic. The
temperature change, when a gas is pushed (or escapes) through a porous plug from a high pressure region to a low pressure one is

where

Appealing to the virial expansion, and working to lowest order in corrections to the ideal gas law, we have

and we compute  by seting

T ≪ (r)kB u0 T0

u(r) =
⎧

⎩⎨
∞
−ϵ

0

 if r ≤ a

 if a < r < R

 if r > R .

(6.2.43)

f(r) =
⎧

⎩
⎨

−1
−1eβϵ

0
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 if r > R .

(6.2.44)
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1

2
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1

2

4π

3
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4π

3
a3 s3

= {1 −( −1)( −1)} .
2π

3
a3 s3 eβϵ

T0 (T )B2 ( ) = 0B2 T0

= ϵ/ ln( ) .kBT0

s3

−1s3
(6.2.45)

ΔT = dp  ,∫
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p2

( )
∂T
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(6.2.46)
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∂T
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1

Cp
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N

V
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V 2
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)
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Figure : An attractive spherical well with a repulsive core  and its associated Mayer function .

Dividing by , we find

The temperature where  changes sign is called the inversion temperature . To find the inversion point, we set 

,

If we approximate , then the inversion temperature follows simply:

Hard spheres with a hard wall
Consider a hard sphere gas in three dimensions in the presence of a hard wall at . The gas is confined to the region .
The total potential energy is now

where

and  is given in Equation . The grand potential is written as a series in the total particle number , and is given by

where , with  the fugacity. Taking the logarithm, and invoking the Taylor series 
, we obtain

The volume is . Dividing by , we have, in the thermodynamic limit,

The number density is

6.2.7 u(r) f(r)

dT

T −V = N[T − ] .( )
∂V

∂T p

∂B2

∂T
B

2
(6.2.50)
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)
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2 T ∗ B2 T ∗

= 1 .
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d lnT
∣
∣
∣
T ∗

(6.2.51)
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B
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= A− ⟹ =  .
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T ∗

B
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T ∗ 2B

A
(6.2.52)
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0
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if z > a ,1
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e−βu(r− )r′

(6.2.55)
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and inverting to obtain  and then substituting into the pressure equation, we obtain the lowest order virial expansion for the
equation of state,

As expected, the presence of the wall does not affect a bulk property such as the equation of state.

Figure : In the presence of a hard wall, the Mayer sphere is cut off on the side closest to the wall. The resulting density 
vanishes for  since the center of each sphere must be at least one radius  away from the wall. Between  and 

 there is a density enhancement. If the calculation were carried out to higher order,  would exhibit damped spatial
oscillations with wavelength .

Next, let us compute the number density , given by

Due to translational invariance in the  plane, we know that the density must be a function of  alone. The presence of the wall
at  breaks translational symmetry in the  direction. The number density is

Note that the term in square brackets in the last line is the Mayer function . Consider the function

Now consider the integral of the above function with respect to . Clearly the result depends on the value of . If , then
there is no excluded region in  and the integral is  times the full Mayer sphere volume, . If  the integral
vanishes due to the  factor. For  infinitesimally larger than , the integral is  times half the Mayer sphere volume, 

. For  the integral interpolates between  and . Explicitly, one finds by elementary integration,

n = ξ (βp) = ξ− π +O( ) ,
∂

∂ξ

4

3
a3 ξ2 ξ3 (6.2.57)

ξ(n)

p = T {n+ π +…} .kB

2
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6.2.8 n(z)

z < a1
2

( a)1
2

z = a1
2

z = a3
2

n(z)

λ ∼ a

n(z)
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After substituting  to relate  to the bulk density , we obtain the desired result:

A sketch is provided in the right hand panel of Figure . Note that the density  vanishes identically for  due to the
exclusion of the hard spheres by the wall. For  between  and , there is a density enhancement, the origin of which has a
simple physical interpretation. Since the wall excludes particles from the region , there is an empty slab of thickness 
coating the interior of the wall. There are then no particles in this region to exclude neighbors to their right, hence the density
builds up just on the other side of this slab. The effect vanishes to the order of the calculation past , where  returns
to its bulk value. Had we calculated to higher order, we’d have found damped oscillations with spatial period .

This page titled 6.2: Nonideal Classical Gases is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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⎪⎪

⎪⎪

0

n+[1 − ( − ) + ( − ] ⋅ π3
2

z
a

1
2

1
2

z
a

1
2

)
3 2

3
a3 n2

n

 if z < a1
2

 if  a < z < a1
2

3
2

 if z > a .3
2

(6.2.62)

6.2.8 n(z) z < 1
2

z a1
2

a3
2

z < 1
2

z1
2

z = a3
2

n(z) = n

λ ∼ a

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18577?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.02%3A_Nonideal_Classical_Gases
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5


6.3.1 https://phys.libretexts.org/@go/page/18578

6.3: Lee-Yang Theory

Analytic Properties of the Partition Function
How can statistical mechanics describe phase transitions? This question was addressed in some beautiful mathematical analysis by
Lee and Yang . Consider the grand partition function ,

where

is the contribution to the -particle partition function from the potential energy  (assuming no momentum-dependent potentials).
For two-body central potentials, we have

Suppose further that these classical particles have hard cores. Then for any finite volume, there must be some maximum number 
 such that  vanishes for . This is because if  at least two spheres must overlap, in which case the

potential energy is infinite. The theoretical maximum packing density for hard spheres is achieved for a hexagonal close packed
(HCP) lattice , for which . If the spheres have radius , then  is the maximum particle

number.

Thus, if  itself is finite, then  is a finite degree polynomial in , and may be factorized as

where  is one of the  zeros of the grand partition function. Note that the  term is fixed to be unity. Note also that
since the configuration integrals  are all positive,  is an increasing function along the positive real  axis. In
addition, since the coefficients of  in the polynomial  are all real, then  implies , so the zeros of 

 are either real and negative or else come in complex conjugate pairs.

Figure : In the thermodynamic limit, the grand partition function can develop a singularity at positive real fugacity . The set
of discrete zeros fuses into a branch cut.

For finite , the situation is roughly as depicted in the left panel of Figure , with a set of  zeros arranged in complex
conjugate pairs (or negative real values). The zeros aren’t necessarily distributed along a circle as shown in the figure, though.

7 Ξ

Ξ(T ,V , z) = (T ,V )  ,∑
N=0

∞

zN QN λ−dN
T (6.3.1)

(T ,V ) = ∫ ⋯ ∫Q
N
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N !
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N U
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xi xj (6.3.3)

N
V
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r
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∏
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They could be anywhere, so long as they are symmetrically distributed about the  axis, and no zeros occur for  real and
nonnegative.

Lee and Yang proved the existence of the limits

and notably the result

which amounts to the commutativity of the thermodynamic limit  with the differential operator . In particular, 
is a smooth function of  in regions free of roots. If the roots do coalesce and pinch the positive real axis, then then density  can
be discontinuous, as in a first order phase transition, or a higher derivative  can be discontinuous or divergent, as in a
second order phase transition.

Electrostatic Analogy
There is a beautiful analogy to the theory of two-dimensional electrostatics. We write

where

is the complex potential due to a line charge of linear density  located at origin. The number density is then

to be evaluated for physical values of , . Since  is analytic,

If we decompose the complex potential  into real and imaginary parts, the condition of analyticity is recast as the
Cauchy-Riemann equations,

Thus,

Re(z) z

p

TkB

n

= lnΞ(T ,V , z)lim
V→∞

1

V

= z [ lnΞ(T ,V , z)] ,lim
V→∞

∂

∂z

1

V

n = z ( ) ,
∂
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(6.3.5)
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z
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z
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z
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where  is the electric field. Suppose, then, that as  a continuous charge distribution develops, which crosses
the positive real  axis at a point . Then

where  is the linear charge density (assuming logarithmic two-dimensional potentials), or the two-dimensional charge density (if
we extend the distribution along a third axis).

Example
As an example, consider the function

The  degree polynomial has an  order zero at  and  simple zeros at , where 
. Since  serves as the maximum particle number , we may assume that , and the  limit

may be taken as . We then have

The limit depends on whether  or , and we obtain

Figure : Fugacity  and  versus dimensionless specific volume  for the example problem discussed in the text.

Thus,

If we solve for , where , we find

E = −∇ϕ1 V → ∞
z x ∈ R
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= ( ) − ( ) = 4πσ(x) ,
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We then obtain the equation of state,

This page titled 6.3: Lee-Yang Theory is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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6.4: Liquid State Physics

The many-particle Distribution Function

The virial expansion is typically applied to low-density systems. When the density is high, when , where  is a typical molecular or atomic length scale,
the virial expansion is impractical. There are to many terms to compute, and to make progress one must use sophisticated resummation techniques to investigate the
high density regime.

To elucidate the physics of liquids, it is useful to consider the properties of various correlation functions. These objects are derived from the general -body
Boltzmann distribution,

We assume a Hamiltonian of the form

The quantity

is the propability of finding  particles in the system, with particle #1 lying within  of  and having momentum within  of , If we compute averages
of quantities which only depend on the positions  and not on the momenta , then we may integrate out the momenta to obtain, in the OCE,

where  is the total potential energy,

and  is the configuration integral,

We will, for the most part, consider only two-body central potentials as contributing to , which is to say we will only retain the middle term on the RHS. Note
that  is invariant under any permutation of the particle labels.

Averages over the Distribution
To compute an average, one integrates over the distribution:

The overall -particle probability density is normalized according to

The average local density is

Note that the local density obeys the sum rule

In a translationally invariant system,  is a constant independent of position. The boundaries of a system will in general break translational invariance,
so in order to maintain the notion of a translationally invariant system of finite total volume, one must impose periodic boundary conditions.

The two-particle density matrix  is defined by

n ∼ 1a3 a

N

f( ,… , ; ,… , ) =x1 xN p1 pN

⎧

⎩
⎨
⎪⎪

⎪⎪

⋅Z−1
N

1
N !

e−β (p,x)ĤN

⋅Ξ−1 1
N !

eβμN e−β (p,x)ĤN

OCE

GCE .

(6.4.1)

= +W ( , … , ).ĤN ∑
i=1

N p2
i

2m
x1 xN (6.4.2)

f( ,… , ; ,… , ) ⋯x
1

x
N

p
1

p
N

ddx1 d
dp1

hd

ddxN ddpN

hd
(6.4.3)

N d3x1 x1 ddp1 p1

{ }xj { }pj

P ( ,… , ) = ⋅  ,x1 xN Q−1
N

1

N !
e−βW( , … , )x1 xN (6.4.4)

W

W ( ,… , ) = v( )+ u( − )+ w( − , − )+…  ,x1 xN ∑
i

xi ∑
i<j

xi xj ∑
i<j<k

xi xj xj xk (6.4.5)

QN

(T ,V ) = ∫ ⋯ ∫  .QN

1

N !
ddx1 ddxN e−βW( , … , )x1 xN (6.4.6)

W

P ( ,… , )x1 xN

⟨F ( ,… , )⟩ = ∫ ⋯∫ P ( , … , )F ( , … , ) .x1 xN ddx1 ddxN x1 xN x1 xN (6.4.7)

N

∫ P ( ,… , ) = 1 .ddxN x1 xN (6.4.8)

(r)n1 = ⟨ δ(r− )⟩∑
i

xi

=N∫ ⋯∫ P (r, ,… , ) .ddx2 ddxN x2 xN

∫ r (r) =N  .dd n1 (6.4.9)

= n=n1
N
V

( , )n2 r1 r2

( , )n2 r1 r2 = ⟨ δ( − ) δ( − )⟩∑
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r1 xi r2 xj
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As in the case of the one-particle density matrix, the local density , the two-particle density matrix satisfies a sum rule:

Generalizing further, one defines the -particle density matrix as

where the prime on the sum indicates that all the indices  are distinct. The corresponding sum rule is then

The average potential energy can be expressed in terms of the distribution functions. Assuming only two-body interactions, we have

As the separations  get large, we expect the correlations to vanish, in which case

The -particle distribution function is defined as the ratio

For large separations, then,

For isotropic systems, the two-particle distribution function  depends only on the magnitude . As a function of this scalar separation, the
function is known as the radial distribution function:

The radial distribution function is of great importance in the physics of liquids because

thermodynamic properties of the system can be related to 
 is directly measurable by scattering experiments

For example, in an isotropic system the average potential energy is given by

For a three-dimensional system, the average internal ( potential) energy per particle is

(r)n1

∫ ∫ ( , ) =N(N −1) .ddr1 ddr2 n2 r1 r2 (6.4.10)

k
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Intuitively,  is the average number of particles lying at a radial distance between  and  from a given reference particle. The total
potential energy of interaction with the reference particle is then . Now integrate over all  and divide by two to avoid double-counting. This recovers
Equation .

Figure : Pair distribution functions for hard spheres of diameter  at filling fraction  (left) and for liquid Argon at K (right).
Molecular dynamics data for hard spheres (points) is compared with the result of the Percus-Yevick approximation (see below in §5.8). Reproduced (without
permission) from J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, fig 5.5. Experimental data on liquid argon are from the neutron scattering work of J.
L. Yarnell , Phys. Rev. A 7, 2130 (1973). The data (points) are compared with molecular dynamics calculations by Verlet (1967) for a Lennard-Jones fluid.

In the OCE,  obeys the sum rule

hence

The function  is called the pair correlation function.

In the grand canonical formulation, we have

where  is the isothermal compressibility. Note that in an ideal gas we have  and . Self-condensed systems, such as liquids and
solids far from criticality, are nearly incompressible, hence , and therefore . For incompressible systems, where , this
becomes an equality.

As we shall see below in §5.4, the function , or rather its Fourier transform , is directly measured in a scattering experiment. The question then arises as to
which result applies: the OCE result from Equation  or the GCE result from Equation . The answer is that under almost all experimental conditions it is
the GCE result which applies. The reason for this is that the scattering experiment typically illuminates only a subset of the entire system. This subsystem is in
particle equilibrium with the remainder of the system, hence it is appropriate to use the grand canonical ensemble. The OCE results would only apply if the
scattering experiment were to measure the entire system.

= 2πn dr g(r)u(r) .
⟨W ⟩

N
∫

0

∞

r2 (6.4.14)

f(r)dr≡ 4π n g(r)drr2 r r+dr
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N 2
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n∫ r [g(r)−1] =−1 (OCE) .dd (6.4.16)

h(r) ≡ g(r)−1
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Figure : Monte Carlo pair distribution functions for liquid water. From A. K. Soper, Chem Phys. 202, 295 (1996).

Virial Equation of State

The virial of a mechanical system is defined to be

where  is the total force acting on particle . If we average  over time, we obtain

Here, we have made use of

as well as ergodicity and equipartition of kinetic energy. We have also assumed three space dimensions. In a bounded system, there are two contributions to the
force . One contribution is from the surfaces which enclose the system. This is given by

The remaining contribution is due to the interparticle forces. Thus,

Invoking the definition of , we have

As an alternate derivation, consider the First Law of Thermodynamics,

from which we derive

Now let , where  is a scale parameter. Then

Now

6.4.2

G= ⋅  ,∑
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xi Fi (6.4.17)
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dΩ =−S dT −p dV −N dμ , (6.4.22)
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∂V T ,μ
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Thus,

Finally, from  we have

and hence

Note that the density  enters the equation of state explicitly on the RHS of the above equation, but also implicitly through the pair distribution function ,
which has implicit dependence on both  and .

Correlations and Scattering
Consider the scattering of a light or particle beam ( photons or neutrons) from a liquid. We label the states of the beam particles by their wavevector  and we
assume a general dispersion . For photons, , while for neutrons . We assume a single scattering process with the liquid, during which
the total momentum and energy of the liquid plus beam are conserved. We write

where  is the final state of the scattered beam particle. Thus, the fluid transfers momentum  and energy  to the beam.

Figure : In a scattering experiment, a beam of particles interacts with a sample and the beam particles scatter off the sample particles. A momentum  and
energy  are transferred to the beam particle during such a collision. If , the scattering is said to be elastic. For , the scattering is inelastic.

Now consider the scattering process between an initial state  and a final state , where these states describe both the beam and the liquid. According to
Fermi’s Golden Rule, the scattering rate is

where  is the scattering potential and  is the initial internal energy of the liquid. If  is the position of the beam particle and  are the positions of the liquid
particles, then
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The differential scattering cross section (per unit frequency per unit solid angle) is

where

is the density of states for the beam particle and

Consider now the matrix element

where we have assumed that the incident and scattered beams are plane waves. We then have

where  is the dynamic structure factor,

Note that for an arbitrary operator ,

Thus,

where the angular brackets in the last line denote a thermal expectation value of a quantum mechanical operator. If we integrate over all frequencies, we obtain the
equal time correlator,

known as the static structure factor . Note that , since all the phases  are then unity. As , the phases oscillate rapidly with changes
in the distances , and average out to zero. However, the ‘diagonal’ terms in the sum, those with , always contribute a total of  to . Therefore in
the  limit we have .

In general, the detectors used in a scattering experiment are sensitive to the energy of the scattered beam particles, although there is always a finite experimental
resolution, both in  and . This means that what is measured is actually something like

=  ,
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where  and  are essentially Gaussian functions of their argument, with width given by the experimental resolution. If one integrates over all frequencies , if
one simply counts scattered particles as a function of  but without any discrimination of their energies, then one measures the static structure factor . Elastic
scattering is determined by , no energy transfer.

Figure : Comparison of the static structure factor as determined by neutron scattering work of J. L. Yarnell , Phys. Rev. A 7, 2130 (1973) with molecular
dynamics calculations by Verlet (1967) for a Lennard-Jones fluid.

Correlation and Response
Suppose an external potential  is also present. Then

where

The Helmholtz free energy is then

Now consider the functional derivative

Using

hence

which is the local density at .

Next, consider the response function,

In an isotropic system,  is a function of the coordinate separation, and
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′ ω′ (6.4.32)
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= h(|r− |)+n δ(r− ) .n2 r′ r′
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Taking the Fourier transform,

We may also write

.

What does this all mean? Suppose we have an isotropic system which is subjected to a weak, spatially inhomogeneous potential . We expect that the density 
 in the presence of the inhomogeneous potential to itself be inhomogeneous. The first corrections to the  value  are linear in , and given by

Note that if  it becomes energetically more costly for a particle to be at . Accordingly, the density response is negative, and proportional to the ratio 
 – this is the first term in the above equation. If there were no correlations between the particles, then  and this would be the entire story. However,

the particles in general are correlated. Consider, for example, the case of hard spheres of diameter , and let there be a repulsive potential at . This means that
it is less likely for a particle to be centered anywhere within a distance  of the origin. But then it will be more likely to find a particle in the next ‘shell’ of radial
thickness .

BBGKY Hierarchy
The distribution functions satisfy a hierarchy of integro-differential equations known as the BBGKY hierarchy . In homogeneous systems, we have

where

Taking the gradient with respect to , we have

where  means to sum on indices  and  such that  and ,

Now

hence

− T (q) = n+ (q) = nS(q) .kB χ̂ n2 ĥ (6.4.38)

= 1+n (0) =−n T (0) ,
κT

κ0
T

ĥ kB χ̂ (6.4.39)

=− (0)κT χ̂

v(r)

n(r) v= 0 n= n0 v

δn(r) = ∫ χ(r, ) v( )ddr′ r′ r′

=−β v(r)−β ∫ h(r−r) v( ) .n0 n2
0 ddr′ r

′

v(r) > 0 r

v(r)/ TkB h = 0

a r = 0

a

a

11

( , … , ) = ∫ ⋯∫ P ( , … , , , … , ) ,g
k

r1 r
k

N !

(N −k)!

1

nk
ddx

k+1
ddx

N
r1 r

k
x
k+1

x
N

(6.4.40)

P ( , … , ) = ⋅  .x1 xN

1

QN

1

N !
e−βW( , … , )x1 xN (6.4.41)

r1

( , … , )
∂

∂r1
gk r1 rk = ⋅ ∫ ⋯∫

1

QN

n−k

(N −k)!
ddxk+1 ddxN e−β u( )∑k<i<j xij

× [ ⋅ ] ,
∂

∂r1
e−β u( )∑i<j≤k rij e−β u( − )∑i≤k<j ri xj

∑k<i<j i j i < j k< i

u( )∑
k<i<j

xij

u( )∑
i<j≤k

rij

u( − )∑
i≤k<j

ri xj

≡ u( − )∑
i=k+1

N−1

∑
j=i+1

N

xi xj

≡ u( − )∑
i=1

k−1

∑
j=i+1

k

ri rj

= u( − ) .∑
i=1

k

∑
j=k+1

N

ri xj

[ ⋅ ]=
∂

∂r1
e−β u( )∑i<j≤k rij e−β u( − )∑i≤k<j ri xj

β {  + } ⋅ [ ⋅ ]  ,∑
1<j≤k

∂u( − )r1 rj

∂r
1

∑
k<j

∂u( − )r1 rj

∂r
1

e−β u( )∑i<j≤k rij e−β u( − )∑i≤k<j ri xj

( , … , )
∂

∂r1
gk r1 rk =−β ( , … , )∑

j=2

k ∂u( − )r1 rj

∂r1
gk r1 rk

−β(N −k)∫ P ( , … , , , … , )ddxk+1

∂u( − )r1 xk+1

∂r1
r1 rk xk+1 xN

=−β ( , … , )∑
j=2

k ∂u( − )r1 rj

∂r1
g
k

r1 r
k

+n∫ ( , … , , ) .ddxk+1

∂u( − )r1 xk+1

∂r1
gk+1 r1 rk xk+1
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Thus, we obtain the BBGKY hierarchy:

The BBGKY hierarchy is an infinite tower of coupled integro-differential equations, relating  to  for all . If we approximate  at some level  in terms of
equal or lower order distributions, then we obtain a closed set of equations which in principle can be solved, at least numerically. For example, the Kirkwood
approximation closes the hierarchy at order  by imposing the condition

This results in the single integro-differential equation

This is known as the Born-Green-Yvon (BGY) equation. In practice, the BGY equation, which is solved numerically, gives adequate results only at low densities.

Ornstein-Zernike Theory
The direct correlation function  is defined by the equation

where  and we assume an isotropic system. This is called the Ornstein-Zernike equation. The first term, , accounts for local correlations,
which are then propagated in the second term to account for long-ranged correlations.

The OZ equation is an integral equation, but it becomes a simple algebraic one upon Fourier transforming:

the solution of which is

The static structure factor is then

In the grand canonical ensemble, we can write

where  is the ideal gas isothermal compressibility.

At this point, we have merely substituted one unknown function, , for another, namely . To close the system, we need to relate  to  again in some
way. There are various approximation schemes which do just this.

Percus-Yevick Equation

In the Percus-Yevick approximation, we take

Note that  vanishes whenever the potential  itself vanishes. This results in the following integro-differential equation for the pair distribution function 
:

This is the Percus-Yevick equation. Remarkably, the Percus-Yevick (PY) equation can be solved analytically for the case of hard spheres, where  for 
 and  for , where  is the hard sphere diameter. Define the function , in which case

Here,  is the Mayer function. We remark that the definition of  may cause some concern for the hard sphere system, because of the 
term, which diverges severely for . However,  vanishes in this limit, and their product  is in fact finite! The PY equation may then be written for the
function  as

− T ( , … , )kB

∂

∂r1
gk r1 rk = ( , … , )∑

j=2

k ∂u( − )r1 rj

∂r1
gk r1 rk

+n∫ ( , … , , ) .ddr′
∂u( − )r1 r′

∂r1
gk+1 r1 rk r′

gk gk+1 k gk k

k= 2

( , , ) ≡ g( − ) g( − ) g( − ) .g3 r1 r2 r3 r1 r2 r1 r3 r2 r2 (6.4.42)

− T ∇g(r) = g(r)∇u+n∫ g(r) g( ) g(r− )∇u(r− ) .kB ddr′ r
′

r
′

r
′ (6.4.43)

c(r)

h(r) = c(r)+n∫ h(r− ) c( ) ,d3r′ r
′

r
′ (6.4.44)

h(r) = g(r)−1 c(r)

(q) = (q)+n (q) (q) ,ĥ ĉ ĥ ĉ (6.4.45)

(q) =  .ĥ
(q)ĉ

1−n (q)ĉ
(6.4.46)

S(q) = 1+n (q) =  .ĥ
1

1−n (q)ĉ
(6.4.47)

= = ⋅ ⟹ n (0) = 1−  ,κT
1+n (0)ĥ

n TkB

1

n TkB

1

1−n (0)ĉ
ĉ

κ0
T

κT
(6.4.48)

= 1/n Tκ0
T kB

h(r) c(r) c(r) h(r)

c(r) = [1− ] ⋅ g(r) .eβu(r) (6.4.49)

c(r) u(r)

g(r)

g(r) = +n ∫ [g(r− )−1] ⋅ [1− ] g( ) .e−βu(r) e−βu(r) d3r′ r
′ eβu( )r′

r
′ (6.4.50)

u(r) =∞

r≤ a u(r) = 0 r> a a y(r) = g(r)eβu(r)

c(r) = y(r) f(r) ={−y(r)
0

,  r≤ a

,  r> a .
(6.4.51)

f(r) = −1e−βu(r) y(r) eβu(r)

r≤ a g(r) y(r)

y(r)
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This has been solved using Laplace transform methods by M. S. Wertheim, J. Math. Phys. 5, 643 (1964). The final result for  is

where  is the packing fraction and

This leads to the equation of state

This gets  and  exactly right. The accuracy of the PY approximation for higher order virial coefficients is shown in table [pytab].

To obtain the equation of state from Equation ref{PYdcf}, we invoke the compressibility equation,

We therefore need

With  and using the definitions of  in Equation , one finds

We then have, from the compressibility equation,

Integrating, we obtain  up to a constant. The constant is set so that  when . The result is Equation .

Table [pytab]: Comparison of exact (Monte Carlo) results to those of the Percus-Yevick (PY) and hypernetted chains approximation (HCA) for hard spheres in three
dimensions. Sources: Hansen and McDonald (1990) and Reichl (1998)

quantity exact PY HNC

0.28695 0.2969 0.2092

0.1103 0.1211 0.0493

0.0386 0.0281 0.0449

0.0138 0.0156 –

Another commonly used scheme is the hypernetted chains (HNC) approximation, for which

The rationale behind the HNC and other such approximation schemes is rooted in diagrammatic approaches, which are extensions of the Mayer cluster expansion
to the computation of correlation functions. For details and references to their application in the literature, see Hansen and McDonald (1990) and Reichl (1998).

Ornstein-Zernike Approximation at Long Wavelengths

Let’s expand the direct correlation function  in powers of the wavevector , viz.

Here we have assumed spatial isotropy. Then

y(r) = 1+n y( )−n y( ) y(r− ) .∫

<ar′

d3r′ r
′ ∫

<ar′

|r− |>ar′

d3r′ r
′

r
′ (6.4.52)

c(r)

c(r) =−{ +6η ( )+ η ( } ⋅ Θ(a−r) ,λ1 λ2
r

a

1

2
λ1

r

a
)
3

(6.4.53)

η = π n1
6

a3

= , =−  .λ1

(1+2η)2

(1−η)4
λ2

(1+ η1
2

)2

(1−η)4
(6.4.54)

p = n T ⋅  .kB

1+η+η2

(1−η)3
(6.4.55)

B2 B3

n T = =  .kB κT ( )
∂n

∂p T

1

1−n (0)ĉ
(6.4.56)

(0)ĉ = ∫ r c(r)d3

=−4π dx [ +6 η x+ η ]a3∫

0

1

x2 λ1 λ2

1

2
λ1 x

3

=−4π [ + η + η ]  .a3
1

3
λ1

3

2
λ2

1

12
λ1

η = π n1
6

a3 λ1,2 6.4.54

1−n (0) =  .ĉ
1+4η+4η2

(1−η)4
(6.4.57)

=  .
6 TkB

πa3
∂p

∂η

1+4η+4η2

(1−η)4
(6.4.58)

p(η) p = 0 n= 0 6.4.55

/B4 B3
2

/B5 B4
2

/B6 B5
2

/B7 B6
2

c(r) =−βu(r)+h(r)−ln(1+h(r)) . (6.4.59)

(q)ĉ q

(q) = (0)+ + +… .ĉ ĉ c2 q
2 c4 q

4 (6.4.60)

1−n (q)ĉ = = 1−n (0)−n +…
1

S(q)
ĉ c2 q

2

≡ + +O( ) ,ξ−2R2 q2R2 q4
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where

and

The quantity  tells us something about the effective range of the interactions, while  is the correlation length. As we approach a critical point, the
correlation length diverges as a power law:

The susceptibility is given by

In the Ornstein-Zernike approximation, one drops the  terms in the denominator and retains only the long wavelength behavior. in the direct correlation
function. Thus,

We now apply the inverse Fourier transform back to real space to obtain . In  dimension the result can be obtained exactly:

In higher dimensions  we can obtain the result asymptotically in two limits:

Take  with  fixed. Then

where the  are dimensionless constants.
Take  with  fixed; this is the limit  at fixed . In dimensions  we obtain

In  dimensions we obtain

where the  are dimensionless constants.

At criticality, , and clearly our results in  and  dimensions are nonsensical, as they are divergent. To correct this behavior, M. E. Fisher in 1963
suggested that the OZ correlation functions in the  limit be replaced by

a result known as anomalous scaling. Here,  is the anomalous scaling exponent.

Recall that the isothermal compressibility is given by . Near criticality, the integral in  is dominated by the  part, since . Thus, using
Fisher’s anomalous scaling,

where , , and  are temperature-dependent constants which are nonsingular at . Thus, since , we conclude

a result known as hyperscaling.

This page titled 6.4: Liquid State Physics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

=−n = 2πn dr c(r)R2 c2 ∫

0

∞

r4 (6.4.61)

= =  .ξ−2 1−n (0)ĉ

R2

1−4πn dr c(r)∫ ∞
0 r2

2πn dr c(r)∫ ∞
0 r4

(6.4.62)

R(T ) ξ(T )

ξ(T ) ∼A|T −  .Tc|
−ν (6.4.63)

(q) =−nβ S(q) =−χ̂
nβR−2

+ +O( )ξ−2 q2 q4
(6.4.64)

O( )q4

\xhihOZ(q) =−  .
nβR−2

+ξ−2 q2
(6.4.65)

\xhiOZ(\Br) d = 1

\begin{split} \xhiOZ_{d=1}(x)&=-{n\over\kT R^2}\!\int\limits_{-\infty}^\infty\!\!{dq\over 2\pi}\>{e^{iqx}\over \xi^{-2}+q^2}\\ &=-{n\xi\over 2\kT R^2}\,e^{-|x|/\xi}\ . \end{split}

d > 1

r→∞ ξ

\xhiOZ_d(\Br)\simeq -C\ns_d \,n\cdot{\xi^{(3-d)/2}\over \kT\,R^2}\cdot{e^{-r/\xi}\over r^{(d-1)/2}}\cdot\left\{1+\CO\bigg({d-3\over r/\xi}\bigg)\right\}\ ,

Cd

ξ→∞ r T → Tc r d > 2

\xhiOZ_d(\Br)\simeq -{C'_d\, n\over\kT R^2}\cdot{e^{-r/\xi}\over r^{d-2}}\cdot \left\{1+\CO\bigg({d-3\over r/\xi}\bigg)\right\}\ .

d = 2

\xhiOZ_{d=2}(\Br)\simeq-{C'_2\,n\over\kT R^2}\cdot\ln\!\bigg({r\over\xi}\bigg)\,e^{-r/\xi}\cdot\left\{1+\CO\bigg({1\over\ln(r/\xi)}\bigg)\right\}\ ,

C ′
d

ξ→∞ d = 1 d = 2

r≪ ξ

χ(r) ≃− n ⋅ ⋅  ,C ′′
d

ξη

TkB R2

e−r/ξ

rd−2+η
(6.4.66)

η

=− (0)κT χ̂ (0)χ̂ r≪ ξ ξ→∞

=− (0)κ
T

χ̂ =−∫ r χ(r)dd

∼A∫ r ∼B ∼C T −  ,dd
e−r/ξ

rd−2+η
ξ2−η ∣∣ Tc∣∣

−(2−η)ν

A B C T = Tc ∝ |T −κ
T

Tc|
−γ

γ = (2−η) ν , (6.4.67)
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6.5: Coulomb Systems - Plasmas and the Electron Gas

Electrostatic Potential
Coulomb systems are particularly interesting in statistical mechanics because of their long-ranged forces, which result in the
phenomenon of screening. Long-ranged forces wreak havoc with the Mayer cluster expansion, since the Mayer function is no
longer integrable. Thus, the virial expansion fails, and new techniques need to be applied to reveal the physics of plasmas.

The potential energy of a Coulomb system is

where  is the charge density and , which has the dimensions of (energy) (charge) , satisfies

Thus,

For discete particles, the charge density  is given by

where  is the charge of the  particle. We will assume two types of charges: , with . The electric potential is

This satisfies the Poisson equation,

The total potential energy can be written as

Debye-Hückel theory
We now write the grand partition function:

We now adopt a mean field approach, known as Debye-Hückel theory, writing

We then have

U = ∫ r∫ ρ(r)u(r − )ρ( ) ,
1

2
dd ddr′

r
′

r
′ (6.5.1)

ρ(r) u(r) / 2

u(r − ) = −4π δ(r − ) .∇2 r′ r′ (6.5.2)

u(r) =

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

−2π |x− |x′

−2 ln |r − |r′

|r −r′|−1

,  d = 1

,  d = 2

,  d = 3 .

(6.5.3)

ρ(r)

ρ(r) = δ(r − ) ,∑
i

qi xi (6.5.4)

qi ith q = ±e e > 0

ϕ(r) = ∫ u(r − )ρ( ) = (r − ) .ddr′ r′ r′ ∑
i

q
i
u x

i
(6.5.5)

ϕ(r) = −4πρ(r) .∇2 (6.5.6)

U = ∫ r ϕ(r)ρ(r) = ϕ( ) .
1

2
dd

1

2
∑
i

qi xi (6.5.7)

Ξ(T ,V , , )μ+ μ− = ⋅∑
=0N+

∞

∑
=0N−

∞ 1

!N+

eβμ+N+ λ
− dN+

+

1

!N−

eβμ−N−λ
− dN−

−

⋅ ∫ ⋯∫  .ddr1 ddr
+N+ N−

e
−βU( , … , )r1 r

+N+ N−

ρ(r)

ϕ(r)

= (r) +δρ(r)ρav

= (r) +δϕ(r) .ϕav
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We apply the mean field approximation in each region of space, which leads to

where

The charge density is therefore

where we have now dropped the superscript on  for convenience. At , we assume charge neutrality and .
Thus

where  is the ionic density of either species at infinity. Therefore,

We now invoke Poisson’s equation,

where  is an externally imposed charge density.

If , we can expand the  function and obtain

where

The quantity  is known as the Debye screening length. Consider, for example, a point charge  located at the origin. We then
solve Poisson’s equation in the weak field limit,

Fourier transforming, we obtain

Transforming back to real space, we obtain, in three dimensions, the Yukawa potential,

U = ∫ r [ (r) +δρ(r)] ⋅ [ (r) +δϕ(r)]
1

2
dd ρav ϕav

=   +∫ r (r)ρ(r)+  .− ∫ r (r) (r)
1

2
dd ρav ϕav

  
≡ U0

dd ϕav ∫ r δρ(r) δϕ(r)
1

2
dd

  
ignore fluctuation term

Ω(T ,V , , )μ+ μ− = − T ∫ r exp(− )kB λ−d
+ z+ dd

e (r)ϕav

TkB

− T ∫ r exp(+ ) ,kB λ−d
− z− dd

e (r)ϕav

TkB

=( ) , = exp( ) .λ±

2πℏ2

Tm±kB

z±

μ±

TkB

(6.5.8)

ρ(r) = = e exp(− )−e exp(+ ) ,
δΩ

δ (r)ϕav
λ−d

+ z+

eϕ(r)

TkB

λ−d
− z−

eϕ(r)

TkB

(6.5.9)

(r)ϕav r → ∞ ϕ(∞) = 0

= (∞) = = (∞) ≡  ,λ−d
+ z+ n+ λ−d

− z− n− n∞ (6.5.10)

n∞

ρ(r) = −2e sinh( ) .n∞
eϕ(r)

TkB

(6.5.11)

ϕ = 8πe sinh(βeϕ) −4π  ,∇2 n∞ ρext (6.5.12)

ρext

eϕ ≪ TkB sinh

ϕ = ϕ−4π  ,∇2 κ2
D ρext (6.5.13)

=( , =(  .κD
8πn∞e2

TkB

)
1/2

λD
TkB

8πn∞e2
)

1/2

(6.5.14)

λD Q

ϕ = ϕ−4πQ δ(r) .∇2 κ2
D (6.5.15)

− (q) = (q) −4πQ ⟹ (q) =  .q
2 ϕ̂ κ2

D ϕ̂ ϕ̂
4πQ

+q2 κ2
D

(6.5.16)

ϕ(r) = ∫ = ⋅  .
qd3

(2π)3

4πQ eiq⋅r

+q2 κ2
D

Q

r
e− rκ

D (6.5.17)
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This solution must break down sufficiently close to , since the assumption  is no longer valid there. However,
for larger , the Yukawa form is increasingly accurate.

For another example, consider an electrolyte held between two conducting plates, one at potential  and the other at
potential , where  is normal to the plane of the plates. Again assuming a weak field , we solve 

 and obtain

We fix the constants  and  by invoking the boundary conditions, which results in

Debye-Hückel theory is valid provided , so that the statistical assumption of many charges in a screening volume is
justified.

The Electron Gas: Thomas-Fermi Screening
Assuming , thermal fluctuations are unimportant and we may assume . In the same spirit as the Debye-Hückel
approach, we assume a slowly varying mean electrostatic potential . Locally, we can write

Thus, the Fermi wavevector  is spatially varying, according to the relation

The local electron number density is

In the presence of a uniform compensating positive background charge , Poisson’s equation takes the form

If , we may expand in powers of the ratio, obtaining

Here,  is the Thomas-Fermi wavevector,

Thomas-Fermi theory is valid provided , where , so that the statistical assumption of many electrons in a
screening volume is justified.

One important application of Thomas-Fermi screening is to the theory of metals. In a metal, the outer, valence electrons of each
atom are stripped away from the positively charged ionic core and enter into itinerant, plane-wave-like states. These states disperse
with some  function (that is periodic in the Brillouin zone, under , where  is a reciprocal lattice vector), and at 

 this energy band is filled up to the Fermi level , as Fermi statistics dictates. (In some cases, there may be several bands at
the Fermi level, as we saw in the case of yttrium.) The set of ionic cores then acts as a neutralizing positive background. In a
perfect crystal, the ionic cores are distributed periodically, and the positive background is approximately uniform. A charged
impurity in a metal, such as a zinc atom in a copper matrix, has a different nuclear charge and a different valency than the host. The
charge of the ionic core, when valence electrons are stripped away, differs from that of the host ions, and therefore the impurity acts
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as a local charge impurity. For example, copper has an electronic configuration of . The  electron forms an energy
band which contains the Fermi surface. Zinc has a configuration of , and in a Cu matrix the Zn gives up its two 
electrons into the  conduction band, leaving behind a charge  ionic core. The Cu cores have charge  since each copper
atom contributed only one  electron to the conduction band. The conduction band electrons neutralize the uniform positive
background of the Cu ion cores. What is left is an extra  nuclear charge at the Zn site, and one extra  conduction band
electron. The  impurity is, however, screened by the electrons, and at distances greater than an atomic radius the potential
that a given electron sees due to the Zn core is of the Yukawa form,

We should take care, however, that the dispersion  for the conduction band in a metal is not necessarily of the free electron
form . To linear order in the potential, however, the change in the local electronic density is

where  is the density of states at the Fermi energy. Thus, in a metal, we should write

where

The value of  will depend on the form of the dispersion. For ballistic bands with an effective mass , the formula in
Equation  still applies.

The Thomas-Fermi atom

Consider an ion formed of a nucleus of charge  and an electron cloud of charge . The net ionic charge is then .
Since we will be interested in atomic scales, we can no longer assume a weak field limit and we must retain the full nonlinear
screening theory, for which

We assume an isotropic solution. It is then convenient to define

where  is yet to be determined. As  we expect  since the nuclear charge is then unscreened. We then have

thus we arrive at the Thomas-Fermi equation,

with , provided we take

where Å is the Bohr radius. The TF equation is subject to the following boundary conditions:
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Figure : The Thomas-Fermi atom consists of a nuclear charge  surrounded by  electrons distributed in a cloud. The
electric potential  felt by any electron at position  is screened by the electrons within this radius, resulting in a self-consistent
potential .

At short distances, the nucleus is unscreened,

For positive ions, with , there is perfect screening at the ionic boundary , where . This requires

This requires

For an atom, with , the asymptotic solution to the TF equation is a power law, and by inspection is found to be 
, where  is a constant. The constant follows from the TF equation, which yields , hence .

Thus, a neutral TF atom has a density with a power law tail, with . TF ions with  are unstable.

This page titled 6.5: Coulomb Systems - Plasmas and the Electron Gas is shared under a CC BY-NC-SA license and was authored, remixed,
and/or curated by Daniel Arovas.
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6.6: Polymers

Basic concepts
Linear chain polymers are repeating structures with the chemical formula , where  is the formula unit and  is the degree of
polymerization. In many cases (polystyrene),  is not uncommon. For a very readable introduction to the subject, see P. G.
de Gennes, Scaling Concepts in Polymer Physics.

Quite often a given polymer solution will contain a distribution of  values; this is known as polydispersity. Various preparation
techniques, such as chromatography, can mitigate the degree of polydispersity. Another morphological feature of polymers is
branching, in which the polymers do not form linear chains.

Figure : Some examples of linear chain polymers.

Polymers exhibit a static flexibility which can be understood as follows. Consider a long chain hydrocarbon with a 
backbone. The angle between successive  bonds is fixed at , but the azimuthal angle  can take one of three
possible low-energy values, as shown in the right panel of Figure . Thus, the relative probabilities of gauche and trans
orientations are

where  is the energy difference between trans and gauche configurations. This means that the polymer chain is in fact a random
coil with a persistence length

where  is a microscopic length scale, roughly given by the length of a formula unit, which is approximately a few Ångstroms (see
Figure ). Let  be the total length of the polymer when it is stretched into a straight line. If , the polymer is rigid. If 

, the polymer is rigid on the length scale  but flexible on longer scales. We have

where we now use  (rather than ) for the degree of polymerization.

In the time domain, the polymer exhibits a dynamical flexibility on scales longer than a persistence time. The persistence time  is
the time required for a trans-gauche transition. The rate for such transitions is set by the energy barrier  separating trans from
gauche configurations:
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where . On frequency scales  the polymer is dynamically flexible. If  the polymer is
flexible from a static point of view, but dynamically rigid. That is, there are many gauche orientations of successive carbon bonds
which reflect a quenched disorder. The polymer then forms a frozen random coil, like a twisted coat hanger.

Figure : Left: trans and gauche orientations in carbon chains. Right: energy as a function of azimuthal angle . There are
three low energy states: trans ( ) and gauche ( ).

Polymers as random walks
A polymer can be modeled by a self-avoiding random walk (SAW). That is, on scales longer than , it twists about randomly in
space subject to the constraint that it doesn’t overlap itself. Before we consider the mathematics of SAWs, let’s first recall some
aspects of ordinary random walks which are not self-avoiding.

We’ll simplify matters further by considering random walks on a hypercubic lattice of dimension . Such a lattice has coordination
number , there are  nearest neighbor separation vectors, given by  , where  is the lattice
spacing. Consider now a random walk of  steps starting at the origin. After  steps the position is

where  takes on one of  possible values. Now  is no longer the degree of polymerization, but somthing approximating ,
which is the number of persistence lengths in the chain. We assume each step is independent, hence   and 

. The full distribution  is given by

This is a simple Gaussian, with width , as we have already computed. The quantity  defined here is
the end-to-end vector of the chain. The RMS end-to-end distance is then .

A related figure of merit is the radius of gyration,  , defined by

∼ sτ0 10−11 ω≪ τ−1
p Δε∼ T ≪BkB
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N N

=RN ∑
j=1

N

δj (6.6.5)

δj 2d N L/ℓp
⟨ ⟩ = ( /d)δαj δβ

j′
a2 δ

jj′
δαβ

⟨ ⟩ =NR2
N a2 (R)P

N

(R)PN = (2d ⋯)−N ∑
δ1

∑
δN

δ
R,∑j δj

= ⋯ [ cos( a)ad∫

−π/a

π/a
dk1

2π
∫

−π/a

π/a
dkd

2π
e−ik⋅R

1
d
∑
μ=1

d

kμ ]

N

= exp[N ln(1− +…)]ad∫

Ω̂

kdd

(2π)d
e−ik⋅R

1
2d

k2a2

≈( ∫ k =( .
a

2d
)
d

dd e−N /2dk2a2 e−ik⋅R
d

2πN
)
d/2

e−d /2NR2 a2

⟨ ⟩ = d⋅(N /d) =NR
2 a2 a2 R

⟨ = a≡R
2⟩1/2 N

−−√ R0

Rg

= ⟨ ( − ⟩ ,R2
g

1
N

∑
n=1

N

Rn RCM)
2

(6.6.6)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18774?pdf


6.6.3 https://phys.libretexts.org/@go/page/18774

where  is the center of mass position. A brief calculation yields

in all dimensions.

The total number of random walk configurations with end-to-end vector  is then , so the entropy of a chain at fixed
elongation is

If we assume that the energy of the chain is conformation independent, then  and

In the presence of an external force , the Gibbs free energy is the Legendre transform

and  then gives the relation

This may be considered an equation of state for the polymer.

Following de Gennes, consider a chain with charges  at each end, placed in an external electric field of magnitude 
. Let , Å, and . What is the elongation? From the above formula, we have

with  as before.

Figure : The polymer chain as a random coil.

Structure factor

We can also compute the structure factor,

For averages with respect to a Gaussian distribution,
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Now for  we have  , and therefore

since  . We then have

where . In the limit where  and  with  constant, the structure factor has a scaling form, 
 , where

Rouse model

Consider next a polymer chain subjected to stochastic forcing. We model the chain as a collection of mass points connected by
springs, with a potential energy . This reproduces the distribution of Equation  if we take the spring
constant to be  and set the equilibrium length of each spring to zero. The equations of motion are then

where  and  a set of Gaussian white noise forcings, each with zero mean, and

We define  and  so that the end mass points  and  experience a restoring force from only one
neighbor. We assume the chain is overdamped and set . We then have

where

The matrix  is real and symmetric. Its eigenfunctions are labeled , with :
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=1n′

N

Ann′ xn′ fn (6.6.19)

A= .

⎛

⎝

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜

1
−1
0

0

⋮
0

−1
2
−1

0

⋯

0
−1
2

−1

⋱
⋯

0
0
−1

⋱

⋱
0

⋯
⋯
⋯

⋯

2
−1

0
0
0

⋮

−1
1

⎞

⎠

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟

(6.6.20)

A (n)ψj j∈ {0,… ,N −1}

(n)ψ0

(n)ψj

=
1

N
−−√

= cos( ) , j∈ {1,… ,N −1}
2
N

−−−
√

(2n−1)jπ
2N

(n) ( ) = , (n) (n) = ,∑
j=0

N−1

ψj ψj n′ δnn′ ∑
n=1

N

ψj ψ
j′

δ
jj′

(6.6.21)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18774?pdf


6.6.5 https://phys.libretexts.org/@go/page/18774

with eigenvalues . Note that .

We now work in the basis of normal modes , where

We then have

where the  relaxation time is

and

Note that

Integrating Equation , we have for, ,

For the  modes,

Thus,

where the ‘connected average’ is defined to be . Transforming back to the original
real space basis, we then have

In particular, the ‘connected variance’ of  is

From this we see that at long times, when  , the motion of  is diffusive, with diffusion constant ,
which is inversely proportional to the chain length. Recall the Stokes result  for a sphere of radius  and mass 
moving in a fluid of dynamical viscosity . From , shouldn’t we expect the diffusion constant to be 

, since the radius of gyration of the polymer is  ? This argument smuggles in the assumption
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that the only dissipation is taking place at the outer surface of the polymer, modeled as a ball of radius . In fact, for a Gaussian
random walk in three space dimensions, the density for  is  since there are  monomers inside a region of
volume . Accounting for Flory swelling due to steric interactions (see below), the density is , which is even
smaller. So as , the density within the  effective sphere gets small, which means water molecules can easily
penetrate, in which case the entire polymer chain should be considered to be in a dissipative environment, which is what the Rouse
model says – each monomer executed overdamped motion.

A careful analysis of Equation  reveals that there is a subdiffusive regime  where . To see this, first
take the  limit, in which case we may write , where  and . Let 

 be the scaled coordinate along the chain. The second term in Equation  is then

Let . When  , , we have

Since , we may replace the cosine squared term by its average  . If we further assume , which means we are in
the regime , after performing the integral we obtain the result

provided  , the site  is not on either end of the chain. The result in Equation  dominates the first term on the RHS
of Equation \reF{Rousevar} since . This is the subdiffusive regime.

When , the exponential on the RHS of Equation  is negligible, and if we again approximate ,
and we extend the upper limit on the sum to infinity, we find , which is dominated by the
leading term on the RHS of Equation . This is the diffusive regime, with .

Finally, when , the factor  may be expanded to first order in . One then obtains 
, which is independent of the force constant . In this regime, the monomers don’t have time to

respond to the force from their neighbors, hence they each diffuse independently. On such short time scales, however, one should
check to make sure that inertial effects can be ignored, that .

One serious defect of the Rouse model is its prediction of the relaxation time of the  mode, . The experimentally
observed result is . We should stress here that the Rouse model applies to ideal chains. In the theory of polymer
solutions, a theta solvent is one in which polymer coils act as ideal chains. An extension of the Rouse model, due to my former
UCSD colleague Bruno Zimm, accounts for hydrodynamically-mediated interactions between any pair of ‘beads’ along the chain.
Specifically, the Zimm model is given by

where

is known as the Oseen hydrodynamic tensor (1927) and arises when computing the velocity in a fluid at position  when a point
force  is applied at the origin. Typically one replaces  by its average over the equilibrium distribution of polymer
configurations. Zimm’s model more correctly reproduces the behavior of polymers in -solvents.

Rg

r<Rg ρ ∝N−1/2 N

( N
−−

√ )3 ρ ∼N−4/5

N →∞ r=Rg

6.6.30 12
CVar[ (t)] ∝xn t1/2

N ≫1 = /τj N 2τ0 j2 ≡ γ/ kτ0 π2 j∈ {1,… ,N −1}
s≡ (n− )/N ∈ [0, 1]1

2 6.6.30

S(s, t) ≡ ⋅ (1− ) .
6 TkB

γ

τ1

N
∑
j=1

N−1 (πjs)cos2

j2
e−2 t/j2 τ1 (6.6.31)

σ ≡ (t/τ1)
1/2 t≪ τ1 σ ≪1

S(s, t) ≃ ⋅ σ du (1− ) .
6 TkB

γ

τ1

N
∫

0

Nσ

(πus/σ)cos2

u2
e−2u2

(6.6.32)

s/σ ≫1 1
2 Nσ ≫1

1 ≪ t/ ≪τ0 N 2

S(s, t) = ,
3 TkB

γ
2π tτ0
− −−−−

√ (6.6.33)

s=O(1) n 6.6.33
≪ t≪τ0 τ1

t≫ =τ1 N 2τ0 6.6.31 (πjs) ≃cos2 1
2

S(t) = (3 T/γ)( /N)( /6) ∝kB τ1 π2 t0

6.6.30 D= T/NγkB

t≪ τ0 1−exp(−2t/ )τj t

CVar[ (t)] = (6 T/γ) txn kB k

t≫M/γ

j= 1 ∝τ1 N 2

∝τ1 N 3/2

= ( − )[k( + −2 )+ (t)] ,
dx

μ
n

dt
∑
n′

Hμν
xn xn′ xν +1n′ xν −1n′ xνn′ f ν

n′ (6.6.34)

(R) = ( + )Hμν 1
6πηR

δμν R̂
μ
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Flory Theory of Self-Avoiding Walks
What is missing from the random walk free energy is the effect of steric interactions. An argument due to Flory takes these
interactions into account in a mean field treatment. Suppose we have a chain of radius . Then the average monomer density
within the chain is . Assuming short-ranged interactions, we should then add a term to the free energy which effectively
counts the number of near self-intersections of the chain. This number should be roughly . Thus, we write

The effective interaction  is positive in the case of a so-called ‘good solvent’.

The free energy is minimized when

which yields the result

Thus, we obtain . In  this says , which is exactly correct because a SAW in  has no option but to
keep going in the same direction. In , Flory theory predicts , which is also exact. In , we have , which
is extremely close to the numerical value . Flory theory is again exact at the SAW upper critical dimension, which is 

, where , corresponding to a Gaussian random walk . Best. Mean. Field. Theory. Ever.

How well are polymers described as SAWs? Figure  shows the radius of gyration  versus molecular weight  for
polystyrene chains in a toluene and benzene solvent. The slope is . Experimental results can vary
with concentration and temperature, but generally confirm the validity of the SAW model.

For a SAW under an external force, we compute the Gibbs partition function,

where  and  and . One than has , where  and 
. For small values of its argument one has . For large  it can be shown that 

.

Figure : Radius of gyration  of polystyrene in a toluene and benzene solvent, plotted as a function of molecular weight of
the polystyrene. The best fit corresponds to a power law  with . From J. Des Cloizeaux and G. Jannink,
Polymers in Solution: Their Modeling and Structure (Oxford, 1990).

On a lattice of coordination number , the number of -step random walks starting from the origin is . If we constrain
our random walks to be self-avoiding, the number is reduced to

R

c =N/Rd

Nc

F (R,N) = +u(T ) + d T .F0
N 2

Rd

1
2

kB

R2

Na2
(6.6.36)

u(T )

0 = =− +d T ,
∂F
∂R

dvN 2

Rd+1
kB

R

Na2
(6.6.37)

(N) =( ∝ .RF

ua2

TkB

)
1/(d+2)

N 3/(d+2) N ν (6.6.38)

ν = 3/(d+2) d = 1 ν = 1 d = 1
d = 2 ν = 3

4 d = 3 =ν
d=3

3
5

ν = 0.5880
d = 4 ν = 1

2
13

6.6.4 Rg M

ν = d ln /d lnM = 0.5936Rg

Y ( ,N) = ∫ R (R) = ∫ x f(x)  ,Fext dd PN e ⋅R/ TFext kB dd es ⋅xn̂ (6.6.39)

x =R/RF s= T/kB RFFext =n̂ F̂ext R( ) = Φ( /ξ)Fext RF RF ξ = T/kB Fext
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2
F kB Φ(u) ∝ u u

R( ) ∝ ( / TFext FextRF
kB )2/3

6.6.4 Rg
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where  and  are dimension-dependent constants, and we expect , since at the very least a SAW cannot immediately
double back on itself. In fact, on the cubic lattice one has  but , slightly less than . One finds  and 

. The RMS end-to-end distance of the SAW is

where  and  are -dependent constants,with , , and . The distribution  has a scaling form,

One finds

with  and .

Polymers and Solvents
Consider a solution of monodisperse polymers of length  in a solvent. Let  be the dimensionless monomer concentration, so 

 is the dimensionless polymer concentration and  is the dimensionless solvent concentration. (Dimensionless
concentrations are obtained by dividing the corresponding dimensionful concentration by the overall density.) The entropy of
mixing for such a system is given by Equation 2.352. We have

where  is the volume per monomer. Accounting for an interaction between the monomer and the solvent, we have that the
free energy of mixing is

where  is the dimensionless polymer-solvent interaction, called the Flory parameter. This provides a mean field theory of the
polymer-solvent system.

The osmotic pressure  is defined by

which is the variation of the free energy of mixing with respect to volume holding the number of polymers constant. The monomer
concentration is , so

Now we have

and therefore

In the limit of vanishing monomer concentration , we recover

C γ y ∝ z−1
z= 6 y = 4.68 z−1 ≃γd=2

4
3

≃γ
d=3

7
6

= a ,RF N ν (6.6.41)

a ν d = 1νd=1 ≃νd=2
3
4 ≃νd=3

3
5 (R)PN

(R) = f( ) (a≪R≪Na) .PN

1

Rd
F

R

RF

(6.6.42)

f(x) ∼{
xg

exp(− )xδ
x ≪1
x ≫1 ,

(6.6.43)

g= (γ−1)/ν δ = 1/(1−ν)

N ϕ

ϕ/N = 1−ϕϕs

=− ⋅{ ϕ lnϕ+(1−ϕ) ln(1−ϕ)} ,Smix

V kB

v0

1
N

(6.6.44)

∝v0 a3

= ϕ lnϕ+(1−ϕ) ln(1−ϕ)+χϕ(1−ϕ) .
v0 Fmix

V TkB

1
N

(6.6.45)

χ

Π
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∂Fmix

∂V
∣
∣∣Np

(6.6.46)

ϕ=N /VNpv0

=−  .
∂
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∣
∣∣Np

ϕ2

NNp v0

∂
∂ϕ

∣
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=N T { lnϕ+( −1) ln(1−ϕ)+χ (1−ϕ)}  ,Fmix Np kB

1
N

ϕ−1 (6.6.48)

Π = [( −1)ϕ−ln(1−ϕ)−χ ] .
TkB

v0
N−1 ϕ2 (6.6.49)

ϕ→0

Π=  ,
ϕ TkB

Nv0
(6.6.50)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18774?pdf


6.6.9 https://phys.libretexts.org/@go/page/18774

which is the ideal gas law for polymers.

For , we expand the logarithm and obtain

Note that  only if , which is the condition for a ’good solvent’.

In fact, Equation  is only qualitatively correct. In the limit where , Flory showed that the individual polymer coils
behave much as hard spheres of radius . The osmotic pressure then satisfies something analogous to a virial equation of state:

This is generalized to a scaling form in the second line, where  is a scaling function, and , assuming 
 and  from Flory theory. As , we must recover the ideal gas law, so  in this limit. For 

, we require that the result be independent of the degree of polymerization . This means  with , .
The result is known as the des Cloiseaux law:

where  is a constant. This is valid for what is known as semi-dilute solutions, where . In the dense limit , the
results do not exhibit this universality, and we must appeal to liquid state theory, which is no fun at all.

This page titled 6.6: Polymers is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

≪ ϕ≪1N−1

Πv0

TkB

= ϕ+ (1−2χ) +O( )
1
N

1
2

ϕ2 ϕ3

≈ (1−2χ)  .
1
2

ϕ2

Π> 0 χ< 1
2

??? χ≪ 1
2

RF

Π
TkB

= +A( +…
ϕ

Nv0

ϕ

Nv0
)
2

R3
F

= h(ϕ/ ) .
ϕ

Nv0
ϕ∗

h(x) =N / ∝ϕ∗ v0 R3
F N−4/5

d = 3 ν = 3
5 x = ϕ/ → 0ϕ∗ h(x) = 1+O(x)

x →∞ N h(x) ∝ xp p = 14
5 p = 5

4

=C  ,
Πv0

TkB

ϕ9/4 (6.6.51)

C ≪ ϕ≪1ϕ∗ ϕ∼ 1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18774?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.06%3A_Polymers
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5


6.7.1 https://phys.libretexts.org/@go/page/18775

6.7: Appendix I- Potts Model in One Dimension

Definition

The Potts model is defined by the Hamiltonian

Here, the spin variables  take values in the set  on each site. The equivalent of an external magnetic field in the Ising
case is a field  which prefers a particular value of  (  in the above Hamiltonian). Once again, it is not possible to compute
the partition function on general lattices, however in one dimension we may once again find  using the transfer matrix method.

Transfer matrix

On a ring of  sites, we have

where the  transfer matrix  is given by

In matrix form,

The matrix  has  eigenvalues , with . The partition function for the Potts chain is then

We can actually find the eigenvalues of  analytically. To this end, consider the vectors

Then  may be written as

where  is the  identity matrix. When , we have a simpler form,

H =−J −h  .∑
⟨ij⟩

δ ,σi σj
∑
i

δ ,1σi
(6.7.1)
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R

R= ( −1) I+(q−1+ ) |ψ ⟩⟨ψ | +( −1)( −1) | ϕ ⟩⟨ϕ | ,eβJ eβh eβJ eβh (6.7.6)
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From this we can read off the eigenvalues:

since  is an eigenvector with eigenvalue , and any vector orthogonal to  has eigenvalue . The
partition function is then

In the thermodynamic limit , only the  eigenvalue contributes, and we have

When  is nonzero, the calculation becomes somewhat more tedious, but still relatively easy. The problem is that  and  are
not orthogonal, so we define

where

Now we have , with  and , with

and the transfer matrix is then

which in the two-dimensional subspace spanned by  and  is of the form

Recall that for any  Hermitian matrix,

the characteristic polynomial is

and hence the eigenvalues are

R= ( −1) I+q |ψ ⟩⟨ψ | .eβJ (6.7.7)
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(6.7.8)
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For the transfer matrix of Equation , we obtain, after a little work,

There are  other eigenvalues, however, associated with the -dimensional subspace orthogonal to  and . Clearly
all these eigenvalues are given by

The partition function is then

and in the thermodynamic limit  the maximum eigenvalue  dominates. Note that we recover the correct limit as .

This page titled 6.7: Appendix I- Potts Model in One Dimension is shared under a CC BY-NC-SA license and was authored, remixed, and/or
curated by Daniel Arovas.
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6.S: Summary
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Summary
 Lattice-based models: Amongst the many lattice-based models of physical interest are

Here  is the coupling between neighboring sites and  (or ) is a polarizing field which breaks a global symmetry (groups  , 
 , and , respectively).  describes a ferromagnet and  an antiferromagnet. One can generalize to include further

neighbor interactions, described by a matrix of couplings . When , the degrees of freedom at each site are independent,
and , where  is the single site partition function. When  it is in general impossible to
compute the partition function analytically, except in certain special cases.

 Transfer matrix solution in : One such special case is that of one-dimensional systems. In that case, one can write 
, where  is the transfer matrix. Consider a general one-dimensional model with nearest-neighbor interactions and

Hamiltonian

where  describes the local degree of freedom, which could be discrete or continuous, single component or multi-component.
Then

The form of the transfer matrix is not unique, although its eigenvalues are. We could have taken 
, for example. The interaction matrix  may or may not be symmetric itself. On

a ring of  sites, one has , where  are the eigenvalues and  the rank of . In the thermodynamic limit, the
partition function is dominated by the eigenvalue with the largest magnitude.

 Higher dimensions: For one-dimensional classical systems with finite range interactions, the thermodynamic properties vary
smoothly with temperature for all . The lower critical dimension  of a model is the dimension at or below which there is
no finite temperature phase transition. For models with discrete global symmetry groups, , while for continuous global
symmetries . In zero external field the ( ) square lattice Ising model has a critical temperature . On the
honeycomb lattice, . For the  model on the cubic lattice, . In general, for unfrustrated systems, one
expects for  that , where  is the lattice coordination number ( number of nearest neighbors).

 Nonideal classical gases: For , one has , where

3rd
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is the configuration integral. For the one-dimensional Tonks gas of  hard rods of length  confined to the region , one
finds , whence the equation of state . For more complicated interactions, or in
higher dimensions, the configuration integral is analytically intractable.

 Mayer cluster expansion: Writing the Mayer function , and assuming  is finite, one can expand the
pressure  and  as power series in the fugacity , viz.

The sum is over unlabeled connected clusters , and  is the number of vertices in . The cluster integral  is obtained by
assigning labels  to all the vertices, and computing

where  appears in the product if there is a link between vertices  and .  is the symmetry factor of the cluster, defined to be the
number of elements from the symmetric group  which, acting on the labels, would leave the product  invariant. By
definition, a cluster consisting of a single site has . Translational invariance implies . One then inverts 
to obtain , and inserting the result into the equation for  one obtains the virial expansion of the equation of state,

where

with  the set of all one-particle irreducible -site clusters. An irreducible cluster is a connected cluster which does not break
apart into more than one piece if any of its sites and all of that site’s connecting links are removed from the graph. Any site whose
removal, along with all its connecting links, would result in a disconnected graph is called an articulation point. Irreducible clusters
have no articulation points.

 Liquids: In the ordinary canonical ensemble,

where  is the total potential energy, and  is the configuration integral,

We can use , or its grand canonical generalization, to compute thermal averages, such as the average local density

and the two particle density matrix, two-particle density matrix  is defined by

(T ,V ) = ∫ ⋯ ∫QN

1

N !
ddx1 ddxN ∏

i<j

e−u( )/ Trij kB (6.S.3)

N a x ∈ [0,L]

(T ,L) = (L−NaQN )N p = n T/(1−na)kB

∙ ≡ −1f
ij

e− / Tuij kB ∫ r f(r)dd

p(T , z) n(T , z) z= exp(μ/ T )kB

p/ TkB

n

= (z∑
γ

λ−d
T )

nγ
bγ

= (z  .∑
γ

nγ λ−d
T )

nγ
bγ

γ nγ γ (T )bγ
{1,… }nγ

(T ) ≡ ⋅ ∫ ⋯  ,bγ
1

sγ

1

V
ddx1 ddxnγ

∏
i<j

γ

fij (6.S.4)

fij i j sγ

Snγ
∏γ

i<j fij
= 1b∙ (T ) ∝bγ V 0 n(T , z)

z(T ,n) p(T , z)

p = n T {1+ (T )n+ (T ) +…} .kB B2 B3 n2 (6.S.5)

(T ) =− ∫ ⋯∫B
k

1

k(k−2)!
∑
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k−1
∏
⟨ij⟩

γ

fij (6.S.6)

Γk j

∙

P ( ,… , ) = ⋅  ,x1 xN Q−1
N

1

N !
e−βW( , … , )x1 xN (6.S.7)

W QN

(T ,V ) = ∫ ⋯ ∫  .QN

1

N !
ddx1 ddxN e−βW( , … , )x1 xN (6.S.8)
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 Pair distribution function: For translationally invariant simple fluids consisting of identical point particles interacting by a two-
body central potential , the thermodynamic properties follow from the behavior of the pair distribution function (pdf),

where  is the total volume and  the average density. The average energy per particle is then

Here  is implicitly dependent on  and  as well In the grand canonical ensemble, the pdf satisfies the compressibility sum
rule, , where  is the isothermal compressibility. Note . The pdf also implies the
virial equation of state,

 Scattering: Scattering experiments are sensitive to momentum transfer  and energy transfer , and allow determination of the
dynamic structure factor

where  and  are (quantum) states of the system being studied, and  is the equilibrium probability for state .  Integrating
over all frequency, one obtains the static structure factor,

 Theories of fluid structure – The BBGKY hierarchy is set of coupled integrodifferential equations relating - and -
particle distribution functions. In order to make progress, a truncation must be performed, expressing higher order distributions in
terms of lower order ones. This results in various theories of fluids, known by their defining equations for the pdf . Examples
include the Born-Green-Yvon equation, the Percus-Yevick equation, the hypernetted chains equation, the Ornstein-Zernike
approximation, Except in the simplest cases (such as the OZ approximation), these equations must be solved numerically. OZ
approximation deserves special mention. There we write  for small , where  is the correlation length and 

 is related to the range of interactions.

 Debye-Hückel theory – Due to the long-ranged nature of the Coulomb interaction, the Mayer function decays so slowly as 
 that it is not integrable, so the virial expansion is problematic. Progress can be made by a self-consistent mean field

approach. For a system consisting of charges , one assumes a local electrostatic potential . Boltzmann statistics then gives a
charge density

( , )n2 r1 r2 = ⟨ δ( − ) δ( − )⟩∑
i≠j

r1 xi r2 xj

=N(N −1)∫ ⋯∫ P ( , , ,… , ) .ddx3 ddx
N

r1 r2 x3 x
N

∙

u(r)

g(r) = ⟨ δ(r− + )⟩ ,
1

V n2
∑
i≠j

xi xj (6.S.9)

V n=N/V

ε(n,T ) = = T +2πn dr g(r)u(r) .
⟨E⟩
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3

2
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r2 (6.S.10)
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where  and  are the thermal de Broglie wavelengths and fugacities for the  and  species. Assuming overall charge
neutrality at infinity, one has  , and we have . The local potential is then
determined self-consistently, using Poisson’s equation:

If , we can expand the sinh function to obtain  , where the Debye screening wavevector is 
. The self-consistent potential arising from a point charge  is then of the Yukawa form 
 in three space dimensions.

 Thomas-Fermi screening – In an electron gas with , we may take . If the Fermi energy is constant, we write 

, and local electron number density is . Assuming a compensating smeared positive
charge background , Poisson’s equation takes the form

If , we expand in the presence of external sources to obtain , where  is
the Thomas-Fermi screening wavevector. In metals, where the electron dispersion is a more general function of crystal momentum,
the density response to a local potential  is  to lowest order, where  is the density of states at the

Fermi energy. One then finds .

1. In practice, what is measured is  convolved with spatial and energy resolution filters appropriate to the measuring
apparatus.↩

1. Here we modify slightly the discussion in chapter 5 of the book by L. Peliti.
2. See. J. L. Lebowitz and A. E. Mazel, J. Stat. Phys. 90, 1051 (1998).
3. A corresponding mapping can be found between a cubic lattice and the linear chain as well.
4. Not that I personally think there’s anything wrong with that.
5. Disambiguation footnote: Take care not to confuse Philipp Lenard (Hungarian-German, cathode ray tubes, Nazi), Alfred-Marie

Liénard (French, Liénard-Wiechert potentials, not a Nazi), John Lennard-Jones (British, molecular structure, definitely not a
Nazi), and Lynyrd Skynyrd (American, "Free Bird”, possibly killed by Nazis in 1977 plane crash). I thank my colleague Oleg
Shpyrko for setting me straight on this.

6. We assume that the long-ranged behavior of  is integrable.
7. See C. N. Yang and R. D. Lee, Phys. Rev. 87, 404 (1952) and ibid, p. 410
8. See http://en.Wikipedia.org/wiki/Close-packing. For randomly close-packed hard spheres, one finds, from numerical

simulations, .
9. To derive this expression, note that  is directed inward and vanishes away from the surface. Each Cartesian direction 

 then contributes , where  is the corresponding linear dimension. But , where  is
the area of the corresponding face and . is the pressure. Summing over the three possibilities for , one obtains Equation .

10. We may write .
11. So named after Bogoliubov, Born, Green, Kirkwood, and Yvon.
12. I am grateful to Jonathan Lam and Olga Dudko for explaining this to me.
13. There are logarithmic corrections to the SAW result exactly at , but for all  one has .
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7.1: The van der Waals system

Equation of state

Recall the van der Waals equation of state,

where  is the molar volume. Solving for , we have

Let us fix the temperature  and examine the function . Clearly  is a decreasing function of volume for  just above the
minimum allowed value , as well as for . But is  a monotonic function for all ?

We can answer this by computing the derivative,

Setting this expression to zero for finite , we obtain the equation

where  is dimensionless. It is easy to see that the function  has a unique minimum for . Setting 
 yields , and so . Thus, for , the LHS of Equation  lies below the

minimum value of the RHS, and there is no solution. This means that  is a monotonically decreasing function of .

At  there is a saddle-node bifurcation. Setting  and evaluating ), we have that the location of
the critical point for the van der Waals system is

For , there are two solutions to Equation , corresponding to a local minimum and a local maximum of the function 
. The locus of points in the  plane for which  is obtained by setting Equation  to zero and solving for 

, then substituting this into Equation . The result is

Expressed in terms of dimensionless quantities  and , this equation becomes

(p+ )(v−b) = RT  ,
a

v2
(7.1.1)

v= V /NN
A

p(v,T )

p = − .
RT

v−b

a

v2
(7.1.2)

T p(v) p(v) v

v= b v→ ∞ p(v) v∈ [b, ∞]

= − .( )
∂p

∂v T

2a

v3

RT

(v−b)2
(7.1.3)

v 1

=  ,
2a

bRT

u3

(u−1)2
(7.1.4)

u ≡ v/b f(u) = /(u−1u3 )2 u > 1

( ) = 0f ′ u∗ = 3u∗ = f(3) =fmin
27
4

T > = 8a/27bRTc 7.1.4

p(v,T > )Tc v

T = Tc = b = 3bvc u∗ = p( ,pc vc Tc

= , = 3b , = .pc
a

27 b2
vc Tc

8a

27 bR
(7.1.5)

T < Tc 7.1.4
p(v) (v, p) (∂p/∂v = 0)T 7.1.3
T 7.1.2

(v) = − .p∗ a

v2

2ab

v3
(7.1.6)

= p/p̄ pc = v/v̄ vc

( ) = − .p̄∗ v̄
3
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Figure : Pressure versus molar volume for the van der Waals gas at temperatures in equal intervals from  (red) to 
 (blue). The purple curve is .

Along the curve , the isothermal compressibility,  diverges, heralding a thermodynamic instability. To
understand better, let us compute the free energy of the van der Waals system, . Regarding the energy , we showed
back in chapter 2 that

which entails

where  is the molar internal energy. The first term is the molar energy of an ideal gas, where  is the number of molecular
freedoms, which is the appropriate low density limit. The molar specific heat is then , which means that the
molar entropy is

We then write , and we fix the function  by demanding that  . This yields ,
where  is a constant. Thus ,

Table : van der Waals parameters for some common gases. (Source: Wikipedia)

7.1.1 T = 1.10Tc
T = 0.85Tc ( )p̄∗ v̄

p = (v)p∗ = − (κT
1
v

∂v
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)
T

F = E−TS E

= T −p =  ,( )
∂ε

∂v T

( )
∂p

∂T V

a

v2
(7.1.8)

ε(T , v) = fRT −  ,
1
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(7.1.9)
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= ( = RcV
∂ε
∂T
)
v

f

2

s(T , v) = d   = R ln(T/ ) + (v) .∫
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cV

T ′

f

2
Tc s1 (7.1.10)

f = ε−Ts (v)s1 p = −( ∂f
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(v) = R ln(v−b) +s1 s0
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2

f(T , v) = RT (1 −ln(T/ ))− −RT ln(v−b) −T  .
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gas  (bar)  (K)  ( )gas  (bar)  (K)  ( )

Acetone 14.09 0.0994 52.82 505.1 0.2982

Argon 1.363 0.03219 48.72 150.9 0.0966

Carbon dioxide 3.640 0.04267 7404 304.0 0.1280

Ethanol 12.18 0.08407 63.83 516.3 0.2522

Freon 10.78 0.0998 40.09 384.9 0.2994

Helium 0.03457 0.0237 2.279 5.198 0.0711

Hydrogen 0.2476 0.02661 12.95 33.16 0.0798

Mercury 8.200 0.01696 1055 1723 0.0509

Methane 2.283 0.04278 46.20 190.2 0.1283

Nitrogen 1.408 0.03913 34.06 128.2 0.1174

Oxygen 1.378 0.03183 50.37 154.3 0.0955

Water 5.536 0.03049 220.6 647.0 0.0915

We know that under equilibrium conditions,  is driven to a minimum by spontaneous processes. Now suppose that  over
some range of  at a given temperature . This would mean that one mole of the system at volume  and temperature  could
lower its energy by rearranging into two half-moles, with respective molar volumes , each at temperature . The total

volume and temperature thus remain fixed, but the free energy changes by an amount . This means that the
system is unstable – it can lower its energy by dividing up into two subsystems each with different densities ( molar volumes). Note
that the onset of stability occurs when

which is to say when . As we saw, this occurs at , given in Equation [pstar].

However, this condition, , is in fact too strong. That is, the system can be unstable even at molar volumes where 

. The reason is shown graphically in Figure . At the fixed temperature , for any molar volume  between 
 and , the system can lower its free energy by phase separating into regions of different molar volumes. In

general we can write

so  when  and  when . The free energy upon phase separation is simply

where . This function is given by the straight black line connecting the points at volumes  and  in Figure .
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Figure  Molar free energy  of the van der Waals system , with dot-dashed black line showing Maxwell
construction connecting molar volumes  on opposite sides of the coexistence curve.

The two equations which give us  and  are

Equivalently, in terms of the pressure,  , these equations are equivalent to

This procedure is known as the Maxwell construction, and is depicted graphically in Figure . When the Maxwell construction
is enforced, the isotherms resemble the curves in Figure . In this figure, all points within the purple shaded region have 

, hence this region is unstable to infinitesimal fluctuations. The boundary of this region is called the spinodal, and the
spontaneous phase separation into two phases is a process known as spinodal decomposition. The dot-dashed orange curve, called
the coexistence curve, marks the instability boundary for nucleation. In a nucleation process, an energy barrier must be overcome in
order to achieve the lower free energy state. There is no energy barrier for spinodal decomposition – it is a spontaneous process.

Analytic form of the coexistence curve near the critical point
We write  and . One of our equations is . Taylor expanding in powers
of  and  , we have

where
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The second equation we write as

Expanding in powers of  and , this becomes

Subtracting the LHS from the RHS, we find that we can then divide by , resulting in

We now define . In terms of these variables, Equations  and  become

Figure : Maxwell construction in the  plane. The system is absolutely unstable between volumes  and . For 
 of , the solution is unstable with respect to phase separation. Source: Wikipedia.

We now evaluate  to order . Note that , since the critical point is an inflection point in the 
plane. Thus, we have , where  and . We can then see that  is of
leading order , while  is of leading order . This allows us to write

Thus,
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We then have

Suppose we follow along an isotherm starting from the high molar volume (gas) phase. If , the volume  decreases
continuously as the pressure  increases. If , then at the instant the isotherm first intersects the orange boundary curve in
Figure , there is a discontinuous change in the molar volume from high (gas) to low (liquid). This discontinuous change is the
hallmark of a first order phase transition. Note that the volume discontinuity, . This is an example of a
critical behavior in which the order parameter , which in this case may be taken to be the difference , behaves as a
power law in , where  is the critical temperature. In this case, we have , where  is the
exponent, and where  is defined to be  if  and  otherwise. The isothermal compressibility is 

. This is finite along the coexistence curve – it diverges only along the spinodal. It therefore diverges at the
critical point, which lies at the intersection of the spinodal and the coexistence curve.

Figure : Pressure-volume isotherms for the van der Waals system, as in Figure , but corrected to account for the Maxwell
construction. The boundary of the purple shaded region is the spinodal line . The boundary of the orange shaded region is the
stability boundary with respect to phase separation.

It is convenient to express the equation of state and the coexistence curve in terms of dimensionless variables. Write

The van der Waals equation of state then becomes

Further expressing these dimensionless quantities in terms of distance from the critical point, we write

Thus,

w−

w+

=( +…
24 pvT
pvvv

)
1/2

−Θ
− −−

√

=( )Θ+…  .
6 −10pvT pvvvv pvvv pvvT

5 p2
vvv

w
L

w
G

= −( +( )Θ+O( )
6 p

vT

pvvv
)

1/2

−Θ
− −−

√
3 −5p

vT
pvvvv pvvv pvvT

5 p2
vvv

Θ3/2

=( +( )Θ+O( ) .
6 pvT
pvvv

)
1/2

−Θ
− −−

√
3 −5pvT pvvvv pvvv pvvT

5 p2
vvv

Θ3/2

T > Tc v

p T < Tc

7.1.4

Δv= ∝ ( −Tw− Tc )1/2

ϕ ϕ = −v
G

v
L

T −∣∣ Tc ∣∣ Tc ϕ(T ) ∝ ( −TTc )β+ β = 1
2

( −TTc )+ −TTc T < Tc 0
= −v/ (v,T )κT pv

7.1.4 7.1.1
( )p̄∗ v̄

= , = , = .p̄
p

pc
v̄

v

vc
T̄

T

Tc
(7.1.21)

= −  .p̄
8T̄

3 −1v̄

3

v̄2
(7.1.22)

= 1 +π , = 1 + ϵ , = 1 + t .p̄ v̄ T̄ (7.1.23)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18583?pdf


7.1.7 https://phys.libretexts.org/@go/page/18583

Note that the LHS and the RHS of this equation vanish identically for . We can then write

History of the van der Waals equation
The van der Waals equation of state first appears in van der Waals’ 1873 PhD thesis , “Over de Continuïteit van den Gas - en
Vloeistoftoestand” (“On the continuity of the gas and liquid state”). In his Nobel lecture , van der Waals writes of how he was
inspired by Rudolf Clausius’ 1857 treatise on the nature of heat, where it is posited that a gas in fact consists of microscopic
particles whizzing around at high velocities. van der Waals reasoned that liquids, which result when gases are compressed, also
consist of ’small moving particles’: "Thus I conceived the idea that there is no essential difference between the gaseous and the
liquid state of matter…"

Figure [Gugg1945] ‘Universality’ of the liquid-gas transition for eight different atomic and molecular fluids, from E. A.
Guggenheim, J. Chem. Phys. 13, 253 (1945). Dimensionless temperature  versus dimensionless density  is
shown. The van der Waals / mean field theory gives , while experiments show a result closer to 

. Here  is the dimensionless temperature deviation with respect to the critical point.
Image used without permission.

Clausius’ treatise showed how his kinetic theory of heat was consistent with Boyle’s law for gases (  at fixed
temperature). van der Waals pondered why this might fail for the non-dilute liquid phase, and he reasoned that there were two
principal differences: inter-particle attraction and excluded volume. These considerations prompted him to posit his famous
equation,

π(ϵ, t) = − −1 .
8(1 + t)

2 +3ϵ

3

(1 + ϵ)2
(7.1.24)
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The first term on the RHS accounts for excluded volume effects, and the second for mutual attractions.

In the limiting case of , the molar volume approaches . On physical grounds, one might expect , where 
 is  times the volume  of a single molecule, and the packing fraction is , which is the ratio of

the total molecular volume to the total system volume. In three dimensions, the maximum possible packing fraction is for fcc and
hcp lattices, each of which have coordination number , with . Dense random packing results in 

. Expanding the vdW equation of state in inverse powers of  yields

and we read of the second virial coefficient . For hard spheres, , and the result  from the
Mayer cluster expansion corresponds to  , which is larger than the result from even the loosest regular sphere packing,
that for a cubic lattice, with .

Another of van der Waals’ great achievements was his articulation of the law of corresponding states. Recall that the van der Waals
equation of state, when written in terms of dimensionless quantities  ,  , and , takes the form of
Equation . Thus, while the  and  parameters are specific to each fluid – see Table  – when written in terms of these
scaled dimensionless variables, the equation of state and all its consequent properties ( the liquid-gas phase transition) are
universal.

The van der Waals equation is best viewed as semi-phenomenological. Interaction and excluded volume effects surely are present,
but the van der Waals equation itself only captures them in a very approximate way. It is applicable to gases, where it successfully
predicts features that are not present in ideal systems ( throttling). It is of only qualitative and pedagogical use in the study of fluids,
the essential physics of which lies in the behavior of quantities like the pair distribution function . As we saw in chapter 6, any
adequate first principles derivation of  - a function which can be measured in scattering experiments - involves rather
complicated approximation schemes to close the BBGKY hierarchy. Else one must resort to numerical simulations such as the
Monte Carlo method. Nevertheless, the lessons learned from the van der Waals system are invaluable and they provide us with a
first glimpse of what is going on in the vicinity of a phase transition, and how nonanalytic behavior, such as 
with noninteger exponent  may result due to singularities in the free energy at the critical point.

This page titled 7.1: The van der Waals system is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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7.2: Fluids, Magnets, and the Ising Model

Lattice Gas Description of a Fluid

The usual description of a fluid follows from a continuum Hamiltonian of the form

The potential  is typically central, depending only on the magnitude , and short-ranged. Now consider a discretized version
of the fluid, in which we divide up space into cells (cubes, say), each of which can accommodate at most one fluid particle (due to
excluded volume effects). That is, each cube has a volume on the order of , where  is the diameter of the fluid particles. In a
given cube  we set the occupancy  if a fluid particle is present and  if there is no fluid particle present. We then have
that the potential energy is

where , where  is the position at the center of cube . The grand partition function is then approximated as

where

where  is the side length of each cube (chosen to be on the order of the hard sphere diameter). The  factor arises from the
integration over the momenta. Note  is the total number of fluid particles, so

Figure : The lattice gas model. An occupied cell corresponds to  ( ), and a vacant cell to  ( ).

Thus, we can write a lattice Hamiltonian,
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where  is a spin variable taking the possible values , and

where the prime on the sum indicates that  is to be excluded. For the Lennard-Jones system,  is
due to the attractive tail of the potential, hence  is positive, which prefers alignment of the spins  and . This interaction
is therefore ferromagnetic. The spin Hamiltonian in Equation  is known as the Ising model.

Phase diagrams and critical exponents
The physics of the liquid-gas transition in fact has a great deal in common with that of the transition between a magnetized and
unmagnetized state of a magnetic system. The correspondences are

where  is the magnetization density, defined here to be the total magnetization  divided by the number of lattice sites :

Sketches of the phase diagrams are reproduced in Figure . Of particular interest is the critical point, which occurs at 
in the fluid system and  in the magnetic system, with  by symmetry.

In the fluid, the coexistence curve in the  plane separates high density (liquid) and low density (vapor) phases. The specific
volume  (or the density ) jumps discontinuously across the coexistence curve. In the magnet, the coexistence curve in the 

 plane separates positive magnetization and negative magnetization phases. The magnetization density  jumps
discontinuously across the coexistence curve. For , the latter system is a paramagnet, in which the magnetization varies
smoothly as a function of . This behavior is most apparent in the bottom panel of the figure, where  and  curves are
shown.

For , the fluid exists in a two phase region, which is spatially inhomogeneous, supporting local regions of high and low
density. There is no stable homogeneous thermodynamic phase for  within the two phase region shown in the middle left
panel. Similarly, for the magnet, there is no stable homogeneous thermodynamic phase at fixed temperature  and magnetization 

 if  lies within the coexistence region. Rather, the system consists of blobs where the spin is predominantly up, and blobs
where the spin is predominantly down.

Note also the analogy between the isothermal compressibility  and the isothermal susceptibility :
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Figure : Comparison of the liquid-gas phase diagram with that of the Ising ferromagnet.

The ‘order parameter’ for a second order phase transition is a quantity which vanishes in the disordered phase and is finite in the
ordered phase. For the fluid, the order parameter can be chosen to be , the difference in the specific volumes of
the vapor and liquid phases. In the vicinity of the critical point, the system exhibits power law behavior in many physical quantities,
viz.

The quantities , , , and  are the critical exponents associated with the transition. These exponents satisfy certain equalities,
such as the Rushbrooke and Griffiths relations and hyperscaling,

Originally such relations were derived as inequalities, and only after the advent of scaling and renormalization group theories it was
realized that they held as equalities. We shall have much more to say about critical behavior later on, when we discuss scaling and
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renormalization.

Gibbs-Duhem relation for magnetic systems
Homogeneity of  means , and, after invoking the First Law ,
we have

Now consider two magnetic phases in coexistence. We must have , hence

where  is the magnetization per site and  is the specific entropy. Thus, we obtain the Clapeyron equation for
magnetic systems,

Thus, if  and , then we must have , which says that there is no latent heat associated with the
transition. This absence of latent heat is a consequence of the symmetry which guarantees that .

Order-disorder transitions
Another application of the Ising model lies in the theory of order-disorder transitions in alloys. Examples include Cu Au, CuZn,
and other compounds. In CuZn, the Cu and Zn atoms occupy sites of a body centered cubic (BCC) lattice, forming an alloy known
as -brass. Below , the atoms are ordered, with the Cu preferentially occupying one simple cubic sublattice and the Zn
preferentially occupying the other.

The energy is a sum of pairwise interactions, with a given link contributing , , or , depending on whether it is an A-A,
B-B, or A-B/B-A link. Here A and B represent Cu and Zn, respectively. Thus, we can write the energy of the link  as

where

The Hamiltonian is then

where the exchange constant  and the magnetic field  are given by

and , where  is the total number of lattice sites and  is the lattice coordination number,
which is the number of nearest neighbors of any given site.
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Figure : Order-disorder transition on the square lattice. Below , order develops spontaneously on the two 
sublattices. There is perfect sublattice order at  (left panel).

Note that

The antiferromagnetic case is depicted in Figure .

This page titled 7.2: Fluids, Magnets, and the Ising Model is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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7.3: Mean Field Theory
Consider the Ising model Hamiltonian,

where the first sum on the RHS is over all links of the lattice. Each spin can be either ‘up’ ( ) or ‘down’ ( ). We
further assume that the spins are located on a Bravais lattice  and that the coupling , where  is the position
of the  spin.

On each site  we decompose  into a contribution from its thermodynamic average and a fluctuation term,

We will write , the local magnetization (dimensionless), and assume that  is independent of position . Then

The last term on the RHS of the second equation above is quadratic in the fluctuations, and we assume this to be negligibly small.
Thus, we obtain the mean field Hamiltonian

where  is the total number of lattice sites. The first term is a constant, although the value of  is yet to be determined. The
Boltzmann weights are then completely determined by the second term, which is just what we would write down for a Hamiltonian
of noninteracting spins in an effective ‘mean field’

In other words, , where the external field is applied field , and the ‘internal field’ is .
The internal field accounts for the interaction with the average values of all other spins coupled to a spin at a given site, hence it is
often called the ‘mean field’. Since the spins are noninteracting, we have

It is a simple matter to solve for the free energy, given the noninteracting Hamiltonian . The partition function is

We now define dimensionless variables:

and obtain the dimensionless free energy

Differentiating with respect to  gives the mean field equation,

which is equivalent to the self-consistency requirement, .

=−J −H  ,Ĥ ∑
⟨ij⟩

σi σj ∑
i

σi (7.3.1)

σ =+1 σ =−1
8 = J(| − |)Jij Ri Rj Ri

ith

i σi

= ⟨ ⟩+δ  .σi σi σi (7.3.2)

⟨ ⟩≡mσi m i

σi σj = (m+δ ) (m+δ )σi σj

= +m (δ +δ )+δ δm2 σi σj σi σj

=− +m ( + )+δ δ  .m2 σi σj σi σj

= NzJ −(H+zJm)  ,ĤMF

1

2
m2 ∑

i

σi (7.3.3)

N m

=H+zJm .Heff (7.3.4)

= +H
eff

Hext H
int

=HHext = zJmH
int

m = = tanh( ) .
−eβHeff e−βHeff

+eβHeff e−βHeff

H+zJm

TkB

(7.3.5)

ĤMF

Z = Tr = ( =  .e−βĤMF e− βNzJ1
2

m2

∑
σ

eβ(H+zJm)σ)
N

e−βF (7.3.6)

f ≡ , θ≡ , h ≡  ,
F

NzJ

TkB

zJ

H

zJ
(7.3.7)

f(m,h, θ) = −θ ln( + ) .
1

2
m2 e(m+h)/θ e−(m+h)/θ (7.3.8)

m

m = tanh( ) ,
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When  the mean field equation becomes

This nonlinear equation can be solved graphically, as in the top panel of Figure . The RHS in a tanh function which gets steeper
with decreasing . If, at , the slope of  is smaller than unity, then the curve  will intersect 
only at . However, if the slope is larger than unity, there will be three such intersections. Since the slope is , we identify 

 as the mean field transition temperature.

Figure : Results for . Upper panels: graphical solution to self-consistency equation 
 at temperatures  (blue) and  (dark red). Lower panel: mean

field free energy, with energy shifted by  so that .
In the low temperature phase , there are three solutions to the mean field equations. One solution is always at . The
other two solutions must be related by the  symmetry of the free energy (when ). The exact free energies are
plotted in the bottom panel of Figure , but it is possible to make analytical progress by assuming  is small and Taylor
expanding the free energy  in powers of :

Note that the sign of the quadratic term is positive for  and negative for . Thus, the shape of the free energy  as
a function of  qualitatively changes at this point, , the mean field transition temperature, also known as the critical
temperature.

For , the free energy  has a single minimum at . Below , the curvature at  reverses, and 
becomes a local maximum. There are then two equivalent minima symmetrically displaced on either side of . Differentiating

h = 0

h = 0

m = tanh( ) .
m

θ
(7.3.10)

???
t m = 0 tanh(m/θ) y = tanh(m/h) y =m

m = 0 1/θ
= 1θc

7.3.1 h = 0

m = tanh(m/θ) θ = 0.65 θ = 1.5
θ ln2 f(m = 0, θ) = 0

θ< 1 m = 0
m ↔−m h = 0

7.3.1 m

f(m, θ) m

f(m, θ) = −θ ln2−θ lncosh( )
1

2
m2 m

θ

=−θ ln2+ (1− ) + − +… .
1

2
θ−1 m2 m4

12 θ3
m6
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with respect to , we find these local minima. For , the local minima are found at

Thus, we find for ,

where the  subscript indicates that this solution is only for . For  the only solution is . The exponent with
which  vanishes as  is denoted . .

Specific heat
We can now expand the free energy . We find

Thus, if we compute the heat capacity, we find in the vicinity of 

Thus, the specific heat is discontinuous at . We emphasize that this is only valid near . The general result valid
for all  is

With this expression one can check both limits  and . As  the magnetization saturates and one has 
. The numerator then vanishes as , which overwhelms the denominator that itself vanishes as . As a

result, , as expected. As , invoking  we recover .

In the theory of critical phenomena,  as . We see that mean field theory yields .

m θ< θc

= 3 (1−θ) = 3(1−θ)+O((1−θ ) .m2 θ2 )2 (7.3.11)

|θ−1| ≪ 1

m(θ,h = 0) =± (1−θ  ,3
–

√ )1/2
+

(7.3.12)

+ 1−θ> 0 θ> 1 m = 0

m(θ) θ→ θ−c β m(θ,h = 0) ∝ ( −θθc )
β
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−θ ln2
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4

)2 )4
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if θ<  .θc
(7.3.13)

θ= θc
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∂θ2
0
3
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if θ<  .θc
(7.3.14)
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θ
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Figure : Results for . Upper panels: graphical solution to self-consistency equation  at
temperatures  (blue),  (dark green), and  (dark red). Lower panel: mean field free energy, with energy
shifted by  so that .

Consider without loss of generality the case . The minimum of the free energy  now lies at  for any . At
low temperatures, the double well structure we found in the  case is tilted so that the right well lies lower in energy than the
left well. This is depicted in Figure . As the temperature is raised, the local minimum at  vanishes, annihilating with the

local maximum in a saddle-node bifurcation. To find where this happens, one sets  and  simultaneously, resulting
in

The solutions lie at . For  and , there are three solutions to the mean field
equation. Equivalently we could in principle invert the above expression to obtain . For , there is only a single
global minimum in the free energy  and there is no local minimum. Note .

Assuming , the mean field solution for  will also be small, and we expand the free energy in , and to
linear order in :

Setting , we obtain

If  then we have a solution . The  term can be ignored because it is higher order in , and we have
assumed . This is known as the Curie-Weiss law . The magnetic susceptibility behaves as

7.3.2 h = 0.1 m = tanh((m+h)/θ)
θ = 0.65 θ = 0.9 θ = 1.5

θ ln 2 f(m = 0,θ) = 0

h ≠ 0

h > 0 f(m,h, θ) m > 0 θ

h = 0
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= 0
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∂m2
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− −−−

√
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√
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√
(7.3.16)
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where the magnetization critical exponent  is . If  then while there is still a solution at , it lies at a
local maximum of the free energy, as shown in Figure . The minimum of the free energy occurs close to the  solution 

, and writing  we find  to linear order in  as . Thus,

Once again, we find that  diverges as  with . The exponent  on either side of the transition is the same.

Finally, we can set  and examine . We find, from Equation ,

where  is a new critical exponent. Mean field theory gives . Note that at  we have , and
inverting we find

which is consistent with what we just found for .

Table : Critical exponents from mean field theory as compared with exact results for the two-dimensional Ising model, numerical results for
the three-dimensional Ising model, and experiments on the liquid-gas transition in CO . Source: H. E. Stanley, Phase Transitions and Critical

Phenomena.

2D Ising 3D Ising CO

Exponent MFT (exact) (numerical) (expt.)

How well does mean field theory do in describing the phase transition of the Ising model? In table  we compare our mean
field results for the exponents , , , and  with exact values for the two-dimensional Ising model, numerical work on the three-
dimensional Ising model, and experiments on the liquid-gas transition in CO . The first thing to note is that the exponents are
dependent on the dimension of space, and this is something that mean field theory completely misses. In fact, it turns out that the
mean field exponents are exact provided , where  is the upper critical dimension of the theory. For the Ising model, 

, and above four dimensions (which is of course unphysical) the mean field exponents are in fact exact. We see that all in all
the MFT results compare better with the three dimensional exponent values than with the two-dimensional ones – this makes sense
since MFT does better in higher dimensions. The reason for this is that higher dimensions means more nearest neighbors, which
has the effect of reducing the relative importance of the fluctuations we neglected to include.

Magnetization dynamics

Dissipative processes drive physical systems to minimum energy states. We can crudely model the dissipative dynamics of a
magnet by writing the phenomenological equation

where  is a dimensionless time variable. Under these dynamics, the free energy is never increasing:

χ(θ) = = ∝ |θ−1  ,
∂m

∂h

1

θ−1
|−γ (7.3.18)

γ γ = 1 θ< 1 m = h/(θ−1)
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m(h, θ= )θc

7.3.1
2

2

α 0 0 0.125 0.1
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Clearly the fixed point of these dynamics, where , is a solution to the mean field equation .

Figure : Dissipative magnetization dynamics . Bottom panel shows  from Equation . For 
within the blue shaded region, the free energy  has a global minimum plus a local minimum and a local maximum. Otherwise 

 has only a single global minimum. Top panels show an imperfect bifurcation in the magnetization dynamics at  ,
for which . Temperatures shown:  (blue),  (green), and . The rightmost stable fixed
point corresponds to the global minimum of the free energy. The bottom of the middle two upper panels shows , where both
of the attractive fixed points and the repulsive fixed point coalesce into a single attractive fixed point (supercritical pitchfork
bifurcation).

The phase flow for the equation  is shown in Figure . As we have seen, for any value of  there is a temperature
 below which the free energy  has two local minima and one local maximum. When  the minima are degenerate, but

at finite  one of the minima is a global minimum. Thus, for  there are three solutions to the mean field equations. In the
language of dynamical systems, under the dynamics of Equation , minima of  correspond to attractive fixed points and
maxima to repulsive fixed points. If , the rightmost of these fixed points corresponds to the global minimum of the free
energy. As  is increased, this fixed point evolves smoothly. At , the (metastable) local minimum and the local maximum
coalesce and annihilate in a saddle-note bifurcation. However at  all three fixed points coalesce at  and the bifurcation
is a supercritical pitchfork. As a function of  at finite , the dynamics are said to exhibit an imperfect bifurcation, which is a
deformed supercritical pitchfork.

= 0ṁ = 0
∂f
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Figure : Top panel : hysteresis as a function of ramping the dimensionless magnetic field  at . Dark red arrows
below the curve follow evolution of the magnetization on slow increase of . Dark grey arrows above the curve follow evolution of
the magnetization on slow decrease of . Bottom panel : solution set for  as a function of  at temperatures 
(blue),  (dark green), and  (red).

The solution set for the mean field equation is simply expressed by inverting the  function to obtain . One readily
finds

As we see in the bottom panel of Figure ,  becomes multivalued for , where  is given in
Equation . Now imagine that  and we slowly ramp the field  from a large negative value to a large positive value,
and then slowly back down to its original value. On the time scale of the magnetization dynamics, we can regard  as a
constant. (Remember the time variable is  here.) Thus,  will flow to the nearest stable fixed point. Initially the system starts
with  and  large and negative, and there is only one fixed point, at . As  slowly increases, the fixed point
value  also slowly increases. As  exceeds , a saddle-node bifurcation occurs, and two new fixed points are created at
positive , one stable and one unstable. The global minimum of the free energy still lies at the fixed point with . However,
when  crosses , the global minimum of the free energy lies at the most positive fixed point . The dynamics, however,
keep the system stuck in what is a metastable phase. This persists until , at which point another saddle-note bifurcation
occurs, and the attractive fixed point at  annihilates with the repulsive fixed point. The dynamics then act quickly to drive 

 to the only remaining fixed point. This process is depicted in the top panel of Figure . As one can see from the figure, the
the system follows a stable fixed point until the fixed point disappears, even though that fixed point may not always correspond to a
global minimum of the free energy. The resulting  curve is then not reversible as a function of time, and it possesses a
characteristic shape known as a hysteresis loop. Etymologically, the word hysteresis derives from the Greek , which
means ‘lagging behind’. Systems which are hysteretic exhibit a history-dependence to their status, which is not uniquely
determined by external conditions. Hysteresis may be exhibited with respect to changes in applied magnetic field, changes in
temperature, or changes in other externally determined parameters.

Beyond nearest neighbors
Suppose we had started with the more general model,
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where  is the coupling between spins on sites  and . In the top equation above, each pair  is counted once in the interaction
term; this may be replaced by a sum over all  and  if we include a factor of .  The resulting mean field Hamiltonian is then

Here,  is the Fourier transform of the interaction matrix :

For nearest neighbor interactions only, one has , where  is the lattice coordination number, the number of nearest
neighbors of any given site. The scaled free energy is as in Equation , with , , and 

. The analysis proceeds precisely as before, and we conclude , .

Ising model with long-ranged forces
Consider an Ising model where  for all  and , so that there is a very weak interaction between every pair of spins. The
Hamiltonian is then

The partition function is

We now invoke the Gaussian integral,

Thus,

and we can write the partition function as

where , , and

Since , we can perform the integral using the method of steepest descents. Thus, we must set

Expanding about , we write

Jij i j (ij)
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Performing the integrations, we obtain

The corresponding free energy per site

where  is the solution to the mean field equation which minimizes . Mean field theory is exact for this model!

This page titled 7.3: Mean Field Theory is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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7.4: Variational Density Matrix Method

The variational principle
Suppose we are given a Hamiltonian . From this we construct the free energy, :

Here,  is the density matrix . A physical density matrix must be (i) normalized ( ), (ii) Hermitian, and (iii) non-negative
definite ( all the eigenvalues of  must be non-negative).

Our goal is to extremize the free energy subject to the various constraints on . Let us assume that  is diagonal in the basis of
eigenstates of ,

where  is the probability that the system is in state . Then

Thus, the free energy is a function of the set . We now extremize  subject to the normalization constraint. This means we
form the extended function

and then freely extremize over both the probabilities  as well as the Lagrange multiplier . This yields the Boltzmann
distribution,

where  is the canonical partition function, which is related to  through

Note that the Boltzmann weights are, appropriately, all positive.

If the spectrum of  is bounded from below, our extremum should in fact yield a minimum for the free energy . Furthermore,
since we have freely minimized over all the probabilities, subject to the single normalization constraint, any distribution 
other than the equilibrium one must yield a greater value of .

Alas, the Boltzmann distribution, while exact, is often intractable to evaluate. For one-dimensional systems, there are general
methods such as the transfer matrix approach which do permit an exact evaluation of the free energy. However, beyond one
dimension the situation is in general hopeless. A family of solvable (“integrable") models exists in two dimensions, but their
solutions require specialized techniques and are extremely difficult. The idea behind the variational density matrix approximation is
to construct a tractable trial density matrix  which depends on a set of variational parameters , and to minimize with respect
to this (finite) set.

Variational density matrix for the Ising model
Consider once again the Ising model Hamiltonian,

The states of the system  may be labeled by the values of the spin variables: . We assume the density
matrix is diagonal in this basis,

Ĥ F

F = E−TS

= Tr (ϱ ) + T Tr (ϱ lnϱ) .Ĥ kB

ϱ 13 Tr ϱ = 1
ϱ

ϱ ϱ

Ĥ

ϱ = γ ⟩⟨γ  ,∑
γ

Pγ ∣∣ ∣∣ (7.4.1)

Pγ γ ⟩∣∣

F = + T ln  .∑
γ

Eγ Pγ kB ∑
γ

Pγ Pγ (7.4.2)

{ }Pγ F

({ },λ) = F ({ }) +λ( −1) ,F ∗ Pγ Pγ ∑
γ

Pγ (7.4.3)

{ }Pγ λ

= exp(− / T ) ,P eq
γ

1

Z
Eγ kB (7.4.4)

Z = = Tr∑γ e
− / TEγ kB e− / TĤ kB λ

λ = T (lnZ−1) .kB (7.4.5)

Ĥ F

{ }Pγ

F

ϱ { }xα

= − −H  .Ĥ ∑
i<j

Jij σi σj ∑
i

σi (7.4.6)

γ ⟩∣∣ γ ⟩⟷ , , … ⟩∣∣ ∣∣ σ1 σ2
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where

Indeed, this is the case for the exact density matrix, which is to say the Boltzmann weight,

We now write a trial density matrix which is a product over contributions from independent single sites:

where

Note that we’ve changed our notation slightly. We are denoting by  the corresponding diagonal element of the matrix

and the full density matrix is a tensor product over the single site matrices:

Note that  and hence  are appropriately normalized. The variational parameter here is , which, if  is to be non-negative
definite, must satisfy . The quantity  has the physical interpretation of the average spin on any given site, since

We may now evaluate the average energy:

where once again  is the discrete Fourier transform of  at wavevector . The entropy is given by

We now define the dimensionless free energy per site: . We have

where  is the dimensionless temperature, and  the dimensionless magnetic field, as before. We
extremize  by setting

Solving for , we obtain

(γ ) ≡ ϱ(γ)  ,ϱN ∣∣γ ′ δγ,γ ′ (7.4.7)

=  .δγ,γ ′ ∏
i

δ ,σi σ
′
i

(7.4.8)

( , , …) =  .ϱN σ1 σ2
1

Z
e−β ( ,…, )Ĥ σ1 σN (7.4.9)

( , , …) = ϱ( ) ,ϱ
N

σ1 σ2 ∏
i

σi (7.4.10)

ϱ(σ) = ( ) +( )  .
1 +m

2
δσ,1

1 −m

2
δσ,−1 (7.4.11)

ϱ(σ)

ϱ =( )  ,

1+m

2

0

0
1−m

2

(7.4.12)

= ϱ⊗ϱ⊗⋯ ⊗ϱ .ϱN (7.4.13)

ϱ ϱN m ρ

−1 ≤ m ≤ 1 m

⟨ ⟩= ϱ(σ)σ = m.σi ∑
σ

(7.4.14)

E = Tr ( ) = − −H mϱN Ĥ ∑
i<j

Jij m
2 ∑

i

= − N (0) −NHm ,
1

2
Ĵ m2

(0)Ĵ J(R) q = 0

S = − Tr ( ln ) = −N Tr (ϱ lnϱ)kB ϱ
N

ϱ
N

kB

= −N {( ) ln( )+( ) ln( )} .kB

1 +m

2

1 +m

2

1 −m

2

1 −m

2

f ≡ F/N (0)Ĵ

f(m,h, θ) = − −hm+θ{( ) ln( )+( ) ln( )} ,
1

2
m2 1 +m

2

1 +m

2

1 −m

2

1 −m

2
(7.4.15)

θ ≡ T/ (0)kB Ĵ h ≡ H/ (0)Ĵ

f(m)

= 0 = −m−h+ ln( ) .
∂f

∂m

θ

2

1 +m

1 −m
(7.4.16)
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which is precisely what we found in Equation [isingmft].

[ferg] Variational field free energy  versus magnetization  at six equally spaced temperatures
interpolating between ‘high’ ( , red) and ‘low’ ( , blue) values. Top panel: . Bottom panel: .

Note that the optimal value of  indeed satisfies the requirement  of non-negative probability. This nonlinear equation
may be solved graphically. For , the unmagnetized solution  always applies. However, for  there are two
additional solutions at , with  for 
close to (but less than) one. These solutions, which are related by the  symmetry of the  model, are in fact the low energy
solutions. This is shown clearly in figure [ferg], where the variational free energy  is plotted as a function of  for a range
of temperatures interpolating between ‘high’ and ‘low’ values. At the critical temperature , the lowest energy state changes
from being unmagnetized (high temperature) to magnetized (low temperature).

For , there is no longer a  symmetry (  ). The high temperature solution now has  (or  if ),
and this smoothly varies as  is lowered, approaching the completely polarized limit  as . At very high temperatures,
the argument of the  function is small, and we may approximate , in which case

This is called the Curie-Weiss law. One can infer  from the high temperature susceptibility  by plotting 
versus  and extrapolating to obtain the -intercept. In our case, . For low  and weak , there are two
inequivalent minima in the free energy.

When  is small, it is appropriate to expand , obtaining

This is known as the Landau expansion of the free energy in terms of the order parameter . An order parameter is a
thermodynamic variable  which distinguishes ordered and disordered phases. Typically  in the disordered (high
temperature) phase, and  in the ordered (low temperature) phase. When the order sets in continuously, when  is continuous
across , the phase transition is said to be second order. When  changes abruptly, the transition is first order. It is also quite
commonplace to observe phase transitions between two ordered states. For example, a crystal, which is an ordered state, may
change its lattice structure, say from a high temperature tetragonal phase to a low temperature orthorhombic phase. When the high 

 phase possesses the same symmetries as the low  phase, as in the tetragonal-to-orthorhombic example, the transition may be
second order. When the two symmetries are completely unrelated, for example in a hexagonal-to-tetragonal transition, or in a
transition between a ferromagnet and an antiferromagnet, the transition is in general first order.

Throughout this discussion, we have assumed that the interactions  are predominantly ferromagnetic, , so that all the
spins prefer to align. When , the interaction is said to be antiferromagnetic and prefers anti-alignment of the spins ( 

). Clearly not every pair of spins can be anti-aligned – there are two possible spin states and a thermodynamically
extensive number of spins. But on the square lattice, for example, if the only interactions  are between nearest neighbors and the
interactions are antiferromagnetic, then the lowest energy configuration (  ground state) will be one in which spins on
opposite sublattices are anti-aligned. The square lattice is bipartite – it breaks up into two interpenetrating sublattices A and B
(which are themselves square lattices, rotated by 45  with respect to the original, and with a larger lattice constant by a factor of 

), such that any site in A has nearest neighbors in B, and vice versa. The honeycomb lattice is another example of a bipartite

m = tanh( ) ,
m+h

θ
(7.4.17)

Δf = f(m,h,θ) +θ ln 2 m

θ = 1.25 θ = 0.75 h = 0 h = 0.06

m |m| ≤ 1
h = 0 m = 0 θ < 1

m=\pm m\nd_\ssr{A}(\theta) m\nd_\ssr{A}(\theta) =\sqrt{3(1-\theta)} + \CO\big( (1-\theta)^{3/2}\big) t

Z2 h = 0
f(m, t) m

= 1θc

h > 0 Z2 → −σi σi ∀ i m > 0 m < 0 h < 0
t m = 1 θ → 0

tanh tanh(x) ≃ x

m(h, θ) =  .
h

θ−θc
(7.4.18)

θc χ(θ) = (∂m/∂h)h=0 χ−1

θ θ χ(θ) = (θ−θc)
−1 θ h

m f(m,h, θ)

f(m,h, θ) = −θ ln2 −hm+ (θ−1) + + + +…  .
1

2
m2 θ

12
m4 θ

30
m6 θ

56
m8 (7.4.19)

m

ϕ ϕ = 0
ϕ ≠ 0 ϕ

θc ϕ

T T

Jij > 0Jij
< 0Jij

= −1σi σj
Jij
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√
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lattice. So is the simple cubic lattice. The triangular lattice, however, is not bipartite (it is tripartite). Consequently, with nearest
neighbor antiferromagnetic interactions, the triangular lattice Ising model is highly frustrated. The moral of the story is this:
antiferromagnetic interactions can give rise to complicated magnetic ordering, and, when frustrated by the lattice geometry, may
have finite specific entropy even at .

Mean Field Theory of the Potts Model
The Hamiltonian for the Potts model is

Here, , with integer . This is the so-called ‘ -state Potts model’. The quantity  is analogous to an external
magnetic field, and preferentially aligns (for ) the local spins in the  direction. We will assume .

The -component set is conveniently taken to be the integers from  to , but it could be anything, such as

The interaction energy is  if sites  and  contain the same object (  possibilities), and  if  and  contain different objects (
 possibilities).

The two-state Potts model is equivalent to the Ising model. Let the allowed values of  be . Then the quantity

\[\delta_{\sigma,\sigma'}=\half + \half\,\sigma\sigma'\\]

equals  if , and is zero otherwise. The three-state Potts model cannot be written as a simple three-state Ising model, one
with a bilinear interaction  where . However, it is straightforward to verify the identity

Thus, the -state Potts model is equivalent to a  (three-state) Ising model which includes both bilinear  and
biquadratic (  interactions, as well as a local field term which couples to the square of the spin, . In general one can find
such correspondences for higher  Potts models, but, as should be expected, the interactions become increasingly complex, with bi-
cubic, bi-quartic, bi-quintic, terms. Such a formulation, however, obscures the beautiful  symmetry inherent in the model, where 

 is the permutation group on  symbols, which has  elements.

Getting back to the mean field theory, we write the single site variational density matrix  as a diagonal matrix with entries

with . Note that . The variational parameter is . When , all states are
equally probable. But for , the state  is preferred, and the other  states have identical but smaller probabilities.
It is a simple matter to compute the energy and entropy:

The dimensionless free energy per site is then

where . We now extremize with respect to  to obtain the mean field equation,

T = 0

= − −H  .Ĥ ∑
i<j

Jij δ ,σi σj ∑
i

δ ,1σi (7.4.20)

∈ {1, … , q}σi q q H

H > 0 σ = 1 H ≥ 0

q 1 q

∈ {tomato, penny, ostrich, Grateful Dead ticket from 1987,   …} .σi (7.4.21)

−Jij i j q 0 i j

−qq2

σ ±1

1 σ = σ′

σ σ′ σ ∈ {−1, 0, +1}

= 1 + σ + −( + ) .δσ,σ ′

1

2
σ′ 3

2
σ2σ′2 σ2 σ′2 (7.4.22)

q = 3 S = 1 (σ )σ′

)σ2σ′2 σ2

q

Sq

Sq q q!

ϱ

ϱ(σ) = x +( ) (1 − ) ,δσ,1
1 −x

q−1
δσ,1 (7.4.23)

( , … , ) = ϱ( ) ⋯ ϱ( )ϱN σ1 σN σ1 σN Tr (ϱ) = 1 x x = q−1

x > q−1 σ = 1 (q−1)

E = Tr ( )ϱ
N
Ĥ

S = − Tr ( ln )kB ϱ
N

ϱ
N

= − N (0){ + }−NHx
1

2
Ĵ x2 (1 −x)2

q−1

= −N {x lnx+(1 −x) ln( )} .kB

1 −x

q−1

f(x, θ,h) = − { + }+θ{x lnx+(1 −x) ln( )}−hx ,
1

2
x2

(1 −x)2

q−1

1 −x

q−1
(7.4.24)

h = H/ (0)Ĵ x

= 0 = −x+ +θ lnx−θ ln( )−h .
∂f

∂x

1 −x

q−1

1 −x

q−1
(7.4.25)
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Note that for ,  is a solution, corresponding to a disordered state in which all states are equally probable. At high
temperatures, for small , we expect . Indeed, using Mathematica  one can set

and expand the mean field equation in powers of . One obtains

For weak fields, , and we have

which again is of the Curie-Weiss form. The difference  is the order parameter for the transition.

Finally, one can expand the free energy in powers of , obtaining the Landau expansion,

Note that, for , the coefficients of , , and higher order odd powers of  vanish in the Landau expansion. This is consistent
with what we found for the Ising model, and is related to the  symmetry of that model. For , there is a cubic term in the
mean field free energy, and thus we generically expect a first order transition, as we shall see below when we discuss Landau
theory.

Mean Field Theory of the  Model
Consider the so-called  model, in which each site contains a continuous planar spin, represented by an angular variable 

 :

We write the (diagonal elements of the) full density matrix once again as a product:

Our goal will be to extremize the free energy with respect to the function . To this end, we compute

The entropy is

Note that for any function , we have

We now extremize the functional  with respect to , under the condition that . We therefore use
Lagrange’s method of undetermined multipliers, writing

h = 0 x = q−1

h x− ∝ hq−1

x ≡ +s ,q−1 (7.4.26)

s

h = s+ +O( ) .
q (qθ−1)

q−1

(q−2) θq3

2 (q−1)2
s2 s3 (7.4.27)

|h| ≪ 1

s(θ) = +O( ) ,
(q−1)h

q (qθ−1)
h2 (7.4.28)

s = x−q−1

s

f(s, θ,h) = − −θ lnq−hs+ −
2h+1

2q

q (qθ−1)

2 (q−1)
s2 (q−2) θq3

6 (q−1)2
s3

+ [1 +(q−1 ] − [1 −(q−1 ]
θq3

12
)−3 s4 θq4

20
)−4 s5

+ [1 +(q−1 ] +… .
θq5

30
)−5 s6

q = 2 s3 s5 s

Z2 q > 3

XY

XY

∈ [−π, π]ϕi

= − cos( − ) −H cos  .Ĥ
1

2
∑
i≠j

Jij ϕi ϕj ∑
i

ϕi (7.4.29)

( , , …) = ϱ( ) .ϱN ϕ1 ϕ2 ∏
i

ϕi (7.4.30)

ϱ(ϕ)

E = Tr ( ) = − N (0) Tr (ϱ ) −NH Tr (ϱ cosϕ) .ϱ
N
Ĥ

1

2
Ĵ ∣

∣ eiϕ ∣
∣
2

(7.4.31)

S = −N Tr (ϱ lnϱ) .kB (7.4.32)

A(ϕ) 14

Tr (ϱA) ≡ ϱ(ϕ)A(ϕ) .∫

−π

π

dϕ

2π
(7.4.33)

F [ϱ(ϕ)] = E−TS ϱ(ϕ) Tr ϱ = 1

= F −N T λ (Tr ϱ−1) .F ∗ kB (7.4.34)
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Note that  is a function of the Lagrange multiplier  and a functional of the density matrix . The prefactor  which
multiplies  is of no mathematical consequence – we could always redefine the multiplier to be . It is present only to
maintain homogeneity and proper dimensionality of  with  itself dimensionless and of order . We now have

To this end, we note that

Thus, we have

Now let us define

We then have

Clearly the free energy will be reduced if  so that the mean field is maximal and aligns with the external field, which prefers
. Thus, we conclude

where

and . The value of  is then determined by invoking the constraint,

where  is the Bessel function. We are free to define , and treat  as our single variational parameter. We then
have the normalized single site density matrix

We next compute the following averages:

F ∗ λ ϱ(ϕ) N TkB

λ ≡ N Tλλ′ kB

F ∗ λ N 0

δF ∗

δϱ(ϕ)
= {− N (0) Tr(ϱ ) −NH Tr(ϱ cosϕ)

δ

δϱ(ϕ)

1

2
Ĵ ∣

∣ eiϕ ∣
∣
2

+N T Tr (ϱ lnϱ) −N T λ (Tr ϱ−1)} .kB kB

Tr (ϱA) = ϱ(ϕ)A(ϕ) = A(ϕ) .
δ

δϱ(ϕ)

δ

δϱ(ϕ)
∫

−π

π

dϕ

2π

1

2π
(7.4.35)

δF
~

δϱ(ϕ)
= − N (0) ⋅ [ (ϱ ) + (ϱ ) ]−NH ⋅

1

2
Ĵ

1

2π
Tr
ϕ′

eiϕ
′

e−iϕ
Tr
ϕ′

e−iϕ′

eiϕ
cosϕ

2π

+N T ⋅ [ lnϱ(ϕ) +1]−N T ⋅  .kB

1

2π
kB

λ

2π

(ϱ ) = ϱ(ϕ) ≡ m  .Tr
ϕ

eiϕ ∫

−π

π

dϕ

2π
eiϕ eiϕ0 (7.4.36)

lnϱ(ϕ) = m cos(ϕ− ) + cosϕ+λ−1.
(0)Ĵ

TkB

ϕ0

H

TkB

(7.4.37)

= 0ϕ0

ϕ = 0

ϱ(ϕ) = C exp( cosϕ) ,
H

eff

TkB

(7.4.38)

= (0)m+HH
eff

Ĵ (7.4.39)

C = eλ−1 λ

Tr ϱ = 1 = C exp( cosϕ) = C ( / T ) ,∫

−π

π

dϕ

2π

Heff

TkB

I
0
H

eff
kB (7.4.40)

(z)I0 ε ≡ / THeff kB ε

ϱ(ϕ) = =  .
exp(ε cosϕ)

exp(ε cos )∫
−π

π
dϕ′

2π
ϕ′

exp(ε cosϕ)

(ε)I0
(7.4.41)
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as well as

The dimensionless free energy per site is therefore

with  and  and  as before. Note that the mean field equation is 
 ,

For small , we may expand the Bessel functions, using

to obtain

This predicts a second order phase transition at .  Note also the Curie-Weiss form of the susceptibility at high :

 model via neglect of fluctuations method
Consider again the Hamiltonian of Equation [XYmodel]. Define  and write

where  and . Of course we also have the complex conjugate relations  and .
Writing  , by neglecting the terms proportional to  in  we arrive at the mean field Hamiltonian,

It is clear that the free energy will be minimized if the mean field  breaks the  symmetry in the same direction as the external
field , which means  and

The dimensionless free energy per site is then

Differentiating with respect to  , one obtains

⟨ ⟩e±iϕ

⟨cos(ϕ− )⟩ϕ′

= ϱ(ϕ) =∫

−π

π

dϕ

2π
e±iϕ (ε)I1

(ε)I0

= Re ⟨ ⟩ =(  ,eiϕ e−iϕ′ (ε)I1

(ε)I0
)

2

Tr (ϱ lnϱ) = {ε cosϕ−ln (ε)} = ε −ln (ε) .∫

−π

π

dϕ

2π

eε cos ϕ

(ε)I0
I0

(ε)I1

(ε)I0
I0 (7.4.42)

f(ε,h, θ) = − ( +(θε−h) −θ ln (ε) ,
1

2

(ε)I1

(ε)I0
)

2 (ε)I1

(ε)I0
I0 (7.4.43)

θ = T/ (0)kB Ĵ h = H/ (0)Ĵ f = F/N (0)Ĵ

m = θε−h = ⟨ ⟩eiϕ

θε−h = .
(ε)I1

(ε)I0
(7.4.44)

ε

(z) = ( z  ,Iν
1

2
)ν∑

k=0

∞ ( 1
4
z2)k

k! Γ(k+ν +1)
(7.4.45)

f(ε,h, θ) = (θ− ) + (2 −3θ) − hε+ h +…  .
1

4

1

2
ε2 1

64
ε4 1

2

1

16
ε3 (7.4.46)

=θc
1
2

15 θ

= 0 ⟹ ε = +…  .
∂f

∂ε

h

θ−θc
(7.4.47)

XY

≡ exp(i )zi ϕi

= w+δ ,zi zi (7.4.48)

w ≡ ⟨ ⟩zi δ ≡ −wzi zi = +δz∗
i w∗ z∗

i = ⟨ ⟩w∗ z∗
i

cos( − ) = Re ( )ϕi ϕj z∗
i zj δ δz∗

i zj Ĥ

\HH^\ssr{MF}=\half N \HJ(0)\,|w|^2 - \half\HJ(0)\,|w|\sum_i\big(w^* z\ns_i + w z^*_i\big) - \half H\sum_i \big(z^*_i+z\ns_i\big)

w O(2)
H w ∈ R

\HH^\ssr{MF}=\half N \HJ(0)\,|w|^2 - \big(H+\HJ(0)\,|w|\big)\sum_i\cos\phi\ns_i\quad.

f = |w −θ ln ( ) .
1

2
|2 I0

h+|w|

θ
(7.4.49)
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which is the same equation as Equation [XYvdm]. The two mean field theories yield the same results in every detail (see §10).

This page titled 7.4: Variational Density Matrix Method is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.

|w| ≡ m = ,
( )I1

h+m

θ

( )I0
h+m

θ

(7.4.50)
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7.5: Landau Theory of Phase Transitions
Landau’s theory of phase transitions is based on an expansion of the free energy of a thermodynamic system in terms of an order
parameter, which is nonzero in an ordered phase and zero in a disordered phase. For example, the magnetization  of a
ferromagnet in zero external field but at finite temperature typically vanishes for temperatures , where  is the critical
temperature, also called the Curie temperature in a ferromagnet. A low order expansion in powers of the order parameter is
appropriate sufficiently close to the phase transition, at temperatures such that the order parameter, if nonzero, is still small.

[Landau_a] Phase diagram for the quartic Landau free energy , with . There is a first order
line at  extending from  and terminating in a critical point at . For  (dashed red line) there are
three solutions to the mean field equation, corresponding to one global minimum, one local minimum, and one local maximum.
Insets show behavior of the free energy .

Quartic free energy with Ising symmetry

The simplest example is the quartic free energy,

where , , and . Here,  is a dimensionless measure of the temperature. If for example the local
exchange energy in the ferromagnet is , then we might define , as before. Let us assume , which is necessary if
the free energy is to be bounded from below . The equation of state ,

M
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f = + a + b − hmf0
1
2
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4

m4 b > 0
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2
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4
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has three solutions in the complex  plane: (i) , (ii) , and (iii) . The latter two solutions lie
along the (physical) real axis if . We assume that there exists a unique temperature  where . Minimizing , we
find

The free energy is continuous at  since . The specific heat, however, is discontinuous across the transition, with

The presence of a magnetic field  breaks the  symmetry of . The free energy becomes

and the mean field equation is

This is a cubic equation for  with real coefficients, and as such it can either have three real solutions or one real solution and two
complex solutions related by complex conjugation. Clearly we must have  in order to have three real roots, since 
is monotonically increasing otherwise. The boundary between these two classes of solution sets occurs when two roots coincide,
which means  as well as . Simultaneously solving these two equations, we find

or, equivalently,

If, for fixed , we have , then there will be three real solutions to the mean field equation , one of which is a
global minimum (the one for which ). For  there is only a single global minimum, at which  also has the
same sign as . If we solve the mean field equation perturbatively in , we find

Cubic terms in Landau theory : first order transitions
Next, consider a free energy with a cubic term,

with  for stability. Without loss of generality, we may assume  (else send ). Note that we no longer have 
 ( ) symmetry. The cubic term favors positive . What is the phase diagram in the  plane?

Extremizing the free energy with respect to , we obtain

= 0 = am +b  ,
∂f

∂m
m3 (7.5.2)

m m = 0 m = −a/b
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− −−−−
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h Z2 m → −m
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This cubic equation factorizes into a linear and quadratic piece, and hence may be solved simply. The three solutions are 
and

We now see that for  there is only one real solution, at , while for  there are three real solutions. Which
solution has lowest free energy? To find out, we compare the energy  with . Thus, we set

and we now have two quadratic equations to solve simultaneously:

[quartic] Behavior of the quartic free energy . A:  ; B:  ; C and D: 
. The thick black line denotes a line of first order transitions, where the order parameter is discontinuous across the

transition.

Eliminating the quadratic term gives . Finally, substituting  gives us a relation between , , and :
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m = ≡ ±  .m±
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2b
( −
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2 a

b
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< 4aby2 m = 0 > 4aby2

f(0) f( )m+
17

f(m) = f(0) ⟹ a − y + b = 0 ,
1

2
m2 1

3
m3 1

4
m4 (7.5.11)

0

0

= a −ym +bm2

= a − ym + b = 0 .
1

2

1

3

1

4
m2

f(m) = a − y + b1
2 m2 1

3 m3 1
4 m4 < 4aby2 4ab < < aby2 9

2

> aby2 9
2

m = 3a/y m = m+ a b y

= ab .y2 9

2
(7.5.12)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18587?pdf


7.5.4 https://phys.libretexts.org/@go/page/18587

Thus, we have the following:

The solution  lies at a local minimum of the free energy for  and at a local maximum for . Over the range 

, then, there is a global minimum at , a local minimum at , and a local maximum at , with 

. For , there is a local minimum at , a global minimum at , and a local maximum at 
, again with . For , there is a local maximum at , a local minimum at , and a global

minimum at , with . See Figure [quartic].

With , we have a second order transition at . With , there is a discontinuous (first order) transition at 
 and  . This occurs before  reaches the value  where the curvature at  turns negative. If

we write , then the expected second order transition at  is preempted by a first order transition at 
.

Magnetization dynamics
Suppose we now impose some dynamics on the system, of the simple relaxational type

where  is a phenomenological kinetic coefficient. Assuming  and , it is convenient to adimensionalize by writing

Then we obtain

where the dimensionless free energy function is

We see that there is a single control parameter, . The fixed points of the dynamics are then the stationary points of , where 
, with

The solutions to  are then given by

For  there is one fixed point at , which is attractive under the dynamics  since . At  there
occurs a saddle-node bifurcation and a pair of fixed points is generated, one stable and one unstable. As we see from Figure
[Landau_a], the interior fixed point is always unstable and the two exterior fixed points are always stable. At  there is a
transcritical bifurcation where two fixed points of opposite stability collide and bounce off one another (metaphorically speaking).
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[Landau_b] Fixed points for  and flow under the dynamics . Solid curves represent stable
fixed points and dashed curves unstable fixed points. Magenta arrows show behavior under slowly increasing control parameter 
and dark blue arrows show behavior under slowly decreasing . For  there is a hysteresis loop. The thick black curve shows
the equilibrium thermodynamic value of , that value which minimizes the free energy . There is a first order phase
transition at , where the thermodynamic value of  jumps from  to .

At the saddle-node bifurcation,  and , and we find , which is positive. Thus, the
thermodynamic state of the system remains at  until the value of  crosses zero. This occurs when  and 

, the simultaneous solution of which yields  and .

Suppose we slowly ramp the control parameter  up and down as a function of the dimensionless time . Under the dynamics of
Equation [LBdyn],  flows to the first stable fixed point encountered – this is always the case for a dynamical system with a
one-dimensional phase space. Then as  is further varied,  follows the position of whatever locally stable fixed point it initially
encountered. Thus,  evolves smoothly until a bifurcation is encountered. The situation is depicted by the arrows in Figure
[Landau_b]. The equilibrium thermodynamic value for  is discontinuous; there is a first order phase transition at , as
we’ve already seen. As  is increased,  follows a trajectory indicated by the magenta arrows. For an negative initial value of ,
the evolution as a function of  will be reversible. However, if  is initially positive, then the system exhibits hysteresis, as
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shown. Starting with a large positive value of ,  quickly evolves to , which means a positive infinitesimal value. Then
as  is decreased, the system remains at  even through the first order transition, because  is an attractive fixed point.
However, once  begins to go negative, the  fixed point becomes repulsive, and  quickly flows to the stable fixed point 

. Further decreasing , the system remains on this branch. If  is later increased, then  remains on the

upper branch past , until the  fixed point annihilates with the unstable fixed point at , at which time 

 quickly flows down to  again.

[fsextic] Behavior
of the sextic free energy . A:  and  ; B:  and  ; C:  and  ; D: 

 and  ; E:  and  ; F:  and . The thick dashed line is a
line of second order transitions, which meets the thick solid line of first order transitions at the tricritical point, .

Sixth order Landau theory: tricritical point

Finally, consider a model with  symmetry, with the Landau free energy
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with  for stability. We seek the phase diagram in the  plane. Extremizing  with respect to , we obtain

which is a quintic with five solutions over the complex  plane. One solution is obviously . The other four are

For each  symbol in the above equation, there are two options, hence four roots in all.

If  and , then four of the roots are imaginary and there is a unique minimum at .

For , there are only three solutions to  for real , since the  choice for the  sign under the radical leads to
imaginary roots. One of the solutions is . The other two are

The most interesting situation is  and . If  and , all five roots are real. There must be three minima,
separated by two local maxima. Clearly if  is a solution, then so is . Thus, the only question is whether the outer minima
are of lower energy than the minimum at . We assess this by demanding , where  is the position of the
largest root ( the rightmost minimum). This gives a second quadratic equation,

which together with equation [quintic] gives

Thus, we have the following, for fixed :

The point , which lies at the confluence of a first order line and a second order line, is known as a tricritical point.
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[sexfree] Free energy  for several different values of the control parameter .

Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics . We adimensionalize by writing
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Then we obtain once again the dimensionless equation

where

In the above equation, the coefficient of the quartic term is positive if  and negative if . That is, the coefficient is 
. When  we can ignore the sextic term for sufficiently small , and we recover the quartic free energy studied earlier.

There is then a second order transition at . .

New and interesting behavior occurs for . The fixed points of the dynamics are obtained by setting . We have

Thus, the equation  factorizes into a linear factor  and a quartic factor  which is quadratic in . Thus, we
can easily obtain the roots:

In Figure [Landau_c], we plot the fixed points and the hysteresis loops for this system. At , there are two symmetrically
located saddle-node bifurcations at . We find , which is positive, indicating that the stable

fixed point  remains the thermodynamic minimum for the free energy  as  is decreased through . Setting 

 and  simultaneously, we obtain  and . The thermodynamic value for  therefore jumps

discontinuously from  to  (either branch) at ; this is a first order transition.

Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated in the figure, where the arrows show
the evolution of  for very slowly varying . When the control parameter  is large and positive, the flow is toward the sole
fixed point at . At , two simultaneous saddle-node bifurcations take place at ; the outer branch is stable and

the inner branch unstable in both cases. At  there is a subcritical pitchfork bifurcation, and the fixed point at  becomes
unstable.
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[Landau_c] Fixed
points  for the sextic potential , and corresponding dynamical flow (arrows) under 

. Solid curves show stable fixed points and dashed curves show unstable fixed points. The thick solid black and solid
grey curves indicate the equilibrium thermodynamic values for ; note the overall  symmetry. Within the region 

 the dynamics are irreversible and the system exhibits the phenomenon of hysteresis. There is a first order phase
transition at .
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Suppose one starts off with  with some value . The flow  then rapidly results in . This is the ‘high
temperature phase’ in which there is no magnetization. Now let  increase slowly, using  as the dimensionless time variable. The
scaled magnetization  will remain pinned at the fixed point . As  passes through , two new stable
values of  appear, but our system remains at , since  is a stable fixed point. But after the subcritical pitchfork, 

 becomes unstable. The magnetization  then flows rapidly to the stable fixed point at , and follows the curve 

 for all .

Now suppose we start increasing  ( increasing temperature). The magnetization follows the stable fixed point 

 past , beyond the first order phase transition point at , and all the way up to , at
which point this fixed point is annihilated at a saddle-node bifurcation. The flow then rapidly takes , where it remains
as  continues to be increased further.

Within the region  of control parameter space, the dynamics are said to be irreversible and the behavior of  is said to
be hysteretic.

This page titled 7.5: Landau Theory of Phase Transitions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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7.6: Mean Field Theory of Fluctuations

Correlation and response in mean field theory
Consider the Ising model,

where the local magnetic field on site  is now . We assume without loss of generality that the diagonal terms vanish: . Now

consider the partition function  as a function of the temperature  and the local field values . We have

Thus,

Expressions such as , , are in general called correlation functions. For example, we define the spin-spin correlation function  as

Expressions such as  and  are called response functions. The above relation between correlation functions and response functions, 

, is valid only for the equilibrium distribution. In particular, this relationship is invalid if one uses an approximate distribution,
such as the variational density matrix formalism of mean field theory.

The question then arises: within mean field theory, which is more accurate: correlation functions or response functions? A simple argument
suggests that the response functions are more accurate representations of the real physics. To see this, let’s write the variational density matrix 

 as the sum of the exact equilibrium (Boltzmann) distribution  plus a deviation :

Then if we calculate a correlator using the variational distribution, we have

Thus, the variational density matrix gets the correlator right to first order in . On the other hand, the free energy is given by

Here  denotes a state of the system, , where every spin polarization is specified. Since the free energy is an extremum
(and in fact an absolute minimum) with respect to the distribution, the second term on the RHS vanishes. This means that the free energy is
accurate to second order in the deviation .

Calculation of the response functions
Consider the variational density matrix

where
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σi σj σi σj
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= +δϱ .ϱvar ϱeq (7.6.3)

⟨σi σj⟩var = Tr [ ]ϱvar σi σj

= Tr [ ]+Tr [δϱ ] .ϱeq σi σj σi σj

δϱ

= + δ + δ δ +…  .F var F eq ∑
σ

∂F

∂ϱσ

∣
∣
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F∂2

∂ ∂ϱ
σ
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∣
∣
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ϱeq
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σ | σ ⟩ = | , … , ⟩σ1 σN

δϱ

ϱ(σ) = ( ) ,∏
i

ϱi σi (7.6.5)

( ) =( ) +( )  .ϱi σi
1 +mi

2
δ ,1σi
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The variational energy  is

and the entropy  is

Setting the variation , with , we obtain the mean field equations,

where we use the summation convention: . Suppose  and  is small. Then we can expand the RHS of the above
mean field equations, obtaining

Thus, the susceptibility tensor  is the inverse of the matrix :

where  is the identity. Note also that so-called connected averages of the kind in Equation [connavg] vanish identically if we compute them
using our variational density matrix, since all the sites are independent, hence

and therefore  if we compute the correlation functions themselves from the variational density matrix, rather than from the free energy 
. As we have argued above, the latter approximation is more accurate.

Assuming , where  is a Bravais lattice site, we can Fourier transform the above equation, resulting in

Once again, our definition of lattice Fourier transform of a function  is

where  is the unit cell in real space, called the Wigner-Seitz cell, and  is the first Brillouin zone, which is the unit cell in reciprocal space.
Similarly, we have

where

Here we have assumed inversion symmetry for the lattice, in which case

On cubic lattices with nearest neighbor interactions only, one has , where  is the lattice constant and  is the dimension of
space.

E = Tr (ϱ )Ĥ

E = − −
1

2
∑
ij

Ji,j mi mj ∑
i

Hi mi (7.6.7)

S = − T Tr (ϱ lnϱ)kB

S = − {( ) ln( )+( ) ln( )} .kB∑
i

1 +mi

2

1 +mi

2

1 −mi

2

1 −mi

2
(7.6.8)

= 0∂F
∂mi

F = E−TS

= tanh(β +β ) ,mi Jij mj Hi (7.6.9)

≡Jij mj ∑j Jij mj T > Tc mi

( −β ) = β  .δij Jij mj Hi (7.6.10)

χ ( T ⋅ I−J)kB

= = ( T ⋅ I−J  ,χij

∂mi

∂Hj

kB )
−1

ij
(7.6.11)

I

⟨ ⟩ = Tr ( ) = Tr ( ) ⋅ Tr ( ) = ⟨ ⟩ ⋅ ⟨ ⟩ ,σi σj ϱvar σi σj ϱi σi ϱj σj σi σj (7.6.12)

= 0χij

F

= J( − )Jij Ri Rj Ri

(q) = ≡ (q) (q) .m̂
(q)Ĥ

T − (q)kB Ĵ
χ̂ Ĥ (7.6.13)

ϕ(R)

(q)ϕ̂

ϕ(R)
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= Ω (q)  ,∫
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qdd
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ϕ̂ eiq⋅R

Ω Ω̂

(q)Ĵ = J(R)(1 − iq ⋅ R− (q ⋅ R +… )∑
R

1

2
)2

= (0) ⋅{1 − +O( )} ,Ĵ q2R2
∗ q4

=  .R2
∗

J(R)∑R R
2
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Thus, with the identification , we have

where

is the correlation length. With the definition

as , we obtain the mean field correlation length exponent . The exact result for the two-dimensional Ising model is ,
whereas  for the  Ising model. Note that  diverges as  for .

In real space, we have

where

Note that  is properly periodic under , where  is a reciprocal lattice vector, which satisfies  for any direct
Bravais lattice vector . Indeed, we have

where  is a nearest neighbor separation vector, and where in the second line we have assumed nearest neighbor interactions only. On cubic
lattices in  dimensions, there are  nearest neighbor separation vectors, , where . The real space susceptibility is
then

where  is a general direct lattice vector for the cubic Bravais lattice in  dimensions, and the  are integers.

The long distance behavior was discussed in chapter 6 (see §6.5.9 on Ornstein-Zernike theory ). For convenience we reiterate those results:

In ,

In , with  and  fixed,

where the  are dimensionless constants.
In , with  and  fixed (  at fixed separation ),

In  dimensions we obtain

= (0)kBTc Ĵ

(q)χ̂ =
1

(T − ) + +O( )kB Tc kBTc R
2
∗ q2 q4

= ⋅  ,
1

kBTc R
2
∗

1

+ +O( )ξ−2 q2 q4

ξ = ⋅(R∗
T −Tc

Tc
)

−1/2

(7.6.16)

ξ(T ) ∝ |T −Tc|
−ν (7.6.17)

T → Tc ν = 1
2

ν = 1

ν ≈ 0.6 d = 3 (q = 0,T )χ̂ (T −Tc)
−1 T > Tc

=  ,mi ∑
j

χij Hj (7.6.18)

= Ω∫ (q)  .χij

qdd

(2π)d
χ̂ eiq⋅( − )Ri Rj (7.6.19)

(q)χ̂ q → q +G G = 1eiG⋅R

R

(q)χ̂−1 = T − (q)kB Ĵ

= T −J  ,kB ∑
δ

eiq⋅δ

δ

d 2d δ = ±a êμ μ ∈ {1, … , d}
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−π

π

dθ1

2π
∫

−π

π
dθ

d

2π

⋯ein1θ1 eindθd
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R = a∑d

μ=1 nμ êμ d { }nμ
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d = 1

(x) =( )  .χd=1

ξ

2kBTcR
2
∗

e−|x|/ξ (7.6.21)

d > 1 r → ∞ ξ

\xhiOZ_d(\Br)\simeq C\ns_d\cdot{\xi^{(3-d)/2}\over \kT\,R_*^2}\cdot{e^{-r/\xi}\over r^{(d-1)/2}}\cdot\left\{1+\CO\bigg({d-3\over r/\xi}\bigg)\right\}\ ,

Cd

d > 2 ξ → ∞ r T → Tc r

(r) ≃ ⋅ ⋅{1 +O( )}  .χd

C ′
d

TkB R2
∗

e−r/ξ

rd−2

d−3

r/ξ
(7.6.22)

d = 2

(r) ≃ ⋅ ln( ) ⋅{1 +O( )}  ,χd=2

C ′
2

TkB R2
∗

r

ξ
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where the  are dimensionless constants.

Beyond the Ising model
Consider a general spin model, and a variational density matrix  which is a product of single site density matrices:

where  is the local magnetization and  , which may be a scalar (,  in the Ising model previously discussed), is the local

spin operator. Note that  depends parametrically on the variational parameter(s) . Let the Hamiltonian be

The variational free energy is then

where the single site free energy  in the absence of an external field is given by

We then have

For the noninteracting system, we have  , and the weak field response must be linear. In this limit we may write 
, and we conclude

Note that this entails the following expansion for the single site free energy in zero field:

Finally, we restore the interaction term and extremize  by setting . To linear order, then,

Typically the local susceptibility is a scalar in the internal spin space, , in which case we obtain

In Fourier space, then,

where  is the matrix whose elements are . If , then the susceptibility is isotropic in spin space, with

Consider now the following illustrative examples:

Quantum spin  with  : We take the  axis to be that of the local external magnetic field,  . Write 
, where  is obtained implicitly from the relation . The normalization

constant is

C ′
d

ϱvar

[{ }] = ( ) ,ϱvar Si ∏
i

ϱ
(i)
1 Si (7.6.24)

Tr ( S) =ϱvar m
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( )ϱ
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1 Si mi

= − + h( ) − ⋅ .Ĥ
1

2
∑
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i Sν
j ∑

i

Si ∑
i

Hi Si (7.6.25)
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i m
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i

mi ∑
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μ

i m
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i (7.6.26)

φ( ,T )mi

φ( ,T ) = Tr[ (S)h(S)]+ T Tr[ (S) ln (S)]mi ϱ
(i)
1 kB ϱ

(i)
1 ϱ

(i)
1 (7.6.27)
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j

J μν
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= 0J μν
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φ( ,T ) = [ (T ) +O( ) .mi

1

2
χ0 ]−1
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mν

i m
ν
i m4 (7.6.30)

Fvar ∂ /∂ = 0Fvar m
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i χ0
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J νλ
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(T ) = (T )χ0
μν χ0 δμν

( − (T ) ) = (T ) .δμν δij χ0 J
μν

ij mν
i χ0 H

μ

i (7.6.32)

(q,T ) = (T )(1 − (T ) (q) ,χ̂μν χ0 χ0 Ĵ )
−1

μν
(7.6.33)

(q)Ĵ (q)Ĵ
μν

(q) = (q)Ĵ
μν

Ĵ δμν

(q,T ) = .χ̂
1

[ (T ) − (q)χ0 ]
−1

Ĵ
(7.6.34)

S h(S) = 0 ẑ Ĥi

(S) = exp(u / T )ϱ1 z−1 Sz kB u = u(m,T ) m(u,T ) = Tr( )ϱ1 S
z

z = Tr = =eu / TS z kB ∑
j=−S

S

eju/ TkB
sinh[(S+ )u/ T ]1

2
kB
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The relation between , , and  is then given by

The free-field single-site free energy is then

whence

and we thereby obtain the result

which is the Curie susceptibility.
Classical spin  with  and  an -component unit vector : We take the single site density matrix to be 

. The single site field-free partition function is then

and therefore

from which we read off . Note that this agrees in the classical ( ) limit, for , with our previous result.
Quantum spin  with  : This corresponds to so-called easy plane anisotropy, meaning that the single site energy  is
minimized when the local spin vector  lies in the  plane. As in example (i), we write , yielding the
same expression for  and the same relation between  and . What is different is that we must evaluate the local energy,

We now have , from which we obtain the susceptibility

Note that the local susceptibility no longer diverges as , because there is always a gap in the spectrum of .

This page titled 7.6: Mean Field Theory of Fluctuations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.

m u T
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∂u

1

2

1

2
kB

1

2
kB

= u+O( ) .
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7.7: Global Symmetries

Symmetries and symmetry groups

Interacting systems can be broadly classified according to their global symmetry group. Consider the following five examples:

The Ising Hamiltonian is left invariant by the global symmetry group , which has two elements,  and , with

 is the identity, and . By simultaneously reversing all the spins , the interactions remain invariant.

The degrees of freedom of the -state clock model are integer variables  each of which ranges from  to . The Hamiltonian is
invariant under the discrete group , whose  elements are generated by the single operation , where

Think of a clock with one hand and  ‘hour’ markings consecutively spaced by an angle . In each site , a hand points to one
of the  hour marks; this determines . The operation  simply advances all the hours by one tick, with hour  advancing to hour 

, just as 23:00 military time is followed one hour later by 00:00. The interaction  is invariant under such an
operation. The  elements of the group  are then

We’ve already met up with the -state Potts model, where each site supports a ‘spin’  which can be in any of  possible states,
which we may label by integers . The energy of two interacting sites  and  is  if  and zero otherwise.
This energy function is invariant under global operations of the symmetric group on  characters, , which is the group of
permutations of the sequence . The group  has  elements. Note the difference between a  symmetry and
an  symmetry. In the former case, the Hamiltonian is invariant only under the -element cyclic permutations,

and its powers  with .

All these models – the Ising, -state clock, and -state Potts models – possess a global symmetry group which is discrete. That is,
each of the symmetry groups , ,  is a discrete group, with a finite number of elements. The  Hamiltonian  on the
other hand is invariant under a continuous group of transformations , where  is the angle variable on site . More to
the point, we could write the interaction term  as , where  is a phase which lives on the unit
circle, and  is the complex conjugate of . The model is then invariant under the global transformation . The phases 

 form a group under multiplication, called , which is the same as . Equivalently, we could write the interaction as 
, where , which explains the , symmetry, since the symmetry operations are global rotations in

the plane, which is to say the two-dimensional orthogonal group. This last representation generalizes nicely to unit vectors in 
dimensions, where

ĤIsing

Ĥp−clock

Ĥq−Potts

ĤXY

ĤO(n)

= −∑
i<j

Jij σi σj

= − cos( )∑
i<j

Jij

2π( − )ni nj

p

= −∑
i<j

Jij δ ,σi σj

= − cos( − )∑
i<j

Jij ϕi ϕj

= − ⋅∑
i<j

Jij Ω̂i Ω̂j

σi

ni

σi

ϕi

Ω̂i

∈ {−1, +1}

∈ {1, 2, … , p}

∈ {1, 2, … , q}

∈ [0, 2π]

∈  .Sn−1

Z2 I η

η = −  .σi σi (7.7.1)
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with . The dot product  is then invariant under global rotations in this -dimensional space, which is the group 
.

[DWonedim] A domain wall in a one-dimensional Ising model.

Lower critical dimension

Depending on whether the global symmetry group of a model is discrete or continuous, there exists a lower critical dimension  at
or below which no phase transition may take place at finite temperature. That is, for , the critical temperature is .
Owing to its neglect of fluctuations, mean field theory generally overestimates the value of  because it overestimates the stability
of the ordered phase. Indeed, there are many examples where mean field theory predicts a finite  when the actual critical
temperature is . This happens whenever .

Let’s test the stability of the ordered (ferromagnetic) state of the one-dimensional Ising model at low temperatures. We consider
order-destroying domain wall excitations which interpolate between regions of degenerate, symmetry-related ordered phase, 
and . For a system with a discrete symmetry at low temperatures, the domain wall is abrupt, on the scale of a single lattice
spacing. If the exchange energy is , then the energy of a single domain wall is , since a link of energy  is replaced with one
of energy . However, there are  possible locations for the domain wall, hence its entropy is . For a system with 
domain walls, the free energy is

where  is the density of domain walls, and where we have used Stirling’s approximation for  when  is large.
Extremizing with respect to , we find

The average distance between domain walls is , which is finite for finite . Thus, the thermodynamic state of the system is
disordered, with no net average magnetization.

[DWIsing] Domain walls in the two-dimensional (left) and three-dimensional (right) Ising model.

Consider next an Ising domain wall in  dimensions. Let the linear dimension of the system be , where  is a real number and 
 is the lattice constant. Then the energy of a single domain wall which partitions the entire system is . The domain wall

= ( , , … , )Ω̂ Ω1 Ω2 Ωn (7.7.5)

= 1Ω̂
2

⋅Ω̂i Ω̂j n

O(n)
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d ≤ dℓ = 0Tc
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Tc
= 0Tc d ≤ d

ℓ
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↓↓↓↓↓

J 2J −J

+J N lnNkB M
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N
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entropy is difficult to compute, because the wall can fluctuate significantly, but for a single domain wall we have .
Thus, the free energy  is dominated by the energy term if , suggesting that the system may be
ordered. We can do a slightly better job in  by writing

where the sum is over all closd loops of perimeter , and  is the number of such loops. An example of such a loop
circumscribing a domain is depicted in the left panel of Figure [DWIsing]. It turns out that

where  with  the lattice coordination number, and  is some exponent. We can understand the  factor in the following
way. At each step along the perimeter of the loop, there are  possible directions to go (since one doesn’t backtrack). The
fact that the loop must avoid overlapping itself and must return to its original position to be closed leads to the power law term 

, which is subleading since  and  for . Thus,

which diverges if , if . We identify this singularity with the phase transition. The high
temperature phase involves a proliferation of such loops. The excluded volume effects between the loops, which we have not taken
into account, then enter in an essential way so that the sum converges. Thus, we have the following picture:

On the square lattice, we obtain

The agreement is better than we should reasonably expect from such a crude argument.

Nota bene : Beware of arguments which allegedly prove the existence of an ordered phase. Generally speaking, any approximation
will underestimate the entropy, and thus will overestimate the stability of the putative ordered phase.

Continuous symmetries

When the global symmetry group is continuous, the domain walls interpolate smoothly between ordered phases. The energy
generally involves a stiffness term,

where  is the angle of a local rotation about a single axis and where  is the spin stiffness. Of course, in  models, the
rotations can be with respect to several different axes simultaneously.

[XYdomainwall] A domain wall in an  ferromagnet.

S ≈ lnLkB

F = 2J − T lnLLd−1 kB d > 1
d = 2

Z ≈ exp( ) ,Ld∑
P

NP e−2PJ/ TkB (7.7.7)

P NP

≃ ⋅{1 +O( )} ,NP κPP −θ P −1 (7.7.8)

κ = z−1 z θ κP

κ = z−1

P −θ = exp(P lnκ−θ lnP )κPP −θ P ≫ lnP P ≫ 1

F ≈ −  ,
1

β
Ld∑

P

P −θ e(ln κ−2βJ)P (7.7.9)

lnκ > 2βJ T > 2J/ ln(z−1)kB

lnκ

lnκ

< 2βJ  :  large loops suppressed ; ordered phase

> 2βJ  :  large loops proliferate ; disordered phase .

kBT
approx
c

kBT exact
c

= = 1.82 J
2J

ln3

= = 2.27 J .
2J

(1)sinh−1

E = ∫ r (∇θ  ,
1

2
ρs dd )2 (7.7.10)
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In the ordered phase, we have , a constant. Now imagine a domain wall in which  rotates by  across the width of
the sample. We write , where  is the linear size of the sample (here with dimensions of length) and  is an integer
telling us how many complete twists the order parameter field makes. The domain wall then resembles that in Figure
[XYdomainwall]. The gradient energy is

Recall that in the case of discrete symmetry, the domain wall energy scaled as . Thus, with  for a single wall,
we see that the entropy term dominates if , in which case there is no finite temperature phase transition. Thus, the lower
critical dimension  depends on whether the global symmetry is discrete or continuous, with

Note that all along we have assumed local, short-ranged interactions. Long-ranged interactions can enhance order and thereby
suppress .

Thus, we expect that for models with discrete symmetries,  and there is no finite temperature phase transition for . For
models with continuous symmetries, , and we expect  for . In this context we should emphasize that the two-
dimensional  model does exhibit a phase transition at finite temperature, called the Kosterlitz-Thouless transition. However,
this phase transition is not associated with the breaking of the continuous global  symmetry and rather has to do with the
unbinding of vortices and antivortices. So there is still no true long-ranged order below the critical temperature ,
even though there is a phase transition!

Random systems : Imry-Ma argument
Oftentimes, particularly in condensed matter systems, intrinsic randomness exists due to quenched impurities, grain boundaries,
immobile vacancies, How does this quenched randomness affect a system’s attempt to order at ? This question was taken up
in a beautiful and brief paper by J. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975). Imry and Ma considered models in which
there are short-ranged interactions and a random local field coupling to the local order parameter:

where

where  denotes a configurational average over the disorder. Imry and Ma reasoned that a system could try to lower its free
energy by forming domains in which the order parameter takes advantage of local fluctuations in the random field. The size of
these domains is assumed to be , a length scale to be determined. See the sketch in the left panel of Figure [ImryMa].

[ImryMa] Left panel : Imry-Ma domains for an  model. The arrows point in the direction of the local order parameter field 
. Right panel : free energy density as a function of domain size . Keep in mind that the minimum possible value for  is

the lattice spacing .

θ(r) = θ0 θ(r) 2π
θ(r) = 2πnx/L L n

E = dx( = 2  .
1

2
ρs L

d−1∫

0

L

2πn

L
)

2

π2n2ρs L
d−2 (7.7.11)

E ∝ Ld−1 S ≈ lnLkB

d ≤ 2
dℓ

discrete global symmetry ⟹ dℓ

continuous global symmetry ⟹ dℓ

= 1

= 2 .

d
ℓ

= 1dℓ d ≤ 1
= 2d

ℓ
= 0Tc d ≤ 2
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O(2)
T\ns_\ssr{KT}

T = 0

ĤRFI

ĤRFO(n)

= −J −∑
⟨ij⟩

σi σj ∑
i

Hi σi
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i
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i

⟨⟨ ⟩⟩= 0 , ⟨⟨ ⟩⟩= Γ  ,Hα
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j δαβ δij (7.7.12)
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There are two contributions to the energy of a given domain: bulk and surface terms. The bulk energy is

where  is the lattice spacing. This is because when we add together  random fields, the magnitude of the result is
proportional to the square root of the number of terms, to . The quantity  is the root-mean-square fluctuation
in the random field at a given site. The surface energy is

We compute the critical dimension  by balancing the bulk and surface energies,

The total free energy is , where . Thus, the free energy per unit cell is

If , the surface term dominates for small  and the bulk term dominates for large  There is global minimum at

For , the relative dominance of the bulk and surface terms is reversed, and there is a global maximum at this value of .

Sketches of the free energy  in both cases are provided in the right panel of Figure [ImryMa]. We must keep in mind that the
domain size  cannot become smaller than the lattice spacing . Hence we should draw a vertical line on the graph at  and
discard the portion  as unphysical. For , we see that the state with , the ordered state, is never the state of
lowest free energy. In dimensions , the ordered state is always unstable to domain formation in the presence of a random
field.

For , there are two possibilities, depending on the relative size of  and . We can see this by evaluating 
 and . Thus, if , the minimum energy state occurs for . In this case, the

system has an ordered ground state, and we expect a finite temperature transition to a disordered state at some critical temperature 
. If, on the other hand, , then the fluctuations in  overwhelm the exchange energy at , and the ground

state is disordered down to the very smallest length scale ( the lattice spacing ).

Please read the essay, “Memories of Shang-Keng Ma,” at sip.clarku.edu/skma.html.

This page titled 7.7: Global Symmetries is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

= − ( /a  ,E
bulk

Hrms Ld )d/2 (7.7.13)
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√
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7.8: Ginzburg-Landau Theory

Ginzburg-Landau free energy

Including gradient terms in the free energy, we write

In principle, any term which does not violate the appropriate global symmetry will turn up in such an expansion of the free energy,
with some coefficient. Examples include  (both  and  are odd under time reversal), , We now ask: what function

 extremizes the free energy functional ? The answer is that  must satisfy the corresponding Euler-
Lagrange equation, which for the above functional is

If  and  is small (we assume  and ), we may neglect the  and  terms and write

whose solution is obtained by Fourier transform as

which, with  appropriately defined, recapitulates the result in Equation [mhqeqn]. Thus, we conclude that

which should be compared with Equation [xhiheqn]. For continuous functions, we have

We can then derive the result

where

where the correlation length is , as before.

If  then there is a spontaneous magnetization and we write . Assuming  is weak, we then have two
equations

If  is small, we have  and

F [m(x) , h(x)] = ∫ x { + a + b + c   −hm+ κ (∇m +…} .dd f0

1

2
m2 1

4
m4 1

6
m6 1

2
)2 (7.8.1)

hm3 m h (∇mm2 )2

m(x) F [m(x) , h(x)] m(x)

am+b +c −h−κ m = 0 .m3 m5 ∇2 (7.8.2)

a > 0 h b > 0 c > 0 m3 m5

(a−κ )m = h ,∇2 (7.8.3)

(q) =  ,m̂
(q)ĥ

a+κq2
(7.8.4)

h(x)

(q) =  ,χ̂
1

a+κq2
(7.8.5)

(q)m̂

m(x)

= ∫ x m(x)dd e−iq⋅x

= ∫ (q)  .
qdd

(2π)d
m̂ eiq⋅x

m(x) = ∫ χ(x − ) h( ) ,ddx′ x′ x′ (7.8.6)

χ(x − ) = ∫  ,x
′ 1

κ

qdd

(2π)d
eiq⋅(x− )x′

+q2 ξ−2
(7.8.7)

ξ = ∝ (T −κ/a
− −−

√ Tc)
−1/2

a < 0 m(x) = +δm(x)m0 h

a+b +cm2
0 m4

0

(a+3b +5c −κ ) δmm2
0 m4

0 ∇2

= 0
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Domain wall profile
A particularly interesting application of Ginzburg-Landau theory is its application toward modeling the spatial profile of defects
such as vortices and domain walls. Consider, for example, the case of Ising ( ) symmetry with . We expand the free energy
density to order :

We assume , corresponding to . Consider now a domain wall, where  and 
, where  is the equilibrium magnetization, which we obtain from the Euler-Lagrange equation,

assuming a uniform solution where . This gives . It is useful to scale  by , writing 

. The scaled order parameter function  interpolates between  and .

It also proves useful to rescale position, writing . Then we obtain

We assume  is only a function of one coordinate, . Then the Euler-Lagrange equation becomes

where

The ‘potential’  is an inverted double well, with maxima at . The equation , where dot denotes
differentiation with respect to , is simply Newton’s second law with time replaced by space. In order to have a stationary solution

at  where , the total energy must be , where . This leads to the first order
differential equation

with solution

Restoring the dimensionful constants,

where the coherence length  diverges at the Ising transition .

Derivation of Ginzburg-Landau free energy

We can make some progress in systematically deriving the Ginzburg-Landau free energy. Consider the Ising model,

where now  and  are the interaction energies and local magnetic fields in units of . The last term
on the RHS above cancels out any contribution from diagonal elements of . Our derivation makes use of a generalization of the
Gaussian integral,

Z2 h = 0
m4

F [m(x)] = ∫ x { + a + b + κ (∇m } .dd f0

1

2
m2 1

4
m4 1

2
)2 (7.8.9)

a < 0 T < Tc m(x → −∞) = −m0

m(x → +∞) = +m0 m0

am+b −κ m = 0 ,m3 ∇2 (7.8.10)

∇m = 0 =m0 |a|/b
− −−−

√ m(x) m0

m(x) = ϕ(x)m0 ϕ(x) ϕ(−∞) = −1 ϕ(+∞) = 1
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1/2

ϕ = −ϕ+  .
1

2
∇

2 ϕ3 (7.8.11)

ϕ(ζ) = ϕ(ζ) ζ ≡ ζ1

= −2ϕ+2 ≡ −  ,
ϕd2

dζ2
ϕ3 ∂U

∂ϕ
(7.8.12)

U(ϕ) = − ( −1  .
1

2
ϕ2 )2

(7.8.13)

U(ϕ) ϕ = ±1 = − (ϕ)ϕ̈ U ′

ζ

ζ → ±∞ ϕ = ±1 E = U(ϕ = ±1) = 0 E = +U(ϕ)1
2
ϕ̇

2
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dζ
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ϕ(ζ) = tanh(ζ) . (7.8.15)
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The generalization is \[\int\limits_{-\infty}^\infty\!\!\!dx\ns_1\cdots\!\!\!\int\limits_{-\infty}^\infty\!\!\!dx\ns_N\> e^{-{1\over 2}
A\ns_{ij} x\ns_ix\ns_j - b\ns_i x\ns_i}={(2\pi)^{N/2}\over \sqrt

\ e^\Tra \bigg[e^\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_1 \cdots\!\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_N\> e^{-{1\over 2}
K^{-1}_{ij}\phi\ns_i\phi\ns_j}\,\Tra e^{(\phi\ns_i+h\ns_i)\sigma\ns_i}\\ &={det}^{-1/2}(2\pi K)\> e^{-{1\over 2}
K\ns_{ii}}\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_1 \cdots\!\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_N\> e^{-{1\over 2}
K^{-1}_{ij}\phi\ns_i\phi\ns_j}\,e^{\sum_i \ln\left[2\cosh(\phi\ns_i+h\ns_i)\right]}\\ &\equiv \int\limits_{-
\infty}^\infty\!\!\!d\phi\ns_1\cdots\!\!\!\int\limits_{-\infty}^\infty\!\!\!d\phi\ns_N\> e^{-\RPhi(\phi\ns_1,\ldots,\phi\ns_N)}\ ,
\end{split}\] where

We assume the model is defined on a Bravais lattice, in which case we can write . We can then define the Fourier
transforms,

and

A few remarks about the lattice structure and periodic boundary conditions are in order. For a Bravais lattice, we can write each
direct lattice vector  as a sum over  basis vectors with integer coefficients, viz.

where  is the dimension of space. The reciprocal lattice vectors  satisfy

and any wavevector  may be expressed as

We can impose periodic boundary conditions on a system of size  by requiring

This leads to the quantization of the wavevectors, which must then satisfy

and therefore  , where  is an integer. There are then  independent values of , which can
be taken to be those corresponding to .

Let’s now expand the function  in powers of the , and to first order in the external fields . We obtain

dx =(  .∫

−∞

∞

e− a −bx1

2
x2 2π

a
)

1/2

e /2ab2

(7.8.18)

Φ = − lncosh( + ) + lndet (2πK) + Tr K−N ln2 .
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μ=1

d
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On a -dimensional lattice, for a model with nearest neighbor interactions  only, we have , where  is a
nearest neighbor separation vector. These are the eigenvalues of the matrix . We note that  is then not positive definite, since
there are negative eigenvalues . To fix this, we can add a term  everywhere along the diagonal. We then have

Here we have used the inversion symmetry of the Bravais lattice to eliminate the imaginary term. The eigenvalues are all positive
so long as , where  is the lattice coordination number. We can therefore write  for small , with 

. Thus, we can write

To lowest order in  the RHS is isotropic if the lattice has cubic symmetry, but anisotropy will enter in higher order terms. We’ll
assume isotropy at this level. This is not necessary but it makes the discussion somewhat less involved. We can now write down
our Ginzburg-Landau free energy density:

valid to lowest nontrivial order in derivatives, and to sixth order in .

One might wonder what we have gained over the inhomogeneous variational density matrix treatment, where we found

Surely we could expand  and obtain a similar expression for . However, such a derivation using the
variational density matrix is only approximate. The method outlined in this section is exact.

Let’s return to our complete expression for :

where

Here we have defined

and

We now want to compute

Φ = ( (q) −1) | + − +O( , )
1

2
∑

q
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−1
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12
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2
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19 K0
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(7.8.26)
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where

We expand the second exponential factor in a Taylor series, allowing us to write

where

and

To evaluate the various terms in the expansion of Equation [ZZZ], we invoke Wick’s theorem, which says

where the sets  are all permutations of the set . In particular, we have

In our case, we have

Thus, if we write  and retain only the quartic term in , we obtain

Note that if we set  to be diagonal, then  and hence  are constant functions of . The  term then vanishes,
which is required since the free energy cannot depend on the diagonal elements of .

Ginzburg criterion

Let us define  to be the usual ( thermodynamic) Helmholtz free energy. Then

where the functional  is of the Ginzburg-Landau form, given in Equation [DWFE]. The integral above is a functional
integral. We can give it a more precise meaning by defining its measure in the case of periodic functions  confined to a
rectangular box. Then we can expand

Z = ∫D\Vphi e− (\Vphi)Φ0 e− v( )∑
R

ϕ
R (7.8.32)

D\Vphi ≡ d d ⋯ d  .ϕ1 ϕ2 ϕN (7.8.33)
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and we define the measure

Note that the fact that  means that . We’ll assume  and  and we’ll explore limit  from
above to analyze the properties of the critical region close to . In this limit we can ignore all but the quadratic terms in , and we
have

Thus,

We now assume that , where  is the dimensionless quantity

known as the reduced temperature.

We now compute the heat capacity . We are really only interested in the singular contributions to , which means
that we’re only interested in differentiating with respect to  as it appears in . We divide by  where  is the number of
unit cells of our system, which we presume is a lattice-based model. Note  where  is the volume and  the lattice
constant. The dimensionless heat capacity per lattice site is then

where  is the correlation length, and where  is an ultraviolet cutoff. We define , in
which case

where . Thus,

For , mean field theory is qualitatively accurate, with finite corrections. In dimensions , the mean field result is
overwhelmed by fluctuation contributions as  ( as ). We see that MFT is sensible provided the fluctuation
contributions are small, provided

which entails , where

m(x) =  ,
1

V
−−

√
∑

q

m̂q e
iq⋅x (7.8.39)

Dm ≡ d dRe d Im  .m0∏
q

>0qx

m̂q m̂q (7.8.40)

m(x) ∈ R =m̂−q m̂
∗
q T > Tc H = 0 T → T +

c

Tc m

e−βA = ∫Dm exp(− β (a+κ ) | )
1

2
∑

q

q2 m̂q|2

= (  .∏
q

π TkB

a+κ q2
)

1/2

A = T ln( ) .
1

2
kB ∑

q

a+κ q2

π TkB

(7.8.41)

a(T ) = αt t

t =  ,
T −Tc

Tc
(7.8.42)

= −TCV
A∂

2

∂T 2 CV

T a(T ) N
S
kB N

S

∼ V /N
S

a
d V a

c ≡ =  ,
CV

N
S

α2
a
d

2κ2
∫

Λ
qdd

(2π)d
1

( +ξ−2 q2)2
(7.8.43)

ξ = (κ/αt ∝ |t)1/2 |−1/2 Λ ∼ a−1 ≡ (κ/αR∗ )1/2

c = ⋅  ,R−4
∗ a

d ξ4−d 1

2
∫

Λξ

ddq̄

(2π)d
1

(1 + q̄ 2)2
(7.8.44)

≡ qξq̄

c(t) ∼
⎧

⎩
⎨
⎪

⎪

const.
− ln t

t −2
d

2

if d > 4
if d = 4

if d < 4 .

(7.8.45)

d > 4 d ≤ 4
t → 0+ T → T +

c

≪ 1 ,R−4
∗ a

d ξ4−d (7.8.46)

t\gg t\ns_\ssr{G}

t\ns_\ssr{G}=\bigg({\Sa\over R\ns_*}\bigg)^{\!{2d\over 4-d}}
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is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely , is known as
the Ginzburg criterion. The region  is known as the critical region.

In a lattice ferromagnet, as we have seen,  is on the scale of the lattice spacing itself, hence  and the
critical regime is very large. Mean field theory then fails quickly as . In a (conventional) three-dimensional superconductor,

 is on the order of the Cooper pair size, and , hence  is
negligibly narrow. The mean field theory of the superconducting transition – BCS theory – is then valid essentially all the way to 

.

This page titled 7.8: Ginzburg-Landau Theory is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.

t\gg t\ns_\ssr{G}
|t|<t\ns_\ssr{G}

∼ aR∗ t\ns_\ssr{G}\sim 1
T → Tc

R∗ /a ∼ −R∗ 102 103 t\ns_\ssr{G}=(a/R\ns_*)^6\sim 10^{-18} - 10^{-12}

T = Tc
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7.9: Appendix I- Equivalence of the Mean Field Descriptions
In both the variational density matrix and mean field Hamiltonian methods as applied to the Ising model, we obtained the same result . What is perhaps not obvious is whether
these theories are in fact the same, if their respective free energies agree. Indeed, the two free energy functions,

where  is the variational density matrix result and  is the mean field Hamiltonian result, clearly are different functions of their arguments. However, it turns out that upon
minimizing with respect to  in each cast, the resulting free energies obey . This agreement may seem surprising. The first method utilizes an approximate
(variational) density matrix applied to the exact Hamiltonian . The second method approximates the Hamiltonian as , but otherwise treats it exactly. The two Landau expansions
seem hopelessly different:

We shall now prove that these two methods, the variational density matrix and the mean field approach, are in fact equivalent, and yield the same free energy .

Let us generalize the Ising model and write

Here, each ‘spin’  may take on any of  possible values, . For the  Ising model, we would have  possibilities, with , , and . But the set ,
with , is completely arbitrary . The ‘local field’ term  is also a completely arbitrary function. It may be linear, with , for example, but it could also contain terms
quadratic in , or whatever one desires.

The symmetric, dimensionless interaction function  is a real symmetric  matrix. According to the singular value decomposition theorem, any such matrix may be written in
the form

where the  are coefficients (the singular values), and the  are the singular vectors. The number of terms  in this decomposition is such that . This treatment can be
generalized to account for continuous .

Variational Density Matrix
The most general single-site variational density matrix is written

Thus,  is the probability for a given site to be in state , with . The  are the  variational parameters, subject to the single normalization constraint, . We now have

where . We extremize in the usual way, introducing a Lagrange undetermined multiplier  to enforce the constraint. This means we extend the function , writing

and freely extremizing with respect to the  parameters . This yields  nonlinear equations,

for each , and one linear equation, which is the normalization condition,

We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them, as

with

From the logarithm of , we may compute the entropy, and, finally, the free energy:

which is to be evaluated at the solution of [nonla], 

Mean Field Approximation

We now derive a mean field approximation in the spirit of that used in the Ising model above. We write

and abbreviate , the thermodynamic average of  on any given site. We then have

m = tanh((m +h)/θ)

\begin{split} f\nd_\ssr{A}(m,h,\theta)&=-\half\,m^2 -h m + \theta\> \bigg\{\bigg({1+m\over 2}\bigg) \ln \bigg({1+m\over 2}\bigg) +\bigg({1- m\over 2}\bigg) \ln \bigg({1-m\over 2}\bigg) \bigg\}\\ f\nd_\ssr{B}(m,h,\theta)&

f\ns_\ssr{A} f\ns_\ssr{B}
m f\nd_\ssr{A}(h,\theta)=f\nd_\ssr{B}(h,\theta)

Ĥ \HH\ns_\ssr{MF}

\begin{split} f\nd_\ssr{A}(m,h,\theta)&=-\theta\,\ln 2 - hm +\half\, (\theta-1) \,m^2 + \frac{\theta}{12}\,m^4 + \frac{\theta}{30}\,m^6 + \ldots\vph\\ f\nd_\ssr{B}(m,h,\theta)&=-\theta\,\ln 2 + \half m^2 - {(m+h)^2\over 2\,\th

f(h, θ)
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1

θ
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xα
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1
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α′ xα x
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The product  is of second order in fluctuations, and we neglect it. This leads us to the mean field Hamiltonian,

The free energy is then

The variational parameters are the mean field values .

The single site probabilities  are then

with  implied by the normalization . These results reproduce exactly what we found in Equation [nonla], since the mean field equation here, , yields

The free energy is immediately found to be

which again agrees with what we found using the variational density matrix.

Thus, whether one extremizes with respect to the set , or with respect to the set , the results are the same, in terms of all these parameters, as well as the free energy .
Generically, both approaches may be termed ‘mean field theory’ since the variational density matrix corresponds to a mean field which acts on each site independently .

This page titled 7.9: Appendix I- Equivalence of the Mean Field Descriptions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.
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7.10: Appendix II- Additional Examples

Blume-Capel model

The Blume-Capel model provides a simple and convenient way to model systems with vacancies. The simplest version of the model is written

The spin variables  range over the values , so this is an extension of the  Ising model. We explicitly separate out the diagonal terms, writing , and placing them in the
second term on the RHS above. We say that site  is occupied if  and vacant if , and we identify  as the vacancy creation energy, which may be positive or negative, depending on
whether vacancies are disfavored or favored in our system.

We make the mean field Ansatz, writing . This results in the mean field Hamiltonian,

Once again, we adimensionalize, writing , , and . We assume . The free energy per site is then

Extremizing with respect to , we obtain the mean field equation,

Note that  is always a solution. Finding the slope of the RHS at  and setting it to unity gives us the critical temperature:

This is an implicit equation for  in terms of the vacancy energy .

[blume] Mean field phase diagram for the Blume-Capel model. The black dot signifies a tricritical point, where the coefficients of  and  in the Landau free energy expansion both vanish. The
dashed curve denotes a first order transition, and the solid curve a second order transition. The thin dotted line is the continuation of the  relation to zero temperature.

Let’s now expand the free energy in terms of the magnetization . We find, to fourth order,

Note that setting the coefficient of the  term to zero yields the equation for . However, upon further examination, we see that the coefficient of the  term can also vanish. As we have seen,
when both the coefficients of the  and the  terms vanish, we have a tricritical point . Setting both coefficients to zero, we obtain

At , it is easy to see we have a first order transition, simply by comparing the energies of the paramagnetic ( ) and ferromagnetic (  or ) states. We have

These results are in fact exact, and not only valid for the mean field theory. Mean field theory is approximate because it neglects fluctuations, but at zero temperature, there are no fluctuations to
neglect!

The phase diagram is shown in Figure [blume]. Note that for  large and negative, vacancies are strongly disfavored, hence the only allowed states on each site have , which is our old friend
the two-state Ising model. Accordingly, the phase boundary there approaches the vertical line , which is the mean field transition temperature for the two-state Ising model.

Ising antiferromagnet in an external field
Consider the following model:

with  and . We’ve solved for the mean field phase diagram of the Ising ferromagnet; what happens if the interactions are antiferromagnetic?

It turns out that under certain circumstances, the ferromagnet and the antiferromagnet behave exactly the same in terms of their phase diagram, response functions, This occurs when , and when
the interactions are between nearest neighbors on a bipartite lattice. A bipartite lattice is one which can be divided into two sublattices, which we call A and B, such that an A site has only B
neighbors, and a B site has only A neighbors. The square, honeycomb, and body centered cubic (BCC) lattices are bipartite. The triangular and face centered cubic lattices are non-bipartite. Now if the
lattice is bipartite and the interaction matrix  is nonzero only when  and  are from different sublattices (they needn’t be nearest neighbors only), then we can simply redefine the spin variables
such that

Then , and in terms of the new spin variables the exchange constant has reversed. The thermodynamic properties are invariant under such a redefinition of the spin variables.

We can see why this trick doesn’t work in the presence of a magnetic field, because the field  would have to be reversed on the B sublattice. In other words, the thermodynamics of an Ising
ferromagnet on a bipartite lattice in a uniform applied field is identical to that of the Ising antiferromagnet, with the same exchange constant (in magnitude), in the presence of a staggered field 

 and .

We treat this problem using the variational density matrix method, using two independent variational parameters  and  for the two sublattices:

= − +Δ  .Ĥ
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θ = 0 = 0Si = +1Si = −1Si

{E\ns_\ssr{MF}\over N\jhz}=\begin{cases} 0 & {if}\ m=0 \\ \half-\RDelta & {if}\ m=\pm 1\ . \end{cases}
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With the usual adimensionalization, , , and , we have the free energy

where the entropy function is

Note that

[affgraph] Graphical solution to the mean field equations for the Ising antiferromagnet in an external field, here for . Clockwise from upper left: (a) , (b) , (c) , (d) 
.

Differentiating  with respect to the variational parameters, we obtain two coupled mean field equations:

Recognizing , we may write these equations in an equivalent but perhaps more suggestive form:

In other words, the A sublattice sites see an internal field  from their B neighbors, and the B sublattice sites see an internal field  from their A
neighbors.

We can solve these equations graphically, as in Figure [affgraph]. Note that there is always a paramagnetic solution with , where

However, we can see from the figure that there will be three solutions to the mean field equations provided that  at the point of the solution where . This gives
us two equations with which to eliminate  and , resulting in the curve

Thus, for  and  there are three solutions to the mean field equations. It is usually the case, the broken symmetry solutions, which mean those for which  in our case, are
of lower energy than the symmetric solution(s). We show the curve  in Figure [affpd].

[affpd] Mean field phase diagram for the Ising antiferromagnet in an external field. The phase diagram is symmetric under reflection in the  axis.

We can make additional progress by defining the average and staggered magnetizations  and ,

We expand the free energy in terms of :

The term quadratic in  vanishes when , when . It is easy to obtain

from which we learn that the coefficient of the quartic term, , never vanishes. Therefore the transition remains second order down to , where it finally becomes first order.

We can confirm the  limit directly. The two competing states are the ferromagnet, with , and the antiferromagnet, with . The free energies of these states are

There is a first order transition when , which yields .

Canted quantum antiferromagnet

Consider the following model for quantum  spins:

\begin{split} \vrh_\ssr{A}(\sigma)&={1+\msa\over 2} \> \delta\ns_{\sigma,1} + {1-\msa\over 2} \> \delta\ns_{\sigma,-1}\\ \vrh_\ssr{B}(\sigma)&={1+\msb\over 2} \> \delta\ns_{\sigma,1} + {1-\msb\over 2} \> \delta\ns_{\

f = F/NzJ θ = T/zJkB h = H/zJ
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where  is the vector of Pauli matrices on site . The spins live on a square lattice. The second sum is over all square plaquettes. All the constants , , and  are positive.

Let’s take a look at the Hamiltonian for a moment. The  term clearly wants the spins to align ferromagnetically in the  plane (in internal spin space). The  term prefers antiferromagnetic
alignment along the  axis. The  term discourages any kind of moment along  and works against the  term. We’d like our mean field theory to capture the physics behind this competition.

Accordingly, we break up the square lattice into two interpenetrating  square sublattices (each rotated by  with respect to the original), in order to be able to describe an antiferromagnetic
state. In addition, we include a parameter  which describes the canting angle that the spins on these sublattices make with respect to the -axis. That is, we write

Note that  so these density matrices are normalized. Note also that the mean direction for a spin on the A and B sublattices is given by

Thus, when , the system is an antiferromagnet with its staggered moment lying along the  axis. When , the system is a ferromagnet with its moment lying along the  axis.

Finally, the eigenvalues of  are still , hence

Note that we have taken , unlike the case of the antiferromagnet in a uniform field. The reason is that there remains in our model a symmetry between A and B
sublattices.

The free energy is now easily calculated:

We can adimensionalize by defining , , and . Then the free energy per site is  is

There are two variational parameters:  and . We thus obtain two coupled mean field equations,

Let’s start with the second of the mean field equations. Assuming , it is clear from Equation [cantedferg] that

Suppose . Then we have  and the first mean field equation yields the familiar result

Along the  axis, then, we have the usual ferromagnet-paramagnet transition at .

[cantpd] Mean field phase diagram for the model of Equation [cantham] for the case .

For  we have canting with an angle \[\alpha=\alpha^*(m)=\cos^{-1}\sqrt

\ .\] Substituting this into the first mean field equation, we once again obtain the relation . However, eventually, as  is increased, the magnetization will dip below the value 
. This occurs at a dimensionless temperature \[\theta\ns_0={m\ns_0\over\tanh^{-1}(m\ns_0)} < 1\qquad;\qquad m\ns_0=\sqrt\ .\] For , we have , and we must

take . The first mean field equation then becomes

or, equivalently, . A simple graphical analysis shows that a nontrivial solution exists provided . Since , this solution describes an antiferromagnet, with 
 and . The resulting mean field phase diagram is then as depicted in Figure [cantpd].

Coupled order parameters

Consider the Landau free energy

We write

where

where  is some temperature scale. We assume without loss of generality that . We begin by rescaling:

σi i J Δ K

J (x, y) Δ
ẑ K ẑ Δ

×2
–

√ 2
–

√ 45∘

α x̂

\begin{split} \vrh\ns_\ssr{A}&=\half + \half m\,\big(\sin\alpha\>\sigma^x +\cos\alpha\>\sigma^z )\\ \vrh\ns_\ssr{B}&=\half + \half m\,\big(\sin\alpha\>\sigma^x - \cos\alpha\>\sigma^z )\ .\vph \end{split}

\Tra\vrh\ns_\ssr{A}=\Tra\vrh\ns_\ssr{B}=1

\Bm\ns_\ssr{A,B}=\Tra(\vrh\ns_\ssr{A,B}\,\Bsigma)=\pm\, m\cos\alpha\,\HBz + m\sin\alpha\>\HBx\ .
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2
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m = tanh(m/θ) . (7.10.16)
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m = tanh((δm−κ )/θ)m3 θ < δ cosα = ±1
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We then have

where

It proves convenient to perform one last rescaling, writing

Then

where

Note that we may write

The eigenvalues of the above  matrix are , with corresponding eigenvectors . Since , we are only interested in the first eigenvector , corresponding to the eigenvalue .
Clearly when  the free energy is unbounded from below, which is unphysical.

We now set

and identify four possible phases:

Phase I : , . The free energy is .
Phase II :  with . The free energy is

hence we require  in this phase, in which case

Phase III :  with . The free energy is

hence we require  in this phase, in which case

Phase IV :  and . Varying  yields

with solution

Since  and  must each be nonnegative, phase IV exists only over a yet-to-be-determined subset of the entire parameter space. The free energy is

We now define  and . Note that . There are three possible temperature ranges to consider.

. The only possible phases are I and IV. For phase IV, we must impose the conditions  and . If , then the numerators in eqns. [IVab] must each be positive:

But since either  or its inverse must be less than or equal to unity, this requires , which is unphysical.

If on the other hand we assume , the non-negativeness of  and  requires

Thus,  and we have a contradiction.

Therefore, the only allowed phase for  is phase I.
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f(m,φ) = ( )( )( )+ ( )( )  .
ε0

4
m

2 φ2 1

λ

λ

1

m
2

φ2

ε0

2
m

2 φ2
q θm

q−1 θϕ
(7.10.27)

2 ×2 1 ±λ ( )1
±1

> 0φ2 ( )1
1

1 +λ

λ < 1

= 0 , = 0 ,
∂f

∂m

∂f

∂φ
(7.10.28)

m = 0 φ = 0 f\ns_\ssr{I}=0
m ≠ 0 φ = 0

f = (q + ) ,
ε0

2
θm m

2 1

2
m

4 (7.10.29)
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. Now the possible phases are I, II, and IV. We can immediately rule out phase I because . To compare phases II and IV, we compute

Thus, phase II has the lower energy if . For , phase IV has the lower energy, but the conditions  and  then entail

Thus,  is restricted to the range

With  and , the condition  is found to be

Thus, phase IV exists and has lower energy when

where .
. In this regime, any phase is possible, however once again phase I can be ruled out since phases II and III are of lower free energy. The condition that phase II have lower free energy

than phase III is

, which means . If  this is true for all , while if  phase II is lower in energy only for .

[FcoupledLandau] Phase diagram for ,  (top) and ,  (bottom). The hatched purple region is unphysical, with a free energy unbounded from below. The blue lines
denote second order transitions. The thick red line separating phases II and III is a first order line.

We next need to test whether phase IV has an even lower energy than the lower of phases II and III. We have

In both cases, phase IV can only be the true thermodynamic phase if . We then require  and , which fixes

The upper limit will be the first term inside the rounded brackets if , if . This is impossible if , hence the upper limit is given by the second term in the rounded
brackets:

If , then the upper limit will be  if , and will be  if .

Representative phase diagrams for the cases  and  are shown in Figure [FcoupledLandau].

1. There is always a solution to  at .↩
2. Don’t confuse the molar free energy ( ) with the number of molecular degrees of freedom ( )!↩
3. Johannes Diderik van der Waals, the eldest of ten children, was the son of a carpenter. As a child he received only a primary school education. He worked for a living until age 25, and was able to

enroll in a three-year industrial evening school for working class youth. Afterward he continued his studies independently, in his spare time, working as a teacher. By the time he obtained his PhD,
he was 36 years old. He received the Nobel Prize for Physics in 1910.↩

4. See www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf↩
5. One could equally well identify the second correspondence as  between density (rather than specific volume) and magnetization. One might object that  is more properly analogous to 

. However, since  it can equally be regarded as analogous to . Note also that  for the ideal gas, in which case  is proportional to .↩
6. Note the distinction between the number of lattice sites  and the number of occupied cells . According to our definitions, .↩
7. In the third of the following exponent equalities,  is the dimension of space and  is the correlation length exponent.↩
8. A Bravais lattice is one in which any site is equivalent to any other site through an appropriate discrete translation. Examples of Bravais lattices include the linear chain, square, triangular, simple

cubic, face-centered cubic, lattices. The honeycomb lattice is not a Bravais lattice, because there are two sets of inequivalent sites – those in the center of a Y and those in the center of an upside
down Y.↩

9. To obtain this result, one writes  and then differentiates twice with respect to , using the chain rule. Along the way, any naked ( undifferentiated) term proportional to  may be
dropped, since this vanishes at any  by the mean field equation.↩

10. Pierre Curie was a pioneer in the fields of crystallography, magnetism, and radiation physics. In 1880, Pierre and his older brother Jacques discovered piezoelectricity. He was 21 years old at the
time. It was in 1895 that Pierre made the first systematic studies of the effects of temperature on magnetic materials, and he formulated what is known as Curie’s Law, , where  is a
constant. Curie married Marie Sklodowska in the same year. Their research turned toward radiation, recently discovered by Becquerel and Röntgen. In 1898, Pierre and Marie Curie discovered
radium. They shared the 1903 Nobel Prize in Physics with Becquerel. Marie went on to win the 1911 Nobel Prize in Chemistry and was the first person ever awarded two Nobel Prizes. Their
daughter Irène Joliot Curie shared the 1935 Prize in Chemistry (with her husband), also for work on radioactivity. Pierre Curie met an untimely and unfortunate end in the Spring of 1906. Walking
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across the Place Dauphine, he slipped and fell under a heavy horse-drawn wagon carrying military uniforms. His skull was crushed by one of the wagon wheels, killing him instantly. Later on that
year, Pierre-Ernest Weiss proposed a modification of Curie’s Law to account for ferromagnetism. This became known as the Curie-Weiss law, .↩

11. The self-interaction terms with  contribute a constant to  and may be either included or excluded. However, this property only pertains to the  model. For higher spin versions of
the Ising model, say where , then  is not constant and we should explicitly exclude the self-interaction terms.↩

12. The sum in the discrete Fourier transform is over all ‘direct Bravais lattice vectors’ and the wavevector  may be restricted to the ‘first Brillouin zone’. These terms are familiar from elementary
solid state physics.↩

13. How do we take the logarithm of a matrix? The rule is this:  if . The exponential of a matrix may be evaluated via its Taylor expansion.↩
14. The denominator of  in the measure is not necessary, and in fact it is even slightly cumbersome. It divides out whenever we take a ratio to compute a thermodynamic average. I introduce this

factor to preserve the relation . I personally find unnormalized traces to be profoundly unsettling on purely aesthetic grounds.↩
15. Note that the coefficient of the quartic term in  is negative for . At , the coefficient is positive, but for larger  one must include higher order terms in the Landau expansion.↩
16. It is always the case that  is bounded from below, on physical grounds. Were  negative, we’d have to consider higher order terms in the Landau expansion.↩
17. We needn’t waste our time considering the  solution, since the cubic term prefers positive .↩
18. There is a sign difference between the particle susceptibility defined in chapter 6 and the spin susceptibility defined here. The origin of the difference is that the single particle potential  as

defined was repulsive for , meaning the local density response  should be negative, while in the current discussion a positive magnetic field  prefers .↩
19. To evoke a negative eigenvalue on a -dimensional cubic lattice, set  for all . The eigenvalue is then .↩
20. It needn’t be an equally spaced sequence, for example.↩
21. The function  may involve one or more adjustable parameters which could correspond, for example, to an external magnetic field . We suppress these parameters when we write the free

energy as .↩
22. We should really check that the coefficient of the sixth order term is positive, but that is left as an exercise to the eager student.↩
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7.S: Summary
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Summary

 van der Waals system: The van der Waals equation of state may be written , where  is the molar volume.
Comparing with the ideal gas law , the vdW equation accounts for (i) an excluded volume effect due to finite molecular
size, and (ii) a long-distance attraction between molecules. The energy per mole is , where  is the number
of independent quadratic terms in the individual molecular Hamiltonian.

o3in

At fixed ,  is monotonic and decreasing for . For  , the pressure is no longer monotonic, and 
 vanishes at two points . For , the isothermal compressibility  is negative, indicating an

absolute thermodynamic instability. From  and , one can derive the molar free energy

where  is a constant. Analyzing , one finds an even wider range of instability applies, with  , where
the extremal liquid and gas volumes are determined by the coupled equations

The Maxwell construction extends  by a straight line connecting  and , resulting in the isotherms in Fig.
[vdwiso]. This corresponds to a two phase region in which the homogeneous phase is unstable, either to nucleation, which requires
surmounting an energy barrier, or spinodal composition, which is a spontaneous process.

 Lattice gas model: For interactions consisting of a hard core and a weakly attractive tail, such as the Lennard-Jones potential, one
can imagine discretizing space into unit cells on the scale of the core size . Each cell  can then accommodate either zero or one
particle. The resulting Hamiltonian is an Ising ferromagnet,
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with , , and . The correspondences between the ferromagnet and the
liquid-gas system are then  (or ) , with  the magnetization per site, and  (or ) . The isothermal
compressibility  is analogous to the isothermal magnetic susceptibility . At the critical point,  

. See Fig. [magPD].

o3in

 Mean field theory: Consider the Ising model, . On each site , write , where 
. Then , and neglecting the term quadratic in the fluctuations, we arrive at the

mean field Hamiltonian,

where  is the lattice coordination number. This corresponds to independent spins in an effective field . For
noninteracting spins in an external field, we have ,

which is a self-consistent equation for . This equation also follows from extremizing the mean field free energy, given by 
. It is convenient to dimensionalize by writing , , and .

Then

where the second line is an expansion for small  and . The dimensionless mean field equation is .
When , we have , and for  , where  ( ), there is only one solution at . For 

 , there are two additional broken symmetry solutions at  , and one can check that they correspond to minima in
the free energy, whereas  is a local maximum. Just below , one finds , where  is
the mean field order parameter exponent.

An order parameter is a quantity which vanishes throughout a disordered phase, usually at high temperature, but which
spontaneously breaks a global symmetry to take a finite value in the ordered phase. For the Ising ferromagnet, the order parameter
is , the local magnetization. The global symmetry of the Ising model in zero external field is the  symmetry associated with
flipping all the spins:  for all . An external field explicitly breaks this symmetry. For a given system, there may be
several distinct ordered phases and a cascade of symmetry-breaking transitions as temperature is lowered.

Again setting , we see that , while  just below the transition. Thus, there is a

jump in the specific heat  at the transition, with . Very close to the transition, we therefore have 

, where the mean field value of the exponent is .

As we increase  from zero, two of the solutions merge and eventually annihilate at , leaving a unique solution for 
, as depicted in Fig. [IPD]. For small  and ,, setting , we obtain . Thus, when  is

just above , we have , hence the susceptibility is , where  is the mean field
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susceptibility exponent. The same power law behavior is found for  ; one finds . Finally, if we fix 

, we have  with . The quantities , , , and  are critical exponents for the Ising transition. Mean
field theory becomes exact when the number of neighbors is infinite, which arises in two hypothetical settings: (i) infinite range
interactions, or (ii) infinite spatial dimension.

A phenomenological model for magnetization dynamics takes  , so  is dissipatively driven to a local minimum of the
free energy. This is a simple dynamical system with control parameters . For , the point  corresponds to a
supercritical pitchfork bifurcation, and more generally there is an imperfect bifurcation everywhere along the curve ,
defined by the simultaneous vanishing of both  and , corresponding to the dashed green curve in Fig. [IPD]. This
leads to the phenomenon of hysteresis: a protocol in which the control parameters cross both branches of this curve is irreversible.

Phase diagram for the Ising ferromagnet. In the hatched blue region, the mean field equations have three solutions. Along the
boundary dashed green line, where is a saddle-node bifurcation so that there is a unique solution to the MF equations in the white
region. The thermodynamic properties are singular, with discontinuous magnetization, along the solid black line, which terminates
in the critical point at .

 Variational density matrix: The free energy is given by . Extremizing  with respect to  subject
to the normalization condition  yields the equilibrium Gibbs distribution . Any distribution other than that
of Gibbs will yield a larger value of . Therefore, we can construct a variational Ansatz for  and minimize  with respect to its
variational parameters. For example, in the case of the Ising model  , then assuming translational
invariance , we write  , with

Adimensionalizing by writing  and  with  , one finds the variational free energy is

Extremizing with respect to  yields the same equation as before: . One can prove that this variational
density matrix formulation of mean field theory yields identical results to the "neglect of fluctuations" method described above.

 Landau theory of phase transitions: The basic idea is to write a phenomenological expansion of the free energy in powers of the
order parameter(s) of a system, with coefficients depending on quantities such as temperature and field, and keeping terms only up
to some low order. On then analyzes how the minima of the resulting finite degree polynomial behave as a function of these
coefficients. The simplest case is that of a model with Ising symmetry, where the order parameter is a real scalar quantity . One
writes

with  for stability. Extremizing with respect to  yields . For  there is a unique solution to this
equation for , but for  there are three roots when , with . For , one has 

 and . Thus,  is the critical point in zero field.

o3in
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For certain systems, such as the liquid-gas transition, there is no true Ising symmetry between the two homogeneous phases. The
order parameter, which can taken to be proportional to the density relative to that at the critical point, is again a real scalar. With no 

 symmetry, we write

with  and . Extremizing yields  , which has three roots, one at  and the other two at 

. The situation is as depicted in Fig. [quartic]. For  only the  root is real. For 

, all three roots are real, but the minimum of  remains at . For , all three roots are real, with a
global minimum at  and a local one at . Thus, along the curve , there is a discontinuous change in the
order parameter, between  and , which is the hallmark of a first order phase transition. Note that this occurs for 

, before the coefficient of the quadratic term in  has changed sign. One says in this case that the first order transition
preempts the second order one.

 Mean field theory of fluctuations: For the Ising model,  , now with local fields  , the local

magnetization is . The susceptibility, given by , is an example of a thermodynamic response

function. In equilibrium, it is related to the correlation function,

with . Within mean field theory, this relation no longer applies, and it is the response functions which are more
accurately represented: the usual MF description treats each site as independent, hence  (!) To compute 

, take a variational density matrix which is a product of single-site ones, as above, where the local magnetization
is . Extremizing the resulting free energy with respect to each  yields a set of coupled nonlinear equations,

Expanding for small fields and magnetizations, one obtains  , hence .

For translationally invariant systems, the eigenvectors of the matrix  are plane waves , and one has

where . The mean field value of  is then , where  is the ordering wavevector which
maximizes . For a ferromagnet, which is dominated by positive values of , one has , and expanding about this point

one may write  , in which case  at long wavelengths, which is of the Ornstein-
Zernike (OZ) form.

 Global symmetries: A global symmetry is an operation carried out equally at every point in space (continuous systems) or in
every unit cell of the lattice (discrete systems) such that the Hamiltonian is left invariant. The symmetry operations comprise a
group . In the absence of a symmetry-breaking external field, Ising systems have symmetry group . The -state clock model
has symmetry group . The -state Potts model has symmetry group  (the permutation group on  elements). In each of these
cases, the group  is discrete. Examples of models with continuous symmetries include the  model ( ), the
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Heisenberg model (  or ), the Standard Model of particle physics ( ), Depending on
whether  is discrete or continuous, and on the dimension of space, there may be no ordered phase possible. The lower critical
dimension  of a model is the dimension at or below which there is no spontaneous symmetry breaking at any finite temperature.
For systems with discrete global symmetries, . For systems with continuous global symmetries, . The upper critical
dimension  is the dimension above which mean field exponents are exact. This depends on structure of the model itself, and not
all models have a finite upper critical dimension.

o3in

 Random systems: A system with quenched randomness orders in a different way than a pure one. Typically the randomness may
be modeled as a weak symmetry breaking field that is spatially varying, but averages to zero on large scales. Imry and Ma (1975)
reasoned that such a system could try to lower its energy by forming domains in which the order parameter takes advantage of local
fluctuations in the random field. If the size of these domains is , then the rms fluctuations of the random field integrated over a
single domain are proportional to , where  is the dimension of space. By aligning the order parameter in each domain with
the direction of the average field therein, one lowers the energy by  per domain, where  is a
microscopic length. The surface energy of a single domain is , where  if the global symmetry is
discrete and  if it is continuous. This follows from a simple calculation of the associated domain wall energy. Dividing by the
number of atoms (or unit cells) in a domain , one obtains the energy density,

For  the surface term  dominates for small  and the bulk term for large . The energy has a minimum at 
. Thus, for  the ordered state is always unstable to domain formation in the presence of a

random field. For , the relevant dominance of the two terms is reversed, and the minimum becomes a maximum. There are
then two possibilities, depending on the relative size of  and . The smallest allowed value for  is the lattice scale , in
which case . Comparing with , we see that if the random field is weak, so , the
minimum energy state occurs for , the system has an ordered ground state. We then expect a finite critical temperature 

 for a transition to a high  disordered state. If on the other hand the random field is strong and , then the energy
is minimized for , meaning the ground state of the system is disordered down to the scale of the lattice spacing. In this case
there is no longer any finite temperature phase transition, because there is no ordered phase.

 Ginzburg-Landau theory: Allow the order parameter to vary in space. The free energy is then a functional of :

Extremize  by setting the functional derivative  to zero, resulting in

For  and small  (take ) then  is small, and one has , hence , which is
of the OZ form. If , write , and for small  find  and .
Deeper in the ordered ( ) phase, and for , one can envisage a situation where  interpolates between the two
degenerate values . Assuming the variation occurs only along one direction, one can solve  to
obtain , where the coherence length is .
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 Ginzburg criterion: The actual Helmholtz free energy, which we will here call , is obtained by performing a
functional integral over the order parameter field. The partition function is . Near , we are
licensed to keep only up to quadratic terms in  and its gradients in , resulting in

Let  with  , and let  be the microscopic (lattice) cutoff. The specific heat is then (for ):

with .

The upper critical dimension is . For , mean field theory is qualitatively accurate, with finite corrections. In
dimensions , the mean field result is overwhelmed by fluctuation contributions as  ( as ). We see that MFT
is sensible provided the fluctuation contributions are small, provided

with , which entails  , where

is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely  , is known as
the Ginzburg criterion. The region  is known as the critical region. In a lattice ferromagnet,  is on the scale of
the lattice spacing itself, hence  and the critical regime is very large. Mean field theory then fails quickly as 

. In a (conventional) three-dimensional superconductor,  is on the order of the Cooper pair size, and ,
hence  is negligibly narrow. The mean field theory of the superconducting transition –
BCS theory – is then valid essentially all the way to .
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8.1: Equilibrium, Nonequilibrium and Local Equilibrium
Classical equilibrium statistical mechanics is described by the full -body distribution,

We assume a Hamiltonian of the form

typically with , only two-body interactions. The quantity

is the probability, under equilibrium conditions, of finding  particles in the system, with particle #1 lying within  of  and
having momentum within  of , The temperature  and chemical potential  are constants, independent of position. Note
that  is dimensionless.

Nonequilibrium statistical mechanics seeks to describe thermodynamic systems which are out of equilibrium, meaning that the
distribution function is not given by the Boltzmann distribution above. For a general nonequilibrium setting, it is hopeless to make
progress – we’d have to integrate the equations of motion for all the constituent particles. However, typically we are concerned
with situations where external forces or constraints are imposed over some macroscopic scale. Examples would include the
imposition of a voltage drop across a metal, or a temperature differential across any thermodynamic sample. In such cases,
scattering at microscopic length and time scales described by the mean free path  and the collision time  work to establish local
equilibrium throughout the system. A local equilibrium is a state described by a space and time varying temperature  and
chemical potential . As we will see, the Boltzmann distribution with  and  will not be a solution to
the evolution equation governing the distribution function. Rather, the distribution for systems slightly out of equilibrium will be of
the form , where  describes a state of local equilibrium.

We will mainly be interested in the one-body distribution

In this chapter, we will drop the  normalization for phase space integration. Thus,  has dimensions of , and 
 is the average number of particles found within  of  and  of  at time .

In the GCE, we sum the RHS above over . Assuming  so that there is no one-body potential to break translational
symmetry, the equilibrium distribution is time-independent and space-independent:

where  or  is the particle density in the OCE or GCE. From the one-body distribution we can compute
things like the particle current, , and the energy current, :

where . Clearly these currents both vanish in equilibrium, when , since  depends only on  and
not on the direction of . In a steady state nonequilibrium situation, the above quantities are time-independent.

N

( , … , ; , … , ) =f 0
x1 xN p1 pN

⎧

⎩
⎨
⎪⎪

⎪⎪

⋅Z−1
N

1
N !

e−β (p,x)ĤN

⋅Ξ−1 1
N !

eβμNe−β (p,x)ĤN

OCE

GCE .

(8.1.1)

= + v( ) + u( − ),ĤN ∑
i=1

N p2
i

2m
∑
i=1

N

xi ∑
i<j

N

xi xj (8.1.2)

v= 0

( , … , ; , … , ) ⋯f 0 x1 xN p1 pN
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dp1

hd

ddx
N
ddp
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f(r, p; t) = ⟨ δ( (t) −r) δ( (t) −p) ⟩∑
i=1

N

xi pi
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N

ddxi d
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N v= 0
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j jε
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Thermodynamics says that

where , , and  are entropy density, energy density, and particle density, respectively, and  is the differential heat density. This
relation may be case as one among the corresponding current densities:

Thus, in a system with no particle flow,  and the heat current  is the same as the energy current .

When the individual particles are not point particles, they possess angular momentum as well as linear momentum. Following
Lifshitz and Pitaevskii, we abbreviate  for these two variables for the case of diatomic molecules, and 

 in the case of spherical top molecules, where  is the symmetry axis of the top. We then have, in 
dimensions,

where . We will call the set  the ‘kinematic variables’. The instantaneous number density at  is then

One might ask why we do not also keep track of the angular orientation of the individual molecules. There are two reasons. First,
the rotations of the molecules are generally extremely rapid, so we are justified in averaging over these motions. Second, the
orientation of, say, a rotor does not enter into its energy. While the same can be said of the spatial position in the absence of
external fields, (i) in the presence of external fields one must keep track of the position coordinate  since there is physical
transport of particles from one region of space to another, and (iii) the collision process, which as we shall see enters the dynamics
of the distribution function, takes place in real space.

This page titled 8.1: Equilibrium, Nonequilibrium and Local Equilibrium is shared under a CC BY-NC-SA license and was authored, remixed,
and/or curated by Daniel Arovas.

dq = T ds = dε−μdn , (8.1.5)

s ε n dq

= T = −μ j .jq js jε (8.1.6)

j = 0 jq jε

Γ = (p, L)

Γ = (p, L, ⋅ L)n̂ n̂ d = 3

dΓ =
⎧

⎩
⎨
⎪

⎪

pd3

p LdLdd3 ΩL

p dLd d cosϑd3 L2 ΩL

point particles
diatomic molecules

symmetric tops ,

(8.1.7)

ϑ = ( ⋅ )cos−1 n̂ L̂ Γ r

n(r, t) = ∫ dΓf(r, Γ; t) . (8.1.8)
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8.2: Boltzmann Transport Theory

Derivation of the Boltzmann equation

For simplicity of presentation, we assume point particles. Recall that

We now ask how the distribution functions  evolves in time. It is clear that in the absence of collisions, the distribution function must satisfy the continuity equation,

This is just the condition of number conservation for particles. Take care to note that  and  are six-dimensional phase space vectors:

The continuity equation describes a distribution in which each constituent particle evolves according to a prescribed dynamics, which for a mechanical system is specified by

where  is an external applied force. Here,

For example, if the particles are under the influence of gravity, then  and .

Note that as a consequence of the dynamics, we have , phase space flow is incompressible, provided that  is a function of  alone, and not of . Thus, in the absence of collisions, we
have

The differential operator  is sometimes called the ‘convective derivative’, because  is the time derivative of  in a comoving frame of reference.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical dynamics. In a collision process, a particle with momentum  and one with momentum  can
instantaneously convert into a pair with momenta  and , provided total momentum is conserved: . This means that . Rather, we should write

where the right side is known as the collision integral. The collision integral is in general a function of , , and  and a functional of the distribution .

After a trivial rearrangement of terms, we can write the Boltzmann equation as

where

is known as the streaming term. Thus, there are two contributions to  : streaming and collisions.

Collisionless Boltzmann equation

In the absence of collisions, the Boltzmann equation is given by

In order to gain some intuition about how the streaming term affects the evolution of the distribution , consider a case where . We then have

Clearly, then, any function of the form

will be a solution to the collisionless Boltzmann equation, where . One possible solution would be the Boltzmann distribution,

which is time-independent . Here we have assumed a ballistic dispersion, .

For a slightly less trivial example, let the initial distribution be , so that

Consider the one-dimensional version, and rescale position, momentum, and time so that

Consider the level sets of , where . The equation for these sets is

For fixed , these level sets describe the loci in phase space of equal probability densities, with the probability density decreasing exponentially in the parameter . For , the initial distribution
describes a Gaussian cloud of particles with a Gaussian momentum distribution. As  increases, the distribution widens in  but not in  – each particle moves with a constant momentum, so the set

f(r, p, t) r p ≡{d3 d3 \rm\# of particles with positions within  r ofd3

r and momenta within  p of p at time t.d3 (8.2.1)

f(r, p, t)

+∇⋅(uf) = 0 .
∂f

∂t
(8.2.2)

∇ u
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∇
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∂p
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∂H

∂r
Fext (8.2.3)

F

H(p, r) = ε(p) + (r) .Uext (8.2.4)

(r) = mg ⋅ rUext F = −∇ = −mgUext

∇⋅u = 0 ε(p) p r
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r p t f
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)
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ṙ
∂f

∂r
ṗ

∂f

∂p
(8.2.8)

∂f/∂t

+ ⋅ −∇ ⋅ = 0 .
∂f

∂t

∂ε

∂p

∂f

∂r
Uext

∂f

∂p
(8.2.9)

f(r, p, t) = 0Fext

+ ⋅ = 0 .
∂f

∂t

p

m

∂f

∂r
(8.2.10)

f(r, p, t) = φ(r −v(p) t , p) (8.2.11)

v(p) = ∂ε
∂p

f(r, p, t) =  ,eμ/ TkB e− /2m Tp2 kB (8.2.12)

1 ε(p) = /2mp2

φ(r, p) = Ae− /2r2 σ2
e− /2p2 κ2

f(r, p, t) = A  .e−(r− /2
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m
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(8.2.13)
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2
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of momentum values never changes. However, the level sets in the  plane become elliptical, with a semimajor axis oriented at an angle  with respect to the  axis. For , he
particles at the outer edges of the cloud are more likely to be moving away from the center. See the sketches in Figure [Fstreaming]

Suppose we add in a constant external force . Then it is easy to show (and left as an exercise to the reader to prove) that any function of the form

satisfies the collisionless Boltzmann equation (ballistic dispersion assumed).

[Fstreaming] Level sets for a sample , for values  with  in equally spaced intervals from  (red) to  (blue). The time variable  is taken
to be  (upper left),  (upper right),  (lower right), and  (lower left).

Collisional invariants
Consider a function  of position and momentum. Its average value at time  is

Taking the time derivative,

Hence, if  is preserved by the dynamics between collisions, then

We therefore have that the rate of change of  is determined wholly by the collision integral

Quantities which are then conserved in the collisions satisfy . Such quantities are called collisional invariants. Examples of collisional invariants include the particle number , the
components of the total momentum  (in the absence of broken translational invariance, due to the presence of walls), and the total energy ( ).

Scattering processes

What sort of processes contribute to the collision integral? There are two broad classes to consider. The first involves potential scattering, where a particle in state  scatters, in the presence of an
external potential, to a state . Recall that  is an abbreviation for the set of kinematic variables,  in the case of a diatomic molecule. For point particles,  and .

We now define the function  such that

The units of  are therefore . The differential scattering cross section for particle scattering is then

where  is the particle’s velocity and  the density.

The second class is that of two-particle scattering processes, . We define the scattering function  by

where

is the nonequilibrium two-particle distribution for point particles. The differential scattering cross section is

We assume, in both cases, that any scattering occurs locally, the particles attain their asymptotic kinematic states on distance scales small compared to the mean interparticle separation. In this case we
can treat each scattering process independently. This assumption is particular to rarefied systems, gases, and is not appropriate for dense liquids. The two types of scattering processes are depicted in
Figure [FCIscatt].
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[FCIscatt] Left: single particle scattering process . Right: two-particle scattering process .

In computing the collision integral for the state , we must take care to sum over contributions from transitions out of this state, , which reduce , and transitions into this state,
, which increase . Thus, for one-body scattering, we have

For two-body scattering, we have

Unlike the one-body scattering case, the kinetic equation for two-body scattering does not close, since the LHS involves the one-body distribution  and the RHS involves the two-body
distribution . To close the equations, we make the approximation

We then have

Detailed balance

Classical mechanics places some restrictions on the form of the kernel . In particular, if  denotes the kinematic variables under time reversal, then

This is because the time reverse of the process  is .

In equilibrium, we must have

where

Since  , we may cancel the differentials above, and after invoking Equation [TRw] and suppressing the common  label, we find

This is the condition of detailed balance. For the Boltzmann distribution, we have

where  is a constant and where  is the kinetic energy,  in the case of point particles. Note that . Detailed balance is satisfied because the
kinematics of the collision requires energy conservation:

Since momentum is also kinematically conserved,

any distribution of the form

also satisfies detailed balance, for any velocity parameter . This distribution is appropriate for gases which are flowing with average particle .

In addition to time-reversal, parity is also a symmetry of the microscopic mechanical laws. Under the parity operation , we have  and . Note that a pseudovector such as 
is unchanged under . Thus, . Under the combined operation of , we have . If the microscopic Hamiltonian is invariant under , then
we must have

For point particles, invariance under  and  then means

and therefore the collision integral takes the simplified form,

where we have suppressed both  and  variables.

The most general statement of detailed balance is
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| ⟩ → |Γ⟩Γ′ f(r, Γ)

f(r, Γ; t) =( = ∫ d {w(Γ | ) f(r, ; t) −w( | Γ) f(r, Γ; t)} .
D

Dt

∂f

∂t
)
coll

Γ′ Γ′ Γ′ Γ′ (8.2.25)

f(r, Γ; t)
D

Dt
=(

∂f

∂t
)
coll

= ∫ d ∫ d ∫ d {w(Γ | ) (r, ; r, ; t)Γ
1

Γ′ Γ′
1

Γ
1

Γ′Γ′
1

f
2

Γ′ Γ′
1

−w( | Γ ) (r, Γ; r, ; t)} .  Γ′Γ′
1 Γ1 f2 Γ1

f ≡ f1

f2

(r, ; , ; t) ≈ f(r, Γ; t) f( , ; t) .f
2

Γ′ r~ Γ
~

r~ Γ
~

(8.2.26)

f(r, Γ; t)
D

Dt
= ∫ d ∫ d ∫ d {w(Γ | ) f(r, ; t) f(r, ; t)Γ1 Γ′ Γ′

1 Γ1 Γ′Γ′
1 Γ′ Γ′

1

−w( | Γ ) f(r, Γ; t) f(r, ; t)} .Γ′Γ′
1 Γ1 Γ1

w(Γ | )Γ1 Γ′Γ′
1 \Gamma^\sss{T}=(-\Bp,-\BL)

w\big(\Gamma'\Gamma'_1 \, | \, \Gamma\Gamma_1\big)= w\big(\Gamma^\sss{T}\Gamma^\sss{T}_1 \, | \,\Gamma'{}^\sss{T}\Gamma'_1{}^\sss{T}\big)\ . \label{TRw}

|Γ ⟩ → | ⟩Γ1 Γ′Γ′
1 \tket{\Gamma'{}^\ssr{T}\Gamma'_1{}^\ssr{T}}\to\tket{\Gamma^\ssr{T}\Gamma^\ssr{T}_1}

w\big(\Gamma'\Gamma'_1 \, | \, \Gamma\Gamma_1\big)\,\,f^0(\Gamma)\,f^0(\Gamma\ns_1) \,d^4\!\Gamma= w\big(\Gamma^\sss{T}\Gamma^\sss{T}_1 \, | \,\Gamma'{}^\sss{T}\Gamma'_1{}^\sss{T}\big)\,f^0(\Gamma'{

d^4\!\Gamma\equiv d\Gamma\,d\Gamma\ns_1\,d\Gamma' d\Gamma'_1\qquad,\qquad d^4\!\Gamma^\sss{T}\equiv d\Gamma^\sss{T}\,d\Gamma_1^\sss{T}\,d\Gamma'{}^\sss{T} d\Gamma'_1{}^\sss{T}\ .
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Under this condition, the collision term vanishes for , which is the equilibrium distribution.

Kinematics and cross section
We can rewrite Equation [BEwp] in the form

where  is the differential scattering cross section. If we recast the scattering problem in terms of center-of-mass and relative coordinates, we conclude that the total momentum is conserved by the

collision, and furthermore that the energy in the CM frame is conserved, which means that the magnitude of the relative momentum is conserved. Thus, we may write , where 
 is a unit vector. Then  and  are determined to be

-theorem

Let’s consider the Boltzmann equation with two particle collisions. We define the local ( -dependent) quantity

At this point,  is arbitrary. Note that the  factor has  and  dependence through its dependence on , which itself is a function of , , and . We now compute

The first term on the last line follows from the divergence theorem, and vanishes if we assume  for infinite values of the kinematic variables, which is the only physical possibility. Thus, the rate
of change of  is entirely due to the collision term. Thus,

where , , , , ), with

We now invoke the symmetry

which allows us to write

This shows that  is preserved by the collision term if  is a collisional invariant.

Now let us consider . We define . We then have

where  and . We next invoke the result

which is a statement of unitarity of the scattering matrix . Multiplying both sides by , then integrating over  and , and finally changing variables , we find

Multiplying this result by  and adding it to the previous equation for , we arrive at our final result,

Note that , , and  are all nonnegative. It is then easy to prove that the function  is nonnegative for all positive  values , which therefore entails the important result

Boltzmann’s  function is the space integral of the  density: .

Thus, everywhere in space, the function  is monotonically decreasing or constant, due to collisions. In equilibrium,  everywhere, which requires ,

or, taking the logarithm,

=  .
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But this means that  is itself a collisional invariant, and if , , and  are the only collisional invariants, then  must be expressible in terms of them. Thus,

where , , and  are constants which parameterize the equilibrium distribution , corresponding to the chemical potential, flow velocity, and temperature, respectively.
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8.3: Weakly Inhomogeneous Gas
Consider a gas which is only weakly out of equilibrium. We follow the treatment in Lifshitz and Pitaevskii, §6. As the gas is only
slightly out of equilibrium, we seek a solution to the Boltzmann equation of the form , where  is describes a local
equilibrium. Recall that such a distribution function is annihilated by the collision term in the Boltzmann equation but not by the
streaming term, hence a correction  must be added in order to obtain a solution.

The most general form of local equilibrium is described by the distribution

where , , and  vary in both space and time. Note that

where we have assumed  on average, and used

where  is the entropy per particle and  is the number density. We have further written , which is the enthalpy per
particle. Here,  is the heat capacity per particle at constant pressure . Finally, note that when  is the Maxwell-Boltzmann
distribution, we have

The Boltzmann equation is written

The RHS of this equation must be of order  because the local equilibrium distribution  is annihilated by the collision integral.
We therefore wish to evaluate one of the contributions to the LHS of this equation,

To simplify this, first note that Newton’s laws applied to an ideal fluid give , where  is the mass density.
Corrections to this result, e.g. viscosity and nonlinearity in , are of higher order.

Next, continuity for particle number means . We assume  is zero on average and that all derivatives are small,
hence . Thus,

where we have invoked the ideal gas law  above.

Next, we invoke conservation of entropy. If  is the entropy per particle, then  is the entropy per unit volume, in which case we
have the continuity equation

f = +δff 0 f 0

δf

(r, Γ) = C exp( ) ,f 0 μ−ε(Γ) +V⋅ p

TkB

(8.3.1)
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The second bracketed term on the RHS vanishes because of particle continuity, leaving us with  (since 
on average, and any gradient is first order in smallness). Now thermodynamics says

since  and , where . Thus,

We now have in eqns. [ptea] and [pteb] two equations in the two unknowns  and , yielding

Thus Equation [LHSA] becomes

where

Therefore, the Boltzmann equation takes the form

Notice we have dropped the terms  and , since  must already be first order in smallness, and both the  operator

as well as  add a second order of smallness, which is negligible. Typically  is nonzero if the applied force  is time-
dependent. We use the convention of summing over repeated indices. Note that . For ideal gases in which
only translational and rotational degrees of freedom are excited, .
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8.4: Relaxation Time Approximation

Approximation of Collision Integral

We now consider a very simple model of the collision integral,

This model is known as the relaxation time approximation. Here,  is a distribution function which describes a local equilibrium at each
position  and time . The quantity  is the relaxation time, which can in principle be momentum-dependent, but which we shall first consider to be
constant. In the absence of streaming terms, we have

The distribution  then relaxes to the equilibrium distribution  on a time scale . We note that this approximation is obviously flawed in that all
quantities – even the collisional invariants – relax to their equilibrium values on the scale . In the Appendix, we consider a model for the collision
integral in which the collisional invariants are all preserved, but everything else relaxes to local equilibrium at a single rate.

Computation of the scattering time

Consider two particles with velocities  and . The average of their relative speed is

where  is the Maxwell velocity distribution,

which follows from the Boltzmann form of the equilibrium distribution . It is left as an exercise for the student to verify that

Note that , where  is the average particle speed. Let  be the total scattering cross section, which for hard spheres is , where  is
the hard sphere diameter. Then the rate at which particles scatter is

The particle mean free path is simply

While the scattering length is not temperature-dependent within this formalism, the scattering time is -dependent, with

As , the collision time diverges as , because the particles on average move more slowly at lower temperatures. The mean free path,
however, is independent of , and is given by .

Figure : Graphic representation of the equation , which yields the scattering time  in terms of the number density , average
particle pair relative velocity , and two-particle total scattering cross section . The equation says that on average there must be one particle within
the tube.
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Thermal conductivity
We consider a system with a temperature gradient  and seek a steady state ( time-independent) solution to the Boltzmann equation. We assume 

. Appealing to Equation , and using the relaxation time approximation for the collision integral, we have

We are now ready to compute the energy and particle currents. In order to compute the local density of any quantity , we multiply by the
distribution  and integrate over momentum:

For the energy (thermal) current, we let , in which case . Note that  since  is isotropic in  even when 
and  depend on . Thus, only  enters into the calculation of the various currents. Thus, the energy (thermal) current is

where the repeated index  is summed over, and where momentum averages are defined relative to the equilibrium distribution,

In this context, it is useful to point out the identity

where

is the Maxwell velocity distribution.

Note that if  is a function of the energy, and if , then

where

is the Maxwellian distribution of single particle energies. This distribution is normalized with . Averages with respect to this distribution

are given by

If  is homogeneous, then for any  we have

Due to spatial isotropy, it is clear that we can replace

in Equation . We then have , with

where we have used  and . The quantity  is called the thermal conductivity. Note that .
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Viscosity
Consider the situation depicted in Figure . A fluid filling the space between two large flat plates at  and  is set in motion by a force 

 applied to the upper plate; the lower plate is fixed. It is assumed that the fluid’s velocity locally matches that of the plates. Fluid particles at the
top have an average -component of their momentum . As these particles move downward toward lower  values, they bring their -
momenta with them. Therefore there is a downward ( -directed) flow of . Since -momentum is constantly being drawn away from  plane,
this means that there is a -directed viscous drag on the upper plate. The viscous drag force per unit area is given by , where 

 is the velocity gradient and  is the shear viscosity. In steady state, the applied force balances the drag force, . Clearly
in the steady state the net momentum density of the fluid does not change, and is given by , where  is the fluid mass density. The momentum per
unit time injected into the fluid by the upper plate at  is then extracted by the lower plate at . The momentum flux density 
is the drag force on the upper surface per unit area: . The units of viscosity are .

We now provide some formal definitions of viscosity. As we shall see presently, there is in fact a second type of viscosity, called second viscosity or
bulk viscosity, which is measurable although not by the type of experiment depicted in igure .

The momentum flux tensor  is defined to be the current of momentum component  in the direction of increasing . For a gas in
motion with average velocity , we have

where  is the particle velocity in a frame moving with velocity , and where we have invoked the ideal gas law . The mass density is 
.

Figure : Gedankenexperiment to measure shear viscosity  in a fluid. The lower plate is fixed. The viscous drag force per unit area on the upper
plate is . This must be balanced by an applied force .

When  is spatially varying,

where  is the viscosity stress tensor. Any symmetric tensor, such as , can be decomposed into a sum of (i) a traceless component, and (ii) a
component proportional to the identity matrix. Since  should be, to first order, linear in the spatial derivatives of the components of the velocity field

, there is a unique two-parameter decomposition:

The coefficient of the traceless component is , known as the shear viscosity. The coefficient of the component proportional to the identity is , known
as the bulk viscosity. The full stress tensor  contains a contribution from the pressure:

The differential force  that a fluid exerts on on a surface element  is

where we are using the Einstein summation convention and summing over the repeated index . We will now compute the shear viscosity  using the
Boltzmann equation in the relaxation time approximation.

Appealing again to Equation , with  and , we find
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We assume , and we compute the momentum flux:

Thus, if , we have

from which we read off the viscosity,

Note that .

Figure : Left: thermal conductivity (  in figure) of Ar between  and . The best fit to a single power law  results
in . Source: G. S. Springer and E. W. Wingeier, J. Chem Phys. 59, 1747 (1972). Right: log-log plot of shear viscosity (  in figure) of He
between  and . The red line has slope . The slope of the data is approximately . Source: J. Kestin and W. Leidenfrost,
Physica 25, 537 (1959).

How well do these predictions hold up? In igure , we plot data for the thermal conductivity of argon and the shear viscosity of helium. Both show a
clear sublinear behavior as a function of temperature, but the slope  is approximately  and  is approximately .
Clearly the simple model is not even getting the functional dependence on  right, let alone its coefficient. Still, our crude theory is at least qualitatively
correct.

Why do both  as well as  decrease at low temperatures? The reason is that the heat current which flows in response to  as well as the
momentum current which flows in response to  are due to the presence of collisions, which result in momentum and energy transfer between
particles. This is true even when total energy and momentum are conserved, which they are not in the relaxation time approximation. Intuitively, we
might think that the viscosity should increase as the temperature is lowered, since common experience tells us that fluids ‘gum up’ as they get colder –
think of honey as an extreme example. But of course honey is nothing like an ideal gas, and the physics behind the crystallization or glass transition
which occurs in real fluids when they get sufficiently cold is completely absent from our approach. In our calculation, viscosity results from collisions,
and with no collisions there is no momentum transfer and hence no viscosity. If, for example, the gas particles were to simply pass through each other,
as though they were ghosts, then there would be no opposition to maintaining an arbitrary velocity gradient.

Oscillating External Force
Suppose a uniform oscillating external force  is applied. For a system of charged particles, this force would arise from an external
electric field , where  is the charge of each particle. We’ll assume . The Boltzmann equation is then written

δf =− {m + v ⋅∇T − ∇⋅V}  .
τ

TkB

vαvβ Qαβ

ε− Tcp

T

ε

/cV kB

f 0 (8.4.23)

∇T = ∇⋅V = 0

Πxz = n∫ p δfd3 pxvz

=− ⟨ ⟩
n τm2

TkB

Qαβ vx vz vα vβ

=− ( + ) ⟨m ⋅m ⟩
nτ

TkB

∂Vx
∂z

∂Vz
∂x

v2x v2z

=−nτ T( + ) .kB

∂Vz
∂x

∂Vx
∂z

= (z)Vx Vx

=−nτ TΠxz kB

∂Vx
∂z

(8.4.24)

η = n Tτ = nmℓ  .kB

π

8
v̄ (8.4.25)

η(T ) ∝ T 1/2

8.4.3 λ T = 800K T = 2600K λ = aT b

b = 0.651 μ

T ≈ 15K T ≈ 1000K 1
2 0.633

8.4.3
d lnκ/d lnT 0.65 d lnη/d lnT 0.63

T

κ(T ) η(T ) ∇T

∂ /∂zVx

(t) = FFext e−iωt

= qEFext e−iωt q ∇T = 0
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We again write , and we assume  is spatially constant. Thus,

If we assume  then the above differential equation is converted to an algebraic equation, with solution

We now compute the particle current:

If the particles are electrons, with charge , then the electrical current is  times the particle current. We then obtain

where

is the frequency-dependent electrical conductivity tensor. Of course for fermions such as electrons, we should be using the Fermi distribution in place of
the Maxwell-Boltzmann distribution for . This affects the relation between  and  only, and the final result for the conductivity tensor  is
unchanged.

Quick and Dirty Treatment of Transport
Suppose we have some averaged intensive quantity  which is spatially dependent through  or  or . For simplicity we will write 

. We wish to compute the current of  across some surface whose equation is . If the mean free path is , then the value of  for
particles crossing this surface in the  direction is , where  is the angle the particle’s velocity makes with respect to , .
We perform the same analysis for particles moving in the  direction, for which . The current of  through this surface is then

where  is the average particle speed. If the -dependence of  comes through the dependence of  on the local temperature , then we have

where

is the transport coefficient. If , then , where  is the heat capacity per particle at constant pressure. We then find  with
thermal conductivity

Our Boltzmann equation calculation yielded the same result, but with a prefactor of  instead of .

We can make a similar argument for the viscosity. In this case  is spatially varying through its dependence on the flow velocity . Clearly 
, hence

+ ⋅ +F ⋅ = −  .
∂f

∂t

p

m

∂f

∂r
e−iωt

∂f

∂p

f −f 0

τ
(8.4.26)

f = +δff 0 δf

+F ⋅v =−  .
∂ δf

∂t
e−iωt

∂f 0

∂ε

δf

τ
(8.4.27)

δf(t) = δf(ω) e−iωt

δf(t) =− F ⋅v .
τ e−iωt

1− iωτ

∂f 0

∂ε
(8.4.28)

(r, t)jα = ∫ p v δfd3

= ⋅ ∫ p (p)
τ e−iωt

1− iωτ

Fβ

TkB

d3 f 0 vα vβ

= ⋅ ∫ v P (v)
τ e−iωt

1− iωτ

nFα

3 TkB

d3 v2

= ⋅  .
nτ

m

Fα e
−iωt

1− iωτ

q =−e (−e)

j^\ssr{(elec)}_\alpha(t)={ne^2\tau\over m}\cdot {E\ns_\alpha\,e^{-i\omega t}\over 1-i\omega \tau}\equiv\sigma\ns_{\alpha\beta}(\omega) \>E\ns_\beta\,e^{-i\omega t}\ ,

(ω) = ⋅σαβ
n τe2

m

1

1− iωτ
δαβ (8.4.29)

(p)f 0 n μ (ω)σαβ

ϕ T (r) μ(r) V(r)
ϕ= ϕ(z) ϕ dz= 0 ℓ ϕ

+ẑ ϕ(z−ℓ cosθ) θ ẑ cosθ= /vvz
−ẑ ϕ= ϕ(z+ℓ cosθ) ϕ

jϕ = n vP (v) ϕ(z−ℓ cosθ)+n vP (v) ϕ(z+ℓ cosθ)ẑ∫

>0vz

d3 vz ẑ∫

<0vz

d3 vz

=−nℓ ∫ v P (v) =− n ℓ  ,
∂ϕ

∂z
ẑ d3 v2z

v

1

3
v̄

∂ϕ

∂z
ẑ

=v̄
8 TkB
πm

− −−−
√ z ϕ ϕ T

=− nℓ ∇T ≡−K∇T  ,jϕ
1

3
v̄
∂ϕ

∂T
(8.4.30)

K = nℓ
1

3
v̄
∂ϕ

∂T
(8.4.31)

ϕ= ⟨ε⟩ =
∂ϕ

∂T
cp cp =−κ∇Tjε

κ = nℓ  .
1

3
v̄ cp (8.4.32)

π
8

1
3

ϕ= ⟨ ⟩px V(r)
∂ϕ/∂ =mVx
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from which we identify the viscosity, . Once again, this agrees in its functional dependences with the Boltzmann equation calculation in the
relaxation time approximation. Only the coefficients differ. The ratio of the coefficients is  in both
cases .

Thermal diffusivity, kinematic viscosity, and Prandtl number
Suppose, under conditions of constant pressure, we add heat  per unit volume to an ideal gas. We know from thermodynamics that its temperature will
then increase by an amount . If a heat current  flows, then the continuity equation for energy flow requires

In a system where there is no net particle current, the heat current  is the same as the energy current , and since , we obtain a diffusion
equation for temperature,

The combination

is known as the thermal diffusivity. Our Boltzmann equation calculation in the relaxation time approximation yielded the result . Thus,
we find  via this method. Note that the dimensions of  are the same as for any diffusion constant , namely .

[Prandtl] Viscosities, thermal conductivities, and Prandtl numbers for some common gases at  and atm. (Source: Table 1.1 of Smith and Jensen, with
data for triatomic gases added.)

Gas  ( )  ( )

He

Ar

Xe

Another quantity with dimensions of  is the kinematic viscosity, , where  is the mass density. We found  from the
relaxation time approximation calculation, hence . The ratio , called the Prandtl number, , is dimensionless. According
to our calculations, . According to table [Prandtl], most monatomic gases have .

This page titled 8.4: Relaxation Time Approximation is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

= =− nmℓ  ,jzpx Πxz

1

3
v̄
∂Vx
∂z

(8.4.33)

η = nmℓ1
3

v̄

K\ns_\ssr{QDC}/K\ns_\ssr{BRT}=\frac{8}{3\pi}=0.849
6

q

ΔT = q/ncp jq

n +∇ ⋅ = 0 .cp
∂T

∂t
jq (8.4.34)

jq jε =−κ∇Tjε

= T  .
∂T

∂t

κ

ncp
∇2 (8.4.35)

a≡
κ

ncp
(8.4.36)

κ = n Tτ /mkB cp
a= Tτ/mkB a D [a] = /TL2

T = 293K p = 1

η μPa ⋅ s κ mW/\Rm ⋅K /cp kB Pr

19.5 149 2.50 0.682

22.3 17.4 2.50 0.666

22.7 5.46 2.50 0.659

H2 8.67 179 3.47 0.693

N2 17.6 25.5 3.53 0.721

O2 20.3 26.0 3.50 0.711

CH4 11.2 33.5 4.29 0.74

CO2 14.8 18.1 4.47 0.71

NH3 10.1 24.6 4.50 0.90

/TL2 ν = η/ρ ρ = nm η = n TτkB

ν = Tτ/mkB ν/a Pr= η /mκcp

Pr= 1 Pr≈ 2
3
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8.5: Diffusion and the Lorentz model

Failure of the relaxation time approximation
As we remarked above, the relaxation time approximation fails to conserve any of the collisional invariants. It is therefore
unsuitable for describing hydrodynamic phenomena such as diffusion. To see this, let  be the distribution function, here
written in terms of position, velocity, and time rather than position, momentum, and time as befor . In the absence of external
forces, the Boltzmann equation in the relaxation time approximation is

The density of particles in velocity space is given by

In equilibrium, this is the Maxwell distribution times the total number of particles: . The
number of particles as a function of time, , should be a constant.

Integrating the Boltzmann equation one has

Thus, with , we have

Thus,  decays exponentially to zero with time constant , from which it follows that the total particle number exponentially
relaxes to . This is physically incorrect; local density perturbations can’t just vanish. Rather, they diffuse.

Modified Boltzmann equation and its solution
To remedy this unphysical aspect, consider the modified Boltzmann equation,

where  is a projector onto a space of isotropic functions of :  for any function . Note that  is a
function of the speed . For this modified equation, known as the Lorentz model, one finds .

The model in Equation [Lormod] is known as the Lorentz model . To solve it, we consider the Laplace transform,

Taking the Laplace transform of Equation [Lormod], we find

We now solve for :

which entails

Now we have

f(r, v, t)
7

+v ⋅ = −  .
∂f

∂t

∂f

∂r

f −f 0

τ
(8.5.1)

(v, t) = ∫ r f(r, v, t) .n~ d3 (8.5.2)

{\tilde n}\ns_0(\Bv)=N P\ns_\ssr{M}(\Bv)
N(t) = ∫ v (v, t)d3 n~

= −  .
∂n~

∂t

−n~ n~0

τ
(8.5.3)

δ (v, t) = (v, t) − (v)n~ n~ n~0

δ (v, t) = δ (v, 0)  .n~ n~ e−t/τ (8.5.4)

(v, t)n~ τ

N0

+v ⋅ = [−f +∫ f] ≡ (P −1)f  ,
∂f

∂t

∂f

∂r

1

τ

dv̂

4π

1

τ
(8.5.5)

P v PF = ∫ F (v)dv̂

4π
F (v) PF

v= |v| = 0∂tn
~

8

(k, v, s) = dt ∫ r f(r, v, t) .f̂ ∫

0

∞

e−st d3 e−ik⋅r (8.5.6)

(s+ iv ⋅ k + ) (k, v, s) = P (k, v, s) +f(k, v, t = 0) .τ−1 f̂ τ−1 f̂ (8.5.7)

P (k, v, s)f̂

(k, v, s) = P (k, v, s) +  ,f̂
τ−1

s+ iv ⋅ k +τ−1
f̂

f(k, v, t = 0)

s+ iv ⋅ k +τ−1
(8.5.8)

P (k, v, s) = [∫ ] P (k, v, s) +∫  .f̂
dv̂

4π

τ−1

s+ iv ⋅ k +τ−1
f̂

dv̂

4π

f(k, v, t = 0)

s+ iv ⋅ k +τ−1
(8.5.9)
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Thus,

We now have the solution to Lorentz’s modified Boltzmann equation:

Let us assume an initial distribution which is perfectly localized in both  and :

For these initial conditions, we find

We further have that

and therefore

We are interested in the long time limit  for . This is dominated by , and we assume that  is dominant
over  and . We then have

Performing the inverse Laplace and Fourier transforms, we obtain

where the diffusion constant is

The units are . Integrating over velocities, we have the density

∫
dv̂

4π

τ−1

s+ iv ⋅ k +τ−1
= dx∫

−1

1

τ−1

s+ ivkx+τ−1

= ( ) .
1

vk
tan−1 vkτ

1 +τs

P f(k, v, s) = [1 − ( ) ∫  .
1

vkτ
tan−1 vkτ

1 +τs
]

−1
dv̂

4π

f(k, v, t = 0)

s+ iv ⋅ k +τ−1
(8.5.10)

(k, v, s)f̂ = [1 − ( ) ∫
τ−1

s+ iv ⋅ k +τ−1

1

vkτ
tan−1 vkτ

1 +τs
]

−1
dv̂

4π

f(k, v, t = 0)

s+ iv ⋅ k +τ−1

+  .
f(k, v, t = 0)

s+ iv ⋅ k +τ−1

r v

f(r, v, t = 0) = δ(v − ) .v
0

(8.5.11)

∫ = ⋅  .
dv̂

4π

f(k, v, t = 0)

s+ iv ⋅ k +τ−1

1

s+ i ⋅ k +v0 τ−1

δ(v− )v0

4πv2
0

(8.5.12)

1 − ( ) = sτ + +…  ,
1

vkτ
tan−1 vkτ

1 +τs

1

3
k2v2τ 2 (8.5.13)

(k, v, s)f̂ = ⋅ ⋅ ⋅
τ−1

s+ iv ⋅ k +τ−1

τ−1

s+ i ⋅ k +v0 τ−1

1

s+ τ +…1
3
v2

0 k
2

δ(v− )v0

4πv2
0

+  .
δ(v − )v0

s+ i ⋅ k +v0 τ−1

t ≫ τ f(r, v, t) s ∼ t−1 τ−1

s iv ⋅ k

(k, v, s) ≈ ⋅  .f̂
1

s+ τ1
3
v2

0 k
2

δ(v− )v0

4πv2
0
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f(r, v, t) = (4πDt ⋅  ,)−3/2 e− /4Dtr2 δ(v− )v0

4πv2
0

(8.5.15)

D = τ  .
1

3
v2

0 (8.5.16)

[D] = /TL2

n(r, t) = ∫ v f(r, v, t) = (4πDt  .d3 )−3/2 e− /4Dtr2

(8.5.17)
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Note that

for all time. Total particle number is conserved!

This page titled 8.5: Diffusion and the Lorentz model is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.

∫ r n(r, t) = 1d3 (8.5.18)
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8.6: Linearized Boltzmann Equation

Linearizing the collision integral

We now return to the classical Boltzmann equation and consider a more formal treatment of the collision term in the linear
approximation. We will assume time-reversal symmetry, in which case

The collision integral is nonlinear in the distribution . We linearize by writing

where we assume  is small. We then have, to first order in ,

where the action of the linearized collision operator is given by

where we have invoked Equation [BEsig] to write the RHS in terms of the differential scattering cross section. In deriving the
above result, we have made use of the detailed balance relation,

We have also suppressed the  dependence in writing , , and .

From Equation [bwig], we then have the linearized equation

where, for point particles,

Equation [LBE] is an inhomogeneous linear equation, which can be solved by inverting the operator .

Linear algebraic properties of 

Although  is an integral operator, it shares many properties with other linear operators with which you are familiar, such as
matrices and differential operators. We can define an inner product ,

Note that this is not the usual Hilbert space inner product from quantum mechanics, since the factor  is included in the
metric. This is necessary in order that  be self-adjoint:

We can now define the spectrum of normalized eigenfunctions of , which we write as . The eigenfunctions satisfy the
eigenvalue equation,

( = ∫ ∫ ∫  w( , | p, ) {f( ) f( ) −f(p) f( )} .
∂f

∂t
)
coll

d3p1 d3p′ d3p′
1 p

′
p′

1 p1 p
′

p′
1 p1 (8.6.1)

f

f(p) = (p) + (p)ψ(p) ,f 0 f 0 (8.6.2)

ψ(p) ψ

( = (p) ψ+O( ) ,
∂f

∂t
)
coll

f 0 L̂ ψ2 (8.6.3)

ψL̂ = ∫ ∫ ∫  w( , | p, ) ( ){ψ( ) +ψ( ) −ψ(p) −ψ( )}d3p1 d3p′ d3p′
1 p′ p′

1 p1 f 0 p1 p′ p′
1 p1

= ∫ ∫ dΩ |v − | ( ){ψ( ) +ψ( ) −ψ(p) −ψ( )} ,d3p1 v1

∂σ

∂Ω
f 0 p1 p′ p′

1 p1

(p) ( ) = ( ) ( ) .f 0 f 0
p1 f 0

p
′ f 0

p′
1 (8.6.4)

r f(p) (p)f 0 ψ(p)

( − )ψ = Y ,L̂
∂

∂t
(8.6.5)

Y = { v ⋅ ∇T +m − ∇⋅V −F ⋅ v} .
1

TkB

ε(p) − Tcp

T
vαvβ Qαβ

ε(p)kB

cV
(8.6.6)

−L̂ ∂
∂t

L̂

L̂
9

⟨ | ⟩ ≡ ∫ p (p) (p) (p) .ψ1 ψ2 d3 f 0 ψ1 ψ2 (8.6.7)

(p)f 0

L̂

⟨ | ⟩ = ⟨ | ⟩ .ψ1 L̂ψ2 L̂ψ1 ψ2 (8.6.8)

L̂ (p)ϕn

= −  ,L̂ϕn λn ϕn (8.6.9)
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and may be chosen to be orthonormal,

Of course, in order to obtain the eigenfunctions  we must have detailed knowledge of the function .

Recall that there are five collisional invariants, which are the particle number, the three components of the total particle
momentum, and the particle energy. To each collisional invariant, there is an associated eigenfunction  with eigenvalue .
One can check that these normalized eigenfunctions are

If there are no temperature, chemical potential, or bulk velocity gradients, and there are no external forces, then  and the only
changes to the distribution are from collisions. The linearized Boltzmann equation becomes

We can therefore write the most general solution in the form

where the prime on the sum reminds us that collisional invariants are to be excluded. All the eigenvalues , aside from the five
zero eigenvalues for the collisional invariants, must be positive. Any negative eigenvalue would cause  to increase without
bound, and an initial nonequilibrium distribution would not relax to the equilibrium , which we regard as unphysical.
Henceforth we will drop the prime on the sum but remember that  for the five collisional invariants.

Recall also the particle, energy, and thermal (heat) currents,

Note .

Steady state solution to the linearized Boltzmann equation

Under steady state conditions, there is no time dependence, and the linearized Boltzmann equation takes the form

We may expand  in the eigenfunctions  and write . Applying  and taking the inner product with , we have

Thus, the formal solution to the linearized Boltzmann equation is

This solution is applicable provided  is orthogonal to the five collisional invariants.

⟨ | ⟩ =  .ϕm ϕn δmn (8.6.10)

ϕn w( , | p, )p′ p′
1 p1

ϕn = 0λn

(p)ϕn

(p)ϕpα

(p)ϕε

=
1

n−−√

=
pα

nm TkB

− −−−−−
√

= ( − ) .
2

3n

−−−
√

ε(p)

TkB

3

2

Y = 0

= ψ .
∂ψ

∂t
L̂ (8.6.11)

ψ(p, t) = (p)  ,∑
n

′
Cn ϕn e− tλn (8.6.12)

λn
ψ(p, t)

(p)f 0

= 0Cn

j

jε

jq

= ∫ p v f(p) = ∫ p (p) vψ(p) = ⟨ v |ψ ⟩d3 d3 f 0

= ∫ p v ε f(p) = ∫ p (p) v εψ(p) = ⟨ v ε |ψ ⟩d3 d3 f 0

= ∫ p v (ε−μ) f(p) = ∫ p (p) v (ε−μ)ψ(p) = ⟨ v (ε−μ) |ψ ⟩ .d3 d3 f 0

= −μjjq jε

ψ = Y  .L̂ (8.6.13)

ψ ϕn ψ = ∑n Cn ϕn L̂ ϕj

= − ⟨ | Y ⟩ .Cj

1

λj
ϕj (8.6.14)

ψ(p) = − ⟨ | Y ⟩ (p) .∑
n

1

λn
ϕn ϕn (8.6.15)
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Thermal conductivity

For the thermal conductivity, we take , and

where . Under the conditions of no particle flow ( ), we have . Then we have

Viscosity

For the viscosity, we take

with . We then

Thus,

Variational approach

Following the treatment in chapter 1 of Smith and Jensen, define . We have that  is a positive semidefinite operator,
whose only zero eigenvalues correspond to the collisional invariants. We then have the Schwarz inequality,

for any two Hilbert space vectors  and . Consider now the above calculation of the thermal conductivity. We have

and therefore

Similarly, for the viscosity, we have

from which we derive

In order to get a good lower bound, we want  in each case to have a good overlap with . One approach then is to take 
, which guarantees that the overlap will be finite (and not zero due to symmetry, for example). We illustrate this method

with the viscosity calculation. We have

Now the linearized collision operator  acts as

∇T = T∂z x̂

Y = ⋅  ,
1

kBT 2

∂T

∂x
Xκ (8.6.16)

≡ (ε− T )Xκ cp vx j = 0 = −κ Tjq ∂x x̂

⟨ |ψ ⟩ = −κ  .Xκ

∂T

∂x
(8.6.17)

Y = ⋅  ,
m

TkB

∂Vx
∂y

Xη (8.6.18)

=Xη vx vy

= ⟨m |ψ ⟩ = −η  .Πxy vx vy
∂Vx
∂y

(8.6.19)

⟨ |ψ ⟩ = −  .Xη

η

m

∂Vx
∂y

(8.6.20)

≡ −Ĥ L̂ Ĥ

⟨ψ | |ψ ⟩ ⋅ ⟨ϕ | | ϕ ⟩ ≥ ⟨ϕ | |ψ  ,Ĥ Ĥ Ĥ ⟩2 (8.6.21)

|ψ ⟩ | ϕ ⟩

ψ = −Ĥ
1

kBT 2

∂T

∂x
Xκ (8.6.22)

κ = ⟨ψ | |ψ ⟩ ≥  .
kBT

2

(∂T/∂x)2
Ĥ

1

kBT 2

⟨ϕ |Xκ ⟩2

⟨ϕ | | ϕ ⟩Ĥ
(8.6.23)

ψ = −  ,Ĥ
m

TkB

∂Vx
∂y

Xη (8.6.24)

η = ⟨ψ | |ψ ⟩ ≥  .
TkB

(∂ /∂yVx )2
Ĥ

m2

TkB

⟨ϕ |Xη ⟩2

⟨ϕ | | ϕ ⟩Ĥ
(8.6.25)

ϕ Xκ,η

ϕ = Xκ,η

η ≥  .
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TkB

⟨ |vxvy vxvy ⟩2
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Here the kinematics of the collision guarantee total energy and momentum conservation, so  and  are determined as in
Equation [finalps].

Now we have

where  is the scattering angle depicted in Fig. [scat_impact] and  is the azimuthal angle of the scattering. The differential
scattering cross section is obtained by elementary mechanics and is known to be

where  is the impact parameter. The scattering angle is

where  is the reduced mass, and  is the relative coordinate separation at periapsis, the distance of closest approach,
which occurs when ,

where  is the relative coordinate angular momentum.
[scat_impact] Scattering in the CM frame. O is the force center and P is the point of
periapsis. The impact parameter is b, and \chi is the scattering angle. \phi_0 is the

angle through which the relative coordinate moves between periapsis and infinity.

[scat_impact] Scattering in the CM frame. O is the force center and  is the point of periapsis. The impact parameter is , and  is
the scattering angle.  is the angle through which the relative coordinate moves between periapsis and infinity.

We work in center-of-mass coordinates, so the velocities are

with  and . Then if , we have

We may write

where . With this parameterization, we have

Note that we have used here the relation

which holds since the LHS is a projector .

It is convenient to define the following integral:

⟨ϕ | |ψ ⟩ = ∫ p (p)ϕ(p)∫ ∫ dΩ |v − | ( ){ψ(p) +ψ( ) −ψ( ) −ψ( )} .L̂ d3 g0 d3p1

∂σ

∂Ω
v1 f 0 p1 p1 p′ p′

1 (8.6.27)

p′ p′
1

dΩ = sinχdχdφ , (8.6.28)

χ φ

=  ,
∂σ

∂Ω
∣
∣
∣
d( /2)b2

d sinχ
∣
∣
∣ (8.6.29)

b

χ(b, u) = π−2 dr  ,∫

rp

∞
b

− −r4 b2r2 2U(r)r4

m~ u2

− −−−−−−−−−−−−−
√

(8.6.30)

= mm~ 1
2

rp
= 0ṙ

= +U( ) ,
1

2
m~ u2 ℓ2

2m~ r2
p

rp (8.6.31)

ℓ = ubm~

P b χ
ϕ0

v

v
1

= V + u
1

2

= V − u
1

2

v′

v′
1

= V +
1

2
u′

= V −
1

2
u′  ,

|u| = | |u′ ⋅ = cosχû û
′

ψ(p) = vxvy

Δ(ψ) ≡ ψ(p) +ψ( ) −ψ( ) −ψ( ) = ( − ) .p1 p′ p′
1

1

2
uxuy u′

xu′
y (8.6.32)

= u (sinχcosφ +sinχ sinφ +cosχ ) ,u
′

ê1 ê2 ê3 (8.6.33)

=ê3 û

dφ ( − ) = −π χ ( −3 ) .∫

0

2π
1

2
uαuβ u′

αu′
β

sin2 u2 δ
αβ

uαuβ (8.6.34)

+ + =  ,e1α e1β e2α e2β e3α e3β δαβ (8.6.35)
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Since the Jacobian

we have

This yields

where

It is easy to compute the term in the numerator of Equation [varvisc]:

Putting it all together, we find

The computation for  is a bit more tedious. One has , in which case

Ultimately, one obtains the lower bound

Thus, independent of the potential, this variational calculation yields a Prandtl number of

which is very close to what is observed in dilute monatomic gases (see Tab. [Prandtl]).

While the variational expressions for  and  are complicated functions of the potential, for hard sphere scattering the calculation
is simple, because , where  is the hard sphere diameter. Thus, the impact parameter  is independent of
the relative speed , and one finds . Then

and one finds

R(u) ≡ db b χ(b, u) .∫

0

∞

sin2 (8.6.36)

det = 1 ,
∣
∣
∣

(∂v, ∂ )v1

(∂V, ∂u)
∣
∣
∣ (8.6.37)

⟨ | | ⟩ = ( ∫ V∫ u ⋅ u ⋅ ⋅R(u) ⋅  .vxvy L̂ vxvy n2 m

2π TkB

)
3

d3 d3 e−m / TV2 kB e−m /4 Tu2 kB
3π

2
uxuy vxvy (8.6.38)

⟨ | | ⟩ = ⟨ R(u)⟩ ,vxvy L̂ vxvy
π

40
n2 u5 (8.6.39)

⟨F (u)⟩ ≡ du F (u)/ du  .∫

0

∞

u2 e−m /4 Tu2 kB ∫

0

∞

u2 e−m /4 Tu2 kB (8.6.40)
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m

2π TkB

)
3/2

d3 e−m /2 Tv2 kB v2
x v

2
y
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m
)

2

(8.6.41)

η ≥ /⟨ R(u)⟩ .
40 ( TkB )3

πm2
u5 (8.6.42)

κ ψ(p) = (ε− T )cp vx

Δ(ψ) = m[(V ⋅ u) −(V ⋅ ) ] .
1

2
ux u

′ u′
x (8.6.43)

κ ≥ /⟨ R(u)⟩ .
150 ( TkB kB )3

πm3
u5 (8.6.44)

Pr = = =  ,
ν

a
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2
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η κ

b = d sin = d cos( χ)ϕ0
1
2

d b
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3
d3
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3
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d2 (8.6.46)

η ≥ , κ ≥ (  .
5 (m TkB )1/2

16 π−−√ d2
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TkB
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8.7: The Equations of Hydrodynamics
We now derive the equations governing fluid flow. The equations of mass and momentum balance are

where \[\RPi\ns_{\alpha\beta}=\rho\, V\ns_\alpha V\ns_\beta + p\,\delta\ns_{\alpha\beta} \, - \, \stackrel

{\overbrace{\left\{\eta\Bigg( {\pz V\ns_\alpha\over\pz x\ns_\beta} + {\pz V\ns_\beta\over\pz x\ns_\alpha}-\frac{2}
{3}\,\bnabla\!\cdot\!\BV\,\delta\ns_{\alpha\beta}\bigg) +\zeta\,\bnabla\!\cdot\!\BV\,\delta\ns_{\alpha\beta}\right\}}}\ .\]
Substituting the continuity equation into the momentum balance equation, one arrives at

which, together with continuity, are known as the Navier-Stokes equations. These equations are supplemented by an equation
describing the conservation of energy,

Note that the LHS of Equation [NSB] is , where  is the convective derivative. Multiplying by a differential
volume, this gives the mass times the acceleration of a differential local fluid element. The RHS, multiplied by the same differential
volume, gives the differential force on this fluid element in a frame instantaneously moving with constant velocity . Thus, this is
Newton’s Second Law for the fluid.

This page titled 8.7: The Equations of Hydrodynamics is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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8.8: Nonequilibrium Quantum Transport

Boltzmann equation for quantum systems

Almost everything we have derived thus far can be applied, mutatis mutandis, to quantum systems. The main difference is that the
distribution  corresponding to local equilibrium is no longer of the Maxwell-Boltzmann form, but rather of the Bose-Einstein or
Fermi-Dirac form,

where the top sign applies to bosons and the bottom sign to fermions. Here we shift to the more common notation for quantum
systems in which we write the distribution in terms of the wavevector  rather than the momentum . The quantum
distributions satisfy detailed balance with respect to the quantum collision integral

where , , , , and , and where we have assumed time-reversal and
parity symmetry. Detailed balance requires

where  is the equilibrium distribution. One can check that

which is the Boltzmann distribution, which we have already shown to satisfy detailed balance. For the streaming term, we have \
[\begin{split} df^0&=\kT\,{\pz f^0\over\pz\ve}\>d\!\left({\ve-\mu\over\kT}\right)\\ &=\kT\>{\pz f^0\over\pz\ve}\left\{-
{d\mu\over\kT}-{(\ve-\mu)\,dT\over\kB T^2} +{d\ve\over\kT}\right\}\\ &=-{\pz f^0\over\pz \ve}\left\

|\expect{\Bk'}{U}{\Bk}|^2\,\big(f(\Bk')-f(\Bk)\big)\,\delta\big(\ve(\Bk)-\ve(\Bk')\big)\label{qobc}\\ &={2\pi\over\hbar
V}\int\limits_{\hat\ROmega}\!\!{d^3\!k\over (2\pi)^3}\> |\,{\hat U}(\Bk-\Bk')|^2\,\big(f(\Bk')-f(\Bk)\big)\,\delta\big(\ve(\Bk)-
\ve(\Bk')\big)\ . \end{split}\] The wavevectors are now restricted to the first Brillouin zone, and the dispersion  is no longer the
ballistic form  but rather the dispersion for electrons in a particular energy band (typically the valence band) of a
solid . Note that  satisfies detailed balance with respect to one-body collisions as well .

In the presence of a weak electric field  and a (not necessarily weak) magnetic field , we have, within the relaxation time
approximation,  with

where  is the gradient of the ‘electrochemical potential’ . In deriving
the above equation, we have worked to lowest order in small quantities. This entails dropping terms like  (higher order in

spatial derivatives) and  (both  and  are assumed small). Typically  is energy-dependent, .

We can use Equation [qlbe] to compute the electrical current  and the thermal current ,

Here the factor of  is from spin degeneracy of the electrons (we neglect Zeeman splitting).

f 0

(r, k, t) ={exp( )∓1  ,f 0 ε(k) −μ(r, t)

T (r, t)kB

}

−1

(8.8.1)
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In the presence of a time-independent temperature gradient and electric field, linearized Boltzmann equation in the relaxation time
approximation has the solution

We now consider both the electrical current   as well as the thermal current density . One readily obtains

where the transport coefficients  are matrices:

If we define the hierarchy of integral expressions

then we may write

The linear relations in Equation ([linrel1]) may be recast in the following form:

where the matrices , , , and  are given by

or, in terms of the ,

[thermocouple] A thermocouple is a junction
formed of two dissimilar metals. With no

electrical current passing, an electric field is
generated in the presence of a temperature
gradient, resulting in a voltage V=V_\RA-V_\RB.

[thermocouple] A thermocouple is a junction formed of two dissimilar metals. With no electrical current passing, an electric field is
generated in the presence of a temperature gradient, resulting in a voltage .

These equations describe a wealth of transport phenomena:

( ) An electrical current  will generate an electric field , where  is the electrical resistivity.
( ) An electrical current  will generate an heat current , where  is the Peltier coefficient.
( ) A temperature gradient  gives rise to a heat current , where  is the thermal conductivity.

δf = −τ(ε) v ⋅(e\boldmath{E}+ ∇ T)(− )  .
ε−μ

T

∂f 0

∂ε
(8.8.6)
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( ) A temperature gradient  gives rise to an electric field , where  is the Seebeck
coefficient.

One practical way to measure the thermopower is to form a junction between two dissimilar metals, A and B. The junction is held
at temperature  and the other ends of the metals are held at temperature . One then measures a voltage difference between the
free ends of the metals – this is known as the Seebeck effect. Integrating the electric field from the free end of A to the free end of
B gives

What one measures here is really the difference in thermopowers of the two metals. For an absolute measurement of , replace B
by a superconductor (  for a superconductor). A device which converts a temperature gradient into an emf is known as a
thermocouple.

The Peltier effect has practical applications in refrigeration technology. Suppose an electrical current  is passed through a junction
between two dissimilar metals, A and B. Due to the difference in Peltier coefficients, there will be a net heat current into the
junction of . Note that this is proportional to , rather than the familiar  result
from Joule heating. The sign of  depends on the direction of the current. If a second junction is added, to make an ABA
configuration, then heat absorbed at the first junction will be liberated at the second. 

[peltier] A sketch of a Peltier effect refrigerator. An electrical current I
is passed through a junction between two dissimilar metals. If the

dotted line represents the boundary of a thermally well-insulated body,
then the body cools when \bsqcap_\RB >\bsqcap_\RA, in order to
maintain a heat current balance at the junction.

[peltier] A sketch of a Peltier effect refrigerator. An electrical current  is passed through a junction between two dissimilar metals.
If the dotted line represents the boundary of a thermally well-insulated body, then the body cools when 

, in order to maintain a heat current balance at the junction.

The Heat Equation
We begin with the continuity equations for charge density  and energy density :

where  is the electric field . Now we invoke local thermodynamic equilibrium and write

where  is the electron number density ( ) and  is the specific heat. We may now write

Invoking , we see that if there is no electrical current ( ), we obtain the heat equation

This results in a time scale  for temperature diffusion , where  is a typical length scale and  is a numerical
constant. For a cube of size  subjected to a sudden external temperature change,  is the side length and  (solve by
separation of variables).

j = B = 0 ∇T \boldmath{E}= Q∇T Q
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QB QA T1 T0 (8.8.9)

QA

Q = 0

I

W = ( − ) I\boldmath{⊓}A \boldmath{⊓}B I I 2

W
13

I

>\boldmath{⊓}B \boldmath{⊓}A

ρ ε

+∇ ⋅ j
∂ρ

∂t

+∇ ⋅
∂ε

∂t
jε

= 0

= j⋅E ,

E 14

∂ε

∂t
= +

∂ε

∂n

∂n

∂t

∂ε

∂T

∂T

∂t

= − +  ,
μ

e

∂ρ

∂t
cV

∂T

∂t

n n = −ρ/e cV

cV
∂T

∂t
= +

∂ε

∂t

μ

e

∂ρ

∂t

= j ⋅ E −∇ ⋅ − ∇ ⋅ jjε
μ

e

= j ⋅ \boldmath{E}−∇ ⋅  .jq

= \boldmath{⊓}j −κ∇ Tjq j = 0

=  .cV
∂T

∂t
καβ

T∂2

∂ ∂xα xβ
(8.8.10)

τT = C /κτT L2cV L C

L L C = 1/3π2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18742?pdf


8.8.4 https://phys.libretexts.org/@go/page/18742

Calculation of Transport Coefficients
We will henceforth assume that sufficient crystalline symmetry exists ( cubic symmetry) to render all the transport coefficients
multiples of the identity matrix. Under such conditions, we may write  with

The low-temperature behavior is extracted using the Sommerfeld expansion,

where  is a dimensionless differential operator.

Let us now perform some explicit calculations in the case of a parabolic band with an energy-independent scattering time . In this
case, one readily finds

where . Thus,

from which we obtain the low-  results ,

and of course . The predicted universal ratio

is known as the Wiedemann-Franz law. Note also that our result for the thermopower is unambiguously negative. In actuality,
several nearly free electron metals have positive low-temperature thermopowers (Cs and Li, for example). What went wrong? We
have neglected electron-phonon scattering!

Onsager Relations
Transport phenomena are described in general by a set of linear relations,

where the  are generalized forces and the  are generalized currents. Moreover, to each force  corresponds a unique
conjugate current , such that the rate of internal entropy production is

The Onsager relations (also known as Onsager reciprocity) state that

where  describes the parity of  under time reversal:

=J αβ
n Jn δαβ

= ∫ dε τ(ε) (ε−μ (− )∫ d |v| .Jn

1

12 ℏπ3
)n

∂f 0

∂ε
Sε (8.8.11)

I ≡ dεH(ε)(− )∫

−∞

∞

∂f 0

∂ε
= πDcsc(πD)H(ε) ∣

∣ε=μ

= H(μ) + ( T (μ) +…
π2

6
kB )2 H ′′

D ≡ TkB

∂

∂ε
15

τ

= πDcscπD (ε−μ  ,Jn

σ0

e2
μ−3/2 ε3/2 )n∣

∣ε=μ
(8.8.12)
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8

( TkB )2

μ2

= +…
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e2

π2

2

( TkB )2

μ

= ( T +…  ,
σ0

e2

π2

3
kB )2

T ρ = σ−1
0

Q=-{\pi^2\over 2}\,{k_\ssr{B}^2 T\over e\,\veF} \qquad\qquad \kappa = {\pi^2\over 3}\,{n\tau\over m^*}\,k_\ssr{B}^2 T\ ,

\boldmath{⊓} = TQ

{\kappa\over\sigma T}={\pi^2\over 3}\, (k\nd_\ssr{B}/e)^2 = 2.45\times 10^{-8}\,\RV^2\,\RK^{-2}\ ,

=  ,Ji Lik Fk (8.8.13)

{ }Fk { }Ji Fi

Ji

= ⟹ =  .Ṡ ∑
i

Fi Ji Fi

∂Ṡ
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where  is the time reverse of . To justify the Onsager relations requires a microscopic description of our nonequilibrium
system.

The Onsager relations have some remarkable consequences. For example, they require, for , that the thermal conductivity
tensor  of any crystal must be symmetric, independent of the crystal structure. In general,this result does not follow from
considerations of crystalline symmetry. It also requires that for every ‘off-diagonal’ transport phenomenon, the Seebeck effect,
there exists a distinct corresponding phenomenon, the Peltier effect.

For the transport coefficients studied, Onsager reciprocity means that in the presence of an external magnetic field,

Let’s consider an isotropic system in a weak magnetic field, and expand the transport coefficients to first order in :

Onsager reciprocity requires  and . We can now write

There are several new phenomena lurking:

( ) An electrical current  and a field  yield an electric field . The Hall

coefficient is .
( ) An electrical current  and a field  yield a temperature gradient . The Ettingshausen

coefficient is .

( ) A temperature gradient  and a field  yield an electric field . The

Nernst coefficient is .

( ) A temperature gradient  and a field  yield an orthogonal temperature gradient .

The Righi-Leduc coefficient is .

This page titled 8.8: Nonequilibrium Quantum Transport is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.

=  ,J T
i ηi Ji (8.8.16)
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8.9: Stochastic Processes
A stochastic process is one which is partially random, it is not wholly deterministic. Typically the randomness is due to phenomena
at the microscale, such as the effect of fluid molecules on a small particle, such as a piece of dust in the air. The resulting motion
(called Brownian motion in the case of particles moving in a fluid) can be described only in a statistical sense. That is, the full
motion of the system is a functional of one or more independent random variables. The motion is then described by its averages with
respect to the various random distributions.

Langevin equation and Brownian motion
Consider a particle of mass  subjected to dissipative and random forcing. We’ll examine this system in one dimension to gain an
understanding of the essential physics. We write

Here,  is the damping rate due to friction,  is a constant external force, and  is a stochastic random force. This equation,
known as the Langevin equation, describes a ballistic particle being buffeted by random forcing events. Think of a particle of dust as
it moves in the atmosphere;  would then represent the external force due to gravity and  the random forcing due to interaction
with the air molecules. For a sphere of radius  moving with velocity  in a fluid, the Stokes drag is given by ,
where  is the radius. Thus,

where  is the mass of the particle. It is illustrative to compute  in some setting. Consider a micron sized droplet ( cm)
of some liquid of density  moving in air at . The viscosity of air is  at this
temperature . If the droplet density is constant, then , hence the time scale for viscous relaxation of
the particle is . We should stress that the viscous damping on the particle is of course due to the fluid molecules, in
some average ‘coarse-grained’ sense. The random component to the force  would then represent the fluctuations with respect to
this average.

We can easily integrate this equation:

Note that  is indeed a functional of the random function . We can therefore only compute averages in order to describe the
motion of the system.

The first average we will compute is that of  itself. In so doing, we assume that  has zero mean: . Then

On the time scale , the initial conditions  are effectively forgotten, and asymptotically for  we have 
, which is the terminal momentum.

Next, consider

We now need to know the two-time correlator . We assume that the correlator is a function only of the time difference 
, so that the random force  satisfies

M

+γp = F +η(t) .ṗ (8.9.1)

γ F η(t)

F η(t)
a v = −6πηavFdrag

a

=  ,γ
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6πηa

M
(8.9.2)

M γ a = 10−4

ρ ∼ 1.0 g/cm3 T = C20∘ η = 1.8 × g/cm ⋅ s10−4

16 γ = 9η/2ρ = 8.1 ×a2 104 s−1

τ = = 12 μsγ−1
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(p )
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eγt
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γ−1 p(0) t ≫ γ−1

⟨p(t)⟩ → F/γ

⟨ (t)⟩p2 = ⟨p(t) + d d ⟨η( ) η( )⟩ .⟩
2

∫

0

t

s1∫

0

t

s2 e
γ( −t)s1 eγ( −t)s2 s1 s2

⟨η( ) η( )⟩s1 s2

Δs = −s1 s2 η(s)

⟨η(s)⟩

⟨η( ) η( )⟩s1 s2

= 0

= ϕ( − ) .s1 s2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18743?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08%3A_Nonequilibrium_Phenomena/8.09%3A_Stochastic_Processes


8.9.2 https://phys.libretexts.org/@go/page/18743

The function  is the autocorrelation function of the random force. A macroscopic object moving in a fluid is constantly buffeted
by fluid particles over its entire perimeter. These different fluid particles are almost completely uncorrelated, hence  is basically
nonzero except on a very small time scale , which is the time a single fluid particle spends interacting with the object. We can take

 and approximate

We shall determine the value of  from equilibrium thermodynamic considerations below.

With this form for , we can easily calculate the equal time momentum autocorrelation:

Consider the case where  and the limit . We demand that the object thermalize at temperature . Thus, we impose
the condition

where  is the particle’s mass. This determines the value of .

We can now compute the general momentum autocorrelator:

The full expressions for this and subsequent expressions, including subleading terms, are contained in an appendix, §14.

Let’s now compute the position . We find

where

Note that for  we have , as is appropriate for ballistic particles moving under
the influence of a constant force. This long time limit of course agrees with our earlier evaluation for the terminal velocity, 

. We next compute the position autocorrelation:

In particular, the equal time autocorrelator is

at long times, up to terms of order unity. Here,

ϕ(s)
ϕ(s)

τϕ
→ 0τϕ

ϕ(s) ≈ Γ δ(s) . (8.9.4)

Γ

ϕ(s)

⟨ (t)⟩p2 = ⟨p(t) +Γ ds⟩
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is the diffusion constant. For a liquid droplet of radius  moving in air at , for which , we
have

This result presumes that the droplet is large enough compared to the intermolecular distance in the fluid that one can adopt a
continuum approach and use the Navier-Stokes equations, and then assuming a laminar flow.

If we consider molecular diffusion, the situation is quite a bit different. As we shall derive below in §10.3, the molecular diffusion
constant is , where  is the mean free path and  is the collision time. As we found in Equation [nutaueqn], the mean free
path , collision time , number density , and total scattering cross section  are related by

where  is the average particle speed. Approximating the particles as hard spheres, we have , where  is
the hard sphere radius. At , and , we have . Since air is predominantly
composed of  molecules, we take cm and , which are appropriate for .
We find an average speed of  and a mean free path of cm. Thus, .
Though much larger than the diffusion constant for large droplets, this is still too small to explain common experiences. Suppose we
set the characteristic distance scale at  and we ask how much time a point source would take to diffuse out to this radius.
The answer is , which is between five and six minutes. Yet if someone in the next seat emits a foul odor, your
sense the offending emission in on the order of a second. What this tells us is that diffusion isn’t the only transport process involved
in these and like phenomena. More important are convection currents which distribute the scent much more rapidly.

Langevin equation for a particle in a harmonic well

Consider next the equation

where  is a constant force. We write  and measure  relative to the potential minimum, yielding

At this point there are several ways to proceed.

Perhaps the most straightforward is by use of the Laplace transform. Recall:

where the contour  proceeds from  to  such that all poles of the integrand lie to the left of . We then have

Thus, we have

D =
TkB

γM
(8.9.9)
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Now we may write

where

Note that  and that .

Performing the inverse Laplace transform, we obtain

where

is the response kernel and  is the step function which is unity for  and zero otherwise. The response is causal, 
depends on  for all previous times , but not for future times . Note that  decays exponentially for , if 

. The marginal case where  and  corresponds to the diffusion calculation we performed in the previous
section.

Discrete random walk
Consider an object moving on a one-dimensional lattice in such a way that every time step it moves either one unit to the right or
left, at random. If the lattice spacing is , then after  time steps the position will be

where

Clearly , so . Now let us compute

where we invoke

If the length of each time step is , then we have, with ,

and we identify the diffusion constant
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Suppose, however, the random walk is biased, so that the probability for each independent step is given by

where . Then

and

Then

Fokker-Planck equation
Suppose  is a stochastic variable. We define the quantity

and we assume

but  for . The  term is due to drift and the  term is due to diffusion. Now consider the
conditional probability density, , defined to be the probability distribution for  given that . The
conditional probability density satisfies the composition rule,

for any value of . This is also known as the Chapman-Kolmogorov equation. In words, what it says is that the probability density
for a particle being at  at time , given that it was at  at time , is given by the product of the probability density for being at 

 at time  given that it was at  at , multiplied by that for being at  at  given it was at  at , integrated over . This
should be intuitively obvious, since if we pick any time , then the particle had to be somewhere at that time. Indeed, one
wonders how Chapman and Kolmogorov got their names attached to a result that is so obvious. At any rate, a picture is worth a
thousand words: see Figure [FChaKol].

[FChaKol] Interpretive sketch of the mathematics behind the Chapman-Kolmogorov equation.

Proceeding, we may write
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(8.9.23)
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Now

where the average is over the random variables. We now insert this result into Equation [CGEFPE], integrate by parts, divide by ,
and then take the limit . The result is the Fokker-Planck equation,

Brownian motion redux
Let’s apply our Fokker-Planck equation to a description of Brownian motion. From our earlier results, we have

A formal proof of these results is left as an exercise for the reader. The Fokker-Planck equation is then

where  is the average terminal velocity. If we make a Galilean transformation and define

then our Fokker-Planck equation takes the form

This is known as the diffusion equation. Equation [FPEBM] is also a diffusion equation, rendered in a moving frame.

While the Galilean transformation is illuminating, we can easily solve Equation [FPEBM] without it. Let’s take a look at this
equation after Fourier transforming from  to :

Then as should be well known to you by now, we can replace the operator  with multiplication by , resulting in

with solution

We now apply the inverse transform to get back to -space:
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P (x, t+δt | , t)x′ = ⟨δ(x−δx(t) − )⟩x′

={1 +⟨δx(t)⟩ + ⟨[δx(t) ⟩ +…} δ(x− )
d

dx′

1

2
]

2 d2

dx′2
x′

= δ(x− ) + ( ) δt+ ( ) δt+O((δt ) ,x′ F1 x′ d δ(x− )x′

dx′

1

2
F2 x′ δ(x− )d2 x′

dx′2
)2

δt

δt → 0

= − [ (x)P (x, t)] + [ (x)P (x, t)] .
∂P

∂t

∂

∂x
F1

1

2

∂2

∂x2
F2 (8.9.29)

(x) = , (x) = 2D .F1

F

γM
F2 (8.9.30)

= −u +D  ,
∂P

∂t

∂P

∂x

P∂2

∂x2
(8.9.31)

u = F/γM

y = x−ut , s = t (8.9.32)

= D  .
∂P

∂s

P∂2

∂y2
(8.9.33)

x q

P (x, t)

(q, t)P̂

= (q, t)∫

−∞

∞
dq

2π
eiqx P̂

= dx P (x, t) .∫

−∞

∞

e−iqx

∂
∂x

iq

(q, t) = −(D + iqu) (q, t) ,
∂

∂t
P̂ q2 P̂ (8.9.34)

(q, t) = (q, 0) .P̂ e−D tq2

e−iqut P̂ (8.9.35)

x

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18743?pdf


8.9.7 https://phys.libretexts.org/@go/page/18743

where

is the diffusion kernel. We now have a recipe for obtaining  given the initial conditions . If ,
describing a particle confined to an infinitesimal region about the origin, then  is the probability distribution for
finding the particle at  at time . There are two aspects to  which merit comment. The first is that the center of the
distribution moves with velocity . This is due to the presence of the external force. The second is that the standard deviation 

 is increasing in time, so the distribution is not only shifting its center but it is also getting broader as time evolves. This
movement of the center and broadening are what we have called drift and diffusion, respectively.

Master Equation
Another way to model stochastic processes is via the master equation, which was discussed in chapter 3. Recall that if  is the
probability for a system to be in state  at time  and  is the transition rate from state  to state , then

Consider a birth-death process in which the states  are labeled by nonnegative integers. Let  denote the rate of transitions
from  and let  denote the rate of transitions from . The master equation then takes the form

Let us assume we can write  and , where . We assume the distribution  has a time-
dependent maximum at  and a width proportional to . We expand relative to this maximum, writing 

  and we define . We now rewrite the master equation in Equation [MEPab] in terms of .
Since  is an independent variable, we set

Therefore

Next, we write, for any function ,

Similarly,

Dividing both sides of Equation [MEPab] by , we have

P (x, t) = d P ( , 0)∫

−∞

∞
dq

2π
eiqx e−D tq2

e−iqut∫

−∞

∞

x′ e−iqx′

x′

= d P ( , 0)∫

−∞

∞

x′ x′ ∫

−∞

∞
dq

2π
e−D tq2

eiq(x−ut− )x′

= d K(x− , t)P ( , 0) ,∫

−∞

∞

x′ x′ x′

K(x, t) =
1

4πDt
− −−−

√
e−(x−ut /4Dt)

2

(8.9.36)

P (x, t) P (x, 0) P (x, 0) = δ(x)
P (x, t) = K(x, t)

x t K(x, t)
u

σ = 2Dt
− −−

√

(t)Pi

| i ⟩ t Wij | j ⟩ | i ⟩

= ( − ) .
dPi

dt
∑
j

WijPj WjiPi (8.9.37)

| n ⟩ αn

| n ⟩→ | n+1 ⟩ βn | n ⟩→ | n−1 ⟩ 17

= + −( + )  .
dPn

dt
αn−1Pn−1 βn+1Pn+1 αn βn Pn (8.9.38)

= K (n/K)αn ᾱ = K (n/K)βn β̄ K ≫ 1 (t)Pn

n = Kϕ(t) K
−−

√

n ≡ Kϕ(t) + ξK
−−

√ (t) ≡ Π(ξ, t)Pn Π(ξ, t)
n

dn = K dt+ dξ ⇒ dξ = − dt .ϕ̇ K
−−

√ ∣∣n K
−−

√ ϕ̇ (8.9.39)

= − +  .
dPn

dt
K
−−

√ ϕ̇
∂Π

∂ξ

∂Π

∂t
(8.9.40)

fn

fn = Kf(ϕ+ ξ)K−1/2

= Kf(ϕ) + ξ (ϕ) + (ϕ) +…  .K1/2 f ′ 1

2
ξ2 f ′′

fn±1 = Kf(ϕ+ ξ± )K−1/2 K−1

= Kf(ϕ) + ξ (ϕ) ± (ϕ) + (ϕ) +…  .K1/2 f ′ f ′ 1

2
ξ2 f ′′

K
−−

√
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Equating terms of order  yields the equation

Equating terms of order  yields the Fokker-Planck equation,

where . If in the limit , Equation [Dphieqn] evolves to a stable fixed point , then the stationary
solution of the Fokker-Planck Equation [FPEPi],  must satisfy

where

Now both  and  are rates, hence both are positive and thus . We see that the condition  , which is necessary for a
normalizable equilibrium distribution, requires , which is saying that the fixed point in Equation [Dphieqn] is stable.
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−   + = ( − ) + {( − ) ξ + ( + ) +( − )Π}+…  .
∂Π

∂ξ
ϕ̇ K−1/2 ∂Π

∂t
β̄ ᾱ

∂Π

∂ξ
K−1/2 β̄

′
ᾱ′ ∂Π

∂ξ

1

2
ᾱ β̄

Π∂2

∂ξ2
β̄

′
ᾱ′ (8.9.41)

K0

= f(ϕ) ≡ (ϕ) − (ϕ) .ϕ̇ ᾱ β̄ (8.9.42)

K−1/2

= − (ϕ(t)) (ξΠ) + g(ϕ(t))  ,
∂Π

∂t
f ′ ∂

∂ξ

1

2

Φ∂2

∂ξ2
(8.9.43)

g(ϕ) ≡ (ϕ) + (ϕ)ᾱ β̄ t → ∞ ϕ∗

(ξ) = Π(ξ, t = ∞)Πeq

− ( ) (ξ ) + g( ) = 0 ⇒ (ξ) =  ,f ′ ϕ∗ ∂

∂ξ
Πeq

1

2
ϕ∗ ∂2Πeq

∂ξ2
Πeq

1

2πσ2
− −−−

√
e− /2ξ2 σ2

(8.9.44)

= −  .σ2 g( )ϕ∗

2 ( )f ′ ϕ∗
(8.9.45)

α β g(ϕ) > 0 > 0σ2

( ) < 0f ′ ϕ∗
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8.10: Appendix I- Boltzmann Equation and Collisional Invariants
Problem : The linearized Boltzmann operator  is a complicated functional. Suppose we replace  by , where

Show that  shares all the important properties of . What is the meaning of ? Expand  in spherical harmonics and Sonine
polynomials,

with , and thus express the action of the linearized Boltzmann operator algebraically on the expansion coefficients 
.

The Sonine polynomials  are a complete, orthogonal set which are convenient to use in the calculation of transport
coefficients. They are defined as

and satisfy the generalized orthogonality relation

Solution : The ‘important properties’ of  are that it annihilate the five collisional invariants, , , and , and that all other
eigenvalues are negative. That this is true for  can be verified by an explicit calculation.

Plugging the conveniently parameterized form of  into , we have

where we’ve used

Now recall  and

which allows us to write

Lψ L L

Lψ = −γ ψ(v, t) +γ( ∫ u exp(− )
m

2π TkB

)
3/2

d3 mu
2

2 TkB

×{1 + u ⋅ v + ( − )( − )}ψ(u, t) .
m

TkB

2

3

mu
2

2 TkB

3

2

mv
2

2 TkB

3

2

L L γ ψ(v, t)

ψ(v, t) = (t) (x) ( ),∑
rℓm

arℓm Sr

ℓ+ 1

2

xℓ/2 Y ℓ
m n̂ (8.10.1)

x = m /2 Tv2 kB

(t)arℓm

(x)Sn
α

(x) =  ,Sn
α ∑

m=0

n Γ(α+n+1) (−x)m

Γ(α+m+1) (n−m)!m!
(8.10.2)

dx (x) (x) =  .∫

0

∞

e−x xα Sn
α Sn′

α

Γ(α+n+1)

n!
δ
nn′ (8.10.3)

L 1 v v2

L

ψ(v, t) L

Lψ = −γ (t) (x) ( )  +   (t) d∑
rℓm

arℓm Sr

ℓ+ 1

2

xℓ/2 Y ℓ
m n̂

γ

2π3/2
∑
rℓm

arℓm ∫

0

∞

x1 x
1/2
1 e−x1

×∫ d [1 +2 ⋅ + (x− )( − )] ( ) ( ) ,n̂1 x1/2x
1/2
1 n̂ n̂1

2

3

3

2
x1

3

2
Sr

ℓ+ 1
2

x1 x
ℓ/2
1 Y ℓ

m n̂1

u = , du = d  .
2 TkB

m

− −−−−
√ x1/2

1

TkB

2m

− −−−
√ x−1/2

1
x

1
(8.10.4)

( ) =Y 0
0 n̂

1
4π√

( )Y 1
1 n̂

(x)S0
1/2

= − sinθ
3

8π

−−−
√ eiφ

= 1

( )Y 1
0 n̂

(x)S0
3/2

= cosθ
3

4π

−−−
√

= 1

( )Y 1
−1 n̂

(x)S1
1/2

= + sinθ
3

8π

−−−
√ e−iφ

= −x ,
3

2

1

⋅n̂ n̂1

= 4π ( ) ( )Y 0
0 n̂ Y 0

0
∗

n̂1

= [ ( ) ( ) + ( ) ( ) + ( ) ( ) ] .
4π

3
Y 1

0 n̂ Y 1
0

∗
n̂1 Y 1

1 n̂ Y 1
1

∗
n̂1 Y 1

−1 n̂ Y 1
−1

∗
n̂1
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We can do the integrals by appealing to the orthogonality relations for the spherical harmonics and Sonine polynomials:

Integrating first over the direction vector ,

we obtain the intermediate result

Appealing now to the orthogonality of the Sonine polynomials, and recalling that

we integrate over . For the first term in brackets, we invoke the orthogonality relation with  and , giving 
. For the second bracketed term, we have  but , and we obtain , while the third

bracketed term involves leads to  and , also yielding . Thus, we obtain the simple and pleasing result

where the prime on the sum indicates that the set

are to be excluded from the sum. But these are just the functions which correspond to the five collisional invariants! Thus, we learn
that

is an eigenfunction of  with eigenvalue  if  does not correspond to one of the five collisional invariants. In the latter
case, the eigenvalue is zero. Thus, the algebraic action of  on the coefficients  is

∫ d ( ) ( )n̂Y ℓ
m n̂ Y l′

m′

∗
n̂

dx (x) (x)∫

0

∞

e−x xα Sn
α Sn′

α

= δll′ δmm′

=  .
Γ(n+α+1)

Γ(n+1)
δnn′

n̂1

Lψ = −γ (t) (x) ( )∑
rℓm

arℓm Sr

ℓ+ 1
2

xℓ/2 Y ℓ
m n̂

+ (t) d ∫ d [ ( ) ( ) (x) ( )
2γ

π−−√
∑
rℓm

arℓm ∫

0

∞

x1 x
1/2
1 e−x1 n̂1 Y 0

0 n̂ Y 0
0

∗
n̂1 S0

1/2
S0

1/2
x1

+ ( ) ( ) (x) ( )
2

3
x1/2x1/2

1
∑

=−1m′

1

Y 1
m′ n̂ Y 1

m′

∗
n̂1 S0

3/2
S0

3/2
x

1

+ ( ) ( ) (x) ( )] ( ) ( ) ,
2

3
Y 0

0 n̂ Y 0
0

∗
n̂1 S1

1/2
S1

1/2
x1 Sr

ℓ+
1

2

x1 x
ℓ/2
1 Y ℓ

m n̂1

Lψ = −γ (t) (x) ( )∑
rℓm

arℓm Sr

ℓ+
1

2

xℓ/2 Y ℓ
m n̂

+ (t) d [ ( ) (x) ( )
2γ

π−−√
∑
rℓm

arℓm ∫

0

∞

x1 x
1/2
1 e−x1 Y 0

0 n̂ δl0 δm0 S
0
1/2 S0

1/2 x1

+ ( ) (x) ( )
2

3
x1/2x

1/2
1 ∑

=−1m′

1

Y 1
m′ n̂ δl1 δmm′ S0

3/2
S0

3/2
x1

+ ( ) (x) ( )] ( ) .
2

3
Y 0

0 n̂ δl0 δm0 S
1
1/2 S1

1/2 x1 Sr

ℓ+ 1

2

x1 x
1/2
1

Γ( ) = , Γ(1) = 1 , Γ(z+1) = zΓ(z) ,
1

2
π−−√ (8.10.5)

x1 n = 0 α = 1
2

Γ( ) =3
2

1
2

π−−√ n = 0 α = 3
2

Γ( ) = Γ( )5
2

3
2

3
2

n = 1 α = 1
2

Γ( ) = Γ( )5
2

3
2

3
2

Lψ = −γ (t) (x) ( )∑
rℓm

′
arℓm Sr

ℓ+ 1

2

xℓ/2 Y ℓ
m n̂ (8.10.6)

CI ={(0, 0, 0) , (1, 0, 0) , (0, 1, 1) , (0, 1, 0) , (0, 1, −1)} (8.10.7)

(v) = (x) ( ),ψrℓm Nrℓm Sr

ℓ+ 1

2

xℓ/2 Y ℓ
m n̂ (8.10.8)

L −γ (r, ℓ,m)
L arℓm
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The quantity  is the relaxation time.

It is pretty obvious that  is self-adjoint, since

where  is the bulk number density and  is the Maxwellian velocity distribution.
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(La ={)rℓm
−γ arℓm
= 0

if (r, ℓ,m) ∉ CI

if (r, ℓ,m) ∈ CI
(8.10.9)

τ = γ−1

L

⟨ϕ |Lψ ⟩ ≡ ∫ v (v)ϕ(v)L[ψ(v)]d3 f 0

= −γ n ∫ v exp(− )ϕ(v)ψ(v)( )
m

2π TkB

3/2

d3 mv
2

2 TkB

+γ n( ∫ v∫ u exp(− ) exp(− )
m

2π TkB

)
3

d3 d3 mu
2

2 TkB

mv
2

2 TkB

×ϕ(v)[1 + u ⋅ v + ( − )( − )]ψ(u)
m

TkB

2

3

mu
2

2 TkB

3

2

mv
2

2 TkB

3

2

= ⟨Lϕ |ψ ⟩ ,

n (v)f 0
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8.11: Appendix II- Distributions and Functionals
Let  be a random variable, and  a probability distribution for . The average of any function  is then

Let  be a random function of , with , and let  be the probability distribution functional for . Then if 
 is a functional of , the average of  is given by

The expression  is a functional integral. A functional integral is a continuum limit of a multivariable integral.
Suppose  were defined on a set of  values . A functional of  becomes a multivariable function of the values 

. The metric then becomes

In fact, for our purposes we will not need to know any details about the functional measure ; we will finesse this delicate
issue . Consider the generating functional,

It is clear that

The function  is an arbitrary source function. We differentiate with respect to it in order to find the -field correlators.

[Fdiscretize] Discretization of a continuous function . Upon discretization, a functional  becomes an ordinary
multivariable function .

Let’s compute the generating function for a class of distributions of the Gaussian form,

Then Fourier transforming the source function , it is easy to see that

x ∈ R P (x) x ϕ(x)

⟨ϕ(x)⟩ = dx P (x)ϕ(x)/ dx P (x) .∫

−∞

∞

∫

−∞

∞

(8.11.1)

η(t) t η(t) ∈ R P [η(t)] η(t)

Φ[η(t)] η(t) Φ

∫Dη P [η(t)] Φ[η(t)]/∫Dη P [η(t)] (8.11.2)

∫Dη P [η] Φ[η]

η(t) t = nτtn η(t)

≡ η( )ηn tn

Dη⟶ d  .∏
n

ηn (8.11.3)

Dη
18

Z[J(t)] = ∫Dη P [η] exp( dt J(t) η(t)) .∫

−∞

∞

(8.11.4)

= ⟨η( ) ⋯ η( )⟩ .
1

Z[J]

Z[J]δn

δJ( ) ⋯ δJ( )t1 tn

∣

∣
∣
J(t)=0

t
1

tn (8.11.5)

J(t) η

η(t) Φ[η(t)]
Φ({ })ηj

P [η] = exp(− dt ( + ))
1

2Γ
∫

−∞

∞

τ 2 η̇2 η2

= exp(− (1 + ) (ω) ) .
1

2Γ
∫

−∞

∞

dω

2π
ω2τ 2 ∣∣η̂ ∣∣

2

J(t)
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Note that with  and  we have  and . Transforming back to real time, we have

where

is the Green’s function, in real and Fourier space. Note that

We can now compute

The generalization is now easy to prove, and is known as Wick’s theorem:

where the sum is over all distinct contractions of the sequence -  into products of pairs. How many terms are there? Some
simple combinatorics answers this question. Choose the index . There are  other time indices with which it can be
contracted. Now choose another index. There are  indices with which that index can be contracted. And so on. We thus
obtain
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Z[J] = Z[0] ⋅ exp( ) .
Γ

2
∫

−∞

∞

dω

2π

(ω)∣∣Ĵ ∣∣
2

1 +ω2τ 2
(8.11.6)

η(t) ∈ R J(t) ∈ R (ω) = η(−ω)η∗ (ω) = J(−ω)J ∗

Z[J] = Z[0] ⋅ exp( dt d J(t)G(t− )J( )) ,
1

2
∫

−∞

∞

∫

−∞

∞

t′ t′ t′ (8.11.7)

G(s) = , (ω) =
Γ

2τ
e−|s|/τ Ĝ

Γ

1 +ω2τ 2
(8.11.8)

ds G(s) = (0) = Γ .∫

−∞

∞

Ĝ (8.11.9)

⟨η( ) η( )⟩t1 t2

⟨η( ) η( ) η( ) η( )⟩t1 t2 t3 t4

= G( − )t1 t2

= G( − )G( − ) +G( − )G( − )t1 t2 t3 t4 t1 t3 t2 t4

+G( − )G( − ) .t1 t4 t2 t3

⟨η( ) ⋯ η( )⟩ = G( − ) ⋯G( − ) ,t
1

t
2n

∑
contractions

t
i1

t
i2

t
i2n−1

t
i2n

(8.11.10)

1 2 ⋯ 2n

1 (2n−1)

(2n−3)

C(n) ≡ = (2n−1)(2n−3) ⋯ 3 ⋅ 1 =  .
\# of contractions

of 1-2-3\,⋯2n

(2n)!

n!2n
(8.11.11)
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8.12: Appendix III- General Linear Autonomous Inhomogeneous ODEs
We can also solve general autonomous linear inhomogeneous ODEs of the form

We can write this as

where  is the  order differential operator

The general solution to the inhomogeneous equation is given by

where  is the Green’s function. Note that . Thus, in order for eqns. [Leqn] and [time] to be true, we must have
\[{\cal L}\nd_t\, x(t)=\stackrel

{\overbrace +\impi dt'\>{\cal L}\nd_t\,G(t,t')\,\xi(t')=\xi(t)\ ,\] which means that

where  is the Dirac -function.

If the differential equation  is defined over some finite or semi-infinite  interval with prescribed boundary
conditions on  at the endpoints, then  will depend on  and  separately. For the case we are now considering, let the
interval be the entire real line . Then  is a function of the single variable .

Note that  may be considered a function of the differential operator . If we now Fourier transform the equation 
, we obtain

Thus, if we define

then we have

where . According to the Fundamental Theorem of Algebra, the  degree polynomial  may be uniquely
factored over the complex  plane into a product over  roots:

If the  are all real, then , hence if  is a root then so is . Thus, the roots appear in pairs which are
symmetric about the imaginary axis. if  is a root, then so is .

+ +… + + x = ξ(t) .
xdn

dtn
an−1

xdn−1

dtn−1
a1

dx

dt
a0 (8.12.1)

x(t) = ξ(t) ,Lt (8.12.2)

Lt n^\ssr{th}

= + +… + +  .Lt

dn

dtn
an−1

dn−1

dtn−1
a1

d

dt
a0 (8.12.3)

x(t) = (t) + d G(t, ) ξ( ) ,x
h

∫

−∞

∞

t′ t′ t′ (8.12.4)

G(t, )t′ (t) = 0Lt xh

G(t, ) = δ(t− ) ,Lt t′ t′ (8.12.5)

δ(t− )t′ δ

x(t) = ξ(t)Lt t

x(t) G(t, )t′ t t′

t ∈ (−∞, ∞) G(t, ) = G(t− )t′ t′ t− t′

= L( )Lt
d

dt

d

dt

x(t) = ξ(t)Lt

dt ξ(t)∫

−∞

∞

eiωt = dt { + +… + + }x(t)∫

−∞

∞

eiωt
dn

dtn
an−1

dn−1

dtn−1
a1

d

dt
a0

= dt {(−iω + (−iω +… + (−iω) + }x(t) .∫

−∞

∞

eiωt )n an−1 )n−1 a1 a0

(ω) = (−iω  ,L̂ ∑
k=0

n

a
k

)k (8.12.6)

(ω) (ω) = (ω) ,L̂ x̂ ξ̂ (8.12.7)

≡ 1an n^\ssr{th} (ω)L̂

ω n

(ω) = (−i (ω− )(ω− ) ⋯ (ω− ) .L̂ )n ω1 ω2 ωn (8.12.8)

{ }ak [ (ω) = (− )L̂ ]
∗

L̂ ω∗ Ω −Ω∗

Ω = a+ ib − = −a+ ibΩ∗
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The general solution to the homogeneous equation is

which involves  arbitrary complex constants . The susceptibility, or Green’s function in Fourier space,  is then

Note that , which is equivalent to the statement that  is a real function of its argument. The general
solution to the inhomogeneous equation is then

where  is the solution to the homogeneous equation, with zero forcing, and where

where we assume that  for all . This guarantees causality – the response  to the influence  is nonzero only for 
.

As an example, consider the familiar case

with , and . This yields

Then according to equation [gfun],

Now let us evaluate the two-point correlation function , assuming the noise is correlated according to 
. We assume  so the transient contribution  is negligible. We then have

(t) =  ,x
h

∑
σ=1

n

Aσ e
−i tωσ (8.12.9)

n Ai (ω)Ĝ

(ω) = =  ,Ĝ
1

(ω)L̂

in

(ω− )(ω− ) ⋯ (ω− )ω1 ω2 ωn

(8.12.10)

[ (ω) = (−ω)Ĝ ]
∗

Ĝ G(t− )t′

x(t) = (t) + d G(t− ) ξ( ) ,x
h

∫

−∞

∞

t′ t′ t′ (8.12.11)

(t)x
h

G(t− )t′ = (ω)∫

−∞

∞
dω

2π
e−iω(t− )t′

Ĝ

= in ∫

−∞

∞
dω

2π
e−iω(t− )t′

(ω− )(ω− ) ⋯ (ω− )ω1 ω2 ωn

= Θ(t− ) ,∑
σ=1

n e−i (t− )ωσ t′

i ( )L
′ ωσ

t′

Im < 0ωσ σ x(t) ξ( )t′

t > t′

(ω)L̂ = − − iγω+ω2 ω2
0

= −(ω− ) (ω− ) ,ω+ ω−

= − γ±βω±
i

2 β = −ω2
0

1
4 γ

2
− −−−−−−−

√

( ) = ∓( − ) = ∓2β .L
′ ω± ω+ ω− (8.12.12)

G(s) = { + } Θ(s)
e−i sω+

i ( )L
′ ω+

e−i sω−

i ( )L
′ ω−

={ + }Θ(s)
e−γs/2 e−iβs

−2iβ
e−γs/2 eiβs

2iβ

= sin(βs) Θ(s) .β−1 e−γs/2

⟨x(t)x( )⟩t′

⟨ξ(s) ξ( )⟩ = ϕ(s− )s′ s′ t, → ∞t′ xh

⟨x(t)x( )⟩t′ = ds d G(t−s)G( − ) ⟨ξ(s) ξ( )⟩∫

−∞

∞

∫

−∞

∞

s′ t′ s′ s′

= (ω) (ω)  .∫

−∞

∞
dω

2π
ϕ̂ ∣∣Ĝ ∣∣

2
eiω(t− )t′
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Higher order ODEs
Note that any  order ODE, of the general form

may be represented by the first order system . To see this, define , with . Thus, for 
 we have , and . In other words, \[\stackrel

{\overbrace{ {d\over dt}

}}= \stackrel{\BV(\Bvphi)}{\overbrace{

}}\ .\]

An inhomogeneous linear  order ODE,

may be written in matrix form, as

Thus,

and if the coefficients  are time-independent, the ODE is autonomous.

For the homogeneous case where , the solution is obtained by exponentiating the constant matrix :

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not autonomous, then  is
time-dependent, and the solution is given by the path-ordered exponential,

where  is the path ordering operator which places earlier times to the right. As defined, the equation  is autonomous,
since the -advance mapping  depends only on  and on no other time variable. However, by extending the phase space 
from , which is of dimension , one can describe arbitrary time-dependent ODEs.

n^\ssr{th}

= F(x , , … , ) ,
xdn

dtn
dx

dt

xdn−1

dtn−1
(8.12.13)

= V(φ)φ̇ = x/dφ
k

dk−1 tk−1 k = 1, … ,n
k < n =φ̇

k
φ
k+1 = Fφ̇n

⎛

⎝

⎜⎜⎜⎜⎜⎜

φ1

⋮

φn−1

φn

⎞

⎠

⎟⎟⎟⎟⎟⎟
(8.12.14)

⎛

⎝

⎜⎜⎜⎜⎜⎜

φ2

⋮

φn

F ( , … , )φ1 φp

⎞

⎠

⎟⎟⎟⎟⎟⎟
(8.12.15)

n^\ssr{th}

+ +… + + x = ξ(t)
xdn

dtn
an−1

xdn−1

dtn−1
a1

dx

dt
a0 (8.12.16)

= +  .
d

dt

⎛

⎝

⎜⎜⎜⎜⎜⎜

φ1

φ2

⋮

φn

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

0
0

⋮

−a0

1
0

⋮

−a1

0
1

⋮

−a2

⋯
⋯

⋯

0
0

⋮

−an−1

⎞

⎠

⎟⎟⎟⎟⎟

  
Q

⎛

⎝

⎜⎜⎜⎜⎜⎜

φ1

φ2

⋮

φn

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜
⎜⎜

0
0

⋮
ξ(t)

⎞

⎠

⎟⎟
⎟⎟

  
ξ

(8.12.17)

= Qφ+ξ ,φ̇ (8.12.18)

ck

ξ(t) = 0 Qt

φ(t) = exp(Qt)φ(0) ; (8.12.19)

Q = Q(t)

φ(t) = P exp{ d Q( )}φ(0) ,∫

0

t

t′ t′ (8.12.20)

P = V(φ)φ̇

t gt t M ∋ φ

M →M×R n+1
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In general, path ordered exponentials are difficult to compute analytically. We will henceforth consider the autonomous case where 
 is a constant matrix in time. We will assume the matrix  is real, but other than that it has no helpful symmetries. We can

however decompose it into left and right eigenvectors:

Or, in bra-ket notation, . The normalization condition we use is

where  are the eigenvalues of . The eigenvalues may be real or imaginary. Since the characteristic polynomial 
 has real coefficients, we know that the eigenvalues of  are either real or come in complex conjugate pairs.

Consider, for example, the  system we studied earlier. Then

The eigenvalues are as before: . The left and right eigenvectors are

The utility of working in a left-right eigenbasis is apparent once we reflect upon the result

for any function . Thus, the solution to the general autonomous homogeneous case is

If  for all , then the initial conditions  are forgotten on time scales . Physicality demands that this is the
case.

Now let’s consider the inhomogeneous case where . We begin by recasting Equation [phiQeqn] in the form

We can integrate this directly:

In component notation,

Note that the first term on the RHS is the solution to the homogeneous equation, as must be the case when .

The solution in Equation [CNsoln] holds for general  and . For the particular form of  and  in Equation [Qxieqn], we
can proceed further. For starters, . We can further exploit a special feature of the  matrix to analytically
determine all its left and right eigenvectors. Applying  to the right eigenvector , we obtain

Q Q

=  .Q
ij

∑
σ=1

n

νσ Rσ,i Lσ,j (8.12.21)

Q = | ⟩⟨ |∑σ νσ Rσ Lσ

⟨ ⟩ = ,Lσ ∣∣Rσ ′ δσσ ′ (8.12.22)

{ }νσ Q

P (ν) = det (ν I−Q) Q

n = 2

Q =( )  .
0

−ω2
0

1
−γ

(8.12.23)

= − γ±ν±
1
2 −1

4 γ
2 ω2

0

− −−−−−−−
√

= ( ) , =( )  .L±
±1
−ν+ ν−

−ν∓ 1 R±

1
ν±

(8.12.24)

f(Q) = f( ) ⟩ ⟨∑
σ=1

n

νσ ∣∣Rσ Lσ ∣∣ (8.12.25)

f

φ(t) ⟩∣∣

(t)φi

= ⟩ ⟨ φ(0) ⟩∑
σ=1

n

e tνσ ∣∣Rσ Lσ ∣∣

= (0) .∑
σ=1

n

e tνσ Rσ,i ∑
j=1

n

Lσ,j φj

Re ( ) ≤ 0νσ σ φ(0) =τσ ν−1
σ

ξ(t) ≠ 0

( φ) = ξ(t) .
d

dt
e−Qt e−Qt (8.12.26)

φ(t) = φ(0) + ds ξ(s) .eQt ∫

0

t

eQ(t−s) (8.12.27)

(t) = ⟨ φ(0) ⟩ + ds ⟨ ξ(s) ⟩.φi ∑
σ=1

n

e tνσ Rσ,i Lσ ∣∣ ∑
σ=1

n

Rσ,i ∫

0

t

e (t−s)νσ Lσ ∣∣ (8.12.28)

ξ(s) = 0

Q ξ(s) Q ξ(s)
⟨ |ξ(s)⟩ = ξ(s)Lσ Lσ,n Q

Q | ⟩Rσ
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We are free to choose  for all  and defer the issue of normalization to the derivation of the left eigenvectors. Thus, we
obtain the pleasingly simple result,

Applying  to the left eigenvector , we obtain

From these equations we may derive

The equality in the above equation is derived using the result . Recall also that . We now impose
the normalization condition,

This condition determines our last remaining unknown quantity (for a given ), :

where  is the first derivative of the characteristic polynomial. Thus, we obtain another neat result,

Now let us evaluate the general two-point correlation function,

We write

When  is constant, we have . This is the case of so-called white noise, when all frequencies
contribute equally. The more general case when  is frequency-dependent is known as colored noise. Appealing to Equation
[CNsoln], we have

In the limit , assuming  for all  ( no diffusion), the exponentials  and  may be neglected, and we
then have

= (j> 1) .Rσ,j νσ Rσ,j−1 (8.12.29)

= 1Rσ,1 σ

=  .R
σ,k νk−1

σ (8.12.30)

Q ⟨ |Lσ

−a0 Lσ,n

−Lσ,j−1 aj−1 Lσ,n

= νσ Lσ,1

= (j> 1) .νσ Lσ,j

= − =  .L
σ,k

Lσ,n

νσ
∑
j=0

k−1

aj ν
j−k−1
σ

Lσ,n

νσ
∑
j=k

n

aj ν
j−k−1
σ (8.12.31)

P ( ) = = 0νσ ∑n

j=0 aj ν
j
σ ≡ 1an

= 1 .∑
k=1

n

Lσ,k Rσ,k (8.12.32)

σ Lσ,p

⟨ ⟩ = k = ( )  ,Lσ ∣∣Rσ Lσ,n∑
k=1

n

ak ν
k−1
σ P ′ νσ Lσ,n (8.12.33)

(ν)P ′

=  .Lσ,n
1
( )P ′ νσ

(8.12.34)

(t, ) ≡ ⟨ (t) ( )⟩ −⟨ (t)⟩ ⟨ ( )⟩ .C
jj′ t′ φj φ

j′ t
′ φj φ

j′ t
′ (8.12.35)

⟨ξ(s) ξ( )⟩ = ϕ(s− ) = (ω)  .s′ s′ ∫

−∞

∞
dω

2π
ϕ̂ e−iω(s− )s′

(8.12.36)

(ω)ϕ̂ ⟨ξ(s) ξ( )⟩ = (t) δ(s− )s′ ϕ̂ s′

(ω)ϕ̂

(t, )C
jj′ t′ = ds d ϕ(s− )∑

σ,σ ′

ν j−1
σ

( )P ′ νσ

ν −1j′

σ ′

( )P ′ νσ ′

∫

0

t

e (t−s)νσ ∫

0

t′

s′ e ( − )νσ ′ t′ s′
s′

=  .∑
σ,σ ′

ν
j−1
σ

( )P ′ νσ

ν −1j′

σ ′

( )P ′ νσ ′

∫

−∞

∞
dω

2π
(ω) ( − )( − )ϕ̂ e−iωt e tνσ eiωt

′
eνσ ′ t′

(ω− i )(ω+ i )νσ νσ ′

t, → ∞t′
Re ( ) < 0νσ σ e tνσ eνσ ′ t′

(t, ) =  .C
jj′ t′ ∑

σ,σ ′

ν
j−1
σ

( )P ′ νσ

ν −1j′

σ ′

( )P ′ νσ ′

∫

−∞

∞
dω

2π
(ω)ϕ̂ e−iω(t− )t′

(ω− i )(ω+ i )νσ νσ ′

(8.12.37)
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8.13: Appendix IV- Correlations in the Langevin formalism
As shown above, integrating the Langevin equation  yields

. Thus, the momentum autocorrelator is

where

is the lesser of  and . Here we have used the result

One way to intuitively understand this result is as follows. The double integral over  and  is over a rectangle of dimensions 
. Since the -function can only be satisfied when , there can be no contribution to the integral from regions where 
 or . Thus, the only contributions can arise from integration over the square of dimensions . Note also

[Fssprime] Regions for some of the double integrals encountered in the text.

Let’s now compute the position . We have

+γp = F +η(t)ṗ

p(t) = p(0) + (1 − ) + ds η(s)  .e−γt F

γ
e−γt ∫

0

t

eγ(s−t) (8.13.1)

⟨p(t) p( )⟩ −⟨p(t)⟩⟨p( )⟩t′ t′ = ds d ⟨η(s) η( )⟩∫

0

t

∫

0

t′

s′ eγ(s−t) eγ( − )s′ t′
s′

= Γ ds = M T ( − ) ,e−γ(t+ )t′

∫

0

tmin

e2γs kB e−γ|t− |t′

e−γ(t+ )t′

= min(t, ) ={tmin t′ t

t′
if  t < t′

if   < tt′ (8.13.2)

t t′

ds d δ(s− )∫

0

t

∫

0

t′

s′ eγ(s+ )s′

s′ = ds d δ(s− )∫

0

tmin

∫

0

tmin

s′ eγ(s+ )s′

s′

= ds = ( −1) .∫

0

tmin

e2γs 1

2γ
e2γtmin

s s′

t× t′ δ s = s′

s > t′ > ts′ ×tmin tmin

t+ −2 min(t, ) = |t− | .t′ t′ t′ (8.13.3)

x(t)
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with . Since , we have

Note that for  we have , as is appropriate for ballistic particles moving
under the influence of a constant force. This long time limit of course agrees with our earlier evaluation for the terminal velocity, 

.

We next compute the position autocorrelation:

We have to be careful in computing the double integral of the first term in brackets on the RHS. We can assume, without loss of
generality, that . Then

We then find, for ,

In particular, the equal time autocorrelator is

We see that for long times

where  is the diffusion constant.

This page titled 8.13: Appendix IV- Correlations in the Langevin formalism is shared under a CC BY-NC-SA license and was authored, remixed,
and/or curated by Daniel Arovas.

x(t) = x(0) + ds p(s)
1

M
∫

0

t

= x(0) + ds[(v(0) − ) + ]+ ds d η( )∫

0

t

F

γM
e−γs F

γM

1

M
∫

0

t

∫

0

s

s1 s1 eγ( −s)s1

= ⟨x(t)⟩ + ds d η( )  ,
1

M
∫

0

t

∫

0

s

s1 s1 eγ( −s)s1

v= p/M ⟨η(t)⟩ = 0

⟨x(t)⟩ = x(0) + ds[(v(0) − ) + ]∫

0

t

F

γM
e−γs F

γM

= x(0) + + (v(0) − ) (1 − ) .
Ft

γM

1

γ

F

γM
e−γt

γt ≪ 1 ⟨x(t)⟩ = x(0) +v(0) t+ F +O( )1
2
M−1 t2 t3

= ⟨p(∞)⟩/M = F/γMv∞

⟨x(t)x( )⟩ −⟨x(t)⟩⟨x( )⟩t′ t′ = ds d d d ⟨η( ) η( )⟩
1

M 2
∫

0

t

∫

0

t′

s′ e−γ(s+ )s′

∫

0

s

s1∫

0

s′

s′
1 e

γ( + )s1 s2 s1 s2

= ds d ( − )
Γ

2γM 2
∫

0

t

∫

0

t′

s′ e−γ|s− |s′

e−γ(s+ )s′

t ≥ t′

ds d∫

0

t

∫

0

t′

s′ e−γ|s− |s′

= d ds + d ds∫

0

t′

s′ eγs
′

∫

s′

t

e−γs ∫

0

t′

s′ e−γs′

∫

0

s′

eγs

= 2 + ( + −1 − ) .γ−1t′ γ−2 e−γt e−γt′

e−γ(t− )t′

t > t′

⟨x(t)x( )⟩ −⟨x(t)⟩⟨x( )⟩ = + (2 +2 −2 − − ) .t′ t′ 2 TkB

γM
t′ TkB

Mγ2
e−γt e−γt′

e−γ(t− )t′

e−γ(t+ )t′

(8.13.4)

⟨ (t)⟩ −⟨x(t) = t+ (4 −3 − ) .x2 ⟩
2 2 TkB

γM

TkB

Mγ2
e−γt e−2γt (8.13.5)

⟨ (t)⟩ −⟨x(t) ∼ 2Dt ,x2 ⟩
2

(8.13.6)

D = T/γMkB
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8.14: Appendix V- Kramers-Krönig Relations
Suppose  is analytic in the UHP . Then for all , we must have

where  is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming  vanishes sufficiently
rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak restriction on , given the fact that the
denominator already causes the integrand to vanish as .

Let us examine the function

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the limit , is equivalent to
taking a principal part of the integral. That is, for any function  which is regular at ,

The principal part symbol  means that the singularity at  is elided, either by smoothing out the function  as
above, or by simply cutting out a region of integration of width  on either side of .

The imaginary part is more interesting. Let us write

For , , which vanishes as . For ,  which diverges as . Thus,  has a huge peak
at  and rapidly decays to  as one moves off the peak in either direction a distance greater that . Finally, note that

a result which itself is easy to show using contour integration. Putting it all together, this tells us that

Thus, for positive infinitesimal ,

a most useful result.

We now return to our initial result [kka], and we separate  into real and imaginary parts:

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore have, for every real value of ,

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig relations:

(ω) ≡ (ω)χ̂ Ĝ 19 ν

= 0 ,∫

−∞

∞

dν

2π

(ν)χ̂

ν −ω+ iϵ
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ϵ (ω)χ̂

(ω)χ̂

|ω|−1

= −  .
1
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iϵ

(ν −ω +)2 ϵ2
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ϵ → 0

F (ν) ν = ω

F (ν) ≡ ℘  .lim
ϵ→0

∫

−∞

∞

dν

2π

ν −ω

(ν −ω +)2 ϵ2
∫

−∞

∞

dν

2π

F (ν)

ν −ω
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℘ ν = ω 1/(ν − ϵ)

ϵ ν = ω

h(u) ≡  .
ϵ

+u2 ϵ2
(8.14.4)

|u| ≫ ϵ h(u) ≃ ϵ/u2 ϵ → 0 u = 0 h(0) = 1/ϵ ϵ → 0 h(u)

u = 0 0 ϵ

du h(u) = π ,∫

−∞

∞

(8.14.5)

= πδ(u) .lim
ϵ→0

ϵ

+u2 ϵ2
(8.14.6)

ϵ

= ∓ iπδ(u) ,
1

u± iϵ

℘

u
(8.14.7)

(ω)χ̂

(ω) = (ω) + i (ω) .χ̂ χ̂
′

χ̂
′′

(8.14.8)

ω

0 = [ (ν) + i (ν)] [ − iπδ(ν −ω)] .∫

−∞

∞
dν

2π
χ′ χ′′ ℘

ν −ω
(8.14.9)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18748?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08%3A_Nonequilibrium_Phenomena/8.14%3A_Appendix_V-_Kramers-Kronig_Relations


8.14.2 https://phys.libretexts.org/@go/page/18748

This page titled 8.14: Appendix V- Kramers-Krönig Relations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated
by Daniel Arovas.

(ω)χ′

(ω)χ′′

=

=

+℘∫

−∞

∞

dν

π

(ν)χ̂′′

ν −ω

−℘  .∫

−∞

∞

dν

π

(ν)χ̂′

ν −ω

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18748?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08%3A_Nonequilibrium_Phenomena/8.14%3A_Appendix_V-_Kramers-Kronig_Relations
https://creativecommons.org/licenses/by-nc-sa/
https://physics.ucsd.edu/Directory/Person/5


8.S.1 https://phys.libretexts.org/@go/page/18734

8.S: Summary
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Summary
 Boltzmann equation: The full phase space distribution for a Hamiltonian system, , where , satisfies 

. This is not true, however, for the one-particle distribution . Rather,  is related to two-, three-, and higher order
particle number distributions in a chain of integrodifferential equations known as the BBGKY hierarchy. We can lump our ignorance of these
other terms into a collision integral and write \[{\pz f\over\pz t}=\stackrel

{\overbrace{\vphantom{\Bigg(}-{\dot\Br}\cdot{\pz f\over\pz\Br} - {\dot\Bp}\cdot{\pz f\over\pz\Bp}}}+\stackrel{\overbrace{\coll}}\ .\] In
the absence of collisions, the distribution evolves solely due to the streaming term with  and  . If  is
constant, we have the general solution

valid for any initial condition . We write the convective derivative as . Then the

Boltzmann equation may be written .

 Collisions: We are concerned with two types of collision processes: single-particle scattering, due to a local potential, and two-particle
scattering, due to interparticle forces. Let  denote the set of single particle kinematic variables,  for point particles and 

 for diatomic molecules. Then

for single particle scattering, and

for two-body scattering, where  is the two-body distribution, and where the approximation  in the
second line closes the equation. A quantity  which is preserved by the dynamics between collisions then satisfies

Quantities which are conserved by collisions satisfy  and are called collisional invariants. Examples include  (particle number), 
 (linear momentum, if translational invariance applies), and  (energy).

 Time reversal, parity, and detailed balance: With , we define the actions of time reversal and parity as

rd

∙ ϱ(φ, t) φ = ({ }, { })qσ pσ

+ ⋅∇ϱ = 0ϱ̇ φ̇ f (q, p, t) ḟ

= p/mṙ = −∇ṗ Uext =ṗ Fext

f(r, p, t) = ϕ(r − + , p − ) ,
p t

m

Fext t
2

2m

tFext

m
(8.S.1)

f(r, p, t = 0) = ϕ(r, p) = + ⋅ + ⋅D
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= (
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)
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∙
Γ Γ = ( , , )px py pz

Γ = (p, L)

( = ∫ d {w(Γ | ) f(r, ; t) −w( | Γ) f(r, Γ; t)}
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)
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Γ′ Γ′ Γ′ Γ′ (8.S.2)

(
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)
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1 Γ1 Γ′Γ′

1 f2 Γ′ Γ′
1 Γ′Γ′

1 Γ1 f2 Γ1

≈ ∫ d ∫ d ∫ d {w(Γ | ) f(r, ; t) f(r, ; t)Γ1 Γ′ Γ′
1 Γ1 Γ′Γ′

1 Γ′ Γ′
1

−w( | Γ ) f(r, Γ; t) f(r, ; t)} .Γ′Γ′
1 Γ1 Γ1

f2 (r, ; , ; t) ≈ f(r, Γ; t) f( , ; t)f2 Γ′ r′ Γ′ r′ Γ′

A(r, Γ)
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)
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where  is the combined operation. Time reversal symmetry of the underlying equations of motion requires 
.

Under conditions of detailed balance, this leads to , where 
 is the equilibrium distribution. For systems with both  and  symmetries, 

, whence  for point particles.

 Boltzmann’s -theorem: Let . Invoking the Boltzmann equation, it can be shown that , which
means , where  is Boltzmann’s -function.  is everywhere decreasing or constant, due to collisions.

 Weakly inhomogeneous gas: Under equilibrium conditions,  can be a function only of collisional invariants, and takes the Gibbs form 
. Assume now that , , and  are all weakly dependent on  and .  then describes a local equilibrium and

as such is annihilated by the collision term in the Boltzmann equation, but not by the streaming term. Accordingly, we seek a solution 
. A lengthy derivation results in

where  is the particle velocity,  is the enthalpy per particle, , and  is an external force. For an ideal gas, 

. The RHS is to be evaluated to first order in . The simplest model for the collision integral is the relaxation time approximation,
where . Note that this form does not preserve any collisional invariants. The scattering time is obtained from the relation 

, where  is the two particle total scattering cross section and  is the average relative speed of a pair of particles. This says
that there is on average one collision within a tube of cross sectional area  and length . For the Maxwellian distribution, \({\bar
v}\ns_{rel}=\sqrt{2}\,{\bar v}=\sqrt

\), so . The mean free path  is defined as .

 Transport coefficients: Assuming  and steady state, Eq. [bwig] yields

The energy current is given by

For a monatomic gas, one finds  with . A similar result follows by considering any intensive quantity 
which is spatially dependent through the temperature . The -current across the surface  is

Thus, , with  the associated transport coefficient. If , then , yielding . If 

, then , where  is the shear viscosity. Using the Boltzmann equation in the relaxation time
approximation, one obtains . From  and , we can form a dimensionless quantity , known as the Prandtl number.
Within the relaxation time approximation, . Most monatomic gases have .

 Linearized Boltzmann equation: To go beyond the phenomenological relaxation time approximation, one must grapple with the collision
integral,

which is a nonlinear functional of the distribution  (we suppress the  index here). Writing , we have 
, with

\Gamma^\sss{T}=(-\Bp,-\BL) \qquad,\qquad \Gamma^\sss{P}=(-\Bp,\BL) \qquad,\qquad \Gamma^{\sss{C}}=(\Bp,-\BL)\ ,

C = PT
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f^0(\Gamma)\,f^0(\Gamma\ns_1)=f^0(\Gamma'{}^\sss{T})\,f^0(\Gamma'_1{}^\sss{T})

f 0 P T
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w( , | p, ) = w(p, | , )p′ p′
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The linearized Boltzmann equation (LBE) then takes the form , where

for point particles. To solve the LBE, we must invert the operator . Various useful properties follow from defining the inner product 
, such as the self-adjointness of : . We then have , with 

 and real eigenvalues . There are five zero eigenvalues corresponding to the collisional invariants:

When , the formal solution to  is . Aside from the collisional invariants, all the eigenvalues 
must be positive, corresponding to relaxation to the equilibrium state. One can check that the particle, energy, and heat currents are given by 

, , and .

In steady state, the solution to  is . This is valid provided  is orthogonal to each of the collisional invariants, in which
case

Once we have , we may obtain the various transport coefficients by computing the requisite currents. For example, to find the thermal
conductivity  and shear viscosity ,

 Variational approach: The Schwarz inequality, , holds for the positive semidefinite operator 
. One therefore has

Using variational functions  and , one finds, after tedious calculations,

Taking the lower limit in each case, we obtain a Prandtl number , which is close to what is observed for monatomic gases.

 Quantum transport: For quantum systems, the local equilibrium distribution is of the Bose-Einstein or Fermi-Dirac form,

with , and

where , , , , and , and where we have assumed time-reversal and parity
symmetry. The most important application is to electron transport in metals and semiconductors, in which case  is the Fermi distribution.
With , one has, within the relaxation time approximation,

where  is the gradient of the ‘electrochemical potential’ . For steady state
transport with , one has

( − )ψ = YL̂ ∂
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(8.S.13)

= (ε− T)ϕκ
5
2
kB vx =ϕη vx vy

κ ≥ ( , η ≥  .
75 kB

64 π−−√ d2

TkB

m
)

1/2 5 (m TkB )1/2

16 π−−√ d2
(8.S.14)

Pr = =
η cp

mκ
2
3

∙

(r, k, t) = {exp( )∓1  ,f 0 ε(k) −μ(r, t)

T (r, t)kB

}

−1

(8.S.15)

k = p/ℏ

( = ∫ ∫ ∫  w { (1 ±f) (1 ± ) −f (1 ± ) (1 ± )}
∂f

∂t
)
coll

d3k1

(2π)3

d3k′

(2π)3

d3k′
1

(2π)3
f ′f ′

1 f1 f1 f ′ f ′
1 (8.S.16)

w = w(k, | , )k1 k
′

k
′
1 f = f(k) = f( )f1 k1 = f( )f ′ k

′ = f( )f ′
1 k

′
1

f 0

f = +δff 0

− v ×B ⋅ −v ⋅ [e \boldmath{E}+ ∇ T] = −  ,
∂ δf

∂t

e

ℏc

∂ δf

∂k

ε−μ

T

∂f 0

∂ε

δf

τ
(8.S.17)

\boldmath{E}= −∇(ϕ−μ/e) = E − ∇μe−1 ϕ− μe−1

B = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18734?pdf


8.S.4 https://phys.libretexts.org/@go/page/18734

where , , and , with

These results entail

or, in terms of the ,

These results describe the following physical phenomena:

( ): An electrical current  will generate an electric field , where  is the electrical resistivity.

( ): An electrical current  will generate an heat current , where  is the Peltier coefficient.

( ): A temperature gradient  gives rise to a heat current , where  is the thermal conductivity.

( ): A temperature gradient  gives rise to an electric field , where  is the Seebeck coefficient.

For a parabolic band with effective electron mass , one finds

with , where  is the Fermi energy. The ratio  is then predicted to be
universal, a result known as the Wiedemann-Franz law. This also predicts all metals to have negative thermopower, which is not the case. In
the presence of an external magnetic field , additional transport effects arise:

( ): An electrical current  and a field  yield an electric field . The Hall coefficient is 

.

( ): An electrical current  and a field  yield a temperature gradient . The Ettingshausen coefficient is 

.

( ): A temperature gradient  and a field  yield an electric field . The Nernst

coefficient is .

( ): A temperature gradient  and a field  yield an orthogonal gradient . The Righi-Leduc

coefficient is .

 Stochastic processes: Stochastic processes involve a random element, hence they are not wholly deterministic. The simplest example is the
Langevin equation for Brownian motion, , where  is a particle’s momentum,  a damping rate due to friction,  an
external force, and  a stochastic random force. We can integrate this first order equation to obtain

We assume that the random force  has zero mean, and furthermore that

in which case one finds . If there is no external force, we expect the particle thermailzes at long times,

. This fixes , where  is the particle’s mass. One can integrate again to find the position. At late times ,
one finds  , corresponding to a mean velocity . The RMS fluctuations in position, however, grow as
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where  is the diffusion constant. Thus, after the memory of the initial conditions is lost , the mean position advances
linearly in time due to the external force, and the RMS fluctuations in position also increase linearly.

 Fokker-Planck equation: Suppose  is a stochastic variable, and define

Furthermore, assume  and , but that  for . One can then show that
the probability density  satisfies the Fokker-Planck equation,

For Brownian motion,  and . The resulting Fokker-Planck equation is then , where 
 ,  , The Galilean transformation  then results in , which is known as the diffusion equation, a

general solution to which is given by , where

is the diffusion kernel. Thus, .

Endnotes
1. Indeed, any arbitrary function of  alone would be a solution. Ultimately, we require some energy exchanging processes, such as

collisions, in order for any initial nonequilibrium distribution to converge to the Boltzmann distribution.↩
2. Recall from classical mechanics the definition of the Poisson bracket, . Then from Hamilton’s equations 

 and , where  is the Hamiltonian, we have . Invariants have zero Poisson bracket with the
Hamiltonian.↩

3. See Lifshitz and Pitaevskii, Physical Kinetics, §2.↩
4. The function  satisfies , hence  on the interval  and  on .

Thus,  monotonically decreases from  to , and then monotonically increases to , never becoming
negative.↩

5. In the chapter on thermodynamics, we adopted a slightly different definition of  as the heat capacity per mole. In this chapter  is the
heat capacity per particle.↩

6. Here we abbreviate QDC for ‘quick and dirty calculation’ and BRT for ‘Boltzmann equation in the relaxation time approximation’.↩
7. The difference is trivial, since .↩
8. See the excellent discussion in the book by Krapivsky, Redner, and Ben-Naim, cited in §8.1.↩
9. The requirements of an inner product  are symmetry, linearity, and non-negative definiteness.↩

10. We neglect interband scattering here, which can be important in practical applications, but which is beyond the scope of these notes.↩
11. The transition rate from  to  is proportional to the matrix element and to the product . The reverse process is proportional

to . Subtracting these factors, one obtains , and therefore the nonlinear terms felicitously cancel in Equation [qobc].↩
12. In this section we use  to denote electrical current, rather than particle number current as before.↩
13. To create a refrigerator, stick the cold junction inside a thermally insulated box and the hot junction outside the box.↩
14. Note that it is  and not  which is the source term in the energy continuity equation.↩
15. Remember that physically the fixed quantities are temperature and total carrier number density (or charge density, in the case of electron

and hole bands), and not temperature and chemical potential. An equation of state relating , , and  is then inverted to obtain ,
so that all results ultimately may be expressed in terms of  and .↩

16. The cgs unit of viscosity is the Poise (P). .↩
17. We further demand  and  at all times.↩
18. A discussion of measure for functional integrals is found in R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals.↩
19. In this section, we use the notation  for the susceptibility, rather than ↩
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9.1: The Program of Renormalization
A statistical mechanical system is defined by a set of degrees of freedom and by a set of coupling constants . The degrees of
freedom can be discrete, such as Ising spins , or continuous, such as a field . Additionally, each such system possesses a
microscopic length scale . For discrete, lattice-based systems, this length scale is simply the lattice spacing: . For continuous
systems, we can define a microscopic length scale by imposing a cutoff  on the wavevectors we integrate over in all Fourier
transforms. That is, we replace

where  is any function and  is the cutoff function. The simplest such case to imagine is a sharp cutoff which is isotropic

in wavevector, . Other cutoff schemes, however, are possible, including ‘soft cutoffs’ where  is smooth.
The microscopic length scale is then , which is the smallest distance in real space over which the system can
independently fluctuate.

The idea behind renormalization is that we can successively winnow degrees of freedom from a system in some exact or
approximate way, and in so doing we generate a new version of the system, at a different length scale , and with different
couplings . We then iterate this procedure. The result is a set of equations which tell us how the couplings behave under a
change of the microscopic length scale. As we shall see, the fixed points of this procedure – where couplings do not change under a
change of length scale – are critical points. Such a fixed point is defined by a set of couplings .

If we denote by  the renormalization procedure

where , then we have the composition law . The set of transformations  is collectively referred to as
the renormalization group (RG) because of this mathematical structure. It is somewhat of a misnomer, however, since the
transformations are only defined for , which means that there is no inverse operation, and hence no true group structure .
Nevertheless we shall use the RG terminology because it has become universally accepted in the literature.

This page titled 9.1: The Program of Renormalization is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
Daniel Arovas.
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9.2: Real Space Renormalization
As alluded to previously, there are two different classes of renormalization. One class, called real space renormalization group
(RSRG), eliminates local lattice-based degrees of freedom at each step in the RG process. The second class, called momentum
space renormalization group (MSRG), is implemented by systematically lowering the cutoff  in the wavevector integrals. It turns
out that the RSRG process, for reasons we shall see, is uncontrolled, and for ‘professional’ results one resorts to MSRG.
Nevertheless RSRG provides us with perhaps the most vivid and intuitive understanding of what renormalization is all about, so we
shall begin there.

Figure : Real space renormalization of a one-dimensional lattice by ‘integrating out’ the degrees of freedom on half the lattice
sites.

RSRG for the Ising chain
Consider a  Ising model with Hamiltonian

Our goal is to compute the partition function . We do this by first tracing over the degrees of freedom on all the odd
index sites. We have

where

from which we obtain

Thus, if we write our original Hamiltonian as

where , then the RSRG transformation in which we trace out over every other site results in

Λ

9.2.1
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Ĥ

TkB

∑
n

σn σn+1 (9.2.2)

K = βJ

c′

K ′

a′

= c−ln2 − lncosh(2K)
1

2

= lncosh(2K)
1

2
= 2a ,

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/18597?pdf
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/09%3A_Renormalization/9.02%3A_Real_Space_Renormalization
https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/06%3A_Classical_Interacting_Systems/6.01%3A_Ising_Model


9.2.2 https://phys.libretexts.org/@go/page/18597

where the last equation describes the change in the lattice constant. The second of these equations may be written

Suppose we perform this procedure  times. We then have, with ,

At this point, we can imagine  to be a continuous variable. We can now write down the behavior of the coupling constant  as a
function of the microscopic length scale :

Let’s define . We then have the RG flow equation

where . Thus, as  increases,  flows to increasingly negative values, meaning , which entails . So as 
flows to larger and larger values, the coupling  gets smaller and smaller.

Figure : Real space renormalization of a two-dimensional square lattice.

Two-dimensional square lattice
Consider next a RSRG transformation of the two-dimensional square lattice Ising model. As depicted in Figure , the square
lattice is bipartite, consisting of two interpenetrating  square sublattices. Let’s try to do the same as for the one-
dimensional Ising model and trace out over the degrees of freedom of one of the sublattices. To this end, let us trace out over a
single site, which has four neighbors on the square lattice, as shown in Figure . We have

It should be clear that , because the spin  couples to the sum  so there can be no distinction
between induced nearest neighbor interactions ( ) and induced next-nearest neighbor interactions ( ) at this stage.
We setting  to , , and , respectively, we obtain the relations
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Figure : Tracing out over the central site results in three different interactions: nearest neighbor (blue), next-nearest neighbor
(red), and a four-site plaquette term (green).

Note that new couplings have been generated at this very first step of the RSRG procedure. It now becomes very difficult to iterate
this transformation a second time, since the presence of second neighbor and plaquette couplings  and  means that we cannot
exactly integrate out one of the sublattices as before. Still we could imagine iterating this RSRG procedure, if only perturbatively in
certain couplings. We see, though, that rather than considering the effect of  on a single coupling  or the pair , we
should instead consider, if only formally, the iteration of an infinite set of all possible couplings, . Writing this as a vector ,
we can write the RSRG transformation in the form

Figure : Spin blocking on the triangular lattice.

This page titled 9.2: Real Space Renormalization is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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9.3: Block Spin Transformation
Spin blocking refers to a process in which we replace a group of spins by a single spin whose direction is determined by ‘majority
rule’. That is, if most of the spins in the group are up, then the block spin is said to be up; if most spins are down, then the block
spin is down. The block spins interact with a different set of couplings .

Consider a  block of spins, and define the block spin projector,

Note that

Here  indexes the blocks, and  denotes the  spin within the  block. The block spin projector effects the ‘majority rule’
operation, assigning  to  depending on whether the majority of the spins in the block  are up ( ) or down (

. Note that such a procedure presumes an odd number of spins in each block. Then

where

This page titled 9.3: Block Spin Transformation is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel
Arovas.
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9.4: Scaling Variables
We’ve seen how an RG transformation acts on the (infinite) set of couplings which define the Hamiltonian of a system. We found 

. If  is the correlation length in units of the lattice spacing, then since each RG step involves a
rescaling by a factor , we must have

A fixed point of the transformation  is a set of couplings  such that

Linearizing  about the fixed point, we have

The matrix  is real but not necessarily symmetric. We define the left eigenvectors of , , such that

The scaling variable  is then defined as

It should now be apparent that under an RG transformation, we have

We say that

Under renormalization, relevant scaling variables flow away from the fixed point, while irrelevant scaling variables flow toward
the fixed point. For marginal variables, one must go to higher order, beyond the above linearization, to determine whether the flow
is away from (marginally relevant) or toward (marginally irrelevant) the fixed point.
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Endnotes
1. A more mathematically rigorous name would be the renormalization monoid.↩
2. Our choice of what terms to put in the exponent in the second line below is dictated by global  symmetry. Once we sum over 

, the result should be invariant under simultaneous reversal of .↩
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second quantized representation
5.1: Statistical Mechanics of Noninteracting

Quantum Systems 
second viscosity

8.4: Relaxation Time Approximation 
Stochastic Processes

8.9: Stochastic Processes 

T
thermal conductivity

8.4: Relaxation Time Approximation 
thermal equilibrium

4.3: Thermal Equilibrium 

thermal wavelength
4.7: Ideal Gas Statistical Mechanics 

Tonks gas
6.2: Nonideal Classical Gases 

U
Ultrarelativistic ideal gas

4.1: Microcanonical Ensemble (μCE) 

V
van der Waals equation of state

7.1: The van der Waals system 

virial expansion
5.2: Quantum Ideal Gases - Low Density Expansions
6.2: Nonideal Classical Gases 

Viscosity
8.4: Relaxation Time Approximation 

Z
zero field isothermal susceptibility

6.1: Ising Model 
zeroth law of thermodynamics
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