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22.1: The Biot-Savart Law
The Biot-Savart law allows us to determine the magnetic field at some position in space that is due to an electric current. More
precisely, the Biot-Savart law allows us to calculate the infinitesimal magnetic field, , that is produced by a small section of
wire, , carrying current, , such that  is co-linear with the wire and points in the direction of the electric current:

where, , is the vector from the element of wire, , to the point where we would like to determine the magnetic field, as illustrated
in Figure .  is a constant of proportionality called the “permeability of free space”, and has the value 

.

Figure : The infinitesimal magnetic field, , that is created by an infinitesimal section of wire, , carrying current . Note
that the vector, , goes from  to the point where we wish to calculate the field.

The Biot-Savart Law has some similarities with the Coulomb Law to calculate the electric field, as the magnitude of the magnetic
field decreases as the inverse of the square distance between the source and the field. However, it can only be expressed in
differential form (i.e. as an infinitesimal), and it requires working in three dimensions, because of the cross product. It is usually
more convenient to use the Biot-Savart Law in the form:

where the unit vector  was replaced by .

The procedure for applying the Biot-Savart Law is as follows

1. Make a really good diagram, as you will have to include some 3D aspects.
2. Choose an infinitesimal section of wire, .
3. Determine the vector .
4. Determine the cross-product, , which will point in the direction of the magnetic field from that infinitesimal section

of wire.
5. Write out the infinitesimal vector , and determine its components.
6. Think about symmetry! As you sum the , will some components cancel? If yes, you do not need to do those integrals.
7. Determine the total magnetic field, component by component, by summing (integrating) the components of  over the

wire.

Magnetic field from a straight current-carrying wire
In this section, we use the Biot-Savart Law to determine the magnetic field a distance, , from the center of a finite straight wire of
length, , carrying current, , as illustrated in Figure .
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Figure : Setting up the model to use the Biot-Savart Law to calculate the magnetic field a distance  from the center of a
current-carrying wire of length .

We start by choosing an infinitesimal element of wire, , a distance y above the center of the wire, as shown (we choose the origin
to be located at the center of the wire). The vector  is thus given by:

The vector, , from  to the point at which we would like to know the magnetic field is given by:

The cross-product between  and  is easily found with the right-hand rule to point into the page (corresponding to the negative 
direction). The magnitude of the cross-product is given by:

where  is the angle between  and , so that . The cross-product can thus be written in terms of  as:

Note that we can also determine the cross-product algebraically instead of using the righthand rule and the magnitude:

The infinitesimal magnetic field element, , is given by:

Any segment along the wire will result in a magnetic field that is into the page (negative  direction), thus there will be no
cancellations due to any symmetries. We can now proceed to perform the integral.

We can use either  or  to label the wire elements and carry out the integration. We will choose to integrate over , requiring us to
express  and  in terms of  (and constants), as those are the only quantities in  that depend on the position of . In order to
express  in terms of , we first relate  to , the position of the wire element:

and  is given by:
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Putting this altogether into :

We define the angle, , to be the maximum amplitude of the angle  when integrating over the wire (see Figure ), so that we
integrate  from  to :

Using the given dimensions:

Thus, the magnetic field, , a distance, , from the center of a wire of length, , carrying current, , in the positive  direction is
given by:

The magnetic field must be rotationally symmetric; that is, if the wire is vertical, the magnetic field at a distance h must look the
same regardless of the angle from which we view the vertical wire (we should always see the magnetic field going into the page at
the point that we use in Figure ). Thus, the magnetic field lines must form circles around the wire, as illustrated in Figure 

. Note that the direction of the magnetic field is given by the right-hand rule for axial vectors; when you align your thumb
with the current, your fingers curl in the direction of the magnetic field.

Figure : The magnetic field from a current-carrying wire forms concentric circles centered on the wire.

It is of particular interest to investigate the limiting case of an infinitely long wire, in the limit of , or equivalently, .
The latter is easiest to evaluate, since . The magnitude of the magnetic field, , a distance, , from an infinite wire
carrying current, , is given by:

One can often make the approximation that the wire is infinite in length, when the distance, , is small compared to the length, ,
of the wire.

Magnetic field from a circular current-carrying wire
In this section, we examine the magnetic field that is created by a circular current-carrying loop of wire. We can determine the
shape of the magnetic field, by considering small sections as straight wires, with circular magnetic field lines around them. As we
move closer to the center of the ring, those fields sum together, as illustrated in Figure . Note that the magnetic field from a
loop of current is identical to that from a bar magnet (as a bar magnet is, of course, a collection of current loops).
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Figure : The magnetic field from a current-carrying loop of wire can be thought of as the sum of the fields from small
straight sections of wire.

Below, we use the Biot-Savart Law to derive an expression for the magnitude of the magnetic field at a distance, , from the center
of a ring of radius, , along its axis of symmetry, when there is a current, , in the ring. While the mathematics are much easier
than the case for the straight wire, the challenge in this case is to visualize the calculation in three dimensions! Figure  shows
the loop of current, as well as our choice of the coordinate system (with the origin at the center of the ring). In particular, we wish
to calculate the magnetic field at a distance, , along the  axis. The  axis goes into the page.

Figure : Diagram to apply the Biot-Savart Law in order to determine the magnetic field along the symmetry axis of a ring
carrying current, . The  axis goes into the page.

In order to apply the Biot-Savart Law, we choose an element, , of wire at the top of the ring, as illustrated. At this position, the
element, , points in the positive  direction (into the page):

The vector, , from the wire element to the point where we wish to determine the magnetic field is given by:

and the angle  will be the same for all wire elements along the ring. The cross-product, , can be evaluated algebraically:

so that the element of magnetic field, , corresponding to that choice of , will lie in the  plane, as illustrated in Figure 
. Note that the vector  is perpendicular to the vector  (since it is the cross-product of  with another vector). The

magnetic field element, , is given by:

22.1.4

h

R I

22.1.5

h z x

22.1.5
I x

dl ⃗ 

dl ⃗  x

d = dll ⃗  x̂

r ⃗ 

= −r sinθ +r cosθr ⃗  ŷ ẑ
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As the wire element, , moves around the circle, the tip of the resulting magnetic field vector element traces a circle centered on
the  axis, as illustrated in Figure . Note that, in general,  will also have an  component. Thus, only the  component of
the magnetic field will not be canceled when we sum together the magnetic field elements that come from the different wire
elements.

Figure : As the wire element, , moves along the ring, the tip of corresponding magnetic field element vector, ,
describes a circle centered on the  axis. Thus, only the (negative)  component of  will survive when these are all added
together.

The total magnetic field will be in the negative  direction, as anticipated from Figure . Summing together the  components
of the infinitesimal magnetic fields:

Note that in this case, both  and  are constant for all of the , allowing us to take them out of the integral. The integral is then
just a sum of the dl elements, which must add up to the circumference of the ring:

In terms of the variables that we are given:

In this case, the math was relatively straightforward (no substitutions to evaluate the integral), however it is challenging to visualize
the problem in three dimensions.

A coil is made of  loops of current-carrying wire packed closely together. What is the magnetic field at the center of the coil?
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N

Iµ0

2R
N Iµ0

2R
N Iµ0

2R2

Iµ0

R

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19533?pdf


22.1.6 https://phys.libretexts.org/@go/page/19533

Answer

This page titled 22.1: The Biot-Savart Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D.
Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts
platform.
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