
7.1.1 https://phys.libretexts.org/@go/page/19406

7.1: Work

Review Exercises
Section A1.3 on the scalar product.
Section A2.3 on integrals.

We introduce the concept of work as the starting point for building models using energy instead of forces. Work is a scalar quantity
that is meant to represent how a force exerted on an object over a given distance results in a change in speed of that object. We will
first introduce the concept of work done by a force on an object, and then look at how work can change the kinematics of the
object. This is analogous to how we first defined the concept of force, and then looked at how force affects motion (by using
Newton's Second Law, which connected the concept of force to the acceleration of the object).

The work done by a force, , on an object over a displacement, , is defined to be:

where  is the angle between the vectors when they are placed tail to tail, as in Figure 7.1.1. The dimension of work, force times
displacement, is also called "energy''. The S.I. unit for energy is the Joule (abbreviated ) which is equivalent to  or 
in base units.

Figure : When determining the scalar product ,  is the angle between the vectors when they are placed tail
to tail.

The work "done'' by the force is the scalar product of the force vector and the displacement vector of the object. We say that the
force "does work'' if it is exerted while the object moves (has a displacement vector) and in such a way that the scalar product of
the force and displacement vectors is non-zero. A force that is perpendicular to the displacement vector of an object does no work
(since the scalar product of two perpendicular vectors is zero). A force exerted in the same direction as the displacement will do
positive work (  positive), and a force in the opposite direction of the displacement will do negative work (  negative). As
we will see, positive work corresponds to increasing the speed of the object, whereas negative work corresponds to decreasing its
speed. No work corresponds to no change in speed (but could corresponds to a change in velocity).

A pendulum of length  consists of a mass connected to a string (Figure ). The string exerts a force of tension  on the
mass. What is the work done by tension when the pendulum swings through an angle ?

Figure : A pendulum swings through an angle .

1. 
2. 
3. Tension does no work on the mass.

Answer
3.

F ⃗  d ⃗ 

W = ⋅ = Fd cosθ = + +F ⃗  d ⃗  Fxdx Fydy Fzdz (7.1.1)

θ

J Nm /kg m2 s2

7.1.1 ⋅ = Fd cos θF ⃗  d ⃗  θ

cosθ cosθ

 Exercise 7.1.1

R 7.1.2 F ⃗ 
T

θ

7.1.2 θ

W = RθFT

W = R(1 −cosθ)FT
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You may be tempted to ask, "Why work? Why not something else? Why that scalar product in particular? How could we possibly
have thought of that?''. In general, it seems arbitrary that we introduce the quantity "work'' and then find that it leads to a
convenient way of building models. However, we did not just pull this quantity out of thin air! Many theorists, over many years,
tried all sorts of quantities and ways to rephrase Newton's Theory that were not helpful. The quantities that make it into textbooks
are the ones that turned out to be useful. You should also keep in mind that, just like force, work is a "made-up'' mathematical tool
that is helpful in describing the world around us. There is no such thing as work or energy; they are just useful mathematical tools.

Work in one dimension.
Work involves vectors, so we can first examine the concept in one dimension, before extending this to two and three dimensions.
We can choose  as the coordinate in one dimension, so that all vectors only have an  component. We can write a force vector as 

, where  is the  component of the force (which could be positive or negative). A displacement vector can be written as 
, where again,  is the  component of the displacement, and can be positive or negative. In one dimension, work is thus:

where . Consider, for example, the work done by a force, , on a box, as the box moves along the  axis from position 
 to position , as shown in Figure .

Figure : A force, , exerted on an object as it moves from position  to position .

We can write the length of the displacement vector as . The work done by the force is given by:

which is a positive quantity, since , with our choice of coordinate system.

A constant force in the positive  direction, , acts on a box, as in Figure . Consider the work done by  as the box
moves from  to . How does it compare to the work done by  when moving from  to  (that we calculated above)?

A.  does no work on the box when it moves from  to .
B. The work has the same magnitude as before, but the work is now negative.
C. The work done by  is the same in both cases.

Answer
B.

Work in one dimension - varying force

Suppose that instead of a constant force, , we have a force that changes with position, , and can take on three different
values between  and :

as illustrated in Figure , which shows the force on an object as it moves from position  to position , along
three (equal) displacement vectors, 

x x

= FF ⃗  x̂ F x

= dd ⃗  x̂ d x

W = ⋅ = (F ) ⋅ (d ) = Fd( ⋅ ) = FdF ⃗  d ⃗  x̂ x̂ x̂ x̂

⋅ = 1x̂ x̂ F ⃗  x

x = x0 x = x1 7.1.3

7.1.3 F ⃗  x = x0 x = x1

|| || = d = Δx = −d ⃗  x1 x0

W = ⋅ = F ⋅ Δx = FΔx = F ( − )F ⃗  d ⃗  x̂ x̂ x1 x0

>x1 x0

 Exercise 7.1.2

x F ⃗  7.1.3 F ⃗ 

x1 x0 F ⃗  x0 x1

F ⃗  x0 x1

F ⃗ 

F ⃗  (x)F ⃗ 

x = x0 x = x3

(x) =F ⃗ 
⎧

⎩
⎨
⎪⎪

⎪⎪

F1x̂

F2x̂

F3x̂

x < Δx

Δx ≤ x < 2Δx

2Δx ≤ x

7.1.3 x = x0 x = $x3

= = = Δxd ⃗ 
1 d ⃗ 

2 d ⃗ 
3 x̂

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19406?pdf


7.1.3 https://phys.libretexts.org/@go/page/19406

Figure : A varying force, , exerted on an object as it moves from position  to position .

The total work done by the force over the three separate displacements is the sum of the work done over each displacement:

If instead of  segments we had  segments and the  component of the force had the  corresponding values  in the 
segments, the total work done by the force would be:

where we introduced a vector  to be the vector of length  pointing in the positive  direction. In the limit where 
changes continuously as a function of position, we take the limit of an infinite number of infinitely small segments of length ,
and the sum becomes an integral:

where the work was calculated in going from  to , and  is an infinitely small displacement vector (of
length ) in the positive  direction.

A block is pressed against the free end of a horizontal spring with spring constant, , so as to compress the spring by a distance
 relative to its rest length, as shown in Figure . The other end of the spring is fixed to a wall. What is the work done by

the spring force on the block in going from  to ? What is the work done by the block on the spring over the same
displacement?

Figure : A block is pressed against a horizontal spring so as to compress the spring by a distance  relative to its rest
length.

Solution
The force exerted by the spring on the block changes continuously with position, according to Hooke's law:

and points in the positive  direction when the end of the spring has a negative $x$ position (with our coordinate choice
illustrated in Figure , where the origin is located at the rest length of the spring). To calculate the work done by the force,
we sum the work done by the force over many infinitesimally small displacements  (using an integral):

7.1.4 (x)F ⃗  x = x0 x = x3

W tot = + +W1 W2 W3

= ⋅ + ⋅ + ⋅F ⃗ 
1 d ⃗ 

2 F ⃗ 
2 d ⃗ 

2 F ⃗ 
3 d ⃗ 

3

= Δx+ Δx+ ΔxF1 F2 F3

3 N x N Fi N

= ⋅ ΔW tot ∑
i=0

N

F ⃗ 
i x⃗ 

Δx⃗  Δx x (x)F ⃗ 

dx

= (x) ⋅ dW tot ∫
xf

x0

F ⃗  x⃗  (7.1.2)

x = x0 x = xf d = dxx⃗  x̂

dx x

 Example 7.1.1

k

D 7.1.5
x = −D x = 0

7.1.5 D

(x) = −kxF ⃗  x̂

x

7.1.5
dx⃗ 
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In order to determine the work that was done by the block on the spring, we need to determine the force, , exerted by the
block on the spring. By Newton's Third Law, this is equal in magnitude but opposite in direction to the force exerted by the
spring on the block:

The work done by the block on the spring over the same displacement is:

which is negative. This makes sense because the force exerted by the block on the spring is in the direction opposite to the
direction of displacement, so the work should be negative.

Work in multiple dimensions

First, consider the work done by a force  in pulling a crate over a displacement , in the case where the force is directed at an
angle  above the horizontal, as shown in Figure , and the displacement is along the  axis (or rather, we chose the  axis to
be parallel to the displacement).

Figure : A force, , exerted on an object as it moves from position  to position .}

The work done by the force is given by:

W = (x) ⋅ d∫
0

−D

F ⃗  x⃗ 

= (−kx ) ⋅ (dx )∫
0

−D

x̂ x̂

= −kxdx( ⋅ )∫
0

−D

x̂ x̂

= − kxdx∫
0

−D

= −[ k ]
1

2
x2

0

−D

= k
1

2
D2

(x)F ⃗ ′

(x) = − (x) = kxF ⃗ ′ F ⃗  x̂

W ′ = (x) ⋅ d∫
0

−D

F ⃗ ′ x⃗ 

= (kx ) ⋅ (dx )∫
0

−D

x̂ x̂

= kxdx = − k∫
0

−D

1

2
D2

F ⃗  d ⃗ 

θ 7.1.6 x x

7.1.6 F ⃗  x = x0 x = x1
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where we highlighted the fact that the scalar product "picks out'' components of vectors that are parallel to each other. 
 is the component of  that is parallel to , and  is the component of  that is parallel to . These are

also shown in Figure .

Brent and Dean pull two crates by using ropes that make the same angle above the horizontal and with the same force. The
magnitude of the crates' displacement is the same, but Dean's crate moves horizontally on the ground while Brent's crate moves
up a frictionless ramp that is parallel to the rope used to pull the crate. Who did more work on the crate?

A. Dean because there is friction between his crate and the ground.
B. Brent.
C. They did the same amount of work.

Answer
B.

In general, if an object is moving along an arbitrary path, we cannot choose the $x$ axis to be parallel to the displacement or to the
force. If the path can be sub-divided into straight segments over which the force is constant, as in Figure , we can calculate the
work done by the force over each segment and add the work done in each segment together to obtain the total work done by the
force. Note that, in general, the work done by a force as an object moves from one position to another depends on the particular
path that was taken between the two positions, since different paths will have difference lengths.

Figure : An arbitrary two dimensional path of an object from  to  broken into three straight segments.

Compare the work done by the force of kinetic friction in sliding a crate along a horizontal surface from position 
(coordinates ) to position  (coordinates ) using the two different paths depicted in Figure . Assume that
the mass of the crate is  and that the coefficient of kinetic friction between the crate and the ground is .

Figure : Two possible paths to slide a crate from position  to position , as seen from above.

W = ⋅F ⃗  d ⃗  = Fd cosθ

= dF∥

= Fd∥

= F cosθF∥ F ⃗  d ⃗  = d cosθd∥ d ⃗  F ⃗ 

7.1.6

 Exercise 7.1.3

7.1.7

7.1.7 A B

 Example 7.1.2

A

,xA yA B ,xB yB 7.1.8
m μk

7.1.8 A B
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Solution
The force of kinetic friction is always in the direction opposite to that of motion. Thus, regardless of the path taken, the force of
friction will do negative work.

Let us first calculate the work done by the force of kinetic friction along the first path (the straight line). The force of kinetic
friction will have a magnitude:

The normal force will have the same magnitude as the weight because the crate is not moving (accelerating) in the direction
perpendicular to the  plane. The displacement vector from  to  can be written as:

The force of kinetic friction will be in the opposite direction of the displacement vector, so the angle between the two vectors is
. The work done by the force of kinetic friction is thus:

and is negative, as expected.

For path 2, we break up the motion into two segments, with displacements vectors  (along ) and  (along ). We can
write the two displacement vectors as:

Along each segment, the force of kinetic friction is anti-parallel to the displacement (note that the force of friction changes
direction over the two segments), but the magnitude is . The work done along the first segment is thus:

The work done along the second segment is:

And the total work done by the force of kinetic friction over the second path is:

which is more work than was done along path 1. This makes sense because for both paths, the force of friction has the same
magnitude and is always in the opposite direction of motion; thus, the longer the path, the more work will be done by the force.

A box of mass  is moved from the floor onto a table using two different paths, as shown in Figure . The table is a
horizontal distance  away from where the box starts and a height  above the floor. Compare the work done by the weight of
the box along the two possible paths.

= N = mgfk μk μk

xy A B

d ⃗ 

∴ || ||d ⃗ 

= ( − ) +( − )xB xA x̂ yB yA ŷ

= d = ( − −( −xB xA)2 yB yA)2
− −−−−−−−−−−−−−−−−−−

√

(cosθ = −1)180∘

W = ⋅ = d cosθ = − mgf ⃗ 
k d ⃗  fk μk ( − −( −xB xA)2 yB yA)2

− −−−−−−−−−−−−−−−−−−
√

d ⃗ 
1 y d ⃗ 

2 x

d ⃗ 
1

∴ || ||d ⃗ 
1

d ⃗ 
2

∴ || ||d ⃗ 
2

= 0 +( − )x̂ yB yA ŷ

= = ( − )d1 yB yA

= ( − ) +0xB xA x̂ ŷ

= = ( − )d2 xB xA

= mgfk μk

= ⋅ = cosθ = − mg( − )W1 f ⃗ 
k d ⃗ 

1 fkd1 μk yB yA

= ⋅ = cosθ = − mg( − )W2 f ⃗ 
k d ⃗ 

2 fkd2 μk xB xA

= + = − mg (( − ) +( − ))W tot W1 W2 μk xB xA yB yA

 Example 7.1.3

m 7.1.9
L H
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Figure : Two possible paths to move a box from the floor onto a table.

Solution
We can use a coordinate system such that the origin coincides with the initial position of the box.  is horizontal and  is
vertical, as shown in Figure . The weight of the box can be written as:

and points in the negative  direction with a magnitude of . To calculate the work done by the weight along the first path,
we first determine the corresponding displacement vector, :

and we can then determine the work:

Along path 1, the work done by the weight is negative, and does not depend on the horizontal distance . Let us now calculate
the work done along the second path, which we break up into two segments with displacement vectors  (vertical) and 
(horizontal). The displacement vectors are:

The work done along the vertical segment is:

The work done along the horizontal segment is:

which is zero, because the force of gravity is always vertical and thus perpendicular to the displacement vector of the
horizontal segment. The total work done by the weight along the second path is:

which is the same as the work done along path 1. As we will see, when a force is constant in magnitude and direction, the work
that it does on an object in going from one position to another is independent of the path taken. This was not the case in
Example 7.1.2, because the direction of the force of kinetic friction depends on the direction of the displacement.

7.1.9

x y

7.1.9

= −mgF ⃗ 
g ŷ

y mg

d ⃗ 

= L +Hd ⃗  x̂ ŷ

W = ⋅ = (−mg ) ⋅ (L +H )F ⃗ 
g d ⃗  ŷ x̂ ŷ

= + = (0)(L) +(−mg)(H)Fxdx Fydy

= −mgH

L

d ⃗ 
1 d ⃗ 

2

d ⃗ 
1

d ⃗ 
2

= Hŷ

= Lx̂

W1 = ⋅ = (−mg ) ⋅ (H )F ⃗ 
g d ⃗ 

1 ŷ ŷ

= −mgH

W2 = ⋅ = (−mg ) ⋅ (L )F ⃗ 
g d ⃗ 

2 ŷ x̂

= 0

= + = −mgHW tot W1 W2
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Clare and Amelia go down two different slides, as shown in Figure . Clare and Amelia have the same mass and the
slides have the same non-zero coefficients of friction.

Figure : Clare ( ) and Amelia ( ) go down two different slides of the same height.

For each of the following forces, decide whether the force: does more work on Clare, does more work on Amelia, or does the
same amount of work on both.

1. The force of gravity...
2. The force of friction...
3. The normal force from the slide...

Answer

Gravity does the same amount of work on both, friction does more work on Amelia, and the normal force does the same
amount of work on both (the normal force does zero work, since it is always perpendicular to the displacement).

The most general case for which we can calculate the work done by a force is the case when the force changes continuously along a
path where the displacement also changes direction continuously. This is illustrated in Figure  which shows an arbitrary path
between two points  and , and a force, , that depends on position ( ). In general, the work done by the force on an object
that goes from  to  will depend on the actual path that was taken.

Figure : An arbitrary path between two points  and  with a force that depends on position, .

The strategy for calculating the work in the general case is the same: we break up the path into small straight segments with
displacement vectors  (Figure ) where we assume that the force is constant over the segment. The total work is the sum of
the work over each segment:

As usual, we use the integral symbol to indicate that you need to take an infinite number of infinitely small segments  in order to
calculate the sum.

 Exercise 7.1.4

7.1.10

7.1.10 C A

7.1.11

A B ( )F ⃗ r ⃗  r ⃗ 

A B

7.1.11 A B ( )F ⃗  r ⃗ 

dl ⃗  7.1.12

W = ( ) ⋅ d∫
B

A

F ⃗ r ⃗  l ⃗  (7.1.3)

dl ⃗ 
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Figure : We divide the path into infinitesimally small segments with displacement vectors .

You should note that this is not an integral like any other that we have seen so far: the integral is not over a single integration
variable (usually we use ), but it is the integral (the sum!) over the specific path that we have chosen in going from  to . This
is called a "path integral'', and is generally difficult to evaluate.

Figure : A parabolic path between  and .

A force, , is exerted on an object. The object starts at position  and ends at position , along
a parabolic path, , as depicted in Figure . What is the work done by the force, , along this trajectory?

Solution
In this case, the force can change with position (if  and  are not constant), and the direction of the path changes
continuously. When we break up the path into small segments , we need to incorporate the equation of the parabola to
include the fact that $ must always be tangent to the parabola. Consider one small segment along the trajectory and the
infinitesimal displacement vector  at that point, as in Figure .

Figure : The infinitesimal displacement vector, .

We can write the  and  components of the vector as infinitesimal distances,  and , along the  and  axes, respectively.
The vector  can thus be written:

The total work done by the force is then:

7.1.12 dl ⃗ 

x A B

 Example 7.1.4

7.1.13 A B

( ) = (x, y) = +F ⃗ r ⃗  F ⃗  Fxx̂ Fy ŷ A B

y(x) = a+bx2 7.1.13 F ⃗ 

Fx Fy

dl ⃗ 

dl ⃗ 

dl ⃗  7.1.14

7.1.14 dl ⃗ 

x y dx dy x y

dl ⃗ 

d = dx +dyl ⃗  x̂ ŷ
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where in the last line, we simply used the property that the integral of a sum is the sum of the corresponding integrals. At this
point, we have two integrals over integration variables (  and ) that are meaningful. However, we have not yet used the fact
that our path is a parabola, and in general, we expect that the shape of the path is important. By saying that we are integrating
(or calculating the work) over a specific path, we are really saying that  and  are not independent; that is, if we know the
value of  at some point on the path, we know the corresponding value of  ( ).

Since  and  are not independent, we can use a "substitution of variables'' in order to express  in terms of , and  in terms
of $:

This allows us to convert the integral over  to an integral over , which also allows us to be explicit for the limits of the
integral (in our example, the integral goes from  to ):

where we would need to know how  and  depends on  and  in order to actually evaluate the integral.

For example, if the force were constant (  and  constant), then the work done along the parabolic path would be:

As we mentioned earlier, if the force is constant in magnitude and direction, then the work done is independent of path. We
can easily check this, using the displacement vector :

as we found above.

Net work done
So far, we have considered the work done on an object by a single force. If more than one force is exerted on an object, then each
force can do work on the object, and we can calculate the "net work'' done on the object by adding together the work done by each

W

∴ W

= ( ) ⋅ d∫
B

A

F ⃗ r ⃗  l ⃗ 

= ( + ) ⋅ (dx +dy )∫
B

A

Fxx̂ Fy ŷ x̂ ŷ

= ( dx+ dy)∫
B

A

Fx Fy

= dx+ dy∫
B

A

Fx ∫
B

A

Fy

x y

x y

x y y = a+bx2

x y y x dy

dx

y(x)

dy

dx

∴ dy

= a+bx2

= 2bx

= 2bxdx

y x

x = 0 x = x1

W = dx+ dy∫
B

A

Fx ∫
B

A

Fy

= dx+ (2bxdx)∫
x1

0
Fx ∫

x1

0
Fy

= ( +2bx )dx∫
x1

0
Fx Fy

Fx Fy x y

Fx Fy

W = ( +2bx )dx∫
x1

0
Fx Fy

= [ x+b ]Fx Fyx
2 x1

0

= +bFxx0 Fyx
2
0

= +bd ⃗  x1x̂ x2
1 ŷ

W = ⋅ = ( + ) ⋅ ( +b )F ⃗  d ⃗  Fxx̂ Fy ŷ x1x̂ x2
1 ŷ

= +bFxx1 Fyx
2
1
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force. We will show that this is equivalent to first calculating the net force on the object,  (i.e. the vector sum of the forces on
the object), and then calculating the work done by the net force.

Suppose that three forces, , , and  are exerted on an object as it moves such that its displacement vector is . The net work
done on the object is easily shown to be equivalent to the work done by the net force::

where  is the net force. The result is easily generalized to any number of forces, including if those forces
change as a function of position:

You push with an unknown horizontal force, , against a crate of mass  that is located on an inclined plane that makes an
angle $\theta$ with respect to the horizontal, as shown in Figure . The coefficient of kinetic friction between the crate
and the incline is . You push in such a way that that crates moves at a constant speed up the incline. What is the net work
done on the crate if it moves up the incline by a distance ?

Figure : A crate being pushed up an incline.

Solution
Although the answer may be obvious, let's go the long way about it and calculate the work done by each force, and then sum
them together to get the total work done. We start by identifying the forces exerted on the crate:

1. , the applied force, of unknown magnitude, .
2. , the weight of the crate, with magnitude .
3. , a normal force exerted by the incline.
4. , a force of kinetic friction, with magnitude , that points in the direction opposite of .

These are shown in the free-body diagram in Figure , along with our choice of coordinate system, and the displacement
vector.

Figure : Free-body diagram for the crate on the incline.

With our choice of coordinate system, the displacement vector is given by:

F net

F ⃗ 
1 F ⃗ 

2 F ⃗ 
3 d ⃗ 

W net = + +W1 W2 W3

= ⋅ + ⋅ + ⋅F ⃗ 
1 d ⃗  F ⃗ 

2 d ⃗  F ⃗ 
3 d ⃗ 

= ( + + ) +( + + ) +( + + )F1xdx F1ydy F1zdz F2xdx F2ydy F2zdz F3xdx F3ydy F3zdz

= ( + + ) +( + + ) +( + + )F1x F2x F3x dx F1y F2y F3y dy F1z F2z F3z dz

= ⋅F ⃗ net d ⃗ 

= + +F ⃗ net F ⃗ 
1 F ⃗ 

2 F ⃗ 
3

= ( ) ⋅ dW net ∫
B

A

F net r ⃗  l ⃗ 

 Example 7.1.5

F ⃗  m

7.1.15
μk

d

7.1.15

F ⃗  F ⃗ 

F ⃗ 
g mg

N ⃗ 

f ⃗ 
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Before calculating the work done by each force, we need to determine the magnitude of the normal force (and thus of the force
of kinetic friction). Since the crate is moving at a constant velocity, its acceleration is zero, so the sum of the forces must be
zero. Writing out the  component of Newton's Second Law allows us to find the magnitude of the normal force:

Writing out the  component of Newton's Second Law allows us to find the magnitude of the unknown force :

We now proceed to calculate the work done by each force. The work done by the normal force is identically zero, since it is
perpendicular to the displacement vector. The work done by the applied force, , is:

The work done by the force of gravity, , is:

The work done by the force of friction, , noting that  and  are antiparallel:

The net work done on the crate is thus:

where we used the fact that . Thus we find that the net work done on the crate is zero!

= d(cosθ +sinθ )d ⃗  x̂ ŷ

y

∑Fy

∴ mg

∴ N

= N cosθ− − sinθ = 0Fg fk

= N cosθ− N sinθ = N(cosθ− sinθ)μk μk

=
mg

cosθ− sinθμk

x F

∑Fx

∴ F

= F −N sinθ− cosθ = 0fk

= N sinθ+ N cosθ = N(sinθ+ cosθ)μk μk

= mg
sinθ+ cosθμk

cosθ− sinθμk

= FF ⃗  x̂

WF = ⋅ = (F ) ⋅ (d(cosθ +sinθ ))F ⃗  d ⃗  x̂ x̂ ŷ

= Fd cosθ = mg d cosθ
sinθ+ cosθμk

cosθ− sinθμk

= −mgF ⃗ 
g ŷ

Wg = ⋅ = (−mg ) ⋅ (d(cosθ +sinθ ))F ⃗ 
g d ⃗  ŷ x̂ ŷ

= −mgd sinθ

f ⃗ 
k f ⃗ 

k d ⃗ 

Wf = ⋅ = − d = − Ndf ⃗ 
k d ⃗  fk μk

= − dμk

mg

cosθ− sinθμk

W net = + +WF Wg Wf

= mg d cosθ−mgd sinθ− d
sinθ+ cosθμk

cosθ− sinθμk

μk

mg

cosθ− sinθμk

= mgd( cosθ−sinθ− )
sinθ+ cosθμk

cosθ− sinθμk

μk

1

cosθ− sinθμk

= mgd( )
(sinθ+ cosθ) cosθ−sinθ(cosθ− sinθ) −μk μk μk

cosθ− sinθμk

= mgd( )
sinθcosθ+ θ−sinθcosθ+ θ−μk cos2 μk sin2 μk

cosθ− sinθμk

= mgd( )
( θ+ θ) −μk cos2 sin2 μk

cosθ− sinθμk

= 0
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Discussion
Of course, this makes sense, because the net force on the crate is zero, since it is not accelerating, so the net work done is also
zero. As a consequence, or rather, by construction, we have the condition that if the net work done on an object is zero, then
that object does not accelerate. We thus have a scalar quantity (work) that can tell us something about whether an object is
changing speed. In the next section, we introduce a new quantity, "kinetic energy'', to describe how an object's speed changes
when the net work done is not zero. \end{example}

Pay close attention to the words "on'' and "by.'' There are a few things about this that can be tricky:

1. In Example 7.1.5, we were asked to find the net work done on the crate. Sometimes, the question won't specify that it
wants you to find the net work, and will just say "What is the work done on the crate?'' When you are just asked for the
work done "on'' an object, the question is implicitly asking for the net work done on the object.

2. Just because the net work done on an object is zero doesn't mean that the work done by each of the forces is zero. This may
seem obvious, but it's easy to get tripped up on a test or exam. If you are reading a question about work and it says that the
object is moving at a constant speed, it's tempting to just jump ahead and say that the work must be equal to zero. However,
you can only say this if it's asking you for the net work done on the object. For instance, in Example 7.1.5, we concluded
that since the crate was moving at a constant speed, the net work was equal to zero. But if the question asked you to find the
work done on the crate by gravity, that would mean something different. The work done by gravity in this case is not
equal to zero (it's actually negative).

3. The work done "on'' an object is not the same as the net work done "by'' that object. For example, say you are in a tug-of-
war and you pull the other team towards you, but you yourself do not move. The net work done on you is zero, but the
work done by you is not zero. So, when you are talking about work, you should always state explicitly whether the work is
being done "on'' the object or "by'' the object.

Note: The wording won't always be like this - sometimes it will say "How much work do you do on the box?'' instead of "How
much work is done by you on the box,'' so always be careful. Still, looking for key words like "by'' and "on'' is a good place to
start.

A  box sits on a horizontal surface. A constant horizontal force of  is applied to the box. The box moves with a constant
acceleration of . Which of the following has the greatest magnitude?

A. The work done by the applied force.
B. The work done by friction.
C. The net work done on the box.

Answer
A.

This page titled 7.1: Work is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D. Martin, Emma Neary,
Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts platform.

 Olivia's Thoughts

 Exercise 7.1.1

2kg 6N

2m/s2
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