LibreTextsw

28.3: Plotting

Several modules are available in python for plotting. We will show here how to use the pylab module (which is equivalent to
the matplotlib module). For example, we can easily plot the data in the two arrays from the previous section in order to plot
the position versus time for the object:

v python code 28.3.1

Plotting two arrays

01| #import the pylab module

02 | import pylab as pl

03

04 | #define an array of values for the position of the object
05| position = [0 ,1 ,4 ,9 ,16 ,25]

06 | #define an array of values for the corresponding times
07| time = [0 ,1 ,2 ,3 ,4 ,5]

08
09 | #make the plot showing points and the line (.-)
10| pl.plot(time, position, '.-")

11 | #add some labels:

12| pl.xlabel("time") #label for x-axis

13| pl.ylabel("position") #label for y-axis
14 | #show the plot

15| pl.show()

Output

position

0 1 2 3 H :

time

Figure A4.3.1: Using two arrays and plotting them.

? Exercise 28.3.1

How would you modify the Python code above to show only the points, and not the line?

Answer

We can use Python to plot any mathematical function that we like. It is important to realize that computers do not have a
representation of a continuous function. Thus, if we would like to plot a continuous function, we first need to evaluate that function
at many points, and then plot those points. The numpy module provides many useful features for working with arrays of numbers
and applying functions directly to those arrays.

Suppose that we would like to plot the function f(z) = cos(z?) between z = —3 and = 5. In order to do this in Python, we will
first generate an array of many values of z between —3 and 5 using the numpy package and the function

linspace(min,max,N) which generates N linearly spaced points between min and max. We will then evaluate the function
at all of those points to create a second array. Finally, we will plot the two arrays against each other:

https://phys.libretexts.org/@go/page/19590

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19590?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/28%3A_The_Python_Programming_Language/28.03%3A_Plotting

LibreTextsw

Plotting a function of 1 variable

01 | #import the pylab and numpy modules
02 | import pylab as pl

03 | import numpy as np

04
05 | #Use numpy to generate 1000 values of x between -3 and 5.
06 | #xvals is an array with 1000 values in it:

07| xvals = np.linspace(-3,5,1000)

08
09 | #Now, evaluate the function for all of those values of Xx.

10 | #We use the numpy version of cos, since it allows us to take the cos

11| #of all values in the array.

12 | #fvals will be an array with the 1000 corresponding cosines of the xvals
squared

13| fvals = np.cos(xvals**2)

14
15| #make the plot showing only a line, and color it
16| pl.plot(xvals, fvals, color='red")

17 | #show the plot

18| pl.show()

Output

100
075
050
025
000 4
-0.25
0.50
0.75

=100

T T

3 =2 -1 o0 1 2 3 3 5

Figure A4.3.2: Plotting a function using arrays.

This page titled 28.3: Plotting is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D. Martin, Emma
Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/19590

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19590?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/28%3A_The_Python_Programming_Language/28.03%3A_Plotting
https://creativecommons.org/licenses/by-sa/4.0
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/28%3A_The_Python_Programming_Language/28.03%3A_Plotting?no-cache
https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md

