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14.2: Mathematical Description of a Wave

In order to describe the motion of a wave through a medium, we can describe the motion of the individual particles of the medium
as the wave passes through. Specifically, we describe the position of each particle using its displacement, D, from its equilibrium
position. Consider our rope example in which a sine wave is propagating through a medium (the rope) in the positive « direction,
as shown in Figure 14.2.1

Figure 14.2.1: The displacement (D) of points at different positions () on a rope as a sine wave passes through.

The displacement, D, of each point at position, z, in the medium is shown on the vertical axis of Figure 14.2.2 The solid black
line corresponds to a snapshot of the wave at time ¢ = 0. The wave has an amplitude, A =5m, a velocity, v=1m/s, and a
wavelength, A = 4m. The dotted line corresponds to a snapshot of the wave one second later, at ¢ = 1s, when the wave has moved
to the right by a distance vt = 1m.
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Figure 14.2.2: Displacement as a function of position for particles in a medium as a wave passes through. The dotted line shows
the displacement as a function of time 1 s after the solid line, and corresponds to a wave traveling towards the right.

It is important to note that Figure 14.2.2is not restricted to describing transverse waves, even if the illustration suggests that the
particles’ displacements (vertical axis) are perpendicular to the direction of propagation of the wave (horizontal). The quantity, D,
that is plotted on the vertical axis corresponds to the displacement of a particle from its equilibrium position. That displacement
could correspond to the longitudinal displacement of a particle in a longitudinal wave.

At time t =0 (solid line), the displacement of each point in the medium, D(z,¢ = 0), as a function of their distance from the
origin, &, can be described by a sine function:

D(z,t =0) :Asin(%w> (14.2.1)

This corresponds to the displacement being 0 at the origin and at any position, x, that is a multiple of the wavelength, A.

If the wave moves with velocity v in the positive x direction, then at time £, the sine function in Figure 14.2.2will have shifted to
the right by an amount vt (dotted line). The displacement of a point located at position x at time ¢ will be the same as the
displacement of the point at position z — vt at time ¢ = 0. For example, in Figure 14.2.2the displacement of the point £ = 2m at
time ¢ = 1s is the same as the displacement of the point at position z —vt =1m att =0.

We can state this condition as:
D(z,t) = D(xz —vt,t =0)

That is, at some time ¢, the displacement of a point at position « is found by finding the position of the point at x — vt att =0. We
already have an equation to find the displacement of a point at ¢ = 0. Using the above condition, we can modify Equation 14.2.1 to
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write a function for the displacement of a point at position z at time ¢:

D(z, 1) :Asin(%r(m—vt)>

Noting that v/A =1/T, we can write this as:

2 2
D(z,t) :Asm($_%t)

In the above derivation, we assumed that at time ¢ =0, the displacement at x =0 was D(z =0,t =0) =0. In general, the

displacement could have any value at x =0 and ¢ =0, so we can allow the wave to shift left or right by including a phase, ¢,
which can be determined from the displacement at x =0 and ¢ =0:

D(,t) :Asin(2i)\m —%Hﬁ) (14.2.2)

where ¢ = 0 corresponds to the displacement being zero at z =0 and ¢t =0.

? Exercise 14.2.1

What is the value of the phase ¢ if the displacement of the pointat z =0 is D = A/2 attime t =07
A.7/6.
B. /4
C.7/3.
D.7/2

Answer
A.

The equation above is written in terms of the wavelength, A, and period, 7', of the wave. Often, one uses the “wave number”, k,
and the “angular frequency”, w, to describe the wave. These are defined as:

27
= 14.2.
= (14.2.3)
27
w—? (14.2.4)

Using the wave number and the angular frequency removes the factors of 27 in the expression for D(z,t), which can now be
written as:

D(z,t) = Asin(kx — wt + ¢) (14.2.5)
It is important to note that the wave number, &, has no relation to the spring constant that we used for springs.

Using Equation 14.1.1, we can also relate the wave number and angular frequency to the speed of the wave:
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The Wave Equation

In Chapter 13, we saw that any physical system whose position, z, satisfies the following equation:

d*z 9
— = —w'z
dt?

will undergo simple harmonic motion with angular frequency w, and that (t) can be modeled as:
z(t) = Acos(wt + ¢)

Similarly, any system, where the displacement of a particle as a function of position and time, D(z,t), satisfies the following
equation:

8D 1 8°D

02  v? 2

is described by a wave that propagates with a speed v. The equation above is called the “one-dimensional wave equation” and

(14.2.6)

would be obtained from modeling the dynamics of the system, just as the equation of motion for a simple harmonic oscillator can
be obtained from Newton’s Second Law. For the harmonic oscillator, the properties of the system (e.g. mass and spring constant)
determine the angular frequency, w. For a wave, the properties of the medium determine the speed of the wave, v.

We use partial derivatives in the wave equation instead of total derivatives because D(z,t) is multivariate. A possible solution to
the one-dimensional wave equation is:

D(z,t) = Asin(kz —wt + ¢)
which is the function that we used in the previous section to describe a sine wave.

Furthermore, if multiple solutions to the wave equation, Dy (z, t), Ds(z,t), etc, exist, then any linear combination, D(z, t), of the
solutions will also be a solution to the wave equation:

D(m,t) = alDl(m,t) +a2D2(x,t) +a3D3(m,t) +...

This last property is called “the superposition principle”, and is the result of the wave equation being linear in D (it does not
depend on D?, for example). It is easy to check, for example, that if D (x,t) and D (z, t) satisfy the wave equation, so does their
sum.

In three dimensions, the displacement of a particle in the medium depends on its three spatial coordinates, D(z,y, 2, t), and the
wave equation in Cartesian coordinates is given by:

8?°D 9*°D 9’°D 1 8°D

922 oy 02 2 oP

There are many functions that can satisfy this equation, and the best choice will depend on the physical system being modeled and
the properties of the wave that one wishes to describe.

This page titled 14.2: Mathematical Description of a Wave is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the
LibreTexts platform.
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