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13.2: Vertical spring-mass system
Consider the vertical spring-mass system illustrated in Figure .

Figure : A vertical spring-mass system.

When no mass is attached to the spring, the spring is at rest (we assume that the spring has no mass). We choose the origin of a
one-dimensional vertical coordinate system (  axis) to be located at the rest length of the spring (left panel of Figure ). When
a mass  is attached to the spring, the spring will extend and the end of the spring will move to a new equilibrium position, ,
given by the condition that the net force on the mass  is zero. The only forces exerted on the mass are the force from the spring
and its weight. The condition for the equilibrium is thus:

Now, consider the forces on the mass at some position  when the spring is extended downwards relative to the equilibrium
position (right panel of Figure ). Newton’s Second Law at that position can be written as:

Note that the net force on the mass will always be in the direction so as to “restore” the position of the mass back to the equilibrium
position, . If the mass had been moved upwards relative to , the net force would be downwards.

We can substitute the equilibrium condition, , into the equation that we obtained from Newton’s Second Law:

Consider a new variable, . This is the same as defining a new  axis that is shifted downwards by ; in other words,
this the same as defining a new  axis whose origin is at  (the equilibrium position) rather than at the position where the spring
is at rest. Noting that the second time derivative of  is the same as that for :

we can write the equation of motion for the mass, but using  to describe its position:

13.2.1

13.2.1

y 13.2.1

m y0

m

∑ = −F ( )Fy Fg y0

mg−ky0

∴ mg

= 0

= 0

= ky0

y

13.2.1

∑ = mg−kyFy

∴ m
yd2

dt2

= ma

= mg−ky

y0 y0

mg = ky0

m
yd2

dt2

m
yd2

dt2

m
yd2

dt2

∴
yd2

dt2

= mg−ky

= k −kyy0

= −k(y− )y0

= − (y− )
k

m
y0

= y−y′ y0 y′ y0

y′ y0

(t)y′ y(t)

yd2

dt2
= ( + ) =

d2

dt2
y′ y0

d2y′

dt2

(t)y′

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19455?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/13%3A_Simple_Harmonic_Motion/13.02%3A_Vertical_spring-mass_system


13.2.2 https://phys.libretexts.org/@go/page/19455

This is the same equation as that for the simple harmonic motion of a horizontal spring-mass system (Equation 13.1.2), but with the
origin located at the equilibrium position instead of at the rest length of the spring. In other words, a vertical spring-mass system
will undergo simple harmonic motion in the vertical direction about the equilibrium position. In general, a spring-mass system will
undergo simple harmonic motion if a constant force that is co-linear with the spring force is exerted on the mass (in this case,
gravity). That motion will be centered about a point of equilibrium where the net force on the mass is zero rather than where the
spring is at its rest position.

How does the period of motion of a vertical spring-mass system compare to the period of a horizontal system (assuming the
mass and spring constant are the same)?

A. The period of the vertical system will be larger.
B. The period of the vertical system will be smaller.
C. The period will be the same.

Answer

C.

Two-spring-mass system
Consider a horizontal spring-mass system composed of a single mass, , attached to two different springs with spring constants 
and , as shown in Figure .

Figure : A mass attached to two different springs.

We introduce a horizontal coordinate system, such that the end of the spring with spring constant  is at position  when it is at
rest, and the end of the  spring is at  when it is as rest, as shown in the top panel. A mass  is then attached to the two springs,
and  corresponds to the equilibrium position of the mass when the net force from the two springs is zero. We will assume that the
length of the mass is negligible, so that the ends of both springs are also at position  at equilibrium. You can see in the middle
panel of Figure  that both springs are in extension when in the equilibrium position. It is possible to have an equilibrium
where both springs are in compression, if both springs are long enough to extend past  when they are at rest.

If we assume that both springs are in extension at equilibrium, as shown in the figure, then the condition for equilibrium is given by
requiring that the sum of the forces on the mass is zero when the mass is located at . The extension of the spring on the left is 

, and the extension of the spring on the right is :
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Note that if the mass is displaced from  in any direction, the net force on the mass will be in the direction of the equilibrium
position, and will act to “restore” the position of the mass back to .

When the mass is at some position , as shown in the bottom panel (for the  spring in compression and the  spring in
extension), Newton’s Second Law for the mass is:

Note that, mathematically, this equation is of the form , which is the same form of the equation that we had for the
vertical spring-mass system (with ), so we expect that this will also lead to simple harmonic motion. We can use the
equilibrium condition ( ) to re-write this equation:

Let us define  as the “effective” spring constant from the two springs combined. We can also define a new coordinate, 
, which simply corresponds to a new  axis whose origin is located at the equilibrium position (in a way that is exactly

analogous to what we did in the vertical spring-mass system). We can thus write Newton’s Second Law as:

and we find that the motion of the mass attached to two springs is described by the same equation of motion for simple harmonic
motion as that of a mass attached to a single spring. In this case, the mass will oscillate about the equilibrium position, , with a
an effective spring constant . Combining the two springs in this way is thus equivalent to having a single spring, but
with spring constant . The angular frequency of the oscillations is given by:

This page titled 13.2: Vertical spring-mass system is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D.
Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts
platform.
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