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15.6: Sample problems and solutions

? Exercise 15.6.1

A man and a woman, Rebecca (57 kg) and Ryan (63 kg), are on a cruise when their ship tragically sinks. They are thrust into
the freezing cold ocean. They see a large wooden door floating on the surface of the water, and wonder if they could both
survive if they both lay on top of the door. They estimate that the door measures about 2 m X 1 m x 0.12 m . The density of
salt water is p,, = 1027kg/ m?.

ocean

Figure 15.6.1: Rebecca and Ryan wonder if they can stay above water if they get on top of a floating door.

a. What does the density of the wood have to be in order for Rebecca and Ryan to stay above the surface of the water? (see
Figure 15.6.1)
b. If the door is made of oak (p; = 750 kg/ m3), will they survive? Can one of them survive?

Answer

a. The forces acting on the door are the force of buoyancy, the door’s weight, and the weights of Rebecca and Ryan, as
shown in Figure 15.6.2
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Figure 15.6.2: The forces acting on the door when Rebecca and Ryan are on top of it.

We can combine the weight of the door and the weight of the people into the total weight, F;,. We choose the y axis to be
positive upwards. The sum of the forces on the door in the y direction is given by:

Y F,=Fs-F,

For the door to float, the net force on the door must be greater than or equal to zero. We want to find the minimum buoyant
force for them to float, so we set the net force equal to zero:

F,=Fp
(mr +my +ma)g = puVug
mg+m, +mqg = puVy
where the weight includes the mass of Rebecca (mg), Ryan (m,.) and the door (mg). We added the subscript W' to the right
side of the equation to remind ourselves that the buoyant force depends on the density and volume of the displaced water.
We want to find the maximum density of the wood in order for Rebecca and Ryan to stay above the water’s surface. This
means that the maximum volume of water that can be displaced is the volume of the door, V,, = V;; (so that the surface of

the door is level with the surface of the water, as in Figure 15.6.1). We can rewrite the mass of the door in terms of its
volume and density, and apply our condition that V,, =V :
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mpg +m, +paVqg = puVy
_ pwV:i —MmpRr —my
Vi

A quick calculation tells us that the volume of the door is (2 m)(1 m)(0.12 m) = 0.24 m® We can now calculate the
desired density of the wood:

Pd

_ pwVa—mp—m,

B Vi

(1027kg/m®)(0.24m?) — 57kg — 63kg
0.24m?

Pd

Pd =
Pd = 527kg/m3

The maximum density of the wood that would allow them to both float is 527 kg/ m?. Balsa wood has a density that is

about 150 kg/ m® so would allow them to survive. However, it is unlikely that a random floating door is made of balsa
wood (although one would choose lighter materials when constructing a ship).

b. No, they could not both stay on the door because the density of oak is greater than the maximum density of 527 kg/ m’.
We can find the amount of mass that can be added to the door (m 4) in order for the person on it to stay above water:

Fy,=Fp
(ma+ma)g = puVug
ma+paVa = puwVu
my+paVa = puVa

ma = Va(pw — pa)

where we again used the condition that V,, = V;; . We can plug in the appropriate values and solve:

mA = V:i(pw - Pd)
m4 = (0.24m?)(1027kg/m® — 750kg/m®)

The door can support an additional mass of 66 kg, so either Rebecca or Ryan can survive if the other does not get on the
door.

? Exercise 15.6.2

A doctor prescribes an IV drip to a dehydrated patient. She asks a nurse, Rob, to administer 21 of saline solution (
n=1.0x 1073 Pas, p =997 kg/ m?®) to the patient over 2 hours. An IV drip works by inserting a needle into a vein in a
patient’s arm. The needle is connected to an IV bag by a tube (Figure 15.6.3). Lily uses a needle that has a diameter of
0.60 mm and a length of 32 mm. The blood pressure in the patient’s veins is 80 mmHg above atmospheric pressure. Note:
1 mmHg ~ 133 Pa.
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Figure 15.6.3: Left: A cylindrical IV needle. Right: The IV needle connected to an IV bag by a tube. The free end of the needle
goes into the patient’s vein.

a. What must the pressure be at the entrance of the needle (the side connected to the saline, not the patient)? Assume that the
needle is essentially horizontal and that the diameter of the tube from the IV bag is large enough so that resistance in the
vertical tube is negligible. Write your answer in Pascals above atmospheric pressure.

b. How high above the patient’s arm should Lily put the IV bag?

Answer

a. Given that the pressure in the patient’s veins is 80 mmHg above atmospheric pressure, we want to find the pressure
required at the other end of the needle so that we get the desired flow rate through the needle. We model the needle as a
horizontal cylindrical pipe and assume that the saline solution exhibits laminar flow. We can therefore use Poiseuille’s
equation:

’7'('7'4

=—(P, — P,
87]L( ! 2)

We let P; be the pressure where the needle connects to the tube. Solving for P; gives:

8nL
P = Q % + Py
r
The pressure at the exit of the needle, P,, is just the blood pressure (80 mmHg + latm). The radius of the needle is
0.60 mm/2 = 0.30 mm The flow rate has to be in units of m?/s. The flow rate in the appropriate units is thus:

21 1hr 0.001 m?

@=om 36005 11

=2.8x10"m?/s

Using our values, we can calculate P :

8(1.0 x 10~3Pas)(0.032 133P
( 4)( m) +80mmHg - —o0 g +latm
(3 x10 "m)* Im

mHg
P, =2817Pa+10640Pa + latm

P, =(2.8x10"m?/s)

.. Py =13457Pa above atmospheric pressure

b. We can easily determine the height of the IV bag that is required to give the desired pressure. We choose a coordinate
system with a y axis that is vertical (positive upwards) with the origin at the location of the needle (Figure 15.6.4.

b ¥y, =0
Figure 15.6.4: The needle is at height 0 and the top of the fluid in the IV bag is at yq.

At the top of the solution in the IV bag, yg, the solution has a speed of zero and is at atmospheric pressure, Py =1 atm.
The velocity at the needle is 0, and the pressure is 13457 Pa + 1 atm. Bernoulli’s principle states:
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1 1
Py + 505 + pgyo = P+ 5 vt + pgyn
Using our values to solve for yq, we get:
Py +pgyo = P
P —P

P9
13457 Pa+1 atm—1 atm

(997kg/m’)(9.8m/s”)
13457 Pa
(997 kg/m*)(9.8 m/s?)
Y =1.4m

Yo

Therefore, the IV bag should be placed 1.4 m above the patient’s arm.
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