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16.3: The Electric Field
We define the electric field vector, , in an analogous way as we defined the gravitational field vector, . By defining the
gravitational field vector, say, at the surface of the Earth, we can easily calculate the gravitational force exerted by the Earth on any
mass, , without having to use Newton’s Universal Theory of Gravity. As you recall, we can define the gravitational field, , at
some position, , from a point mass, , as the gravitational force per unit mass:

where  is a vector from the position of  to where we want to know the gravitational field. As a result, the force exerted on a
“test mass”, , located at position  relative to mass  is given by:

which, of course, is the result from Newton’s Theory of Gravity. As you recall, we can define the gravitational field for any object
that is not a point mass (e.g. the Earth), and use that field to find the force exerted by the Earth on any mass , without having to
re-calculate the gravitational field each time (which requires an integral or Gauss’ Law).

We proceed in an analogous was to define the “Electric field”, , as the electric force per unit charge. If we have a point
charge, , located at the origin of a coordinate system, then the electric field from that point charge, , at some position, ,
relative to the origin is given by:

 

If we place a “test charge”, , at position  in space, it will experience a force given by:

just as we find from Coulomb’s Law.

A negative charge is placed at the origin of a coordinate system. At some point in space, the electric field from that charge

A. points towards the origin.
B. points away from the origin.

Answer
A.

In Example 16.2.2, we determined the electric force on charge , exerted by two other charges  and . If we now changed the
value of  and wanted to determine the force, we can use the electric field to simplify the process considerably. That is, we can
determine the value of the electric field, , from  and  at the position of , and then simply multiply that field vector by a
charge  to obtain the force on that charge, without having to add force vectors.

Two charges, \(Q_1=1\text{nC}\), and  are held fixed at two corners of an equilateral triangle with sides of length 
, with a coordinate system as shown in Figure . What is the electric field vector at the third corner of the

triangle?
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Figure : Two charges at the corners of an equilateral triangle of side .

Solution
The net electric field at the third corner of the triangle will be the vector sum of the electric fields from charges  and . We
thus need to determine the electric field vectors from each charge, and then add those two vectors to obtain the net electric
field. The vectors are illustrated in Figure .

Figure : Electric field vectors from two charges at the corners of an equilateral triangle of side .

The electric field from charge  has magnitude:

and components:

Similarly, the electric field from  has magnitude:

and components:

Finally, we can add the two force vectors together to obtain the net force on :

which has a magnitude of . By knowing the electric field at the empty corner of the triangle, we can now
calculate the net electric force that would act on any charge placed in that location. For example, if we place a charge 

 (as in Example 16.2.2), we can easily find the corresponding electric force:
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= (4.5 × N/C) +(7.8 × N/C)104 x̂ 104 ŷ
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as we found previously. Note that the force on  is in the opposite direction of the electric field vector. This is because  is
negative. The electric field at some point in space thus points in the same direction as the force that a positive test charge
would experience.

Discussion
In this example, we determined the net electric field by making use of the superposition principle; namely, that we can treat the
electric fields from  and  independently, without needing to consider the fact that  and  exert forces on each other.
By knowing the electric field at some position in space, we can easily calculate the force vector on any test charge, , placed at
that position. Furthermore, the sign of the charge  will determine in which direction the force will point (parallel to  for a
positive charge and anti-parallel to  for a negative charge).

The electric field inside of a conductor must be zero because...

A. If there is an electric field, electrons will move (since it is a conductor) and arrange themselves so as to create an additional
field that cancels the original field

B. If there is an electric field, protons will move (since it is a conductor) and arrange themselves so as to create an additional
field that cancels the original field

C. Since electrons can move freely, they move so fast that the electric field is negligible.
D. Electric fields cannot penetrate conducting materials.

Answer
A.

Visualizing the electric field
Generally, a “field” is something that has a different value at different positions in space. The pressure in a fluid under the presence
of gravity is a field: the pressure is different at different heights in the fluid. Since pressure is a scalar quantity (a number), we call
it a “scalar field”. The electric field is called a “vector field”, because it is a vector that is different at each position in space. One
way to visualize the electric field is to draw arrows at different positions in space; the length of the arrow is then proportional to the
strength of the electric field at that position, and the direction of the arrow then represents the direction of the electric field. The
electric field for a point charge is shown using this method in Figure .

Figure : Electric field vectors near a point charge.

One disadvantage of visualizing a vector field with arrows is that the arrows take up space, and it can be challenging to visualize
how the field changes magnitude and direction continuously through space. For this reason, one usually uses “field lines” to
visualize a vector field. Field lines are continuous lines with the following properties:

The direction of the vector field at some point in space is tangent to the field line at that point.
Field lines have a direction to indicate the direction of the field vector along the tangent (as there are two possibilities, parallel
and anti-parallel).
The magnitude of the field is proportional to the density of field lines at that point. The more field lines near a location in space,
the larger the magnitude of the field vector at that point.
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An example of using field lines to represent a vector field in space is shown in Figure . The corresponding field vector is
shown at two different positions in space (  and ). At both positions, the vector is tangent to the field line at that position in
space and points in the direction of the little arrow drawn at the end of the field lines. The field vector at point  has a larger
magnitude than the one at point , since the field lines are more concentrated at point  than at point  (there are more field lines
per unit area at that position in space, the field lines are closer together).

Figure : An example of determining a field vector from the continuous field lines.

It is possible for field lines to cross?

A. Yes.
B. No.

Answer

B.

Because the electric field vector always points in the direction of the force that would be exerted on a positive charge, electric field
lines will point out from a positive charge and into a negative charge. The electric field lines for a combination of positive and
negative charges is illustrated in Figure .

Figure : Field lines of two  charges and one  charge.

Electric field from a charge distribution
So far, we have only considered Coulomb’s Law for point charges (charges that are infinitely small and can be considered to exist
at a single point in space). We can use the principle of superposition to determine the electric field from a charged
extended/continuous object by modeling that object as being made of many point charges. The electric field from that object is then
the sum of the electric field from the point charges that make up that object.

Consider a charged wire that is bent into a semi-circle of radius , as in Figure . The wire carries a net positive electric
charge, , that is uniformly distributed along the length of the wire. We wish to determine the electric field vector at the center of
the circle.
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Figure : A charged wire bent into a semi-circle of radius .

We start by choosing a very small section of wire and model that section of wire as a point charge with infinitesimal charge  (as
in Figure ). A distance  from that point charge, the electric field from that point charge will have magnitude, , given by:

The electric field vector, , from the point charge  is illustrated in Figure .

Figure : Infinitesimal electric fields from point charges along the bent wire.

Using the coordinate system that is shown, we define  as the angle made by the vector from the origin to the point charge  and
the -axis. The electric field vector from  is then given by:

The total electric field at the origin will be obtained by summing the electric fields from the different  over the entire semi-circle:

We are thus left with two integrals to solve for the  and  components of the electric field, respectively. Before jumping into
solving the integrals, it is useful to think about the symmetry of the problem. Specifically, consider a second point charge, ,
located symmetrically about the -axis from charge , as illustrated in Figure . The charge  will create a small electric

field  as illustrated. When we add together  and , the two  components will cancel, and only the  components will
sum together. Similarly, for any  that we choose, there will always be another  such that when we sum together their
respective electric fields, the  components will cancel. Thus, by symmetry, we can argue that the net  component of the electric
field, , must be identically zero. We thus only need to evaluate the  component of :

In order to solve this integral, we need to consider which variables change for different choices of the point charge . In this case,
the distance  is the same anywhere along the semi-circle, so only  changes with different choices of , as  is a constant. We
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can express  in terms of  and then use  as the variable of integration (the variable that labels the different ).  corresponds
to a small change in the angle , and is the angle that is subtended by the charge . That is, the charge  covers a small arc
length, , of the semi-circle, which is related to  by:

The total charge on the wire is given by , and the wire has a length  (half the circumference of a circle). Since the charge is
distributed uniformly on the wire, the charge per unit length of any piece of wire must be constant. In particular,  divided by 
must be equal to  divided by :

where in the last equality we used the relation . We now have all of the ingredients to solve the integral:

The total electric field vector at the center of the circle is thus given by:

Note that if we had not realized that we did not need to solve the integral for the  component, we would still find that it is zero:

In order to determine the electric field at some point from any continuous charge distribution, the procedure is generally the same:

1. Make a good diagram.
2. Choose a charge element .
3. Draw the electric field element, , at the point of interest.
4. Write out the electric field element vector, , in terms of  and any other relevant variables.
5. Think of symmetry: will any of the component of  sum to zero over all of the ?
6. Write the total electric field as the sum (integral) of the electric field elements.
7. Identify which variables change as one varies the  and choose an integration variable to express  and everything else in

terms of that variable and other constants.
8. Do the sum (integral).

A ring of radius  carries a total charge . Determine the electric field a distance  from the center of the ring, along the
axis of symmetry of the ring.

Solution
In order to determine the electric field, we carry out the procedure outlined above, and start by drawing a good diagram, as in
Figure , showing: our coordinate system, our choice of , the electric field element vector  that corresponds to ,
and variables ( , ) to specify the position of .
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Figure : Determining the electric field on the axis of a ring of radius  carrying charge .

In this case, the figure is challenging to draw and visualize because of the three-dimensional nature of the problem. With the
specific  that we chose, the electric field element vector is given by:

where  has magnitude:

The  and  components of the total electric field will then be given by:

In general, if we had chosen a  that is not along one of the axes of the coordinate system, the electric field element vector
would have components in all three directions. However, if we consider the symmetry of the ring, we can note that once we
sum together all of the electric field elements, only the  components will survive. Indeed, we have shown in Figure 
that for each , there will be a  located on the opposite side of the ring that will create an electric field element that will
cancel all but the  component of the field element from . We thus only need to consider the  components of the electric
field elements when determining the total electric field:

We now have to evaluate the integral for the  component of the electric field:

and determine which quantities change as we move  around the ring. In this case, both  and  are the same for all
elements on the ring, and the integral is trivial:

where the integral  simply means “sum all of the charges  together”, which is equal to , the total charge on the ring. In
the last equality, we replaced  with the variables  and  that are provided in the question.

You have rubbed a glass rod with a silk cloth such that the glass rod has acquired a positive charge. The rod has a length, , a
negligible cross-section, and has acquired a total positive charge, , that is uniformly distributed along the length of the rod.
What is the electric field a distance  from the center of the rod?
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16.3.8 R Q

dq

d = −dE sinθ +0 +dE cosθE ⃗  x̂ ŷ ẑ
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In order to determine the electric field, we carry out the procedure outlined above, and start by drawing a good diagram, as in
Figure , showing: our coordinate system, our choice of  at a distance  above the center of the rod, the electric field
element vector  that corresponds to , and variables ( , , ) to specify the position of .

Figure : Determining the electric field a distance  from the center of a rod of length  carrying charge .

We define the origin to be located at the point where we want to determine the electric field, and the angle  to be the angle
between the horizontal and the position vector of . We can write the electric field element vector as:

where  has magnitude:

The  and  components of the total electric field will then be given by:

Again, before proceeding with the integrals, we consider symmetry. Specifically, if we consider a charge  located
symmetrically about the  axis from  (as illustrated in Figure ), we see that the  component of the electric field
element  that it creates will cancel the  component of . For each choice of , there will exist a corresponding choice 

 which will result in the  component of the net electric field being zero. We thus only need to evaluate the  component of
the total electric field:

Within the integrand, both  and  will change as we sum over the different charges  along the rod. A straightforward option
to write the integral is to use  as the integration constant, and to write , , and  in terms of . The charge  covers an
infinitesimal length of the rod, . Since the rod is uniformly charged, the charge per unit length must be the same over a small
length  as it is over the whole length of the rod:

It is often useful to introduce a constant charge per unit length, , so that we can write the charge  as:
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We can also express  and  in terms of  (and , which is constant):

Finally, we can combine this all into an integral that we can evaluate:

If the rod were infinitely long (or very long compared to the distance ), the electric field becomes:

By using the charge per unit length, , we were able to easily generalize our result to that expected for an infinitely long rod
with uniform charge density.

Solving the integral above in terms of the integration variable  is difficult without some knowledge of integrals. For this
specific integral, the easiest method to use from calculus is “trig substitution”. We show below how we can arrive at a much
easier integral if we had instead chosen the angle  as the integration variable instead of , and we will see that this is a
physical illustration of the “trig substitution method” from calculus!

We go back to step 7 in our procedure and choose  (instead of ) as the integration variable for the integral:

That is, we need to express  and  in terms of . Referring to Figure , we have:

The only difficulty is in determining the angle  subtended by , which was determined above by first relating  and .
With these substitutions, the integral becomes trivial:
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where  is the angle subtended by half of the rod. Referring to Figure , we can easily see that:

So that the total electric field is given by:

as found before. Furthermore, in the limit of an infinitely long rod, the angle  tends to , so that the electric field becomes:

Discussion:

In this example, we saw how to apply the principle of superposition to determine the electric field near a finite and a infinite
line of charge with constant charge per unit length. We showed that it was relatively straightforward to set up the integral in
terms of , but not so easy to solve the integral. We then showed that by using  as the integration variable, we could arrive at
a much easier integral. This change of variable corresponds to a physical variable in our problem, but is also the basis for the
more abstract “trig substitution” method used to solve integrals in calculus.

Calculate the electric field a distance, , above a infinite plane that carries uniform charge per unit area, .

Solution
In this case, we need to determine the field above an object that is two dimensional (a plane). In the previous examples (a ring,
a line of charge), we modelled a one dimensional object (e.g. the line), as being made of many point charges (0-dimensional
objects). We treated those point charges has having an infinitesimal length along the object so that we could sum them together
to obtain the object (e.g.  was the length of the charge for the rod/line of charge).

In order to model the two-dimensional object (the plane), we model it has being the sum of many one dimensional objects. We
can model a plane either as a rectangle of width, , and length, , as shown in the left panel of Figure  or as a disk of
radius, , as shown in the right panel. To model an infinite plane, we can then take the limit of either  and  going to
infinity (rectangle), or of  going to infinity (disk). We can model the rectangle as being the sum of many lines of finite
length, , and infinitesimal width, . Similarly, we can model the disk as the sum of infinitesimally thin rings of finite radius,
, and thickness, . In both cases, we know how to model the field from a line of charge (Example 16.3.3) or from a ring

(Example 16.3.2).

Ex = ∫ k cosθ
dq

r2

= k λ cosθdθ = cosθdθ =∫
θ0

−θ0

R

θcos2

θcos2

R2

kλ

R
∫

θ0

−θ0

kλ

R
[sinθ]θ0

−θ0

= sin
2kλ

R
θ0

θ0 16.3.9

sin =θ0
L/2

+( )L
2

2
R2

− −−−−−−−−
√

Ex = sin =
2kλ

R
θ0

kλ

R

L

+( )L

2

2
R2

− −−−−−−−−
√

θ0
π
2

= sin =Ex lim
→θ0

π

2

2kλ

R
θ0

2kλ

R

dy θ

 Example 16.3.4

a σ

dy

W L 16.3.10
R L W

R

L dx

r dr

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19481?pdf


16.3.11 https://phys.libretexts.org/@go/page/19481

Figure : A two-dimensional object such as a plane modeled as a sum of infinitely thin lines (left panel) or as the sum of
infinitely thin rings (right panel).

We proceed by modeling the plane as a disk made up of infinitesimal rings. Our infinitesimal charge, , is thus the charge on
a ring of radius  and thickness , as illustrated in Figure .

Figure : Modeling the field from a disk as the sum of fields from concentric thin rings.

We know from Example 16.3.2 that the magnitude of the electric field a distance  from the center of the ring, along its axis of
symmetry (the  axis in Figure ), is given by:

By symmetry, for all of the different infinitesimal rings that make up the disk, the field will always point along the  axis. In
order to determine the total field, we sum (integrate) the values of , over all of the rings, from a radius of  to a radius 

. For each ring, the value of  will be different, so we need to express  in terms of  in order to perform the integral.
We know that the plane has a uniform charge per unit area given by . The charge  of an infinitesimal ring is given by:

where  is the area of the infinitesimal ring of radius  and thickness  (think of unfolding the ring into a
rectangle of height  and length , the circumference of the circle, in order to determine the area). We now have all of the
ingredients in order to determine the total electric field:

Finally, we can take the limit of  in order to get the electric field above an infinite plane:

where we used  in the last equality as the result is a little cleaner without the factors of . Note that for an infinite plane of
charge, the electric field does not depend on the distance (our variable ) from the plane!

Discussion
In this example, we showed how we can model a two-dimensional charge distribution as the sum of one-dimensional charge
distributions. In particular, we showed that an infinite plane of charge can be modeled as the sum of many lines charges or of
many rings of charge (we chose the latter in the above). We also found that the electric field above an infinite plane of charge
does not depend on the distance from the plane; that is, the electric field is constant above an infinite plane of charge.
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A common source of confusion is the process of solving for the electric field produced by continuous charges. Point charges
are well defined in space as being entirely contained within a single point, while continuous charges are objects which occupy
1, 2, or 3 dimensions. The electric field produced by point charges are easily modeled by , but the electric fields
produced by continuous charges must usually be obtained from an integral.

When a charge is distributed, the charge on the object must be broken down into many small charges which are written as .
From there,  is rewritten in terms of a position variable over which it is convenient to integrate. Think of the position
variable as a variable that you can use to distinguish charges, , located at different positions along the object.

For example, referring to Figure , if I wanted to determine  at the top of a rod (left-hand panel), it would be most
convenient for me to integrate over , but if I wanted to determine  on the side of a rod, it would be most convenient to
integrate over .

Figure : Calculating the electric field produced by a rod at different positions.

In order to determine the bounds of the integral, think of the range in position variable that is required in order to cover the
entire object. I recommend paying close attention to Examples 16.3.2, 16.3.3, and 16.3.4, and attempting questions which
require integration on the Question Library.

This page titled 16.3: The Electric Field is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D. Martin,
Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts platform.
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