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4.1: Motion in two Dimensions

Using vectors to describe motion in two dimensions

We can specify the location of an object with its coordinates, and we can describe any displacement by a vector. First, consider the
case of an object moving with a constant velocity in a particular direction. We can specify the position of the object at any time, ¢,
using its position vector, 7(t), which is a function of time. The position vector is a vector that goes from the origin of the
coordinate system to the position of the object. We can describe the  and y components of the position vector with independent
functions, z(t), and y(t), that correspond to the z and y coordinates of the object at time ¢, respectively:

. (w(t)> . .
T(t) = =z(t)z+y(t)y
y(2)

Suppose that in a period of time At, the object goes from a position described by the position vector 7; to a position described by
the position vector 7, as illustrated in Figure 4.1.1.
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Figure 4.1.1: Tllustration of a displacement vector, A r=ry — 71, for an object that was located at position 7; at time ¢; and at
position 7o at time ¢t = t; + At .

We can define a displacement vector, A7 =75 —7 , and by analogy to the one dimensional case, we can define an average
velocity vector, v as:

AT
~ (4.1.1)

The average velocity vector will have the same direction as A7, since it is the displacement vector divided by a scalar (At). The
magnitude of the velocity vector, which we call “speed”, will be proportional to the length of the displacement vector. If the object
moves a large distance in a small amount of time, it will thus have a large velocity vector. This definition of the velocity vector thus
has the correct intuitive properties (points in the direction of motion, is larger for faster objects).

5:

For example, if the object went from position (1, y; ) to position (x2, y2) in an amount of time A¢, the average velocity vector is

given by:
. A7
v=——
At
_ 1 Ty — 1
At Y2—U
1 <Am>
t Ay
Az
| At
WY
At
Uy
= ”
U =12+ vy

https://phys.libretexts.org/@go/page/19380


https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19380?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/04%3A_Describing_Motion_in_Multiple_Dimensions/4.01%3A_Motion_in_two_Dimensions

LibreTextsw

That is, the z and y components of the average velocity vector can be found by separately determining the average velocity in each
direction. For example, v, = % corresponds to the average velocity in the x direction, and can be considered independent from
the velocity in the y direction, v,. The magnitude of the average velocity vector (i.e. the average speed), is given by:

. 1 2 2 Ar
[|9]] =4/ v2+v2 :A—t\/Aa: + Ay =Ar

where Ar is the magnitude of the displacement vector. Thus, the average speed is given by the distance covered divided by the
time taken to cover that distance, in analogy to the one dimensional case.

? Exercise 4.1.1

A llama runs in a field from a position (z1,y;) = (2m,5m) to a position (z2,y2) = (6m,8m) in a time At =0.5s, as
measured by Marcel, a llama farmer standing at the origin of the Cartesian coordinate system. What is the average speed of the
llama?

A lm/s

B.5m/s

C.10m/s

D.15m/s

Answer

C. The llama has an average velocity (v;,vy) = (2 —®1,¥2 —¥1)/At = (6 —2,8 —5)/0.5 = (4,3)/0.5 = (8,6)m/s .
By the Pythagorean Theorem the average speed is v = /8% 462 = 10m/s.

If the velocity of the object is not constant, then we define the instantaneous velocity vector by taking the limit A¢ — 0:
S AF  dr
t)= lim — = — 4.1.2
o= lim X - @ (4.1.2)

which gives us the time derivative of the position vector (in one dimension, it was the time derivative of position). Writing the
components of the position vector as functions z(¢) and y(¢), the instantaneous velocity becomes:

v (t) = % T (t) (4.1.3)

_ i(m“))
at\ y(t)

dy

dt

(o)
vy(t)

S B(E) =, (8)2 +v,(8)7

8

where, again, we find that the components of the velocity vector are simply the velocities in the  and y direction. This means that
we can treat motion in two dimensions as two times one-dimensional motion: a motion along 2 and a separate motion along y. This

highlights the usefulness of the vector notation for allowing us to use one vector equation (v = %AF ) to represent two equations
(one for z and one for y).

Similarly the acceleration vector is given by:

a(t)= % v (t) (4.1.4)
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dv,
dt

dvy
dt

(o)
ay(t)

coa(t) = as(t)z+ay(t)y

If an object is at position ¥y = (g, yo) with a velocity vector ¥y = vo, & + vpy¥ attime ¢ =0, and has a constant acceleration
vector', @ = a, & + a,y , then the velocity vector at some later time ¢, ¥(t), is given by:

U(t) =y +at

()= () (2
= +
vy (t) Yoy ayt

these be considered as two independent equations for the components of the velocity vector:

Or, if we write out the components explicitly:

Vg (t) = voz +azt
vy (t) =voy +ayt
which is the same equation that we had for one dimensional kinematics, but once for each coordinate. The position vector is given
by:
1,
7(t) =7o +vot + Eat
with components:

1
z(t) =zo+vout + Eaﬂgt2

1 2
y(t) =% +U0yt + ant

which again shows that two dimensional motion can be considered as separate and independent motions in each direction.

v/ Example 4.1.1

An object starts at the origin of a coordinate system at time ¢=0s, with an initial velocity vector
% = (10m/s)Z + (15m/s)g . The acceleration in the z direction is Om/s” and the acceleration in the y direction is —10m/s”.

a. Write an equation for the position vector as a function of time.
b. Determine the position of the object at ¢ = 10s.
c. Plot the trajectory of the object for the first 5s of motion.

Solution
a. We can consider the motion in the z and y direction separately. In the x direction, the acceleration is 0, and the position is
thus given by:
z(t) =z + vyt
= (0m) + (10m/s)¢
= (10m/s)¢

In the y direction, we have a constant acceleration, so the position is given by:
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Z

2
5 ayt

y(t) =yo +voyt +
= (0m) + (15m/s)t + % (~10m/s"2)t*
= (15m/s)t — % (10m/s"2)¢*

The position vector as a function of time can thus be written as:
. z(t)
y(t)
(10m/s)t )

- ( (15m/s)t — 1 (10m/s%)t?

b. Using t = 10s in the above equation gives:

. ( (10m/s)(10s) )
r(t =10s)
(15m/s)(10s) — 3 (10m/s)(10s)?

(100m)
< (—350m) )

c. We can plot the trajectory using python, as in Figure 4.1.2.

Trajectory in the xy plane
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Figure 4.1.2: Parabolic trajectory of an object with no acceleration in the x direction and a negative acceleration in they

direction.
As you can see, the trajectory is a parabola, and corresponds to what you would get when throwing an object with an initial
velocity with upwards (positive y) and horizontal (positive ) components. If you look at only the y axis, you will see that the
object first goes up, then turns around and goes back down. This is exactly what happens when you throw a ball upwards,
independently of whether the object is moving in the z direction. In the z direction, the object just moves with a constant
velocity. The points on the graph are drawn for constant time intervals (the time between each point, At is constant). If you
look at the distance between points projected onto the = axis, you will see that they are all equidistant and that along z, the
motion corresponds to that of an object with constant velocity.

? Exercise 4.1.2

In Example 4.1.1, what is the velocity vector exactly at the top of the parabola in Figure 4.1.2?
A.v=(10m/s) Z +(15m/s) g

B. v=(15m/s) §

C. v=(10m/s) &

D. None of the above

Answer

C.
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v/ Example 4.1.2

A monkey is hanging from a tree branch and you want to feed the monkey by throwing it a banana (Figure 4.1.3). You know
that the monkey is easily frightened and will let go of the tree branch the instant you throw the banana. The monkey is a
horizontal distance d away and a height h above the point from which you release the banana when you throw it. At what
angle with respect to the horizontal should you throw the banana so that the banana reaches the monkey?

-

=

<

Figure 4.1.3: Feeding a monkey in a tree.

Solution

This question is asking us to find the angle, §, between the banana’s initial velocity vector, ¥op, and the horizontal for the
banana to hit the monkey. This angle is given by the horizontal (vpy.) and vertical (vpyy) components of the initial velocity
vector of the banana:

In order for the banana to hit the monkey, and the banana and the monkey must be in the same place at the same time at some
time, ¢. Our approach will be as follows: we will start by finding equations that describe the x and y position of the monkey
and of the banana. Then, we will use our conditions for a successful “hit” to find the ratio (tané = vpg,/vpo, ) that we want
for our initial throw, and use that to find 6.

First, we define a coordinate system. We choose the origin to be where the banana is released. We let y be in the vertical
direction (positive upwards) and let z be in the horizontal direction (positive towards the monkey), as shown in Figure 4.1.3.

We treat the  and y components of the banana and monkey’s velocity and position vectors as independent. The monkey’s
motion has only a vertical component. The y component of the monkey’s acceleration is the acceleration due to gravity,
ay, =—9.8m/s"2 = —g, which is negative, since gravity produces an acceleration in the negative y direction. The y
component of the monkey’s initial position is ya0 =h and the y component of its initial velocity is vay =0. The y
component of the monkey’s position as a function of time, yys(t), is given by:

1 5
yM(t) =YMmo +’UMygt + §ayt

:h+(0)—%gt2

The horizontal position of the monkey is constant, and is equal to () =d .

The banana’s motion has both  and y components. There is no acceleration in the z direction, so the  component of the
banana’s velocity is vpg, and constant. We defined the banana’s initial  coordinate to be £y =0, so the = position of the
banana as a function of time, z(t) is given by:

zp(t) = TBo + vBox

= (0) +vppt
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We defined the initial y position of the banana to be ypy = 0. The y position of the banana as a function of time, yz(t), can

thus be described by:
L 2
yB(t) = ymo +vBoyt + §ayt
L
= (0) +-vBoyt — Egt
where vpy, is the y component of the banana’s initial velocity and a, = —g is the y component of the banana’s acceleration

(due to gravity). Now that we have equations that describe the position of both the banana and the monkey, we can use our
conditions for the banana and monkey to be at the same position at the same time. For the monkey and the banana to be in the
same position, we need yps(t) = yp(t) and zp(t) = zpr(t) =d at some time ¢.

Setting our equations for yys(t) and yp(¢) equal to one another gives:

1 o 1
h— Egt = vOth - Egt
s h =wgyBt

And setting zp7(t) = d equal to zp(t) gives:

We can just divide one equation by the other to find:

This gives us the ratio we are looking for, so we now know that

h
tanf = E

h
R P |
.0 =tan (_d)

This is a somewhat surprising result, as it means that you only need to thrown the banana in the direction of the monkey (that
is, aim at the monkey, and throw!). Thus, it will not matter how fast you throw the banana, and you will always hit the monkey
if you aimed correctly. When you throw the banana faster, you will hit the monkey higher in its trajectory. If there is no ground
for the monkey to hit, you can throw the banana as slowly as you like, and it will eventually catch up with the monkey when
the banana reaches z = d.

Relative motion

In the previous chapter, we examined how to convert the description of motion from one reference frame to another. Recall the one
dimensional situation where we described the position of an object, A4, using an axis z as 4 (t). Suppose that the reference frame,
z, is moving with a constant speed, v'B, relative to a second reference frame, z’. We found that the position of the object is
described in the z' reference frame as:

' A(t) = v'Bt + 24 (t)

if the origins of the two systems coincided at ¢ = 0. The equation above simply states that the distance of the object to the z’ origin
is the sum of the distance from the &’ origin to the x origin and the distance from the z origin to the object.

In two dimensions, we proceed in exactly the same way, but use vectors instead:

7A@t =P+ 74 ()
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where 74 (t) is the position of the object as described in the zy reference frame, EIB, is the velocity vector describing the motion of

the origin of the zy coordinate system relative to an z'y’ coordinate system and F'A(t) is the position of the object in the z'y’
coordinate system. We have assumed that the origins of the two coordinate systems coincided at £ =0 and that the axes of the
coordinate systems are parallel (x parallel to 2’ and y parallel to y").

Note that the velocity of the object in the 'y’ system is found by adding the velocity of zy relative to 'y’ and the velocity of the
s —A
object in the zy frame (7" (¢)):

d s,y d B, -4
dtr (t) =% (vTt+77(1))
=3P+ (2)

As an example, consider the situation depicted in Figure 4.1.4. Brice is on a boat off the shore of Nice, with a coordinate system
zy, and is describing the position of a boat carrying Alice. He describes Alice’s position as FA(t) in the zy coordinate system. Igor
is on the shore and also wishes to describe Alice’s position using the work done by Brice. Igor sees Brice’s boat move with a
velocity #'” as measured in his z'y’ coordinate system. In order to find the vector pointing to Alice’s position 74 (t), he adds the
vector from his origin to Brice’s origin (EIBt) and the vector from Brice’s origin to Alice A (t).

0 x::

Figure 4.1.4: Example of converting from one reference frame to another in two dimensions using vector addition.

Writing this out by coordinate, we have:
z'A(t) = viPt +a(t)
yAt) =vft+y?()
and for the velocities:
VA (t) = v ol (t)
v (t) = v+ (t)
? Exercise 4.1.3

You are on a boat and crossing a North-flowing river, from the East bank to the West bank. You point your boat in the West

direction and cross the river. Chloe is watching your boat cross the river from the shore, in which direction does she measure
your velocity vector to be?

A. In the North direction.
B. In the West direction.
C. A combination of North and West directions.
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Answer
C.

Footnotes
1. Where a constant vector means that both the magnitude and direction are constant in time.

This page titled 4.1: Motion in two Dimensions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D.

Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts
platform.
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