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11.10: Sample problems and solutions

Calculate the moment of inertia of a uniform disk of mass  and radius , rotated about an axis that goes through its center
and is perpendicular to the disk.

Answer

We need to split up the disk into mass elements, , that we can sum together to obtain the moment of inertia of the disk.
We can choose a ring of radius  and radial thickness  for the shape of our mass element, as depicted in Figure .

Figure : A mass element, , in the shape of a ring of radius  and radial thickness .

We can define a surface mass density, , equal to the mass per unit area of the disk:

The mass of the ring shaped element is thus given by:

where  is the area of the mass element. You can imagine unfolding the mass element into a rectangle of height 
and of length  to obtain its area. Now that we have expressed the mass element in terms of , we can proceed to
calculate the moment of inertia of the disk.

We know from Example 11.6.1, that the infinitesimal moment of inertia, , of a ring of radius  and infinitesimal mass, 
, about its axis of symmetry is given by:

The moment of inertia of the disk, is found by summing the moments of inertia of the infinitesimal rings:

where we removed the surface mass density by expressing it in term of the total mass and radius of the disk.

Discussion
The moment of inertia of a disk of mass  and radius  is half of that of a ring of radius  and mass . It is thus easier
to rotate the disk than the ring.
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Figure : A sign is suspended on a horizontal bar of mass  and length .

A sign holder is built by attaching a bar of mass  and length  to a wall using a hinge that allows the bar to rotate in the
vertical plane. The sign of mass  is attached to the end of the bar that is opposite from the wall. The bar is held up by a rope
that is attached to the wall on one end and to the bar on the other end, two thirds of the length of the bar from the wall, as
illustrated in Figure . The rope makes an angle  with respect to the horizontal bar. Find the tension in the rope and the
magnitude of the force exerted by the hinge onto the bar.

Answer

The whole system does not move and so it is in static equilibrium. In order to determine the forces exerted on the bar by the
rope and the hinge, we model the bar as being in static equilibrium. The forces exerted on the bar are:

, the weight of the bar, with magnitude , exerted at the bar’s center of mass.
, a downwards forced exerted by the sign at the end of the bar, with magnitude .

, a force of tension exerted by the rope at a distance  from the wall.
, a force exerted by the hinge on the bar at the end next to the wall . We expect that the force from the hinge will have

both a horizontal component, , and a vertical component, , in order for the net force on the bar to be zero.

The forces are illustrated in Figure  along with our choice of coordinate system (and the  axis, not shown, points
out of the page).

Figure : Forces on the bar that is holding the sign of mass .

We start by writing out the  and  components of Newton’s Second Law (with zero acceleration):

We can choose the axis about which to calculate the torques. Since all of the forces are in the  plane, we choose to
calculate the torques about an axis parallel to the  axis that goes through the hinge on the wall. The force from the hinge, 
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, will thus result in a torque of zero (since it has a lever arm of zero). The torque from each force about the hinge is given
by:

The sum of the torques in the  direction must be zero for static equilibrium, which allows us to determine the magnitude of
the force of tension:

Using the  and  components of Newton’s Second Law, we can now use the tension to determine the  and  components
of the force exerted by the hinge:

We find that the  component of the force from the hinge is in the negative  direction, so our diagram in Figure 
is wrong! If you removed the hinge on the wall and instead held that end of the bar with your hand, you would feel that the
end of the bar is trying to go into the wall and upwards, as the bar tries to rotate with the opposite end moving downwards
due to the weight of the sign. You would have to push in the positive  and negative  direction to keep the bar from
moving.

Discussion
In this example, we saw that we needed to use both the sum of the forces and the sum of the torques in order to determine
the forces on the bar.

Footnotes
1. We chose the letter R for “Reaction”, as this is the force of reaction from the hinge as the bar pushes against the hinge.

This page titled 11.10: Sample problems and solutions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Ryan D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the
LibreTexts platform.
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