
28.5.1 https://phys.libretexts.org/@go/page/19592

28.5: Advanced topics
This section introduces a few more advanced topics that allow you to use computer programming to simplifying many tasks. In this
section, we will show you how you can write your own program to numerically estimate the value of an integral of any function.

Defining your own functions
Although Python provides many modules and functions, it is often useful to be able to define your own functions. For example,
suppose that you would like to define a function that calculates , for a given value of . This is done easily
using the def keyword in Python:

Defining a function

Output

A few things to note about the code above:

Functions are defined using the def keyword followed by the name that we choose for the function (in our case,
myfunction)

If functions take arguments, those are specified in parenthesis after the name of the function (in our case, we have one argument
that we chose to call x)
After the name of the function and the arguments, we place a colon
The code that belongs to the function, after the colon, must be indented (this allows Python to know where the code for the
function ends)
The function can “return” a value; this is done by using the return keyword.
We used the “operator” ** to take the power of a number (x**2), and the operator * , to multiply numbers. Python
would not understand something like 2x ; you need to use the multiplication operator, i.e. 2*x .

In the example above, we wrote a Python function to represent a mathematical function. However, one can write a function to
execute any set of tasks, not just to apply a mathematical function. Python functions are very useful in order to avoid having to
repeatedly type the same code.

Recall that the numpy module allows us to apply functions to arrays of numbers, instead of a single number. We can modify the
code above slightly so that, if the argument to the function, x , is an array, the function will gracefully return an array of numbers
to which the function has been applied. This is done by simply replacing the call to the math version of the cos function by
using the numpy version:

Defining a function that works on an array

+ +cos(2x)1
2
x2 1

4
x3 x

 python code 28.5.1

1 #import the math module in order to use cos
2 import math as m
3
4 #define our function and call it myfunction:
5 def myfunction(x):
6 return x**2 / 3 + x**3 / 4 + m.cos(2*x)
7
8 #Test our function by printing out the result of evaluating it as x = 3
9 print (myfunction(3))

1 10.710170286650365

 python code 28.5.2

01 #import the numpy module in order to use cos to an array

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19592?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/28%3A_The_Python_Programming_Language/28.05%3A_Advanced_topics

28.5.2 https://phys.libretexts.org/@go/page/19592

Output

where we created the array xvals using the numpy module.

Using a loop to calculate an integral
The ability to define our own functions in Python allows us to easily simplify complex tasks. Using “loops” is another way that
computer programming can greatly simplify calculations that would otherwise be very tedious. In a loop, one is able to repeat the
same task many times. The example below simply prints out a statement five times:

A simple loop

Output

A few notes on the code above:

The loop is defined by using the keywords for ... in
The value after the keyword for is the “iterator” variable and will have a different value each time that the code inside of the
loop is run (in our case, we called the variable i)
The value after the keyword in is an array of values that the iterator will take
The range(N) function returns an array of N integer values between 0 and N-1 (in our case, this returns the five
values)
The code to be executed at each “iteration” of the loop is preceded by a colon and indented (in the same way as the code for a
function also follows a colon and is indented)

02 import numpy as np
03
04 #define our function and call it myfunction:
05 def myfunction(x):
06 return x**2 / 3 +x**3 / 4 + np.cos(2*x)
07
08 #Test our function by printing out the result and evaluating it at x = 3

(same as before)
09 print(myfunction(3))
10
11 #Test it with an array
12 xvals = np.array([1, 2, 3])
13 print (myfunction(xvals))

1 10.710170286650365
2
3 [0.1671865 2.67968971 10.71017029]

 Python code 28.5.3

1 #A loop to print out a statement 5 times:
2
3 for i in range(5):
4 print("The value of i is ", i)

1 The value of i is 0
2 The value of i is 1
3 The value of i is 2
4 The value of i is 3
5 The value of i is 4

0, 1, 2, 3, 4

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19592?pdf

28.5.3 https://phys.libretexts.org/@go/page/19592

We now have all of the tools to evaluate an integral numerically. Recall that the integral of the function between and is
simply a sum:

The limit of is equivalent to the limit . Our strategy for evaluating the integral is:

1. Define a Python function for .
2. Create an array, xvals , of values of between and .
3. Evaluate the function for all those values and store those into an array, fvals .
4. Loop over all of the values in the array fvals , multiply them by , and sum them together.

Let’s use Python to evaluate the integral of the function between and :

Numerical integration of a function

Output

f(x) xa xb

f(x)dx∫
xb

xa

Δx

xi

= f()Δxlim
Δx→0

∑
i=0

i=N−1

xi

=
−xb xa

N

= + iΔxxa

Δx → 0 N → ∞

f(x)

N x xa xb

Δx

f(x) = 4 +3 +5x3 x2 x = 1 x = 5

 Python Code 28.5.4

01 #import numpy to work with arrays:
02 import numpy as np
03
04 #define our function
05 def f(x):
06 return 4*x**3 + 3*x**2 + 5
07
08 #Make N and the range of integration variables:
09 N - 1000
10 xmin = 1
11 xmax = 5
12
13 #create the array of values of x between xmin and xmax
14 xvals = np.linspace(xmin, xmax, N)
15
16 #evaluate the function at all those values of x
17 fvals = f(xvals)
18
19 #calculate delta x
20 deltax = (xmax - xmin) / N
21
22 #initialize the sum to be zero:
23 sum = 0
24
25 #loop over the values fvals and add them to the sum
26 for fi in fvals:
27 sum = sum + fi*deltax
28
29 #print the result:
30 print("The integral between {} and {} using {} steps is {:.2f}".format(xmin,

xmax, N, sum))

1 The integral between 1 and 5 using 1000 steps is 768.42

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19592?pdf

28.5.4 https://phys.libretexts.org/@go/page/19592

One can easily integrate the above function analytically and obtain the exact result of . The numerical answer will approach the
exact answer as we make bigger. Of course, the power of numerical integration is to use it when the function cannot be
integrated analytically.

What value of should you use above in order to get within of the exact analytic answer?

Answer

This page titled 28.5: Advanced topics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D. Martin,
Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts platform.

768

N

 Exercise 28.5.1

N 0.01

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19592?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/28%3A_The_Python_Programming_Language/28.05%3A_Advanced_topics
https://creativecommons.org/licenses/by-sa/4.0
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/28%3A_The_Python_Programming_Language/28.05%3A_Advanced_topics?no-cache
https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md

