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10.2: Collisions
In this section we go through a few examples of applying conservation of momentum to model collisions. Collisions can loosely be
defined as events where the momenta of individual particles in a system are different before and after the event.

We distinguish between two types of collisions: elastic and inelastic collisions. Elastic collisions are those for which the total
mechanical energy of the system is conserved during the collision (i.e. it is the same before and after the collision). Inelastic
collisions are those for which the total mechanical energy of the system is not conserved. In either case, to model the system, one
chooses to define the system such that there are no external forces on the system so that total momentum is conserved.

Inelastic collisions
In this section, we give a few examples of modelling inelastic collisions. Inelastic collisions are usually easier to handle
mathematically, because one only needs to consider conservation of momentum and does not use conservation of energy (which
usually involves equations that are quadratic in the speeds because of the kinetic energy term).

Figure : One skater pushing another on a frictionless horizontal surface.

You (mass ) and your friend (mass ) face each other on ice skates on an ice surface that is slippery enough that friction
can be considered negligible, as shown in Figure . You shove your friend away from you so that he moves with velocity 

 away from you (the velocity is measured relative to the ice). Is the collision elastic? What is your speed relative to the ice
after you shoved your friend?

Solution
We can consider the system as being comprised of you and your friend. There are no net external forces on the system (gravity
and normal forces cancel each other), so the momentum of the system will be conserved.

The mechanical energy will not be conserved. You had to use chemical potential energy stored in your muscles to shove your
friend. Thus, external energy (i.e. not mechanical energy from you or your friend) was injected into the system, and we should
expect the total mechanical energy to be larger after the collision.

Before the collision, both you and your friend have zero speed, and thus zero kinetic energy and zero momentum. After the
collision, your friend has a velocity . We can use conservation of total momentum, , to determine your velocity, , after
the collision.

where primes ( ) denote a quantity after the collision. We find that your velocity is in the opposite direction from that of your
friend. Before the collision, the mechanical energy, , of the system is zero (we can ignore gravitational potential energy, since
everything is in the horizontal plane). After the collision, the mechanical energy, , is:
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which is clearly bigger than the mechanical energy before the collision (i.e. 0), as we suspected it would be.

Discussion
We find that you recoil in the opposite direction, which makes sense. If you push your friend in one direction, Newton’s Third
Law says that your friend pushes you in the opposite direction. Your speed furthermore depends on the ratio of your friend’s
mass to yours. This also makes sense, because if you both feel the same force, the person with the smallest mass will have the
highest speed; if your mass is higher than your friend’s, then your speed after the collision will be smaller than your friend’s.

We also saw that mechanical energy was not conserved. In terms of energy, we can explain this by saying that you burned up
chemical potential energy stored in your muscles in order to shove your friend. Because we included both you and your friend
in the system, the shove was an internal force and momentum is conserved. Of course, if we had considered only you as the
system, then your momentum would not have been conserved during the collision.

The type of collision that we described here is also sometimes called an “explosion”. You can imagine all of the parts that
make up a bomb as small particles. When the bomb explodes, chemical potential energy is converted into the kinetic energy of
the bomb fragments. If you consider all of the particles/fragments of the bomb as a system, then the total momentum of all of
the bomb fragments is conserved (and equal to zero if the bomb was initially at rest). Again, mechanical energy would not be
conserved (and would increase) as the chemical potential energy is converted into mechanical energy.

A proton of mass  and initial velocity  collides inelastically with a nucleus of mass  at rest, as shown in Figure 
. A coordinate system is set up as shown, such that the initial velocity of the proton is in the  direction. After the

collision, the proton’s speed is measured to be  and its velocity vector is found to make an angle  with the  axis as shown.
What is the velocity vector of the nucleus after the collision? Assume that the collision takes place in vacuum.

Figure : A proton of mass  colliding inelastically with a nucleus of mass .

Solution
As a system, we consider the proton and the nucleus together, so that the total momentum of the system is conserved during the
collision, as no other external forces are exerted on the two particles (since they are in vacuum). Because momentum is a
vector, each component of the total momentum, , is conserved during the collision:

where, as usual, primes ( ) denote quantities after the collision. After the collision, both particles will have velocity vectors that
have  and  components. Let the velocity vector of the nucleus after the collision be  and let  be the angle that it makes
with the  axis, as shown in Figure .

We can start by considering the conservation of the  component of the total momentum. The initial and final momenta in the 
 direction are given by:

which gives us a first equation to determine the final velocity of the nucleus.
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The  component of the total momentum before the collision is zero since we chose the coordinate system such that the initial
velocity of the proton is in the  direction. The initial and final momenta in the  direction are given by:

which gives us a second equation to solve for the velocity of the nucleus. With the two equations from momentum
conservation, we can solve for the magnitude and direction of the velocity of the nucleus. From the  component of momentum
conservation, we can find an expression for the speed of the nucleus:

which we can substitute into the  equation for momentum conservation to solve for the angle :

If we were given numbers for the initial and final speed of the proton, as well as the angle , we would be able to find a value
for the angle , which we could then use to determine the final speed of the nucleus:

Discussion:

By using the conservation of momentum equation and writing out the  and  components, we were able to find two equations
to determine the magnitude and direction of the nucleus’ velocity after the collision. In the limit where , the final
speed of the nucleus would be very small (close to zero).

Elastic collisions

In this section, we give a few examples of modeling elastic collisions. Even though it is mechanical energy that is conserved in an
elastic collision, one can almost always simplify this to only kinetic energy being conserved. If a collision takes place in a well
localized position in space (i.e. before and after the collision are the same point in space), then the potential energies of the objects
involved will not change, thus any change in their mechanical energy is due to a change in kinetic energy.

Figure : Two blocks about to collide elastically.

A block of mass  moves with velocity  in the  direction, as shown in Figure . A block of mass  is moving with
velocity  also in the  direction and collides elastically with block . Both blocks slide with no friction on the horizontal
surface. What are the velocities of the two blocks after the collision?
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Solution
Because this is an elastic collision, both the total momentum and total mechanical energy are conserved. Equating the total
momentum before and after the collision, and considering only the  component gives the following equation:

where the primes ( ) correspond to the quantities after the collision. Note that, in principle, the  components of the velocities (
, , , ) could be negative numbers if the corresponding block is moving in the negative  direction.

For the mechanical energy of the two blocks, we only need to consider their kinetic energy since their gravitational potential
energies are the same before and after the collision on the horizontal surface. The total mechanical energy of the system, before
and after the collision is given by:

where we canceled the factor of one half in the last line. This gives two equations (conservation of energy and momentum) and
two unknowns (the two speeds after the collision). This is not a linear system of equations, because the equation from
conservation of energy is quadratic in the speeds.

The following method allows many models for elastic collisions between two particles to be solved easily by converting the
quadratic equation from energy conservation into an equation that is linear in the speeds. First, write both equations so that the
quantities related to each particle are on opposite sides of the equation. For momentum, this gives:

For conservation of energy, this gives:

which we can re-write as:

We can then divide Equation 10.2.3 and 10.2.4 by Equation 10.2.1 and 10.2.2:

which gives us an equation that is much easier to work with, since it is linear in the speeds. If we re-arrange this last equation
back so that quantities before and after the collision are on different sides of the equality:

we can see that the relative speed between  and  is the same before and after the collision. That is, if block  “saw” block
 approaching with a speed of  before the collision, it would “see” block  moving away with speed  after the

collision, regardless of the actual directions and velocities of the block, if the collision was elastic.

By using this equation with the original conservation of momentum equation, we now have two equations and two unknowns
that are easy to solve:
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Solving for  in both equations gives:

Equating the two expressions for  allows us to solve for :

One can easily solve for the other speed, :

And writing these together:

Discussion
The formulas that we obtained above are valid for any one dimensional elastic collision.

Two trains of equal masses collide elastically on a track. If train  had a speed  and train  was at rest, what are the speeds of
the trains after the collision?

A. Both trains  and  travel away from each other with speeds .
B. Train  will be at rest and train  will move away with a speed .
C. Both trains  and  will stick together and move at a speed of .
D. Train  will be at rest and train  will move away at a speed of .
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Figure : A proton elastically collides with a proton at rest.

A proton of mass  and initial velocity  collides elastically with a second proton that is at rest. After the collision, the two
protons have velocities  and , as shown in Figure . Show that the velocity vectors of the two protons are
perpendicular after the collision.

Solution
This example highlights a particular feature of elastic collisions when the two objects have the same mass and one of the
objects is initially at rest. The conservation of momentum for the system comprised of the two protons can be written as:

where the left hand side corresponds to the initial total momentum and the right hand side to the total momentum after the
collision. In the second line, we canceled out the mass, and obtained a vector relation between the velocity vectors. We can
graphically illustrate the vector relation as in Figure  which shows the triangle that is formed by adding the two outgoing
velocity vectors to obtain the initial velocity vector.

Figure : Graphical illustration of the relation between the initial and final velocity vectors as a vector sum.

Conservation of kinetic energy for the collision can be written as:

where the left hand side corresponds to the initial kinetic energy and the right hand side to the final kinetic energy. We canceled
the mass and factor of one half in the second line. This last equation gives a relation between the magnitudes of the velocity
vectors. By comparing the equation above to Pythagoras’ theorem, and by inspecting the triangle in Figure , it is clear
that the triangle must be a right angle triangle, and thus that  and  must be perpendicular.

Frames of reference

Before proceeding, you may wish to review Sections 3.4 and 4.1 on expressing velocities in different frames of reference.

Because the momentum of a particle is defined using the velocity of the particle, its value depends on the reference frame in which
we chose to measure that velocity. In some cases, it is useful to apply momentum conservation in a frame of reference where the
total momentum of the system is zero. For example, consider two particles of mass  and , moving towards each other with
velocities  and , respectively, as measured in a frame of reference , as illustrated in Figure 10.2.6.

Figure : Two particles moving towards each other.
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In the frame of reference , the total momentum, , of the two particles can be written:

Consider a frame of reference, , that is moving with velocity, , relative to the frame of reference . In that frame of
reference, the velocities of the two particles are different and given by:

The total momentum, , in the frame of reference  is then given by :

We can choose the velocity of the frame , , such that the total momentum in that frame of reference is zero:

This “special” frame of reference, in which the total momentum of the system is zero, is called the “center of mass frame of
reference”. The velocity of center of mass frame of reference can easily be obtained if there are  particles involved instead of
two:

Again, you should note that because the above equation is a vector equation, it represents one equation per component of the
vectors. For example, the  component of the velocity of the center of mass frame of reference is given by:

Figure : One block approaching another identical block at rest, as seen in the lab frame of reference.

In the frame of reference of a lab, a block of mass  has a velocity  directed along the positive  axis and is approaching a
second block of mass  that is at rest ( ), as shown in Figure . What is the velocity of the center of mass frame?
What is the velocity of each block in the center of mass frame? Verify that the total momentum is zero in the center of mass
frame.

Solution
Since this is a one dimensional situation, we only need to evaluate the  component of the velocity of the center of mass:
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The center of mass frame of reference is thus also moving along the positive direction of the  axis, but with a speed that is
half of that of the moving block. In the center of mass frame of reference, it appears that the block on the left is slower than in
the lab frame and that the block on the right is moving in the negative  direction. The velocities of the two blocks in the center
of mass frame of reference are given by:

Thus, in the reference frame of the center of mass, the two block are approaching each other with the same speed ( ),
which is only the case because the two blocks have the same mass. The blocks, as viewed in the center of mass frame of
reference, are shown in Figure .

Figure : In the center of mass frame of reference, the block approach each other with the same speed, because they have
the same mass.

Clearly, the total momentum is zero in the center of mass frame of reference:

Discussion
As we have seen, in the center of mass frame of reference the total momentum is zero. If there are only two particles, and they
have the same mass, then, in the center of mass frame of reference, they both have the same speed and move either towards or
away from each other.

Footnotes

1. Note that we are using primes ( ) to denote quantities in a different reference frame, not after a collision.

This page titled 10.2: Collisions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan D. Martin, Emma
Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts platform.
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