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21.9: Sample problems and solutions

A cathode ray tube in a television accelerates an electron using a potential difference of . The electron must be
deflected upwards by a distance  using a uniform magnetic field, , before striking the phosphorescent screen, which
is a distance  away. What direction and magnitude must the magnetic field have in order to steer the electron towards
its destination?

Answer

First, we determine the velocity of the electron that were accelerated over a potential difference of . Their
kinetic energy is given by their charge times the potential difference::

Now that we have the velocity, we must determine the direction of the magnetic field. We know that the electron is moving
directly towards the phosphorescent screen (which we will define as ) and the electron must be deflected directly upwards
(which we will define as ). Knowing this, we can use the right hand rule to quickly determine that the magnetic force will
be acting in the  direction.

In the region with a magnetic field, the electron will undergo uniform circular motion with a radius give by the cyclotron
radius, :

We thus need to determine the radius of that circle for the electron to arrive that desired location on the screen. A section of
the circle about which the electron moves is illustrated in Figure .

Figure : Deflection of an electron noving in a uniform magnetic field.

From geometry and Pythagoras’ Theorem, we have:

The strength of the magnetic field is then given by:

 Exercise 21.9.1

ΔV = 500V

h = 3cm B⃗ 

d = 5cm

ΔV = 500V

K

m
1

2
v2

∴ v

= eΔV

= eΔV

= =
2eΔV

m

− −−−−−
√

2(1.602 × C)(500V)10−19

(9.109 × kg)10−31

− −−−−−−−−−−−−−−−−−−−

√

= 1.326 ×107ms−1

x⃗ 

z ⃗ 

−y ⃗ 

R

R =
mv

qB

21.9.1

21.9.1

R2

R2

∴ R

= (R−h +)2 d2

= −2Rh+ +R2 h2 d2

= = = 5.67cm
+h2 d2

2h

(3cm +(5cm)2 )2

2(3cm)

B = = = 0.00135T
mv

qR

(9.11 × kg)(1.326 × )10−31 107ms−1

(1.6 × C)(0.0567m)10−19

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19531?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/21%3A_The_Magnetic_Force/21.09%3A_Sample_problems_and_solutions


21.9.2 https://phys.libretexts.org/@go/page/19531

A galvanometer has a square coil with a side length of  and  loops between two magnets which generate a
radial magnetic field of . When a current runs through the coil, it generates a torque which is opposed by a spring
with a torsional spring constant of . If the deflection of the galvanometer’s needle is , what is the
current running through the coil?

Answer

First, we will determine the magnetic dipole moment of the square coil:

Now that we have the magnetic dipole moment, we can calculate the torque on the square coil that is produced by the
magnetic field. Note that, in a galvanometer, the magnetic field is configured such that it is radial and always perpendicular
to the magnetic dipole moment of the coil:

The deflection, , for a given current will occur when the torque produced by the wire is equal to the torque produced by
the spring. The torque produced by the spring is given by:

where  is measured in radians. The above equation is the rotational equivalent of Hooke’s Law. Equating the torque from
the spring and from the magnetic field, we can determine the current:

Integrate the equation  over a circular path to show that the torque exerted on a circular loop of radius, ,
carrying current, , immersed in a uniform magnetic field, , has a magnitude given by , where  is the magnetic
dipole moment of the loop. You may simplify the problem by modeling the loop when its magnetic moment is perpendicular to
the magnetic field.

Answer

Figure  illustrates a loop of radius, , carrying current, . The loop is in the  plane, and there is a magnetic
field, , in the negative  direction. By setting the loop up this way, it is easier to visualize some of the three-dimensional
aspects.
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Figure : A current-carrying loop in a magnetic field.

Consider an infinitesimal section of the loop, with length, , located on the loop at a position labeled by the angle, , as
illustrated. The vector, , is given by:

The magnetic force on that element of the loop is given by:

and the force on that element of wire is out of the page (negative  direction), as illustrated. That infinitesimal force will
create an infinitesimal torque:

where  is the vector from the axis of rotation (through the center of the loop, parallel to the  axis) to the point where the
force is exerted. The length of the vector, , is simply , and the force is perpendicular to the vector . Thus, the
torque on the infinitesimal element is given by:

and the torque on that infinitesimal element is in the negative  direction, as anticipated from the direction of the force.
Note that had we considered the loop to be oriented such that the magnetic field is not in the plane of the loop, the vector 
in the torque would have a component in the  direction.

We can sum the torques on each element of the loop, from  to . We can express the length, , using the
infinitesimal angle, , that subtends the arc of length, , on the circle of radius, :

The net torque is then given by:

The magnetic moment of the loop is:

so that the torque is indeed given by . If we had rotated the loop so that the vector, , had a  component, then we
would have found the general formula with a cross-product.
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μ = IA = IπR2

τ = μB r ⃗  y

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19531?pdf


21.9.4 https://phys.libretexts.org/@go/page/19531

This page titled 21.9: Sample problems and solutions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan
D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts
platform.

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19531?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/21%3A_The_Magnetic_Force/21.09%3A_Sample_problems_and_solutions
https://creativecommons.org/licenses/by-sa/4.0
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/21%3A_The_Magnetic_Force/21.09%3A_Sample_problems_and_solutions?no-cache
https://github.com/OSTP/PhysicsArtofModelling/blob/master/README.md

