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4.1: Motion in two Dimensions

Using vectors to describe motion in two dimensions

We can specify the location of an object with its coordinates, and we can describe any displacement by a vector. First, consider the
case of an object moving with a constant velocity in a particular direction. We can specify the position of the object at any time, ,
using its position vector, , which is a function of time. The position vector is a vector that goes from the origin of the
coordinate system to the position of the object. We can describe the  and  components of the position vector with independent
functions, , and , that correspond to the  and  coordinates of the object at time , respectively:

Suppose that in a period of time , the object goes from a position described by the position vector  to a position described by
the position vector , as illustrated in Figure .

Figure : Illustration of a displacement vector, , for an object that was located at position  at time  and at
position  at time .

We can define a displacement vector, , and by analogy to the one dimensional case, we can define an average
velocity vector,  as:

The average velocity vector will have the same direction as , since it is the displacement vector divided by a scalar ( ). The
magnitude of the velocity vector, which we call “speed”, will be proportional to the length of the displacement vector. If the object
moves a large distance in a small amount of time, it will thus have a large velocity vector. This definition of the velocity vector thus
has the correct intuitive properties (points in the direction of motion, is larger for faster objects).

For example, if the object went from position  to position  in an amount of time , the average velocity vector is
given by:
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That is, the  and  components of the average velocity vector can be found by separately determining the average velocity in each
direction. For example,  corresponds to the average velocity in the  direction, and can be considered independent from
the velocity in the  direction, . The magnitude of the average velocity vector (i.e. the average speed), is given by:

where  is the magnitude of the displacement vector. Thus, the average speed is given by the distance covered divided by the
time taken to cover that distance, in analogy to the one dimensional case.

A llama runs in a field from a position  to a position  in a time , as
measured by Marcel, a llama farmer standing at the origin of the Cartesian coordinate system. What is the average speed of the
llama?

A. 
B. 
C. 
D. 

Answer
C. The llama has an average velocity .
By the Pythagorean Theorem the average speed is .

If the velocity of the object is not constant, then we define the instantaneous velocity vector by taking the limit :

which gives us the time derivative of the position vector (in one dimension, it was the time derivative of position). Writing the
components of the position vector as functions  and , the instantaneous velocity becomes:

where, again, we find that the components of the velocity vector are simply the velocities in the  and  direction. This means that
we can treat motion in two dimensions as two times one-dimensional motion: a motion along  and a separate motion along . This
highlights the usefulness of the vector notation for allowing us to use one vector equation ( ) to represent two equations
(one for  and one for ).

Similarly the acceleration vector is given by:
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If an object is at position  with a velocity vector  at time , and has a constant acceleration
vector , , then the velocity vector at some later time , , is given by:

Or, if we write out the components explicitly:

these be considered as two independent equations for the components of the velocity vector:

which is the same equation that we had for one dimensional kinematics, but once for each coordinate. The position vector is given
by:

with components:

which again shows that two dimensional motion can be considered as separate and independent motions in each direction.

An object starts at the origin of a coordinate system at time , with an initial velocity vector 
. The acceleration in the  direction is  and the acceleration in the  direction is .

a. Write an equation for the position vector as a function of time.
b. Determine the position of the object at .
c. Plot the trajectory of the object for the first  of motion.

Solution
a. We can consider the motion in the  and  direction separately. In the  direction, the acceleration is , and the position is
thus given by:

In the  direction, we have a constant acceleration, so the position is given by:
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1 = +a⃗  axx̂ ay ŷ t (t)v ⃗ 
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The position vector as a function of time can thus be written as:

b. Using  in the above equation gives:

c. We can plot the trajectory using python, as in Figure .

Figure : Parabolic trajectory of an object with no acceleration in the  direction and a negative acceleration in the
direction.

As you can see, the trajectory is a parabola, and corresponds to what you would get when throwing an object with an initial
velocity with upwards (positive ) and horizontal (positive ) components. If you look at only the  axis, you will see that the
object first goes up, then turns around and goes back down. This is exactly what happens when you throw a ball upwards,
independently of whether the object is moving in the  direction. In the  direction, the object just moves with a constant
velocity. The points on the graph are drawn for constant time intervals (the time between each point,  is constant). If you
look at the distance between points projected onto the  axis, you will see that they are all equidistant and that along , the
motion corresponds to that of an object with constant velocity.

In Example 4.1.1, what is the velocity vector exactly at the top of the parabola in Figure ?

A. 
B. 
C. 
D. None of the above

Answer

C.
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A monkey is hanging from a tree branch and you want to feed the monkey by throwing it a banana (Figure ). You know
that the monkey is easily frightened and will let go of the tree branch the instant you throw the banana. The monkey is a
horizontal distance  away and a height  above the point from which you release the banana when you throw it. At what
angle with respect to the horizontal should you throw the banana so that the banana reaches the monkey?

Figure : Feeding a monkey in a tree.

Solution
This question is asking us to find the angle, , between the banana’s initial velocity vector, , and the horizontal for the
banana to hit the monkey. This angle is given by the horizontal ( ) and vertical ( ) components of the initial velocity
vector of the banana:

In order for the banana to hit the monkey, and the banana and the monkey must be in the same place at the same time at some
time, . Our approach will be as follows: we will start by finding equations that describe the  and  position of the monkey
and of the banana. Then, we will use our conditions for a successful “hit” to find the ratio ( ) that we want
for our initial throw, and use that to find .

First, we define a coordinate system. We choose the origin to be where the banana is released. We let  be in the vertical
direction (positive upwards) and let  be in the horizontal direction (positive towards the monkey), as shown in Figure .

We treat the  and  components of the banana and monkey’s velocity and position vectors as independent. The monkey’s
motion has only a vertical component. The  component of the monkey’s acceleration is the acceleration due to gravity, 

, which is negative, since gravity produces an acceleration in the negative  direction. The 
component of the monkey’s initial position is  and the  component of its initial velocity is . The 
component of the monkey’s position as a function of time, , is given by:

The horizontal position of the monkey is constant, and is equal to .

The banana’s motion has both  and  components. There is no acceleration in the  direction, so the  component of the
banana’s velocity is  and constant. We defined the banana’s initial  coordinate to be , so the  position of the
banana as a function of time,  is given by:

 Example 4.1.2
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We defined the initial  position of the banana to be . The  position of the banana as a function of time, , can
thus be described by:

where  is the  component of the banana’s initial velocity and  is the  component of the banana’s acceleration
(due to gravity). Now that we have equations that describe the position of both the banana and the monkey, we can use our
conditions for the banana and monkey to be at the same position at the same time. For the monkey and the banana to be in the
same position, we need  and  at some time .

Setting our equations for  and  equal to one another gives:

And setting  equal to  gives:

We can just divide one equation by the other to find:

This gives us the ratio we are looking for, so we now know that

This is a somewhat surprising result, as it means that you only need to thrown the banana in the direction of the monkey (that
is, aim at the monkey, and throw!). Thus, it will not matter how fast you throw the banana, and you will always hit the monkey
if you aimed correctly. When you throw the banana faster, you will hit the monkey higher in its trajectory. If there is no ground
for the monkey to hit, you can throw the banana as slowly as you like, and it will eventually catch up with the monkey when
the banana reaches .

Relative motion
In the previous chapter, we examined how to convert the description of motion from one reference frame to another. Recall the one
dimensional situation where we described the position of an object, , using an axis  as . Suppose that the reference frame, 

, is moving with a constant speed, , relative to a second reference frame, . We found that the position of the object is
described in the  reference frame as:

if the origins of the two systems coincided at . The equation above simply states that the distance of the object to the  origin
is the sum of the distance from the  origin to the  origin and the distance from the  origin to the object.

In two dimensions, we proceed in exactly the same way, but use vectors instead:
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where  is the position of the object as described in the  reference frame, , is the velocity vector describing the motion of
the origin of the  coordinate system relative to an  coordinate system and  is the position of the object in the 
coordinate system. We have assumed that the origins of the two coordinate systems coincided at  and that the axes of the
coordinate systems are parallel (  parallel to  and  parallel to ).

Note that the velocity of the object in the  system is found by adding the velocity of  relative to  and the velocity of the
object in the  frame ( ):

As an example, consider the situation depicted in Figure . Brice is on a boat off the shore of Nice, with a coordinate system 
, and is describing the position of a boat carrying Alice. He describes Alice’s position as  in the  coordinate system. Igor

is on the shore and also wishes to describe Alice’s position using the work done by Brice. Igor sees Brice’s boat move with a
velocity  as measured in his  coordinate system. In order to find the vector pointing to Alice’s position , he adds the
vector from his origin to Brice’s origin ( ) and the vector from Brice’s origin to Alice .

Figure : Example of converting from one reference frame to another in two dimensions using vector addition.

Writing this out by coordinate, we have:

and for the velocities:

You are on a boat and crossing a North-flowing river, from the East bank to the West bank. You point your boat in the West
direction and cross the river. Chloe is watching your boat cross the river from the shore, in which direction does she measure
your velocity vector to be?

A. In the North direction.
B. In the West direction.
C. A combination of North and West directions.
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 Exercise 4.1.3
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Answer
C.

Footnotes
1. Where a constant vector means that both the magnitude and direction are constant in time.
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