
8.4.1 https://phys.libretexts.org/@go/page/19415

8.4: Energy diagrams and equilibria
We can write the mechanical energy of an object as:

which will be a constant if there are no non-conservative forces doing work on the object. This means that if the potential energy of
the object increases, then its kinetic energy must decrease by the same amount, and vice-versa.

Consider a block that can slide on a frictionless horizontal surface and that is attached to a spring, as is shown in Figure  (left
side), where  is chosen as the position corresponding to the rest length of the spring. If you push on the block so as to
compress the spring by a distance  and then release it, the block will initially accelerate because of the spring force in the positive

 direction until the block reaches the rest position of the spring (  on the diagram). When it passes that point, the spring will
exert a force in the opposite direction. The block will continue in the same direction and decelerate until it stops and turns around.
It will then accelerate again towards the rest position of the spring, and then decelerate once the spring starts being compressed
again, until the block stops and the motion repeats. We say that the block “oscillates” back and forth about the rest position of the
spring.

We can describe the motion of the block in terms of its total mechanical energy, . Its potential energy is given by:

On the right of Figure  is an “Energy Diagram” for the block, which allows us to examine how the total energy, , of the
block is divided between kinetic and potential energy depending on the position of the block. The vertical axis corresponds to
energy and the horizontal axis corresponds to the position of the block.

The total mechanical energy, , is shown by the horizontal red line. Also illustrated are the potential energy function (
in blue), and the kinetic energy, ( , in dotted black).

Figure : Left: The block oscillates about the rest position of the spring, between  and . Right: The energy
diagram for the block. This diagram is for a spring with spring constant .

The energy diagram allows us to describe the motion of the object attached to the spring in terms of energy. A few things to note:

1. At , the potential energy is equal to , so the kinetic energy is zero. The block is thus instantaneously at rest at those
positions.

2. At , the potential energy is zero, and the kinetic energy is maximal. This corresponds to where the block has the highest
speed.

3. The kinetic energy of the block can never be negative , thus, the block cannot be located outside the range , and we
would say that the motion of the block is “bound”. The points between which the motion is bound are called “turning points”.

An analysis of the energy diagram tells us that the block is bound between the two turning points, which themselves are equidistant
from the origin. When we initially compress the spring, we are “giving” the block “spring potential energy”. As the block starts to
move, the potential energy of the block is converted into kinetic energy as it accelerates and then back into potential energy as it
decelerates.

E = K+U

8.4.1

x = 0

D

x x = 0

E

U(x) = k
1

2
x2

8.4.1 E

E = 25J U(x)

K = E−U(x)

8.4.1 x = −D x = D
k = 1N/m

x = ±D E

x = 0

1 [−D, +D]

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19415?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/08%3A_Potential_Energy_and_Conservation_of_Energy/8.04%3A_Energy_diagrams_and_equilibria


8.4.2 https://phys.libretexts.org/@go/page/19415

Calculate the positions of the turning points for the situation shown in Figure . The total energy is  and the spring
constant is .

Answer

By looking at only the potential energy function, without knowing that it is related to a spring, we can come to the same
conclusions; namely that the motion is bound as long as the total mechanical energy is not infinite. We call the point  a
“stable equilibrium”, because it is a local minimum of the potential energy function. If the object is displaced from the equilibrium
point, it will want to move back towards that point. This can also be understood in terms of the force associated with the potential
energy function:

 

The local minimum occurs where the derivative of the potential function is equal to zero. Thus, the equilibrium point is given by
the condition that the force associated with the potential is zero (  in the case of the potential energy from a spring). The
equilibrium is a stable equilibrium because the force associated with the potential energy function (  for the spring)
points towards the equilibrium point.

The potential energy function for an object with total mechanical energy, , can be thought of as a little “roller coaster”, on which
you place a marble and watch it “roll down” the potential energy function. You can think of placing a marble where  and
releasing it. The marble would then roll down the potential energy function, just as an actual marble would roll down a real slope,
mimicking the motion of the object along the  axis. This is illustrated in Figure  which shows an arbitrary potential energy
function and a marble being placed at a location where the potential energy is equal to .

Figure : Arbitrary potential energy function and illustration of visualizing a marble rolling down the function by placing the
marble on the potential energy function at a point where .

The motion of the marble will be bound between the two points where the potential energy function is equal to . When the marble
is placed as shown, it will roll towards the left, just as if it were a real marble on a track. Since the potential energy is increasing as
a function of  at the point where we placed the marble, the force is in the negative  direction (remember, the force is the negative
of the derivative of the potential energy function). With the given energy, the marble would never be able to make it to point , as
it does not have enough energy to “climb up the hill”. It would roll down, through point , up to point , down to point , and
then turn around where  and return to where it started.

Locations  and  on the diagram are stable equilibria, because if a marble is placed in one of those locations and nudged slightly,
it will come back to the equilibrium point (or oscillate about that point). Points  and  are “unstable equilibria”, because if the
marble is placed there and nudged, it will not immediately come back to those points. Note that if the marble were placed at point 

 and nudged towards the right, the motion of the marble would be unbound on the right, and it would keep going in that direction.

Now, say an object’s potential energy is described by the function in Figure , and the object has total energy . The object’s
motion along the  axis will be exactly the same as the projection of the marble’s motion on the  axis.
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A force, , acts on an object. The potential energy function, , associated with the force is given by 
, where  is a positive constant.  is plotted in Figure . Use the “marble”

method to determine the direction of the force at . Confirm your answer by finding the value of the force , , at 
.

Figure : A potential energy function . The -axis represents the  position and the -axis represents the energy.
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Answer
B.

Footnotes
1. Remember, the kinetic energy is given by . Since neither mass nor the value of  can be negative, the kinetic energy
of an object can never be negative.
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