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13.7: Sample problems and solutions

Ty ( ) is trying out a new piece of equipment at his local playground. The equipment consists of a platform that is
connected to two springs. The top spring ( ) connects the platform to the playground structure and the bottom
spring ( ) (Figure ) connects it to the ground. When no one is standing on the platform the platform is 

 off the ground. When Ty is standing on the platform, he oscillates up and down, and the lowest point that the platform
reaches is  off the ground. Show that this is simple harmonic motion and determine what Ty’s maximum speed will be.

Figure : Playground equipment made of platform connected to two vertical springs.

Answer

First, we need to solve for the new equilibrium position of the platform, , when Ty is standing on the platform. We define
the  axis so that the origin is  above the ground (the equilibrium position when no one is standing on the platform)
and choose the positive direction to be downwards (Figure ).

Figure : The platform when no one is standing on it.

Even though we do not know the mass of the platform, or the actual resting lengths of the spring, we do not need to know
these, since we can model the platform with nobody on it as a single spring with spring constant  and rest
position .

When Ty is standing on the platform, the sum of the forces is given by his weight and the force from the “effective spring”:

where we noted that, when the platform moves down, both the top and bottom spring will exert a force upwards (Figure 
).

At equilibrium, the sum of the forces is equal to zero. We can use this to solve for the displacement at :
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We will confirm that this is a simple harmonic oscillator by showing that the system’s motion can be described by the
equation:

For some position  below equilibrium, we can rewrite Newton’s second law as:

In order to show that this is simple harmonic motion, we need to combine the right hand side of the equation into one term.
We found earlier that , which we can use here:

We now define an  axis such that . This means that the origin of the  axis is at the new equilibrium
position:

Figure : The forces acting on the platform and our new coordinate system.

We can now rewrite our expression using the  axis:

This equation tells us that this is simple harmonic motion about the new equilibrium position, where .
We know that the lowest point that the platform reaches is 35 cm above the ground, which, on our  axis, corresponds to 

 (Figure ). Thus, the amplitude of the oscillation is . Because this is simple harmonic motion,
we know that the position of the platform can be described by the following function:

We set  to be when the platform is at its lowest point ( ). The value of  is thus:

The velocity is given by:
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The speed will be maximized when  . So, the maximum speed will be:

A torsional pendulum consists of a horizontal rod suspended from a vertical wire. When the rod is rotated so that it is displaced
an angle  from equilibrium, the wire (which is now twisted) provides a restoring torque about the axis of the wire given by:

where  is the torsion coefficient, which depends on the stiffness of the wire. You may notice that this formula closely
resembles Hooke’s law.

a. You construct a torsional pendulum by attaching two small spherical masses (you can assume they are point masses, each of
mass ) to the ends of a thin (mass-less) rod of length  and attaching a wire to the center of the rod (Figure ). When
you displace one of the masses by an angle  and release it, you find that it oscillates with a period . Find an expression for
the torsion coefficient, , in term of , , and .

Figure : A torsional pendulum. The right side shows a top view.

b. You place two very large spheres, each of mass , near each of the small spheres (as shown in Figure ). Each of the
small spheres will be acted on by a force of gravity from the nearest large sphere. The pendulum is at equilibrium when it is
deflected an angle  from its original equilibrium position. At the new equilibrium, the displacement vectors connecting the
centers of large and small spheres have a magnitude  and are essentially perpendicular to the rod. Find an expression for the
universal gravitational constant , in terms of the masses, the length of the rod, and the period measured in part a).

Fun fact! This set-up resembles an experiment performed by Henry Cavendish that was first used to determine the value for 
and to test Newton’s Universal Theory of Gravity.
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Figure : Two very large spheres are placed near each of the small masses on the torsional pendulum (top view). At the
new equilibrium, each small mass is a distance d from the nearest large mass.

Answer

The only force that creates a torque on the masses is the restoring force from the twisting of the wire. The rotational
dynamics version of Newton’s Second Law relates this torque to the angular acceleration,  of the rod:

where  is the moment of inertia of the rod. Rewriting  more explicitly as the second time derivative of the angle, we get:

By inspection, we can see that the torsional pendulum is a simple harmonic oscillator, where . The period of the
motion is therefore:

We can rearrange this expression to get :

The moment of inertia for one of the masses is , where  is the distance from the mass to the axis of rotation.
The moment of inertia for the two masses attached to the mass-less rod is:

Putting this into our expression for :

The two forces that provide torques for the small spheres are gravity and the force exerted by the twisting wire. Each of the
small spheres will experience a force due to gravity from the nearest large sphere. At equilibrium, the force due to gravity
on one of the small spheres is therefore:

13.7.5

α

Iα = −κθ

I α

I
θd2

dt2

θd2

dt2

= −κθ

= − θ
κ

I

ω = κ/I
− −−

√

T

T

=
2π

ω

= 2π
I

κ

−−
√

κ

T 2

κ

=
4 Iπ2

κ

=
4 Iπ2

T 2

m(L/2)2 L/2

I = 2m =( )
L

2

2
mL2

2

κ

κ =
2 mπ2 L2

T 2

=Fg

GMm

d2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://phys.libretexts.org/@go/page/19648?pdf


13.7.5 https://phys.libretexts.org/@go/page/19648

Assuming that, at equilibrium, the force vector is perpendicular to the rod, the torque from one of the large spheres is just
the force multiplied by the distance to the axis of rotation. Since there are two large spheres, each of which creates a torque
on the pendulum, the total torque due to gravity is:

(Note that  is the torque due to gravity at equilibrium only). We can use Newton’s second law for the pendulum to find
an expression for . At equilibrium, the net torque is equal to zero, and the angle of deflection is :

Using our expression for  found in part a), this becomes:

This page titled 13.7: Sample problems and solutions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Ryan
D. Martin, Emma Neary, Joshua Rinaldo, and Olivia Woodman via source content that was edited to the style and standards of the LibreTexts
platform.
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