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B13: RC Circuit

Suppose you connect a capacitor across a battery, and wait until the capacitor is charged to the extent that the voltage across the

capacitor is equal to the EMF \*V_0\) of the battery. Further suppose that you remove the capacitor from the battery. You now have
a capacitor with voltage V} and charge g,, where g, = CVj}.

+
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1+

The capacitor is said to be charged. Now suppose that you connect the capacitor in series with an open switch and a resistor as
depicted below.

+ |+
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The capacitor remains charged as long as the switch remains open. Now suppose that, at a clock reading we shall call time zero,
you close the switch.

From time 0 on, the circuit is:

The potential across the resistor is now the same as the potential across the capacitor. This results in current through the resistor:

Positive charge flows from the upper plate of the capacitor, down through the resistor to the lower plate of the capacitor. The
capacitor is said to be discharging. As the charge on the capacitor decreases; according to ¢ = CV, which can be written
V =¢q/C, the voltage across the capacitor decreases. But, as is clear from the diagram, the voltage across the capacitor is the
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voltage across the resistor. What we are saying is that the voltage across the resistor decreases. According to V' = IR, which can
be written as I = V'/ R, this means that the current through the resistor decreases. So, the capacitor continues to discharge at an
ever decreasing rate. Eventually, the charge on the capacitor decreases to a negligible value, essentially zero, and the current dies
down to a negligible value, essentially zero. Of interest is how the various quantities, the voltage across both circuit elements, the
charge on the capacitor, and the current through the resistor depend on the time ¢. Let’s apply the loop rule to the circuit while the
capacitor is discharging:

KVL1+V—-Vg=0

Using ¢ = CV expressedas V = % and Vg = IR, we obtain

q
L _IR=
C R=0

I is the charge flow rate through the resistor, which is equivalent to the rate at which charge is being depleted from the capacitor

(since the charge flowing through the resistor comes from the capacitor). Thus I is the negative of the rate of change of the charge
on the capacitor:

dgq

I=——

dt

d
Substituting this (I = —d—g ) into our loop rule equation (% — IR =0)yields:

q dq_
C+ﬁR_0
dg 1
dat ~  RCY

1
Thus ¢(¢) is a function whose derivative with respect to time is itself, times the constant — RO The function is essentially its own

1
derivative. This brings the exponential function e’ to mind. The way to get that constant (———) to appear when we take the

RC
——t
derivative of g(t) with respect to t is to include it in the exponent. Try q(t) = g, e RC . Now, when you apply the chain rule for
d 1 %4
the function of a function you get d—g = —mq which is just what we wanted. Let’s check the units. R was defined as T

meaning the ohm is a volt per ampere. And C' was defined as % meaning that the farad is a coulomb per volt. So the units of the
product RC are:
V coulombs  coulombs coulombs

RC = — = = =
[RC] AV A coulombs/s 3

1

——t
So the exponent in e RC' s unitless. That works. We can’t raise e to something that has units. Now, about that g, out front in
1

——t
g=gq.e RC . The exponential evaluates to a unitless quantity. So we need to put the qo there to get units of charge. If you plug
1

—t

the value 0 in for the time in ¢ = qoe_ RC' you get ¢ = q,. Thus, g, is the initial value of the charge on the capacitor. One final
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point: The product RC is called the “RC' time constant.” The symbol 7 is often used to represent that time constant. In other

words,
7=RC (B13.1)
where 7 is also referred to as the RC' time constant. In terms of 7, our expression for ¢ becomes:
¢
q= qu'; T
which we copy here for your convenience:
¢
g=goe T
Note that when ¢t = 7, we have
q=goe”"
1
q= ZQo

1

— is .368 so T is the time it takes for q to become 36.8 of its original value.

e

With our expression for g in hand, it is easy to get the expression for the voltage across the capacitor (which is the same as the

1

——t
voltage across the resistor, Vo = Vi ) which we have been calling V. Substituting our expression ¢ = g,e RC'  into the defining
equation for capacitance g = C'V solved for V,

q
V==
C
yields:
1
——t
V = q—ée RC
But if g, is the charge on the capacitor at time 0, then g, = C'V,, where V} is the voltage across the capacitor at time 0 or:
9
2 _vy.
C
1
——t
Substituting V,, for %O inV= qaoe RC' above yields:
t
V=V,e RC (B13.2)
for both the voltage across the capacitor and the voltage across the resistor. From, the defining equation for resistance:
V =IR,
we can write:
1%
I=—
R
i %4
Substituting our expression V,e RC' in for V turns this equation (I = E) into:
t
" RC
1= Yot
R
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v
But, Eo is just Iy (from Vy = Iy R solved for Ij ), the current at the time 0, so:

t
I=Ie RC (B13.3)
Summarizing, we note that all three of the quantities, V, I, and g decrease exponentially with time.

Charging Circuit

Consider the following circuit, containing an initially-uncharged capacitor, and

Es

= C——g=0

annotated to indicate that the switch is closed at time 0 at which point the circuit becomes:

I||+

Let’s think about what will happen as time elapses. With no charge on the capacitor, the voltage across it is zero, meaning the
potential of the right terminal of the resistor is the same as the potential of the lower-potential terminal of the seat of EMF. Since
the left end of the resistor is connected to the higher-potential terminal of the seat of EMF, this means that at time 0, the voltage
across the resistor is equivalent to the EMF ¢ of the seat of EMF. Thus, there will be a rightward current through the resistor.

! R
—=> A
+ i
"

Iy |+

The positive charge flowing through the resistor has to come from someplace. Where does it come from? Answer: The bottom

plate of the capacitor. Also, charge can’t flow through an ideal capacitor. So where does it go? It piles up on the top plate of the
capacitor.
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The capacitor is becoming charged. As it does, the voltage across the capacitor increases, meaning the potential of the right
terminal of the resistor (relative to the potential of the lowerpotential terminal of the seat of EMF) increases. The potential of the
left terminal of the resistor remains constant, as dictated by the seat of EMF. This means that the voltage across the resistor
continually decreases. This, in turn; from Vg = IR, written as I = Vg /R, means that the current continually decreases. This
occurs until there is so much charge on the capacitor that V, = ¢, meaning that Vs =0 so I =0.

Recapping our conceptual discussion:

At time 0, we close the switch:

o The charge on the capacitor starts off at 0 and builds up to ¢ = C'e where € is the EMF voltage.
o The capacitor voltage starts off at 0 and builds up to the EMF voltage .

€
e The current starts off at I, = 7 and decreases to 0.

Okay, we have a qualitative understanding of what happens. Let’s see if we can obtain formulas for V7, I, Vi, and ¢ as functions
of time. Here’s the circuit:

! R
_"+W\,
hAs

Iy |+

+|+
- C—al -1

We apply the loop rule:

and the definitions of resistance and capacitance:

Vr=1IR
q=CV¢
q
Vo==
=T
to obtain:
q
—IR—==0
© c

@ 0 @ B13.5 https://phys.libretexts.org/@go/page/5944


https://libretexts.org/
https://creativecommons.org/licenses/by-sa/2.5/
https://phys.libretexts.org/@go/page/5944?pdf

LibreTextsm

q
IR+ =
+ C €
Then we use the fact that the current is equal to the rate at which charge is building up on the capacitor, I = — , to get
dq q
R —_— =
c=¢
dq q €
it "RC TR

This is interesting. This is the same equation that we had before, except that we have the constant €/ R on the right instead of 0

For this equation, I’'m simply going to provide and discuss the solution, rather than show you how to solve the differential equation
The charge function of time that solves this equation is:

t
g=Ce(1—e RC)

Please substitute it into the differential equation (— RqC =R ) and verify that it leads to an identity.
t

Now let’s check to make sure that g = C'e(1 —e RC') is consistent with our conceptual understanding. At time zero (¢ = 0), our
t

expression ¢(t) = Ce(1 — e_%) evaluates to:

0
q(0) = Ce(l —e RC)
=Ce(1—¢€)
=Ce(1-1)
q(0)=0
Excellent. This is consistent with the fact that the capacitor starts out uncharged
t

Now, what does our charge function g(t) = Ce(1 — e RC ) say about what happens to the charge of the capacitor in the limit as
t goes to infinity?

t
im q(t) = lim Ce(1—¢ RC
fim a0 =[ig Oell—e RC)

=Celim (1—-e")

T—00

=Celim (1-—)

T—00 et

=Celim (1--)

Yy—0o0 y

=Ce(1— lim l)

y=o Y
=Ce(1-0)
A ) =Ce
Well, this makes sense. Our conceptual understanding was that the capacitor would keep charging until the voltage across the

capacitor was equal to the voltage across the seat of EMF. From the definition of capacitance, when the capacitor voltage is ¢, its
charge is indeed Ce. The formula yields the expected result for limy ., g(t)
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Once we have g(t) it is pretty easy to get the other circuit quantities. For instance, from the definition of capacitance:

q=CV,
t
we have V, = q/C which, with 1 = Ce(1 —e RC') evaluates to:
t
V.=¢e(l—e RC) (B13.4)
Our original loop equation read:
[ VR — Vc =0
So:
VR =& — Vc
_t
which, with V, =¢(1 —e RC') can be written as:
t
Vg=e—¢e(l—e RC)
t
Veg=e—e+ee RC
t
Vg =ce RC
From our definition of resistance:
Vr=1IR
Vr
I=—
R
t
with Vg =ee RC' | this can be expressed as:
t
e ——
I=— RC
Re
At time 0, this evaluates to ¢/ R meaning that ¢/ R can be interpreted as the current at time 0 allowing us to write our function I (¢)
as
t
I=1Ie RC

Our formula has the current starting out at its maximum value and decreasing exponentially with time, as anticipated based on our

conceptual understanding of the circuit. Note that this is the same formula that we got for the current in the discharging-capacitor
t

circuit. In both cases, the current dies off exponentially. The reasons differ, but the effect (I = Ioe_ RC') is the same:
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In the discharging-capacitor circuit, the current

dies off because the capacitor runs out of
charge.

In the charging-capacitor circuit, the current
dies off because the capacitor voltage, which
counteracts the EMF, builds up to & as the
capacitor charges.

This page titled B13: RC Circuit is shared under a CC BY-SA 2.5 license and was authored, remixed, and/or curated by Jeffrey W. Schnick via
source content that was edited to the style and standards of the LibreTexts platform.
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