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B13: RC Circuit
Suppose you connect a capacitor across a battery, and wait until the capacitor is charged to the extent that the voltage across the
capacitor is equal to the EMF \*V_0\) of the battery. Further suppose that you remove the capacitor from the battery. You now have
a capacitor with voltage  and charge , where .

The capacitor is said to be charged. Now suppose that you connect the capacitor in series with an open switch and a resistor as
depicted below.

The capacitor remains charged as long as the switch remains open. Now suppose that, at a clock reading we shall call time zero,
you close the switch.

From time  on, the circuit is:

The potential across the resistor is now the same as the potential across the capacitor. This results in current through the resistor:

Positive charge flows from the upper plate of the capacitor, down through the resistor to the lower plate of the capacitor. The
capacitor is said to be discharging. As the charge on the capacitor decreases; according to , which can be written 

, the voltage across the capacitor decreases. But, as is clear from the diagram, the voltage across the capacitor is the
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voltage across the resistor. What we are saying is that the voltage across the resistor decreases. According to , which can
be written as , this means that the current through the resistor decreases. So, the capacitor continues to discharge at an
ever decreasing rate. Eventually, the charge on the capacitor decreases to a negligible value, essentially zero, and the current dies
down to a negligible value, essentially zero. Of interest is how the various quantities, the voltage across both circuit elements, the
charge on the capacitor, and the current through the resistor depend on the time . Let’s apply the loop rule to the circuit while the
capacitor is discharging:

Using  expressed as  and , we obtain

 is the charge flow rate through the resistor, which is equivalent to the rate at which charge is being depleted from the capacitor
(since the charge flowing through the resistor comes from the capacitor). Thus  is the negative of the rate of change of the charge
on the capacitor:

Substituting this (  ) into our loop rule equation ( ) yields:

Thus  is a function whose derivative with respect to time is itself, times the constant . The function is essentially its own

derivative. This brings the exponential function  to mind. The way to get that constant ( ) to appear when we take the

derivative of  with respect to t is to include it in the exponent. Try . Now, when you apply the chain rule for

the function of a function you get  which is just what we wanted. Let’s check the units.  was defined as 

meaning the ohm is a volt per ampere. And  was defined as  meaning that the farad is a coulomb per volt. So the units of the

product  are:

So the exponent in  is unitless. That works. We can’t raise  to something that has units. Now, about that  out front in 

. The exponential evaluates to a unitless quantity. So we need to put the qo there to get units of charge. If you plug

the value  in for the time in  you get . Thus,  is the initial value of the charge on the capacitor. One final
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point: The product  is called the “  time constant.” The symbol  is often used to represent that time constant. In other
words,

where  is also referred to as the  time constant. In terms of , our expression for  becomes:

which we copy here for your convenience:

Note that when , we have

 is  so  is the time it takes for  to become  of its original value.

With our expression for  in hand, it is easy to get the expression for the voltage across the capacitor (which is the same as the

voltage across the resistor,  ) which we have been calling . Substituting our expression  into the defining
equation for capacitance  solved for ,

yields:

But if  is the charge on the capacitor at time , then  where  is the voltage across the capacitor at time  or:

Substituting  for  in  above yields:

for both the voltage across the capacitor and the voltage across the resistor. From, the defining equation for resistance:

we can write:

Substituting our expression  in for  turns this equation  into:
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But,  is just  (from  solved for  ), the current at the time , so:

Summarizing, we note that all three of the quantities, , , and  decrease exponentially with time.

Charging Circuit
Consider the following circuit, containing an initially-uncharged capacitor, and

annotated to indicate that the switch is closed at time  at which point the circuit becomes:

Let’s think about what will happen as time elapses. With no charge on the capacitor, the voltage across it is zero, meaning the
potential of the right terminal of the resistor is the same as the potential of the lower-potential terminal of the seat of EMF. Since
the left end of the resistor is connected to the higher-potential terminal of the seat of EMF, this means that at time , the voltage
across the resistor is equivalent to the EMF  of the seat of EMF. Thus, there will be a rightward current through the resistor.

The positive charge flowing through the resistor has to come from someplace. Where does it come from? Answer: The bottom
plate of the capacitor. Also, charge can’t flow through an ideal capacitor. So where does it go? It piles up on the top plate of the
capacitor.
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The capacitor is becoming charged. As it does, the voltage across the capacitor increases, meaning the potential of the right
terminal of the resistor (relative to the potential of the lowerpotential terminal of the seat of EMF) increases. The potential of the
left terminal of the resistor remains constant, as dictated by the seat of EMF. This means that the voltage across the resistor
continually decreases. This, in turn; from , written as , means that the current continually decreases. This
occurs until there is so much charge on the capacitor that , meaning that  so .

Recapping our conceptual discussion:

At time 0, we close the switch:

The charge on the capacitor starts off at 0 and builds up to  where  is the EMF voltage.
The capacitor voltage starts off at  and builds up to the EMF voltage .

The current starts off at  and decreases to .

Okay, we have a qualitative understanding of what happens. Let’s see if we can obtain formulas for , , , and  as functions
of time. Here’s the circuit:

We apply the loop rule:

and the definitions of resistance and capacitance:

to obtain:
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Then we use the fact that the current is equal to the rate at which charge is building up on the capacitor, , to get:

This is interesting. This is the same equation that we had before, except that we have the constant  on the right instead of .

For this equation, I’m simply going to provide and discuss the solution, rather than show you how to solve the differential equation.
The charge function of time that solves this equation is:

Please substitute it into the differential equation ( ) and verify that it leads to an identity.

Now let’s check to make sure that  is consistent with our conceptual understanding. At time zero , our

expression  evaluates to:

Excellent. This is consistent with the fact that the capacitor starts out uncharged.

Now, what does our charge function  say about what happens to the charge of the capacitor in the limit as 
 goes to infinity?

Well, this makes sense. Our conceptual understanding was that the capacitor would keep charging until the voltage across the
capacitor was equal to the voltage across the seat of EMF. From the definition of capacitance, when the capacitor voltage is , its
charge is indeed . The formula yields the expected result for .
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Once we have  it is pretty easy to get the other circuit quantities. For instance, from the definition of capacitance:

we have  which, with  evaluates to:

Our original loop equation read:

So:

which, with  can be written as:

From our definition of resistance:

with , this can be expressed as:

At time , this evaluates to  meaning that  can be interpreted as the current at time  allowing us to write our function 
as

Our formula has the current starting out at its maximum value and decreasing exponentially with time, as anticipated based on our
conceptual understanding of the circuit. Note that this is the same formula that we got for the current in the discharging-capacitor

circuit. In both cases, the current dies off exponentially. The reasons differ, but the effect ( ) is the same:
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