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B5: Work Done by the Electric Field and the Electric Potential

When a charged particle moves from one position in an electric field to another position in that same electric field, the electric field
does work on the particle. The work done is conservative; hence, we can define a potential energy for the case of the force exerted
by an electric field. This allows us to use the concepts of work, energy, and the conservation of energy, in the analysis of physical
processes involving charged particles and electric fields.

We have defined the work done on a particle by a force, to be the force-along-the-path times the length of the path, with the
stipulation that when the component of the force along the path is different on different segments of the path, one has to divide up
the path into segments on each of which the force-along-the-path has one value for the whole segment, calculate the work done on
each segment, and add up the results.

Let’s investigate the work done by the electric field on a charged particle as it moves in the electric field in the rather simple case of
a uniform electric field. For instance, let’s calculate the work done on a positively-charged particle of charge q as it moves from
point P to point Ps
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along the path: “From P, straight to point P, and from there, straight to P;.” Note that we are not told what it is that makes the
particle move. We don’t care about that in this problem. Perhaps the charged particle is on the end of a quartz rod (quartz is a good
insulator) and a person who is holding the rod by the other end moves the rod so the charged particle moves as specified.

Along the first part of the path, from P; to P, the force on the charged particle is perpendicular to the path.
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The force has no component along the path so it does no work on the charged particle at all as the charged particle moves from
point P to point Ps.

Wia=0
From P, the particle goes straight to Ps.

On that segment of the path (from P, to P3 ) the force is in exactly the same direction as the direction in which the particle is
going.
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As such, the work is just the magnitude of the force times the length of the path segment:
Was =Fb

The magnitude of the force is the charge of the particle times the magnitude of the electric field F' = qF, so,
Was = qEb

Thus, the work done on the charged particle by the electric field, as the particle moves from point P; to Ps along the specified path
is

Wiz = Wig +Was
W123 = 0 + qu
Wia3 = qEb

Now let’s calculate the work done on the charged particle if it undergoes the same displacement (from P; to P3 ) but does so by
moving along the direct path, straight from P} to Ps.
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The force on a positively-charged particle being in the same direction as the electric field, the force vector makes an angle 6 with
the path direction and the expression

L o=
W=F-Ar
for the work becomes
W13 = Fccost

W13 = qEccost

Analyzing the shaded triangle in the following diagram:
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we find that cosf = % . Substituting this into our expression for the work ( W13 = gFEc cos@ ) yields
b
Wig = qECZ

W13 = qu

This is the same result we got for the work done on the charged particle by the electric field as the particle moved between the
same two points (from P; to P ) along the other path (P; to P to Ps ). As it turns out, the work done is the same no matter what
path the particle takes on its way from P, to Ps. I don’t want to take the time to prove that here but I would like to investigate one
more path (not so much to get the result, but rather, to review an important point about how to calculate work). Referring to the
diagram:
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Let’s calculate the work done on a particle with charge g, by the electric field, as the particle moves from P; to Ps along the path
“from P straight to Py, from Py straight to Ps, and from P; straight to P5.” On P; to Py, the force is in the exact same direction
as the direction in which the particle moves along the path, so,

Wi = F(b+d)
Wiy = qE(b+d)

From point Py to Ps, the force exerted on the charged particle by the electric field is at right angles to the path, so, the force does
no work on the charged particle on segment Py to Ps.

Wy =0
On the segment from P; to Ps,
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the force is in the exact opposite direction to the direction in which the particle moves. This means that the work done by the force
of the electric field on the charged particle as the particle moves form P; to Pj is the negative of the magnitude of the force times
the length of the path segment. Thus

Ws3 =—Fd
Ws3 = —qEd
and
Wigss = Wia + Wy + Wi
Wisss = qE(b+d)+0+ (—qEd)
Wisss = qEb
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As advertised, we obtain the same result for the work done on the particle as it moves from P; to P3 along “P; to P, to P5 to Ps”
as we did on the other two paths.

Whenever the work done on a particle by a force acting on that particle, when that particle moves from point P; to point P, is the
same no matter what path the particle takes on the way from P; to P5, we can define a potential energy function for the force. The
potential energy function is an assignment of a value of potential energy to every point in space. Such an assignment allows us to
calculate the work done on the particle by the force when the particle moves from point P; to point P simply by subtracting the
value of the potential energy of the particle at P, from the value of the potential energy of the particle at P5 and taking the negative
of the result. In other words, the work done on the particle by the force of the electric field when the particle goes from one point to
another is just the negative of the change in the potential energy of the particle.

In determining the potential energy function for the case of a particle of charge ¢ in a uniform electric field E’, (an infinite set of
vectors, each pointing in one and the same direction and each having one and the same magnitude E ) we rely heavily on your
understanding of the nearearth’s-surface gravitational potential energy. Near the surface of the earth, we said back in volume 1 of
this book, there is a uniform gravitational field, (a force-per-mass vector field) in the downward direction. A particle of mass m in
that field has a force “mg downward” exerted upon it at any location in the vicinity of the surface of the earth. For that case, the
potential energy of a particle of mass m is given by mgy where mg is the magnitude of the downward force and y is the height
that the particle is above an arbitrarily-chosen reference level. For ease of comparison with the case of the electric field, we now
describe the reference level for gravitational potential energy as a plane, perpendicular to the gravitational field g, the force-per
mass vector field; and; we call the variable y the “upfield” distance (the distance in the direction opposite that of the gravitational
field) that the particle is from the reference plane. (So, we’re calling the direction in which the gravitational field points, the
direction you know to be downward, the “downfield” direction.)

Now let’s switch over to the case of the uniform electric field. As in the case of the near-earth’s surface gravitational field, the force
exerted on its victim by a uniform electric field has one and the same magnitude and direction at any point in space. Of course, in
the electric field case, the force is gF rather than mg and the characteristic of the victim that matters is the charge g rather than the
mass m. We call the direction in which the electric field points, the “downfield” direction, and the opposite direction, the “upfield”
direction. Now we arbitrarily define a plane that is perpendicular to the electric field to be the reference plane for the electric
potential energy of a particle of charge g in the electric field. If we call d the distance that the charged particle is away from the
plane in the upfield direction, then the potential energy of the particle with charge ¢ is given by

U =qEd
where
U is the electric potential energy of the charged particle,
q is the charge of the particle,
E is the magnitude of every electric field vector making up the uniform electric field, and
d is the “upfield” distance that the particle is from the U = 0 reference plane.

Let’s make sure this expression for the potential energy function gives the result we obtained previously for the work done on a
particle with charge ¢, by the uniform electric field depicted in the following diagram, when the particle moves from P; to P
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As you can see, I have chosen (for my own convenience) to define the reference plane to be at the most downfield position relevant
to the problem. With that choice, the particle of charge ¢, when it is at P; has potential energy ¢ Eb (since point P; is a distance b
“upfield” from the reference plane) and, when it is at Ps, the particle of charge ¢ has potential energy 0 since P; is on the reference
plane.

Wis =—-AU
Wiz =—(Us —Uh)
Wiz = —(0—qEb)

W13 =qFEb

This is indeed the result we got (for the work done by the electric field on the particle with charge g as that particle was moved
from P, to Ps) the other three ways that we calculated this work.

This page titled B5: Work Done by the Electric Field and the Electric Potential is shared under a CC BY-SA 2.5 license and was authored,
remixed, and/or curated by Jeffrey W. Schnick via source content that was edited to the style and standards of the LibreTexts platform.
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