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B31: The Electric Potential due to a Continuous Charge Distribution
We have defined electric potential as electric potential-energy-per-charge. Potential energy was defined as the capacity, of an object
to do work, possessed by the object because of its position in space. Potential energy is one way of characterizing the effect, or the
potential effect, of a force. In the case of electric potential energy, the force in question is the electrostatic force (a.k.a. the Coulomb
force)—you know: the repulsive force that two like charges exert on each other, and, the attractive force that two unlike charges
exert on each other. The electric potential energy of a charged particle depends on a characteristic of itself, and a characteristic of
the point in space at which it finds itself. The characteristic of itself is its charge, and, the characteristic of the point in space is what
this chapter is about, the electric potential-energy-per-charge, better known as the electric potential. If we can establish the electric
potential-energy-per-charge for each point in space in the vicinity of some source charge, it is easy to determine what the potential
energy of a victim charge would be at any such point in space. To do so, we just have to multiply the charge of the victim by the
electric potential-energy-per-charge (the electric potential) applicable to the point in space at which the victim is located.

In the next chapter, we exploit the fact that if you know the electric potential throughout a region in space, you can use that
knowledge to determine the electric field in that region of space.

Our purpose of this chapter, is to help you develop your ability to determine the electric potential, as a function of position, in the
vicinity of a charge distribution—in particular, in the vicinity of a continuous charge distribution. (Recall that you can think of a
continuous charge distribution as some charge that is smeared out over space, whereas a discrete charge distribution is a set of
charged particles, with some space between nearest neighbors.)

It’s important for you to be able to contrast the electric potential with the electric field. The electric potential is a scalar whereas the
electric field is a vector. The electric potential is potential energy-per-charge of the would be victim whereas the electric field is a
force-percharge of the would be victim. Hey, that makes this chapter easy compared to the one in which we worked on calculating
the electric field due to a continuous charge distribution. It is, in general, easier to calculate a scalar than it is to calculate a vector.

Let’s kick things off by doing a review problem involving a discrete distribution of charge. Please solve the following example
problem and then check your work against my solution which follows the problem statement.
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Solution We define a point  to be at some unspecified position .

We call the distance from the positive charge to point , , and, we call the distance from the
negative charge to point , . The electric potential due to a single point charge is given by .
Also, the contributions to the electric potential at one point in space due to more than one point
charge simply add like numbers. So, we have:

But, from the diagram:

Find the electric potential on the -  plane, due to a pair of charges, one of charge  at  and the other
of charge  at .
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we can determine that: and from the diagram:

we can see that: \[r_{-}=\sqrt{x^2+(y+\frac{d}{2})^2 \nonumber \]

Plugging both of these results into our expression  yields:

That’s enough review. Please keep that  formula in mind as we move on to the new stuff. Also
keep in mind the fact that the various contributions to the electric potential at an empty point in space
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simply add (like numbers/scalars rather than like vectors).

The “new stuff” is the electric potential due to a continuous distribution of charge along a line
segment. What we are dealing with is some line segment of charge. It can be anywhere, in any
orientation, but for concreteness, let’s consider a line segment of charge on the  axis, say from
some  to  where . Furthermore, let’s assume the linear charge density (the
chargeper- length) on the line segment to be some function . The idea is to treat the charge
distribution as an infinite set of point charges where each point charge may have a different charge
value dq depending on where (at what value of ) it is along the line segment.

A particular infinitesimal segment of the line of charge, a length  of the line segment, will make a
contribution

to the electric field at point .

The amount of charge, dq, in the infinitesimal segment dx′ of the line of charge is just the chargeper-
length  (the linear charge density) times the length  of the segment. That is to say that 

. Substituting this into  yields:

Applying the Pythagorean theorem to the triangle in the diagram:

x
x = a x = b a < b

λ(x')

x'

dx'

dϕ =
kdq

r

P

λ(x') dx'

dq = λ( )dx′ x′ dϕ =
kdq

r

dϕ =
kλ( )dx′ x′

r

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/2.5/
https://phys.libretexts.org/@go/page/7921?pdf


B31.5 https://phys.libretexts.org/@go/page/7921

This page titled B31: The Electric Potential due to a Continuous Charge Distribution is shared under a CC BY-SA 2.5 license and was authored,
remixed, and/or curated by Jeffrey W. Schnick via source content that was edited to the style and standards of the LibreTexts platform.

tells us that  can be written as . Substituting this into our expression for 
yields:

\[d\phi=\frac{k\lambda(x')dx'}{\sqrt{(x-x')^2+y^2}}] Integrating both sides yields:

\[\int d\phi=\int_a^b \frac{k\lambda(x')dx'}{\sqrt{(x-x')^2+y^2}}]

\[\phi=k\int_a^b \frac{\lambda(x')dx'}{\sqrt{(x-x')^2+y^2}}]

This is the electric potential at point  due to the charged line segment on the  axis. Each bit of
charge on the line segment is specified by its position variable . Thus, in summing the contributions
to the electric potential due to each bit of charge,  is our variable of integration. While its position
coordinates have not been specified, but rather, they have been designated  and , point  is a
fixed point in space. Hence, in summing up all the contributions to the electric potential at point ; 
and  are to be considered constants. After the integral is done, however, because we never
specified values for  and , the resulting expression for  can be considered to be a function of 
and .
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