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22A: Center of Mass, Moment of Inertia

A mistake that crops up in the calculation of moments of inertia, involves the Parallel Axis
Theorem. The mistake is to interchange the moment of inertia of the axis through the
center of mass, with the one parallel to that, when applying the Parallel Axis Theorem.
Recognizing that the subscript “CM” in the parallel axis theorem stands for “center of
mass” will help one avoid this mistake. Also, a check on the answer, to make sure that the
value of the moment of inertia with respect to the axis through the center of mass is
smaller than the other moment of inertia, will catch the mistake.

Center of Mass
Consider two particles, having one and the same mass m, each of which is at a different position on the x axis of a Cartesian
coordinate system.

Common sense tells you that the average position of the material making up the two particles is midway between the two particles.
Common sense is right. We give the name “center of mass” to the average position of the material making up a distribution, and the
center of mass of a pair of same-mass particles is indeed midway between the two particles.

How about if one of the particles is more massive than the other? One would expect the center of mass to be closer to the more
massive particle, and again, one would be right. To determine the position of the center of mass of the distribution of matter in such
a case, we compute a weighted sum of the positions of the particles in the distribution, where the weighting factor for a given
particle is that fraction, of the total mass, that the particle’s own mass is. Thus, for two particles on the  axis, one of mass , at 

, and the other of mass , at ,

the position  of the center of mass is given by

Note that each weighting factor is a proper fraction and that the sum of the weighting factors is always 1. Also note that if, for
instance,  is greater than , then the position  of particle 1 will count more in the sum, thus ensuring that the center of mass
is found to be closer to the more massive particle (as we know it must be). Further note that if , each weighting factor is 

, as is evident when we substitute m for both  and  in Equation :

The center of mass is found to be midway between the two particles, right where common sense tells us it has to be.

x m1

x1 m2 x2

x̄

= +x̄
m1

+m1 m2
x1

m2

+m1 m2
x2 (22A.5)

m1 m2 x1

=m1 m2
1
2

m1 m2 22A.5

= +x̄
m

m+m
x1

m

m+m
x2

= +x̄
1

2
x1

1

2
x2

=x̄
+x1 x2

2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/2.5/
https://phys.libretexts.org/@go/page/3390?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Calculus-Based_Physics_(Schnick)/Volume_A%3A_Kinetics_Statics_and_Thermodynamics/22A%3A_Center_of_Mass_Moment_of_Inertia


22A.2 https://phys.libretexts.org/@go/page/3390

The Center of Mass of a Thin Rod
Quite often, when the finding of the position of the center of mass of a distribution of particles is called for, the distribution of
particles is the set of particles making up a rigid body. The easiest rigid body for which to calculate the center of mass is the thin
rod because it extends in only one dimension. (Here, we discuss an ideal thin rod. A physical thin rod must have some nonzero
diameter. The ideal thin rod, however, is a good approximation to the physical thin rod as long as the diameter of the rod is small
compared to its length.)

In the simplest case, the calculation of the position of the center of mass is trivial. The simplest case involves a uniform thin rod. A
uniform thin rod is one for which the linear mass density , the mass-per-length of the rod, has one and the same value at all points
on the rod. The center of mass of a uniform rod is at the center of the rod. So, for instance, the center of mass of a uniform rod that
extends along the x axis from  to  is at (L/2, 0).

The linear mass density , typically called linear density when the context is clear, is a measure of how closely packed the
elementary particles making up the rod are. Where the linear density is high, the particles are close together.

To picture what is meant by a non-uniform rod, a rod whose linear density is a function of position, imagine a thin rod made of an
alloy consisting of lead and aluminum. Further imagine that the percentage of lead in the rod varies smoothly from 0% at one end
of the rod to 100% at the other. The linear density of such a rod would be a function of the position along the length of the rod. A
one-millimeter segment of the rod at one position would have a different mass than that of a one-millimeter segment of the rod at a
different position.

People with some exposure to calculus have an easier time understanding what linear density is than calculus-deprived individuals
do because linear density is just the ratio of the amount of mass in a rod segment to the length of the segment, in the limit as the
length of the segment goes to zero. Consider a rod that extends from  to  along the  axis. Now suppose that  is the mass
of that segment of the rod extending from  to  where  but . Then, the linear density of the rod at any point x along
the rod, is just  evaluated at the value of  in question.

Now that you have a good idea of what we mean by linear mass density, we are going to illustrate how one determines the position
of the center of mass of a non-uniform thin rod by means of an example.
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Solution
In order to be able to determine the position of the center of mass of a rod with a given length and a
given linear density as a function of position, you first need to be able to find the mass of such a rod.
To do that, one might be tempted to use a method that works only for the special case of a uniform
rod, namely, to try using  with  being the length of the rod. The problem with this is, that 
varies along the entire length of the rod. What value would one use for ? One might be tempted to
evaluate the given  at  and use that, but that would be acting as if the linear density were
constant at . It is not. In fact, in the case at hand,  is the maximum linear density of the
rod, it only has that value at one point on the rod.

What we can do is to say that the infinitesimal amount of mass  in a segment  of the rod is .
Here we are saying that at some position  on the rod, the amount of mass in the infinitesimal length 

 of the rod is the value of  at that  value, times the infinitesimal length . Here we don’t have to
worry about the fact that  changes with position since the segment  is infinitesimally long,
meaning, essentially, that it has zero length, so the whole segment is essentially at one position  and
hence the value of  at that  is good for the whole segment .

Now this is true for any value of , but it just covers an infinitesimal segment of the rod at . To get
the mass of the whole rod, we need to add up all such contributions to the mass. Of course, since
each  corresponds to an infinitesimal length of the rod, we will have an infinite number of terms in
the sum of all the ’s. An infinite sum of infinitesimal terms, is an integral.

where the values of  have to run from  to  to cover the length of the rod, hence the limits on the
right. Now the mathematicians have provided us with a rich set of algorithms for evaluating integrals,
and indeed we will have to reach into that toolbox to evaluate the integral on the right, but to evaluate
the integral on the left, we cannot, should not, and will not turn to such an algorithm. Instead, we use
common sense and our conceptual understanding of what the integral on the left means. In the
context of the problem at hand,  means “the sum of all the infinitesimal bits of mass making up
the rod.” Now, if you add up all the infinitesimal bits of mass making up the rod, you get the mass of
the rod. So  is just the mass of the rod, which we will call . Equation  then becomes

Replacing  with the given expression for the linear density  which I choose to write

as  with  being defined by  we obtain

Factoring out the constant yields

When integrating the variable of integration raised to a power all we have to do is increase the power
by one and divide by the new power. This gives

Evaluating this at the lower and upper limits yields

Find the position of the center of mass of a thin rod that extends from  to m along the  axis of a Cartesian
coordinate system and has a linear density given by .
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The value of  is given as  and we defined  to be the constant  in the given

expression for , , so

That’s a value that will come in handy when we calculate the position of the center of mass. Now,
when we calculated the center of mass of a set of discrete particles (where a discrete particle is one
that is by itself, as opposed, for instance, to being part of a rigid body) we just carried out a weighted
sum in which each term was the position of a particle times its weighting factor and the weighting
factor was that fraction, of the total mass, represented by the mass of the particle. We carry out a
similar procedure for a continuous distribution of mass such as that which makes up the rod in
question. Let’s start by writing one single term of the sum. We’ll consider an infinitesimal length  of
the rod at a position  along the length of the rod. The position, as just stated, is , and the weighting
factor is that fraction of the total mass  of the rod that the mass  of the infinitesimal length 
represents. That means the weighting factor is , so, a term in our weighted sum of positions looks
like:

Now,  can be expressed as  so our expression for the term in the weighted sum can be written
as

That’s one term in the weighted sum of positions, the sum that yields the position of the center of
mass. The thing is, because the value of  is unspecified, that one term is good for any infinitesimal
segment of the bar. Every term in the sum looks just like that one. So we have an expression for
every term in the sum. Of course, because the expression is for an infinitesimal length  of the rod,
there will be an infinite number of terms in the sum. So, again we have an infinite sum of infinitesimal
terms. That is, again we have an integral. Our expression for the position of the center of mass is:

Substituting the given expression  for , which we again write as  with 

being defined by , yields

Rearranging and factoring the constants out gives

Next we carry out the integration

Now we substitute values with units; the mass m of the rod that we found earlier, the constant  that
we defined to simplify the appearance of the linear density function, and the given length  of the rod:
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Moment of Inertia—a.k.a. Rotational Inertia
You already know that the moment of inertia of a rigid object, with respect to a specified axis of rotation, depends on the mass of
that object, and how that mass is distributed relative to the axis of rotation. In fact, you know that if the mass is packed in close to
the axis of rotation, the object will have a smaller moment of inertia than it would if the same mass was more spread out relative to
the axis of rotation. Let’s quantify these ideas. (Quantify, in this context, means to put into equation form.)

We start by constructing, in our minds, an idealized object for which the mass is all concentrated at a single location which is not
on the axis of rotation: Imagine a massless disk rotating with angular velocity w about an axis through the center of the disk and
perpendicular to its faces. Let there be a particle of mass m embedded in the disk at a distance  from the axis of rotation. Here’s
what it looks like from a viewpoint on the axis of rotation, some distance away from the disk:

where the axis of rotation is marked with an . Because the disk is massless, we call the moment of inertia of the construction, the
moment of inertia of a particle, with respect to rotation about an axis from which the particle is a distance .

Knowing that the velocity of the particle can be expressed as  you can show yourself how  must be defined in order for the
kinetic energy expression  for the object, viewed as a spinning rigid body, to be the same as the kinetic energy
expression  for the particle moving through space in a circle. Either point of view is valid so both viewpoints must
yield the same kinetic energy. Please go ahead and derive what  must be and then come back and read the derivation below.

Here is the derivation:

Given that , we replace  with .

This gives 

which can be written as

For this to be equivalent to

we must have

This is our final answer for the position of the center of mass. Note that it is closer to the denser end
of the rod, as we would expect. The reader may also be interested to note that had we substituted the
expression  that we derived for the mass, rather than the value we obtained when we
evaluated that expression, our expression for  would have simplified to  which evaluates to 

, the same result as the one above.
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This is our result for the moment of inertia of a particle of mass , with respect to an axis of rotation from which the particle is a
distance .

Now suppose we have two particles embedded in our massless disk, one of mass  at a distance  from the axis of rotation and
another of mass  at a distance  from the axis of rotation.

The moment of inertia of the first one by itself would be

and the moment of inertia of the second particle by itself would be

The total moment of inertia of the two particles embedded in the massless disk is simply the sum of the two individual moments of
inertial.

This concept can be extended to include any number of particles. For each additional particle, one simply includes another 
term in the sum where  is the mass of the additional particle and  is the distance that the additional particle is from the axis of
rotation. In the case of a rigid object, we subdivide the object up into an infinite set of infinitesimal mass elements . Each mass
element contributes an amount of moment of inertia

to the moment of inertia of the object, where  is the distance that the particular mass element is from the axis of rotation.

m

r

m1 r1

m2 r2

=I1 m1r
2
1

=I2 m2r2
2

I = +I1 I2

I = +m1r2
1 m2r2

2

mir2
i

mi ri
dm

dI=r^2dm \label{22-6}

r

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/2.5/
https://phys.libretexts.org/@go/page/3390?pdf


22A.7 https://phys.libretexts.org/@go/page/3390

Solution

In Example , the linear density of the rod was given as . To reduce the number
of times we have to write the value in that expression, we will write it as  with  being defined
as .

The total moment of inertia of the rod is the infinite sum of the infinitesimal contributions
from each and every mass element dm making up the rod.

 

In the diagram, we have indicated an infinitesimal element  of the rod at an arbitrary position on the
rod. The z axis, the axis of rotation, looks like a dot in the diagram and the distance  in ,
the distance that the bit of mass under consideration is from the axis of rotation, is simply the
abscissa x of the position of the mass element. Hence, equation  for the case at hand can be
written as

which we copy here

By definition of the linear mass density , the infinitesimal mass  can be expressed as .
Substituting this into our expression for  yields

Now  was given as  (with  actually being the symbol that I chose to use to represent the given
constant ). Substituting  in for  in our expression for  yields

This expression for the contribution of an element  of the rod to the total moment of inertia of the
rod is good for every element  of the rod. The infinite sum of all such infinitesimal contributions is
thus the integral

Again, as with our last integration, on the left, we have not bothered with limits of integration— the
infinite sum of all the infinitesimal contributions to the moment of inertia is simply the total moment of
inertia.

On the right we use the limits of integration  to  to include every element of the rod which extends
from  to , with L given as . Factoring out the constant  gives us

Find the moment of inertia of the rod in Example  with respect to rotation about the z axis.22A.5
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The Parallel Axis Theorem
We state, without proof , the parallel axis theorem:

in which:

 is the moment of inertia of an object with respect to an axis from which the center of mass of the object is a distance .
 is the moment of inertia of the object with respect to an axis that is parallel to the first axis and passes through the center of

mass.
 is the mass of the object

 is the distance between the two axes.

The parallel axis theorem relates the moment of inertia  of an object, with respect to an axis through the center of mass of the
object, to the moment of inertia I of the same object, with respect to an axis that is parallel to the axis through the center of mass
and is at a distance d from the axis through the center of mass.

A conceptual statement made by the parallel axis theorem is one that you probably could have arrived at by means of common
sense, namely that the moment of inertia of an object with respect to an axis through the center of mass is smaller than the moment
of inertia about any axis parallel to that one. As you know, the closer the mass is “packed” to the axis of rotation, the smaller the
moment of inertia; and; for a given object, per definition of the center of mass, the mass is packed most closely to the axis of
rotation when the axis of rotation passes through the center of mass.

This page titled 22A: Center of Mass, Moment of Inertia is shared under a CC BY-SA 2.5 license and was authored, remixed, and/or curated by
Jeffrey W. Schnick via source content that was edited to the style and standards of the LibreTexts platform.

Now we carry out the integration:

Substituting the given values of  and  yields:

I = b L dx∫
0

x4
I = b

x5

5
∣
∣
L

0
I = b( − )

L5

5

05

5
I = b

L5

5

b L

I = 0.650
kg

m3

(0.890m)5

5

I = 0.0726kg ⋅ m2

I = +mIcm d2 (22A.7)

I d

Icm

m

d

ICM

Solution

Recall that the rod in question extends along the  axis from  to  with  and
that the rod has a linear density given by  with .

The axis in question can be chosen to be one that is parallel to the z axis, the axis about which, in
solving example , we found the moment of inertia to be . In solving example 

 we found the mass of the rod to be  and the center of mass of the rod to be at a
distance  away from the z axis. Here we present the solution to the problem:

Find the moment of inertia of the rod from examples  and , with respect to an axis that is
perpendicular to the rod and passes through the center of mass of the rod.
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