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33A: Fluids: Pressure, Density, Archimedes' Principle

One mistake you see in solutions to submerged-object static fluid problems, is the
inclusion, in the free body diagram for the problem, in addition to the buoyant force, of a
pressure-times-area force typically expressed as . This is double counting.
Folks that include such a force, in addition to the buoyant force, don’t realize that the
buoyant force is the net sum of all the pressure-times-area forces exerted, on the
submerged object by the fluid in which it is submerged.

Gases and liquids are fluids. Unlike solids, they flow. A fluid is a liquid or a gas.

Pressure
A fluid exerts pressure on the surface of any substance with which the fluid is in contact. Pressure is force-per-area. In the case of a
fluid in contact with a flat surface over which the pressure of the fluid is constant, the magnitude of the force on that surface is the
pressure times the area of the surface. Pressure has units of .

Never say that pressure is the amount of force exerted on a certain amount of area. Pressure is not an amount of force. Even in the
special case in which the pressure over the “certain amount of area” is constant, the pressure is not the amount of force. In such a
case, the pressure is what you have to multiply the area by to determine the amount of force.

The fact that the pressure in a fluid is  in no way implies that there is a force of 5N acting on a square meter of surface (any
more than the fact that the speedometer in your car reads 35 mph implies that you are traveling 35 miles or that you have been
traveling for an hour). In fact, if you say that the pressure at a particular point underwater in a swimming pool is 
(fifteen thousand newtons per square meter), you are not specifying any area whatsoever. What you are saying is that any
infinitesimal surface element that may be exposed to the fluid at that point will experience an infinitesimal force of magnitude dF
that is equal to 15,000  times the area  of the surface. When we specify a pressure, we’re talking about a would-be effect
on a would-be surface element.

We talk about an infinitesimal area element because it is entirely possible that the pressure varies with position. If the pressure at
one point in a liquid is 15,000  it could very well be 16,000  at a point that’s less than a millimeter away in one
direction and 14,000  at a point that’s less than a millimeter away in another direction.

Let’s talk about direction. Pressure itself has no direction. But the force that a fluid exerts on a surface element, because of the
pressure of the fluid, does have direction. The force is perpendicular to, and toward, the surface. Isn’t that interesting? The
direction of the force resulting from some pressure (let’s call that the pressure-times-area force) on a surface element is determined
by the victim (the surface element) rather than the agent (the fluid).

Pressure Dependence on Depth
For a fluid near the surface of the earth, the pressure in the fluid increases with depth. You may have noticed this, if you have ever
gone deep under water, because you can feel the effect of the pressure on your ear drums. Before we investigate this phenomenon
in depth, I need to point out that in the case of a gas, this pressure dependence on depth is, for many practical purposes, negligible.
In discussing a container of a gas for instance, we typically state a single value for the pressure of the gas in the container,
neglecting the fact that the pressure is greater at the bottom of the container. We neglect this fact because the difference in the
pressure at the bottom and the pressure at the top is so very small compared to the pressure itself at the top. We do this when the
pressure difference is too small to be relevant, but it should be noted that even a very small pressure difference can be significant.
For instance, a helium-filled balloon, released from rest near the surface of the earth would fall to the ground if it weren’t for the
fact that the air pressure in the vicinity of the lower part of the balloon is greater (albeit only slightly greater) than the air pressure
in the vicinity of the upper part of the balloon.

Let’s do a thought experiment. (Einstein was fond of thought experiments. They are also called Gedanken experiments. Gedanken
is the German word for thought.) Imagine that we construct a pressure gauge as follows: We cap one end of a piece of thin pipe and
put a spring completely inside the pipe with one end in contact with the end cap. Now we put a disk whose diameter is equal to the
inside diameter of the pipe, in the pipe and bring it into contact with the other end of the spring. We grease the inside walls of the
pipe so that the disk can slide freely along the length of the pipe, but we make the fit exact so that no fluid can get past the disk.
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Now we drill a hole in the end cap, remove all the air from the region of the pipe between the disk and the end cap, and seal up the
hole. The position of the disk in the pipe, relative to its position when the spring is neither stretched nor compressed, is directly
proportional to the pressure on the outer surface, the side facing away from the spring, of the disk. We calibrate (mark a scale on)
the pressure gauge that we have just manufactured, and use it to investigate the pressure in the water of a swimming pool. First we
note that, as soon as we removed the air, the gauge started to indicate a significant pressure (around 1.013× 105 ), namely the
air pressure in the atmosphere. Now we move the gauge around and watch the gauge reading. Wherever we put the gauge (we
define the location of the gauge to be the position of the center point on the outer surface of the disk) on the surface of the water,
we get one and the same reading, (the air pressure reading). Next we verify that the pressure reading does indeed increase as we
lower the gauge deeper and deeper into the water. Then we find, the point I wrote this paragraph to make, that if we move the
gauge around horizontally at one particular depth, the pressure reading does not change. That’s the experimental result I want to use
in the following development, the experimental fact that the pressure has one and the same value at all points that are at one and the
same depth in a fluid.

Here we derive a formula that gives the pressure in an incompressible static fluid as a function of the depth in the fluid. Let’s get
back into the swimming pool. Now imagine a closed surface enclosing a volume, a region in space, that is full of water. I’m going
to call the water in such a volume, “a volume of water,” and I’m going to give it another name as well. If it were ice, I would call it
a chunk of ice, but since it is liquid water, I’ll call it a “slug” of water. We’re going to derive the pressure vs. depth relation by
investigating the equilibrium of an “object” which is a slug of water.

Consider a cylindrical slug of water whose top is part of the surface of the swimming pool and whose bottom is at some arbitrary
depth h below the surface. I’m going to draw the slug here, isolated from its surroundings. The slug itself is, of course, surrounded
by the rest of the water in the pool.

In the diagram, we use arrows to convey the fact that there is pressure-times-area force on every element of the surface of the slug.
Now the downward pressure-times-area force on the top of the slug is easy to express in terms of the pressure because the pressure
on every infinitesimal area element making up the top of the slug has one and the same value. In terms of the determination of the
pressure-times-area, this is the easy case. The magnitude of the force, , is just the pressure  times the area  of the top of the
cylinder.

A similar argument can be made for the bottom of the cylinder. All points on the bottom of the cylinder are at the same depth in the
water so all points are at one and the same pressure . The bottom of the cylinder has the same area  as the top so the magnitude
of the upward force  on the bottom of the cylinder is given by

As to the sides, if we divide the sidewalls of the cylinder up into an infinite set of equal-sized infinitesimal area elements, for every
sidewall area element, there is a corresponding area element on the opposite side of the cylinder. The pressure is the same on both
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elements because they are at the same depth. The two forces then have the same magnitude, but because the elements face in
opposite directions, the forces have opposite directions. Two opposite but equal forces add up to zero. In such a manner, all the
forces on the sidewall area elements cancel each other out.

Now we are in a position to draw a free body diagram of the cylindrical slug of water.

Applying the equilibrium condition

yields

At this point in our derivation of the relation between pressure and depth, the depth does not explicitly appear in the equation. The
mass of the slug of water, however, does depend on the length of the slug which is indeed the depth . First we note that

where  is the density, the mass-per-volume, of the water making up the slug and  is the volume of the slug. The volume of a
cylinder is its height times its face area so we can write

Substituting this expression for the mass of the slug into equation  yields

While we have been writing specifically about water, the only thing in the analysis that depends on the identity of the
incompressible fluid is the density . Hence, as long as we use the density of the fluid in question, equation  (

) applies to any incompressible fluid. It says that the pressure at any depth  is the pressure at the surface plus .

A few words on the units of pressure are in order. We have stated that the units of pressure are . This combination of units is
given a name. It is called the pascal, abbreviated Pa.

Pressures are often quoted in terms of the non-SI unit of pressure, the atmosphere, abbreviated atm and defined such that, on the
average, the pressure of the earth’s atmosphere at sea level is 1 atm. In terms of the pascal,
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The big mistake that folks make in applying equation  ( ) is to ignore the units. They’ll use 1 atm for  and
without converting that to pascals, they’ll add the product  to it. Of course, if one uses SI units for , , and , the product 
comes out in  which is a pascal which is definitely not an atmosphere (but rather, about a hundred-thousandth of an
atmosphere). Of course one can’t add a value in pascals to a value in atmospheres. The way to go is to convert the value of  that
was given to you in units of atmospheres, to pascals, and then add the product rgh (in SI units) to your result so that your final
answer cmes out in pascals.

Gauge Pressure
Remember the gauge we constructed for our thought experiment? That part about evacuating the inside of the pipe presents quite
the manufacturing challenge. The gauge would become inaccurate as air leaked in by the disk. As regards function, the description
is fairly realistic in terms of actual pressure gauges in use, except for the pumping of the air out the pipe. To make it more like an
actual gauge that one might purchase, we would have to leave the interior open to the atmosphere. In use then, the gauge reads zero
when the pressure on the sensor end is 1 atmosphere, and in general, indicates the amount by which the pressure being measured
exceeds atmospheric pressure. This quantity, the amount by which a pressure exceeds atmospheric pressure, is called gauge
pressure (since it is the value registered by a typical pressure gauge.) When it needs to be contrasted with gauge pressure, the actual
pressure that we have been discussing up to this point is called absolute pressure. The absolute pressure and the gauge pressure are
related by:

where:

 is the absolute pressure,

 is the gauge pressure, and

 is atmospheric pressure.

When you hear a value of pressure (other than the so-called barometric pressure of the earth’s atmosphere) in your everyday life, it
is typically a gauge pressure (even though one does not use the adjective “gauge” in discussing it.) For instance, if you hear that the
recommended tire pressure for your tires is 32 psi (pounds per square inch) what is being quoted is a gauge pressure. Folks that
work on ventilation systems often speak of negative air pressure. Again, they are actually talking about gauge pressure, and a
negative value of gauge pressure in a ventilation line just means that the absolute pressure is less than atmospheric pressure.

Archimedes’ Principle
The net pressure-times-area force on an object submerged in a fluid, the vector sum of the forces on all the infinite number of
infinitesimal surface area elements making up the surface of an object, is upward because of the fact that pressure increases with
depth. The upward pressuretimes-area force on the bottom of an object is greater than the downward pressure-times-area force on
the top of the object. The result is a net upward force on any object that is either partly or totally submerged in a fluid. The force is
called the buoyant force on the object. The agent of the buoyant force is the fluid.

If you take an object in your hand, submerge the object in still water, and release the object from rest, one of three things will
happen: The object will experience an upward acceleration and bob to the surface, the object will remain at rest, or the object will
experience a downward acceleration and sink. We have emphasized that the buoyant force is always upward. So why on earth
would the object ever sink? The reason is, of course, that after you release the object, the buoyant force is not the only force acting
on the object. The gravitational force still acts on the object when the object is submerged. Recall that the earth’s gravitational field
permeates everything. For an object that is touching nothing of substance but the fluid it is in, the free body diagram (without the
acceleration vector being included) is always the same (except for the relative lengths of the arrows):
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and the whole question as to whether the object (released from rest in the fluid) sinks, stays put, or bobs to the surface, is
determined by how the magnitude of the buoyant force compares with that of the gravitational force. If the buoyant force is greater,
the net force is upward and the object bobs toward the surface. If the buoyant force and the gravitational force are equal in
magnitude, the object stays put. And if the gravitational force is greater, the object sinks.

So how does one determine how big the buoyant force on an object is? First, the trivial case: If the only forces on the object are the
buoyant force and the gravitational force, and the object remains at rest, then the buoyant force must be equal in magnitude to the
gravitational force. This is the case for an object such as a boat or a log which is floating on the surface of the fluid it is in.

But suppose the object is not freely floating at rest. Consider an object that is submerged in a fluid. We have no information on the
acceleration of the object, but we cannot assume it to be zero. Assume that a person has, while maintaining a firm grasp on the
object, submerged the object in fluid, and then, released it from rest. We don’t know which way it is going from there, but we can
not assume that it is going to stay put.

To derive our expression for the buoyant force, we do a little thought experiment. Imagine replacing the object with a slug of fluid
(the same kind of fluid as that in which the object is submerged), where the slug of fluid has the exact same size and shape as the
object.

From our experience with still water we know that the slug of fluid would indeed stay put, meaning that it is in equilibrium.
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Table of Forces

Symbol=? Name Agent Victim

B Buoyant Force The Surrounding Fluid The Slug of Fluid

Gravitational Force on the Slug
of Fluid

The Earth Gravitational Force The Slug of Fluid

Applying the equilibrium equation  to the slug of fluid yields:

The last equation states that the buoyant force on the slug of fluid is equal to the gravitational force on the slug of fluid. Now get
this; this is the crux of the derivation: Because the slug of fluid has the exact same size and shape as the original object, it presents
the exact same surface to the surrounding fluid, and hence, the surrounding fluid exerts the same buoyant force on the slug of fluid
as it does on the original object. Since the buoyant force on the slug of fluid is equal in magnitude to the gravitational force acting
on the slug of fluid, the buoyant force on the original object is equal in magnitude to the gravitational force acting on the slug of
fluid. This is Archimedes’ principle.

Archimedes’ Principle states that: The buoyant force on an object that is either partly or totally submerged in a fluid is upward, and
is equal in magnitude to the gravitational force that would be acting on that amount of fluid that would be where the object is if the
object wasn’t there. For an object that is totally submerged, the volume of that amount of fluid that would be where the object is if
the object wasn’t there is equal to the volume of the object itself. But for an object hat is only partly submerged, the volume of that
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amount of fluid that would be where the object is if the object wasn’t there is equal to the (typically unknown) volume of the
submerged part of the object. However, if the object is freely floating at rest, the equilibrium equation (instead of Archimedes’
Principle) can be used to quickly establish that the buoyant force (of a freely floating object such as a boat) is equal in magnitude to
the gravitational force acting on the object itself.
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