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B33: Gauss’s Law

When asked to find the electric flux through a closed surface due to a specified non-trivial
charge distribution, folks all too often try the immensely complicated approach of finding

the electric field everywhere on the surface and doing the integral of  dot  over the
surface instead of just dividing the total charge that the surface encloses by .

Conceptually speaking, Gauss’s Law states that the number of electric field lines poking outward through an imaginary closed
surface is proportional to the charge enclosed by the surface.

A closed surface is one that divides the universe up into two parts: inside the surface, and, outside the surface. An example would
be a soap bubble for which the soap film itself is of negligible thickness. I’m talking about a spheroidal soap bubble floating in air.
Imagine one in the shape of a tin can, a closed jar with its lid on, or a closed box. These would also be closed surfaces. To be
closed, a surface has to encompass a volume of empty space. A surface in the shape of a flat sheet of paper would not be a closed
surface. In the context of Gauss’s law, an imaginary closed surface is often referred to as a Gaussian surface.

In conceptual terms, if you use Gauss’s Law to determine how much charge is in some imaginary closed surface by counting the
number of electric field lines poking outward through the surface, you have to consider inward-poking electric field lines as
negative outward-poking field lines. Also, if a given electric field line pokes through the surface at more than one location, you
have to count each and every penetration of the surface as another field line poking through the surface, adding  to the tally if it
pokes outward through the surface, and  to the tally if it pokes inward through the surface.

So for instance, in a situation like:

we have  electric field lines poking inward through the surface which, together, count as  outward field lines, plus, we have 
electric field lines poking outward through the surface which together count as  outward field lines for a total of 0 outward-
poking electric field lines through the closed surface. By Gauss’s Law, that means that the net charge inside the Gaussian surface is
zero.

The following diagram might make our conceptual statement of Gauss’s Law seem like plain old common sense to you:
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The closed surface has the shape of an egg shell. There are  electric field lines poking outward through the Gaussian surface (and
zero poking inward through it) meaning there must (according to Gauss’s Law) be a net positive charge inside the closed surface.
Indeed, from your understanding that electric field lines begin, either at positive charges or infinity, and end, either at negative
charges or infinity, you could probably deduce our conceptual form of Gauss’s Law. If the net number of electric field lines poking
out through a closed surface is greater than zero, then you must have more lines beginning inside the surface than you have ending
inside the surface, and, since field lines begin at positive charge, that must mean that there is more positive charge inside the
surface than there is negative charge.

Our conceptual idea of the net number of electric field lines poking outward through a Gaussian surface corresponds to the net
outward electric flux  through the surface.

To write an expression for the infinitesimal amount of outward flux  through an infinitesimal area element , we first define

an area element vector  whose magnitude is, of course, just the area  of the element; and; whose direction is perpendicular to
the area element, and, outward. (Recall that a closed surface separates the universe into two parts, an inside part and an outside
part. Thus, at any point on the surface, that is to say at the location of any infinitesimal area element on the surface, the direction
outward, away from the inside part, is unambiguous.)

In terms of that area element, and, the electric field  at the location of the area element, we can write the infinitesimal amount of
electric flux  through the area element as:
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Recall that the dot product  can be expressed as . For a given  and a given amount of area, this yields a

maximum value for the case of  (when  is parallel to  meaning that  is perpendicular to the surface); zero when 

 (when  is perpendicular to  meaning that  is parallel to the surface); and; a negative value when  is greater than 
 (with  being the greatest value of  possible, the angle at which  is again perpendicular to the surface, but, in this case,

into the surface.)

Now, the flux is the quantity that we can think of conceptually as the number of field lines. So, in terms of the flux, Gauss’s Law
states that the net outward flux through a closed surface is proportional to the amount of charge enclosed by that surface. Indeed,
the constant of proportionality has been established to be  where  (epsilon zero) is the universal constant known as the electric
permittivity of free space. (You’ve seen  before. At the time, we stated that the Coulomb constant  is often expressed as .
Indeed, the identity  appears on your formula sheet.) In equation form, Gauss’s Law reads:

The circle on the integral sign, combined with the fact that the infinitesimal in the integrand is an area element, means that the

integral is over a closed surface. The quantity on the left is the sum of the product  for each and every area element 
making up the closed surface. It is the total outward electric flux through the surface.

Using this definition in Gauss’s Law allows us to write Gauss’s Law in the form:

How You Will be Using Gauss’s Law

Gauss’s Law is an integral equation. Such an integral equation can also be expressed as a differential equation. We won’t be using
the differential form, but, because of its existence, the Gauss’s Law equation

is referred to as the integral form of Gauss’s Law. The integral form of Gauss’s Law can be used for several different purposes. In
the course for which this book is written, you will be using it in a limited manner consistent with the mathematical prerequisites
and co-requisites for the course. Here’s how:

1. Gauss’s Law in the form  makes it easy to calculate the net outward flux through a closed surface that
encloses a known amount of charge . Just divide the amount of charge  by  (given on your

formula sheet as  and you have the flux through the closed surface. 
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2. Given the electric field at all points on a closed surface, one can use the integral form of Gauss’s Law to calculate the charge
inside the closed surface. This can be used as a check for a case in which the electric field due to a given distribution of charge
has been calculated by a means other than Gauss’s Law. You will only be expected to do this in cases in which one can treat the
closed surface as being made of one or more finite (not vanishingly small) surface pieces on which the electric field is constant
over the entire surface piece so that the flux can be calculated algebraically as  or . After doing so for each of the
finite surface pieces making up the closed surface, you add the results and you have the flux 

through the surface. To get the charge enclosed by the surface, you just plug that into
3. In cases involving a symmetric charge distribution, Gauss’s Law can be used to calculate the electric field due to the charge

distribution. In such cases, the right choice of the Gaussian surface makes  a constant at all points on each of several surface
pieces, and in some cases, zero on other surface pieces. In such cases the flux can be expressed as  and one can simply solve

 for  and use one’s conceptual understanding of the electric field to get the direction of . The remainder
of this chapter and all of the next will be used to provide examples of the kinds of charge distributions to which you will be
expected to be able to apply this method.

Using Gauss’s Law to Calculate the Electric Field in the Case of a Charge Distribution Having
Spherical Symmetry
A spherically-symmetric charge distribution has a well-defined center. Furthermore, if you rotate a spherically-symmetric charge
distribution through any angle, about any axis that passes through the center, you wind up with the exact same charge distribution.
A uniform ball of charge is an example of a spherically-symmetric charge distribution. Before we consider that one, however, let’s
take up the case of the simplest charge distribution of them all, a point charge.

We use the symmetry of the charge distribution to find out as much as we can about the electric field and then we use Gauss’s Law
to do the rest. Now, when we rotate the charge distribution, we rotate the electric field with it. And, if a rotation of the charge
distribution leaves you with the same exact charge distribution, then, it must also leave you with the same electric field.

We first prove that the electric field due to a point charge can have no tangential component by assuming that it does have a
tangential component and showing that this leads to a contradiction.

Here’s our point charge , and an assumed tangential component of the electric field at a point  which, from our perspective is to
the right of the point charge.

(Note that a radial direction is any direction away from the point charge, and, a tangential direction is perpendicular to the radial
direction.)

Now let’s decide on a rotation axis for testing whether the electric field is symmetric with respect to rotation. Almost any will do. I
choose one that passes through both the point charge, and, point .
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Now, if I rotate the charge, and its associated electric field, through an angle of  about that axis, I get:

This is different from the electric field that we started with. It is downward instead of upward. Hence the electric field cannot have
the tangential component depicted at point . Note that the argument does not depend on how far point  is from the point charge;
indeed, I never specified the distance. So, no point to the right of our point charge can have an upward component to its electric
field. In fact, if I assume the electric field at any point  in space other than the point at which the charge is, to have a tangential
component, then, I can adopt a viewpoint from which point  appears to be to the right of the charge, and, the electric field
appears to be upward. From that viewpoint, I can make the same rotation argument presented above to prove that the tangential
component cannot exist. Thus, based on the spherical symmetry of the charge distribution, the electric field due to a point charge
has to be strictly radial. Thus, at each point in space, the electric field must be either directly toward the point charge or directly
away from it. Furthermore, again from symmetry, if the electric field is directly away from the point charge at one point in space,
then it has to be directly away from the point charge at every point in space. Likewise, for the case in which it is directly toward the
point charge at one point in space, the electric field has to be directly toward the point charge at every point in space.

We’ve boiled it down to a 50/50 choice. Let’s assume that the electric field is directed away from the point charge at every point in
space and use Gauss’s Law to calculate the magnitude of the electric field. If the magnitude is positive, then the electric field is
indeed directed away from the point charge. If the magnitude turns out to be negative, then the electric field is actually directed
toward the point charge.

At this point we need to choose a Gaussian surface. To further exploit the symmetry of the charge distribution, we choose a
Gaussian surface with spherical symmetry. More specifically, we choose a spherical shell of radius , centered on the point charge.
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At every point on the shell, the electric field, being radial, has to be perpendicular to the spherical shell. This means that for every

area element, the electric field is parallel to our outward-directed area element vector . This means that the  in Gauss’s
Law,

evaluates to . So, for the case at hand, Gauss’s Law takes on the form:

Furthermore, the magnitude of the electric field has to have the same value at every point on the shell. If it were different at a point 
 on the spherical shell than it is at a point  on the spherical shell, then we could rotate the charge distribution about an axis

through the point charge in such a manner as to bring the original electric field at point  to position . But this would represent a
change in the electric field at point , due to the rotation, in violation of the fact that a point charge has spherical symmetry. Hence,
the electric field at any point  on the Gaussian surface must have the same magnitude as the electric field at point , which is
what I set out to prove. The fact that  is a constant, in the integral, means that we can factor it out of the integral. So, for the case
at hand, Gauss’s Law takes on the form:
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On the preceding page we arrived at .

Now , the integral of  over the Gaussian surface is the sum of all the area elements making up the Gaussian surface. That
means that it is just the total area of the Gaussian surface. The Gaussian surface, being a sphere of radius , has area . So now,
Gauss’s Law for the case at hand looks like:

Okay, we’ve left that right side alone for long enough. We’re talking about a point charge  and our Gaussian surface is a sphere
centered on that point charge , so, the charge enclosed,  is obviously . This yields:

Solving for  gives us:

This is positive when the charge  is positive, meaning that the electric field is directed outward, as per our assumption. It is
negative when  is negative. So, when the charge  is negative, the electric field is directed inward, toward the charged particle.
This expression is, of course, just Coulomb’s Law for the electric field. It may look more familiar to you if we write it in terms of
the Coulomb constant  in which case our result for the outward electric field appears as:

It’s clear that, by means of our first example of Gauss’s Law, we have derived something that you already know, the electric field
due to a point charge.

This page titled B33: Gauss’s Law is shared under a CC BY-SA 2.5 license and was authored, remixed, and/or curated by Jeffrey W. Schnick via
source content that was edited to the style and standards of the LibreTexts platform.
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