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B30: The Electric Field Due to a Continuous Distribution of Charge on a Line

Every integral must include a differential (such as dx, dt, dq, etc.). An integral is an
infinite sum of terms. The differential is necessary to make each term infinitesimal
(vanishingly small).  is okay,  is okay, and  is okay, but never
write , never write  and never write .

Here we revisit Coulomb’s Law for the Electric Field. Recall that Coulomb’s Law for the Electric Field gives an expression for the
electric field, at an empty point in space, due to a charged particle. You have had practice at finding the electric field at an empty
point in space due to a single charged particle and due to several charged particles. In the latter case, you simply calculated the
contribution to the electric field at the one empty point in space due to each charged particle, and then added the individual
contributions. You were careful to keep in mind that each contribution to the electric field at the empty point in space was an
electric field vector, a vector rather than a scalar, hence the individual contributions had to be added like vectors.

A Review Problem for the Electric Field due to a Discrete Distribution of Charge
Let’s kick this chapter off by doing a review problem. The following example is one of the sort that you learned how to do when
you first encountered Coulomb’s Law for the Electric Field. You are given a discrete distribution of source charges and asked to
find the electric field (in the case at hand, just the  component of the electric field) at an empty point in space.

The example is presented on the next page. Here, a word about one piece of notation used in the solution. The symbol P is used to
identify a point in space so that the writer can refer to that point, unambiguously, as “point .” The symbol  in this context does
not stand for a variable or a constant. It is just an identification tag. It has no value. It cannot be assigned a value. It does not
represent a distance. It just labels a point.

∫ f(x)dx ∫ g(y)dy ∫ h(t)dt

∫ f(x) ∫ g(y) ∫ h(t)

x

P P
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Linear Charge Density
Okay, enough review, now lets consider the case in which we have a continuous distribution of charge along some line segment. In
practice, we could be talking about a charged piece of string or thread, a charged thin rod, or even a charged piece of wire. First we
need to discuss how one even specifies such a situation. We do so by stating what the linear charge density, the charge per-length, 
is. For now we’ll consider the meaning of  for a few different situations (before we get to the heart of the matter, finding the
electric field due to the linear charge distribution). Suppose for instance we have a one-meter string extending from the origin to 

 along the  axis, and that the linear charge density on that string is given by:

(Just under the equation, we have depicted the linear charge density graphically by drawing a line whose darkness represents the
charge density.)

 is the contribution to the electric field at point
 (at x,y) due to charge . Charge 

contributes to  to the electric field at .

First, let's get :

Looking at the diagram at the top of this
column, we see that Coulomb's Law for the
Electric Field yields:

Again, from that first diagram,
and

Substitute both of these into 
yields:

It is left as an exercise for the reader to show
that:

Since , we have:

There are two charged particles on the x-axis of a Cartesian coordinate system,  at  and  at 
where . Find the  component of the electric field, due to this pair of particles, valid for all points on the 

-  plane for which .
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Note that if the value of  is expressed in meters,  will have units of , units of charge-per-length, as it must. Further note that
for small values of ,  is small, and for larger values of ,  is larger. That means that the charge is more densely packed near the
far (relative to the origin) end of the string. To further familiarize ourselves with what  is, let’s calculate the total amount of
charge on the string segment. What we’ll do is to get an expression for the amount of charge on any infinitesimal length  of the
string, and add up all such amounts of charge for all of the infinitesimal lengths making up the string segment.

The infinitesimal amount of charge  on the infinitesimal length  of the string is just the charge per length  times the length 
 of the infinitesimal string segment.

Note that you can’t take the amount of charge on a finite length (such as ) of the string to be  times the length of the
segment because  varies over the length of the segment. In the case of an infinitesimal segment, every part of it is within an
infinitesimal distance of the position specified by one and the same value of . The linear charge density doesn’t vary on an
infinitesimal segment because  doesn’t—the segment is simply too short.

To get the total charge we just have to add up all the dq’s. Each dq is specified by its corresponding value of . To cover all the ’s
we have to take into account all the values of  from  to  m. Because each  is the charge on an infinitesimal length of the
line of charge, the sum is going to have an infinite number of terms. An infinite sum of infinitesimal pieces is an integral. When we
integrate

we get, on the left, the sum of all the infinitesimal pieces of charge making up the whole. By definition, the sum of all the
infinitesimal amounts of charge is just the total charge  (which by the way, is what we are solving for); we don’t need the tools of
integral calculus to deal with the left side of the equation. Integrating both sides of the equation yields:

Using the given expression  we obtain
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A few more examples of distributions of charge follow:

For instance, consider charge distributed along the x axis, from  to  for the case in which the charge density is given by

where  is a constant having units of charge-per-length, rad stands for the units radians,  is the position variable, and  is the
length of the charge distribution. Such a charge distribution has a maximum charge density equal to  occurring in the middle
of the line segment.

Another example would be a case in which charge is distributed on a line segment of length L extending along the y axis from 
 to  with a being a constant and the charge density given by

In this case the charge on the line is more densely packed in the region closer to the origin. (The smaller  is, the bigger the value
of , the charge-per-length.)

The simplest case is the one in which the charge is spread out uniformly over the line on which there is charge. In the case of a
uniform linear charge distribution, the charge density is the same everywhere on the line of charge. In such a case, the linear charge
density  is simply a constant. Furthermore, in such a simple case, and only in such a simple case, the charge density  is just the
total amount of charge  divided by the length  of the line along which that charge is uniformly distributed. For instance, suppose
you are told that an amount of charge  is uniformly distributed along a thin rod of length . Then  is given
by:

The Electric Field Due to a Continuous Distribution of Charge along a Line
Okay, now we are ready to get down to the nitty-gritty. We are given a continuous distribution of charge along a straight line
segment and asked to find the electric field at an empty point in space in the vicinity of the charge distribution. We will consider the
case in which both the charge distribution and the empty point in space lie in the -  plane. The values of the coordinates of the
empty point in space are not necessarily specified. We can call them  and . In solving the problem for a single point in space with
unspecified coordinates , our final answer will have the symbols  and  in it, and our result will actually give the answer for
an infinite set of points on the -  plane.

The plan for solving such a problem is to find the electric field, due to an infinitesimal segment of the charge, at the one empty
point in space. We do that for every infinitesimal segment of the charge, and then add up the results to get the total electric field.

Now once we chop up the charge distribution (in our mind, for calculational purposes) into infinitesimal (vanishingly small) pieces,
we are going to wind up with an infinite number of pieces and hence an infinite sum when we go to add up the contributions to the
electric field at the one single empty point in space due to all the infinitesimal segments of the linear charge distribution. That is to
say, the result is going to be an integral.

An important consideration that we must address is the fact that the electric field, due to each element of charge, at the one empty
point in space, is a vector. Hence, what we are talking about is an infinite sum of infinitesimal vectors. In general, the vectors being
added are all in different directions from each other. (Can you think of a case so special that the infinite set of infinitesimal electric
field vectors are all in the same direction as each other? Note that we are considering the general case, not such a special case.) We
know better than to simply add the magnitudes of the vectors, infinite sum or not. Vectors that are not all in the same direction as
each other, add like vectors, not like numbers. The thing is, however, the  components of all the infinitesimal electric field vectors
at the one empty point in space do add like numbers. Likewise for the  components. Thus, if, for each infinitesimal element of the
charge distribution, we find, not just the electric field at the empty point in space, but the  component of that electric field, then
we can add up all the  components of the electric field at the empty point in space to get the  component of the electric field, due
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to the entire charge distribution, at the one empty point in space. The sum is still an infinite sum, but this time it is an infinite sum
of scalars rather than vectors, and we have the tools for handling that. Of course, if we are asked for the total electric field, we have
to repeat the entire procedure to get the  component of the electric field and then combine the two components of the electric field
to get the total.

The easy way to do the last step is to use  notation. That is, once we have  and , we can simply write:

y

, ,î ĵ k̂ Ex Ey

= +E ⃗  Ex î Ey ĵ
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As usual, we’ll start our solution with a diagram:

Note that we use (and strongly recommend that you use) primed quantities  to specify a point
on the charge distribution and unprimed quantities  to specify the empty point in space at which
we wish to know the electric field. Thus, in the diagram, the infinitesimal segment of the charge
distribution is at  and point , the point at which we are finding the electric field, is at .
Also, our expression for the given linear charge density  expressed in terms of 
rather than y is:

The plan here is to use Coulomb’s Law for the Electric Field to get the magnitude of the infinitesimal

electric field vector  at point  due to the infinitesimal amount of charge  in the infinitesimal
segment of length .

The amount of charge  in the infinitesimal segment  of the linear charge distribution is given by

Find the electric field valid for any point on the positive  axis due a  long line of charge, lying on the 
axis and centered on the origin, for which the charge density is given by
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From the diagram, it clear that we can use the Pythagorean theorem to express the distance  that
point  is from the infinitesimal amount of charge  under consideration as:

Substituting this and  into our equation for  ( ) we obtain

Recall that our plan is to find , then  and then put them together using . So for
now, let’s get an expression for .

Based on the vector component diagram at right we have

The  appearing in the diagram at right is the same  that appears in the diagram above. Based on
the plane geometry evident in that diagram (above), we have:

Substituting both this expression for  and the expression we derived for 

above  into the expression  from the vector component diagram yields:
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Also, let’s go ahead and replace  with the given expression :

Now we have an expression for  that includes only one quantity, namely , that depends on
which bit of the charge distribution is under consideration. Furthermore, although in the diagram

it appears that we picked out a particular infinitesimal line segment , in fact, the value of  needed
to establish its position is not specified. That is, we have an equation for  that is good for any
infinitesimal segment  of the given linear charge distribution. To identify a particular  we just
have to specify the value of . Thus to sum up all the s we just have to add, to a running total,
the  for each of the possible values of . Thus we need to integrate the expression for  for all
the values of  from  to .

Copying that equation here:

we note that on the left is the infinite sum of all the contributions to the  component of the electric
field due to all the infinitesimal elements of the line of charge. We don’t need any special mathematics
techniques to evaluate that. The sum of all the parts is the whole. That is, on the left, we have .

The right side, we can evaluate. First, let’s factor out the constants:

The integral is given on your formula sheet. Carrying out the integration yields:
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Substituting the value of the Coulomb constant k from the formula sheet we obtain

Finally we have

It is interesting to note that while the position variable x (which specifies the location of the empty
point in space at which the electric field is being calculated) is a constant for purposes of integration
(the location of point  does not change as we include the contribution to the electric field at point 
of each of the infinitesimal segments making up the charge distribution), an actual value  was never
specified. Thus our final result

for  is a function of the position variable .

Getting the y-component of the electric field can be done with a lot less work than it took to get  if
we take advantage of the symmetry of the charge distribution with respect to the  axis. Recall that
the charge density , for the case at hand, is given by:

Because  is proportional to , the value of  is the same at the negative of a specified  value as it
is at the  value itself. More specifically, the amount of charge in each of the two samesize
infinitesimal elements  of the charge distribution depicted in the following diagram:
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is one and the same value because one element is the same distance below the  axis as the other is
above it. This position circumstance also makes the distance  that each element is from point P the
same as that of the other, and, it makes the two angles (each of which is labeled  in the diagram)

have one and the same value. Thus the two  vectors have one and the same magnitude. As a

result of the latter two facts (same angle, same magnitude of ), the  components of the two 
vectors cancel each other out. As can be seen in the diagram under consideration:

one is in the  direction and the other in the  direction. The  components are “equal and
opposite.”) In fact, for each and every charge distribution element  that is above the  axis and is
thus creating a downward contribution to the  component of the electric field at point , there is an
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element  that is the same distance below the x axis that is creating an upward contribution to the 
component of the electric field at point , canceling the  component of the 
former. Thus the net sum of all the electric field  components (since they cancel pair-wise) is zero.
That is to say that due to the symmetry of the charge distribution with respect to the  axis, .
Thus,

Using the expression for  that we found above, we have, for our final answer:
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