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22A: Center of Mass, Moment of Inertia

A mistake that crops up in the calculation of moments of inertia, involves the Parallel Axis
Theorem. The mistake is to interchange the moment of inertia of the axis through the
center of mass, with the one parallel to that, when applying the Parallel Axis Theorem.
Recognizing that the subscript “CM” in the parallel axis theorem stands for “center of
mass” will help one avoid this mistake. Also, a check on the answer, to make sure that the
value of the moment of inertia with respect to the axis through the center of mass is
smaller than the other moment of inertia, will catch the mistake.

Center of Mass

Consider two particles, having one and the same mass m, each of which is at a different position on the x axis of a Cartesian
coordinate system.
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Common sense tells you that the average position of the material making up the two particles is midway between the two particles.
Common sense is right. We give the name “center of mass” to the average position of the material making up a distribution, and the
center of mass of a pair of same-mass particles is indeed midway between the two particles.

How about if one of the particles is more massive than the other? One would expect the center of mass to be closer to the more
massive particle, and again, one would be right. To determine the position of the center of mass of the distribution of matter in such
a case, we compute a weighted sum of the positions of the particles in the distribution, where the weighting factor for a given
particle is that fraction, of the total mass, that the particle’s own mass is. Thus, for two particles on the x axis, one of mass my, at
x1, and the other of mass ms, at s,
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the position Z of the center of mass is given by

my ma

z= z1+ x (22A.5)
my +my my+ma
Note that each weighting factor is a proper fraction and that the sum of the weighting factors is always 1. Also note that if, for
instance, m; is greater than meg, then the position ; of particle 1 will count more in the sum, thus ensuring that the center of mass
is found to be closer to the more massive particle (as we know it must be). Further note that if m; = mg, each weighting factor is
%, as is evident when we substitute m for both m; and ms in Equation 22A..5:
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The center of mass is found to be midway between the two particles, right where common sense tells us it has to be.
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The Center of Mass of a Thin Rod

Quite often, when the finding of the position of the center of mass of a distribution of particles is called for, the distribution of
particles is the set of particles making up a rigid body. The easiest rigid body for which to calculate the center of mass is the thin
rod because it extends in only one dimension. (Here, we discuss an ideal thin rod. A physical thin rod must have some nonzero
diameter. The ideal thin rod, however, is a good approximation to the physical thin rod as long as the diameter of the rod is small
compared to its length.)

In the simplest case, the calculation of the position of the center of mass is trivial. The simplest case involves a uniform thin rod. A
uniform thin rod is one for which the linear mass density p, the mass-per-length of the rod, has one and the same value at all points
on the rod. The center of mass of a uniform rod is at the center of the rod. So, for instance, the center of mass of a uniform rod that
extends along the x axis from £ =0 to « = L is at (L/2, 0).

The linear mass density p, typically called linear density when the context is clear, is a measure of how closely packed the
elementary particles making up the rod are. Where the linear density is high, the particles are close together.

To picture what is meant by a non-uniform rod, a rod whose linear density is a function of position, imagine a thin rod made of an
alloy consisting of lead and aluminum. Further imagine that the percentage of lead in the rod varies smoothly from 0% at one end
of the rod to 100% at the other. The linear density of such a rod would be a function of the position along the length of the rod. A
one-millimeter segment of the rod at one position would have a different mass than that of a one-millimeter segment of the rod at a
different position.

People with some exposure to calculus have an easier time understanding what linear density is than calculus-deprived individuals
do because linear density is just the ratio of the amount of mass in a rod segment to the length of the segment, in the limit as the
length of the segment goes to zero. Consider a rod that extends from 0 to L along the z axis. Now suppose that m(z) is the mass

of that segment of the rod extending from 0 to & where z > 0 but < L. Then, the linear density of the rod at any point x along
dm,
dx

the rod, is just —= evaluated at the value of z in question.

Now that you have a good idea of what we mean by linear mass density, we are going to illustrate how one determines the position
of the center of mass of a non-uniform thin rod by means of an example.
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Find the position of the center of mass of a thin rod that extends from 0 to .890m along the z axis of a Cartesian
Solution coordinate system and has a linear density given by u(z) = 0.650%%2 ;
In order to be able to determine the posjtion of the center of mass of a rod with a given length and a

iven linear density as a function of position, you first need to be able to find the mass of such a rod.
0 do that, one might be tempted to use a method that works only for the special case of a uniform

rod, namely, to try using m = pL with L being the length of the rod. The problem with this is, that u
varies along the entire length of the rod. What value would one use for u? One might be tempted to
evaluate the given p at x = L and use that, but that would be acting as if the linear density were
constant at 4 = p(L). It is not. In fact, in the case at hand, u(L) is the maximum linear density of the
rod, it only has that value at one point on the rod.

What we can do is to say that the infinitesimal amount of mass dm in a segment dz of the rod is udz.
Here we are saying that at some position z on the rod, the amount of mass in the infinitesimal length
dz of the rod is the value of u at that = value, times the infinitesimal length dz. Here we don’t have to
worry about the fact that p changes with position since the segment dz is infinitesimally long,
meaning, essentially, that it has zero length, so the whole segment is essentially at one position  and
hence the value of u at that = is good for the whole segment dz.

,k dm = pudx

Now this is true for any value of z, but it just covers an infinitesimal segment of the rod at z. To get
the mass of the whole rod, we need to add up all such contributions to the mass. Of course, since
each dm corresponds to an infinitesimal length of the rod, we will have an infinite number of terms in

the sum of all the dm’s. An infinite sum of infinitesimal terms, is an integral.

where the values of z have to run from 0 to L to cover the length of the rod, hence the limits on the

right, Now the mathematicians have provided us with a rich set of algorithms for evaluatln? integrals,
and indeed we will have to reach into that toolbox to evaluate the mte%ral on the right, but to evaluate
the integral on the left, we cannot, should not, and will not turn to such an algorithm. Instead, we use
common sense and our conceptual understanding of what the integral on the left means. In the

context of the problem at hand, [dm means “the sum of all the infinitesimal bits of mass making up
the rod.” Now, if you add up all the infinitesimal bits of mass making up the rod, you get the mass of
the rod. So [ dm is just the mass of the rod, which we will call m. Equation then becomes

Replacing p(z) with the given expression for the linear density p = 0.650%:32 which | choose to write

3

as p = bx? with b being defined by b = 0.6502—9 we obtain

Factoring out the constant yields
m = /meQd:c m = b/Lx2dm
0 0

When integrating the variable of integ{ation_raised to a power all we have to do is increase the power
by one and divide by the new power. This gives

Evaluating this at the lower and upper limits yields
L

mzb%.

0
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The value of L is given as 0.890m and we defined b to be the constant 0.650% in the given

expression for p, u = 0.650%#, )

0.650-Z (0.890m)° M = 0.1527kg
3

m =

That's a value that will come in handy when we calculate the position of the center of mass. Now,
when we calculated the center of mass of a set of discrete particles (where a discrete particle is one
that is by itself, as opposed, for instance, to being part of a rigid body) we just carried out a weighted
sum in which each term was the position of a particle times its weighting factor and the weighting
factor was that fraction, of the total mass, represented by the mass of the particle. We carry out a
similar procedure for a continuous distribution of mass ‘such as that which makes up the rod in

question. Let’s start by writing one single term of the sum. We’ll consider an infinitesimal length dz of
the rod at a position z along the length of the rod. The position, as just stated, is «, and the weighting
factor is that fraction of the total mass m of the rod that the mass dm of the infinitesimal length dz

represents. That means the weighting factor is %’”, so, a term in our weighted sum of positions looks

That's one term in the weighted sum of positions, the sum that yields the position of the center of
mass. The thing is, because the value of z is unspecified, that one term is good for any infinitesimal
segment of the bar. Every term in the sum looks just like that one. So we have an expression for
every term in the sum. Of course, because the expression is for an infinitesimal length dz of the rod,

there will be an infinite number of terms in the sum. So, again we have an infinite sum of infinitesimal
terms. That is, again we have an integral. Our expression for the position of the center of mass is:

Substituting the given expression u(z) = 0.650%3:2 for u, which we again write as p = bz? with b
being defined by b = 0.650-% , yields

Rearranging and factoring the constants out gives
_ baeldx __ b 3
x= [ L T x=— [ Lz°dx
0 m m Jo

Next we carry out the integration

T =

r* ot bLA
4

(

=) z=

b L
m 4 4dm

Now we substitute values with units; the mass m of the rod that we found earlier, the constant b that
we defined to simplify the appearance of the linear density function, and the given length L of the rod:

z = 0.668m
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(0.650-2)(0.890m)*
4(0.1527kyg)

T =

This is our final answer for the position of the center of mass. Note that it is closer to the denser end
of the rod, as we W(;uld expect. The reader may also be interested to note that had we substituted the
expression m = % that we derived for the mass, rather than the value we obtained when we

evaluated that expression, our expression for z would have simplified to %L which evaluates to
x = 0.668m , the same result as the one above.

Moment of Inertia—a.k.a. Rotational Inertia

You already know that the moment of inertia of a rigid object, with respect to a specified axis of rotation, depends on the mass of
that object, and how that mass is distributed relative to the axis of rotation. In fact, you know that if the mass is packed in close to
the axis of rotation, the object will have a smaller moment of inertia than it would if the same mass was more spread out relative to
the axis of rotation. Let’s quantify these ideas. (Quantify, in this context, means to put into equation form.)

We start by constructing, in our minds, an idealized object for which the mass is all concentrated at a single location which is not
on the axis of rotation: Imagine a massless disk rotating with angular velocity w about an axis through the center of the disk and
perpendicular to its faces. Let there be a particle of mass m embedded in the disk at a distance r from the axis of rotation. Here’s
what it looks like from a viewpoint on the axis of rotation, some distance away from the disk:

X

Particle of
mass m

where the axis of rotation is marked with an O. Because the disk is massless, we call the moment of inertia of the construction, the
moment of inertia of a particle, with respect to rotation about an axis from which the particle is a distance r.

Knowing that the velocity of the particle can be expressed as v = rw you can show yourself how I must be defined in order for the
kinetic energy expression K = %Ia.;2 for the object, viewed as a spinning rigid body, to be the same as the kinetic energy
expression K = %mv2 for the particle moving through space in a circle. Either point of view is valid so both viewpoints must
yield the same kinetic energy. Please go ahead and derive what I must be and then come back and read the derivation below.

Here is the derivation:

Given that K = +ma?

5 , we replace v with rw.

This gives K = ;m(rw)?

which can be written as

K = =(mr?)w?
For this to be equivalent to
1
K= Elw2
we must have
I =mr? (22A.6)
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This is our result for the moment of inertia of a particle of mass m, with respect to an axis of rotation from which the particle is a
distance 7.

Now suppose we have two particles embedded in our massless disk, one of mass m; at a distance r; from the axis of rotation and
another of mass ms at a distance 79 from the axis of rotation.

Massless Disk

The moment of inertia of the first one by itself would be

— 2
Il =miTry

and the moment of inertia of the second particle by itself would be

2

I2 = m27’2

The total moment of inertia of the two particles embedded in the massless disk is simply the sum of the two individual moments of
inertial.

I=L+1
I =mqyr? +myr’

This concept can be extended to include any number of particles. For each additional particle, one simply includes another m;r?
term in the sum where m; is the mass of the additional particle and ; is the distance that the additional particle is from the axis of
rotation. In the case of a rigid object, we subdivide the object up into an infinite set of infinitesimal mass elements dm. Each mass
element contributes an amount of moment of inertia

[ dI=r\2dm \label{22-6} |

to the moment of inertia of the object, where 7 is the distance that the particular mass element is from the axis of rotation.
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Find the moment of inertia of the rod in Example with respect to rotation about the z axis.
Solution

In Example , the linear density of the rod was given as p = 0.650%9& To reduce the number
of times we have to write the value in that expression, we will write it as p = bz? with b being defined
as b= 0.650-% .

The total moment of inertia of the rod is the infinite sum of the infinitesimal contributions
from each and every mass element dm making up the rod.

In the diagram, we have indicated an infinitesimal element dz of the rod at an arbitrary position on the

rod. The z axis, the axis of rotation, looks like a dot in the diagram and the distance r in dI = r’>dm,
the distance that the bit of mass under consideration is from the axis of rotation, is simply the
abscissa x of the position of the mass element. Hence, equation for the case at hand can be
written as

which we copy here
dI = z*dm dI = z*dm

By definition of the linear mass density u, the infinitesimal mass dm can be expressed as dm = pdzx.
Substituting this into our expression for dI yields

dI = z*pdx

Now u was given as bz (with b actually being the symbol that | chose to use to represent the given
constant 0.650% ). Substituting b2 in for u in our expression for dI yields

dI = z*(bz®)dz dI = badz

This expression for the contribution of an element dz of the rod to the total moment of inertia of the

rod is good for every element dz of the rod. The infinite sum of all such infinitesimal contributions is
thus the integral

/ dl = / Lbz*dz
0

A?ai,n, as with our last integration, on the left, we have not bothered wijth limits of integration— the
in |nt|_te sum of all the infinitesimal contributions to the moment of inertia is simply the total moment of
inertia.

= /me4dm
0

On the right we use the limits of integration 0 to L to include every element of the rod which extends
from z = 0 to x = L, with L given as 0.890m . Factoring out the constant b gives us
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I:b/L:c4da:
0

Now we carry out the integration:

Substituting the given values of b and L vyields:
HIEE y kg (0.890m)> I =0.0726kg - m>
I=0650——"—
m3 5)

The Parallel Axis Theorem

We state, without proof , the parallel axis theorem:
I =1, +md’ (22A.7)
in which:

o [ is the moment of inertia of an object with respect to an axis from which the center of mass of the object is a distance d.

o I, is the moment of inertia of the object with respect to an axis that is parallel to the first axis and passes through the center of
mass.

e m is the mass of the object

e d is the distance between the two axes.

The parallel axis theorem relates the moment of inertia Ip; of an object, with respect to an axis through the center of mass of the
object, to the moment of inertia I of the same object, with respect to an axis that is parallel to the axis through the center of mass
and is at a distance d from the axis through the center of mass.

A conceptual statement made by the parallel axis theorem is one that you probably could have arrived at by means of common
sense, namely that the moment of inertia of an object with respect to an axis through the center of mass is smaller than the moment
of inertia about any axis parallel to that one. As you know, the closer the mass is “packed” to the axis of rotation, the smaller the
moment of inertia; and; for a given object, per definition of the center of mass, the mass is packed most closely to the axis of
rotation when the axis of rotation passes through the center of mass.

Find the moment of inertia of the rod from examples and , With respect to an axis that is
Solution Perpendicular to the rod and passes through the center of mass of the rod.

Recall that the rod in question extends along the = axis from z =0 to z = L with L = 0.890m and
that the rod has a linear density given by u = bL? with b = 0.650%9:2 ;

The axis in question can be chosen to be one that is parallel to the z axis, the axis about which, in
solving example , we found the moment of inertia to be I = 0.0726kg - m?. In solving example

we found the mass of the rod to be m = 0.1527kg and the center of mass of the rod to be at a
distance d = 0.668m away from the z axis. Here we present the solution to the problem:

I=1I,, +md> I.,,=1I—md*

'Lj I, = 0.0726kg - m? — 0.1527kg(0.668m)>

The center of mass of the rod

I, = 0.0047kg - m?
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