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7A: One-Dimensional Motion: The Constant Acceleration Equations

The constant acceleration equations presented in this chapter are only applicable to situations in which the acceleration is
constant. The most common mistake involving the constant acceleration equations is using them when the acceleration is
changing.

In chapter 6 we established that, by definition of accelaration

_dv
ot
where a is the acceleration of an object moving along a straight line path, v is the velocity of the object and ¢, which stands for
time, represents the reading of a stopwatch.

a (TA.1)

This equation is called a differential equation because that is the name that we give to equations involving derivatives. It’s true for
any function that gives a value of a for each value of ¢t. An important special case is the case in which a is simply a constant. Here
we derive some relations between the variables of motion for just that special case, the case in which a is constant.

dv
a= T with a stipulated to be a constant, can be considered to be a relationship between v and ¢. Solving it is equivalent to

finding an expression for the function that gives the value of v for each value of £. So our goal is to find the function whose

.. dv o . . . .
derivative T is a constant. The derivative, with respect to ¢, of a constant times ¢ is just the constant. Recalling that we want that

constant to be a, let’s try:
v=at

We’ll call this our trial solution. Let’s plug it into Equation 7 A .1, and see if it works. The equation can be written:

d
a=—v
dit
and when we plug our trial solution v = at into it we get:
d
= —(at
a=— (at)
a=a—1
dit
a=a-1
a=a

That is, our trial solution v = at leads to an identity. Thus, our trial solution is indeed a solution to the Equation 7A.1. Let’s see
how this solution fits in with the linear motion situation under study.

In that situation, we have an object moving along a straight line and we have defined a one-dimensional coordinate system which
can be depicted as

and consists of nothing more than an origin and a positive direction for the position variable . We imagine that someone starts a
stopwatch at a time that we define to be “time zero,” ¢ = 0, a time that we also refer to as “the start of observations.” Rather than
limit ourselves to the special case of an object that is at rest at the origin at time zero, we assume that it could be moving with any
velocity and be at any position on the line at time zero and define the constant z( to be the position of the object at time zero and
the constant vy to be the velocity of the object at time zero.
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d
Now the solution v = at to the differential equation a = d—: yields the value v =0 when ¢ =0 (just plug ¢ =0 into v = at to see

dv
this). So, while v = at does solve a = —, it does not meet the conditions at time zero, namely that v = v, at time zero. We can

dt

fix the initial condition problem easily enough by simply adding v to the original solution yielding
v=1y+at

dv
This certainly makes it so that v evaluates to vg when ¢ = 0. But is it still a solution to a = T ?

Let’s try it. If v =1y +at , then

—@—i( +t)—i +£( t) =0+ L
TG T\ T T g T g\ T Tat T

v =g +at , when substituted into Equation 7A.1 leads to an identity so v =wvg +at is a solution to Equation 7A.1. What we
have done is to take advantage of the fact that the derivative of a constant is zero, so if you add a constant to a function, you do not

dv
change the derivative of that function. The solution v = vy +at is not only a solution to the equation a = T (with a stipulated to
be a constant) but it is a solution to the whole problem since it also meets the initial value condition that v = v at time zero. The

solution:
v="19+at
is the first of a set of four constant acceleration equations to be developed in this chapter.
The other definition provided in the last section was:
dz
dt
which in words can be read as: The velocity of an object is the rate of change of the position of the object (since the derivative of
the position with respect to time is the rate of change of the position). Substituting our recently-found expression for velocity yields

v =

+at dz
vy +at = —
0 dt
which can be written as:
dz at
— =y +a
dat "

dx
We seek a function that gives a value of = for every value of ¢, whose derivative T is the sum of terms vy +at . Given the fact

that the derivative of a sum will yield a sum of terms, namely the sum of the derivatives, let’s try a function represented by the

dz dz
expression = x1 + 2 . This works if d_tl is vg and d_t2 is at. Let’s focus on x; first. Recall that vy is a constant. Further recall

that the derivative-with-respect-to-t of a constant times ¢, yields that constant. So check out ;1 = vgt. Sure enough, the derivative
of vt with respect to t is vg, the first term in equation above. So far we have

T =vot + T3
dm2 . . . . . 2 . .
Now let’s work on x;. We need T to be at. Knowing that when we take the derivative of something with ¢° in it we get
1
something with ¢ in it we try x5 = constant - t2 . The derivative of that is 2 - constant -t which is equal to at if we choose Ea

1 1
for the constant. If the constant is 3% then our trial solution for x5 is xy = iatz. Plugging this in for z3 in equation

z =vot+ 2 , yields:
L,
r =vot + Eat

Now we are in a situation similar to the one we were in with our first expression for v(¢). This expression for z does solve
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2 _ o+ at
at 0

but it does not give zy when you plug 0 in for £. Again, we take advantage of the fact that you can add a constant to a function
without changing the derivative of that function. This time we add the constant x( so

L,
T = —H;gt—i—Eat

dx
This meets both our criteria: It solves equation T =g +at , and it evaluates to &y when ¢ = 0. We have arrived at the second

equation in our set of four constant acceleration equations. The two that we have so far are:
L o
T =x0+vot+ §at
and

v=1y+at

These two are enough, but to simplify the solution of constant acceleration problems, we use algebra to come up with two more
— g

v
constant acceleration equations. Solving v=wvy+at, for a yields a= and if you substitute that into
1
=120+ vot+ Eat2 you quickly arrive at the third constant acceleration equation:

WV,

T =2+ 5

v—

1
and if you substitute that into & = o +vot +=at? you quickly arrive at the final

Solving v =vg +at fort yields t = >

constant acceleration equation:
2 2
V2=V +2a(x — o)

For your convenience, we copy down the entire set of constant acceleration equations that you are expected to use in your solutions
to problems involving constant acceleration:

L o
T =x9+vot+ —at

2
W+V
LEZLE()—FL?:
2
v=1y+at

V2= Vi2 +2a(x —=20)

This page titled 7A: One-Dimensional Motion: The Constant Acceleration Equations is shared under a CC BY-SA 2.5 license and was authored,
remixed, and/or curated by Jeffrey W. Schnick via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/2456



https://libretexts.org/
https://creativecommons.org/licenses/by-sa/2.5/
https://phys.libretexts.org/@go/page/2456?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/Calculus-Based_Physics_(Schnick)/Volume_A%3A_Kinetics_Statics_and_Thermodynamics/07A%3A_One-Dimensional_Motion%3A_The_Constant_Acceleration_Equations
https://creativecommons.org/licenses/by-sa/2.5
https://www.anselm.edu/faculty-staff-directory/jeffrey-schnick
http://www.cbphysics.org/

