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18A: Circular Motion - Centripetal Acceleration

There is a tendency to believe that if an object is moving at constant speed then it has no
acceleration. This is indeed true in the case of an object moving along a straight line
path. On the other hand, a particle moving on a curved path is accelerating whether the
speed is changing or not. Velocity has both magnitude and direction. In the case of a
particle moving on a curved path, the direction of the velocity is continually changing,
and thus the particle has acceleration.

We now turn our attention to the case of an object moving in a circle. We’ll start with the simplest case of circular motion, the case
in which the speed of the object is a constant, a case referred to as uniform circular motion. For the moment, let’s have you be the
object. Imagine that you are in a car that is traveling counterclockwise, at say 40 mph, as viewed from above, around a fairly small
circular track. You are traveling in a circle. Your velocity is not constant. The magnitude of your velocity is not changing (constant
speed), but the direction of your velocity is continually changing, you keep turning left! Now if you are continually turning left
then you must be continually acquiring some leftward velocity. In fact, your acceleration has to be exactly leftward, at right angles
to your velocity because, if your speed is not changing, but your velocity is continually changing, meaning you have some

acceleration , then for every infinitesimal change in clock reading , the change in velocity  that occurs during that

infinitesimal time interval must be perpendicular to the velocity itself. (If it wasn’t perpendicular, then the speed would be
increasing or decreasing.) So no matter where you are in the circle (around which you are traveling counterclockwise as viewed
from above) you have an acceleration directed exactly leftward, perpendicular to the direction of your velocity. Now what is always
directly leftward of you if you are traveling counterclockwise around a circle? Precisely! The center of the circle is always directly
leftward of you. Your acceleration is thus, always, center directed. We call the center-directed acceleration associated with circular
motion centripetal acceleration because the word “centripetal” means “center-directed.” Note that if you are traveling around the
circle clockwise as viewed from above, you are continually turning right and your acceleration is directed rightward, straight
toward the center of the circle. These considerations apply to any object—an object moving in a circle has centripetal (center-
directed) acceleration.

We have a couple of ways of characterizing the motion of a particle that is moving in a circle. First, we characterize it in terms of
how far the particle has traveled along the circle. If we need a position variable, we establish a start point on the circle and a
positive direction. For instance, for a circle centered on the origin of an x-y plane we can define the point where the circle intersects
the positive x axis as the start point, and define the direction in which the particle must move to go counterclockwise around the
circle as the positive direction. The name given to this position variable is s. The position s is the total distance, measured along the

circle, that the particle has traveled. The speed of the particle is then the rate of change of s,  and the direction of the velocity is

tangent to the circle. The circle itself is defined by its radius. The second method of characterizing the motion of a particle is to
describe it in terms of an imaginary line segment extending from the center of a circle to the particle. To use this method, one also
needs to define a reference line segment—the positive x axis is the conventional choice for the case of a circle centered on the
origin of an x-y coordinate system. Then, as long as you know the radius r of the circle, the angle  that the line to the particle
makes with the reference line completely specifies the location of the particle.
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In geometry, the position variable s, defines an arc length on the circle. Recall that, by definition, the angle  in radians is the ratio
of the arc length to the radius:

Solving for s we have:

in which we interpret the s to be the position-on-the-circle of the particle and the  to be the angle that an imaginary line segment,
from the center of the circle to the particle, makes with a reference line segment, such as the positive x-axis. Clearly, the faster the
particle is moving, the faster the angle theta is changing, and indeed we can get a relation between the speed of the particle and the
rate of change of  just by taking the time derivative of both sides of Equation . Let’s do that.

We start by taking the derivative of both sides of Equation  with respect to time:

and then rewrite the result as:

just to get the reader used to the idea that we represent the time derivative of a variable, that is the rate of change of that variable,
by the writing the symbol for the variable with a dot over it. Then we rewrite the result as

to emphasize the fact that the rate of change of the position-on-the-circle is the speed of the particle (the magnitude of the velocity

of the particle). Finally, we define the variable  (“omega”) to be the rate of change of the angle, meaning that  is  and  is .

It should be clear that  is the spin rate for the imaginary line from the center of the circle to the particle. We call that spin rate the
magnitude of the angular velocity of the line segment. (The expression angular velocity, , is more commonly used to characterize
how fast and which way a rigid body, rather than an imaginary line, is spinning.) Rewriting  with  replaced by  yields:

How the Centripetal Acceleration Depends on the Speed of the Particle and the Size of the Circle
We are now in a position to derive an expression for that center-directed (centripetal) acceleration we were talking about at the start
of this chapter. Consider a short time interval . (We will take the limit as  goes to zero before the end of this chapter.) During
that short time interval, the particle travels a distance  along the circle and the angle that the line, from the center of the circle to
the particle, makes with the reference line changes by an amount .
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Furthermore, in that time , the velocity of the particle changes from  to , a change  defined by  depicted
in the following vector diagram (in which the arrows representing the vectors  and  have been copied from above with no
change in orientation or length). Note that the small angle  appearing in the vector addition diagram is the same  that appears
in the diagram above.

While  is a new vector, different from , we have stipulated that the speed of the particle is a constant, so the vector  has the
same magnitude as the vector . That is, . We redraw the vector addition diagram labeling both velocity vectors with the
same symbol v.

The magnitude of the centripetal acceleration, by definition, can be expressed as

Look at the triangle in the vector addition diagram above. It is an isosceles triangle. The two unlabeled angles in the triangle are
equal to each other. Furthermore, in the limit as  approaches 0,  approaches 0, and as  approaches 0, the other two angles
must each approach  in order for the sum of the angles to remain , as it must, because the sum of the interior angles for any
triangle is . Thus in the limit as  approaches 0, the triangle is a right triangle and in that limit we can write:

Substituting this into our expression for  we have:

Now we invoke the small angle approximation from the mathematics of plane geometry, an approximation which becomes an
actual equation in the limit as  approaches zero.

For any angle that is very small compared to  radians (the smaller the angle the better the approximation), the tangent of the
angle is approximately equal to the angle itself, expressed in radians; and the sine of the angle is approximately equal to the
angle itself, expressed in radians. In fact,

and

where  is in radians.

The small angle approximation allows us to write

[where we have replaced the  in Equation  above with  ].
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The constant v can be taken outside the limit yielding . But the  is the rate of change of the angle , which

is, by definition, the angular velocity . Thus

According to Equation , . Solving that for  we find that . Substituting this into our expression for  yields

Please sound the drum roll! This is the result we have been seeking. Note that by substituting  for v, we can also write our result
as

It should be pointed out that, despite the fact that we have been focusing our attention on the case in which the particle moving
around the circle is moving at constant speed, the particle has centripetal acceleration whether the speed is changing or not. If the
speed of the particle is changing, the centripetal acceleration at any instant is (still) given by Equation  with the  being the
speed of the particle at that instant (and in addition to the centripetal acceleration, the particle also has some along-the-circular-path
acceleration known as tangential acceleration). The case that we have investigated is, however the remarkable case. Even if the
speed of the particle is constant, the particle has some acceleration just because the direction of its velocity is continually changing.
What’s more, the centripetal acceleration is not a constant acceleration because its direction is continually changing. Visualize it. If
you are driving counterclockwise (as viewed from above) around a circular track, the direction in which you see the center of the
circle is continually changing (and that direction is the direction of the centripetal acceleration). When you are on the easternmost
point of the circle the center is to the west of you. When you are at the northernmost point of the circle the center is to the south of
you. When you are at the westernmost point of the circle, the center is to the east of you. And when you are at the southernmost
point of the circle, the center is to the north of you.
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