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6.1: Overview of Vectors

Basic Vector Definition

What we are really interested in now is describing how objects move. A very useful tool that will help us achieve this goal is the
concept of a vector. We can give a definition of a vector as something that exhibits both direction and magnitude. This concept
might appear abstract at first, but as we begin to use the vectors in different contexts, we will develop a deeper and richer
understanding. Remember how hard it was to define energy. Our understanding of energy continually increased as we applied the
idea to multiple physical phenomena. Similarly with vectors, even though we currently give it a short one-sentence
definition, understanding comes as we use the concept and work with it over the remainder of this and the next two chapters.

In Physics 7A we were only concerned with magnitudes of quantities, such as speed and mass of an object which was sufficient
information to calculate its kinetic energy. However, if you want to know precisely where in space a moving object will be after
some time, in addition to speed, we also need to know its direction. The velocity of an object is a vector quantity which describes
both its speed (magnitude of the velocity vector) and its direction. One example where the velocity is important to know is when
two objects are interacting. Two moving objects colliding head-on compared to two moving objects colliding while moving in the
same direction will yield very different outcomes, even if their speeds are the same in both scenarios. We will explore such
interaction when we discuss conservation of momentum in the next chapter. Force is another quantity where both the magnitude
(how strong is the push or pull) and then direction (in which direction is the push or pull) will matter to explain how an object will
react under the influence of forces. For example, two people pushing the table with the same strength in the same direction will
result in different dynamics (the table will move most likely) compared with the same strength is applied in opposite directions (the
table will not budge). Acceleration is another useful vector quantity which describes the rate of change of velocity and is directly
related to the forces acting on an object. We will explore the effects of forces in much greater details in this and the following
chapters.

Vector Representation

One way to represent vectors is with arrows pointing in the direction of the vector, where the length of the arrow represents the
magnitude of the vector. It is only the relative lengths of various arrows that matter, there is not rule that says that a specific length
represents a specific magnitude. For example, if we choose a length of 1 cm to represent a velocity vector with a speed of 10 m/s,
then another velocity vector whose length is double, 2 cm, will represent a speed of 20 m/s. We refer to the arrowhead as the head
of the vector, and the other end as the tail.

Let us explore vector representation in the context of a position vector, since it is perhaps the simplest vector quantity to apply to
every day experience. A position vector describes the location of an object relative to some point of reference. If you are trying to
describe the layout of your bedroom to your friend, you can use the door as the reference point, or the origin, of the position vectors
which will represent the locations of objects in your room. It is not sufficient to say that your desk is 9 feet away from the door.
Your friend will not know on which side of the room the desk located. Thus, to describe the position of your desk exactly, you need
a vector quantity to specify that your desk is 9 feet straight from the door. Rather then using "straight", "right" or "left", it is more
convenient to use the x-y coordinate system. Figure 6.1.1 below shows a set of position vectors to the center of objects in a
bedroom, where each grid square is one foot in distance. In the figure the positive x-direction is to the right of the door, the
negative x-direction is to the rest, the positive y-direction is straight ahead, and the negative y-direction is straight behind. We will
often use compass coordinates as well to describe direction: in Figure 6.1.1 "north" represents straight from the door, east to the
right, and west to the left.

These vectors are two-dimensional since we are only concerned with where the various objects are located on the floor. If we also
represented the height of each object, then we would have to describe the vector in three-dimensions. For example, the bed is 5 feet
straight, 3 feet to the right, and 2 feet up from the floor. For now, we will mostly focus on two-dimensional vectors.

Figure 6.1.1: Position Vectors
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In print, a small arrow is put over the symbol to represent a vector. For example, force, position, velocity, and acceleration vectors

are represented as F', 7, v, and a. In this book we will stick to this notation, but in other text you might encounter a bold symbol for
vector notation (such as F, r, v, a).

Vectors are represents by their components, which are the values of the vectors in each of the spacial direction. For example, the
position vector of the desk in Figure 6.1.1 has a component of 0 ft in the x-direction and of 9 ft in the positive y-direction. To write

down the values of the vectors we will use the following notation: A= (Az, Ay, A,), where the values in the parenthesis are the
vector components. Note, the vector components can be either zero, positive, or negative depending in which quadrant the vector
lies in. The position vector for the desk is then written as, T'qesk = (0, 9) ft since it is precisely on 9 feet in the positive y-direction.
The dresser's position vector is Fqyesser = (—4, 4) ft since it is four feet from the door in the negative x-direction and four feet from
the door in the +y direction. Note, we have dropped the the z-component all together from the position vectors in this room, since
for this particular situation we are only concerned with the x-y position of the objects and not their heights. Thus, the z-component
is always zero in this particular description of position of objects.

This notation of the position vector, 7, fully describes the location of objects from the door, which is defined as the origin for all
position vectors. But this is not the only way to represent the position vector. One can also do it by using the magnitude (the
distance form the door to the object) and the direction. For example, the desk is a distance of 9 feet in the positive y-direction (or

north) from the door. The notation for magnitude of a vector A is |A|, or sometimes you will encounter simply, A, without the
arrow over it to specify magnitude. Thus, either writing 7gesk = (0,9) or |Faesk| =9 ft pointing north are equivalent ways of
describing the position vector of the desk.

One way to represent the position vector of the bed is by components, 7,eq = (3,5) ft. But how do we describe it by using
magnitude and direction? We need to know how far the bed is from the door, we cannot simply count the squares in Figure
6.1.1 and get an exact answer. Using a ruler is one way to do it, but there is a more accurate calculation that can be done as
described shortly. Also, simply stating its direction as northeast or above the +x axis is not accurate, since it only specifies the first
quadrant but not the bed's exact location. Thus, we need to both calculate the distance and to specify the exact angle the vector

makes with the +x axis. To do so we need to turn to trigonometry. Consider the figure below which depicts some vector A with
components A, and 4,, A = (4,, 4,).

Figure 6.1.2: Vector Components
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The magnitude (length) of the vector makes a right triangle with the two components of the vector, where the magnitude is the

hypotenuse. Thus, to find the magnitude of the vector A= (Az, Ay) we can use the Pythagorean theorem:

Al =\/A2+ 43 (6.1.1)

To find the angle, 8 shown in the figure above, we can use the property of a tangent:
A,y
0 = arctan (‘A_D (6.1.2)

We use the absolute value symbol in Equation 6.1.2 since we want to describe the direction by stating the angle between 0° and

90°, and then by specifying the quadrant either by stating, for example, the vector points "down from the negative x-axis" or using
the compass coordinate "southwest". Thus, even if the x- or y- components are negative you should use the absolute values of these
components when calculating the angle.

Returning to the position vector of the bed, Ppeq = (3,5) ft, we can now use the trigonometric properties, described above, to

represent the vector with its magnitude |Fpeq| = v/3% +52 =5.83 ft and angle of § = arctan (%) =59° above the positive x-

axis or pointing northeast. The position vector of the closet, Feloset = (—5,9) ft has magnitude of |Fheq| = 1/5% +9% =10.3

ft and direction of § = arctan (%) =60.9" above the negative x-axis or pointing northwest.

You might be wondering why one should bother to express the vector in terms of magnitude and direction direction
since expressing the vectors in Figure 6.1.1 directly in terms of components is simpler, you can read the values of the x- and y-
components directly from the figure using the provided grid and scale. However, sometime information for a vector quantity is
provided or measured directly in terms of magnitude and direction. And it is also more intuitive to picture the location of a bed if
one gave you the information in terms distance and angle from the door rather than in terms of components. In other words, instead
of measuring directly that the closet is 5 feet east and 9 feet north from the door, you may have measured with a ruler the distance
of 10.3 feet from the door and with a protractor an angle of 60.9° above the negative x-axis. Having this information does describe
the vector completely, but it is still often very useful to represent in terms of its components, as we will see shortly below when

discussing adding and subtracting vectors. We can find the components from the magnitude |A| and direction 6 plus quadrant,
by using trigonometry once again. From Figure 6.1.2 using the definition of sine and cosine the x- and y- components of the vector
in terms of magnitude and angle are given by:

A, =|A|cosb (6.1.3)
A, =|A|sing (6.1.4)

Let us check that these equations give us the correct components for the closet's position vector, if you were just told that the closet
is 10.3 feet away from the door and at an angle of 60.9° northwest. Using the equation above and noting that "northwest" implies
that the the x-component will be negative and the y-component positive we find that, r, = —(10.3 ft) c0os60.9° = —5 ft and
ry = (10.3 ft) sin60.9° = 9 ft , resulting Fe1oset = (—5,9) ft as expected.
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Adding and Subtracting Vectors

As we introduce new models in the following chapters, we will see multiple applications where we will need to add or subtract
vectors. Adding vectors is not as trivial as adding scalar quantities. We know that the combined mass of a 2kg and a 3kg objects
is 5kg. But we cannot simply add magnitudes of vectors together to obtain the magnitude of combined vectors. This method would
only work if the two vectors point in the same direction. For example, if you walk 2 feet north and then walk 3 more feet also
north, the combined vector (which represents walking directly from the start to end) is indeed the sum of the magnitudes pointing
in the same direction, 5 feet north. However, let us look at another example as depicted in the figure below.

Figure 6.1.2: Vector Addition
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In this scenario, you walk to your dresser first, and then to your desk. This is equivalent to walking to your desk directly, 9 feet
north. But 9 feet is clearly a shorter distance than the distance to get to the dresser plus the distance to walk to the desk. Thus, we
cannot simply add magnitudes of the position vectors 7; and 75 in Figure 6.1.2.

Our goal is to come up with a method such that adding the position vector to the dresser, 71, with the position vector from the
dresser to the desk, 71, gives us the position vector directly to the desk, here defined as 7', and represented by the bolder blue
arrow in Figure 6.1.2: 74 =71 +79 . Let us represent the vectors by components. The position vector to the dresser is
71 = (—4,4). When representing 75 we have to remember that all position vectors are defined relative to the origin (0,0) defined at
the location of the door. Thus, although the tail of the vector is at the location of the dresser, it must be respresented relative to the
origin. You can always take the vector 75 and move it to the location of the door (origin) preserving the length and direction of the
vector. From figure 6.1.2, you can simply count the number of squares in the x- and y- directions starting from the tail of
T9, resulting in 75 = (4, 5). The total vector, directly to the desk is 7'4,; = (0,9). You can see from the components of 7; and 72
that to obtain the components of the total vector, you need to sum the x-components, ?tot’m =—4+4 =0, to get the x-component
of the total vector, and likewise you need to sum the y-components, 74, =4 +5 =9 . Mathematically, the sum of two vectors is
written as:

lzl‘tot = 111 +AZ = (Al,z +A2,z’ Al,y+A2,y) (615)

To obtain the magnitude and direction of the total vector, you can use Equations 6.1.1and 6.1.2.

You can also see from Figure 6.1.2 that the tail of ¥ is positioned at the head of 1, and the sum of the two vectors, 7, is
positioned such that its tail is at the tail of 71 and its head is at the head of 5. This describes the geometric method of vector
addition, known as the head-to-tail method. Take three vectors shown in Figure 6.1.3 and move them such that the head of one
vector touches the tail of the next one as shown on the right figure. The resultant vector, 74, is drawn from the tail of the first
vector to the head of the last vector as shown.

Figure 6.1.3: Head-to-Tail Method for Vector Addition
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To check this method, let us sum the three vectors by components:
Tiot =71 +72+73=1(0,3)+(4,—-1)+(—4,-4)=(0+4—-4,3—-1—4)=(0,-2), (6.1.6)

which is exactly the vector 74,; drawn in Figure 6.1.3.

Example 6.1.1

An apple tree is positioned 3 meters away from you pointing 50° southwest. And orange tree is is positioned 6.5 meters away
from the apple tree, in the direction of 25° pointing southeast from the apple tree. If you were to walk directly from your
location to the orange tree, how far should you walk an in which direction (angle and compass direction)?

Solution

It is often much easier to solve problems that involve vector algebra if you first draw then out, if they are not drawn for you
already. The figure below depicts the information provided in the problem.

50°

3m

apple &£ _

65m \
orange

Now you can see that the vector from the origin (your position) directly to the orange tree will point southeast and will have
a magnitude somewhere between 3 and 6.5 meters. In order to find the vector to the orange tree, we need to add the vector
from the origin to the apple tree with the vector from the apple to the orange tree. To do so, we first need to express both
vectors in terms of their components, then add them by components, and finally calculate the magnitude and angle of the
vector resulting from this addition.

The apple tree's position vectorr, in terms of components is:

T4 = |7q|(—cos @, —sinh) = 3m(—cos50°, —sin50°) = (—1.93, —2.30)m (6.1.7)
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The orange tree's position vectorr,, is:

To = |To|(cosB, —sinf) = 6.5m(cos25°, —sin25°) = (5.89, —2.75)m (6.1.8)

The sum of the two vectors Tt iS:
Ttot = Tq +70 = (—1.93 +5.89, —2.30 —2.75) = (3.96, —5.05) (6.1.9)

Magnitude of?tot is:

710¢| = v/ 3.96% +5.05% =6.42m (6.1.10)

Angle is:

5.05

0 = arctan (ﬁ

) = 51.9° (6.1.11)

in the southeast direction.

You can see the vector T4, represented by the thick blue arrow in the figure below.
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To subtract two or more vectors, we use a very similar method as adding vectors. As for scalar addition, the same principle
applies: the difference between two numbers is just the sum of one number plus the negative of another one: a —b =a+ (-b) .

Likewise, for vectors, Zi—g:&—i—(—g) . To negate a vector A you need to negative each component of that vector:
—A= (—Az, —Ay). This means that the direction of the vector flips by 180° when you negate a vector. For example a vector
A= (4,3) has a magnitude of 5 and points northeast at 53.1° from the positive x-axis. The negative of this vector
—2 = (—4, —3) still has the same magnitude of 5, but now points southwest with an angle of 53.1° below the negative x-axis, so

—Ais just A rotated by 180°. Therefore, to subtract vectors geometrically, you need to flip the vector(s) being subtracted by 180°,
and then apply the usual head-to-tail method for addition. To subtract vectors by components, you simply need to subtract each
component individually:

Ay — Ay =(Ayp— Ag gy Ay y— Ayy) (6.1.12)

In the next few chapters we will focus on analyzing motion of objects. One important property of a moving object is its
displacement, a vector quantity which describes both the distance by which an object moved in some interval and the direction in
which it moved. If the initial position of an object is some location A and its final position is another location B, displacement
vector points from A to B.

Figure 6.1.4 below shows two locations A and B, described by position vectors 74 and 7 g, respectively. If an object changed its
position from point A to B, then the displacement vector is A7 yp =75 — 7 4 , as drawn pointing from A to B. The right side of the
figure depicts the head-to-tail method for obtaining A7 45 from the two position vectors. Vector 7 4 is flipped 180°, and its tail is
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placed at the head of 7 3. The summation vector pointing from the tail of 7 5 to the head of —7 4 represents the displacement vector
¥p—74. Note, two vectors are equivalent as long as their magnitude and direction is the same, so you can see, by eye, that the

displacement vectors in both figures look the same.
Figure 6.1.4: Displacement Vector
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Generally, the displacement vector represents a vector which points from some initial position, %, to a final position f:

AT =7;—T7; (6.1.13)

N

Example 6.1.2
Three position vectors are added resulting in a net vector pointing north with a magnitude of 5 meters. The first vector points
northwest at 70°, the second vector points south and has a magnitude of 2m, and the third vector points east. Find the

magnitude of the third vector.

Solution

The graph below depicts the provided information.

- y
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The three vectors add up to the total vector:

Tiot =T1+72 +73 = (—|71| cos 70° + 73 4, |F1|sin70° — 2) = (0, 5) (6.1.14)

Let us split the equation above in terms of components:
Tiot,e = —|71] c0s70° + 73, =0 (6.1.15)
Tioty = |71]8in70° —2 =5 (6.1.16)
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Looking at the equation above, we can first solve for the magnitude of 71 using the y-components since that's the only
unknown in the y-direction, and then use the result to solve for the magnitude of 7'3.

Solving for the magnitude of 71 :

- 3
|7‘1|:m:3.19m (6117)

Now plugging in this result in the equation in the x-direction and solving for r3,:
T3z = 3.19 cos 70° = 1.09m (6.1.18)

Since the vector T3 only has a component in the x-direction, its magnitude is just its x-component: |7'3| = r3, = 1.09m.

Velocity and Acceleration Vectors

We just defined the displacement vector which is a vector representing the change in position as an object moves from an initial to
a final location. The velocity vector will give us additional information, specifically how fast the object is moving in the direction
of displacement. Since the velocity of the object does not need to be constant, we define the average velocity, Ugyg, which is the
average rate of displacement, A¥, over time, At, that it took to move from the initial to final state:

A7
Vawg = IZ (6.1.19)

A given motion may cover a lot of distant and takes a long time, there could be a lot of variation in both speed and direction of
motion between the initial and final locations, so a lot of information might be missing from knowing only the average velocity.
Therefore, it is also useful to define instantaneous velocity, v, over some small time period dt:

- .. Ar dr
v=lim — = — (6.1.20)
At—0 At dt

Figure 6.1.5 below shows an example of a path you take marked by a dashed line to move from location A to B to C. It is important
to realize that displacement vector does not describe a particular path an object takes to move between two locations, but it is a

vector which points from some initial location to a final location, regardless of the path taken to move between the two locations.

Figure 6.1.5: Displacement Example
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In the example depicted in Figure 6.1.5, even though the path is described by the dashed lines, the displacement vector,
AF 4o =7¢c—7,4 , points directly from A to C. Reading from the grid we find by subtracting the two position vectors that
A7 40 =(-2,3)—(0,—4) = (—2,7) ft , which is the same result you could obtain by simply reading the components of the
displacement vector directly from the graph. If the entire path took 60 seconds to complete, then the average velocity would be:
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At 60 sec o

Note, when you divide or multiple a vector by a constant, you simply need to divide or multiple each component by that constant,
SO Ugwg = (—1/30,7/60) ft/sec. The average speed is the magnitude of the velocity vector resulting in vg,y = 0.121 ft/sec, and
the angle is calculated to be § =74.1° in the northwest direction. Although, you never take the path directly in the northwest
direction, this is just the average velocity over the entire path.

Vavg =

Knowing the average velocity as calculated above does not give us any information about the specific path that you took to get
from location A to C. Let us assume that on your journey between locations A and B you were walking with a constant speed and it
took 15 seconds to cover the distance between A and B. This information allows us to compute your instantaneous velocity
between points A and B, v = (—2/15,0) ft/sec, which tells us that you moved at a speed of 0.133 ft/sec in the west direction
during that portion of the path. If the profile of your motion is not described by a simple constant speed and a straight line direction,
but rather given by some curve, you would need to use the derivative definition of instantaneous velocity given in Equation 6.1.2(.

Another important vector quantity that we will discuss in greater detail in later chapters is acceleration which describes the rate of
change of velocity. If the motion is at a constant speed and in a straight line (no change in direction), the the acceleration is zero.
However, if the speed and/or direction are changing then the object will experience non-zero acceleration which we will relate to
forces acting on the object in the next section. Like for velocity, we can define an average acceleration as the rate of change of
velocity from some initial velocity, v; , to a final velocity, ¥ £, over a time period, At:

. Ay

Qgqvg = Tt (6122)

The average velocity does not tell us about variations of changes in velocity between the intial and final times. So instantaneous
acceleration is sometimes a more useful quantity to define:
L .. Av dv
a=1 —

av 6.1.23
A0 At dt ( )

Alert

When an object is accelerating, in every day language, it is interpreted as the object is speeding up. In physics, the proper
definition of acceleration is the rate of change of velocity. This means that when acceleration is not zero, the object can be either
speeding up, slowing down, or changing direction. Often the word "deceleration" is used to describe the act of slowing down,
but in physics we will always refer to any kind of velocity change as "acceleration".

This page titled 6.1: Overview of Vectors is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Dina Zhabinskaya.
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