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9.6: Quantum Harmonic Oscillator
In Physics 7A we extensively studied the spring-mass system, which is an example of a harmonic oscillator. Classically, a harmonic
oscillator describes the motion of a particle whose motion is governed by a restoring force, , where  is the force
constant and  is the displacement from equilibrium. The negative sign in the force equation assures that the force always points
toward equilibrium, where the potential energy is minimized. The potential energy of a harmonic oscillator is given by:

 

We saw in Section 8.2 that the harmonic oscillator moves in a sinusoidal manner around equilibrium with frequency:

A quantum mechanical analysis of the harmonic oscillator is useful since it can describe similar behavior on a microscopic scale,
and it can be a good model for vibrations of molecules in gasses or atoms in solids and can help develop the theory of heat capacity.
To solve for the energy levels and wave functions of the quantum harmonic oscillator (QHO) one needs to solve the Schrödinger
equation with the harmonic oscillator potential energy. Going through the solution is beyond the scope of this course, but we can
predict that the energy should be proportional to , where the frequency is defined in Equation . If fact it turns out that the
energy quantization for a quantum harmonic oscillator is given by the following expression below:

Note, that unlike for the two previous systems we studies, the lowest energy state is when n=0. Thus, the energy of the ground state
of the system is given by:

The energies of remaining states can be written in terms of the ground state:

The figure below show the quadratic potential energy of the harmonic oscillator and marks the eight lowest energy levels of a
quantum harmonic oscillator. For a classical oscillator any total energy can be added to the system. For example, for a spring-mass,
you can add any amount of energy to the system by pulling the spring away from equilibrium by some arbitrary amount before
releasing it. Quantum mechanically, however, the figure shows that only discrete levels of total energy are allowed. Another unique
feature of the quantum harmonic oscillator is that there are oscillations at the lowest possible energy, . Thus, a quantum
harmonic oscillator will vibrate even at zero temperature.

Figure 9.6.1: Energy Levels of a Quantum Harmonic Oscillator
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Unlike the case for a one-dimensional infinite box, where the energy level spacing grew with energy, or the hydrogen-like atom,
where the energy levels got closer together with increasing energy, for a quantum harmonic oscillator all energy levels are equally
spaced. The spacing between two neighboring levels is:

The quantization of energy also helps us understand the freezing of vibrational modes that we learned about in Physics 7A. Let us
consider a diatomic molecule that vibrates at a frequency . From Physics 7A, recall that the “typical” amount of thermal energy
available per mode is , where  is Boltzmann’s constant, , and  is the temperature (expressed in
Kelvin). For the atoms to vibrate two vibrational modes must be activated – one potential and one kinetic. The amount of thermal
energy available to two modes is . To transfer the system to a higher state, it must gain an amount of energy  as
derived in Equation . If the thermal energy  available is less than , then the molecule does not have enough energy to
go up an energy level. We say the vibrational modes are frozen out because we cannot transfer energy into them. When the amount
of thermal energy is high enough to overcome the gap between energy levels, then energy can transfer into the vibrational energy of
the atoms, and we say a vibrational mode has been activated. The thermal energy available per mode is controlled by the value of
temperature .

Example 

Oxygen gas O  has a vibrational frequency of . 

a) Calculate the temperature required to active the vibrational modes of O .

b) Determine the wavelength of the absorbed photon when the vibrational mode is activated.

Solution

a) To calculate the temperature required to activate vibrational modes, we need to set the energy gap of the quantum
harmonic oscillator to the thermal energy of vibrational modes for a diatomic molecule: 

Solving for temperature:
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b) The energy gap is equal to the energy of the photon:

The frequency  in the equation above is the vibrational frequency of O  and not the frequency of the photon. Solving for the
wavelength:
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