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8.3: Multi-Dimensional Waves

Sound Waves

Sound is a wave in the sense that we have already defined. However, sound waves in air behave differently from the material waves
we have described so far. As we discussed in Physics 7A the bonds between particles in the air are virtually non-existent, so the
particles in the medium are non-interacting and do not exert forces on each other. The oscillations in the medium can no longer be
described in terms of restoring forces modeled by Hooke's Law. Instead, we can explain how sound wave propagate through air in
terms of variations in pressure. In other words, a sound wave can be described as a pressure wave. The pressure variations occur in
the same direction as wave propagation, so sound waves are longitudinal. 

Although, individual air particles do not oscillate about some equilibrium position, as a sound wave travels through air the
oscillation occur in the density or the pressure of the air. We learned in Physics 7A that air molecules move around rapidly in
random motion, but there are well-defined averages for density and pressure. Sound waves in air are the oscillation of the average
value of particle density (and therefore pressure) over distance scales much larger than the mean distance between particles. Thus
we can model sound wave considering only the pressure or density of the air.

While this is slightly different in form from the material waves, we can apply almost all of the same techniques that we have
already learned to sound waves. Fundamentally, however, sound waves are just material waves in a medium and so we may not be
surprised that the same techniques work.

Choosing pressure to describe sound waves, the sound wave equation becomes:

where  is the absolute pressure of the air at a given position  and at a time .  is the atmospheric pressure (i.e. the
equilibrium pressure).  is the amplitude of the pressure fluctuation (gauge pressure) from equilibrium, such that when the
displacement is at a crest, the pressure is at a maximum of , and when it's at a trough, the pressure is at a minimum of 

.

Note the similarities between this equation in terms of pressure and Equation  in terms of individual particle displacement. We
can therefore ascribe familiar parameters to sound waves, such as wavelength, period, and wave speed. We can also use the same
techniques from the previous section to plot the pressure against time at constant position, or pressure against position at constant
time.

Wavefronts and Rays
The wave equation we introduced in the previous section describes one-dimensional waves. However, in most cases waves
propagate in either two-dimensions (such as the surface of water) or in three-dimensions (such as sound or light). Although, we will
not introduce the mathematical representation of higher dimensional waves in this course, there are other representations for multi-
dimension waves which are useful. The figure belows shows a drawing of two-dimensional wavefronts, concentric circles are crests
(solid lines) and troughs (dashed lines) emanating from the source located at the center. The wavefornts spread as they move away
from the source, like ripples in a pond.

Figure 8.3.1: Wavefronts and Rays
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This is a snapshot representation of the location of crests and troughs at a specific time. At a later time, each wavefront would be
found further from the source and more wavefronts would be shown as new crests are troughs are generated by the source.
Each wavefront provides information about the relative times that they were generated Since the wavefronts move outward, the
wavefront which is furthest from the source was the first one that was generated, and the one closest to the source is the last one to
be emitted. Thus, time "increases inward" from the furthest to the closest wavefront. If we define  m to be the location of the
source, and  s is the time the first crest was generated, then the total phase of the furthest crest is . The furthest trough was
generated half a cycle later, at  s, so the total phase is bigger than that of the first crest's by , resulting in a total phase of 

. The phase of the next crest is a full cycle larger, or  bigger than the phase of the first crest, and so on. The
wavefront representation stresses that the total phase is a characteristic of a specific part of the wave.

The wavefront representation also contains information about the spacial periodicity of the wave, since distance between any
neighboring crests or troughs is one wavelength. However, since this is a snapshot, information about the temporal periodicity,
period or frequency, is lost in this representation. Also, since this is a "top view" of the wave propagating in two-dimensions,
information about amplitude cannot be obtain from this picture. In fact, as we will see shortly, amplitude is no longer a constant in
higher dimensional waves. Although complete information about the wave in lost in this representation, it is often an informative
tool for understanding certain wave phenomena, such as interference introduced in later sections. In three-dimensions the
concentric circles in Figure 8.3.1 would become concentric spherical shells. 

The arrows drawn in the figure provide yet another useful wave representation. The arrows only preserve the information about
wave direction. They are always drawn perpendicular to the wavefronts and point in the direction of wave motion. This
representation will be especially useful when we discuss optics as an application of various properties of light. Various optical
phenomena that we will study mostly arise due to the direction of the motion of rays of light. Thus, the most useful representation
for that unit will be the ray representation.

Most waves in nature are multi-dimensional. The only truly one-dimensional wave are those confined to a string or rope. However,
the one-dimensional wave representation is often a good approximation to multi-dimensional waves far away from the source.
Imagine an observer standing far away from a wave source and can only detect a small area of the wavefronts. This is represented
by the dashed rectangle in the figure below. To this observer the individual wavefronts look almost parallel. The further the
observer is from the source, the smaller portion of the wavefronts they can detect, the more parallel the wavefronts will appear.
If the wavefronts are parallel that means the wave is moving in one direction perpendicular to the wavefronts. This is illustrated on
the right "zoomed-in" picture of the wavefronts far from the source. The rays which are perpendicular to the wavefronts are all
parallel, implying one-dimensional motion of the waves.

Figure 8.3.2: Plane Waves
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This approximation of multi-dimensional waves distant from the source is known as plane waves. Thus, the one-dimensional wave
equation is often used to represent plane waves which originate from a source generating multi-dimensional waves. The distance
between two neighboring crests is preserved to measure one wavelength.

Wave Intensity

In the previous section we mentioned that amplitude is only preserved in one-dimensional waves. This is assuming that dissipative
effects of the medium are negligible. That is, the particles in the medium that oscillate do so without "friction." This means we are
assuming that all of the energy in the wave remains within the wave, and none of the energy is converted into thermal energy in the
medium. However, even neglecting friction amplitude no longer remains constant for multi-dimensional waves.

Consider now a wave radiating outward from a point source in two dimensions (think of a circular ripple on a pond caused by a
pebble). Each position in the medium contains a particle oscillating harmonically (like a mass on a spring), and as the wave
propagates outward, the number of oscillating particles increases. The particles in the medium are spaced the same everywhere, so
the number of particles encountered by the circular wave is proportional to its circumference, and therefore proportional to its
radius. This means that when the radius of the wave front doubles, it is oscillating twice as many particles in the medium. As the
wave moves out, there is no energy lost, so when the circle enlarges, the energy is distributed amongst a larger number of
oscillators. The energy in each oscillator is determined by its amplitude of oscillation, so for more oscillators to have the same
energy as fewer oscillators, their amplitudes must decrease.

Figure 8.3.3: Circular Wave Energy Conservation
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Let us see how the energy of the oscillator is related to amplitude. Recall, from 7A the total energy of a spring-mass system is the
sum of kinetic and potential energy:

Amplitude is defined to be the maximum displacement from equilibrium (x=A), when the speed of the oscillator is zero
(turnaround point). This results in the following expression for the total energy:

Thus, the energy per oscillator is proportional to the square of the amplitude. This means that doubling the radius of the circle
which doubles the number of oscillators between which this same energy is shared, the square of amplitude of each
oscillation reduces by half, and the amplitude by a factor of . Tripling the radius reduces the amplitude by a factor of , and so
on. In other words, amplitude is proportional to the inverse square-root of the radius:

The figure above shows what happens to the amplitude of the wave in cross-section as it goes from a radius of 1 wavelength to 3
wavelengths.

The wave doesn't change its velocity from the inner circle to the outer circle, so the rate at which energy passes through each circle
must be the same. What is different about two circles is the density of the energy contained in each. For the smaller circle, the
energy is distributed over a smaller circumference than for the larger circle, so the energy density becomes smaller as the wave
propagates outward, even though the total energy is constant. We can define power density in the same manner – by dividing the
power of the wave (which is the same for both rings, and everywhere else) by the size of the region through which it is passing.
This "power density" is called intensity. For our two-dimensional wave, this is the ratio of the power of the wave and the
circumference of the circle through which it is passing:

Therefore, the intensity of a two-dimensional wave radiating outward from a central point varies in inverse proportion to the
distance from the central source. We find that the intensity is proportional to the square of the amplitude:
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It turns out that the proportionality of intensity and square amplitude was the case for one-dimension as well. For a one-
dimensional wave, the energy density does not change, because all of the energy is handed from one oscillator to another
neighboring single oscillator. Therefore the power density (intensity) doesn't change, which is consistent with what we already
know; the amplitude of a one-dimensional wave remains constant.

Far more common in our studies are three-dimensional waves with central sources (namely sound and light), and the power density
in these cases involves dividing by a spherical surface area, rather than a circle. In this case, the intensity of the wave has units of
watts per square meter (whereas the intensity of the two-dimensional wave had units of watts per meter), and we have:

Once again we find the same relationship between intensity and amplitude. The same mechanism is at work: as the wave moves
outward from a central point, the number of oscillators on each spherical surface is proportional to the surface area. Doubling the
radius of a spherical surface quadruples the surface area, so the number of oscillators grows with the square of the radius. This
means that the energy per oscillator drops with the square of the radius, and the amplitude is inversely-proportional to the radius:

The relation between intensity and amplitude is therefore universal among waves, and one that we will keep in mind in the sections
to come.

This page titled 8.3: Multi-Dimensional Waves is shared under a not declared license and was authored, remixed, and/or curated by Dina
Zhabinskaya.

1.3: Energy Transmission by Tom Weideman is licensed CC BY-SA 4.0. Original source: native.
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