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7.7: Examples

Example 7.7.1: Braking

Suppose you are riding your bicycle and hit the brakes to come to a stop. Assuming no slippage between the tire and the road:

a. Which force is responsible for removing your momentum? (By “you” I mean throughout “you and the bicycle.”)
b. Which force is responsible for removing your kinetic energy?

Solution

(a) According to what we saw in previous chapters, for example, Equation (6.1.10)
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the total momentum of the system can only be changed by the action of an external force, and the only available external force

= Fext,net (771)

is the force of static friction between the tire and the road (static, because we assume no slippage). So it is this force that
removes the forward momentum from the system. The stopping distance, Az, and the force, can be related using Equation
(7.3.1):

F$,Azem = DKo, (7.7.2)

(b) Now, here is an interesting fact: the force of static friction, although fully responsible for stopping your center of mass
motion does no work in this case. That is because the point where it is applied—the point of the tire that is momentarily in
contact with the road—is also momentarily at rest relative to the road: it is, precisely, not slipping, so Az in the equation
W = F Az is zero. By the time that bit of the tire has moved on, so you actually have a nonzero Az, you no longer have an F":
the force of static friction is no longer acting on that bit of the tire, it is acting on a different bit—on which it will, again, do no
work, for the same reason.

So, as you bring your bicycle to a halt the work Wz «s = 0, and it follows from Equation (7.4.8) that the total energy of your
system is, in fact, conserved: all your initial kinetic energy is converted to thermal energy by the brake pad rubbing on the
wheel, and the internal force responsible for that conversion is the force of kinetic friction between the pad and the wheel.

Example 7.7.2: Work, energy and the choice of system- dissipative case

Consider again the situation shown in Figure 7.4.3. Let m; = 1 kg, my = 2 kg, and pu; = 0.3. Use the solutions provided in
Section 6.3 to calculate the work done by all the forces, and the changes in all energies, when the system undergoes a
displacement of 0.5 m, and represent the changes graphically using bar diagrams like the ones in Figure 7.4.1 (for system A
and B separately)

Solution

From Equation (6.3.11), we have
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We can use the acceleration to calculate the change in kinetic energy, since we have Equation (2.2.10) for motion with constant
acceleration:

2
v} —of =2aA2 =2 x (5.55 s%) X0.5m=5.55 —- (7.7.4)

so the change in kinetic energy of the two blocks is

f
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AK; = %ml (2 -02) =2.783
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We can also use the tension to calculate the work done by the external force on each system:

Wewt,a = F! 1Az =(8.49N) x (0.5m) =4.25J
Wen,p = FyAy = (8.49 N) x (—0.5 m) = —4.25 J. (7.7.6)

Lastly, we need the change in the gravitational potential energy of system B:
m
AUS = magAy = (2 kg) x (9.8 5—2) x (—0.5m) =—9.8J (7.7.7)
and the increase in dissipated energy in system A, which we can get from Equation (7.4.16):
ABEgy = —F* Az = p F™ Az = pmygAz = 0.3 x (1 kg) x (9.8 32) % (0.5 m) = 1.47 J. (7.7.8)
' ’ s

We can now put all this together to show that Equation (7.4.8) indeed holds:

Wepts =AEg =AK; +AEg,, =2.78 J+1.477 =4.25]
Wetp =AEp=AK, + AUS =5.55J—9.8J = —4.25 J. (7.7.9)

To plot all this as energy bars, if you do not have access to a very precise drawing program, you typically have to make some
approximations. In this case, we see that AK, =2AK; (exactly), whereas AK; ~2AFE;,,, so we can use one box to
represent Eg;ss, two boxes for AKj, three for Weg 4, four for AK5, and so on. The result is shown in green in the picture
below; the blue bars have been drawn more exactly to scale, and are shown for your information only.
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Example 7.7.3: WOTrk, energy and the choice of system- non-dissipative case

Suppose you hang a spring from the ceiling, then attach a block to the end of the spring and let go. The block starts swinging
up and down on the spring. Consider the initial time just before you let go, and the final time when the block momentarily
stops at the bottom of the swing. For each of the choices of a system listed below, find the net energy change of the system in
this process, and relate it explicitly to the work done on the system by an external force (or forces)

a. System is the block and the spring.
b. System is the block alone.
c. System is the block and the earth.

Solution

(a) The block alone has kinetic energy, and the spring alone has (elastic) potential energy, so the total energy of this system is
the sum of these two. For the interval considered, the change in kinetic energy is zero, because the block starts and ends
(momentarily) at rest, so only the spring energy changes. This has to be equal to the work done by gravity, which is the only
external force.

So, if the spring stretches a distance d, its potential energy goes from zero to %kd2, and the block falls the same distance, so
gravity does an amount of work equal to mgd, and we have
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1
Wyraw =mgd = AEg,, = AK+ AU =0+ Ekdz. (7.7.10)

(b) If the system is the block alone, the only energy it has is kinetic energy, which, as stated above, does not see a net change in
this process. This means the net work done on the block by the external forces must be zero. The external forces in this case are
the spring force and gravity, so we have

Wepr + Wiy = AK =0, (7.7.11)

We have calculated W, above, so from this we get that the work done by the spring on the block, as it stretches, is —mgd,
or (by Equation (7.7.10)) f%de. Note that the force exerted by the spring is not constant as it stretches (or compresses) so we
cannot just use Equation (7.2.1) to calculate it; rather, we need to calculate it as an integral, as in Equation (7.2.6), or derive it
in some indirect way as we have just done here.

(c) If the system is the block and the earth, it has kinetic energy and gravitational potential energy. The force exerted by the
spring is an external force now, so we have:

Wepr = AEgys = AK+AU% =0 —mgd (7.7.12)

so we end up again with the result that W,, = —mgd = —%k:d2 . Note that both the work done by the spring and the work
done by gravity are equal to the negative of the changes in their respective potential energies, as they should be.

Example 7.7.4: Jumping

For a standing jump, you start standing straight (A) so your body’s center of mass is at a height h; above the ground. You then
bend your knees so your center of mass is now at a (lower) height h» (B). Finally, you straighten your legs, pushing hard on the
ground, and take off, so your center of mass ends up achieving a maximum height, h3, above the ground (C). Answer the
following questions in as much detail as you can.

a. Consider the system to be your body only. In going from (A) to (B), which external forces are acting on it? How do their
magnitudes compare, as a function of time?

b. In going from (A) to (B), does any of the forces you identified in part (a) do work on your body? If so, which one, and by
how much? Does your body’s energy increase or decrease as a result of this? Into what kind of energy do you think this
work is primarily converted?

c. In going from (B) to (C), which external forces are acting on you? (Not all of them need to be acting all the time.) How do
their magnitudes compare, as a function of time?

d. In going from (B) to (C), does any of the forces you identified do work on your body? If so, which one, and by how much?
Does your body’s kinetic energy see a net change from (B) to (C)? What other energy change needs to take place in order
for Equation (7.4.8) (always with your body as the system) to be valid for this process?

Solution

(a) The external forces on your body are gravity, pointing down, and the normal force from the floor, pointing up. Initially, as
you start lowering your center of mass, the normal force has to be slightly smaller than gravity, since your center of mass
acquires a small downward acceleration. However, eventually F™ would have to exceed F'¢ in order to stop the downward
motion.

(b) The normal force does no work, because its point of application (the soles of your feet) does not move, so Az in the
expression W = F'Az (Equation (7.2.1)) is zero.

Gravity, on the other hand, does positive work, since you may always treat the center of mass as the point of application of
gravity (see Section 7.3, footnote). We have FyG =—mg, and Ay = hy —hy , so

Wy = FF Ay = —mg(hy —h1) =mg(hy — hy).

Since this is the net work done by all the external forces on my body, and it is positive, the total energy in my body must have
increased (by the theorem ((7.4.8)): West,sys = AEgys ). In this case, it is clear that the main change has to be an increase in
my body’s elastic potential energy, as my muscles tense for the jump. (An increase in thermal energy is always possible too.)
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(c) During the jump, the external forces acting on me are again gravity and the normal force, which together determine the
acceleration of my center of mass. At the beginning of the jump, the normal force has to be much stronger than gravity, to give
me a large upwards acceleration. Since the normal force is a reaction force, I accomplish this by pushing very hard with my
feet on the ground, as I extend my leg’s muscles: by Newton’s third law, the ground responds with an equal and opposite force
upwards.

As my legs continue to stretch, and move upwards, the force they exert on the ground decreases, and so does F'", which
eventually becomes less than F'¢. At that point (probably even before my feet leave the ground) the acceleration of my center
of mass becomes negative (that is, pointing down). This ultimately causes my upwards motion to stop, and my body to come
down.

(d) The only force that does work on my body during the process described in (c) is gravity, since, again, the point of
application of F'" is the point of contact between my feet and the ground, and that point does not move up or down—it is
always level with the ground. So Weys sys = Wirao , which in this case is actually negative: Wy,q, = —mg(hs — hs) .

In going from (B) to (C), there is no change in your kinetic energy, since you start at rest and end (momentarily) with zero
velocity at the top of the jump. So the fact that there is a net negative work done on you means that the energy inside your body
must have gone down. Clearly, some of this is just a decrease in elastic potential energy. However, since hg (the final height of
your center of mass) is greater than h; (its initial height at (A), before crouching), there is a net loss of energy in your body as
a result of the whole process. The most obvious place to look for this loss is in chemical energy: you “burned” some calories in
the process, primarily when pushing hard against the ground.
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