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1.1: Fundamental Postulates
The properties of ordinary matter are a consequence of the forces acting between charged particles. Extensive experimental
investigations have established the following properties of electrical charges:

(1) There are two kinds of charges. These have been labeled positive charge and negative charge.

(2) Electrical charge is quantized. All particles so far observed carry charges which are integer multiples of the charge on an
electron. In the MKS system of units, the charge on an electron is e = −1.60x10  Coulombs. By definition, the electron carries a
negative charge and a proton carries a positive charge; the charge on a proton is +1.60x10  Coulombs. No one knows why charge
comes in multiples of the electron charge.

(3) Equality of the positive and the negative charge quantum. The quantum of positive charge and the quantum of negative
charge are equal to at least 1 part in 10 . This has been determined from experiments designed to measure the net charge on
neutral atoms.

(4) In any closed system charge is conserved. This means that the algebraic sum of all positive charges plus all negative charges
does not change with time. This does not mean that individual charged particles are conserved. For example, a positron, which
carries a positive charge of 1.60x10  Coulombs, can interact with an electron, which carries a negative charge of 1.60x10
Coulombs, in such a way that the electron and positron disappear and two neutral particles called photons are produced. The total
charge before and after this transformation occurs remains exactly the same, namely zero. The individual charged particles have
disappeared but the total charge has been conserved.

(5) Charges generate electric and magnetic fields. Charged particles set up a disturbance in space which can be described by two
vector fields; an electric field, , and a magnetic field, . The units of the electric field are Volts/meter; the units of the magnetic
field are Webers/m  . Since these are vector fields they are characterized by a direction and a magnitude. Each of these fields at any
point in space can be described by its components along three mutually perpendicular axes. For example, with respect to a
rectangular cartesian system of axes, xyz (see Figure (1.1.1)),

Figure : A cartesian co-ordinate system used to specify an electric vector field

the electric field can be resolved into the three components E (x,y,z,t), E (x,y,z,t), and E (x,y,z,t) where the magnitude of the

electric field is given by . The components of these fields depend upon the orientation of the co-ordinate

system used to describe them, however the magnitude of each field must be independent of the orientation of the co-ordinate
system.

(6) The fields E and B are real physical objects. These fields can carry energy, momentum, and angular momentum from one
place to another.

(7) The electromagnetic forces on a charged particle, q, can be obtained from a knowledge of the fields E, B generated at the
position of q by all other charges. The force in Newtons is given by

where  is the particle velocity in meters/sec. (Notice that  has the units of an electric field divided by a velocity). Formula
(1.1.1) applies to a spinless particle. In actual fact the situation is more complicated because most particles carry an intrinsic
magnetic moment associated with its intrinsic angular momentum (spin). In the rest system of the particle its magnetic moment is

−19

−19

20

−19 −19

E

⃗ 

B

⃗ 

2

1.1.1

x y z

E = + +E

2

x

E

2

y

E

2

z

− −−−−−−−−−−

√

= q[ +( × )]F

→

E

→

v

→

B

→

(1.1.1)

v

⃗ 

B

⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22713?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/01%3A_Maxwells_Equations/1.01%3A_Fundamental_Postulates


1.1.2 https://phys.libretexts.org/@go/page/22713

subject to a torque due to the presence of the field , and to a force due to spatial gradients of . These magnetic forces will be
discussed later. For the present we shall discuss only spinless charged particles, and we shall ignore the fact that real charged
particles are more complicated.

(8) Superposition. Electric and magnetic fields obey the rules of superposition. Given a system of charges which would by
themselves produce the fields , ; given a second system of charges which would by themselves produce the fields ,  ;
then together the two systems of charges produce the total fields

This rule enormously simplifies the calculation of electric and magnetic fields because it can be carried out particle by particle and
the total field obtained as the vector sum of all the partial fields due to the individual charges.

(9) A Stationary Charged Particle. In the co-ordinate system in which a charged particle is stationary with respect to the observer
the electric and magnetic fields which it generates are very simple:

Figure : The fields generated by a point charge of q Coulombs at  that is stationary with respect to the observer located at 

. .

Equation ( ) is called Coulomb’s law. See Figure (1.1.2)

The electric field strength is measured in Volts/meter. The amplitude of the electric field decreases with distance from the charge
like the square of the distance ie. ~  where the exponent is equal to two within 1 part in 10 . The MKS system of units has been
used to write eqn( ) in which the charge is measured in Coulombs. A current of 1 Amp`ere at some point in a circuit consists of
an amount of charge equal to 1 Coulomb passing that point each second. Distances in ( ) are measured in meters. The factor of
proportionality is

where c = 2.9979×10  m/sec is the velocity of light in vacuum. The size of

is purely the consequence of the historical definitions of the Volt and the Amp`ere. A second system of units which is very
commonly used in the current magnetism literature is the CGS system in which distances are measured in centimeters, mass is
measured in grams, and time is measured in seconds. In the CGS system the unit of charge, the statcoulomb, has been chosen to
make Coulomb’s law very simple. In the CGS system the field due to a stationary point charge is given by

The price that is paid for the simplicity of Equation ( ) is that the conventional engineering units for the current and potential,
Amp`eres and Volts, cannot be used. The scaling factors between MKS and CGS electrical units involve the numerical value of the
velocity of light, c. For example, in the CGS system the charge on a proton is e  = 4.803 × 10  esu whereas in the MKS system it
is e  = 1.602 × 10  Coulombs. The ratio of these two numbers is
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(10) The Fields generated by a Moving Charged Particle. Consider a co-ordinate system in which a spinless charged particle
moves with respect to the observer with a constant velocity v which is much smaller than the speed of light in vacuum, c : ie. (v/c)
<< 1. The electric and magnetic fields generated by such a slowly moving charge are given by

These expressions are correct to order (v/c)  .  is the vector drawn from the position of the charged particle at the time of
observation to the position of the observer. Note that the moving charge generates both an electric and a magnetic field. The above
fields can be used to calculate the force on a particle q  located at :

The particle q of Equations ( ) generates the fields that exert forces on the particle q . Equations ( ) are simplified versions
of the general expressions for the electric and magnetic fields generated by a spinless point charge moving in an arbitrary fashion:
see ”The Feynman Lectures on Physics”, Volume II, page 21-1 (R.P.Feynman, R.B.Leighton, and M.Sands, Addison-Wesley,
Reading, Mass., 1964). These general expressions are

The label ”Retarded” refers to the retarded time  . The distances that appear in Equation ( ) and Equation ( )
are not evaluated at the time of observation, t, but at the earlier time, the retarded time, in order to take into account the finite speed
of light. Any change in position requires the minimum time R/c to reach the observer, where c is the speed of light in vacuum. This
corresponds to the requirement that changes in the motion of the particle can not be communicated to the observer faster than is
permitted by the speed of light in vacuum, see Figure (1.1.3).

For a slowly moving particle, the first two terms of Equation ( ) add together to give Coulomb’s law in which the distance R is
evaluated at the time of observation rather than at the retarded time; in other words, one can ignore time retardation if v/c is small.
The last term in Equation ( ) gives a field that is proportional to the component of acceleration perpendicular to the position
vector  in the limit (v/c) << 1. This field decreases with distance like 1/R as opposed to the 1/R  decrease of Coulomb’s law. It is
called the radiation field and is given by the expression

where  is the acceleration of the charge.
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Figure : The electric and magnetic fields generated at the point of observation P at the time t depend upon the position, the
velocity, and the acceleration of the charged particle at the retarded time .
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1.2: Maxwell’s Equations
In principle, given the positions of a collection of charged particles at each instant of time one could calculate the electric and
magnetic fields at each point in space and at each time from Equations (1.1.9) and (1.1.10). For ordinary matter this is clearly an
impossible task. Even a small volume of a solid or a liquid contains enormous numbers of atoms. A cube one micron on a side
(10 m × 10 m × 10 m) contains ∼ 10  atoms, for example. Each atom consists of a positively charged nucleus surrounded by
many negatively charged electrons, all of which are in motion and which will, therefore, generate electric and magnetic fields that
fluctuate rapidly both in space and in time. For most purposes one does not wish to know in great detail the space and time
variation of the fields. One usually wishes to know about the space and time averaged electric and magnetic fields. For example,
the magnitude and direction of  averaged over a time interval that is determined by the instrument used to measure the field.
Typically this might be of order 10  seconds or more; a time that is very long compared with the time required for an electron to
complete an orbit around the atomic nucleus in an atom (10  to 10  seconds). Moreover, one is usually interested in the value of
these fields averaged over a volume that is small compared with a cube ∼ 10  meters on a side but large compared with atomic
dimensions, ∼ 10  meters in diameter. In 1864 J.C.Maxwell proposed a system of differential equations that can be used for
calculating electric and magnetic field distributions, and that automatically provide the space and time averaged fields that are of
practical interest. These Maxwell’s Equations for a macroscopic medium are as follows:

where  and c is the velocity of light in vacuum. These equations underlie all of electrical engineering and much of
physics and chemistry. They should be committed to memory. In large part, this book is devoted to working out the consequences
of Maxwell’s equations for special cases that provide the required background and guidance for solving practical problems in
electricity and magnetism. In Equations (1.2.13 to 1.2.16)  is the permativity of free space; it has already been introduced in
connection with Coulomb’s law, Equation (1.1.3). The constant µ  is called the permeability of free space. It has the defined value

Maxwell’s equations as written above contain four new quantities which must be defined: they are

(1) , the current density due to the charges which are free to move in space, in units of Amp`eres/m  ;

(2) ρ , the net density of charges in the material, in units of Coulombs/m  ;

(3) , the density of magnetic dipoles per unit volume in units of Amps/m;

(4) , the density of electric dipoles per unit volume in units of Coulombs/m  . In Maxwell’s scheme these four quantities
become the sources that generate the electric and magnetic fields. They are related to the space and time averages of the position
and velocities of the microscopic charges that make up matter.

1.2.1 Definition of the Free Charge Density, ρ .
Construct a small volume element, ∆V , around the particular point in space specified by the position vector . Add up all the
charges contained in ∆V at a particular instant; let this amount of charge be ∆Q(t). Average ∆Q(t) over a time interval short
compared with the measuring time of interest, but long compared with times characteristic of the motion of electrons around the
atomic nuclei; let the resulting time averaged charge be < ∆Q(t) >. Then the free charge density is defined to be

The dimensions of the volume element ∆V is rather vague; it will depend upon the scale of the spatial variation that is of interest
for a particular problem. It should be large compared with atomic dimensions but small compared with the distance over which ρ
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changes appreciably.

1.2.2 Definition of the Free Current Density, .

The free charge density, , will in general change with time as charge flows from one place to the other; one need only think
of charge flowing along a wire. The rate at which charge flows across an element of area is described by the current density, 

. It is a vector because the charge flow is associated with a direction. The components of the current density vector can be
measured by counting the rate of charge flow across a small area ∆A located at the position specified by , and whose normal is
oriented parallel with one of the co-ordinate axes; parallel with the x-axis, for example (see Figure (1.2.4)).

Figure : The x-component of the current density caused by a moving charge distribution. The charge labelled Q is
representative of all charges passing through the x-oriented element of area, ∆A per unit time.

Now at time t measure the net amount of charge, < ∆Q >, that has passed through ∆A  in a small time interval, ∆t: positive charge
that flows in the direction from +x to -x is counted as a negative contribution; negative charge that flows from -x to +x also makes
a negative contribution. The x-component of the current density is given by

The other two components of  are defined in a similar manner. The time interval ∆t, and the dimensions of the elements of area,
∆A , ∆A , and ∆A  are supposed to be chosen so that they are large compared with atomic times and atomic dimensions, but small
compared with the time and length scales appropriate for a particular problem. Free charge density can be visualized as a kind of
fluid flowing from place to place with a certain velocity. In terms of this velocity the free current density is given by

In the process of charge flow electrical charge can neither be created nor destroyed. Because charge is conserved, it follows that the
rate at which charge is carried into a volume must be related to the rate at which the net charge in the volume increases with time.
The mathematical expression of this charge conservation law is

1.2.3 Point Dipoles.

In order to discuss the definitions of the two vector functions  and  it is first necessary to discuss the concepts of a
point electric dipole and a point magnetic dipole.

The Point Electric Dipole.

Most atoms in a substance are electrically neutral, ie. the charge on the nucleus is compensated by the electrons moving around that
nucleus. When examined from a distance that is long compared with atomic dimensions (∼ 10 m) the neutral atom produces no
substantial electric or magnetic field. However, if, on average, the centroid of the negative charge distribution is displaced from the
position of the nucleus the Coulomb field of the nucleus will no longer cancel the Coulomb field from the electrons. To fix ideas,
think of a stationary hydrogen atom consisting of a proton and an electron. The electron moves so fast that on a human time scale
its charge appears to be located in a spherical cloud which is tightly distributed around the nucleus (see Figure 1.2.5).
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In the absence of an external electric field the centroid of the electronic charge distribution will coincide with the position of the
nucleus. Under these circumstances the time-averaged Coulomb fields of the nucleus and the electron cancel each other when
observed from distances that are large

Figure : Upper figure: Sketch of a hydrogen atom in zero applied electric field. The nuclear charge is Q = 1.6 × 10
Coulombs. The time-averaged electron charge, -Q, is distributed in a spherically symmetric cloud around the nucleus having a
radius of approximately 5 × 10  m. Lower figure: Sketch of a hydrogen atom subjected to a uniform electric field E  . The
displacement of the centroid of the electron charge density relative to the nucleus has been exaggerated for the sake of clarity.

compared with 10 m. If the atom is subjected to an external electric field the nucleus is pulled one way and the centroid of the
electron cloud is pulled the other way (Equation (1.1.1)): there is an effective charge separation (see Figure 1.2.5). The Coulomb
fields due to the nucleus and the electron no longer exactly cancel. Let us use the law of superposition to calculate the field that
arises when two point charges no longer coincide; refer to Figure (1.2.6). The electric field at the point of observation, P, due to the
positive charge is given by

The electric field at P due to the negative charge is given by

Figure : Two charges equal in magnitude but opposite in sign are separated by the vector distance . By definition the dipole
moment of this pair of charges is  where  is the vector directed from the negative to the positive charge. 
are unit vectors directed along the x,y, and z axes.

Referring to Figure 1.2.6 one has

and

1.2.5

−19

−11
0

−10

= ( ) .E

⃗ 

+

q

4πϵ

0

r⃗ 

r

3

=− .E

⃗ 

−

q

4πϵ

0

⎛

⎝

⎜

+r

⃗ 

d

⃗ 

(| +r

⃗ 

d

⃗ 

|

3

⎞

⎠

⎟

1.2.6 d

⃗ 

= qp

⃗ 

d

⃗ 

d

⃗ 

, ,  and u

^

x

u

^

y

u

^

z

= x +y +z ,r

⃗ 

û

x

û
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For  oriented along the z-axis as shown in Figure 1.2.6,

so that

or

Upon dividing out r  this gives

From this expression one has

This is so far exact. Now make use of the fact that (d/r) is very small and use the binomial theorem to expand the radical. It is
sufficient to keep only terms linear in (d/r). The result is

Use this result to calculate the total electric field at the point of observation, P, correct to terms of order (d/r). The terms
proportional to

cancel leaving the field

By definition the dipole moment of the pair of point charges is given by . Moreover, , ie. it is equal to the scalar
product of the dipole moment and the position vector . Finally, the expression for the electric field generated by a stationary point
dipole can be written

Although this expression has been obtained for the particular case in which  is oriented along the z-axis, the result stated in
Equation ( ) is perfectly general and is valid for any orientation of the dipole moment .

Formula  is so fundamental that it should be committed to memory along with Coulomb’s law. The field distribution
around a point dipole is illustrated in Figure 1.2.7. The magnetic field generated by a stationary point dipole is zero; magnetic fields
are generated by charges moving with respect to the observer.

It is useful to write the dipole electric field in terms of it’s components with respect to a spherical polar co-ordinate system in which
the dipole is aligned along the z-axis, see Figure (1.2.8). These components are
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The Point Magnetic Dipole.

Atoms and molecules often carry a magnetic moment. These magnetic moments can arise as a result of the motion of electrons
around the nucleus of an atom or around the nuclei in a molecule (see below). In addition,

Figure : The electric field intensity at various positions around an electric point dipole, . The electric field distribution is
cylindrically symmetric around the dipole as axis.

electrons and nuclei carry intrinsic point magnetic moments that are related to their intrinsic angular momentum (spin). Atomic or
molecular magnetic moments generate magnetic fields. When these magnetic fields are observed at distances from the atom or
molecule that are much larger than atomic or molecular dimensions, and when these fields are averaged over times long compared
with atomic or molecular orbital times, the resulting time averaged field can be described by

where µ  is the constant of Equation ( ) and  is the magnetic moment. In addition to the magnetic field created by a magnetic
moment, the atom or molecule, if charged, will generate an electric field given by Coulomb’s law, Equation (1.1.3).

Figure : The electric field generated by a dipole oriented along the z-axis and expressed as spherical polar components.

The generation of a magnetic field due to the orbital motion of a charged particle can be understood using the simple model
illustrated in Figure (1.1.9). Let a spinless charged particle, charge= q Coulombs, revolve in a circular orbit of radius a meters with
the speed v meters/sec, where . One can use Equation (1.1.7) to calculate the electric and magnetic fields that would be
measured by an observer whose distance from the center of the current loop is much greater than the orbit radius a. It can be shown
that the time averaged electric field is given by coulomb’s law

This result is obtained by using a binomial expansion in the small quantity a/r and keeping only the lowest order terms; the lowest
order correction term upon taking the time average is proportional to (a/r)  , see problem (1.8). The magnetic field can be
calculated using Equation (1.1.7). The velocity of the particle is proportional to the orbit radius, and therefore when the time
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averages are worked out the lowest order non-vanishing term is proportional to (a/r)  ; see problem (1.8). The time-averaged
magnetic field turns out to be given by Equation ( ). Notice that this expression has exactly the same form as Equation (

) for the electric field distribution around an electric dipole

Figure : A particle carrying a charge of q Coulombs and following a circular orbit of radius a meters with the speed v
meters/sec generates a magnetic dipole moment .

moment . Here the vector m is called the orbital magnetic dipole moment associated with the current loop, and is given by

Note that  where  is the current in the loop, and  is the area of the loop. Since the speed of the
particle is given by , the magnitude of the magnetic moment can also be written in terms of the angular momentum
of the circulating charge:

where the mass of the charged particle is m  and it carries an angular momentum . Thus the angular momentum  is
related to the particle angular momentum  by the relation

For an electron q= - 1.60 × 10  Coulombs = - |e| so that the magnetic moment and the angular momentum are oppositely directed.
The angular momentum is quantized in units of , therefore the magnetic moment of an orbiting particle is also quantized. The
quantum of magnetization for an orbiting electron is called the Bohr magneton, µ . It has the value

(The units of µ  can also be expressed as Amp-m  or as Joules/Tesla).

In addition to their orbital angular momentum, charged particles possess intrinsic or spin angular momentum, . There is also a
magnetic moment associated with the spin. The magnetic moment due to spin is usually written

For an electron q = −|e|, and g = 2.00. The spin of an electron has the magnitude | | = /2; consequently, the intrinsic magnetic
moment carried an electron due to its spin is just 1 Bohr magneton, µ . The total magnetic moment generated by an orbiting
particle that carries a spin moment is given by the vector sum of its orbital and spin magnetic moments. The total magnetic moment
associated with an atom is the vector sum of the orbital and spin moments carried by all of its constituent particles, including the
nucleus. The magnetic field generated by a stationary atom at distances large compared with the atomic radius is given by Equation
( ) with  equal to the total atomic magnetic dipole moment.
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1.2.4 The Definitions of the Electric and the Magnetic Dipole Densities.

Let us now turn to the definitions of the electric dipole moment density, , and the magnetic dipole density, , that occur in
Maxwell’s equations (1.2.1 to 1.2.4).

The Definition of the Electric Dipole Density, .

Think of an idealized model of matter in which all of the atoms are fixed in position. In the presence of an electric field each atom
will develop an electric dipole moment; the dipole moment induced on each atom will depend upon the atomic species. Some
atomic configurations also carry a permanent electric dipole moment by virtue of their geometric arrangement: the water molecule,
for example carries a permanent dipole moment of 6.17 × 10  Coulomb-meters (see problem (1.12). Let the dipole moment on
atom i be \(\vec p \) Coulomb-meters. Select a volume element ∆V located at some position  in the matter. At some instant of
time, t, measure the dipole moment on each atom contained in ∆V and calculate their vector sum, . This moment will
fluctuate with time, so it is necessary to perform a time average over an interval that is long compared with atomic fluctuations but
short compared with times of experimental interest; let this time average be . Then the electric dipole density is given by

The shape and size of ∆V are unimportant: the volume of ∆V should be large compared with an atom, but small compared with the
distance over which  varies in space. In a real material the atoms are not generally fixed in position. In a solid they jiggle about
more or less fixed sites. In liquids and gasses they may, in addition, take part in mass flow as matter flows from one place to
another. This atomic motion considerably complicates the calculation of the electric dipole density because the effective electric
dipole on an atom or molecule that is moving with respect to the observer includes a small contribution due to any magnetic dipole
moment that might be carried by that atom or molecule. However these correction terms are very small and may be neglected in the
limit .

The Definition of the Magnetic Dipole Density, .

This vector quantity is defined in a manner that is similar to the definition of the electric dipole moment per unit volume:

 is a suitable time average over the atomic magnetic moments contained in a small volume element, ∆V , at time t and
centered at the position specified by . It is assumed that the atoms are stationary. If they are not, the magnetization density
contains contributions which are proportional the velocities of the various atomic electric dipole moments; these velocities are
measured with respect to the observer. We shall not be concerned with this correction which is very small if . As above, the
volume element ∆V is supposed to be large compared with an atomic dimension but small compared with the length scale over
which  varies in space.

This page titled 1.2: Maxwell’s Equations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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1.3: Return to Maxwell’s Equations
Maxwell’s equations (1.2.1, 1.2.2, 1.2.3, 1.2.4) form a system of differential equations that can be solved for the vector fields 

and  given the space and time variation of the four source terms ρ ( ,t), ( ,t), ( ,t), and ( ,t). In order to solve Maxwell’s
equations for a specific problem it is usually convenient to specify each vector field in terms of components in one of the three
major co-ordinate systems: (a) cartesian co-ordinates (x,y,z), Figure (1.3.10); (b) cylindrical polar co-ordinates (r,θ,z), Figure
(1.3.10); and (c) spherical polar co-ordinates (ρ,θ,φ), Figure (1.3.10).

It is also necessary to be able to calculate the scalar field generated by the divergence of a vector field in each of the above three
co-ordinate systems. In addition, one must be able to calculate the three components of the curl in the above three co-ordinate
systems. Vector derivatives are reviewed by M.R. Spiegel, Mathematical Handbook of Formulas and Table s, Schaum’s Outline
Series, McGraw-Hill, New York, 1968, chapter 22. It is also worthwhile reading the discussion contained in The Feynman Lectures
on Physics, by R.P. Feynman, R.B. Leighton, and M. Sands, Addison-Wesley, Reading, Mass., 1964, Volume II, chapters 2 and 3.

The following four vector theorems should be read, understood, and committed to memory because they will be used over
and over again in the course of solving Maxwell’s equations.

Figure : The three commonly used co-ordinate systems.
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Figure : An application of Gauss’ Theorem to a volume V bounded by a closed surface S.  is a vector field, and  is a unit
vector normal to the surface at the element of area dS.

Consider a volume V bounded by a closed surface S, see Figure (1.3.11). An element of area on the surface S can be specified by
the vector d  = dS where dS is the magnitude of the element of area and  is a unit vector directed along the outward normal to
the surface at the element dS. Let ( ,t) be a vector field that in general may depend upon position and upon time. Then Gauss’
Theorem states that

where d  is an element of volume. The integrations are to be carried out at a fixed time.

1.3.4 Stokes’ Theorem.

Consider a surface S bounded by a closed curve C, see Figure (1.3.12). ( ,t) is any vector field that may in general depend upon
position and upon time. At

Figure : An application of Stokes’ Theorem to a surface bounded by a closed curve C.  is an element of length along
curve C.  is a unit vector normal to the element of surface area, dS.

a fixed time calculate the line integral of  around the curve C; the element of length along the line C is . Then Stokes’
Theorem states that

where  is a unit vector normal to the surface element dS whose direction is related to the direction of traversal around the curve C
by the right hand rule.

This page titled 1.3: Return to Maxwell’s Equations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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1.4: The Auxiliary Fields D and H
It is sometimes useful to rewrite Maxwell’s equations (1.2.1 to 1.2.4 in terms of , , and two new vector fields and . These
two new vectors are constructed as follows:

and

When written using these two new fields Maxwell’s equations become

Maxwell’s equations have a simpler form when written in this way, and may in consequence be easier to remember. Their physical
content is, of course, unaltered by the introduction of the two new auxiliary fields  and .

This page titled 1.4: The Auxiliary Fields D and H is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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1.5: The Force Density and Torque Density in Matter
The presence of an electric field, , and a magnetic field, , in matter results in a force density if the matter is charged and in a
torque density if the matter carries electric and magnetic dipole densities. In addition, if the electric field varies in space (the usual
case) then a force density is created that is proportional to the electric dipole density and to the electric field gradients. Similarly, if
the magnetic field varies in space then a force density is exerted on the matter that is proportional to the magnetic dipole density
and to the magnetic field gradients. These force and torque densities are stated below; their proof is left for the problem sets.

1.5.1 The Force Density in Charged and Polarized Matter.
There is a force density that is the direct analogue of Equation (1.1.8), the force acting on a charged particle moving with the
velocity  in electric and magnetic fields, ie

If this force acting on each charged particle is averaged in time over periods longer than characteristic atomic or molecular orbital
times and summed over the particles contained in a volume, ∆V , where ∆V is large compared with atomic or molecular
dimensions, then one can divide this total averaged force by ∆V to obtain the force density

If the electric field in matter varies from place to place there is generated a force density proportional to the dipole moment per unit
volume, , given by

In addition, if the magnetic field, , varies from place to place there will be generated a force density proportional to the magnetic
dipole density, , given by

The nabla operator denotes the operation of calculating the gradient of a scalar function . In cartesian co-ordinates

1.5.2 The Torque Densities in Polarized Matter.
It can be shown that an electric field exerts a torque on polarized matter. The torque density is given by

The magnetic field also exerts a torque on magnetized matter. This torque density is given by

This page titled 1.5: The Force Density and Torque Density in Matter is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by John F. Cochran and Bretislav Heinrich.
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1.6: The CGS System of Units
The CGS system of units is still used by many scientists and they are commonly used in many older articles and books dealing with
topics in electricity and magnetism. For that reason it is useful for reference purposes to explicitly display Maxwell’s equations
written using the CGS system of units.

In this system of units c = 2.998 × 10  cm/sec. and  and  have the same units (stat-Volts/cm). However, for historical reasons,
the units of  are  
known as Gauss. 10  Gauss are equal to 1 Weber/m : the unit 1 Weber/m  is also called a Tesla. The electric field is measured in
stat-Volts/cm where 1 stat-Volt is equal to 299.8 Volts; (yes, these are the same significant figures as occur in the speed of light!).
An electric field of 1 stat-Volt/cm (sometimes stated as 1 esu/cm) is approximately equal to 30,000 Volts/m.

If auxillary vector fields  and  are introduced through the relations

and

then equations (1.6.3 and 1.6.4) become

The first two equations, Equations (1.6.1, 1.6.2), remain the same. The vector  has the same units as , and the vector  has the
same units as , although for historical reasons the units of  are called Oersteds.

The relation between charge density and current density in the MKS and the CGS systems can be deduced from the ratio of the
proton charge as measured in both sets of units. This ratio is

It follows from this ratio that 2998 esu/cm  is equal to 1 Coulomb/m  . Similarly, a current density of 1 Amp`ere/m  is equal to
2.998×10  esu/cm  . The conversion from MKS to CGS magnetic units is easy to remember since the earth’s magnetic field is
approximately 1 Oersted which is equal to 10  Tesla (Webers/m  ).

This page titled 1.6: The CGS System of Units is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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2.1: Introduction
The electrostatic limit is the ideal case in which nothing changes with time. All source distributions are stationary, ie  is zero.
Therefore Maxwell’s equations reduce to

Notice that the magnetic field has become totally uncoupled from the electric field. As far as the static electric field is concerned
the magnetic properties of matter are irrelevant. The calculation of the static magnetic field from its sources will be the subject of
Chapter(4).

Notice that −div( ) is a source of the electrostatic field that is on an equal footing with the free charge density, ρ  . The electrostatic
electric field can be calculated for a given source distribution using the principle of superposition. For example, suppose that

Figure : Given a distribution of sources the electric field at the position of the observer, (X,Y,Z), can be calculated as the sum
of the electric fields generated by dividing the source distribution into small volume elements dV=dxdydz and treating the charges
or dipole moments in each volume element as a point charge or as a point dipole moment.

one is given a charge density distribution ρ(x,y,z), and let the observer be located at (X,Y,Z). The total charge contained within a
volume element dV located at (x,y,z) is given by dQ = ρ(x,y,z)dxdydz. If dV is taken to be sufficiently small the charge dQ can be
treated like a point charge. It will generate an electric field contribution at the position of the observer that is given by Coulomb’s
law:

where  is the vector that specifies the position of the observer and  is the vector that specifies the location of the volume
element, dV (see Figure (2.1.1). The total electric field at the position of the observer can be calculated as the vector sum of the
electric field contributions from all volume elements:

It is very seldom that the above integral can be carried out analytically. In all but a few special cases the integral must be calculated
using a computer and small but finite volume elements. Equation (2.1.5) is valid even when the point of observation is located
within the charge distribution so that the distance |  − | goes to zero for a volume element located at the position of the observer.
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Why Equation (2.1.5) still works is not obvious but can be understood using the following argument. Surround the point of
observation by a small sphere whose radius, R , is finite but is so small that the spatial variation of the charge density within the
sphere can be neglected. The electric field at the observer due to charges outside the sphere of radius R  can be carried out without
problems created by a vanishing denominator in Equation (2.1.5).

To the electric field generated by charges outside the sphere one must add the electric field generated at the center of the sphere by
the charges inside the radius R . However, the electric field at the center of a uniformly charged sphere vanishes by symmetry, see
Figure (2.1.2). For every element of charge at (x,y,z) there is a second equal element of charge at (-x,-y,-z) whose field is equal in
magnitude but opposite in direction to the field of the first charge element. Thus the fields generated by these symmetry related
charge pairs cancel.

2.1.1 Dipole Moment Density as a Source for the Electric Field.

A point electric dipole generates an electric field according to Equation (1.2.10). This point dipole formula can be used to calculate
the electric field at some point in space, (X,Y,Z), generated by a distribution of dipole density (x,y,z). The idea is to divide up the
source distribution into small volume elements, dV, and then to use the principle of superposition to obtain the electric field as the
vector sum of the fields produced by the dipole moments (x,y,z)dV treated as point dipoles. The electric field at the position 

(X,Y,Z), the position of the observer- see Figure (2.1.1), can be written

Figure : A sphere of radius R  filled with a uniform charge density ρ . The electric field at the center of the sphere is zero
because the field generated by element number 1 at (x,y,z) is cancelled by the field equal in magnitude but opposite in direction
generated by the equal volume element number 2 at (-x,-y,-z). The net field generated by all such symmetry related pairs is zero.

This complex formula can be seldom evaluated exactly. Usually it must be evaluated approximately by means of a computer. Eqn.
(2.1.6) is valid for points of observation both inside and outside the electric dipole density distribution. If the observation point lies
inside the dipole density distribution one must surround it by a small sphere of radius R0 and carry out the summations implied by
Equation (2.1.6) for the space outside the sphere. This is required in order to avoid the divergence obtained when  = . The radius
R  must be chosen so small that variations of the dipole density, , within the sphere can be neglected. After having calculated the
contribution to the electric field generated by the dipole density distribution from points outside the sphere, one must add an
electric field contribution from the dipoles inside the sphere. It is not clear at this point how to calculate this contribution, but later
it will be shown that the electric field at the center of a uniformly polarized sphere, polarization density , is given by
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This field  must be added to the electric field generated by the dipole sources outside the sphere of radius R  in order to obtain
the total electric field strength at the position of the observer.

The procedure outlined above is very complicated due to the complex form of the electric field generated by a point dipole. A
second, simpler approach, is suggested by the Maxwell Equation (2.1.4). Namely, one can use Equation (2.1.5) with the charge
density given by

It is clear from Equation (2.1.7) that a spatially uniform dipole moment density distribution does not generate an electric field.
However, one must be careful: any dipole distribution confined to a finite region of space must vary rapidly at its surfaces. This
rapid variation of the dipole density produces an effective charge density distribution that may become very large and is localized
near those surfaces. These surface charge density distributions must be taken into account when calculating the electric field.

This page titled 2.1: Introduction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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2.2: The Scalar Potential Function
The direct calculation of the electric field using Coulomb’s law as in Equation (2.1.5) is usually inconvenient because of the vector
character of the electric field: Equation (2.1.5) is actually three equations, one for each electric field component , , and . It
turns out that the electrostatic field can be obtained from a single scalar function, V(x,y,z), called the potential function. Usually it
is easier to calculate the potential function than it is to calculate the electric field directly. The field  can be obtained from the
potential function by differentiation:

That is in cartesian co-ordinates

According to the Maxwell Equation (2.1.1) the curl( ) must be zero for the electro-static field. This equation is automatically
satisfied by Equation (2.2.1) because of the mathematical theorem that states that the curl of any gradient function is zero, see
section (1.3.1). The units of the potential function are Volts. Absolute potential has no meaning. One can add or subtract a constant
potential from the potential function without changing the electric field; the electric field is the physically meaningful quantity.
Since the electric field satisfies the law of superposition it follows that the potential function must also satisfy superposition. This
means that the potential function at any point due to a collection of charges must simply be the sum of the potentials generated at
that point by each charge acting as if it were alone. One of the virtues of using a potential function is that scalar quantities are easier
to add than are vector quantities because one has only to deal with one number at each point in space rather than the three numbers
which specify a vector (the three components). Of course, to obtain the electric field from the potential function at some point in
space it is necessary to know the potential at that point plus the value of the potential at nearby points in order to be able to
calculate the derivatives in grad(V).

The electric field at the point , whose co-ordinates are (X,Y,Z), due to a point charge q at , whose co-ordinates are (x,y,z), can be
calculated from the potential function

or

That this is an appropriate potential function can be verified by direct differentiation using

and

These electric field components can be compared with Coulomb’s law, Equation (1.1.3).

The potential function Equation (2.2.2) can be used to construct the potential function for any charge distribution by using
superposition. Consider an arbitrary, but finite, charge distribution, ρ( ), such as that illustrated in Figure (2.1.1). The charge
distribution can be divided into a large number of very small volumes. A typical volume element, dV, is shown in the figure. The
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charge contained in the volume element dV is dq = ρ( )dV Coulombs. The volume element is supposed to be so small that all the
charge contained in it is located at the same distance from the point of observation at . The charges contained in dV may be
treated like a point charge; they therefore contribute an amount to the total potential at P given by

(Do not confuse the element of volume, dV, with the element of potential, dV .) The total potential as measured by the observer at
(X,Y,Z) is obtained by summing the above expression over the entire charge distribution.

Of course, one need not use cartesian co-ordinates. In symbolic notation the above expression, Equation (2.2.3), can be written

This formula, Equation (2.2.4), works even when the point at which the potential is required is located within the charge
distribution. It is not obvious that it should work; the proof is based upon Green’s theorem (see Electromagnetic Theory by Julius
Adams Stratton, McGraw-Hill, NY, 1941, section 3.3). It should also be noted that the total charge density distribution is made up
partly of free charges, ρ  , and partly of the effective charges due to a spatial variation of the dipole density, ρ  = −div( ), where ρ
is the so-called bound charge density: the total charge density is given by

One can understand why the potential function remains finite even though the integrand in Equation (2.2.4) diverges in the limit as 
 → . Surround the point of observation at  by a small sphere of radius R . R  is taken to be so small that variations of the

charge density inside the sphere may be neglected. The integral in Equation (2.2.4) remains finite at all points outside the sphere
and therefore, in principle, the integral can be carried out without problems. Let the resulting contribution to the potential be V .
Inside the sphere the charge density can be taken to be constant, ρ( ) = ρ , and can therefore be removed from under the integral
sign. The remaining integrand in Equation (2.2.4) is spherically symmetric and can be written in spherical polar co-ordinates for
which dV = 4 r dr. The contribution to the potential at the center of the sphere due to the charge contained within the sphere
becomes

Thus the total potential at the point of observation, , is finite and has the value 

Substitute the expression Equation (2.2.1) into the Maxwell Equation (2.1.4) to obtain

Eqn.(2.2.5) is a differential equation for the potential function, V, given the charge density distribution. This differential equation
has been much studied and is called Poisson’s equation.

The divergence of a gradient is called the LaPlace operator, div(gradV ) = ∇ V . In cartesian co-ordinates one has

The form of the LaPlace operator should be committed to memory for the three major co-ordinate systems: (1) cartesian co-
ordinates; (2) plane polar co-ordinates; (3) spherical polar co-ordinates. The LaPlace operator in each of these three systems will
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keep cropping up over and over again in this book.

2.2.1 The Particular Solution for the Potential Function given the Total Charge Distribution.
We have already written down the potential function which is generated by a given distribution of charge; Equation (2.2.4). From
this equation it follows that the particular solution of the differential equation (2.2.5), Poisson’s equation, is given by

Eqn.( ) is called a particular solution of Poisson’s equation (Equation ( )) because it is generated by a particular, local,
distribution of charges. Notice that any solution of LaPlace’s equation, ∇ V = 0, can be added to ( ) and Poisson’s equation
will still be satisfied: this freedom can be exploited to satisfy boundary conditions for problems that will be treated later.

2.2.2 The Potential Function for a Point Dipole.

As pointed out above, the potential function generated by an electric dipole distribution can be calculated from an effective charge
density distribution ρ  = −div( ). However this contribution to the potential function can also be calculated by direct summation of
the potential function for a point dipole. The potential generated at a position located  from a point dipole, , is given by

Figure : Model for calculating the potential function for a point dipole. The two charges are separated by the distance d.

This can be shown as follows (see Figure (2.2.3)):

Therefore

to first order in the small distance d. Also 1/r  = 1/r so that
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But  = q  and  so that V  is just given by Equation ( ).

The point dipole potential, Equation ( ), can be used to calculate the potential at the point of observation, , by superposition
of contributions from small volume elements, dV, at , each of which acts like a point dipole  = dV . The result is

Formula ( ) gives the same value for the potential function as does Equation ( ) in which the free charge density, ρ  , has
been set equal to zero. These two ways of calculating the potential due to a distribution of dipoles can be shown to be
mathematically equivalent, see Appendix (2A).

This page titled 2.2: The Scalar Potential Function is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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2.3: General Theorems
A number of rules, or theorems, can be deduced from Maxwell’s equations (2.1.1) and (2.1.4).

2.3.1 Application of Gauss’ Theorem
From Maxwell’s equations one has

where ρ  = ρ  + ρ , and ρ  = −div( ). Integrate Equation (2.1.4) over any closed volume V:

But from Gauss’ Theorem, section(1.3.3)

where S is the surface bounding the volume V, and  is a unit vector normal to the element of surface area, dS, and directed from
inside the volume to the outside. Thus the total charge  contained within the volume V can be calculated from a
knowledge of the electric field everywhere on the surface S bounding the volume V:

It is often useful to rewrite Equation (2.1.4) in terms of the displacement vector . Notice that  and  have the
same units, Coulombs/m  , and these units are different from the electric field units of Volts/m. Using the above definition of  the
fourth Maxwell equation becomes

where ρ  is the density of free charges. Integrate Equation ( ) over a volume V and apply Gauss’ Theorem to obtain

It follows from this that the total free charge within a volume V can be calculated from a knowledge of the displacement vector, ,
over the surface S bounding the volume V:

2.3.2 Boundary Condition on .

Gauss’ theorem in the form of Equation ( ) can be used to show that the normal component of the displacement vector, ,
must be continuous at the boundary between two different materials if that boundary contains no free surface charges. Refer to
Figure (2.3.4). Let SS be the surface that separates region (1) from region (2). Apply Equation ( ) to a pill-box that straddles
the bounding surface SS. The surface area of the pill-box is ∆S and it is dL thick: the thickness dL will be taken to be small
compared with the lateral dimensions of the pill-box, ∼ . The contribution to the surface integral in ( ) from the sides of
the pill-box will be negligible because (1) its area will be very small since dL is relatively small, and (2) the components of 

 parallel with the surface SS, the tangential components, will be very nearly constant over the dimensions of the pill-box
and so as the outward

div( ) =E

→

ρ

t

ϵ

0

t f b b P

⃗ 

∫ ∫ dV div( ) = ∫ ∫ dV = .∫

V

E

→

1

ϵ

0

∫

V

ρ

t

Q

t

ϵ

0

∫ ∫ dV div( ) = ∫ ∫ dS( ⋅ ),∫

V

E

⃗ 

∫

S

E

⃗ 

n̂

n

^

= ∫ ∫ dVQ

t

∫

V

ρ

t

= ∫ dS( ⋅ ).Q

t

ϵ

0

∫

S

E

→

n̂ (2.3.1)

= +D

→

ϵ

0

E

→

P

→

D

⃗ 

P

⃗ 

2
D

⃗ 

div( ) = ,D

→

ρ

f

(2.3.2)

f 2.3.2

∫ ∫ dV div( ) = ∫ dS( ⋅ ) = ∫ ∫ dV .∫

V

D

→

∫

S

D

→

n

^

∫

V

ρ

f

D

⃗ 

= dS( ⋅ ).Q

f

∬

S

D

→

n

^

(2.3.3)

D

⃗ 

2.3.3 D

⃗ 

2.3.3

ΔS

−−−

√ 2.3.3

,D

→

1

D

→

2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22792?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/02%3A_Electrostatic_Field_I/2.03%3A_General_Theorems


2.3.2 https://phys.libretexts.org/@go/page/22792

Figure : Application of Gauss’ Theorem to a pill-box straddling a surface of discontinuity between two materials.

normal changes direction by 360 degrees around the pill-box perimeter the positive and negative contributions to the surface
integral will cancel. Thus in the limit as dL → 0 and ∆A → 0 the surface integral taken over the pill-box surface will be given by

But  and  where D , D  are the components of ,  normal to the bounding surface SS. It
follows from Gauss’ theorem, Equation ( ), that if there are no free charge densities in the two materials then the total charge
contained in the pill-box is zero and therefore D −D  = 0, so that the normal component of D must be continuous across the
bounding surface SS. This result remains valid even if the volume density of free charges is not zero because the total charge
contained in the pill-box of Figure (2.3.4) goes to zero as the pill-box volume goes to zero with the pill-box thickness, dL. The
normal component of  can only be discontinuous if the surface SS carries a surface charge density. If the bounding surface SS
carries a surface charge density of σ  Coulombs/m  the total charge contained within the pill-box of Figure (2.3.4) is σ ∆A
Coulombs, and Equation ( ) gives

since the charge contained within the pill-box, σ ∆A, is independent of dL, and does not vanish as dL → 0. It follows that any
discontinuity in the normal component of the displacement vector D is an indication and a measure of the presence of a surface
charge density:

2.3.3 Discontinuity in the Normal Component of the Polarization Vector.

Gauss’ theorem can be used to show that a discontinuity in the normal component of the electrical polarization vector, , produces
a surface density of bound charges, σ . Consider a surface that separates regions having different material properties such as that
shown in Figure (2.3.4), and in particular two regions having different polarization densities  and . Let there be no free charge
distributions, and let there be no free charges on the surface of discontinuity, SS. For this situation Equation (2.1.4) becomes

Apply Gauss’ theorem to this equation for a pill-box straddling the boundary SS such as that illustrated in Figure (2.3.4). In the
limit as dL → 0 and ∆A → 0 the surface integral over the pill-box of the electric field gives

2.3.4

∫ dS( ⋅ ) =( ⋅ )ΔA+( ⋅ )ΔA.∫

Pill-box

D

→

n

^

D

→

2

n

^

2

D

→

1

n

^

1

⋅ = +D

→

2

n

^

2

D

2n

⋅ = −D

→

1

n

^

1

D

n1 2n 1n D

→

2

D

→

1

2.3.3

2n 1n

D

⃗ 

f
2

f
2.3.3

ΔA− ΔA= ΔAD

2n

D

1n

σ

f

f

= − .σ

f

D

2n

D

1n

(2.3.4)

P

⃗ 

b

P

⃗ 1 P

⃗ 2

div( ) =− div( ) = .E

→

1

ϵ

0

P

→

ρ

b

ϵ

0

∫ dS( ⋅ ) =( ⋅ )ΔA+( ⋅ )ΔA.∫

Pill−box

E

→

n

^

E

→

2

n

^

2

E

→

1

n

^

1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22792?pdf


2.3.3 https://phys.libretexts.org/@go/page/22792

But , and  where E  and E  are the components of the electric field normal to the bounding
surface SS. Thus

and Gauss’ Theorem gives

Q  is the total bound charge contained in the pill-box. As the thickness of the pill-box shrinks to zero the only bound charges left in
the pill-box will be due to surface bound charges, σ , and therefore Q  = σ ∆A. It follows that

This equation ( ) is the analog of Equation ( ) and the derivations of these two equations are similar. In the present case it
has been assumed that there are no free surface charges on the interface surface SS so that from Equation ( ) one has (D  −
D ) = 0 and therefore from the definition of 

Using Equation ( ) gives

Any discontinuity in the normal component of the Polarization vector generates a surface density of bound charges. These
bound charges generate electric fields and must be explicitly taken into account when the electric field is calculated from its
sources using Equation (2.1.5), (the direct application of Coulomb’s law), or when Equation (2.2.6) is used to calculate the
potential function for a distribution of free and bound charges.

This page titled 2.3: General Theorems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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2.4: The Tangential Components of E
It follows from the first Maxwell equation, Equation (2.1.1) curl( ) = 0, that the tangential components of the electric field
vector must be continuous across any surface. Consider a loop dL long and dw wide that spans a surface SS: the loop has one
side in region (1) and the other side in region (2) as shown in Figure (2.4.5); the sides dw are chosen to be perpendicular to the
surface SS. E  and E  are the electric field components parallel with the surface SS - the tangential electric field components.
From Stokes’ theorem, Section (1.3.4), one has

Figure : A rectangular loop having sides dL long and dw wide used for the application of Stokes’ Theorem.

But curl( ) = 0, therefore the line integral must vanish:

In calculating the line integral one can take the limit as dw becomes very small so that contributions from the electric field
components parallel with dw and therefore normal to the surface can be made negligibly small. In this limit the line integral
becomes

The negative sign arises because in Region(2) the loop is traversed in the direction opposite to the direction of E . It follows from
the fact that the line integral must vanish that

or in other words the tangential components of  must be continuous across the surface SS. Since SS is an arbitrary surface it
follows that the tangential components of the electric field must be continuous across any surface.

This page titled 2.4: The Tangential Components of E is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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2.5: A Conducting Body
The electrostatic field must be zero inside a conducting body. A non-zero field would act on mobile charges in the body and so
produce currents that would cause the charge distribution to change with time. Any time variation of the field sources must
generate time-varying fields in contradiction with the assumption of the electrostatic limit in which nothing changes with time.
Since the electrostatic field is zero everywhere inside a conducting body, it follows from Equation (2.4.1) that the electric field just
outside a conducting body can have no components parallel with the surface. The electric field just outside a conducting body must
be normal to the surface of that body. Finally, it follows from an application of Gauss’ Theorem to a pill-box spanning the surface
of the conducting body that the electric field just outside that conducting body is given by

where  is a free surface charge density on the conducting body, and  is a bound surface charge density due to a
discontinuity in the normal component of  if the conductor is in contact with a dielectric material.

This page titled 2.5: A Conducting Body is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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2.6: Continuity of the Potential Function
The potential function must be continuous at any point in space (with the exception noted below) since a discontinuous jump in its
value would correspond to an unphysical infinite electric field strength:

where  is the component of the electric field along the direction specified by dr. The exception referred to above occurs at a layer
of dipoles; see the example problem discussed below. Let a surface carry a density of dipoles  per unit area (dimensions of
Coulombs/m) oriented such that the dipole density is perpendicular to the plane. Such an electrical dipole layer, or electrical
double layer, generates no external electric field, but it does generate a jump in potential given by

Electrical double layers are common in nature. The potential difference that is observed to exist between the fluid inside a living
cell and the surrounding fluid is maintained by an electrical double layer on the cell membrane. A double layer is also formed
whenever a metal electrode is placed in an electrolytic solution. The potential difference across the double layer is called the
electrode potential. The potential difference that is observed at the electrodes of a battery is the difference between the electrode
potentials of two dissimilar conductors immersed in an electrolyte.

This page titled 2.6: Continuity of the Potential Function is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John
F. Cochran and Bretislav Heinrich.
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2.7: Example Problems

2.7.1 Plane Symmetry.

(1) A Uniformly Charged Plane.

Consider a plane which is infinite in extent and uniformly charged with a density of σ Coulombs/m  ; the normal to the plane lies in
the z-direction, Figure (2.7.6). The charge plane is located at z=0. It is clear from symmetry that the electric field can have only a
component normal to the plane since for every charge element at x,y there is an exactly similar charge element at -x,-y such that the
transverse field components at the point of observation cancel. All of the charges on a ring of radius r produce the same z-
component of electric field at the point of observation, P; they may therefore be lumped together to obtain

therefore

Upon carrying out the integration one obtains an electric field that is independent of z and, for positive z, has the value :

Figure : Calculation of the electric field generated by a uniformly charged plane.

Note that for points to the left of the charge plane the electric field points along -z: ie. . There is a discontinuity of
magnitude  in the z-component of the electric field at the charge plane.

(2) The Potential Function for a Uniformly Charged Plane.

It is interesting to calculate the potential function from a direct application of Equation (2.2.4) for the potential generated by a
charge distribution. Referring to Figure (2.7.6) one can calculate the contribution to the potential at the observation point P:
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This is an example of an integration that does not converge. In order to obtain a proper integral one can use a trick. Suppose that
the charged plane was not infinite in extent, but that it was in the form of a large, but finite, disc having a radius D. There would
then be no problem; one would have

One is always free to subtract a constant from the potential without changing the value of the corresponding electric field
distribution. One can simply subtract the constant from the above equation to obtain

Notice that V  does not change sign for z less than zero because the integration involves the square root of z  . Thus the complete
expression for the potential function, valid for all values of z, is given by

see Figure (2.7.7). In Equation ( ) the zero for the potential function has been chosen so that the potential is zero on the plane.
The potential function is continuous as the field point P moves through the plane from left to right in Figure (2.7.7): the electric
field component normal to the plane undergoes a discontinuity.

(3) The Field of a Uniformly Charged Plane Using Gauss’ Theorem.

We could have deduced that  is independent of position, except at the charge plane, directly from the fourth Maxwell equation 

. In this application there is no electric dipole density since  = 0 everywhere. Consequently,

also  everywhere.

Figure : The potential function (top) and the electric field (bottom) generated by a uniformly charged infinite plane carrying a
charge density of σ Coulombs/m . 
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As we have seen in (1) above using symmetry arguments  has only a z-component; moreover, this component, E , cannot depend
upon x,y if the charge distribution is uniform and infinite in extent: any shift of the infinite charge distribution in the x-y plane can
not be detected by a fixed observer. Therefore, in this case,

except at z=0 since the charge density is zero everywhere except at z=0. Thus E  = constant everywhere except at z=0.

Figure : Geometry for the application of Gauss’ Theorem to calculate the electric field strength generated by an infinite,
plane, uniformly charged sheet whose density is σ Coulombs/m  . The magnitude of the resulting field is .

Moreover, it is obvious from Coulomb’s law and symmetry that the magnitude of the electric field for z < 0 must have the same
value as the magnitude of the electric field for z > 0, although the direction of the field switches 180 degrees upon passage through
the charge plane. For this very symmetric case one can obtain the magnitude of the electric field directly from Gauss’ Theorem.

where V is the volume bounded by the closed surface S and Q is the total charge contained in the volume. Apply this theorem to a
parallelepiped having its edges oriented along the co-ordinate axes as shown in Figure (2.7.8). The box shown in the figure
contains an amount of charge σA  Coulombs since the area of the side of the box whose normal lies along z is just A . Now
calculate the surface integral of the electric field over the surface of the

parallelepiped. This integral is easy to carry out because the electric field is constant in magnitude and in direction. Over four sides
of the box shown in Figure (2.7.8) the direction of the electric field is parallel with the surface, thus perpendicular to the surface
normals, and the scalar product of the electric field and the normal to the surface, , vanishes so that these sides contribute nothing
to the surface integral. Over the two ends of the box the electric field is parallel with the surface normal so that the scalar product 

·  just becomes an ordinary product, and the contribution to the surface integral from each end is E A : notice that at each end
the electric field is parallel with the direction of the outward normal because the field reverses direction from one side of the charge
sheet to the other. The surface integral in Gauss’ theorem is given by

But the total charge contained in the box is σA , so that the electric field must have the magnitude  in agreement
with Equation ( ).

(4) An Electric Double Layer.

Consider two oppositely charged uniform charge sheets separated by a distance of 2d meters, as illustrated in Figure (2.7.9). The
electric field generated by each charge sheet is uniform, independent of z, and directed normal to the planes of charge. In the
regions outside the charged planes,ie. z > d or z < d, the electric field is zero because the fields generated by the oppositely charged
planes have opposite directions and therefore cancel. Between the two charged planes the fields due to the two planes have the
same orientation and therefore add to produce the total field . A plot of E  vs z exhibits discontinuities at z= d, Figure
(2.7.10). The potential function outside the double layer is constant corresponding to zero electric field. However, the potential on
the right hand side of the double layer is different from the potential on the left hand side. The step in the potential is related to the
strength of the double layer:
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where P  is the dipole moment per unit area in Coulombs/meter.

Figure : An electric double layer consists of two infinite plane sheets of charge densities +σ and −σ Coulombs/m  separated
by a small distance. The electric field is zero everywhere outside the double layer, but is equal to  between the two
charged sheets.

(5) A Uniformly Polarized Slab.

Consider a slab that is uniformly polarized along the z-axis as shown in Figure (2.7.11). The strength of the polarization density is
P , and there are no free charges anywhere. One can define a bound charge density from the relation ρ  = −div( ). This bound
charge density generates an electric field just as surely as does the free charge density, ρ  . Inside the slab of Figure (2.7.11) the

polarization density is ; thus ∂P /∂z is zero inside the slab and therefore div( ), and hence ρ , is zero. Outside the slab 
 = 0 so that here also div( ) = 0 and therefore ρ  = 0. One might be misled by the fact that the bound charge density vanishes

both inside and outside the slab into thinking that the bound charge density is zero everywhere. However, the bound charge
density does not vanish on the slab surfaces. The derivative ∂P /∂z is singular at z=0 and at z=d ie. on the faces of the slab. This
singularity is integrable: if one integrates the derivative from z = −  to

Figure : The electric field distribution and the corresponding potential function generated by an electrical double layer. The
electric field intensity inside the double layer is . The jump in the potential across the double layer is .
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Figure : A uniformly polarized slab. The polarization density, , is directed along the normal to the slab. The discontinuities

in the normal component of the polarization produce effective surface bound charge densities given by .

z = + , for example, the result is

because P (− ) = 0 and P (+ ) = P . Notice that the value of the integral is independent of the small interval ǫ, and, in particular, it
remains finite even in the limit as  → 0. The integrand has the character of a Dirac δ − function: , where the
function δ(z) is a strongly peaked function having zero width but infinite amplitude in such a way that it’s integral is just equal to
unity. But this means that the charge density on the surface at z=0, ρ  = −∂P /∂z, z, is a very sharply peaked integrable function of
z: it is in fact a surface charge density of strength −P  Coulombs/meter  . Similarly, there will be a surface charge density of
strength +P  Coulombs/meter  on the surface at z=d. The electric field distribution produced by a uniformly polarized slab in which
the polarization density lies parallel with the slab normal is exactly the same as that which would be produced by two uniformly
charged planes carrying charge densities of σ = ±P , see Figure (2.7.9). Outside the uniformly polarized slab the electric field is
zero. Inside the slab there is a uniform electric field, , whose direction is opposite to the direction of the polarization
density; it is called a depolarizing field because it tends to act so as to reduce the polarization density. The potential outside the slab
will be constant, both on the left and on the right, but the potential on the right will be larger than that on the left by the amount 

 Volts. It is interesting to examine the auxiliary field . Outside the slab both  and  are zero so
that  must also be zero. Inside the slab  has only a z-component, and

The normal component of  is continuous across the slab surfaces. In general, in the absence of any surface free charge density the
normal component of  must be continuous across the interface.

Now consider a uniformly polarized slab in which the polarization density vector lies in the plane of the slab as shown in Figure
(2.7.12). In this case the polarization has only an x-component, and that x-component, P , is a function only of z. This means that 

 everywhere. There is no bound charge density anywhere, and there is no free charge density, by
supposition, so that there are no sources for the electric field. A uniformly
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Figure : An infinite slab that is uniformly polarized in plane, P  = P .

polarized slab in which the polarization lies in the slab plane generates no macroscopic electric field.

It is a general rule that a spatial variation of the polarization density, , produces an effective volume charge density 

. In addition to this effective volume charge density, any discontinuity in the normal component of  across a
surface produces an effective surface charge density given by

These bound volume and surface charge densities must be used, along with the free charge distributions, to calculate the electric
field and potential distributions.

2.7.2 A Spherically Symmetric Charge Distribution.

Consider a charge distribution that is spherically symmetric but one in which the charge distribution ρ(r) may have an arbitrary
dependence upon the co-ordinate r, see Figure (2.7.13). In this case the electric field can have only a radial component by
symmetry. The magnitude of this radial component, E , cannot depend on position on the surface of a spherical surface centered on

Figure : The electric field intensity generated by a spherically symmetric charge distribution. The electric field has only a
radial component because the transverse components generated by two equivalent charges, d  and d , cancel by symmetry.

the center of symmetry of the charges because any rotation of the distribution around the center of symmetry leaves the charge
distribution unaltered. It follows that the surface integral of the electric field over the surface of a sphere of radius R is just \(4 \pi
R^{2} \mathrm{E}_{r}) so that from Gauss’ theorem

Thus for the electric field outside the charge distribution one has
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Here Q is the total charge contained in the distribution. The electric field outside a spherically symmetric charge distribution
looks like the field of a point charge!

The potential function generated by any symmetric charge distribution must be independent of the spherical polar co-ordinates θ, φ
because E  and E  are both zero. The potential function can be calculated from ∂V/∂r = −E . Note that the potential must be a
continuous function of r even if

Figure : The electric field generated by a uniformly charged line lying along the z-axis. The line charge density is ρ
Coulombs/meter. The electric field is radial and has the value  Volts/m.

the charge density distribution, ρ(r), contains discontinuities. The potential function is continuous everywhere except on a surface
containing an electrical double layer.

2.7.3 Cylindrical Symmetry.

 
(1) A uniformly Charged Line.

Let charges be distributed uniformly along the z-axis with a charge density of ρ  Coulombs/meter as shown in Figure (2.7.14). It is
easy to see, using Coulomb’s law, that the electric field generated by this distribution can have only a radial component; the
transverse components generated by equivalent charge elements symmetrically disposed around the origin at +z and at -z cancel
each other out. Furthermore, the radial electric field strength,E , cannot depend upon the angle θ because the line charge exhibits
rotational symmetry; ie. the charge distribution remains unaltered by a rotation through any angle around the z-axis. E  also cannot
depend upon position along z since the line is taken to be infinitely long. Apply Gauss’ theorem to a cylindrical surface centered on
the line charge, and 1 meter long and having a radius of r meters. The charge contained within this cylinder is ρ  Coulombs. The
surface integral of the electric field is easy to carry out because the electric field is parallel with the surface normal at every point
on the cylinder surface; on the end surfaces the electric field contributes nothing to the surface integral because it lies in the

surface, i.e. , where  is the unit normal to the surface. It follows from Gauss’ Theorem that

and therefore

Since the electric field has only a radial component it follows that the corresponding potential function, V, cannot depend upon the
co-ordinates z,θ. But E  = −∂V/∂r, so that one can use

as the potential function for a uniformly charged line. The logarithmic variation of V(r) with r can also be deduced from a direct
application of Poisson’s equation, Equation (2.2.5). In this application the free charge density ρ  = 0 everywhere except at the
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origin, r=0. There is assumed to be no electric dipole distribution anywhere so that  = 0 and ρ  = −div( ) = 0 everywhere. Thus
∇ V = 0. But in cylindrical polar co-ordinates, and in the absence of any variation of V with angle or with displacement along z

It follows from this that r∂V/∂r = constant = a, and therefore V = a ln(r) + constant in agreement with the above expression for
V(r): remember that one can add or subtract a constant from the potential function without changing the electric field calculated
from it.

(2) A Line of Dipoles.

Consider a line of dipoles uniformly distributed along the z-axis with a density of P  Coulombs; the dipoles are supposed to be
oriented along the x-direction

Figure : An infinite line of uniformly distributed point dipoles can be modelled by a uniformly charged positive line
separated by a small distance d from a uniformly charged negative line. Let the charge density on the positive line be ρ , and let the

charge density on the negative line be −ρ , then the dipole density, a vector, is given by  Coulombs, and  is directed

from the negative line to the positive line.

as shown in Figure (2.7.15). The line of dipoles can be modelled by two line charges separated by a very small distance d, as shown
in Figure (2.7.15). The resulting potential function at P, the point of observation, written in cylindrical polar co-ordinates can be
calculated as follows using the potential function for a uniformly charged line:

But  so that

and

where P  is the line density of dipoles. The electric field components are

A cross-section through the electric field distribution in a plane normal to the line of dipoles looks similar to the field distribution
around a point dipole. The electric field at θ = 0 is directed along the +x direction and so is the field at θ = : both fields have the
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strength . The electric fields at θ = /2, 3 /2 are directed along the -x direction, and have the strength 
.

2.7.4 A Uniformly Polarized Ellipsoidal Body.

Figure : A uniformly polarized body having an irregular shape. The resulting surface bound charge distribution produces an
electric field distribution that is non-uniform both inside and outside the body.

Consider a uniformly polarized body of arbitrary shape that is immersed in vacuum. The bound volume charge density associated
with a uniform polarization density is zero since div( ) = 0. The bound surface charge density is not zero because there is a

discontinuity in the normal component of  on the surface of the body; this surface charge density is given by  where 
 is the unit vector normal to the surface of the body. Notice that this surface charge density varies from place to place on the

surface and that it

Figure : A uniformly polarized ellipsoidal body; the polarization lies along a principle axis of the ellipse. The resulting
surface bound charge distribution produces a uniform electric field inside the ellipse. The electric field distribution outside the
ellipse is non-uniform.

changes sign when one considers opposite points on the surface, see Figures (2.7.16 and 2.7.17). In fact, it is a consequence of
charge conservation that the sum over all surface charges on a body that carries no free charges must be zero. The surface bound
charge density distribution can be used to calculate the electric field and potential function everywhere in space. An analytical
calculation is usually out of the question, and the problem must usually be solved by means of a numerical summation. One could,
in principle, calculate the electric field components by means of Coulomb’s law, but it is usually more convenient to work with the
integral for the potential function, Equation (2.2.6). For the particular case in which the uniformly polarized body has an ellipsoidal
shape the calculation of the potential function and the electric field can be carried out analytically. See, for example, J.A. Stratton,
Electromagnetic Theory, McGraw-Hill, N.Y., 1941, section 3.25. The surprising result is that the electric field inside a uniformly
polarized ellipsoid is uniform. Usually this internal electric field is not parallel with the direction of the polarization density. The
internal electric field and the polarization are parallel only if the polarization vector is directed along a principal axis of the
ellipsoid defined by the equation for its surface

Here a,b,c are the three semi-axes that define the ellipsoid. Outside the ellipsoid the electric field is not uniform: it resembles a
distorted dipole field and falls off at large distances like 1/r  . In the principle axis co-ordinate system defined by Equation ( )
the electric field components inside the ellipsoid are simply related to the polarization components:
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The depolarization coefficients N , N , and N  are pure numbers that depend upon the parameters of the ellipsoid (a,b,c of Equation
( )). They can be calculated using elliptic integrals. The depolarization coefficients obey a sum rule:

This sum rule makes it very easy to deduce values for the depolarization coefficients for very symmetrical bodies. Consider the
following examples:

(a) Sphere. By symmetry Nx = Ny = Nz. Therefore from the sum rule each must be equal to 1/3

(b) Cylinder. This is the limiting case in which one dimension of the ellipsoid, the z dimension say, becomes very long. The two
transverse depolarizing factors must be equal by symmetry. On the other hand, if the cylinder is polarized along its length any
surface bound charge density can only be associated with the ends; but the ends are infinitely far away and consequently any
charges on them produce an infinitely small electric field. This means that a cylinder that is uniformly polarized along its length
will produce no electric field. It can be concluded that for such a cylinder N  = 0. It follows from the sum rule that if N  = N  then
each must be equal to 1/2.

(c) A Thin Flat Disc. Think of an ellipsoid of revolution which is thin along the z-direction but which has a very large radius R in
the xy plane. By symmetry N  = N  . If the edges of the disc are very far from its center, ie. R → ∞, then the electric field near the
center of the disc due to surface charges on the disc edges must become vanishingly small ( remember that

Figure : Oblate ellipsoid of revolution.

Figure : Cigar shaped ellipsoid of revolution.
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the field due to an element of charge decreases like 1/R  ). It follows that N  = N  → 0 in the limit as R → ∞. From the sum rule
Equation ( ) one can conclude that N  → 1. The field inside an infinite disc that is polarized parallel with its axis of symmetry
has the value  in agreement with the result previously deduced for a transversely polarized slab, section (5) above,
and Figure (2.7.11).

Two commonly encountered special cases of ellipsoids of revolution are shown in Figures (2.7.18 and 2.7.19). In each case one
need only specify the depolarizing coefficient for the axis of revolution, the z-axis. The other two depolarizing factors are equal and
can be calculated from the sum rule Equation ( ). Case(a) is a pancake shaped ellipsoid, Figure (2.7.18). For this case

In the limit d/R → 0 the depolarizing factor is given approximately by

Case(b) is a cigar shaped ellipsoid, Figure (2.7.19). For this case

In the limit as the cigar becomes very long, (d/R) → ∞ the demagnetizing coefficient can be expressed as

For a general ellipsoid it can be shown that

where .

(See J.A. Stratton, Electromagnetic Theory, McGraw-Hill, N.Y., 1941. Section 3.27.)
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2.8: Appendix 2A

2.8 Appendix 2A.

It was pointed out in sections 2.2.1 and 2.2.2 above that the potential function, V( ) generated by a distribution of electric dipoles,
P( ), can be calculated in two ways:

This equation for the potential function is calculated from the distribution of bound charges, ρ  = −div( ). The second equation for
the potential function can be written as the potential due to point dipoles dV  summed over the entire distribution of dipoles:

These two formulae, Equations (  and ), give the same potential function apart from a possible constant that has no effect
on the resulting electric field. This statement can be proved by applying Gauss’ Theorem to the function

The divergence is calculated with respect to the co-ordinates of the source point, (x,y,z):

By direct differentiation one can readily show that

Remember that the differentiations are with respect to the co-ordinates of , (x,y,z), and not with respect to the observer co-
ordinates , (X,Y,Z). Integrate the above equation over a volume, V , bounded by a surface S and apply Gauss’ Theorem, section
1.3.3, to the term on the left. The result is

Now let the volume V  become very large so that the surface S recedes to infinity. If the polarization distribution is limited to a
finite region of space, as we shall assume, the surface integral must vanish because the polarization density on the surface, S, is
zero. We are left with the identity

Upon multiplying both sides of Equation ( ) by  one obtains the integral of Equation ( ) on the left and the
integral of Equation ( ) on the right. It follows that the same value for the potential will be obtained, aside from a possible
unimportant constant, whether one uses the formulation based upon the potential for a point charge or the formulation based upon
the potential function for a point dipole.
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3.1: Introduction
Chapter(2) demonstrated that the electrostatic field could be calculated everywhere in space from a knowledge of the spatial
distribution of free charges and a knowledge of the spatial distribution of the electric dipole moment density. However, in most
cases of interest one does not initially know the free charge and dipole moment distributions. In a typical problem one is given two
or more metal electrodes embedded in a material medium, in which the electrode potentials are specified. In this kind of problem
the free charge and dipole moment distributions must be determined as part of the problem solution. In order to solve such
problems it is necessary to know the relation between the electric field in a material and the dipole density that is induced in that
material by the electric field. In general such problems are extremely difficult unless the dipole density, ( ), at a point  in the
material is linearly related to the electric field at that same point, ( ). In this chapter we shall assume that we have to do with
linear, isotropic, media such that

where  is a pure number called the static dielectric susceptibility.  is supposed to be independent of position within a given
material; it will exhibit discontinuous jumps at the boundary between two different materials. Fora dielectric material characterized
by  Maxwell’s equations for the electrostatic field become (no variation with time)

This last equation can be written . But  is independent of position within a given dielectric
material so that

since

The number  is called the relative dielectric constant, . Thus for a linear isotropic material

and

Equation(3.5) defines the dielectric constant  which has the same units as , namely Farads/meter or Coulombs/Volt meter.

As in Chapter(2) one can introduce a potential function, V( ), such that

This definition guarantees that the Maxwell Equation ( ) will be satisfied because the curl of any gradient is zero. Using
Equation ( ) in Equation ( ) gives

or

The differential equation, Equation ( ), is called Poisson’s equation. It is similar in form to Equation (2.2.5) of Chapter(2) for 
 except that  is replaced by . It follows by analogy with Equation (2.2.6) of Chapter(2) that the particular solution of

Equation ( ) is
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Unfortunately, Equation ( ) is seldom helpful because one does not usually know a priori the free charge distribution, .
The usual problem involves a number of conducting electrodes embedded in a dielectric medium: either the potential or the total
charge on each electrode is specified as a boundary condition. Generally the dielectric medium is taken to be either charge free, 

, or else slightly conducting where the current density at any point in the medium is proportional to the electric field strength
at that point

For the charge-free case Poisson’s equation, Equation ( ), becomes

This is called LaPlace’s equation. For a conducting medium the charge density will not generally be zero. However, any
distribution of charges must be time independent because, by hypothesis, we are dealing with static field distributions which are
independent of the time. It is a consequence of charge conservation that the current density, , and the charge density, , must
satisfy the equation

so that if the charge distribution does not depend upon time the current density must be divergence free;

But if the current density is proportional to the electric field, Equation ( ), it follows that a divergence free current density
must be paired with a divergence free electric field,

and therefore that the potential function must satisfy LaPlace’s equation, Equation ( ), . The time-independent
problem associated with conductors having a specified potential embedded in a linear, isotropic, chargefree dielectric medium has
exactly the same potential distribution as the

Figure : A charged conductor. The free charge on the conductor is given by .

problem of the same conductors embedded in an isotropic, conducting, linear dielectric medium. In either case one requires a
potential distribution that satisfies LaPlace’s equation, Equation ( ), and for which the potential on each conducting electrode
either reduces to a specified value, or else the total charge on each conductor calculated from the potential distribution gives a
specified value. A conductor must have the same potential throughout by definition because the electric field within a conductor is
zero; a zero electric field means that the potential function has no dependence upon position. The electric field within a conductor
must be zero because otherwise mobile charges within the conductor would flow to its surface and build up time dependent electric
fields in contradiction with the original assumption that the electric fields were time independent. It is a general rule that the
tangential components of the electrostatic field must be continuous across any surface (see sections 2.4 and 2.5). Therefore, if  =
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0 inside the conducting body it follows that the tangential components of the electrostatic field must be zero just outside the
conductor surface. In other words, the electrostatic field must be normal to the surface of a conductor.

The total charge on a conductor, which must be located entirely on the surface of the conductor, can be calculated by means of an
application of Gauss’ theorem to Equation ( ): see Figure (3.1.1).

where the integral is evaluated on a surface that lies just outside the actual conductor surface. The electric field just outside the
conductor is normal to the surface and has the magnitude , where ∂V/∂n is the gradient of the potential at the
surface of the conductor. The total charge contained on the conductor is therefore related to the normal gradient of the potential
function at the conductor

It can be proved mathematically, and it makes sense physically, that there is only one solution of LaPlace’s equation, ∇ V = 0,
which satisfies the given boundary conditions. In other words, a solution of LaPlace’s equation that satisfies the boundary
conditions is unique; it is the solution. The boundary conditions may be of three different types: (1) the potential on each
conductor is specified; (2) the total charge on each conductor is specified; (3) the potential on some of the conductors is specified
and the total charge on the remaining conductors is specified. In addition, the fields very far from any charges must fall to zero at
least as fast as 1/R  . This requirement follows from the fact that any collection of charges when viewed from very far away must
look very nearly like a point charge, and hence the potential function must fall off like 1/R where R is the mean distance to the
group of charges.

In general it is very difficult to find a solution of LaPlace’s equation that satisfies the boundary conditions imposed by a particular
problem. Usually it is necessary to resort to numerical or approximate techniques in order to find a suitable solution. In the
following sections a number of standard problems are posed and their solutions are discussed. The solutions of these standard
problems enable one to build up, by analogy, a picture of how the electrostatic field should behave given a problem whose
parameters lie outside those corresponding to one of the categories discussed below.

This page titled 3.1: Introduction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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3.2: Soluble Problems

3.2.1 (1) Orthogonal Systems.

The only problems that can be solved analytically are those for which the conducting electrodes can be described by u1=const., or
u2=const., or u3=const. where u1, u2, u3 form a system of orthogonal co-ordinates. Stratton discusses eight such orthogonal
systems ( Electromagnetic Theory by Julius Adams Stratton, McGraw-Hill, New York, 1941). We shall be interested only in the
three most commonly used systems (1) cartesian co-ordinates, (2) cylindrical polar co-ordinates, and (3) spherical polar co-
ordinates.

(a) Cartesian Co-ordinates.

In the Cartesian co-ordinate system LaPlace’s equation becomes

Let the surfaces of two semi-infinite electrodes lie at z=0 and at z=D, Figure (3.2.2). In this case the potential function must be
independent of x and y by symmetry: the potential on any plane z=constant must be featureless because there are no edges with
which to locate oneself in the plane. In other words, any shift of the electrodes in the x-y plane does not change the geometry of the
problem. Thus LaPlace’s equation is reduced to

This simple equation has the general solution

where A,B are constants that must be determined from the boundary conditions. For z=0 the potential is required to be V  and
therefore A = V . For z=D the potential must equal V  and therefore B = (V  − V )/D. Thus the required potential function for this
problem is given by

Figure : Two plane parallel, semi-infinite metal electrodes separated by a distance D. The electrode potentials are V  and V .
The space between the electrodes is filled with a material having a dielectric constant .

and this solution is unique. It corresponds to an electric field whose components are:
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The electric field is forced to be uniform simply because the potential function has no spatial variation along x or y.

The surface charge density on each electrode must also be independent of x and y, and the charge density on the two electrodes are
equal in magnitude but opposite in sign. They may be calculated by means of Gauss’ theorem. Consider a small pillbox that spans
an electrode surface such as that shown in Figure (3.2.2). According to Gauss’ Theorem the surface integral of the normal
component of D over the pillbox is equal to the total free charge contained within the pillbox:

But  so that the surface integral of  can be written as a surface integral of . Since  is zero inside the metal electrode it
follows that the only contribution to the surface integral comes from the surface of the pillbox that lies in the dielectric; the surface
integral of  gives dSE . Thus one finds

and therefore

This expression can be used to estimate the relation between total charge and voltage difference on a parallel plate capacitor.
Consider two parallel plate electrodes each having an area of A meters  , and let the charge on one plate be Q Coulombs and on the
other plate be -Q Coulombs. If edge effects are neglected, and if it is assumed that the charge density is uniform, one can write ρ  =
Q/A. It follows that

or writing (V  − V ) = ∆V,

C is the capacitance of the parallel plate system.

Variations of this problem involve two regions having different dielectric constants, see Figure (3.2.3).

The potential function in each region must satisfy Laplace’s equation (3.1.11), and therefore in the infinite plate approximation

since the potential function can not depend upon the co-ordinates x and y. It follows from E  = −dV/dz that the electric field in each
region must be

Figure : The parallel plate capacitor problem with two different dielectric materials. The electric field in each region is
independent of position.

independent of position. The magnitude of the electric field in each region depends upon whether or not the dielectric material is,
or is not, conducting. There are two main limiting cases: (1) the conductivity, σ in each region is zero; and (2) each region is
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conducting with a current density given by .

Case(1). If the conductivities are zero there can be no free charges anywhere in the dielectric materials. As a consequence it follows
from Maxwell’s equation(2.3.2) that  must be divergence free, ie div( ) = 0. This in turn means that the normal component of 
must be continuous across the interface between the two dielectrics, or D  = D . This implies that

But also

These two equations, Equations (  and ) can be solved to obtain the electric field strengths in each region of the dielectric
insulators. The charge density on each electrode has the magnitude ρ  = D  = D .

Case(2). If the dielectric materials are conducting the current density in each region must be the same in the steady state in order to
prevent a time dependent build up of charge at the interface between the two dielectric slabs. But J  = σ E  and J  = σ E  so that

Equation( ) replaces Equation ( ) which is only valid providing that there is no charge flow through the dielectric slabs.
Eqns.(  and ) form a system of two equations that may be solved for the two unknowns E  and E . Notice that for this
case of conducting materials the displacement vector will have a different value in each of the two regions:

and

Notice that the free surface charge density on each electrode will be different in magnitude because ρ  = D  for the positive
electrode and ρ  = −D  for the negative electrode. The surface free charge density at the interface between the two dielectric slabs is
given by ρ  = (D  − D ).

(b) A Leaky Capacitor.

The potential function for a leaky capacitor is the same as the potential function for a non-leaky capacitor because in both cases the
potential must satisfy Equation (3.1.11), ∇ V = 0, and in both cases the potential must satisfy the same boundary conditions. In the
infinite electrode approximation in which edge effects are neglected the plane symmetry requires that the potential function have
the form V = a + bz, Equation ( ), where a and b are constants. This means that E  = − (∂V/∂z) must be independent of
position. If the potential difference between the electrodes is ∆V, see Figure (3.2.4), the electric field strength is E = ∆V/d, and the
corresponding strength of the displacement vector is . But from Gauss’ Theorem

Figure : Charge decay through a leaky capacitor.  is the dielectric constant for the spacer material. σ is the
conductivity of the spacer material.

applied to div( ) = ρ  it follows that the surface charge density on the positive electrode is given by ,
where Q is the total charge on the electrode and A is the electrode area. (Do not confuse the free charge density, σ  , with the
conductivity, σ). The capacitance is defined by C = Q/∆V so
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exactly the same formula as for a non-leaky capacitor! However, there is a flow of charge between the two electrodes of a leaky
capacitor. The current density is given by

The total current is

Unless the current is maintained by some external source such as a battery this current flow must deplete the electrodes of charge.
For an isolated capacitor the charge on the positive electrode must change with time according to the equation of charge
conservation:

The solution of this differential equation is

Thus the charge on a leaky capacitor dies away exponentially with a time constant, , given by

where ρ is the resistivity of the material between the conducting electrodes (not the charge density!), see Figure (3.2.4). Whether or
not a capacitor should be treated as leaky depends entirely upon the time scale associated with the problem. For most materials the
relative dielectric constant, , lies between 1 and 10, so that differences in the intrinsic time constant, , from one material to
another are determined primarily by the resistivity. Resistivities for some selected materials are listed in Table (3.2.1). The most
striking feature of this Table is the wide range of resistivities exhibited by these solid materials. It is clear that the best candidates
for an insulating dielectric material listed in the Table are yellow sulphur and paraffin wax.

(c) Cylindrical Co-ordinates.

Consider a problem that exhibits cylindrical symmetry so that the potential function does not depend upon the z co-ordinate.
LaPlace’s equation becomes

The general solution of this equation can be written

where a , b , c , and d  are arbitrary constants. The series ( ) satisfies the equation ∇ V = 0 term by term as can be verified by
direct differentiation.

Table 3.2.1: Resistivities and time constants for some selected materials at a temperature of 20C. (Handbook of Chemistry and Physics, 53  Ed.,
CRC Press (1972). The dielectric constant has been taken to be ε  for convenience.

Material ρ (Ohm m) Material ρ (Ohm m)

Copper 1.67 × 10 1.48 × 10

Intrinsic Ge 0.46 4.1 × 10

Boron 1.8 × 10 1.6 × 10

Yellow Sulpher 2 × 10 1.8 × 10 = 4.9 hours
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Material ρ (Ohm m) Material ρ (Ohm m)

Pyrex 7060 1.3 × 10 1.2 × 10

Pyrex 1710 2.5 × 10 2 × 10

Fused Silica ∼ 10 ∼ 9 × 10

Beeswax ∼ 10 ∼ 89

Paraffin 10  − 10 89 − 8.9 × 10  (up to 247 hours)

Wet Ground 10  − 10 10  − 10

The constants in ( ) have to be chosen so as to satisfy the boundary conditions for a particular problem. The term b ln r
corresponds to the potential generated by an infinite line charge, see Section (2.7.3) of Chpt.(2). A line charge of strength ρ
Coulombs/meter in free space generates the potential

If the line charge is immersed in a medium of dielectric constant  then  must be replaced by  in Equation ( ).

The term V  = (b /r) cos θ corresponds to a line of dipoles in which the dipole moment is oriented along the x-axis, see Chpt.(2),
Section (2.7.3). The potential generated by a line of dipoles in free space and having a strength of P  Coulombs is given by

If the dipole moments are oriented along the y-axis the potential is given by

this is one of the terms proportional to sin θ in Equation ( ).

The terms a r cos(θ) and c r sin(θ) in ( ) correspond to uniform fields along x and y. This can be seen by using the substitutions

and

to obtain V  = a x, corresponding to an electric field E  = −a , and V  = c y, corresponding to the electric field E  = −c . Such
terms are appropriate for discussing the problem of a uniform dielectric cylinder immersed in a uniform applied electric field,
Figure (3.2.5). If the applied electric field, E , is taken to lie along the x-direction it is clear from the symmetry of the problem that
the potential function must be symmetric in y: a reflection of the system through the xz plane gives one exactly the same problem.
This implies that the potential for θ and for −θ must be the same. This being the case, the amplitudes of all the sin nθ terms in the
expansion ( ) must be zero for
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Figure : A uniform cylinder, infinitely long in the z-direction, and immersed in a uniform electric field E  = E . The cylinder
is characterized by a dielectric constant It is situated in a medium whose dielectric constant is 2

each n because  is an odd function of its argument. Furthermore, the cylinder is uncharged and therefore the amplitude, b,
of the ln(r) term in the expansion must be zero because b is proportional to the strength of the line charge, ρ , which generates this
term in the potential. A second argument requires this term to be absent in the potential function for this problem: the potential
function inside the cylinder is required to remain finite at r=0, and ln(r) diverges at r=0. In addition, the potential function in the
region outside the cylinder is required to approach the value corresponding to a uniform electric field, V(r,θ) = −E r cos (θ), for
very large distances r, whereas ln(r) diverges at large r much more slowly. On the basis of these arguments one may conclude that
the potential function required for the problem of a cylinder immersed in a uniform electric field must have the form

In the limit as r → ∞ the potential function outside the cylinder, V , must converge to the potential corresponding to a uniform
electric field, E , along the x direction. That is

This condition requires all the terms an to vanish for n > 1. It also requires a  = −E .

Inside the cylinder the potential function, V  , must remain finite in the limit as r → 0: there are no charges inside the cylinder to
produce any singularity in the potential. Thus inside the cylinder all the terms proportional to 1/r  must vanish for all n. These
considerations now leave the following possibilities for the potential functions inside and outside the cylinder:

Inside(r ≤ R)

Outside(r ≥ R)

These two series for the potential functions inside and outside the cylinder must be matched on the surface of the cylinder in order
to satisfy two conditions: (1) the tangential component of  must be continuous across the interface (from curl  = 0); and (2) the
normal component of  must be continuous across the interface at r=R because there is no free charge density (from div( ) = ρ  ).
Condition (1) will obviously be satisfied if the potential function is forced to be continuous at r=R,

Condition (2) requires that
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These two conditions must be satisfied for every angle θ, and this means that they must be separately satisfied for each term cos
(nθ) in the above two series. For example:

n=0

n=1

and

These last two equations can be solved to give

n=2

and

The latter two equations have only the solution a  = b  = 0. These procedures can be continued for all n with the result that all
coefficients for n ≥ 2 are zero. The potential function for the problem of an infinite cylinder subjected to a uniform applied field
turns out to be rather simple:

Inside the cylinder (r ≤ R)

Outside the cylinder (r ≥ R)

The constant a has no physical significance and could just as well have been set equal to zero. The potential function inside the
cylinder corresponds to a uniform electric field along the x-direction:

This means that the material inside the cylinder is uniformly polarized along the x-direction. This is an example of the depolarizing
coefficients discussed in Section (2.7.4) of Chpt.(2). In order to make contact with the treatment of Chpt.(2), consider the problem
of a cylinder characterized by a dielectric constant , surrounded by free space , and located in a uniform external field E
= E . A uniform polarization density transverse to the cylinder axis, P , produces an internal field given by

because the depolarization coefficient for this geometry is 1/2. When this field is added to the applied field the total electric field
along the x-direction inside the cylinder is given by
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It is this total field that polarizes the material of the cylinder. By definition

therefore

Now substitute Equation ( ) for the electric field to obtain

Solving for P  this gives

From Equation ( ) the total electric field inside the cylinder is

in agreement with Equation ( ) deduced from the potential function for the case  and .

The potential function outside the cylinder corresponds to the uniform applied electric field, E , plus the potential due to a line of
dipoles whose dipole moment per unit length is given by

(by comparison of Equation ( ) with the expression for the potential function for a line of dipoles given in Section(2.7.3)).
This is equivalent to a dipole moment per unit volume

in agreement with Equation ( ).

This problem has been treated in detail because it is the prototype for all problems in cylindrical polar co-ordinates that involve
boundaries describable by the form r= constant. At each surface of discontinuity one must require the potential function to be
continuous through the surface. In addition the normal component of the displacement vector, , is required to be continuous
through the surface if that surface contains no surface free charge density. These conditions, together with the requirement that the
potential function behave properly in the limits as r approaches zero and as r approaches infinity, serve to determine the coefficients
in the expansions Equation ( ). The solution so found is guaranteed to be the solution apart from an additive constant.

(d) Spherical Polar Co-ordinates.

LaPlace’s equation written in spherical polar co-ordinates is
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Figure : An uncharged dielectric sphere, dielectric constant , situated in a medium characterized by a dielectric constant, 2,
in the presence of a uniform electric field E = E .

For simplicity consider problems that are symmetric around the z-axis so that the potential function does not depend upon the angle
variable . The general solution of LaPlace’s equation for that case is

The angular functions P (cos θ) are called Legendre polynomials: the first few of them are listed in Table (3.2.2). The coefficients
a , b  must be chosen to satisfy the boundary conditions for a particular problem. As an example, consider a dielectric sphere
having a dielectric constant  surrounded by a medium characterized by a dielectric constant 2 and immersed in a uniform
applied field, E  = E , see Figure (3.2.6). The electric field is directed along the z-axis, and is supposed to be produced by sources
that are very far removed from the position of the sphere. Far from the sphere the potential function must have the form

corresponding to a uniform field E . This suggests that the potential both inside and outside the sphere should be proportional to the
Legendre polynomial P  = cos (θ). One is therefore led to try

Table 3.2.2: The first five Legendre polynomials P (x): see Schaum’s Outline Series ”Mathematical Handbook” by Murray R. Spiegel, McGraw-
Hill, N.Y.,1968. The multiplicative constant in front of each polynomial has been chosen so that the polynomials satisfy the condition 

, where  1 if m=n, and zero otherwise.

Inside.

There is no term b /r  term because there is no charge at r=0 that would cause the potential function to be singular at the origin.

Outside.

where a = −E  in order that the potential reduce to that corresponding to a uniform field of strength E  at distances far from the
sphere.

On the surface of the sphere the potential must be continuous on passing from the inside to the outside the sphere; this continuity of
the potential function guarantees that the tangential component of E will be continuous across the surface of the sphere as is
required by the Maxwell equation curl( ) = 0. One finds, for r=R,
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or

On the surface of the sphere the normal component of  must be continuous. This condition gives

Equations ( ) and ( ) can be solved for A and b. The result of the calculation is

and

The function

satisfies ∇ V = 0 everywhere in the region inside the sphere. The function

satisfies ∇ V = 0 everywhere in the region outside the sphere. Moreover, these two functions satisfy all of the boundary conditions
for this problem. The uniqueness theorem guarantees that this is the solution of the problem of an uncharged dielectric sphere
subject to a uniform applied electrostatic field.

For the particular case in which an uncharged dielectric sphere characterized by a dielectric constant  is located in free space,
dielectric constant , the above result reduces to

and

where the relative dielectric constant is . These expressions are consistent with the results of Chpt.(2), Section(2.7.4)
in which it was stated that the depolarization factor for a sphere is 1/3. The second term in Equation ( ) corresponds to the
potential generated by a point dipole at the center of the sphere having the strength

This moment corresponds to a polarization per unit volume directed along z and having the value

This uniform polarization would produce a depolarizing field within the sphere given by

AR =− R+ ,E

0

b

R

2

A=− + .E

0

b

R

3

(3.2.20)

D

⃗ 

A=− ( + ) .ϵ

1

ϵ

2

E

0

2b

R

3

(3.2.21)

3.2.20 3.2.21

A=−( ) ,

3ϵ

2

+2ϵ

1

ϵ

2

E

0

b =( ) .

−ϵ

1

ϵ

2

+2ϵ

1

ϵ

2

R

3

E

0

(r, θ) =− .V

i

3 r cosθϵ

2

E

0

( +2 )ϵ

1

ϵ

2

2

(r, θ) =− rcosθ+( )V

o

E

0

−ϵ

1

ϵ

2

+2ϵ

1

ϵ

2

cosθR

3

E

0

r

2

2

ϵ

ϵ0

(r, θ) =−( ) r cosθ,V

i

3E

0

2+ ϵ

r

(3.2.22)

(r, θ) =− rcosθ+( ) ,V

o

E

0

−1ϵ

r

2+ ϵ

r

cosθR

3

E

0

r

2

(3.2.23)

= ( / )ϵ

r

ϵ

2

ϵ

0

3.2.23

= 4π ( ) .p

z

ϵ

0

−1ϵ

r

2+ ϵ

r

R

3

E

0

P = / = 3 ( )  Coulombs / .p

z

4πR

3

3

ϵ

0

−1ϵ

r

2+ ϵ

r

E

0

m

2

(3.2.24)

=−( ) Volts/m.E

z

−1ϵ

r

2+ ϵ

r

E

0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22805?pdf


3.2.11 https://phys.libretexts.org/@go/page/22805

When this is combined with the applied field, E , the total field within the dielectric sphere becomes

in agreement with the inner field calculated from the potential function Equation ( ).

3.2.2 The Method of Images.

(a) A Charge Located Near a Plane Interface.

This is a very specialized technique for solving electrostatic problems that involves setting up a distribution of non-existent charges
in such a way that the boundary conditions on the real problem are satisfied. For example, consider a point charge, q, located in
vacuum and at a distance d in front of an infinite conducting plane, Figure (3.2.7). In the region to the left of the interface the
potential function must satisfy ∇ V = 0. The boundary conditions are:

(1) Very near the position of the charge the potential function must have the form required for a point charge q, i.e.

(2) The conducting surface must be an equipotential surface, i.e. V=const.

These two boundary conditions are satisfied by the system of two charges shown in the bottom diagram of Figure (3.2.7). The real
problem involving a conducting surface has been replaced by an image problem which just involves two charges in free space. The
potential at any point in space for the image problem is

On the symmetry plane r  = r  and therefore V=0, and is constant, everywhere on the symmetry plane. Moreover, this potential
function satisfies ∇ V = 0 everywhere, except right at the two charges, because it is the sum of two point charge potentials each of
which separately satisfies LaPlace’s

Figure : Top figure: a point charge located a distance d in front of an infinite conducting metal plane. Bottom figure: The
system of charges whose electrostatic potential satisfies ∇ V = 0 as well as the boundary conditions for the problem posed in the
top figure. This solution is only valid in the vacuum region: in the metal V = 0.
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equation. This potential function obviously approaches the limit  as r  → 0. Therefore the potential function for the

image problem of Figure (3.2.7) is also the potential function which satisfies all the requirements for the problem shown in the top
diagram of Figure (3.2.7) in the region outside the conductor, (z ≤ 0). According to the uniqueness theorem, this is therefore the
required solution. Of course this solution is only valid for the region outside the conductor: inside the conductor the potential is
constant and equal to zero. This image problem can be easily generalized to the problem in which the space outside the conducting
plane is filled with a dielectric material  simply by replacing  with .

(b) A Charged Particle Located Near an Interface between Two Dielectric Materials.

The problem of a point charge outside a plane interface of discontinuity in the dielectric constant can also be solved by the method
of images, although in this case the required image charge distribution is not so obvious. Refer to Figure (3.2.8). Let the potential
function in Region(1) be that due to the real charge q plus an image charge q  symmetrically placed with respect to the interface,
see Figure (3.2.8). If space were homogeneously filled with material characterized by a dielectric constant  the resulting potential
would be given by

Let the potential to the right of the interface be the same as that due to an image charge q  located at the position of the real charge,
but a charge that is immersed in a homogeneous dielectric material characterized by a dielectric constant :

Clearly both V  and V  satisfy LaPlace’s equation. The trick now is to choose the image charges q ,q  so as to satisfy the boundary
conditions

(1) V  = V  on the interface between the two dielectrics; and

(2) the normal component of  must be continuous across the interface

between the two dielectrics, ie.

Boundary condition (1) gives

where r  = r  = r  on the boundary between the two dielectrics. Boundary condition (2) gives

Equation( ) is the consequence of the relation

When this expression is evaluated on the interface, ie. at z = 0, the result is

Similarly

The boundary condition Equation ( ) requires
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When this is combined with the first boundary condition, Equation ( ), one obtains

and

Figure : (a) The real problem: a charge q located a distance d from the interface between two uncharged dielectric media. (b)
The configuration of image charges that produce a potential that satisfies ∇ V = 0 and that can be used to satisfy the required
boundary conditions.

Figure : Equipotential surfaces for two line charges of equal strength but of opposite sign.

The solution of the original problem illustrated in part (a) of Figure (3.2.8) is given by Equation ( ), valid for region(1)
characterized by , and by Equation ( ) in region(2) characterized by , where q  and q  are given by Equations (  and 
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). The force acting on the real charge q is just q multiplied by the electric field generated at the position of q by the image
charge q1: ie. the electric field  = −grad(V ). It follows that if  >  the charge q is attracted to the interface, but if  <  then
the charge q is repelled by the interface.

(c) Parallel Conducting Cylinders

Let two line charges of strengths −ρ and +ρ Coulombs/m be separated by the distance 2b along the x-axis as shown in Figure
(3.2.9). In the first instance let these line charges be immersed in vacuum. The potential generated by a line charge of strength ρ is
given by

(see Section(2.7.3)). If r  is the distance from −ρ to an observer at P , and if r  is the distance from the line charge +ρ to the
observer at P, then the potential at P is given by

Let (r /r ) = k, a constant, so that

This is the potential on all points that satisfy the condition r  = kr , or . This last condition can be written out explicitly in
cartesian co-ordinates:

With the application of some tedious algebra this last expression may be put in the form:

Equation ( ) describes a circle centered at

with a radius

Notice that k′ = 1/k corresponds to an equipotential surface centered at

and having the same radius R as the equipotential surface corresponding to k and centered at x . Equipotential surfaces for k and
1/k are illustrated in Figure (3.2.9). The two equipotential surfaces shown correspond to different potentials. The cylinder on the
left corresponds to r /r  = k; the cylinder on the right corresponds to r /r  = 1/k. It follows that the potential of the cylinder on the
right is equal in magnitude but opposite in sign to the potential of the cylinder on the left.

These families of displaced equipotential cylindrical surfaces can be used to solve a number of parallel conducting cylinder
problems. The same treatment works if the cylinders are immersed in a dielectric medium; one has only to replace  by the
dielectric constant for the medium, .

(d) A Point Charge Outside a Conducting Sphere.

The problem of the potential function generated by a point charge located outside a conducting sphere can also be solved using the
method of images. Consider the geometry shown in Figure (3.2.10). The potential everywhere outside the conducting sphere is the
same as the potential generated by two point charges: (1) the original point charge q; and (2) an image charge −q . (The minus sign
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has been introduced for convenience; it makes sense that the charges induced on the sphere should have a sign that is opposite to
that of the charge q.) The assertion is that if the position of the charge q  as well as its magnitude are properly chosen then these
two charges will create a potential that is constant on the surface of the sphere. This assertion is by no means obvious, but let us see
how this comes about. The potential generated at the point of observation, P, is given by

where

and

It is now obvious from the form of the above potential that the potential will be zero on all points such that

So let qr  = q r, or more conveniently let . Write out this last equation explicitly in cartesian co-ordinates:

or

Gather terms to obtain

Figure : The real problem of a point charge located a distance d from the center of a metal sphere of radius R is shown in (a).
In part (b) the real problem has been replaced by two point charges as shown in the figure.
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then the potential V = 0 at all points such that

or using

This means that the spherical equipotential surface corresponding to V = 0 will coincide with the surface of the metal sphere if

and

So if Equations (  and ) are satisfied then the potential everywhere outside the metal sphere will satisfy ∇ V = 0
because the potential is the sum of two point charge potentials each of which satisfies the LaPlace equation. Moreover, this
potential function satisfies the boundary condition that the surface of the sphere be an equipotential surface. This solution
corresponds to the special case in which charge is allowed to flow onto the sphere as the driving charge q is brought up from
infinity. It can be shown using Gauss’ theorem that the charge induced on the sphere is just −q . The problem of an isolated sphere
such that the net charge on it is zero can be solved by adding a third charge of strength +q  to the position of the center of the
sphere in the image problem of Figure (3.2.10(b)).The potential in the region outside the sphere is now given by

where

The potential function Equation ( ) satisfies the LaPlace equation, ∇ V = 0, the surface of the sphere is an equipotential
surface, and it corresponds to a net charge of zero on the sphere. The potential of the sphere is just

because the last two terms in Equation ( ) cancel each other, by construction, on the surface of the sphere.

3.2.3 Two-dimensional Problems.

(a) The Theory of Complex Variables.

The theory of complex variables may be useful for solving problems in which the potential function does not depend upon one co-
ordinate- the z coordinate, say. Let z=x+iy represent a complex number, and let F(z)= U(x,y)+iV(x,y) be an analytic function of the
complex variable z. In order for F(z) to exhibit a well-defined derivative it can be shown that the Cauchy-Riemann equations must
be satisfied:
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and

See, for example, Schaum’s Outline Series: Complex Variables by Murray R. Spiegel, McGraw-Hill, N.Y.,1964. It follows from the
Cauchy-Riemann relations by direct differentiation that

and

Figure : Electrodes in the form of cylindrical hyperboloids. One pair of electrodes is held at a potential U=-1 Volt; the other
pair of electrodes is held at a potential U=+1 Volt. The potential function in the space between the electrodes is given by U = x  −
y . The electric field components in the space between the electrodes are given by E  = −2x and E  = +2y.

That is, both of the functions U(x,y) and V(x,y) satisfy LaPlace’s equation. Both U and V are therefore candidates for the solution
of some problem in electrostatics. Consider, for example, the analytic function

In this case

and

The families of curves U= const. and V= const. are orthogonal to each other. If the equipotential surfaces are represented by
U(x,y)= const. (see Figure (3.2.11)) then the curves V(x,y)= const represent the electric field lines: electric field lines are
constructed so that their tangent at each point is parallel with the direction of the electric field. Conversely, if the equipotential
surfaces are described by the curves V(x,y)= const. then the curves U(x,y)= const. represent the field lines. Other examples are
described in the Feynman Lectures on Physics,Vol.(II), section 7-2. In principle, the technique of conformal mapping (described in
Schaum’s Outline Series: Complex Variables, loc.cit.) can be used to determine the potential distribution around electrodes whose
shape can be represented by a polygon.
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(b) Analogue Solution Using Conducting Paper.

Two dimensional problems can also be solved by means of a kind of analogue computer. The desired electrode configuration is
painted on conducting paper using a metallic conducting paint, eg. silver dag, see Figure (3.2.12). The silver paint electrodes
portrayed in this figure would represent an infinitely long metal, circular, cylinder placed between two infinitely long parallel metal
plates. The electrodes are held at fixed potentials V , V , and V . The currents which flow in the conducting paper must be such
that there is no charge build-up anywhere; they must, therefore, satisfy the equation

But in a conducting medium one has

Figure : Electrodes of silver paint drawn on a sheet of conducting paper. The resistivity of the paper is much larger than that
of the silver paint electrodes.The equipotential lines can be mapped out by means of a voltmeter connected to a pointed probe.

so that

From this last equation it follows that the potential distribution in the conducting paper must satisfy ∇ V = 0 because E = −gradV.
The equipotential lines corresponding to a desired potential value can be traced out on the conducting paper by means of a high
input impedance voltmeter connected to a sharply pointed probe. The electric field can, of course, be obtained from the known
potential distribution via a numerical differentiation.

This page titled 3.2: Soluble Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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3.3: Electrostatic Field Energy
It will be shown in Chapter(8) that it costs energy to set up an electric field. As the electric field increases from zero the energy
density stored in the electrostatic field, W , increases according to

For the particular case in which the electric field is set up in a dielectric medium that can be described by a dielectric constant so
that , this expression can be written

Eqn.( ) can be integrated immediately to obtain

In the above expressions the zero of energy has been chosen to be zero when the electrostatic field is everywhere zero. The total
energy stored in the electrostatic field is obtained as an integral of W  over all space. This total energy, U , can be expressed in
terms of the potentials and charges on the electrodes that created the electric field. This can be shown by starting from the vector
identity

where  is any vector field and V is a scalar function. This identity can be proved by writing out the divergence in cartesian co-
ordinates and by carrying out the differentiations. But from Maxwell’s equations , and by definition ,
so that

The volume integral on the left can be replaced by a surface integral by using Gauss’ theorem:

As the volume becomes very large and the surface S recedes to infinity, the surface integral becomes very small. Very far from all
charges the potential V must decrease at least as fast as 1/R (the potential due to a point charge) and | | must decrease at least as
fast as 1/R  (again a point charge) whereas the surface area increases like R  . It follows that the surface integral must decrease at
least as fast as 1/R in the limit as the dimensions of the surface become infinitely large. It follows from Equation ( ) that

and therefore

For a collection of conductors embedded in a non-conducting dielectric medium all of the charges are on the conductor surfaces
and the charges on a given conductor are all at the same potential. In that case the integrals in Equation ( ) simply give the
product of electrode potential and the total charge on the electrode:
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3.3.1 Generalized Capacitance Coefficients
Maxwell’s equations are linear, therefore the potentials associated with electrodes embedded in a material that obeys linear
response must obey the principle of superposition. The potential distribution that is generated by a particular charge is proportional
to the quantity of that charge. It follows from superposition that for any collection of charges the potential at any point must be a
linear function of the charge strengths. The converse must also be true. Given a collection of conducting electrodes embedded in a
linear dielectric medium the charge on each of the electrodes must be a linear function of the electrode potentials: if the potentials
are doubled then so must the charge on each electrode be doubled and vice versa.

This linear dependence of the charge on potentials can be expressed as follows (see Figure (3.3.13):

Figure : Charged conductors embedded in a linear dielectric medium. The charges are a linear function of the potentials, see
Equation ( ) in the text.

The factors of proportionality, C , are called capacitance coefficients; they have the units of Farads. These equations express the
observation that a change in the potential of one electrode causes a change in the amount of charge stored on every electrode, not
just on the electrode whose potential was altered. The energy stored in the electric field, which can be calculated from Equation (

), must be independent of how the charging process was carried out. It must not matter, for example, whether electrode (1) is
first charged, then electrode (2), then electrode (3), and so on, or whether (3) is charged first, then (2), then (1), then (4), and so on.
The energy contained in the final state of the system must be independent of the way in which that final state was reached: in order
that this be so, it can be shown that

Instead of N  independent capacitance coefficients there are only N(N+1)/2 of them. Notice that these capacitance coefficients are
geometry dependent. Any change in the shape of any electrode, or a change in the position of any electrode, will result in a change
in all of the capacitance coefficients. It follows also that the energy stored in the electric field must change. This change in field
energy can, in principle, be used to calculate the electrostatic forces on the conductors or on the dielectric medium.

Figure : A parallel plate capacitor. The two plates have an area A and are separated by a distance z. The charge density on
each plate is ρ  Coulombs/m  .
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3.3.2 Electrostatic Forces.
Case(1) The Charges are Fixed.

The charges on each conductor are held fixed, and one of the conductors is allowed to undergo a slight displacement . During
this displacement the electric forces will do an amount of work

This work can only be done at the expense of the energy stored in the electric field since there are no other energy sources.
Consequently

The energy stored in the electric field acts like a potential function for the electrical forces. As an example, consider the parallel
plate capacitor of Figure (3.3.14). It is convenient in this case to work with a unit area of electrode surface, and to take metal plates
that are so large that edge effects can be neglected. For a fixed surface charge density on each electrode the electric field strength
between the plates is independent of the electrode spacing, z. The energy stored in the electric field per unit area of electrode can be
calculated from the energy density Equation ( ); the result of the calculation is

since the electric field strength is given by . Let the plates be moved apart by a small increment dz. The work done on
the displaced plate by the electrical force per unit area is given by Fdz. This work must be done at the cost of the stored electrical
energy, therefore

or

The electric forces act in such a way as to pull the electrodes together. This is the expected result because one plate carries a
positive charge and the other plate carries a negative charge. As a guess, one might have thought that the force per unit area on a
given electrode would just be given by the charge density multiplied by the electric field at the surface of the electrode, i.e. ρ E.
The result Equation ( ) shows that the average field acting on the charges must be used to calculate the force ( remember that
E=0 inside the conductor).

Although the above result for the force on a conductor has been derived for a plane parallel plate, it turns out to be valid for the
electric force per unit area acting on the surface of any conductor facing vacuum. There is a negative pressure acting on the
conductor surface that depends only upon the local values of the field strength and the surface charge density. This negative
pressure, or tension t , is given by

For a conducting surface immersed in a fluid characterized by a dielectric constant  it is easy to show that this tension becomes

Case(2) The Potentials are Fixed.

In many instances it is convenient to investigate the electrical force distribution under circumstances in which the electrode
potentials are held fixed. Any change in the electrode configuration at fixed potentials that results in a change in the capacitance
coefficients will also lead to a change in the amount of charge carried by each conductor. If the change in the charge carried by a
particular electrode is , the work required to add this charge to the conductor is  and this energy is provided
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by the source of emf that is attached to conductor M, i.e. by the battery which is used to maintain the constant potential. The change
in energy stored in the electric field can be calculated from Equation ( ); the result for constant potentials is

The energy provided by the batteries that hold the potentials V  constant is given by

The energy supplied from the batteries is exactly twice the increase in the energy stored in the electric field. The work done by the

electrical forces in moving an electrode is . Conservation of energy now gives

or

since . For this case the increase in electrical energy stored in the field is exactly equal to the external work done by
the electrical forces in changing the electrode geometry.

As an example, consider the configuration shown in Figure (3.3.15). A slab of dielectric material characterized by a dielectric
constant , lies with one end near the center of a plane parallel capacitor and the other end lies well outside the capacitor. The slab
has a thickness d meters and a width w meters. The specimen is so long that the electric field at the end that lies

Figure : A plane parallel capacitor partially containing a slab of dielectric material d thick and w wide. The dielectric
constant of the slab is . The objective is to calculate the electric forces acting on the slab.

outside the capacitor is nearly zero and may be neglected. An uncomplicated but tedious calculation gives (refer to Figure (3.3.15)):

and

E  is the field in the vacuum in a region occupied by the dielectric slab, but far enough from the end of the slab so that
inhomogeneities in the field can be neglected: in practice, this means that one is considering a position several slab thicknesses, d,
from the end. The quantity E  is the electric field strength in the dielectric slab, but at a position several d removed from its end. E
is the electric field strength in the region of the capacitor where there is no slab, and far enough from the end of the slab so that
fringing fields can be neglected. Now let the slab be inserted  farther between the capacitor plates. The change in energy stored
in the electric field will just be that corresponding to removing a volume  of dielectric-free space where the field is E
Volts/m and replacing it with the volume (wd) x of dielectric material subject to the field E  plus the vacuum volume 

3.3.6

δ = δ .U

E

1

2

∑

N

V

N

Q

N

(3.3.10)

N

δ = δ .W

B

∑

N

V

N

Q

N

(3.3.11)

⋅F

E

→

dr

→

⋅ +δ = δ ,F

E

→

dr

→

U

E

W

B

⋅ = δ = δ ,F

E

→

dr

→

U

E

1

2

∑

N

V

N

Q

N

(3.3.12)

δ = 2δW

B

U

E

ϵ

3.3.15

ϵ

= Volts/m;E

1

V

[ +( −1)d]d

1

ϵ

0

ϵ

=  Volts /m;E

2

( )V

ϵ

0

ϵ

[ +( −1)d]d

1

ϵ

0

ϵ

= Volts/m.E

0

V

d

1

1

2 0

δx

( w) δxd

1 0
δ 2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22806?pdf


3.3.5 https://phys.libretexts.org/@go/page/22806

 subject to the field E . This change in energy will be independent of the exact shape of the end of the slab providing
that the extent of the non-uniform field region around the end of the slab is very small compared with the lateral dimensions, D, of
the capacitor plates, i.e. providing that d/D ≪ 1. The change in stored electrostatic energy for a small displacement  is given by

After some algebra this may be written

In general the dielectric constant  is greater than  so that the electrostatic energy stored in the field increases if the dielectric slab
moves farther into the capacitor. For constant applied voltage this means that the electric forces are such as to pull the slab further
between the capacitor plates: at constant applied potential the geometry tends to change so as to maximize the energy stored in the
field. The force on the slab is given by

The force on a dielectric slab may be measured and used to obtain the dielectric constant for the slab material, . A variant of this
method is often used to measure the dielectric constant of a fluid, see Figure (3.3.16). Eqn.( ) becomes much simpler if the
thickness of the dielectric slab is the same, or nearly the same, as the spacing between the capacitor plates. When d = d  one finds

where  is the electrical susceptibility defined by . In the opposite limit, d/d  ≪ 1, the force is given by
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Figure : Quincke’s method for measuring the dielectric constant of a fluid. Upon the application of the voltage V to the
capacitor plates the dielectric fluid is sucked up between the plates. In equilibrium the electrical force on the fluid just balances the
gravitational force. The gravitational force is proportional to the level difference h. The electrical force per unit area, t, is given by t
= ρgh where ρ is the fluid density.

Figure : The force acting on the matter contained within a volume V can be obtained as the surface integral of a vector 
over a surface S that encloses V. It is assumed that  is everywhere inside S proportional to the electric field, . It is further
assumed that the surface S is immersed in a fluid that can support no shear stresses, and that  and  are parallel on S. The force
per unit area is given by  and the direction of the force per unit area is such that the angle between  and the surface
normal is bisected by the direction of the electric field.
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3.3.3 The Maxwell Stress Tensor
The forces acting on a static charge distribution located in a linear isotropic dielectric medium can be obtained as the divergence of
an object called the Maxwell stress tensor. It can be shown that there exists a vector  associated with the elements of the stress
tensor such that the surface integral of  over a closed surface S enclosing a volume V gives the net force acting on the charges
within V: see, for example, Electromagnetic Theory by J.A.Stratton, section 2.5, (McGraw-Hill, N.Y., 1941). One can write

In this integral  is a vector whose magnitude is given by  and whose direction is given by the construction shown
in Figure (3.3.17). Note that the element of area, dS, in Equation ( ) is not represented by a vector; it is simply a scalar
quantity. When the electric field, E, is directed parallel with the outward normal to the surface element the force contribution is a
tension, but when E lies in the surface the contribution to the force is a pressure. It is an interesting exercise to show that the force
between two charges in vacuum is given by  if one integrates the vector  over a suitably chosen surface that
completely surrounds one of the charges.

This page titled 3.3: Electrostatic Field Energy is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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3.4: The Field Energy as Minimum
Consider a group of conductors embedded in a dielectric medium as shown in Figure (3.3.13). Let the actual potential distribution be

V corresponding to the electric field ; the potential function V satisfies LaPlace’s equation, ∇ V = 0, and it satisfies
the boundary conditions. Now consider a second potential distribution, V , that is not the correct one: , where 
on the conductors. This situation might arise, for example, if one tried to guess the potential distribution given the potential on each
of the conductors. The field energy calculated using the wrong potential function V  would be

where  and . Upon multiplying out the factors under the integral sign one obtains

But

If  is integrated over all space the result is

The surface integral in Equation ( ) goes to zero for the usual reasons as the surface S becomes infinitely large. Namely, very far
from any sources | | goes to zero at least as fast as 1/R  and the surface area increases like R  so that the surface integral

contribution must vanish providing that the product  goes to zero at least as fast as 1/R  , ie. V must go to zero at least as fast
as 1/R. Also by hypothesis the charge density, ρ  , vanishes everywhere except on the surfaces of the conductors where V = 0, by
hypothesis. Consequently, Equation ( ) gives the result

It follows from this and from Equation ( ) that the incorrect energy  exceeds the correct energy U , where

by a positive definite amount:

This demonstrates that the electric field energy is a minimum for the correct field distribution. This fact can be made the basis for an
approximate method for solving electrostatic field problems: one guesses at the form of the potential using a reasonable function that
contains a number of adjustable constants a,b,c etc. These constants are adjusted so as to obtain the minimum electrostatic energy.
The solution so obtained represents the given functional form that most closely approximates the exact solution. This method has
been illustrated in the last part of Chpt.(19) of the Feynman Lectures on Physics, Vol.(II), using a cylindrical capacitor as an example.
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Figure : A point dipole p  is located at the center of an empty spherical cavity of radius R cut out of an otherwise
homogeneous dielectric material characterized by a dielectric constant . The electric field far from the cavity is E  Volts/m, and is
uniform and directed along the z-axis.

This page titled 3.4: The Field Energy as Minimum is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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3.5: Appendix(A) - The Onsager Problem
An interesting variant of the problem of a sphere in a uniform field has been discussed by Onsager in connection with the
calculation of the dielectric constant of a material from its atomic polarizability; L.Onsager, J.Amer.Chem.Soc.58, 1486-1493
(1936). When an isolated atom is placed in a uniform external electric field it develops a dipole moment, p , that is proportional to
the applied field E ;

where the polarizability  has the dimensions of a volume, and can in principle be calculated using quantum mechanics. In a solid
or a liquid the atom is not isolated, but its electric moment is influenced by the electric fields due to its neighbours. As a crude
approximation one may imagine that the atom plus its associated electric moment is located at the center of a spherical cavity of
radius R cut out of an otherwise homogeneous dielectric material characterized by a dielectric constant , see Figure (3.4.18). Far
from the cavity the electric field is E  and directed along the z-axis corresponding to the potential function

where r and θ are spherical polar co-ordinates. The problem is to determine the field inside the cavity that acts to polarize the atom.
The externally applied electric field is derived from a potential function whose angular dependence is proportional to cos (θ); one is
therefore motivated to seek a solution of this problem that corresponds to the use of the terms proportional to cos (θ) in the
expansion for the potential, Equation (3.2.19). Inside the cavity the potential near r=0 must be dominated by the dipole potential

One is therefore led to try

Inside: r < R

and

Outside: r > R

The requirements that the potential function and the normal components of  be continuous across the surface of the sphere, r=R,
lead to the two equations

where . From these two equations one finds

and

But A is just the value of the uniform field inside the cavity that is responsible for the induced dipole moment on the atom,
therefore from the definition of the polarizability one has
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This value can be substituted into Equation ( ) for the constant A to obtain

Eqn.( ) can be solved for A in terms of the applied electric field E , and this result can be used in Equation ( ) to calculate
the atomic dipole moment p :

But the dipole moment per atom can be used to calculate the dipole moment per unit volume, :

where N is the number of atoms per unit volume. From the definition

one has

(Notice that one can drop the vector signs on D, E , and P because all of these vectors are parallel with the z-axis). Using Equations
( , , and ) one can obtain a relation between the relative dielectric constant,  and the polarizability :

The latter expression can be solved to obtain the polarizability in terms of the relative dielectric constant, :

Eqn.( ) can be used to calculate the atomic polarizability from measured values of the relative dielectric constant, . These
values of  can then be compared with values calculated from atomic theory.

This page titled 3.5: Appendix(A) - The Onsager Problem is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John
F. Cochran and Bretislav Heinrich.
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1

CHAPTER OVERVIEW

4: The Magnetostatic Field I
The Calculation of Magnetic Fields Given a Time-independent Distribution of Sources.

4.1: Introduction
4.2: The Law of Biot-Savart
4.3: Standard Problems
4.4: A Second Approach to Magnetostatics

Thumbnail: Magnetic B-field inside and outside of a cylindrical bar magnet. (CC BY-SA 4.0 International; Geek3 via Wikipedia)
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4.1: Introduction
If nothing changes with time Maxwell’s equations become:

 

 

 

The magnetic field has become completely uncoupled from the electric field. The magnetostatic field, B, is generated by current
flow and by a spatial variation of the magnetization density, M. It is customary to introduce a vector potential function  through
the relation

where r is the position vector corresponding to some point in space. The divergence of any curl of a vector field is zero, therefore
Equation ( ) automatically guarantees that the equation div  = 0 will be satisfied. Notice that the equation div  = 0 requires
the normal component of  to be continuous across any surface. This conclusion is based upon an application of Gauss’ theorem
similar to that used in section(2.3.2) in chapter(2). Upon substituting for  in Equation ( ) one obtains

The free current density,  , and the function curl( ) both act in exactly the same way to generate a magnetic field. It is useful,
therefore, to define an effective current density by the relation

and a total current density by

The total current density is just the sum of the current density due to the motion of charges and the effective current density due to a
spatial variation of the magnetization density, . With this notation, Equation ( ) becomes

The vector operator curl curl has a particularly simple form when written out in cartesian co-ordinates:

where

is the LaPlacian operator, and  and  are unit vectors. Eqn.( ) is actually three equations when written in cartesian co-
ordinates: one equation for each of the three components.
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At this point the vector field  has not been uniquely defined because so far all that has been specified is its curl through the
requirement that curl( ) = . In order to uniquely specify a vector field, apart from a constant vector, it is necessary to specify
both its curl and its divergence. There are many fields  whose curl give the same field . For example, let us define a new field
from the old vector potential, , by means of the relation

where F is any scalar function of position. Both ′ and  give exactly the same field, , because the curl of any gradient is zero.
This property of the curl was used in Chapter(2) in order to introduce the electrical potential function. The arbitrariness in the
vector potential A illustrated by Equation ( ) means that one can choose the vector potential so that its divergence has a
convenient value. It turns out that div( ) = 0 is a convenient choice because it causes the differential equations ( ) to assume
a familiar form:

Each of these equations has exactly the form as Equation (2.2.5) encountered in Chapter(2) for the electrostatic potential. The
particular solutions for Equations ( ) can therefore be written down immediately by analogy with Equation (2.2.6) of
Chapter(2):

where d  is the element of volume.

Figure : The geometry used to calculate the vector potential at the point P( ) generated by a given current density distribution
( ).

But these equations are just the three cartesian components of a single vector equation

− + (div ) = )∇

2

A

y

∂

∂y

A

⃗ 

μ

0

J

T

y

(4.1.10)

− + (div ) = )∇

2

A

z

∂

∂z

A

⃗ 

μ

0

J

T

z

A

⃗ 

A

⃗ 

B

⃗ 

A

⃗ 

B

⃗ 

A

⃗ 

= +grad(F)A

′

→

A

⃗ 

(4.1.11)

A

⃗ 

A

⃗ 

B

⃗ 

4.1.11

A

⃗ 

4.1.11

,=− )∇

2

A

x

μ

0

J

T

x

,= − )∇

2

A

y

μ

0

J

T

y

(4.1.12)

.=− )∇

2

A

z

μ

0

J

T

z

4.1.12

( ) = dτA

x

R

⃗ 

μ

0

4π

∭

Space

( ))J

T

x

r

⃗ 

| − |R

⃗ 

r

⃗ 

( ) = dτA

y

R

⃗ 

μ

0

4π

∭

Space

( ))J

T

y

r

⃗ 

| − |R

⃗ 

r

⃗ 

( ) = dτA

z

R

⃗ 

μ

0

4π

∭

Space

( ))J

T

z

r

⃗ 

| − |R

⃗ 

r

⃗ 

τ

4.1.1 R

⃗ 

J

⃗ T vecr

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22811?pdf


4.1.3 https://phys.libretexts.org/@go/page/22811

It is instructive to rewrite this equation explicitly in terms of the co-ordinates that specify the point of observation, 
 and the coordinates that specify the position of the source element of volume , see

Figure (4.1.1):

The particular solution, Equation ( ), corresponds to the choice div( ) = 0.

Derivatives of the components of  with respect to the field co-ordinates (X,Y,Z) can be calculated using Equation ( ) by
differentiating under the integral sign. For example,

Figure : A thin wire carrying a current of I Amps. The field is to be calculated at P, the point of observation.

Carrying out the differentiations term by term one can show that

where d  is the element of volume.

This page titled 4.1: Introduction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.

( ) = dτ .A

⃗ 

R

⃗ 

μ

0

4π

∭

Space

( +curl( ))J

⃗ 

f

M

⃗ 

| − |R

⃗ 

r

⃗ 

(4.1.13)

=X +Y +ZR

⃗ 

u

^

x

u

^

y

u

^

z

= x +y +zr

⃗ 

u

^

x

u

^

y

u

^

z

(X,Y, Z) = ∫ ∫ dxdydz .A

⃗ 

μ

0

4π

∫

Space

(x, y, z)J

⃗ 

T

(X−x +(Y−y +(Z−z)

2

)

2

)

2

− −−−−−−−−−−−−−−−−−−−−−−−

√

(4.1.14)

4.1.14 A

⃗ 

A

⃗ 

4.1.14

=− ∫ ∫ dxdydz .

∂A

x

∂Y

μ

0

4π

∫

Space

(x, y, z)(Y−y))J

T

x

[(X−x +(Y−y +(Z−z ])

2

)

2

)

2

3/2

4.1.2

( ) = curl( ) = ∫ ∫ dτ ,B

⃗ 

R

⃗ 

A

⃗ 

μ

0

4π

∫

Space

( ×( − ))J

⃗ 

R

⃗ 

r

⃗ 

| −R

⃗ 

r

⃗ 

|

3

(4.1.15)

τ

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22811?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/04%3A_The_Magnetostatic_Field_I/4.01%3A_Introduction
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html


4.2.1 https://phys.libretexts.org/@go/page/22812

4.2: The Law of Biot-Savart
It often happens that the current density is confined to a relatively small cross-section. Consider, for example, the case of a thin
wire carrying a current, see Figure (4.1.2). For this case the current density is I/S inside the wire, where S is the cross-sectional area
of the wire, and the current density is zero outside the wire. If the thickness of the wire is very small compared with the distance to

the point of observation, one can neglect the very small variations of  for the
various elements across the wire section, so that when integrated over the wire cross-section Equations (4.1.14) and (4.1.15)
become line integrals:

Figure : Derivation of the law of Biot-Savart from the fields generated by a slowly moving point charge.

and

Equation ( ) is called the law of Biot-Savart. Notice that the magnetic fieldstrength falls off like 1/r  with distance from a small
element of current. The law of Biot-Savart can also be deduced directly from the expression for the magnetic field generated by a
slowly moving point charge, Chapter(1), Equation (1.1.7). Consider a small element of a wire containing N charges q per unit
volume that are moving along the wire with a velocity v, see Figure (4.2.3). The charge density contributed by the mobile charge
carriers are supposed to be exactly compensated by an equal number density of fixed charges of opposite sign. The current flowing
through the wire is numerically equal to the charge contained in a cylinder of area S and equal in length to the velocity, v: all of the
mobile charges in such a cylinder will pass through a given cross-section in 1 second,

The electric field due to the mobile charge carriers contained in a piece of wire dL long is just given by

These charges produce a magnetic field because of their motion

The compensating stationary charges produce no magnetic field because their velocity relative to the observer is zero. They do,
however, produce an electric field that cancels the electric field due to the mobile charges. Now use the fact that  and d  are
parallel, along with Equation ( ), to obtain
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This leads directly to the integral expression Equation ( ) for the law of Biot and Savart since .

This page titled 4.2: The Law of Biot-Savart is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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4.3: Standard Problems

4.3.1 A Long Straight Wire.

Each element of the wire, d , is directed along z, and therefore A has only a z-component, see Figure (4.3.4) and Equation
(4.1.16):

Unfortunately, the integral of Equation ( ) diverges if it is evaluated over the interval −∞ ≤ z ≤ ∞ . This indicates that an
infinitely long wire is unphysical; eventually the two ends of the wire must be connected in order to complete the steady state
current loop. In order to proceed, one can calculate the contribution to the vector potential from the large but finite wire segment
−L ≤ z ≤ +L. The result is

Clearly A  must have the same value everywhere on a circle of radius x centered on the origin and lying in the x-y plane. The
expression for the

Figure : A straight wire 2L meters long, and carrying a current of I  Amp`eres, used to calculate the vector potential and the
magnetic field generated at a point P in the central plane.

vector potential may therefore be written in cylindrical polar co-ordinates as

Although this expression is strictly valid only for points in the x-y plane, it is clear from symmetry arguments that for large L and
small z the vector potential must be essentially independent of z. The corresponding magnetic field is given by  = curl( ), and
since  has only a z-component, and since this z-component is independent of the angle θ, the magnetic field has only a θ-
component:
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If L ≫ r this expression reduces to

4.3.2 A Long Straight Wire Revisited.

The result Equation ( ) for the magnetic field generated by a long straight wire is so simple that it suggests that there must be
an easy method for obtaining it: a method based upon the symmetry of the problem. Magnetic problems in which the current
distribution is very symmetric may often be solved by means of an application of Stokes’ theorem (Chpt.(1), Section(1.3.4)).
Stokes’ theorem states that the surface integral of the curl of any vector field over a surface bounded by a closed curve C can be
replaced by the line integral of that vector over the curve C. Apply this theorem to the Maxwell equation

For the present problem there is no magnetization density;  everywhere and therefore  everywhere and 

. The current flow is confined to the cross-section of the wire so that if one applies Stokes’ theorem to the surface
bounded by the circle of radius R shown in Figure (4.3.5) one obtains

Figure : Geometry used to calculate the magnetic field generated by a long straight wire carrying a current of I  Amp`eres.

where dS is the element of area, and  is a unit vector normal to the element of surface area. But from Stokes’ Theorem

The law of Biot-Savart, Equation (4.1.17), can be used to convince oneself that  has only a component in the direction tangent to
the circle C of Figure (4.3.5). By symmetry this component must be independent of position along the circumference of the circle,
and the line integral in is very easy to carry out.
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or

Figure : The magnetic field generated along the axis of a circular current loop.

in agreement with Equation ( ) deduced from the vector potential. Unfortunately, most problems do not exhibit sufficient
symmetry to be so simply solved.

4.3.3 A Circular Loop.
Refer to Figure (4.3.6). In this case the field is most simply calculated by direct application of the law of Biot-Savart, Equation
(4.1.17). The element of magnetic field, d , generated by any small element of length, d , along the wire is perpendicular both to
d  and to  as shown in Figure (4.3.6). The transverse component of d  is cancelled by symmetry by the contribution from the
element of length that is diametrically opposite to d . Thus along the axis of the loop there is only a z-component of magnetic
field:
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Figure : The magnetic field along the axis of a solenoid L meters long, R meters in radius, and having N turns per meter.

This expression can be readily integrated because the distance r does not depend upon position around the circumference of the
wire. Thus

This expression, together with the principle of superposition, can be used to calculate the magnetic field along the axis of a
solenoid.

4.3.4 The Magnetic Field along the Axis of a Solenoid.
Consider a coil L meters long that is uniformly wound with N turns/meter. The magnetic field at a point on the axis of the coil can
be calculated as the sum of the fields generated by each turn separately using the principle of superposition. The field generated by
a single turn located at  is given by

where I  is the current; this follows from Equation ( ). The field generated at z by the  turns contained in the element of
length  is given by

Upon integration over  the total field becomes

This is a standard integral:
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The calculation of the field strength at an off-axis position is more difficult, and must be carried out numerically. In the limit as L
becomes very large, ie. (z/L)≪ 1, the z dependence drops out to give

(Note that N is not the total number of turns on the solenoid but is the total number of turns divided by the length L.)

4.3.5 The Magnetic Field of an Infinite Solenoid.
The field in an infinite solenoid cannot depend upon position along z because the coil appears the same to a fixed observer even if
it is shifted along its axis through any finite interval, ∆z. The current flow in the solenoid turns is transverse to the solenoid axis,
therefore according to the expression (4.2.1) for the vector potential,  must be purely transverse; ie. the vector potential  can
have only the components A  and A  when written in cylindrical polar co-ordinates. These components cannot depend upon the
angle θ because any rotation of the solenoid around its axis leaves the current distribution unchanged. The curl of a vector that has
only the components A  and A ,

Figure : Diagram to illustrate the use of Stokes’ Theorem to show that the field outside an infinite solenoid is zero.

and for which these components depend only upon the radial co-ordinate,r, has only a z-component,

We conclude, therefore, that the magnetic field can have only one component, B , and that component can depend only upon the
distance r from the solenoid axis. Further note that everywhere inside the solenoid curl( ) = 0 from Maxwell’s equations since
there is no free current density and no magnetization density by hypothesis. But since  has only a z-component that is
independent of θ and z, its curl has only the component

and therefore B  is independent of the distance from the solenoid axis. A similar line of argument applies equally to the region
outside the solenoid. It follows from Equation ( ), the expression for the field at the center of a long solenoid, that the field
everywhere inside an infinite solenoid must be given by

As was shown above, outside the infinite solenoid the field must be a constant, B  = B  say. The value of B  may be calculated by
means of Stokes’ theorem, Figure (4.3.8). Apply Stokes’ theorem to an area bounded by the rectangle L long and d wide that is
oriented perpendicular to the current flow in the windings. From Maxwell’s equations
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since there is no magnetization density and the fields are static. Therefore

This last result follows because  = 0 except on the cross-section of each wire. But, referring to Figure (4.3.8)

The sides of the loop d meters long contribute nothing because they are perpendicular to the magnetic field. It can therefore be
concluded that

But inside the solenoid the field is B  = µ NI , and Equation ( ) then requires that the field outside the solenoid be zero. The
fields generated by an infinitely long solenoid are zero everywhere outside the solenoid, and a uniform field parallel with
the axis, B  = µ NI , everywhere inside the solenoid.

4.3.6 The Field generated by a Point Magnetic Dipole.

Consider a current loop of radius a meters centered on the origin and lying in the x-y plane as shown in Figure (4.3.9). For
simplicity, let the point of observation, P, lie in the y-z plane; this assumption involves no loss of generality because the vector
potential and the field must be independent of angle around the z-axis. The contribution of the line element 

 to the vector potential at P(0,Y,Z) is

Figure : Calculation of the vector potential generated by a current loop of radius a carrying a current of I  Amps.

As usual  and  are unit vectors directed along x and y.

or

where R  = Y  + Z . Using the binomial expansion theorem along with the condition (a/R) ≪ 1 one finds, to first order in (a/R),

Integrate over the angle  from  = 0 to  = 2 . The integrals over sin , cos ( ), and sin ( ) cos ( ) all vanish. However, the
integral over sin (  gives . Thus  will have only a component parallel with the x-axis for the above choice of P lying in the Y-
Z plane at (0,Y,Z):
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This result indicates, because of the symmetry around the z-axis, that in spherical polar co-ordinates the vector potential has only
one component, A . Let ; then

In vector notation this result can be written

where , and , the area of the current loop. It can be shown that this same result is obtained for any small
current loop, whatever its shape may be, in the limit as the dimensions of the loop become very small compared with the distance
to the point of observation, R.

It is simple, but tedious, to show that the magnetic field corresponding to Equation ( ) is given by

This result can best be obtained by calculating the curl using cartesian coordinates. Eqn.( ) for the magnetic field generated
by a magnetic point dipole has exactly the same form as Equation (1.2.10), the electric field produced by an electric point dipole.

4.3.7 A Long Uniformly Magnetized Rod.

Let a cylindrical rod be magnetized uniformly along its axis. Inside the rod the magnetization density, M  = M , is independent of
position, ie. ,  and . Therefore, curl ( ) = 0 everywhere inside the rod. Similarly, curl (

) = 0 everywhere outside the rod. However, curl ( ) does not vanish on the surface of the rod, see Figure (4.3.10). In cylindrical

polar co-ordinates one finds only one non-zero component,  the radial component of curl ( ) is zero
because the magnetization density does not depend upon the azimuthal angle, . Notice that ∂M /∂r is zero everywhere except on
the surface where M  varies rapidly from M  on the inside to M  = 0 on the outside of the rod. This rapid radial variation of M
introduces an integrable singularity into the angular component of curl ( ):

where  is the Dirac -function that vanishes except at the radius r=R. The quantity curl ( ) is equivalent to a real current
density as far as
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Figure : A long cylindrical rod magnetized along the axis.

Figure : A uniformly magnetized disc.

producing a magnetic field is concerned. The above surface current density produces exactly the same magnetic fields as a surface
current sheet having a strength of M  Amps/meter; in terms of the windings on a solenoid, it is equivalent to N turns/meter carrying
a current of I  Amps where NI  = M  Amps/meter. The field inside a uniformly magnetized rod is given by the infinite solenoid
formula, Equation ( ),

Unfortunately this field is not accessible. The field outside an infinitely long magnetized rod is zero.

4.3.8 A Uniformly Magnetized Disc.

The discontinuity in the tangential component of the magnetization density at the surfaces of a uniformly magnetized disc produces
an effective surface current density that sets up a magnetic field whose distribution is exactly equivalent to the field set up by a
solenoid of the same length. The strength of the effective current sheet is M  Amps/meter, and is equivalent to N turns/meter
carrying I  Amps, where NI  = M . This can be shown using Stokes’ Theorem applied to a small loop of area A that spans the
surface of the disc as shown in Figure (4.3.11). The field along the axis of a disc of thickness Ld is given by Equation ( )
applied to this case :

The field generated by a uniformly magnetized disc having a finite thickness is accessible at points outside the disc. The strength of
the field at the center of the disc surface at r=0 is given by
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Permanent magnets are available for which  Tesla. The external fields produced by such magnets can be quite large- the
order of 0.2 Teslas or greater.

This page titled 4.3: Standard Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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4.4: A Second Approach to Magnetostatics
When time variations of the source terms can be neglected we have seen that Maxwell’s equations for the magnetostatic field
become

The auxillary vector  was introduced in chapter(1), section(1.4), through the relation

When ( ) is used in ( ) and ( ) to replace  by  the result is

For problems in which there is no free current density,  , these equations reduce to

The form of these equations for the field  is exactly the same as the form of Maxwell’s equations for the electrostatic field in the
absence of a free charge density, ie. (see section(2.1))

The analogy between these equations for the electrostatic field and the above equations for the magnetic field, , in a current free

region suggests that  can be obtained from a magnetic potential function, . Notice that if there are no free
currents, curlH=0, and therefore in the absence of a current density the tangential components of H must be continuous
everywhere. The truth of this statement can be demonstrated by means of an application of Stokes’ theorem, section(1.3.4). The
argument is the same as that used to derive Equation (2.4.1) which states that the tangential component of the electrostatic field
must be continuous across a boundary. In the electrostatic case continuity of the tangential component of E can be guaranteed by
the requirement that the electrostatic potential function be continuous. In the equivalent magnetostatic case the continuity of the
tangential component of H is guaranteed by the requirement that the magnetostatic potential function, V , be continuous across a
boundary.

The machinery that was set up in Chapter(2) to calculate the electrostatic field from a given charge distribution can be taken over
intact to calculate the magnetostatic field from a given ”magnetic charge density” distribution, ρ , where

From now on Equation ( ) will be used to define what is meant by the term magnetic charge density. There is no real
magnetic charge density; to this date (2004) no one has been able to discover a magnetic monopole, the magnetic analogue of an
electric charge. If a magnetic monopole were to be discovered it would have the units of Amp-meters, and it would produce a field

by analogy with the electrostatic case, where q  is the strength of the magnetic charge.
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If curl( ) = 0, ie. no free current density, the magnetic field can be written as the gradient of a magnetic scalar potential, V :

Eqn.( ) guarantees that curl( ) = 0 since the curl of a gradient is always zero. Notice that an arbitrary constant can be added to
the potential without changing the magnetic field, . This constant is usually chosen to make the expression for the potential
function as simple as possible. Upon substituting Equation ( ) into Equation ( ) for the divergence of  one obtains

or

By analogy with the electrostatic case, Equation (2.2.4), the particular solution for the magnetic potential can be written

In the application of Equation ( ) it must be remembered that a discontinuity in the normal component of the magnetization, 
, will produce a surface density of magnetic charges just as a discontinuity in the normal component of the electric dipole

moment, , produces a surface density of bound electric charges, Chapter(2), section(2.3.3). The magnetic surface charge density
contributes to the magnetic potential, V ( ), and must be included in Equation ( ) as a surface integral. It is often easier
to calculate the fields generated by a given configuration of magnetization density by means of the magnetic scalar potential than it
is to use the equivalent current density,  = curl( ), and the generalized law of Biot-Savart, Equation (4.1.15). Examples follow
of magnetic field distributions calculated from given magnetization distributions using the magnetic scalar potential.

4.4.1 An Infinitely Long Uniformly Magnetized Rod.

See Figure (4.3.11). For this case div( ) = 0 everywhere, so that ρ  = 0 everywhere. There are no surface charge densities
because there are no discontinuities in the normal component of . This means that the magnetic potential must be independent of
position, see Equation ( ), and thus

But by definition

therefore if  = 0 it follows that  = µ  in agreement with Equation (4.3.11) which was earlier obtained using the law of Biot
and Savart;(see section(4.3.7) above).

4.4.2 A Thin Disc Uniformly Magnetized along its Axis.
Consider a disc of radius R meters and having a thickness of L meters, that is uniformly magnetized parallel with its axis as shown
in Figure (4.4.12); M  = M . The discontinuity in the normal component of the magnetization at the front and rear surfaces
produces a surface magnetic charge density given by σ  = +M  per m  on the front surface and σ  = −M  per m  on the rear
surface. These magnetic charge densities produce a magnetic field along the axis of the disc that can be obtained from the scalar
potential, V , calculated using Equation ( ), where, for this example, the volume integral reduces to a surface integral. The
field  so calculated can be used to calculate  along the axis: the result is given by Equation (4.3.12) of section(4.3.8).

If (R/L) ≫ 1 the configuration of charges illustrated in Figure (4.4.12) is the magnetic analogue of the electrostatic double layer
problem, section(2.7.1) example(4), Figures (2.7.9) and (2.7.10). By analogy with the electrostatic double layer, one can
immediately deduce that outside the disc the magnetic field  is zero, but inside the disc H  = −M . From the definition 

 this means that, for a disc having an infinite radius, the field  is zero both inside and outside the disc. This
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conclusion is in agreement with Equation (4.3.12) in which the field  was calculated along the axis from the equivalent surface
current density on the edge of the disc. Notice that the normal component of  is continuous across the interface between the
outside and inside of the magnet. It is a general consequence of the Maxwell equation div( ) = 0 that the normal component of B
must be continuous across any interface.

Figure : A uniformly magnetized disc. The discontinuities in the normal component of the magnetization generate an
effective magnetic surface charge density on the front and back surfaces of the disc.

4.4.3 A Uniformly Magnetized Ellipsoid.

The results of section(2.7.4) for a uniformly polarized ellipsoid can be taken over for the magnetic case because of the similarity
between the equations for the electrostatic field, , and those for the magnetic field, , in a current free region. Consider the
ellipsoid whose surface is described by

Let the components of the magnetization in the principle axis system be M , M , M . There exist demagnetizing coefficients, N ,
such that the field  inside the ellipsoid is uniform with

Moreover, the demagnetizing coefficients satisfy the sum rule

Equations ( ) and ( ) are the magnetic analogues of eqns,(2.7.5) and (2.7.6) for a uniformly polarized ellipsoid in the
electrostatic case. Demagnetizing factors for simple degenerate limits of the ellipsoid of revolution can be deduced immediately
from the sum rule and symmetry arguments, just as for the electrostatic case:

(1) A uniformly magnetized sphere: N  = N  = N  = 1/3.

(2) A long cylinder magnetized transverse to its axis. In this case the demagnetizing factor for the long axis, the z-axis say, is zero,
ie. N  = 0. Therefore since the other two demagnetizing factors are equal, one must have N  = N  = 1/2.

(3) A flat disc having a very large radius and magnetized along its axis. In the limit of infinite radius the in-plane demagnetizing
factors go to zero, and therefore from the sum rule N  = 1.
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For the general ellipsoid the demagnetizing factors are given by Equations (2.7.11), and for ellipsoids of revolution by Equations
(2.7.7 and 2.7.9).

The magnetic field  outside a uniformly magnetized ellipsoid is generally not uniform even though the field  inside the
ellipsoid is uniform. Analytical expressions for the field H, and therefore also for the field B, are available but they are complicated
and are written using generalized elliptic co-ordinate systems. See Electromagnetic Theory by J.A. Stratton, McGraw-Hill, N.Y.,
1941, sections 3.25 to 3.27.

4.4.4 A Magnetic Point Dipole.
By analogy with the electrostatic case, the magnetic field around a point magnetic dipole can be obtained from a magnetic potential
function of the form

This potential function gives the magnetic field

The components of this field when written in the spherical polar co-ordinate system are (see Figure (4.4.13))

The components of  are obtained from the components of  by multiplying by the permeability of free space, µ . The resulting
expressions are exactly the same as the ones obtained earlier, Equation (4.3.10), from the vector potential for a point dipole,
Equation (4.3.9). Thus, the field due to a magnetic point dipole can be calculated either from a magnetic vector potential or from a
magnetic scalar potential.

The magnetic scalar potential corresponding to a given distribution of magnetization density can be calculated by superposition
using the magnetic

Figure : A magnetic point dipole oriented along the z-axis.

potential due to a point dipole, Equation ( ), see Figure (4.4.14). The element of volume, d , has associated with it a magnetic
dipole moment . This contributes to the magnetic scalar potential at point P(X,Y,Z) an amount given by

Sum Equation ( ) over the entire magnetization distribution to obtain
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The potential calculated using Equation ( ) will give the same fields as that calculated from the equivalent magnetic charge
distribution and Equation ( ) which is based upon the superposition of the magnetic potentials generated by fictitious point
magnetic charges. The proof that the potential calculated in these two different ways is the same, except, possibly for a constant, is
based on the identity

Figure : The calculation of the magnetic scalar potential for a given distribution of magnetization density, ( ), using
superposition and the potential function for a point magnetic dipole.

The argument proceeds in exactly the same fashion as for the analogous electrostatic case; see Chpt.(2), section(2.8).

This page titled 4.4: A Second Approach to Magnetostatics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
John F. Cochran and Bretislav Heinrich.
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5.1: Introduction- Sources in a Uniform Permeable Material
The equations of magnetostatics are given by Equation (4.1.2)

and Equation (4.1.3)

( refer to section(4.1)). For a linear, isotropic, magnetic medium  is proportional to  where the factor of proportionality is called
the permeability.

so that

or

In Equation ( ) µr = µ/µ0 is the relative permeability. The second of the above Maxwell’s equations can be re-written in the
form

or

The substitution  = curl( ) ensures that Equation (4.1.2) will be satisfied since the divergence of any curl is zero. Using this
substitution in Equation ( ) gives

If in addition one chooses

then

and this equation has the particular solution

where d  is an element of volume. This development exactly follows the procedure described in Chpt.(4); the only difference is
that the integration in Equation ( ) is carried out over the free current density distribution, and the fields due to the effective
current density curl( ) are taken into account through the permeability µ that multiplies the integral. It should be noted that this
procedure only works if µ does not depend upon position in space. If there are regions characterized by different values of µ the
problem of calculating the magnetic field distribution becomes much more difficult. This is because at the boundaries between
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regions having different permeabilities there are discontinuities in the normal and tangential components of  that act as field
sources.

In the usual situation the current density is zero except within a finite number of thin wires. For a current of I Amps carried in a
wire of negligible cross-section Equation ( ) becomes

where  is the vector from the element of length d  to the point P where the vector potential  is to be calculated. From  = curl(
) one obtains

These formulae are very similar to Equations (4.2.1) and (4.17) of Chpt.(4). The fields corresponding to the standard problems of a
long straight wire, the field along the axis of a circular loop, and along the axis of a finite solenoid are given by Equations (4.3.3),
(4.3.4), and (4.3.5) where the permeability of free space, µ , is replaced by the permeability µ. In particular, the field of an infinite
solenoid that is filled with a magnetic material is given by

where N is the number of turns per meter.

This page titled 5.1: Introduction- Sources in a Uniform Permeable Material is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by John F. Cochran and Bretislav Heinrich.
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5.2: Calculation of off-axis Fields
It is relatively easy to calculate the magnetic field along the symmetry axis of an axially symmetric coil system using the law of Biot-
Savart, Equation (5.1.8). The calculation can be easily carried out because the magnetic field has only one component, an axial
component, and the cylindrical symmetry makes the integration over the current distribution relatively simple. M.W.Garrett has pointed
out that off-axis fields can be readily calculated from the magnetic scalar potential ( M.W.Garrett, J.Appl.Phys.22,1091-1107(1951);
”Axially Symmetric Systems for Generating and Measuring Magnetic Fields. Part I”). In any current-free region

and therefore one can write

where V  is a scalar function of position. In a uniform medium for which  the equation  can be re-written as

It follows from Equation ( ) that the magnetic scalar potential must satisfy LaPlace’s equation in any region free of currents. In
spherical polar coordinates LaPlace’s equation is written

The magnetic scalar potential cannot depend upon the azimuthal angle  for an axially symmetric coil system, so that ∇ V  = 0 reduces
to

The general solution of this equation can be written as a series expansion in Legendre polynomials:

This is the same expansion as was used for the electrostatic potential in Chpt.(3),section(3.2.1(d)) to treat the problem of a dielectric
sphere in a uniform applied electric field. The functions P (x) are Legendre polynomials, the first five of which are listed in Table
(3.2.2). The terms proportional to 1/r  in the expansion ( ) are not acceptable for describing the magnetic potential function for a
system of axially symmetric coils because they blow up at r=0; there are no singularities in the magnetic field along the axis of the coil
system. This means that the magnetic potential must be describable by the series

(The n=0 term corresponds to a constant; it is not important and may be set equal to zero because any constant may be added to V
without changing the magnetic field). Along the axis of the coil system, the z-axis of the spherical polar co-ordinate system, the angle θ
is fixed; cos θ=+1 for the region z > 0 and cos θ=-1 for the region z < 0. Moreover,along the axis of the coil system r =| z |, so that along
the axis Equation ( ) becomes a power series in z. The magnetic field calculated from this power series may be compared term by
term with the power series for the magnetic field calculated
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Figure : A circular loop of radius R carrying a current of I Amps and lying in the x-y plane.

directly from the law of Biot-Savart. The comparison of the two series yields values for the coefficients an that appear in the expansion
for the magnetic potential, Equation ( ). Once the coefficients an have been determined the magnetic field at any point within the
coil system can be readily calculated from  = −grad(V ).

This procedure can be illustrated for a single loop of wire lying in the xy plane, Figure (5.1.1). The magnetic field along the axis of such
a loop is given by

see Equation (4.3.4) of Chpt.(4). This expression can be expanded in a Taylor seies in the variable z:

For the single current loop of Figure (5.1.1) this Taylor’s series becomes

Notice that this series contains only even powers of (z/R) because the magnetic field is symmetric with respect to the plane of the coil,
i.e. B (−z) = Bz(z). Now B (z) is derived from the magnetic potential function through a differentiation with respect to z:

The series ( ) must be compared with the general series Equation ( ) using r=z and cos θ = 1, i.e. with

It is clear from this comparison that the coefficients of all the even terms must be zero. The Legendre polynomials are normalized so that
P (1) = 1 ( see Table (3.2.2), section(3.2.1(d))). It follows from a comparison of ( ) with ( ) that

The first three terms in the expansion for the potential function, valid for any point in space such that (r/R) < 1, are given by
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and

( see Schaum’s Outline Series: Mathematical Handbook, by Murray R. Spiegel, McGraw-Hill,N.Y., 1968)). The components of the
magnetic field can be calculated from

and

These fields can be calculated very readily for particular values of r, θ by means of a modern digital computer; programs for calculating
Legendre polynomials and their derivatives are readily available.

This page titled 5.2: Calculation of off-axis Fields is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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5.3: A Discontinuity in the Permeability
Problems that involve currents embedded in materials for which the permeability varies from place to place are very difficult even
if all of those materials exhibit linear response. Such problems can usually be solved by successive approximations: (1) the fields
are calculated as if the source currents are immersed in a uniform permeable medium; (2) the resulting magnetization distribution is
calculated from Equation (5.1.1) using the actual permeabilities; (3) the fields due to the effective current distribution  =
curl(M) are added to the fields previously calculated; (4) the resulting total field is used to calculate a new magnetization
distribution; (5) the cycle is repeated until adequate convergence has been secured, i.e. until the input field and the output field are
essentially the same.

There is a class of magnetic problems that are very similar to electrostatic problems. In a region of space that is current free it is
appropriate to use a magnetic scalar potential because curl(H) = 0. In any region in which the permeability does not depend upon
position B = µH and therefore div(H) = 0 because div(B) = 0; in such a region the magnetic scalar potential, V , must satisfy
LaPlace’s equation. The magnetic potential must also satisfy boundary conditions at a surface of discontinuity between regions
which are characterized by different permeabilities. These boundary conditions are:

(1) V  must be continuous across the interface between two materials. This condition is a consequence of curl( ) = 0; the
tangential components of  must be continuous across the interface, as can be shown using Stokes’ theorem.

(2) The normal component of B must be continuous across the interface between two different materials. This condition is a
consequence of div( ) = 0; the continuity of the normal component of B can be deduced using Gauss’ theorem. In terms of the
permeabilities one has

where  is the derivative of the magnetic potential along the normal to the interface. These two boundary conditions are
essentially the same as the boundary conditions imposed upon the electrostatic potential function. In addition, the magnetic
potential must exhibit the proper behaviour at infinity and at the origin just like the electrostatic potential. The electrostatic
potential and the magnetic potential both satisfy LaPlace’s equation, and both satisfy similar boundary conditions; it follows that
similar problems must have correspondingly similar solutions. In particular, the magnetic potential functions for a sphere in a
uniform applied field, and for a cylinder in a uniform field applied transverse to the cylinder axis must have the same form as those
for the corresponding electrostatic problems discussed in Chpt.(3), sections(3.2.1 (c) and (d)) and Figures (3.2.4) and (3.2.5). For
the magnetic case see Figures (5.3.2 and 5.3.3).

5.3.1 A Permeable Sphere in a Uniform Magnetic Field.
The potential function inside the sphere is given by

Figure : A permeable sphere placed in a uniform magnetic H-field of strength H  Amps/meter. The permeability of the sphere
is µ , and it is placed in a medium having a permeability µ .

This corresponds to a uniform magnetic field along the z-axis. The potential function outside the sphere is given by

J

⃗ eff

m

m H

⃗ 

H

⃗ 

B

⃗ 

= ,μ

1

( )

∂V

1

m

∂n

Boundary 

μ

2

( )

∂V

2

m

∂n

Boundary 

(5.3.1)

∂V

m

∂n

=− rcosθ.V

i

m

3( )

μ

2

μ

1

H

0

(1+2( ))

μ

2

μ

1

(5.3.2)

5.3.2 0
1 2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22820?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/05%3A_The_Magnetostatic_Field_II/5.03%3A_A_Discontinuity_in_the_Permeability


5.3.2 https://phys.libretexts.org/@go/page/22820

This corresponds to a uniform magnetic field, H , plus the field of a point dipole located at the center of the sphere and having a
strength

5.3.2 An Infinitely Long permeable Cylinder in a Uniform Magnetic Field.

The potential function inside the cylinder is given by

Figure : An infinitely long permeable cylinder, radius R, placed in a uniform transverse magnetic field, H  Amps/meter. The
axis of the cylinder is oriented along the z-axis. The permeability of the cylinder is µ  and the cylinder is immersed in a medium
whose permeability is µ .

This corresponds to a uniform field along the x-axis, parallel with the applied magnetic field. The potential function outside the
cylinder is given by

This corresponds to a uniform magnetic field, H , plus the field due to a line of dipoles located on the cylinder axis and having a
strength

5.3.3 A Point Magnetic Dipole Near a Permeable Plane.

There are no magnetic point charges, nevertheless the field of a point dipole can be considered to have its origin in two magnetic
poles that are very close together. This suggests that the problem of a magnetic dipole near the plane interface between two
magnetically dissimilar materials may be treated by the method of images by analogy with the corresponding electrostatic problem:
see section(3.2.2(a) and (b)). The potential function for a magnetic point charge of strength q  is given by

and the corresponding magnetic field, , generated by a hypothetical point magnetic charge of strength q  is given by the
Coulomb law

The corresponding field B is given by
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Eqn.( ) can be used to calculate the magnetic field generated by a magnetic dipole. Let a magnetic charge q  be located at x=0,
y=0, and z=d/2. Let a second magnetic charge -q  be located at x=0, y=0, and z=- d/2. This pair of charges forms a magnetic dipole
of strength m=qd oriented along the z-axis and positioned at z=0. The magnetic field of the dipole is given by (using Equation (

))

or in the limit as d → 0 the expression for the magnetic field can be written

Using  this is the same result as stated in Equation (1.2.13) of Chpt.(1) for the case µ = µ .

The plane interface image problem for magnetic monopoles is shown in Figure (5.3.4). The H-field in the region on the left of the
interface where the permeability is µ  is that due to the original magnetic charge q  plus that due to an image charge of strength 

 located the

Figure : A fictitious magnetic point charge, qm, located outside the plane boundary between two permeable materials. The
permeability to the left of the boundary is µ . The permeability on the right hand side of the boundary is µ . The magnetic charge is
located a distance d from the interface. The other two magnetic charges, q ′ and q ” , are image charges.
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Figure : Image problem for a magnetic dipole m0 located near the plane boundary between two permeable materials. The
image dipole used for calculating fields on the left of the boundary is . The image dipole used for calculating

fields on the right of the plane boundary is . (N.B. the dipole strength is given by m  = q d where d is the

small separation between the plus and minus magnetic charges, NOT the distance d between the dipole and the interface at z=0.)

same distance behind the interface as q  is located in front of the interface. The field in the right hand space, permeability µ , is the
field due to a magnetic charge that is located at the same place as qm but whose strength is . It is easy to show
that the fields in the two regions are such that the components of H parallel with the interface are continuous across the interface. It
is also easy to show that the normal components of H in the two regions is such that at the interface  so that the
normal component of  is continuous across the interface. Notice that the image charge is the negative of q  for the case µ  > µ ,
but that the image charge has the same sign as qm when µ  < µ . The field on the left of the interface is given by

The field on the right side of the interface is given by

This point charge solution can be extended by means of superposition to treat the problem of a magnetic dipole near a plane
interface, Figure (5.3.5). The field on the left, in the region of permeability µ , is due to the dipole plus its image as shown in the
figure. The fields in the region on the left due to the image dipole can be used to calculate the force and torque on the real dipole.
The force on a magnetic monopole is given by

The force on the magnetic dipole is just the sum of the forces acting on the two monopoles that make up the dipole: the dipole force
is proportional to the field gradientr at the position of the dipole. The torque exerted on a magnetic dipole is given by

If µ  > µ  the magnetic dipole is attracted to the interface. Clearly this treatment can be generalized to discuss any permanently
magnetized body located near a plane interface between two linear magnetic materials: the solution can be obtained as the
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superposition of the fields generated by the elementary dipoles of which the body is composed.

Figure : The image problem for the case of a line current of I Amps running parallel with the plane interface between two
permeable materials and located a distance d from the interface.

5.3.4 A Wire Parallel with an Interface and carrying a Current of I Amps.

Another problem that can be solved using the method of images is that of a thin wire carrying a current, and oriented parallel with
the plane interface between two different permeable regions as shown in Figure (5.3.6). The field in the region on the left is
ascribed to the real current I plus an image current I’ located the same distance, d, to the right of the interface as the real current is
located to the left of the interface. Any point P on the interface is equidistant from both the current I and its image, I’; let that
distance be R. Let the line joining the position of the current to the point P on the interface make an angle  with the normal to the
interface, as shown in Figure (5.3.6). The field lines generated by a long straight current carrying wire form concentric cylinders
around the wire, and the strength of the field in free space is given by B  = µ I/2 R, where R is the distance from the wire; see
Chpt.(4), Equation (4.3.3). This corresponds to an H-field H  = I/2 R Amps/m. The component of the magnetic field, , parallel
to the interface that is generated by the current I and its image I’ in Figure (5.3.6) is given by

The field component normal to the interface is given by

Let the field in the region of space to the right of the interface be generated by an image current I” located at the position of the real
current I. The magnetic field component parallel with the interface generated by I” is given by

and its normal component is given by

The tangential component of H must be continuous across the interface, and therefore from Equations (  and )

The normal component of  must be continuous across the interface so that from Equations (  and ) one finds

The linear equations (  and ) can be solved to obtain the required image current strengths.The results are

and
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The  field in the space to the left of the interface is that generated by the current I plus the image current I’. The  field to the
right of the interface is that generated by the image current I”.

This page titled 5.3: A Discontinuity in the Permeability is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John
F. Cochran and Bretislav Heinrich.
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5.4: The Magnetostatic Field Energy
Energy is required to establish a magnetic field. The energy density stored in a magnetostatic field established in a linear isotropic
material is given by

The total energy stored in the magnetostatic field is obtained by integrating the energy density, W , over all space (the element of
volume is d ):

This expression for the total energy, U , can be transformed into an integral over the sources of the magnetostatic field. The
transformation can be carried out by means of the vector identity

(There is a nice discussion of this identity in The Feynman Lectures on Physics, Vol.II, section 27.3, by R.P.Feynman,
R.B.Leighton, and M.Sands, Addison-Wesley, Reading, Mass.,1964). Proceed by integrating Equation ( ) over all space, then
use Gauss’ theorem to transform the left hand side into a surface integral. The result is

where d  is the element of surface area, , and . Here  is the vector potential and 
 is the current density. When the integrals in Equation ( ) are extended over all space the surface integral goes to zero: the

surface area of a sphere of large radius R is proportional to R  but for currents confined to a finite region of space |  | must
decrease at least as fast as a dipole source, i.e. , and |  | must decrease at least as fast as 1/R . It follows that in the large R
limit the surface integral must go to zero like 1/R . This requires the two terms on the right hand side of ( ) to be equal, and
this result can be used to rewrite the expression ( ) in terms of the vector potential and the source current density:

In many problems the current density is confined to a wire whose dimensions are small compared with other lengths in the
problem. For such a circuit the contribution to the second volume integral in ( ) vanishes except for points within the wire, and
therefore the volume integral can be replaced by a line integral along the wire providing that the variation of the vector potential, 

, over the cross-section of the wire can be neglected. For a wire of negligible thickness

where I is the current through the wire; the current must be the same, of course, at all points along the circuit. The line integral of
the vector potential around a closed circuit is equal to the magnetic flux, , through the circuit. This equivalence can be seen by
using the definition  = curl( ) along with Stokes’ theorem to transform the integral for the flux:

where the curve C bounds the surface S. Combining Equations ( ) and ( ), the magnetic energy associated with a single
circuit can be written

and for a number of circuits, N,
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The latter expression is similar to Equation (3.3.6) for the electrostatic energy associated with a collection of charged conductors:
currents in the magnetostatic case play a role similar to that of charges in the electrostatic case, and flux plays a role that is similar
to the role played by the potentials.

Figure : N circuits embedded in a linear, isotropic medium. The magnetic fluxes, , are linear functions of the currents I .
The inductance coefficients satisfy the symmetry relations L  = L .

This page titled 5.4: The Magnetostatic Field Energy is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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5.5: Inductance Coefficients
Consider  circuits embedded in a linear, isotropic medium characterized by a permeability . The magnetic flux through a given
circuit will depend upon the currents in all of the circuits. However, the magnetic field generated by the current in a particular
circuit will be a linear function of the current in that circuit; if the current is doubled then the magnetic field due to that current will
also be doubled because Maxwell’s equations are linear in the current density. Since the magnetic field at any point is a linear
function of the currents it follows that the flux through each circuit must be a linear function of the currents: i.e.

The coefficients  are called coefficients of induction. They have units of Henries.

The magnetostatic energy, Equation (5.4.9), can be written in terms of the current in each circuit and the induction coefficients. The
magnetic energy must be independent of the order in which the circuit currents attains their final values. This condition requires
that

Figure : A system consisting of a primary coil carrying a current I  and a secondary coil consisting of a single turn of wire
enclosing an area A m .

There are, therefore, only N(N+1)/2 independent induction coefficients rather than N  of them. This symmetry property of the
induction coefficients can be used to determine the flux produced in a coil system by a magnetized body. Consider a primary coil
system carrying a current I . Let there be a small secondary coil as shown in Figure (5.5.8). The magnetic field produced by the
primary coil at the position of the secondary coil is

K is just a constant that depends upon the geometry of the primary coil. If the area of the secondary coil is A, supposed to be very
small, the flux through the secondary coil due to the primary current is given by

and therefore the relevant inductance coefficient, L , is

But this means that the flux through the primary coil system due to a current  in the secondary coil is given by

The small secondary coil carrying a current  constitutes a magnetic moment . It follows that a magnetic
dipole m  produces a flux through a primary coil system given by

where the coil system produces the field  Teslas at the position of the magnetic moment. If the field produced by the coil
system is uniform over a magnetic body it follows from the principle of superposition that the flux produced in the coil system by
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the body is proportional to its total magnetic moment. In particular, the flux through an infinite solenoid produced by a magnetic
dipole, , oriented along the solenoid axis is given by

if the system is immersed in a medium whose permeability is . In most applications  can be taken to be the permeability of free
space, .

This page titled 5.5: Inductance Coefficients is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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5.6: Forces on Magnetic Circuits
The induction coefficients, Equation (5.5.2), are functions of coil position and coil geometry. If a circuit is moved, or if its shape is
altered, the fluxes through all the circuits will be altered. A changing magnetic flux through a circuit induces an emf in that circuit:

so that

But the last term above is just the time rate of change of the magnetic flux, therefore

Stokes’ theorem can be used to transform the surface integral of curl( ) over the area of a circuit into a line integral of the electric
field around the circuit contour C:

In order to be able to use conservation of energy to derive formulae that relate the forces exerted by the magnetic field on circuits to
the change in magnetic energy that accompanies any shift in position or distortion in shape of those circuits, it is useful to consider
wires that are made of perfectly superconducting metals so that resistive losses can be neglected. Magnetic forces can not depend
upon the circuit resistances because these forces depend only upon the interaction between a current element and the magnetic field
acting upon that current element. The emf around a closed superconducting loop must be zero because the electric field in a perfect
conductor must always be zero; any electric field strength would produce an infinite current. It follows that the fluxes through
closed superconducting circuits cannot change. Any relative motion of the circuits, or any distortion of the circuits, must be
accompanied by changes in their currents such that the fluxes remain constant. In addition, energy must be conserved, and therefore
any external work done by the magnetic forces during a displacement must be at the expense of the magnetic energy stored in the
system

The magnetic energy acts like a potential energy function for the magnetic forces.

Usually it is convenient to arrange to keep the current in each circuit constant during the circuit motion or deformation. The current
can be kept constant, in principle, by including a superconducting generator in each circuit as is shown in Figure (5.6.9(a)). This is
a device by means of which external electrical work can be done on the circuit. Now the flux through the circuit can be allowed to
change because the electromotive force (emf) due to the changing flux can be cancelled out by the external emf of the generator so
that the net emf in the system can be maintained at zero. In order to cancel out the emf due to the changing flux, work must be done
on the generator at the rate
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Figure : A change in flux through a circuit must be accompanied by an applied emf  in order to maintain the
current constant.

or the change in flux, d , must be accompanied by an input of external work (to turn the crank on the generator) such that

A similar argument can be applied to each circuit of N coupled circuits so that taken all together the total external energy input
through the generators is

As mentioned above, the result ( ) cannot depend upon whether or not the circuits contain resistance elements. A circuit that
contains a resistance must be provided with a source of emf in order to maintain a constant current (see Figure (5.6.9(b)). This emf,
that can be imagined to be a power supply whose terminal voltage is variable, must supply energy at the rate of I R Watts, where R
is the circuit resistance. If the flux through the circuit increases the power supply voltage must be increased by e = d /dt in order to
maintain the current constant. This means that the power extracted from the power supply must also increase by the amount

In order to change the flux through the circuit by d  at fixed current the power supply must add extra energy in the amount

and this clearly does not depend upon whether there is, or is not, resistance in the circuit. A generalization of this result to a
collection of N circuits leads directly to Equation ( ). Any displacement of a circuit, or a deformation of a circuit, that results in
a change of the inductance coefficients must result in a change in the magnetic energy stored in the field if the current in each of the
circuits is held fixed. This energy change is given by

see Equation (5.4.9). But in view of Equation ( ), any flux changes at constant current that cause the energy stored in the
magnetic field to increase must extract twice that energy increase from the external energy sources which do work on the
generators in order to keep the currents constant:
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The excess of the work done on the generators, dW, over the energy increase in the magnetostatic field, dU , must represent the
external work done by the magnetic forces during the circuit displacement or deformation, therefore

At constant currents work expended to keep the currents fixed goes one half into increasing the stored magnetic energy and one
half into the work done by the magnetic forces.

5.6.1 Forces on a Magnetic Dipole.
Let us apply the above ideas to calculate the force on a magnetic dipole. Consider a magnetic moment located in an inhomogeneous
field that is directed along the z-axis . The magnetic moment can be represented as a small loop carrying a fixed current I, see
Figure (5.10). The magnetic moment of the loop, IA, is also directed along z. If the loop moves a distance dz along z, the magnetic
field will change from B to B + (dB /dz)dz. The magnetic energy of the system is given by

During the displacement dz only the mutual inductance coefficient L  changes: L  and L  are not altered. The change in
magnetic energy due to the displacement of the loop at constant currents is given by

But

therefore

Figure : A magnetic dipole located in an inhomogeneous magnetic field. The magnetic moment and the applied field, , are
both directed along the z-axis.
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From an application of Equation ( ) one can conclude that the magnetic force on the loop must be

This equation for the force on a dipole was derived using arguments based upon circuits in which the currents were held fixed.
However, the validity of the expression for the force does not depend upon the manner of its derivation, and Equation ( ) is
correct for any point dipole.

The result ( ) can be generalized by considering displacements along x and y. For a magnetic moment that has only a z-
component the result is

The total force acting on a magnetic moment that has components along all three co-ordinate axes is obtained from a further
generalization of the above arguments. The result is

The expression ( ) can be further transformed by using the fact that curl ( ) = 0 in a homogeneous medium free from currents;
because for a current free region curl ( ) = 0, and in a homogeneous permeable region . From curl ( ) = 0

Using these relations, Equation ( ) can be written in the form

or

Equations ( ) are the expressions which would be deuced from a magnetic point charge model in which the force on a magnetic
pole is given by q  (see Figure (5.6.10)), and the dipole is represented by a magnetic charge +q  separated an infinitesimal
distance d from a magnetic point charge −q : the magnetic moment is given by

The generalization of Equation ( ) to the dipoles contained in a volume element dVol gives the magnetic force per unit volume
quoted in Chpt.(1), Section(1.5.1), Equation (1.5.3):

Here  is the magnetization per unit volume.

5.6.2 Torque on a Magnetic Dipole.
Consider a small current loop placed in a uniform magnetic field generated by a primary coil system carrying a current I . If the
loop is allowed to rotate the flux linkage between it and the primary coil system changes; however, neither its own self-inductance
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coefficient, L , nor the self-inductance coefficient of the primary system, L , changes with the angle of rotation, θ, Figure
(5.6.11). The mutual inductance coefficient, L  = L , does change with angle, and therefore a small rotation through dθ causes a
change in the magnetic energy for fixed currents I ,I . The change in magnetostatic energy of the system for a small rotation is
given by

The mutual inductance coefficient can be calculated from the flux through the current loop:

Therefore

Figure : A loop of wire carrying a current I  Amps, and having an area R  , is located in a uniform magnetic field B . The
magnetic field is generated by a coil system carrying a current I  Amps: B  = KI . The field exerts a torque on the loop given by T
= − B m sin θ Newton-meters.

so that

It follows that the change in the magnetostatic energy of the system as a result of the change in angle is given by

The change in magnetic energy can be expressed in terms of the magnetic moment of the loop, m, and the value of the magnetic
field at the position of the loop (it is assumed that the loop is small enough that the variation of the magnetic field across its
diameter can be ignored):

This change in the energy must be equal to the external work done by the magnetic torque on the loop (Equation ( )); T dθ =
dU , where the torque is directed along the y-axis if the rotation takes place in the xz plane, Figure (5.6.11). Therefore

The direction of the torque is such as to orient the normal to the plane of the loop along the direction of the applied magnetic field:
in other words, the torque is such as to cause both the flux through the loop and the magnetostatic energy to become as large as
possible. The magnetic moment associated with the loop is perpendicular to the plane of the loop, consequently Equation ( )
can be written in the form

The torque ( ) can be derived from an effective potential energy

using
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Equations (  and ) are particularly useful for treating the problem of a collection of permanent dipoles (a permanently
magnetized body) that interacts with an applied magnetic field.

5.6.3 Forces on a Solenoid.
Consider a coil in the form of a very long cylindrical solenoid that is wound with N turns per meter. The length of the solenoid is L
meters, and the mean radius of the windings is R meters, Figure (5.6.12). The field at the center of a very long solenoid is given by
Equation (4.3.7) of Chpt.(4):

where the coil carries a current of I Amps. The flux through one turn of the solenoid is AB  = R B  near the center of the
solenoid; neglecting end effects which play a relatively small role in the limit L/R → ∞, the total flux through all of the windings is
the flux per turn multiplied by the total number of turns

Figure : A long cylindrical solenoid. The solenoid is L meters long and has a radius of R meters. It is wound with N turns per
meter.

or

The magnetic energy stored in the field is U  = I /2 Joules, and therefore

In order to discuss magnetic forces it is necessary to consider distortions of the solenoid; for example, a change in the length or in
its diameter. During those distortions the current will be held fixed. The total number of turns on the solenoid, N  = NL, must also
remain fixed, and therefore the magnetic energy will be re-written in terms of the total number of turns on the winding:

It is apparent from this expression that an increase in solenoid length will reduce the magnetostatic energy, U . We can conclude
that the magnetic forces on the solenoid windings will act in such a way as to shorten the solenoid because any system of coils
carrying fixed currents will attempt to arrange themselves so as to maximize the magnetostatic energy of the system. Similarly, any
increase in the solenoid radius results in an increase in the magnetostatic energy; it can therefore be concluded that the magnetic
forces will place the windings under tension. The magnitude of the magnetic forces can be obtained from an application of
Equation ( ) which equates the work done by the magnetic forces during a small change in geometry to the increase in
magnetic energy. For example, let the length of the solenoid increase by δL; the work done by the magnetic forces is F δL. The
change in magnetic energy for a displacement δL is
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consequently, from δU  = F δL one finds

The force that tends to squeeze the turns together is the force that would be generated by a pressure p  = BH/2 Newtons/m  acting
over the crosssectional area of the solenoid.

A similar argument can be used to calculate the tension in the solenoid windings due to magnetic forces. Let the radius of the
solenoid of Figure (5.6.12) expand slightly. The work done by a uniform pressure, p , during this expansion would be

per meter of length because the work done per unit area of wall per unit length is given by p δR. The total work done by the
magnetic pressure, p , during the change δR for a cylinder L meters long is given by

The corresponding increase in magnetostatic energy, from Equation ( ), is

But the work done by the magnetic forces must be equal to the increase in stored magnetic energy if the current is held fixed, and
therefore

Figure : The hoop stresses, T, acting on a cylindrical shell due to an internal pressure of p  Newtons per m  . The hoop
stresses T exerted by the bottom half-cylinder on the top half-cylinder are required to overcome the internal pressure forces. The
thickness of the shell has been exaggerated.

The magnetic field exerts a pressure on the solenoid windings: this pressure results in a tension given by

see Figure (5.6.13). There are N wires per meter of length, and therefore the tension on each wire will be given by

The forces exerted on the windings of a solenoid can be quite large. For example, superconducting solenoids are available that can
be used to generate fields in excess of 10 Teslas. The magnetic pressure in a 10 Tesla field is p  = B /2µ  = 3.98 × 10
Newtons/m2 . The pressure of one atmosphere is 1.01 × 10  Newtons/m  , therefore the magnetic pressure associated with a field
of 10 Teslas is equivalent to 394 atmospheres. The windings on such a superconducting solenoid must be firmly anchored in order
to prevent them from moving
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Figure : The magnetic force acting on the matter contained within a volume V can be obtained as the integral of a vector 
over the closed surface S which encloses V. It is assumed that  is proportional to  everywhere inside V, that  and  are
parallel on S, and that S is immersed in a fluid that can support no shear stresses. . The direction of the force per unit

area, , is such that the angle between  and the surface normal is bisected by the direction of the magnetic field .

This page titled 5.6: Forces on Magnetic Circuits is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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5.7: The Maxwell Stress Tensor
In analogy with the electrostatic case, the forces due to the magnetic field acting on the current distribution in a body can be
obtained from a magnetic Maxwell stress tensor, see J.A.Stratton, Electromagnetic Theory, section 2.5, (McGraw-Hill, N.Y., 1941).
If the magnetic materials in the system are linear so that  is proportional to , it can be shown that there exists a vector 
associated with the elements of the stress tensor such that the surface integral of over a closed surface S gives the net force
acting on the material in the volume V enclosed by the surface S: it is assumed that the surface S is contained entirely within a fluid
that can support no shearing stresses. The magnetic force acting on the material within the volume V can be calculated from

where the magnitude of the Maxwell stress vector for a linear, isotropic material, is

and its direction is given by the construction shown in Figure (5.6.14). The stress vector is turned away from the surface
normal through an angle that is twice the angle that the magnetic field  (or ) makes with the surface normal. When  lies along
the surface normal the magnetic force is a tension, but when the field  lies in the surface the magnetic force is a pressure.

5.7: The Maxwell Stress Tensor is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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CHAPTER OVERVIEW

6: Ferromagnetism
A description of the ferromagnetic state with an application to magnetic recording.

6.1: Introduction to Ferromagnetism
6.2: B-H Curves
6.3: Digital Magnetic Recording
6.4: Electromagnets

This page titled 6: Ferromagnetism is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/06%3A_Ferromagnetism/6.01%3A_Introduction
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/06%3A_Ferromagnetism/6.02%3A_B-H_Curves
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/06%3A_Ferromagnetism/6.03%3A_Digital_Magnetic_Recording
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/06%3A_Ferromagnetism/6.04%3A_Electromagnets
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/06%3A_Ferromagnetism
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html


6.1.1 https://phys.libretexts.org/@go/page/22825

6.1: Introduction to Ferromagnetism
The magnetization density, , in most materials at room temperatures is proportional to the magnetic field, :

The factor of proportionality, , is called the magnetic susceptibility. Since , and  have the same units (Amps/meter) the
magnetic susceptibility has no dimensions. Typical values of the susceptibility at room temperatures for some common substances
are listed in Table (6.1.1). It is clear from this Table that for such non-magnetic substances the magnetization per unit volume is
negligible compared with values of the impressed magnetic field, . The situation is quite different for ferromagnetic substances
such as iron, nickel, or cobalt. In a ferromagnet the magnetic moments are held parallel by very strong forces called exchange
forces. The magnetization per unit volume, , is very large and essentially independent of applied magnetic field at
temperatures low compared with a critical temperature called the Curie Temperature. The Curie temperature, T , is that
temperature at which the magnetization in zero applied magnetic field goes to zero. The Curie temperature is material dependent.
The Curie temperatures for iron,nickel and cobalt are 1044, 631, and 1393 K respectively. The magnetization varies slowly with
temperature at low temperatures. The temperature dependence of the magnetization in iron is depicted in Figure (6.1.1). The
temperature dependence of M  for other ferromagnets is very similar. If a cylindrical rod of iron were to be uniformly magnetized
along its length the magnetic field strength near its end surfaces would be very large, see Equation (4.3.12) and Figure (4.3.11) of
Chapter(4).

Table : The magnetic susceptibility at room temperature for some common non-magnetic substances.

Figure : The variation with temperature of the reduced magnetization for pure iron. The Curie temperature is T  = 1044 K,
and the magnetization at T=0 K is M (0) = 22.1 kOe= 1.76 × 10  Amps/m.

The field just outside an end face and near the cylinder axis is given by B  = µ M /2 for a cylinder whose length, L , is much
greater than its radius, R. For iron at room temperature this field is approximately 1 Tesla. It is, however, common experience that
the fields around a length of iron rod are very weak, of the order of 0.01 Teslas or less. The field outside the rod is weak because
the magnetization is broken up into a very large number of small domains. Each domain carries a large magnetization, M  , but the
direction of the magnetization changes from domain to domain in such a way that the average magnetization density is very nearly
zero. It can be shown that the energy due to a magnetization distribution can be calculated from
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where  is the magnetic field generated by the magnetic charge density  and d  is the element of volume. It
follows that in the absence of an applied external field the domain magnetization vectors will attempt to orient their magnetization
vectors so as to make (\ div (\vec M\)) as nearly zero as possible. This tendency is called ”the magnetic pole avoidance principle”.
The size of the magnetic domains in the absence of an applied magnetic field depends very strongly on the structure of the material
(whether the specimen is a polycrystal or a single crystal), upon the concentration of impurities, and upon the presence of internal
stresses. The domain dimensions in an annealed polycrystalline iron bar are of the order of 1/10 mm on a side. The domains are
therefore very large compared with atomic dimensions, but are small on a macroscopic scale. In very perfect single crystalline
prisms of iron in which the cubic iron axes are accurately parallel with the edges of the specimen the domains may be as long as a
cm or more: see Figure (6.1.2).

Figure : The domain structure at room temperature in a perfect iron single crystal in which the edges of the crystal are
accurately parallel with the crystalline axes. The magnetization is uniform along the z-direction (out of the paper). Simple domain
structures are observed only in single crystalline specimens.

This page titled 6.1: Introduction to Ferromagnetism is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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6.2: B-H Curves
The magnetic properties of ferromagnets at a fixed temperature are often described by curves of magnetic induction B vs. H, see
Figure (6.2.3). H is the internal magnetic field: its sources include  in the magnetic body as well as any externally
applied magnetic field generated by a system of coils outside the magnetic body. , and in the simplest case the
three vectors , ,  are all parallel. Starting from the fully demagnetized state (H=0, M=0) the magnetization increases with H,
and B follows the curve labeled ”virgin curve”. In the virgin state with H=0, an equal number of domains have positive
magnetization as have negative magnetization so that the net magnetization is zero. As H increases those domains having a
magnetization oriented along the applied field direction grow in volume at the expense of domains having a magnetization oriented
opposite to the applied field direction. Eventually those domains having a component of magnetization opposed to the direction of
H have been eliminated (at the point marked A in Figure (6.2.3)). However, iron has a cubic crystal structure and exhibits the
property that the magnetization strongly prefers to orient itself along a direction corresponding to one of the three equivalent

Figure : A hysteresis loop for a polycrystalline specimen of pure iron. The details of the B-H loop are specimen sensitive. The
saturation magnetization at room temperature is 2.14 Teslas. The remanent field is B = 1.22 T, and the coercive field is H = 79
Amps/m.

cubic axes. In a polycrystalline material at a field corresponding to point A in Figure (6.2.3) the domain magnetizations, each
having a strength M  per unit volume, are oriented at angles with respect to the applied field ranging from 0 to ±90  . As H
increases these domain magnetizations gradually rotate into the applied field direction: during this portion of the B-H loop the
curve is reversible. Ultimately, the magnetization reaches the saturation value, M  , and the magnetization density becomes uniform
throughout the specimen. The field necessary to achieve the saturated state in iron, ∼ 2 × 10  Amps/m, is very large because of the
large magnetocrystalline anisotropy energy that resists the rotation of the magnetization away from a cubic axis. Very soft magnetic
materials such as Supermalloy (79% Ni, 16% Fe, and 5% Mo, see Table (6.2.2)) have compositions corresponding to a relatively
small magnetocrystalline anisotropy. The approach to saturation in such materials occurs at much lower applied fields than for iron,
see Figure (6.2.4). It is also worth mentioning that a pure single crystal of iron for which the domain magnetizations are oriented
along the cubic axes, Figure (6.1.2), exhibits a very large maximum effective permeability, see Table (6.2.2), and can be saturated
in fields less than H= 100 Amps/m. However, polycrystalline iron is cheap and is therefore used extensively in the construction of
electromagnets and large generators.

At saturation the magnetic domains have been eliminated so that the magnetization density is uniform throughout the body and has
the value M  . But  so after saturation the B-field continues to increase with H, although the rate of increase of B
with H becomes negligibly slow compared with the rate of increase leading up to saturation; the variation of B with H becomes
imperceptible on the scale of Figure (6.2.3). Upon reducing the field H after having increased it to values larger than that
corresponding to point A in Figure (6.2.3), B follows the upper curve in Figure (6.2.3) and when H=0 the magnetic induction
reaches the remanent field value B = B . B gradually falls as domains with a reversed magnetization orientation gradually reform
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in the body. As H is further reduced B continues to follow the upper curve and eventually B reaches zero at a negative value of H
called the coercive field, H . Continued reduction of H ultimately leads to magnetic saturation in the negative direction with
uniform magnetization having the value -M  . As H is increased from applied field values more negative than the field
corresponding to point A in the third quadrant the B-field increases along the lower curve, the magnetization becomes less negative
as the number of domains having

Figure : The hysteresis loop for the soft ferromagnet 4-79 Permalloy (79% Ni, 17% Fe, 4% Mo). The maximum effective
permeability is 0.14 (the relative permeability is µ  = 1.1×10  ), and H  = 2.45 Amps/m. The saturation field is B = 0.87 Teslas.

a positive magnetization increases, and ultimately B becomes positive. At the coercive field H  the magnetic induction is zero;
B=0. At sufficiently large values of the magnetic field the specimen once again becomes saturated with a uniform magnetization
having the value Ms. For fields larger than 500 Amps/m, or for fields less than -500 Amps/m, the curve of B vs. H is reversible.
The loop defined by the upper and lower curves in Figure (6.2.3) is called a major hysteresis loop. Two questions arise
immediately: (1) What happens if H is decreased before point A is reached? and (2) How can the virgin state with H=0, M=0, and
B=0 be attained? If H is reduced before the reversible part of the B-H loop has been attained the B-field decreases along a minor
hysteresis loop such as those shown in Figure (6.2.5). If a sinusoidal driving field is applied having an amplitude sufficient to drive
the specimen into the reversible part the hysteresis loop the magnetic state is carried around the hysteresis loop from one extreme in
the plus direction to an extreme in the negative direction many times per second. If now the amplitude of the driving field is slowly
reduced to zero the hysteresis curve collapses to zero symmetrically around the origin. The specimen will be left in the virgin state
in which B=M=H=0.

Important parameters associated with the hysteresis loop are (1) the remanent field, B  , (2) the coercive field, H , and (3) the
maximum effective permeability defined by the maximum slope of the straight line joining the origin to a point on the virgin
magnetization curve as shown in Figures (6.2.3, 6.2.4). There are two major classes of ferromagnetic materials: soft ferromagnets
and hard ferromagnets. Soft magnetic materials are characterized by very small values of the coercive field, see Table (6.2.2). For
such materials the dependence of B on H is almost linear for H < H , and as a reasonable approximation one can write .
It is useful to express the effective permeability as a dimensionless number

Pure polycrystalline iron is a soft ferromagnet characterized by H  = 60 Amps/m and µ = 0.013, or µ  ∼ 10,000. There are a
number of alloys that behave very nearly like perfectly soft ferromagnets, see Table (6.2.2).

Hard magnetic materials are characterized by large values of the coercive field and remanent field B  , see Table (6.2.3). Very hard
ferromagnets such as SmCo alloys, NdFeB alloys, and Strontium ferrites can be better described in terms of M vs. H. The variation
of magnetization with internal magnetic field, H, is shown for a commercial Barium ferrite in Figure (6.2.6); only negative
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Figure (6.2.4). For the lowest minor loop the field was reduced after having partially traversed the virgin magnetization curve. For
the upper minor loop the field was reduced after having traversed the major hysteresis curve cycle at least once.

Table : Magnetic properties of some soft magnetic materials. B = µ  (H + M), where µ  = µ µ . One Tesla equals 10
kGauss, and 79 Amps/m equals 1 Oersted. Permalloy is an alloy of 78.5 atomic % Ni and 21.5 atomic % Fe. Supermalloy is

composed of 79 atomic % Ni, 16 atomic % Fe, and 5 atomic % Mo.

Figure : The variation with internal magnetic field, H, of the magnetization at room temperature for a commercial Strontium
Ferrite. The coercive field is 2.59 × 10  Amps/m.
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internal fields, H, are shown because this portion of the magnetization curve is the one required for practical applications. The
hysteresis loop is very nearly rectangular, meaning that to a good approximation the magnetization is independent of the H-field
until it flips 180  at, or near, the coercive field. For very hard materials such as those listed in Table (6.2.3) the concept of a
permeability is not very useful.

Warning! Commercial hysteresis loops are usually displayed using CGS units. In the CGS system the fields B,M,H all have
the same units, although for historical reasons the units of B,M are called Gauss whereas the units of H are called Oersteds. The
conversion from CGS to MKS units is relatively simple: 1 Tesla= 10,000 Gauss. 79.6 Amps/m = 1 Oersted. M in Amps/m = [4

M(in Gauss)] × 79.6.

In the CGS system . The relative permeability is the same ~ for both systems.

Table : Magnetic properties of some commercial hard magnet materials. (See, for example, www.dextermag.com).

Figure : Device for measuring the axial magnetic field, B, inside a cylinder having a cross-sectional area A. A coil of N turns
is connected to a voltmeter V.

Figure : A plot of B inside a long iron rod vs the externally applied magnetic field H  = B /µ . The length to diameter ratio is
25 corresponding to a demagnetizing coefficient N = 0.00467.
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6.2.1 Measuring the B-H Loop.
It is relatively easy to measure the axial magnetic flux density, B, in a specimen. It is only necessary to wind a few turns of wire
closely around a specimen and to measure the emf developed across the coil terminals as an external field B  is changed with time,
see Figure (6.2.7). The emf across the coil terminals is given by Faraday’s law:

where N is the number of turns on the coil and A is the cross-sectional area of the specimen in m  . Upon integration of the voltage
signal starting from a known initial condition (B=0 at t=0 say) one obtains B inside the specimen corresponding to a particular
value of the applied field H  = B /µ . In this way one can trace out the hysteresis loop of B vs H  as the specimen is saturated first
in one direction and then in the other direction. Unfortunately the hysteresis loop so obtained is not what is wanted: it depends
more on the geometry of the specimen than on its intrinsic magnetic properties.

What is wanted is the variation of B inside the cylinder with the value of H inside the cylinder. But H inside the cylinder is the sum
of the applied field H  = B /µ  plus the contribution generated by the magnetic pole density distribution . This
pole field very nearly cancels out the applied field H  in a material having a large permeability. The net result is that the curve of B
vs H  measures an effective demagnetizing coefficient for the body under test, and does not provide a satisfactory measure of an
intrinsic magnetic property of the material of the test body. In order to see how this comes about consider a particular example:
consider a cylindrical bar whose length is 25 times its diameter (25 cm long by 1 cm in diameter, for example). Let this bar be
characterized by the hysteresis loop shown in Figure (6.2.3). The pole field inside this bar can be approximated by H  = −N M,
where N  is the demagnetizing factor for an ellipsoid of revolution having the same length to diameter ratio as the cylinder; M is
the magnetization density in the bar. The demagnetization factor for an ellipsoid of revolution having a length to diameter ratio of
25 is N =0.00467; see Chpt.(2), Figure (2.7.19) and eqn.(2.5.1). Inside the rod one has B/µ  = H+M. Given the co-ordinates of a
point on the B-H loop one can calculate the magnetization, M. Consider the point in Figure (6.2.3) B=1.0 Tesla and H=110
Amps/m. For this point B/µ  = 1.0/(4  × 10  ) = 0.796 × 10  Amps/m. Thus H is negligible and M= 0.796 × 10  Amps/m. The
resulting pole field is H  = −N M = −3.72 × 10  Amps/m. In order to obtain a net value H= +110 Amps/m it is necessary to apply a
field H  = (3.72×10  )+110 Amps/m for a total field H  = 3.83×10  Amps/m. In this same way one can calculate B vs H  for all of
the points on the hysteresis loop. The results of such a calculation are shown in Figure (6.2.8). The most obvious result is that B is
nearly a linear function of the applied field H  for H  less than 5800 Amps/m; the slope of the line corresponds to a relative
permeability µ = 212 (NB. 1/N = 214). Moreover, the hysteretic behaviour has been reduced to a very small value: approximately
0.05 Tesla in B. It is easy to show that if the material properties are such that B= µ µ H then for large µR one has B= µ H /N ; ie.
a straight line having a slope corresponding to µ  = 1/N . The argument runs as follows:

so

Since the pole field is H  = −N M, the applied field must overcome this pole field and in addition supply the field H. Therefore the
applied field is given
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Figure : A ring shaped specimen used to measure the intrinsic magnetic properties of a soft magnetic material. The primary
winding of N  turns is used to generate the field H. The secondary coil of N  turns is used to measure the field B in the ring.

by

or

and

Upon dividing through by µ  and taking the limit such that µ  ≫ 1, one obtains

The point is that in order to measure the intrinsic response of a soft magnetic material it is necessary to avoid spatial variations in
the magnetization that give rise to magnetic pole fields. This can be done by using a specimen having the topology of a ring, Figure
(6.2.9). This ring can be supplied with a uniformly wound primary coil of N  turns used to generate the applied field, H , plus a
secondary coil of N  turns used to measure the flux density in the specimen. There are no magnetic poles if M is uniform around
the ring, therefore the field in the material is just H = N I/L, where I is the primary coil current in Amps and L is the length in
meters measured along the centerline of the ring. The B-field can be calculated from the emf developed across the secondary
windings as the primary current is changed; according to Faraday’s law

where A is the cross-sectional area of the ring.

This page titled 6.2: B-H Curves is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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6.3: Digital Magnetic Recording
A magnetic hard disc for use as a magnetic memory storage device for a computer consists of a very smooth circular substrate upon
which has been deposited a very thin coating of a magnetic cobalt alloy 50 nm or less thick. This disc is rotated at a very high rate.
The remanent magnetization of this magnetic thin film is such that B  ∼ 1/2 Tesla, and the coercive field is approximately 105
Amps/m. The magnetization lies in the plane of the disc and contains many small, oblong regions in which the magnetization is
oriented either parallel or antiparallel to the disc velocity. These magnetization regions are written into the disc magnetization by
means of a write head: an extremely simplified drawing of a write head is shown in Figure (6.3.10).

Figure : (a) A schematic representation of a hard disc write head. (b) The co-ordinate system used to write the spatial
dependence of the write head field in the Karlqvist approximation.

Figure : At the juncture between two regions of oppositely directed magnetizations there is a large surface charge density,
and this gives rise to large fringing fields.

The write head is basically an electromagnet constructed of a soft magnetic permalloy yoke (the saturation field is 1 Tesla and the
coercive field is H  ∼ 4 Amps/m). This electromagnet is driven by the current through a single turn. The yoke contains a narrow
gap, g, approximately 50 nm wide. The write head ”flies” over the surface of the disc at an altitude of approximately 25 nm, and
the magnetic film on the disc is magnetized by the fringing field produced at the magnet gap. A field of approximately 3 times the
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coercive field is used to write magnetization regions into the disc magnetic film that are either parallel or antiparallel to the disc
velocity. The spatial dependencies of the fringing field components near the gap are given in the Karlqvist approximation by:

where B  is the B-field in the middle of the gap region, and g is the gap width: the co-ordinate axes are shown in Figure (6.3.10b).
Bits of information are stored as magnetization reversals (also called flux reversals). It is only at those places where the
magnetizations are directed opposite to one another that the fringing field is large enough to be detected by the read head. This is
illustrated in Figure (6.3.11). The absence of a flux reversal is taken to be a zero; the presence of a flux reversal is taken to be a 1.
The magnetization profile for a typical run of data might look like that shown in Figure (6.3.12). In practice, each data byte of input
is stored using a complex code that uses more than the nominal 8 bits per byte in order to build in the capability to detect and
correct errors.

Modern read heads use a complicated structure of thin films. The magnetic field due to a magnetization change on the hard disc is
detected by means of a change in resistance of a magnetoresistance element. Write and read heads are combined in a single
write/read unit.

As of November 1999 IBM demonstrated a hard disc drive having the

Figure : Example of encoded data bits on a hard disc drive.

capability to store 3.5 × 10  bits per square inch using 522,000 bits per inch and 67,300 tracks per inch. This means that each
magnetization cell was only 49 nm long by 377 nm wide. The disc spun at 10,000 revolutions per minute, the seek time was 4.9
msecs, and information was read in and out at the rate of 18 × 10  bytes per second. The uncorrected error rate was 1:10  ; after
correction this error rate decreased to less than 1:10  .

Further Reading
S. Chikazumi, ”Physics of Magnetism”. John Wiley and Sons,New York, 1964.
John C. Mallinson, ”The Foundations of Magnetic Recording”, Second Edition. Academic Press, San Diego, 1993.
John C. Mallinson, ”Magneto-Resistive Heads”. Academic Press, San Diego, 1996.

This page titled 6.3: Digital Magnetic Recording is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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6.4: Electromagnets
Consider the electromagnet shown in Figure . As a first approximation let the B-field in the ferromagnetic yoke be uniform
with the same value B Teslas everywhere. The field in the gap measured along the centerline will also be B to a good
approximation. This follows from the Maxwell equation  which requires the normal component of B to be continuous
across a material discontinuity. If the gap field is B then the H-field in the gap is H  = B/µ . The permeability of free space, µ  = 4
× 10  , is a small number therefore H  will be quite large: if B=1.0 Tesla then H  = 7.96×10  Amps/m. This H-field is much larger
than H within the soft ferromagnetic yoke material. For example, in iron the field H cannot exceed 100 Amps/m if B= 1.0 Tesla,
see Figure (6.3). According to another Maxwell equation for the static magnetic field

or

from Stokes’ theorem where the Area of the surface integration is bounded by the curve C.

Figure : An electromagnet consisting of a soft ferromagnetic yoke wound with N turns of wire and containing a gap of width
g meters. The length of the ferromagnetic yoke along its center line is L meters.

Apply Equation ( ) to the closed line running along the centerline of the magnet. The integral of the current density over the
area bounded by the magnet center line is just NI so that the line integral of H becomes

where L is the length of the path in the ferromagnetic yoke and g is the width of the gap. Given a value for the B-field one can look
up the corresponding value of the H-field from the ferromagnetic hysteresis loop. Then the current required to produce that B-field
is

In this way one can construct a graph of B vs. I corresponding to various points on the B-H loop. It should be noted that this simple
construction fails when the ferromagnet approaches magnetic saturation.

This page titled 6.4: Electromagnets is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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CHAPTER OVERVIEW

7: Time Dependent Electromagnetic Fields.
Chapters 2-5 treated the problem of how to calculate electric and magnetic field distributions given time independent charge and
current distributions. This chapter discusses the more general problem of how to calculate electric and magnetic fields given time
varying charge and current distributions. It turns out that the solution to this general problem is most easily developed using the
scalar and vector potentials discussed in chapters 2 and 4. By way of example, the formalism is applied to the generation of radio
waves by currents flowing in an antenna, and to the generation of light waves by oscillating atomic dipole moments.

7.2: Time Dependent Maxwell’s Equations
7.3: A Simple Radio Antenna
7.4: An Electric Dipole Radiator
7.5: A Point Magnetic Dipole
7.6: A Moving Point Charge in Vacuum

General Reference: The Feynman Lectures in Physics, Vol.(II), by R.P.Feynman, R.B.Leighton, and M.Sands, Addison
Wesley, Reading, Mass., 1964.

This page titled 7: Time Dependent Electromagnetic Fields. is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
John F. Cochran and Bretislav Heinrich.
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7.2: Time Dependent Maxwell’s Equations
Start from Maxwell’s equations in the form

where

and

Recall that ρ  is the density of free charges,  is the free current density due to the motion of the free charges,  is the electric
dipole moment density, and  is the magnetic dipole density. It is presumed that the total charge density, ρ  , and the total current
density, , are prescribed functions of position and of time. The equation div( ) = 0 can be satisfied by setting

because the divergence of any curl is equal to zero. The first of Equations ( ) becomes, with the help of Equation ( ),

where it has been assumed that the order of the space and time derivatives can be interchanged. It follows that the curl of the sum
of the electric field and the time derivative of the vector potential is zero,

The curl of any gradient is zero so that the requirement Equation ( ) can be satisfied by putting

or

The introduction of the vector potential, , and the scalar potential, , enables one to satisfy the first two of Maxwell’s equations (
). Write  and  in terms of the potentials in the second pair of Maxwell’s equations to obtain

and
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In cartesian co-ordinates, but only in cartesian co-ordinates, the vector operator curl curl can be written

Using Equation ( ) one obtains

In order to completely specify a vector field one must give both its curl and its divergence. But at this point only the curl of  has
been fixed by the requirement that  = curl( ); one is still free to impose some constraint on the divergence of . It is convenient
to choose the vector potential so that it satisfies the condition

This choice of div( ) is called the Lorentz gauge. In the Lorentz gauge Equation ( ) simplifies to become

or in component form

Similarly, if the last of Maxwell’s Equations ( ) is combined with Equation ( ) and with the Lorentz condition ( ) one
finds

Obviously, the four equations (  plus ) are very similar and the form of a solution that satisfies one of them must also
satisfy the other three. (The fact that A , A , A , V all satisfy equations of the same form is no accident: according to the special
theory of relativity these four quantities are related to the four components of a single vector in four-dimensional space-time).
Consider the homogeneous equation

or, since c  = 1/( µ ),

This equation is called the wave equation. A spherically symmetric solution that satisfies the wave equation is

where f(x) is any function whatsoever. It is instructive to substitute the function ( ) into the wave equation. Since the function
does not depend upon either of the angular co-ordinates, θ or , the Laplacian operator becomes

Inserting the function (7.14) one obtains

curlcurl=− + div.∇
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since

Therefore

and

thus

But

and therefore the wave equation ( ) is satisfied by a potential function of the form Equation ( ) where f(x) is an arbitrary
function of its argument, x. Apart from the appearance of the retarded time, t  = t − r/c, the form of Equation ( ) is very
similar to the potential function for a point charge. It is therefore natural to suppose that the potential function that is generated by a
time-varying point charge q(t) located at the origin is given by

where the value of the charge at the retarded time must be used to calculate the potential at the time of observation, t: the retarded
time must be used in order to allow for the finite time required to propagate a signal from the charge to the observer at the speed of
light. The notion of a time-dependent charge is an unusual one: think of a tiny volume at the origin into which charge can flow with
time. Then the potential function ( ) describes the contribution to the potential at the position of the observer due to the charge
in that tiny volume element at the origin. The potential function ( ) goes
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Figure : A space and time dependent source charge density  and a space and time dependent source current density 
 generate time dependent electric and magnetic fields at the position, P, of an observer.

over into the electrostatic potential for a point charge if the observer is so close to the origin that (r/c) can be neglected, or if the
charge q is independent of the time.

The elementary solution ( ) of the wave equation can be used, together with the principle of superposition, to construct a
particular solution of the wave equation given a space and time varying distribution of charge density (see Figure (7.2.1)):

where d  is the element of volume and the retarded time is given by

It may be helpful to write out Equation ( ) explicitly in cartesian co-ordinates (see Figure (7.2.1):

where

If Equation ( ) is the required solution of the inhomogeneous wave equation ( ) for the potential function , then
by analogy the solution of each of the three Equations ( ) must have the same form. The particular solution for the vector
potential that is generated by the current density  is given by

Here again t  is the retarded time. These solutions, which satisfy Maxwell’s equations for the case in which the charge and current
distributions depend upon time, have exactly the same form as the solution for the electrostatic potential, Equation (2.2.4), and the
solution for the magnetostatic vector potential, Equation (4.1.13), except that the retarded time must be used in the source terms.
The presence of the retarded time in the integrals makes the calculation of the scalar and vector potentials much more complicated
than the equivalent calculations for the static limit. It can be shown, after much work, that the potential functions ( ) and (

) satisfy the Lorentz condition, Equation ( ).
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7.3: A Simple Radio Antenna
See (Electromagnetic Theory by J.A.Stratton, McGraw-Hill, N.Y., 1941. Section 8.7 and the following).

Consider a center fed linear antenna such as that depicted in Figure (7.3.2). In order to apply Equation (7.2.18) to an antenna of finite
length it is necessary to know the current distribution along the wire. An exact solution of this problem is very difficult. A useful
approximation assumes that the current distribution along the antenna is sinusoidal if the time variation of the current is sinusoidal. For
a thin wire the current must be zero at the ends of the wire since there is no place to store charge. At other places along the wire charge
may be stored on the wire surfaces and so the current need not be the same at every cross-section. The antenna is supposed to be driven
by a sinusoidal generator at the circular frequency ω. A wave of current propagates along the wire, which can be regarded as a
transmission line, and is reflected from the open ends of the wire. The resulting current distribution is a sinusoidal

Figure : A center fed linear radio antenna. The current forms a standing wave with nodes at the wire ends.

standing wave along the wire having zero current at the ends of the wire at z = ±L. Such a current distribution can be described by

see Figure (7.3.2). Use this current distribution in Equation (7.2.18) to calculate the vector potential. The currents flow only in the z-
direction so the vector potential will only have a z-component. Further, it is assumed that we will be interested only in those fields that
are far removed from the antenna: this means that for an observer at distance R from the antenna we shall assume that R ≫ L,λ where
the antenna length is 2L and λ is the wavelength of the electric and magnetic fields produced by the antenna where λ = c/f, and ω = 2 f
where f is the frequency. The antenna wire is assumed to be very thin so that every point on a cross-section at z can be considered to be
at the same distance from the observer. This means that in the integral of (7.2.18) the integral of current density over x,y simply gives
the total current at that place along the wire. Eqn.(7.2.18) can be written

where I  is given by ( ), t = t - r/c, and

Since | z |< L and R ≫ L one can use the binomial theorem to expand r in powers of (z/R):

or

neglecting terms of order (z/R)  or higher. Thus the distance to the observer from a point z on the antenna is given by

where θ is the angle between the direction of  and the antenna, see Figure (7.3.2). The vector potential can therefore be written
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This rather formidable appearing expression can be simplified if one notices that z cos θ in the denominator can be neglected compared
with the distance R since R≫L. On the other hand, the term (ωz cos θ/c) in the exponentials cannot be neglected because L is usually
comparable with λ and (ωz/c) = 2 z/λ. With the above simplification we have

where

and

The integrals are messy but can be easily carried out. The result is

The next step uses ( ) to calculate the B-field from . For this purpose it is convenient to work in spherical polar co-
ordinates:

But since A  = 0 and there is no angular dependence on the angle , it follows that

and

or

This field contains two terms. The first term decreases with distance to the observer like (λR)  . The second term decreases with
distance like R  . This means that for the condition R≫ λ one can ignore the second term because it becomes very small relative to the
first term. So in the far field of the antenna (R ≫ λ) one finds

and

The electric field can be most easily obtained from B by means of the third Maxwell equation (7.2.11.). In free space  so that
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or, since the time variation is proportional to exp (−iωt),

The electric field components calculated from Equation ( ) are:

Notice that the component E  varies with distance like 1/R  , whereas the component E  varies with distance like 1/R. For distances
such that R ≫ λ the component E  becomes very small compared with E  and can be ignored. Thus in the far field limit  has only
the component E  and  has only the component B . Notice that  and  are orthogonal to each other and both are orthogonal to the
line joining the observer to the center of the antenna. Also note that from Equation ( )

independent of the angle of observation.

In the limit of small angles, θ, the factor sin θF(θ) in Equation ( ) simplifies to . This means that in the limit θ → 0 the
field amplitudes fall off to zero as the observer becomes aligned with the antenna (θ is defined in Figure (7.3.2)). On the other hand, for
an observer in the X-Y plane θ = /2 and

The radiation fields in the equatorial plane are non-zero and become particularly large when cos(ωL/c)= 0 or -1. Such an antenna is said
to be resonant. The condition ωL/c = /2 corresponds to the commonly used half-wave antenna for which L = λ/4, where λ is the free
space wavelength 2 c/ω. For such a half-wave antenna the angular dependence of the radiation fields becomes

Despite its more complicated appearance, this function is very similar to the sin θ angular variation that characterizes a point electric
dipole radiator, as we shall see in the next section.

The present section has demonstrated how one can calculate the strength of a radio signal generated by a typical linear antenna. It also
demonstrates that relatively complex fields are a consequence of the presence of the retarded time in the relatively simple formula for
the vector potential, Equation (7.2.18).

This page titled 7.3: A Simple Radio Antenna is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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7.4: An Electric Dipole Radiator
An atom or a molecule in an excited state may develop an oscillating electric dipole moment density, . This dipole density
oscillates at a frequency that ~ is proportional to the energy difference between the excited state and the ground state, 

. The oscillating dipole moment generates an electromagnetic field that carries off the excited state energy ∆E, and
the atom or molecule returns to the ground state. An oscillating dipole moment density constitutes a current density. From Equation
(7.2.3)

if  and  are both zero as shall be assumed here. Also assume that the ~ dipole density has only a z-component as shown in
Figure (7.4.3). Then from

Figure : The co-ordinate system used to describe the fields generated by an oscillating atomic or molecular electric dipole
moment.

Equation (7.2.18) the vector potential can be written

where d  is the element of volume and the integral is carried out over the volume, Vol, of the atom or molecule. In the above
equation it has been assumed that the dimensions of the atom or molecule are so small that all parts are at the same distance from
the observer: ie. as  in (7.2.18) ranges over the volume, Vol, changes in the distance to the observer can be neglected both in the
denominator and in the retarded time. This is the point dipole approximation. The volume integration with this assumption simply
gives the total atomic or molecular dipole moment, , and

where  is the total dipole moment evaluated at the retarded time t  = t − R/c . This vector potential can now be used to calculate
the magnetic field, . For this purpose it is convenient to use spherical polar co-ordinates, see Figure (7.4.3):

Notice that the vector potential does not depend on the angle  so that the operator (∂/∂ ) gives zero. From ( ) one finds
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(Remember that  because the dipole moment must be evaluated at the retarded time, t  = t−R/c). The electric
field components can be most easily calculated from the maxwell equation  since outside the atom or
molecule . The components of  are:

so that

so that

Finally,

The electric field components are therefore given by

The electric field derivatives from  have been integrated with respect to time, and  has been used to
eliminate µ .

The fields generated by a point dipole fall naturally into two groups:

(a) The Near Fields. These are the terms that become dominant as R, the distance from dipole to observer, becomes small. They
are

The magnetic field is just that generated by a static current element according to the law of Biot-Savart, see Equation (4.2.2). The
electric field components have the same form as those generated by a static dipole oriented along the z-axis, see Equation (1.2.12).
Therefore near the dipole retardation effects are unimportant as one would expect.

(b) The Far Fields or the Radiation Fields. Far from the dipole the dominant terms for both the electric and magnetic fields are
those that fall off with distance like 1/R.
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In this limit E  = cB , and the electric and magnetic fields are orthogonal. Moreover, both the electric and magnetic field are
orthogonal to the line joining the observer to the dipole. These radiation fields are said to be transverse fields. Note particularly that
the dipole moment is to be calculated at the retarded time, t  = t − R/c, where t is the time of observation. Any fields created by the
dipole at a particular instant require a transit time R/c to reach the observer.

This page titled 7.4: An Electric Dipole Radiator is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.

E

R

E

θ

→0 like(1/ )R

2

= sinθ

μ

0

4π

p̈

z

R

= sinθ

1

4πϵ

0

p̈

z

Rc

2

θ ϕ

R

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22835?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/07%3A_Time_Dependent_Electromagnetic_Fields./7.04%3A_An_Electric_Dipole_Radiator
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html


7.5.1 https://phys.libretexts.org/@go/page/22836

7.5: A Point Magnetic Dipole
Consider an oscillating magnetic dipole moment, mz, oriented along the z-axis and located at the origin of co-ordinates similar to
the case of the oscillating electric dipole of Figure (7.4.3). If the dipole were static it would generate a vector potential having only
a -component:

This follows from the general expression for the vector potential generated by a point dipole, Equation (4.3.4)

However, it can be shown that due to the effects of time retardation the equation for the vector potential,( ) must be modified
to read

The fields derived from this expression for the vector potential, , are

where t  = t − R/c. Far from the dipole the radiation fields that decrease with distance like (1/R) are given by

 

both evaluated at the retarded time t . Just as for the electric dipole far fields , and  and  are orthogonal to each other
and to the line joining the position of the observer to the dipole.

This page titled 7.5: A Point Magnetic Dipole is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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ṁ

z

cR

2

m̈

z

Rc

2

t

R

= 0 = = ,B

ϕ

E

R

E

θ

=− sinθ .E

ϕ

μ

0

4π

[ + ]

m

˙

z

R

2

m

¨

z

cR

t

R

R

= sinθ,B

θ

μ

0

4π

m̈

z

Rc

2

(7.5.4)

=− sinθ= ,E

ϕ

μ

0

4π

m

¨

z

cR

cB

θ

R | | = c| |E

⃗ 

B

⃗ 

E

⃗ 

B

⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22836?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/07%3A_Time_Dependent_Electromagnetic_Fields./7.05%3A_A_Point_Magnetic_Dipole
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/07%3A_Time_Dependent_Electromagnetic_Fields./7.05%3A_A_Point_Magnetic_Dipole
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html


7.6.1 https://phys.libretexts.org/@go/page/22837

7.6: A Moving Point Charge in Vacuum
The charge density corresponding to a point charge is a singular distribution that can be written

where ) is the Dirac delta-function introduced in Chapters (2) and (4), and  describes the time variation of the position of
the particle. The delta function is supposed to be zero for all values of its argument except when the argument is equal to zero; at
that point the function becomes infinitely large but in such a manner that its integral is unity. The 1-dimensional -function may be
thought of as the limit as  → 0 of a very thin rectangular shape that is  wide and that has an amplitude 1/ . The three dimensional 
-function may be envisioned as the product of three 1-dimensional -functions. The potential function that is generated by the

distribution ( ) can be written using Equation (7.2.16):

The integrand is very sharply peaked when  so that it is very tempting to conclude that

This equation is WRONG, because it ignores the position dependence of the retarded time which appears in the argument of the 
−function. In

Figure : A small blob of charge moving along the x-axis with a velocity vx. The contribution to the potential at P at the time of
observation, t, comes from the position of the particle at the retarded time t  = t − r /c.

order to understand this, suppose for simplicity that a co-ordinate system is chosen so that at the retarded time the particle is
moving along the x-axis, i.e. y  = z  = 0 and y,z are not changing with time because the velocity of the particle is directed along x
(see Figure (7.6.4)). The integral of Equation ( ) can be written explicitly in cartesian co-ordinates: the result is

The integrations over y,z are just ordinary integrations over −functions that may be carried out at once using

This leaves the integration over x to be carried out;

In order to turn ( ) into an ordinary integration over a −function it is necessary to change variables so as to get rid of the
spatial variation that is contained in the retarded time, t . Introduce the new variable
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Then

where

so that

One finally obtains for the differential du the expression

and the integral ( ) becomes

The expression for the potential function has been transformed into a −function integration that can be carried out immediately to
give

since for u=0 x=x (t ). The result, Equation ( ), can be written in a more general and compact form using vector notation:

where  is the vector that specifies the position of the particle at the retarded time relative to the point of observation at
time t, P(X,Y,Z,t) (see Figure (7.4)), and  is the particle velocity at the retarded time.

Feynman (loc.cit. section 21-5) has given a very physical description of why the retarded potential contains the complicated
denominator of Equation ( ) rather than simply the retarded distance | r  |. He explains how the volume integration of ( )
for the potential must explicitly take into account that the contribution to the potential at a fixed time of observation comes from
different retarded times for different points in the charge distribution.

Exactly the same arguments apply to the calculation of the vector potential for a moving point charge from Equation (7.2.18). The
current density for a point charge moving with a velocity  is given by

where  describes the position of the particle at time t. Upon carrying out the integration in Equation (7.2.18) the resulting
vector potential is found to be
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where  is the vector drawn from the position of the particle at the retarded time, t , to the point of observation at time t. Eqns.(
) and ( ) are called the Lienard-Wiechert potentials for a point charge. They are consistent with the theory of relativity.

The electric and magnetic fields generated by a moving point charge, Chpt.(1), Equations (1.1.9) and (1.1.10), can be deduced from
them by means of the relations

and

In the general case these result in the rather complex equations of Equations (1.1.9) and (1.1.10). However, in the limit v/c ≪ 1 the
fields generated by a moving point charge can be obtained relatively simply from the low velocity limit of the vector potential.
Consider a charge q near the origin, at , and moving along the z-axis with a velocity . In spherical polar co-
ordinates one has

For a slowly moving particle, v ≪ c, these become

and

where , , and A  , A  are to be evaluated at the retarded time t  = t − r/c. The magnetic field is given by 
:

and

where  includes a term −∂/c∂t because if r changes by dr the retarded time changes by dt  = −dr/c. Thus

Eqn.( ) is just the field generated by a point electric dipole at the origin if one writes , , and ; then

see Equation (7.4.2).
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or

This last equation can be integrated with respect to the time to obtain

where the constant of integration is simply the static field due to a charge, q, at the origin,

The radial electric field component is that of a point charge at the origin plus a field due to a point dipole at the origin.

The transverse electric field component is given by

This expression can be integrated to give

For this case the constant of integration is zero because in the static limit the only contribution to the θ-component of the electric
field is a dipole term due to the displacement of the charge from the origin by the vanishingly small distance ξ. Eqn.( ) is just
the θ-component of the field generated by a point electric dipole at the origin, Equation (7.4.3). The radiation field terms, the terms
that fall off like 1/r, can be written

where . These radiation fields can be written as follows in terms of general vector position co-ordinates where the particle is
taken to be at the origin:

where the acceleration  is evaluated at the retarded time t  = t − r/c.

Eqns.( ) are valid only for a slowly moving charge whose velocity is very much smaller than the velocity of light in vacuum.
These radiation fields fall off as the first power of the distance from the observer to the particle.

Eqns.(  and ) can also be calculated from the formula

using the low velocity limit for the vector potential along with the expression for the potential function, Equation ( ), expanded
to lowest order in the small quantities ξ and :
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CHAPTER OVERVIEW

8: Electromagnetic Fields and Energy Flow
Chapter 7 treated the problem of how electromagnetic fields are generated by time varying charge and current distributions.
Electro-magnetic fields transport energy and momentum through space, and this chapter is concerned about how to calculate the
energy density contained in those fields and how to calculate the rate of energy transport. Scattering from atoms or molecules is
also discussed, as are the generation of the continuous X-ray spectrum produced in an X-ray tube.

8.2: Poynting’s Theorem
8.3: Power Radiated by a Simple Antenna
8.4: A Non-Sinusoidal Time Dependence
8.5: Scattering from a Stationary Atom

Thumbnail: Animation of a half-wave dipole antenna transmitting radio waves, showing the electric field lines. (Public Domain;
Chetvorno via Wikipedia)
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8.2: Poynting’s Theorem
A relation between energy flow and energy stored in the electromagnetic field can be obtained from Maxwell’s equations and the
vector identity

Multiply the Maxwell equation

by , and multiply

by  and subtract to obtain

Using the identity ( ) this may be rewritten

Integrate the latter equation over a volume V bounded by a closed surface S. The volume integral over the divergence can be
converted to a surface integral by means of Gauss’ theorem:

where dS is an element of surface area, and  is a unit vector normal to dS. Using Gauss’ Theorem one obtains

Equation ( ) is the statement of Poynting’s theorem. Each term in ( ) has the units of a rate of change of energy density.
The quantity

is called Poynting’s vector; it is a measure of the momentum density carried by the electromagnetic field. Momentum density in the
field is given by

see the Feynman Lectures on Physics, Volume(II), Chapter(27); ( R.P.Feynman, R.B.Leighton, and M.Sands, Addison-Wesley,
Reading, Mass., 1964 ).

The surface integral of the Poynting vector, , over any closed surface gives the rate at which energy is transported by the
electromagnetic field into the volume bounded by that surface. The three terms on the right hand side of Equation ( ) describe
how the energy carried into the volume is distributed.

These three terms are:

This term describes the rate at which mechanical energy in the system defined by the volume V increases due to the mechanical
forces exerted on charged particles by the electric field: it describes the conversion of electric and magnetic energy into kinetic
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energy and heat. This can be understood by considering the force on a charged particle

The rate at which the electromagnetic field does work on the charged particle is

(The magnetic field makes no contribution to the work done on the particle because the magnetic force is perpendicular to the
velocity, ). When summed over all the charges in a volume element, Equation ( ) gives, per unit volume, .

This term gives the rate at which the energy stored in the macroscopic electric field increases with time. Its effect can be
represented by the rate of increase of an energy density W :

Notice that this term depends upon the properties of the material because it involves the polarization vector through the
displacement vector .

This integral describes the rate of increase of energy stored in the volume V in the form of magnetic energy. It corresponds to a rate
of increase of a magnetic energy density WB:

Notice that this term involves the properties of the matter in the volume V through the presence of the magnetization density, , in

the definition of .

Let us apply Poynting’s theorem, Equation (8.3), to a spherical surface surrounding the dipole radiator of Chapter(7). Suppose that
the radius of the sphere, R, is so large that only the radiation fields have an appreciable amplitude on its surface; recall that the
radiation fields fall off with distance like 1/R (see Equations (7.33)) , whereas the other field components fall off like 1/R  or 1/R  .
For the case of dipole radiation in free space the Poynting vector has only an r-component because ,  are perpendicular to one
another and also perpendicular to the direction specified by the unit vector . In free space  and

where as usual t  = t − R/c is the retarded time. Now take p  = p  cos (ωt) so that

and therefore

The time averaged value of the term cos  ω(t − R/c) is 1/2 ; also c  = . These can be used in ( ) to obtain the average
rate at which energy is transported through a surface having a radius R:
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Eqn.( ) gives the angular distribution of the time-averaged power radiated by an oscillating electric dipole. The power
radiated along the direction of the dipole is zero, and the maximum power is radiated in the plane perpendicular to the dipole (see
Figure (8.1.1)). The total average power radiated by the dipole can be obtained by integrating ( ) over the surface of the
sphere of radius R:

Figure : The pattern of radiated power for an oscillating electric dipole. There is no power radiated along the direction of the
dipole,  or .

But  so that the total average power radiated by the oscillating electric dipole is given by

The rate of energy radiated by the dipole increases very rapidly with the frequency for a fixed dipole moment, p .

A similar calculation gives the average rate, P , at which energy is radiated by an oscillating magnetic dipole. The far fields
generated by an oscillating magnetic dipole are given by

Figure : The schematic diagram of a center-fed, linear, half-wave antenna oriented along the z-axis. The current is zero at the
ends of the antenna; these are located at z=-L and at z=+L.

where as usual t  = t − R/c is the retarded time. For a magnetic dipole whose amplitude is m  one finds

This page titled 8.2: Poynting’s Theorem is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.

8.2.10

8.2.10

8.2.1

p

⃗ 

m

⃗ 

∫ dS < >= < > 2π sinθdθ = θdθ.∫

Sphere

S

r

∫

π

0

S

r

R

2

c

16πϵ

0

( )

ω

c

4

p

2

0

∫

π

0

sin

3

θdθ = 4/3∫

π

0

sin

3

= Watts.P

E

1

3

c

4πϵ

0

( )

ω

c

4

p

2

0

(8.2.11)

0

M

= ,B

θ

μ

0

4π

( )

d

2

m

z

dt

2

t

R

sinθ

Rc

2

8.2.2

= − ,E

ϕ

c B

θ

R 0

=  Watts .P

M

c

3

μ

0

4π

( )

ω

c

4

m

2

0

(8.2.12)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22840?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/08%3A_Electromagnetic_Fields_and_Energy_Flow/8.02%3A_Poyntings_Theorem
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html


8.3.1 https://phys.libretexts.org/@go/page/22841

8.3: Power Radiated by a Simple Antenna
The radiation fields generated by a simple center-fed linear antenna oriented along the z-axis can be written

where

Figure : The radiation pattern for a half-wave antenna compared with the radiation pattern for an oscillating electric dipole.
The dipole pattern is indicated by the + symbols.

(see Chapter(7) Equations (7.3.6 and 7.3.4). The simplest resonant antenna is that for which (ωL/c) = /2. This is a half-wave
antenna for which 2L = λ/2; ie. the total length of the antenna is half the free space wavelength λ = 2 (c/ω) = 2 /k. For this half-
wave antenna Equation (7.3.4) becomes

and the current distribution along the antenna becomes

see Figure (8.2.2). The Poynting vector is SR = (E B /µ ), and since  and  oscillate in phase the time averaged Poynting vector
is given by

where | E  | and | B  | are the electric and magnetic field amplitudes. For the particular case of the half-wave antenna one finds
using ( )

 Ohms= 377 Ohms is the impedance of free space. The variation with angle of the radiated power is shown
in Figure (8.3.3) where it is compared with the simple sin  θ pattern characteristic of a point dipole. The total average power
passing through a sphere of radius R is independent of R and is given by
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since  The integral can be evaluated numerically. The result is

The average power dissipated in a resistor, R Ohms, by a sinusoidal current having an amplitude I  Amps is , therefore the
ideal halfwave antenna presents an impedance to the power source whose real part is R = 73.13 Ohms. The resistance R  is called
the radiation resistance of the antenna. An ideal antenna is one for which the Ohmic resistance of the antenna wire itself is
negligible compared with the radiation resistance. The antenna will also present an inductive or capacitive impedance to the
generator since energy is stored in the electric and magnetic near fields. A thin wire half-wavelength antenna has an impedance Z =
73.1+i42.5 Ohms; in other words, the impedance contains an inductive component. However, if the antenna is made 0.49λ long, the
impedance becomes purely resistive at approximately 73 Ohms. Such an antenna is said to be tuned. The input impedance of a
shorter antenna contains a capacitive component; a longer antenna carries an inductive impedance component. Thus the input
impedance of a half-wave dipole antenna varies rapidly with frequency. For practical use it is desirable to construct an antenna that
(1) radiates most of its energy into a relatively narrow cone, and (2) one that has an input impedance that is relatively insensitive to
frequency. These requirements have led to the development of a large variety of antenna configurations. These are described by
John D. Kraus in ”Antennas”, McGraw-Hill, New York, 1988.

An antenna can, of course, also be used to detect the power broadcast by an antenna. It is instructive to examine the problem of an
antenna used as a receiver. Let the antenna be terminated by a matched load; the resistive part of the load will thus be equal to the
antenna radiation resistance, R . Let us use the specific example of a half-wave antenna for which R  ≈ 73 Ohms. Assume that the
receiving antenna is oriented parallel with the transmitting antenna so that the incident electric field vector is oriented along the
receiving antenna: if the  field is transverse to the antenna no signal will be detected. Usually, the transmitter is so far removed
from the receiver that the incident electric field amplitude can be taken as constant over the receiving antenna. Let the amplitude of
this incident electric field be E . The incident electric field will induce a current distribution on the half-wave antenna that has the
form described by Equation ( ) and an amplitude I  Amps. Assume that the antenna is connected to a detector whose input
impedance has been matched to the antenna impedance. The average rate at which power is extracted from the incident radio wave
is

This means that for a half-wave antenna and a matched load the detector resistance will be 73 Ohms. For this matched receiver one
half the incident power will be re-radiated (the current distribution will after all radiate away power at the average rate of 
Watts), and half the power will be absorbed by the matched detector,  Watts. Thus the useful power picked up by the
antenna and delivered to the detector is

From this equation one finds , and

It is useful and interesting to ask ”how large must a disc be so that all the transmitted energy intercepted by the disc is equal to the
power P  delivered to the detector?”. The area of such a disc is called the ”Effective Aperture”, A , of the receiving antenna. The
amplitude of the time-averaged Poynting vector for an incident wave of amplitude E  is

where Z =377 Ohms. Therefore
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For the half-wave antenna R = 73 Ohms and 2L= λ/2, so that

In other words, the useful power delivered to the detector is all the incident power contained in a circle whose diameter is 0.4λ, a
diameter nearly equal to the length of the antenna!

This page titled 8.3: Power Radiated by a Simple Antenna is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
John F. Cochran and Bretislav Heinrich.
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8.4: A Non-Sinusoidal Time Dependence
Nothing in the calculation of the radiation fields required the time variation of the dipole moment to be sinusoidal. If a charge
undergoes an acceleration ~a at the retarded time t  = t − R/c then the Poynting vector at time t on a surface of radius R will have
the radial component

(see Equations (7.4.5)). This expression can be written

Figure : A schematic diagram of an X-ray tube illustrating the production of the white X-ray spectrum. The electrons undergo
a de-acceleration upon striking the metal anode. This de-acceleration is of order a= 1024 m/sec  for a typical 20 keV potential drop
between the anode and the cathode: this assumes an electron stopping distance of 35×10  m. During a brief period, ∼ 10
seconds, the electron radiates at the rate of ∼ 5.7 × 10  Watts, therefore each electron emits a pulse of radiation containing ∼ 5.7
× 10 Joules. The number of electrons that impinge on the anode per second for a beam of 1 mAmp is 6.25 × 10 . The average
power in the X-ray beam will be (6.25 × 10 )(5.7 × 10 ) = 3.6 × 10  Watts. This energy is distributed over a range of
frequencies from zero to 4.8×10  Hz (hν  =| e | V). This calculation does not include the energy contained in the characteristic
X-ray spectrum emitted from the target.

Figure : Schematic diagram of an atom in a time varying electric field. The atom develops a time varying dipole moment that
scatters the incident radiation.

and the power integrated over a sphere of radius R is given by

where a(t ) means that the acceleration is measured at the retarded time (t − R/c) if the power is measured at the time t. Eqn.( )
can be used to understand the production of the continuous X-ray spectrum, refer to Figure (8.4.4). The conversion efficiency for
X-ray production is rather small; approximately 10  of the incident power is converted to continuous spectrum X-ray energy.

This page titled 8.4: A Non-Sinusoidal Time Dependence is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John
F. Cochran and Bretislav Heinrich.

R

= ,S

r

1

cμ

0

( )

qa sinθ

4π Rϵ

0

c

2

2

= ,S

r

c

4π

1

4πϵ

0

( )

θq

2

a

2

sin

2

c

4

R

2

tr

(8.4.1)

8.4.4

2
−10 −16

−6
−22 15

15 −22 −6
18

max

8.4.5

=  Watts ,P

q

2

3

1

4πϵ

0

( )

q

2

a

2

c

3

t

R

(8.4.2)

R 8.4.2

−7

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22842?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/08%3A_Electromagnetic_Fields_and_Energy_Flow/8.04%3A_A_Non-Sinusoidal_Time_Dependence
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/08%3A_Electromagnetic_Fields_and_Energy_Flow/8.04%3A_A_Non-Sinusoidal_Time_Dependence
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html


8.5.1 https://phys.libretexts.org/@go/page/22843

8.5: Scattering from a Stationary Atom
Let plane wave radiation propagating in vacuum fall upon a stationary atom located at the origin of co-ordinates. Let the plane
wave be polarized with the electric vector directed along , and let the wave be propagating along  (Figure (8.4.5)):

We will consider only radiation whose wavelength, λ, is much larger than the dimensions of the atom, i.e. much larger than 10
meters. This condition restricts the frequency of the radiation to f ≤ 3×10  Hz. In this long wavelength limit one can take the
electric field to be uniform over the atom. Each charged particle in the atom will be subjected, as a first approximation, to the
electric field of Equation ( ). The response of the nucleus to the oscillating electric field can be neglected for purposes of
estimating the induced atomic electric dipole moment because the nucleus is so massive compared with the electrons. The main
contribution to the induced dipole moment will be due to the response of the cloud of electrons to the applied oscillating electric
field. The results of calculations using quantum mechanics shows that the electrons behave like simple harmonic oscillators that
follow an equation of motion of the form

where  is the square of the natural frequency associated with the electron. (Quantum mechanics must be used to calculate the
resonant frequencies associated with the various electron groups in an atom). The steady state solution of Equation ( ) is

where

In Equation ( ) | e |= 1.602 × 10  Coulombs, the electron charge, and m=9.11 × 10  kg, the electron mass. The electron
develops an oscillating dipole moment, p  = − | e | z, as a result of the motion induced by the forcing electric field. The oscillating
dipole will radiate energy at the same frequency as the incident radiation, and in this way energy will be removed from the incident
plane wave and scattered in all directions around the z-axis as per the discussion of section (8.2), Equation (8.2.10). If the atom
contains many groups of electrons, each group characterized by a characteristic resonant frequency, ωn, then each group will
develop a dipole moment as a result of a vibration of the form of Equation ( ). The total dipole moment developed by the atom
is obtained by summing the contributions from each electron group:

The factors f  are called the oscillator strengths. Each f  is a measure of the effective number of electrons in a particular group
characterized by the resonant frequency ω . The above model does not include damping processes and therefore the response
described by Equation ( ) becomes infinite whenever the frequency of the incident radiation becomes equal to one of the
resonant frequencies, ω . In any actual atomic system the response of the electrons is limited by a number of energy loss
mechanisms, including the energy radiated by the oscillating dipole moment, so that at resonance the electronic response becomes
large but it does remain finite. The rate at which energy is scattered into the direction specified by θ,φ is given by Equation (8.2.10)
of section (8.2) :

where p  is given by Equation ( ). A number of interesting conclusions can be drawn from the above result:

1. No energy is scattered along the direction parallel with the incident electric field;
2. The intensity of the scattered radiation is maximum in the plane perpendicular to the direction of the incident light electric

vector, and the scattered light will be linearly polarized;
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3. For frequencies that are much less than the lowest atomic resonant frequency the dipole moment, Equation ( ), becomes
independent of frequency. Under these conditions the intensity of the scattered radiation increases very rapidly with frequency;
it is proportional to ω  ;

4. In the high frequency limit, ω ≫ ω , where ω  is the greatest resonant frequency, the dipole moment amplitude becomes
inversely proportional to the square of the frequency so that the intensity of the scattered radiation becomes independent of
frequency.

If one observes the result of scattering of visible, unpolarized light from atoms or molecules in a direction that is perpendicular to
the direction of propagation of the incident light, it will be found that the scattered light will tend to be blue and it will be linearly
polarized, see Figure (8.5.6). The scattered light tends to be blue because in the visible the scattering intensity increases
approximately as the fourth power of the frequency, and red light has a lower frequency than blue light. This immediately suggests
an explanation for the observation that the sky appears to be blue. It also explains why light from the sky is partially polarized
when viewed in a direction perpendicular to the sun.

Figure : The production of polarized light by means of scattering. Let the incident light be unpolarized. The light scattered
along the y-axis will be completely linearly polarized because only the component of the dipole moment along z can scatter
radiation into the y-direction (see Equation (8.30)). The argument can be generalized to show that for any direction in the y-z plane
the scattered radiation will be linearly polarized.

The total rate of energy loss from a plane wave due to atomic scattering can be calculated from the integral of ( ) over a sphere
having a radius R. The result is (see Equation (8.2.11))

The rate at which energy is carried to the atom by the incident plane wave can be calculated from the time average of the Poynting
vector, Equation (8.2.4), using H  = E /cµ :

This expression can be combined with Equation (8.2.11) to calculate an effective area for scattering, i.e. an area such that if all the
incident power that falls on that area were to be removed from the plane wave, then that energy loss would just equal the radiated
power given by Equation (8.2.11). Such an area, which is clearly frequency dependent, is called the scattering cross-section; it is
often designated by σ . Far from resonance atomic cross-sections tend to be of the order of 10 m  for visible light; i.e. the cross-
section is small compared with the atomic area of ∼ 10 m  . For incident light having a wavelength of 10  m. or less, the
calculation of the scattering cross-section becomes complicated because the electric field strength in the incident wave is not
constant in amplitude across the atom. However, in the limit of very short wavelengths, i.e. for very high frequencies, the electrons
in the atom or molecule behave like independent scattering centers whose motions are uncorrelated. In this very high frequency
regime one has ω ≫ ω  for all n, and so the dipole amplitude for each electron becomes
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Each electron behaves as if it were free, and consequently it oscillates with an amplitude given by

The total power radiated by each electron in the high frequency limit can be calculated from Equation (8.2.11). The result is

which is independent of frequency. This, combined with the equation for the rate of incident energy flow per unit area, can be used
to calculate the effective cross-section for each electron in the high frequency limit. The result is

where the length re = 2.81 × 10  meters is called the classical radius of the electron. The frequency independent area ( ) is
called the Thompson cross-section; it has the numerical value σ  = 66.2 × 10  meters  . In the high frequency limit where each
electron in the atom scatters independently, the total cross-section is proportional to the total number of electrons in the atom, i.e. it
is proportional to the atomic number.

Of course, in general, atoms that scatter light are not stationary; they are moving in a random direction with a speed, V, that is
related to the mean thermal energy. This motion results in a Doppler frequency shift that is proportional to the ratio V/c, to first
order. The problem of scattering of radiation by a moving atom can be treated by transforming from the laboratory frame to a frame
in which the atom is at rest- the rest frame. After having calculated the intensity and distribution of the scattered light one can then
perform an inverse transformation back to the laboratory frame. Thermal velocities of atoms at room temperatures are quite small.
They are largest for hydrogen atoms, and even in that case the velocity corresponding to 300K is only 2.2 × 10  meters/sec.
Therefore Doppler frequency shifts are of the order of 1 part in 10  or smaller.

This page titled 8.5: Scattering from a Stationary Atom is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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CHAPTER OVERVIEW

9: Plane Waves I
The use of phasors to describe the propagation of plane waves through space.

9.1: Introduction to Plane Waves
9.2: Phasors
9.3: Elliptically Polarized Plane Waves
9.4: Gaussian Light Beams

Thumbnail: The wavefronts of a plane wave traveling in 3-space. (Public Domain; Quibik via Wikipedia)
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9.1: Introduction to Plane Waves
An electric dipole directed along z, located at the origin, and oscillating with the circular frequency  produces electric and
magnetic fields far from the origin that have the form (see equations (7.4.5)):

where , and t is the time at which the observer at  measures the fields. It must always be kept in
mind that the fields are represented by real numbers; the notation of complex numbers is simply a convenient book-keeping device
for dealing with sinusoidal functions. The notation  “the real part of ” i.e. . It is particularly
important to remember this when calculating the Poynting vector or the energy densities which involve the product of two field
amplitudes. For example, the Poynting vector corresponding to the fields of Equations ( ) is given by

Note that the time factor is not the same as

The time average of Equation ( ) is zero, whereas the time average of the correct expression, Equation ( ), is given by

since the time average of the cosine squared function is 1/2. At distances far removed from the dipole radiator the surface of
constant R can be approximated locally by a plane perpendicular to , a unit vector parallel with  This suggests that Maxwell’s
equations ought to have plane wave solutions of the form

where  is a vector whose magnitude is  and whose direction lies along the direction of propagation of the wave, and where 
and  are constant vectors that are perpendicular to each other and to the wave-vector  (see Figure (9.1.1)).

Equations ( ) can be written in component form using some convenient co-ordinate system, and using 
:

Using these expressions it is easy to show that
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Real (exp(−2iω[t−R/c])) = cos(2ω[t−R/c]). (9.1.3)
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Figure : A plane wave propagating along the direction specified by  and for which . For an electromagnetic
plane wave in free space for which the fields  and  satisfy Maxwell’s equations, both  and  lie in the surface of constant
phase and are perpendicular to each other.

In free space Maxwell’s equations become

Figure : An electromagnetic plane wave propagating in free space. The electric field vector, , and
the magnetic field vector, , along with the propagation vector, , form a right handed orthogonal triad.

Substitution of Equations ( ) into Maxwell’s Equations ( ) gives

The last two equations state that for plane wave solutions of Maxwell’s equations in free space both the electric and magnetic field
vectors must be perpendicular to the direction of propagation specified by the vector ; i.e.  and  must be parallel with the
surfaces of constant phase. The first two equations of (9.1.8) state that the fields  and  must be mutually perpendicular; thus
the three vectors , , and  form an orthogonal right handed triad. In order to satisfy Maxwell’s equations the magnitude of the
wave-vector must be given by
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and the amplitudes of the electric and magnetic fields must be related by

see Figure (9.1.2). Notice that E and B oscillate in phase: ie. they have exactly the same sinusoidal dependence on space and on
time. These relations are the same as those which were earlier associated with the wave produced by an oscillating dipole,
Equations (7.4.5).

In free space the displacement vector, , is related to the electric field by  so that the time rate of change of the energy
density stored in the electric field, Equation (8.2.6), becomes

Using (9.1.10), the energy density stored in the electric field of a plane wave is given by

This energy density oscillates in both space and time, in particular at a fixed point in space the energy density periodically vanishes.
However, the average energy density measured at any point in space is independent of both position and time:

Similarly, the time rate of change of the energy density stored in the magnetic field is given by (8.7)

Therefore one can write

The time averaged energy density stored in the magnetic field is independent of position and since  is given by

The average energy density stored in the magnetic field is exactly the same, in free space, as the average energy density stored in
the electric field. The total time averaged energy density stored in the electromagnetic field is

The average rate at which energy in the electromagnetic field is transported across a unit area normal to the direction of
propagation, i.e. normal to , can be obtained by multiplying Equation ( ) by the speed of light: this rate is also just the time
average of the Poynting vector

The quantity  has the units of a resistance; it is called the impedance of free space, and  Ohms. From the
equations for the space and time variation of a plane wave, Equations ( ), it follows that for a fixed time the electric and
magnetic fields vary in space with a period along the direction of  given by  By definition, this spatial period is the
wavelength, λ, therefore  Similarly, at a fixed position in space the fields oscillate in time with the period  by
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definition, this period, T, is the inverse of the frequency,f, therefore . In order to satisfy Maxwell’s equations, the frequency
and wavelength of a plane wave are related by Equation ( )

this can be written in the more familiar form 

This page titled 9.1: Introduction to Plane Waves is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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9.2: Phasors
It is very convenient to represent sinusoidal functions i.e. sines and cosines, by complex exponential functions when dealing with
linear differential equations such as Maxwell’s equations. For example

means

if A is a real number, or if A= a+ib is a complex number

A complex amplitude represents a phase shift. Since

Equation ( ) can be written

where

and

or

In phasor notation

The prefactor  is just the polar representation of the complex number (a+ib).

Derivatives are particularly convenient in the complex phasor notation because the derivative of an exponential function gives back
the same exponential function multiplied by a constant (usually a complex number).

One must be careful when calculating energy densities or when calculating the Poynting vector using the phasor notation because
the Real Part of the product of two complex exponentials is not the same as the product of the two Real sinusoidal functions that
appear in the product. There is, however, a trick which is useful. Consider a plane wave propagating along z and which can be
described by

These electric and magnetic fields are not in phase because  and  are different, and therefore this plane wave is not
propagating in free space. It corresponds to a wave propagating in a medium characterized by a complex dielectric constant as will
be discussed in a later chapter. Now calculate the time average of the Poynting vector, , using Equations ( ). It is
asserted that the time average of the product of two phasors can be obtained as one-half of the real part of the product of one
phasor with the complex conjugate of the other phasor.

Thus

y = A exp[i(kx −ωt)]

y = Real Part(A exp[i(kx −ωt)]) = A cos(kx −ωt)

y = Real Part((a +ib) exp[i(kx −ωt)]),

= a cos(kx −ωt) −bsin(kx −ωt).

(9.2.1)

cos(α+β) = cosβ cosα−sinβ sinα, (9.2.2)
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where  means the complex conjugate of E , and  means the complex conjugate of H . Using Equation ( ) in Equation (
) one obtains

since E , H  are taken to be real amplitudes. Eqn.( ) can be checked by writing the fields ( ) in real form:

or, using Equation ( ),

or upon an explicit multiplication

Upon taking the time averages one obtains

This equation can be written compactly as

in agreement with the result Equation ( ) obtained using the prescription ( ).

Figure : Two coherent plane waves having orthogonal polarizations, and propagating along the z-direction. Each wave is
characterized by the same circular frequency, ω, and the same wave-vector, , where . Let the fields in wave
number (2) be shifted in phase by  radians relative to the fields in wave number (1).

This page titled 9.2: Phasors is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
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9.3: Elliptically Polarized Plane Waves
It may happen that two plane waves corresponding to the same frequency are propagating in the same direction, but they may have
electric fields that are oriented in different directions and which may be shifted in phase relative to one another. For example,
consider the plane waves of circular frequency ω and propagating along z as shown in Figure (9.2.3).

Figure : The sum of two orthogonally polarized plane waves that have the same frequency and wave-vector. Case(a).  = 0,
the two electric fields are in phase: E  = E  cos ωt and E  = E  cos ωt.

Let wave no.1 be polarized with its electric vector along the x-axis;

and

Let wave no.2 be polarized with its electric vector along the y-axis:

and

Note that the fields in wave number(2) are shifted in phase by  radians relative to the fields in wave number(1). Now make a
diagram that displays the time variation of the total electric field at a fixed point in space; for simplicity, take z=0. There are a
number of interesting cases:

Case(a).  = 0. The two electric fields are in phase. This is an ordinary plane wave in which the electric vector is oriented at an
angle with respect to the co-ordinate axes, Figure (9.3.4).
Case(b).  = /2. The two electric fields are in quadrature i.e. they are 90  out of phase. The tip of the electric vector traces out
an elliptical pattern as a function of time, Figure (9.3.5). The sense of rotation of the electric vector is such that a nut on a right
handed screw thread would advance along the +z axis; this radiation is said to be right hand elliptically polarized. For the
special case in which E  = E  the tip of the electric vector traces out a circle; such radiation is said to be right hand circularly
polarized.
Case(c).  = 3 /2. In this case the electric fields are in quadrature, as for Case(b), but the sense of rotation of the electric vector
is in the opposite direction, fig(9.3.6). This radiation is said to be left hand elliptically polarized. When E  = E  the radiation is
left hand circularly polarized.
Case(d).  = /4. The phase shift in this case is equal to 45  and is less
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Figure : The sum of two orthogonally polarized plane waves that have the same frequency and wave-vector. Case(b). 
, the two electric fields are out of phase by /2 radians: E  = E  cos ωt and E  = E  sin ωt.

Figure : The sum of two orthogonally polarized plane waves that have the same frequency and wave-vector. Case(c).  = 3
/2, the two electric fields are out of phase by 3 /2 radians: E  = E  cos ωt and E  = −E  sin ωt.

Figure : The sum of two orthogonally polarized plane waves that have the same frequency and wave-vector. Case(d).  = /4,
the two electric fields are out of phase by /4 radians: E  = E  cos ωt and .

than 90  , Figure (9.3.7). The electric fields are given by

The tip of the electric vector traces out an elliptical path as time goes on. The sense of the rotation is such that a nut on a right
handed screw would advance along the positive z-axis; the radiation is right hand elliptically polarized. However, the principle axes
of the ellipse are not parallel with the x,y co-ordinate axes. As the phase angle between the two electric vectors, , increases from
zero, the ellipticity of the radiation increases and the principle axes of the ellipse rotate until they coincide with the co-ordinate axes
at  = /2. Upon further increase in phase angle, the ellipticity decreases until the radiation becomes linearly polarized again for 
= : the plane of polarization is rotated 90  relative to the plane of polarization illustrated in Figure (9.3.4). Further increases in the
phase angle produces left hand elliptically polarized radiation.

The production of elliptically polarized radiation requires the superposition of two plane waves whose frequencies are identical,
whose phases are correlated, and whose electric vectors are not co-linear. Such radiation is produced only by special sources.
Visible radiation from a hot filament or from a hot plasma is usually unpolarized. The light emitted from such a source consists of a
superposition of pulses each of which is quite short on a human time scale, ∼ 10 secs., but quite long compared with the period
of the radiation, ∼ 10 to 10  secs. Each pulse is emitted from an atomic dipole oscillator that has been set into motion by
thermal agitation. The pulses from the various atoms are uncorrelated in phase; moreover, the dipole moments on the individual
atoms are oriented at random and so the orientation of the electric vector of the emitted light is also oriented at random.
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Unpolarized light consists of a collection of many pulses in which the orientation of the electric vector from pulse to pulse is
random. A polaroid filter can be used to produce linearly polarized light from such an ensemble of randomly polarized pulses. It
works because a polaroid filter preferentially absorbs light whose electric vector is parallel with a particular direction, i.e. the
polaroid material exhibits anisotropic absorption. The light that gets through the filter consists of those pulses for which the electric
vector is mainly oriented along the poorly absorbing axis of the crystals which make up a polaroid filter.

Visible radiation emitted from a gas laser source is usually plane polarized and coherent because the dipole moments on the
radiating atoms in the laser plasma tube are parallel to one another and are locked in phase by the standing optical wave in the laser
cavity. The whole ensemble of radiating atoms behaves like one enormous extended dipole source. The particular orientation of the
electric field is determined by the Brewster windows that are used on the ends of the laser plasma tube. The optical gain provided
by the laser plasma tube depends upon the orientation of the Brewster windows.

There exists a class of anisotropic materials such that the velocity of radiation depends upon the orientation of the electric vector
relative to crystalline axes. Suitable thicknesses of such crystals can be used to introduce a controlled phase shift between two
orthogonal components of the electric field. In that way it is possible to convert linearly polarized light to elliptically polarized
light, and vice versa.

Figure : The construction of a beam of radiation having a finite size in the direction perpendicular to the direction of the beam
propagation. Such a beam can be constructed from the superposition of a large number of plane waves that are propagating at small
angles to the direction of the beam.

This page titled 9.3: Elliptically Polarized Plane Waves is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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9.4: Gaussian Light Beams
It is impossible to generate an unbounded plane wave, of course. Nevertheless, the concept of unbounded plane waves is a very
useful one because a finite beam of radiation can be described as the superposition of plane waves having different amplitudes and
phases and propagating in slightly different directions, see Figure (9.3.8). To simplify matters let us assume that the amplitude
function, A(p,q), is symmetric in p,q: ie. A(-p,-q)= A(p,q). This simplification allows one to construct a beam in which the electric
field is polarized along a particular direction in the plane- along the x-direction, say. Eqn.( ) illustrates how such a beam could
be constructed:

where

Eqn.( ) is an example of a Fourier Integral. The amplitude function A(p,q) can be chosen to give the required beam profile in
the x-y plane at some plane z=constant; it is convenient to choose this plane to be at z=0. The beam profile at any other position z
can be obtained using the integral ( ). As an example of how this works let us treat a specific case for which the mathematics
can be easily worked out. Suppose that at z=0 the beam cross-section can be described as a plane wave whose amplitude falls off
exponentially along x and y:

A time dependence exp (−iωt) is assumed, but this factor will be suppressed in the following. The output beam from a typical gas
laser, a He-Ne laser for example, exhibits the spatial variation ( ) at the output mirror with w  approximately equal to 1 mm.
Such a beam profile is called a Gaussian beam profile. The spatial Fourier integral in ( ) can be inverted for z=0 to obtain

Using the Gaussian spatial variation of Equation ( ) one finds

The Fourier transform of a Gaussian function is another Gaussian function: see section(9.4.1).

Notice that the amplitude function ( ) becomes very small if p  or q  is greater than : : this means that the waves in the
bundle describing the radiation beam that have transverse components p,q much larger than ±2/w  can be neglected. In a typical
case the laser beam radius is ∼1 mm so that the amplitude A(p,q) becomes small for | p |, | q | larger than 2 × 10  m  . But at
optical frequencies λ ∼ (1/2)×10  m so that k  ∼ 2 /λ ∼ 4  ×10  m  . Thus the important values of the transverse components
p,q of the plane waves that make up the beam are very small compared with the total wavevector k . The longitudinal component
of the wave-vector, the z-component k, is given by
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Figure : The variation of the phase across the x-y plane for a spherical wave is described by exp . The phase

increases with distance, r, in the plane because the distance from the center of curvature to an off-axis point on the plane is larger
than the radius of curvature R.

But  is much less than unity so that one can write

Now using the approximation Equation ( ) in Equation ( ) investigate the beam profile at some arbitrary value of z:

The integrals in Equation ( ) can be evaluated to obtain

where

and

See Section(9.4.2) for the details of the calculation. The variable  is called the complex radius of curvature of the beam. This
nomenclature stems from the description of a spherical wave-front, Figure (9.4.9) as will be explained in the next paragraph. The
length z  is called the Rayleigh range.

A spherical wave-front exhibits a phase variation across a plane perpendicular to the direction of propagation given by

where R is the radius of curvature. A comparison of this expression with Equation ( ) shows why  is called the complex
radius of curvature. One can separate the reciprocal of the complex radius of curvature into its real and imaginary parts:

The real part of Equation ( ) gives the real radius of curvature of the wave-front:
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or

The radius of curvature is infinite at z=0 corresponding to a plane wave-front. For z ≫ z  the radius of curvature approaches the
distance z.

When Equation ( ) is introduced into the expression for the electric field, Equation ( ), the imaginary part of 1/  gives
rise to a Gaussian spatial variation

where

This means that as one moves along the beam the radius of the beam slowly increases and becomes greater by  at z = z : ie. at
one Rayleigh range removed from the minimum beam radius, or beam waist.

The beam radius at the output mirror, the position of the minimum beam radius, is usually  for a typical gas laser
operating in the visible. For a wavelength of λ = 5 × 10  meters the Rayleigh range for such a laser is z = 6.28 meters. Therefore
the beam diameter will have expanded by only  = 1.41 at a distance of 6.28 meters from the laser output mirror.

Interested readers can learn more about Gaussian beams and Gaussian beam optics in the book ”An Introduction to Lasers and
Masers” by A.E. Siegman, McGraw-Hill, New York, 1971; chapter 8.

9.4.1 The Fourier Transform of a Gaussian.

From Equations ( ) and ( ) one has

These integrals separate into the product of two integrals having an identical form

It is useful to complete the square in the exponent of ( ) in order to proceed:

Eqn.( ) can now be re-written in terms of a new variable

and

Thus the integral I, Equation ( ), becomes

= ,

1

R

z

+z

2

z

2

R

R = z+ .

z

2

R

z

(9.4.12)

R

9.4.11 9.4.7 q

~

exp( ) = exp(− ),

− ( + )k

0

z

R

x

2

y

2

2 ( + )z

2

z

2

R

( + )x

2

y

2

w

2

(9.4.13)

= [1+ ] .w

2

w

2

0

( )

z

z

R

2

(9.4.14)

2

–

√ R

≅1mmw

0

−7
R

2

–

√

9.4.2 9.4.3

A(p, q) = ∫ dxdy exp(−[ + ipx]) exp(−[ + iqy]).

E

0

4π

2

∫

∞

−∞

x

2

w

2

0

y

2

w

2

0

(9.4.15)

I = dxexp(−[ + ipx]).∫

∞

−∞

x

2

w

2

0

(9.4.16)

9.4.16

[ + ip x] = + .

1

w

2

0

x

2

w

2

0

1

w

2

0

[x+ ]

ipw

2

0

2

2

p

2

w

2

0

4

(9.4.17)

9.4.16

u = x+ i ,

pw

2

0

2

du= dx.

9.4.16

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22849?pdf


9.4.4 https://phys.libretexts.org/@go/page/22849

Using this result the amplitude function, Equation ( ), becomes Equation ( )

9.4.2 Integrals that are Required in the Fourier Transform, Equation (9.26).

The integrals required to calculate the Fourier transform of the electric field in Equation ( ) have the form

The exponent in the exponential function can be written in the form

or

Upon completing the square in Equation ( ) this becomes

or

Introduce the new variable

with
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and carrying out the integration

Using the above result, Equation ( ), in Equation ( ) for the electric field amplitude gives

where

The quantity  is the complex radius of curvature of the wave-front.

It is further useful to define a distance called the Rayleigh range, z :

At the waist of the beam the complex radius of curvature is purely imaginary

The prefactor in Equation ( ) can be written

where

Finally,

and

with

This page titled 9.4: Gaussian Light Beams is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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CHAPTER OVERVIEW

10: Plane Waves II
An investigation of the behaviour of plane waves incident on a plane interface between two media having different optical
properties.

10.1: Normal Incidence
10.2: Boundary Conditions
10.3: Application of the Boundary Conditions to a Plane Interface
10.4: Reflection from a Metal at Radio Frequencies
10.5: Oblique Incidence
10.6: Example- Copper
10.7: Example- Crown Glass
10.8: Metals at Radio Frequencies

Thumbnail: The wavefronts of a plane wave traveling in 3-space. (Public Domain; Quibik via Wikipedia)    
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10.1: Normal Incidence
Consider a plane interface at z=0 that separates vacuum on the left (z < 0) from a half-space on the right containing an isotropic
material, see Figure (10.1). It is assumed that the relation between  and  in this material linear, i.e. , where the
dielectric constant (ω) depends upon the frequency, ω. The dielectric constant, , can be represented by a complex number
meaning that there is a phase shift between the vectors  and . It is often useful to write  where  is the relative
dielectric constant. The relative dielectric constant, , is a dimensionless, complex number.

Let the material in the right half-space be non-magnetic so that its permeability can be taken to be the same as the permeability of
free space, µ . A plane wave of the form

falls upon the interface. A disturbance will be set up in the material to the right of the boundary and we may reasonably suppose
that it will also have the form of a plane wave;

Figure : A plane wave,  is incident from vacuum on a material characterized by a dielectric
constant  at the circular frequency ω. The wave falls upon the surface at normal incidence. The amplitude of the reflected wave is
E , and the amplitude of the transmitted wave is E .

The plane wave propagating in the material (z > 0) must have the same frequency as the incident wave because the response of the
material is driven by the incident electric field at the circular frequency ω. However, its wavevector need not be the same as for free
space; it must be chosen so as to satisfy Maxwell’s equations. The amplitude of the wave in the material must be chosen so as to
satisfy boundary conditions on the surface of discontinuity between the material and vacuum at z=0.

In the material (z > 0) Maxwell’s equations can be written

It is assumed that there is no free current density, , so that  simplifies to

It is also assumed that there is no free charge density in the material so that

In the material we assume that  and therefore
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In writing these equations use has been made of the definitions from linear response theory in which it is assumed that the
polarization per unit volume is a linear function of the electric field strength:

and

so that

The relative dielectric function  will, in general, be a complex number because the response of the material, , to a driving
electric field, , is not in phase with the electric field. In the above equations the time dependence of the fields, exp (−iωt) , has
been explicitly used. The divergence of  is zero because it has been explicitly assumed that the material is uncharged. If the
electric field is taken to have only an x-component, and to be propagating along z as shown in Figure (10.1.1), then its curl
simplifies to give (from Equation ( )

it follows from this that the magnetic field has only a y-component. Similarly from Equation ( ) one finds

Both  and  in the plane wave of Equation ( ) automatically satisfy the condition that their divergences are zero because
they are transverse waves; thus Equations ( ) and ( ) are satisfied. From Equations ( ) and ( ) one can obtain

It follows that a wave in the material will satisfy Maxwell’s equations providing that

This means that there are two waves in the material that can be used to satisfy Maxwell’s equations:

and

where

and n and κ are defined by Equation ( ).

If the parameter κ is greater than zero the wave-vector ( ) represents a wave whose amplitude decays to the right since the
constant A in Equation ( ) is multiplied by the factor

On the other hand, the wave-vector ( ) represents a wave whose amplitude increases to the right in proportion to
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This wave which grows towards the interior of the material clearly cannot be appropriate for the present problem because it would
imply that the wave was being amplified by its passage through the passive medium in the right half-space of Figure (10.1.1). It can
be concluded that the wave in the material for z≥0 must have the form

and from either of equations ( ) or ( )

Notice that the ratio of H  to E  is different from the vacuum case:

as opposed to

for free space.

The average energy density stored in the electric field is given by

from Poynting’s Theorem and the fact that  is proportional to , see Chapter(8). The average energy density stored in the electric
field is given by

or

The average energy density stored in the magnetic field is given by

The sum of these two energy densities is

The energy density decays towards the interior of the material as one would expect.

The Poynting vector, , has only a z-component
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The energy flow in the wave takes place with the velocity c/n. The number n is called the index of refraction. Under some
circumstances the index of refraction may be less than 1. In that case the phase velocity in the material exceeds the velocity of light
in vacuum. It appears at first sight that a phase velocity greater than the speed of light in vacuum must violate one of the postulates
of the theory of relativity. However, no information can be transmitted using a wave of constant amplitude stretching over all time
from t=-∞ to t=∞. In order to transmit a message one must modulate the amplitude, or the frequency, of the wave. Any such
modulation is propagated with the group velocity; it can be shown that the group velocity is always less than the speed of light in
vacuum.

Having determined the wave-vector of the disturbance generated in the material filled half-space by the incident electromagnetic
wave, it remains to calculate the amplitude of this disturbance at z=0. In order to find the amplitude A it is necessary to apply
appropriate boundary conditions on E  and H  on the interface plane z=0.

Figure : The Maxwell equation  requires the tangential components of  to be continuous across any
interface. See the text.

This page titled 10.1: Normal Incidence is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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10.2: Boundary Conditions

10.2.1 The Tangential Components of the Electric Field.

Apply Stokes’ theorem to the Maxwell equation

and the small loop whose sides are L long and  long as shown in Figure (10.1.2):

One then takes the limit as the sides  shrink to zero. The line integral of the electric field gives

where E  is the field component parallel with L in material number 1 (vacuum in this case) and E  is the electric field component
parallel with L in material number 2. The flux of the magnetic field through the loop goes to zero as  goes to zero, therefore

Figure : The Maxwell equation  requires the tangential components of  to be continuous across any
interface. See the text.
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Figure : The Maxwell equation  requires the normal component of  to be continuous across any interface. See
the text.

or

At the boundary between two materials the transverse components of  must be continuous.

10.2.2 The Tangential Components of the Magnetic Field.

Apply Stokes’ theorem to a small loop as shown in fig(10.2.3):

where it has been assumed that there are no free currents in either material, and no surface free current density on the interface
between material number(1) and material number(2). Therefore

Upon taking the limit as  shrinks to zero the surface integral over  gives nothing and

that is

The transverse components of the magnetic field  must be continuous across the boundary between two materials.

10.2.3 The Normal Component of the Field B.

The normal component of the magnetic field  must be continuous across any interface as a consequence of the Maxwell equation 
; see Figure (10.2.4). In Figure (10.2.4) Gauss’ theorem is applied to a small pill-box that spans an arbitrary surface.

The height of the pill-box, , is taken to be so small that any contributions to the surface integral from the sides of the box can be
neglected. The continuity of the normal component of  is then forced by the requirement that the surface integral of  over the
pill-box be zero:

This page titled 10.2: Boundary Conditions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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10.3: Application of the Boundary Conditions to a Plane Interface
Returning to the problem of a wave incident on a plane interface as shown in Figure (10.1.1), one could satisfy the boundary
condition on  by choosing the amplitude of the wave transmitted into the right half-space to be A= E  for z=0, where E  is the
amplitude of the incident wave. This choice would, however, produce a discontinuity in H  at the boundary because the ratio of
H /E  is different in the region z . In order to match both E  and H  inside and outside the boundary it is necessary to assume that
the oscillating dipoles in the material to the right of z=0 give rise to a reflected wave, so that for z<0, in the vacuum in this
example, one has

and, since

where k = ω/c. In Equation ( ) E  is the amplitude of the reflected wave, as yet undetermined. Notice the change in sign of
the space part of the reflected wave phasor; this sign change is required because the reflected wave must propagate towards the left
i.e. towards z=−∞. The expression for the magnetic field H  is obtained from applying Maxwell’s equation (10.1.3) to Equation (

). From Equations ( ) and ( ) one obtains on the vacuum side of the interface at z=0

On the material side of the interface at z=0 one has

Apply the boundary conditions that E  and H  must be continuous through the boundary at z=0 to obtain

and

These two equations can be readily solved:

Optical parameters n and κ are listed in Table(10.3.1) for green light and for a number of common materials. Metals are quite
opaque at optical frequencies as can be seen from the Table. For example, at a wavelength of 0.5145 microns ( a standard Argon
ion laser line) the optical electric field amplitude in copper falls to 1/e of its initial value in a distance  = λ/2 κ, or  = λ/16.3 =
31.5 × 10  meters. The attenuation of the fields in glass or in water at frequencies corresponding to visible light is very small, see
Table(10.1). The attenuation coefficient, proportional to κ, is extremely sensitive to the presence of small amounts of impurities.
Very pure glasses have been developed for use in optical fibres in which the length over which the field amplitudes have decayed
by e  is in excess of 1 km.

It is of interest to calculate the absorption coefficient associated with the plane interface of Figure (10.1.1). This is the time-
averaged rate at which energy flows into the surface divided by the time-averaged rate at which the incident wave carries power
towards the surface. It can be calculated in two ways:
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(1) As the difference between the time-averaged Poynting vectors for the incident and reflected waves divided by the incident wave
Poynting vector. For the incident wave

For the reflected wave

Table : Optical constants for some selected materials at a wavelength of 0.5145 microns ( 514.5 nm). This wavelength is a
standard Argon ion laser green line. It corresponds to a frequency of f= 5.827 × 10  Hz. A time dependence exp (−iωt) has been
assumed. (a) P.B. Johnson and R.W. Christy, Phys.Rev.B6, 4370 (1972). (b) P.B. Johnson and R.W. Christy, Phys.Rev.B9, 5056

(1974).

In these last two equations  Ohms is the impedance of free space. Therefore, the absorption coefficient is
given by

or, using Equation ( ) for the reflection coefficient

(2) From the ratio of the time averaged Poynting vector just inside the material at z=0 to the incident wave Poynting vector.

But from Equation ( )

and therefore the absorption coefficient is given by the same expression as was obtained above
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This page titled 10.3: Application of the Boundary Conditions to a Plane Interface is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by John F. Cochran and Bretislav Heinrich.
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10.4: Reflection from a Metal at Radio Frequencies
The response of a metal is completely dominated by its dc conductivity, σ , for frequencies less than ∼ 10  Hz ( 1 THz). The
relaxation time for the charge carriers in a good metal at ∼300K is of order τ = 10 seconds. That means that the dc conductivity
can be meaningfully used for frequencies up to approximately 10  Hz. In order to understand why the response of the unbound
charge carriers dominates the response of the bound electrons at low frequencies consider the Maxwell equation

or in the low frequency limit

The term  in the above equation takes into account the response of the unbound electrons: the last term takes into account the
bound electrons. The response of the bound electrons at low frequencies is of order , therefore one can compare these two terms
by comparing σ  with . For copper at room temperature σ  = 6.45 × 10  /Ohm-m. At 10  Hz 

. It is clear that for frequencies up to 10  Hz the contribution of the bound
electrons in copper is completely negligible compared with the contribution from the unbound charges. In this low frequency limit,
and for an electric field polarized along x and propagating along z, Maxwell’s equations can be written

These follow from the relations

and

From Equation ( ) one obtains

For a plane wave solution of the form

Equation ( ) requires that

or

and from Equation ( )

The wave in the metal is clearly very heavily damped because the distance over which the electric field amplitude decays to 1/e of
its initial value is approximately equal to the wavelength. This decay distance at 1 GHz for copper at room temperature is 

. Radiation at 1 GHz does not penetrate very far into copper!
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The wave impedance of copper at 1 GHz and at room temperature is given by

compared with Z = 377 Ohms for free space. This means that the electric field amplitude in the metal is very small compared with
the electric field amplitude of the incident wave. At the interface between vacuum and the metal one must construct electric and
magnetic field amplitudes so that the tangential components of  and  are continuous across the surface: the normal component
of  is automatically continuous across the surface because the wave falls on the metal at normal incidence. These boundary
conditions give

or

The resulting wave amplitude at the metal surface, z=0, is

The amplitude of the reflected wave is given by

or

because (Z/Z ) ≪ 1.

Notice that for our example of copper at room temperature, and for a frequency of 1GHz, the magnitude of the reflected electric
field amplitude is the same as the incident electric field amplitude to within ∼ 10  , but the reflected electric field is 180  out of
phase with the incident electric field so that the two fields cancel at the metal surface. The electric field in the metal is very small;
approximately A= E /25000. On the other hand, the magnetic field amplitude at the metal surface is very nearly twice the magnetic
field amplitude in the incident wave. In the metal at z=0

whereas the magnetic field amplitude in the incident wave is given by E /Z .

One can speak of a perfectly conducting metal, one for which the conductivity approaches infinity. For such a perfectly conducting
metal the electric field decays away in zero depth: a surface current sheet is set up that perfectly shields the metal from the electric
field in the incident wave. The magnitude of the current sheet can be obtained by applying Stokes’ theorem to the relation 

 integrated over a small loop that spans the metal surface as shown in Figure (10.4.5). One has

where Area= L. But from Stokes’ theorem
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Figure : Diagram to aid in the calculation of the surface current density that shields the interior of a perfectly conducting
metal from incident electric and magnetic fields.

where J  is the surface current density in Amps/m, and L is the length of the loop. Inside the metal H  = 0 so from (10.37) one
obtains

where H (0) is the magnetic field amplitude at the vacuum/metal interface, and H (0) = 2E /Z .

For a perfect metal the wave impedance approaches zero, Z = E /H  and Z → 0, so that in this limit the electric field has a node at
the metal surface. For a perfect metal the boundary condition on the electric field at the interface becomes

where Et is the tangential component of the electric field.

It is straight forward to calculate the absorption coefficient for a metal surface from Equation ( ) and from the amplitude A
Equation ( ):

or

Figure : An S-polarized plane wave incident at the angle θ on the plane interface between vacuum and an isotropic medium
characterized by material parameters  and µ . The electric vector in the incident wave is perpendicular to the plane of incidence.
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where  is the characteristic length for attenuation of the fields in the metal.

This page titled 10.4: Reflection from a Metal at Radio Frequencies is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by John F. Cochran and Bretislav Heinrich.
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10.5: Oblique Incidence
When a plane wave falls upon the plane interface between two media the incident and reflected wave-vectors define the plane of
incidence, see Figures (10.4.6) and (10.5.7). The direction of the electric field vector in the incident wave may make an arbitrary
angle with the plane of incidence. The general case may be treated as the sum of two special cases: an electric vector perpendicular
to the plane of incidence (called s-polarized light from the German word for perpendicular, ”senkrecht”), and an electric vector
which lies in the plane of incidence (p-polarized light).

Figure : A P-polarized plane wave incident at the angle θ on the plane interface between vacuum and an isotropic medium
characterized by material parameters  and µ . The electric vector in the incident wave is parallel with the plane of incidence.

10.5.1 S-polarized Waves.
Consider first S-polarized waves, Figure (10.4.6). The incident wave electric vector can be described by the equation

where k = ω/c because this wave is incident on the interface from vacuum. Eventually one is going to have to ensure that the
tangential components of the electric and magnetic fields are continuous across the interface, and these boundary conditions must
hold at any particular time at all points on the interface. This requirement means that all the waves in this problem, both inside the
material and on the vacuum side of the interface, must have the same spatial dependence on the co-ordinates which lie in the
interface plane. For the present example, Figure (10.6), the incident wave varies with the in-plane co-ordinate like

therefore this same factor must appear both in the reflected wave and in the transmitted wave that is generated in the region z>0.
Since the reflected wave-vector has the same magnitude as the incident wave-vector, k = ω/c as determined by Maxwell’s
equations, and since its x-component of the wavevector must be the same as for the incident wave, it follows that the angle of
reflection must be the same as the angle of incidence as is shown in Figure (10.4.6). The electric vector of the reflected wave is
given by

(Note the change in the sign of the z-component of k). The magnetic field vector in the incident wave must be perpendicular both to
the electric field vector and to the wave-vector:

where H  = E /Z , and  The magnetic field vector in the reflected wave must simultaneously
be orthogonal to the reflected wave electric vector and also to the wave-vector:
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where H  = E /Z . Eqns.(  and ) satisfy Maxwell’s equations for the vacuum.

The electric field in the transmitted wave will be polarized along y because the material in the region z≥0 is assumed to be linear
and isotropic so that a y-directed incident electric field will generate a y-directed transmitted electric field:

The Maxwell equation  becomes

The Maxwell equation  becomes

Combine Equations ( ) and ( ) to obtain

This equation requires that

or, since k = ω/c,

The z-component of the transmitted wave-vector must therefore be calculated from

where the imaginary part of k  must be chosen to be positive in order that the wave ( ) be damped out as the wave travels
along the z -direction. The wave-vector component k  will in general be a complex number corresponding to the fact that the
relative dielectric constant, , is a complex number: here  and  I are both real numbers. A complex index of
refraction can be defined for the case of oblique incidence by setting

the parameters n  and  are explicit functions of the angle of incidence. The electric field transmitted into the material on the right
of z=0 will be given by

and from Equations ( ) the magnetic field components are given by
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where  The planes of constant amplitude are parallel with the plane interface. The planes of constant
phase are tilted at an angle  with respect to the interface plane. The wave-vector in the material, which is perpendicular to the
planes of constant phase, has components that are given by

and

therefore the tilt angle  illustrated in Figure (10.4.6) can be calculated from

In cases for which the dielectric constant can be taken to be real, i.e. negligible losses, one has

Then

This is just Snell’s law:

For this case a real index of refraction can be defined for the medium, , and the phase velocity of the wave in the medium
is c/n; the refracted wave propagates in the direction specified by the angle  obtained from Snell’s law. In the more general case of
a lossy medium the angle between the surfaces of constant phase and the boundary surface must be calculated from Equation (

).

At z=0 the tangential components of  and  must be continuous across the interface and this condition determines the amplitudes
of the reflected and transmitted waves. One finds

and

or, since H  = E /Z  and H  = E /Z

The parameters n  and  are defined by equations ( ) and ( ). The two equations, ( ) and ( ), can be
solved for the amplitudes E  and A in terms of the incident wave amplitude E .

where, it will be recalled,

and the sign must be chosen so that .

= c = 377 Ohms. Z

0

μ

0

ϕ

= ( ) sinθ,k

x

ω

c

Real( ) = ( ) ,k

z

n

θ

ω

c

ϕ

tanϕ= .

sinθ

n

θ

(10.5.13)

= = ( ) .k

m

[ θ+ ]k

2

sin

2

k

2

z

− −−−−−−−−−−−

√ ϵ

r

−−

√

ω

c

sinϕ= = .

k sinθ

(ω/c)ϵ

r

−−

√

sinθ

ϵr

−−

√

sinθ= sinϕ.ϵ

r

−−

√

(10.5.14)

n = ϵ

r

−−

√

ϕ

10.5.13

E

⃗ 

H

⃗ 

+ =A,E

0

E

R

(10.5.15)

− cosθ+ cosθ=− A,H

0

H

R

( + i )n

θ

κ

θ

Z

0

0 0 0 R R 0

− + =− A.E

0

E

R

( + i )n

θ

κ

θ

cosθ

(10.5.16)

θ κ

θ

10.5.9 10.5.10 10.5.15 10.5.16

R 0

A

E

0

E

R

E

0

= ,

2 cosθ

[cosθ+( + i )]n

θ

κ

θ

=( ) ,

cosθ−( + i )n

θ

κ

θ

cosθ+( + i )n

θ

κ

θ

(10.5.17)

( + i ) = ,n

θ

κ

θ

− θϵ

r

sin

2

− −−−−−−−

√

> 0κ

θ

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22724?pdf


10.5.4 https://phys.libretexts.org/@go/page/22724

10.5.2 P-polarized Waves.
Arguments for P-polarized light are similar to those for S-polarized light. However, for P-polarized radiation the magnetic field is
polarized perpendicular to the plane of incidence, Figure (10.5.7). The incident wave can be written

and for the reflected wave:

Inside the material, z≥0, which is assumed to be characterized by a complex relative dielectric constant , one finds from

and from

Equations ( ) and ( ) can be combined to give

The solution of Equation ( ) can be written

where

In these Equations . Equation ( ) for  is the same as that which was obtained for the case of an incident S-
polarized wave. Solving for  one obtains:

or
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and the sign of the square root must be chosen so as to make the imaginary part of  positive in order to describe an optical
disturbance that is attenuated as z increases.

From the form of the magnetic field, Equation ( ), and from the Maxwell Equations ( ), it follows that

And from the boundary conditions at z=0 (continuity of the tangential components of  and ) one finds:

or

These two equations can be solved to obtain

where  and 

Notice that  for both the S- and P-polarized waves. This is obvious for the S-polarized light because the electric field
has only a y-component and this component does not depend upon the y co-ordinate, Equation ( ). For P-polarized radiation,
from Equations ( ),

so that  and, since , so also . There are no free charges set up in the material for either S- or P-
polarized radiation. The condition  can also be deduced directly from the Maxwell’s equation

because the divergence of any curl is zero. It is easy to show by direct calculation that the normal component of the magnetic field 
 is continuous across the surface of the dielectric material for both S- and P-polarized radiation.

10.5.3 Oblique Incidence on a Lossless Material.
For a material in which the losses are very small so that the imaginary part of the dielectric constant can be neglected, a real index
of refraction can be defined by

For S-polarized radiation the reflection and transmission coefficients, Equations ( ), become
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where .

For P-polarized radiation, and  a real number, the reflection and transmission coefficients ( ) become

where, as above, sin  = sin θ/n and . The relation

has also been used.

This page titled 10.5: Oblique Incidence is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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10.6: Example- Copper
The real and imaginary parts  have been plotted in Figure (10.6.8) as a function of the angle of
incidence, θ, for room temperature copper and for a wavelength of λ= 0.5145 microns (see Table(10.1)). As can be seen from the
figure, the angular dependence of the indices n ,  is not very pronounced. For a lossy material such as copper that has a complex
dielectric constant the reflectivity, E /E , is complex; that is, the phase shift between the incident wave and reflected wave electric
vectors is neither 0  (in phase) nor 180  (out of phase). The real and imaginary parts of the reflectivity have been plotted in Figure
(10.6.9) as a function of the angle of incidence for S-polarized 0.5145 micron light incident on room temperature copper; the
absolute value of the reflectivity has been plotted in Figure (10.6.10).

Figure : The dependence of the complex index of refraction, n  + i , upon angle of incidence of the incident wave
calculated for copper at room temperature and for an incident wavelength of λ = 0.5145 µm. The normal component of the wave-
vector in copper is given by . At this wavelength the relative dielectric constant for copper is =
(-5.34+i6.19), n=1.19, and =2.60.

Figure : The real and imaginary part of the reflectivity of copper, E /E , as a function of angle of incidence for a wavelength
λ= 0.5145 µm and S-polarized radiation. Copper at room temperature; = (-5.34 + i6.19), n=1.19, and =2.60.

Similarly, the real and the imaginary parts of the ratio H /H  have been plotted in Figure (10.6.11) as a function of the angle of
incidence for P-polarized 0.5145 micron light incident on copper; the absolute value of this ratio is shown in Figure (10.6.12). The
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reflection coefficient for P-polarized radiation is given by R  = E /E  but this is very closely related to the ratio H /H because E
= Z H  and E  = −Z H , where Z = 377 Ohms, the impedance of free space. Notice that the real part of the reflectivity for P-
polarized light vanishes at an angle of incidence of approximately 69  ; the phase of the reflected light at that angle is shifted by 90
relative to the incident light. The phase shift between reflected and incident light is much less pronounced for S-polarized light;
approximately 15  for an angle of incidence of 69  .

Figure : The absolute value of the reflectivity of copper, | E /E  |, as a function of angle of incidence for a wavelength λ=
0.5145 µm and S-polarized radiation. Copper at room temperature; =(-5.34 + i6.19), n=1.19, and =2.60.

Figure : The real and imaginary parts of the complex ratio HR/H0 for copper as a function of angle of incidence for a
wavelength λ= 0.5145 µm and for P-polarized radiation. Copper at room temperature; =(-5.34 + i6.19), n=1.19, and =2.60.

This page titled 10.6: Example- Copper is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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10.7: Example- Crown Glass
The dependence of the reflectivity on angle of incidence for a typical nondissipative material, Crown glass, is shown in Figure
(10.7.13) and in Figure (10.7.14) for a wavelength of 0.5145 microns, see Table(10.3.1). Fig.(10.7.13) shows the variation of the
ratio E /E  (Equation (10.5.27)) as a function of the angle of incidence for S-polarized light.

Figure : The absolute value of the reflectivity of copper, | E /E  |, as a function of angle of incidence for a wavelength λ=
0.5145 µm and for P-polarized radiation. Copper at room temperature; =(-5.34 + i6.19), n=1.19, and =2.60.

Figure : The reflectivity, E /E , as a function of the angle of incidence for Crown glass at a wavelength λ= 0.5145 µm and
for S-polarized radiation. The reflectivity is real because the dielectric constant is real corresponding to very small losses in the
glass. n=1.525= .
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Figure : The reflectivity, H /H , as a function of the angle of incidence for Crown glass at a wavelength λ= 0.5145 µm and
for P-polarized radiation. The reflectivity is real because the dielectric constant is real corresponding to very small losses in the
glass. n=1.525= .

Fig.(10.7.14) shows the variation of the ratio HR/H0 (Equation (10.5.28)) as a function of the angle of incidence for P-polarized
light. Notice that the angular dependence of the reflectivity for S-polarized light is qualitatively similar to that of copper. Of course,
the reflectivity of Crown glass has only a real part because there are negligible losses in the glass and therefore the reflected electric
field is 180◦ out of phase with the incident electric field. The angular variation of the reflection coefficient for P-polarized light is
more interesting because the reflectivity goes to zero at approximately 57  , Figure (10.7.14). This angle is called Brewster’s angle.
Unpolarized light incident on a lossless dielectric material at Brewster’s angle yields reflected light that is entirely S-polarized, ie.
the electric vector in the reflected beam is oriented perpendicular to the plane of incidence. Before the advent of polaroid filters a
stack of glass plates with the light incident at Brewster’s angle was used to produce plane polarized light. Brewster’s angle
windows are used on each end of the plasma tubes in gas lasers.The light emitted from such a laser is plane polarized because the
gain of the system is greater for P-polarized light than it is for S-polarized radiation due to the greater reflection losses at the
plasma tube windows for S-polarized light.

It can be shown that at Brewster’s angle the reflected light and the light transmitted into the dielectric medium form an angle of
exactly 90  . This is a handy device for remembering how to determine Brewster’s angle. The demonstration that the angle between
the reflected beam and the transmitted beam is 90  for light incident on a dielectric medium from vacuum depends upon the two
relations

(from Equation (10.5.28)) and

from Snell’s law. Using the fact that the sum of the squares of the sin and cos functions is identically equal to 1 the above relations
can be manipulated to give

and

It follows from these relations that θ and  are complementary angles, and that tan θ= n.

10.7: Example- Crown Glass is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

10.7.14 R 0

ϵ

r

−−

√

◦

◦

◦

ncosθ= cosϕ,

sinθ= n sinϕ

sinθ= = cosϕ,

n

+1n

2

− −−−−

√

cosθ= = sinϕ.

1

+1n

2

− −−−−

√

ϕ

https://libretexts.org/
https://phys.libretexts.org/@go/page/23237?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/10%3A_Plane_Waves_II/10.07%3A_Example-_Crown_Glass
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/10%3A_Plane_Waves_II/10.07%3A_Example-_Crown_Glass?no-cache


10.8.1 https://phys.libretexts.org/@go/page/23238

10.8: Metals at Radio Frequencies
We are interested in the practical case of metals at room temperature and frequencies less than 1000 GHz so that the metallic
response to an electric field may be characterized by its dc conductivity, σ . We are also interested in the general case of radiation
at oblique incidence. In this relatively low frequency regime the conduction current density in a metal is much larger than the
displacement current density; i.e. for a time dependence ∼ exp (−iωt) one finds that  in the Maxwell equation

The relevant Maxwell’s equations for low frequency fields in a non-magnetic metal, , become

and

Take the curl of (10.68) and use a time variation ∼ exp (−iωt) to obtain

or

However, the divergence of any curl of a vector is equal to zero, and consequently div( ) = 0 from Equation ( ). It follows
that for a metal at low frequencies the electric field components must satisfy the equation

where  stands for each of the three cartesian components x,y, or z.

The solution of the problem of a plane wave incident at an oblique angle on a plane metallic surface proceeds just as for the general
case of oblique incidence discussed in section(10.5). Two cases are of interest: (1) S-polarization in which the electric vector of the
incident wave is parallel with the plane interface, see Figure (10.4.6), and (2) P-polarization in which the electric vector of the
incident wave lies in the plane of incidence and the magnetic vector therefore lies parallel with the interface, see Figure (10.5.7).

10.8.1 S-polarization.

Using the co-ordinate system of Figure (10.4.6) the fields in the metal can be written

where Z  = cµ = 377 Ohms, and k = ω/c. The wave-vector component k  in the metal must be chosen so that E  satisfies Equation (
), i.e.

Apparently the wave-vector component k  depends upon the angle of incidence of the driving incident plane wave. This
dependence is illusory because µ σ  is much larger than  : for copper at 100 GHz  = 7×10  whereas µ σ = 81. For the
range of frequencies and conductivities that are of interest here the term in  is negligible compared with the term proportional
to the conductivity, and for any angle of incidence one may use
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and

where  is a length that is inversely proportional to the square root of the frequency. It is handy to remember that = 2µm for
copper at 1 GHz and at room temperature.

At the metal-vacuum interface the tangential components of  and  must be continuous through the surface. These boundary
conditions at z=0 result in two equations for the two unknown electric field amplitudes E  and E ; E  is the amplitude of the wave
reflected from the metal surface, and E  is the amplitude of the electric field transmitted into the metal. The solutions of these
equations are

The wave-vector k  is very large compared with (ω/c) cos θ so that if one divides the equations in (10.74) by k  top and bottom the
reflection and transmission coefficients can be expressed as a power series expansion in the small parameter ω cos θ/(ck ): for
example

In terms of  one finds

The rate at which energy is carried through the surface per meter squared to be dissipated as Joule heat in the metal is given by the
time average of the Poynting vector at z=0.

so that

or

The time-averaged rate at which the incident wave transports energy in the z-direction is given by the z-component of the incident
wave Poynting vector:

The absorption coefficient associated with the metal surface is given by
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where . The absorption coefficient is very small and increases with frequency like , and decreases in
proportion with the increase of the square root of the conductivity. Notice that at the surface of the metal the magnetic field
components H  in the incident and reflected waves add in phase so that at z=0

or

Since  is very small one makes very little error by taking the parallel component of the magnetic field at the metal
surface to be just twice the parallel magnetic field component of the incident wave. In the limit of infinite conductivity the
parameter  → 0, the electric field in the metal becomes zero, and the component H  at the metal surface has twice the amplitude of
H  in the incident wave. The component H  also becomes zero at the metal surface in the limit of infinite conductivity, so that the
normal component of , B  = µ H , is continuous across the vacuum-metal interface as is required by the Equation div( ) = 0.

10.8.2 P-polarization.
The magnetic vector of the incident wave is parallel with the metal surface, Figure (10.5.7). For this case the waves in the metal are
described by

where

and therefore

The boundary conditions on H  and on E  at the interface z=0 (continuity of the tangential components of  and ), plus a bit of
algebra, readily gives the results

In the above expressions Z = 377 Ohms, the impedance of free space. The ratio  is very small, approximately 4 ×
10  for copper at 1 GHz and 300K. It therefore follows that
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and

In fact, for a perfect metal, one for which the conductivity becomes infinitely large, the length parameter, , goes to zero and the
electric field does not penetrate into the metal.

The rate at which energy is carried into the metal surface at z=0 is given by

The rate at which energy is carried to the surface by the incident wave is given by

It follows that the absorption coefficient associated with the metal surface is

Equation (10.83) is only valid if cos θ ≫ (ω /c). In the opposite limit, for angles very near to /2 so that cos θ ≪ (ω /c), it can be
shown that

so that the absorption coefficient goes to zero as the angle of incidence approaches /2.
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11.1: Introduction
Consider a plane wave propagating along the z-direction in vacuum, and polarized with its electric vector along the x-axis: its
magnetic field vector must be directed along the y-axis. Now introduce two infinitely conducting metal planes which block off all
of space except the region between x= +a and x= -a, see Figure (11.1.1). The boundary conditions at x= ±a that must be satisfied by
the electric and magnetic fields are

1. the tangential components of  must be zero;
2. the normal component of  must be zero.

This latter condition is a consequence of the Maxwell equation

which requires the normal component of  to be continuous through an interface, coupled with the requirement that both the
electric and magnetic fields are zero inside a perfect conductor: recall from Chapter(10) that in the limit of infinite conductivity the
skin depth of a metal goes to zero. Notice that the above two boundary conditions are satisfied by the plane wave. The plane
wave solutions of Maxwell’s equations

can be used to describe the propagation of electromagnetic energy between two conducting planes. Energy is transported at the
speed of light just as it is for a plane wave in free space. Notice that if it is attempted to close in the radiation with conducting
planes at y= ±b the boundary conditions E  = 0 and H  = 0 cannot be satisfied on the planes y= ±b. Waves can be transmitted
through such hollow pipes but the radiation bounces from wall to wall in a complex pattern that will be studied later. It will be
shown that waves cannot be transmitted through a hollow pipe if the frequency is too low; there exists a lower frequency cut-off.
However, a pair of parallel conducting planes unbounded in one transverse direction can transmit waves at all frequencies. In
practice infinite planes are inconvenient, so one uses either strip-lines or co-axial cables, see Figures (11.1.2) and (11.2.3).

Figure : A plane wave propagating between two perfectly conducting planes. 
.

Figure : A strip-line. 

This page titled 11.1: Introduction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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11.2: Strip-lines
See Figure (11.1.2). The electric field has only an x-component, if edge effects are neglected, and in the first approximation this
component is independent of position across the width of the strip, i.e. E  is independent of y. Similarly, the magnetic field has only
a y-component and this is independent of x and y. From the Maxwell equation

one has

From the Maxwell equation

one finds

Equations ( ) and ( ) can be combined to obtain

The first of equations ( ) can be satisfied by any function of the form

where  is the speed of light. This statement can be checked by carrying out the differentiations of Equations ( ):

and

Therefore indeed one finds that

for any arbitrary functions F,G! This means that pulses having any time variation can be transmitted down the line with no
distortion. In the real world the pulses do become distorted as a consequence of frequency dependent losses in the line, but for the
time being we have only to do with ideal systems that are composed of perfect conductors and lossless dielectrics and such ideal
systems transmit pulses without attenuation and with no distortion. The electric field E  = F(z − ct) corresponds to a pulse
propagating along the strip-line in the positive z-direction with the speed of light c. The magnetic field associated with this electric
field pulse can be obtained from Equation ( ) or ( ):
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In other words, H  = E /Z , where Z  = 1/(c )=377 Ohms, the impedance of free space.

The electric field E  = G(z + ct) corresponds to a pulse propagating in the negative z-direction with the speed of light c. The
corresponding magnetic field pulse is given by

or

Note that the sign of the magnetic field component is opposite for the forward propagating and the backwards propagating pulses.

Figure : Cross-section through a co-axial cable. The electric field has a radial component, E  , and the magnetic field has
only the component H  independent of the angle θ.

It is usually more convenient to describe pulses on a strip-line or on a coaxial cable in terms of voltages and currents rather than in
terms of electric and magnetic fields. The potential difference between the two conducting planes in the strip-line is V = E d, where
d is the separation between the planes, Figure (11.1.2). On the other hand, surface currents must flow on the perfectly conducting
metal planes in order to reduce the magnetic and electric fields to zero inside the metal. This surface current density can be
calculated by the application of Stoke’ Theorem to the Maxwell equation

for a small loop that spans the metal surface, as shown in Figure (11.2.4).
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Figure : A diagrammatic representation of a strip-line in order to illustrate the relation between the electric field, E  and the
potential difference between the two conductors, and to illustrate the connection between the magnetic field, H  and the surface
current density. The potential difference is V=E d, and the bottom conductor is positive with respect to the upper conductor for the
fields shown in the figure. The bottom conductor carries a total current I=J w=H w Amps.

In the limit as the area of the loop, dA, shrinks to zero the term ∂  /∂t gives nothing so that

where J  is the surface current density and  is a unit vector perpendicular to dA. Therefore

so that

This current density flows along +z in the bottom conductor. The total current carried by the bottom conductor is just proportional
to the width of the active region on the strip-line:

The potential difference between the two conductors is

and the bottom plane is positive with respect to the upper plane for the fields shown in the figure.

The characteristic impedance of the line, Z  = V/I Ohms, is given by

because for a forward propagating wave

The conductors in a practical strip-line are usually separated by a nonmagnetic and non-conducting dielectric material characterized
by a magnetic permeability µ  and a dielectric constant . The above equations are still applicable to such a strip-line providing that
dielectric losses can be neglected: one has only to replace  by .

In terms of potential difference and current, the picture that emerges is the one illustrated in Figure (11.2.5). A voltage pulse of
arbitrary shape propagates along the line with a velocity v that is determined by the properties of the dielectric spacer (here
assumed to be lossless). For a non-magnetic spacer material having a dielectric constant  this velocity is given by
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The voltage pulse is accompanied by a current pulse of the same shape as the voltage pulse. The scaling factor between current and
voltage is the characteristic impedance of the line. The characteristic impedance depends upon the strip-line geometry:for the plane
strip-line of Figure (11.2.4) it is given by

Figure : Voltage and current pulses on a transmission line.

For a forward moving pulse

and for a backward moving pulse

where V is the potential difference in Volts and I is the current on the transmission line in Amps.

Maxwell’s equations, ( ), can be rewritten in terms of the potential difference, V, and the current on the line, I. Since E  is
proportional to V the first of equations ( ) becomes

Similarly, since H  is proportional to the current I, the second of equations(11.3) becomes

These telegraph line equations were derived by Lord Kelvin in 1855 (this was before Maxwell’s equations had been discovered) by
treating the transmission line as a repeating series of inductances shunted by capacitors. See Electromagnetic Theory by
J.A.Stratton, McGraw-Hill, New York, 1941, section 9.20, Figure (103); for a lossless line R=0 and G=∞.

This page titled 11.2: Strip-lines is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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11.3: Co-axial Cables
Cylindrical co-ordinates are appropriate for the problem of a co-axial cable, Figure (11.2.3). The relevant Maxwell’s equations
become

and

where  is a real number for a lossless line. Look for solutions of these equations in which, by analogy with a strip-line curved
around on itself, the electric field has only a radial component, E  , that is independent of angle, and the magnetic field has only an
angularly independent component H :

In addition, take E  = 0 because the tangential components of the electric field must be zero at the perfectly conducting walls of the
co-axial cable. But if E  = 0 it follows from Maxwell’s equations that

This implies that

where a(z,t) is a function of time and of position along the cable. Similarly, from div( ) = 0 one has

and this is satisfied by

By combining the Maxwell Equations ( ) the electric and magnetic fields, Equations ( ) and ( ), must satisfy

These have the same form as the strip-line equations (11.2.3). It follows from these equations,and from the requirements ( )
and ( ), that the general solution for the electric field can be written

where F(u) and G(u) are arbitrary functions of their arguments, and where

The corresponding general solution for the magnetic field is
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The above electric and magnetic fields satisfy the wave equations ( ), they satisfy Equations ( ), and they have the form
required by Equations (  and ).

Instead of the electric field strength, the state of the electric field in the cable can be specified by the potential difference between
the inner and outer conductors:

for a forward propagating wave. Note that the inner conductor is positive with respect to the outer conductor. The corresponding
current on the inner conductor is given by

so that

The current flows flows towards +z for the current on the inner conductor; the current flows towards minus z on the outer
conductor. That is, on the outer conductor

so that the net current flow through a section of the cable is zero. The characteristic impedance of the cable is given by

or

The potential difference, V, is proportional to the electric field, E  , and the current, I, is proportional to the magnetic field, H ,
therefore from Equations ( ) the voltage and current satisfy the wave equations

where v = 1/( µ ). For a forward propagating pulse having the form

the corresponding current pulse is described by

where the characteristic impedance for a co-axial cable is given by Equation (11.18). For a backward propagating potential pulse of
the form

the corresponding current pulse is described by
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In the above equations F(z-vt) and G(z+vt) are arbitrary functions of their arguments.

This page titled 11.3: Co-axial Cables is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22729?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/11%3A_Transmission_Lines/11.03%3A_Co-axial_Cables
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html


11.4.1 https://phys.libretexts.org/@go/page/22730

11.4: Transmission Lines in General
Relations similar to Equations (11.3.8,11.3.9, and 11.3.10) are valid for a transmission line constructed of arbitrarily shaped
conductors. In the general case it is convenient to describe the properties of a lossless line in terms of the inductance per unit
length, L Henries/m, and the capacitance per unit length,

Figure : Schematic diagram of a general transmission line. The line is characterized by an inductance per unit length, L
Henries/m, and a capacitance per unit length, C Farads/m.

C Farads/m. One can write the appropriate transmission line equations using ordinary circuit theory. If the current on the line
changes with time there will be a voltage drop in going from z to z+dz along the line, see Figure 11.4.6). This drop in potential is
due to the line inductance. One can write

Thus it follows that

If the potential difference between the two conductors on the transmission line changes with time the current at z+dz will be a little
smaller than the current at z because some current is shunted through the capacitive coupling between the electrodes. Therefore

or

Notice the similarity in form between Equations (  and ) and Equations (11.2.1 and 11.2.2). The above two equations can
be combined to give

Notice that these equations have the same form as do Equations (11.3.8). It follows from this similarity that

or
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The velocity of propagation along the transmission line is independent of the line geometry and is determined only by the dielectric
constant and the permeability of the medium that carries the electric and magnetic fields that characterize the propagating
disturbance. For a uniform medium

It follows from this, plus Equation ( ), that

a relation that is not a priori obvious. It also follows from Equations (  and ) that the characteristic impedance of the line
is given by

The characteristic impedance does depend upon the geometry of the transmission line.

It is perhaps worth emphasizing the physical picture of the manner in which a pulse of charge is propagated along a transmission
line, see Figure (11.4.7). In Figure (11.4.7) the upper electrode has a positive potential with respect to the lower electrode in the
region where the charge patch is located. The electric field is terminated by a patch of charge on each metal electrode surface: this
charge is of one sign on the upper electrode and of opposite sign on

Figure : Pulses propagating along a transmission line. (a) A forward moving pulse. (b) A backward moving pulse.

the other electrode as shown schematically in Figure (11.4.7). The charge patches move down the line with the velocity v
characteristic of the wave velocity in the medium between the electrodes. At any section of the line the current on either electrode
is zero until the charge patch arrives. Current is the rate at which charge is transported past a particular point, therefore the current
at some point on the electrode is the product of the velocity and the charge density per unit length of line. It is clear from Figure
(11.4.7(a)), which depicts a positive voltage pulse moving to the right, that the current in the upper electrode will be positive,
whereas the current pulse carried by the lower electrode will be negative because negative charge is flowing from left to right.
Similarly, if the pulse is moving from right to left the current flow in the upper conductor will be negative because positive charges
are flowing in the negative z direction. At the same time, the current in the bottom electrode is positive because negative charges
are flowing from right to left. For a positive voltage pulse moving from left to right one adopts the convention that the associated
current pulse is positive. For a positive voltage pulse moving from right to left one adopts the convention that the associated current
pulse is negative.

This page titled 11.4: Transmission Lines in General is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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11.5: A Terminated Line
Any discontinuity in the properties of a transmission line results in a reflected pulse and a transmitted pulse whose amplitudes are
smaller than the original pulse amplitude. In order to see how this comes about, consider a few simple cases

(i) Two pulses of identical shape, but mirror images, propagate towards one another on an infinite line, Figure (11.5.8(a)). The
experiment is set up so that the pulses collide at z=0. Maxwell’s equations are linear, and we assume that the dielectric and
magnetic response of the material of which the line is made is also linear. For linear response, the total potential difference at any
point is just the sum of the potential differences associated with the two pulses; similarly, the current at any point on the line is the
sum of the currents in the individual pulses. In particular, at z=0 where the two pulses collide the current is zero! The pulses pass
through each other without interacting. During the overlap time, the voltage at z=0 will be twice as large as it would be for a single
pulse. The system of two pulses shown in Figure (11.5.8) satisfies the boundary conditions at z=0 for an open line, i.e. I=0. It can
be deduced from this that an observer placed to the left of the point z=0 could not tell the difference between an experiment in
which a single pulse is injected into a line that is open (i.e. terminated by an open circuit) at z=0 or an experiment in which two
mirror image pulses are injected into an infinite line from opposite directions.

Another way of obtaining this result starts from the general expressions for the voltage and current on a transmission line,

and

The current must be zero for all times at an open circuit, i.e. at that point on the line

It follows from this that at the open circuit F=G for all times, and therefore the reflected pulse at any time, G(z+vt), must be the
mirror image of the incident pulse F(z-vt) where the mirror is located at the position of the open circuit.

V(z, t) = F(z−vt)+G(z+vt),

I(z, t) = F(z−vt)/ −G(z+vt)/ .Z

0

Z

0

I = 0 = (F−G)/ .Z

0
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Figure : Pulses on an infinite transmission line. (a) Before the collision. (b) After the collision.

Figure : Pulses on an infinite transmission line. (a) Before the collision. (b) After the collision.
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(ii) Two pulses of identical shape, but one pulse is a mirror image of the other and is inverted as shown in Figure (11.5.9), are
launched towards one another on an infinite line. They collide at z=0. Because the system is a linear one the pulses simply pass
through one another without interacting in any way. In this case the potential difference at z=0 always remains equal to zero
because the two voltage pulses cancel one another. On the other hand, the two current pulses add, so that at z=0 the current
becomes twice as large as it would be for the passage of a single pulse. Thus these two counter propagating pulses satisfy the
boundary conditions at z=0 required for a short circuit, i.e. at z=0 one has R=V/I=0. We can deduce from this thought experiment
that a pulse is inverted upon reflection from the end of a shorted line.

The principle illustrated by these two examples can be extended to cover the case of a line terminated by an arbitrary resistance R
Ohms. Let the incident pulse have an amplitude V  Volts. Let the amplitude of the reflected pulse be V  Volts. The corresponding
currents are I  = V /Z  and I  = −V /Z ; the latter current is negative because the pulse is propagating from right to left. Suppose
that the pulses collide at z=0. At z=0 one has, by superposition,

and

But we require R=V/I at the point z=0. Therefore

This equation can be solved in order to find the amplitude of the reflected pulse and the reflection coefficient, ρ = V /V :

The two cases explicitly treated above are contained in Equation ( ) as limiting cases: if R → ∞ then ρ → +1, and the voltage
pulse is reflected without a change in amplitude and with no change in sign; if R → 0 then ρ → −1, and the voltage pulse is
reflected without a change in amplitude but the pulse is inverted. On the other hand, if R = Z  there is no reflected pulse because ρ
= 0: the pulse is completely absorbed by the terminating resistance. A line terminated by a resistance equal to the characteristic
impedance of the line looks like an infinite line to the generator.

This method for dealing with a discontinuity on the line can be extended to treat a capacitive or an inductive termination. At a
capacitor one requires

or

But I = I  + I  and V = V  + V , so that

This relation gives a differential equation from which V (t) can be calculated from the known time dependence of the initial pulse
V (t):

As an example, consider an incident rectangular pulse whose time dependence is shown in Figure (11.5.10). The derivative of a
rectangular pulse consists of two very sharp impulses; one impulse is associated with the leading edge at t=0 where dV/dt = V (t),
and the other impulse is associated with the trailing edge at t=T seconds where dV/dt = −V (t − T). In the time interval from t=0
to t=T the reflected pulse amplitude at the termination is given by (from Equation ( ))
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where  = CZ . At t=0 the reflected voltage pulse has the amplitude V  = −V : this makes sense because the initially uncharged
capacitor looks like a short circuit. The capacitor charges at a rate determined by the time constant  = CZ  until the voltage across
it reaches the value 2V : it then looks like an open circuit because it can accept no more charge. When the capacitor is fully
charged and becomes equivalent to an open circuit the reflected pulse amplitude becomes equal to the incident pulse amplitude and
the potential drop across the capacitor is V = V  + V  = 2V . (It has been assumed that

Figure : The reflection of a rectangular pulse from the end of a transmission line terminated by a capacitor C Farads. (a)
The input pulse plus it’s derivative. (b) The reflected voltage pulse. The input pulse duration is assumed to be long compared with
the decay constant  = CZ .

the width of the pulse, T, is much longer than the time constant  = CZ ). At the end of the incident pulse, t=T, the capacitor,
charged to a potential difference of 2V  Volts, just discharges into the line with a time constant  = CZ , and therefore

for t ≥ T.

Similar arguments can be used to discuss a line terminated by an inductor whose resistance is much smaller than the characteristic
impedance, Z . The potential drop across an inductor is related to the current passing through it by the relation

But at z=0 on the cable where the pulses overlap

and

where V (t) is the amplitude of the incident pulse and V (t) is the corresponding amplitude of the reflected pulse. From the
boundary condition Equation ( ) one obtains
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or

where  = L/Z . The time variation of the incident pulse at z=0 is known so that the differential Equation ( ) can be solved for
the time variation of the reflected pulse using the condition that V (t) is identically zero for times before the incident pulse arrives
at the termination. Consider, as an example, the rectangular pulse of duration T, shown in Figure (11.5.11), where the length of the
pulse T is much longer than the time constant  = L/Z . The derivative of the incident pulse is zero everywhere except at t=0 where
dV /dt = V (t), and at t=T where dV /dt = −V (t − T). These impulses produce steps in

Figure : Reflection of a rectangular pulse from the end of a transmission line terminated by an inductance L Henries. (a)
The input pulse plus its derivative. (b) The reflected voltage pulse, V . It has been assumed that the length of the input pulse is
much greater than the time constant  = L/Z .

the reflected voltage, V , of +V  at t=0 and of −V  at t=T. The reflected pulse amplitude at t=0 is +V  because initially the inductor
looks like an open circuit since there is no current flow. Eventually the current through the inductor builds up to a steady state value
and the voltage drop across the inductor becomes zero; at this point the inductor looks like a short circuit so that the reflected
voltage pulse amplitude is V  = −V . The time variation of the reflected voltage pulse is

for 0 < t ≤ T. Immediately after t=T seconds the driving pulse has become zero, and so the energy stored in the inductor decays into
the transmission line at a rate determined by the inductance and the characteristic impedance, Z :

for t ≥ T. The reflected pulse has a negative voltage because because the collapse of the magnetic field in the inductor coil operates
to maintain a positive current flow. In a reflected pulse a positive current flow is associated with a negative voltage.

The above methods can be extended to treat a transmission line terminated by an arbitrary impedance.
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11.6: Sinusoidal Signals on a Terminated Line
Let a transmission line having a characteristic impedance Z  be used to connect a sinusoidal signal generator to a load, Z , as
shown in Figure (11.6.12). In phasor notation the generator voltage may be written

this corresponds to a real time variation cos ωt. A positive sign has been used in the phasor exponential in accord with the usual
engineering convention for the description of alternating current circuits. The potential difference at any point along the line will
consist of a forward propagating wave plus a backward propagating wave due to a reflection from the load. Recall that the current
and potential waves must be functions of (z-vt) and (z+vt) in order to satisfy Maxwell’s equations (11.3.8). The forward
propagating voltage wave

Figure : A transmission line of length L meters is used to connect a sinusoidal generator to a load impedance Z  Ohms.

must therefore have the form

and the reflected wave must have the form

where a,b are constants that must be determined from the generator potential and from the boundary conditions at the load, i.e. Z  =
V/I. It is customary to write k = ω/v, where ω = 2 f and where v is the velocity of a pulse on the cable. The potential difference at
any point along the line is given by

and the current is given by

The expression ( ) for the current follows from Equation ( ) for the voltage combined with the transmission line
characteristic impedances for forward and backward propagating waves, Equations (11.2.8) and (11.2.9). At the generator, assumed
to be located at z=0, one has

At the load, assumed to be at z=L, one has

or
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The above two equations can be solved to give

The impedance as seen by the generator can be obtained from the voltage and the current at z=0:

or

Or, introducing the reduced impedance z  = Z /Z  and the new variable , where

one finds

In the above development it has been assumed that the cable is lossless.

The expression for the load on the generator, Equation ( ), is rather complicated but it should be clear that the impedance as
seen from the generator may be quite different from the load impedance especially if the length of the cable, L, is comparable to, or
larger than, the wavelength of the disturbance on the cable, λ, where

A few concrete examples may help to form a picture of how a cable can be used to transform a load impedance.

11.6.1 Case(1). A Shorted Cable.
For this case Z  = 0 and = -1 from Equation ( ) so that

First of all, notice that the impedance as seen from the generator is not in general equal to zero: in fact, when the cable length is
such that kL= /2, 3 /2, 5 /2, etc. the generator appears to be attached to an open circuit! If cable losses are taken into account (see
below), the load on the generator will be finite at these lengths but large compared with the characteristic impedance providing that
the line is not too long. The condition kL= /2 corresponds to a cable that is a quarter wavelength long, L=λ/4. Secondly, if the
impedance as seen from the generator is not zero (i.e. L not a multiple of a half-wavelength) or infinite (L an odd multiple of a
quarter wavelength) it appears to be a pure reactance if the cable is lossless. This makes sense since a lossless cable and a lossless
load cannot absorb any energy from the generator. For example, if kL= /4, L=λ/8, the impedance at the generator is Z  = +iZ , and
therefore the generator looks into a purely inductive load.

11.6.2 Case(2). An Open-ended Cable.
For this case ZL = ∞ and therefore  = +1 from Equation ( ). The reduced impedance at the generator terminals is given by
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=
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The generator load appears to be an open circuit if the length of the cable is a multiple of a half-wavelength. A cable whose length
is an odd multiple of a quarter wavelength presents a short circuit to the generator. For other cable lengths the generator would
appear to be connected to a capacitor or an inductor according to whether cot kL was positive or negative.

11.6.3 Case(3). The Cable is Terminated by the Characteristic Impedance.
For this case  = 0 from Equation ( ) and therefore the impedance at the generator is z  = 1, or Z  = Z . The load across the
generator is independent of the length of the cable.

11.6.4 Case(4). A Purely Inductive Load.

Let the inductor be such that Z  = iLω is equal in magnitude to the characteristic impedance, Z . Then z  = Z /Z  and therefore

The normalized load on the generator, from Equation ( ), is

In the limit as k  → /4 (L→ λ/8) the generator appears to be attached to an open circuit. However, for a quarter wavelength line,
kL = /2, the generator load appears to be due to a pure capacitance such that 1/Cω = Z . For kL=3 /4, L = 3λ/8, the generator
looks into a short circuit. Finally for a half-wavelength cable the generator sees a an inductive reactance such that Lω = Z . As the
cable length is increased further the whole cycle is repeated.

11.6.5 Case(5). A Purely Capacitive Load.
Let the capacitor be such that Z  = −i/Cω has the magnitude of the characteristic impedance, Z . For this case z  = Z /Z  = −i, and

The normalized impedance as seen by the generator is given by

This case is very similar to that of the cable terminated by an inductor. For kL= /4, L=λ/8, the generator is short circuited because
z  = 0. For a quarter wavelength line, kL= /2, the generator looks into a pure inductance, z = +i. For kL=3 /4, L=3λ/8, one finds
that z  → ∞ so that the generator appears to be looking into an open circuit. Finally, for a half-wavelength line, kL= , the same
effect is obtained as if the load were connected directly across the generator. The whole cycle is repeated as the cable length is
increased.

11.6.6 Summary
The following conclusions can be drawn from the above examples:

1. A cable acts like an impedance transformer.
2. A lossless cable whose length is an integral number of half-wavelengths long effectively places the load directly across the

generator terminals, i.e. Z  = Z .
3. A lossless cable whose length is an odd multiple of a quarter wavelength acts like an impedance inverter. For this case exp

(−2ikL) = −1 so that from Equation ( )

The formula for the impedance at the generator terminals in terms of the load impedance and the length of the cable that connects
the load to the generator, Equation ( ), is very complicated. Graphical methods have been developed for determining the load
on the generator given the load impedance, ZL, and the characteristics of the transmission line. A very common method is based on
the use of a Smith chart: it is described in detail in the book ”Microwave Measurements” by E.L.Ginzton, McGraw-Hill, New
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York, 1957; section 4.9. The need for a graphical technique has become very much less pressing now that digital computers have
become readily available.

This page titled 11.6: Sinusoidal Signals on a Terminated Line is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
John F. Cochran and Bretislav Heinrich.
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11.7: The Slotted Line
A slotted line is a section of a co-axial cable that uses air as a dielectric medium and in which a narrow slot has been cut along the
length of the outer conductor; the slot is sufficiently narrow so that its presence does not appreciably affect the electric field
distribution between the conducting cylinders which form the walls of the cable. A thin pin is inserted through the slot and is used
to pick up a signal that is a measure of the electric field strength in the co-axial cable. This pin is mounted on a carriage whose
position along the slotted line can be accurately measured. A picture and a sketch of a slotted line can be found in Ginzton’s book
(see his Figures (5.11) and (5.12)). The signal picked up by the probe pin is usually rectified by means of a high frequency diode
and it is the resulting dc signal that is measured. The dc signal provides a measure of the amplitude of the potential difference at
any point along the slotted line. If the signal picked up is very small, less than ∼1 mV say, the dc signal provides a measure of the
time averaged square of the potential difference between the outer and inner conductors; in many instances the signal picked up is
greater than 10 mV, and in such cases the high frequency diodes commonly used for such measurements produce a dc signal that is
proportional to the root mean square of the potential difference between the outer and inner conductors. If the slotted line is used to
connect a generator operating at a fixed frequency with a load that is different from the characteristic impedance of the line, the
rectified probe signal will be found to exhibit a sinusoidal variation between a maximum signal and a minimum signal as the probe
is moved along the line. The ratio of the maximum signal to the minimum signal as the probe is moved along the slotted line
provides a measure of the ratio of the forward wave amplitude to the reflected wave amplitude, i.e. the amplitudes a and b of
Equation (11.6.2) that describes the position dependence of the voltage along the cable.

From Equation (11.6.2)

where, from Equations (11.6.4)

But by definition, Equation (11.6.5),

or, in terms of the normalized impedance

one has

The ratio (b/a) can be written

from which one obtains

and

where V  (z,t) is the complex conjugate of the potential function V(z,t). The time averaged value of the square of the voltage is
given by

V(z, t) = aexp(−ikz)(1+ exp(2ikz)) exp(iωt),
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or

The maximum value of < V  >, or of , occurs at those positions z such that (2k[z − L] + θ) = 2 n where n is an integer.
These maxima are spaced a half-wavelength apart; the variation of the pick-up signal as the probe is moved along the slotted line
provides a direct measure of the wavelength of the radiation. The maximum value of the root mean square potential difference is

The minimum value of the pick-up signal occurs at those positions such that (2k[z − L]+θ) = m where m is an odd integer: these
minima are also spaced one half-wavelength apart. At a minimum the root mean square voltage is

The ratio of these two voltages is called the ”Voltage Standing Wave Ratio” and is usually designated by VSWR:

This expression can be inverted to give

The Voltage Standing Wave Ratio, which can be easily measured by means of a slotted line, provides information about the load
impedance through the absolute value of the parameter  = (z  − 1)/(z  +1). In order to determine the phase of the load impedance
it is also necessary to measure the phase of the parameter : from the definition of 

Thus a knowledge of the amplitude and phase of  serves to determine the amplitude and phase of the load impedance, Z . The
phase of  can be obtained from the position of the voltage maximum or minimum on the slotted line; it is preferable to use the
position of the minimum because the position of a minimum signal can be measured much more accurately than the position of a
maximum signal.

The structure of the relationship between the complex number  and the complex load impedance, z  = Z /Z , is such that for a
load impedance

having an inductive component the phase angle θ must lie between 0 and  radians, whereas for a load impedance having a
capacitive component the phase angle θ must lie between 0 and −  radians. As an example consider a purely inductive load such
that z  = +iβ. For this case

The numerator of  may be written

where tan  = β. The denominator of  may be written

where, as above, tan  = β. Thus for this example
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where for β → 0 θ → , and for β very large θ → 0. This case is a special one but using complex algebra it can be shown that θ
must lie between 0 and  radians for any load having an inductive component. Consider the position of a minimum in the slotted
line voltage corresponding to an inductive load. From Equation ( ) one of the minima occurs at position z when

or since k = 2 /λ, the minimum occurs at

The position of this particular minimum ranges from z=L for θ =  to z = L + (λ/4) for θ = 0. Clearly one cannot measure the
position of this minimum because it lies outside the slotted line (z>L). However, the pattern described by Equation ( ) repeats
itself every half wavelength along the slotted line. Therefore one has only to measure the position of the voltage minimum relative
to a position, z , located exactly one half wavelength from the end of the slotted line. This position, z , can be found simply by
locating the position of the appropriate minimum signal when the load impedance is replaced by a short circuit. The condition for
the position of a minimum voltage with the load in place can then be written

and therefore

where z > z  for a load having an inductive component.

For a load having a capacitive component consider the minimum corresponding to

This minimum in the standing wave voltage occurs at

Since θ lies between 0 and −  radians for this case the position of the minimum varies from z = L − λ/4 to z=L. In other words the
position of the minimum is shifted towards the generator. This minimum is accessible on the slotted line but it is more convenient
to measure the position of that particular minimum that is located near z , the position that is a half wavelength removed from the
end of the slotted line. The condition that describes the position of the minimum that lies within λ/4 of z  is given by

and therefore

where for an impedance having a capacitive component z  > z.

Recapitulation

In order to determine an unknown impedance using a slotted line one must obtain the amplitude of the parameter  from the
voltage standing wave ratio, Equation ( ), as well as the phase of Γ from the position of a voltage minimum on the slotted
line. The phase of , θ, can be determined from the position of the minimum, z, relative to a position, z , located exactly λ/2 from
the end of the slotted line. The position of z  is determined by the position of the appropriate minimum when the slotted line is
terminated with a short circuit. With the slotted line terminated by the unknown impedance one looks for a voltage minimum
located within λ/4 of the shorted position z . If the position of this minimum is displaced from z  towards the load then that
impedance has an inductive component and the phase angle θ is to be calculated using Equation ( ). If the position of the
minimum is displaced from z  towards the generator then the load has a capacitive component and the phase angle θ is to be
calculated using Equation ( ).
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11.8: Transmission Line with Losses
The voltage and current on a lossless transmission line must satisfy the following equations:

These are a direct consequence of Maxwell’s equations. Strictly speaking, they are only correct providing that , the dielectric
constant, is truly a constant and therefore independent of frequency. Even the best of dielectric insulating materials exhibit some
losses that are frequency dependent: in many cases the imaginary part of the dielectric constant is proportional to the frequency. For
a time dependence exp (iωt) the above two equations, ( ), become

where  may have real and imaginary parts, both of which will depend upon the frequency. Solutions of Equations ( ) that are
harmonic in space, i.e. V and I are proportional to exp (−ikz), must be described by a wave-vector k that satisfies the condition

In the presence of dielectric losses  will in general be a complex quantity, and therefore so also must the wave-vector be complex :

so that

The general solutions of the wave equations ( ) for the voltage and current on the transmission line in the presence of a lossy
dielectric can be written

where (k /k ) ≪ 1 for a high quality cable, and k , k  are the real and imaginary parts of the wave-vector. Notice that k  must be
positive in order that the amplitude of the forward propagating wave decays with distance.

In actual fact, part of the energy loss as a wave propagates down a transmission line is due to Ohmic losses in the skin-depth of the
conductors: i.e. the metal electrodes do possess a finite conductivity and therefore there are energy losses due to the shielding
currents that flow in them. It can be easily shown, using the methods of Chapter(10), that the rate of energy loss in each conductor
per unit area of surface is given by

< S  > is the time averaged Poynting vector component corresponding to energy flow into the conductor surface, σ  is the dc
conductivity of the metal wall, H  is the magnetic field strength at the conductor surface, and ω = 2 f is the circular frequency.
This energy loss must be added to the energy loss in the dielectric material. The conductor losses can be taken into account by
increasing the imaginary part of the wave-vector, k , in Equations (11.8.5). One can write

where  is an empirical parameter whose frequency dependence can be measured for a particular cable. The constants a,b in (
) must be adjusted to satisfy the boundary condition at the position of the load; i.e. at the load Z = V/I. For a cable having a
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characteristic impedance Z  that connects a generator at z=0 with a load at z=L this condition requires

from which

Using the previous notation z  = Z /Z , and z  = Z /Z , and

one finds

Equation ( ) shows that the impedance seen by the generator approaches the characteristic impedance of the cable if the load
is connected to the generator through a cable that is long compared with the attenuation length (1/ ).

Characteristics for a few representative co-axial cables are listed in Table(11.8.1), and their attenuation lengths at a number of
frequencies are listed in Table(11.8.2). The length of cable for which the amplitude of a voltage pulse is attenuated to (1/e)= 0.368
of its original amplitude is given by (1/ ). For example, this attenuation length is 9.8 meters for RG-8 cable at 5 GHz.

The attenuation parameter, , for the cables listed in Table(11.8.2) are observed to be approximately proportional to , and this
suggests that most of the losses in these cables is due to eddy currents in the conductors.

Table : Characteristics of some commonly used commercial co-axial cables. The dielectric material between the conductors
is polyethylene. The data was taken from the 1985/86 catalogue of RAE Industrial Electronics Ltd., Vancouver, BC.
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Table : Frequency dependence of the attenuation parameter  for some selected co-axial cables. V(z) = V  exp (− z).
Frequencies in MHz. The data is taken from the 1985/86 catalogue of RAE Industrial Electronics Ltd., Vancouver, BC.
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CHAPTER OVERVIEW

12: Waveguides
A study of the propagation of electromagnetic waves through rectangular and circular hollow conducting pipes.

12.1: Simple Transverse Electric Modes
12.2: Higher Order Modes
12.3: Waveguide Discontinuities
12.4: Energy Losses in the Waveguide Walls
12.5: Circular Waveguides

Thumbnail: Waveguide flange UBR320 for microwaves. (Public Domain; Catslash via Wikipedia)

This page titled 12: Waveguides is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.

https://libretexts.org/
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/12%3A_Waveguides/12.01%3A_Simple_Transverse_Electric_Modes
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/12%3A_Waveguides/12.02%3A_Higher_Order_Modes
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/12%3A_Waveguides/12.03%3A_Waveguide_Discontinuities
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/12%3A_Waveguides/12.04%3A_Energy_Losses_in_the_Waveguide_Walls
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/12%3A_Waveguides/12.05%3A_Circular_Waveguides
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/12%3A_Waveguides
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html


12.1.1 https://phys.libretexts.org/@go/page/22734

12.1: Simple Transverse Electric Modes
Consider two infinite plane waves of circular frequency ω oscillating in phase, and such that their propagation vectors lie in the x-z
plane and make the angles θ with the z-axis: one wave has a positive x-component of wavevector, the other has a negative x-
component of wave-vector, as illustrated in Figure . Explicit expressions for the electric and magnetic field components of
these waves for the case in which the electric field in each wave has the same amplitude and is polarized along the y-direction are
as follows:

Wave Number (1)

Wave Number (2)

In writing these equations it has been assumed that the waves are propagating in a medium characterized by a real dielectric
constant , and a magnetic permeability µ . The wave-vector is , and the wave impedance is 

 Ohms, where Z  = 377 Ohms. The above fields satisfy Maxwell’s equations. One can now introduce two
perfectly conducting infinite planes that lie parallel with the xz plane and which are separated by an arbitrary spacing, b. The plane
waves of Figure  still satisfy Maxwell’s equations between the conducting surfaces: they also satisfy the required boundary
conditions on the electric and magnetic fields. In the first place, there is only one electric field component, E , and it is normal to
the conducting planes, consequently the tangential component of  is zero on the perfectly conducting surfaces as is required. In
the second place, the magnetic field components lie parallel with the conducting planes so that the normal component of  is zero
at the perfectly conducting planes as is required by the considerations discussed in Chpt.(10). The total electric field at any point in
the space between the two conducting planes is given by

or

The components of the magnetic field are given by

and

Notice that E  and H  are both zero, independent of z, on the planes defined by (xk sin θ) = ± /2, ±3 /2, ±5 /2, etc, i.e. on the
planes
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Figure : Two plane waves having the same frequency, oscillating in phase, and propagating in the x-z plane at an angle θ
with respect to the z-axis.

This means that the wave defined by Equations ( ),( ), and ( ) can propagate along the hollow rectangular pipe
bounded by perfectly conducting planes spaced b apart along the y-direction, and spaced a apart along the x-direction where a= m

/(k sin θ), and where m is an odd integer, and yet satisfy the boundary conditions imposed by the presence of the perfectly
conducting surfaces. The distribution of the electric and magnetic fields across the section of the wave-guide formed by the
intersection of the four conducting planes is shown in Figure  for the mode corresponding to k sin θ = /a.

The width of the wave-guide along the x-direction, a, determines the propagation angle for waves that satisfy the boundary
condition Ey = 0 on x=±a/2:

The component of the propagation vector parallel with the wave-guide axis, along z, is given by

The sum of the squares of these two components must be equal to the square

Figure : The lowest frequency transverse electric mode (a TE mode) for a rectangular wave-guide whose cross-sectional
dimensions are a and b, where a is greater than b.

of the wave-vector k, where :
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from which

where  is an odd integer.

The most important wave-guide mode is that for which m=1, the mode illustrated in Figure (12.1.2). In most applications the wave-
guide is filled with air for which  = 1. For this m=1 mode, and assuming that (\epsilon_{r}\)=1.0, the fields are given by

where . The mode of Equations ( ), Figure , is called a transverse electric mode, or a TE mode,
because the electric field has no component along the guide axis, i.e. no component along the direction of propagation of the wave-
guide mode. Notice that the ratio E /H  = Z  is independent of position inside the wave-guide; in particular, it is independent of
position across the wave-guide cross-section. The magnetic field H  is equivalent to a surface current density  Amps/m

(from , and E  has the units of Volts/m. The wave impedance Z  = E /H  therefore has the units of Ohms: it plays

a role for wave-guide problems that is similar to the role played by the characteristic impedance for transmission line problems.
The analogy between transmission lines and wave-guides is discussed in a very clear manner in the article ” The Elements of Wave
Propagation using the Impedance Concept” by H.G.Booker, Electrical Engineering Journal, volume 94, pages 171-202, 1947.

The Poynting vector, , associated with the TE  mode, Equation ( ), has two components:

and

The time averaged value of S  is zero; this corresponds to the fact that no energy, on average, is transported across the guide from
one side to the other. There is a non-zero time average for the z-component of the Poynting vector corresponding to energy flow
along the guide:

It is useful to integrate the time-averaged value of the Poynting vector over the cross-sectional area of the wave-guide in order to
obtain the rate at which energy is carried past a particular section of the guide. A simple integration gives

The time-averaged energy density associated with a wave-guide mode is given by

or
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For the fundamental TE  mode, Equations ( ), one obtains

Integrate this energy density across a section of the guide in order to obtain the average energy per unit length of the wave-guide:

\[

where we have used , and for a waveguide filled with air

The velocity with which energy is transported down the guide is called the group velocity, v . The group velocity must have a value
such that its product with the energy density per unit length of guide, Equation ( ), gives the rate at which energy is
transported past a wave-guide section, Equation ( ): i.e.

Thus

It is easy to verify by direct differentiation of Equation ( ) that this velocity is also given by the relation

Equation ( ) is valid for an arbitrary relative dielectric constant: from ( )

The phase velocity, v , on the other hand is obtained from the condition

That is z must increase at the rate

in order to remain on a crest as the wave propagates along the guide. As the guide wave-vector, k , approaches zero the phase
velocity may become very large- much larger than the velocity of light in vacuum. This occurs because the phase velocity measures
the rate of propagation down the guide of two intersecting wave fronts as these waves bounce back and forth across the guide ( see
Figure (12.1.3)). This intersection velocity clearly becomes infinitely
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Figure : The phase velocity along z is the velocity with which the intersection between two wavefronts propagates along the
wave-guide. This velocity, v  = ω/kg, becomes very large as θ → /2.

large in the limit as the wavefronts become parallel with the guide axis, i.e. in the limit as the guide wave-number, kg, goes to zero.
The velocity of energy transport down the guide, the group velocity, goes to zero as θ approaches /2, the condition corresponding
to waves that simply bounce forth and back along the x-direction between the perfectly conducting planes at x = ±a/2. The group
velocity, the velocity with which information can be transmitted down the guide, is always less than the velocity of light in vacuum.

The frequency at which the group velocity goes to zero can be calculated from Equation ( ) by setting k  = 0, since the group
velocity is proportional to kg from ( ):

The wave-guide is a high pass filter that will transmit energy for frequencies larger than the cut-off frequency ω . For  = 1 and
a=1 cm, the cut-off frequency is ω  = 9.42 × 10  radians/sec. corresponding to a frequency of f=15 GHz.

It should be clear from the above construction that Equations ( ) represents the solution of Maxwell’s equations for the TE
mode that carries energy in the positive z-direction. The TE  mode that carries energy in the negative z-direction is described by

where B is an arbitrary amplitude (NOT the magnetic field!).

In order to answer the question of what happens if the frequency is less than the cut-off frequency, ω , it is best to start from
Maxwell’s equations. Consider the case for which there is only a y-component of electric field. From

for a time dependence ∼ exp (−iωt), and for the permeability of free space, one obtains

and
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From

one obtains

The above equations can be combined to give a single second order equation for E :

For an electric field having the form

it follows that

or

For a frequency less than the cut-off frequency corresponding to ω  =  the square of the wave-vector k  becomes negative
and therefore its square root becomes pure imaginary. A pure imaginary wave-vector

where  is a real number, corresponds to a disturbance that decays away exponentially along the guide either to the right or to the
left. For example, kg = +i  gives a disturbance of the form

with magnetic field components (from Equation ( ) and Equation ( ))

and

Using these components, it is easy to show that the time-averaged z-component of the Poynting vector, S  = −E H , is exactly
equal to zero. The average energy density stored in the fields is not zero:

and

These expressions correspond to the energy density stored in the electric field, ( ), and to the energy density stored in the
magnetic field, ( ). If a source of energy oscillating at a frequency less than the cut-off frequency is introduced into a wave-
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guide at some point, the resulting electromagnetic fields will remain localized around the source, and the effective load on the
source will be purely reactive for a wave-guide whose walls are perfectly conducting. In the case of a real guide whose walls have
some finite resistivity, the load on a source oscillating at a frequency which is less than the cut-off frequency will appear to be
partly resistive but mainly reactive.

This page titled 12.1: Simple Transverse Electric Modes is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John
F. Cochran and Bretislav Heinrich.
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12.2: Higher Order Modes
The wave-guide modes discussed above are very simple ones because they presumed that there was no spatial variation of the
fields along the y-direction. There exist wave-guide solutions of Maxwell’s equations that involve spatial variations along all three
axes: these higher order modes correspond to the co-ordinated propagation of plane waves whose wave-vectors make an oblique
angle with the guide axis so that they are repeatedly reflected from all four walls. These modes divide naturally into two classes:

a. Transverse Electric (TE) Modes;
b. Transverse Magnetic (TM) Modes.

A transverse electric mode is one in which there is no component of the electric field parallel to the direction of propagation. A
transverse magnetic mode is one in which there is no component of the magnetic field parallel to the direction of propagation. For
both classes of modes one seeks solutions of Maxwell’s equations that correspond to waves travelling down the waveguide; i.e. all
of the field components are required to be proportional to the phasor

Furthermore, it is convenient at this point to change the description of the wave-guide co-ordinate system so that the origin is
located at one corner of the hollow rectangular pipe as shown in Figure (12.2.4): in the new system the walls of the guide are
formed by the intersection of the planes x=0,a and y=0,b. For a time variation of the form exp (−iωt) Maxwell’s equations become

The divergence of any curl is zero, and therefore the electric and the magnetic fields satisfy the conditions

Note that the equations for  and  are very similar. This symmetry between the equations for  and  can be exploited to
generate a second set of solutions to Maxwell’s equations from a primary set of fields that satisfy Maxwell’s equations. This works
as follows: suppose that one has found the fields  and  that satisfy Equations ( ). Now consider a second set of fields

where  is the wave impedance for a medium characterized by a permeability µ  and a dielectric constant . Substitute
these new fields into Equations ( ) to obtain
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Figure : A rectangular wave-guide formed by conducting walls at x=0, x=a, y=0, and y=b. The lossless material inside the
guide is characterized by a real dielectric constant , and a permeability µ .

Upon the substitution ( ) this becomes

and this by hypothesis satisfies Maxwell’s Equations ( ). Similarly, from ( ) one has

Upon substitution of Equations ( ) one finds

so that the new fields,  and  satisfy both of Equations ( ). Clearly Equations ( ) are satisfied since  and  are
proportional to  and . It follows that the prescription of Equation ( ) can be used to generate a second, different, set of
solutions for Maxwell’s equations from a primary set of solutions. This procedure can often be used to avoid a great deal of
computational tedium.

12.2.1 TM Modes.

In order to proceed with the rectangular wave-guide problem it is convenient to use the vector potential , and the scalar potential,
V, where

The choice

plus A  = A  = 0 will guarantee that the z-component of the magnetic field, , is zero: in other words, this choice of vector
potential will generate only TM modes, and
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For a time dependence exp (−iωt), and using ( ) in Maxwell’s equations ( ), one finds

But in cartesian co-ordinates

so that

As explained in Chapter(7), one can set

so that for this problem where there are no driving charges or currents one finds

In particular, if  has only a z-component one finds

We require solutions that propagate along z: ie solutions that are proportional to exp (ik z). Thus write

for which A(x, y) must satisfy

This equation is solved by products of sines and cosines:

where

The particular combination of sines and cosines required must be chosen so that  satisfies the boundary condition that the normal
component of  vanishes at the wave-guide walls. Using the magnetic field components calculated from Equation ( ) and the
co-ordinate system of Figure (12.2.4), it can be readily concluded that we require

so that
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where m,n are integers, and Equation ( ) becomes

Notice that A =0 at the walls of the wave-guide. E  is proportional to A  so that if A =0 on the walls of the guide then the
tangential component E  will also vanish on the walls of the wave-guide as is required by the boundary conditions on the tangential
components of E.

The electric field components can be most easily calculated from the second of Equations ( ),

The resulting electric field components are (dropping the factor exp (i[k z − ωt])):

Notice that these electric field components satisfy the requirement that the tangential components of E must vanish at the walls of
the wave-guide. The field components Equations ( ) and ( ) correspond to the TM  mode.

For a propagating wave the value of  calculated from ( ) must be positive. This introduces a cut-off frequency, ω , such
that k  =0. This cut-off frequency is given by

For given interior dimensions of the wave-guide there is a lower limit to the frequency for which a particular mode may be
propagated along the waveguide. For example, a popular X-band wave-guide has interior dimensions a= 2.286 cm and b= 1.016
cm. For this guide the TM  mode can be propagated only for frequencies greater than 16.15 GHz if = 1. There are no TM modes
corresponding to m=0 or n=0 since the fields are zero if m=0 or if n=0 because A(x,y)=0 from Equation ( ). Thus the lowest
TM frequency that can be propagated down the above guide is 16.15 GHz.

Non-propagating TM modes do exist for frequencies less than the cutoff frequency. If ω < ω  then k  calculated from ( ) is
negative. This means that kg is a purely imaginary number, k  = iβ say. The phasor exp (i[k z − ωt]) becomes exp (−βz) exp (−iωt)
corresponding to a disturbance that decays to a small amplitude over a distance z ∼ (1/β).

12.2.2 TE Modes.
There exists another group of modes for which E  = 0; these are the TE modes. Using the symmetry relations Equations ( )
and the magnetic fields ( ) one might guess that the TE mode electric fields ought to be given by (the factor exp (i[k z − ωt])
is suppressed)
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These electric fields satisfy Maxwell’s equations but they do not satisfy the boundary condition that the tangential components of 
 must vanish at the wave-guide walls: ie. E =0 at y=0,b and E =0 at x=0,a (see Figure (12.2.4)). However, the following

equations for the electric field components do satisfy the required boundary conditions:

These field components vanish on the wave-guide walls. The electric field must also satisfy the Maxwell equation div( ) = 0. This
condition requires

It follows that

Using this relation between E  and E  the electric field components corresponding to the TE modes in a rectangular wave-guide
have the form:

where E  is a constant, and the factor exp (i[k z − ωt]) has again been suppressed. The magnetic field components corresponding to
Equations ( ) can be calculated from Faraday’s law: iωµ0  = curl( ). The resulting field components are

Eqns.( ) and ( ) satisfy Maxwell’s equations and also the boundary conditions that the tangential components of 
and the normal components of  vanish on the wave-guide walls. The TE  mode discussed in section(12.1) corresponds to
m=1,n=0: for this mode E  = 0 and H  = 0. Referring to the co-ordinate system of Figure (12.2.4) the field components for the TE
mode are:
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where A is a constant and

The cut-off frequency for this mode, corresponding to k =0, is given by

For the popular X-band wave-guide used above for illustrative purposes one has a=2.286 cm and b=1.016 cm. For this guide, and 
 = 1, the cut-of

Table : Cut-off frequencies for the lowest transverse electric (TE) modes and the lowest transverse magnetic (TM) modes in
X-band waveguides (RG52/U or WR90 brass guides). The internal dimensions of X-band waveguides are a= 0.900 inches = 2.286

cm, and b= 0.400 inches = 1.016 cm. The external dimensions of the guide are 1.00 x 0.50 inches. The cut-off frequencies were
calculated for  = 1 using .

frequency for the TE  mode is 6.56 GHz. Cut-off frequencies for various modes in this X-band wave-guide are listed in
Table(12.2.1). Notice that only one mode, the TE  mode, can be propagated along this wave-guide for frequencies between 6.6
and 13.1 GHz.

This page titled 12.2: Higher Order Modes is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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12.3: Waveguide Discontinuities
Any discontinuity in the dielectric constant, in the permeability, or any discontinuity in the dimensions of a waveguide will result in
reflected waves. For simplicity, we will discuss the case in which the waveguide will support the propagation of only the TE
mode. A forward propagating TE  mode that encounters an obstacle in the waveguide will, in general, be partially reflected and
partially transmitted. This can be illustrated for a particularly simple obstacle; let a very thin sheet of material of thickness  and
characterized by a conductivity σ be placed across the guide as illustrated in Figure (12.3.5).

Figure : A TE  wave incident on a conducting diaphragm placed across the waveguide.

Figure : A TE  wave incident on a conducting diaphragm placed across the waveguide. The magnetic fields on each side of
the diaphragm are related by the condition curl( ) = J  .

The thickness of the sheet, d, is assumed to be very thin compared with the skindepth , see Chpt.(10),
Section(10.4). The thickness d is also assumed to be very small compared with the wavelength λ  = 2 /k . The tangential
component of the electric field in this case, E , must be continuous across the diaphragm

The electric field at the conducting diaphragm generates a current density along y whose magnitude is J  = σE . When integrated
across the film thickness d this current density produces an equivalent surface current sheet having the strength

This current sheet causes a discontinuity in the tangential component of  from Amp`ere’s law; i.e. the magnetic field components,
H , on either side of the film are related by

The loop in question is illustrated in Figure (12.3.6). Condition ( ) results in the equation
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or using the waveguide impedance, Z  = ωµ /k ,

or

Equations ( ) and ( ) can be solved to obtain the reflected and transmitted wave amplitudes:

Figure : A transmission line, characteristic impedance Z  Ohms, shunted by a resistance of R Ohms. The incident wave
amplitude is V  Volts; the reflected wave amplitude is V  Volts; the transmitted wave amplitude is V  Volts. The reflection
coefficient is R = V /V  = −(Z /R)/ [2 + (Z /R)]. The transmission coefficient is T = V /V  = 2/ [2 + (Z /R)].

These reflection and transmission coefficients are the same as would be calculated for the problem of a resistor, R=1/σd, placed
across a transmission line whose characteristic impedance is Z , Figure (12.3.7). The close analogy between waveguide problems
and transmission line problems has been stressed in the article by H.G.Booker,”The Elements of Wave Propagation using the
Impedance Concept”, Electrical Engineering Journal, Volume 94,pages 171- 198, 1947. The analogy holds for more general
impedances. For an incident TE  mode a thin wire placed across the waveguide parallel with the electric field has the same
reflection and transmission coefficients as an inductive reactance placed across a transmission line, Figure (12.3.8). Similarly, the
thin metal diaphragms illustrated in Figure (12.3.9) give rise to reflection and transmission coefficients for the waveguide that are
the same as would be produced by the circuits on the right hand side of Figure (12.3.9) if they were to be placed across a
transmission line.

A thin metal diaphragm containing a hole such as that shown in Figure (12.3.9c) can be used to produce a resonant cavity, Figure
(12.3.10). The resonant structure is formed by the section of waveguide that is contained between the diaphragm and a waveguide
short circuit; the waveguide short simply consists of a metal plate that completely closes off the guide. The hole in the diaphragm
need not be rectangular as shown in Figure (12.3.9): it is often convenient
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Figure : A transmission line, characteristic impedance Z  Ohms, shunted by an inductive impedance of Z  Ohms. The
incident wave amplitude is V  Volts; the reflected wave amplitude is V  Volts; the transmitted wave amplitude is V  Volts. The
reflection coefficient is R = V /V  = i(Z /Lω)/ [2 − (iZ /Lω)]. The transmission coefficient is T = V /V  = 2/ [2 − (iZ /Lω)].

to use a round hole. At a frequency such that the length of the cavity, L, is very nearly equal to an integral number of half-
wavelengths the reflection from the diaphragm becomes smaller than its value for neighboring frequencies. The reflectivity exhibits
a dip when plotted as a function of frequency, Figure (12.3.11). At resonance a standing wave is set up in the cavity that has nodes
at the diaphragm and at the shorted end. Energy is fed into the cavity through the coupling hole, and the fields inside the cavity
become so large that the energy dissipated in the cavity walls is equal to the energy carried into the cavity through the coupling
hole. The Q, or quality factor, for the cavity is defined to be

The quality factor for a microwave cavity commonly exceeds 1000 and is often found to be as large as 10,000. The electric and
magnetic fields in a properly coupled microwave cavity range in amplitude between 30 and 100 times as large as the amplitudes of
the incident wave that feeds the cavity. At resonance the cavity appears to be a pure resistance. The value

Figure : Thin, perfectly conducting metal diaphragms placed across a waveguide and their equivalent shunt circuits placed
across a transmission line. Shaded areas are metal, unshaded areas are unobstructed.
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Figure : A microwave cavity resonator. Resonance occurs when L = nλ /2 where λ  = 2 /kg and n is an integer.

Figure : The absolute value of the reflection coefficient as a function of frequency for a microwave signal having an
amplitude of E  Volts/m incident on a microwave cavity. The reflected wave amplitude is E  Volts/m. The quality factor of the
cavity is given by Q=f /∆f where ∆f is the frequency interval between the frequencies for which the change in reflectivity is 0.7 of
the maximum change.

of that resistance depends upon the size of the coupling aperture. For a particular orifice size, a size that depends upon the cavity
losses and which must be determined by trial and error, the cavity absorbs all of the energy that is incident upon it; the cavity forms
a matched load. Under matched conditions the reflectivity of the cavity is very sensitive to changes in the cavity losses, and this
configuration is often used to measure the magnetic field dependence of the absorption of microwave energy by electron spins
(electron spin resonance absorption or ESR).

The fields in the microwave cavity form standing waves at resonance. For a TE  mode

The zero for z in Figure (12.3.10) is located at the diaphragm. The length of the cavity must be chosen so that k L = m , where m
is an integer, so that the electric field vanishes on the cavity end walls. Notice that the electric and magnetic fields are 90 out of
phase. This means that the energy stored in the cavity swings forth and back between energy stored in the electric field and energy
stored in the magnetic field: the total energy is independent of the time. For this cavity resonator, and for m odd, the electric field is
large in the central region, i.e. at x=a/2, z=L/2, and in this region the magnetic fields are small. Conversely, the magnetic fields are
large at the cavity walls where the electric field is small. The energy losses due to eddy currents flowing in the cavity walls can be
estimated using the considerations described in the next section.

This page titled 12.3: Waveguide Discontinuities is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F.
Cochran and Bretislav Heinrich.
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12.4: Energy Losses in the Waveguide Walls
When a metal is exposed to a time-varying magnetic field eddy currents are induced which flow so as to shield the interior of the
metal from the magnetic field. Let the strength of the magnetic field at the metal surface be H , and let the field be oriented along
the y-direction. The magnetic field decays towards the interior of the metal, Chapter(10), section(10.4), according to the formula

where ξ measures distance into the metal along the normal to the surface; the metal surface is assumed to lie in the y-z plane. The
wave-vector, k, is given by

The electric field that generates the shielding currents in the metal is orthogonal to the magnetic field and parallel with the metal
surface:

The Poynting vector at the metal surface is directed into the metal; its time average is given by

This energy is converted into heat in the metal wall. This Joule heat must, of course, be supplied by the microwaves propagating
along the guide, and results in a gradual decrease in signal strength. The resistivity of brass is typically ρ = 8×10  Ohm-meters
corresponding to σ = 1/ρ = 1.25×10  per Ohm-m at room temperature. The rate of energy loss to a brass waveguide wall at room
temperature and for a frequency of 10 GHz is

Since energy is lost to the waveguide walls the average energy moving down the guide must decrease with distance, and therefore
the amplitude of the wave must decrease. For the TE  mode one has (using the co-ordinate system of Figure (12.2.4))

The average rate at which energy is transported past a waveguide crosssection can be calculated from 
 and this must be integrated over the area of the guide:

Let us apply these ideas to calculate the rate at which a microwave signal propagating in a brass X-band waveguide decays with
distance. The energy loss per second per unit length of guide due to eddy current losses in the narrow sides of the guide is given by

these losses are due to the component H  whose amplitude at the walls is H . The factor two arises because there are contributions
from two walls; the factor 0.028 comes from Equation ( ). The contribution from the energy losses at the broad sides of the
waveguide are more complicated since there are two magnetic field components H  and H , and both components must be averaged
over the x spatial dependence:
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Thus the power passing through the guide cross-section must decrease in the distance dz by an amount that is given by the sum of
Equations ( ) and ( ):

By differentiating Equation ( ) one obtains

Equating Equations ( ) and ( ) gives an equation for the rate of change of the wave amplitude, H , with distance

This can be re-written in the form

where for X-band waveguide (a=2.29 cm, b=1.02 cm) and for a frequency of 10 GHz kg = 158 m  and γ = 2.67 × 10  per meter.
Equation ( ) implies that the amplitude of a wave propagating along a waveguide falls off exponentially

the amplitude decreases by 1/e after having travelled a distance of z= 1/γ meters. This distance is 37.5 meters for X-band
waveguide at 10 GHz.

This page titled 12.4: Energy Losses in the Waveguide Walls is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
John F. Cochran and Bretislav Heinrich.
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12.5: Circular Waveguides
The details are different, but the modes sustained by a circular wave-guide have much in common with the rectangular wave-guide
modes. They may, for example, be classified as transverse electric modes (TE modes) in which there is no component of electric
field along the guide axis, or as transverse magnetic modes (TM modes) in which there is no component of the magnetic field along
the guide axis.

12.5.1 TM Modes.
A vector potential whose transverse components are zero but for which A  is not zero will generate transverse magnetic modes
because H  is necessarily zero since curl( ) has a zero z-component. A  must satisfy the wave equation (12.2.6) in order that the
fields generated by A  satisfy Maxwell’s equations:

It is convenient to use cylindrical polar co-rdinates (r,θ,z) because of the cylindrical symmetry implied by the shape of a cylindrical
wave-guide. For a wave travelling along the z-direction, one can write

From now on the factor  will be understood and not written out explicitly. Using cylindrical polar co-ordinates
Equation ( ) becomes

or setting

and multiplying through by r

Now let the amplitude  be written as the product of a function F(r) that depends only on the radius r and the function cos
(mθ), where m is an integer. The constant m must be an integer so that  will be single valued in angle: ie. A(r,0) must be
equal to A(r,2 m). The use of the function cos(mθ) is arbitrary. We could just as well use sin (mθ) or a function of the form 

, where  and  are constants. All of these choices have in common that d f/dθ  = −m f. The
various choices of a,b simply amount to a choice of the orientation of the wave-guide mode pattern with respect to the axis θ = 0.

The equation for the radial function, , becomes

This equation for F(r) can be put in the standard form of Bessel’s equation by the introduction of a change of variable:

then Equation ( ) becomes

The solutions of this equation that remain finite at r=0 are

where the J (x) are Bessel’s functions of integer order because m is an integer. See ”Schaum’s Outline Series, Mathematical
Handbook” by Murray R. Spiegel, McGraw-Hill, New York, 1968, Chapter 24. The required form of the vector potential is
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where A  is a constant, and k  is given by Equation ( ).

The magnetic field components are obtained from  = curl( ):

(these are all multiplied by the factor exp (i[k z − ωt]), of course). The notation  means the derivative of the Bessel function
with respect to the argument x.

The electric field components can be calculated from :

The expression for E  can be simplified because J (k r) must satisfy the differential equation( ), therefore

Using this expression E  becomes

The fields of Equations ( ) and ( ) satisfy Maxwell’s equations. They must also satisfy the boundary conditions E =0,
E =0, and H =0 at the walls of the wave-guide. Let the inner radius of the wave-guide be R meters. The boundary conditions can be
met if J (k R)=0. This condition fixes allowable values for k  and therefore fixes k  through Equation ( )

Table(12.5.2) lists the four lowest roots of the equation J (x)=0 for Bessel’s functions with m=0,1,2 and 3. These roots determine
the wave-vector, k . In particular, they determine the minimum frequency for which energy can be propagated down the wave-
guide. The cut-off frequencies correspond to k =0, and are given by

To take a concrete example, suppose that R=1cm =0.01m. The lowest TM mode corresponds to m=0 and to the first root of the
Bessel’s function J : this is called the TM  mode. For this case
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Here k  = 2.4048/R = 240.48 per meter. This corresponds to a cut-off frequency of 11.48 GHz for  =1. The TM  mode pattern is
shown in Figure (12.5.12(b)).

Table : The values of x corresponding to the roots of the equations J (x)=0 and  for the first four Bessel’s
functions.

E

r

E

θ

E

z

H

r

H

θ

H

z

=− ( r) ,

k

g

ϵω

k

c

A

0

J

˙

0

k

c

= 0,

= i ( r) ,

k

2

c

ϵω

A

0

J

0

k

c

= 0,

=− ( r) ,k

c

A

0

J

˙

0

k

c

= 0,

(12.5.12)

c ϵ

r 01

12.5.2 m (x) = 0J

˙

m

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22738?pdf


12.5.4 https://phys.libretexts.org/@go/page/22738

Figure : Electric and magnetic field distributions for the TE  and TM  modes in a circular wave-guide. The dashed lines
represent the magnetic field, the full lines the electric field.

12.5.2 TE Modes.
Using the symmetry relations (12.2.3) one can write down the electric field components corresponding to transverse electric modes
directly from Equations ( ):

where, as before,

The magnetic field components can be calculated from :

In Equations ( ) the factor exp (i[k z − ωt]) has been suppressed. The simple form for H  has been obtained using the fact
that J (k r) must satisfy Equation ( ), the differential equation for the radial function F(r). In order to satisfy the boundary
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conditions E =0 and H =0 at the wave-guide walls k R must be set equal to one of the roots of the equation , where R
is the inner radius of the wave-guide. The lowest four roots of  have been listed in Table(12.5.2) for the first four
Bessel’s functions. The lowest cut-off frequency occurs for the first root of  : this mode is called the TE  mode. The cut-off
frequency for the TE  mode is 8.79 GHz for =1 and R= 1cm. Compare this with the cut-off frequency for the TM  mode, 11.48
GHz. Thus, over the frequency interval 8.79 to 11.48 GHz an air-filled circular pipe having an inner radius of R=1cm can support
only a single mode, the TE  mode. The TE  mode pattern is shown in Figure (12.5.13).

Figure : Electric field lines for the TE  mode in a cylindrical Waveguide. The electric field lines must be normal to the
walls at r=R, where R is the inner radius of the wave-guide. The magnetic field lines are orthogonal to the electric field lines, and
H =0 at r=R.

The TE  mode is of particular interest; the mode pattern is shown in Figure (12.5.12(a)). This mode is very useful for the
construction of high-Q cavities of variable frequency. The length of the cavity can be altered by means of a sliding piston. No
currents need flow across the gap between the piston and the walls of the cylinder for the TE  mode: the current lines on the face
of the piston are similar to the electric field lines shown in Figure (12.5.12(a)) and are concentric circles. Even if the piston does
not make good electrical contact with the cavity walls the field lines in the TE  mode remain unperturbed by any small gap
between the piston and the cylinder walls. This mode is often used to construct microwave frequency meters.

Wave-guide modes are discussed in detail in the book ”Electron Spin Resonance” by Charles P. Poole, 2cd Edition, John Wiley and
Sons, New York, 1983.

This page titled 12.5: Circular Waveguides is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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13.1: Chapter 1
Problem (1.1).

Two charges, each q=+1.6x10  Coulombs, are located at (0,0,a) and at (0,0,-a) where a=1.0x10  meters.

(a) Calculate the electric field at the origin (0,0,0).

(Answ: the field is zero.)

(b) Calculate the electric field at (a,a,a).

(Answ: E= (6.07,6.07,1.96)x10  Volts/m.)

(c) An electron, q=-1.6x10  Coulombs, flies through the point (a,a,a) with the velocity v= v (1,2,3) where v = 10  m/sec. What
forces are exerted on the electron due to the two stationary charges?

(Answ: F= qE= (-9.71,-9.71,-3.14)x10  Newtons. There is no magnetic force.)

Problem (1.2).

At a certain moment a moving proton, q=+1.6x10  Coulombs, is located at (0,0,a) with velocity components v (1,1,0) where
a=10  m. and v =10  m/sec. At the same moment a moving electron, q=-1.6x10  Coulombs, is located at (a,a,a) with velocity
components (0,10 ,0) m/sec.

(a) Calculate the electric and magnetic fields at the position of the electron due to the proton.

(Answ: E= (E ,E ,0) where E = 5.09x10  V/m. and B= (0,0,0) because v xE =0.)

(b) Calculate the force on the electron due to the electric field of the proton.

(Answ: F=(-F ,-F ,0) where F = |q|E  =8.14x10  N.)

(c) Calculate the force on the electron due to the magnetic field of the proton.

(Answ: F= v xB = 0 N.)

(d) Calculate the electric and magnetic forces on the proton due to the fields generated by the electron.

Answ: The electric field at the position of the proton, R=(0,0,a), due to the electron at r=(a,a,a) is given by

where ρ= R-r = (-a,-a,0)= - a(1,1,0), where a= 10  m.

Therefore

The magnetic field at the position of the proton due to the motion of the electron is given by c B= vxE, where the velocity of
the electron is v= 10 (0,1,0) m/sec. c B= (5.09x10 )(0,0,-1) so B= (0.566x10 )(0,0,-1) Teslas.

The force on the proton due to the electric field is F = 8.15x10 (1,1,0) N. The force on the proton due to the magnetic field
is F = q(v xB) = 0.906x10 (-1,1,0) N.

Problem (1.3).

A particle having a velocity V=v u  carries a charge q  C and is located at the origin. A second particle, charge q , is located at r=
au  + bu  + cu , and it has a velocity V =v u .

(a) Show that the force on charge #2 due to the magnetic field generated by charge #1 is .

(b) Show that the force on charge #1 due to the magnetic field generated by charge #2 is . Notice that F
does not equal -F  so that Newton's law of the equality of forces of action and reaction is not obeyed in this case.

Answer (1.3).

(a) The electric field at the position of particle #2 due to particle #1 is
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The magnetic field at the position of particle #2 due to the motion of particle #1 is given by

or

The magnetic force on particle #2 due to its motion is

(b) The electric field at the position of particle #1 due to particle #2 is

The magnetic field at the position of particle #1 due to the motion of particle #2 is given by

or

The magnetic force on particle #1 due to its motion is

Problem (1.4).

An electron carries a magnetic moment of |m |=9.27x10 Joules/Tesla= 1 Bohr magneton. Suppose that this magnetic moment is
oriented along the z-axis as shown in the figure.

(a) At what angle θ is the field measured by an observer at P a maximum?

(Answ: θ= ± /2.)

(b) If r= 1 micron (10 m.) what is the magnitude and direction of this maximum field?

(Answ: |B |= 18.54x10  Teslas directed along +z).

(c) What is the minimum magnetic field? At what angle θ does it occur, and what is the direction of the field?
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(Answ: |B |= 9.27x10-13 Teslas directed along -z. The observer is at θ=0 or .)

Answer

 therefore 

 so B  is a maximum at x=0, y=0, z=r. B  is a minimum at z=0.  

.

Problem (1.5).

The energy of interaction between two magnetic dipoles is given by - m •B  or by - B •m  where B  is the field generated at the
position of dipole #2 by dipole #1, and B  is the field at dipole #1 generated by dipole #2. Let these two magnetic dipoles be
separated by a constant distance R= 10 m (1 µm).

(a) Assume that the two dipoles are forced to remain parallel as shown in the figure. At what angle θ is the interaction energy a
minimum? What is this minimum energy?

(Answ: θ= ± /2, .

(b) Assume that θ=0 in the figure, but that the two dipoles are free to rotate in the x-y plane. Let m |  = m cos  and m |  = m sin
. Similarly let m |  = m cos  and m |  = m sin . What will be the minimum energy configuration, and what will be the

minimum energy?

(Answ:  =  = 0 or . .)

Answer

(a) 

,

therefore

This expression is clearly a minimum when sinθ= ±1.

(b) When θ=0 and r=(R,0,0) one finds

,

therefore

.

This expression clearly has a minimum when cos =cos =1 and sin =sin =0, ie. when = = 0 or .
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Problem (1.6)

A proton and an electron are separated by 10  m = d as shown in the sketch.

(a) Calculate the strength of the electric field 1 micron (= 10  m) distant from a proton.

(b) Calculate the strength of the electric field a = 1 micron from the above pt dipole at . What is the direction of this
electric field?

(c) Calculate the strength of the electric field a distance a = 1 micron from the dipole at the point . What is the direction
of this electric field?

(d) Calculate the strength and direction of the electric field at  where a = 1 micron.

(e) Calculate the strength and direction of the electric field for the above dipole at  and a= 1 micron.

N.B.  are unit vectors along x,y,z.

Answer (1.6)

a) 

.

b) For a point dipole 

In this case p and r are both along z and hence parallel

So |E | = 2.88 x 10  Volts/m and directed along z.

c) For this part p.r = -e d a

since p = e d 

and 

therefore 
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So 

and 

or exactly the same as part (b). The electric field is also directed along z, just as in part (b).

(d) Here p.r=0 because p is directed along z whereas r is directed along x.

Therefore

i.e. directed along –z and half as large as the electric field for a point along the dipole axis and a meters from the dipole.

∴|Ed| = 1.44 x 10  Volts/m

e) 

 

So Ed is directed 18.4° from the xy plane and has the magnitude |Ed| = (1.58 x 10 ) (1440) = 2.28 x 10  Volts/m.

Problem (1.7).

Show that the magnetic field at the center of a uniformly magnetized sphere containing a small hole at the center is zero. Uniform
magnetization means M is constant. Without loss of generality, one can take the magnetization to be directed along the z-axis, ie
M= M u .

(Hint: Add up all the contributions to the field at the center due to volume elements at a distance r from the center. In polar co-
ordinates d = r dr sinθdθ d , and dm = M d u .)

Answer (1.7).

If r= -xu  - yu  - zu  then m•r = - M d z (remember that r is the vector drawn from the magnetic moment to the point of
observation).

, so that

,

,

Convert to polar co-ordinates and integrate over θ from 0 to , and over  from 0 to 2 . All field components integrate to
zero.

Problem (1.8)

The fields generated at the position r from a slowly moving, spinless, point charge are given by .
Consider a particle moving in a circular orbit whose position at time t is given by .

(a) Show that the time averaged electric field seen by an observer at  is given by to

terms of order (a/R) .

(b) Show that to lowest order in (a/R) the magnetic field observed at R is given by
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or since  is the magnetic moment (|m|= I a  where I is the current in Amps)

and .

Answer (1.8)

We have r + a = R

∴ r = R - a

where 

and 

or .

Keep only the lowest terms in  :

So 

Now multiply out and take time averages.
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Notice that all terms proportional to a average to zero.

(a) . The correction terms are of order .

(b) 

Multiply out the terms in B  and take time averages. The result is

add and subtract  to obtain

.

Now  and 

Therefore .

Problem (1.9)

Given the following scalar functions, V, expressed in cylindrical polar co-ordinates. For each function calculate

(1) the components of grad V

(2) ∇  V

(a) V = r Cosθ

(b) V = ln r

(c) 

(d) , where n is an integer either positive or negative.

Answer (1.9)

(a) V= rCosθ.

These correspond to a unit vector along x!

∇ V = 0

(b) V= lnr.

∇ V = 0

(c) 
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∇ V = 0

(d) 

∇ V = 0 for any n.

Problem (1.10)

Given the following scalar functions V expressed in spherical polar co-ordinates. For each function calculate

(1) the components of grad V

(2) ∇ V

(a) V = r Cosθ

(b) 

(c) V = r (3Cos θ - 1)

(d) 

(e)  where n is a positive integer.

Answer (1.10)

(a) V = rCosθ

These correspond to a constant field .

∇ V = 0.

(b) 

Corresponds to a dipole field.

∇ V = 0.

(c) 

∇ V = 0

(d) 
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∇ V = 0

(e) 

.

Problem (1.11)

Calculate the vector field B = curlA for the following fields, A.

(a) In cylindrical polar co-ordinates

(b) In cylindrical polar co-ordinates

(c) , where .

Show that in spherical polar co-ordinates if  then A  = A  = 0 and . This can be used to calculate curl
A.

Answer (1.11)

(a) 

But  

B  = 0

The field due to a current I Amps flowing along a long wire oriented along z.

(b) 

But  and 

This is the field inside an infinitely long solenoid.
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(c) 

If  this generates the field due to a magnetic dipole.

For  is a vector in the  direction having the magnitude m rSinθ.

.

Problem (1.12)

A water molecule is planar but the angle between the two oxygen-hydrogen bonds is 105˚ as shown in the sketch.

(a) If the charge on the oxygen is twice the electronic charge i.e. -2|e| and the charge on each hydrogen is q  = +|e|, calculate the
dipole moment of the molecule assuming an O-H bond length of 5 x 10  m. [The measured dipole moment is p = 6.17 x 10
Coulomb-m].

(b) If all of the dipoles in a cubic meter of water were aligned what would be the resulting density of electric dipoles |P|?

A =

μ

0

4π

(m×r)

r

3

m = m

O
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^

z
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0
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^
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ϕ o
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∣
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∣
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∣

∣

∣
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Use p = 6.17 x 10  cm.

Answer (1.12)

(a) The dipole moment is p = qd. In the H O molecule q = 2|e| = (2)(1.60 x 10 ) Coulombs or q = 3.2 x 10  C

The distance  where b = 5 x 10  m is the bond length; d = 3.04 x 10  m

∴ p = (3.2)(3.04) x 10  Coulomb m = 9.74 x 10  Cm

Compared with experiment this is too large by ~ 15.7 times.

(b) The molar volume of H O is 18 c.c.

∴ No. of moles in 1 m  = 10 /18 = 5.56 x 10  moles.

∴ No. of molecules in 1 m  = (6.02 x 10 )(5.56 x 10 ) = 3.34 x 10  molecules.

∴ |P| = (3.34 x 10 )(6.17 x 10 ) = 0.21 Coulombs/m .

(This is very large--in fact H O has no permanent dipole moment because the molecules are oriented at random).

Problem (1.13)

An iron atom in metallic iron carries a magnetic moment of 2.2 Bohr magnetons. (1 Bohr magneton, µ , is µ  = 9.27 x 10  Amp
m  ( = Joules/Tesla)). The density of iron is 7.87 gms/cc and its molecular weight is 55.85 gms. If all of the atomic moments were
aligned parallel what would be the magnetization per unit volume of iron? Compare this value with the observed internal magnetic
field of saturated iron at room temperature |B| = µ |M| = 2.15 Teslas = 2.15 Webers/m .

Answer (1.13)

The molar volume of iron is .

The number of atoms in /m  is

.

The magnetization/m  |M| = (N)(2.2) µ

|M| = 0.173 x 10  Amps/m.

This would give an internal field |B| = µ  |M| of |B| = (4  x 10 )(0.173 x 10 ) = 2.17 Teslas.

This means that at room temperature the fraction of aligned spins in iron is  i.e. Very nearly completely aligned!

Problem (1.14)

Given a vector function  evaluate the line integral from P  to P  along

-30

2
-19 -19

d = b cos( )

105

2

-10 -10

-29 -29

2

3 6 4

3 23 4 28

28 -30 2

2

B B
-24

2

o
2
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3

N= (6.02× )( )= 0.848× atoms/10

23 10

6

7.10

10

29
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3

3
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7

o π

-7 7
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a) the direct path (1).

b) the indirect path P  → A → P  (path (2)).

Answer (1.14)

The line P P  can be written  where L varies from L = 0 to L = 1. L= 0 corresponds to 
 whereas L=1 corresponds to .

So  or dx= 3dL and dy= 2dL.

(a) Now F · ds = 3xy dL + 2(3x - y ) dL

But x = (3 + 3L) y = 3 + 2L along the line (components of S)

(b) Along path (2)

The line integral is different for the two paths.

Therefore F is not a conservative field. Indeed,  and therefore curl F does not vanish everywhere.

Problem (1.15)

Given the vector function . Evaluate the line integral  from P  (2,1,-1) to P  (8,2,-1)

a) along the parabola x = 2y ,

b) along the straight line joining the two points.

c) Is E a conservative vector field?

Answer (1.15)

.

Therefore E is a conservative vector field.

(a) 

But  along the parabola

1 2

1 2 s= (3 +3 )+(3 +2 )Lu

^

x

u

^

y

u

^

x

u

^

y
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1
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^
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u

^

y

(6 +5 )P

2
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^
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^

y
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^
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^

y

2
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R
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2
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2

y

2
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P

1
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2

∫
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(b) Since curl E ≡ 0 the line integral along the second path must also be equal to 14.

Check

Let  (the vector to P )

Let  (the vector to P2).

Then any point on the straight line from P  to P  can be specified by  where L runs from L = 0 (P ) to
L = 1 (P )

However, along the st. line L x = 2 + 6L y = 1 + L

This page titled 13.1: Chapter 1 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.

∴ E ⋅dL= +2 [ y^{2}dy = +∫
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^
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^
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^
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13.2: Chapter 2
Problem (2.1)

Given an electric field of the form   find the total charge contained in the following volumes:

1) A cubical volume 1 cm on a side centered on the origin. The cube edges are parallel with the x, y, and z axes.

2) A cylindrical volume having a radius of 1 cm and a height of 2 cm centered at the origin. The axis of the cylinder is parallel with
the z-axis.

Answer (2.1)

Ex = 100x

Ey = 0

Ez = 0

This electric field corresponds to a uniform charge distribution  Coulombs/m

∴ The total charge in

(1) The cube

(2) The cylinder

since 

Note that the above charge distribution though uniform must have planar symmetry (because Ey = Ez = 0).

Problem (2.2)

A free charge distribution is given by ρ  = ar Coulombs/m  for 0 ≤ r ≤ R and ρ  = 0 for r > R. (The electric polarization P is
everywhere zero).

a) Calculate the components of the electric field in and around this charge distribution. The problem has spherical symmetry so one
can use Gauss' theorem (the divergence theorem).

b) Calculate the potential function corresponding to the electric field of part (a). Choose the arbitrary constants so that (1) V → 0 as
r → ∞.

(2) V is continuous at r= R.

In this way show that the potential at r = 0 is given by  Volts.

Answer (2.2)

(a)  since P ≡ 0

and therefore div P = 0.

So 

where Q(r) is the charge contained within a sphere of radius r.

 Coulombs for r ≤ R.

But E has only a radial component by symmetry. Therefore for a spherical surface of radius r , 

E= 100x V/mu

^

x

∴ divE= 100 = /ρ

f

ε

o
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f
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0

3
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0
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36π
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−16

Coulombs. 
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3

3ε

0

divE=

ρ

f

ε

o
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s
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r
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r
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S
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So for r≤R 

or .

for r>R the charge is independent of r: Q = aR

(b) Since E has only a radial component, the potential function will depend only upon r:

∴ in the region r ≤ R 

in the region r > R 

(The constant is zero so that V → 0 as r → ∞).

At r = R we require V to be continuous. Therefore

So 

The potential at the center of the charge distribution is therefore (aR /3 ε ) Volts

Problem (2.3)

A cube of side length L m is centered on the origin and its edges are parallel with the x, y, and z axes. The electric dipole vector per
unit volume, P, is given by 

a) Calculate the bound charge density ρ  = - div P.

b) Calculate the surface bound charge density on each face of the cube.

c) Show that the total bound charge on the cube is zero.

Answer (2.3)

(a)  inside cube

P ≡ 0 Outside cube

∴ ρ  = - div P = - 3P  inside the cube

= 0 outside the cube.

The total bound charge inside the cube is therefore Q  = - 3P L  Coulombs

(b) The discontinuity in the normal component of P gives an effective surface charge density on each face of the cube.

For example, on the face f  there is a discontinuity in P  which is illustrated in the sketch below.
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0

aR

3

12ε

0

aR

3

4ε

0

3aR

3

12ε

0

= = a /3V
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^
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∴ The surface bound charge density is  Coulombs/m  The total surface charge on f  is Q  = σ L  = P L /2
Coulombs. There is a similar charge on each of the other faces. Therefore the total surface charge = 6Qs = 3P L . The
same as the volume charge.

Problem (2.4)

A disc of charge whose diameter is R meters is centered on the origin with its plane normal to the z-axis as shown in the sketch.

(a) Calculate the potential function V(z) on the axis of the disc. Sketch V(z).

=+σ

b

LP

O

2

2
1 s b
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(b) Make a sketch of E (z). Show that as z → 0  for z > 0 and  for z < 0.

(This problem is not as trivial as it looks. Remember V(z) must be an even function of z. It must also go to zero as | z | → ∞, and it
must be continuous at z = 0. The answer is .

Answer (2.4)

where u = r  + z  du = 2r dr

(There is a temptation to write  but this would be wrong because one must use the +'ve root of z  even when z is
negative. Hence .)

For z > 0 but z small 

For z < 0 but z small 

Therefore for z > 0 .

for z < 0 .

for z > 0 but |z| >> R ,

for z < 0 but |z| >> R ,

ie. the potential looks like a point charge q = R σ Coulombs.

(b) 

for z > 0 

∴ @ z = 0 .
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∴ @ z = 0 

Problem (2.5)
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Two thin infinite plane metal plates are parallel and separated by a gap d meters as shown in the sketch. Plate #1 carries a surface
charge density of +σ Coulombs/m . Plate #2 carries a surface charge of -σ Coulombs/m . In the metal E = 0, otherwise the charges
in the metal would move and one would not have an electrostatic problem. Let the direction normal to the plates be the z direction.

(a) Use Gauss' theorem to calculate the electric field strength in the gap between the plates. Let this value be E .

(b) What is the value of D  between the plates?

(c) What is the potential difference between the two metal plates?

(d) Suppose that a slab of matter whose thickness was (d/2) meters was slipped between the two metal plates. Suppose further that
this slab were polarized such that P  = P . What would now be the potential difference between the two plates?

(e) Show that D  is continuous across the faces of the polarized slab.

Answer (2.5)

(a) Since we have two infinite sheets of charge the electric field is uniform and parallel with z (normal to the plates). Use a
pill box which penetrates the metal surface on the left

2 2
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z

z o

z
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or E  = σ/ε  Volts/meter.

(b) D  = ε E  + P  Here P  = 0

∴ D  = ε E  = σ Coulombs/m .

Notice that for σ = 1 Coulomb/m  the electric field would be 1.13 x 10  Volts/meter. This is huge: air breaks down in
a field of ~ 3 x 10  Volts/meter. Therefore 1 Coulomb/m  is a huge charge density.

(c) ∆V = E d = σd/ε  Volts.

(d)

Outside the slab E  = 0

Inside the slab 

When placed between the two metal plates the field distributions add. Therefore in the gap E  = E  but in the slab 
.

The total potential drop between the plates will be

(E ⋅n)dS =Q/ \) \( ∴ A=∫

S
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The potential drop is decreased by the presence of the slab.

(e) In the gap between the slab and the plates D  = ε E  = σ Coulombs/m .

In the slab

D  is continuous across the slab faces!

Problem (2.6)

An ellipsoid of revolution has the shape of a cigar with its axis oriented along z. The length of the cigar is 1 cm and its diameter is 
 cm. The cigar is uniformly polarized: The polarization is given by

where

P  = 0.1 Coulombs/m

P  = 0.2 Coulombs/m

P  = 0.3 Coulombs/m .

Calculate the electric field components in the ellipsoid. (They turn out to be huge ~ 10  V/m. Air breaks down in a field of ~ 10
V/m).

For the cigar whose length is 2d and whose diameter is 2R the depolarizing coefficient is given by ( where )

.

Answer (2.6)

For this problem the ratio  and therefore .

according to my calculations, N  = 0.1736.

But the sum rule states that N  + N  + N  = 1 and therefore the sum N  + N  = 0.826. By symmetry N  = N , therefore N  =
N  = 0.413.

,

therefore E  = -0.47x10  Volts/meter,

E  = -0.94x10  Volts/meter

E  = -0.59x10  Volts/meter.

Problem (2.7)

An uncharged uniformly polarized disc of radius R meters and thickness 2D meters is shown in the figure. The polarization, P
Coulombs/m , is directed along the axis of the disc.
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(a) Calculate the effective bound charge density, ρ = - div P, everywhere.

(b) Use the bound charge density of part (a) to calculate the potential function along the axis of the disc.

(c) Calculate the electric field along the axis of the disc. Check your answer by looking at three limits: (1) the limit (D/R)<<1; (2)
the limit z>0 and (z/R)>>1; and (3) the limit z<0 and (|z|/R)>>1.

(d) Calculate the displacement vector D= ε E + P for all points along the axis of the disc.

Answer(2.7)

(a) P= 0 everywhere outside the disc and therefore ρ = - divP = 0 everywhere outside the disc. Everywhere inside the disc P
is constant and so its divergence is zero; ρ = 0 inside the disc. The discontinuity in the normal component of P on the
surfaces at z=-D and at z=+D produces surface bound charge densities. The surface charge density carried by the surface at
z= -D is σ = -P  Coulombs/m ; the surface charge density carried by the surface at z= +D is σ = +P  Coulombs/m .

(b) In order to calculate the potential function along the axis of the disc that is generated by the two surface charge
distributions, it is useful to begin by considering just one plane surface charge distribution; see the sketch below.

b

0

b

b

b 0
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and

Notice that the potential function must be symmetric in z. There is a temptation to replace  in Equation (1) by z
but that would be quite wrong because z is an odd function. One must replace  by |z|.

For z>0, but (z/R)<<1, .

For z<0, but (|z|/R)<<1, .

Therefore near the charged disc the electric field has the value E = +σ/2ε  on the right, and E = -σ/2ε  on the left; this
is the expected result based upon an analysis of an infinite uniformly charged plane. Far from the charged disc, 

, one finds

For z>0, .

For z<0, .

From a great distance the disc of charge looks like a point charge, where Q= R σ Coulombs.

Returning to the problem of the polarized disc, the potential function along the axis of the disc can be written by
inspection using Equation (1).

For z≥ D:

For -D≤ z ≤ +D:

For z≤ -D:
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(c) The electric field along the axis is given by .

For z≥ +D:

For -D ≤ z ≤ +D:

For z ≤ -D:

In the limit as (D/R)→0 the field outside the disc goes to zero like (2D/R); notice that the electric field is symmetric in
z. The field inside the disc approaches the value ; i.e. the field approaches the value expected for an
infinite pair of oppositely charged planes in the limit D→0.

In the limit |z|/R→∞, the electric field approaches the limit ; i.e. the field due to a point dipole

of moment p= 2D R P .

(d) By definition D= ε E+P. Outside the slab D= ε E since P=0. Inside the slab the term P just cancels the constant term in
E . The displacement vector is continuous through the surfaces of the slab. It is given for all points along the axis by 

.

Problem (2.8)

An uncharged uniformly polarized disc of radius R meters and thickness 2D meters is shown in the figure. The polarization, P
Coulombs/m , is directed along the axis of the disc.
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Calculate the potential function along the axis of the disc for z≥ D by summing the potential contributions from a collection of
point dipoles. Show that

and therefore that the field for z≥D is given by

(Compare with the results of Problem(2.7)).

Answer (2.8)

V (z) = ( − +2D),
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The contribution from the illustrated volume element to the potential at P can be written

The total potential at z is given by

where . The integrations can be readily carried out. The result is

Problem (2.9)

An uncharged uniformly polarized disc of radius R meters and thickness 2D meters is shown in the figure. The polarization, P
Coulombs/m , is directed along the axis of the disc.
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The electric field at the center of the disc is, by direct calculation (see Problem(2.7)),

Compare this value for the electric field with that obtained using the depolarizing coefficient for an ellipsoid of revolution having
the same ratio of (D/R) as the disc. Carry out the calculation for (a) , and for (b) .

Answer (2.9)

The appropriate depolarizing coefficient for a pancake shaped ellipsoid is stated in the E&M notes, Figure (2.15):

If (D/R)<<1, . Using the exact expression for N

(a) For R= 10D one finds N = 0.861, and this gives

By direct calculation, the exact value is .

(b) For R= 100D one finds N = 0.9845, and therefore

By direct calculation, the value is .
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Cylindrical discs are often approximated as ellipsoids of revolution, especially in magnetic problems, for purposes of
estimating the first order correction to the field at the center of a disc having an infinite radius, .

Problem (2.10)

An uncharged sphere of radius R is polarized in such a way that the polarization vector P is radial, and its magnitude is given by 
.

(a) Calculate the electric field at all points inside the sphere.

(b) Calculate the electric field at all points outside the sphere.

Answer (2.10)

The polarization vector possesses only a radial component, therefore . The bound charge density is 

.

(a) The electric field inside the sphere can be calculated from Gauss' theorem because the field must be radial by symmetry.
Thus

or

(b) There is a surface charge density on the sphere, ρ = P  Coulombs/m  because of the discontinuity in the normal
component of the polarization vector. The total charge contained within a sphere whose radius is slightly larger than the
radius R is zero. Therefore the electric field is zero everywhere outside the sphere.

Problem (2.11)

Consider an uncharged sphere having a very large radius R which is uniformly polarized along the z direction. The polarization is
P = P .

(a) What is the direction and strength of the electric field inside the sphere? How does this field depend upon the radius of the
sphere?

(b) A tiny spherical cavity of radius b, b/R<<1, is cut out of the sphere at some point not too far from its center. The polarization in
the remainder of the big sphere remains unchanged. Use the principle of superposition to calculate the electric field strength inside
the small cavity of radius b.

Answer (2.11)

(a) The depolarizing factors obey the sum rule N  + N  + N = 1. But for a sphere N =N =N , therefore each is equal to (1/3).
Inside the sphere . This fieldstrength does not depend at all on the radius of the sphere.

(b) The field inside the tiny sphere of polarized material which has been cut out of the big sphere is . When this is
added to the field in the cavity of radius b it must give a total field equal to the field strength before the tiny sphere was
removed. It can therefore be concluded that the field in the cavity is zero!

Problem (2.12)

Consider an uncharged cylinder of radius R and length L. The axis of the cylinder lies along the zaxis. Let both R and L become
infinitely large, but in such a way that the ratio (R/L)→0.

(a) Let the material of the cylinder be polarized along its length, i.e. P = P . What is the direction and strength of the electric field
inside the cylinder?

(b) Let the material of the cylinder be polarized transverse to its axis, along the x-axis say; i.e. P = P . What is the direction and
magnitude of the electric field inside the cylinder?

Answer (2.12)
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(a) The depolarizing coefficient for a very long needle in the direction of its length is zero. Therefore, when the cylinder is
polarized along its axis there is no electric field inside it.

(b) By symmetry the transverse depolarizing coefficients must be equal: N =N . But from the sum rule N +N = 1, since
N =0. It follows that N =N =(1/2). The electric field inside the cylinder is given by .

This problem demonstrates that the dipole field has such a long range that the electric field inside an infinitely large
body depends upon its shape.

Problem (2.13)

Consider two charges q1=Q and q2=- Q. The charge q1 is located at (-b,0,0); the charge q2 is located at (b,0,0).

(a) Let =2. Show that the equipotential V=0 is a sphere of radius  centered at .

(b) Let = 1/2. Show that the equipotential V=0 is again a sphere of radius  but centered at .

The equipotential V=0 can be replaced by a grounded metal sphere without disturbing the potential distribution outside the sphere.
This construction therefore provides the solution of the problem of a point charge brought up to a grounded conducting sphere.

Answer (2.13)

, and . Therefore V=0 when . A bit of
algebra gives

By adding  to both sides of (1) this equation can be written

This is the equation of a sphere centered at , and having a radius .

Problem (2.14)

Consider two charges q =Q and q = -Q. The charge q  is located at (-b,0,0); the charge q  is located at (b,0,0).

(a) Show that V=0 on the plane x=0. The region to the right of x=0 can be replaced by a conducting metal without disturbing the
potential in the region x<0. This construction provides the solution of the problem of a point charge brought up to a grounded
conducting plane.

(b) Show that the charge q =Q is attracted to a grounded metal plane with a force

Answer (2.14)

The electric field at x=-b is just that due to a point charge -Q located at x=+b. Therefore , and E = E = 0. Thus
the force on the charge pulling it towards the metal surface is just

This page titled 13.2: Chapter 2 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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13.3: Chapter 3
Problem (3.1)

It is desired to construct a 100 pF capacitor using a mylar spacer 10  m. thick, ε = 3.0, placed between two metal plates. How large
an area is required for the metal electrodes?

Answer (3.1)

,

i.e. one requires electrodes approx. 2x2 cm square.

Problem (3.2)

A small drop of oil is characterized by a relative dielectric constant ε = 1.5 and a density of 800 kg/m ; its radius is R= 10  m. It is
placed between condenser plates which are parallel and which are separated by 1 cm. The oil drop is uncharged. A potential
difference of 100 Volts is placed across the capacitor plates. The relative dielectric constant of air may be taken to be ε = 1.00.

(a) Estimate the dipole moment induced on the drop by the electric field.

(b) How large a field gradient would be required to suspend the drop in the gravitational field?

Answer (3.2)

(a) The potential function outside the drop has the form

The potential function inside the drop has the form

At r= R these potentials must satisfy the two boundary conditions

(1) The potential function must be continuous;

and (2) The normal component of D must be continuous.

These boundary conditions require

These equations have the solutions

The dipole moment on the sphere is therefore given by

For the present case

(b) The gravitational force on the drop is
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In order to suspend the drop one would require

This implies a field gradient of  This is an enormous field gradient!

Problem (3.3)

This problem concerns the calculation of the dielectric constant for a material composed of a lattice of atoms each of which carries
a permanent electric dipole moment which is free to rotate. The calculation follows the article by L.Onsager,
J.Amer.Chem.Soc.58,1486-1493(1936). According to the Onsager model, each electric dipole, of strength p, is located at the center
of a sphere of radius R: inside the sphere the relative dielectric constant is 1, outside the sphere the relative dielectric constant is ε .
The spherical hole is supposed to represent the volume of the atom which carries the dipole. The average electric field in the
material far from the dipole under examination is uniform, it has the value E, and it is directed along z.

(a) Calculate the field in the cavity in the absence of the dipole moment; let this field be E .

(b) Calculate the field inside the cavity for the case when the dipole is present in the cavity but the average applied field strength is
zero, i.e. E=0. Let the field in the cavity due to the presence of the dipole be the reaction field R. Notice that the reaction field is
always parallel with the direction of the dipole. The field outside the cavity is a dipole field; what is the corresponding effective
dipole moment?

(c) The total field in the cavity due both to the presence of the dipole and due to the applied field E can be obtained by
superposition. The result is the vector sum of the cavity field, E , and the reaction field, R. However, R exerts no torque on the
dipole because it is parallel with it. The potential energy of the electric dipole because of the presence of the cavity field is given by

If pE  is small compared with kT it can be shown, using standard statistical mechanics, that the average value of Cosθ due to
thermal agitation is

Use this result to calculate the mean value of the polarization per unit volume. Let the number density of dipoles be N per m .

(d) Use the results of part (c) to show that the dielectric constant of the medium is related to the individual atomic dipole moment,
p, through the expression

This relation can be used to deduce the dipole moment of polar molecules from the measured values of the static dielectric
constant.

(e) A certain material contains a density of molecules  per meter , and each molecule carries an electric dipole
moment  Coulomb-meters. Calculate the relative dielectric constant, ε , at 300K.

Answer (3.3)

(a) The Cavity Field.

Outside the cavity 

Inside the cavity 

At r=R: V  = V

from which .

(b) The Reaction Field.
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Outside the cavity the potential function is that of a dipole; for this part of the problem there is no external field, so that
.

Inside the cavity the potential function, V , must include the singular dipole field due to the point dipole plus a reaction
field due to the polarization of the medium:

At r=R: V  = V

from which

and

From these expressions one obtains

and the effective dipole moment for the region external to the cavity is given by

where .

(c) The mean polarization per unit volume is parallel with the field and is given by

Consequently,

(d) D = εE = ε0E + P,

or (ε -1 ) E = P/ε .

Therefore

or
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and

Problem (3.4)

The radius of the sun is 6.98x10  km. and its surface temperature is 6000°C, corresponding to an energy kT= 0.34 electron Volts.
Treat the sun as a conducting sphere isolated in space and calculate the net positive charge required to produce a potential of 0.34
Volts relative to zero potential at infinity.

Answer (3.4)

At the surface of a conducting sphere the potential is given by

Therefore, Q= (4 ε )(0.34)(6.98x10 ) = 2.64x10  Coulombs. This is a surprisingly small amount of charge. It corresponds
to a deficit of 1.65x10  electrons.

Problem (3.5)

A capacitor is constructed of two concentric metal cylinders. The relevant radius of the inner electrode is a, the relevant radius of
the outer electrode is b. The space between the electrodes is filled with air for which ε = 1.00.

(a) What is the capacitance per unit length of this device?

(b) The above capacitor, whose length is L= 10 cm, is placed upright in a dish of oil, ε = 3.00, so that the space between the
cylindrical electrodes is filled with oil to a depth of 5 cm. What is the capacitance of this configuration if the radii are a= 5 cm and
b= 6 cm?

(c) The capacitor of part (b) is charged to a potential difference of 1000 Volts. How high will the oil rise between the capacitor
electrodes if the density of the oil is 800 kg/m ?

Answer (3.5)

(a) Let the charge on the inner electrode be Q Coulombs/meter, that on the outer electrode -Q Coulombs/meter. The field is
radial, so from Gauss' law

2 r E  = Q/ε ,

and

.

The potential difference between the electrodes is

But Q= C∆V, therefore

(b) If oil is placed betweeen the electrodes the capacitance per unit length becomes

C  = ε C Farads/meter.

For a system having a length of L= 5cm= 0.05 meters the capacitance is

The oil filled part has a capacitance which is 3 times this value: C = 45.7 pF. The total capacitance is the sum of the
above figures:
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(c) The electrostatic field energy per unit length of capacitor is given by

where  and .

That is , so that

If the oil level between the capacitor electrodes rises by dz, the increase in electrostatic field energy will be given by

since a slice dz thick of air (ε =1) is replaced by oil (ε = 3.0). But this change in energy must be equal to the work done
by the electrostatic forces: Fdz= dU , so that

This force will support a column of oil whose height is H meters, where

For our problem F = (1.1x10 )(800)(9.8)H,

or F = 27.09H Newtons

Therefore .

Problem (3.6)

An electron is located a distance d in front of the plane interface with a material characterized by a relative dielectric constant ε =
3.00.

(a) Calculate the force on the electron.

(b) How much work must be done on the electron to bring it from infinity to a distance a= 10  m from the surface?

Answer (3.6)

(a) In the vacuum at the interface

and

.

In the slab at the interface

and
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so that

and

For the present problem Q"= 3Q/2 and Q'= -Q/2.

The force on the charge Q is given by (z is measured towards the interface)

This is an attractive force.

(b) The electron will be attracted to the interface, consequently the work done to bring it up from infinity is negative. The
binding energy is given by

or

Problem (3.7)

(W.Shockley, J.Appl.Phys.9 ,635(1938)).

A capacitor is made using conducting concentric cylinders with a vacuum in the space between the electrodes. The radii of the
relevant surfaces are a,b where b>a. Place a charge q at position r between the electrodes. What is the charge induced on each of the
electrodes?

The solution of this problem is related to the calculation of the noise spectrum in vacuum tubes. The current through such a tube is
carried by discrete charges, electrons, and as each electron leaves one electrode it induces a characteristic current spike in an
external circuit. The time variation of the current pulse depends upon the electron transit time. The Fourier transform of the time
variation of the current pulse gives the noise spectrum.

Hint for the solution.

(1) Use the linearity between charge and Voltage to write three equations involving generalized capacitance coefficients (see
Equations (10.111)). One can think of the test charge q as being located on a very tiny spherical electrode.

(2) Construct two thought experiments:

(a) Put a charge Q on the inner electrode(#1), a charge -Q on the outer electrode(#2) which is grounded, and put no charge on
the tiny sphere (electrode #3); i.e. Q = Q, Q = -Q, and Q = 0. The corresponding potentials are V , which can be calculated,
V = 0 (grounded electrode), and V  which can also be calculated assuming that electrode 3 is so small that it makes a
negligible perturbation of the field between the electrodes.

(b) Put V = V = 0 and let the charge on electrode #3 be q.

The results of these two experiments enables one to deduce that the induced charge on the inner electrode is given by

Similarly, one can show that . Thus Q  + Q  = -q corresponding to charge conservation.

Answer (3.7)
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Put a charge Q on the inner electrode and ground the outer electrode so that V =0. In the space between the electrodes the
potential is given by

corresponding to the electric field . The potential at the position of the uncharged electrode #3 is just V(r). One
has

But

Therefore

From (3) .

Now let V =0, V =0, and Q =q. Then

q = C V  and Q = C V ,

from which

When r=b Q =0 as it should; no charge is induced on the inner electrode, but there is a charge -q induced on the outer
electrode. When r=a the full charge -q is induced on the inner electrode. The induced charge -q is transferred from the outer
to the inner electrode through the external circuit during the time required for the charge q to move from one electrode to the
other.

Problem (3.8)

Let an air-filled capacitor (ε = 1.00) be constructed of two square shaped metal plates of length L on a side separated by a space D.
The edges of the two plates are parallel. Now let one of the plates be rotated slightly around one of its edges so that the two
electrodes make an angle θ with respect to one another; along one edge the spacing is D and along the other edge the spacing is
D+Lθ. Estimate the capacitance of this wedged capacitor. This can be done by equating  with the electrostatic field energy 

, and by making a plausible assumption about the electric field distribution between the wedged conductors. The
electrostatic field energy is an extremum (a minimum) for the correct field distribution and therefore its value is insensitive to small
deviations of the field from its correct distribution.
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where Rθ= D, and where V is the potential difference between the electrodes. This assumption makes E perpendicular to the
electrode surfaces and it preserves a constant potential difference between the plates as x goes from 0, corresponding to one edge of
the plates, to x=L corresponding to the other edge. Unfortunately, div E is not zero so that the its potential function does not satisfy
LaPlace's equation. Nevertheless, this calculation will give an upper bound for the change in capacitance with wedge angle.

Answer (3.8)

Let x be the distance from the narrow edge of the wedge between the two conductors. At any point x one can use the volume
element

this expression is based upon a cylindrical co-ordinate system in which the z-axis lies at the apex of the wedge. If

then the field energy is given by (neglecting edge effects)

or

from which .

If , (small wedge angle), this gives

the correct expression for a parallel plate capacitor. From the expansion  the correction to the
parallel plate value C  is given by

The effect of tilting the plates is to reduce the capacitance by an amount corresponding to the average increase in spacing
between the plates.

This page titled 13.3: Chapter 3 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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13.4: Chapter 4
Problem (4.1)

A current I amps flows in the inner conductor of an infinitely long co-axial line and returns via the outer conductor. The radius of
the inner conductor is a, and b and c are the inner and outer radii of the outer conductor (see the sketch). The current density is
uniform in the two conductors. Calculate the magnetic flux density in all regions. The magnetization density can be set equal to
zero everywhere.

Answer (4.1)

This problem exhibits cylindrical symmetry so that it is ideal for an application of Stokes' theorem. Let z be the direction

along the cable. Then there is only a component Az of the vector potential . Moreover, by symmetry A

cannot depend upon the angle θ, nor can it depend upon z (infinite wire).

∴ A  = A (r).

In cylindrical co-ordinates

, ∴ B has only a θ component

.

But since there is no magnetization and no time dependence
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Apply this to a circle of radius r:

Case (1) 

So when r = 0 B  = 0

when r = a .

Case (2) a ≤ r ≤ b

In this case 

∴ 2 r B  = µ  I

When r=a 

When r=b 

Case (3) b ≤ R ≤ c

In the outer conductor

and the current flow is negative. Therefore this time one has

So when r = b 

When r = c B  = 0

Case (4) R ≥ C

Here 2 rB  = µ (I - I) ≡ 0 ∴ B  = 0.

There is no field outside this co-axial cable. Notice that the tangential component of B is continuous across the boundaries.

Problem (4.2)

Two identical coaxial coils, each of N turns and radius a, are separated by a distance d as shown in the sketch. A current flows
through each coil so that the fields of the two coils add at the origin.

(a) Calculate B  at the origin

(b) Show that  at z = 0.

(c) Find d such that  at z = 0.

Such a configuration is the simplest system for generating a uniform magnetic field. It is known as a Helmholtz pair.
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Answer (4.2)

The field of a single coil along its axis is

where z is measured from the center of the coil. For the above pair of coils

(a) At z = 0 

(b)

Thus at z = 0 .

(c)

∴ at z = 0

=B

z

NIμ

0

2

a

2

( + )a

2

z

2

3/2

= +B

z

μ

o

NIa

2

2

⎧

⎩

⎨

⎪

⎪

⎪

⎪

1

[ + ](z− )

d

2

2

a

2

3/2

1

[ + ](z+ )

d

2

2

a

2

3/2

⎫

⎭

⎬

⎪

⎪

⎪

⎪

= NI( )B

z

μ

0

a

2

[ + ]3/2

d

2

4

a

2

∝ −

dB

z

dz

−3 (z− )

d

2

[ + ]5/2(z− )

d

2

2

a

2

3 (z+ )

d

2

[ + ]5/2(z+ )

d

2

2

a

2

= 0

dB

z

dz

∝ − + +

d

2

B

z

dz

2

−3

[ + ](z− )

d

2

2

a

2

5/2

3

[ + ]5/2(z+ )

d

2

2

a

2

15(z− )

d

2

2

[ + ](z− )

d

2

2

a

2

7/2

15(z+ )

d

2

2

[ + ](z+ )

d

2

2

a

2

7/2

∝

d

2

B

z

dz

2

−3( + )−3( + )+15( )+15( )

d

2

4

a

2

d

2

4

a

2

d

2

4

d

2

4

[ + ]

d

2

4

a

2

7/2

∝ 6 −6 = 6 ( − )d

2

a

2

d

2

a

2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25303?pdf


13.4.4 https://phys.libretexts.org/@go/page/25303

So  if d = a.

Thus for a Helmholtz pair d = a.

The magnetic field strength at the center of the Helmholtz pair is given by

.

Problem (4.3)

A solenoid is 1 meter long and it carries 10  turns of wire. The average radius of the coil is 0.1 meters. The coil carries a current of
10 Ampères.

(a) Calculate the field at the center of the solenoid.

(b) If the wire of the coil has a cross-sectional area of 10  meters  calculate the resistance of the coil. R = ρL/A and for copper ρ =
2 x 10  ohm meters.

(c) How much power is required to produce the magnetic field of part (a)?

This calculation explains why iron core magnets are used to generate fields of ~ 1 Tesla.

Answer (4.3)

N is the number of turns/m, L the length of the coil.

At z = 0 

Here N = 10 /m, I = 10 Amps, , and R = 0.1 m

(a)  i.e. ~ 10  x earth's field!

(b) L = (2 R)(10 ) = 6.283 x 10  m ∴ R = 125.7 Ohms

(c) For 10 Amps one would require 1257 Volts and a power = VI = 12,570 Watts!! = 12.57 kWatts!

Problem (4.4)

A square loop of wire 1 cm on a side carries a current of 2 Ampères.

(a) Estimate the magnitude of the magnetic field on the axis of the current loop and 1 meter from its center. The loop may be
treated like a point dipole.

(b) Estimate the magnitude and direction of the magnetic field one meter from the center of the loop but at a point in the plane of
the loop.

Answer (4.4)

The magnetic moment of the loop is M  = IA = (2)(10 ) Amp m .

Now 

(a) On the axis of the dipole m r = M r

So 

(The earth's field is ~ 10  Tesla so this is very weak).

(b) On the equatorial plane m r = 0

Directed opposite to the dipole moment.
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Problem (4.5).

Calculate the magnetic field along the z-axis of a square coil which carries a current of I Amps (see the sketch).

Each side of the square is 2L meters long.

Answer (4.5).

Along the axis of the coil there will be only a zcomponent of magnetic field by symmetry. In order to get the total field it is
only necessary to calculate the z-component of the field generated by one side of the coil and then multiply by four. Consider
the right hand side.

Let 

The position of the element of length, dL, is specified by r where . The position of the point of observation
along the z-axis is specified by .

Therefore,

and

.

From the law of Biot-Savard one obtains

from which
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This must be multiplied by 4x because the coil has four sides:

At z=0 

This value can be compared with  for a circular coil.

Problem (4.6).

(a) How far apart should two square coils be mounted in order to obtain as homogeneous as possible a magnetic field? See the
sketch.

( One wants  at the center of the coil system. With a little thought one can convince oneself that at z=0 the quantity 
is exactly the same for each coil, so that the work of differentiation can be reduced by a factor two.)

(b) Over what distance along the z-axis will the field deviate by less than 1% from the field at the center of the coil system if L= 1
meter?

Such square coils are often more convenient to build than circular coils if the earth's magnetic field is to be cancelled over a large
volume.

Answer (4.6)

(a) From the results of Problem (3.5) one can write

, where
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and .
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, and

.

Note that at z=0 ; the field gradient vanishes by symmetry.

, where

and

At  so that for optimum uniformity We require the numerator in the second derivative to vanish at
z=0. This condition gives

 (1)

where . The solution is  (see the figure below). The coils should be placed 2d= 1.0890L
apart.

(b) The simplest way to examine the homogeneity is to plot the field function:

where ζ= (z/L) and where = (d/L)= 0.5445057. At the center of the coil system
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From this graph one finds that the field has decreased by 1% when . This means that the field varies by
less than 1% over a central region whose length is 0.688L. It turns out that the field is homogeneous to within 1%
within a volume whose diameter is 0.688L: i.e. within the sphere whose diameter is ~68 cm if L=1 meter.

Problem (4.7)

Consider a square loop of wire lying in the xy-plane as shown in the sketch. The loop carries a current of I amps and is centered on
the origin.

( )= 0.344

z

L
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(a) Show that the contribution to the vector potential at a point P(X,Y,Z) from side (1) has only a y component and that this
component is given by

(b) Show that the contribution to the vector potential at a point P(X,Y,Z) from side (3) has only a y component and that this
component is given by

(c) Show that the contribution to the vector potential at a point P(X,Y,Z) from side (2) has only an x component and that this
component is given by

(d) Show that the contribution to the vector potential at a point P(X,Y,Z) from side (4) has only an x component and that this
component is given by

(e) Now consider the point P(X,0,Z) which is specified by the vector . Show that
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A  = 0,

In the limit as a/R→0, where , the expression for A  can be shown to go to the limit

where m = Ia  Amp-meters . This is just the x-component of the expression , the dipole vector potential.

Answer (4.7)

We shall show the calculation for side (1). The procedure for the other three sides is very similar. For side (1) the element of
length is given by

.

This element is located at . The point of observation is located at , therefore

The length of this line is given by

The contribution to the vector potential at P has only a y-component because the current element has only a y component:

This is a standard integral; it can be written

(e) The expansion for A  in the limit of (a/R)→0 can be carried out as follows: ( it is convenient to use the notation

and

Expand to first order in small quantities:
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y

r= +y

a

2

u

^

x

u

^

y

R=X +Y +zu

^

x

u

^

y

u

^

z

R−r= (X− ) +(Y−y) +Z .

a

2

u

^

x

u

^

y

u

^

z

|R−r| = .+(Y −Y +(X− )

a

2

2

)

2

Z

2

− −−−−−−−−−−−−−−−−−−−−−

√

d = ,  and A

y

Iμ

0

4π

dy

+(Y−y +(X− )

a

2

2

)

2

Z

2

− −−−−−−−−−−−−−−−−−−−

√

= .A

y

Iμ

0

4π

∫

a/2

−a/2

dy

+(Y−y +(X− )

a

2

2

)

2

Z

2

− −−−−−−−−−−−−−−−−−−−

√

= ln .A

Y1

Iμ

0

4π

⎛

⎝

⎜

Y−(a/2)− (X−a/2 +(Y−a/2 +)

2

)

2

Z

2

− −−−−−−−−−−−−−−−−−−−−−−

√

Y+(a/2)− (X−a/2 +(Y+a/2 +)

2

)

2

Z

2

− −−−−−−−−−−−−−−−−−−−−−−

√

⎞

⎠

⎟

y

= = ,(x−a/2 + +)

2

a

2

4

z

2

− −−−−−−−−−−−−−−−−

√

+ −ax+x

2

z

2

a

2

2

− −−−−−−−−−−−−−−

√

R

−

= = .(x+a/2 + +)

2

a

2

4

z

2

− −−−−−−−−−−−−−−−−

√

+ +ax+x

2

z

2

a

2

2

− −−−−−−−−−−−−−−

√

R

+

ln = ln(1+ )+ln(1− )−ln(1− )−ln(1+ ).

⎛

⎝

⎜

(1+ )(1− )

a

2R

−

a

2R

+

(1− )(1+ )

a

2R

−

a

2R

+

⎞

⎠

⎟

a

2R

−

a

2R

+

a

2R

−

a

2R

+

≅ −

a

R

−

a

R

+

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25303?pdf


13.4.11 https://phys.libretexts.org/@go/page/25303

since (a/R ) and (a/R ) are very small. One can finally write

where .

It follows from this that to first order in small quantities

Problem (4.8)

A short cylindrical solenoid has a radius of R= 5x10  meters and a length of L= 5x10  meters. It is wound with N= 8x10
turns/meter, and the windings carry a current of I= 10 Amps.

(a) What is the magnetic field at the center of the solenoid?

(b) What is the magnetic field strength on the axis of the solenoid but at the end face (z=L/2)?

Answer (4.8)

The magnetic field along the axis of a short solenoid is given by (z is measured from the solenoid center)

(a) At z=0 

For this problem .

Therefore B (0)= 0.450 Teslas.

(b) At z= L/2= 2.5x10  meters:

Problem (4.9)

A short cylindrical disc has a radius of R= 5x10  meters and a length of L= 5x10  meters. It is uniformly magnetized; the
magnetization density is parallel with the axis of the disc, the z-axis, and the magnetization has the value M = 0.955x10
Amps/meter.

(a) What is the magnetic field at the center of the disc?

(b) What is the magnetic field strength on the axis of the disc but at the end face (z=L/2)?

Answer (4.9)

The magnetic field distribution generated by a uniformly magnetized disc is the same as that generated by the windings of a
short solenoid. The magnetic field along the axis of a short solenoid is given by

It is only necessary to replace the product NI in this formula by the magnetization M .
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(a) At z=0 .

For this problem 

Therefore B (0)= 0.537 Teslas.

(b) At z= L/2= 2.5x10  meters:

Problem (4.10).

Given a sphere which is uniformly polarized along the z direction i.e. M  = M  Amps/meter.

(a) What is H inside the sphere?

(b) What is B inside the sphere?

(c) What is the value of B  on the axis of the sphere but just outside the surface of the sphere?

(d) What is the value of H just outside the equator of the sphere?

(e) A neutron star is typically an object 10  meters in diameter having the density of nuclear matter (~ 10  kg/m ). The maximum
magnetic field at its surface is estimated to be 10  Tesla. What is its average magnetization density, M ?

(f) A neutron has a mass of 1.68 x 10  kg. From (e) what is the average magnetic moment of a neutron in a neutron star?

Answer (4.10).

(a) The demagnetizing factor for a sphere is 1/3. Therefore .

(b) .

(c) From div B = 0 The normal component of B must be continuous .

(d) From curl H=0 (there are no currents) the tangential component of H must be continuous across the surface of the sphere.
It follows that  Amps/meter at the equator just outside the sphere. From the fact that M has no component normal
to the surface of the sphere at the equator it follows that the normal component of H must be continuous across the surface of
the sphere at its equator and therefore H has only a z-component just outside the sphere on the equator. Also on the equator

just outside the sphere . The tangential component of B is discontinuous.

(e) 

(f) The number of neutrons/m  = 

.

The neutron magnetic moment is 9.7 x 10  Amp m  so that on average only 2 x 10  of a neutron is aligned.

Problem (4.11)

The material of a very long, hollow, rod is uniformly magnetized as shown in the sketch. (Although the rod is shown as having a
finite length in the sketch, it is supposed to be infinitely long).
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(a) What is the value of the magnetic field B outside the rod?

(b) What is the value of the magnetic fields H,B in the central hollow region where M =0?

(c) What are the values of B,H in the material of the rod where the magnetization is M ?

Answer (4.11)

By superposition this problem can be reduced to the problem of nested solenoids. The outer surface discontinuity in the
tangential component of M is equivalent to a solenoid for which NI= M . This current sheet produces a field B = µ M . The
inner surface discontinuity in the tangential component of M is equivalent to a solenoid for which NI= - M .

(a) Outside the rod the fields B,H are both zero.

(b) In the hollow region the fields due to the two current sheets cancel so that B= H= 0.

(c) In the region between the two current sheets the B field is that due to the outer current sheet; B = µ M . But by definition,
B = µ (H  + M ) , and therefore H =0. Thus H= 0 everywhere because there are no real currents and no magnetic charge
density to generate an H-field.

Problem (4.12)

An infinitely long rod is uniformly magnetized except for a disc shaped cavity shown shaded in the figure. Inside the cavity the
magnetization is zero. What is the magnetic field strength at the center of the cavity?

Answer (4.12)

This problem can be worked as the superposition of a uniformly magnetized, infinitely long rod plus a uniformly magnetized
disc, but for the disc M = - M . For the uniform rod B = µ M . Along the axis of the disc

z
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0 1 0 0
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z 0 0

z 0 0 0 z

z 0 z 0 0
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and at z=0

The total field at the center of the disc will be

In the limit (d/R)→0 the field at the center of the cavity is just B = µ M .

Problem (4.13)

A uniformly magnetized ellipsoid possesses magnetization components

when referred to the principle axes of the ellipsoid. Demagnetizing coefficients for the ellipsoid are

(a) Calculate the components of H inside the ellipsoid.

(b) Calculate the components of B inside the ellipsoid.

(c) Calculate the angle between B and M.

Answer (4.13)

The demagnetizing coefficients obey the sum rule

.

For this problem
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So θ = 11.9°.

Problem (4.14)

A very large disc whose radius is infinite is magnetized along its normal as shown in the figure.

(a) What is H in the disc?

(b) What is H outside the disc?

(c) What is B inside the slab?

(d) A spherical cavity is cut out of the material of the disc. Use the principle of superposition to calculate the magnetic field B in
the cavity.

Answer (4.14)

(a) The demagnetizing factor for the direction along the disc normal is N  = 1. Therefore H  = - M  .

(b) Outside the disc the field is zero by analogy with the equivalent electrostatic problem i.e. two infinite charge sheets

(c) B  = µ  (H  + M ) ≡ 0.

(d) Inside a uniformly polarized sphere . Therefore in the cavity one must have  so that the
sum of the two fields gives zero when the sphere is put into the hole.

Problem (4.15)
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A very long cylinder of magnetic material has a radius R. The axis of the cylinder lies along the z-axis. The magnetization depends
upon the distance from the cylinder axis:

(a) Calculate the effective current density curl M both inside and outside the cylinder.

(b) Note that there is an effective surface current density on the surface of the cylinder due to the discontinuity in the tangential
component of the magnetization. Calculate this surface current density, J .

(c) Calculate the radial dependence of the magnetic field in the cylinder.

Answer (4.15)

(There is no angular or z dependence).

(a) ∴  ie. independent of position.

(b) At the outer surface there is a discontinuity in the tangential component of M. Use Stokes' theorem to obtain the effective
surface current density:

J  = curl M

Apply this to the loop shown below:

Current through the loop 

J  is the effective surface current density.

or J  = M  Amps/m.

(c) Calculate the field along the axis of the cylinder. By symmetry there is only a z-component which is independent of z.
The uniform effective current density, , can be treated like a nested solenoid problem in order to calculate the magnetic
field along the cylinder axis.

The effective current sheet strength is .

This produces the solenoid field contribution .

Integrate from r = 0 to r = R: B  = - µ M  Tesla. However, this is just cancelled by the surface current sheet which
produces B  = µ M  Tesla.

∴ On the axis B  ≡ 0.
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Now use curl B = µ  curl M

or  and integrate around the loop shown in the figure:

from which B  = µ M

∴ B (r) = µ M (r/R)

and H  ≡ 0 everywhere.

Problem (4.16)

A permanent magnet is formed in the shape of a dough-nut having an inner radius a meters and an outer radius of b meters (see the
figure). The magnetization density has the components M =0, M = M , M =0 in cylindrical polar coordinates, where M  is
constant.

(a) Calculate the field H everywhere.

o

B ⋅ dL= M ⋅dL∮
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(Answ: div M=0 everywhere, and there are no free currents. Therefore there are no sources for H and consequently
H=0 everywhere.)

(b) Suppose that a gap d meters wide is opened in the ring as shown in the figure. Calculate the field B at the center of the gap.

(Answ: )

Answer (4.16)

A uniform magnetic charge density will appear on the faces of the cut due to the discontinuity in M. The surface charge
density on the left hand face is +M /m ; the surface charge density on the right hand face is -M /m . These charge
distributions produce a field at the gap center given by

where R= (b-a)/2.

B = µ H  directed along M , ie along -x in the above figure. This problem can also be solved by treating the magnetized plug
removed from the gap as a short solenoid: for a short solenoid of radius R= (b-a)/2 and of length d the field at its center is
given by

This field plus the gap field, , must equal the field in the gapless ring, - µ M , by superposition. Therefore

the same answer as above.

This page titled 13.4: Chapter 4 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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13.5: Chapter 5
Problem (5.1)

A very long solenoid is wound with N= 10  turns per meter. It is filled with a very permeable material, but one that becomes
saturated at a critical value of B: i.e. for B< 0.30 teslas the relative permeability is µ = 10 , but for B> 0.30 Teslas the relative
permeability becomes very nearly equal to µ = 1.0.

(a) Make a sketch showing approximately how one would expect the B-field inside the material in the solenoid to vary with the dc
current through the solenoid windings.

(b) Suppose that a secondary coil of radius R=2 cm and 1000 turns was wound on the above solenoid. Calculate the emf induced in
the secondary coil if the current through the primary varies as

where I = 1 mAmp (10  Amps), and ω= 2 F corresponds to 60 Hz.

(c) Calculate the emf induced in the secondary coil if a dc current of 10 mAmps flows through the solenoid windings in addition to
the above ac current.

The controll of an output ac signal amplitude by means of a relatively small dc control current formed the basis for a device called
a magnetic amplifier. In effect, the efficiency of a transformer could be altered by a dc current and therefore large amounts of ac
power could be controlled by means of relatively small amounts of dc power. Magnetic amplifiers enjoyed a brief spell of
popularity in the late 1950's and the early 1960's. They were superceded by the developement of transistors which could handle
large amounts of power.

Answer (5.1).

(a) Inside the solenoid H= NI = 10 I Amps/meter. When the B field is less than 0.30 Teslas the relative permeability is given
by µ = 10 , so that

The current required to saturate the core is

Upon saturation, the B-field increases only very slowly with the current because M remains fixed at the saturation
value:

since µ H is relatively small. At I= 0.1 Amps (~40x the current required to saturate the core) µ H= 0.013 Teslas, an
increase of only 3% in B.
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(b) For a small current µ = 1000 and so for an amplitude of 1 mA the field varies as

The flux through the secondary coil is given by

since ω= 2 (60) = 377 radians/sec.

(c) The dc current of 10 mAmps would bias the core of the solenoid into the region where the relative permeability is only
µ = 1.0. The voltage induced in the secondary coil would decrease by a factor of 1000: the output signal would fall to ~60
mV from its initial value of ~60 Volts.

Problem (5.2)

A long straight thin wire carries a current of 5 Amps; it runs parallel with the interface between vacuum and a superconducting
plane for which the relative permeability is µ = 0. Calculate the force on the wire due to its image if the wire is a distance z=1 cm
from the plane. In a superconductor the field B is zero.

Answer (5.2)

The image current I' has the same magnitude as the driving current I, but is opposite in sign, and is located z from the
interface, but in the superconductor;

I' = - I.

The current plus its image generate the magnetic field in the region outside the superconductor. The normal component of B
is zero at the superconducting surface as is required by div B=0 plus the condition B=0 in the superconductor. The
component of B or of H parallel with the interface does not matter since surface currents flow in the superconductor to shield
its interior so that H=0.

The field generated by I' at the wire carrying the current I is given by

The force on the wire per unit length is given by

r

B= 0.126 sinωt Teslas.
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The direction of the force is such as to repell the wire from the interface. The above force is sufficient to lift a weight of
approximately 25 miligrams per meter. This is pretty feeble; however, the force increases with the square of the current so
that for 500 Amps the force would support ~0.25 kg/meter.

Problem (5.3)

A permanent magnetic dipole, m, is brought up to the plane interface between vacuum, µ =1, and a superconductor, µ =0. The
dipole is located a distance z in front of the interface.

(a) Show that the image magnetic charge induced in the superconductor by the magnetic charge q  a distance z in front of the
interface is equal to q  and is located a distance z behind the interface. The image charge is required in order to satisfy the
condition divB=0 and also the condition B=0 in the superconductor.

(b) Use the results of part (a) in order to calculate the force exerted on a magnetic dipole by its image when the dipole is oriented
parallel with the interface.

(c) Calculate the force on the dipole when it is oriented normal to the interface.

(d) Given 1 cc of permanently magnetized material, estimate the heighth at which it would float above a superconducting plane. Let
the density of the material be 4.5 gm/cc, and let its magnetization density be M= 1.59x10  Amps/meter ( these parameters are
appropriate for Barium ferrite BaO.6Fe O  - this is a common ferromagnetic insulator called Ferroxdure).

Answer (5.3)

The field in the vacuum which is generated by a point magnetic charge and its image must be such that the normal
component of B vanishes on the superconducting surface (see the figure).

In this way the conditions divB=0 and B=0 can both be satisfied. The tangential component of B need not be zero; surface
currents flow in a very thin surface layer (~ 10  meters thick) which shield the interior of the superconductor.

(b) Dipole moment parallel with the Interface.

The component of force normal to the surface is the same for each charge on the dipole, therefore there is no torque
acting on the dipole. The two forces acting on a given charge are:

F = = = 25 × Newtons / m .
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an attractive force

and a repulsive force

The net repulsive force on the dipole is given by

or

But m= q D so that the repulsive force can be written

(c) Dipole moment normal to the Interface.
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The net repulsive force on the dipole is given by

Now 

and 

so that

This repulsive force is twice as large as the repulsive force when the dipole is oriented so that it is parallel with the
interface.

(d) The weight of 1 cc of Ferroxdure is 4.5 gm or 4.5x10  kg. The gravitational force is F = 4.41x10  Newtons. The total
magnetic moment for this piece of material is

The repulsive force when the moment is parallel with the plane (the stable configuration) will be

or

The magnet would float approximately 1 cm above the superconducting plane.

Problem (5.4)

A short solenoid is constructed of 100 turns wound evenly on a cylindrical form. The length of the windings is L= 10 cm, and the
mean radius of the coil is R= 5 cm. Find an expansion in Legendre polynomials for the magnetic potential in the interior of the
solenoid, and estimate the radius of the region around the solenoid center within which the field is uniform to better than 1%. In the
expansion of the field along the solenoid axis you may discard terms of order z  and higher powers.

Answer (5.4)

The field along the axis of a short solenoid is given by
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Note that the term in the brackets is a dimensionless number so that one can use z,R,L measured in cm rather than meters.
For our case N= 1000 turns/meter, so that for a current of 1 Amp

,

and

where z is measured in cm. The idea is to expand this function in powers of z.

At z=0 

etc.

But

Thus

This field can be obtained from a potential function

where

V(z) must satisfy ∇ V=0, therefore

the terms in  must be omitted because they blow up at r=0.

At θ=0 the radius r becomes equal to the cylindrical co-ordinate z, and since Cosθ=1 this series becomes

from which by comparison with eqn.(1) one finds

= + ) , eqn (3.2.10).B
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and so on. Thus to terms of order z  one has

The first two terms, i.e.  and , correspond to a uniform field  Teslas. The
correction to the axial field component, B , is given by

since . The term in the brackets varies between -4 and +8.

The correction to the transverse magnetic field component, B , where  is given by

The term in the brackets varies from -4 to +4. It is clear from these expressions that the deviations ∆B ,Bρ will be less than 

 for all angles. The field will be uniform to better than 1% within a sphere of radius r= 0.816 cm, and uniform

to better than 10% within a sphere of radius r= 2.582 cm around the center of the solenoid.

Problem (5.5).

A magnetic shield is made of a permeable material in the form of a long cylinder having an inner radius R  and an outer radius R .
The relative permeability of the cylinder material is µ . If this shield is placed in a uniform magnetic field, B , that is directed
transverse to the cylinder axis what will be the field inside the cylinder? You may treat the cylinder as if it were infinitely long.
Inside and outside the cylinder the relative permeability is µ =1.

Answer (5.5)

There are clearly three regions involved in this problem:

(1) the region inside the cylinder, µ =1;

(2) the region inside the cylinder walls, µ ;

(3) the region outside the cylinder, µ =1.

In each of these three regions ∇ V=0, where H= - gradV. Therefore, in each region the potential can be expanded in a series
of the form

It proves not to be necessary to use terms for n>1. Inside the cylinder: V  = arCosθ

In the cylinder walls: ,

one must use both terms because neither term becomes singular in the cylinder walls;

Outside the cylinder: \(V_{3}=-H_{0} r \cos \theta+\frac{b C o s \theta}{r}).
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Boundary Conditions.

At r=R  (the inner wall)

or

At r=R  (the outer wall)

or

These 4 equations can be solved for the 4 unknowns a,a ,b , and b. The result is

The ratio of the field inside the cylinder to the field outside the cylinder is given by

or

The relative permeability for Supermalloy is µ ~ 10  for B< 0.7 Teslas. In a typical application for shielding a
photomultiplier tube one would have R = 2.5 cm and R = 2.6 cm or . For such a case

Problem (5.6)

A magnetic shield is constructed of a permeable material in the form of a long cylinder of length L and having an inner radius R
and an outer radius R . The relative permeability of the shield material is µ . Let this shield be placed in a field B  parallel with the
cylinder axis. Estimate the field at the center of the shield if L is much greater than the radii R  and R .

This problem cannot be easily solved in closed form; however, one can argue as follows:
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(1) Most of the field inside the cylinder will be sucked into the permeable material of the cylinder walls. One can estimate
the strength of B inside the cylinder wall from conservation of flux.

(2) Assuming that B is constant within the cylinder walls then the magnetization M will also be uniform. The discontinuities
in M at the cylinder ends will act as field sources. These sources can be used to estimate the field at the center of the cylinder.
As a crude first approximation one can assume that all of the magnetic charges on the cylinder ends are the same distance
from its center because L>>R.

Answer (5.6)

The region inside the cylinder originally contained the flux . This flux becomes concentrated in the cylinder
wall. The resulting B-field in the wall must be such that

Therefore .

But 

since for a very permeable material .

Consequently, , Amps/m.

The discontinuities in M give two rings of magnetic charge, each of average radius R= (R +R )/2, and of total strength

If the length of the cylinder is much longer than its radii, then crudely speaking, the field at the center of the cylinder must be
given approximately by two point charges, +Q and -Q, located a distance L/2 from the center of the cylinder: thus

or

Notice that this expression is independent of µ , but µ  must be large enough so that H inside the shield material can be
neglected when compared with M. In order to obtain effective shielding the field B  in the cylinder walls must be less than
the saturation field. For an iron based shielding material the field B at saturation is typically ~ 1 Tesla. If the driving field B
is the earth's magnetic field, ~10 Tesla, the ratio of the inner radius R  to the shield thickness d must be less than 5000. This
condition is easily met since for typical values R = 2.5 cm and R = 2.6 cm the ratio .

Problem (5.7)

A solenoid is constructed of N=100 turns of wire. The mean diameter of the windings is D=5 cm and the length of the windings is
L= 10 cm. This coil is to be used to generate a field of 10 Tesla in vacuum. In the following calculations the coil may be
approximated as an infinitely long solenoid.

(a) What current would be required to generate a field of 10 Teslas?

(b) Estimate the magnetic force acting to change the length of the solenoid windings. Do these forces tend to lengthen or to shorten
the windings?

(c) Estimate the tension in the wire of which the coil is wound.

Answer (5.7)
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(a) For a long solenoid in vacuum , where N= 100 is the total number of turns, and L is the length. For the present
example, L= 0.10 m and

In order to generate 10 Teslas the current required is

(b) The energy stored in the solenoid is approximately given by

Therefore .

The solenoid will tend to contract along its length. The force on the windings is given by

This force would suspend a weight of 8000 kg! The turns of the solenoid must be very securely held in place.

(c) The field B is independent of the solenoid diameter. One can write

so that

If the mean diameter increases by dD the length of the solenoid wire increases by dS= N  dD, therefore

The tension on the wire will be given by

This force is approximately the equivalent of a 100 kg weight.

Problem (5.8)

A rigid loop of wire has the form of a triangle, The base of the triangle is 5 cm long and the height of the triangle is 5 cm. This
object is placed in a uniform magnetic field of B= 1 Tesla such that its area embraces no flux. What will be the torque on the
triangle if it carries a current of 1 Amp?

Answer (5.8).

The magnetic energy of the system contains three terms:

The first two terms are the self-energy of the sources of the uniform field and the self-energy of the triangle: these terms do
not change when the triangle is rotated. The last term is dependent on the angle between the plane of the triangle and the
applied magnetic field. The flux through the triangle is given by
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where I  is the current associated with the source field B. This expression gives the mutual inductance coefficient L :

and

The torque on the triangle is just

Problem (5.9)

A charged particle moves in a uniform magnetic field B which changes slowly with time. ( Slowly here means that the rate of
change is slow compared with the cyclotron frequency).

(a) Show that the radius R of the particle orbit must change in such a way that

This change in radius is the consequence of the changing magnetic field that creates an electric field that exerts a force on the
particle.

(b) Show that the change in radius of part (a) corresponds to a change in the orbit area in such a way as to keep the flux through the
orbit constant.

(c) Show that the orbital magnetic moment associated with the particle motion remains constant as the field changes.

Answer (5.9)

(a) The force on a charged particle in a magnetic field is given by qvB where v is the transverse component of velocity. One
can ignore any motion along the magnetic field for this problem. From mechanics, and for a particle of mass m,

so that . (1)

If B changes with time there is induced an electric field since . In cylindrical polar co-ordinates there
will be only a component E  because the field is uniform and has only a z-component:

But since B  is independent of position  along the particle orbit. A moments thought will reveal that

the direction of E  is such as to cause the particle velocity to increase, therefore

or

However, from (1) 

so that from (2) 

and so 

or  (3)
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(b) The flux through the particle orbit is

But from (3) above

In other words, the flux through the orbit is conserved.

(c) The magnetic moment associated with the orbit is given by

where the current I is given by . Thus

Using eqn.(1) this can be written .

Since the flux is conserved so is the magnetic moment.

Problem (5.10)

An electron in an atomic n=1 state can be described by the wave function

where ;

Z is the nuclear charge. The above wave function corresponds to an s-state which possesses zero angular momentum. The electron,
however, carries a spin magnetic moment of 1 Bohr magneton µ = 9.27x10  Joules/Tesla oriented along the z direction. If this
magnetic moment is smeared out over the above charge distribution it corresponds to a magnetization density

(a) Calculate the effective current density J = curlM caused by the spatial variation of the above magnetization density. Use
spherical co-ordinates. (Hint: do not be in a rush to evaluate M (r) in terms of ψψ*).

(b) Show that the magnetic field at the nucleus, i.e. at r=0, due to the spatial variation of the above magnetization density is given
by

This field at the nucleus is responsible for the hyperfine coupling between the nuclear spin and the electron spin.

(c) Evaluate the hyperfine field at the nucleus of a hydrogen atom, Z=1.

Answer (5.10)

(a) The magnetization density in spherical polar coordinates is given by

Neither of these components depends upon the angle φ:
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or

But

and so

From the law of Biot-Savard one has:

where 

Inserting the expression for J  one obtains

The integrals over θ,φ give , and the integral over r simply gives the value of the magnetization density at r=0:

The field at the nucleus is given by

(b) When the expression for B (0) is evaluated for Z=1 the result is

This is a very large magnetic field: a typical iron core laboratory magnet produces approximately 1 Tesla.

This page titled 13.5: Chapter 5 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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13.6: Chapter 6
Problem (6.1)

An electromagnet is constructed of a soft iron yoke, see the diagram. The yoke radius is R= 2.54 cm, and the gap is d= 1.25 cm.
The distance from pole face to pole face along the dotted line is L= 55 cm. The number of turns on the coil is 1000 windings.
Estimate the current required to generate a field of 1.0 Teslas at the center of the magnet gap. A field of 1.0 T in the iron yoke
corresponds to a field H of 130 Amps/m.

Answer (6.1)

Therefore, 130L + d/µ  = NI.

or

,

and

I= 10.0 Amps.

Problem (6.2)

Modern permanent magnet materials such as FeNdB can be used to generate substantial magnetic fields. Consider the configuration
shown in the diagram where the cross-hatched regions represent FeNdB permanent magnets.

H ⋅ dL=NI∮

C

0

 (13) (0.55)+(0.0125)/ (4π× )= I10

−7

10

3
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The saturation magnetization density in each magnet is M = 0.8x10  Amps/m., ie. B= µ M  = 1.01 Teslas. Let R=L= 1.0 cm., and
let d= 1/2 cm.

Calculate the field B at the midpoint of the gap. The approximate effect of the iron yoke is to make each permanent magnet appear
to be infinitely long due to the magnetization induced in the soft iron. In soft iron having a very large permeability the
magnetization must be continuous at the iron-magnet interface because a discontinuity in M would produce an H- field which
would produce a large M in the iron and as a result B would not be continuous.

Answer (6.2)

The field generated at the gap center can be approximated using a superposition argument. If there were no gap the field
would be that due to an infinitely long solenoid having NI= M , ie. B= µ M .

The field in the gap,B , plus the field at the center due to a magnetized section 2d long must equal µ M . A section 2d long
possessing a magnetization density M  produces a field at its center given by the short solenoid formula .

Therefore

and

In this case d=1/2 cm and R=1 cm, so B = 0.558 Teslas.

R. Oldenbourg and W.C. Phillips,

(Rev.Sci.Instrum.57,2362(1986) and 57,3139(1986)), used 2d=1.9 cm and soft iron pole tips tapered to 0.35 cm in diameter
to produce a field of 2 Teslas in a 0.2 cm gap.

Problem (6.3)

This problem has to do with the fields produced in the region between two magnetized bits on a hard disc, see the figure. The gap is
g= 10  meters, the thickness is d= 10  meters, and the width of each magnetized region is w= 0.4x10  meters. the magnetization
is M = 6.4x10  Amps/m.

0
6

0 0

0 0 0

G 0 0

0 =B

s

dμ

0

M

0

+d

2

R

2

√

+ = ,B

G

B

S

μ

0

M

0

= (1− ) .B

G

μ

0

M

0

d

+d

2

R

2

− −−−−−

√

G

-8 -8 -6

0
5

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25305?pdf


13.6.3 https://phys.libretexts.org/@go/page/25305

The end of each magnetized region bears a surface charge of M  per square meter due to the discontinuity in the magnetization
density.

Calculate the field at P(x,o,z) on the centerline of the gap between the two magnetized regions due to the magnetic surface charges.

Answer (6.3)

On the centerline H has only a z-component by symmetry.

Let r= (g/2)u  + yu  + zu ,

and R= Zu .

The vector from the element of magnetic charge dq=dydzM  to the point of observation is 
, and .

For one of the end faces

Now

therefore

Let v= (Z-z) +(g/2) , then the integral becomes

This is a standard integral:

0

x y z

z

0
ρ =R−r=−(g/2) −y +(Z−z)u

X

u

Y

u

z

|ρ| = (g/2 + +(Z−z)

2

y

2

)

2

− −−−−−−−−−−−−−−−−−

√

= dz(z−z) dy .H

z

M

0

4π

∫

d/2

−d/2

∫

W/2

−W/2

1

( +(g/2 +(Z−z )3/2y

2

)

2

)

2

= ,∫

w/2

−w/2

dy

( + )y

2

a

2

3/2

w

a

2

(w/2 +)

2

a

2

− −−−−−−−−

√

= dzH

z

wM

0

4π

∫

d/2

−d/2

(Z−z)

((g/2 +(Z−z ))

2

)

2

(Z−z +(g/2 +(w/2)

2

)

2

)

2

− −−−−−−−−−−−−−−−−−−−−

√

2 2

= dv .H

z

wM

0

8π

∫

(Z+d/2 +(g/2)

2

)

2

(Z−d/2 +(g/2)

2

)

2

1

v v+(w/2)

2

− −−−−−−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25305?pdf


13.6.4 https://phys.libretexts.org/@go/page/25305

(This is for one face of the gap magnetic charge distribution- it must be multiplied by 2 to obtain the total field).

For (w/2)=20x10 , (g/2)=(1/2)x10 , and (d/2)= (g/2), and if Z= 1.0x10  meters B = µ H = 0.206 Teslas. For the above
parameters B  is a maximum for Z=0.71x10  meters. The maximum value of B = 0.224 T. At Z=2x10 m the field has
dropped to B = 0.121 T.

This page titled 13.6: Chapter 6 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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13.7: Chapter 7
Problem (7.1)

In his original experiments on radio waves Hertz used two spheres approximately 0.5 meters in diameter and separated by
approximately 0.5 meters. These spheres were charged to a potential difference of 2x10  Volts; as a result one sphere carried a
charge of Q = +Q= 5.56x10  Coulombs, and the other sphere carried Q = -Q Coulombs. The two spheres were suddenly
connected together electrically by means of a spark gap (ionized air is an excellent conductor), and the charge oscillated forth and
back between the spheres at a frequency which was determined by the geometry but which was of the order of 100 MHz. You may
model this system as a point electric dipole oscillating at 100 MHz, where the dipole amplitude is P = 2.78x10  Coulomb-meters.

a. Calculate and compare the terms in the expressions for the electric and magnetic fields generated by an oscillating electric
dipole as measured at a point in the equatorial plane 1 meter from the dipole (θ= /2).

b. Calculate and compare the terms in the expressions for the electric and magnetic fields generated by an oscillating electric
dipole as measured at a point in the equatorial plane 1 km from the dipole.

Answer (7.1)

At  E = 0. For R= 1 meter, f= 10  Hz, ω= 6.28x10  radians/sec

(1) 

(2) 

(3) 

Even at R= 1 meter the field is dominated by the radiation term.

B  = - (3.7 - 1.7i) x 10  Teslas, i.e. approximately four times the earth's magnetic field.

(b) R= 1 km = 10  meters.

(1) 

(2) 

(3) 

B  = - 3.67 x 10  Teslas.

Notice that the radiation field is now much larger than the near field components.

Problem (7.2)

Consider a small current loop of radius b. It carries a current I(t) = I  sinωt. Calculate the electric and magnetic fields observed at a
point P located at R relative to the center of the current loop. There is no net charge density anywhere on the loop i.e. ρ  ≡ 0.
Calculate A for the observer at R(X,Y,Z,t) and keep only the terms to lowest order in (b/R) both in the distance from an element dL
on the current loop and in the retarded time .
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Show that to first order in (b/R) the components of the vector potential are given by

or

and

A  = A  = 0. Also V = 0 because divA = 0.

Show that for very large R the fields are given by

where .

Answer (7.2)

Start from the general expression for the vector potential:

In carrying out the integral the integrand vanishes except on the wire.
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Therefore

But 

Here 

and ω  << 1 i.e. of order 
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Since

then

By comparison with the above one finds

and A  = A  = 0.

Also V = 0. Let m  = I b

and E  = E  = 0.

For large R only the terms in 1/R are important.

Similarly

Problem (7.3).

A magnetic dipole transmitter consists of 10 turns of wire wound on a form whose radius is 10 cm. An alternating current whose
amplitude is 100 Amps and whose frequency is 100 MHz is passed through the coil.

(a) What is the maximum magnetic moment of the above coil?

(b) Assuming that the above coil can be approximated by a point magnetic dipole, calculate and compare the terms in the
expressions for the electric and magnetic fields generated by an oscillating magnetic dipole as measured at a point in the equatorial
plane 1 meter from the dipole (θ= /2).

= (sinθcosϕ, sinθ sinϕ, cosθ)û
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(c) Calculate and compare the terms in the expressions for the electric and magnetic fields generated by an oscillating magnetic
dipole as measured at a point in the equatorial plane 1 km from the dipole.

Answer (7.3)

(a) The maximum magnetic moment is m = IA , or in this case m = (1000)(.01 )= 31.4 Amp.m .

(b) The fields generated by an oscillating magnetic dipole are given by

For this problem θ= /2, Cosθ=0 and Sinθ=1. Also R= 1 meter and ω= 2 f = 6.28x10  radians/sec.

(1) 

(2) 

since 

(3) 

since , and 

(c) For R= 1 km = 10  meters

(1) .

(2) .

(3) , and 

Problem (7.4).

An electron is at rest at the origin of co-ordinates. It is suddenly given an acceleration of a = 1.76 x 10  m/sec  for 10  seconds
after which it continues with a uniform velocity. This acceleration, which is directed along the z axis, was produced by a 1000 V
pulse applied across a gap of 1 mm at t = 0. An observer is located at X = 1 meter, Y= Z= 0 m.

(a) Make a sketch showing how the x-component of the electric field measured by the observer varies with time (observer's time--
his clock is synchronized with that at the origin).

(b) Ditto showing how E  varies with time.

Answer (7.4).

Think of putting both a stationary charge of +1.6x10  C. and a stationary charge of - 1.6x10  C. at the origin: the net
charge is zero so that these together add nothing to the fields. However, the + charge and the moving electron together form a
dipole p = - qz(t) where q= 1.6x10  C. The time varying dipole generates the fields

The left over static charge at the origin generates the static field
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at R= (1,0,0).

The time scale T  for this problem is the time required for light to travel 1 m; T = 3.33x10  seconds. The velocity of the
electron after the acceleration is V= 1.76x10  m/sec. Therefore on the time scale of interest here the electron has moved only
VT = 5.9x10  meters, thus the change in position is negligible compared with the observer distance of 1 m. over the time
scales of interest here (~10  secs., z= 1.76x10  m), one finds

These fields are directed along +z for an observer at R= (1,0,0). It is clear therefore that the acceleration spike in E  will be
very large compared with the other two terms in E .

The observer at (1,0,0) will see a steady field of E = - 14.4x10  V/m. An electric field spike will be observed beginning at
T = 3.33x10  secs after the impulse: this spike E = 28.2x10  V/m will last for 10  secs. After the spike has passed the
component E  will remain at the level of 8.46x10  V/m. over the time scale of interest here. It is clear that this residual
component is very small compared with the radiation spike.

In summary: the acceleration field of 282 x 10  V/m which lasts 10  seconds is directed along  because the
charge is negative. Therefore for an observer at P(1,0,0) the electric field is directed along z. The acceleration begins at
t=0. However, the time required for the field to reach the observer is  seconds (a distance of 1 meter
at the velocity of light). Therefore at t = 3.33 x 10  seconds the observer will see a transverse pulse which lasts 10
secs. This is superposed on a steady electric field of E  = -14.4x10  V/m. (Steady on the time-scale of interest here.)

Problem (7.5).
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A particle carrying a charge q revolves in a circle at a constant speed v = bω. This motion can be decomposed into two coupled
motions

Let b be very small compared with the distance to the observer so that this radiation source can be treated like two orthogonal point
dipoles qx and qy.

(a) Consider an observer at P = (R,0,0). Show that this observer will see a radiation field polarized along y and given by

(b) Consider an observer at P = (0,R,0). Show that this observer will see a radiation field polarized along x and given by

(c) Consider an observer at P = (0,0,R). Show that this observer will see circularly polarized light whose electric field components
are given by

Answer (7.5).

This motion can be regarded as a superposition of two linear motions. The electric field (radiation field) amplitude produced
by an accelerated charge is given by

x = b cosωt

y = b sinωt

= Volts/m.E
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, a evaluated at t  = t - R/c For each of the above cases θ = /2

The above results follow immediately since a  = -bω  cosωt and a  = - bω  sinωt. The observer at (R,0,0) will see radiation
only due to p . The observer at (0,R,0) will see radiation only due to p . The observer at (0,0,R) will see radiation from both
p  and p . The observer located along the z-axis will see circularly polarized radiation because if

and

these two fields together form a vector of fixed magnitude E  rotating at the angular frequency ω.

This page titled 13.7: Chapter 7 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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13.8: Chapter 8
Problem (8.1)

A long straight non-magnetic wire carries a steady current of I Amps. The resistance of the wire is R Ohms/meter. Use Poynting's
theorem to show that the energy flow into the wire is I R/meter.

Answer (8.1)

At the surface of the wire the magnetic field is tangential. From CurlB = µ J  (No M, no time variation) one has, using
Stokes' theorem,

So  or .

The electric field is also tangential E  = IR Volts/m.

∴ S = E x H is normal to the wire surface and . Energy flow/m = (S )(2 a) = I R Watts/m.

Problem (8.2).

One meter of wire is bent into a circular form to make a magnetic dipole antenna. The wire carries a current I(t) = I  sin ωt where I
= 2 Amps, ω = 2 f, and f = 50 MHz. At what rate does this loop radiate energy?

Answer (8.2).

For a magnetic dipole at the origin, m , one has

(part of B  that is proportional to the time derivatives).

Very far from the magnetic dipole one has only the radiation field terms ~ 1/R:
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or 

S = E x H has only a radial component

.

If I = I  sinωt then m  = ( a2) I  sinωt

Let m  = a Io. In this problem 2 a = 1 m so m  = 0.159 Amp m .

At R and at the angle θ the time averaged Poynting vector is given by

Integrate this over a sphere of radius R. The element of surface area is dA = 2 R  sin θ dθ

∴ radiated power 

but 

∴ P = 0.305 Watts

Problem (8.3)

An electric dipole whose strength is p = 10  Coulomb-meters oscillates at a frequency f= 50 MHz. Let the dipole be oriented along
z.

(a) Estimate the electric field amplitude measured by an observer on the x-axis at a mean distance of 5 meters from the dipole.
Compare the near field terms with the far-field, or radiation term. Note that the  term is in quadrature with the other two terms so
that it contributes only about 2% to the electric field amplitude.

(b) How big is the phase shift between the time variation of the dipole and the electric field measured by the observer?

(c) What intensity would the observer measure at the coordinates (5,0,0); i.e. what is the value of <S > )?

(d) What would be the intensity of the radiation measured by an observer on the z-axis 5 meters from the oscillating dipole?

(e) At what total rate does this dipole radiate energy?

(f) This dipole can be modelled by two spheres each having a radius of 0.1 meters and separated by 0.5 meters center to center. One
sphere carries an initial charge of Q= +2x10  Coulombs, the other sphere carries an initial charge of -2x10  Coulombs. The two
spheres are suddenly connected by a conducting wire and the two charges oscillate back and forth. Estimate how long is required
for this system to radiate away e  of its initial energy. ( The stored energy is proportional to Q ; the rate at which energy is radiated
away is proportional to Q  because p = Qd. It follows that the energy stored on the two spheres will decay exponentially in time).

Answer (8.3).

(a) p  = p  e

where ω= 2 f= 3.14x10  radians/sec, and .
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On the x-axis θ= /2, and Cosθ=0, Sinθ=1. Consequently, one has only to worry about the electric field component,
E . Taking out the common factors one has

first term: 

second term: 

third term: 

The total field is proportional to -0.211 - 0.042i. The quadrature term makes only a ~ 2% correction to the field. For an
observer along x and 5 meters from the dipole the electric field is polarized along z: it is given by

(b) The phase shift between the time variation of the dipole and the electric field at the observer is

(c) For an observer at (5,0,0)

Therefore

,

(d) For an observer at (0,0,5) the angle θ is zero, and consequently E =0 and B = H = 0; thus <S >= 0.

(e) 

Problem (8.4)

A 10 turn circular coil of wire is centered on the origin and the plane of the coil lies parallel with the xy plane. The coil has a mean
radius of 5 cm and it carries a current I(t)= I Sinωt where I = 100 Amps, and ω= 2 f where f= 20 MHz. An observer in the xy
plane, and 1 km distant from the coil, measures the emf induced in a piece of straight wire 1 meter long due to the radiation field
produced by the oscillating current in the coil.

(a) In what direction should the observer orient the wire in order to obtain the maximum signal?

(b) What maximum receiver power would you expect the observer to measure using a matched receiver? The radiation resistance
of a short wire of length L meters (L/ <<1) is given by  Ohms.

(c) Calculate the total average rate at which energy is radiated by the oscillating magnetic dipole formed by the coil.

Answer (8.4).

(a) The wire should be oriented parallel with the xy plane and perpendicular to the line joining the observer to the coil. The
electric field has only an E  component.

(b) For this problem one can ignore the near field terms and calculate only the radiation field terms. These are

In this problem m = m e  where m = 7.85 Amp-meters , ω= 1.257x10  radians/sec.,  and =15 m.
For an observer in the x-y plane the angle θ= /2 so that
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.

The electric field strength at the observer will be . The current induced in the
wire will have the spatial variation  for z>0 with a similar variation for z<0. The average
power delivered to the antenna will be

or for small L/  . Half this power is delivered to the load:

, where 

I  = 2.468x10  Amps. The power delivered to the matched load is .

(c) The total rate at which a magnetic dipole radiates energy is given by

This contributes an amount Z Ohms to the coil resistance where . This gives Z= 3.8x10  Ohms
since the current amplitude was assumed to be 100 Amps. This means that very heavy wire should be used for the
oscillator tank coil if one wishes most of the input power to be radiated as electromagnetic energy rather than
dissipated in the coil as heat.

Problem (8.5).

Two identical electric dipoles are driven by the same oscillator at a frequency of 20 MHz but there is a phase shift of β radians
between them. The dipoles are both oriented along the z-axis, but one dipole is located at (5,0,0), the other is located at (-5,0,0).
Describe the angular variation of the maximum radiation field intensity produced by these two dipoles as measured by an observer
confined to the x-y plane and located a constant distance of 1 km from the origin; i.e. make a plot of the time-averaged Poynting
vector as a function of the angle  measured from the x-axis for (a) β=0 radians, and (b)  radians.

Answer (8.5).

One has only to worry about the far field terms generated by the oscillating dipoles, however the phase at the observer is very
important in this problem.

Dipole #1:

Dipole #2:

In writing these expressions explicit account has been taken of the fact that the distance from the observer to each dipole is
slightly different. But slight as it may be compared with R, the difference in distance is a large fraction of a wavelength ( =
15 meters). The total electric field measured by the observer in the x-y plane is given by

or

where .

The time averaged Poynting vector is proportional to the square of the electric field strength; for one oscillator 

, where Z = 377 Ohms. We may therefore write

=−cBθ= 41.3× Volts/mE

ϕ

10

−3

I(z) = sin( [ −z])I

0

2π

λ

L

2

< >= (2) dz sin( [ −z])= (1−cos( )) ,P

i

1

2

E

0

I

0

∫

L

0

2π

λ

L

2

E

0

I

0

λ

2π

πL

λ

λ < >≅ ( )( )P

i

E

0

I

0

π

4

L

2

λ

( )( )= RE

0

I

0

π

4

L

2

λ

I

2

0

R = 20 = 0.877 Ohms.π

2

( )

L

λ

2

0
-3

< >= = 2.67× WattsP

L

R

2

I

2

0

10

−6

=  Watts  = 19.0 Watts. P

M

c

3

μ

0

4π

( )

ω

c

4

m

2

0

= 19.0 Watts 

zI

2

0

2

-3

ϕ β =

π

2

= exp(iβ)E

1

z

1

4πε

0

( )

ω

c

2

p

0

R

e

−iω(t−[ ])

R−d cos ϕ

c

= .E

1

z

1

4πε

0

( )

ω

c

2

p

0

R

e

−iω(t−[ ])

R+d cos ϕ

c

λ

= ( + d cosϕ− iβ/2) ,E

z

1

4πε

0

( )

ω

c

2

p

0

R

e

iω(t−R/c)

e

iβ/2

e

i dCosϕ+iβ/2

ω

c

e

−i

ω

c

= 2 cos( dcosϕ+β/2),E

S

E

0

e

iω(t−R/c)

e

iβ/2

ω

c

=E

0

1

4πε

0

( )

ω

c

2 p

0

R

< >=S

0

E

2

0

2Z

0

0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25307?pdf


13.8.5 https://phys.libretexts.org/@go/page/25307

(a) β=0, and d= 5.0 m. (ω/c)= 0.419 cm  so

A polar plot of Cos (2.094Cos ) is shown below.

(b) For a phase shift of /2 between the oscillators one finds

A plot of the  pattern is shown below.
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Problem (8.6).

100 Watts/m  of monochromatic laser light having a free space wavelength of = 0.5145 µm is used to illuminate a stationary
hydrogen atom. For this problem atomic hydrogen can be modelled by an oscillator having a single resonant frequency given by
the n=1 to n=2 transition at 10.18 eV. the oscillator strength may be taken to be unity

(a) Estimate the total power removed from the incident beam by the hydrogen atom.

(b) How much energy would be scattered per second into a photomultiplier tube having an aperature of 3 cm and located 10 cm
from the atom? The axis of the photomultiplier tube is oriented perpendicular to the incident beam in such a direction as to
intercept the maximum scattered power.

Answer (8.6).

(a) Calculate the resonant frequency associated with the n=1 to n=2 transition in the hydrogen atom:

The equation of motion for the bound electron in the hydrogen atom can be written

where . Under the influence of a driving field at circular frequency ω the electron amplitude is given by

Now calculate the electric field amplitude in the incident beam. The frequency of the incident light is f= c/ =
5.831x10  Hz, and ω= 3.664x10  radians/sec. The power in the incident beam is

2
λ
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−19
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0

10
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where Z = 377 Ohms. From this expression E = 275 Volts/m. For this field amplitude the electron amplitude is

z = -2.14x10  meters, corresponding to

an induced dipole moment amplitude p  = - ez  = 3.43x10  Coulomb-meters. The averaged power radiated by the
oscillating atomic electron is

A photon at 0.5145 µm carries an energy of 38.64x10  Joules. The hydrogen atom scatters the equivalent of 6.1x10
photons per second. One would have to wait approximately 3200 years in order to get only 6 photons! ( 1 year=
3.15x10  seconds).

(b) The area of the photomultiplier tube is r = 7.07 cm , therefore  steradians. The power
intercepted by the tube will be given by

Therefore P = 1.99x10  Watts. In order to get one count per second one would need N= 19.5x10  hydrogen atoms.
This corresponds to 7.2x10  liters at NTP or 7.2x10  cc of gas at NTP. Such an experiment would be feasible using 1
mm cubed of gas at NTP (10  cc); the dark count for a good tube is of order 1.0 counts per second at room
temperatures.

Problem (8.7).

A very thin plane, uniform, sheet of dipoles is located in the y-z plane. The dipole moments are aligned along the z-axis and they
vary in time like e  . The polarization density for such a sheet can be written

(a) Show that this time-varying polarization density generates a vector potential which can be written in the form

X>0: ;

X<0: .

(Hint: one can use the particular solution for the vector potential in terms of the current density. Note also that A cannot depend
upon either Y or Z from the symmetry of the problem; this means that one can carry out the calculation for Y=Z=0. You will run
into an indeterminate constant upon carrying out the integral; this does not matter because any constant, no matter how large, can
be added to the potential without altering the fields calculated from it.)

(b) Use the above vector potential to calculate the scalar potential from the Lorentz condition . Use the
potentials to calculate the corresponding electric and magnetic fields.

(c) What is the rate at which energy is radiated away from this sheet of dipoles?

Answer (8.7).

The vector potential is generated by the total current density . For this problem the current density

is entirely due to the term ; this term has only a zcomponent, so the vector potential which it generates will have only a z-
component.

therefore
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where

From the plane symmetry the vector potential A  cannot depend upon the co-ordinates Y,Z; it is convenient to take Y=Z= 0.
One can use polar co-ordinates in the plane and write

and dydz= 2 rdr. The integral over x can be carried out with no effort because of the δ-function. One obtains

The integral can be carried out with the help of the substitutions

 and udu = rdr.

The constant is ill-defined; ignore it because a constant has no effect on the fields calculated from the vector potential.

, where k= ω/c.

For X>0 this represents a wave propagating to the right.

For X<0 this represents a wave propagating to the left.

(b) The scalar potential can be calculated from the Lorentz condition

For this example, divA=0 so that the scalar potential is also zero.

The electric field has only a z-component which is given by .

The magnetic field has only a y-component which is given by .

For X>0: 

For X<0: ,

(c) The plane sheet of polarization radiates a plane wave in each direction which is shifted in phase by 90° with respect to the
polarization sheet. The average rate at which energy is radiated in either direction is

Problem (8.8).

A very thin plane, uniform, sheet of dipoles is located in the y-z plane. The dipole moments are aligned along the x-axis and they
vary in time like e  . The polarization density for such a sheet can be written

.
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This problem differs from Prob.(8.7) in the orientation of the dipoles. It is still true that A cannot depend upon either Y or Z
because of the planar symmetry.

(a) Show that this time-varying polarization density generates a vector potential which can be written in the form

X>0: ,

X<0: .

(Hint: one can use the particular solution for the vector potential in terms of the current density. You will run into an indeterminate
constant upon carrying out the integral; this does not matter because any constant, no matter how large, can be added to the
potential without altering the fields calculated from it.)

(b) Show that the electric and magnetic fields corresponding to the above potentials are zero.

Answer (8.8).

This problem can be solved by direct integration after the manner of Problem(8.7). A more elegant and usefull method starts
from the differential equation for the vector potential:

The free space solutions of this differential equation are:

(i) on the right,x>0; ,

(ii) on the left,x<0; 

where k= ω/c. These plane waves satisfy the homogeneous wave equation

The amplitudes of the two waves must be the same by symmetry. Near x=0 one requires

Integrate this equation over a vanishingly small interval around x=0, from x=-ε to x=ε. The result is

and the term of order ε goes to zero in the limit as ε→0. Therefore,

and

(b) The scalar potential can be calculated from the Lorentz condition

Consider the potentials for x>0; the potentials for x<0 can be handled in the same way.
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consequently

so that

But 

so that E  ≡ 0

Furthermore, curlA ≡ 0 so that there is also no magnetic field component.

Problem (8.9).

very thin plane, uniform, sheet of dipoles is located in the y-z plane. The dipole moments are aligned along the x-axis and their
time variation can be described by

The polarization density for such a sheet can be written

Calculate the electric and magnetic fields generated by this space and time varying polarization density.

Hint: It is very difficult to calculate the vector potential by direct integration of the expression

It is better to work directly with the differential equation

For x>0 let 

For x<0 let .

These functions satisfy the homogeneous equation and represent plane waves propagating away from the dipole plane. The left and
right propagating plane waves have the same amplitude by symmetry; this can be deduced directly from the integral for A(R,t).
Near x=0 one finds

where the factor  has been cancelled out on both sides. Integrate this equation from -ε to +ε where ε is allowed to go to
zero. This gives

which may be used to find , where  ( the term proportional to ε goes to zero with ε).

Answer (8.9).

Following the procedure outlined in the problem, one obtains

V = = .

c

2

μ

0

P

0

2

e

i(kx−ωt)

P

0

2ε

0

e

i(kx−ωt)

E=−gradV − ,

∂A

∂t

=− + .E

X

ikP

0

2ε

0

e

i(kx−ωt)

iω cμ

0

P

0

2

e

i(kx−ωt)

= =

iω cμ

0

P

0

2

iωμ

0

P

0

c

2

2c

ikP

0

2ε

0

x

.e

i(qy−ωt)

(x, y, z, t) = δ(x) .P

X

P

0

e

i(qy−ωt)

A(R, t) ∫ .

μ

0

4π

dτ

∂p

∂t

∣

∣

t

R

|R−r|

− = iω δ(x) .∇

2

A

x

1

c

2

∂

2

A

x

∂t

2

μ

0

P

0

e

i(qy−ωt)

=A

X

A

0

e

i(kx+qy−ωt)

=A

x

A

0

e

i(−kx+qy−ωt)

+[ − ] = iω δ(x),

∂

2

A

x

∂x

2

( )

ω

c

2

q

2

A

x

μ

0

P

0

e

i(qy−ωt)

− +O( ε)[ − ]= iω ,

∂A

x

∂x

∣

∣

∣

ε

∂A

x

∂x

∣

∣

∣

−ε

A

0

( )

ω

c

2

q

2

μ

0

P

0

= ( )A

0

μ

0

P

0

2

ω

k

= +( )

ω

c

2

k

2

q

2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25307?pdf


13.8.11 https://phys.libretexts.org/@go/page/25307

for x>0: 

for x<0: .

For x>0 one finds ;

from  this gives

for x>0; .

For x<0 a similar calculation gives

, from which

for x>0 ,

,

and B = curlA, so that

The amplitude of the electric field is

therefore cB = |E| which is the correct ratio for a plane wave propagating through empty space. A similar calculation shows
that a plane wave propagates to the left; its B field is the same as the wave propagating to the right. See the diagram below.

Problem (8.10).

The electron on a hydrogen atom is characterized by the resonant frequency f  = 15 x 10  Hz. The dipole moment induced on each
hydrogen atom by an electric field can be written p = E where  is the polarizability.
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(a) Estimate the polarizability of a hydrogen atom for an electric field oscillating at a frequency of 10  Hz.

(b) Consider a hydrogen atom at the origin. A plane wave is incident on the atom where E  = E  e  where E  = 1 Volt/meter
and ω = 2  x 10  rad/sec. How large are the electric field components measured by an observer 1 meter distant and located in the
x-y plane?

Answer (8.10).

(a) The equation of motion of the electron on the H atom can be written

or

The resonant frequency is  therefore .

If  then .

The dipole moment is ,

 since ω  >> Ω  .

At f = 10  Hz ω = 6.28 x 10  and  = - 0.714 x 10  Coulomb meters.

The induced dipole moment is P  = E . For an observer in the x-y plane

There is no radial component of electric field!

Now  

So the quantities 1 &  are negligible c.f. 

 Volts/meter.

Problem (8.11).

A short thin-wire center-fed dipole antenna of length L meters is oriented along the z-axis with its center at the origin as shown in
the sketch.
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The current distribution on the antenna is given by:

Show that the radiation resistance of the antenna is given by

Hint: The distance from the element dξ to the observer is given approximately by

here ξ/R is a very small quantity. Expand all relevant terms as a power series in (ξ/R) and keep only terms proportional to (ξ/R).

Also use the approximation that  can be set equal to .

Answer (8.11).

Drop the term ; it is just a factor throughout.

Let . Then setting k=ω/c, one finds
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where  and it is assumed that kξ<<1. With these approximations

In spherical polar co-ordinates

B= curlA. In this case B has only the component B . The radiation component of this field is proportional to 1/R and is

The electric field is

.

.

The time average of the Poynting vector, <S > is

.

Integrate this expression over the sphere of radius R to get the total radiated power:

But cµ = 120 , and by definition the radiation resistance R  is such that , therefore

This page titled 13.8: Chapter 8 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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13.9: Chapter 9
Problem (9.1).

A plane wave is polarized with its electric vector along z. The wave propagates along the y-axis. The electric field is given by

This wave is propagating in vacuum; its amplitude is E  = 5V/m and its wavelength is 0.10 meters.

a. What is the frequency of the wave?
b. How large is the magnetic field associated with this wave and in what direction is it oriented?
c. What is the average rate at which energy is transported by this wave (per square meter)?
d. This wave encounters an electron. At what rate does the electron remove energy from the wave?
e. The wave propagates through an electron gas whose density is 10  per cubic centimeter. If each electron acts like an

independent scattering center estimate the distance the wave will travel before its amplitude has been reduced to (1/e) of its
initial value.

Answer (9.1).

a) ω = ck in free space

b) B is along x:

.

(c) 

 Watts/m .

d) For the electron 

The energy scattered by an accelerated charge and integrated over all angles is given by

(y, t) =  Volts/meter. E

2

E

0

e
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o

15
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Time Average: 

or  since .

E  = 5 V/m initially so in this case

e) Now  for 1 electron.

There are 10  electrons/cc = 10  electrons/m  = N. Consider a section of the wave having an area of 1 m  and look at
the energy change in traversing a distance dy:

The energy change in dy is

But the Poynting vector is given by (time average)

or 

or .

But 

or 

where  and .

where 

or L = 3.01 x 10  meters = 3.01 x 10  km.

So the wave can travel ~ 30,000 km before its amplitude has dropped to e  of its initial value.

Problem (9.2).

A plane wave is propagating thru empty space with a wavevector given by

The electric vector has a strength of  Volts/meter.

a. Calculate the frequency and wavelength of this radiation.
b. How large is the magnetic field B associated with this wave.
c. At what average rate is energy being transported by this wave (Watts/meter ).
d. What is the average stored electrical energy in the wave? (Joules/m )
e. What is the average stored magnetic energy in the wave? (Joules/m ).

Answer (9.2).

Assume that the wave is polarized with E along z - this will ensure that k·E = 0. Then

⟨ ⟩ = ( )( )

dW

dt

1
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e

4
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where  and  meters .

But 

 or 

 

Now  ∴ f = 3 x 10  Hz i.e. 300 MHz

and  = 1 meter.

where cµ  = (3 x 10 )(4  x 10 ) = 120  = 377 Ohms. The Poynting Vector is S = E x H and it is directed along k. Since E
and H are perpendicular

Time Average 

Amplitude 

Amplitude .

(d) Energy density stored in the electric field is given by

(e) The average energy stored in the magnetic field is given by

Problem (9.3).

The electric field of an electromagnetic wave

is the sum of

and 
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Find E and θ.

Answer (9.3).

The electric field can be written

Also 

and 

∴ compare with above. E  cos θ = 0.02

-E  sin θ = 0.06464

 .

and .

Problem (9.4).

An optical device called a /2-plate (half-wave plate) is characterized by two axes which can be labeled x and y. The velocity of a
plane wave polarized along y is different from the velocity of a plane wave polarized along x. The plate thickness is such that a
phase shift of  is introduced between waves polarized along x and along y. Consider an incident plane polarized beam of light
such that the electric vector makes an angle  with the x-axis. Show that the plane of polarization of the exit beam will be rotated
through 2 . This mechanism is used in experiment to make fine adjustments to the plane of polarization.

(Hint: Decompose the electric field vector of the incident plane wave into the sum of two plane waves; one having the electric
vector polarized along x, E = E cos , the other having the electric vector polarized along y, E = E sin ).

Answer (9.4).

This can be written as the sum of two plane waves:

E  = E  cos(kz-wt) cos  = E  cos  cosωt (at z=0)

E  = E  cos(kz-wt) sin  = E  sin  cosωt (at z=0).

If the y-axis is slow then the exit waves will have the form

However,  and , where n ,n  are the indices of refraction for propagation of light along the x and y axes.
One has ω = v k  and ω = v k  so that if y is a slow axis k  > k .

therefore E  = E  sin  cos(k d-ωt+ ),

or E  = - E  sin  cos(k d-ωt).

But E  = E cos  cos(k d-ωt), so these electric field components correspond to a plane wave in which the direction of
polarization has been rotated through 2  (clockwise). A similar argument also gives 2  clockwise if x is the slow axis: the

o 

= cosθcos π (t− )− sinθ sin π (t− )E

x

E

0

10

8 z

c

E

0

10

8 z

c

= 0.03 [sin π (t− )]E

1x

10

8 z

c

= 0.04 [cos( ) cos π (t− )+sin( ) sin π (t− )E

2x

π

3

10

8 z

c

π

3

10

8 z

c

∴ + = 0.02 cos π (t− )+0.0646 sin π (t− )E

1x

E

2x

10

8 z

c

10

8 z

c

o

o

∴ tanθ=− =−3.232

0.06464

0.02

∴ θ=− =−1.271π72.81

∘

= = 0.06766 v/mE

0

0.02

cos θ

λ

π

ϕ

ϕ

x 0 ϕ y 0 ϕ

x o ϕ o ϕ

y o ϕ o ϕ

= cosϕ cos( d−ωt)E

x

E

0

k

x

= sinϕ cos( d−ωt).E

y

E

O

k

y

=v

x

c

n

x

=V

Y

c

n

Y

x y

x x y y y x

y 0 ϕ x π

y o ϕ x

x 0 ϕ x
ϕ ϕ

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25308?pdf


13.9.5 https://phys.libretexts.org/@go/page/25308

phase of the resulting wave is just shifted by 180°.

Problem (9.5).

A quarter wave plate is similar to the half-wave plate of problem (9.4) except that the thickness is adjusted so that in its passage
through the plate light polarized parallel with one principle axis is shifted by /2 in phase relative to light polarized with its electric
vector parallel with the other axis. (See the sketch).

Let light be incident on the  - plate which is polarized so that its electric vector makes an angle  with the fast axis. Show that the
transmitted light will be elliptically polarized. For what angle  will the transmitted light be circularly polarized?

Answer (9.5).

At z = 0 E  = E  cos  cosωt

E  = E  sin  cosωt,

Plane polarized incident light.

At exit where z = d

since y is the slow axis for which k  > k . This follows from the relations  and 

, ie. .

Thus .

These components can be written

The light will become circularly polarized for = /4.
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Problem (9.6).

A charged particle moves in a circular orbit of radius b meters centered on the origin and lying in the x-y plane. The co-ordinates of
the particle can be described by the relations

where ω= 2 f = 3x10  radians/second. The motion is equivalent to the superposition of two point dipoles

where p = 10  Coulomb-meters.

a. An observer is located at x=0, y=0, z=1 meter. How will the electric field at the observer vary in time? What intensity of
radiation will be observed?

b. An observer is located at x=0, y=0.707, z=0.707 meters. How will the electric field at the observer vary in time? What intensity
of radiation will be observed?

c. An observer is located at x=0, y=1, z=0 meters. How will the electric field at the observer vary in time? What intensity of
radiation will be observed?

Answer (9.6).

(a) The observer is at right angles to both dipoles. The radiation fields are given by (R=1 meter, Sinθ=1)

The electric field is right hand circularly polarized. The intensity of the radiation will just be given by

independent of time because . Z = 377 Ohms, thus S  = 2.149x10
Watts/m . Notice that the intensity does not fluctuate with time for a circularly polarized wave.

(b) For the observer at (0,0.707,0.707) the electric fields will be given by

x = b cosωt

y = b sinωt

π
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Y
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0
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0
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Therefore

This electric field corresponds to right hand elliptically polarized radiation.

In a co-ordinate system rotated so that the new Z-axis is pointed along the line joining the observer to the origin one
has

and

The time averaged intensity is given by

where Z = 377 Ohms, and E ,E  are the electric field amplitudes. In this case , so that

(c) An observer at (0,1,0) sees a radiation field due entirely to the dipole oriented along the x-axis. The electric field will be
linearly polarized and

The corresponding intensity will be just half the intensity measured by the observer on the z-axis:

Problem (9.7).

Consider the sum of 5 phasors:

This is the sum of 5 waves: the phase shift between each pair of waves is .

a. Calculate the sum for  = 0
b. Calculate the sum for 
c. Calculate the sum for  = /5
d. Calculate the sum for 
e. Make a sketch of S as a function of .

A graphical construction is useful for summing phasors. Notice that one has to do with a geometrical series.

Answer (9.7).

(a) S = 5.0

= cos(ω[t−R/c])E

X

1

4πε

0

( )

ω

c

2

p

0

=−E

θ

1

4πε

0

( )

ω

c

2

p

0

sin(ω[t−R/c])

2

–

√

=E

Y

1

4πε

0

( )

ω

c

2

p

0

sin(ω[t−R/c])

2

=− .E

Z

1

4πε

0

( )

ω

c

2

p

0

sin(ω[t−R/c])

2

= cos(ω[t−R/c])E

X

1

4πε

0

( )

ω

c

2

p

0

= .E

η

1

4πε

0

( )

ω

c

2

p

0

sin(ω[t−R/c])

2

–

√

< S >= + ,

E

2

X

2Z

0

E

2

η

2Z

0

0 X η = /E

η

E

X

2

–

√

< S >=( ) (2.15× )= 1.611× Watts / .

3

4

10

−15

10

−15

m

2

= cos(ωt−R/c).E

x

1

4πε

0

( )

ω

c

2

p

0

⟨S⟩= 1.074× Watts / .10

−15

m

2

S = + + + + .e

iϕ

e

2iϕ

e

3iϕ

e

4iϕ

e

5iϕ

ϕ

ϕ

ϕ=

π

10

ϕ π

ϕ=

2π

5

ϕ

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25308?pdf


13.9.8 https://phys.libretexts.org/@go/page/25308

(b) 

S = 2.657 + 3.657i

|S| = 4.520

Angle = 54.00˚

(c) 

S = -1.00 + 3.078i

Angle = 108.00˚

|S| = 3.236

(d) 
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(e) (i) When  is a multiple of 2  S = 5.0

(ii) The sum is a geometric progression

Notice that for N phasors

So when  = 0 or 2  |S|  = N  .

These high peaks drop to zero when N  = 2  or  and |S|  = 0 for multiples of .
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There are peaks at .

However 

, so these subsidiary peaks drop off as .045, .0162, etc. and |S|  drops off rapidly with phase

angle.

Problem (9.8).

Eight atoms are located on the corners of a cube whose sides are a long. One corner of the cube is located at the origin of co-
ordinates, and the sides of the cube are parallel with the co-ordinate axes. The polarizability of each atom is , i.e. in the presence
of an electric field the atom developes a dipole moment given by p= E. Let an incident free space plane wave of the form

fall on the group of 8 atoms, where k= 2 /a.

(a) Write an expression for the electric field which would be measured by an observer whose spherical polar co-ordinates are (R,θ,
). Your answer should be in the form of the electric field amplitude generated by an atom at the origin multiplied by the structure

factor, S.

(b) Explicitly evaluate the structure factor for this problem for an observer confined to the x-y plane (θ= /2). Make a plot of the
absolute square of the structure factor as a function of the angle  ( a quantity proportional to the intensity of the scattered
radiation).

Answer (9.8).

The electric field component E  at the position of the observer due to the atom at r  is given by

where
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and

But ,

so that

or

.

The total electric field amplitude measured by the observer is the sum of the fields scattered by each atom; it will be
proportional to the structure factor

where

For the case θ= /2 the structure factor becomes

.

But ; therefore , and

.

A little tedious algebra (no gain without pain!) can be used to put the absolute square of S into the form

.

A polar plot of the quantity SS* shows the way in which the intensity varies with angle for an observer in the x-y plane. In
this plot SS*Sin  is plotted against SS*Cos .
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Problem (9.9).

A plane wave whose electric field is given by

is incident upon 5 hydrogen atoms which are spaced a distance a = 1.5 x 10  meters along the y-axis as shown in the sketch. The
frequency associated with the electric field is 10  Hz.

An observer in the x-y plane is located very far away in a position specified by the angle θ shown in the sketch.
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(a) Calculate the structure factor for the scattered radiation.

(b) Make a sketch of the angular variation of the intensity measured by P as θ ranges from 0 to /2.

Answer (9.9).

The electric field amplitude at R due to a single atom is independent of θ and the electric field is polarized along z. However,
the fields from the 5 atoms interfere because for fixed time of observation, the phase of each wave is shifted. The structure
factor is given by

where .

In this problem

.

The atomic positions are given by

Thus 

(the first term corresponds to n = 0),

or ,

or 

In this problem  and .

 and

(See the figure below).
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The intensity measured at P is proportional to |S| , or to S  in this case since S is real. Note the strong forward scattering
pattern (see the figure below).

Problem (9.10).

2 2
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This is a repeat of the previous problem but the scattering centers are not equally spaced. A plane wave is incident from the left 

The atoms are at:

This is a more or less random spacing which preserves an average spacing of a.

Calculate the dependence upon the angle θ of the intensity of the scattered radiation which would be observed at a distant point P. a
= 1.5 x 10  m and ω = 2  x 10  rad./sec.

Answer (9.10).
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The structure factor can be written S = a + ib, then the intensity required is proportional to

|S|  = SS* = a  + b

The result of the calculation is shown in the figures. The main peak at θ = 0 persists because all signals remain in phase no
matter where the scatterers are located along the y axis. The main effect of the irregular spacing is to reduce the structure in
the "wings" i.e. the oscillations at angles larger than 30˚.

+i [−sin[( ) sinθ]−sin[( ) sinθ]+sin[ sinθ]+sin[( ) sinθ]

8π

7
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7
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Problem (9.11).

Four scattering centers are arranged on the grid shown above. A plane wave is incident from the left:

where ω = 2  x 10  rad/sec. The parameter  and . Calculate the dependence of the scattered intensity on
the angle of observation θ when the observer is very far away (R >> a).

Answer (9.11).
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The structure factor is given by 

where q = k  - k

In this case 

or for 

.

This is real because of the symmetry around the origin. S  is plotted in the figure below.

This page titled 13.9: Chapter 9 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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13.10: Chapter- 10
Problem (10.1).

(a) Use Stokes' theorem to show that the Maxwell equation  can be written in the form

where the surface S is bounded by the closed curve c.

(b) Apply the above equation to a loop which straddles the boundary between two materials to show that the tangential component
of E must be continuous across the boundary.

Answer (10.1).

(a) 

Integrate over a surface S bounded by a curve c:

But from Stokes' theorem

, and the result follows.

(b) Apply the above to a loop L long and of negligible width, d.

Then 

therefore

Problem (10.2).

(a) Use Stokes' theorem to transform the Maxwell equation

into
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where the surface S is bounded by the closed curve, c.

(b) Use the above equation to show that at the surface of discontinuity between two materials the tangential component of H must
be continuous.

Answer (10.2).

(a) 

But by Stokes' theorem:

from which the result follows.

(b) Apply the above theorem to a loop straddling the boundary. The loop is L long and d wide.

Problem (10.3).

a. From div B = 0 show that the normal component of B is continuous across the boundary between two different materials.
b. From div D = ρ  show that there will be a surface charge density on the surface of discontinuity between two materials. Show

that the magnitude of this surface charge density is given by

where  and  are the normal components of the vector D.

Answer (10.3).
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But by Gauss' theorem 

where S is the surface bounding the closed volume V.

Therefore 

Apply this to a pill box of area A and thickness L which straddles the boundary between material (1) and material (2)

(As shown,  makes a positive contribution and  makes a negative contribution).

Therefore  for arbitrary A and

(b) div D = ρ

∴ for any closed volume V bounded by a surface S

But by Gauss' theorem:

Apply this to a pill-box which straddles material (1) and material (2):

Then 

+ higher order corrections of order L A.

So ,

where (ρ  ) does not depend upon the length  and therefore represents a surface charge ρ . A discontinuity in the normal
component of D means that there exists a surface charge density.

Problem (10.4).

A plane wave falls at normal incidence on the plane surface of a large, deep, body of water. The real and imaginary parts of the
index of refraction for water are n = 4/3 and  = 10  corresponding to a time dependence ~ e  . The amplitude of the electric
field in the incident wave is 1 V/m. Let the z-axis be directed into the water, and let the x, y axes lie in the surface of the water. Let
the electric field be polarized along x. The index of refraction of air is n = 1,  = 0.

a. Write an equation for the space and time variation of the electric field in the incident wave.
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b. Write an equation for the space and time variations of B,H in the incident wave. What is the amplitude, H , of the H field?
c. Write expressions for the space and time variation of the reflected wave. Let the reflected electric field amplitude be E . Write

the reflected magnetic field amplitude in terms of E .
d. Write expressions for the space and time variations of the electric and magnetic field waves (H field) transmitted into the water.

Let the electric field amplitude at the water surface, at z = 0, be E . Write the magnetic field amplitude in terms of E .
e. State the boundary conditions which E, H must satisfy at the surface of the water.
f. Apply the boundary conditions of part (e) to obtain the reflected electric field amplitude, E , and the transmitted wave electric

field amplitude, E .
g. What is the intensity of the incident wave? i.e. At what rate, in Watts/m , is energy transported to the water surface?
h. At what rate is energy absorbed by the water?
i. What will be the electric field amplitude at a depth of 2 m if the wavelength of the light is 1/2 micron?

Answer (10.4).

(a)

(b) 

.

.

c) Let the reflected electric field be

(note change in sign of k).

Then 

(d) In the water the propagation vector is given by 
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and

(e) At the interface the required boundary conditions are

(1) Tangential components of E must be continuous.

(2) Tangential components of H must be continuous.

(f) At z = 0

Incident Wave 

Reflected Wave 

Transmitted Wave 

Continuity of E : 

Continuity of H : 

or 

Solve eqns. (1) and (2) to obtain:

But  so 

Also 

and 

(NOTICE THE PHASE CHANGE IN THE ELECTRIC FIELD!!)

(g) Rate of transport of energy to the water surface is

(h) The rate of energy reflected from the surface is

∴ Energy absorbed in H O = 1.30 mW/m .

(i) At z = 2m

∴ @ 2m the electric field strength = 0.67 V/m.

Problem (10.5).
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A wave having an electric field amplitude E  = 1 V/m falls at normal incidence on a plane copper surface as shown in the above
sketch. Its frequency is 10  Hz.

a. Write expressions for the electric and magnetic fields in the incident wave. How big is H ?
b. Calculate the magnitude of the vacuum wave-vector.
c. Calculate the wave-vector in the metal (k ) in the expressions:

d. Calculate the amplitude of the electric field at the surface of the metal i.e. E .
e. Calculate the magnetic field amplitude at the surface of the metal i.e. H .
f. Calculate the time average Poynting vector for the incident wave i.e. <S >
g. Calculate the time average Poynting vector for the energy flow into the metal i.e. <S >
h. From (f) and (g) calculate the absorption coefficient  = <S >/<S >.
i. Calculate the average rate of energy dissipation as Joule heat in the metal. Show that the integral of this quantity from z = o to ∞

is just equal to <S > from (g) above.

Answer (10.5).

(a) 

 since E  = 1 V/m.

since Z  = 377 Ohms.

(b) See above. k = 2.094 x 10  /meter.

(c) In the metal:

or 
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∴ 

or .

So  or 

= i (5.093 x 10 )

N.B. km is very large c.f. k = ω/c. Approx. 10  larger!!

At z = 0: a) Continuity of E : 

b) Continuity of H : 

or 

But 

 .
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So 

.

This is much larger than 1.

to approximately 1 part in 10 !

e) From part (c)  

and 

N.B. To first order in  the magnetic field amplitude in the metal is INDEPENDENT of ,ω !!

The factor 2 comes from the sum H  = H  + H , where  & 

But E  = 1 V/m & E  = -1 v/m (to 1 part in 10 )

(f) For the incident wave 

(g) At the metal surface (z = 0)

(h) 

(i) In the metal the current density is given by

The Joule heat/volume (time averaged) is

But  and 

and  = 1.596 x 10  from part (c)

& 

Total rate of heat production 

= (3.133)( ) (6.45× ) (377)(1+ i)
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.

Problem (10.6).

Light having a wavelength of 5145 Å (0.5145 µm) falls upon a plane copper surface at normal incidence. The intensity of the light
is 10  Watts/m  (i.e. 100 mW in a laser beam 1x1 mm in cross-section). The complex index of refraction for copper at 5145 Å is 

 for a time dependence of e .

(a) Calculate the amplitudes of the electric and magnetic fields in the incident wave.

(b) Calculate the amplitudes of the electric and magnetic fields in the reflected wave.

(c) Calculate the intensity of the reflected wave;i.e. calculate the time-averaged value of the Poynting vector.

(d) Calculate the wave-vector of the light in the copper. What is the phase velocity associated with the wave in the copper?

(e) Calculate the amplitudes of the electric and magnetic fields in the copper but near the surface at z=0.

(f) Calculate the time averaged value of the Poynting vector inside the copper but near the surface at z=0.

(g) How far into the copper does the light penetrate before its intensity has decreased to 1% of its intensity at the surface?

(h) Calculate the time averaged energy density, <W> , stored in the electric and magnetic fields in the copper but at the surface z=0.
Show that  Watts/m .

Answer (10.6).

(a) Incident wave:

where k= ω/c and Z = µ c = 377 Ohms.

Therefore, , and E = 8.683x10  Volts/m, and H = 23.03 Amps/m.

(b) From the boundary value problem

For this problem n=1.19 and =2.60;

r = -0.621- 0.45i, and therefore r= - Re  where R=0.767, and Tan = 0.725 so that = 35.93° = 0.627 radians. The minus
sign means that the direction of the reflected wave amplitude is reversed relative to the amplitude in the incident wave.

and

(c) The intensity of the reflected wave is given by

(d) In the copper 

∴ = (1.313 × )(2) = 3.48×  Watts/ .Q
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(6.45× )10

7
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In the copper the fields are proportional to

The phase velocity is 

(e) 

and T= 0.588 and θ= - 49.9° = - 0.871 radians.

phase=0.271 rad= 15.51°.

(f) In the metal

so at z=0 these become

and

(g) The electric and magnetic field amplitudes are multiplied by  and therefore the intensity is multiplied by

If  then .

But ω/c= 1.221x10. m  , therefore z= 0.725x10  meters, or z= 72.5 nm, or z= 0.0725 µm.

The free space wavelength of the light is 0.5145 µm, so that the light penetrates , approximately 1/10 of a free space
wavelength.

(h) At the surface of the copper the electric and magnetic field amplitudes are given by
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But , and

where for this case c/n= 2.52x10 m/sec.

Problem (10.7).

An s-polarized electromagnetic wave is incident on a plane interface at the angle θ (see the sketch). The amplitude of the incident
electric field is E , that of the reflected electric field is E , and the transmitted electric field is E . The material for z > 0 is
characterized by a relative dielectric constant, ε , which is real (no losses in the medium). The material is characterized by the
magnetic permeability of free space.

(a) Write expressions for the components of E and H in the incident wave e.g.

(b) Write expressions for the components of E, H in the reflected wave.

(c) Write expressions for the components of E, H in the transmitted wave.
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 etc. where k = ω/c.
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(d) Show that 

where n =  and 

and .

(e) Show that the normal component of B, B , is continuous across the boundary at z = 0.

(f) Construct a graph of  vs the angle of incidence, θ, for ε  = 4.

Answer (10.7).

(a) Incident Wave:

where Z  = 377 Ω = cµ .

(b) Reflected Wave:

(c) Transmitted Wave:

Since  or 

and 

and  or 

∴ 

or 

or 
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or  (2)

∴ 

∴  where 

(d) , where 

(e) At z = 0

on the left: 

on the right: 

Therefore, because of eqn (1), the normal component of B  = µ H  is continuous across the interface.

(f)

The ratio  is plotted in the figure. Notice that

(1) The phase of the electric field is reversed in the reflected wave i.e. the total electric field at the interface is smaller
than the incident electric field amplitude;

(2) The reflectivity approaches 1 at large angles of incidence i.e. as the beam becomes parallel with the interface plane.
It is a common experience that surfaces appear more reflecting at shallow angles.

Problem (10.8).

Let p-polarized radiation, = 0.50 µm, be incident from vacuum on glass at an angle of incidence of 45°. The index of refraction of
the glass is 1.5 and the glass is lossless. Let the plane of incidence be the x-z plane, and let the surface of the glass be parallel with
the x-y plane and located at z=0.

(a) Write expressions for the incident fields (E,H) assuming a time dependence e  . Let the incident electric field amplitude be
E = 1 V/m.

(b) Write expressions for the reflected fields. Let the reflected electric field amplitude be E .
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(c) Write expressions for the transmitted fields. Let the transmitted electric field amplitude be E .

(d) Solve the appropriate boundary value problem to obtain the complex ratios E /E  and E /E .

(e) Calculate all of the components of the time averaged Poynting vectors for each of the incident, reflected, and transmitted waves.

Answer (10.8).

;

the component along x is ; the component along z is k= q= 0.889x10  m .

(a) Incident Wave:

(b) Reflected Wave:

T

R 0 T 0

= = 4π×  rad/sec  = 1.2566×

ω

c

2π

λ
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–

√
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R

H

R

Z

0

=−E

x

E

R

2

–

√
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–

√

e

iqx

e

−iqz

e

−iωt

= .H
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(c) In the glass ,

therefore , since ,

and .

The angle of refraction is such that , = 28.13°.

In the glass :

where  and .

(d) Boundary Value Problem.

(i) Continuity of H :

(ii) Continuity of E :

Therefore 

from which  and .

(e) Time averaged Poynting Vectors.

(i) Incident Wave.

(ii) Reflected Wave.

(iii) Transmitted Wave.
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Problem (10.9).

Reverse the configuration of Problem (10.8); i.e. let p-polarized radiation be incident on a glass-vacuum interface from inside the
glass. The interface is parallel with the x-y plane and it is located at z=0: the glass is on the left in the half-space z<0. Let the index
of the glass be n=1.5 (the imaginary part of the index may be set equal to zero, =0). The vacuum wavelength of the light is =
0.50 µm, and the angle of incidence is 45°. The magnetic vector of the incident light is polarized along the y-direction.

(a) Calculate the z-component of the Poynting vector in the vacuum at z=0.

(b) Calculate the amplitude of the vacuum wave at z=0 if the incident wave electric field amplitude is E = 1 V/m

Answer (10.9).

(a) The wave-vector in the glass is given by

or

For this problem  and k= 1.8849x10  m .

The wave-vector component along the interface (along x) is

On the vacuum side of the interface the fields are proportional to

where ,

therefore

Notice that  is negative. This means that the square root is pure imaginary.

The wave in the vacuum is a pure exponential, it does not oscillate in space. The fields are confined to a distance of the order
of 1/  near the interface, i.e ~ 1 . In the vacuum

where = 4.443x10  m . In the vacuum curlH = -iωε  E, therefore

or
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The time averaged Poynting vector at the interface is

so

There is no energy flow from the glass to the vacuum. The light is totally reflected.

(b) From the continuity of the tangential components of E and H one finds

or , since .

Consequently, 

from which

where = 18.43°,

and

where θ= 36.87°.

 as expected.

The electric field amplitude in the glass is given by

so if E = 1 V/m, then H = 3.98x10  Amps/m. The vacuum wave amplitude is given by

and

Problem (10.10).

Light of wavelength = 0.50 µm falls from vacuum on a plane glass interface; the angle of incidence is 60°. Let the plane of
incidence be the x-z plane, and let z be directed into the glass; the interface is located at z=0. The complex index of refraction of
the glass, n+i , has components n=1.5, =0. The incident light is plane polarized but the electric vector has equal amplitudes, E ,
for the component perpendicular to the plane of incidence (the s-polarized component), and for the component parallel with the
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plane of incidence (the p-polarized component). Calculate the reflected electric field amplitudes and show that the electric field in
the reflected light is plane polarized, but that the plane of polarization has been rotated relative to that of the incident light.

Answer (10.10).

From Snell's law

where θ= 60°.Thus

For the s-polarized component

For the p-polarized component

The reflected light is polarized almost perpendicular to the plane of incidence. The angle which the electric vector makes
with the plane of incidence is , where

, so that  = 84.2°.

The amplitude of the electric vector is 0.422 E .

Problem (10.11).

Light of wavelength = 0.5145 µm falls on a plane copper interface; the complex index of refraction for copper, ,
has components n=1.19, and = 2.60, for a time dependence e  . Let the copper-vacuum interface lie in the x-y plane at z=0. The
plane of incidence is the x-z plane, and the angle of incidence is 60°. The incident wave is plane polarized and its electric vector is
oriented at 45° with respect to the plane of incidence. Take the amplitudes of the s-polarized and p-polarized components to be
equal to E . Calculate the reflected wave electric field amplitudes and show that the reflected light is elliptically polarized.

Answer (10.11).

In the copper one has a spatial variation of the form

where 

and .

Therefore .

For copper ,

or ,

and 

,

so that .

This can be written 

where n = 1.139 = 2.718.

sinθ= n sinϕ
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∘
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For the s-polarized wave

For the p-polarized wave

The reflected waves can be described at z=0 by

and ,

or 

where the x' refers to a co-ordinate system in which the x'-axis lies in the plane perpendicular to the reflected wave wave-
vector.

These expressions mean

The phase shift between these two components is

= 162.14 - 110.41 = 51.73° .

Shift the zero of time so as to make the component E  vary as Cosωt:

where a= 0.637E  and b= 0.880E . These relations are plotted below for E = 1 V/m.

This ellipse can be put in standard form by a co-ordinate rotation through the angle θ:

= = 0.880 .
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∘
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∘
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Using these relations the electric field components in the rotated frame can be written:

These have the form

where

and

where

These give two expressions for Tan  which when equated provide an equation for the angle of rotation θ.

Solutions are θ= -31.01° and θ= 58.98°. Use θ= -31.01°

so that Cosθ= 0.857, Sinθ= - 0.515.

These can be used to write

.

The light is elliptically polarized. The ratio of the major to the minor axes of the ellipse is 2.23, and one of the principle axes
of the ellipse is rotated 31° from the plane of incidence of the light. The electric vector is rotating counter-clockwise when
viewed looking into the reflected beam along the +z direction.

Problem (10.12).

Consider a block of dielectric material of thickness d immersed in vacuum. A wave having an amplitude E  is incident on the block
as shown: the angle of incidence is θ = 0.

=− Sinθ+ cosθ.E

η

E

X

E

Y

= 0.637 cosθ cosωt+0.5451 sinθ cosωt−0.6909 sinθ sinωtE
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=−0.637  sinθ  cosωt+0.5451  cosθ cosωt−0.6909 cosθ sinωtE
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=Acos(ωt+α) =A cosα cosωt−A sinα sinωtE

ξ

Acosα = 0.637 cosθ+0.5451 sinθ

Asinα = 0.6909 sinθ

=Bsin(ωt+α) = cosα sinωt+sinα cosωtE

η

Bcosα =−0.6909cosθ

Bsinα = 0.5451 cosθ−0.637sinθ.

α

= .

0.637 sinθ−0.5451 cosθ

0.6909 cosθ

0.6909 sinθ

0.637 cosθ+0.5451 sinθ

Eξ = 0.265 cosωt+0.356 sinωt = 0.444 cos(ωt− )53.3

∘

= 0.796 cosωt−0.592sinωt =−0.992  sin(ωt−53.30)E
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o
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Calculate the amplitudes of the reflected and transmitted waves E , E .

HINT: Inside the dielectric block there is both a forward and a backward moving wave: ie. in the block

One must satisfy boundary conditions at both z = 0 and at z = d.

Answer (10.12).

In the dielectric block 

 if ε  is complex.

We require curl E = iωµ H

∴ since there is only an x-component of E

Incident Wave:

Reflected Wave:

Boundary Conditions at z = 0

(1) Continuity of E  
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(2) Continuity of H  

or  (2)

Now at z = d one can write the transmitted fields as

∴ at z = d E  = E  and H  = E /Z

But in the dielectric at z = d one has

Therefore from continuity of E  one obtains

 (1)

and from continuity of H

or

 (4)

From (3) and (4) one has

and from (1) and (2)

or

If ε  is real k  = nω/c and
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The above two equations are oscillatory functions of the wavelength.

if 2k d = 2 , 4 , 6 , etc.

then  

If 2k d = , 3 , 5 , etc.

then  i.e. a maximum

The variation with frequency of the reflectivity and the transmission coefficient are plotted below for a real dielectric
constant ε = 2.25 (n= 1.5).
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Problem (10.13).

Let a material be described by electric and magnetic linear response: i.e.

and

where both ε(ω) and µ(ω) are complex numbers. These are usually written

and

For a time dependence  the imaginary parts of the response functions, ε (ω) and µ (ω), are greater than zero.

(a) According to Poynting's theorem the rate of increase of energy stored in the fields is given by

Show that for a time dependence  the imaginary parts of ε and µ must be greater than zero for any finite frequency. This
conclusion follows from the restriction that the time average of  must be greater than or equal to zero according to the
second law of thermodynamics.

(b) Show that for a time dependence  a plane wave solution of Maxwell's equations can be found in the form

D = ε(ω)E,

B =μ(ω)H,

ε(ω) = = + iε
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where 

and , where K>0

for a wave damped towards the interior of a semi-infinite slab.

(c) Calculate the time averaged value of the Poynting vector corresponding to the fields of eqns.(1) and (2). Show that

 (3)

Notice that for a passive medium <S > must be greater than, or equal, to zero; this means that . For a
nonmagnetic material µ = µ  and µ =0; thus for a non-magnetic material eqn.(3) states that n≥ 0 (for this case N=n).

(d) Calculate the time averaged energy densities corresponding to the waves of eqns.(1) and (2). Show that

 (4)

and

 (5)

Expressions (4) and (5) do not appear to have much in common except the factor . However, from the
definition

plus some tedious algebra, it can be shown that

, (6)

and

 (7)

These can be used to write

 (8)

(e) Calculate the total time averaged energy density associated with the electric and magnetic fields of eqns.(1) and (2). Show that
since  it follows that

 (9)

If this energy density is to be non-negative, it follows from eqn.(3) for <S > which must be greater than or equal to zero, that
N≥0. By comparison of eqns.(3) and (9) one finds also that

I know of no fundamental microscopic reason why the real part of the index of refraction should be confined to positive
values. It is true, however, that for the metals that I have checked, Fe,Co,Ni,Cu,Ag,Au, and Al, the real part of the index of
refraction, n, is greater than zero over the energy range 0.1 to 100 eV. For example,

(i) Cu: n is a minimum at 1.80 eV where n=0.21 and =4.25; the index then increases with energy but becomes less than 1
for energies greater than 9.0 eV.

(ii) Ag: n is a minimum at 3.5 eV where n=0.21 and =1.42; the index then increases with energy and becomes again less
than 1 for energies greater than 25 eV.

(iii) Au: n is a minimum at 1.40 eV where n=0.08 and =5.44; the index then increases with energy but becomes less than 1
for energies greater than 22 eV.
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(iv) Al: n is a minimum at 12.0 eV where n=0.033 and =5.44; the index then increases with energy but drops below 1 for
energies greater than 95 eV.

Answer (10.13).

(a) Let 

then 

or

Therefore .

It follows that if  then  for any finite frequency.

Similarly, ,

and .

therefore

and

It follows that if  then  for any finite frequency.

(b) Maxwell's equations for a time dependence  can be written

where from (i) divH=0 and from (ii) divE=0 because the divergence of any curl must vanish. The fields E,H therefore satisfy

Let E be polarized along x and H be polarized along y. Then plane wave solutions of the above equations are

and
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where 

or ,

where .

It is necessary to use the branch of the square root for which K≥0, since this branch corresponds to a disturbance which dies
away with increasing z.

(d) , or

But , therefore

But 

and ,

so that

where .

(e) Just add together <W > and <W > and use eqn.(6) above to get

Problem (10.14).

Radiation having a frequency of 1 MHz falls at normal incidence from vacuum upon a thick copper sheet. The copper sheet is
parallel with the x-y plane and the surface of the sheet lies at z=0. The resistivity of copper is ρ= 2.0x10  Ohm-meters at room
temperature.

(a) How much energy is absorbed per square meter by the copper sheet if the electric field strength in the incident wave is 1 V/m?
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(b) What will be the energy absorbed per m  if the incident radiation falls on the surface at an angle of incidence of 45°? Let the
incident radiation be p-polarized.

Answer (10.14).

In the metal

therefore

and 

where

or

Also 

or

For this problem ω = 2 x10  radians/sec
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and .

In the incident wave E = 1 V/m, and  Amps/m.

Just inside the metal surface  Amps/m.

Therefore 

.

.

(b) The incident wave is given by

The reflected wave is given by

In the metal 

therefore

and

In other words, q  is completely negligible compared with . This is, for all intents and purposes, the same problem as part (a).
The energy absorbed from the incident wave will be 3.95x10  Watts/m . For completeness, if

, then , where , and Z = cµ .

This page titled 13.10: Chapter- 10 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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13.11: Chapter- 11
Problem (11.1).

A strip-line is constructed from a metal strip 1 mm wide (W= 1 mm) separated from a ground plane by an oxide layer whose
thickness, D, is 20 µm. The relative dielectric constant of the oxide layer is ε = 8.00, and its relative permeability is µ = 1.00.

(a) What is the velocity of an electromagnetic wave on this line?

(b) What is the characteristic impedance of the strip-line?

(c) A pulse on the line is 10 meters long and corresponds to a constant potential difference of 10 Volts. How much energy is stored
in the pulse?

Answer (11.1).

(a) ; v= 1.06 x 10  m/sec.

(b) In the dielectric material one finds curlE= iωµ  H for a wave having a time dependence . Therefore

and

Thus 

In the strip line the potential is V= E D, and the current is given by I= WH . It follows that the characteristic impedance is
given by

(c) The electric field in the insulator is , so

The energy density stored in the electric field is given by

The energy density stored in the magnetic field is given by

But  or 

so that .

The total energy density is .

So W= (8)(8.84 x 10 )(25x10 ) = 17.86 Joules/m

The volume which contains this energy density is given by

The total energy stored in the pulse is 3.54 x 10  Joules.
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Problem (11.2).

The space between the conductors in a co-axial cable is filled with polyethylene which has a relative dielectric constant ε = 2.25.
The characteristic impedance of the cable is 50 Ohms. A 10 meter length of cable is used to connect a pulse generator to a load of
R Ohms. The incident pulse amplitude is V .

(a) What is the amplitude of the reflected pulse if the cable is terminated by 50 Ohms?

(b) What is the amplitude of the reflected pulse if the cable is terminated by zero Ohms?

(c) What is the amplitude of the reflected pulse if the cable is terminated by an open circuit?

(d) What is the amplitude of the reflected pulse if the cable is terminated by 100 Ohms?

(e) What is the inductance per meter of cable?

(f) What is the capacitance per meter of cable?

Answer (11.2).

The velocity of a pulse on the cable is , and the characteristic impedance is Z = 50

Ohms. The reflection coefficient is given by , where .

(a) R= 50 Ohms, therefore r=1 and V = 0.

(b) R= 0 Ohms, therefore r= 0 and V = - V .

(c) R= ∞ Ohms, therefore r= ∞ and V = +V .

(d) R= 100 Ohms, therefore r= 2 and .

(e)  and  so that

Consequently,  and .

Problem (11.3).

A typical co-axial cable has a characteristic impedance of 50 Ohms (Z  = 50 Ohms). The dielectric material can be regarded as
lossless and ε  = 2.25. The cable is connected to a 50 Ohm pulse generator and is terminated by a resistance R Ohms (see the
figure).

An oscilloscope is connected across AB: its impedance is effectively infinite so that it does not disturb the propagation of pulses on
the line. The distance between AB and the end of the line is 40 meters. The generator emits a rectangular pulse whose amplitude is
5 Volts and whose length in time is 10  seconds.

r

0

v= = = 2.0×  m/sec

c

ε

r

√

2c

3

10

8

0

=

V

R

V

0

r−1

r+1

r=

R

Z

0

R

R 0

R 0

=

V

R

V

0

1

3

=V

2 1

LC

=Z

0

L/C

− −−−

√

L/C = 2500  and  LC = .

1

4×10

16

=L

2 2500

4×10

16

L=  μHenry/m

1

4

C = = 100 pF/m.

L

2500

o

r

-7
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(a) What is the velocity of pulses on this cable?

(b) Let R = 0. Make a sketch of the signal measured using the oscilloscope across AB.

(c) Let R = 0. Make a sketch of the signal measured using the oscilloscope connected across the resistor, R.

(d) Let R = 50 Ohms. Make a sketch of the signal measured across AB.

(e) Let R = 50 Ohms. Make a sketch of the signal measured across the resistor, R.

(f) Let R → ∞ (an open circuit). Make a sketch of the signal measured across AB.

(g) Let R → ∞. Make a sketch of the signal measured across the open end of the cable.

Answer (11.3).

(a) For this cable ε  = n  = 9/4 therefore n = 3/2. The velocity of propagation 

(b) Shorted Cable. At AB one sees the original pulse followed by the reflected pulse after a time delay of 80/v = 4 x 10
seconds (40 m out and 40 m back). The reflected pulse is inverted.

The reflected pulse is absorbed in the generator because the generator impedance is Z  = 50 Ohms.

(c)Shorted Cable. Nothing will be seen across the short at the end of the cable (R = 0).

(d) Cable terminated by Z  = 50 Ohms. One will measure only the initial pulse. There is no reflected pulse.

r
2

v = = 2×  m/sec.

c

n

10

8

-7

o

o
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(e) Cable terminated by 50 Ohms. The voltage across the 50 Ohms will just look like the incident pulse but delayed by 40/v
= 2 x 10  secs.

(f) Open circuit. At AB one will see the original pulse followed 80/(2 x 10 ) = 4 x 10  secs. later by a similar pulse. The
reflected pulse will then be absorbed in the generator.

This is a standard technique for generating a delayed pulse.

(g) At the open end of the cable one will measure a single pulse whose amplitude is twice that of the original pulse. (One
measures V  + V ). There will be a time delay of 2 x 10  secs.

Problem (11.4).

A certain co-axial cable is characterized by a velocity of v= 2.00 x 10  meters/sec., and it has a characteristic impedance of 50
Ohms. The cable is terminated by a capacitor C= 100 pF. A 10 Meter long rectangular pulse whose amplitude is 5 Volts is launched
along the cable. Make a sketch of the reflected pulse. Carefully indicate the voltage and time scales; let the reflected pulse reach the
observer at t=0. What is the maximum voltage in the reflected pulse?

Answer (11.4).

A 10 m pulse has a time duration of 5 x 10  seconds. The time constant associated with the capacitor is CZ = 5 x 10  secs.,
therefore the capacitor will become fully charged during the time that the pulse is applied to it.

(i) Initially the capacitor behaves like a short circuit; the reflected pulse will have an amplitude of -5 Volts. This amplitude
decays to +5 Volts as the capacitor becomes fully charged and looks like an open circuit. Note that when fully charged the
potential across the capacitor is V +V = 10 Volts.

(ii) At the end of the incident pulse the capacitor, which has been charged to +10 Volts, deposits its charge back into the line
at a rate determined by C and the characteristic impedance, Z .

-7

8 -7

o R
-7

8

-8
0

-9

0 R

0
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Problem (11.5).

A certain co-axial cable is characterized by a velocity of V= 2.00 x 10  meters/sec., and it has a characteristic impedance of 50
Ohms. The cable is terminated by an inductor L= 0.25 µH. A 10 Meter long rectangular pulse whose amplitude is 5 Volts is
launched along the cable. Make a sketch of the reflected pulse. Carefully indicate the voltage and time scales; let the reflected pulse
reach the observer at t=0. What is the maximum voltage in the reflected pulse?

Answer (11.5).

The time duration of the pulse is 5 x 10  secs.= 50 nsecs., whereas the time constant associated with the inductor is 
; thus the inductor will become fully charged with magnetic energy during the

course of the pulse.

(i) At t=0 the inductor looks like an open circuit because it resists a change in the current flowing through it. The reflected
pulse will therefore have an amplitude of +5 Volts, equal to the amplitude of the incident pulse. The reflected amplitude will
decay with a time constant  as the current through the inductor reaches a steady state value. When the current has
become constant, the inductor looks like a short circuit and the reflected pulse amplitude is -5 Volts.

(ii) The steady state value of the current through the inductor is just twice the current in the incident pulse, i.e. 
Amps, corresponding to a short circuit. Upon termination of the pulse, this current collapses to give an initial voltage

8

-8

τ = = 0.5×  secs.  = 5 nsecs 

L

Z

0

10

−8

τ =L/Z

0

=I

0

2V

0

Z

0

V =L =− =− ( ) =−2 .

dI

dt

L

τ

I

0

Z

0

2V

0

Z

0

V

0
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Problem (11.6).

A certain co-axial cable is characterized by a velocity of V= 2.00 x 10  meters/sec., and it has a characteristic impedance of 50
Ohms. A piece of this cable 21 m long is used to connect a 250 MHz oscillator to a load impedance Z .

(a) What load impedance will be presented to the generator if Z  is a 50 Ohm resistor?

(b) What load impedance will be presented to the generator if Z  is a 1.00 µH inductor?

(c) What load impedance will be presented to the generator if Z  is a 100 pF capacitor?

(d) What impedance will be presented to the generator in the above three cases if the co-axial cable has a length of 20.0 meters?

Answer (11.6).

At 250 MHz and for v= 2.00 x 10  m/sec. the wavelength on the cable is .

(a) Terminated by the characteristic impedance. The generator looks into 50 Ohms.

(b) At 250 MHz. the impedance of a 1.0 µH inductor is given by Z = iLω = 1571i Ohms, since ω= 1.57 x 10  radians/sec. 

which is equivalent to a phase shift of . Since the impedance seen by the generator is

where

and

8

L

L

L

L

8
λ = =  meters 

2×10

8

2.5×10

8

4

5

L
9

= i31.42

Z

L

Z

0

2ikl= i = 105iπ

4π(21)

λ

π

= ,

Z

G

Z

0

1+b/a

1−b/a

=( ) ,

b

a

z−1

z+1

e

−2ikl
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one finds .

or Z = -1.59i Ohms. The load appears to the generator like a capacitor with C= 400 pF!

(c) The load impedance is a 100 pF capacitor.

For the capacitor .

As before e  = -1 so that

from which .

The load appears to the generator like a 0.25 µH inductor.

(d) A 20 m cable contains an integer number of wavelengths, therefore the generator will look into the load impedance
exactly as if the cable had zero length.

(a) Z  = 50 Ohms.

(b) Z  = i1571 Ohms (Inductive).

(c) Z  = -i6.37 Ohms.

Problem (11.7).

A co-axial cable is characterized by a characteristic impedance of Z  = 50 Ohms and a velocity of propagation of 2 x 10  m/sec. It
is used to connect a 10 Ohm load to a generator. Calculate the impedance as seen from the generator for a cable having the
following lengths, L:

(a) L = λ/8

(b) L = λ/4

(c) L = 3λ/8

(d) L = λ/2

(e) Calculate the Voltage Standing Wave Ratio, VSWR.

Answer (11.7).

For a load of Z  = 10 one has a normalized impedance 

(a) 

z= ,

Z

L

Z

0

= =−0.998− i0.0636

b

a

1−i31⋅42

1+i31⋅42

= =−i0.0319,

Z

G

Z

0

1+b/a

1−b/a

G

= =−i6.366 Ohms Z

c

−i

cω

z= =−i0.1273

z

L

z

0

-2ikl

b/a = = 0.9681+i0.2505.

1−z

1+z

= = i7.855,

Z

G

Z

0

1+b/a

1−b/a

= i392.8 Ohms. Z

G

G

G

G

o
8

L = = 0.20Z

L

10

50

∴ Γ= =− =− =

−1z

L

+1z

L

0.80

1.2

2

3

2

3

e

iπ

L= ∴ = = =−i

λ

8

e

−2ikL

e

−i4πL/λ

e

−iπ/2

∴ Γ =e

−2ikL

2i

3

∴ = = = =z

G

1+Γe

−2ikL

1−Γe

−2ikL

1+2i/3

1−2i/3

3+2i

3−2i

(3+2i)(3+2i)

9+4
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i.e. a large inductive component

(b) L = λ/4 e  = e  = e  = -1

∴ Z  = 250 Ohms (purely real and relatively large!).

(c) 

∴ Z  = 19.23 - 46.15i Ohms

i.e. there is a large capacitive component.

(d)  

∴ Z  = 10 Ohms.

i.e. The generator looks directly into the load.

(e) The standing wave ratio is given by

In a slotted line there would be no change in the position of |V | when the load was exchanged for a short.

Problem (11.8).

Given a co-axial cable for which Z  = 50 Ohms and v = 2 x 10  m/sec. A piece of this cable of length L meters is used to connect a
load impedance Z  to the generator: Z  = (10 + 20i) Ohms.

Calculate the impedance seen by the generator for

(a) 

(b) 

(c) 

(d) 

(e) Calculate the Voltage Standing Wave Ratio, VSWR.

Answer (11.8).

Z  = (10 + 20i) Ohms

∴ = = 0.385+0.923iZ

G

5+12i

13

∴ = 50 = 19.23+46.15i Ohms Z

G

Z

G

-2ikL -i4 Lπ /λ -iπ

∴ Γ = 2/3 (real)e

−2ikL

∴ = = = 5Z

G

1+2/3

1−2/3

5/3

1/3

G

L= = = =+i

3λ

8

e

−2ikL

e

−i4πL/λ

e

iπ/2

∴ Γ =−e

−2ikL 2i

3

= = = =Z

G

1−2i/3

1+2i/3

3−2i

3+2i

(3−2i)(3−2i)

9+4

5−12i

13

G

L=

λ

2

= = =+1e

−2ikL

e

−i4πL/λ

e

−i2π

∴ Γ =Γ=−2/3e

−2ikL

= = = 0.2Z

G

1−2/3

1+2/3

1

5

G

VSWR = = = 5

1+|Γ|

1−|Γ|

1+2/3

1−2/3

min

o
8

L L

L=

λ

16

L=

3λ

16

L=

5λ

16

L=

λ

2

L

= ( )Z

L

1+2i

5

Γ= = = =

−1z

L

+1z

L

1+2i−5

1+2i+5

−4+2i

6+2i

−2+ i

3+ i
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Now e  = e ∴ (a)  

(b)  

(c)  

(d)  

So

(a) 

(b) 

∴ Z  = (5.83)(50) = 291.4 Ohms (Purely real!).

(c) 

(The reciprocal of case (a))

, and Z  = (16.67 - 47.14 i) Ohms,

and now the generator load has a capacitive component.

(d)  

∴ Z  ≡ Z  = (10 + 20i) Ohms.

(e) 

Problem (11.9).

A 50 Ohm piece of co-axial cable of length L meters is used to connect a load to a generator. The load impedance is given by

Z  = (10 + 100 i) Ohms

Calculate the impedance seen by the generator for

(a) L/λ = 0.0732

(b) L/λ = 0.250

(c) L/λ = 0.3232

(d) L/λ = 0.5000

(e) Calculate the Voltage Standing Wave Ratio, VSWR.

∴ Γ = = =

(−2 + i)(3 − i)

9 +1

−5 +5i

10

(−1 + i)

2

∴ Γ =

1

2

–

√

e

3πi/4

-2ikL -i4 L/λ π

=

L

λ

1

16

=e

−2ikL

e

−πi/4

=

L

λ

3

16

=e

−2ikL

e

−3πi/4

=

L

λ

5

16

=e

−2ikL

e

−5πi/4

=

L

λ

1

2

= ≡ +1e

−2ikL

e

−2πi

Γ = =e

−2ikL

1

2√

e

iπ/2

i

2√

= = =z

G

1 +Γe

−2ikL

1 −Γe

−2ikL

1 + i/ 2

–

√

1 − i/ 2

–

√

+ i2

–

√

− i2

–

√

∴ = =z

G

( + i)( + i)2

–

√

2

–

√

3

1 + i2 2

–

√

3

∴ = 50 = (16.67 +47.14 i) Ohms. Z

G

z

G

Γ = ( purely real )e

−2ikL

1

2√

∴ = = 5.83z

G

1 +1/ 2

–

√

1 −1/ 2

–

√

G

Γ = = −e

−2ikL

1

2√

e

−iπ/2

i

2√

= =z

G

1 − i/ 2

–

√

1 + i/ 2

–

√

− i2

–

√

+ i2

–

√

∴ =z

G

1−i2 2√

3

G

Γ = Γe

−2ikL

= ≡z

G

1+Γ

1−Γ

z

L

G L

VSWR = = = 5.83

1+|Γ|

1−|Γ|

1+1/ 2

√

1−1/ 2√

L
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Answer (11.9).

.

(a)  

Z  = (1257.8 + i 16.9) Ohms. Almost resistive!

(b)  

 and Z  = 2.48 - 24.75i Ohms

Capacitive Loading.

(c)  

and Z  = (1.987 - i 0.027) Ohms.

A small, nearly purely real, load.

(d) When  one gets the same effect as connecting the load directly across the generator.

∴ Z  = Z  = (10 + 100i) Ohms.

(e) .

Problem (11.10).

A certain co-axial cable is characterized by a velocity of V= 2.00 x 10  meters/sec., and it has a characteristic impedance of 50
Ohms. The attenuation parameter for the cable is = 0.02 per meter. A piece of this cable 21 m long is used to connect a 250 MHz
oscillator to a load consisting of 100 pF shunted by a resistance of 5.0 Ohms. Calculate the load on the generator.

Answer (11.10).

The impedance of the capacitor is  Ohms. The load impedance is ZC in parallel with a 5 Ohm resistor;

so that Z = 3.092 -i 2.429 Ohms, and

We have

where  and where .

Let 

and

= +2i =z

L

1

5

1+10i

5

∴ Γ = = = = 0.924

−1z

L

+1z

L

−4/5+2i

6/5+2i

−2+5i

3+5i

e

+0.921i

=e

−2ikL

e

−0.92i

∴ Γ = 0.923 purely real e

−2ikL

∴ = = = (25.16 − i0.34) Ohms.z

G

1 +Γe

−2ikL

1 −Γe

−2ikL

1 +.9235 + i0.00095

1 −.9235 − i0.00095

G

= = −1e

−2ikL

e

−iπ

∴ Γ = = −0.559 −0.735ie

−2ikL

2−5i

3+5i

∴ = =z

G

(1 −0.559) −0.735i

[1.559 +0.735i]

(.441 −.735i)(1.559 −.735i)

2.971

∴ =z

G

0.148−1.47i

2.971

G

= 0.3232

L

λ

=e

−2ikL

e

−i4πL/λ=e

−4.06i

∴ Γ = 0.923 = 0.923 = −0.923 ( real )e

−2ikL

e

−3.141i

e

−iπ

∴ =z

G

1 −.9235 − i0.00099

1 +.9235 + i0.00099

G

L/λ =

1

2

G L

VSWR = = = 25.16

1+|Γ|

1−|Γ|

1+.923

1−.923

8

α

= = −i6.366z

c

−i

cω

= + = 0.20 + i ,

1

Z

L

1

5

1

Z

C

π

20

L

z = = 0.0618 − i0.0486 = 0.0786 ⌊− .

z

L

z

0

38.15

∘

z = = ,

Z

L

Z

0

1 +

b

a

e

2α1

e

2ik1

1 −

b

a

e

2α1

e

2ik1

= −1e

2ik1

= = 2.316e

2α1

e

21(.04)

Γ = = (−0.880 − i0.086)

z−1

z+1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25599?pdf


13.11.11 https://phys.libretexts.org/@go/page/25599

The impedance seen by the generator is .

therefore Z  = (110.7 + i 9.62) Ohms.

This can be compared with an impedance Z  = 500 + i 393 Ohms for the same length of lossless cable. In the limit of a very
long cable the impedance seen by the generator must, of course, approach the characteristic impedance of 50 Ohms.

Problem (11.11).

A slotted line is terminated by a load impedance ZL = (10 + 10i) Ohms. The characteristic impedance is Z  = 50 Ohms. The
position of the voltage minimum is found to be at z . The load is then replaced by a short and the voltage minimum is found to be
at z .

(a) How large is the shift ?

Is this shift positive (i.e. z  > z ) corresponding to the shorted line minimum closer to the generator, or is it negative (i.e. z  > z )
corresponding to the shorted line minimum closer to the load?

(b) Calculate the Voltage Standing Wave Ratio, VSWR.

Answer (11.11).

(a) Z  = 50 Ohms Z  = (10 + 10i) Ohms

= - 0.622 + 0.27i

We have at a voltage minimum

So upon shorting the line, the minimum moves 0.0327 λ towards the generator.

b/a = Γexp(−2αl−2ikl) = (0.380+i0.037)

=

Z

G

Z

0

1+b/a

1−b/a

= (2.213+ i0.192),

Z

G

Z

0

G

G

o

1

2

( − )z

1

z

2

λ

1 2 2 1

o L

∴ = = 0.2(1+i)z

L

Z

L

Z

O

Γ= = =

−1z

L

+1z

L

−0.8+0.2i

1.2+0.2i

−0.92+0.40i

(1.2 +0.04)

2

∴ Γ= 0.678 = 0.678 .e

2.731i

e

i(0.869)π

cos[ (L− )−θ]=−1

4π

λ

z

1

∴ (L− )−.87π = π

4π

λ

z

1

∴ L− = = .468λz

1

1.87λ

4
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(b) 

Problem (11.12).

A slotted line is terminated by a load impedance Z  = (10 - 10i) Ohms. The characteristic impedance of the slotted line is 50 Ohms.
The voltage minimum is found to be at z  on the line. When the load is replaced by a short the voltage minimum moves to z .

(a) Calculate the shift . When the line is shorted does the minimum move towards the generator or towards the load?

(b) Calculate the Voltage Standing Wave Ratio, VSWR.

Answer (11.12).

(a) 

Minimum when cos[2k(L-z) - θ] = -1

or 

∴ 

When the load is replaced by a short, the minimum moves .0327 λ towards the load.

(b) .

The same VSWR as for the impedance of problem (9.11).

Problem (11.13).

The Voltage Standing Wave Ratio is found to be S = 2.0 on a lossless 300 Ohm transmission line terminated by an unknown load
impedance, Z . The nearest voltage minimum is  from the load i.e. z  = (L - 0.3λ).

(a) When the above line is shorted where will the voltage minimum be located which is nearest the load, but not right at the load?

(b) Calculate the real and imaginary parts of the unknown load impedance, Z .

Answer (11.13).

(a) When the load is replaced by a short the minimum will be located  from the short.

(b) 

 

Minimum at z  where

VSWR = = = 5.21

1+|Γ|

1−|Γ|

1+.678

1−.678

L

1 2

( − )z

1

z

2

λ

= 10(1−i) Ohms Z

L

= − =

Z

L

Z

0

1

5

i

5

z

L

Γ= = = = .

−1z

L

+1z

L

−4/5− i/5

6/5− i/5

−4− i

6− i

−23−10i

37

∴ Γ=−0.622−0.27i = 0.678 .e

i1.13π

θ= = 1.131π radians. 203.5

∘

(L−z)−1.13π = π

4π

λ

L−z= 0.533λ

VSWR = = = 5.21

1+|Γ|

1−|Γ|

1.678

1−.678

L
3λ

10

1

L

λ

2

∴ =L−z

2

λ

2

S = V SWR= 2.0 =

1+|Γ|

1−|Γ|

∴ |Γ| = 1/3 Γ= |Γ|e

iθ

1
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cos [2k(L-z) - θ] = -1

 and 

So 

∴ θ = 0.2 

So 

But 

∴ z  = 1.555 + .685 i

∴ Z  = (z )(300) = 466.5 + 205.6i Ohms

Problem (11.14). A slotted line is characterized by a velocity V= 3.00 x 10  m/sec, and by a characteristic impedance of 50 Ohms.
The slotted line is connected to an oscillator on one end and to an unknown load on the other end. The voltage standing wave ratio
is found to be VWSR= 2.0. Moreover, when the load is replaced by a short circuit the position of the voltage minimum shifts 5 cm
towards the load. The position of the first minimum from the shorted end occurs 40.0 cm from the short. Calculate the impedance
of the load.

Answer (11.14).

The voltage minimum on a shorted line occurs at a distance λ/2 from the short; therefore for this problem the generator
frequency corresponds to a wavelength of λ= 80 cm= 0.80 meters. The velocity on the slotted line is c= 3 x 10  m/sec, so that
the frequency is f= c/λ= 375 MHz. The corresponding circular frequency is ω= 2 f = 2.356 x 10  radians/sec. The
wavevector on the line is k= 2 /λ = 7.854 m . Let the load be at z=L, with the generator somewhere to the left (at z=0). For
a time dependence e

and

At z=L 

and

Thus

where

One can write

clearly ,

whereas ,

so that 

Therefore . With the load connected the minimum occurs at z . At the minimum ,
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or 

When the line is shorted the minimum occurs 40 cm from the load. With the load in place the minimum shifts 5 cm towards
the generator. That means that z  is such that L-z = 45 cm = 0.5625λ. Thus

or θ = ±  + 7.0686. The appropriate value is less than 2  so that θ = 3.9270 radians

and the load impedance is Z  = 28.08 - i14.89 Ohms. This is equivalent to a resistance of 28.08 Ohms in series with a
28.5x10  Farad capacitor.

This page titled 13.11: Chapter- 11 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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13.12: Chapter- 12
Problem (12.1).

Microwave power of 1 Watt at a frequency of 24 GHz is transmitted through a piece of rectangular waveguide whose inside
dimensions are 1 cm x 0.5 cm. Let the z-axis lie parallel with the waveguide axis, and let the microwaves be propagating in the +z
direction. Use ε= ε  and µ= µ .

(a) Write expressions for the electric and magnetic fields in the waveguide if the time variation is e  .

(b) Calculate the amplitudes of the electric and magnetic field components.

(c) Calculate the time-averaged energy density contained in the fields.

(d) With what velocity is the above energy density transported along the waveguide?

(e) Show that the magnetic field vector rotates with time at points which are part way across the width of the waveguide. Show that
for points near x=a/4 the rotation is clockwise when viewed from a point on the plus y-axis and looking towards the x-z plane,
whereas the rortation is counter-clockwise near x=3a/4.

Answer (12.1).

(a) For a frequency F= 24 GHz, ω= 2 F= 1.508 x 10  radians/sec. For the TE  mode (all other modes are cut-off)

where the waveguide walls are at x=0,a and at y=0,b: there is no spatial variation along the narrow dimension of the guide.
The field components must satisfy the wave equation: in particular,

from which

For the present case, 

so that

From curlE= iωµ H, using the fact that E has only a y component, one finds

and 

or

Note that  where , and Z = µ c= 377 Ohms.
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The average across the guide is given by

where E  is the electric field amplitude. Now , and <<S >>ab= 1 Watt, therefore 

,

so that E  = 6216 Volts/meter, or 31.1 Volts across the narrow dimension of the waveguide. The x-component of the
magnetic field amplitude is . The amplitude of the longitudinal magnetic field component is
|H |= 10.31 Amps/m.

(c) The time-averaged energy density contained in the fields is given by

or

Averaged over the guide cross-section, this expression gives

(d) The group velocity is the rate of energy transport down the guide;

It follows from this that

The group velocity is also given by .

(e) Near x=a/4 

therefore if ,

then

These expressions describe an elliptically polarized wave (nearly circularly polarized because  rotating in the

direction from z to -x, i.e. clockwise looking from +y towards the x-z plane.

Similarly, near x=3a/4 , and

,

corresponding to a counter-clockwise rotation looking from +y towards the xz plane.
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Problem (12.2).

An attempt is made to propagate a 10 GHz microwave signal along a rectangular air-filled waveguide whose internal dimensions
are 1 cm x 0.50 cm. Use ε  and µ  for the dielectric constant and the permeability.

(a) Write expressions for the electric and magnetic fields associated with the non-propagating TE  mode.

(b) Over what distance is the amplitude of the microwave fields attenuated by 1/e?

(c) Calculate the z-component of the Poynting vector and show that it corresponds to a periodic flow of energy across the
waveguide section whose time average is zero.

Answer (12.2).

(a) F= 10 GHz ω= 6.28 x 10  rad./sec. .

.

For the TE  mode ,

from which , and k = ±i 2.342 x 10  m ,

a pure imaginary number. Let k = i .

(b) The attenuation length is , or

(c) S  = - E H , where for this problem

and

Therefore, 

or 

since .

Problem (12.3).

(a) Design a rectangular air-filled cavity to operate at 24 GHz in the TE  mode. The cavity is to be constructed from a length of
rectangular waveguide whose internal dimensions are 1 x 0.50 cm. Use ε  and µ  for the dielectric constant and the permeability.

(b) Write expressions for the fields in the cavity at resonance.

Answer (12.3).

(a) At 24 GHz ω= 1.508 x 10  rad./sec .

For the TE  mode the guide wave-number can be calculated from

where a= 0.01 m is the broad dimension of the guide:
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The guide wavelength is . The length of the cavity should be  for the
TE  mode;

(b) For the forward propagating wave and a TE  mode

For the backward propagating wave

In the cavity one must set up a standing wave along z which has nodes at z=0 and at ; i.e.

From this electric field one can calculate the other field components using . For the TE  mode the electric
field has only one component, E , and

From (1)

From (2)

For resonance k = 3λ/2 and therefore L= 2.40 cm.

Problem (12.4).

A rectangular waveguide is filled with material characterized by a relative dielectric constant ε = 9.00. The inside dimensions of the
waveguide are a= 1 cm, b= 0.50 cm.

(a) Over what frequency interval would this guide support only the TE  mode?

(b) Calculate the time-averaged energy density for the TE  mode, and average the resulting expression over the guide cross
section. Let the amplitude of the electric field be E  = E .

(c) Calculate the time-averaged value of the Poynting vector, and average the resulting expression over the guide cross section. Let
the amplitude of the electric field be E  = E .

(d) A signal having an average power of 1 Watt is transmitted down the guide at a frequency of 7.5 GHz. Calculate (i) the
wavelength along the guide, λ ; (ii) the ratio of the guide wavelength to the free space wavelength for a 7.5 GHz plane wave; (iii)
the group velocity, i.e. the velocity with which information can be transmitted down the guide; (iv) the amplitude of the electric
field.

Answer (12.4).

(a) For the TE  mode the fields have the form
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where 

or .

If a= 1 cm = 0.01 m .

The cut-off frequency corresponds to k = 0; i.e. . At cut-off ,

or F = 5.00 GHz.

For the higher order modes, cut-off corresponds to the condition k = 0, so that

where , and .

For m=0 n=1 F  = 10.00 GHz

m=1 n=1 F  = 11.18 Ghz

m=1 n=2 F  = 20.62 GHz

m=2 n=0 F  = 10.00 GHz.

This waveguide will support only the TE  mode for frequencies in the interval 5.00 to 10.00 GHz.

(b) The time-averaged energy density is given by

Take the spatial average over the cross-section of the waveguide:

(c) S  = - E H ,

The average over the x co-ordinate gives

(d) The group velocity is such that <<S >>= V <<W>>, therefore

At 7.5 GHz  and the free space wavelength is λ = 4.00 cm. The waveguide wave-vector is given by
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and

From this, the guide wavelength is

(i) , and

(ii) 

(iii) 

(iv) .

From this ,

so that E  = 3673 Volts/m.

Problem (12.5).

It is desired to construct a cylindrical air-filled cavity which will resonate at 10 GHz in the TE  doughnut mode (this is a very low
loss mode which is often used to construct frequency meters). If the radius of the cavity is chosen to be R= 2.50 cm how long
should the cavity be made?

Answer (12.5).

For the TE  mode the tangential component of the electric field, E , is proportional to the Bessel function 
 where

see eqn.(10.90b).

The component E  must be zero at the waveguide wall in order that the tangential component of the electric field be zero:

or  for the lowest mode.

Thus .

For an air-filled waveguide ε = 1, so

 since  at 10 GHz. Consequently, k  = 142.7 m  and the guide wavelength is 
. But E  must vanish at the cavity end walls and therefore E  must be proportional to . Thus 

 and the cavity length must be an integral number of half wavelengths long. A convenient choice would be L= 4.40
cm.

This page titled 13.12: Chapter- 12 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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