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13.4: Chapter 4
Problem (4.1)

A current I amps flows in the inner conductor of an infinitely long co-axial line and returns via the outer conductor. The radius of
the inner conductor is a, and b and c are the inner and outer radii of the outer conductor (see the sketch). The current density is
uniform in the two conductors. Calculate the magnetic flux density in all regions. The magnetization density can be set equal to
zero everywhere.

Answer (4.1)

This problem exhibits cylindrical symmetry so that it is ideal for an application of Stokes' theorem. Let z be the direction

along the cable. Then there is only a component Az of the vector potential . Moreover, by symmetry A

cannot depend upon the angle θ, nor can it depend upon z (infinite wire).

∴ A  = A (r).

In cylindrical co-ordinates

, ∴ B has only a θ component

.

But since there is no magnetization and no time dependence
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Apply this to a circle of radius r:

Case (1) 

So when r = 0 B  = 0

when r = a .

Case (2) a ≤ r ≤ b

In this case 

∴ 2 r B  = µ  I

When r=a 

When r=b 

Case (3) b ≤ R ≤ c

In the outer conductor

and the current flow is negative. Therefore this time one has

So when r = b 

When r = c B  = 0

Case (4) R ≥ C

Here 2 rB  = µ (I - I) ≡ 0 ∴ B  = 0.

There is no field outside this co-axial cable. Notice that the tangential component of B is continuous across the boundaries.

Problem (4.2)

Two identical coaxial coils, each of N turns and radius a, are separated by a distance d as shown in the sketch. A current flows
through each coil so that the fields of the two coils add at the origin.

(a) Calculate B  at the origin

(b) Show that  at z = 0.

(c) Find d such that  at z = 0.

Such a configuration is the simplest system for generating a uniform magnetic field. It is known as a Helmholtz pair.

B ⋅ dL = ⋅ ds∮
C
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Answer (4.2)

The field of a single coil along its axis is

where z is measured from the center of the coil. For the above pair of coils

(a) At z = 0 

(b)

Thus at z = 0 .

(c)

∴ at z = 0
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So  if d = a.

Thus for a Helmholtz pair d = a.

The magnetic field strength at the center of the Helmholtz pair is given by

.

Problem (4.3)

A solenoid is 1 meter long and it carries 10  turns of wire. The average radius of the coil is 0.1 meters. The coil carries a current of
10 Ampères.

(a) Calculate the field at the center of the solenoid.

(b) If the wire of the coil has a cross-sectional area of 10  meters  calculate the resistance of the coil. R = ρL/A and for copper ρ =
2 x 10  ohm meters.

(c) How much power is required to produce the magnetic field of part (a)?

This calculation explains why iron core magnets are used to generate fields of ~ 1 Tesla.

Answer (4.3)

N is the number of turns/m, L the length of the coil.

At z = 0 

Here N = 10 /m, I = 10 Amps, , and R = 0.1 m

(a)  i.e. ~ 10  x earth's field!

(b) L = (2 R)(10 ) = 6.283 x 10  m ∴ R = 125.7 Ohms

(c) For 10 Amps one would require 1257 Volts and a power = VI = 12,570 Watts!! = 12.57 kWatts!

Problem (4.4)

A square loop of wire 1 cm on a side carries a current of 2 Ampères.

(a) Estimate the magnitude of the magnetic field on the axis of the current loop and 1 meter from its center. The loop may be
treated like a point dipole.

(b) Estimate the magnitude and direction of the magnetic field one meter from the center of the loop but at a point in the plane of
the loop.

Answer (4.4)

The magnetic moment of the loop is M  = IA = (2)(10 ) Amp m .

Now 

(a) On the axis of the dipole m r = M r

So 

(The earth's field is ~ 10  Tesla so this is very weak).

(b) On the equatorial plane m r = 0

Directed opposite to the dipole moment.
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Problem (4.5).

Calculate the magnetic field along the z-axis of a square coil which carries a current of I Amps (see the sketch).

Each side of the square is 2L meters long.

Answer (4.5).

Along the axis of the coil there will be only a zcomponent of magnetic field by symmetry. In order to get the total field it is
only necessary to calculate the z-component of the field generated by one side of the coil and then multiply by four. Consider
the right hand side.

Let 

The position of the element of length, dL, is specified by r where . The position of the point of observation
along the z-axis is specified by .

Therefore,

and

.

From the law of Biot-Savard one obtains

from which

and

dL = dy  at  (L,Y )ûy

r = L +yûx ûy
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√
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This must be multiplied by 4x because the coil has four sides:

At z=0 

This value can be compared with  for a circular coil.

Problem (4.6).

(a) How far apart should two square coils be mounted in order to obtain as homogeneous as possible a magnetic field? See the
sketch.

( One wants  at the center of the coil system. With a little thought one can convince oneself that at z=0 the quantity 
is exactly the same for each coil, so that the work of differentiation can be reduced by a factor two.)

(b) Over what distance along the z-axis will the field deviate by less than 1% from the field at the center of the coil system if L= 1
meter?

Such square coils are often more convenient to build than circular coils if the earth's magnetic field is to be cancelled over a large
volume.

Answer (4.6)

(a) From the results of Problem (3.5) one can write

, where

,

and .
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, and

.

Note that at z=0 ; the field gradient vanishes by symmetry.

, where

and

At  so that for optimum uniformity We require the numerator in the second derivative to vanish at
z=0. This condition gives

 (1)

where . The solution is  (see the figure below). The coils should be placed 2d= 1.0890L
apart.

(b) The simplest way to examine the homogeneity is to plot the field function:
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From this graph one finds that the field has decreased by 1% when . This means that the field varies by
less than 1% over a central region whose length is 0.688L. It turns out that the field is homogeneous to within 1%
within a volume whose diameter is 0.688L: i.e. within the sphere whose diameter is ~68 cm if L=1 meter.

Problem (4.7)

Consider a square loop of wire lying in the xy-plane as shown in the sketch. The loop carries a current of I amps and is centered on
the origin.

( ) = 0.344z

L
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(a) Show that the contribution to the vector potential at a point P(X,Y,Z) from side (1) has only a y component and that this
component is given by

(b) Show that the contribution to the vector potential at a point P(X,Y,Z) from side (3) has only a y component and that this
component is given by

(c) Show that the contribution to the vector potential at a point P(X,Y,Z) from side (2) has only an x component and that this
component is given by

(d) Show that the contribution to the vector potential at a point P(X,Y,Z) from side (4) has only an x component and that this
component is given by

(e) Now consider the point P(X,0,Z) which is specified by the vector . Show that
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A  = 0,

In the limit as a/R→0, where , the expression for A  can be shown to go to the limit

where m = Ia  Amp-meters . This is just the x-component of the expression , the dipole vector potential.

Answer (4.7)

We shall show the calculation for side (1). The procedure for the other three sides is very similar. For side (1) the element of
length is given by

.

This element is located at . The point of observation is located at , therefore

The length of this line is given by

The contribution to the vector potential at P has only a y-component because the current element has only a y component:

This is a standard integral; it can be written

(e) The expansion for A  in the limit of (a/R)→0 can be carried out as follows: ( it is convenient to use the notation

and

Expand to first order in small quantities:
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since (a/R ) and (a/R ) are very small. One can finally write

where .

It follows from this that to first order in small quantities

Problem (4.8)

A short cylindrical solenoid has a radius of R= 5x10  meters and a length of L= 5x10  meters. It is wound with N= 8x10
turns/meter, and the windings carry a current of I= 10 Amps.

(a) What is the magnetic field at the center of the solenoid?

(b) What is the magnetic field strength on the axis of the solenoid but at the end face (z=L/2)?

Answer (4.8)

The magnetic field along the axis of a short solenoid is given by (z is measured from the solenoid center)

(a) At z=0 

For this problem .

Therefore B (0)= 0.450 Teslas.

(b) At z= L/2= 2.5x10  meters:

Problem (4.9)

A short cylindrical disc has a radius of R= 5x10  meters and a length of L= 5x10  meters. It is uniformly magnetized; the
magnetization density is parallel with the axis of the disc, the z-axis, and the magnetization has the value M = 0.955x10
Amps/meter.

(a) What is the magnetic field at the center of the disc?

(b) What is the magnetic field strength on the axis of the disc but at the end face (z=L/2)?

Answer (4.9)

The magnetic field distribution generated by a uniformly magnetized disc is the same as that generated by the windings of a
short solenoid. The magnetic field along the axis of a short solenoid is given by

It is only necessary to replace the product NI in this formula by the magnetization M .
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(a) At z=0 .

For this problem 

Therefore B (0)= 0.537 Teslas.

(b) At z= L/2= 2.5x10  meters:

Problem (4.10).

Given a sphere which is uniformly polarized along the z direction i.e. M  = M  Amps/meter.

(a) What is H inside the sphere?

(b) What is B inside the sphere?

(c) What is the value of B  on the axis of the sphere but just outside the surface of the sphere?

(d) What is the value of H just outside the equator of the sphere?

(e) A neutron star is typically an object 10  meters in diameter having the density of nuclear matter (~ 10  kg/m ). The maximum
magnetic field at its surface is estimated to be 10  Tesla. What is its average magnetization density, M ?

(f) A neutron has a mass of 1.68 x 10  kg. From (e) what is the average magnetic moment of a neutron in a neutron star?

Answer (4.10).

(a) The demagnetizing factor for a sphere is 1/3. Therefore .

(b) .

(c) From div B = 0 The normal component of B must be continuous .

(d) From curl H=0 (there are no currents) the tangential component of H must be continuous across the surface of the sphere.
It follows that  Amps/meter at the equator just outside the sphere. From the fact that M has no component normal
to the surface of the sphere at the equator it follows that the normal component of H must be continuous across the surface of
the sphere at its equator and therefore H has only a z-component just outside the sphere on the equator. Also on the equator

just outside the sphere . The tangential component of B is discontinuous.

(e) 

(f) The number of neutrons/m  = 

.

The neutron magnetic moment is 9.7 x 10  Amp m  so that on average only 2 x 10  of a neutron is aligned.

Problem (4.11)

The material of a very long, hollow, rod is uniformly magnetized as shown in the sketch. (Although the rod is shown as having a
finite length in the sketch, it is supposed to be infinitely long).

(0) =Bz
μ0M0

2
L

(L/2 +)
2

R2√

= 0.600 Teslas. 
μ0M0

2

z

-2

(L/2) = ( ) = 0.707( ) = 0.424 Teslas .Bz
μ0M0

2

L

+L2 R2
− −−−−−−

√

μ0M0

2

z o

z

4 21 3

8
o

-27

= −Hz
M0

3

= ( + ) =Bz μ0 Hz Mz
2
3
μ0M0

∴ =Bz
2
3
μ0M0

= −Hz
M0

3

= −Bz
μ0M0

3

=  Teslas. 2
3
μ0M0 108

∴ = 1.19 × Amps/m(i. e.Large!!)M0 1014

3 = = 5.95 x1021

1.68×10−27 1047

∴ ⟨ ⟩ = = 2.0 ×  Amp μN
11.9×1013

5.95×1047
10−34 m2
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(a) What is the value of the magnetic field B outside the rod?

(b) What is the value of the magnetic fields H,B in the central hollow region where M =0?

(c) What are the values of B,H in the material of the rod where the magnetization is M ?

Answer (4.11)

By superposition this problem can be reduced to the problem of nested solenoids. The outer surface discontinuity in the
tangential component of M is equivalent to a solenoid for which NI= M . This current sheet produces a field B = µ M . The
inner surface discontinuity in the tangential component of M is equivalent to a solenoid for which NI= - M .

(a) Outside the rod the fields B,H are both zero.

(b) In the hollow region the fields due to the two current sheets cancel so that B= H= 0.

(c) In the region between the two current sheets the B field is that due to the outer current sheet; B = µ M . But by definition,
B = µ (H  + M ) , and therefore H =0. Thus H= 0 everywhere because there are no real currents and no magnetic charge
density to generate an H-field.

Problem (4.12)

An infinitely long rod is uniformly magnetized except for a disc shaped cavity shown shaded in the figure. Inside the cavity the
magnetization is zero. What is the magnetic field strength at the center of the cavity?

Answer (4.12)

This problem can be worked as the superposition of a uniformly magnetized, infinitely long rod plus a uniformly magnetized
disc, but for the disc M = - M . For the uniform rod B = µ M . Along the axis of the disc

z

0

0 1 0 0

0

z 0 0

z 0 0 0 z

z 0 z 0 0
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and at z=0

The total field at the center of the disc will be

In the limit (d/R)→0 the field at the center of the cavity is just B = µ M .

Problem (4.13)

A uniformly magnetized ellipsoid possesses magnetization components

when referred to the principle axes of the ellipsoid. Demagnetizing coefficients for the ellipsoid are

(a) Calculate the components of H inside the ellipsoid.

(b) Calculate the components of B inside the ellipsoid.

(c) Calculate the angle between B and M.

Answer (4.13)

The demagnetizing coefficients obey the sum rule

.

For this problem

(a) 

(b) , therefore

(c) ;

,

.

(z) = − + ,Bz
μ0M0

2

⎛

⎝
⎜

(z +d/2)

(z +d/2 +)2 R2
− −−−−−−−−−−−−

√

(d/2 −z)

(z −d/2 +)2 R2
− −−−−−−−−−−−−

√

⎞

⎠
⎟

(0) = − .Bz
μ0M0

2

d

(d/2 +)2 R2
− −−−−−−−−−

√

(0) = 1 − .Bz μ0M0

⎛

⎝
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d
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√

⎞

⎠
⎟

0 0 0

= 2 ×  Amps/meter, MX 105

= 2 ×  Amps/meter MY 105

= 4 ×  Amps/meter MZ 105

.
= 0.2,NX

= 0.3NY
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+ +MxBx MyBy MzBz

|M||B|
1.758

(4.899)(.3667)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25303?pdf


13.4.15 https://phys.libretexts.org/@go/page/25303

So θ = 11.9°.

Problem (4.14)

A very large disc whose radius is infinite is magnetized along its normal as shown in the figure.

(a) What is H in the disc?

(b) What is H outside the disc?

(c) What is B inside the slab?

(d) A spherical cavity is cut out of the material of the disc. Use the principle of superposition to calculate the magnetic field B in
the cavity.

Answer (4.14)

(a) The demagnetizing factor for the direction along the disc normal is N  = 1. Therefore H  = - M  .

(b) Outside the disc the field is zero by analogy with the equivalent electrostatic problem i.e. two infinite charge sheets

(c) B  = µ  (H  + M ) ≡ 0.

(d) Inside a uniformly polarized sphere . Therefore in the cavity one must have  so that the
sum of the two fields gives zero when the sphere is put into the hole.

Problem (4.15)

z z o

z o z z

=Bz
2
3
μ0M0 = −Bz

2
3
μ0M0
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A very long cylinder of magnetic material has a radius R. The axis of the cylinder lies along the z-axis. The magnetization depends
upon the distance from the cylinder axis:

(a) Calculate the effective current density curl M both inside and outside the cylinder.

(b) Note that there is an effective surface current density on the surface of the cylinder due to the discontinuity in the tangential
component of the magnetization. Calculate this surface current density, J .

(c) Calculate the radial dependence of the magnetic field in the cylinder.

Answer (4.15)

(There is no angular or z dependence).

(a) ∴  ie. independent of position.

(b) At the outer surface there is a discontinuity in the tangential component of M. Use Stokes' theorem to obtain the effective
surface current density:

J  = curl M

Apply this to the loop shown below:

Current through the loop 

J  is the effective surface current density.

or J  = M  Amps/m.

(c) Calculate the field along the axis of the cylinder. By symmetry there is only a z-component which is independent of z.
The uniform effective current density, , can be treated like a nested solenoid problem in order to calculate the magnetic
field along the cylinder axis.

The effective current sheet strength is .

This produces the solenoid field contribution .

Integrate from r = 0 to r = R: B  = - µ M  Tesla. However, this is just cancelled by the surface current sheet which
produces B  = µ M  Tesla.

∴ On the axis B  ≡ 0.
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Now use curl B = µ  curl M

or  and integrate around the loop shown in the figure:

from which B  = µ M

∴ B (r) = µ M (r/R)

and H  ≡ 0 everywhere.

Problem (4.16)

A permanent magnet is formed in the shape of a dough-nut having an inner radius a meters and an outer radius of b meters (see the
figure). The magnetization density has the components M =0, M = M , M =0 in cylindrical polar coordinates, where M  is
constant.

(a) Calculate the field H everywhere.

o

B ⋅ dL = M ⋅ dL∮
C

μ0 ∫
C

z o z

z o o

z

r θ 0 z 0
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(Answ: div M=0 everywhere, and there are no free currents. Therefore there are no sources for H and consequently
H=0 everywhere.)

(b) Suppose that a gap d meters wide is opened in the ring as shown in the figure. Calculate the field B at the center of the gap.

(Answ: )

Answer (4.16)

A uniform magnetic charge density will appear on the faces of the cut due to the discontinuity in M. The surface charge
density on the left hand face is +M /m ; the surface charge density on the right hand face is -M /m . These charge
distributions produce a field at the gap center given by

where R= (b-a)/2.

B = µ H  directed along M , ie along -x in the above figure. This problem can also be solved by treating the magnetized plug
removed from the gap as a short solenoid: for a short solenoid of radius R= (b-a)/2 and of length d the field at its center is
given by

This field plus the gap field, , must equal the field in the gapless ring, - µ M , by superposition. Therefore

the same answer as above.

This page titled 13.4: Chapter 4 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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