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13.10: Chapter- 10
Problem (10.1).

(a) Use Stokes' theorem to show that the Maxwell equation  can be written in the form

where the surface S is bounded by the closed curve c.

(b) Apply the above equation to a loop which straddles the boundary between two materials to show that the tangential component
of E must be continuous across the boundary.

Answer (10.1).

(a) 

Integrate over a surface S bounded by a curve c:

But from Stokes' theorem

, and the result follows.

(b) Apply the above to a loop L long and of negligible width, d.

Then 

therefore

Problem (10.2).

(a) Use Stokes' theorem to transform the Maxwell equation

into

curl E = − ∂B

∂t

E ⋅ dL = − B ⋅ dS (1)∮
C

∂

∂t
∫

Surface S 

 curl E = − ∂B

∂t

curl E ⋅ dS = − B ⋅ dS∫
S

∂
∂t

∫
S

Curl E ⋅ dS = E ⋅ dL∫S ∮c

δ δ

δL∮
c

δL − )E ⋅ dL = )E2 tang E1
tang

= − ( . δLδd) ⇒ 0∂
∂t

Bperp

= ))E2 tangential E1
tangential

curl H = +Jf
∂D

∂t
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where the surface S is bounded by the closed curve, c.

(b) Use the above equation to show that at the surface of discontinuity between two materials the tangential component of H must
be continuous.

Answer (10.2).

(a) 

But by Stokes' theorem:

from which the result follows.

(b) Apply the above theorem to a loop straddling the boundary. The loop is L long and d wide.

Problem (10.3).

a. From div B = 0 show that the normal component of B is continuous across the boundary between two different materials.
b. From div D = ρ  show that there will be a surface charge density on the surface of discontinuity between two materials. Show

that the magnitude of this surface charge density is given by

where  and  are the normal components of the vector D.

Answer (10.3).

(a) 

H ⋅ dL = ( + ) ⋅ dS,∮

C

∫
S

Jf
∂D

∂t

Curl H = ( + )Jf
∂D
∂t

∴ Curl H ⋅ dS = ⋅ dS + D ⋅ dS.∫S ∫S Jf
∂
∂t

∫S

Curl H ⋅ dS = H ⋅ dL∫
S

∮

c

δ δ

δL + terms 2nd order in δdδL − )δH ⋅ dL = )∮
c

H2 tang
H1

tang

( + ) ⋅ ds = δLδd ⇒ 0 as δd → 0∫S Jf
∂D
∂t

( + )Jf
∂D
∂t normal 

= )∴ )H2 tang H1
tang

f

− )= )ρf D2 normal  D1 normal 

)D2 normal  )D1 normal 

div B = 0
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But by Gauss' theorem 

where S is the surface bounding the closed volume V.

Therefore 

Apply this to a pill box of area A and thickness L which straddles the boundary between material (1) and material (2)

(As shown,  makes a positive contribution and  makes a negative contribution).

Therefore  for arbitrary A and

(b) div D = ρ

∴ for any closed volume V bounded by a surface S

But by Gauss' theorem:

Apply this to a pill-box which straddles material (1) and material (2):

Then 

+ higher order corrections of order L A.

So ,

where (ρ  ) does not depend upon the length  and therefore represents a surface charge ρ . A discontinuity in the normal
component of D means that there exists a surface charge density.

Problem (10.4).

A plane wave falls at normal incidence on the plane surface of a large, deep, body of water. The real and imaginary parts of the
index of refraction for water are n = 4/3 and  = 10  corresponding to a time dependence ~ e  . The amplitude of the electric
field in the incident wave is 1 V/m. Let the z-axis be directed into the water, and let the x, y axes lie in the surface of the water. Let
the electric field be polarized along x. The index of refraction of air is n = 1,  = 0.

a. Write an equation for the space and time variation of the electric field in the incident wave.

∴ divB dτ = 0∫
V

divB dτ = B ⋅ dS∫V ∫S

B ⋅ dS = 0∫
S

δ δ

] δA+ terms of 2nd order in δL= − )∫Pill Box B ⋅ dS
box

[ )B2 normal  B1
normal 

⋅B2 û2 ⋅B1 û1

] δA = 0− )[ )B2 normal  B1 normal 
δ

∴ = ))B2 normal  B1 normal 

f

divD dτ = dτ∫V ∫V ρf

(divD)dτ = D ⋅ ds∫
V

∫
S

δA]D ⋅ ds = δA − )∫
S

[ )D2 normal  D1 normal 

δ δ

] δA = δAδL∴ − )[ )D2 normal  D1 normal  ρf

] = δL =− )[ )D2 normal  D1 normal  ρf ρs

f δL δL s

κ -8 -iωt

κ
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b. Write an equation for the space and time variations of B,H in the incident wave. What is the amplitude, H , of the H field?
c. Write expressions for the space and time variation of the reflected wave. Let the reflected electric field amplitude be E . Write

the reflected magnetic field amplitude in terms of E .
d. Write expressions for the space and time variations of the electric and magnetic field waves (H field) transmitted into the water.

Let the electric field amplitude at the water surface, at z = 0, be E . Write the magnetic field amplitude in terms of E .
e. State the boundary conditions which E, H must satisfy at the surface of the water.
f. Apply the boundary conditions of part (e) to obtain the reflected electric field amplitude, E , and the transmitted wave electric

field amplitude, E .
g. What is the intensity of the incident wave? i.e. At what rate, in Watts/m , is energy transported to the water surface?
h. At what rate is energy absorbed by the water?
i. What will be the electric field amplitude at a depth of 2 m if the wavelength of the light is 1/2 micron?

Answer (10.4).

(a)

(b) 

.

.

c) Let the reflected electric field be

(note change in sign of k).

Then 

(d) In the water the propagation vector is given by 

Now 

o

R

R

T T

R

T
2

= =By
Ex

c
1
c
ei(kz−ωt)

= = = Amps/mHy
BY

μO

1
cμO

ei(kz−ωt) 1
120π

ei(kz−ωt)

 Amplitude  = =  Amps /m1
120π

1
377

=Ex ERe
−i(kz+ωt)

= −Hy
ER

120π
e−i(kz+ωt)

k = (n+iκ)ω
c

∴ =EX ETe−κ z
ω

c ei( −ωt)
nωz

c

curl E = − = iωB = iω H∂B

∂t
μo

iω H = =μO

∣
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∣
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0
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and

(e) At the interface the required boundary conditions are

(1) Tangential components of E must be continuous.

(2) Tangential components of H must be continuous.

(f) At z = 0

Incident Wave 

Reflected Wave 

Transmitted Wave 

Continuity of E : 

Continuity of H : 

or 

Solve eqns. (1) and (2) to obtain:

But  so 

Also 

and 

(NOTICE THE PHASE CHANGE IN THE ELECTRIC FIELD!!)

(g) Rate of transport of energy to the water surface is

(h) The rate of energy reflected from the surface is

∴ Energy absorbed in H O = 1.30 mW/m .

(i) At z = 2m

∴ @ 2m the electric field strength = 0.67 V/m.

Problem (10.5).

∴ = = =HY
1

iωμo

∂Ex

∂z

i( )(n+iκ)
ω

c EX

iωuO

(n+iκ)
cμO

EX

= ( ) .Hy
n+iκ

cμO
ETe

−κ
ωz

c ei(n −ωt)
ωz

c

= (1)Ex e−iωt

=Hy
1

cμ0
e−iωt

=Ex ERe
−iωt

= −HY
ER

cμO
e−iωt

=Ex ET e
−iωt

=HY
(n+iκ)

cμO
ETe

−iωt

x 1 + = (1)ER ET

y − =1
cμ0

ER

cμ0

(n+iκ)

cμ0
ET

1 − = (n+iκ) (2)ER ET

= =ET
2

(1+n)+iκ

2[(n+1)−iκ]

(n+1 +)
2

κ2

κ ≃ 0 = = =ET
14/3

(7/3)2

6
7

0.86 V olts/m.
– –––––––––––––

≃ ( )ET
2

n+1

= −1 =ER ET −0.143 V olts/m.
– ––––––––––––––––

=Sz ExHy

⟨ ⟩Sz =( ) (1)( ) =  Watts /
1

2

1

cμ0

1

754
m2

= 1.33 mW/ .m2

– –––––––––––––

< = ( ) = = =Sz >R
1
2
ER

( )ER

cμ0

(0.143)
2

754
0.027 mW/m2

– –––––––––––––
27 μW/ .m2

– ––––––––––

2
2

| | = = = 0.78 EX ETe−κ4π/λ ETe−0.251 ET
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A wave having an electric field amplitude E  = 1 V/m falls at normal incidence on a plane copper surface as shown in the above
sketch. Its frequency is 10  Hz.

a. Write expressions for the electric and magnetic fields in the incident wave. How big is H ?
b. Calculate the magnitude of the vacuum wave-vector.
c. Calculate the wave-vector in the metal (k ) in the expressions:

d. Calculate the amplitude of the electric field at the surface of the metal i.e. E .
e. Calculate the magnetic field amplitude at the surface of the metal i.e. H .
f. Calculate the time average Poynting vector for the incident wave i.e. <S >
g. Calculate the time average Poynting vector for the energy flow into the metal i.e. <S >
h. From (f) and (g) calculate the absorption coefficient  = <S >/<S >.
i. Calculate the average rate of energy dissipation as Joule heat in the metal. Show that the integral of this quantity from z = o to ∞

is just equal to <S > from (g) above.

Answer (10.5).

(a) 

 since E  = 1 V/m.

since Z  = 377 Ohms.

(b) See above. k = 2.094 x 10  /meter.

(c) In the metal:

or 

and 

o
6

y

m

=Ex ET e
i( z−ωt)km

=HY HTei( z−ωt)km

T

T

o

m
α m o

m

k = = = 2.094 ×  ω
c

2π×106

3×108 10−2 m−1

= =Ex E0e
i(kz−ωt) ei(kz−ωt)

o

= = (2.653 × ) HY
E0

Z0
ei(kz−ωt) 10−3 ei(kz−ωt)

o

-2

curl E = = = iω H,

∣

∣

∣
∣
∣
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ûy
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∣
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∣
∣
∣

0
∂Ex
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∣

∣

∣
∣
∣

μ0

curl H = = = σE.

∣

∣

∣
∣
∣

ûx

0

0

ûy

0
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ûz

∂
∂z

0

∣

∣

∣
∣
∣

∣

∣

∣
∣
∣

−
∂Hy

∂z

0

0

∣

∣

∣
∣
∣

∴ = iω = i
∂Ex

∂z
μ0Hy kmEx

= ( )Hy
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ωμ0
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= −σ
∂HY
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∴ 

or .

So  or 

= i (5.093 x 10 )

N.B. km is very large c.f. k = ω/c. Approx. 10  larger!!

At z = 0: a) Continuity of E : 

b) Continuity of H : 

or 

But 

 .

.

i = −σkmHy Ex

= ( )Hy
iσ
km

Ex

=iσ
km

km

ωμo
= iω σk2

m μ0

= i (2π× ) (4π× ) (6.45 × )k2
m 106 10−7 107

8

= ( ) (2.257 × ) = (1.596 × ) (1 + i).km
1+i

2√
104 104

6

x + =EO ER ET

y − =
E0

Z0

ER

Z0
HT

− =EO ER ZOHT

∴ 2 = ( + ) = [1 + ]EO ET ZOHT
iσzO

km
ET

2 = ( − ) = [1 − ]ER ET ZOHT
iσZO

km
ET

= ( )HT
iσ
km

ET

∴ =
ER

E0

1−
iσZ0

km

1+
iσZ0

km

=ET

E0

2

1+
iσZ0

km

= ( ) × ( ) = ( ) (1 − i)1
km

10
1.596

10−5 1
1+i

5×10−5

1.596

= 3.133(1 − i) ×10−5

∴ ( ) = (3.133 × ) (1 + i)i
km

10−5
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So 

.

This is much larger than 1.

to approximately 1 part in 10 !

e) From part (c)  

and 

N.B. To first order in  the magnetic field amplitude in the metal is INDEPENDENT of ,ω !!

The factor 2 comes from the sum H  = H  + H , where  & 

But E  = 1 V/m & E  = -1 v/m (to 1 part in 10 )

(f) For the incident wave 

(g) At the metal surface (z = 0)

(h) 

(i) In the metal the current density is given by

The Joule heat/volume (time averaged) is

But  and 

and  = 1.596 x 10  from part (c)

& 

Total rate of heat production 

= (3.133) ( ) (6.45 × ) (377)(1 + i)
iσZ0

km
10−5 107

= (7.618 × ) (1 + i)105

∴ ≅ = = 1.313 × (1 − i).
ET

E0

2
iσZ0

km

−i2km
σZ0

10−6

= ≃ −[1 + ]≅−1
ER

E0

−[1+ ]
ikm

σZ0

[1− ]
ikm

σZ0

2ikm
σZ0

6

= ( )HY
iσ
km

EX ∴ = )HT
iσ
km

ET

≅( (−i ) =HT
iσ
km

2
σ

km

Z0

2
z0

( )2
σ

km

Z0
σ

T o R =H0
E0

Z0
=HR

| |ER

Z0

o R
6

∴ = = 5.305 ×  Amps/m.HT
2

Z0
10−3

⟨ ⟩ =   Real   { }S0
1
2

EXH∗
Y

= = = 1.326 ×  watts/ .
E2

0

2z0

1
2z0

10−3 m2

⟨ ⟩Sm =  Real  { }
1

2
ETH

∗
T

= Real{(1.313 × ) (1 − i) }
1

2
10−6 (2)

Z0

=( × ) = 3.48 ×  Watts/ .
1.313

Z0
10−6 10−9 m2

α = ⟨ ⟩/ ⟨ ⟩ = × = 2.627 × .Sm S0
3.48
1.326

10−6 10−6

= σ = σJx Ex ETe
i( z−ωt)km

dQ

dt
= Real{ }

1

2
JxE∗

x

= Real{σ ⋅ }
1

2
ET e

i( z−ωt)km E∗
T
e−i( z−ωt)k∗

m
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1

2
| |ET

2ei( − )zkm k∗
m

= γ(1 +i)km = γ(1 −i) ∴ − = 2iγk∗
m km k∗

m

γ 4

i ( − ) = −2γkm k∗
m

∴ = .
dQ

dt
σ
2

| |ET
2e−2γz

= dz = .
σ| |ET

2

2
∫ ∞

0
e−2γz σ| |ET

2

4γ

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25313?pdf


13.10.9 https://phys.libretexts.org/@go/page/25313

.

Problem (10.6).

Light having a wavelength of 5145 Å (0.5145 µm) falls upon a plane copper surface at normal incidence. The intensity of the light
is 10  Watts/m  (i.e. 100 mW in a laser beam 1x1 mm in cross-section). The complex index of refraction for copper at 5145 Å is 

 for a time dependence of e .

(a) Calculate the amplitudes of the electric and magnetic fields in the incident wave.

(b) Calculate the amplitudes of the electric and magnetic fields in the reflected wave.

(c) Calculate the intensity of the reflected wave;i.e. calculate the time-averaged value of the Poynting vector.

(d) Calculate the wave-vector of the light in the copper. What is the phase velocity associated with the wave in the copper?

(e) Calculate the amplitudes of the electric and magnetic fields in the copper but near the surface at z=0.

(f) Calculate the time averaged value of the Poynting vector inside the copper but near the surface at z=0.

(g) How far into the copper does the light penetrate before its intensity has decreased to 1% of its intensity at the surface?

(h) Calculate the time averaged energy density, <W> , stored in the electric and magnetic fields in the copper but at the surface z=0.
Show that  Watts/m .

Answer (10.6).

(a) Incident wave:

where k= ω/c and Z = µ c = 377 Ohms.

Therefore, , and E = 8.683x10  Volts/m, and H = 23.03 Amps/m.

(b) From the boundary value problem

For this problem n=1.19 and =2.60;

r = -0.621- 0.45i, and therefore r= - Re  where R=0.767, and Tan = 0.725 so that = 35.93° = 0.627 radians. The minus
sign means that the direction of the reflected wave amplitude is reversed relative to the amplitude in the incident wave.

and

(c) The intensity of the reflected wave is given by

(d) In the copper 

∴ = (1.313 × )(2) = 3.48 ×  Watts/ .QTotal 
(6.45× )107

(4)(1.596× )104 )2 10−12 10−9 m2

=< > ( from (g))Sm

5 2

= (1.19 +2.60i)εr
−−

√
-iωt 

⟨ ⟩ = < W >Sz
c
n

2

=Ex E0e
i(kz−ωt)

= ,Hy
E0

Z0
ei(kz−ωt)

0 0

< >= Real( ) = = =  Watts / .Sz
1
2

ExH∗
y

E2
0

2Z0
I0 105 m2

= 75.4 ×E2
0 106

0
3

y

= = = r.
ER

E0

1 − ε√

1 + ε√

(1 −n) − iκ

1 +n+ iκ

κ

iϕ ϕ ϕ

| | = R | | = 6.66 ×  V/m,ER E0 103

| | = R | | = 17.66 Amps/m.HR Hy

= = 0.588 ×  Watts / .IR R2I0 105 m2

=k2
m εr( )ω

c
2

k = = = 1.221 × .
ω

c

2π

λ
107m−1

= (n+ik) = (1.453 +i3.175) × .km
ω

c
107m−1
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In the copper the fields are proportional to

The phase velocity is 

(e) 

and T= 0.588 and θ= - 49.9° = - 0.871 radians.

phase=0.271 rad= 15.51°.

(f) In the metal

so at z=0 these become

and

(g) The electric and magnetic field amplitudes are multiplied by  and therefore the intensity is multiplied by

If  then .

But ω/c= 1.221x10. m  , therefore z= 0.725x10  meters, or z= 72.5 nm, or z= 0.0725 µm.

The free space wavelength of the light is 0.5145 µm, so that the light penetrates , approximately 1/10 of a free space
wavelength.

(h) At the surface of the copper the electric and magnetic field amplitudes are given by

.e−κ( )zω

c ei(n z−ωt)ω

c

= 2.52 ×  m/sec.c
n

108

= T = = .
ET

E0
eiθ 2

1+ ε√
2

(n+1)+iκ

= (0.379 −i0.450),Teiθ

| | = T = 5.11 ×  V/m.ET E0 103

= = (37.33 +10.36i);HY
(n+iκ)

Z0
ET

| | = = = 38.75 Amps /m. Hy
+n2 K 2√

Z0
ET

2.859
377

ET

=Ex ET e
−κ( )zω

c ei(n z−ωt)ω
c

= ,Hy
(n+iκ)

Z0
ETe

−κ( )zω

c ei(n z−ωt)ω

c

=Ex ET e
−iωt

= .Hy
(n+iκ)

Z0
ETe

−iωt

< >= Real( ) =< >= Real( ),Sz

1

2
ExH ∗

y Sz

1

2
ET

(n− iκ)

Z0
E∗

T

< >= = 0.4119 ×  Watts/ .Sz
nE2

T

2Z0
105 m2

+ = 1.0 ×  Watts / .⟨ ⟩|Sz Reflected ⟨ ⟩|Sz Transmitted  105 m2

e−κ( )zω

c

.e−2κ( )zω
c

= 0.01e−2κ( )zω

c 2κ z = 4.605ω
c

-1 -7

∼ ( )λ
7.1

= ,Ex ET e
−iωt

= .Hy
(n+iκ)

Z0
ETe

−iωt

⟨ ⟩ = Real( ) = ⟨ ⟩ = Real( (( − ) −2nκ)),WE

1

4
ExDx SZ

1

4
ε0E2

T n2 κ2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25313?pdf


13.10.11 https://phys.libretexts.org/@go/page/25313

But , and

where for this case c/n= 2.52x10 m/sec.

Problem (10.7).

An s-polarized electromagnetic wave is incident on a plane interface at the angle θ (see the sketch). The amplitude of the incident
electric field is E , that of the reflected electric field is E , and the transmitted electric field is E . The material for z > 0 is
characterized by a relative dielectric constant, ε , which is real (no losses in the medium). The material is characterized by the
magnetic permeability of free space.

(a) Write expressions for the components of E and H in the incident wave e.g.

(b) Write expressions for the components of E, H in the reflected wave.

(c) Write expressions for the components of E, H in the transmitted wave.

< >= ( − ) .WE

ε0

4
n2 κ2 E2

T

< >=  Real  ( ) = .WB

μ0

4
HyH

∗
y

μ0

4

( + )n2 κ2
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0
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T

= =z2
0 μ2

0c
2 μ0

ε0

< >= ( + ) .WB

ε0

4
n2 κ2 E2

T

< W >=< > + < >= = 1.63 ×  Joules / .WE WB
ε0

2
n2E2

T 10−4 m3

⟨ ⟩ = = = ( ) = ( ) < W >,Sz
n

2 cμ0
E2

T
c nε0

2
E2

T
c

n

n2ε0

2
E2

T
c

n

8 

o R T

r

=Ey E0ei[(ksinθ)x+(k cos θ)z−ωt]

 etc. where k = ω/c.
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(d) Show that 

where n =  and 

and .

(e) Show that the normal component of B, B , is continuous across the boundary at z = 0.

(f) Construct a graph of  vs the angle of incidence, θ, for ε  = 4.

Answer (10.7).

(a) Incident Wave:

where Z  = 377 Ω = cµ .

(b) Reflected Wave:

(c) Transmitted Wave:

Since  or 

and 

and  or 

∴ 

or 

or 

At z = 0 E  + E  = E  (1)

= [ ]ER

E0

cos θ−n cos ϕ

cos θ+n cos ϕ

εr
−−

√ sinϕ = sin θ
n

= [ ]ET

E0

2 cos θ
cos θ+n cos ϕ

z

( )ER

E0
r

=EY E0ei[(ksinθ)x+(kcosθ)z−ωt]

= cosθHx
−E0

Z0
ei[(ksinθ)x+(kcosθ)z−ωt]

= sinθHz
EO

ZO
ei[(ksinθ)x+(k cos θ)z−ωt]

o o

=Ey ERe
i[(k sin θ)x−(k cos θ)z−ωt]

= cosθHX
ER

Z0
ei[(ksinθ)x−(k cos θ)z−ωt]

= sinθHz
ER

Z0
ei[(ksinθ)x−(k cos θ)z−ωt]

=Ey ET e
i[(k sin θ)x+( cos ϕ)z−ωt]km

HX
−ncosϕ

Z0
ETei[(ksinθ)x+( cos ϕ)z−ωt]km

=Hz
sinθ

Z0
ETe

i[(ksinθ)x+( cos ϕ)z−ωt]km

curl E = iω Hμ0 = −iω
∂Ey

∂z
μ0Hx

= iω
∂Ey

∂x
μ0Hz

 Curl H = −iω εEεr − = iω
∂HX

∂z
∂Hz

∂x
εrε0Ey

+ = −
∂ 2Ey

∂x2

∂ 2Ey

∂z2
εr( )ω

c
2
EY

θ+ =k2 sin2 k2
m Er( )w

c
2

= ∴ = ( ) = n ( )k2
m εr( )ω

c

2
km εr

−−
√

ω
c

ω
c

sinϕ = k sinθ = ( ) sinθkm
ω

c

∴ sinϕ = sinθ/n

o R T

− + = −
cosθE0

ZO

cosθER

ZO

ncosϕ

ZO
ET
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or  (2)

∴ 

∴  where 

(d) , where 

(e) At z = 0

on the left: 

on the right: 

Therefore, because of eqn (1), the normal component of B  = µ H  is continuous across the interface.

(f)

The ratio  is plotted in the figure. Notice that

(1) The phase of the electric field is reversed in the reflected wave i.e. the total electric field at the interface is smaller
than the incident electric field amplitude;

(2) The reflectivity approaches 1 at large angles of incidence i.e. as the beam becomes parallel with the interface plane.
It is a common experience that surfaces appear more reflecting at shallow angles.

Problem (10.8).

Let p-polarized radiation, = 0.50 µm, be incident from vacuum on glass at an angle of incidence of 45°. The index of refraction of
the glass is 1.5 and the glass is lossless. Let the plane of incidence be the x-z plane, and let the surface of the glass be parallel with
the x-y plane and located at z=0.

(a) Write expressions for the incident fields (E,H) assuming a time dependence e  . Let the incident electric field amplitude be
E = 1 V/m.

(b) Write expressions for the reflected fields. Let the reflected electric field amplitude be E .

− + = −E0 ER
n cos ϕ

cos θ
ET

= (1 − )2ER

ET

n cos ϕ

cos θ

2 = (1 + )EO
n cos ϕ

cos θ
ET

= [ ]ER

E0

cos θ−n cos ϕ

cos θ+n cos ϕ
n = εr

−−
√

[ ]ET

EO

2 cos θ
cos θ+n cos ϕ

cosϕ = 1 − θsin2

εr

− −−−−−−
√

= ( + )Hz EO ER
sin θ

ZO

=Hz ET
sin θ

ZO

z o z

ER

E0

λ

-iωt

0

R
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(c) Write expressions for the transmitted fields. Let the transmitted electric field amplitude be E .

(d) Solve the appropriate boundary value problem to obtain the complex ratios E /E  and E /E .

(e) Calculate all of the components of the time averaged Poynting vectors for each of the incident, reflected, and transmitted waves.

Answer (10.8).

;

the component along x is ; the component along z is k= q= 0.889x10  m .

(a) Incident Wave:

(b) Reflected Wave:

T

R 0 T 0

= = 4π×  rad/sec  = 1.2566 ×ω
c

2π
λ

106 107m−1

q = = 0.889 ×1
2√
ω
c

107m−1 7 -1

=H0
E0

Z0

=Ex
E0

2
–

√
eiqxeiqze−iωt

= −Ez
E0

2
–

√
eiqxeiqze−iωt

=Hy
E0

Z0
eiqxeiqze−iωt

=HR
HR

Z0

= −Ex
ER

2
–

√
eiqxe−iqze−iωt

= −Ez
ER

2
–

√
eiqxe−iqze−iωt

= .Hy
ER

Z0
eiqxe−iqze−iωt
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(c) In the glass ,

therefore , since ,

and .

The angle of refraction is such that , = 28.13°.

In the glass :

where  and .

(d) Boundary Value Problem.

(i) Continuity of H :

(ii) Continuity of E :

Therefore 

from which  and .

(e) Time averaged Poynting Vectors.

(i) Incident Wave.

(ii) Reflected Wave.

(iii) Transmitted Wave.

+ =q2 k2
m n2( )ω

c

2

= ( − )k2
m n2 1

2
( )ω

c

2
= (ω/cq2 1

2
)2

= 1.3229 ( ) = 1.6624 ×  km
ω
c 107 m−1

tanϕ = = 0.534
q

km
ϕ

=ET
Z0HT

n

=( )EX
km

n ω
c

ETe
iqxei zkm e−iωt

=( )Ez
−q

n ω
c

ETe
iqxei zkm e−iωt

= ,HY
nET

Z0
eiqxei zkm e−iωt

= 0.882
km

nω/c
= 0.4714

q

nω/c

y

+ =
E0

Z0

ER

Z0

nET

Z0

x

− = (0.882) .
E0

2
–√

ER

2
–√

ET

+ = 1.5 E0 ER ET

− = 1.247 E0 ER ET

= 0.0920
ER

E0
= 0.7280

ET

E0

< >= − Real( )SX
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2
EZH∗
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E2
0

2z0 2
−−

√
10−4 m2

< >= = 9.38 ×  Watts / .Sz
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0

2z0 2
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√
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q

w/c

n

Z0
E2

T

E2
T

2Z0 2
–

√

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/25313?pdf


13.10.16 https://phys.libretexts.org/@go/page/25313

Problem (10.9).

Reverse the configuration of Problem (10.8); i.e. let p-polarized radiation be incident on a glass-vacuum interface from inside the
glass. The interface is parallel with the x-y plane and it is located at z=0: the glass is on the left in the half-space z<0. Let the index
of the glass be n=1.5 (the imaginary part of the index may be set equal to zero, =0). The vacuum wavelength of the light is =
0.50 µm, and the angle of incidence is 45°. The magnetic vector of the incident light is polarized along the y-direction.

(a) Calculate the z-component of the Poynting vector in the vacuum at z=0.

(b) Calculate the amplitude of the vacuum wave at z=0 if the incident wave electric field amplitude is E = 1 V/m

Answer (10.9).

(a) The wave-vector in the glass is given by

or

For this problem  and k= 1.8849x10  m .

The wave-vector component along the interface (along x) is

On the vacuum side of the interface the fields are proportional to

where ,

therefore

Notice that  is negative. This means that the square root is pure imaginary.

The wave in the vacuum is a pure exponential, it does not oscillate in space. The fields are confined to a distance of the order
of 1/  near the interface, i.e ~ 1 . In the vacuum

where = 4.443x10  m . In the vacuum curlH = -iωε  E, therefore

or

< >= 4.97 × Watts / .Sx 10−4 m2

< >= = 1.323Sz
1

2n

km
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n

Z0
E2

T

E2
T

2Z0

< >= 9.30 ×  Watts / .Sz 10−4 m2

κ λ

0

= ,k2 n2( )
ω

c

2

k = n( ) .
ω

c

( ) = 1.2566 ×  ω
c

107 m−1 7 -1

q = k sin = = 1.3328 ×   .45∘ k

2
–

√
107 m−1

eiqxei zkv e−iωt

+ =q2 k2
v ( )ω

c

2

= − = −0.1974 ×   .k2
V ( )

ω

c

2
q2 1014 m−2

k2
v

= (4.443 × ) i  = iα = i .kv 106 m−1 ω

c
( /2) −1n2
− −−−−−−−−

√

α λ

=HY HTeiqxe−αze−iωt
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0

−iω = − = αε0Ex

∂Hy

∂z
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The time averaged Poynting vector at the interface is

so

There is no energy flow from the glass to the vacuum. The light is totally reflected.

(b) From the continuity of the tangential components of E and H one finds

or , since .

Consequently, 

from which

where = 18.43°,

and

where θ= 36.87°.

 as expected.

The electric field amplitude in the glass is given by

so if E = 1 V/m, then H = 3.98x10  Amps/m. The vacuum wave amplitude is given by

and

Problem (10.10).

Light of wavelength = 0.50 µm falls from vacuum on a plane glass interface; the angle of incidence is 60°. Let the plane of
incidence be the x-z plane, and let z be directed into the glass; the interface is located at z=0. The complex index of refraction of
the glass, n+i , has components n=1.5, =0. The incident light is plane polarized but the electric vector has equal amplitudes, E ,
for the component perpendicular to the plane of incidence (the s-polarized component), and for the component parallel with the

=( )Ex
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–
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–

√
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− =H0 HR
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2n
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2 2√

+ =H0 HR HT

− = ,H0 HR
i
3

HT

= = (1.80 −0.60i) = 1.897 .
HT

HO

6

(3 +i)
e−iϕ

ϕ

= (3 −i) = (0.8 −0.6i) = ,
HR
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1

6

HT

H0
e−iθ

NB.   ≡ 1∣
∣

HR

H0

∣
∣
2

=( ) ,E0
Z0

n
H0

0 0
-3

= (1.897 ) = 7.548 × Amps/m,HT e−iϕ H0 10−3e−iϕ
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plane of incidence (the p-polarized component). Calculate the reflected electric field amplitudes and show that the electric field in
the reflected light is plane polarized, but that the plane of polarization has been rotated relative to that of the incident light.

Answer (10.10).

From Snell's law

where θ= 60°.Thus

For the s-polarized component

For the p-polarized component

The reflected light is polarized almost perpendicular to the plane of incidence. The angle which the electric vector makes
with the plane of incidence is , where

, so that  = 84.2°.

The amplitude of the electric vector is 0.422 E .

Problem (10.11).

Light of wavelength = 0.5145 µm falls on a plane copper interface; the complex index of refraction for copper, ,
has components n=1.19, and = 2.60, for a time dependence e  . Let the copper-vacuum interface lie in the x-y plane at z=0. The
plane of incidence is the x-z plane, and the angle of incidence is 60°. The incident wave is plane polarized and its electric vector is
oriented at 45° with respect to the plane of incidence. Take the amplitudes of the s-polarized and p-polarized components to be
equal to E . Calculate the reflected wave electric field amplitudes and show that the reflected light is elliptically polarized.

Answer (10.11).

In the copper one has a spatial variation of the form

where 

and .

Therefore .

For copper ,

or ,

and 

,

so that .

This can be written 

where n = 1.139 = 2.718.

sinθ = n sinϕ

sinϕ = 0.5774

ϕ = 35.26∘

cosϕ = 0.8165

cosθ = 1/2.

= = = −0.4202.RS
ER

E0

cosθ−ncosϕ

cosθ+ncosϕ

= = = = −0.0425.Rp
HR

H0

ER

E0

ncosθ−cosϕ

ncosθ+cosϕ

α

tanα = 0.4202
0.0425

α

0

λ = (n+ iκ)εr
−−

√
κ -iωt

0

eiqxeikz

+ =q2 k2 εr( )ω
c

2

q = ( ) sin = 0.8660 ( )ω
c

60∘ ω
c

= ( −0.75)k2 εr ( )ω
c

2

= (n+ iκ = ( − ) +2niκεr )2 n2 κ2

= −5.34 + i6.19εr

= (−6.09 +i6.19)k2 ( )ω
c

2

= 8.686k2 ei134.5∘

( )ω
c

2

k = 2.947 ( )  where ϕ =eiϕ ω
c 67.27∘

k = ( +i ) ( )nθ κθ
ω
c

θ κθ
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For the s-polarized wave

For the p-polarized wave

The reflected waves can be described at z=0 by

and ,

or 

where the x' refers to a co-ordinate system in which the x'-axis lies in the plane perpendicular to the reflected wave wave-
vector.

These expressions mean

The phase shift between these two components is

= 162.14 - 110.41 = 51.73° .

Shift the zero of time so as to make the component E  vary as Cosωt:

where a= 0.637E  and b= 0.880E . These relations are plotted below for E = 1 V/m.

This ellipse can be put in standard form by a co-ordinate rotation through the angle θ:

= = 0.880 .
ER

E0

cosθ−( + i )nθ κθ

cosθ+( + i )nθ κθ
e−i162.14∘

= = 0.637 .
HR

H0

cosθ−( +i )εr nθ Kθ

cosθ+( +i )εr nθ κθ
ei69.59∘

= 0.880Ey E0e
−i(ωt+ )162.14∘

= −0.637Ex′ E0e
−i(ωt− )69.59∘

= 0.637Ex′  E 0e
−i(ωt+ )110.41∘

= 0.637 cos(ωt + )Ex′ E0 110.41∘

= 0.880 cos(ωt + ).EY E0 162.14∘

ϕ

x

= a cosωtEx′

= b cos(ωt+ ),Ey 51.73∘

0 0 0

= cosθ+ sinθEξ EX EY
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Using these relations the electric field components in the rotated frame can be written:

These have the form

where

and

where

These give two expressions for Tan  which when equated provide an equation for the angle of rotation θ.

Solutions are θ= -31.01° and θ= 58.98°. Use θ= -31.01°

so that Cosθ= 0.857, Sinθ= - 0.515.

These can be used to write

.

The light is elliptically polarized. The ratio of the major to the minor axes of the ellipse is 2.23, and one of the principle axes
of the ellipse is rotated 31° from the plane of incidence of the light. The electric vector is rotating counter-clockwise when
viewed looking into the reflected beam along the +z direction.

Problem (10.12).

Consider a block of dielectric material of thickness d immersed in vacuum. A wave having an amplitude E  is incident on the block
as shown: the angle of incidence is θ = 0.

= − Sinθ+ cosθ.Eη EX EY

= 0.637 cosθ cosωt +0.5451 sinθ cosωt −0.6909 sinθ sinωtEξ

= −0.637  sinθ  cosωt +0.5451  cosθ cosωt −0.6909 cosθ sinωtEη

= A cos(ωt +α) = A cosα cosωt −A sinα sinωtEξ

Acosα = 0.637 cosθ+0.5451 sinθ

Asinα = 0.6909 sinθ

= Bsin(ωt +α) = cosα sinωt +sinα cosωtEη

Bcosα = −0.6909cosθ

Bsinα = 0.5451 cosθ−0.637sinθ.

α

= .
0.637 sinθ−0.5451 cosθ

0.6909 cosθ

0.6909 sinθ

0.637 cosθ+0.5451 sinθ

Eξ = 0.265 cosωt +0.356 sinωt = 0.444  cos(ωt − )53.3∘

= 0.796 cosωt −0.592sinωt = −0.992  sin(ωt − 53.30)Eη

o
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Calculate the amplitudes of the reflected and transmitted waves E , E .

HINT: Inside the dielectric block there is both a forward and a backward moving wave: ie. in the block

One must satisfy boundary conditions at both z = 0 and at z = d.

Answer (10.12).

In the dielectric block 

 if ε  is complex.

We require curl E = iωµ H

∴ since there is only an x-component of E

Incident Wave:

Reflected Wave:

Boundary Conditions at z = 0

(1) Continuity of E  

R T

= a +bEx ei[kmz−ωt] e−i[kmz+ωt]

=k2
m εr( )ω

c
2

∴ = (n+ik) ( )km
ω

c r

o

iω = = i [a −b ]μ∘HY
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=Hy
E0

Z0
ei[ω/c z−ωt]

=Ex ERe
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= −HY
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(2) Continuity of H  

or  (2)

Now at z = d one can write the transmitted fields as

∴ at z = d E  = E  and H  = E /Z

But in the dielectric at z = d one has

Therefore from continuity of E  one obtains

 (1)

and from continuity of H

or

 (4)

From (3) and (4) one has

and from (1) and (2)

or

If ε  is real k  = nω/c and
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The above two equations are oscillatory functions of the wavelength.

if 2k d = 2 , 4 , 6 , etc.

then  

If 2k d = , 3 , 5 , etc.

then  i.e. a maximum

The variation with frequency of the reflectivity and the transmission coefficient are plotted below for a real dielectric
constant ε = 2.25 (n= 1.5).
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Problem (10.13).

Let a material be described by electric and magnetic linear response: i.e.

and

where both ε(ω) and µ(ω) are complex numbers. These are usually written

and

For a time dependence  the imaginary parts of the response functions, ε (ω) and µ (ω), are greater than zero.

(a) According to Poynting's theorem the rate of increase of energy stored in the fields is given by

Show that for a time dependence  the imaginary parts of ε and µ must be greater than zero for any finite frequency. This
conclusion follows from the restriction that the time average of  must be greater than or equal to zero according to the
second law of thermodynamics.

(b) Show that for a time dependence  a plane wave solution of Maxwell's equations can be found in the form

D = ε(ω)E,

B = μ(ω)H,

ε(ω) = = + iε0εr ε1 ε2

μ(ω) = = + .μ0μr μ1 μ2

e−iωt
2 2

= E ⋅ +H ⋅ .
dW

dt

dD

dt

dB

dt

e−iωt

dW

dt

e−iωt

= (1)Ex E0e
i( z−ωt)km

= , (2)HY
km

ωμ
E0ei( z−ωt)km
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where 

and , where K>0

for a wave damped towards the interior of a semi-infinite slab.

(c) Calculate the time averaged value of the Poynting vector corresponding to the fields of eqns.(1) and (2). Show that

 (3)

Notice that for a passive medium <S > must be greater than, or equal, to zero; this means that . For a
nonmagnetic material µ = µ  and µ =0; thus for a non-magnetic material eqn.(3) states that n≥ 0 (for this case N=n).

(d) Calculate the time averaged energy densities corresponding to the waves of eqns.(1) and (2). Show that

 (4)

and

 (5)

Expressions (4) and (5) do not appear to have much in common except the factor . However, from the
definition

plus some tedious algebra, it can be shown that

, (6)

and

 (7)

These can be used to write

 (8)

(e) Calculate the total time averaged energy density associated with the electric and magnetic fields of eqns.(1) and (2). Show that
since  it follows that

 (9)

If this energy density is to be non-negative, it follows from eqn.(3) for <S > which must be greater than or equal to zero, that
N≥0. By comparison of eqns.(3) and (9) one finds also that

I know of no fundamental microscopic reason why the real part of the index of refraction should be confined to positive
values. It is true, however, that for the metals that I have checked, Fe,Co,Ni,Cu,Ag,Au, and Al, the real part of the index of
refraction, n, is greater than zero over the energy range 0.1 to 100 eV. For example,

(i) Cu: n is a minimum at 1.80 eV where n=0.21 and =4.25; the index then increases with energy but becomes less than 1
for energies greater than 9.0 eV.

(ii) Ag: n is a minimum at 3.5 eV where n=0.21 and =1.42; the index then increases with energy and becomes again less
than 1 for energies greater than 25 eV.

(iii) Au: n is a minimum at 1.40 eV where n=0.08 and =5.44; the index then increases with energy but becomes less than 1
for energies greater than 22 eV.
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(iv) Al: n is a minimum at 12.0 eV where n=0.033 and =5.44; the index then increases with energy but drops below 1 for
energies greater than 95 eV.

Answer (10.13).

(a) Let 

then 

or

Therefore .

It follows that if  then  for any finite frequency.

Similarly, ,

and .

therefore

and

It follows that if  then  for any finite frequency.

(b) Maxwell's equations for a time dependence  can be written

where from (i) divH=0 and from (ii) divE=0 because the divergence of any curl must vanish. The fields E,H therefore satisfy

Let E be polarized along x and H be polarized along y. Then plane wave solutions of the above equations are

and

or

κ

= = cosωtEx E0e
−iωt E0

= ( + i )DX ε1 ε2 E0e
−iωt

= Cosωt + Sinωt.Dx ε1E0 ε2E0

= = cosωt (− ω Sinωt+ ω cosωt) ,
dWE

dt
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0 ε2E2
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< >= ω
dWE

dt
ε2

E2
0

2

< >   ≥ 0
dWE

dt
≥ 0ε2
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= μ =  cos ωt + sinωtBy Hy μ1H0 μ2H0
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dBY

dt
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= H ⋅
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dt

dB

dt

= ω (− sinωt cosωt+ ωt) ,
dWB

dt
H 2

0 μ1 μ2 cos2

< >= ω .
dWB

dt
μ2

H 2
0

2

< >   ≥ 0
dWB
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≥ 0μ2

e−iωt

curl E = iωμH = iω H (i)μrμ0
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where 

or ,

where .

It is necessary to use the branch of the square root for which K≥0, since this branch corresponds to a disturbance which dies
away with increasing z.

(d) , or

But , therefore

But 

and ,

so that

where .

(e) Just add together <W > and <W > and use eqn.(6) above to get

Problem (10.14).

Radiation having a frequency of 1 MHz falls at normal incidence from vacuum upon a thick copper sheet. The copper sheet is
parallel with the x-y plane and the surface of the sheet lies at z=0. The resistivity of copper is ρ= 2.0x10  Ohm-meters at room
temperature.

(a) How much energy is absorbed per square meter by the copper sheet if the electric field strength in the incident wave is 1 V/m?

= ,  from eqn. (i),HY
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(b) What will be the energy absorbed per m  if the incident radiation falls on the surface at an angle of incidence of 45°? Let the
incident radiation be p-polarized.

Answer (10.14).

In the metal

therefore

and 

where

or

Also 

or

For this problem ω = 2 x10  radians/sec

2

curl E =

curl H

div E

div H
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and .

In the incident wave E = 1 V/m, and  Amps/m.

Just inside the metal surface  Amps/m.

Therefore 

.

.

(b) The incident wave is given by

The reflected wave is given by

In the metal 

therefore

and

In other words, q  is completely negligible compared with . This is, for all intents and purposes, the same problem as part (a).
The energy absorbed from the incident wave will be 3.95x10  Watts/m . For completeness, if

, then , where , and Z = cµ .

This page titled 13.10: Chapter- 10 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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