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4.4: A Second Approach to Magnetostatics
When time variations of the source terms can be neglected we have seen that Maxwell’s equations for the magnetostatic field
become

The auxillary vector  was introduced in chapter(1), section(1.4), through the relation

When ( ) is used in ( ) and ( ) to replace  by  the result is

For problems in which there is no free current density,  , these equations reduce to

The form of these equations for the field  is exactly the same as the form of Maxwell’s equations for the electrostatic field in the
absence of a free charge density, ie. (see section(2.1))

The analogy between these equations for the electrostatic field and the above equations for the magnetic field, , in a current free

region suggests that  can be obtained from a magnetic potential function, . Notice that if there are no free
currents, curlH=0, and therefore in the absence of a current density the tangential components of H must be continuous
everywhere. The truth of this statement can be demonstrated by means of an application of Stokes’ theorem, section(1.3.4). The
argument is the same as that used to derive Equation (2.4.1) which states that the tangential component of the electrostatic field
must be continuous across a boundary. In the electrostatic case continuity of the tangential component of E can be guaranteed by
the requirement that the electrostatic potential function be continuous. In the equivalent magnetostatic case the continuity of the
tangential component of H is guaranteed by the requirement that the magnetostatic potential function, V , be continuous across a
boundary.

The machinery that was set up in Chapter(2) to calculate the electrostatic field from a given charge distribution can be taken over
intact to calculate the magnetostatic field from a given ”magnetic charge density” distribution, ρ , where

From now on Equation ( ) will be used to define what is meant by the term magnetic charge density. There is no real
magnetic charge density; to this date (2004) no one has been able to discover a magnetic monopole, the magnetic analogue of an
electric charge. If a magnetic monopole were to be discovered it would have the units of Amp-meters, and it would produce a field

by analogy with the electrostatic case, where q  is the strength of the magnetic charge.
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If curl( ) = 0, ie. no free current density, the magnetic field can be written as the gradient of a magnetic scalar potential, V :

Eqn.( ) guarantees that curl( ) = 0 since the curl of a gradient is always zero. Notice that an arbitrary constant can be added to
the potential without changing the magnetic field, . This constant is usually chosen to make the expression for the potential
function as simple as possible. Upon substituting Equation ( ) into Equation ( ) for the divergence of  one obtains

or

By analogy with the electrostatic case, Equation (2.2.4), the particular solution for the magnetic potential can be written

In the application of Equation ( ) it must be remembered that a discontinuity in the normal component of the magnetization, 
, will produce a surface density of magnetic charges just as a discontinuity in the normal component of the electric dipole

moment, , produces a surface density of bound electric charges, Chapter(2), section(2.3.3). The magnetic surface charge density
contributes to the magnetic potential, V ( ), and must be included in Equation ( ) as a surface integral. It is often easier
to calculate the fields generated by a given configuration of magnetization density by means of the magnetic scalar potential than it
is to use the equivalent current density,  = curl( ), and the generalized law of Biot-Savart, Equation (4.1.15). Examples follow
of magnetic field distributions calculated from given magnetization distributions using the magnetic scalar potential.

4.4.1 An Infinitely Long Uniformly Magnetized Rod.

See Figure (4.3.11). For this case div( ) = 0 everywhere, so that ρ  = 0 everywhere. There are no surface charge densities
because there are no discontinuities in the normal component of . This means that the magnetic potential must be independent of
position, see Equation ( ), and thus

But by definition

therefore if  = 0 it follows that  = µ  in agreement with Equation (4.3.11) which was earlier obtained using the law of Biot
and Savart;(see section(4.3.7) above).

4.4.2 A Thin Disc Uniformly Magnetized along its Axis.
Consider a disc of radius R meters and having a thickness of L meters, that is uniformly magnetized parallel with its axis as shown
in Figure (4.4.12); M  = M . The discontinuity in the normal component of the magnetization at the front and rear surfaces
produces a surface magnetic charge density given by σ  = +M  per m  on the front surface and σ  = −M  per m  on the rear
surface. These magnetic charge densities produce a magnetic field along the axis of the disc that can be obtained from the scalar
potential, V , calculated using Equation ( ), where, for this example, the volume integral reduces to a surface integral. The
field  so calculated can be used to calculate  along the axis: the result is given by Equation (4.3.12) of section(4.3.8).

If (R/L) ≫ 1 the configuration of charges illustrated in Figure (4.4.12) is the magnetic analogue of the electrostatic double layer
problem, section(2.7.1) example(4), Figures (2.7.9) and (2.7.10). By analogy with the electrostatic double layer, one can
immediately deduce that outside the disc the magnetic field  is zero, but inside the disc H  = −M . From the definition 

 this means that, for a disc having an infinite radius, the field  is zero both inside and outside the disc. This
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conclusion is in agreement with Equation (4.3.12) in which the field  was calculated along the axis from the equivalent surface
current density on the edge of the disc. Notice that the normal component of  is continuous across the interface between the
outside and inside of the magnet. It is a general consequence of the Maxwell equation div( ) = 0 that the normal component of B
must be continuous across any interface.

Figure : A uniformly magnetized disc. The discontinuities in the normal component of the magnetization generate an
effective magnetic surface charge density on the front and back surfaces of the disc.

4.4.3 A Uniformly Magnetized Ellipsoid.

The results of section(2.7.4) for a uniformly polarized ellipsoid can be taken over for the magnetic case because of the similarity
between the equations for the electrostatic field, , and those for the magnetic field, , in a current free region. Consider the
ellipsoid whose surface is described by

Let the components of the magnetization in the principle axis system be M , M , M . There exist demagnetizing coefficients, N ,
such that the field  inside the ellipsoid is uniform with

Moreover, the demagnetizing coefficients satisfy the sum rule

Equations ( ) and ( ) are the magnetic analogues of eqns,(2.7.5) and (2.7.6) for a uniformly polarized ellipsoid in the
electrostatic case. Demagnetizing factors for simple degenerate limits of the ellipsoid of revolution can be deduced immediately
from the sum rule and symmetry arguments, just as for the electrostatic case:

(1) A uniformly magnetized sphere: N  = N  = N  = 1/3.

(2) A long cylinder magnetized transverse to its axis. In this case the demagnetizing factor for the long axis, the z-axis say, is zero,
ie. N  = 0. Therefore since the other two demagnetizing factors are equal, one must have N  = N  = 1/2.

(3) A flat disc having a very large radius and magnetized along its axis. In the limit of infinite radius the in-plane demagnetizing
factors go to zero, and therefore from the sum rule N  = 1.
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For the general ellipsoid the demagnetizing factors are given by Equations (2.7.11), and for ellipsoids of revolution by Equations
(2.7.7 and 2.7.9).

The magnetic field  outside a uniformly magnetized ellipsoid is generally not uniform even though the field  inside the
ellipsoid is uniform. Analytical expressions for the field H, and therefore also for the field B, are available but they are complicated
and are written using generalized elliptic co-ordinate systems. See Electromagnetic Theory by J.A. Stratton, McGraw-Hill, N.Y.,
1941, sections 3.25 to 3.27.

4.4.4 A Magnetic Point Dipole.
By analogy with the electrostatic case, the magnetic field around a point magnetic dipole can be obtained from a magnetic potential
function of the form

This potential function gives the magnetic field

The components of this field when written in the spherical polar co-ordinate system are (see Figure (4.4.13))

The components of  are obtained from the components of  by multiplying by the permeability of free space, µ . The resulting
expressions are exactly the same as the ones obtained earlier, Equation (4.3.10), from the vector potential for a point dipole,
Equation (4.3.9). Thus, the field due to a magnetic point dipole can be calculated either from a magnetic vector potential or from a
magnetic scalar potential.

The magnetic scalar potential corresponding to a given distribution of magnetization density can be calculated by superposition
using the magnetic

Figure : A magnetic point dipole oriented along the z-axis.

potential due to a point dipole, Equation ( ), see Figure (4.4.14). The element of volume, d , has associated with it a magnetic
dipole moment . This contributes to the magnetic scalar potential at point P(X,Y,Z) an amount given by

Sum Equation ( ) over the entire magnetization distribution to obtain

H⃗  H⃗ 

= ( ) .VM
1

4π

⋅m⃗  r ⃗ 

r3
(4.4.14)

( ) = ( − ) .H⃗  r ⃗ 
1

4π

3[ ⋅ ]m⃗  r ⃗ r ⃗ 

r5

m⃗ 

r3
(4.4.15)

= ,Hr
2m

4π

cos θ

r3

= ,Hθ

m

4π

sinθ

r3
(4.4.16)

= 0.Hϕ

B⃗  H⃗  0

4.4.13

4.4.14 τ

= ( )dτm⃗  M⃗  r ⃗ 

( ) = dτ .dVP R⃗  1

4π

( ) ⋅ [ − ]M⃗  r⃗  R⃗  r ⃗ 

| −R⃗  r⃗ |3
(4.4.17)

4.4.17

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22814?pdf


4.4.5 https://phys.libretexts.org/@go/page/22814

The potential calculated using Equation ( ) will give the same fields as that calculated from the equivalent magnetic charge
distribution and Equation ( ) which is based upon the superposition of the magnetic potentials generated by fictitious point
magnetic charges. The proof that the potential calculated in these two different ways is the same, except, possibly for a constant, is
based on the identity

Figure : The calculation of the magnetic scalar potential for a given distribution of magnetization density, ( ), using
superposition and the potential function for a point magnetic dipole.

The argument proceeds in exactly the same fashion as for the analogous electrostatic case; see Chpt.(2), section(2.8).

This page titled 4.4: A Second Approach to Magnetostatics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
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