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12.2: Higher Order Modes

The wave-guide modes discussed above are very simple ones because they presumed that there was no spatial variation of the
fields along the y-direction. There exist wave-guide solutions of Maxwell’s equations that involve spatial variations along all three
axes: these higher order modes correspond to the co-ordinated propagation of plane waves whose wave-vectors make an oblique
angle with the guide axis so that they are repeatedly reflected from all four walls. These modes divide naturally into two classes:

a. Transverse Electric (TE) Modes;
b. Transverse Magnetic (TM) Modes.

A transverse electric mode is one in which there is no component of the electric field parallel to the direction of propagation. A
transverse magnetic mode is one in which there is no component of the magnetic field parallel to the direction of propagation. For
both classes of modes one seeks solutions of Maxwell’s equations that correspond to waves travelling down the waveguide; i.e. all
of the field components are required to be proportional to the phasor

exp(i [kgz — wt]).

Furthermore, it is convenient at this point to change the description of the wave-guide co-ordinate system so that the origin is
located at one corner of the hollow rectangular pipe as shown in Figure (12.2.4): in the new system the walls of the guide are
formed by the intersection of the planes x=0,a and y=0,b. For a time variation of the form exp (—iwt) Maxwell’s equations become

— -

curl(E) =iwpoH, (12.2.1)
- -

curl(H) = —iweE.

The divergence of any curl is zero, and therefore the electric and the magnetic fields satisfy the conditions

_>
div(E) =0, (12.2.2)

Note that the equations for E and H are very similar. This symmetry between the equations for £ and H can be exploited to
generate a second set of solutions to Maxwell’s equations from a primary set of fields that satisfy Maxwell’s equations. This works

as follows: suppose that one has found the fields E’l and H 1 that satisfy Equations (12.2.1). Now consider a second set of fields

— —
E,=7ZH,, (12.2.3)
— -
Hy =—E,/Z.
where Z = /g /€ is the wave impedance for a medium characterized by a permeability po and a dielectric constant €. Substitute

these new fields into Equations (12.2.1) to obtain

— —
CI]I1<E2> :iw,u,()Hg.

@ 0 12.2.1 https://phys.libretexts.org/@go/page/22735


https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22735?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/12%3A_Waveguides/12.02%3A_Higher_Order_Modes

LibreTextsw

Figure 12.2.4: A rectangular wave-guide formed by conducting walls at x=0, x=a, y=0, and y=b. The lossless material inside the
guide is characterized by a real dielectric constant €, and a permeability 1.

Upon the substitution (12.2.3) this becomes

- Wiy = —
cur1<H1> - —";*2‘0 E, = —iweE,,

and this by hypothesis satisfies Maxwell’s Equations (12.2.1). Similarly, from (12.2.1) one has
— —
curl (H2) = —iweE 4.
Upon substitution of Equations (12.2.3) one finds

— —
cur1<E1> =iwpo Hy,

so that the new fields, Ez and H o satisfy both of Equations (12.2.1). Clearly Equations (12.2.7) are satisfied since E'2 and H o9 are

proportional to £ and H;. It follows that the prescription of Equation (12.2.3) can be used to generate a second, different, set of
solutions for Maxwell’s equations from a primary set of solutions. This procedure can often be used to avoid a great deal of
computational tedium.

12.2.1 TM Modes.

In order to proceed with the rectangular wave-guide problem it is convenient to use the vector potential A, and the scalar potential,

V, where
- —
H =curl(A), (12.2.4)
- oA
E =—grad(V) — po—.
grad(V) — o
The choice
A, =A(x,y)exp(i [kez — wt]), (12.2.5)

plus Ay = Ay = 0 will guarantee that the z-component of the magnetic field, H , is zero: in other words, this choice of vector
potential will generate only TM modes, and
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0A,
Hy=—
9y
0A,
S

For a time dependence exp (—iwt), and using (12.2.4) in Maxwell’s equations (12.2.1), one finds

— w2
curlcurl(A) = ¢ (?) A +iwegrad(V).

But in cartesian co-ordinates

— = —
curlcurl(A) = —V*° A +graddiv(A),

so that

, w\2— —
\% A+er(?) A =grad(div(A) —iweV).

As explained in Chapter(7), one can set
_>
iweV =div(A),

so that for this problem where there are no driving charges or currents one finds

V2X+er(%)2z =0.

In particular, if A has only a z-component one finds

2 w2 -
V2A, —|—er( C) A, =0, (12.2.6)
and
tweV = aajzz .

We require solutions that propagate along z: ie solutions that are proportional to exp (ikgz). Thus write
A, (X7 Y, 2, t) = A(Xv Y) exp(i [ng - Wt] )7

for which A(x, y) must satisfy
2
—+——k2A+er(%) A=o. (12.2.7)

This equation is solved by products of sines and cosines:
A(x,y) = constant (sin(px) or cos(px))(sin(qy) or cos(qy)),
where
w\ 2

p2+q2+k§:er(?) . (12.2.8)

The particular combination of sines and cosines required must be chosen so that H satisfies the boundary condition that the normal

component of H vanishes at the wave-guide walls. Using the magnetic field components calculated from Equation (12.2.4) and the
co-ordinate system of Figure (12.2.4), it can be readily concluded that we require

A(x,y) = Ag sin($) sin(m%y), (12.2.9)

so that
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OA
H, —E: (H—J)Agsm( zx)cos(%), (12.2.10)
O0A mm mnx nwy
Hy = =5 = () Aecos(7 ) sin (),
where m,n are integers, and Equation (12.2.8) becomes
mm 2 nmwy\? w2
(T) + (T) K2 —eT(?) . (12.2.11)

Notice that A,=0 at the walls of the wave-guide. E, is proportional to A, so that if A,=0 on the walls of the guide then the
tangential component E, will also vanish on the walls of the wave-guide as is required by the boundary conditions on the tangential
components of E.

The electric field components can be most easily calculated from the second of Equations (12.2.1),

+i [ OHy
EY_Z 0z )’
SRNC )
ew | Ox dy

The resulting electric field components are (dropping the factor exp (i[kgz — wt])):

E, = (ﬂ) (§> Ao cos(m:X) sin<ﬂ), (12.2.12)

a €w b

= == () (3) wme() = (5)
= () (5" () o) (5.

Notice that these electric field components satisfy the requirement that the tangential components of E must vanish at the walls of
the wave-guide. The field components Equations (12.2.1() and (12.2.12) correspond to the TMp,, mode.

For a propagating wave the value of kg calculated from (12.2.11) must be positive. This introduces a cut-off frequency, wm, such

W )2 (m7r)2 (mr)?
— ) =— — . 12.2.13
Er( c a * b ( )
For given interior dimensions of the wave-guide there is a lower limit to the frequency for which a particular mode may be
propagated along the waveguide. For example, a popular X-band wave-guide has interior dimensions a= 2.286 cm and b= 1.016
cm. For this guide the TM; mode can be propagated only for frequencies greater than 16.15 GHz if €,= 1. There are no TM modes

corresponding to m=0 or n=0 since the fields are zero if m=0 or if n=0 because A(x,y)=0 from Equation (12.2.9). Thus the lowest
TM frequency that can be propagated down the above guide is 16.15 GHz.

that kg =0. This cut-off frequency is given by

Non-propagating TM modes do exist for frequencies less than the cutoff frequency. If @ < wp, then k; calculated from (12.2.9) is
negative. This means that kg is a purely imaginary number, kg = i say. The phasor exp (i[kgz — wt]) becomes exp (—Bz) exp (-iwt)
corresponding to a disturbance that decays to a small amplitude over a distance z ~ (1/B).

12.2.2 TE Modes.

There exists another group of modes for which E, = 0; these are the TE modes. Using the symmetry relations Equations (12.2.3)
and the magnetic fields (12.2.1() one might guess that the TE mode electric fields ought to be given by (the factor exp (i[kgz — wt])
is suppressed)
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B (%) s ) 2,

Ey,=-Z (%) Ay cos(m;rx) sin(%).

These electric fields satisfy Maxwell’s equations but they do not satisfy the boundary condition that the tangential components of

E must vanish at the wave-guide walls: ie. E,=0 at y=0,b and Ey=0 at x=0,a (see Figure (12.2.4)). However, the following
equations for the electric field components do satisfy the required boundary conditions:

E,=E; cos(mﬂ-x) sin(m),
a b

E, =E; sin(m;rx) cos(%),

E,=0.

These field components vanish on the wave-guide walls. The electric field must also satisfy the Maxwell equation div(é) = 0. This
condition requires

OE
OBl +—L=0.
Ox y

m n
(T E=-(F) =

a b
Using this relation between E; and E, the electric field components corresponding to the TE modes in a rectangular wave-guide
have the form:

n m n

E, = (—ﬂ-) Ey cos(ﬂ) sin(L
b a

E, =— (E) Ey sin(mﬂ-x) cos(
a

E,

It follows that

, (12.2.14)

)

=
CT'|-‘-\O"
<
O — —

)
where Ej is a constant, and the factor exp (i[kgz — wt]) has again been suppressed. The magnetic field components corresponding to
Equations (12.2.14) can be calculated from Faraday’s law: iop0 H-= curl(E). The resulting field components are
41 OEy
T wpy Oz
k
=t (m) Eq sin( m7rX) cos(m),
wiy \ a a b
—i OE
Hy, = — ==
wy Oz

- (3 ocos(2) (%),
H - —i (8Ey_aEx>
T wpe \ Ox Oy
= UJL/:L(]EO {(%)2—% (%)2] cos(m;rx) cos(%).

Eqns.(12.2.14) and (12.2.15) satisfy Maxwell’s equations and also the boundary conditions that the tangential components of E

(12.2.15)

and the normal components of H vanish on the wave-guide walls. The TE;; mode discussed in section(12.1) corresponds to
m=1,n=0: for this mode E, = 0 and Hy = 0. Referring to the co-ordinate system of Figure (12.2.4) the field components for the TE,
mode are:
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E, :Asin(%) exp(i [kyz — wt)), (12.2.16)
kg X .
H, = _W_,UOA sm(—) exp(i [kyz — wt]),
A s .
H, = _w_#o (;) Acos(:) exp(i [kgz — wt]),
where A is a constant and
2 () (7Y
K2 —er( C) (a) . (12.2.17)

The cut-off frequency for this mode, corresponding to k=0, is given by

w2 2
«(5) =)
c a
For the popular X-band wave-guide used above for illustrative purposes one has a=2.286 cm and b=1.016 cm. For this guide, and
€, = 1, the cut-of

m | n | TE,,(GHz) | TM,,,(GHz)

110 6.557 NoTM Mode

011 14.753 No TM Mode
1|1 16.145 16.145
210 13.114 No TM Mode
211 19.740 19.740
012 29.507 No TM Mode
1|2 30.227 30.227
212 32.290 32.290

310 19.671 NoTM Mode
31 24.589 24.589
32 35.463 35.463
303 48.435 48.435

Table 12.2.1: Cut-off frequencies for the lowest transverse electric (TE) modes and the lowest transverse magnetic (TM) modes in
X-band waveguides (RG52/U or WR90 brass guides). The internal dimensions of X-band waveguides are a= 0.900 inches = 2.286
cm, and b= 0.400 inches = 1.016 cm. The external dimensions of the guide are 1.00 x 0.50 inches. The cut-off frequencies were

calculated for €, = 1 using (%)2 = (%)2 + (%)2 :

frequency for the TE;p mode is 6.56 GHz. Cut-off frequencies for various modes in this X-band wave-guide are listed in
Table(12.2.1). Notice that only one mode, the TE;p mode, can be propagated along this wave-guide for frequencies between 6.6
and 13.1 GHz.

This page titled 12.2: Higher Order Modes is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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