
4.3.1 https://phys.libretexts.org/@go/page/22813

4.3: Standard Problems

4.3.1 A Long Straight Wire.

Each element of the wire, d , is directed along z, and therefore A has only a z-component, see Figure (4.3.4) and Equation
(4.1.16):

Unfortunately, the integral of Equation ( ) diverges if it is evaluated over the interval −∞ ≤ z ≤ ∞ . This indicates that an
infinitely long wire is unphysical; eventually the two ends of the wire must be connected in order to complete the steady state
current loop. In order to proceed, one can calculate the contribution to the vector potential from the large but finite wire segment
−L ≤ z ≤ +L. The result is

Clearly A  must have the same value everywhere on a circle of radius x centered on the origin and lying in the x-y plane. The
expression for the

Figure : A straight wire 2L meters long, and carrying a current of I  Amp`eres, used to calculate the vector potential and the
magnetic field generated at a point P in the central plane.

vector potential may therefore be written in cylindrical polar co-ordinates as

Although this expression is strictly valid only for points in the x-y plane, it is clear from symmetry arguments that for large L and
small z the vector potential must be essentially independent of z. The corresponding magnetic field is given by  = curl( ), and
since  has only a z-component, and since this z-component is independent of the angle θ, the magnetic field has only a θ-
component:
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If L ≫ r this expression reduces to

4.3.2 A Long Straight Wire Revisited.

The result Equation ( ) for the magnetic field generated by a long straight wire is so simple that it suggests that there must be
an easy method for obtaining it: a method based upon the symmetry of the problem. Magnetic problems in which the current
distribution is very symmetric may often be solved by means of an application of Stokes’ theorem (Chpt.(1), Section(1.3.4)).
Stokes’ theorem states that the surface integral of the curl of any vector field over a surface bounded by a closed curve C can be
replaced by the line integral of that vector over the curve C. Apply this theorem to the Maxwell equation

For the present problem there is no magnetization density;  everywhere and therefore  everywhere and 

. The current flow is confined to the cross-section of the wire so that if one applies Stokes’ theorem to the surface
bounded by the circle of radius R shown in Figure (4.3.5) one obtains

Figure : Geometry used to calculate the magnetic field generated by a long straight wire carrying a current of I  Amp`eres.

where dS is the element of area, and  is a unit vector normal to the element of surface area. But from Stokes’ Theorem

The law of Biot-Savart, Equation (4.1.17), can be used to convince oneself that  has only a component in the direction tangent to
the circle C of Figure (4.3.5). By symmetry this component must be independent of position along the circumference of the circle,
and the line integral in is very easy to carry out.
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or

Figure : The magnetic field generated along the axis of a circular current loop.

in agreement with Equation ( ) deduced from the vector potential. Unfortunately, most problems do not exhibit sufficient
symmetry to be so simply solved.

4.3.3 A Circular Loop.
Refer to Figure (4.3.6). In this case the field is most simply calculated by direct application of the law of Biot-Savart, Equation
(4.1.17). The element of magnetic field, d , generated by any small element of length, d , along the wire is perpendicular both to
d  and to  as shown in Figure (4.3.6). The transverse component of d  is cancelled by symmetry by the contribution from the
element of length that is diametrically opposite to d . Thus along the axis of the loop there is only a z-component of magnetic
field:
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Figure : The magnetic field along the axis of a solenoid L meters long, R meters in radius, and having N turns per meter.

This expression can be readily integrated because the distance r does not depend upon position around the circumference of the
wire. Thus

This expression, together with the principle of superposition, can be used to calculate the magnetic field along the axis of a
solenoid.

4.3.4 The Magnetic Field along the Axis of a Solenoid.
Consider a coil L meters long that is uniformly wound with N turns/meter. The magnetic field at a point on the axis of the coil can
be calculated as the sum of the fields generated by each turn separately using the principle of superposition. The field generated by
a single turn located at  is given by

where I  is the current; this follows from Equation ( ). The field generated at z by the  turns contained in the element of
length  is given by

Upon integration over  the total field becomes

This is a standard integral:
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The calculation of the field strength at an off-axis position is more difficult, and must be carried out numerically. In the limit as L
becomes very large, ie. (z/L)≪ 1, the z dependence drops out to give

(Note that N is not the total number of turns on the solenoid but is the total number of turns divided by the length L.)

4.3.5 The Magnetic Field of an Infinite Solenoid.
The field in an infinite solenoid cannot depend upon position along z because the coil appears the same to a fixed observer even if
it is shifted along its axis through any finite interval, ∆z. The current flow in the solenoid turns is transverse to the solenoid axis,
therefore according to the expression (4.2.1) for the vector potential,  must be purely transverse; ie. the vector potential  can
have only the components A  and A  when written in cylindrical polar co-ordinates. These components cannot depend upon the
angle θ because any rotation of the solenoid around its axis leaves the current distribution unchanged. The curl of a vector that has
only the components A  and A ,

Figure : Diagram to illustrate the use of Stokes’ Theorem to show that the field outside an infinite solenoid is zero.

and for which these components depend only upon the radial co-ordinate,r, has only a z-component,

We conclude, therefore, that the magnetic field can have only one component, B , and that component can depend only upon the
distance r from the solenoid axis. Further note that everywhere inside the solenoid curl( ) = 0 from Maxwell’s equations since
there is no free current density and no magnetization density by hypothesis. But since  has only a z-component that is
independent of θ and z, its curl has only the component

and therefore B  is independent of the distance from the solenoid axis. A similar line of argument applies equally to the region
outside the solenoid. It follows from Equation ( ), the expression for the field at the center of a long solenoid, that the field
everywhere inside an infinite solenoid must be given by

As was shown above, outside the infinite solenoid the field must be a constant, B  = B  say. The value of B  may be calculated by
means of Stokes’ theorem, Figure (4.3.8). Apply Stokes’ theorem to an area bounded by the rectangle L long and d wide that is
oriented perpendicular to the current flow in the windings. From Maxwell’s equations
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since there is no magnetization density and the fields are static. Therefore

This last result follows because  = 0 except on the cross-section of each wire. But, referring to Figure (4.3.8)

The sides of the loop d meters long contribute nothing because they are perpendicular to the magnetic field. It can therefore be
concluded that

But inside the solenoid the field is B  = µ NI , and Equation ( ) then requires that the field outside the solenoid be zero. The
fields generated by an infinitely long solenoid are zero everywhere outside the solenoid, and a uniform field parallel with
the axis, B  = µ NI , everywhere inside the solenoid.

4.3.6 The Field generated by a Point Magnetic Dipole.

Consider a current loop of radius a meters centered on the origin and lying in the x-y plane as shown in Figure (4.3.9). For
simplicity, let the point of observation, P, lie in the y-z plane; this assumption involves no loss of generality because the vector
potential and the field must be independent of angle around the z-axis. The contribution of the line element 

 to the vector potential at P(0,Y,Z) is

Figure : Calculation of the vector potential generated by a current loop of radius a carrying a current of I  Amps.

As usual  and  are unit vectors directed along x and y.

or

where R  = Y  + Z . Using the binomial expansion theorem along with the condition (a/R) ≪ 1 one finds, to first order in (a/R),

Integrate over the angle  from  = 0 to  = 2 . The integrals over sin , cos ( ), and sin ( ) cos ( ) all vanish. However, the
integral over sin (  gives . Thus  will have only a component parallel with the x-axis for the above choice of P lying in the Y-
Z plane at (0,Y,Z):
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This result indicates, because of the symmetry around the z-axis, that in spherical polar co-ordinates the vector potential has only
one component, A . Let ; then

In vector notation this result can be written

where , and , the area of the current loop. It can be shown that this same result is obtained for any small
current loop, whatever its shape may be, in the limit as the dimensions of the loop become very small compared with the distance
to the point of observation, R.

It is simple, but tedious, to show that the magnetic field corresponding to Equation ( ) is given by

This result can best be obtained by calculating the curl using cartesian coordinates. Eqn.( ) for the magnetic field generated
by a magnetic point dipole has exactly the same form as Equation (1.2.10), the electric field produced by an electric point dipole.

4.3.7 A Long Uniformly Magnetized Rod.

Let a cylindrical rod be magnetized uniformly along its axis. Inside the rod the magnetization density, M  = M , is independent of
position, ie. ,  and . Therefore, curl ( ) = 0 everywhere inside the rod. Similarly, curl (

) = 0 everywhere outside the rod. However, curl ( ) does not vanish on the surface of the rod, see Figure (4.3.10). In cylindrical

polar co-ordinates one finds only one non-zero component,  the radial component of curl ( ) is zero
because the magnetization density does not depend upon the azimuthal angle, . Notice that ∂M /∂r is zero everywhere except on
the surface where M  varies rapidly from M  on the inside to M  = 0 on the outside of the rod. This rapid radial variation of M
introduces an integrable singularity into the angular component of curl ( ):

where  is the Dirac -function that vanishes except at the radius r=R. The quantity curl ( ) is equivalent to a real current
density as far as
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Figure : A long cylindrical rod magnetized along the axis.

Figure : A uniformly magnetized disc.

producing a magnetic field is concerned. The above surface current density produces exactly the same magnetic fields as a surface
current sheet having a strength of M  Amps/meter; in terms of the windings on a solenoid, it is equivalent to N turns/meter carrying
a current of I  Amps where NI  = M  Amps/meter. The field inside a uniformly magnetized rod is given by the infinite solenoid
formula, Equation ( ),

Unfortunately this field is not accessible. The field outside an infinitely long magnetized rod is zero.

4.3.8 A Uniformly Magnetized Disc.

The discontinuity in the tangential component of the magnetization density at the surfaces of a uniformly magnetized disc produces
an effective surface current density that sets up a magnetic field whose distribution is exactly equivalent to the field set up by a
solenoid of the same length. The strength of the effective current sheet is M  Amps/meter, and is equivalent to N turns/meter
carrying I  Amps, where NI  = M . This can be shown using Stokes’ Theorem applied to a small loop of area A that spans the
surface of the disc as shown in Figure (4.3.11). The field along the axis of a disc of thickness Ld is given by Equation ( )
applied to this case :

The field generated by a uniformly magnetized disc having a finite thickness is accessible at points outside the disc. The strength of
the field at the center of the disc surface at r=0 is given by
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Permanent magnets are available for which  Tesla. The external fields produced by such magnets can be quite large- the
order of 0.2 Teslas or greater.

This page titled 4.3: Standard Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and
Bretislav Heinrich.
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