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5.1: Introduction- Sources in a Uniform Permeable Material
The equations of magnetostatics are given by Equation (4.1.2)

and Equation (4.1.3)

( refer to section(4.1)). For a linear, isotropic, magnetic medium  is proportional to  where the factor of proportionality is called
the permeability.

so that

or

In Equation ( ) µr = µ/µ0 is the relative permeability. The second of the above Maxwell’s equations can be re-written in the
form

or

The substitution  = curl( ) ensures that Equation (4.1.2) will be satisfied since the divergence of any curl is zero. Using this
substitution in Equation ( ) gives

If in addition one chooses

then

and this equation has the particular solution

where d  is an element of volume. This development exactly follows the procedure described in Chpt.(4); the only difference is
that the integration in Equation ( ) is carried out over the free current density distribution, and the fields due to the effective
current density curl( ) are taken into account through the permeability µ that multiplies the integral. It should be noted that this
procedure only works if µ does not depend upon position in space. If there are regions characterized by different values of µ the
problem of calculating the magnetic field distribution becomes much more difficult. This is because at the boundaries between
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regions having different permeabilities there are discontinuities in the normal and tangential components of  that act as field
sources.

In the usual situation the current density is zero except within a finite number of thin wires. For a current of I Amps carried in a
wire of negligible cross-section Equation ( ) becomes

where  is the vector from the element of length d  to the point P where the vector potential  is to be calculated. From  = curl(
) one obtains

These formulae are very similar to Equations (4.2.1) and (4.17) of Chpt.(4). The fields corresponding to the standard problems of a
long straight wire, the field along the axis of a circular loop, and along the axis of a finite solenoid are given by Equations (4.3.3),
(4.3.4), and (4.3.5) where the permeability of free space, µ , is replaced by the permeability µ. In particular, the field of an infinite
solenoid that is filled with a magnetic material is given by

where N is the number of turns per meter.
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