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3.5: Appendix(A) - The Onsager Problem
An interesting variant of the problem of a sphere in a uniform field has been discussed by Onsager in connection with the
calculation of the dielectric constant of a material from its atomic polarizability; L.Onsager, J.Amer.Chem.Soc.58, 1486-1493
(1936). When an isolated atom is placed in a uniform external electric field it develops a dipole moment, p , that is proportional to
the applied field E ;

where the polarizability  has the dimensions of a volume, and can in principle be calculated using quantum mechanics. In a solid
or a liquid the atom is not isolated, but its electric moment is influenced by the electric fields due to its neighbours. As a crude
approximation one may imagine that the atom plus its associated electric moment is located at the center of a spherical cavity of
radius R cut out of an otherwise homogeneous dielectric material characterized by a dielectric constant , see Figure (3.4.18). Far
from the cavity the electric field is E  and directed along the z-axis corresponding to the potential function

where r and θ are spherical polar co-ordinates. The problem is to determine the field inside the cavity that acts to polarize the atom.
The externally applied electric field is derived from a potential function whose angular dependence is proportional to cos (θ); one is
therefore motivated to seek a solution of this problem that corresponds to the use of the terms proportional to cos (θ) in the
expansion for the potential, Equation (3.2.19). Inside the cavity the potential near r=0 must be dominated by the dipole potential

One is therefore led to try

Inside: r < R

and

Outside: r > R

The requirements that the potential function and the normal components of  be continuous across the surface of the sphere, r=R,
lead to the two equations

where . From these two equations one finds

and

But A is just the value of the uniform field inside the cavity that is responsible for the induced dipole moment on the atom,
therefore from the definition of the polarizability one has
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This value can be substituted into Equation ( ) for the constant A to obtain

Eqn.( ) can be solved for A in terms of the applied electric field E , and this result can be used in Equation ( ) to calculate
the atomic dipole moment p :

But the dipole moment per atom can be used to calculate the dipole moment per unit volume, :

where N is the number of atoms per unit volume. From the definition

one has

(Notice that one can drop the vector signs on D, E , and P because all of these vectors are parallel with the z-axis). Using Equations
( , , and ) one can obtain a relation between the relative dielectric constant,  and the polarizability :

The latter expression can be solved to obtain the polarizability in terms of the relative dielectric constant, :

Eqn.( ) can be used to calculate the atomic polarizability from measured values of the relative dielectric constant, . These
values of  can then be compared with values calculated from atomic theory.

This page titled 3.5: Appendix(A) - The Onsager Problem is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John
F. Cochran and Bretislav Heinrich.

3.5.3

A =( ) +( ) .
3ϵr

2 +1ϵr

E0
−1ϵr

2 +1ϵr

2αA

4πR3
(3.5.6)

3.5.6 0 3.5.5

a

= α .pa

⎛

⎝
⎜

3ϵrϵ0

2 +1 −( ) ( −1)ϵr
2α

4πR3 ϵr

⎞

⎠
⎟ E0 (3.5.7)

P ⃗ 

| | = P = N ,P
→

pa (3.5.8)

D = +Pϵ0E0

P = ( −1) .ϵr ϵ0E0 (3.5.9)

0
3.5.9 3.5.8 3.5.7 ϵr α

−1 = Nα.ϵr

⎛

⎝
⎜

3ϵr

2 +1 −( −1)( )ϵr ϵr
α

2πR
3

⎞

⎠
⎟

ϵr

α = 2π .
(2 +1)ϵr

( −1 +( ) 2π )ϵr

3ϵr

−1ϵr

NR3
R3 (3.5.10)

3.5.10 ϵr
α

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22808?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/03%3A_Electrostatic_Field_II/3.05%3A_Appendix(A)_-_The_Onsager_Problem
https://creativecommons.org/licenses/by/4.0
https://www.sfu.ca/physics/people/profiles/bheinric.html

