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10.1: Normal Incidence
Consider a plane interface at z=0 that separates vacuum on the left (z < 0) from a half-space on the right containing an isotropic
material, see Figure (10.1). It is assumed that the relation between  and  in this material linear, i.e. , where the
dielectric constant (ω) depends upon the frequency, ω. The dielectric constant, , can be represented by a complex number
meaning that there is a phase shift between the vectors  and . It is often useful to write  where  is the relative
dielectric constant. The relative dielectric constant, , is a dimensionless, complex number.

Let the material in the right half-space be non-magnetic so that its permeability can be taken to be the same as the permeability of
free space, µ . A plane wave of the form

falls upon the interface. A disturbance will be set up in the material to the right of the boundary and we may reasonably suppose
that it will also have the form of a plane wave;

Figure : A plane wave,  is incident from vacuum on a material characterized by a dielectric
constant  at the circular frequency ω. The wave falls upon the surface at normal incidence. The amplitude of the reflected wave is
E , and the amplitude of the transmitted wave is E .

The plane wave propagating in the material (z > 0) must have the same frequency as the incident wave because the response of the
material is driven by the incident electric field at the circular frequency ω. However, its wavevector need not be the same as for free
space; it must be chosen so as to satisfy Maxwell’s equations. The amplitude of the wave in the material must be chosen so as to
satisfy boundary conditions on the surface of discontinuity between the material and vacuum at z=0.

In the material (z > 0) Maxwell’s equations can be written

It is assumed that there is no free current density, , so that  simplifies to

It is also assumed that there is no free charge density in the material so that

In the material we assume that  and therefore
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In writing these equations use has been made of the definitions from linear response theory in which it is assumed that the
polarization per unit volume is a linear function of the electric field strength:

and

so that

The relative dielectric function  will, in general, be a complex number because the response of the material, , to a driving
electric field, , is not in phase with the electric field. In the above equations the time dependence of the fields, exp (−iωt) , has
been explicitly used. The divergence of  is zero because it has been explicitly assumed that the material is uncharged. If the
electric field is taken to have only an x-component, and to be propagating along z as shown in Figure (10.1.1), then its curl
simplifies to give (from Equation ( )

it follows from this that the magnetic field has only a y-component. Similarly from Equation ( ) one finds

Both  and  in the plane wave of Equation ( ) automatically satisfy the condition that their divergences are zero because
they are transverse waves; thus Equations ( ) and ( ) are satisfied. From Equations ( ) and ( ) one can obtain

It follows that a wave in the material will satisfy Maxwell’s equations providing that

This means that there are two waves in the material that can be used to satisfy Maxwell’s equations:

and

where

and n and κ are defined by Equation ( ).

If the parameter κ is greater than zero the wave-vector ( ) represents a wave whose amplitude decays to the right since the
constant A in Equation ( ) is multiplied by the factor

On the other hand, the wave-vector ( ) represents a wave whose amplitude increases to the right in proportion to
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This wave which grows towards the interior of the material clearly cannot be appropriate for the present problem because it would
imply that the wave was being amplified by its passage through the passive medium in the right half-space of Figure (10.1.1). It can
be concluded that the wave in the material for z≥0 must have the form

and from either of equations ( ) or ( )

Notice that the ratio of H  to E  is different from the vacuum case:

as opposed to

for free space.

The average energy density stored in the electric field is given by

from Poynting’s Theorem and the fact that  is proportional to , see Chapter(8). The average energy density stored in the electric
field is given by

or

The average energy density stored in the magnetic field is given by

The sum of these two energy densities is

The energy density decays towards the interior of the material as one would expect.

The Poynting vector, , has only a z-component

or
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The energy flow in the wave takes place with the velocity c/n. The number n is called the index of refraction. Under some
circumstances the index of refraction may be less than 1. In that case the phase velocity in the material exceeds the velocity of light
in vacuum. It appears at first sight that a phase velocity greater than the speed of light in vacuum must violate one of the postulates
of the theory of relativity. However, no information can be transmitted using a wave of constant amplitude stretching over all time
from t=-∞ to t=∞. In order to transmit a message one must modulate the amplitude, or the frequency, of the wave. Any such
modulation is propagated with the group velocity; it can be shown that the group velocity is always less than the speed of light in
vacuum.

Having determined the wave-vector of the disturbance generated in the material filled half-space by the incident electromagnetic
wave, it remains to calculate the amplitude of this disturbance at z=0. In order to find the amplitude A it is necessary to apply
appropriate boundary conditions on E  and H  on the interface plane z=0.

Figure : The Maxwell equation  requires the tangential components of  to be continuous across any
interface. See the text.
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