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9.1: Introduction to Plane Waves
An electric dipole directed along z, located at the origin, and oscillating with the circular frequency  produces electric and
magnetic fields far from the origin that have the form (see equations (7.4.5)):

where , and t is the time at which the observer at  measures the fields. It must always be kept in
mind that the fields are represented by real numbers; the notation of complex numbers is simply a convenient book-keeping device
for dealing with sinusoidal functions. The notation  “the real part of ” i.e. . It is particularly
important to remember this when calculating the Poynting vector or the energy densities which involve the product of two field
amplitudes. For example, the Poynting vector corresponding to the fields of Equations ( ) is given by

Note that the time factor is not the same as

The time average of Equation ( ) is zero, whereas the time average of the correct expression, Equation ( ), is given by

since the time average of the cosine squared function is 1/2. At distances far removed from the dipole radiator the surface of
constant R can be approximated locally by a plane perpendicular to , a unit vector parallel with  This suggests that Maxwell’s
equations ought to have plane wave solutions of the form

where  is a vector whose magnitude is  and whose direction lies along the direction of propagation of the wave, and where 
and  are constant vectors that are perpendicular to each other and to the wave-vector  (see Figure (9.1.1)).

Equations ( ) can be written in component form using some convenient co-ordinate system, and using 
:

Using these expressions it is easy to show that
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Real (exp(−2iω[t −R/c])) = cos(2ω[t −R/c]). (9.1.3)
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Real(exp(i[ ⋅ −ωt])) = cos( ⋅ −ωt)k⃗  r ⃗  k⃗  r ⃗ 
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curl( ) = −( × ) sin( ⋅ −ωt),E⃗  k⃗  E⃗ 
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Figure : A plane wave propagating along the direction specified by  and for which . For an electromagnetic
plane wave in free space for which the fields  and  satisfy Maxwell’s equations, both  and  lie in the surface of constant
phase and are perpendicular to each other.

In free space Maxwell’s equations become

Figure : An electromagnetic plane wave propagating in free space. The electric field vector, , and
the magnetic field vector, , along with the propagation vector, , form a right handed orthogonal triad.

Substitution of Equations ( ) into Maxwell’s Equations ( ) gives

The last two equations state that for plane wave solutions of Maxwell’s equations in free space both the electric and magnetic field
vectors must be perpendicular to the direction of propagation specified by the vector ; i.e.  and  must be parallel with the
surfaces of constant phase. The first two equations of (9.1.8) state that the fields  and  must be mutually perpendicular; thus
the three vectors , , and  form an orthogonal right handed triad. In order to satisfy Maxwell’s equations the magnitude of the
wave-vector must be given by
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and the amplitudes of the electric and magnetic fields must be related by

see Figure (9.1.2). Notice that E and B oscillate in phase: ie. they have exactly the same sinusoidal dependence on space and on
time. These relations are the same as those which were earlier associated with the wave produced by an oscillating dipole,
Equations (7.4.5).

In free space the displacement vector, , is related to the electric field by  so that the time rate of change of the energy
density stored in the electric field, Equation (8.2.6), becomes

Using (9.1.10), the energy density stored in the electric field of a plane wave is given by

This energy density oscillates in both space and time, in particular at a fixed point in space the energy density periodically vanishes.
However, the average energy density measured at any point in space is independent of both position and time:

Similarly, the time rate of change of the energy density stored in the magnetic field is given by (8.7)

Therefore one can write

The time averaged energy density stored in the magnetic field is independent of position and since  is given by

The average energy density stored in the magnetic field is exactly the same, in free space, as the average energy density stored in
the electric field. The total time averaged energy density stored in the electromagnetic field is

The average rate at which energy in the electromagnetic field is transported across a unit area normal to the direction of
propagation, i.e. normal to , can be obtained by multiplying Equation ( ) by the speed of light: this rate is also just the time
average of the Poynting vector

The quantity  has the units of a resistance; it is called the impedance of free space, and  Ohms. From the
equations for the space and time variation of a plane wave, Equations ( ), it follows that for a fixed time the electric and
magnetic fields vary in space with a period along the direction of  given by  By definition, this spatial period is the
wavelength, λ, therefore  Similarly, at a fixed position in space the fields oscillate in time with the period  by
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definition, this period, T, is the inverse of the frequency,f, therefore . In order to satisfy Maxwell’s equations, the frequency
and wavelength of a plane wave are related by Equation ( )

this can be written in the more familiar form 
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