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10.3: Application of the Boundary Conditions to a Plane Interface
Returning to the problem of a wave incident on a plane interface as shown in Figure (10.1.1), one could satisfy the boundary
condition on  by choosing the amplitude of the wave transmitted into the right half-space to be A= E  for z=0, where E  is the
amplitude of the incident wave. This choice would, however, produce a discontinuity in H  at the boundary because the ratio of
H /E  is different in the region z . In order to match both E  and H  inside and outside the boundary it is necessary to assume that
the oscillating dipoles in the material to the right of z=0 give rise to a reflected wave, so that for z<0, in the vacuum in this
example, one has

and, since

where k = ω/c. In Equation ( ) E  is the amplitude of the reflected wave, as yet undetermined. Notice the change in sign of
the space part of the reflected wave phasor; this sign change is required because the reflected wave must propagate towards the left
i.e. towards z=−∞. The expression for the magnetic field H  is obtained from applying Maxwell’s equation (10.1.3) to Equation (

). From Equations ( ) and ( ) one obtains on the vacuum side of the interface at z=0

On the material side of the interface at z=0 one has

Apply the boundary conditions that E  and H  must be continuous through the boundary at z=0 to obtain

and

These two equations can be readily solved:

Optical parameters n and κ are listed in Table(10.3.1) for green light and for a number of common materials. Metals are quite
opaque at optical frequencies as can be seen from the Table. For example, at a wavelength of 0.5145 microns ( a standard Argon
ion laser line) the optical electric field amplitude in copper falls to 1/e of its initial value in a distance  = λ/2 κ, or  = λ/16.3 =
31.5 × 10  meters. The attenuation of the fields in glass or in water at frequencies corresponding to visible light is very small, see
Table(10.1). The attenuation coefficient, proportional to κ, is extremely sensitive to the presence of small amounts of impurities.
Very pure glasses have been developed for use in optical fibres in which the length over which the field amplitudes have decayed
by e  is in excess of 1 km.

It is of interest to calculate the absorption coefficient associated with the plane interface of Figure (10.1.1). This is the time-
averaged rate at which energy flows into the surface divided by the time-averaged rate at which the incident wave carries power
towards the surface. It can be calculated in two ways:
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(1) As the difference between the time-averaged Poynting vectors for the incident and reflected waves divided by the incident wave
Poynting vector. For the incident wave

For the reflected wave

Table : Optical constants for some selected materials at a wavelength of 0.5145 microns ( 514.5 nm). This wavelength is a
standard Argon ion laser green line. It corresponds to a frequency of f= 5.827 × 10  Hz. A time dependence exp (−iωt) has been
assumed. (a) P.B. Johnson and R.W. Christy, Phys.Rev.B6, 4370 (1972). (b) P.B. Johnson and R.W. Christy, Phys.Rev.B9, 5056

(1974).

In these last two equations  Ohms is the impedance of free space. Therefore, the absorption coefficient is
given by

or, using Equation ( ) for the reflection coefficient

(2) From the ratio of the time averaged Poynting vector just inside the material at z=0 to the incident wave Poynting vector.

But from Equation ( )

and therefore the absorption coefficient is given by the same expression as was obtained above
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This page titled 10.3: Application of the Boundary Conditions to a Plane Interface is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by John F. Cochran and Bretislav Heinrich.
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