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13.7: Chapter 7
Problem (7.1)

In his original experiments on radio waves Hertz used two spheres approximately 0.5 meters in diameter and separated by
approximately 0.5 meters. These spheres were charged to a potential difference of 2x10  Volts; as a result one sphere carried a
charge of Q = +Q= 5.56x10  Coulombs, and the other sphere carried Q = -Q Coulombs. The two spheres were suddenly
connected together electrically by means of a spark gap (ionized air is an excellent conductor), and the charge oscillated forth and
back between the spheres at a frequency which was determined by the geometry but which was of the order of 100 MHz. You may
model this system as a point electric dipole oscillating at 100 MHz, where the dipole amplitude is P = 2.78x10  Coulomb-meters.

a. Calculate and compare the terms in the expressions for the electric and magnetic fields generated by an oscillating electric
dipole as measured at a point in the equatorial plane 1 meter from the dipole (θ= /2).

b. Calculate and compare the terms in the expressions for the electric and magnetic fields generated by an oscillating electric
dipole as measured at a point in the equatorial plane 1 km from the dipole.

Answer (7.1)

At  E = 0. For R= 1 meter, f= 10  Hz, ω= 6.28x10  radians/sec

(1) 

(2) 

(3) 

Even at R= 1 meter the field is dominated by the radiation term.

B  = - (3.7 - 1.7i) x 10  Teslas, i.e. approximately four times the earth's magnetic field.

(b) R= 1 km = 10  meters.

(1) 

(2) 

(3) 

B  = - 3.67 x 10  Teslas.

Notice that the radiation field is now much larger than the near field components.

Problem (7.2)

Consider a small current loop of radius b. It carries a current I(t) = I  sinωt. Calculate the electric and magnetic fields observed at a
point P located at R relative to the center of the current loop. There is no net charge density anywhere on the loop i.e. ρ  ≡ 0.
Calculate A for the observer at R(X,Y,Z,t) and keep only the terms to lowest order in (b/R) both in the distance from an element dL
on the current loop and in the retarded time .
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Ṗz

CR2

P̈z

Rc2

= = 0,Bθ Br

θ = π

2 r
8 8

= 2.5 ×  Volts/meter. 
Pz

4πε0R
3 104

= 5.2i×  Volts/meter 
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Show that to first order in (b/R) the components of the vector potential are given by

or

and

A  = A  = 0. Also V = 0 because divA = 0.

Show that for very large R the fields are given by

where .

Answer (7.2)

Start from the general expression for the vector potential:

In carrying out the integral the integrand vanishes except on the wire.
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Therefore

But 

Here 

and ω  << 1 i.e. of order 
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So

The only terms which survive the integration over the angles are
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Since

then

By comparison with the above one finds

and A  = A  = 0.

Also V = 0. Let m  = I b

and E  = E  = 0.

For large R only the terms in 1/R are important.

Similarly

Problem (7.3).

A magnetic dipole transmitter consists of 10 turns of wire wound on a form whose radius is 10 cm. An alternating current whose
amplitude is 100 Amps and whose frequency is 100 MHz is passed through the coil.

(a) What is the maximum magnetic moment of the above coil?

(b) Assuming that the above coil can be approximated by a point magnetic dipole, calculate and compare the terms in the
expressions for the electric and magnetic fields generated by an oscillating magnetic dipole as measured at a point in the equatorial
plane 1 meter from the dipole (θ= /2).
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(c) Calculate and compare the terms in the expressions for the electric and magnetic fields generated by an oscillating magnetic
dipole as measured at a point in the equatorial plane 1 km from the dipole.

Answer (7.3)

(a) The maximum magnetic moment is m = IA , or in this case m = (1000)(.01 )= 31.4 Amp.m .

(b) The fields generated by an oscillating magnetic dipole are given by

For this problem θ= /2, Cosθ=0 and Sinθ=1. Also R= 1 meter and ω= 2 f = 6.28x10  radians/sec.

(1) 

(2) 

since 

(3) 

since , and 

(c) For R= 1 km = 10  meters

(1) .

(2) .

(3) , and 

Problem (7.4).

An electron is at rest at the origin of co-ordinates. It is suddenly given an acceleration of a = 1.76 x 10  m/sec  for 10  seconds
after which it continues with a uniform velocity. This acceleration, which is directed along the z axis, was produced by a 1000 V
pulse applied across a gap of 1 mm at t = 0. An observer is located at X = 1 meter, Y= Z= 0 m.

(a) Make a sketch showing how the x-component of the electric field measured by the observer varies with time (observer's time--
his clock is synchronized with that at the origin).

(b) Ditto showing how E  varies with time.

Answer (7.4).

Think of putting both a stationary charge of +1.6x10  C. and a stationary charge of - 1.6x10  C. at the origin: the net
charge is zero so that these together add nothing to the fields. However, the + charge and the moving electron together form a
dipole p = - qz(t) where q= 1.6x10  C. The time varying dipole generates the fields

The left over static charge at the origin generates the static field
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at R= (1,0,0).

The time scale T  for this problem is the time required for light to travel 1 m; T = 3.33x10  seconds. The velocity of the
electron after the acceleration is V= 1.76x10  m/sec. Therefore on the time scale of interest here the electron has moved only
VT = 5.9x10  meters, thus the change in position is negligible compared with the observer distance of 1 m. over the time
scales of interest here (~10  secs., z= 1.76x10  m), one finds

These fields are directed along +z for an observer at R= (1,0,0). It is clear therefore that the acceleration spike in E  will be
very large compared with the other two terms in E .

The observer at (1,0,0) will see a steady field of E = - 14.4x10  V/m. An electric field spike will be observed beginning at
T = 3.33x10  secs after the impulse: this spike E = 28.2x10  V/m will last for 10  secs. After the spike has passed the
component E  will remain at the level of 8.46x10  V/m. over the time scale of interest here. It is clear that this residual
component is very small compared with the radiation spike.

In summary: the acceleration field of 282 x 10  V/m which lasts 10  seconds is directed along  because the
charge is negative. Therefore for an observer at P(1,0,0) the electric field is directed along z. The acceleration begins at
t=0. However, the time required for the field to reach the observer is  seconds (a distance of 1 meter
at the velocity of light). Therefore at t = 3.33 x 10  seconds the observer will see a transverse pulse which lasts 10
secs. This is superposed on a steady electric field of E  = -14.4x10  V/m. (Steady on the time-scale of interest here.)

Problem (7.5).
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ṗz

c
10−24

= −3.13 × C/m,  during the acceleration. 
ṗz
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A particle carrying a charge q revolves in a circle at a constant speed v = bω. This motion can be decomposed into two coupled
motions

Let b be very small compared with the distance to the observer so that this radiation source can be treated like two orthogonal point
dipoles qx and qy.

(a) Consider an observer at P = (R,0,0). Show that this observer will see a radiation field polarized along y and given by

(b) Consider an observer at P = (0,R,0). Show that this observer will see a radiation field polarized along x and given by

(c) Consider an observer at P = (0,0,R). Show that this observer will see circularly polarized light whose electric field components
are given by

Answer (7.5).

This motion can be regarded as a superposition of two linear motions. The electric field (radiation field) amplitude produced
by an accelerated charge is given by
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, a evaluated at t  = t - R/c For each of the above cases θ = /2

The above results follow immediately since a  = -bω  cosωt and a  = - bω  sinωt. The observer at (R,0,0) will see radiation
only due to p . The observer at (0,R,0) will see radiation only due to p . The observer at (0,0,R) will see radiation from both
p  and p . The observer located along the z-axis will see circularly polarized radiation because if

and

these two fields together form a vector of fixed magnitude E  rotating at the angular frequency ω.

This page titled 13.7: Chapter 7 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav
Heinrich.
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