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12.1: Simple Transverse Electric Modes

Consider two infinite plane waves of circular frequency  oscillating in phase, and such that their propagation vectors lie in the x-z
plane and make the angles 6 with the z-axis: one wave has a positive x-component of wavevector, the other has a negative x-
component of wave-vector, as illustrated in Figure 12.1.1 Explicit expressions for the electric and magnetic field components of
these waves for the case in which the electric field in each wave has the same amplitude and is polarized along the y-direction are
as follows:

Wave Number (1)
Ey1 = E exp(ixksin ) exp(i[zk cos 0 — wt]),

E
Hgy=- 70005 O exp(ixk sinf) exp(i[zk cos O — wt)),

E
H, = %sin@ exp(ixk sin ) exp(i[zk cos § — wt]),

Wave Number (2)
Eyy = Eg exp(—ixksinf) exp(i[zk cos § — wt]),

E

Hyp=-— 70 cos fexp(—ixk sin 6) exp(i[zk cos 0 — wt]),
E

H,, = —%sin&exp(—ixk sin 6) exp(i[zk cos 6 — wt]).

In writing these equations it has been assumed that the waves are propagating in a medium characterized by a real dielectric
constant €= ¢€€p, and a magnetic permeability p,. The wave-vector is k= ,/&(w/c), and the wave impedance is
Z = \/m/e="12Zy/,/& Ohms, where Zy = 377 Ohms. The above fields satisfy Maxwell’s equations. One can now introduce two
perfectly conducting infinite planes that lie parallel with the xz plane and which are separated by an arbitrary spacing, b. The plane
waves of Figure 12.1.1still satisfy Maxwell’s equations between the conducting surfaces: they also satisfy the required boundary
conditions on the electric and magnetic fields. In the first place, there is only one electric field component, E,, and it is normal to
the conducting planes, consequently the tangential component of E is zero on the perfectly conducting surfaces as is required. In

the second place, the magnetic field components lie parallel with the conducting planes so that the normal component of H is zero
at the perfectly conducting planes as is required by the considerations discussed in Chpt.(10). The total electric field at any point in
the space between the two conducting planes is given by

Ey =Ey1 +Ey9,
or
E; = 2E, cos(xk sin ) exp(i[zk cos 6 — wt]). (12.1.1)
The components of the magnetic field are given by
2E 0
H, = —%cos(xksin@) exp(i[zk cos 6 —wt)]), (12.1.2)
and
2E( sinf
H,=+i %sin(xksin@) exp(i[zk cos 6 — wt]). (12.1.3)
Notice that E, and H, are both zero, independent of z, on the planes defined by (xk sin 8) = +7/2, +37/2, +57/2, etc, i.e. on the
planes
1 3
X = iz, i—ﬂ-, etc. | . (12.1.4)
ksinf 2 2
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Figure 12.1.1: Two plane waves having the same frequency, oscillating in phase, and propagating in the x-z plane at an angle 6
with respect to the z-axis.

This means that the wave defined by Equations (12.1.1),(12.1.2), and (12.1.3) can propagate along the hollow rectangular pipe
bounded by perfectly conducting planes spaced b apart along the y-direction, and spaced a apart along the x-direction where a= m
7/(k sin 0), and where m is an odd integer, and yet satisfy the boundary conditions imposed by the presence of the perfectly
conducting surfaces. The distribution of the electric and magnetic fields across the section of the wave-guide formed by the
intersection of the four conducting planes is shown in Figure 12.1.2for the mode corresponding to k sin 8 = 7/a.

The width of the wave-guide along the x-direction, a, determines the propagation angle for waves that satisfy the boundary
condition Ey = 0 on x=+a/2:

T w
ksinf=m— =,/ (—) sin 6.
a “\¢
The component of the propagation vector parallel with the wave-guide axis, along z, is given by

ky; =kcost = /& (%) cosé.

The sum of the squares of these two components must be equal to the square

¥
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Figure 12.1.2: The lowest frequency transverse electric mode (a TE mode) for a rectangular wave-guide whose cross-sectional
dimensions are a and b, where a is greater than b.

of the wave-vector k, where k =, /e;w/c:
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2
K=k sin 0 = (2)
c
from which
T\ 2 w2
where m is an odd integer.

The most important wave-guide mode is that for which m=1, the mode illustrated in Figure (12.1.2). In most applications the wave-
guide is filled with air for which ¢, = 1. For this m=1 mode, and assuming that (\epsilon_{r}\)=1.0, the fields are given by

E, = Acos( =) exp(i [kyz —wt]), (12.1.6)
B, = gt () cos( ) i i — ),
H, = z%(%) sin(%) exp(i [kyz —wt]),

where Zg = cuog = +/10/ €0 - The mode of Equations (12.1.6), Figure 12.1.2 is called a transverse electric mode, or a TE mode,
because the electric field has no component along the guide axis, i.e. no component along the direction of propagation of the wave-
guide mode. Notice that the ratio E,/H, = Z is independent of position inside the wave-guide; in particular, it is independent of
position across the wave-guide cross-section. The magnetic field H, is equivalent to a surface current density J; =H, Amps/m

= =
(from curl(H) = J f) , and E has the units of Volts/m. The wave impedance Z¢ = E,/H, therefore has the units of Ohms: it plays

a role for wave-guide problems that is similar to the role played by the characteristic impedance for transmission line problems.
The analogy between transmission lines and wave-guides is discussed in a very clear manner in the article ” The Elements of Wave
Propagation using the Impedance Concept” by H.G.Booker, Electrical Engineering Journal, volume 94, pages 171-202, 1947.

- = =

The Poynting vector, S = E x H , associated with the TEg mode, Equation (12.1.6), has two components:
Sy =EyH,,

and

S, = —E,H,.

The time averaged value of Sk is zero; this corresponds to the fact that no energy, on average, is transported across the guide from
one side to the other. There is a non-zero time average for the z-component of the Poynting vector corresponding to energy flow
along the guide:

1 1|A]? ( ckg 2 (X
It is useful to integrate the time-averaged value of the Poynting vector over the cross-sectional area of the wave-guide in order to
obtain the rate at which energy is carried past a particular section of the guide. A simple integration gives

e 2b JAF (ﬁ

b <S,>dx=

P 1 7y ) Watts . (12.1.8)

w

The time-averaged energy density associated with a wave-guide mode is given by

e e S S
E-D H-B

2 + 2 ’

1
<W >= EReal

or

1
<W >= ZReal(eEyE; + poH H; + poH,Hy). (12.1.9)
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For the fundamental TE1y mode, Equations (12.1.6), one obtains

o |A]°

€0 2 9 TTX
=7 A (_)
<W > 4| | cos . +4 7

(B) () (@) ()]

Integrate this energy density across a section of the guide in order to obtain the average energy per unit length of the wave-guide:

\[
(%)2 n (%)QD (12.1.11)

= aTbeg|A|2 Joules /m,

a/2 b
b/ <W > dx :%|A|2 <eo+ﬂ

a/2 Z(%

where we have used g/ Zg = €, and for a waveguide filled with air

(C—(lzg)2 + (:—:)2 — e —1.0.

The velocity with which energy is transported down the guide is called the group velocity, vg. The group velocity must have a value
such that its product with the energy density per unit length of guide, Equation (12.1.11), gives the rate at which energy is
transported past a wave-guide section, Equation (12.1.9): i.e.

abeo'A|2:a_b|A|2 (c_kg)

Ve 1 7 \w
Thus
ck
Vg =C (—g> m/sec. (12.1.12)
w
It is easy to verify by direct differentiation of Equation (12.1.5) that this velocity is also given by the relation
Ow
=—. 12.1.13
Vg akg ( )
Equation (12.1.13 is valid for an arbitrary relative dielectric constant: from (12.1.5)
c [ ckg
=——]. 12.1.14
=) (12.1.14)

The phase velocity, vphase, on the other hand is obtained from the condition
kez —wt = constant .
That is z must increase at the rate
Cdz w
Vphase = a = g

in order to remain on a crest as the wave propagates along the guide. As the guide wave-vector, K,, approaches zero the phase
velocity may become very large- much larger than the velocity of light in vacuum. This occurs because the phase velocity measures
the rate of propagation down the guide of two intersecting wave fronts as these waves bounce back and forth across the guide ( see
Figure (12.1.3)). This intersection velocity clearly becomes infinitely
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Figure 12.1.3: The phase velocity along z is the velocity with which the intersection between two wavefronts propagates along the
wave-guide. This velocity, vphase = w/kg, becomes very large as 0 — /2.
large in the limit as the wavefronts become parallel with the guide axis, i.e. in the limit as the guide wave-number, kg, goes to zero.
The velocity of energy transport down the guide, the group velocity, goes to zero as 6 approaches 7/2, the condition corresponding
to waves that simply bounce forth and back along the x-direction between the perfectly conducting planes at x = +a/2. The group
velocity, the velocity with which information can be transmitted down the guide, is always less than the velocity of light in vacuum.

The frequency at which the group velocity goes to zero can be calculated from Equation (12.1.5) by setting kg = 0, since the group
velocity is proportional to kg from (12.1.14):

CcT

Wy = .
a./é

The wave-guide is a high pass filter that will transmit energy for frequencies larger than the cut-off frequency wp. For €, = 1 and
a=1 cm, the cut-off frequency is wy, = 9.42 x 10'° radians/sec. corresponding to a frequency of f=15 GHz.

It should be clear from the above construction that Equations (12.1.6) represents the solution of Maxwell’s equations for the TE,
mode that carries energy in the positive z-direction. The TE;, mode that carries energy in the negative z-direction is described by

E, = Bcos(%) exp(—i [kyz +wt]), (12.1.15)

B [ ckg X ,
H, = 7 (T) cos(?) exp(—i [kyz +wt]),

H, = i% (;—Z) sin(?) exp(—i [kyz +wt]),

where B is an arbitrary amplitude (NOT the magnetic field!).

In order to answer the question of what happens if the frequency is less than the cut-off frequency, o, it is best to start from
Maxwell’s equations. Consider the case for which there is only a y-component of electric field. From

for a time dependence ~ exp (—int), and for the permeability of free space, one obtains

OE,
0z’

twpoHy = — (12.1.16)

and

@ 0 12.1.5 https://phys.libretexts.org/@go/page/22734


https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22734?pdf

@%meﬁm&m

OE,
iwpoH, = £ (12.1.17)
From
— 6_D> —
curl(H) = e —iweE
one obtains
OH, _ OH,  iE
9z ox oW

The above equations can be combined to give a single second order equation for Ey:

O°E, O°E, w\?
5 ap — (o) B

For an electric field having the form
E, =A cos(E) exp(i [kgz — wt])
a

it follows that

or

gea(2) ()

For a frequency less than the cut-off frequency corresponding to oy = cm/a, /€ the square of the wave-vector kg becomes negative
and therefore its square root becomes pure imaginary. A pure imaginary wave-vector

k, = +ia,

where « is a real number, corresponds to a disturbance that decays away exponentially along the guide either to the right or to the
left. For example, kg = +iax gives a disturbance of the form

E, :Acos(%) exp(—az) exp(—iwt), (12.1.18)

with magnetic field components (from Equation (12.1.16) and Equation (12.1.17)

.1 /ca X .
Hy =—¢ 70 ( " ) Acos( . ) exp(—az) exp(—iwt), (12.1.19)
and
1 sem ./ TX .
H,=1i Z (wa) Asm( - ) exp(—az) exp(—iwt), (12.1.20)

Using these components, it is easy to show that the time-averaged z-component of the Poynting vector, S, = —EyH,, is exactly
equal to zero. The average energy density stored in the fields is not zero:

< Wp >= —[A[* cos (?) exp(—2az), (12.1.21)
and
A? 2 2
<Wg >= ﬂuexp(—2ozz) (2> cos® (E) + (Cl) sin” (E)) . (12.1.22)
4 Zg w a wa a

These expressions correspond to the energy density stored in the electric field, ( 12.1.21), and to the energy density stored in the
magnetic field, ( 12.1.22). If a source of energy oscillating at a frequency less than the cut-off frequency is introduced into a wave-
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guide at some point, the resulting electromagnetic fields will remain localized around the source, and the effective load on the
source will be purely reactive for a wave-guide whose walls are perfectly conducting. In the case of a real guide whose walls have
some finite resistivity, the load on a source oscillating at a frequency which is less than the cut-off frequency will appear to be
partly resistive but mainly reactive.

This page titled 12.1: Simple Transverse Electric Modes is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John

F. Cochran and Bretislav Heinrich.
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