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10.4: Reflection from a Metal at Radio Frequencies
The response of a metal is completely dominated by its dc conductivity, σ , for frequencies less than ∼ 10  Hz ( 1 THz). The
relaxation time for the charge carriers in a good metal at ∼300K is of order τ = 10 seconds. That means that the dc conductivity
can be meaningfully used for frequencies up to approximately 10  Hz. In order to understand why the response of the unbound
charge carriers dominates the response of the bound electrons at low frequencies consider the Maxwell equation

or in the low frequency limit

The term  in the above equation takes into account the response of the unbound electrons: the last term takes into account the
bound electrons. The response of the bound electrons at low frequencies is of order , therefore one can compare these two terms
by comparing σ  with . For copper at room temperature σ  = 6.45 × 10  /Ohm-m. At 10  Hz 

. It is clear that for frequencies up to 10  Hz the contribution of the bound
electrons in copper is completely negligible compared with the contribution from the unbound charges. In this low frequency limit,
and for an electric field polarized along x and propagating along z, Maxwell’s equations can be written

These follow from the relations

and

From Equation ( ) one obtains

For a plane wave solution of the form

Equation ( ) requires that

or

and from Equation ( )

The wave in the metal is clearly very heavily damped because the distance over which the electric field amplitude decays to 1/e of
its initial value is approximately equal to the wavelength. This decay distance at 1 GHz for copper at room temperature is 

. Radiation at 1 GHz does not penetrate very far into copper!

0
12

−14 

12

curl(H) = + ,J⃗ 
f

∂D⃗ 

∂t

curl(H) = + ϵ .σ0E⃗  ∂E⃗ 

∂t

σ0E⃗ 

ωϵ0

0 ωϵ0 0
7 12

ω = (2π × )/36π × = 55.6/Ohm −mϵ0 1012 109 12

= iω
∂Ex

∂z
μ0Hy

= − .
∂Hy

∂z
σ0Ex

(10.4.1)

curl( ) = − ,E⃗  ∂B⃗ 

∂t

curl( ) = .H⃗  σ0E⃗ 

10.4.1

= −iω .
∂2Ex

∂z2
σ0μ0Ex (10.4.2)

= A exp(i[kz −ωt])Ex

10.4.2

= iω ,k2 σ0μ0

k = (1 + i),
ωσ0μ0

2

− −−−−−
√ (10.4.3)

10.4.1

= = (1 − i).
Ex

Hy

ωμ0

k

ωμ0

2σ0

− −−−
√ (10.4.4)

= δ = 1.98 ×2/ωσ0μ0
− −−−−−−

√ 10−6

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22723?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/10%3A_Plane_Waves_II/10.04%3A_Reflection_from_a_Metal_at_Radio_Frequencies


10.4.2 https://phys.libretexts.org/@go/page/22723

The wave impedance of copper at 1 GHz and at room temperature is given by

compared with Z = 377 Ohms for free space. This means that the electric field amplitude in the metal is very small compared with
the electric field amplitude of the incident wave. At the interface between vacuum and the metal one must construct electric and
magnetic field amplitudes so that the tangential components of  and  are continuous across the surface: the normal component
of  is automatically continuous across the surface because the wave falls on the metal at normal incidence. These boundary
conditions give

or

The resulting wave amplitude at the metal surface, z=0, is

The amplitude of the reflected wave is given by

or

because (Z/Z ) ≪ 1.

Notice that for our example of copper at room temperature, and for a frequency of 1GHz, the magnitude of the reflected electric
field amplitude is the same as the incident electric field amplitude to within ∼ 10  , but the reflected electric field is 180  out of
phase with the incident electric field so that the two fields cancel at the metal surface. The electric field in the metal is very small;
approximately A= E /25000. On the other hand, the magnetic field amplitude at the metal surface is very nearly twice the magnetic
field amplitude in the incident wave. In the metal at z=0

whereas the magnetic field amplitude in the incident wave is given by E /Z .

One can speak of a perfectly conducting metal, one for which the conductivity approaches infinity. For such a perfectly conducting
metal the electric field decays away in zero depth: a surface current sheet is set up that perfectly shields the metal from the electric
field in the incident wave. The magnitude of the current sheet can be obtained by applying Stokes’ theorem to the relation 

 integrated over a small loop that spans the metal surface as shown in Figure (10.4.5). One has

where Area= L. But from Stokes’ theorem
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Figure : Diagram to aid in the calculation of the surface current density that shields the interior of a perfectly conducting
metal from incident electric and magnetic fields.

where J  is the surface current density in Amps/m, and L is the length of the loop. Inside the metal H  = 0 so from (10.37) one
obtains

where H (0) is the magnetic field amplitude at the vacuum/metal interface, and H (0) = 2E /Z .

For a perfect metal the wave impedance approaches zero, Z = E /H  and Z → 0, so that in this limit the electric field has a node at
the metal surface. For a perfect metal the boundary condition on the electric field at the interface becomes

where Et is the tangential component of the electric field.

It is straight forward to calculate the absorption coefficient for a metal surface from Equation ( ) and from the amplitude A
Equation ( ):

or

Figure : An S-polarized plane wave incident at the angle θ on the plane interface between vacuum and an isotropic medium
characterized by material parameters  and µ . The electric vector in the incident wave is perpendicular to the plane of incidence.
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where  is the characteristic length for attenuation of the fields in the metal.

This page titled 10.4: Reflection from a Metal at Radio Frequencies is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by John F. Cochran and Bretislav Heinrich.
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