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10.8: Metals at Radio Frequencies
We are interested in the practical case of metals at room temperature and frequencies less than 1000 GHz so that the metallic
response to an electric field may be characterized by its dc conductivity, σ . We are also interested in the general case of radiation
at oblique incidence. In this relatively low frequency regime the conduction current density in a metal is much larger than the
displacement current density; i.e. for a time dependence ∼ exp (−iωt) one finds that  in the Maxwell equation

The relevant Maxwell’s equations for low frequency fields in a non-magnetic metal, , become

and

Take the curl of (10.68) and use a time variation ∼ exp (−iωt) to obtain

or

However, the divergence of any curl of a vector is equal to zero, and consequently div( ) = 0 from Equation ( ). It follows
that for a metal at low frequencies the electric field components must satisfy the equation

where  stands for each of the three cartesian components x,y, or z.

The solution of the problem of a plane wave incident at an oblique angle on a plane metallic surface proceeds just as for the general
case of oblique incidence discussed in section(10.5). Two cases are of interest: (1) S-polarization in which the electric vector of the
incident wave is parallel with the plane interface, see Figure (10.4.6), and (2) P-polarization in which the electric vector of the
incident wave lies in the plane of incidence and the magnetic vector therefore lies parallel with the interface, see Figure (10.5.7).

10.8.1 S-polarization.

Using the co-ordinate system of Figure (10.4.6) the fields in the metal can be written

where Z  = cµ = 377 Ohms, and k = ω/c. The wave-vector component k  in the metal must be chosen so that E  satisfies Equation (
), i.e.

Apparently the wave-vector component k  depends upon the angle of incidence of the driving incident plane wave. This
dependence is illusory because µ σ  is much larger than  : for copper at 100 GHz  = 7×10  whereas µ σ = 81. For the
range of frequencies and conductivities that are of interest here the term in  is negligible compared with the term proportional
to the conductivity, and for any angle of incidence one may use
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and

where  is a length that is inversely proportional to the square root of the frequency. It is handy to remember that = 2µm for
copper at 1 GHz and at room temperature.

At the metal-vacuum interface the tangential components of  and  must be continuous through the surface. These boundary
conditions at z=0 result in two equations for the two unknown electric field amplitudes E  and E ; E  is the amplitude of the wave
reflected from the metal surface, and E  is the amplitude of the electric field transmitted into the metal. The solutions of these
equations are

The wave-vector k  is very large compared with (ω/c) cos θ so that if one divides the equations in (10.74) by k  top and bottom the
reflection and transmission coefficients can be expressed as a power series expansion in the small parameter ω cos θ/(ck ): for
example

In terms of  one finds

The rate at which energy is carried through the surface per meter squared to be dissipated as Joule heat in the metal is given by the
time average of the Poynting vector at z=0.

so that

or

The time-averaged rate at which the incident wave transports energy in the z-direction is given by the z-component of the incident
wave Poynting vector:

The absorption coefficient associated with the metal surface is given by
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where . The absorption coefficient is very small and increases with frequency like , and decreases in
proportion with the increase of the square root of the conductivity. Notice that at the surface of the metal the magnetic field
components H  in the incident and reflected waves add in phase so that at z=0

or

Since  is very small one makes very little error by taking the parallel component of the magnetic field at the metal
surface to be just twice the parallel magnetic field component of the incident wave. In the limit of infinite conductivity the
parameter  → 0, the electric field in the metal becomes zero, and the component H  at the metal surface has twice the amplitude of
H  in the incident wave. The component H  also becomes zero at the metal surface in the limit of infinite conductivity, so that the
normal component of , B  = µ H , is continuous across the vacuum-metal interface as is required by the Equation div( ) = 0.

10.8.2 P-polarization.
The magnetic vector of the incident wave is parallel with the metal surface, Figure (10.5.7). For this case the waves in the metal are
described by

where

and therefore

The boundary conditions on H  and on E  at the interface z=0 (continuity of the tangential components of  and ), plus a bit of
algebra, readily gives the results

In the above expressions Z = 377 Ohms, the impedance of free space. The ratio  is very small, approximately 4 ×
10  for copper at 1 GHz and 300K. It therefore follows that
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and

In fact, for a perfect metal, one for which the conductivity becomes infinitely large, the length parameter, , goes to zero and the
electric field does not penetrate into the metal.

The rate at which energy is carried into the metal surface at z=0 is given by

The rate at which energy is carried to the surface by the incident wave is given by

It follows that the absorption coefficient associated with the metal surface is

Equation (10.83) is only valid if cos θ ≫ (ω /c). In the opposite limit, for angles very near to /2 so that cos θ ≪ (ω /c), it can be
shown that

so that the absorption coefficient goes to zero as the angle of incidence approaches /2.
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