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7.6: A Moving Point Charge in Vacuum

The charge density corresponding to a point charge is a singular distribution that can be written

pe(F, t) = a8 (F —To (t)), (7.6.1)

where §(F) is the Dirac delta-function introduced in Chapters (2) and (4), and T((t) describes the time variation of the position of
the particle. The delta function is supposed to be zero for all values of its argument except when the argument is equal to zero; at
that point the function becomes infinitely large but in such a manner that its integral is unity. The 1-dimensional §-function may be
thought of as the limit as € — 0 of a very thin rectangular shape that is € wide and that has an amplitude 1/e. The three dimensional
é-function may be envisioned as the product of three 1-dimensional é-functions. The potential function that is generated by the
distribution (7.6.1) can be written using Equation (7.2.16):

V(R 5 = 7 / / /Sp r|:0§R)] (7.6.2)

The integrand is very sharply peaked when T =T, (tg) so that it is very tempting to conclude that
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This equation is WRONG, because it ignores the position dependence of the retarded time which appears in the argument of the
é—function. In

Y

P(X,Y,Z,t)

xg (tgr)

Figure 7.6.7: A small blob of charge moving along the x-axis with a velocity vx. The contribution to the potential at P at the time of
observation, t, comes from the position of the particle at the retarded time tg =t — ro/c.

order to understand this, suppose for simplicity that a co-ordinate system is chosen so that at the retarded time the particle is
moving along the x-axis, i.e. yo = zp = 0 and y,z are not changing with time because the velocity of the particle is directed along x
(see Figure (7.6.4)). The integral of Equation (7.6.2) can be written explicitly in cartesian co-ordinates: the result is
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V(Xv Y,Z, t) =
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The integrations over y,z are just ordinary integrations over d—functions that may be carried out at once using

+00
/_ duf(u)d(u) = £(0).
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This leaves the integration over x to be carried out;

+oo t
V(X,Y,2,t) = 7 / xRl (7.6.3)
o \/ )2+ Y? 472

In order to turn (7.6.3) into an ordinary integration over a d—function it is necessary to change variables so as to get rid of the
spatial variation that is contained in the retarded time, tg. Introduce the new variable

u=X—Xp (tR).
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Then
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where
\/(X—x)2+Y2+Z2
tp=t— - ,
so that
On _ (X —x)
=

One finally obtains for the differential du the expression

Xo(X —x)
c\/(X—x)z +Y? 47

du=dx | 1-—

and the integral (7.6.3) becomes

+o00 S(u)
q
X,Y,Z,t) = .
V(X,Y,Z,t) Treq /_ N du —
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The expression for the potential function has been transformed into a —function integration that can be carried out immediately to
give

1
V(X,Y,Z,t) = : : (7.6.4)
€D \/(X—X0)2 +Y2 +Z2 _ zo()((:XO)
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since for u=0 x=xq(tg). The result, Equation (7.6.4), can be written in a more general and compact form using vector notation:

V(R,t) = ~ , (7.6.5)

c t—ry/c

—

where Ty = (R —T) is the vector that specifies the position of the particle at the retarded time relative to the point of observation at
time t, P(X,Y,Z,t) (see Figure (7.4)), and v is the particle velocity at the retarded time.

Feynman (loc.cit. section 21-5) has given a very physical description of why the retarded potential contains the complicated
denominator of Equation (7.6.5) rather than simply the retarded distance | ro |. He explains how the volume integration of (7.6.2)
for the potential must explicitly take into account that the contribution to the potential at a fixed time of observation comes from
different retarded times for different points in the charge distribution.

Exactly the same arguments apply to the calculation of the vector potential for a moving point charge from Equation (7.2.18). The
current density for a point charge moving with a velocity v is given by

J(E,t) = v (F —To(t)),

where T((t) describes the position of the particle at time t. Upon carrying out the integration in Equation (7.2.18) the resulting
vector potential is found to be

AR5 =2 q—"ﬁ> , (7.6.6)
t—1o/c
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where Ty is the vector drawn from the position of the particle at the retarded time, tg, to the point of observation at time t. Eqns.(
7.6.5) and (7.6.6) are called the Lienard-Wiechert potentials for a point charge. They are consistent with the theory of relativity.
The electric and magnetic fields generated by a moving point charge, Chpt.(1), Equations (1.1.9) and (1.1.10), can be deduced from
them by means of the relations

B= curl(./_i),
and

oA

T
In the general case these result in the rather complex equations of Equations (1.1.9) and (1.1.10). However, in the limit v/c < 1 the
fields generated by a moving point charge can be obtained relatively simply from the low velocity limit of the vector potential.

. —
E = —grad(V)

Consider a charge q near the origin, at T = (0, 0, £), and moving along the z-axis with a velocity v= ¢ . In spherical polar co-
ordinates one has

_ Mo qvcosf _ Mo qvcosf
r—4ﬂ_ (I‘—E) _47rr(1_v0050)
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For a slowly moving particle, v < c, these become

Mo qvcost
)

A,
4 r

and
Ay = Mo quinG,
4T T

where Ay =0, v= § , and Ay, Ag are to be evaluated at the retarded time tg = t — r/c. The magnetic field is given by

f‘::curl(A):
B, =By =0,
and
10 10
By =~ 5, (the) = T 50 (A),

where % includes a term —d/cot because if r changes by dr the retarded time changes by dtg = —dr/c. Thus
Ho . v v
By, =-—qsinf |—+—|. 7.6.7
* = 4 [ r2  cr ] ( )

Eqn.(7.6.7) is just the field generated by a point electric dipole at the origin if one writes p, = q¢, p, = qé ,and P, = qé ; then

Mo . p.z ﬁz
By, =— = +== .6.
¢ 47rsm9 [rQ + cr] , (7.6.8)
see Equation (7.4.2).
The electric field can be calculated from
- 10E
curl(B) = ——.
(B) c2 Ot
Thus
1 OE, Lo qv v
polr 2cos9[r—3+§ )
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or

OE, 1 p, , D
= 2cosf | = 4+ 2| .
ot 47eq cos [ 3 + cr? ]

This last equation can be integrated with respect to the time to obtain

2cosf [ p P
E, =E =4+ == 7.6.9
=Bt Gt | By B (7.6.9)
where the constant of integration is simply the static field due to a charge, q, at the origin,
I q
Ey = —.
0 4dmeq 12
The radial electric field component is that of a point charge at the origin plus a field due to a point dipole at the origin.
The transverse electric field component is given by
OB, _sind[b. , B. , B
ot dmep |13 a? e
This expression can be integrated to give
sinf | p P )
Ey = = 4= 23 7.6.10
o 4meg [ 3 cr?  c?r ( )

For this case the constant of integration is zero because in the static limit the only contribution to the 6-component of the electric
field is a dipole term due to the displacement of the charge from the origin by the vanishingly small distance &. Eqn.(7.6.10) is just
the B8-component of the field generated by a point electric dipole at the origin, Equation (7.4.3). The radiation field terms, the terms
that fall off like 1/r, can be written

sinf qa

Bo=
4meg c*r

sinf qa

cBy = -
™ 4rney 21’

where a = £ . These radiation fields can be written as follows in terms of general vector position co-ordinates where the particle is
taken to be at the origin:

- q [i" XT X El:]
E(r,t)= ———— 7.6.11
(5t) ey cr® |, ( )
R
- q |5 XI"|
B(r,t) = —_—
C (I’, ) 471'60 C21'2 th

where the acceleration a is evaluated at the retarded time tg =t — 1/c.

Eqns.(7.6.11) are valid only for a slowly moving charge whose velocity is very much smaller than the velocity of light in vacuum.
These radiation fields fall off as the first power of the distance from the observer to the particle.

Eqns.(7.6.9and 7.6.10) can also be calculated from the formula

. - A
E = —grad(V) — %,

using the low velocity limit for the vector potential along with the expression for the potential function, Equation (7.6.5), expanded
to lowest order in the small quantities § and 5 /c

V@ ) = q ll1+§cos¢9+§c056] .
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