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12.2: Higher Order Modes
The wave-guide modes discussed above are very simple ones because they presumed that there was no spatial variation of the
fields along the y-direction. There exist wave-guide solutions of Maxwell’s equations that involve spatial variations along all three
axes: these higher order modes correspond to the co-ordinated propagation of plane waves whose wave-vectors make an oblique
angle with the guide axis so that they are repeatedly reflected from all four walls. These modes divide naturally into two classes:

a. Transverse Electric (TE) Modes;
b. Transverse Magnetic (TM) Modes.

A transverse electric mode is one in which there is no component of the electric field parallel to the direction of propagation. A
transverse magnetic mode is one in which there is no component of the magnetic field parallel to the direction of propagation. For
both classes of modes one seeks solutions of Maxwell’s equations that correspond to waves travelling down the waveguide; i.e. all
of the field components are required to be proportional to the phasor

Furthermore, it is convenient at this point to change the description of the wave-guide co-ordinate system so that the origin is
located at one corner of the hollow rectangular pipe as shown in Figure (12.2.4): in the new system the walls of the guide are
formed by the intersection of the planes x=0,a and y=0,b. For a time variation of the form exp (−iωt) Maxwell’s equations become

The divergence of any curl is zero, and therefore the electric and the magnetic fields satisfy the conditions

Note that the equations for  and  are very similar. This symmetry between the equations for  and  can be exploited to
generate a second set of solutions to Maxwell’s equations from a primary set of fields that satisfy Maxwell’s equations. This works
as follows: suppose that one has found the fields  and  that satisfy Equations ( ). Now consider a second set of fields

where  is the wave impedance for a medium characterized by a permeability µ  and a dielectric constant . Substitute
these new fields into Equations ( ) to obtain
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Figure : A rectangular wave-guide formed by conducting walls at x=0, x=a, y=0, and y=b. The lossless material inside the
guide is characterized by a real dielectric constant , and a permeability µ .

Upon the substitution ( ) this becomes

and this by hypothesis satisfies Maxwell’s Equations ( ). Similarly, from ( ) one has

Upon substitution of Equations ( ) one finds

so that the new fields,  and  satisfy both of Equations ( ). Clearly Equations ( ) are satisfied since  and  are
proportional to  and . It follows that the prescription of Equation ( ) can be used to generate a second, different, set of
solutions for Maxwell’s equations from a primary set of solutions. This procedure can often be used to avoid a great deal of
computational tedium.

12.2.1 TM Modes.

In order to proceed with the rectangular wave-guide problem it is convenient to use the vector potential , and the scalar potential,
V, where

The choice

plus A  = A  = 0 will guarantee that the z-component of the magnetic field, , is zero: in other words, this choice of vector
potential will generate only TM modes, and
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For a time dependence exp (−iωt), and using ( ) in Maxwell’s equations ( ), one finds

But in cartesian co-ordinates

so that

As explained in Chapter(7), one can set

so that for this problem where there are no driving charges or currents one finds

In particular, if  has only a z-component one finds

We require solutions that propagate along z: ie solutions that are proportional to exp (ik z). Thus write

for which A(x, y) must satisfy

This equation is solved by products of sines and cosines:

where

The particular combination of sines and cosines required must be chosen so that  satisfies the boundary condition that the normal
component of  vanishes at the wave-guide walls. Using the magnetic field components calculated from Equation ( ) and the
co-ordinate system of Figure (12.2.4), it can be readily concluded that we require
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where m,n are integers, and Equation ( ) becomes

Notice that A =0 at the walls of the wave-guide. E  is proportional to A  so that if A =0 on the walls of the guide then the
tangential component E  will also vanish on the walls of the wave-guide as is required by the boundary conditions on the tangential
components of E.

The electric field components can be most easily calculated from the second of Equations ( ),

The resulting electric field components are (dropping the factor exp (i[k z − ωt])):

Notice that these electric field components satisfy the requirement that the tangential components of E must vanish at the walls of
the wave-guide. The field components Equations ( ) and ( ) correspond to the TM  mode.

For a propagating wave the value of  calculated from ( ) must be positive. This introduces a cut-off frequency, ω , such
that k  =0. This cut-off frequency is given by

For given interior dimensions of the wave-guide there is a lower limit to the frequency for which a particular mode may be
propagated along the waveguide. For example, a popular X-band wave-guide has interior dimensions a= 2.286 cm and b= 1.016
cm. For this guide the TM  mode can be propagated only for frequencies greater than 16.15 GHz if = 1. There are no TM modes
corresponding to m=0 or n=0 since the fields are zero if m=0 or if n=0 because A(x,y)=0 from Equation ( ). Thus the lowest
TM frequency that can be propagated down the above guide is 16.15 GHz.

Non-propagating TM modes do exist for frequencies less than the cutoff frequency. If ω < ω  then k  calculated from ( ) is
negative. This means that kg is a purely imaginary number, k  = iβ say. The phasor exp (i[k z − ωt]) becomes exp (−βz) exp (−iωt)
corresponding to a disturbance that decays to a small amplitude over a distance z ∼ (1/β).

12.2.2 TE Modes.
There exists another group of modes for which E  = 0; these are the TE modes. Using the symmetry relations Equations ( )
and the magnetic fields ( ) one might guess that the TE mode electric fields ought to be given by (the factor exp (i[k z − ωt])
is suppressed)

Hx

Hy

= = ( ) sin( ) cos( ),
∂A

∂y

nπ

b
A0

mπx

a

nπy

b

= − = −( ) cos( ) sin( ),
∂A

∂x

mπ

a
A0

mπx

a

nπy

b

(12.2.10)

12.2.8

+ + = .( )
mπ

a

2

( )
nπ

b

2

k2
g ϵr( )

ω

c

2

(12.2.11)

z z z z

z

12.2.1

curl( ) = −iϵω .H
→

E
→

= ( ) ,Ex
−i

ϵω

∂Hy

∂z

= ( ) ,Ey
+i

ϵω

∂Hx

∂z

= [ − ] .Ez
i

ϵω

∂Hy

∂x

∂Hx

∂y

g

Ex

Ey

Ez

= −( )( ) cos( ) sin( ),
mπ

a

kg

ϵω
A0

mπx

a

nπy

b

= −( )( ) sin( ) cos( ),
nπ

b

kg

ϵω
A0

mπx

a

nπy

b

=( )[ + ] sin( ) sin( ).
i

ϵω
( )

mπ

a

2

( )
nπ

b

2

A0
mπx

a

nπy

b

(12.2.12)

12.2.10 12.2.12 mn

k2
g 12.2.11 m

g

= + .ϵr( )
ωm

c

2
( )

mπ

a

2
( )

nπ

b

2
(12.2.13)

11 ϵr
12.2.9

m g 12.2.8

g g

z 12.2.3

12.2.10 g

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/22735?pdf


12.2.5 https://phys.libretexts.org/@go/page/22735

These electric fields satisfy Maxwell’s equations but they do not satisfy the boundary condition that the tangential components of 
 must vanish at the wave-guide walls: ie. E =0 at y=0,b and E =0 at x=0,a (see Figure (12.2.4)). However, the following

equations for the electric field components do satisfy the required boundary conditions:

These field components vanish on the wave-guide walls. The electric field must also satisfy the Maxwell equation div( ) = 0. This
condition requires

It follows that

Using this relation between E  and E  the electric field components corresponding to the TE modes in a rectangular wave-guide
have the form:

where E  is a constant, and the factor exp (i[k z − ωt]) has again been suppressed. The magnetic field components corresponding to
Equations ( ) can be calculated from Faraday’s law: iωµ0  = curl( ). The resulting field components are

Eqns.( ) and ( ) satisfy Maxwell’s equations and also the boundary conditions that the tangential components of 
and the normal components of  vanish on the wave-guide walls. The TE  mode discussed in section(12.1) corresponds to
m=1,n=0: for this mode E  = 0 and H  = 0. Referring to the co-ordinate system of Figure (12.2.4) the field components for the TE
mode are:
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where A is a constant and

The cut-off frequency for this mode, corresponding to k =0, is given by

For the popular X-band wave-guide used above for illustrative purposes one has a=2.286 cm and b=1.016 cm. For this guide, and 
 = 1, the cut-of

Table : Cut-off frequencies for the lowest transverse electric (TE) modes and the lowest transverse magnetic (TM) modes in
X-band waveguides (RG52/U or WR90 brass guides). The internal dimensions of X-band waveguides are a= 0.900 inches = 2.286

cm, and b= 0.400 inches = 1.016 cm. The external dimensions of the guide are 1.00 x 0.50 inches. The cut-off frequencies were
calculated for  = 1 using .

frequency for the TE  mode is 6.56 GHz. Cut-off frequencies for various modes in this X-band wave-guide are listed in
Table(12.2.1). Notice that only one mode, the TE  mode, can be propagated along this wave-guide for frequencies between 6.6
and 13.1 GHz.

This page titled 12.2: Higher Order Modes is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran
and Bretislav Heinrich.
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