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7.15: Magnetic Energy
Consider a structure exhibiting inductance; i.e., one that is able to store energy in a magnetic field in response to an applied current.
This structure could be a coil, or it could be one of a variety of inductive structures that are not explicitly intended to be an
inductor; for example, a coaxial transmission line. When current is applied, the current-bearing elements of the structure exert
forces on each other. Since these elements are not normally free to move, we may interpret this force as potential energy stored in
the magnetic field associated with the current (Section 7.12).

We now want to know how much energy is stored in this field. The answer to this question has relevance in several engineering
applications. One issue is that any system that includes inductance is using some fraction of the energy delivered by the power
supply to energize this inductance. In many electronic systems – in power systems in particular – inductors are periodically
energized and de-energized at a regular rate. Since power is energy per unit time, this consumes power. Therefore, energy storage
in inductors contributes to the power consumption of electrical systems.

The stored energy is most easily determined using circuit theory concepts. First, we note that the electrical potential difference 
(units of V) across an inductor is related to the current  (units of A) through the inductor as follows (Section 7.12):

where  (units of H) is the inductance. The instantaneous power associated with the device is

Energy (units of J) is power (units of J/s) integrated over time. Let  be the energy stored in the inductor. At some time  in the
past,  and . As current is applied,  increases monotonically. At the present time , . Thus, the present
value of the magnetic energy is:

Now evaluating this integral using the relationships established above:

Changing the variable of integration from  (and ) to  (and ) we have

Evaluating the integral we obtain the desired expression

The energy stored in an inductor in response to a steady current  is Equation . This energy increases in proportion to
inductance and in proportion to the square of current.

The long straight coil (Section 7.13) is representative of a large number of practical applications, so it is useful to interpret the
above findings in terms of this structure in particular. For this structure we found
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where  is the permeability,  is the number of windings,  is cross-sectional area, and  is length. The magnetic field intensity
inside this structure is related to  by (Section 7.6):

Substituting these expressions into Equation , we obtain

Recall that the magnetic field inside a long coil is approximately uniform. Therefore, the density of energy stored inside the coil is
approximately uniform. Noting that the product  is the volume inside the coil, we find that this energy density is ; thus:

which has the expected units of energy per unit volume (J/m ).

The above expression provides an alternative method to compute the total magnetostatic energy in any structure. Within a
mathematical volume , the total magnetostatic energy is simply the integral of the energy density over ; i.e.,

This works even if the magnetic field and the permeability vary with position. Substituting Equation  we obtain:

Summarizing:

The energy stored by the magnetic field present within any defined volume is given by Equation .

It’s worth noting that this energy increases with the permeability of the medium, which makes sense since inductance is
proportional to permeability.

Finally, we reiterate that although we arrived at this result using the example of the long straight coil, Equations  and 
are completely general.
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