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1.5: Phasors
In many areas of engineering, signals are well-modeled as sinusoids. Also, devices that process these signals are often well-
modeled as linear time-invariant (LTI) systems. The response of an LTI system to any linear combination of sinusoids is another
linear combination of sinusoids having the same frequencies. In other words, (1) sinusoidal signals processed by LTI systems
remain sinusoids and are not somehow transformed into square waves or some other waveform; and (2) we may calculate the
response of the system for one sinusoid at a time, and then add the results to find the response of the system when multiple
sinusoids are applied simultaneously. This property of LTI systems is known as superposition.

The analysis of systems that process sinusoidal waveforms is greatly simplified when the sinusoids are represented as phasors.
Here is the key idea:

A phasor is a complex-valued number that represents a real-valued sinusoidal waveform. Specifically, a phasor has the
magnitude and phase of the sinusoid it represents

Figure  and  show some examples of phasors and the associated sinusoids. It is important to note that a phasor by itself is
not the signal. A phasor is merely a simplified mathematical representation in which the actual, real-valued physical signal is
represented as a complex-valued constant.

 Figure : Examples of phasors, displayed here as points in the real-
imaginary plane.

Equation  is a completely general form for a physical (hence, real-valued) quantity varying sinusoidally with angular
frequency 

where  is magnitude at the specified frequency,  is phase at the specified frequency, and  is time. Also, we require 
; that is, that the time variation of  is completely represented by the cosine function alone. Now we can

equivalently express  as a phasor :

To convert this phasor back to the physical signal it represents, we (1) restore the time dependence by multiplying by , and then
(2) take the real part of the result. In mathematical notation:

To see why this works, simply substitute the right hand side of Equation  into Equation . Then

 Definition: phasor
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as expected.

 Figure : Sinusoids corresponding to the phasors shown in Figure 

It is common to write Equation  as follows, dropping the explicit indication of frequency dependence:

This does not normally cause any confusion since the definition of a phasor requires that values of  and  are those that apply at
whatever frequency is represented by the suppressed sinusoidal dependence .

Table  shows mathematical representations of the same phasors demonstrated in Figure  (and their associated sinusoidal
waveforms in Figure ). It is a good exercise is to confirm each row in the table, transforming from left to right and vice-versa.

Table : Some examples of physical (real-valued) sinusoidal signals and the corresponding phasors.  and  are real-valued and
constant with respect to 

It is not necessary to use a phasor to represent a sinusoidal signal. We choose to do so because phasor representation leads to
dramatic simplifications. For example:

Calculation of the peak value from data representing  requires a time-domain search over one period of the sinusoid.
However, if you know , the peak value of  is simply , and no search is required.
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Calculation of  from data representing  requires correlation (essentially, integration) over one period of the sinusoid.
However, if you know , then  is simply the phase of , and no integration is required.

Furthermore, mathematical operations applied to  can be equivalently performed as operations on , and the latter are
typically much easier than the former. To demonstrate this, we first make two important claims and show that they are true.

Let  and  be two complex-valued constants (independent of ). Also,  for all . Then, 
.

Proof

Evaluating at  we find . Since  and  are constant with respect to time, this must be true for all .
At  we find

and similarly

therefore . Once again: Since  and  are constant with respect to time, this must be true for all t. Since
the real and imaginary parts of  and  are equal, .

What does this mean?

We have just shown that if two phasors are equal, then the sinusoidal waveforms that they represent are also equal.

For any real-valued linear operator  and complex-valued quantity ,

Proof

Let  where  and  are real-valued quantities, and evaluate the right side of Equation :

What does this mean?

The operators that we have in mind for  include addition, multiplication by a constant, differentiation, integration, and so on.
Here’s an example with differentiation:

In other words, differentiation of a sinusoidal signal can be accomplished by differentiating the associated phasor, so there is
no need to transform a phasor back into its associated real-valued signal in order to perform this operation.
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Claims 1 and 2 together entitle us to perform operations on phasors as surrogates for the physical, real-valued, sinusoidal
waveforms they represent. Once we are done, we can transform the resulting phasor back into the physical waveform it
represents using Equation , if desired

However, a final transformation back to the time domain is usually not desired, since the phasor tells us everything we can know
about the corresponding sinusoid

A skeptical student might question the value of phasor analysis on the basis that signals of practical interest are sometimes not
sinusoidally-varying, and therefore phasor analysis seems not to apply generally. It is certainly true that many signals of practical
interest are not sinusoidal, and many are far from it. Nevertheless, phasor analysis is broadly applicable. There are basically two
reasons why this is so:

Many signals, although not strictly sinusoidal, are “narrowband” and therefore well-modeled as sinusoidal. For example, a
cellular telecommunications signal might have a bandwidth on the order of 10 MHz and a center frequency of about 2 GHz.
This means the difference in frequency between the band edges of this signal is just 0.5% of the center frequency. The
frequency response associated with signal propagation or with hardware can often be assumed to be constant over this range of
frequencies. With some caveats, doing phasor analysis at the center frequency and assuming the results apply equally well over
the bandwidth of interest is often a pretty good approximation.
It turns out that phasor analysis is easily extensible to any physical signal, regardless of bandwidth. This is so because any
physical signal can be decomposed into a linear combination of sinusoids – this is known as Fourier analysis. The way to find
this linear combination of sinusoids is by computing the Fourier series, if the signal is periodic, or the Fourier Transform,
otherwise. Phasor analysis applies to each frequency independently, and (invoking superposition) the results can be added
together to obtain the result for the complete signal. The process of combining results after phasor analysis results is nothing
more than integration over frequency; i.e..: 

 
Using Equation , this can be rewritten: 

 
We can go one step further using Claim 2: 

 
The quantity in the curly braces is simply the Fourier transform of . Thus, we see that we can analyze a signal of
arbitrarily-large bandwidth simply by keeping  as an independent variable while we are doing phasor analysis, and if we ever
need the physical signal, we just take the real part of the Fourier transform of the phasor. So not only is it possible to analyze
any time-domain signal using phasor analysis, it is also often far easier than doing the same analysis on the time-domain signal
direct

Phasor analysis does not limit us to sinusoidal waveforms. Phasor analysis is not only applicable to sinusoids and signals that
are sufficiently narrowband, but is also applicable to signals of arbitrary bandwidth via Fourier analysis.

This page titled 1.5: Phasors is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia
Tech Libraries' Open Education Initiative) .
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