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8.4: Induction in a Motionless Loop
In this section, we consider the problem depicted in Figure , which is a single motionless loop of wire in the presence of a
spatially-uniform but time-varying magnetic field. A small gap is introduced in the loop, allowing us to measure the induced
potential . Additionally, a resistance  is connected across  in order to allow a current to flow. This problem was considered
in Section 8.3 as an introduction to Faraday’s Law; in this section, we shall actually work the problem and calculate some values.
This is intended to serve as an example of the application of Faraday’s Law, a demonstration of transformer emf, and will serve as a
first step toward an understanding of transformers as devices.

 Figure : A single loop of wire in the presence of an impressed spatially-
uniform but time-varying magnetic field.

In the present problem, the loop is centered in the  plane. The magnetic flux density is ; i.e., time-varying
magnitude  and a constant direction . Because this magnetic field is spatially uniform (i.e., the same everywhere), we will
find that only the area of the loop is important, and not it’s specific shape. For this reason, it will not be necessary to specify the
radius of the loop or even require that it be a circular loop. Our task is to find expressions for  and .

To begin, remember that Faraday’s Law is a calculation of electric potential and not current. So, the approach is to first find ,
and then find the current  that flows through the gap resistance in response.

The sign convention for  is arbitrary; here, we have selected “ ” and “ ” terminals as indicated in Figure .  Following the
standard convention for the reference direction of current through a passive device,  should be directed as shown in Figure .
It is worth repeating that these conventions for the signs of  and  are merely references; for example, we may well find that  is
negative, which means that current flows in a clockwise direction in the loop.

We now invoke Faraday’s Law:

The number of windings  in the loop is 1, and  is the magnetic flux through the loop. Thus:

where  is any open surface that intersects all of the magnetic field lines that pass through the loop. The simplest such surface is
simply the planar surface defined by the perimeter of the loop. Then , where  is the differential surface element and 
is the normal to the plane of the loop. Which of the two possible normals to the loop? This is determined by the right-hand rule of
Stokes’ Theorem. From the “ ” terminal, we point the thumb of the right hand in the direction that leads to the “ ” terminal by
traversing the perimeter of the loop. When we do this, the curled fingers of the right hand intersect  in the same direction as . To
maintain the generality of results derived below, we shall not make the substitution ; nevertheless we see this is the case for
a loop parallel to the  plane with the polarity of  indicated in Figure .

Taking this all into account, we have
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Since the magnetic field is uniform,  may be extracted from the integral. Furthermore, the shape and the orientation of the loop
are time-invariant, so the remaining integral may be extracted from the time derivative operation. This leaves:

The integral in this expression is simply the area of the loop, which is a constant; let the symbol  represent this area. We obtain

which is the expression we seek. Note that the quantity  is the projected area of the loop. The projected area is equal to 
when the the magnetic field lines are perpendicular to the loop (i.e., ), and decreases to zero as . Summarizing:

The magnitude of the transformer emf induced by a spatially-uniform magnetic field is equal to the projected area times the
time rate of change of the magnetic flux density, with a change of sign. (Equation ).

A few observations about this result:

As promised earlier, we have found that the shape of the loop is irrelevant; i.e., a square loop having the same area and planar
orientation would result in the same . This is because the magnetic field is spatially uniform, and because it is the magnetic
flux ( ) and not the magnetic field or shape of the loop alone that determines the induced potential.
The induced potential is proportional to ; i.e.,  can be increased by increasing the area of the loop.
The peak magnitude of the induced potential is maximized when the plane of the loop is perpendicular to the magnetic field
lines.
The induced potential goes to zero when the plane of the loop is parallel to the magnetic field lines. Said another way, there is
no induction unless magnetic field lines pass through the loop.
The induced potential is proportional to the rate of change of . If  is constant in time, then there is no induction.

Finally, the current in the loop is simply

Again, electromagnetic induction induces potential, and the current flows only in response to the induced potential as determined
by Ohm’s Law. In particular, if the resistor is removed, then  and , but  is unchanged.

One final comment is that even though the current  is not a direct result of electromagnetic induction, we can use  as a check of
the result using Lenz’s Law (Section 8.2). We’ll demonstrate this in the example below.

Let the loop be planar in the  plane and circular with radius  cm. Let the magnetic field be  where

i.e.,  begins at zero and increases linearly to  at time , after which it remains constant at . Let  T, 
s, and let the loop be closed by a resistor . What current  flows in the loop?

Solution
Adopting the sign conventions of Figure  we first note that ; this is determined by the right-hand rule with respect
to the indicated polarity of . Thus, Equation  becomes
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 Example : Induction in a motionless circular loop by a linearly-increasing magnetic field8.4.1
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Note  since ; i.e., because the plane of the loop is perpendicular to the magnetic field lines. Since the loop is
circular, . Also

Putting this all together:

and  before and after this time interval, since  is constant during those times. Subsequently the induced current is

and  before and after this time interval. We have found that the induced current is a constant clockwise flow that exists
only while  is increasing.

Finally, let’s see if the result is consistent with Lenz’s Law. The current induced while  is changing gives rise to an induced
magnetic field . From the right-hand rule that relates the direction of  to the direction of  (Section 7.5), the direction
of  is generally  inside the loop. In other words, the magnetic field associated with the induced current opposes the
increasing impressed magnetic field that induced the current, in accordance with Lenz’s Law.

Let us repeat the previous example, but now with

with  kHz.

Solution
Now

So

Subsequently

Substituting values, we have:

It should be no surprise that  and  vary sinusoidally, since the source ( ) varies sinusoidally. A bit of useful trivia here is
that  and  are 90  out of phase with the source. It is also worth noting what happens when . This occurs twice per
period, at  where  is any integer, including . At these times  is zero, but  and hence  are decidedly
non-zero; in fact, they are at their maximum magnitude. Again, it is the change in  that induces voltage and subsequently
current, not  itself.

1. A good exercise for the student is to repeat this problem with the terminal polarity reversed; one should obtain the same
answer.↩
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 Example : Induction in a motionless circular loop by a sinusoidally-varying magnetic field.8.4.3
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