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4.4: Spherical Coordinates
The spherical coordinate system is defined with respect to the Cartesian system in Figure . The spherical system uses , the
distance measured from the origin; , the angle measured from the  axis toward the  plane; and , the angle measured in a
plane of constant , identical to  in the cylindrical system.

 Figure : Spherical coordinate system and associated basis vectors. (CC BY SA 4.0; K. Kikkeri).

Spherical coordinates are preferred over Cartesian and cylindrical coordinates when the geometry of the problem exhibits spherical
symmetry. For example, in the Cartesian coordinate system, the surface of a sphere concentric with the origin requires all three
coordinates ( , , and ) to describe. However, this surface can be described using a single constant parameter – the radius  – in
the spherical coordinate system. This leads to a dramatic simplification in the mathematics in certain applications.

The basis vectors in the spherical system are , , and . As always, the dot product of like basis vectors is equal to one, and the
dot product of unlike basis vectors is equal to zero. For the cross-products, we find:

A useful diagram that summarizes these relationships is shown in Figure .

Like the cylindrical system, the spherical system is often less useful than the Cartesian system for identifying absolute and relative
positions. The reason is the same: Basis directions in the spherical system depend on position. For example,  is directed radially
outward from the origin, so  for locations along the -axis but  for locations along the  axis and  for locations
along the  axis. Similarly, the directions of  and  vary as a function of position. To overcome this awkwardness, it is common
to begin a problem in spherical coordinates, and then to convert to Cartesian coordinates at some later point in the analysis. Here
are the conversions:

The conversion from Cartesian to spherical coordinates is as follows:

where  is the four-quadrant inverse tangent function.
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 Figure  Cross products among basis vectors in the spherical system. (See Figure 4.1.10 for instructions
on the use of this diagram.) (CC BY SA 4.0; K. Kikkeri).

Dot products between basis vectors in the spherical and Cartesian systems are summarized in Table . This information can be
used to convert between basis vectors in the spherical and Cartesian systems, in the same manner described in Section 4.3; e.g.

and so on.

Table : Dot products between basis vectors in the spherical and Cartesian coordinate systems.

0

A vector field . Develop an expression for  in spherical coordinates.

Solution
Simply substitute expressions in terms of spherical coordinates for expressions in terms of Cartesian coordinates. Use Table 

 and Equations - . Making these substitutions and applying a bit of mathematical clean-up afterward, one
obtains

Integration Over Length
A differential-length segment of a curve in the spherical system is

Note that  is an angle, as opposed to a distance. The associated distance is  in the  direction. Note also that in the 
direction, distance is  in the  plane and less by the factor  for .

As always, the integral of a vector field  over a curve  is

To demonstrate line integration in the spherical system, imagine a sphere of radius  centered at the origin with “poles” at 
and . Let us calculate the integral of , where  is the arc drawn directly from pole to pole along the surface of the
sphere, as shown in Figure . In this example,  since  and  (which could be any value) are both constant
along . Subsequently,  and the above integral is
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i.e., half the circumference of the sphere, as expected.

 Figure : Example in spherical coordinates: Poleto-pole distance on a sphere. (CC BY SA
4.0; K. Kikkeri).

Note that the spherical system is an appropriate choice for this example because the problem can be expressed with the minimum
number of varying coordinates in the spherical system. If we had attempted this problem in the Cartesian system, we would find
that both  and either  or  (or all three) vary over  and in a relatively complex way.

Integration Over Area

Now we ask the question, what is the integral of some vector field  over the surface  of a sphere of radius  centered on the
origin? This is shown in Figure . The differential surface vector in this case is

 Figure : Example in spherical coordinates: The area of a sphere. (CC BY SA 4.0; K.
Kikkeri).

As always, the direction is normal to the surface and in the direction associated with positive flux. The quantities in parentheses are
the distances associated with varying  and , respectively. In general, the integral over a surface is

In this case, let’s consider ; in this case  and the integral becomes
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which we recognize as the area of the sphere, as expected. The corresponding calculation in the Cartesian or cylindrical systems is
quite difficult in comparison.

Integration Over Volume
The differential volume element in the spherical system is

For example, if  and the volume  is a sphere of radius  centered on the origin, then

which is the volume of a sphere.
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