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23.6: Forced Damped Oscillator
Let’s drive our damped spring-object system by a sinusoidal force. Suppose that the x - component of the driving force is given by
F,(t) = Fy cos(wt)

where Fj is called the amplitude (maximum value) and w is the driving angular frequency. The force varies between Fy and —Fj
because the cosine function varies between +1 and —1. Define x(t) to be the position of the object with respect to the equilibrium
position. The x -component of the force acting on the object is now the sum

d
F, = Fycos(wt) — kx — aacd
dt

Newton’s Second law in the x -direction becomes

d d?
Fy cos(wt) — kz —bd—f = mﬁ
We can rewrite Equation (23.6.3) as
d? d
Fjy cos(wt) = mF;r + bd_:: +kx

We derive the solution to Equation (23.6.4) in Appendix 23E: Solution to the forced Damped Oscillator Equation. The solution to
is given by the function

z(t) = xg cos(wt + @)
where the amplitude z is a function of the driving angular frequency o and is given by
Fy/m
(©/mpe?+ (wh—w?)”)
The phase constant ¢ is also a function of the driving angular frequency » and is given by

#(w) = tan™? <M)

zo(w) = 1/2

w? —wp
In Equations (23.6.6) and (23.6.7)
k

Wy = —
m

is the natural angular frequency associated with the undriven undamped oscillator. The x -component of the velocity can be found
by differentiating Equation (23.6.5),

7dm
Cdt

where the amplitude z(w) is given by Equation (23.6.6) and the phase constant ¢(w) is given by Equation (23.6.7).

vz () (t) = —wzg sin(wt + @)

Resonance

When b/m << 2wy we say that the oscillator is lightly damped. For a lightly-damped driven oscillator, after a transitory period,
the position of the object will oscillate with the same angular frequency as the driving force. The plot of amplitude z(w) vs.
driving angular frequency w for a lightly damped forced oscillator is shown in Figure 23.16. If the angular frequency is increased
from zero, the amplitude of the zo(w) will increase until it reaches a maximum when the angular frequency of the driving force is
the same as the natural angular frequency, wy associated with the undamped oscillator. This is called resonance. When the driving
angular frequency is increased above the natural angular frequency the amplitude of the position oscillations diminishes.
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Figure 23.16 Plot of amplitude z((w) vs. driving angular frequency o for a lightly damped oscillator with b/m << 2wy

We can find the angular frequency such that the amplitude zo(w) is at a maximum by setting the derivative of Equation (23.6.6)
equal to zero,

Cd o R (Om) 2 -w?)

2m ((b/m)%f2 + (W —w?) 2)

3/2

This vanishes when

1/2
w= (wj — (b/m)2/2)
For the lightly-damped oscillator, wy >> (1/2)b/m, and so the maximum value of the amplitude occurs when
w~wy = (k/m)/?

The amplitude at resonance is then

F
zo (w=wy) = b_uj)g (lightly damped)

The plot of phase constant ¢(w) vs. driving angular frequency w for a lightly damped forced oscillator is shown in Figure 23.17.
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Figure 23.17 Plot of phase constant ¢(w) vs. driving angular frequency  for a lightly damped oscillator with b/m << 2wq
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The phase constant at resonance is zero,

¢(w=uwy)=0
At resonance, the x -component of the velocity is given by
d F
v (t) = d—f(t) = —Tosin(wgt) (lightly damped)

When the oscillator is not lightly damped (b/m =~ wy), the resonance peak is shifted to the left of w = wy as shown in the plot of
amplitude vs. angular frequency in Figure 23.18. The corresponding plot of phase constant vs. angular frequency for the non-lightly
damped oscillator is shown in Figure 23.19.
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Figure 23.18 Plot of amplitude vs. angular frequency for lightly-damped driven oscillator where b/m ~ wq

20,

w

0 =0, 0]

(@)

[
=T IF S = R ==

|
|

B e
I

Figure 23.19 Plot of phase constant vs. angular frequency for lightly-damped driven oscillator where b/m ~ wy

Mechanical Energy

The kinetic energy for the driven damped oscillator is given by

1 1
K(t) = Emv2 (t)= Emwzsc% sin? (wt + ¢)

The potential energy is given by

U(t) = Zka’(t) = %kwﬁ cos® (wt + ¢)
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The mechanical energy is then

1 1 1
E(t) = —md?(t) + Ek:c2 (t) = Emwzmg sin? (wt + ¢) + Ek:vg cos® (wt + )

Example 23.5: Time-Averaged Mechanical Energy

The period of one cycle is given by T' = 27 /w. Show that
@) % [, sin?(wt + ¢)dt = &

(i) = [ cos?(wt+p)dt = %

(iii) - fOT sin(wt) cos(wt)dt =0

Solution: (i) We use the trigonometric identity

sin? (wt + ¢>)) = %(1 —cos(2(wt + ¢))

to rewrite the integral in Equation (23.6.19) as

T T
” /0 sin2(wt+¢)) dt = /O (1 —cos(2(wt +¢))dt

Integration yields

in(2(wt T=27/w
o (1 —cos(2(wt +¢))dt = 5 — (W)‘

B (sin(47r+2¢) B sin(2¢)) _1

T=0

[

2w 2w 2
where we used the trigonometric identity that

sin(4m +2¢) = sin(47) cos(2¢) +sin(2¢) cos(4m) = sin(2¢)
proving Equation (23.6.19).

(ii) We use a similar argument starting with the trigonometric identity that

cos?(wt+¢)) = %(1 +cos(2(wt + ¢))

Then

1 (7 1 T
T /0 cos® (wt + ¢)) dt = 5T /0 (1 +cos(2(wt + ¢))dt
Integration yields

T sin(2(wt+¢)) T=2n/w
L (1 +cos(2(wt +9))dt = § + ()|

1 sin(4m+2¢) sin(26)\ 1
-2 + 2w T 2w -2

(iii) We first use the trigonometric identity that

sin(wt) cos(wt) = %sin(wt)

Then
L ¥ sin(wt) cos(wt)dt = £ [ sin(wt)dt
1 cos(wt) T o 1 .
=TT T ‘0 =—57(1-1)=0
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The values of the integrals in Example 23.5 are called the time-averaged values. We denote the time-average value of a function f(t)
over one period by

1 [T
= — t)dt
n=z[ 10
In particular, the time-average kinetic energy as a function of the angular frequency is given by
1 5
(K(w)) = 7 ]
The time-averaged potential energy as a function of the angular frequency is given by
1
() = ke
The time-averaged value of the mechanical energy as a function of the angular frequency is given by

1 1 1
(E(w)) = mezxg + Zk:vg =1 (mw2 +k) z}

We now substitute Equation (23.6.6) for the amplitude into Equation (23.6.34) yielding

K (wp +?)

T 4m 2
4m ((b/m)%)? + (wg _wz) )

(B(w))

A plot of the time-averaged energy versus angular frequency for the lightly-damped case (b/m << 2wyp) is shown in Figure 23.20.

mFUJ
2K
(E@))
mFEjZ — - A®
4p’
0 ) ) w
0=, w= 2(1)0

Figure 23.20). We first substitute w = wy everywhere in Equation (23.6.35) except the term w% —w? that appears in the
denominator, yielding

Fy (wt)
F(w))=—
< ( )> 2m ((b/m)gwg + (wg _w2) 2)

We can approximate the term

wh —w? = (wo — w) (wy +w) ~ 2wy (wy —w)

Then Equation (23.6.36) becomes

_5 !

T 2m 2 2
(b/m)? +4(wy —w)

The right-hand expression of Equation (23.6.38) takes on its maximum value when the denominator has its minimum value. By
inspection, this occurs when w = wy . Alternatively, to find the maximum value, we set the derivative of Equation (23.6.35) equal to

(E(w)) (lightly damped)
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zero and solve for o,

2
0= (Bw)=2L 1
(B(w)) 2m ((b/m)2+4(wo—w)2)

- 4F02 (wp—w)
=t 0=
™ (/) +a(—w)?)
The maximum occurs when occurs at w = wq and has the value
2
mFE;

2b?

(E (wp)) = ( underdamped )

The Time-averaged Power

The time-averaged power delivered by the driving force is given by the expression

Fwcos(wt) sin(wt +
b/m w2—|—(w3—w2)2)

where we used Equation (23.6.1) for the driving force, and Equation (23.6.9) for the x -component of the velocity of the object. We
use the trigonometric identity

sin(wt + ¢) = sin(wt) cos(¢) + cos(wt) sin(¢)

to rewrite the integral in Equation (23.6.41) as two integrals

o T Fgw cos(wt) sin(wt) cos(¢)
<P(w)> - _% 0 . y o\ 1/2 dt
m((b/m) W+ (wh—w?) )
1 pT Flw cos?(wt) sin(¢)

T m((b/m)2w2+(wg—w2)2)l/2

T JO

Using the time-averaged results from Example 23.5, we see that the first term in Equation (23.6.43) is zero and the second term
becomes

Flwsin(¢)
m ((b/m)%}2 + (v —w?) 2)

For the underdamped driven oscillator, we make the same approximations in Equation (23.6.44) that we made for the time-
averaged energy. In the term in the numerator and the

(P(w)) =

1/2

term on the left in the denominator, we set w = wy, and we use Equation (23.6.37) in the term on the right in the denominator
yielding

\[ \langle P(\omega)\rangle=\frac{F_{0}/A{2} \sin (\phi)}{2 m\left((b / m)"{2}+2\left(\omega_{0}-\omega\right)\right) {1 / 2}}
(underdamped)\end{equation}

The time-averaged power dissipated by the resistive force is given by

T T
(Pais(w)) = 7 fo 2) gisVa dt = % Ik bvidt = %fo

. FRuidt
2m? ((b/m)zwz-&-(wg—wz) 2)

Flw? sin? (wt+6)dt
m ((b/m) w2+(w37w2)2)

where we used Equation (23.5.1) for the dissipative force, Equation (23.6.9) for the x -component of the velocity of the object, and
Equation (23.6.19) for the time-averaging.
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Quality Factor

The plot of the time-averaged energy vs. the driving angular frequency for the underdamped oscullator has a width, Aw (Figure
23.20). One way to characterize this width is to define Aw =w, —w_ , where w. are the values of the angular frequency such
that time-averaged energy is equal to one half its maximum value

5 1 B mFy
(B (w1)) = (B (@0)) = =
The quantity Aw is called the line width at half energy maximum also known as the resonance width. We can now solve for w. by
setting
FO2 1 B mF02

E Wi )) = — =
B o) 2m ((b/m)2+4(WO_CUi)2) 4p?

yielding the condition that
(b/m)* =4 (wy —ws)”
Taking square roots of Equation (23.6.49) yields
F(b/2m) =wp —w+
Therefore
wy =wy £ (b/2m)
The half-width is then
Aw=w;: —w_ = (wy+(b/2m)) — (wy — (b/2m)) =b/m

We define the quality Q of the resonance as the ratio of the resonant angular frequency to the line width,

_ W _ %o
Q_Aw b/m
msz
20 '
(E(w)) b/m=w,/20
Vel %
mF,’
4p’
b/m=a)DfID
bim=w,/6
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Figure 23.21 Plot of time-averaged energy vs. angular frequency for different values of b/m

In Figure 23.21 we plot the time-averaged energy vs. angular frequency for several different values of the quality factor Q = 10, 5,
and 3. Recall that this was the same result that we had for the quality of the free oscillations of the damped oscillator, Equation
(23.5.16) (because we chose the factor 7 in Equation (23.5.16)).

This page titled 23.6: Forced Damped Oscillator is shared under a not declared license and was authored, remixed, and/or curated by Peter
Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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