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17.2: Vector Product (Cross Product)

Let  and  be two vectors. Because any two non-parallel vectors form a plane, we denote the angle θ to be the angle between

the vectors  and  as shown in Figure 17.2. The magnitude of the vector product  of the vectors  and  is defined

to be product of the magnitude of the vectors  and  with the sine of the angle θ between the two vectors,

The angle θ between the vectors is limited to the values  ensuring that .

Figure 17.2 Vector product geometry.

The direction of the vector product is defined as follows. The vectors  and  form a plane. Consider the direction perpendicular
to this plane. There are two possibilities: we shall choose one of these two (the one shown in Figure 17.2) for the direction of the

vector product  using a convention that is commonly called the “right-hand rule”.

Right-hand Rule for the Direction of Vector Product

The first step is to redraw the vectors  so that the tails are touching. Then draw an arc starting from the vector  and

finishing on the vector . Curl your right fingers the same way as the arc. Your right thumb points in the direction of the vector

product  (Figure 17.3).

Figure 17.3 Right-Hand Rule.
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You should remember that the direction of the vector product  is perpendicular to the plane formed by . We can
give a geometric interpretation to the magnitude of the vector product by writing the magnitude as

The vectors  form a parallelogram. The area of the parallelogram is equal to the height times the base, which is the
magnitude of the vector product. In Figure 17.4, two different representations of the height and base of a parallelogram are

illustrated. As depicted in Figure 17.4a, the term  is the projection of the vector  in the direction perpendicular to the

vector  We could also write the magnitude of the vector product as

The term  is the projection of the vector  in the direction perpendicular to the vector  as shown in Figure 17.4(b). The
vector product of two vectors that are parallel (or anti-parallel) to each other is zero because the angle between the vectors is 0 (or 

) and  (or ). Geometrically, two parallel vectors do not have a unique component perpendicular to their
common direction.

Figure 17.4 Projection of (a)  perpendicular to , (b) of  perpendicular to 

Properties of the Vector Product

(1) The vector product is anti-commutative because changing the order of the vectors changes the direction of the vector product by
the right hand rule:

(2) The vector product between a vector  where  is a scalar and a vector  is

Similarly,

(3) The vector product between the sum of two vectors  with a vector  is

Similarly,
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Vector Decomposition and the Vector Product: Cartesian Coordinates

We first calculate that the magnitude of vector product of the unit vectors  and :

because the unit vectors have magnitude  and . By the right hand rule, the direction of  is in the 
 as shown in Figure 17.5. Thus .

Figure 17.5 Vector product of 

We note that the same rule applies for the unit vectors in the y and z directions,

By the anti-commutatively property (1) of the vector product,

The vector product of the unit vector  with itself is zero because the two unit vectors are parallel to each other, ,

The vector product of the unit vector  with itself and the unit vector  with itself are also zero for the same reason,

With these properties in mind we can now develop an algebraic expression for the vector product in terms of components. Let’s

choose a Cartesian coordinate system with the vector  pointing along the positive x-axis with positive x-component . Then the

vectors  can be written as

respectively. The vector product in vector components is

This becomes,
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Ax î Ay ĵ Azk̂ Bx î
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The vector component expression for the vector product easily generalizes for arbitrary vectors

to yield

Vector Decomposition and the Vector Product: Cylindrical Coordinates
Recall the cylindrical coordinate system, which we show in Figure 17.6. We have chosen two directions, radial and tangential in the
plane, and a perpendicular direction to the plane.

Figure 17.6 Cylindrical coordinates

The unit vectors are at right angles to each other and so using the right hand rule, the vector product of the unit vectors are given by
the relations

Because the vector product satisfies  we also have that

Finally

Example 17.1 Vector Products

Given two vectors,  and , find .

Solution:
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î ĵ k̂ ×A
→

B
→

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/24530?pdf


17.2.5 https://phys.libretexts.org/@go/page/24530

Example 17.2 Law of Sines

For the triangle shown in Figure 17.7a, prove the law of sines, , using the vector product.

Figure 17.7 (b) Vector analysis

Solution: Consider the area of a triangle formed by three vectors , and , where  (Figure 17.7b). Because

, we have that . Thus  or 

. From Figure 17.7b we see that  and . Therefore 

, and hence . A similar argument shows that 
proving the law of sines.

Example 17.3 Unit Normal

Find a unit vector perpendicular to  and .

Solution: The vector product  is perpendicular to both . Therefore the unit vectors  are

perpendicular to both . We first calculate

We now calculate the magnitude

Therefore the perpendicular unit vectors are

Example 17.4 Volume of Parallelepiped

Show that the volume of a parallelepiped with edges formed by the vectors   is given by .

Solution: The volume of a parallelepiped is given by area of the base times height. If the base is formed by the vectors ,

then the area of the base is given by the magnitude of . The vector  where  is a unit vector
perpendicular to the base (Figure 17.8).
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= ((−3)(2) −(7)(1)) +((7)(5) −(2)(2)) +((2)(1) −(−3)(5))î ĵ k̂
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Figure 17.8 Example 17.4

The projection of the vector  along the direction  gives the height of the parallelepiped. This projection is given by taking the

dot product of  with a unit vector and is equal to . Therefore

Example 17.5 Vector Decomposition

Let  be an arbitrary vector and let  be a unit vector in some fixed direction. Show that 

Solution: Let  where  is the component  in the direction of  is the direction of the projection of  in a

plane perpendicular to , and  is the component of  in the direction of . Because , we have that . Note
that

The unit vector  lies in the plane perpendicular to  and is also perpendicular to . Therefore  is also a unit

vector that is parallel to  (by the right hand rule. So . Thus
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= + = ( ⋅ ) +( × ) ×A
→

A∥n̂ A⊥ê A
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