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15.5: Worked Examples
Example 15.1 Elastic One-Dimensional Collision Between Two Objects
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Figure 15.7 Elastic collision between two non-identical carts

Consider the elastic collision of two carts along a track; the incident cart 1 has mass m; andmoveswithinitialspeed\ (vy ;.
The target cart has mass my = 2m; and is initially at rest, v ; = 0, (Figure 15.7). Immediately after the collision, the incident
cart has final speed v;  and the target cart has final speed vy ;. Calculate the final x-component of the velocities of the carts as
a function of the initial speed v ;.

Solution: The momentum flow diagram for the objects before (initial state) and after (final state) the collision are shown in
Figure 15.7. We can immediately use our results above with ms =2m; and v, ; = 0. The final x -component of velocity of
cart 1 is given by Equation (15.3.14), where we use v15; = v1,; .

1
Viz,f = _gvl,i
The final x-component of velocity of cart 2 is given by Equation (15.4.17)
2
Vo, f = E'Ul,i

Example 15.2 The Dissipation of Kinetic Energy in a Completely Inelastic Collision Between Two Objects
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Figure 15.7b Inelastic collision between two non-identical carts

An incident cart of mass m; and initial speed vy ; collides completely inelastically with a cart of mass my that is initially at
rest (Figure 15.7b). There are no external forces acting on the objects in the direction of the collision. Find
AK/Kinitial = (Kfinal — Kinitial) / Kinitial

Solution: In the absence of any net force on the system consisting of the two carts, the momentum after the collision will be
the same as before the collision. After the collision, the carts will move in the direction of the initial velocity of the incident
cart with a common speed v found from applying the momentum condition

my
mlvm = (m1 +m2)vf = ’Uf = —’1)171'
mi +ms
The initial relative speed is v5*! = vy ;. The final relative velocity is zero because the carts stick together so using Equation
(15.3.26), the change in kinetic energy is
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AK = _lr“(”zrd)z = VL

2 - 2 mi+ms

The ratio of the change in kinetic energy to the initial kinetic energy is then

ma

AK/K: iy = ————— =
/ initial my +my

As a check, we can calculate the change in kinetic energy via

in agreement with Equation (15.4.4).

Example 15.3 Bouncing Superballs
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Figure 15.8b Two superballs dropping
Consider two balls that are dropped from a height h; above the ground, one on top of the other (Figure 15.8). Ball 1 is on top
and has mass M7, and ball 2 is underneath and has mass Ms with Ms >> M; . Assume that there is no loss of kinetic energy
during all collisions. Ball 2 first collides with the ground and rebounds. Then, as ball 2 starts to move upward, it collides with
the ball 1 which is still moving downwards (figure below left). How high will ball 1 rebound in the air? Hint: consider this

collision as seen by an observer moving upward with the same speed as the ball 2 has after it collides with the ground. What
speed does ball 1 have in this reference frame after it collides with the ball 2?

Solution

The system consists of two balls and the earth. There are five special states for this motion shown in the figure below.

part a)

Initial State: the balls are released from rest at a height h; above the ground.
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State A: the balls just reach the ground with speed v, = 1/2gh; . This follows from AE, ., =0= AK =—-AU . Thus
(1/2)mv2 —0 = —mgAh = mgh; = v, = \/2gh;

State B: immediately before the collision of the balls. Ball 2 has collided with the ground and reversed direction with the same
speed, v, but ball 1 is still moving downward with speed v,.

State C: immediately after the collision of the balls. Because we are assuming that 1y > m; ball 2 does not change its speed
as a result of the collision so it is still moving 2 upward with speed v,. As a result of the collision, ball 1 moves upward with
speed vy,

Final State: ball 1 reaches a maximum height h, = vg /2g above the ground. This again follows from
AK = —AU = 0—(1/2)mv} = —mgAh = —mghs = hy =v}/2g
Choice of Reference Frame:

As indicated in the hint above, this collision is best analyzed from the reference frame of an observer moving upward with
speed v, the speed of ball 2 just after it rebounded with the ground. In this frame immediately, before the collision, ball 1 is
moving downward with a speed v}, that is twice the speed seen by an observer at rest on the ground (lab reference frame).

vl = 2v,

The mass of ball 2 is much larger than the mass of ball 1, ms > m; This enables us to consider the collision (between States
B and C) to be equivalent to ball 1 bouncing off a hard wall, while ball 2 experiences virtually no recoil. Hence ball 2 remains
at rest in the reference frame moving upwards with speed V, with respect to observer at rest on ground. Before the collision,
ball 1 has speed v, = 2v, Since there is no loss of kinetic energy during the collision, the result of the collision is that ball 1
changes direction but maintains the same speed,

V), =20,
However, according to an observer at rest on the ground, after the collision ball 1 is moving upwards with speed
Vp = 204 + U, = 30,

While rebounding, the mechanical energy of the smaller superball is constant (we consider the smaller superball and the Earth
as a system) hence between State C and the Final State,

AK+AU =0

The change in kinetic energy is
1 2
AK = —Eml (3va)
The change in potential energy is
AU =m,ghy
So the condition that mechanical energy is constant (Equation (15.5.10)) is now
1 2
—3m (3v1a)" +myghy =0
We can rewrite Equation (15.5.13) as
1 2
mighy = 9§m1 (va)

Recall that we can also use the fact that the mechanical energy doesn’t change between the Initial State and State A yielding an
equation similar to Equation (15.5.14),

Now substitute the expression for the kinetic energy in Equation (15.5.15) into Equation (15.5.14) yielding

mighy = 9mqgh;
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Thus ball 1 reaches a maximum height

hy = 9h;

This page titled 15.5: Worked Examples is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Peter
Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.

https://phys.libretexts.org/@go/page/24519


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/24519?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Dourmashkin)/15%3A_Collision_Theory/15.05%3A_Worked_Examples
https://creativecommons.org/licenses/by-nc-sa/4.0
https://web.mit.edu/physics/people/academic/dourmashkin_peter.html
https://ocw.mit.edu/index.htm
https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/

