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28.3: Mass Continuity Equation

A set of streamlines for an ideal fluid undergoing steady flow in which there are no sources or sinks for the fluid is shown in Figure
28.3.
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Figure 28.3: Set of streamlines for an ideal fluid flow Figure 28.4: Flux Tube associated with set of streamlines

We also show a set of closely separated streamlines that form a flow tube in Figure 28.4 We add to the flow tube two open surface
(end-caps 1 and 2) that are perpendicular to velocity of the fluid, of areas A; and A,, respectively. Because all fluid particles that
enter end-cap 1 must follow their respective streamlines, they must all leave end-cap 2. If the streamlines that form the tube are
sufficiently close together, we can assume that the velocity of the fluid in the vicinity of each end-cap surfaces is uniform.
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Figure 28.5: Mass flow through flux tube

Let v; denote the speed of the fluid near end-cap 1 and v, denote the speed of the fluid near end-cap 2. Let p; denote the density of
the fluid near end-cap 1 and p2 denote the density of the fluid near end-cap 2. The amount of mass that enters and leaves the tube in
a time interval dt can be calculated as follows (Figure 28.5): suppose we consider a small volume of space of cross-sectional area
A, and length dl; = v dt near end-cap 1. The mass that enters the tube in time interval dt is

dmy = p1dVy = p1 Aidly = prAjvidt

In a similar fashion, consider a small volume of space of cross-sectional area Ay and length dly = vodt near end-cap 2. The mass
that leaves the tube in the time interval dt is then

dmy = pdVa = py Aadly = py Asvadt

An equal amount of mass that enters end-cap 1 in the time interval dt must leave end-cap 2 in the same time interval, thus
dmj = dmy . Therefore using Equations (28.3.1) and (28.3.2), we have that p; Ajv1dt = ps Asvsdt . Dividing through by dt
implies that

P1 Al’ljl = p2A2’112 (steady flow )
Equation (28.3.3) generalizes to any cross sectional area A of the thin tube, where the density is p, and the speed is v,
pAv=constant (steady flow )

Equation (28.3.3) is referred to as the mass continuity equation for steady flow. If we assume the fluid is incompressible, then
Equation (28.3.3) becomes

Ajv; = Ayvy  (incompressable fluid, steady flow )
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Consider the steady flow of an incompressible with streamlines and closed surface formed by a streamline tube shown in Figure
28.5. According to Equation (28.3.5), when the spacing of the streamlines increases, the speed of the fluid must decrease. Therefore
the speed of the fluid is greater entering end-cap 1 then when it is leaving end-cap 2. When we represent fluid flow by streamlines,
regions in which the streamlines are widely spaced have lower speeds than regions in which the streamlines are closely spaced.
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