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23.7: Small Oscillations

Any object moving subject to a force associated with a potential energy function that is quadratic will undergo simple harmonic
motion,

Ulz) = Up + %k(:c )’

where k is a “spring constant”, x, is the equilibrium position, and the constant Uy just depends on the choice of reference point
Zep for zero potential energy, U (2,ef) =0,

1
0= U(.’L’Tef) =Up+ Ek(wref —ZL'eq)2

Therefore the constant is

1
Uy = _Ek(wref —xeq)z

The minimum of the potential x( corresponds to the point where the x -component of the force is zero,
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x=x0
corresponding to the equilibrium position. Therefore the constant is U (z¢) = Uy and we rewrite our potential function as

U(e) = U (z0) + 5 h(a —20)?

Now suppose that a potential energy function is not quadratic but still has a minimum at x. For example, consider the potential
energy function

(Figure 23.22), which has a stable minimum at x,
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Figure 23.22 Potential energy function with stable minima and unstable maxima

When the energy of the system is very close to the value of the potential energy at the minimum U (z), we shall show that the
system will undergo small oscillations about the minimum value 3. We shall use the Taylor formula to approximate the potential
function as a polynomial. We shall show that near the minimum xy we can approximate the potential function by a quadratic
function similar to Equation (23.7.5) and show that the system undergoes simple harmonic motion for small oscillations about the
minimum .

We begin by expanding the potential energy function about the minimum point using the Taylor formula
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where 3 = s (z — ) ® is a third order term in that it is proportional to (z — z)*, and g N R and 7=|
are constants. If z is the minimum of the potential energy, then the linear term is zero, because

au

—_ =0

dz T=x)

and so Equation ((23.7.7)) becomes

1d*U
U(:v) o~ U(:L‘o) + EW

T=x0

For small displacements from the equilibrium point such that |x — x| is sufficiently small, the third order term and higher order
terms are very small and can be ignored. Then the potential energy function is approximately a quadratic function,

U(x)~U(z +—— z—x9)" =U(xg) +=kers(z—2x
(@) = U (z0) + 35— HO( o) (@0) + S kers (2 —20)
where we define k¢, the effective spring constant, by
d2
eff =55
 da? T=10

Because the potential energy function is now approximated by a quadratic function, the system will undergo simple harmonic
motion for small displacements from the minimum with a force given by

dUu
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= —kess (T —20)

At x = x¢, the force is zero

Fx (:I)()) = fl—g(:ll()) =0

We can determine the period of oscillation by substituting Equation (23.7.12) into Newton’s Second Law

d’x
—kers (& —20) = meps

where m,;; is the effective mass. For a two-particle system, the effective mass is the reduced mass of the system.

mime

Equation (23.7.14) has the same form as the spring-object ideal oscillator. Therefore the angular frequency of small oscillations is

given by
w eff d2 U
0= eff d.’L‘2

A system with effective mass m has a potential energy given by

/ Meff

T=x

Example 23.6: Quartic Potential

where Uy and z, are positive constants and U(0) =0 (a) Find the points where the force on the particle is zero. Classify these
points as stable or unstable. Calculate the value of U(z)/Uy at these equilibrium points. (b) If the particle is given a small
displacement from an equilibrium point, find the angular frequency of small oscillation.
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Solution: (a) A plot of U(z)/Uj as a function of  /x¢ is shown in Figure 23.23.
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Figure 22.23 Plot of U(z) /U, as a function of z/x

The force on the particle is zero at the minimum of the potential energy,
2 4
_du _ 1 1 3
0=25 =Uo (—4(70) m+4(z—0) T >
2 2
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The equilibrium points are at £ = +a( which are stable and x = 0 which is unstable. The second derivative of the potential energy
is given by

d*U

dxz?

(b) The angular frequency of small oscillations is given by

. [T
07 dz?

Example 23.7: Lennard-Jones 6-12 Potential

2
Pa— mx;

A commonly used potential energy function to describe the interaction between two atoms is the Lennard-Jones 6-12 potential
Ur) = o [(ro/r)"* =2(ro/7)" 7> 0

where 1 is the distance between the atoms. Find the angular frequency of small oscillations about the stable equilibrium position for
two identical atoms bound to each other by the LennardJones interaction. Let m denote the effective mass of the system of two
atoms.

Solution: The equilibrium points are found by setting the first derivative of the potential energy equal to zero,

_4U _

0 dr
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The equilibrium point occurs when 7 = ry The second derivative of the potential energy function is

d*U _ _
-z = Up [+(12)(13)ri?r ™ — (12)(7)rSr~®]
Evaluating this at 7 = 7y yields
d*U
—_ = T2Uyry 2
2 0
d”‘ =T\

The angular frequency of small oscillation is therefore

Wy =
dr?

=,/72Uy/mr}
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