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3.3: Vectors

The Use of Vectors in Physics

From the last section we have three important ideas about vectors:

1. vectors can exist at any point  in space,
2. vectors have direction and magnitude, and
3. any two vectors that have the same direction and magnitude are equal no matter where in space they are located.

When we apply vectors to physical quantities it’s nice to keep in the back of our minds all these formal properties. However, from
the physicist’s point of view, we are interested in representing physical quantities such as displacement, velocity, acceleration,
force, impulse, and momentum as vectors. We can’t add force to velocity or subtract momentum from force. We must always
understand the physical context for the vector quantity. Thus, instead of approaching vectors as formal mathematical objects we
shall instead consider the following essential properties that enable us to represent physical quantities as vectors.

Vectors in Cartesian Coordinates

Vector Decomposition

Choose a coordinate system with an origin, axes, and unit vectors. We can decompose a vector into component vectors along each
coordinate axis (Figure 3.14).

Figure 3.14 Component vectors in Cartesian coordinates. (CC BY-NC; Ümit Kaya)

A vector  at P can be decomposed into the vector sum,

where  is the -component vector pointing in the positive or negative -direction,  is the -component vector pointing in the

positive or negative -direction, and  is the -component vector pointing in the positive or negative -direction.

Vector Components

Once we have defined unit vectors , we then define the components of a vector. Recall our vector decomposition, 

 We define the -component vector,  as

In this expression the term  (without the arrow above) is called the -component of the vector  The -component  can be

positive, zero, or negative. It is not the magnitude of  which is given by . The -component  is a scalar quantity and

the x-component vector,  is a vector. In a similar fashion we define the -component,  , and the -component,  , of the

vector  according to
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A vector  is represented by its three components . Thus we need three numbers to describe a vector in three-

dimensional space. We write the vector  as

Magnitude

Using the Pythagorean theorem, the magnitude of  is,

Direction

Let’s consider a vector . Because the -component is zero, the vector  lies in the  plane. Let  denote the

angle that the vector  makes in the counterclockwise direction with the positive -axis (Figure 3.15).

Figure 3.15 Components of a vector in the xy -plane. (CC BY-NC; Ümit Kaya)

Then the  -component and  -component are

We now write a vector in the  -plane as

Once the components of a vector are known, the tangent of the angle  can be determined by

and hence the angle  is given by

Clearly, the direction of the vector depends on the sign of  and . For example, if both  and , then 
. If  and  then . If  and  then . If  and , then
. Note that tan  is a double valued function because

Unit Vectors

Unit vector in the direction of : Let . Let  denote a unit vector in the direction of . Then,
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î ĵ

θ

= = tan(θ)
Ay

Ax

A sin(θ)

A cos(θ)

θ

θ = ( )tan−1
Ay

Ax

Ax Ay > 0Ax > 0Ay

0 < θ < π/2 < 0Ax > 0Ay π/2 < θ < π < 0Ax < 0Ay π < θ < 3π/2 > 0Ax Ay < 0
3π/2 < θ < 2 θ

= ,  and  =
−Ay

−Ax

Ay

Ax

Ay

−Ax

−Ay

Ax

A
→

= + +A
→
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Vector Addition

Let  and  be two vectors in the  plane. Let  and  denote the angles that the vectors  and  make (in the
counterclockwise direction) with the positive  -axis. Then

In Figure 3.16, the vector addition  is shown. Let  denote the angle that the vector  makes with the positive  -
axis.

Figure 3.16 Vector addition using components. (CC BY-NC; Ümit Kaya)

From Figure 3.16, the components of  are

In terms of magnitudes and angles, we have

We can write the vector  as

Given two vectors, , find: (a) ; (b) ; (c) ; (d) ; (e) a unit

vector  pointing in the direction of ; (f) a unit vector  pointing in the direction of ;
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Example 3.1: Vector Addition
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(c)

(d)

(e)

A unit vector  in the direction of  can be found by dividing the vector  by the magnitude of . Therfore

(f)

In a similar fashion, 

A Coast Guard ship is located 35 km away from a checkpoint in a direction  north of west. A distressed sailboat located in
still water 24 km from the same checkpoint in a direction  south of east is about to sink. Draw a diagram indicating the
position of both ships. In what direction and how far must the Coast Guard ship travel to reach the sailboat?

Solution

The diagram of the set-up is Figure 3.17.
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Example 3.2 Sinking Sailboat
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Figure 3.17 Example 3.2. (CC BY-NC; Ümit Kaya)

Figure 3.18 Coordinate system for sailboat and ship. (CC BY-NC;
Ümit Kaya)

Choose the checkpoint as the origin of a Cartesian coordinate system with the positive x -axis in the East direction and the
positive y –axis in the North direction. Choose the corresponding unit vectors  and  as shown in Figure 3.18. The Coast
Guard ship is then a distance  km at an angle  from the positive x -axis, The position of the
Coast Guard ship is then

and the position of the sailboat is
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Figure 3.19 Relative position vector from ship to sailboat. (CC BY-NC; Ümit Kaya)

The relative position vector from the Coast Guard ship to the sailboat is (Figure 3.19)

The distance between the ship and the sailboat is

The rescue ship’s heading would be the inverse tangent of the ratio of the y - and x - components of the relative position vector,

or  South of East.

Two vectors  and , such that , have a resultant  of magnitude 26.5. The vector  makes an

angle  with respect to vector . Find the magnitude of each vector and the angle between vectors  and .

Solution: We begin by making a sketch of the three vectors, choosing  to point in the positive x-direction (Figure 3.20).

Figure 3.20: Choice of coordinates system for Example 3.3. (CC BY-NC; Ümit Kaya)

Denote the magnitude of  by . The components of  are given by
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− = 44.4km −35.0kmr
→

2 r
→

1 î ĵ
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Example 3.3: Vector Addition
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From the condition that , the square of their magnitudes satisfy

Using Equations (3.3.17) and (3.3.18), Equation (3.3.19) becomes

This is a quadratic equation

which we solve for the component :

where we choose the positive square root because we originally chose . The components of  are then given by
Equations (3.3.17) and (3.3.18):

The magnitude of  which is equal to two times the magnitude of . The angle

between  and  is given by

Consider two points,  with coordinates  and  with coordinates  are separated by distance  . Find a vector 

 from the origin to the point on the line connecting  and  that is located a distance  from the point  (Figure 3.21).

Figure : Example 3.4. (CC BY-NC; Ümit Kaya)

Solution

Let  be the position vector of  and  the position vector of . Let  be the
vector from  to  (Figure 3.22a). The unit vector pointing from  to  is given by
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Example 3.4 Vector Description of a Point on a Line
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Figure 3.22a: Relative position vector Figure 3.22b: Relative position vector

The vector  in Figure 3.22b connects  to the point at , points in the direction of  and has length . Therefore 

. The vector . Therefore

Transformation of Vectors in Rotated Coordinate Systems
Consider two Cartesian coordinate systems  and  such that the  coordinate axes in  are rotated by an angle  with
respect to the  coordinate axes in , (Figure 3.23).

Figure 3.23: Rotated coordinate systems. (CC BY-NC; Ümit Kaya)

The components of the unit vector  in the  and  direction are given by

and

Therefore

A similar argument holds for the components of the unit vector . The components of  in the  and  direction are given by
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and

Therefore

Conversely, from Figure 3.23 and similar vector decomposition arguments, the components of (\hat{\mathbf{i}}\) and
(\hat{\mathbf{j}}\) in  are given by

Consider a fixed vector  with components  in coordinate system . In coordinate system , the vector is given

by , where  are the components in , (Figure 3.24).

Figure 3.24: Transformation of vector components. (CC BY-NC; Ümit Kaya)

Using the Equations (3.3.20) and (3.3.21), we have that

Therefore the components of the vector transform according to

We now consider an alternate approach to understanding the transformation laws for the components of the position vector of a
fixed point in space. In coordinate system , suppose the position vector  has length  and makes an angle  with respect
to the positive -axis (Figure 3.25).

Figure 3.25: Transformation of vector components of the position vector. (CC BY-NC; Ümit Kaya)
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ĵ
′

î
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. In coordinate system , the components of  are given by

Apply the addition of angle trigonometric identities to Equations (3.3.29) and (3.3.30) yielding

in agreement with Equations (3.3.25) and (3.3.26).

With respect to a given Cartesian coordinate system , a vector  has components , , . Consider a
second coordinate system  such that the  coordinate axes in  are rotated by an angle  with respect to the 

 coordinate axes in , (Figure 3.26).

a. What are the components  and  of vector  in coordinate system ?
b. Calculate the magnitude of the vector using the ,  components and using the ,  components. Does your

result agree with what you expect?

Figure 3.26 Example 3.4. (CC BY-NC; Ümit Kaya)

Solution:

We begin by considering the vector decomposition of  with respect to the coordinate system ,
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Ax î Ay ĵ
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We now use the given information that , , and  to solve for the components of  in coordinate
system 

b) The magnitude can be calculated in either coordinate system

This result agrees with what I expect because the length of vector  independent of the choice of coordinate system.
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