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23.2: Simple Harmonic Motion- Analytic
Our first example of a system that demonstrates simple harmonic motion is a springobject system on a frictionless surface, shown
in Figure 23.2

Figure 23.2 Spring-object system

The object is attached to one end of a spring. The other end of the spring is attached to a wall at the left in Figure 23.2. Assume that
the object undergoes one-dimensional motion. The spring has a spring constant k and equilibrium length  Choose the origin at
the equilibrium position and choose the positive x -direction to the right in the Figure 23.2. In the figure,  corresponds to an
extended spring, and  to a compressed spring. Define x(t) to be the position of the object with respect to the equilibrium
position. The force acting on the spring is a linear restoring force,  (Figure 23.3). The initial conditions are as follows.
The spring is initially stretched a distance  and given some initial speed  to the right away from the equilibrium position. The
initial position of the stretched spring from the equilibrium position (our choice of origin) is  and its initial x -
component of the velocity is .

Figure 23.3 Free-body force diagram for spring-object system

Newton’s Second law in the x -direction becomes

This equation of motion, Equation (23.2.1), is called the simple harmonic oscillator equation (SHO). Because the spring force
depends on the distance x , the acceleration is not constant. Equation (23.2.1) is a second order linear differential equation, in which
the second derivative of the dependent variable is proportional to the negative of the dependent variable,

In this case, the constant of proportionality is k/m.

Equation (23.2.2) can be solved from energy considerations or other advanced techniques but instead we shall first guess the
solution and then verify that the guess satisfies the SHO differential equation (see Appendix 22.3.A for a derivation of the
solution).
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We are looking for a position function x(t) such that the second time derivative position function is proportional to the negative of
the position function. Since the sine and cosine functions both satisfy this property, we make a preliminary ansatz (educated guess)
that our position function is given by

where  is the angular frequency (as of yet, undetermined).

We shall now find the condition that the angular frequency  must satisfy in order to insure that the function in Equation (23.2.3)
solves the simple harmonic oscillator equation, Equation (23.2.1). The first and second derivatives of the position function are
given by

Substitute the second derivative, the second expression in Equation (23.2.4), and the position function, Equation (23.2.3), into the
SHO Equation (23.2.1), yielding

Equation (23.2.5) is valid for all times provided that

The period of oscillation is then

One possible solution for the position of the block is

and therefore by differentiation, the x -component of the velocity of the block is

Note that at , the position of the object is  since  and the velocity is 
since . The solution in (23.2.8) describes an object that is released from rest at an initial position , but does not
satisfy the initial velocity condition, . We can try a sine function as another possible solution,

This function also satisfies the simple harmonic oscillator equation because

where . The x -component of the velocity associated with Equation (23.2.10) is

The proposed solution in Equation (23.2.10) has initial conditions  and , thus 
 This solution describes an object that is initially at the equilibrium position but has an initial non-zero x -

component of the velocity, 
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General Solution of Simple Harmonic Oscillator Equation
Suppose  and  are both solutions of the simple harmonic oscillator equation,

Then the sum  of the two solutions is also a solution. To see this, consider

Using the fact that  and  both solve the simple harmonic oscillator equation (23.2.13), we see that

Thus the linear combination  is also a solution of the SHO equation, Equation (23.2.1). Therefore the sum of
the sine and cosine solutions is the general solution,

where the constant coefficients C and D depend on a given set of initial conditions  where 
and  are constants. For this general solution, the x -component of the velocity of the object at time t is then obtained by
differentiating the position function,

To find the constants C and D , substitute t = 0 into the Equations (23.2.16) and (23.2.17). Because ,
the initial position at time t = 0 is

The x -component of the velocity at time t = 0 is

Thus

and the x -component of the velocity of the object-spring system is

Although we had previously specified , Equation (23.2.21) is seen to be a valid solution of the SHO equation
for any values of  and .

Example 23.1: Phase and Amplitude

Show that , where  and 

Solution: Use the identity . Thus 
 Comparing coefficients we see that 

. Therefore

We choose the positive square root to ensure that , and thus
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Thus the position as a function of time can be written as

In Equation (23.2.25) the quantity  is called the phase, and  is called the phase constant. Because  varies
between +1 and −1 , and  A is the amplitude defined earlier. We now substitute Equation (23.2.20) into Equation (23.2.23)
and find that the amplitude of the motion described in Equation (23.2.21), that is, the maximum value of x(t), and the phase are
given by

A plot of x t( ) vs. t is shown in Figure 23.4a with the values  and . Note that  takes
on its maximum value when . This occurs when  where  The maximum value
associated with n = 0 occurs when . For the case shown in Figure 23.4a where  this maximum
occurs at the instant  Let’s plot  vs. t . Notice that when  is shifted to the left
compared with the case  (compare Figures 23.4a with 23.4b). The function  with  reaches its
maximum value at an earlier time than the function . The difference in phases for these two cases is 

 and  is sometimes referred to as the phase shift. When  the, function  reaches
its maximum value at a later time  than the function  as shown in Figure 23.4c.
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Figure 23.4 Phase shift of  (a) to the left by , (b) no shift , (c) to the right 

Example 23.2: Block-Spring System

A block of mass m is attached to a spring with spring constant k and is free to slide along a horizontal frictionless surface. At t = 0 ,
the block-spring system is stretched an amount  from the equilibrium position and is released from rest, . What is
the period of oscillation of the block? What is the velocity of the block when it first comes back to the equilibrium position?

Solution: The position of the block can be determined from Equation (23.2.21) by substituting the initial conditions 
 yielding

and the x -component of its velocity is given by Equation (23.2.22),

The angular frequency of oscillation is  and the period is given by Equation (23.2.7),

The block first reaches equilibrium when the position function first reaches zero. This occurs at time  satisfying
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The x -component of the velocity at time  is then

Note that the block is moving in the negative x -direction at time ; the block has moved from a positive initial position to the
equilibrium position (Figure 23.4(b)).
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