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25.7: Worked Examples
Example 25.1 Elliptic Orbit

A satellite of mass m is in an elliptical orbit around a planet of mass m,, >> m, . The planet is located at one focus of the ellipse.
The satellite is at the distance r, when it is furthest from the planet. The distance of closest approach is r;, (Figure 25.11). What is
(i) the speed v, of the satellite when it is closest to the planet and (ii) the speed v, of the satellite when it is furthest from the
planet?

Figure 25.11 Example 25.1

Solution: The angular momentum about the origin is constant and because r o, L v, and r o, L v, the magnitude of the
angular momentums satisfies

L= Loyp = Loa
Because my; << m,, the reduced mass . =~ m; and so the angular momentum condition becomes
L =mgryv, =mrsru,

We can solve for v, in terms of the constants G, m,,r, andr, as follows. Choose zero for the gravitational potential energy,
U(r = 00) =0 . When the satellite is at the maximum distance from the planet, the mechanical energy is

1 Gm,m
E,=K,+U, = —mi - ——=
2 Tq
When the satellite is at closest approach the energy is
1 , Gmgmy,
E,= Ems vp — rp
When the satellite is at closest approach the energy is
1 Gm,m
2 s'p
E, 5 Malp — v
Mechanical energy is constant,
E=FE,=E,
therefore
1 Gmym, 1 Gmgm,
E=—mv; — = —myv; —
Tp 2 Tq

From Equation (25.6.2) we know that
Vo = (rp/Ta) Vp

Substitute Equation (25.6.7) into Equation (25.6.6) and divide through by m, /2 yields
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We can solve this Equation (25.6.8) for v,

Lenfetn)) = 2Gm, (22) =

We now use Equation (25.6.7) to determine that
2Gmyry

va:(rp/ra)'vp: (7_ Ly )T
a pl)Ta

Example 25.2 The Motion of the Star SO-2 around the Black Hole at the Galactic Center

The UCLA Galactic Center Group, headed by Dr. Andrea Ghez, measured the orbits of many stars within 0.8" x 0.8" of the
galactic center. The orbits of six of those stars are shown in Figure 25.12.
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Figure 25.12 Obits of six stars near black hole at center of Milky Way galaxy.

We shall focus on the orbit of the star SO-2 with the following orbit properties given in Table 25.13 . Distances are given in
astronomical units, 1au = 1.50 x 10" m, which is the mean distance between the earth and the sun.

Table 25.1 Orbital Properties of S0-2

Period Semi-major Per N
Star ero Eccentricity | axis eriapse poapse
(yrs) 3 (au) (au)
(10 %arcsec )
15.2 0.8763
S0-2 120.7(4.5) 119.5(3.9) | 1812(73)
(0.68/0.76) | (0.0063)

The period of S0-2 satisfies Kepler’s Third Law, given by
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where m; is the mass of S0-2, my is the mass of the black hole, and a is the semi-major axis of the elliptic orbit of S0-2. (a)
Determine the mass of the black hole that the star SO- 2 is orbiting. What is the ratio of the mass of the black hole to the solar
mass? (b) What is the speed of SO-2 at periapse (distance of closest approach to the center of the galaxy) and apoapse (distance of
furthest approach to the center of the galaxy)?

Solution: (a) The semi-major axis is given by

Tp+7q  119.5au+1812au

= 5 5 =965.8au
In SI units (meters), this is
1.50 x 10!
a=965.8au——— 2 _ 145 % 10"m
lau
The mass m; of the star SO-2 is much less than the mass of the black hole, and m2 Equation (25.6.11) can be simplified to
T2 _ 4m’a®
G’m2
Solving for the mass my and inserting the numerical values, yields
47r2a’
myg = ——
T ere

(472) (1.45 x 10"'m)°

(6.67 x 10" 'N-m2 - kg 2) ((15.2yr) (3.16 x 107s- yr1))”
=7.79 x 10%*kg

The ratio of the mass of the black hole to the solar mass is

my  7.79 x 1034kg

= =3.91 x 10°
Mgun 1.99 x 1030kg

The mass of black hole corresponds to nearly four million solar masses.

(b) We can use our results from Example 25.1 that

2Gmar, Gmar,
VUV, = =
'p (ra+7p)7p ary

Tp 2Gmary Gmary
’Ua = —1)p = —
Tq (rg +7p) 70 arg

where a = (r, +73) /2 is the semi-major axis. Inserting numerical values,

_ |GmaTe

U = a 7
| (6:67x10'N-m? kg ?) (7.79 x 10"'kg) ( 1812 )
B (1.45 x 10" m) 119.5

=7.38x10°m-s7!

The speed v, at apoapse is then

Tp 1812 6 1 5 -1
Vg = Evp = (T%) (7.38 x10°m-s ) =4.87x10°m-s
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Example 25.3 Central Force Proportional to Distance Cubed

A particle of mass m moves in plane about a central point under an attractive central force of magnitude F' = br3. The magnitude
of the angular momentum about the central point is equal to L. . (a) Find the effective potential energy and make sketch of effective
potential energy as a function of r . (b) Indicate on a sketch of the effective potential the total energy for circular motion. (c) The
radius of the particle’s orbit varies between ry and 27¢. Find 7.

Solution: a) The potential energy, taking the zero of potential energy tobeatr=0 B is
! /3 / b 4
U(r) = — —br'3) dr' = —r

The effective potential energy is

L? L? b 4
+U(r) = + =
(r) 2mr? 4
A plot is shown in Figure 25.13a, including the potential (yellow, right-most curve), the term L?/2m (green, left-most curve) and
the effective potential (blue, center curve). The horizontal scale is in units of 7y (corresponding to radius of the lowest energy

circular orbit) and the vertical scale is in units of the minimum effective potential.

Uett () =

2mr?

b) The minimum effective potential energy is the horizontal line (red) in Figure 25.13a.
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Figure 25.13 (a) Effective potential energy with lowest energy state (red line), (b) higher energy state (magenta line)
) We are trying to determine the value of 7 such that U (rg) = Uegt (279) . Thus

L? b L?

_— + _T4 —
2 0 171(27'0)2

b 4
+ —=(2r
211 4( 0)

Rearranging and combining terms, we can then solve for 7,

3L21 _ 157 4
3 r§_4bT0
6__ 1 L
70 = 10 mb

In the plot in Figure 25.13b, if we could move the red line up until it intersects the blue curve at two point whose value of the
radius differ by a factor of 2 , those would be the respective values for 7y and 2rj. A graph, showing the corresponding energy as
the horizontal magenta line, is shown in Figure 25.13b.

Example 25.4 Transfer Orbit

A space vehicle is in a circular orbit about the earth. The mass of the vehicle is m; = 3.00 x 103kg and the radius of the orbit is
2R, =1.28 x 10*km. It is desired to transfer the vehicle to a circular orbit of radius 4R, (Figure 24.14). The mass of the earth is
M, =5.97 x 10?*kg . (a) What is the minimum energy expenditure required for the transfer? (b) An efficient way to accomplish
the transfer is to use an elliptical orbit from point A on the inner circular orbit to a point B on the outer circular orbit (known as a
Hohmann transfer orbit). What changes in speed are required at the points of intersection, A and B?
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Figure 24.12 Example 25.5

Solution: (a) The mechanical energy is the sum of the kinetic and potential energies,

E=K+U
M.
= 5m5v2 -G m;Ze
For a circular orbit, the orbital speed and orbital radius must be related by Newton’s Second Law,
F, =ma,
ms Me _ v?
G = TR
mg M,
Lot = Lot
Substituting the last result in (25.6.22) into Equation (25.6.21) yields
1 _msM, ms M, 1 _msM 1
E=_— S e_G s e:__G S e:—URe
2 R, R, 2 R, 2 (Be)

Equation (25.6.23) is one example of what is known as the Virial Theorem, in which the energy is equal to (1/2) the potential
energy for the circular orbit. In moving from a circular orbit of radius 2R, to a circular orbit of radius 4R., the total energy
increases, (as the energy becomes less negative). The change in energy is

AE =E(r=4R.)—E(r=2R,)

B _lesMe B (_l msMe)
2 4R, 2 2R,

~ Gm,M,

~ 8R.

Inserting the numerical values,

1 _m,M, 1 _m,M,
AE = =@ s e:_G siVle
8 R, 4 2R,

(3.00 x 10°kg) (5.97 x 10**kg)
(1.28 x 10*km)

= %(6.67 x10""m? kg™ -s7%)

=2.3x10'J

b) The satellite must increase its speed at point A in order to move to the larger orbit radius and increase its speed again at point B
to stay in the new circular orbit. Denote the satellite speed at point A while in the circular orbit as v4 ; and after the speed increase
(a “rocket burn”) as v4,y Similarly, denote the satellite’s speed when it first reaches point B as vp; Once the satellite reaches point
B, it then needs to increase its speed in order to continue in a circular orbit. Denote the speed of the satellite in the circular orbit at
point B by vp ¢. The speeds v4; and vp ; are given by Equation (25.6.22). While the satellite is moving from point A to point B in
the elliptic orbit (that is, during the transfer, after the first burn and before the second), both mechanical energy and angular
momentum are conserved. Conservation of energy relates the speeds and radii by
1 MM, 1

— 2_ e 2_
5 Ms (va)"—G °R. 2m5(v3,t) G

MsMe

4R,
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Conservation of angular momentum relates the speeds and radii by

msva,f (2R.) =msup; (4R.) = va,r = 2vup;

Substitution of Equation (25.6.27) into Equation (25.6.26) yields, after minor algebra,

2GM, 1 GM.
VA, f = 3 UB,i = R

We can now use Equation (25.6.22) to determine that

|

[\

1 GM,
VA =4 g R UB,f =

Q

M.
R.

=

Thus the change in speeds at the respective points is given by

G
A'UAZ'UA,f_vA,i:(\/g_\/;) R

G.
Avp =vpf—vp; = (ﬁ— )

=
=

=

o=
o]

<

Substitution of numerical values gives
Avy =8.6x10°m-s2, Avg=7.2x10°m-s2

This page titled 25.7: Worked Examples is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin
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