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25.4: Energy Diagram, Effective Potential Energy, and Orbits
The energy (Equation (25.3.8)) of the single body moving in two dimensions can be reinterpreted as the energy of a single body
moving in one dimension, the radial direction r, in an effective potential energy given by two terms,

The energy is still the same, but our interpretation has changed,

where the effective kinetic energy  associated with the one-dimensional motion is

The graph of  as a function of  where  as given in Equation (25.3.13), is shown in Figure 25.4. The upper red curve
is proportional to  The lower blue curve is proportional to . The sum  is represented
by the middle green curve. The minimum value of  is at , as will be shown analytically below. The vertical scale is in
units of . Whenever the one-dimensional kinetic energy is zero, , the energy is equal to the effective potential
energy,

Recall that the potential energy is defined to be the negative integral of the work done by the force. For our reduction to a one-body
problem, using the effective potential, we will introduce an effective force such that

Figure 25.4 Graph of effective potential energy

The fundamental theorem of calculus (for one variable) then states that the integral of the derivative of the effective potential
energy function between two points is the effective potential energy difference between those two points,

Comparing Equation (25.4.6) to Equation (25.4.5) shows that the radial component of the effective force is the negative of the
derivative of the effective potential energy,
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The effective potential energy describes the potential energy for a reduced body moving in one dimension. (Note that the effective
potential energy is only a function of the variable r and is independent of the variable θ ). There are two contributions to the
effective potential energy, and the radial component of the force is then

Thus there are two “forces” acting on the reduced body,

with an effective centrifugal force given by

and the centripetal gravitational force given by

With this nomenclature, let’s review the four cases presented in Section 25.3.

Figure 25.5 Plot of  vs. r with four energies corresponding to circular, elliptic, parabolic, and hyperbolic orbits

Circular Orbit 
The lowest energy state, , corresponds to the minimum of the effective potential energy, . We can minimize
the effective potential energy

and solve Equation (25.4.12) for ,

reproducing Equation (25.3.13). For  which corresponds to a circular orbit.

Elliptic Orbit 
For , there are two points . At these points ,
therefore  which corresponds to a point of closest or furthest approach (Figure 25.6). This condition corresponds to the
minimum and maximum values of r for an elliptic orbit.
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Figure 25.6 (a) elliptic orbit, (b) closest and furthest approach

The energy condition at these two points

is a quadratic equation for the distance r ,

There are two roots

Equation (25.4.16) may be simplified somewhat as

From Equation (25.3.14), the square root is the eccentricity 

and Equation (25.4.17) becomes

A little algebra shows that

Substituting the last expression in (25.4.20) into Equation (25.4.19) gives an expression for the points of closest and furthest
approach,
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The minus sign corresponds to the distance of closest approach,

and the plus sign corresponds to the distance of furthest approach,

Parabolic Orbit E = 0
The effective potential energy, as given in Equation (25.4.1), approaches zero  when the distance r approaches infinity 

. When , as , the kinetic energy also approaches zero, . This corresponds to a parabolic orbit (see
Equation (25.3.23)). Recall that in order for a body to escape from a planet, the body must have an energy  (we set 
at infinity) This escape velocity condition corresponds to a parabolic orbit. For a parabolic orbit, the body also has a distance of
closest approach. This distance  can be found from the condition

Solving Equation (25.4.24) for  yields

the fact that the minimum distance to the origin (the focus of a parabola) is half the semilatus rectum is a well-known property of a
parabola (Figure 25.5).

Hyperbolic Orbit E > 0
When , in the limit as  the kinetic energy is positive, . This corresponds to a hyperbolic orbit (see Equation
(25.3.24)). The condition for closest approach is similar to Equation (25.4.14) except that the energy is now positive. This implies
that there is only one positive solution to the quadratic Equation (25.4.15), the distance of closest approach for the hyperbolic orbit

The constant  is independent of the energy and from Equation (25.3.14) as the energy of the single body increases, the
eccentricity increases, and hence from Equation (25.4.26), the distance of closest approach gets smaller (Figure 25.5).
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