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23.6: Forced Damped Oscillator
Let’s drive our damped spring-object system by a sinusoidal force. Suppose that the x - component of the driving force is given by

where  is called the amplitude (maximum value) and  is the driving angular frequency. The force varies between  and 
because the cosine function varies between +1 and −1. Define x(t) to be the position of the object with respect to the equilibrium
position. The x -component of the force acting on the object is now the sum

Newton’s Second law in the x -direction becomes

We can rewrite Equation (23.6.3) as

We derive the solution to Equation (23.6.4) in Appendix 23E: Solution to the forced Damped Oscillator Equation. The solution to
is given by the function

where the amplitude  is a function of the driving angular frequency ω and is given by

The phase constant φ is also a function of the driving angular frequency ω and is given by

In Equations (23.6.6) and (23.6.7)

is the natural angular frequency associated with the undriven undamped oscillator. The x -component of the velocity can be found
by differentiating Equation (23.6.5),

where the amplitude  is given by Equation (23.6.6) and the phase constant  is given by Equation (23.6.7).

Resonance
When  we say that the oscillator is lightly damped. For a lightly-damped driven oscillator, after a transitory period,
the position of the object will oscillate with the same angular frequency as the driving force. The plot of amplitude  vs.
driving angular frequency ω for a lightly damped forced oscillator is shown in Figure 23.16. If the angular frequency is increased
from zero, the amplitude of the  will increase until it reaches a maximum when the angular frequency of the driving force is
the same as the natural angular frequency,  associated with the undamped oscillator. This is called resonance. When the driving
angular frequency is increased above the natural angular frequency the amplitude of the position oscillations diminishes.
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Figure 23.16 Plot of amplitude  vs. driving angular frequency ω for a lightly damped oscillator with 

We can find the angular frequency such that the amplitude  is at a maximum by setting the derivative of Equation (23.6.6)
equal to zero,

This vanishes when

For the lightly-damped oscillator, , and so the maximum value of the amplitude occurs when

The amplitude at resonance is then

The plot of phase constant  vs. driving angular frequency ω for a lightly damped forced oscillator is shown in Figure 23.17.

Figure 23.17 Plot of phase constant  vs. driving angular frequency ω for a lightly damped oscillator with 
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The phase constant at resonance is zero,

At resonance, the x -component of the velocity is given by

When the oscillator is not lightly damped , the resonance peak is shifted to the left of  as shown in the plot of
amplitude vs. angular frequency in Figure 23.18. The corresponding plot of phase constant vs. angular frequency for the non-lightly
damped oscillator is shown in Figure 23.19.

Figure 23.18 Plot of amplitude vs. angular frequency for lightly-damped driven oscillator where 

Figure 23.19 Plot of phase constant vs. angular frequency for lightly-damped driven oscillator where 

Mechanical Energy
The kinetic energy for the driven damped oscillator is given by

The potential energy is given by
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The mechanical energy is then

Example 23.5: Time-Averaged Mechanical Energy

The period of one cycle is given by . Show that

(i) 

(ii) 

(iii) 

Solution: (i) We use the trigonometric identity

to rewrite the integral in Equation (23.6.19) as

Integration yields

where we used the trigonometric identity that

proving Equation (23.6.19).

(ii) We use a similar argument starting with the trigonometric identity that

Then

Integration yields

(iii) We first use the trigonometric identity that

Then
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The values of the integrals in Example 23.5 are called the time-averaged values. We denote the time-average value of a function f(t)
over one period by

In particular, the time-average kinetic energy as a function of the angular frequency is given by

The time-averaged potential energy as a function of the angular frequency is given by

The time-averaged value of the mechanical energy as a function of the angular frequency is given by

We now substitute Equation (23.6.6) for the amplitude into Equation (23.6.34) yielding

A plot of the time-averaged energy versus angular frequency for the lightly-damped case  is shown in Figure 23.20.

Figure 23.20). We first substitute  everywhere in Equation (23.6.35) except the term  that appears in the
denominator, yielding

We can approximate the term

Then Equation (23.6.36) becomes

The right-hand expression of Equation (23.6.38) takes on its maximum value when the denominator has its minimum value. By
inspection, this occurs when . Alternatively, to find the maximum value, we set the derivative of Equation (23.6.35) equal to
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zero and solve for ω,

The maximum occurs when occurs at  and has the value

The Time-averaged Power

The time-averaged power delivered by the driving force is given by the expression

where we used Equation (23.6.1) for the driving force, and Equation (23.6.9) for the x -component of the velocity of the object. We
use the trigonometric identity

to rewrite the integral in Equation (23.6.41) as two integrals

Using the time-averaged results from Example 23.5, we see that the first term in Equation (23.6.43) is zero and the second term
becomes

For the underdamped driven oscillator, we make the same approximations in Equation (23.6.44) that we made for the time-
averaged energy. In the term in the numerator and the

term on the left in the denominator, we set , and we use Equation (23.6.37) in the term on the right in the denominator
yielding

\[ \langle P(\omega)\rangle=\frac{F_{0}^{2} \sin (\phi)}{2 m\left((b / m)^{2}+2\left(\omega_{0}-\omega\right)\right)^{1 / 2}}
(underdamped)\end{equation}

The time-averaged power dissipated by the resistive force is given by

where we used Equation (23.5.1) for the dissipative force, Equation (23.6.9) for the x -component of the velocity of the object, and
Equation (23.6.19) for the time-averaging.
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Quality Factor
The plot of the time-averaged energy vs. the driving angular frequency for the underdamped oscullator has a width,  (Figure
23.20). One way to characterize this width is to define , where  are the values of the angular frequency such
that time-averaged energy is equal to one half its maximum value

The quantity  is called the line width at half energy maximum also known as the resonance width. We can now solve for  by
setting

yielding the condition that

Taking square roots of Equation (23.6.49) yields

Therefore

The half-width is then

We define the quality Q of the resonance as the ratio of the resonant angular frequency to the line width,

Figure 23.21 Plot of time-averaged energy vs. angular frequency for different values of 

In Figure 23.21 we plot the time-averaged energy vs. angular frequency for several different values of the quality factor Q = 10, 5,
and 3. Recall that this was the same result that we had for the quality of the free oscillations of the damped oscillator, Equation
(23.5.16) (because we chose the factor  in Equation (23.5.16)).
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