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12.2: Worked Examples

Example 12.2.1: Filling a Coal Car

An empty coal car of mass my starts from rest under an applied force of magnitude F . At the same time coal begins to run into
the car at a steady rate b from a coal hopper at rest along the track (Figure 12.5). Find the speed when a mass m,. of coal has
been transferred.

Figure 12.5 Filling a coal car
Solution

We shall analyze the momentum changes in the horizontal direction, which we call the x -direction. Because the falling coal
does not have any horizontal velocity, the falling coal is not transferring any momentum in the x -direction to the coal car. So
we shall take as our system the empty coal car and a mass m, of coal that has been transferred. Our initial state at t = 0 is when
the coal car is empty and at rest before any coal has been transferred. The x -component of the momentum of this initial state is
Zer0,

p-(0)=0

Our final state at ¢ = ¢y is when all the coal of mass m,. = bty has been transferred into the car that is now moving at speed
v¢. The x -component of the momentum of this final state is

Pz (tr) = (mo +me) vy = (mo +bty)vg

There is an external constant force F,, = F' applied through the transfer. The momentum principle applied to the x -direction is

23
/0 Fydt = Ap, = s (t7) — s (0)

Because the force is constant, the integral is simple and the momentum principle becomes
Ft; = (mo+bty) vy
So the final speed is

Fty
vp=————
! (mo +btf)

Example 12.2.2: Emptying a Freight Car

A freight car of mass m. contains sand of mass m . At t =0 a constant horizontal force of magnitude F is applied in the
direction of rolling and at the same time a port in the bottom is opened to let the sand flow out at the constant rate
b =dm/dt. Find the speed of the freight car when all the sand is gone (Figure 12.6). Assume that the freight car is at rest at
t=0.
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Figure 12.6 Emptying a freight car
Solution

Choose the positive x -direction to point in the direction that the car is moving. Choose for the system the amount of sand in

the fright car at time t, m.(t). At time t, the car is moving with velocity 76(15) = v,(t)i. The momentum diagram for the
system at time t is shown in the diagram on the left in Figure 12.7.

v.(7) v (1) + AV,
m (1) m (t)+ Am,
V(1) + AV,
—
] o
time ¢ time ¢+ At

Figure 12.7 Momentum diagram at time t and at time ¢ + At

The momentum of the system at time t is given by

B ays (£) =me(t) Vo(t)

During the time interval [¢, ¢+ At], an amount of sand of mass Amy leaves the freight car and the mass of the freight car
changes by m.(t + At) = m.(t) + Am,. , where Am. = —Am, . At the end of the interval the car is moving with velocity
70(15 +At) = 7C(t) +A7C = (vc(t) + Av,) i . The momentum diagram for the system at time ¢+ At is shown in the
diagram on the right in Figure 12.7. The momentum of the system at time ¢ + At is given by

_)

B b+ A8) = (Amy +me(6) + Ame) (Vo(t) + AV ) =me(t) (Velt) + AV, )

Note that the sand that leaves the car is shown with velocity v .(¢) + A v . . This implies that all the sand leaves the car with
the velocity of the car at the end of the interval. This is an approximation. Because the sand leaves continuous, the velocity will

vary from v .(t) to v (t)+A v, but so does the change in mass of the car and these two contributions to the system’s
moment exactly cancel. The change in momentum of the system is then

AP sys = Baya(t+A8) = B s () =me(t) (Velt) +AVe) —me(t) Ve(t) = me()AV.

— R
Throughout the interval a constant force F = F'i is applied to the system so the momentum principle becomes

— —
f‘) — p sys (t + At) - P sYs (t) — (t) A7c _ (t) d;}c
~ A0 At T amo WAy T T

Because the motion is one-dimensional, Equation (12.3.9) written in terms of x -components becomes
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dv,

Denote by initial mass of the car by m o = m. +m, where m, is the mass of the car and m; is the mass of the sand in the
car at t = 0. The mass of the sand that has left the car at time t is given by

t d s t
ms(t):/ i dt:/ bdt = bt
o dt 0

me(t) =meo—bt =m.+mg —bt

Thus

Therefore Equation (12.3.10) becomes

dv,

F = (mc—i-ms —bt)E

This equation can be solved for the x -component of the velocity at time t , v.(t) (which in this case is the speed) by the
method of separation of variables. Rewrite Equation (12.3.13) as

Fdt

dvo=—""—"+
Y (m¢+ms —bt)

Then integrate both sides of Equation (12.3.14) with the limits as shown

v'=vc(t) t'=t Fdt'
dve = ——
v'=0 v=0 Mc+mg—bt'

Integration yields the speed of the car as a function of time

= F me.+mg — bt F Me +m
=——In| ———— | = —In| —

F '
v.(t) = — —In(m. +m, —bt') o b T b me +mg — bt

b

In writing Equation (12.3.16), we used the property that In(a) —In(b) =In(a/b) and therefore In(a/b) = —1In(b/a). Note
Me+Ms

>0, and the speed of the car increases as we expect.
m.+mg—bt

that m., +ms > m. +mgz — bt , so the term ln(

Example 12.2.3: Filling a Freight Car

Grain is blown into car A from car B at a rate of b kilograms per second. The grain leaves the chute vertically downward, so
that it has the same horizontal velocity, u as car B , (Figure 12.8). Car A is initially at rest before any grain is transferred in and
has mass m 4,9. At the moment of interest, car A has mass m 4 and speed v . Determine an expression for the speed car A as a
function of time t.

Figure 12.8 Filling a freight car
Solution

Choose positive x -direction to the right in the direction the cars are moving. Define the system at time t to be the car and grain
that is already in it, which together has mass m 4 (¢) and the small amount of material of mass Am, that is blown into car A
during the time interval [¢, ¢ + At] At time that is moving with x -component of the velocity V4. At time t, car A is moving

- A c ] q q g - A ] q
with velocity v 4(t) =v4(¢)i and the material blown into car is moving with velocity u =wui At time ¢+ At car A is
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moving with velocity V 4 (t)+ AV, = (va(t)+Avy) i , and the mass of car A is m 4 (t + At) =my(t) + Am, where
Am, = Am,. The momentum diagram for times t and for ¢ + At is shown in Figure 12.9.

] .

_— i

[ ] >

Amg
v, (?) v, (H)+AV,
— e
Al m (1) Al m (1)+Am,

time ¢ time ¢+ At

Figure 12.9 Momentum diagram at times t and ¢ + At

The momentum at time t is
g — —
Py (t) =ma(t) v a(t) +Amgu
The momentum at time ¢ + At is
g — —
P, (t+At) = (ma(t) + Amy) (VA(t) +A vA)

There are no external forces acting on the system in the x -direction and the external forces acting on the system perpendicular
to the motion sum to zero, so the momentum principle becomes

— Ez t+ At fz t
2 BatrA) By
At—0 At

Using the results above (Equations (12.3.17) and (12.3.18), the momentum principle becomes

. (ma(t) + Amy) (7A(t) +A?A) - (mA(t)7A(t)+Ang>)
0 = lim
At—0 At

which after using the condition that Am4 = Amg and some rearrangement becomes

— —
— . mA(t)A;)A . Amy (vA(t)_ u) . AmAA;)A
0 = lim + lim + lim
At—0 At At—0 At At—0 At

_)
In the limit as , the product Am4A'V 4 is a second order differential (the product of two first order differentials) and the term

Amy AV 4/ At approaches zero, therefore the momentum principle yields the differential equation

_>
- dvy dmy /— —
0 —ma(t) T4+ (VA(t)—u)

The x -component of Equation (12.3.22) is then

g
0 :mA(t)% i ZZA (va(t) —u)

Rearranging terms and using the fact that the material is blown into car A at a constant rate b = dm 4 /dt, we have that the rate
of change of the x -component of the velocity of car A is given by
dva(t)  b(u—wva(?))
d ma(t)

We cannot directly integrate Equation (12.3.24) with respect to dt because the mass of the car A is a function of time. In order
to find the x -component of the velocity of car A we need to know the relationship between the mass of car A and the x -
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component of the velocity of the car A . There are two approaches. In the first approach we separate variables in Equation
(12.3.24) where we have suppressed the dependence on t in the expressions for m 4 and V4 yielding

dv A dm A
U —vgp B ma
which becomes the integral equation
/v:a_vA(t) dv'y _ /m'Ar =ma(t) dm/,
v, =0 u— v;l mh:mA,o mi4
where m 4 g is the mass of the car before any material has been blown in. After integration we have that
u mal(t
In =In a(t)
U—vy (t) My
Exponentiate both side yields
u my(t)

u—v4(t) B mAa0

We can solve this equation for the x -component of the velocity of the car

ma(t) —may
mA(t)

Because the material is blown into the car at a constant rate b = dm 4 /dt, the mass of the car as a function of time is given by

va(t) =

mA(t) =My, + bt
Therefore substituting Equation (12.3.30) into Equation (12.3.29) yields the x -component of the velocity of the car as a

function of time

bt

=
va(t) mA70+btu

In a second approach, we substitute Equation (12.3.30) into Equation (12.3.24) yielding
dva  b(u—vy)
dt  mgo+bt
Separate variables in Equation (12.3.32):

dvy bdt
u—v4 my, o+ bt

which then becomes the integral equation

/ ’()’A:’I)A(t) dvi4 / t'=t' dtl
v, =0 u—vy  Jyog maotbt!

Integration yields

u mao+ bt
In =In
u—va(t) ma,o
Again exponentiate both sides resulting in
u mA’O -+ bt
u—wva(t)  m 4,0

After some algebraic manipulation we can find the speed of the car as a function of time

https://phys.libretexts.org/@go/page/24495



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/24495?pdf

LibreTextsw

bt
va(t) = mu
in agreement with Equation (12.3.31).
Check result:
We can rewrite Equation (12.3.37) as
(Mg +bt)vy(t) =btu

which illustrates the point that the momentum of the system at time t is equal to the momentum of the grain that has been
transferred to the system during the interval [0,t].

Example 12.2.4: Boat and Fire Hose

A burning boat of mass my is initially at rest. A fire fighter stands on a bridge and sprays water onto the boat. The water leaves
the fire hose with a speed u at a rate o (measured in kg-s—!). Assume that the motion of the boat and the water jet are
horizontal, that gravity does not play any role, and that the river can be treated as a frictionless surface. Also assume that the
change in the mass of the boat is only due to the water jet and that all the water from the jet is added to the boat, (Figure
12.10).

Figure 12.10 Example 12.4
a. In a time interval [¢, ¢ + At], an amount of water Am hits the boat. Choose a system. Is the total momentum constant in
your system? Write down a differential equation that results from the analysis of the momentum changes inside your
system.
b. Integrate the differential equation you found in part a), to find the velocity v(m) as a function of the increasing mass m of
the boat, mg, and u.

Solution

Let’s take as our system the boat, the amount of water of mass Am,, that enters the boat during the time interval [¢, ¢ + At]
and whatever water is in the boat at time t . The water from the fire hose has a speed u . Denote the mass of the boat (including
some water) at time t by my, = mj(t), and the speed of the boat by v = vy (¢) . At time ¢ + At the speed of the boat is v+ Awv.
Choose the positive x - direction in the direction that the boat is moving. Then the x -components of the momentum of the
system at time t and ¢t + At are shown in Figure 12.11.
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Figure 12.11 Momentum diagrams for burning boat

Because we are assuming that the burning boat slides with negligible resistance and that gravity has a negligible effect on the
arc of the water jet, there are no external forces acting on the system in the x -direction. Therefore the x -component of the
momentum of the system is constant during the interval [¢, ¢ + At] and so

. Dz (t +At) — Dz (t)
0= lim
At—0 At

Using the information from the figure above, Equation (12.3.39) becomes

o (mp+ Amy,) (v+ Av) — (Amy,u +mpv)
0= lim
At—0 At

Equation (12.3.40) simplifies to

A’v Amw . AmwA'U . Amw
0= lim my— + lim v+ lim — lim Uu
At—0 At At=0 At At—0 At At=0 At

The third term vanishes when we take the limit At — 0 because it is of second order in the infinitesimal quantities (in this case
Am,, Av) and when so dividing by At the quantity is of first order and hence vanishes since both Am,, — 0 and Av— 0
Equation (12.3.41) becomes

Am . Amy,

Av "
— T e 1 IE -1
0= fim mynp+ fim —5—v— lim =5

u

‘We now use the definition of the derivatives:

Av dv .. Am, dm,

B, = e g
AL AL dt a0 At dt

in Equation (12.3.42) to fund the differential equation describing the relation between the acceleration of the boat and the time
rate of change of the mass of water entering the boat

dv dm,y,
0=m v—u
rraralCal)
The mass of the boat is increasing due to the addition of the water. Let m,, (¢) denote the mass of the water that is in the boat at
time t .Then the mass of the boat can be written as

my(t) = mg +my ()

where my is the mass of the boat before any water entered. Note we are neglecting the effect of the fire on the mass of the
boat. Differentiating Equation (12.3.45) with respect to time yields

dmp  dmy,
dt  dt
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Then Equation (12.3.44) becomes

dv dmy
O—mbE—FW(v—u)
(b) We can integrate this equation through the separation of variable technique. Rewrite Equation (12.3.47) as (cancel the

common factor dt )

dv dmy,

v—u my

We can then integrate both sides of Equation (12.3.48) with the limits as shown

LIOR my(t) dmy
~/v:0 v—u _/mo my

Integration yields

Recall that In(a/b) = —In(b/a) so Equation (12.3.50) becomes

=(55) (i)

Also recall that exp(In(a/b)) = a/b and so exponentiating both sides of Equation (12.3.51) yields

v(t)—u  my

—u my(t)

So the speed of the boat at time t can be expressed as

WP“@‘%@)

Check result:

We can rewrite Equation (12.3.52) as
my(t)(v(t) —u) = —mou = mp(t)v(t) = (mp(t) —mo) u

Recall that the mass of the water that enters the car during the interval [0,t] is m,, () = m4(t) —myg . Therefore Equation
(12.3.54) becomes

my (£)o(t) = i (Hu

During the interaction between the jet of water and the boat, the water transfers an amount of momentum m,,(¢)u to the boat
and car producing a momentum m;(¢)v(t). Because all the water that collides with the boat ends up in the boat, all the
interaction forces between the jet of water and the boat are internal forces. The boat recoils forward and the water recoils
backward and through collisions with the boat stays in the boat. Therefore if we choose as our system, all of the water that
eventually ends up in the boat and the boat then the momentum principle states

DPsys (t) = DPsys (0)
where pgy,(0) = m,, (t)u is the momentum of all of the water that eventually ends up in the boat.

Note that the problem didn’t ask to find the speed of the boat as a function t . We shall now show how to find that. We begin by
observing that
dmy  dmy,
dt  dt
where the constant « is measured in kg - s~ and is specified as a given constant according to the information in the problem
statement. The reason is that « is the rate that the water is ejected from the hose but not the rate that the water enters the boat.

#a
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Am = Ault I"“-i

Figure 12.12 Mass per unit length of water jet

Consider a small amount of water that is moving with speed u that, in a time interval At , flows through a cross sectional area
oriented perpendicular to the flow (see Figure 12.12). The area is larger than the cross sectional area of the jet of water. The
amount of water that floes through the area element Am = AuAt where A is the mass per unit length of the jet and uAt is the
length of the jet that flows through the area in the interval At . The mass rate of water that flows through the cross sectional
area element is then

Am
=AM

In the Figure 12.13 we consider a small length uAt of the water jet that is just behind the boat at time t . During the time
interval [t, t + At], the boat moves a distance vAt.

«

| uAt | Vv

Figure 12.13 Amount of water that enter boat in time interval [t, ¢ + At]

Only a fraction of the length uAt of water enters the boat and is given by
Amy, = A(u —v)At = %(u —v)At

Dividing Equation (12.3.59) through by At and taking limits we have that

dmy, I Am, « ( ) ( 1 v )
=lim —=—(u—v)=a(l——
dt At—0 At U

Substituting Equation (12.3.53) and Equation (12.3.46) into Equation (12.3.60) yields
dmy, v mo
2 —a(1-2) =a

We can integrate this equation by separating variables to find an integral expression for the mass of the boat as a function of
time

u

m(t) t
/ mpydmy = amyg dt

mo t=0
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We can easily integrate both sides of Equation (12.3.62) yielding

1
5 (my (t)? — md) = amyt

t
my(t) =mg, /1 yo 2
mgo

‘We now substitute Equation (12.3.64) into Equation (12.3.65)yielding the speed of the burning boat as a function of time

The mass of the boat as a function of time is then

1
JJ1+2-%
mb,0
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