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23.8: Appendix 23A- Solution to Simple Harmonic Oscillator Equation
In our analysis of the solution of the simple harmonic oscillator equation of motion, Equation (23.2.1),

we assumed that the solution was a linear combination of sinusoidal functions,

where . We shall now derive Equation (23.A.2).

Assume that the mechanical energy of the spring-object system is given by the constant E . Choose the reference point for potential
energy to be the unstretched position of the spring. Let x denote the amount the spring has been compressed  or stretched 

 from equilibrium at time t and denote the amount the spring has been compressed or stretched from equilibrium at time 
. Let  denote the x -component of the velocity at time t and denote the x -component of the

velocity at time . The constancy of the mechanical energy is then expressed as

We can solve Equation (23.A.3) for the square of the x -component of the velocity,

Taking square roots, we have

(why we take the positive square root will be explained below).

Let  and . It’s worth noting that  has dimensions of velocity and w has dimensions of [length] to the
power −2 . Equation (23.A.5) is separable,

We now integrate Equation (23.A.6),

The integral on the left in Equation (23.A.7) is well known, and a derivation is presented here. We make a change of variables 
 with the differentials  and  related by . The integration variable is

Equation (23.A.7) then becomes

This is a good point at which to check the dimensions. The term on the left in Equation (23.A.9) is dimensionless, and the product 
 on the right has dimensions of inverse time,  so  dt is dimensionless.

Using the trigonometric identity , Equation (23.A.9) reduces to
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Although at this point in the derivation we don’t know that , which has dimensions of frequency, is the angular frequency of
oscillation, we’ll use some foresight and make the identification

and Equation (23.A.10) becomes

After integration we have

where  is the constant of integration. Because  Equation (23.A.13) becomes

Take the cosine of each side of Equation (23.A.14), yielding

At t = 0

The x -component of the velocity as a function of time is then

At t = 0,

We can determine the constant  by dividing the expressions in Equations (23.A.18) and (23.A.16),

Thus the constant  can be determined by the initial conditions and the angular frequency of oscillation,

Use the identity

to expand Equation (23.A.15) yielding

and substituting Equations (23.A.16) and (23.A.18) into Equation (23.A.22) yields

agreeing with Equation (23.2.21).
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So, what about the missing  that should have been in Equation (23.A.5)? Strictly speaking, we would need to redo the derivation
for the block moving in different directions. Mathematically, this would mean replacing  by  (or ) when the block’s
velocity changes direction. Changing from the positive square root to the negative and changing  to  have the collective
action of reproducing Equation (23.A.23).
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