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22.1: Introduction to Three Dimensional Rotations
Most of the examples and applications we have considered concerned the rotation of rigid bodies about a fixed axis. However,
there are many examples of rigid bodies that rotate about an axis that is changing its direction. A turning bicycle wheel, a
gyroscope, the earth’s precession about its axis, a spinning top, and a coin rolling on a table are all examples of this type of motion.
These motions can be very complex and difficult to analyze. However, for each of these motions we know that if there a non-zero
torque about a point , then the angular momentum about  must change in time, according to the rotational equation of motion,

We also know that the angular momentum about  of a rotating body is the sum of the orbital angular momentum about  and the
spin angular momentum about the center of mass.

For fixed axis rotation the spin angular momentum about the center of mass is just

where  is the angular velocity about the center of mass and is directed along the fixed axis of rotation.

Angular Velocity for Three Dimensional Rotations
When the axis of rotation is no longer fixed, the angular velocity will no longer point in a fixed direction.

For an object that is rotating with angular coordinates  about each respective Cartesian axis, the angular velocity of an
object that is rotating about each axis is defined to be

This definition is the result of a property of very small (infinitesimal) angular rotations in which the order of rotations does matter.

For example, consider an object that undergoes a rotation about the x -axis, , and then a second rotation about the y -
axis, . Now consider a different sequence of rotations. The object first undergoes a rotation about the y -axis, ,
and then undergoes a second rotation about the x -axis, . In both cases the object will end up in the same position

indicated that  a necessary condition that must be satisfied in order for a physical quantity to be a vector
quantity.

Example 22.1 Angular Velocity of a Rolling Bicycle Wheel
A bicycle wheel of mass m and radius R rolls without slipping about the z -axis. An axle of length b passes through its center. The
bicycle wheel undergoes two simultaneous rotations. The wheel circles around the z -axis with angular speed Ω and associated

angular velocity  (Figure 22.1). Because the wheel is rotating without slipping, it is spinning about its center of mass
with angular speed  and associated angular velocity 
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ĵ

dθz

dt
k̂

= + +ωx î ωy ĵ ωzk̂
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Figure 22.1 Example 22.1

The angular velocity of the wheel is the sum of these two vector contributions

Because the wheel is rolling without slipping, . The angular velocity is then

The orbital angular momentum about the point  where the axle meets the axis of rotation (Figure 22.1), is then

The spin angular momentum about the center of mass is more complicated. The wheel is rotating about both the z -axis and the
radial axis. Therefore

Therefore the angular momentum about  is the sum of these two contributions

Comparing Equations (22.1.6) and (22.1.9), we note that the angular momentum about  is not proportional to the angular velocity.
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