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13.8: Work and the Scalar Product
We shall introduce a vector operation, called the scalar product or “dot product” that takes any two vectors and generates a scalar
quantity (a number). We shall see that the physical concept of work can be mathematically described by the scalar product between
the force and the displacement vectors.

Scalar Product

Let  and  be two vectors. Because any two non-collinear vectors form a plane, we define the angle θ to be the angle between

the vectors  and  as shown in Figure 13.9. Note that θ can vary from 0 to .

Figure 13.9 Scalar product geometry.

The scalar product  of the vectors  and  is defined to be product of the magnitude of the vectors  and  with the
cosine of the angle θ between the two vectors:

where  represent the magnitude of  and  respectively. The scalar product can be positive, zero, or
negative, depending on the value of . The scalar product is always a scalar quantity.

The angle formed by two vectors is therefore

The magnitude of a vector  is given by the square root of the scalar product of the vector  with itself.

We can give a geometric interpretation to the scalar product by writing the definition as

In this formulation, the term Acosθ is the projection of the vector  in the direction of the vector . This projection is shown in

Figure 13.10a. So the scalar product is the product of the projection of the length of  in the direction of  with the length of .
Note that we could also write the scalar product as

Now the term  is the projection of the vector  in the direction of the vector  as shown in Figure 13.10b. From this

perspective, the scalar product is the product of the projection of the length of  in the direction of  with the length of .
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Figure 13.10 (a) and (b) Projection of vectors and the scalar product

From our definition of the scalar product we see that the scalar product of two vectors that are perpendicular to each other is zero
since the angle between the vectors is  and .

We can calculate the scalar product between two vectors in a Cartesian coordinates system as follows. Consider two vectors 

 and . Recall that

The scalar product between  and  is then

The time derivative of the scalar product of two vectors is given by

In particular when , then the time derivative of the square of the magnitude of the vector  is given by

Kinetic Energy and the Scalar Product
For an object undergoing three-dimensional motion, the velocity of the object in Cartesian components is given by 

. Recall that the magnitude of a vector is given by the square root of the scalar product of the vector with
itself,

Therefore the square of the magnitude of the velocity is given by the expression

Hence the kinetic energy of the object is given by
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Work and the Scalar Product
Work is an important physical example of the mathematical operation of taking the scalar product between two vectors. Recall that
when a constant force acts on a body and the point of application of the force undergoes a displacement along the x -axis, only the
component of the force along that direction contributes to the work,

Suppose we are pulling a body along a horizontal surface with a force . Choose coordinates such that horizontal direction is the x

-axis and the force  forms an angle  with the positive x -direction. In Figure 13.11 we show the force vector 

and the displacement vector of the point of application of the force . Note that  is the component of the
displacement and hence can be greater, equal, or less than zero (but is shown as greater than zero in the figure for clarity). The

scalar product between the force vector  and the displacement vector  is

Figure 13.11 Force and displacement vectors

The work done by the force is then

In general, the angle  takes values within the range  (in Figure 13.11, ). Because the x -component of

the force is  where  denotes the magnitude of , the work done by the force is

Example 13.10 Object Sliding Down an Inclined Plane

An object of mass m = 4.0 kg , starting from rest, slides down an inclined plane of length l = 3.0 m . The plane is inclined by an
angle of  to the ground. The coefficient of kinetic friction is  (a) What is the work done by each of the three forces
while the object is sliding down the inclined plane? (b) For each force, is the work done by the force positive or negative? (c) What
is the sum of the work done by the three forces? Is this positive or negative?

Solution: (a) and (b) Choose a coordinate system with the origin at the top of the inclined plane and the positive x -direction
pointing down the inclined plane, and the positive y - direction pointing towards the upper right as shown in Figure 13.12. While
the object is sliding down the inclined plane, three uniform forces act on the object, the gravitational force which points downward
and has magnitude , the normal force N which is perpendicular to the surface of the inclined plane, and the friction force
which opposes the motion and is equal in magnitude to . A force diagram on the object is shown in Figure 13.13.
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Δ = Δxx
→
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Figure 13.12 Coordinate system for object sliding down the inclined plane

Figure 13.13 Free-body force diagram for object

In order to calculate the work we need to determine which forces have a component in the direction of the displacement. Only the
component of the gravitational force along the positive x -direction  and the friction force are directed along the
displacement and therefore contribute to the work. We need to use Newton’s Second Law to determine the magnitudes of the
normal force. Because the object is constrained to move along the positive x -direction, , Newton’s Second Law in the -
direction . Therefore  and the magnitude of the friction force is .

With our choice of coordinate system with the origin at the top of the inclined plane and the positive x -direction pointing down the

inclined plane, the displacement of the object is given by the vector  (Figure 13.14).

Figure 13.14 Force vectors and displacement vector for object

The vector decomposition of the three forces are , , and .
The work done by the normal force is zero because the normal force is perpendicular the displacement

Then the work done by the friction force is negative and given by
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Substituting in the appropriate values yields

The work done by the gravitational force is positive and given by

Substituting in the appropriate values yields

(c) The scalar sum of the work done by the three forces is then

This page titled 13.8: Work and the Scalar Product is shared under a not declared license and was authored, remixed, and/or curated by Peter
Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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= mgl sinθ = (4.0kg)(9.8m ⋅ ) (3.0m) (sin( ) = 58.8JW g s−2 30∘

W = + = mgl (sinθ− cosθ)W g W f μk

W = (4.0kg)(9.8m ⋅ ) (3.0m) (sin( ) −(0.2) (cos( )) = 38.4J.s−2 30∘ 30∘

https://libretexts.org/
https://phys.libretexts.org/@go/page/26936?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Dourmashkin)/13%3A_Energy_Kinetic_Energy_and_Work/13.08%3A_Work_and_the_Scalar_Product
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Dourmashkin)/13%3A_Energy_Kinetic_Energy_and_Work/13.08%3A_Work_and_the_Scalar_Product?no-cache
https://web.mit.edu/physics/people/academic/dourmashkin_peter.html
https://ocw.mit.edu/index.htm
https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/

