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29.4: Ideal Gas

Consider a gas consisting of a large number of molecules inside a rigid container. We shall assume that the volume occupied by the
molecules is small compared to the volume occupied by the gas, that is, the volume of the container (dilute gas assumption). We
also assume that the molecules move randomly and satisfy Newton’s Laws of Motion. The gas molecules collide with each other
and the walls of the container. We shall assume that all the collisions are instantaneous and any energy converted to potential
energy during the collision is recoverable as kinetic energy after the collision is finished. Thus the collisions are elastic and have
the effect of altering the direction of the velocities of the molecules but not their speeds. We also assume that the intermolecular
interactions contribute negligibly to the internal energy.

Internal Energy of a Monatomic Gas

An ideal monatomic gas atom has no internal structure, so we treat it as point particle. Therefore there are no possible rotational
degrees of freedom or internal degrees of freedom; the ideal gas has only three degrees of freedom, and the internal energy of the
ideal gas is

3
Eitemal = NEkT

Equation (29.4.1) is called the thermal equation of state of a monatomic ideal gas. The average kinetic energy of each ideal gas
atom is then

1 3
5V e = ST

where (02) ave 1S the average of the square of the speeds and is given by

2 3kT
(V) ave =

ave
The temperature of this ideal gas is proportional to the average kinetic of the ideal gas molecule. It is an incorrect inference to say
that temperature is defined as the mean kinetic energy of gas. At low temperatures or non-dilute densities, the kinetic energy is no
longer proportional to the temperature. For some gases, the kinetic energy depends on number density and a more complicated
dependence on temperature than that given in Equation (29.4.2).

m

Pressure of an Ideal Gas

Consider an ideal gas consisting of a large number N of identical gas molecules, each of mass m, inside a container of volume V
and pressure P. The number of gas molecules per unit volume is then » = N/V. The density of the gas is p =nm. The gas
molecules collide elastically with each other and the walls of the container. The pressure that the gas exerts on the container is due
to the elastic collisions of the gas molecules with the walls of the container. We shall now use concepts of energy and momentum to
model collisions between the gas molecules and the walls of the container in order to determine the pressure of the gas in terms of
the volume V , particle number N and Kelvin temperature T
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Figure 29.2 Collision of a gas molecule with a wall of a container
We begin by considering the collision of one molecule with one of the walls of the container, oriented with a unit normal vector
pointing out of the container in the positive i-direction (Figure 29.2). Suppose the molecule has mass m and is moving with

velocity V= vyi+4vyj +v.k . Because the collision with the wall is elastic, the y -and z - components of the velocity of the
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molecule remain constant and the x-component of the velocity changes sign (Figure 29.2), resulting in a change of momentum of
the gas molecule;

- = — A
Ap,, = Pomf— P m; = —2mu, i

Therefore the momentum transferred by the gas molecule to the wall is
A;w = 2mu, i

Now, let’s consider the effect of the collisions of a large number of randomly moving molecules. For our purposes, “random” will
be taken to mean that any direction of motion is possible, and the distribution of velocity components is the same for each
direction.

n  number of gas molecules
per unit volume

nAAx molecules in volume
AV = AAx

Figure 29.3 Small volume adjacent to the wall of the container

Consider a small rectangular volume AV = AAz of gas adjacent to one of the walls of the container as shown in Figure 29.3.
There are nAAz gas molecules in this small volume. Let each group have the same x-component of the velocity. Let n; denote the
number of gas molecules in the j% group with x -component of the velocity v, j. Because the gas molecules are moving randomly,
only half of the gas molecules in each group will be moving towards the wall in the positive x -direction. Therefore in a time
interval At; = Ax /v, ;, the number of gas molecules that strike the wall with x-component of the velocity V, ; is given by

1
An; = EnjAAw

(During this time interval some gas molecules may leave the edges of the box, but because the number that cross the area per
second is proportional to the area, in the limit as Ax — 0, the number leaving the edges also approaches zero.) The number of gas
molecules per second is then

An; 1 Az 1

=—n;A— = =n,Av, ;
At; 2" At; g 1w

The momentum per second that the gas molecules in this group deliver to the wall is

_>
Ap; _ Anjzmvw 3 =nmAn? i
Atj Atj 5] J x,j

By Newton’s Second Law, the average force on the wall due to this group of molecules is equal to the momentum per second
delivered by the gas molecules to the wall;

%
(), - B eoms
Jyw :—:njm U’<1

ave Atj i

The pressure contributed by this group of gas molecules is then

The pressure exerted by all the groups of gas molecules is the sum
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J=N,

j=N,

_ . — 2

P = (‘PJ)ave =m Z n]vz,j
J=1 J=1

The average of the square of the x -component of the velocity is given by
j=N,
2

(v3),.. = 1 yn-v .
T/ ave n J "z, g
=1

where n is the number of gas molecules per unit volume in the container. Therefore we can rewrite Equation (29.4.11) as

P = mn(v‘?p)ave = p(v%)ave

where p is the density of the gas. Because we assumed that the gas molecules are moving randomly, the average of the square of
the x -, y - and z -components of the velocity of the gas molecules are equal,

() e = () ave = (1) e

The average of the square of the speed (vz)ave is equal to the sum of the average of the squares of the components of the velocity,

(v2) ave = (v% ) ave + (’U%) ave + (’U%) ave
. Therefore
(U2) ave = 3 (U‘%) ave

Substituting Equation (29.4.16) into Equation (29.4.13) for the pressure of the gas yields

1
P=30),.

The square root of (v2)ave is called the root-mean-square (“rms”) speed of the molecules

Substituting Equation (29.4.3) into Equation (29.4.17) yields

poOiT
m

Recall that the density of the gas

M Nm

VSTV
Therefore Equation (29.4.18) can be rewritten as
NET

P==
Equation (29.4.20) can be re-expressed as

PV =NKT

Equation (29.4.21) is known as the ideal gas equation of state also known as the Perfect Gas Law or Ideal Gas Law.

The total number of molecules in the gas N = n,, N4 where ny, is the number of moles and N4 is the Avogadro constant. The
ideal gas law becomes

PV =ny, NoKT
The universal gas constant is R = kN4 = 8.31J-K ' -mol " . The ideal gas law can be re-expressed as
PV =n,RT

Although we started with atomistic description of the collisions of individual gas molecules satisfying the principles of
conservation of energy and momentum, we ended up with a relationship between the macroscopic variables pressure, volume,
number of moles, and temperature that are measurable properties of the system.
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One important consequence of the Ideal Gas Law is that equal volumes of different ideal gases at the same temperature and
pressure must contain the same number of molecules,

N=———
kT
When gases combine in chemical reactions at constant temperature and pressure, the numbers of each type of gas molecule
combine in simple integral proportions. This implies that the volumes of the gases must always be in simple integral proportions.
Avogadro used this last observation about gas reactions to define one mole of a gas as a unit for large numbers of particles.

This page titled 29.4: Ideal Gas is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT
OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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