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25.8: Appendix 25A Derivation of the Orbit Equation

25A.1 Derivation of the Orbit Equation: Method 1
Start from Equation (25.3.11) in the form

What follows involves a good deal of hindsight, allowing selection of convenient substitutions in the math in order to get a clean
result. First, note the many factors of the reciprocal of r. So, we’ll try the substitution , with the result

Experience in evaluating integrals suggests that we make the absolute value of the factor multiplying  inside the square root
equal to unity. That is, multiplying numerator and denominator by 

As both a check and a motivation for the next steps, note that the left side  of Equation (25.A.3) is dimensionless, and so the
right side must be. This means that the factor of  in the square root must have the same dimensions as u , or

 so, define  This is of course the semilatus rectum as defined in Equation (25.3.12), and it’s no
coincidence; this is part of the “hindsight” mentioned above. The differential equation then becomes

We now rewrite the denominator in order to express it terms of the eccentricity.

We note that the combination of terms  is dimensionless, and is in fact equal to the square of the eccentricity  as
defined in Equation (25.3.13); more hindsight. The last expression in (25.A.5) is then

From here, we’ll combine a few calculus steps, going immediately to the substitution  with
the final result that

We now integrate Equation (25.A.7) with the very simple result that

We have a choice in selecting the constant, and if we pick  , the result is
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which is our desired result, Equation (25.3.11). Note that if we chose the constant of integration to be zero, the result would be

which is the same trajectory reflected about the “vertical” axis in Figure 25.3, indeed the same as rotating by 

25A.2 Derivation of the Orbit Equation: Method 2
The derivation of Equation (25.A.9) in the form

suggests that the equation of motion for the one-body problem might be manipulated to obtain a simple differential equation. That
is, start from

Setting the components equal, using the constant of motion  and rearranging, Equation (25.A.12) becomes

We now use the same substitution u =1/r and change the independent variable from t to r , using the chain rule twice, since
Equation (25.A.13) is a second-order equation. That is, the first time derivative is

From  we have  Combining with  in terms of L and u,

, Equation (25.A.14) becomes

a very tidy result, with the variable u appearing linearly. Taking the second derivative with respect to t ,

Now substitute Equation (25.A.15) into Equation (25.A.16) with the result that

Substituting into Equation (25.A.13), with  yields

Canceling the common factor of  and rearranging, we arrive at
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Equation (25.A.19) is mathematically equivalent to the simple harmonic oscillator equation with an additional constant term. The
solution consists of two parts: the angleindependent solution

and a sinusoidally varying term of the form

where A and  are constants determined by the form of the orbit. The expression in Equation (25.A.20) is the inhomogeneous
solution and represents a circular orbit. The expression in Equation (25.A.21) is the homogeneous solution (as hinted by the
subscript) and must have two independent constants. We can readily identify  as the semilatus rectum , with the result that

Choosing the product  to be the eccentricity  and  (much as was done leading to Equation (25.A.9) above), Equation
(25.A.9) is reproduced.
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