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25.8: Appendix 25A Derivation of the Orbit Equation

25A.1 Derivation of the Orbit Equation: Method 1
Start from Equation (25.3.11) in the form
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What follows involves a good deal of hindsight, allowing selection of convenient substitutions in the math in order to get a clean
result. First, note the many factors of the reciprocal of r. So, we’ll try the substitution u = 1/r,du = — (1 / 7'2) dr, with the result
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Experience in evaluating integrals suggests that we make the absolute value of the factor multiplying u? inside the square root
equal to unity. That is, multiplying numerator and denominator by /2u/L
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As both a check and a motivation for the next steps, note that the left side df of Equation (25.A.3) is dimensionless, and so the
right side must be. This means that the factor of uGm;my/L? in the square root must have the same dimensions as u , or
length™! so, define ro = L?/uGmymsy This is of course the semilatus rectum as defined in Equation (25.3.12), and it’s no
coincidence; this is part of the “hindsight” mentioned above. The differential equation then becomes
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We now rewrite the denominator in order to express it terms of the eccentricity.
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We note that the combination of terms 2 /LE’I‘% /L* 41 is dimensionless, and is in fact equal to the square of the eccentricity ¢ as
defined in Equation (25.3.13); more hindsight. The last expression in (25.A.5) is then
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From here, we’ll combine a few calculus steps, going immediately to the substitution 7gu —1 = ecosa, rodu = —esinada with
the final result that
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We now integrate Equation (25.A.7) with the very simple result that
0 = a + constant

We have a choice in selecting the constant, and if we pick§ =a —7, a=0+m cosa = —cosf, the result is
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which is our desired result, Equation (25.3.11). Note that if we chose the constant of integration to be zero, the result would be
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which is the same trajectory reflected about the “vertical” axis in Figure 25.3, indeed the same as rotating by 7

25A.2 Derivation of the Orbit Equation: Method 2
The derivation of Equation (25.A.9) in the form

1
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suggests that the equation of motion for the one-body problem might be manipulated to obtain a simple differential equation. That
is, start from
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Setting the components equal, using the constant of motion L = ur?(df/dt) and rearranging, Equation (25.A.12) becomes
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We now use the same substitution u =1/r and change the independent variable from t to r , using the chain rule twice, since
Equation (25.A.13) is a second-order equation. That is, the first time derivative is

dr _drdu _ drduds
dt dudt dudfdt
From r = 1/u we have dr/du = —1/u? Combining with df/dt in terms of L and u,
df/dt = Lu®/p (25.8.1)
, Equation (25.A.14) becomes
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a very tidy result, with the variable u appearing linearly. Taking the second derivative with respectto t,

dr_d(dr\_d(dr)d
dtz2 dt\dt) do\dt) dt

Now substitute Equation (25.A.15) into Equation (25.A.16) with the result that
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Substituting into Equation (25.A.13), with 7 = 1/u yields
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Canceling the common factor of 2 and rearranging, we arrive at
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Equation (25.A.19) is mathematically equivalent to the simple harmonic oscillator equation with an additional constant term. The
solution consists of two parts: the angleindependent solution
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and a sinusoidally varying term of the form
ug = A cos(0—6y)

where A and 6, are constants determined by the form of the orbit. The expression in Equation (25.A.20) is the inhomogeneous
solution and represents a circular orbit. The expression in Equation (25.A.21) is the homogeneous solution (as hinted by the
subscript) and must have two independent constants. We can readily identify 1/ug as the semilatus rectum ry, with the result that
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Choosing the product 79 A to be the eccentricity € and 6y = 7 (much as was done leading to Equation (25.A.9) above), Equation
(25.A.9) is reproduced.
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