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10.9: Worked Examples

Problem Solving Strategies

When solving problems involving changing momentum in a system, we shall employ our general problem solving strategy
involving four basic steps:

1. Understand — get a conceptual grasp of the problem.

2. Devise a Plan - set up a procedure to obtain the desired solution.
3. Carry our your plan — solve the problem!

4. Look Back — check your solution and method of solution.

We shall develop a set of guiding ideas for the first two steps.

1. Understand — get a conceptual grasp of the problem

The first question you should ask is whether or not momentum is constant in some system that is changing its state after undergoing
an interaction. First you must identify the objects that compose the system and how they are changing their state due to the
interaction. As a guide, try to determine which objects change their momentum in the course of interaction. You must keep track of
the momentum of these objects before and after any interaction. Second, momentum is a vector quantity so the question of whether
momentum is constant or not must be answered in each relevant direction. In order to determine this, there are two important
considerations. You should identify any external forces acting on the system. Remember that a non-zero external force will cause
the momentum of the system to change, (Equation (10.4.9) above),

et dp
Tdt

Equation (10.9.1) is a vector equation; if the external force in some direction is zero, then the change of momentum in that
direction is zero. In some cases, external forces may act but the time interval during which the interaction takes place is so small
that the impulse is small in magnitude compared to the momentum and might be negligible. Recall that the average external
impulse changes the momentum of the system

— —sext —
I = F Atint = Apsys

. . . - )
If the interaction time is small enough, the momentum of the system is constant, Ap — 0 If the momentum is not constant then
you must apply either Equation (10.9.1) or Equation (10.9.2). If the momentum of the system is constant, then you can apply
Equation (10.7.5),

— —

Psys,i = Psys,7
If there is no net external force in some direction, for example the x -direction, the component of momentum is constant in that
direction, and you must apply

Psys,z,i = Psys,z,f
2. Devise a Plan - set up a procedure to obtain the desired solution

Draw diagrams of all the elements of your system for the two states immediately before and after the system changes its state.
Choose symbols to identify each mass and velocity in the system. Identify a set of positive directions and unit vectors for each
state. Choose your symbols to correspond to the state and motion (this facilitates an easy interpretation, for example (v,;),
represents the x -component of the velocity of object 1 in the initial state and (v, ¢), represents the x -component of the velocity of
object 1 in the final state). Decide whether you are using components or magnitudes for your velocity symbols. Since momentum is
a vector quantity, identify the initial and final vector components of the momentum. We shall refer to these diagrams as momentum
flow diagrams. Based on your model you can now write expressions for the initial and final momentum of your system. As an
example in which two objects are moving only in the x -direction, the initial x -component of the momentum is

Dsys ,z,i = M1 (Ux,i)l +my (Uz,i)Z +ee
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The final x -component of the momentum is

psys, z,f = mi (’Uzwf)l +m2 ('Uznf)? +e

If the x -component of the momentum is constant then
Psys,z,i = Psys,z, 7
We can now substitute Equations (10.9.5) and (10.9.6) into Equation (10.9.7), yielding
M (Vai)q +M2(Va,i)y + - = ma(va,f); +ma(vays)y+-

Equation (10.9.8) can now be used for any further analysis required by a particular problem. For example, you may have enough
information to calculate the final velocities of the objects after the interaction. If so then carry out your plan and check your
solution, especially dimensions or units and any relevant vector directions.

Example 10.5 Exploding Projectile

An instrument-carrying projectile of mass m; accidentally explodes at the top of its trajectory. The horizontal distance between
launch point and the explosion is ;. The projectile breaks into two pieces that fly apart horizontally. The larger piece, m3 has three
times the mass of the smaller piece, m». To the surprise of the scientist in charge, the smaller piece returns to earth at the launching
station. Neglect air resistance and effects due to the earth’s curvature. How far away, 3 r, from the original launching point does

the larger piece land?
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Figure 10.8 Exploding projectile trajectories

Solution: We can solve this problem two different ways. The easiest approach is utilizes the fact that the external force is the
gravitational force and therefore the center of mass of the system follows a parabolic trajectory. From the information given in the
problem my =m; /4 and m3 = 3m; /4. Thus when the two objects return to the ground the center of mass of the system has
traveled a distance R.,, = 2x; . We now use the definition of center of mass to find where the object with the greater mass hits the
ground. Choose an origin at the starting point. The center of mass of the system is given by

= My Ty tmTs

Rcm =
meo +ms3

— ~ — —
So when the objects hit the ground R..,;, = 2x;1, the object with the smaller mass returns to the origin, r s = 0 , and the position

vector of the other object is r 3 = x3 yi. So using the definition of the center of mass,
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. (Bmi/4)azd Bma/4)asgi 3 .
2$il: = = 3,1
m1/4—|—3m1/4 mq 4

Therefore

8
T3 f= gmi

Note that the neither the vertical height above ground nor the gravitational acceleration g entered into our solution.

Alternatively, we can use conservation of momentum and kinematics to find the distance traveled. Because the smaller piece
returns to the starting point after the collision, the velocity of the smaller piece immediately after the explosion is equal to the
negative of the velocity of original object immediately before the explosion. Because the collision is instantaneous, the horizontal
component of the momentum is constant during the collision. We can use this to determine the speed of the larger piece after the

collision. The larger piece takes the same amount of time to return to the ground as the projectile originally takes to reach the top of
the flight. We can therefore determine how far the larger piece traveled horizontally.

We begin by identifying various states in the problem.

Initial state, time ¢y = 0: the projectile is launched.

State 1 time ¢;: the projectile is at the top of its flight trajectory immediately before the explosion. The mass is m; and the velocity

L e . T :

of the projectile is v =v;1i.

State 2 time t5: immediately after the explosion, the projectile has broken into two pieces, one of mass ms moving backwards (in

the negative x -direction) with velocity v = — v 1. The other piece of mass mg is moving in the positive x -direction with
i d : .

velocity v 3 =wvsi, (Figure 10.8).

State 3: the two pieces strike the ground at time ¢; = 2¢; one at the original launch site 1 and the other at a distance, 3 ; from the

launch site, as indicated in Figure 10.8. The pieces take the same amount of time to reach the ground At =#; because both pieces

are falling from the same height as the original piece reached at time ¢; and each has no component of velocity in the vertical

direction immediately after the explosion. The momentum flow diagram with state 1 as the initial state and state 2 as the final state

are shown in the upper two diagrams in Figure 10.8.

The initial momentum at time ¢; immediately before the explosion is

—»88 —
p (ti)=miv,

The momentum at time ¢ immediately after the explosion is

—>98 — — 1 - 3 =
P (t2)=m2v2+m3V3Z—Zm1V1+Zm1V3

During the duration of the instantaneous explosion, impulse due to the external gravitational force may be neglected and therefore
the momentum of the system is constant. In the horizontal direction, we have that

— 1 - 3 =
m1V1=—Zm1V1+Zm1V3

Equation (10.9.11) can now be solved for the velocity of the larger piece immediately after the collision,

- 5=
V3= § Vi
The larger piece travels a distance
5
T3 f= ’U3t1 = g’vltl = giL‘i

Therefore the total distance the larger piece traveled from the launching station is

mf:mi—i—gwi = g:rl

in agreement with our previous approach.
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Example 10.6 Landing Plane and Sandbag

% /sal‘dbag

|

Figure 10.9 Plane and sandbag

A light plane of mass 1000 kg makes an emergency landing on a short runway. With its engine off, it lands on the runway at a
speed of 40m-s~! A hook on the plane snags a cable attached to a 120 kg sandbag and drags the sandbag along. If the coefficient
of friction between the sandbag and the runway is pj = 0.4, and if the plane’s brakes give an additional retarding force of
magnitude 1400 N, how far does the plane go before it comes to a stop?

Solution: We shall assume that when the plane snags the sandbag, the collision is instantaneous so the momentum in the horizontal
direction remains constant,
Dzi = Pz,1

We then know the speed of the plane and the sandbag immediately after the collision. After the collision, there are two external
forces acting on the system of the plane and sandbag, the friction between the sandbag and the ground and the braking force of the
runway on the plane. So we can use the Newton’s Second Law to determine the acceleration and then one-dimensional kinematics
to find the distance the plane traveled since we can determine the change in kinetic energy.

The momentum of the plane immediately before the collision is

~

- :
P =mMpUp,;l

The momentum of the plane and sandbag immediately after the collision is

g 3
P1=(my+ms)vp1i

Because the x - component of the momentum is constant, we can substitute Equations (10.9.16) and (10.9.17) into Equation
(10.9.15) yielding
mypvp ; = (My +ms) Up 1
The speed of the plane and sandbag immediately after the collision is
MpUp,i

Up,1
p
’ mp +ms

The forces acting on the system consisting of the plane and the sandbag are the normal force on the sandbag,

= 3
Ny =Ngsj

the frictional force between the sandbag and the ground

- s s
fr=—fil=—uNy,i,

the braking force on the plane

~

Fyp=—Fygi
and the gravitational force on the system,

— :
g :_(mp+ms)gJ

(mp +ms)
Newton’s Second Law in the i-direction becomes
—Fop — fr = (mp +ms)ay

If we just look at the vertical forces on the sandbag alone then Newton’s Second Law in the j-direction becomes
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The frictional force on the sandbag is then

N —-—msg=0

= : 2
fr=—pupNgsi=—prmsgi

Newton’s Second Law in the 1-direction becomes
—Fyp — upmsg = (my +my) ag

The x -component of the acceleration of the plane and the sand bag is then

—Fyp — ppmsg

ay =
mp +mg

We choose our origin at the location of the plane immediately after the collision, ,(0) =0. Set t = 0 immediately after the
collision. The x -component of the velocity of the plane immediately after the collision is v = vp, 1. Set t =t; when the plane
just comes to a stop. Because the acceleration is constant, the kinematic equations for the change in velocity is

Us,f (tf) = Up1 = sty
We can solve this equation for ¢ =t;, where v, 7 (¢;) =0
ty=—vp1/azt
Then the position of the plane when it first comes to rest is

2
1%,

2 a,

1
Zp (tf) —LBP(O) = ’Up,ltf + Eaxta = —

Then using z,(0) = 0 and substituting Equation (10.9.26) into Equation (10.9.27) yields

1 (my —|—m5)v2

z ( t ) p,1
=5
8 2 (Fyp +pemsg)
We now use the condition from conservation of the momentum law during the collision, Equation (10.9.19) in Equation (10.9.28)
yielding
My,

x, (tr) =
P ) = G ) (B T pirnd)

Substituting the given values into Equation (10.9.28) yields

(1000kg)? (40m - s7)?

=3.8x10°
1000kg + 120kg) (1400N + (0.4)(120kg) (9.8m - s-2)) o

z, (tr) = 2(
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