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21.6: Worked Examples

Example 21.1 Angular Impulse
Two point-like objects are located at the points A and B, of respective masses  as shown in the figure
below. The two objects are initially oriented along the y-axis and connected by a rod of negligible mass of length D , forming a

rigid body. A force of magnitude  along the x direction is applied to the object at B at t = 0 for a short time interval Δt ,
(Figure 21.3). Neglect gravity. Give all your answers in terms of M and D as needed. What is the magnitude of the angular velocity
of the system after the collision?

Figure 21.3 Example 21.1

Solutions: An impulse of magnitude  is applied in the +x direction, and the center of mass of the system will move in this
direction. The two masses will rotate about the center of mass, counterclockwise in the figure. Before the force is applied we can
calculate the position of the center of mass (Figure 21.4a),

The center of mass is a distance (2 / 3)D from the object at B and is a distance (1/ 3)D from the object at A.

Figure 21.4 (a) Center of mass of system, (b) Angular momentum about point B

Because , the magnitude of the velocity of the center of mass is then  and the direction is in the
positive  -direction. Because the force is applied at the point B, there is no torque about the point B, hence the angular momentum
is constant about the point B. The initial angular momentum about the point B is zero. The angular momentum about the point B
(Figure 21.4b) after the impulse is applied is the sum of two terms,
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The angular momentum about the center of mass is given by

Thus the angular about the point B after the impulse is applied is

We can solve this Equation (21.6.4) for the angular speed

Example 21.2 Person on a railroad car moving in a circle
A person of mass M is standing on a railroad car, which is rounding an unbanked turn of radius R at a speed . His center of mass
is at a height of L above the car midway between his feet, which are separated by a distance of . The man is facing the direction of
motion (Figure 21.5). What is the magnitude of the normal force on each foot?

Figure 21.5 Example 21.2

Solution: We begin by choosing a cylindrical coordinate system and drawing a free-body force diagram, shown in Figure 21.6.

Figure 21.6 Coordinate system for Example 21.2

We decompose the contact force between the inner foot closer to the center of the circular motion and the ground into a tangential

component corresponding to static friction  and a perpendicular component,  In a similar fashion we decompose the contact
force between the outer foot further from the center of the circular motion and the ground into a tangential component

corresponding to static friction  and a perpendicular component, . We do not assume that the static friction has its maximum

magnitude nor do we assume that . The gravitational force acts at the center of mass.

We shall use our two dynamical equations of motion, Equation (21.4.1) for translational motion and Equation (21.4.4) for rotational
motion about the center of mass noting that we are considering the special case that  because the object is not rotating
about the center of mass. In order to apply Equation (21.4.1), we treat the person as a point-like particle located at the center of
mass and all the external forces act at this point. The radial component of Newton’s Second Law (Equation (21.4.1) is given by
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The vertical component of Newton’s Second Law is given by

The rotational equation of motion (Equation (21.4.4) is

We begin our calculation of the torques about the center of mass by noting that the gravitational force does not contribute to the
torque because it is acting at the center of mass. We draw a torque diagram in Figure 21.7a showing the location of the point of
application of the forces, the point we are computing the torque about (which in this case is the center of mass), and the vector 

 from the point we are computing the torque about to the point of application of the forces.

Figure 21.7 Torque diagram for (a) inner foot, (b) outer foot

The torque on the inner foot is given by

We draw a similar torque diagram (Figure 21.7b) for the forces applied to the outer foot. The torque on the outer foot is given by

Notice that the forces  all contribute torques about the center of mass in the positive -direction while 
contributes a torque about the center of mass in the negative -direction According to Equation (21.6.8) the sum of these torques
about the center of mass must be zero. Therefore

Notice that the magnitudes of the two frictional forces appear together as a sum in Equations (21.6.11) and (21.6.6). We now can
solve Equation (21.6.6) for  and substitute the result into Equation (21.6.11) yielding the condition that

We can rewrite this Equation as

We also rewrite Equation (21.6.7) in the form

We now can solve for  by adding together Equations (21.6.13) and (21.6.14), and then divide by two,
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We now can solve for  by subtracting Equations (21.6.13) from (21.6.14), and then divide by two,

Check the result: we see that the normal force acting on the outer foot is greater in magnitude than the normal force acting on the
inner foot. We expect this result because as we increase the speed v , we find that at a maximum speed  the normal force on the
inner foot goes to zero and we start to rotate in the positive - direction tipping outward. We can find this maximum speed by
setting N1 = 0 in Equation (21.6.16) resulting in

Example 21.3 Torque, Rotation and Translation: Yo-Yo
A Yo-Yo of mass m has an axle of radius b and a spool of radius R . Its moment of inertia about the center can be taken to be 

 and the thickness of the string can be neglected (Figure 21.8). The Yo-Yo is released from rest. You will need to
assume that the center of mass of the Yo-Yo descends vertically, and that the string is vertical as it unwinds. (a) What is the tension
in the cord as the Yo-Yo descends? (b) What is the magnitude of the angular acceleration as the yo-yo descends and the magnitude
of the linear acceleration? (c) Find the magnitude of the angular velocity of the Yo-Yo when it reaches the bottom of the string,
when a length l of the string has unwound.

Figure 21.9 Torque diagram for Yo-Yo

Solutions: a) as the Yo-Yo descends it rotates clockwise in Figure 21.9. The torque about the center of mass of the Yo-Yo is due to
the tension and increases the magnitude of the angular velocity. The direction of the torque is into the page in Figure 21.9 (positive
z - direction). Use the right-hand rule to check this, or use the vector product definition of torque,

About the center of mass,  so the torque is

Apply Newton’s Second Law in the ˆ j-direction,

Apply the rotational equation of motion for the Yo-Yo,

where  is the z -component of the angular acceleration. The z -component of the angular acceleration and the y -component of
the linear acceleration are related by the constraint condition

= (Mg+ )N2
1

2

2Lmv2

Rd

N1

= (mg− )N1
1

2

2Lmv2

Rd

vmax

θ̂

=vmax
gRd

2L

− −−−
√

= (1/2)mIcm R2

= ×τ ⃗ cm r
→

cm,T T
→

= −b  and  = −Tr
→

cm,T î T
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where b is the axle radius of the Yo-Yo. Substitute Equation (21.6.22) into (21.6.20) yielding

Now solve Equation (21.6.21) for  and substitute the result into Equation(21.6.23),

Solve Equation (21.6.24) for the tension T ,

b) Substitute Equation (21.6.25) into Equation (21.6.21) to determine the z -component of the angular acceleration,

Using the constraint condition Equation (21.6.22), we determine the y -component of linear acceleration

Note that both quantities  so Equations (21.6.26) and (21.6.27) are the magnitudes of the respective quantities.
For a typical Yo-Yo, the acceleration is much less than that of an object in free fall.

c) Use conservation of energy to determine the magnitude of the angular velocity of the Yo-Yo when it reaches the bottom of the
string. As in Figure 21.9, choose the downward vertical direction as the positive -direction and let y = 0 designate the location of
the center of mass of the Yo-Yo when the string is completely wound. Choose U ( y = 0) = 0 for the zero reference potential energy.
This choice of direction and reference means that the gravitational potential energy will be negative and decreasing while the Yo-
Yo descends. For this case, the gravitational potential energy is

The Yo-Yo is not yet moving downward or rotating, and the center of mass is located at y = 0 so the mechanical energy in the initial
state, when the Yo-Yo is completely wound, is zero

Denote the linear speed of the Yo-Yo as  and its angular speed as  (at the point y = l ). The constraint condition between 
and  is given by

consistent with Equation (21.6.22). The kinetic energy is the sum of translational and rotational kinetic energy, where we have used
 and so mechanical energy in the final state, when the Yo-Yo is completely unwound, is

There are no external forces doing work on the system (neglect air resistance), so
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Solving for 

We may also use kinematics to determine the final angular velocity by solving for the time interval Δt that it takes for the Yo-Yo to
travel a distance l at the constant acceleration found in Equation (21.6.27)),

The final angular velocity of the Yo-Yo is then (using Equation (21.6.26) for the z -component of the angular acceleration),

in agreement with Equation (21.6.34).

Example 21.4 Cylinder Rolling Down Inclined Plane
A uniform cylinder of outer radius R and mass M with moment of inertia about the center of mass,  starts from
rest and rolls without slipping down an incline tilted at an angle  from the horizontal. The center of mass of the cylinder has
dropped a vertical distance h when it reaches the bottom of the incline Figure 21.10. Let g denote the gravitational constant. The
coefficient of static friction between the cylinder and the surface is . What is the magnitude of the velocity of the center of mass
of the cylinder when it reaches the bottom of the incline?

Figure 21.10 Example 21.4

Solution: We shall solve this problem three different ways.

1. Apply the torque condition about the center of mass and the force law for the center of mass motion.

2. Apply the energy methods.

3. Use torque about a fixed point that lies along the line of contact between the cylinder and the surface,

First Approach: Rotation about center of mass and translation of center of mass

We shall apply the torque condition (Equation (21.4.4)) about the center of mass and the force law (Equation (21.4.1)) for the
center of mass motion. We will first find the acceleration and hence the speed at the bottom of the incline using kinematics. The
forces are shown in Figure 21.11.
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Figure 21.11 Torque diagram about center of mass

Choose x = 0 at the point where the cylinder just starts to roll. Newton’s Second Law, applied in the x - and y -directions in turn,
yields

Choose the center of the cylinder to compute the torque about (Figure 21.10). Then, the only force exerting a torque about the
center of mass is the friction force, therefore the rotational equation of motion is

Use  and the kinematic constraint for the no-slipping condition  in Equation (21.6.39) to solve for
the magnitude of the static friction force yielding

Substituting Equation (21.6.40) into Equation (21.6.37) yields

which we can solve for the acceleration

In the time  it takes to reach the bottom, the displacement of the cylinder is . The x -component of the velocity 
at the bottom is . Thus . After eliminating , we have  so the x -component of the
velocity when the cylinder reaches the bottom of the inclined plane is

Note that if we substitute Equation (21.6.42) into Equation (21.6.40) the magnitude of the frictional force is

In order for the cylinder to roll without slipping

Combining Equation (21.6.44) and Equation (21.6.45) we have the condition that

Thus in order to roll without slipping, the coefficient of static friction must satisfy
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Second Approach: Energy Methods
We shall use the fact that the energy of the cylinder-earth system is constant since the static friction force does no work.

Figure 21.12 Energy diagram for cylinder

Choose a zero reference point for potential energy at the center of mass when the cylinder reaches the bottom of the incline plane
(Figure 21.12). Then the initial potential energy is

For the given moment of inertia, the final kinetic energy is

Setting the final kinetic energy equal to the initial gravitational potential energy leads to

The magnitude of the velocity of the center of mass of the cylinder when it reaches the bottom of the incline is

in agreement with Equation (21.6.43).

Third Approach: Torque about a fixed point that lies along the line of contact between the cylinder and the surface

Figure 21.13 Torque about a point along the line of contact

The gravitational force  acts at the center of mass. The vector from the point P to the center of
mass is given by  so the torque due to the gravitational force about the point P is given by
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The normal force acts at the point of contact between the cylinder and the surface and is given by  The vector from the
point P to the point of contact between the cylinder and the surface is  Therefore the torque due to the normal force
about the point P is given by

Substituting Equation (21.6.38) for the normal force into Equation (21.6.53) yields

Therefore the sum of the torques about the point P is

The angular momentum about the point P is given by

The time derivative of the angular momentum about the point P is then

Therefore the torque law about the point P , becomes

Using the fact that  and  the z -component of Equation (21.6.58) is then

We can now solve Equation (21.6.59) for the x -component of the acceleration

in agreement with Equation (21.6.42).

Example 21.5 Bowling Ball
A bowling ball of mass m and radius R is initially thrown down an alley with an initial speed , and it slides without rolling but
due to friction it begins to roll (Figure 21.14). The moment of inertia of the ball about its center of mass is .
Using conservation of angular momentum about a point (you need to find that point), find the speed  and the angular speed  of
the bowling ball when it just starts to roll without slipping?

Figure 21.14 Example 21.5

Solution: We begin introducing coordinates for the angular and linear motion. Choose an angular coordinate θ increasing in the
clockwise direction. Choose the positive kˆ unit vector pointing into the page in Figure 21.15.
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dP î ĵ dP k̂

= − Mgcosβτ
→

P,N dP k̂

= + = ( Mgcosβ+RMg sinβ) − Mgcosβ = Rmg sinβτ
→

P τ
→

P,Mg τ
→

P,N dP k̂ dP k̂ k̂k̂

L
→

P = + ×M = +( −R )×(M )L
→

cm r
→

P,cm V
→

cm Icmωzk̂ dP î ĵ vx î
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Figure 21.15 Coordinate system for ball

Then the angular velocity vector is  and the angular acceleration vector is . Choose
the positive  unit vector pointing to the right in Figure 21.15. Then the velocity of the center of mass is given by 

 and the acceleration of the center of mass is given by . The free-body
force diagram is shown in Figure 21.16.

Figure 21.16 Free-body force diagram for ball

At t = 0 , when the ball is released,  and  so the ball is skidding and hence the frictional force on the ball due
to the sliding of the ball on the surface is kinetic friction, hence acts in the negative -direction. Because there is kinetic friction

and nonconservative work, mechanical energy is not constant. The rotational equation of motion is . In order for
angular momentum about some point to remain constant  throughout the motion, the torque about that point must also be zero
throughout the motion. As the ball moves down the alley, the contact point will move, but the frictional force will always be
directed along the line of contact between the bowling bowl and the surface. Choose any fixed point  along the line of contact
then

because  and  are anti-parallel. The gravitation force acts at the center of mass hence the torque due to gravity about  is

where d is the distance from  to the contact point between the ball and the ground. The torque due to the normal force about  is

with the same moment arm d. Because the ball is not accelerating in the -direction, from Newton’s Second Law, we note that 
. Therefore

There is no torque about any fixed point  along the line of contact between the bowling bowl and the surface; therefore the
angular momentum about that point  is constant,

Choose one fixed point  along the line of contact (Figure 21.17).
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Figure 21.17 Angular momentum about  : (a) initial, (b) final

The initial angular momentum about  is only due to the translation of the center of mass (Figure 21.17a),

In Figure 21.17b, the ball is rolling without slipping. The final angular momentum about  has both a translational and rotational
contribution

When the ball is rolling without slipping,  and also . Therefore the final angular momentum about 
 is

Equating the z -components in Equations (21.6.66) and (21.6.68) yields

which we can solve for

The final angular velocity vector is

We could also solve this problem by analyzing the translational motion and the rotational motion about the center of mass. Gravity
exerts no torque about the center of mass, and the normal component of the contact force has a zero moment arm; the only force
that exerts a torque is the frictional force, with a moment arm of R (the force vector and the radius vector are perpendicular). The
frictional force should be in the negative x - direction. From the right-hand rule, the direction of the torque is into the page, and
hence in the positive z -direction. Equating the z -component of the torque to the rate of change of angular momentum about the
center of mass yields

where  is the magnitude of the kinetic frictional force and  is the z -component of the angular acceleration of the bowling ball.
Note that Equation (21.6.72) results in a positive z -component of the angular acceleration, which is consistent with the ball tending
to rotate as indicated Figure 21.15. The frictional force is also the only force in the horizontal direction, and will cause an
acceleration of the center of mass,

Note that the x -component of the acceleration will be negative, as expected. Now we need to consider the kinematics. The bowling
ball will increase its z -component of the angular velocity as given in Equation (21.6.72) and decrease its x -component of the
velocity as given in Equation (21.6.73),
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As soon as the ball stops slipping, the kinetic friction no longer acts, static friction is zero, and the ball moves with constant angular
and linear velocity. Denote the time when this happens as  At this time the rolling without slipping condition, 

, holds and the relations in Equation (21.6.74) become

We can now solve the first equation in Equation (21.6.75) for  and find that

We now substitute Equation (21.6.76) into the second equation in Equation (21.6.75) and find that

The second equation in (21.6.77) is easily solved for

agreeing with Equation (21.6.70) where we have used  for a uniform sphere.

Example 21.6 Rotation and Translation Object and Stick Collision
A long narrow uniform stick of length l and mass m lies motionless on ice (assume the ice provides a frictionless surface). The
center of mass of the stick is the same as the geometric center (at the midpoint of the stick). The moment of inertia of the stick
about its center of mass is  A puck (with putty on one side) has the same mass m as the stick. The puck slides without spinning
on the ice with a velocity of  toward the stick, hits one end of the stick, and attaches to it (Figure 21.18). You may assume that
the radius of the puck is much less than the length of the stick so that the moment of inertia of the puck about its center of mass is
negligible compared to  (a) How far from the midpoint of the stick is the center of mass of the stick-puck combination after the

collision? (b) What is the linear velocity  of the stick plus puck after the collision? (c) Is mechanical energy conserved
during the collision? Explain your reasoning. (d) What is the angular velocity  of the stick plus puck after the collision? (e)
How far does the stick's center of mass move during one rotation of the stick?

Figure 21.18 Example 21.6

Solution: In this problem we will calculate the center of mass of the puck-stick system after the collision. There are no external
forces or torques acting on this system so the momentum of the center of mass is constant before and after the collision and the
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angular momentum about the center of mass of the puck-stick system is constant before and after the collision. We shall use these
relations to compute the final angular velocity of the puck-stick about the center of mass.

Figure 21.19 Center of mass of the system

a) With respect to the center of the stick, the center of mass of the stick-puck combination is

where we are neglecting the radius of the puck (Figure 21.19).

b) During the collision, the only net forces on the system (the stick-puck combination) are the internal forces between the stick and
the puck (transmitted through the putty). Hence, the linear momentum is constant. Initially only the puck had linear momentum 

. After the collision, the center of mass of the system is moving with velocity  Equating
initial and final linear momenta,

The direction of the velocity is the same as the initial direction of the puck’s velocity.

c) The forces that deform the putty do negative work (the putty is compressed somewhat), and so mechanical energy is not
conserved; the collision is totally inelastic.

d) Choose the center of mass of the stick-puck combination, as found in part a), as the point  about which to find angular
momentum. This choice means that after the collision there is no angular momentum due to the translation of the center of mass.
Before the collision, the angular momentum was entirely due to the motion of the puck,

where  is directed out of the page in Figure 21.19. After the collision, the angular momentum is

where  is the moment of inertia about the center of mass of the stick-puck combination. This moment of inertia of the stick
about the new center of mass is found from the parallel axis theorem and the moment of inertia of the puck, which is .
Therefore

Inserting this expression into Equation (21.6.82), equating the expressions for  and  and solving for  yeilds

If the stick is uniform,  and Equation (21.6.84) reduces to
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It may be tempting to try to calculate angular momentum about the contact point C , where the putty hits the stick. If this is done,
there is no initial angular momentum, and after the collision the angular momentum will be the sum of two parts, the angular
momentum of the center of mass of the stick and the angular moment about the center of the stick,

There are two crucial things to note: First, the speed of the center of mass is not the speed found in part b); the rotation must be
included, so that . Second, the direction of  with respect to the contact point C is, from the

right-hand rule, into the page, or the -direction, opposite the direction of  This is to be expected, as the sum in Equation
(21.6.86) must be zero. Adding the -components (the only components) in Equation (21.6.86),

Solving Equation (21.6.87) for  yields Equation (21.6.84).

This alternative derivation should serve two purposes. One is that it doesn’t matter which point we use to find angular momentum.
The second is that use of foresight, in this case choosing the center of mass of the system so that the final velocity does not
contribute to the angular momentum, can prevent extra calculation. It’s often a matter of trial and error (“learning by
misadventure”) to find the “best” way to solve a problem.

e) The time of one rotation will be the same for all observers, independent of choice of origin. This fact is crucial in solving
problems, in that the angular velocity will be the same (this was used in the alternate derivation for part d) above). The time for one
rotation is the period  and the distance the center of mass moves is

Using  for a uniform stick gives

This page titled 21.6: Worked Examples is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.

= × +L
→

C,f r
→

cm p
→

cm Icm ω
→

cm,f

= /2 − (l/4)vcm vi ωcm,f ×r
→

cm p
→

cm

−k̂ ω
→

cm,f

k̂

−(l/2)m ( /2 − (l/4)) + = 0vi ωcm,f Icmωcm,f

ωcm,f

T = 2π/ωf

xcm = T = 2πvcm
vcm

ωcm,f

= 2π
/2vi

( )m(l/4)

+m /8Icm l2
vi

= 2π
+m /8Icm l2

m(l/2)

= m /12Icm l2

= πlxcm
5

6

https://libretexts.org/
https://phys.libretexts.org/@go/page/25646?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Dourmashkin)/21%3A_Rigid_Body_Dynamics_About_a_Fixed_Axis/21.06%3A_Worked_Examples
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Dourmashkin)/21%3A_Rigid_Body_Dynamics_About_a_Fixed_Axis/21.06%3A_Worked_Examples?no-cache
https://web.mit.edu/physics/people/academic/dourmashkin_peter.html
https://ocw.mit.edu/index.htm
https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/

