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23.3: Energy and the Simple Harmonic Oscillator
Let’s consider the block-spring system of Example 23.2 in which the block is initially stretched an amount  from the
equilibrium position and is released from rest, . We shall consider three states: state 1, the initial state; state 2, at an
arbitrary time in which the position and velocity are non-zero; and state 3, when the object first comes back to the equilibrium
position. We shall show that the mechanical energy has the same value for each of these states and is constant throughout the
motion. Choose the equilibrium position for the zero point of the potential energy.

State 1: all the energy is stored in the object-spring potential energy, . The object is released from rest so the kinetic
energy is zero,  The total mechanical energy is then

State 2: at some time t , the position and x -component of the velocity of the object are given by

The kinetic energy is

and the potential energy is

The mechanical energy is the sum of the kinetic and potential energies

where we used the identity that  and that  (Equation (23.2.6)).

The mechanical energy in state 2 is equal to the initial potential energy in state 1, so the mechanical energy is constant. This should
come as no surprise; we isolated the object spring system so that there is no external work performed on the system and no internal
non-conservative forces doing work.

Figure 23.5 State 3 at equilibrium and in motion

State 3: now the object is at the equilibrium position so the potential energy is zero, U3 = 0 , and the mechanical energy is in the
form of kinetic energy (Figure 23.5).
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Because the system is closed, mechanical energy is constant,

Therefore the initial stored potential energy is released as kinetic energy,

and the x -component of velocity at the equilibrium position is given by

Note that the plus-minus sign indicates that when the block is at equilibrium, there are two possible motions: in the positive x -
direction or the negative x -direction. If we take , then the block starts moving towards the origin, and  will be negative
the first time the block moves through the equilibrium position.

We can show more generally that the mechanical energy is constant at all times as follows. The mechanical energy at an arbitrary
time is given by

Differentiate Equation (23.3.10)

Now substitute the simple harmonic oscillator equation of motion, (Equation (23.2.1) ) into Equation (23.3.11) yielding

demonstrating that the mechanical energy is a constant of the motion.

Simple Pendulum: Force Approach
A pendulum consists of an object hanging from the end of a string or rigid rod pivoted about the point P . The object is pulled to
one side and allowed to oscillate. If the object has negligible size and the string or rod is massless, then the pendulum is called a
simple pendulum. Consider a simple pendulum consisting of a massless string of length l and a point-like object of mass m
attached to one end, called the bob. Suppose the string is fixed at the other end and is initially pulled out at an angle  from the
vertical and released from rest (Figure 23.6). Neglect any dissipation due to air resistance or frictional forces acting at the pivot.

Figure 23.6 Simple pendulum

Let’s choose polar coordinates for the pendulum as shown in Figure 23.7a along with the free-body force diagram for the
suspended object (Figure 23.7b). The angle  is defined with respect to the equilibrium position. When , the bob is has
moved to the right, and when , the bob has moved to the left. The object will move in a circular arc centered at the pivot
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point. The forces on the object are the tension in the string  and gravity . The gravitation force on the object has -
and - component given by

Figure 23.7 (b) free-body force diagram

Our concern is with the tangential component of the gravitational force,

The sign in Equation (23.3.14) is crucial; the tangential force tends to restore the pendulum to the equilibrium value . If 
 and if  where we are that because the string is flexible, the angle θ is restricted to the range 

. (For angles  the string would go slack.) In both instances the tangential component of the force is
directed towards the equilibrium position. The tangential component of acceleration is

Newton’s Second Law, , yields

We can rewrite this equation is the form
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This is not the simple harmonic oscillator equation although it still describes periodic motion. In the limit of small oscillations, 
, Equation (23.3.17) becomes

This equation is similar to the object-spring simple harmonic oscillator differential equation

By comparison with Equation (23.2.6) the angular frequency of oscillation for the pendulum is approximately

with period

The solutions to Equation (23.3.18) can be modeled after Equation (23.2.21). With the initial conditions that the pendulum is
released from rest, , at a small angle , the angle the string makes with the vertical as a function of
time is given by

The z -component of the angular velocity of the bob is

Keep in mind that the component of the angular velocity  changes with time in an oscillatory manner (sinusoidally in
the limit of small oscillations). The angular frequency  is a parameter that describes the system. The z -component of the angular
velocity  besides being time-dependent, depends on the amplitude of oscillation . In the limit of small oscillations,  does
not depend on the amplitude of oscillation.

The fact that the period is independent of the mass of the object follows algebraically from the fact that the mass appears on both
sides of Newton’s Second Law and hence cancels. Consider also the argument that is attributed to Galileo: if a pendulum,
consisting of two identical masses joined together, were set to oscillate, the two halves would not exert forces on each other. So, if
the pendulum were split into two pieces, the pieces would oscillate the same as if they were one piece. This argument can be
extended to simple pendula of arbitrary masses.

Simple Pendulum: Energy Approach
We can use energy methods to find the differential equation describing the time evolution of the angle . When the string is at an
angle  with respect to the vertical, the gravitational potential energy (relative to a choice of zero potential energy at the bottom of
the swing where  as shown in Figure 23.8) is given by

The θ -component of the velocity of the object is given by  so the kinetic energy is
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Figure 23.8 Energy diagram for simple pendulum

The mechanical energy of the system is then

Because we assumed that there is no non-conservative work (i.e. no air resistance or frictional forces acting at the pivot), the energy
is constant, hence

There are two solutions to this equation; the first one  is the equilibrium solution. That the z -component of the angular
velocity is zero means the suspended object is not moving. The second solution is the one we are interested in

which is the same differential equation (Equation (23.3.16)) that we found using the force method.

We can find the time  that the object first reaches the bottom of the circular arc by setting  in Equation (23.3.22)

This zero occurs when the argument of the cosine satisfies

The z -component of the angular velocity at time  is therefore

Note that the negative sign means that the bob is moving in the negative -direction when it first reaches the bottom of the arc. The
θ-component of the velocity at time  is therefore

We can also find the components of both the velocity and angular velocity using energy methods. When we release the bob from
rest, the energy is only potential energy
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where we used the approximation that . When the bob is at the bottom of the arc, the only contribution to the
mechanical energy is the kinetic energy given by

Because the energy is constant, we have that  or

We can solve for the θ -component of the velocity at the bottom of the arc

The two possible solutions correspond to the different directions that the motion of the bob can have when at the bottom. The z -
component of the angular velocity is then

in agreement with our previous calculation.

If we do not make the small angle approximation, we can still use energy techniques to find the θ-component of the velocity at the
bottom of the arc by equating the energies at the two positions

Simple Pendulum: Energy Approach
We can use energy methods to find the differential equation describing the time evolution of the angle . When the string is at an
angle  with respect to the vertical, the gravitational potential energy (relative to a choice of zero potential energy at the bottom of
the swing where  as shown in Figure 23.8) is given by

The θ -component of the velocity of the object is given by  so the kinetic energy is
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Figure 23.8 Energy diagram for simple pendulum

The mechanical energy of the system is then

Because we assumed that there is no non-conservative work (i.e. no air resistance or frictional forces acting at the pivot), the energy
is constant, hence

There are two solutions to this equation; the first one  is the equilibrium solution. That the z -component of the angular
velocity is zero means the suspended object is not moving. The second solution is the one we are interested in

which is the same differential equation (Equation (23.3.16)) that we found using the force method.

We can find the time  that the object first reaches the bottom of the circular arc by setting  in Equation (23.3.22)

This zero occurs when the argument of the cosine satisfies

The z -component of the angular velocity at time  is therefore

Note that the negative sign means that the bob is moving in the negative -direction when it first reaches the bottom of the arc. The
θ-component of the velocity at time  is therefore

We can also find the components of both the velocity and angular velocity using energy methods. When we release the bob from
rest, the energy is only potential energy
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where we used the approximation that . When the bob is at the bottom of the arc, the only contribution to the
mechanical energy is the kinetic energy given by

Because the energy is constant, we have that  or

We can solve for the θ -component of the velocity at the bottom of the arc

The two possible solutions correspond to the different directions that the motion of the bob can have when at the bottom. The z -
component of the angular velocity is then

in agreement with our previous calculation.

If we do not make the small angle approximation, we can still use energy techniques to find the θ-component of the velocity at the
bottom of the arc by equating the energies at the two positions
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