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25.9: Appendix 25B Properties of an Elliptical Orbit

25B.1 Coordinate System for the Elliptic Orbit

We now consider the special case of an elliptical orbit. Choose coordinates with the central point located at one focal point and
coordinates (r, 6) for the position of the single body (Figure 25B.1a). In Figure 25B.1b, let a denote the semi-major axis, b denote
the semi-minor axis and xo denote the distance from the center of the ellipse to the origin of our coordinate system.
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Figure 25B.1 (a) Coordinate system for elliptic orbit, (b) semi-major axis

25B.2 The Semi-major Axis
Recall the orbit equation, Eq, (25.A.9), describes r(8),

7o
)= ——
r(®) 1—ecosf
The major axis A = 2a is given by
A=2a=r,+1)
where the distance of furthest approach 7, occurs when § = 0, hence
70
1—¢

ro=r(@=0)=

and the distance of nearest approach 7, occurs when 6 = 7, hence
To
14¢

rp=r(@=m)=

Figure 25B.2 shows the distances of nearest and furthest approach.

Figure 25B.2 Furthest and nearest approach

We can now determine the semi-major axis
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The semilatus rectum 7y can be re-expressed in terms of the semi-major axis and the eccentricity,
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We can now express the distance of nearest approach, Equation (25.B.4), in terms of the semi-major axis and the eccentricity,

ro=a(l—¢€?)

2
o a(l-¢?)
= = — 1—
T 1+e a(l-¢)
In a similar fashion the distance of furthest approach is
2
) a (1 — & )
= = = ]_
Te = ¢ 1—¢ a(l+e)

25B.2.3 The Location xq of the Center of the Ellipse

From Figure 25B.3a, the distance from a focus point to the center of the ellipse is

Tp=a—"1p
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Figure 25B.3 Location of the center of the ellipse and semi-minor axis.

Using Equation (25.B.7) for r;,, we have that
zo=a—a(l—¢)=¢ca

25B.2.4 The Semi-minor Axis

From Figure 25B.3b, the semi-minor axis can be expressed as

_ 2 _ .2
b= (rb :UO)
where
T0
ry=———
1 —ecosb,

We can rewrite Equation (25.B.12) as
Ty —TpeCcosfy =1y

The horizontal projection of 7 is given by (Figure 25B.2b),

Ty = 1rp cosby
which upon substitution into Equation (25.B.13) yields

Ty =T0 +ETg
Substituting Equation (25.B.10) for zy and Equation (25.B.6) for 7y into Equation (25.B.15) yields

mp=a(l —62) +ae® =a

The fact that 7, = a is a well-known property of an ellipse reflected in the geometric construction, that the sum of the distances
from the two foci to any point on the ellipse is a constant. We can now determine the semi-minor axis b by substituting Equation
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(25.B.16) into Equation (25.B.11) yielding

b=,/(r?—2}) =va’ —e’a’ =ay/1-¢°

25B.2.5 Constants of the Motion for Elliptic Motion

We shall now express the parameters a , b and z¢ in terms of the constants of the motion L , E , 1, m; and my. Using our results
for ry and € from Equations (25.3.13) and (25.3.14) we have for the semi-major axis

_ L? 1
pGmyms (1 - (1 +2EL2//L(Gm1m2)2))
_ Gm1m2
2F
The energy is then determined by the semi-major axis,
g Gmima
2a

The angular momentum is related to the semilatus rectum 7y by Equation (25.3.13). Using Equation (25.B.6) for 7y, we can express
the angular momentum (25.B.4) in terms of the semi-major axis and the eccentricity,

L= ,/uGmimaorg = \/,qulmga (1 —52)

Note that

- L
1/(1—5):—\/m

Thus, from Equations (25.3.14), (25.B.10), and (25.B.18), the distance from the center of the ellipse to the focal point is

G'm1 mo

Ty =€a = T\/(l +2EL2/u(Gm1m2)2)

a result we will return to later. We can substitute Equation (25.B.21) for V1 — &2 into Equation (25.B.17), and determine that the

semi-minor axis is
b= \/aL2/,qu1m2

We can now substitute Equation (25.B.18) for a into Equation (25.B.23), yielding

/ Gmim [ 1
b= aLz//JGmlmZ :L\/—%/quan =L _2'u,_E

25B.2.6 Speeds at Nearest and Furthest Approaches

At nearest approach, the velocity vector is tangent to the orbit (Figure 25B.4), so the magnitude of the angular momentum is
L = prpv,
and the speed at nearest approach is

vp =L/ prp
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Figure 25B.4 Speeds at nearest and furthest approach

Using Equation (25.B.20) for the angular momentum and Equation (25.B.7) for r p , Equation (25.B.26) becomes

L \/qulmz (1—¢?) _ \/Gm1m2 (1—¢?) _ \/Gm1m2(1 +e)

P, T pa(l—e) pa(1—c)? pa(1—c)

A similar calculation show that the speed v, at furthest approach,

L /uGmime(1-€)  [Gmimal—e2 | Gmimy(1—¢)
HTq ua(l+e) pa(l+e)? ua(l+e)

Vg =
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