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28.6: Laminar and Turbulent Flow

Introduction

During the flow of a fluid, different layers of the fluid may be flowing at different speeds relative to each other, one layer sliding
over another layer. For example consider a fluid flowing in a long cylindrical pipe. For slow velocities, the fluid particles move
along lines parallel to the wall. Far from the entrance of the pipe, the flow is steady (fully developed). This steady flow is called
laminar flow. The fluid at the wall of the pipe is at rest with respect to the pipe. This is referred to as the no-slip condition and is
experimentally holds for all points in which a fluid is in contact with a wall. The speed of the fluid increases towards the interior of
the pipe reaching a maximum, v max , at the center. The velocity profile across a cross section of the pipe exhibiting fully
developed flow is shown in Figure 28.10. This parabolic velocity profile has a non-zero velocity gradient that is normal to the flow.
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Figure 28.10 Steady laminar flow in a pipe with a non-zero velocity gradient

Viscosity

Due to the cylindrical geometry of the pipe, cylindrical layers of fluid are sliding with respect to one another resulting in tangential
forces between layers. The tangential force per area is called a shear stress. The viscosity of a fluid is a measure of the resistance to
this sliding motion of one layer of the fluid with respect to another layer. A perfect fluid has no tangential forces between layers. A
fluid is called Newtonian if the shear forces per unit area are proportional to the velocity gradient. For a Newtonian fluid
undergoing laminar flow in the cylindrical pipe, the shear stress, og, is given by
dv
Os=1N—"
s =1 dr
where 7 is the constant of proportionality and is called the absolute viscosity, r is the radial distance form the central axis of the
pipe, and dv/dr is the velocity gradient normal to the flow.

The SI units for viscosity are poise = 107'Pa-s . Some typical values for viscosity for fluids at specified temperatures are given
in Table 1.

Table 1: Coefficients of absolute viscosity

fluid Coefficient of absolute viscosity n

oil 1 —10 poise

Water at 0° 1.79 x 10 2poise
Water at 100° | 0.28 x 10 2poise
Air at 20° 1.81 x 10 *poise

At a certain flow rate, this resistance suddenly increases and the fluid particles no longer follow straight lines but appear to move
randomly although the average motion is still along the axis of the pipe. This type of flow is called turbulent flow. Osbourne
Reynolds was the first to experimentally measure these two types of flow. He was able to characterize the transition between these
two types of flow by a parameter called the Reynolds number that depends on the average velocity of the fluid in the pipe, the
diameter, and the viscosity of the fluid. The transition point between flows corresponds to a value of the Reynolds number that is
associated with a sudden increase in the friction between layers of the fluid. Much after Reynolds initial observations, it was
experimentally noted that a small disturbance in the laminar flow could rapidly grow and produce turbulent flow.
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Example 28.3 Couette Flow

Consider the flow of a Newtonian fluid between two very long parallel plates, each plate of width w, length s, and separated by a
distance d. The upper plate moves with a constant relative speed vy with respect to the lower plate, (Figure 28.11).
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Figure 28.11 Laminar flow between two plates moving with relative speed vo

Choose a reference frame in which the lower plate, located on the plane at z = 0, is at rest. Choose a volume element of length [
and cross sectional area A, with one side in contact with the plate at rest, and the other side located a distance x from the lower
plate. The velocity gradient in the direction normal to the flow is dv/dz. The shear force on the volume element due to the fluid
above the element is given by

F(z) =A%
dz

The shear force is balanced by the shear force Fy of the lower plate on the element, such that F'(z) = Fj . Hence

Fy=nA—
Ondw

The velocity of the fluid at the lower plate is zero. The integral version of this differential equation is then

1 T'=x v'=v(z)
— Fydx' = / dv’
v

nA Ju—o /=0
Integration yields
F
n—zx =v(z)
The velocity of the fluid at the upper plate is vg, therefore the constant shear stress is given by
R _mo
A d
hence the velocity profile is
v(z) = %Ox

This type of flow is known as Couette flow.

Example 28.4 Laminar flow in a cylindrical pipe.

Let’s consider a long cylindrical pipe of radius 7y in which the fluid undergoes laminar flow with each fluid particle moves in a line
parallel to the pipe axis. Choose a cylindrical volume element of length dl and radius r, centered along the pipe axis as shown in
Figure 28.12. There is a pressure drop dp < 0 over the length of the volume element resulting in forces on each end cap. Denote
the force on the left end cap by F, = p/A and the force on the right end cap by Fr = (p+dp)/A on the right end cap, where
A = 7r? is the cross sectional area of the end cap.
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Figure 28.12: Volume element for steady laminar flow in a pipe

The forces on the volume element sum to zero and are due to the pressure difference and the shear stress; hence
Fp, —Fr+o0.2nrdl =0

Using our Newtonian model for the fluid (Equation (28.4.30) and expressing the force in terms of pressure, Equation (28.4.37)
becomes
dp dv
= ==
2ndl dr
Equation (28.4.38) can be integrated by the method of separation of variables with boundary conditions

v(r =0) =vmax and v(r =7¢) =0 . (Recall that for laminar flow of a Newtonian fluid the velocity of a fluid is always zero at
the surface of a solid.)

d r'=ry v (r=rg)=0
P r'dr’ = / dv

277dl r'=r v'=v(r)
Integration then yields

d;
o(r)=— 475” (rs — 7'2)

Recall that the pressure drop dp < 0. The maximum velocity at the center is then

dp

Umax = ’U(’I‘ = O) = _mro

To determine the flow rate through the pipe, choose a ring of radius r and thickness #, oriented normal to the flow. The flow
through the ring is then

d
v(r)2mrdr = — 25; (r3 —r?) rdr

Integrating over the cross sectional area of the pipe yields

Q= [, v(r)2rrdr

T

Q :_%ffm (rg—rz)rdrz—%(rgr2/2—r4/4)

T=r0

4
— o
0 - 8ndl|dp|

=
The average velocity is then

Vave = i = dp r2
ave 7'('7’% 8ndl 0

Notice that the pressure difference and the volume flow rate are related by

8ndl
ldp| = ——@Q
7T7"0

which is equal to one half the maximum velocity at the center of the pipe. We can rewrite Equation (28.4.45) in terms of the
average velocity as
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8ndl
jdp| = Q=
™"

0  Vgpe2d

64ndl

5 Vave

where d = 27 is the diameter of the pipe. For a pipe of length [ and pressure difference Ap, the head loss in a pipe is defined as
the ratio

hee |Apl _ 64 Vhe 1

"7 709~ (pvaved/m) 29 d

where we have extended Equation (28.4.46) for the entire length of the pipe. Head loss is also written in terms of a loss coefficient
k according to

2
Vave
hf=k—
f 2g

For a long straight cylindrical pipe, the loss coefficient can be written in terms of a factor f times an equivalent length of the pipe
l
k=f—=
f d

The factor f can be determined by comparing Equations (28.4.47)-(28.4.49) yielding

oo
(pvaved/n)  Re

where Re is the Reynolds number and is given by

Re = PUave d/’l]
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