
23.9.1 https://phys.libretexts.org/@go/page/25898

23.9: Appendix 23B - Complex Numbers
A complex number  can be written as a sum of a real number  and a purely imaginary number  where 

The complex number can be represented as a point in the x-y plane as show in Figure 23B.1.

Figure 23B.1 Complex numbers

The complex conjugate  of a complex number z is defined to be

The modulus of a complex number is

where we used the fact that . The modulus  represents the length of the ray from the origin to the complex number z in
Figure 23B.1. Let  denote the angle that the ray with the positive x -axis in Figure 23B.1. Then

Hence the angle  is given by

The inverse of a complex number is then

The modulus of the inverse is the inverse of the modulus;

The sum of two complex numbers,  and  is the complex number

where , . We can represent this by the vector sum in Figure 23B.2,
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Figure 23B.2 Sum of two complex numbers

The product of two complex numbers is given by

where  and 

One of the most important identities in mathematics is the Euler formula,

This identity follows from the power series representations for the exponential, sine, and cosine functions,

We define two projection operators. The first one takes the complex number  and gives its real part,

The second operator takes the complex number  and gives its imaginary part, which is the real number

A complex number  can also be represented as the product of a modulus  and a phase factor 

The inverse of a complex number is then

where we used the fact that

In terms of modulus and phase, the sum of two complex numbers,  and , is

A special case of this result is when the phase angles are equal,  then the sum  has the same phase factor  as 
and 
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The product of two complex numbers, , and  is

When the phases are equal, the product does not have the same factor as  and 
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