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12.2: Worked Examples

An empty coal car of mass  starts from rest under an applied force of magnitude F . At the same time coal begins to run into
the car at a steady rate b from a coal hopper at rest along the track (Figure 12.5). Find the speed when a mass  of coal has
been transferred.

Figure 12.5 Filling a coal car

Solution

We shall analyze the momentum changes in the horizontal direction, which we call the x -direction. Because the falling coal
does not have any horizontal velocity, the falling coal is not transferring any momentum in the x -direction to the coal car. So
we shall take as our system the empty coal car and a mass  of coal that has been transferred. Our initial state at t = 0 is when
the coal car is empty and at rest before any coal has been transferred. The x -component of the momentum of this initial state is
zero,

Our final state at  is when all the coal of mass  has been transferred into the car that is now moving at speed 
. The x -component of the momentum of this final state is

There is an external constant force  applied through the transfer. The momentum principle applied to the x -direction is

Because the force is constant, the integral is simple and the momentum principle becomes

So the final speed is

A freight car of mass  contains sand of mass . At  a constant horizontal force of magnitude F is applied in the
direction of rolling and at the same time a port in the bottom is opened to let the sand flow out at the constant rate 

. Find the speed of the freight car when all the sand is gone (Figure 12.6). Assume that the freight car is at rest at 
.
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Figure 12.6 Emptying a freight car

Solution

Choose the positive x -direction to point in the direction that the car is moving. Choose for the system the amount of sand in
the fright car at time t, . At time t , the car is moving with velocity . The momentum diagram for the
system at time t is shown in the diagram on the left in Figure 12.7.

Figure 12.7 Momentum diagram at time t and at time 

The momentum of the system at time t is given by

During the time interval , an amount of sand of mass  leaves the freight car and the mass of the freight car
changes by , where . At the end of the interval the car is moving with velocity 

. The momentum diagram for the system at time  is shown in the
diagram on the right in Figure 12.7. The momentum of the system at time  is given by

Note that the sand that leaves the car is shown with velocity . This implies that all the sand leaves the car with
the velocity of the car at the end of the interval. This is an approximation. Because the sand leaves continuous, the velocity will
vary from  to  but so does the change in mass of the car and these two contributions to the system’s
moment exactly cancel. The change in momentum of the system is then

Throughout the interval a constant force  is applied to the system so the momentum principle becomes

Because the motion is one-dimensional, Equation (12.3.9) written in terms of x -components becomes
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Denote by initial mass of the car by  where  is the mass of the car and  is the mass of the sand in the
car at . The mass of the sand that has left the car at time t is given by

Thus

Therefore Equation (12.3.10) becomes

This equation can be solved for the x -component of the velocity at time t ,  (which in this case is the speed) by the
method of separation of variables. Rewrite Equation (12.3.13) as

Then integrate both sides of Equation (12.3.14) with the limits as shown

Integration yields the speed of the car as a function of time

In writing Equation (12.3.16), we used the property that  and therefore . Note

that , so the term , and the speed of the car increases as we expect.

Grain is blown into car A from car B at a rate of b kilograms per second. The grain leaves the chute vertically downward, so
that it has the same horizontal velocity, u as car B , (Figure 12.8). Car A is initially at rest before any grain is transferred in and
has mass . At the moment of interest, car A has mass  and speed v . Determine an expression for the speed car A as a
function of time t.

Figure 12.8 Filling a freight car

Solution

Choose positive x -direction to the right in the direction the cars are moving. Define the system at time t to be the car and grain
that is already in it, which together has mass  and the small amount of material of mass  that is blown into car A
during the time interval  At time that is moving with x -component of the velocity . At time t , car A is moving

with velocity  and the material blown into car is moving with velocity  At time  car A is
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moving with velocity , and the mass of car A is  where 
. The momentum diagram for times t and for  is shown in Figure 12.9.

Figure 12.9 Momentum diagram at times t and 

The momentum at time t is

The momentum at time  is

There are no external forces acting on the system in the x -direction and the external forces acting on the system perpendicular
to the motion sum to zero, so the momentum principle becomes

Using the results above (Equations (12.3.17) and (12.3.18), the momentum principle becomes

which after using the condition that  and some rearrangement becomes

In the limit as , the product  is a second order differential (the product of two first order differentials) and the term 
 approaches zero, therefore the momentum principle yields the differential equation

The x -component of Equation (12.3.22) is then

Rearranging terms and using the fact that the material is blown into car A at a constant rate , we have that the rate
of change of the x -component of the velocity of car A is given by

We cannot directly integrate Equation (12.3.24) with respect to dt because the mass of the car A is a function of time. In order
to find the x -component of the velocity of car A we need to know the relationship between the mass of car A and the x -
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component of the velocity of the car A . There are two approaches. In the first approach we separate variables in Equation
(12.3.24) where we have suppressed the dependence on t in the expressions for  and  yielding

which becomes the integral equation

where  is the mass of the car before any material has been blown in. After integration we have that

Exponentiate both side yields

We can solve this equation for the x -component of the velocity of the car

Because the material is blown into the car at a constant rate , the mass of the car as a function of time is given by

Therefore substituting Equation (12.3.30) into Equation (12.3.29) yields the x -component of the velocity of the car as a
function of time

In a second approach, we substitute Equation (12.3.30) into Equation (12.3.24) yielding

Separate variables in Equation (12.3.32):

which then becomes the integral equation

Integration yields

Again exponentiate both sides resulting in

After some algebraic manipulation we can find the speed of the car as a function of time
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in agreement with Equation (12.3.31).

Check result:

We can rewrite Equation (12.3.37) as

which illustrates the point that the momentum of the system at time t is equal to the momentum of the grain that has been
transferred to the system during the interval [0,t].

A burning boat of mass  is initially at rest. A fire fighter stands on a bridge and sprays water onto the boat. The water leaves
the fire hose with a speed u at a rate α (measured in ). Assume that the motion of the boat and the water jet are
horizontal, that gravity does not play any role, and that the river can be treated as a frictionless surface. Also assume that the
change in the mass of the boat is only due to the water jet and that all the water from the jet is added to the boat, (Figure
12.10).

Figure 12.10 Example 12.4

a. In a time interval , an amount of water  hits the boat. Choose a system. Is the total momentum constant in
your system? Write down a differential equation that results from the analysis of the momentum changes inside your
system.

b. Integrate the differential equation you found in part a), to find the velocity v(m) as a function of the increasing mass m of
the boat, , and u.

Solution

Let’s take as our system the boat, the amount of water of mass  that enters the boat during the time interval 
and whatever water is in the boat at time t . The water from the fire hose has a speed u . Denote the mass of the boat (including
some water) at time t by , and the speed of the boat by . At time  the speed of the boat is .
Choose the positive x - direction in the direction that the boat is moving. Then the x -components of the momentum of the
system at time t and  are shown in Figure 12.11.
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Figure 12.11 Momentum diagrams for burning boat

Because we are assuming that the burning boat slides with negligible resistance and that gravity has a negligible effect on the
arc of the water jet, there are no external forces acting on the system in the x -direction. Therefore the x -component of the
momentum of the system is constant during the interval  and so

Using the information from the figure above, Equation (12.3.39) becomes

Equation (12.3.40) simplifies to

The third term vanishes when we take the limit  because it is of second order in the infinitesimal quantities (in this case
) and when so dividing by  the quantity is of first order and hence vanishes since both  and 

Equation (12.3.41) becomes

We now use the definition of the derivatives:

in Equation (12.3.42) to fund the differential equation describing the relation between the acceleration of the boat and the time
rate of change of the mass of water entering the boat

The mass of the boat is increasing due to the addition of the water. Let  denote the mass of the water that is in the boat at
time t .Then the mass of the boat can be written as

where  is the mass of the boat before any water entered. Note we are neglecting the effect of the fire on the mass of the
boat. Differentiating Equation (12.3.45) with respect to time yields
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Then Equation (12.3.44) becomes

(b) We can integrate this equation through the separation of variable technique. Rewrite Equation (12.3.47) as (cancel the
common factor dt )

We can then integrate both sides of Equation (12.3.48) with the limits as shown

Integration yields

Recall that  so Equation (12.3.50) becomes

Also recall that  and so exponentiating both sides of Equation (12.3.51) yields

So the speed of the boat at time t can be expressed as

Check result:

We can rewrite Equation (12.3.52) as

Recall that the mass of the water that enters the car during the interval [0,t] is . Therefore Equation
(12.3.54) becomes

During the interaction between the jet of water and the boat, the water transfers an amount of momentum  to the boat
and car producing a momentum . Because all the water that collides with the boat ends up in the boat, all the
interaction forces between the jet of water and the boat are internal forces. The boat recoils forward and the water recoils
backward and through collisions with the boat stays in the boat. Therefore if we choose as our system, all of the water that
eventually ends up in the boat and the boat then the momentum principle states

where  is the momentum of all of the water that eventually ends up in the boat.

Note that the problem didn’t ask to find the speed of the boat as a function t . We shall now show how to find that. We begin by
observing that

where the constant  is measured in  and is specified as a given constant according to the information in the problem
statement. The reason is that  is the rate that the water is ejected from the hose but not the rate that the water enters the boat.
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Figure 12.12 Mass per unit length of water jet

Consider a small amount of water that is moving with speed u that, in a time interval Δt , flows through a cross sectional area
oriented perpendicular to the flow (see Figure 12.12). The area is larger than the cross sectional area of the jet of water. The
amount of water that floes through the area element  where λ is the mass per unit length of the jet and  is the
length of the jet that flows through the area in the interval Δt . The mass rate of water that flows through the cross sectional
area element is then

In the Figure 12.13 we consider a small length  of the water jet that is just behind the boat at time t . During the time
interval , the boat moves a distance .

Figure 12.13 Amount of water that enter boat in time interval 

Only a fraction of the length  of water enters the boat and is given by

Dividing Equation (12.3.59) through by  and taking limits we have that

Substituting Equation (12.3.53) and Equation (12.3.46) into Equation (12.3.60) yields

We can integrate this equation by separating variables to find an integral expression for the mass of the boat as a function of
time
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We can easily integrate both sides of Equation (12.3.62) yielding

The mass of the boat as a function of time is then

We now substitute Equation (12.3.64) into Equation (12.3.65)yielding the speed of the burning boat as a function of time
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