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16.4: Conservation of Energy for Fixed Axis Rotation
Consider a closed system  under action of only conservative internal forces. Then the change in the mechanical
energy of the system is zero

For fixed axis rotation with a component of angular velocity ω about the fixed axis, the change in kinetic energy is given by

where  is a point that lies on the fixed axis. Then conservation of energy implies that

Example 16.4 Energy and Pulley System

A wheel in the shape of a uniform disk of radius R and mass  is mounted on a frictionless horizontal axis. The wheel has
moment of inertia about the center of mass  A massless cord is wrapped around the wheel and one end of the
cord is attached to an object of mass  that can slide up or down a frictionless inclined plane. The other end of the cord is
attached to a second object of mass  that hangs over the edge of the inclined plane. The plane is inclined from the horizontal by
an angle θ (Figure 16.12). Once the objects are released from rest, the cord moves without slipping around the disk. Calculate the
speed of block 2 as a function of distance that it moves down the inclined plane using energy techniques. Assume there are no
energy losses due to friction and that the rope does not slip around the pulley

Figure 16.13 Coordinate system for pulley and blocks

Solution: Define a coordinate system as shown in Figure 16.13. Choose the zero for the gravitational potential energy at a height
equal to the center of the pulley. In Figure 16.14 illustrates the energy diagrams for the initial state and a dynamic state at an
arbitrary time when the blocks are sliding.

Figure 16.14 Energy diagrams for initial state and dynamic state at arbitrary time

Then the initial mechanical energy is
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The mechanical energy, when block 2 has moved a distance

is given by

The rope connects the two blocks, and so the blocks move at the same speed

The rope does not slip on the pulley; therefore as the rope moves around the pulley the tangential speed of the rope is equal to the
speed of the blocks

Equation (16.3.6) can now be simplified

Because we have assumed that there is no loss of mechanical energy, we can set  and find that

which simplifies to

We finally note that the movement of block 1 and block 2 are constrained by the relationship

Then Equation (16.3.11) becomes

We can now solve for the speed as a function of distance  that block 2 has traveled down the incline plane

If we assume that the moment of inertial of the pulley is , then the speed becomes

Example 16.5 Physical Pendulum

A physical pendulum consists of a uniform rod of mass  pivoted at one end about the point . The rod has length  and
moment of inertia  about the pivot point. A disc of mass  and radius  with moment of inertia  about its center of mass is
rigidly attached a distance  from the pivot point. The pendulum is initially displaced to an angle  and then released from rest.
(a) What is the moment of inertia of the physical pendulum about the pivot point  ? (b) How far from the pivot point is the center
of mass of the system? (c) What is the angular speed of the pendulum when the pendulum is at the bottom of its swing?
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Figure 16.15 Rod and with fixed disc pivoted about the point S

Solution: a) The moment of inertia about the pivot point is the sum of the moment of inertia of the rod, given as , and the
moment of inertia of the disc about the pivot point. The moment of inertia of the disc about the pivot point is found from the
parallel axis theorem,

The moment of inertia of the system consisting of the rod and disc about the pivot point  is then

The center of mass of the system is located a distance from the pivot point

b) We can use conservation of mechanical energy, to find the angular speed of the pendulum at the bottom of its swing. Take the
zero point of gravitational potential energy to be the point where the bottom of the rod is at its lowest point, that is, . The
initial state energy diagram for the rod is shown in Figure 16.16a and the initial state energy diagram for the disc is shown in Figure
16.16b.
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Figure 16.16 (a) Initial state energy diagram for rod (b) Initial state energy diagram for disc

The initial mechanical energy is then

At the bottom of the swing, , and the system has angular velocity ω f . The mechanical energy at the bottom of the swing is

with  as found in Equation (16.3.17). There are no non-conservative forces acting, so the mechanical energy is constant therefore
equating the expressions in (16.3.19) and (16.3.20) we get that

This simplifies to

We now solve for  (taking the positive square root to insure that we are calculating angular speed)

Finally we substitute in Equation(16.3.17) in to Equation (16.3.23) and find

Note that we can rewrite Equation (16.3.22), using Equation (16.3.18) for the distance between the center of mass and the pivot
point, to get
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We can interpret this equation as follows. Treat the system as a point particle of mass  located at the center of mass .
Take the zero point of gravitational potential energy to be the point where the center of mass is at its lowest point, that is, .
Then

Thus conservation of energy reproduces Equation (16.3.25).
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