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13.3: Kinematics and Kinetic Energy in One Dimension

Constant Accelerated Motion

Let’s consider a constant accelerated motion of a rigid body in one dimension in which we treat the rigid body as a point mass.
Suppose at t = 0 the body has an initial x - component of the velocity given by . If the acceleration is in the direction of the
displacement of the body then the body will increase its speed. If the acceleration is opposite the direction of the displacement then
the acceleration will decrease the body’s speed. The displacement of the body is given by

The product of acceleration and the displacement is

The acceleration is given by

Therefore

Equation (13.3.4) becomes

If we multiply each side of Equation (13.3.5) by the mass m of the object this kinematical result takes on an interesting
interpretation for the motion of the object. We have

Recall that for one-dimensional motion, Newton’s Second Law is , for the motion considered here, Equation (13.3.6)
becomes

Non-constant Accelerated Motion

If the acceleration is not constant, then we can divide the displacement into N intervals indexed by j = 1 to N . It will be convenient
to denote the displacement intervals by  the corresponding time intervals by  and the x -components of the velocities at the
beginning and end of each interval as  and . Note that the x -component of the velocity at the beginning and end of the
first interval j =1is then  and the velocity at the end of the last interval,  is . Consider the sum of the ,
products of the average acceleration  and displacement  in each interval,

The average acceleration over each interval is equal to

and so the contribution in each integral can be calculated as above and we have that
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When we sum over all the terms only the last and first terms survive, all the other terms cancel in pairs, and we have that

In the limit as  and  for all j (both conditions must be met!), the limit of the sum is the definition of the definite
integral of the acceleration with respect to the position,

Therefore In the limit as  and  for all j , with  Equation (13.3.11) becomes

This integral result is consequence of the definition that . The integral in Equation (13.3.13) is an integral with respect
to space, while our previous integral

requires integrating acceleration with respect to time. Multiplying both sides of Equation (13.3.13) by the mass m yields

When we introduce Newton’s Second Law in the form , then Equation (13.3.15) becomes

The integral of the x -component of the force with respect to displacement in Equation (13.3.16) applies to the motion of a point-
like object. For extended bodies, Equation (13.3.16) applies to the center of mass motion because the external force on a rigid body
causes the center of mass to accelerate.
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