
28.6.1 https://phys.libretexts.org/@go/page/25568

28.6: Laminar and Turbulent Flow

Introduction

During the flow of a fluid, different layers of the fluid may be flowing at different speeds relative to each other, one layer sliding
over another layer. For example consider a fluid flowing in a long cylindrical pipe. For slow velocities, the fluid particles move
along lines parallel to the wall. Far from the entrance of the pipe, the flow is steady (fully developed). This steady flow is called
laminar flow. The fluid at the wall of the pipe is at rest with respect to the pipe. This is referred to as the no-slip condition and is
experimentally holds for all points in which a fluid is in contact with a wall. The speed of the fluid increases towards the interior of
the pipe reaching a maximum, v max , at the center. The velocity profile across a cross section of the pipe exhibiting fully
developed flow is shown in Figure 28.10. This parabolic velocity profile has a non-zero velocity gradient that is normal to the flow.

Figure 28.10 Steady laminar flow in a pipe with a non-zero velocity gradient

Viscosity

Due to the cylindrical geometry of the pipe, cylindrical layers of fluid are sliding with respect to one another resulting in tangential
forces between layers. The tangential force per area is called a shear stress. The viscosity of a fluid is a measure of the resistance to
this sliding motion of one layer of the fluid with respect to another layer. A perfect fluid has no tangential forces between layers. A
fluid is called Newtonian if the shear forces per unit area are proportional to the velocity gradient. For a Newtonian fluid
undergoing laminar flow in the cylindrical pipe, the shear stress, , is given by

where  is the constant of proportionality and is called the absolute viscosity, r is the radial distance form the central axis of the
pipe, and  is the velocity gradient normal to the flow.

The SI units for viscosity are . Some typical values for viscosity for fluids at specified temperatures are given
in Table 1.

Table 1: Coefficients of absolute viscosity

At a certain flow rate, this resistance suddenly increases and the fluid particles no longer follow straight lines but appear to move
randomly although the average motion is still along the axis of the pipe. This type of flow is called turbulent flow. Osbourne
Reynolds was the first to experimentally measure these two types of flow. He was able to characterize the transition between these
two types of flow by a parameter called the Reynolds number that depends on the average velocity of the fluid in the pipe, the
diameter, and the viscosity of the fluid. The transition point between flows corresponds to a value of the Reynolds number that is
associated with a sudden increase in the friction between layers of the fluid. Much after Reynolds initial observations, it was
experimentally noted that a small disturbance in the laminar flow could rapidly grow and produce turbulent flow.
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Example 28.3 Couette Flow
Consider the flow of a Newtonian fluid between two very long parallel plates, each plate of width , length , and separated by a
distance . The upper plate moves with a constant relative speed  with respect to the lower plate, (Figure 28.11).

Figure 28.11 Laminar flow between two plates moving with relative speed 

Choose a reference frame in which the lower plate, located on the plane at , is at rest. Choose a volume element of length 
and cross sectional area , with one side in contact with the plate at rest, and the other side located a distance  from the lower
plate. The velocity gradient in the direction normal to the flow is . The shear force on the volume element due to the fluid
above the element is given by

The shear force is balanced by the shear force  of the lower plate on the element, such that . Hence

The velocity of the fluid at the lower plate is zero. The integral version of this differential equation is then

Integration yields

The velocity of the fluid at the upper plate is , therefore the constant shear stress is given by

hence the velocity profile is

This type of flow is known as Couette flow.

Example 28.4 Laminar flow in a cylindrical pipe.

Let’s consider a long cylindrical pipe of radius  in which the fluid undergoes laminar flow with each fluid particle moves in a line
parallel to the pipe axis. Choose a cylindrical volume element of length  and radius , centered along the pipe axis as shown in
Figure 28.12. There is a pressure drop  over the length of the volume element resulting in forces on each end cap. Denote
the force on the left end cap by  and the force on the right end cap by  on the right end cap, where 

 is the cross sectional area of the end cap.
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Figure 28.12: Volume element for steady laminar flow in a pipe

The forces on the volume element sum to zero and are due to the pressure difference and the shear stress; hence

Using our Newtonian model for the fluid (Equation (28.4.30) and expressing the force in terms of pressure, Equation (28.4.37)
becomes

Equation (28.4.38) can be integrated by the method of separation of variables with boundary conditions 
. (Recall that for laminar flow of a Newtonian fluid the velocity of a fluid is always zero at

the surface of a solid.)

Integration then yields

Recall that the pressure drop . The maximum velocity at the center is then

To determine the flow rate through the pipe, choose a ring of radius  and thickness , oriented normal to the flow. The flow
through the ring is then

Integrating over the cross sectional area of the pipe yields

The average velocity is then

Notice that the pressure difference and the volume flow rate are related by

which is equal to one half the maximum velocity at the center of the pipe. We can rewrite Equation (28.4.45) in terms of the
average velocity as
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where  is the diameter of the pipe. For a pipe of length  and pressure difference , the head loss in a pipe is defined as
the ratio

where we have extended Equation (28.4.46) for the entire length of the pipe. Head loss is also written in terms of a loss coefficient 
 according to

For a long straight cylindrical pipe, the loss coefficient can be written in terms of a factor  times an equivalent length of the pipe

The factor  can be determined by comparing Equations (28.4.47)-(28.4.49) yielding

where  is the Reynolds number and is given by
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