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23.7: Small Oscillations
Any object moving subject to a force associated with a potential energy function that is quadratic will undergo simple harmonic
motion,

where k is a “spring constant”,  is the equilibrium position, and the constant  just depends on the choice of reference point 
 for zero potential energy, ,

Therefore the constant is

The minimum of the potential  corresponds to the point where the x -component of the force is zero,

corresponding to the equilibrium position. Therefore the constant is  and we rewrite our potential function as

Now suppose that a potential energy function is not quadratic but still has a minimum at . For example, consider the potential
energy function

(Figure 23.22), which has a stable minimum at ,

Figure 23.22 Potential energy function with stable minima and unstable maxima

When the energy of the system is very close to the value of the potential energy at the minimum , we shall show that the
system will undergo small oscillations about the minimum value . We shall use the Taylor formula to approximate the potential
function as a polynomial. We shall show that near the minimum  we can approximate the potential function by a quadratic
function similar to Equation (23.7.5) and show that the system undergoes simple harmonic motion for small oscillations about the
minimum .

We begin by expanding the potential energy function about the minimum point using the Taylor formula
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where  is a third order term in that it is proportional to , and 

are constants. If  is the minimum of the potential energy, then the linear term is zero, because

and so Equation ((23.7.7)) becomes

For small displacements from the equilibrium point such that  is sufficiently small, the third order term and higher order
terms are very small and can be ignored. Then the potential energy function is approximately a quadratic function,

where we define , the effective spring constant, by

Because the potential energy function is now approximated by a quadratic function, the system will undergo simple harmonic
motion for small displacements from the minimum with a force given by

At , the force is zero

We can determine the period of oscillation by substituting Equation (23.7.12) into Newton’s Second Law

where  is the effective mass. For a two-particle system, the effective mass is the reduced mass of the system.

Equation (23.7.14) has the same form as the spring-object ideal oscillator. Therefore the angular frequency of small oscillations is
given by

Example 23.6: Quartic Potential
A system with effective mass m has a potential energy given by

where  and  are positive constants and  (a) Find the points where the force on the particle is zero. Classify these
points as stable or unstable. Calculate the value of  at these equilibrium points. (b) If the particle is given a small
displacement from an equilibrium point, find the angular frequency of small oscillation.
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Solution: (a) A plot of  as a function of  is shown in Figure 23.23.

Figure 22.23 Plot of  as a function of 

The force on the particle is zero at the minimum of the potential energy,

The equilibrium points are at  which are stable and x = 0 which is unstable. The second derivative of the potential energy
is given by

If the particle is given a small displacement from  then

(b) The angular frequency of small oscillations is given by

Example 23.7: Lennard-Jones 6-12 Potential
A commonly used potential energy function to describe the interaction between two atoms is the Lennard-Jones 6-12 potential

where r is the distance between the atoms. Find the angular frequency of small oscillations about the stable equilibrium position for
two identical atoms bound to each other by the LennardJones interaction. Let m denote the effective mass of the system of two
atoms.

Solution: The equilibrium points are found by setting the first derivative of the potential energy equal to zero,
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The equilibrium point occurs when  The second derivative of the potential energy function is

Evaluating this at  yields

The angular frequency of small oscillation is therefore

This page titled 23.7: Small Oscillations is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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