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3.4: General circuits and solution methods

3.4.1: Kirchoff's Laws

Circuits are generally composed of lumped elements or “branches” connected at nodes to form two- or three-dimensional
structures, as suggested in Figure 3.4.1. They can be characterized by the voltages vi at each node or across each branch, or by the
currents ij flowing in each branch or in a set of current loops. To determine the behavior of such circuits we develop simultaneous
linear equations that must be satisfied by the unknown voltages and currents. Kirchoff’s laws generally provide these equations.

Although circuit analysis is often based in part on Kirchoff’s laws, these laws are imperfect due to electromagnetic effects. For
example, Kirchoff’s voltage law (KVL) says that the voltage drops vi associated with each lumped element around any loop must
sum to zero, i.e.:

Z v; =0 (Kirchoff’s voltage law [KVL]) (3.4.1)
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Figure 3.4.1: Circuit with branches and current loops.

which can be derived from the integral form of Faraday’s law:
— —
7{ Eeds = —(a/at)# Beda (3.4.2)
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This integral of E ed s across any branch yields the voltage across that branch. Therefore the sum of branch voltages around any
closed contour is zero if the net magnetic flux through that contour is constant; this is the basic assumption of KVL.

KVL is clearly valid for any static circuit. However, any branch carrying time varying current will contribute time varying
magnetic flux and therefore voltage to all adjacent loops plus others nearby. These voltage contributions are typically negligible
because the currents and loop areas are small relative to the wavelengths of interest (A = ¢/f) and the KVL approximation then
applies. A standard approach to analyzing circuits that violate KVL is to determine the magnetic energy or inductance associated
with any extraneous magnetic fields, and to model their effects in the circuit with a lumped parasitic inductance in each affected
current loop.

The companion relation to KVL is Kirchoff s current law (KCL), which says that the sum of the currents i; flowing into any node is
zZero:

Z ij=0 (Kirchoff’s current law) (3.4.3)
J

This follows from conservation of charge (2.4.19) when no charge storage on the nodes is allowed:

_>
(8/0%) /// pdv = —# Jeda (conservation of charge) (3.4.4)
v A

If no charge can be stored on the volume V of a node, then (8/8%) [ [ fv pdv =0, and there can be V no net current into that
node.
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For static problems, KCL is exact. However, the physical nodes and the wires connecting those nodes to lumped elements typically
exhibit varying voltages and 13, and therefore have capacitance and the ability to store charge, violating KCL. If the frequency is
sufficiently high that such parasitic capacitance at any node becomes important, that parasitic capacitance can be modeled as an
additional lumped element attached to that node.

3.4.2: Solving circuit problems

To determine the behavior of any given linear lumped element circuit a set of simultaneous equations must be solved, where the
number of equations must equal or exceed the number of unknowns. The unknowns are generally the voltages and currents on each
branch; if there are b branches there are 2b unknowns.

Figure 3.4.2(a) illustrates a simple circuit with b = 12 branches, p = 6 loops, and n = 7 nodes. A set of loop currents uniquely
characterizes all currents if each loop circles only one “hole” in the topology and if no additional loops are added once every
branch in the circuit is incorporated in at least one loop. Although other definitions for the loop currents can adequately
characterize all branch currents, they are not explored here. Figure 3.4.2(b) illustrates a bridge circuit with b =6, p =3, and n = 4.
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Figure 3.4.2: 12-branch circuit and bridge circuit.

The simplest possible circuit has one node and one branch, as illustrated in Figure 3.4.3(a).
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n=p=1 b=n=2 n=p=2
Figure 3.4.3: Simple circuit topologies; n, p, and b are the numbers of nodes, loops, and branches, respectively.

It is easy to see from the figure that the number b of branches in a circuit is:
b=n+p-1 (3.4.5)

As we add either nodes or branches to the illustrated circuit in any sequence and with any placement, Equation (3.4.5) is always
obeyed. If we add voltage or current sources to the circuit, they too become branches.

The voltage and current for each branch are initially unknown and therefore any circuit has 2b unknowns. The number of equations
isalso b + (n — 1) + p = 2b, where the first b in this expression corresponds to the equations relating voltage to current in each
branch, n-1 is the number of independent KCL equations, and p is the number of loops and KVL equations; (3.4.5) says (n — 1) + p
= b. Therefore, since the numbers of unknowns and linear equations match, we may solve them. The equations are linear because
Maxwell’s equations are linear for RLC circuits.

Often circuits are so complex that it is convenient for purposes of analysis to replace large sections of them with either a two-
terminal Thevenin equivalent circuit or Norton equivalent circuit. This can be done only when that circuit is incrementally linear
with respect to voltages imposed at its terminals. Thevenin equivalent circuits consist of a voltage source Vy(t) in series with a
passive linear circuit characterized by its frequency-dependent impedance Z(w)=R+jX , while Norton equivalent circuits
consist of a current source Ino(t) in parallel with an impedance Z(w).

An important example of the utility of equivalent circuits is the problem of designing a matched load Z; (w) = Ry, (w) + j X1, (w)
that accepts the maximum amount of power available from a linear source circuit, and reflects none. The solution is simply to
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design the load so its impedance Z; (w) is the complex conjugate of the source impedance: Z;,(w) = Z*(w) . For both Thevenin
and Norton equivalent sources the reactance of the matched load cancels that of the source [Xy(w) = - X(w)] and the two resistive
parts are set equal, R = Rp..

One proof that a matched load maximizes power transfer consists of computing the timeaverage power Py dissipated in the load as
a function of its impedance, equating to zero its derivative dPy/dw, and solving the resulting complex equation for R; and X;. We
exclude the possibility of negative resistances here unless those of the load and source have the same sign; otherwise the transferred
power can be infinite if R; = -R.

v/ Example 3.4.4

The bridge circuit of Figure 3.4.2(b) has five branches connecting four nodes in every possible way except one. Assume both
parallel branches have 0.1-ohm and 0.2-ohm resistors in series, but in reverse order so that R; = R, = 0.1, and R, = R3 = 0.2.
What is the resistance R of the bridge circuit between nodes a and d if R; = 0? What is R if Ry = c0? What is R if R5 is 0.5
ohms?

Solution

When Rs = 0 then the node voltages v, = v¢, so Ry and Rj3 are connected in parallel and have the equivalent resistance Ry3,.
Kirchoff’s current law “KCL” (3.4.3) says the current flowing into node “a” is I = (v, - vb)(Rl'1 + R3'1). If Vb = (Va - Vb), then
Vab = IR137 and Ry = (Rl'1 it R3'1)'1 = (10+5)'1 =0.067Q = Ryyy,. These two circuits are in series so their resistances add: R =
Ri3; + Rygy = 0.133 ohms. When Rg = o, R; and R; are in series with a total resistance Ry of 0.1 + 0.2 = 0.3Q = R34,. These
two resistances, Rios and Rays are in parallel, so R = (Rizs! + Raas)! = 0.15Q. When Rs is finite, then simultaneous equations
must be solved. For example, the currents flowing into each of nodes a, b, and ¢ sum to zero, yielding three simultaneous
_)
equations that can be solved for the vector V = [v,, vy, v.]; we define vq = 0. Thus
(va—vb)/Ri+(va—ve)/Rg=I=v, (Rl_1 —I—Rgl) —Vle_l —VCR3_1 =15v, —10v}, — 5v,

KCL for nodes b and c similarly yield: -10v, + 17vy, - 2v, = 0, and -5v, -2vy, + 17v, = 0. If we define the current vector

_>
I =L, 0, 0], then these three equations can be written as a matrix equation:
— — = =
2, o = 15 10 5
Gv=1I, whereG=|-10 17 -2
-5 -2 17

Since the desired circuit resistance between nodes a and d is R = v,/I, we need only solve for v, in terms of I, which follows
—-1 —

- = 7 i =g i . e .
from v =G I, provided the conductance matrix G is not singular (here it is not). Thus R = 0.146Q, which is intermediate
between the first two solutions, as it should be.
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