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4.5: Laplace’s equation and separation of variables

4.5.1: Laplace’s equation

Electric and magnetic fields obey Faraday’s and Ampere’s laws, respectively, and when the fields are static and the charge and current are
zero we have:

These equations are satisfied by any  and  that can be expressed as the gradient of a potential:

Therefore Maxwell’s equations for static charge-free regions of space are satisfied for any arbitrary differentiable potential function 

and , which can be determined as discussed below.

Any potential function must be consistent with the given boundary conditions, and with Gauss’s laws in static charge- and current-free
spaces:

where  and . Substituting (4.5.3) into (4.5.5), and (4.5.4) into (4.5.6) yields Laplace’s equation:

To find static electric or magnetic fields produced by any given set of boundary conditions we need only to solve Laplace’s equation
(4.5.7) for  or , and then use (4.5.3) or (4.5.4) to compute the gradient of the potential. One approach to solving Laplace’s equation is
developed in the following section.

Does the potential  = 1/r satisfy Laplace’s equation ∇  = 0, where r = (x  + y  + z ) ?

Solution

.

First: ,

so .

Therefore

So this potential satisfies Laplace’s equation. The algebra could have been simplified if instead we wrote ∇  in spherical coordinates
(see Appendix C), because only the radial term is potentially non-zero for  = 1/r: ∇  = r (∂/∂r)(r  ∂/∂r). In this case the right-most
factor is r ∂r /∂r = r (-r ) = -1, and ∂(-1)/∂r = 0, so again ∇  = 0.

4.5.2: Separation of variables

We can find simple analytic solutions to Laplace’s equation only in a few special cases for which the solutions can be factored into
products, each of which is dependent only upon a single dimension in some coordinate system compatible with the geometry of the given
boundaries. This process of separating Laplace’s equation and solutions into uni-dimensional factors is called separation of variables. It is
most easily illustrated in terms of two dimensions. Let’s assume the solution can be factored:

∇ × = 0E
→

(4.5.1)

∇ × = 0H
→

(4.5.2)

E
→

H
→

= −∇ΦE
→

(4.5.3)

= −∇ΨH
→

(4.5.4)

Φ( )r
→

Ψ( )r
→

∇ ∙ = 0D
→

(4.5.5)

∇ ∙ = 0B
→

(4.5.6)

= εD
→

E
→

= μB
→

H
→

Φ = Ψ = 0 (Laplace’s equation) ∇2 ∇2 (4.5.7)

Φ Ψ

 Example 4.5.A

Φ 2Φ 2 2 2 0.5

= /∂ + /∂ + /∂∇2 ∂2 x2 ∂2 y2 ∂2 z2

(∂/∂x) = −0.5 (2x)( + + )x2 y2 z2 −0.5
( + + )x2 y2 z2 −1.5

( /∂ ) = 0.75 (2x −∂2 x2 ( + + )x2 y2 z2 −0.5 ( + + )x2 y2 z2 −2.5
)2 ( + + )x2 y2 z2 −1.5

( /∂ + /∂ + /∂ ) = 3 ( + + )−3 ( +∂2 x2 ∂2 y2 ∂2 z2 ( + + )x2 y2 z2 −0.5
( + + )x2 y2 z2 −2.5

x2 y2 z2 x2 y2 + )z2 −1.5

= 0.
2

Φ 2 -2 2

2 -1 2 -2 2Φ
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Then Laplace’s equation becomes:

Dividing by X(x)Y(y) yields:

Since (4.5.10) must be true for all values of x, y, it follows that each term must equal a constant k  , called the separation constant, so that:

Generic solutions to (4.5.11) are, for k ≠ 0:

An equivalent alternative is . Generic solutions when k = 0 are:

Note that by letting k → jk, the sinusoidal x-dependence becomes hyperbolic, and the hyperbolic y dependence becomes sinusoidal--the
roles of x and y are reversed. Whether k is zero, real, imaginary, or complex depends upon boundary conditions. Linear combinations of
solutions to differential equations are also solutions to those same equations, and such combinations are often required to match boundary
conditions.

These univariable solutions can be combined to yield the three solution forms for x-y coordinates:

This approach can be extended to three cartesian dimensions by letting (x,y,z) = X(x)Y(y)Z(z); this leads to the solution :

where . Since , , and  must sum to zero,  must be negative for one or two coordinates so that the solution is
sinusoidal along either one or two axes and hyperbolic along the others.

 If , then . Dividing by XYZ yields 
, which implies all three terms must be constants if the equation holds for all x,y,z; let

these constants be , , and , respectively. Then , and the solution (4.5.19) follows when only .

Once the form of the solution is established, the correct form, (4.5.16) to (4.5.19), is selected and the unknown constants are determined so
that the solution matches the given boundary conditions, as illustrated in the following example.

Φ(x, y) = X(x)Y(y) (4.5.8)

Φ = Φ/∂ + Φ/∂ = Y(y) X/d +X(x) Y/ = 0∇2 ∂2 x2 ∂2 y2 d2 x2 d2 dy2 (4.5.9)

[ X(x)/ ] /X(x) = −[ Y(y)/ ] /Y(y)d2 dx2 d2 dy2 (4.5.10)

2

X/ = − X Y/ = Yd2 dx2 k2 d2 dy2 k2 (4.5.11)

X(x) = A cos kx +B sinkx (4.5.12)

Y (y) = C coshky +D sinhky (4.5.13)

Y (y) = +C ′eky D′e−ky

X(x) = Ax +B (4.5.14)

Y (y) = Cy +D (4.5.15)

Φ(x, y) = (A +Bx)(C +Dy)  for k = 0 (4.5.16)

Φ(x, y) = (A cos kx +Bsinkx)(C coshky +D sinhky)  for  > 0k2 (4.5.17)

Φ(x, y) = (A coshqx +Bsinhqx)(C cos qy +D sinqy)  for  < 0(k = jq)k2 (4.5.18)

Φ 11

Φ(x, y, z) = (A cos x +Bsin x) (C cos y +D sin y) (E cosh z +F sinh z)kx kx ky ky kz kz (4.5.19)

+ + = 0k2
x k2

y k2
z k2

x k2
y k2

2 k2
i

11 Φ(x, y, z) = X(x)Y(y)Z(z) Φ = X/ + Y/ + Z/∇2 YZd2 dx2 XZd2 dy2 XYd2 dz2

X/d + Y/ + Z/ = 0X−1d2 x2 Y−1d2 dy2 Z−1d2 dz2

k2
x k2

y k2
z X(y)/d = X(x)d2 x2 k2

x > 0k2
z
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Figure : Static potentials and fields in a sinusoidally-driven conducting rectangular slot.

Consider an infinitely long slot of width w and depth d cut into a perfectly conducting slab, and suppose the cover to the slot has the
voltage distribution V(x) = 5 sin( x/w) volts, as illustrated in Figure 4.5.1(a). This is a two-dimensional cartesian-coordinate problem, so
the solution (4.5.17) is appropriate, where we must ensure this expression yields potentials that have the given voltage across the top of the
slot and zero potential over the side and bottom boundaries of the slot. Thus:

where the sine and sinh options  from (4.5.17) were chosen to match the given potentials on all four boundaries, and where A 5 sinh = (
Dw ) in order to match the given potential across the top of the slot.

Figure 4.5.1(b) illustrates the solution for the case where the potential across the open top of the slot is given as V(x) = sin 2 x/w. If an
arbitrary voltage V(x) is applied across the opening at the top of the slot, then a sum of sine waves can be used to match the boundary
conditions.

Although all of these examples were in terms of static electric fields  and potentials , they equally well could have been posed in terms

of static  and magnetic potential ; the forms of solutions for  are identical.

  and .

A certain square region obeys ∇  = 0 and has  = 0 along its two walls at x = 0 and at y = 0.  = V volts at the isolated corner x = y

= L.  increases linearly from 0 to V along the other two walls. What are (x,y) and  within the square?

Solution

Separation of variables permits linear gradients in potentials in rectangular coordinates via (4.5.14) and (4.5.15), so the potential can
have the form  = (Ax + B)(Cy + D) where B = D = 0 for this example. Boundary conditions are matched for (x,y) = (V/L )xy [V].

It follows that: .

4.5.3: Separation of variables in cylindrical and spherical coordinates
Laplace’s equation can be separated only in four known coordinate systems: cartesian, cylindrical, spherical, and elliptical. Section 4.5.2
explored separation in cartesian coordinates, together with an example of how boundary conditions could then be applied to determine a
total solution for the potential and therefore for the fields. The same procedure can be used in a few other coordinate systems, as illustrated
below for cylindrical and spherical coordinates.

4.5.1

π

Φ(x, y) = A sin(πx/w) sinh(πy/w) [ volts ] (4.5.20)

12

π

π

E
→

Φ

H
→

Ψ Ψ

12 sinhx = ( − ) /2ex e−x coshx = ( + ) /2ex e−x

 Example 4.5.B

2Φ Φ Φ

Φ Φ (x, y)E
→

Φ Φ 2

= −∇Φ = (V/ ) ( y + x)E
→

L2 x̂ ŷ
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When there is no dependence on the z coordinate, Laplace’s equation in cylindrical coordinates reduces to circular coordinates and is:

Appendix C reviews the del operator in several coordinate systems. We again assume the solution can be separated:

Substitution of (4.5.22) into (4.5.21) and dividing by R(r) ( ) yields:

where m  is the separation constant.

The solution to (4.5.23) depends on whether m  is zero, positive, or negative:

where A, B, C, and D are constants to be determined and m ≡ jp for m  < 0.

A few examples of boundary conditions and the resulting solutions follow. The simplest case is a uniform field in the  direction; the
solution that matches these boundary conditions is (4.5.25) for m = 1:

Another simple example is that of a conducting cylinder of radius R and potential V. Then the potential inside the cylinder is V and that
outside decays as ln r, as given by (1.3.12), when m = C = 0:

The electric field associated with this electric potential is:

Thus  is radially directed away from the conducting cylinder if V is positive, and decays as r .

A final interesting example is that of a dielectric cylinder perpendicular to an applied electric field . Outside the cylinder the
potential follows from (4.5.25) for m = 1 and is:

The potential inside can have no singularity at the origin and is:

which corresponds to a uniform electric field. The unknown constants A and B can be found by matching the boundary conditions at the

surface of the dielectric cylinder, where both  and  must be continuous across the boundary between regions 1 and 2. The two linear

equations for must be continuous across the boundary between regions 1 and 2. The two linear equations for continuity (  = , and 

= ) can be solved for the two unknowns A and B. The electric fields for this case are sketched in Figure 4.5.2.

Φ = (∂/∂r)(r∂Φ/∂r) + ( Φ/∂ ) = 0∇2 r−1 r−2 ∂2 ϕ2 (4.5.21)

Φ = R(r)Φ(ϕ) (4.5.22)

Φ ϕ

(d/dr)(rdR/dr) = − ( Φ/d ) =R−1 Φ−1 d2 ϕ2 m2 (4.5.23)

2

2

Φ(r, ϕ) = [A +Bϕ][C +D(lnr)] (for  = 0)m2 (4.5.24)

Φ(r, ϕ) = (A sinmϕ +Bcos mϕ)( + ) ( for  > 0)Crm Dr−m m2 (4.5.25)

Φ(r, ϕ) = [A sinhpϕ +Bcoshpϕ][C cos(p lnr) +D sin(p lnr)] ( for  < 0)m2 (4.5.26)

2

+x̂

Φ(r, ϕ) = Br cos ϕ (4.5.27)

Φ(r, ϕ) = (V/ lnR) lnr (4.5.28)

= −∇Φ = − ∂Φ/∂r = (V/ lnR)E
→

r̂ r̂ r−1 (4.5.29)

E
→ -1

=E
→

x̂Eo

Φ(r, ϕ) = − r cos ϕ +(AR/r) cos ϕEo (4.5.30)

Φ(r, ϕ) = − (Br/R) cos ϕEo (4.5.31)

Φ D
→

Φ1 Φ2 D
→

1

D
→

2
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Figure : Electric fields perpendicular to a dielectric cylinder.

If these cylindrical boundary conditions also vary with z, the solution to Laplace’s equation becomes:

where J  and N  are Bessel functions of order n of the first and second kind, respectively, and C  are dimensionless constants that match
the boundary conditions. The rapidly growing complexity of these solutions as the dimensionality of the problem increases generally
mandates numerical solutions of such boundary value problems in practical cases.

Our final example involves spherical coordinates, for which the solutions are:

where  and  are associated Legendre functions of the first and second kind, respectively, and C  are again dimensionless constants
chosen to match boundary conditions. Certain spherical problems do not invoke Legendre functions, however, as illustrated below.

A dielectric sphere inserted in a uniform electric field  exhibits the same general form of solution as does the dielectric rod
perpendicular to a uniform applied electric field; the solution is the sum of the applied field and the dipole field produced by the induced
polarization charges on the surface of the rod or sphere. Inside the sphere the field is uniform, as suggested in Figure 4.5.2. Polarization
charges are discussed more fully in Section 2.5.3. The potential follows from (4.5.33) with n = 1 and m = 0, and is simply:

where C  = 0 inside, and for the region outside the cylinder C  is proportional to the induced electric dipole. C  outside is unity and inside
diminishes below unity as ε increases.

If the sphere in the uniform electric field is conducting, then in (4.5.34) C  = C  = 0 inside the sphere, and the field there is zero; the
surface charge is:

Outside the conducting sphere C  = 1, and to ensure (r = R) = 0, C  must also be unity.

The same considerations also apply to magnetic potentials. For example, a sphere of permeability μ and radius R placed in a uniform
magnetic field would also have an induced magnetic dipole that produces a uniform magnetic field inside, and produces outside the
superposition of the original uniform field with a magnetic dipole field produced by the sphere. A closely related example involves a
sphere of radius R having surface current:

This can be produced approximately by a coil wound on the surface of the sphere with a constant number of turns per unit length along the
z axis.

For a permeable sphere in a uniform magnetic field , the solution to Laplace’s equation for magnetic potential ∇  = 0 has a
form similar to (4.5.34):

4.5.2

Φ(r, ϕ, z) = [ + ] [ cos nϕ + sinnϕ] [ (kr) + (kr)]Φo C1ekz C2e−kz2 C3 C4 C5Jn C6Nn (4.5.32)

n n i

Φ(r, θ, ϕ) = [ + ] [ cos mϕ + sinmϕ] [ (cos θ) + (cos θ)]Φo C1rn C2r−n−1 C3 C4 C5Pm
n C6Qm

n (4.5.33)

P m
n Qm

n i

x̂Eo

Φ(r, θ, ϕ) = − cos θ( r − )Eo C1 C2R3r−2 (4.5.34)

2 2 1

1 2

= − = = 3 cos θ  [ ]ρs ∙ ∇Φ|εon̂ r=R εoEr εoEo Cm−2 (4.5.35)

1 Φ 2

= sinθ  [ ]J
→

S ϕ̂ Am−1 (4.5.36)

= −H
→

ẑHo
2Ψ

Ψ(r, θ) = Cr cos θ  (inside the sphere; r < R) (4.5.37)

Ψ(r, θ) = cos θ + r cos θ  (outside the sphere; r > R)Cr−2 Ho (4.5.38)
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Using , we obtain:

Matching boundary conditions at the surface of the sphere yields C; e.g. equate  inside to  outside by equating
(4.5.39) to (4.5.40) for θ = 0.
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curated by David H. Staelin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.

= −∇ΨH
→

(r, θ) = −2C  (inside the sphere; r < R)H
→

(4.5.39)

(r, θ) = −C(R/r ( cos θ +0.5 sinθ) −  (outside the sphere; r > R)H
→

)2 r̂ θ̂ ẑHo (4.5.40)

= μB
→

H
→

= HB
→

μo
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