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10.1: Radiation from charges and currents
   

10.1.1: Introduction to antennas and radiation
An antenna is a device that couples currents to electromagnetic waves for purposes of radiation or reception. The process by which
antennas radiate can be easily understood in terms of the way in which accelerating charged particles or time-varying currents
radiate, which is discussed in Section 10.1. The expressions for radiated electromagnetic fields derived in Section 10.1.4 are simple
extensions of those derived in Sections 10.1.2 and 10.1.3 for the fields produced by static charges and currents, respectively.

Using the basic expressions for radiation derived in Section 10.1, simple short dipole antennas are shown in Section 10.2 to have
stable directional properties far from the antenna (the antenna far field), and different directional properties closer than ~λ/2  (the
antenna near field). In Section 10.3 these properties are related to basic metrics that characterize each antenna, such as gain,
effective area, and impedance. These metrics are then related to the performance of various communications systems. Antenna
arrays are discussed in Section 10.4, followed by aperture and more complicated wire antennas in Sections 11.1 and 11.2,
respectively.

10.1.2: Electric fields around static charges

One simple way to generate electromagnetic waves is to vibrate electric charges, creating time-varying current. The equation
characterizing this radiation is very similar to that characterizing the electric fields produced by a single static charge, which is
developed below. Section 10.1.3 extends this result to magnetic fields produced by moving charges.

Faraday’s and Gauss’s laws for static charges in vacuum are:

Since the curl of  is zero,  can be the gradient of any arbitrary scalar function  and still satisfy (10.1.1). That is:

where  is the scalar electric potential and is in units of Volts. The negative sign is consistent with  pointing away from regions
of high potential and toward lower potentials. Note that (10.1.3) satisfies (10.1.1) because  is an identity, and that

a simple three dimensional scalar field  fully characterizes the three-dimensional vector electric field . It is therefore often
easiest to find the electric potential  before computing the electric field produced by static source charges.

If the charge q [Coulombs] is spherically symmetric, both  and  must also be spherically symmetric. The only way a vector
field can be spherically symmetric is for it to be directed radially, so:

where r is the radius from the origin where the charge is centered and E (r) is the radial field. We can now relate  to q by
applying Gauss’s divergence theorem (2.4.6) to the volume integral of Gauss’s law (10.1.2):

Therefore the electric field produced by a charge q at the origin is:

To find the associated scalar potential  we integrate (10.1.6) using the definition of the gradient operator:
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Since the spherically symmetric potential  (10.1.6) is independent of θ and , it follows that  and Equation
(10.1.8) becomes:

This mathematical simplification occurs only in spherical coordinates, not Cartesian. Substitution of (10.1.9) into (10.1.6),
followed by integration of (10.1.6) with respect to radius r, yields:

where we define as zero the electric potential  contributed by any charge infinitely far away.

The solution for the electric potential  due to charge q at some position  other than the origin follows from (10.1.10):

which can alternatively be written using subscripts p and q to refer to the locations  and  of the person (or observer) and the
charge, respectively, and r  to refer to the distance  between them.

If we replace the charge q with a charge density  in the infinitesimal volume dv, then we can integrate (10.1.11) over the source
region to obtain the total static electric potential produced by an arbitrary charge distribution :

This integration to find  can be performed because Maxwell’s equations are linear so that superposition applies. Thus we have a

simple way to compute  and  for any arbitrary static charge density distribution . This scalar Poisson integral for the
potential function  is similar to that found for dynamic charge distributions in the next section. The integral (10.1.12) is also a
solution to the Poisson equation:

which follows from computing the divergence of Gauss’s law:

Poisson’s equation reduces to Laplace’s equation, , when ρ = 0.

10.1.3: Magnetic fields around static currents
Maxwell’s equations governing static magnetic fields in vacuum are:

Because the divergence of  is always zero, we can define the magnetic flux density in vacuum as being:

where  is defined as the magnetic vector potential, which is a vector analog to . This very general expression for  always

satisfies Gauss’s law: .

Substituting (10.1.17) into Ampere’s law (10.1.15) results in:
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This can be simplified using the vector identity:

where we note that  is arbitrary and does not impact any of our prior equations; therefore we set it equal to zero. Then
(10.1.18) becomes the vector Poisson equation:

The three vector components of (10.1.20) are each scalar Poisson equations identical to (10.1.13) except for the constant, so the
solution is nearly identical to (10.1.12) once the constants have been reconciled; this solution is:

Thus we have a simple way to compute  and therefore  for any arbitrary static current distribution .

10.1.4: Electromagnetic fields produced by dynamic charges

In the static case of Section 10.1.2 it was very helpful to define the potential functions  and , and the time-dependent
Maxwell’s equations for vacuum permit us to do so again:

Although the curl of  is no longer zero so that  no longer equals the gradient of some potential , we can satisfy  if

we define a vector potential  such that:

This definition of  always satsifies Gauss’s law: . Substituting  for  in Faraday’s law yields:

Rearranging terms yields:

which implies that the quantity  can be the gradient of any potential function :

Thus dynamic electric fields have two components—one due to the instantaneous value of (t), and one proportional to the time

derivative of .

We can now use the vector identity (10.1.19) to simplify Ampere’s law after  replaces :
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In the earlier static case we let  because specifying the curl of a vector field ( ) does not constrain its
divergence, which can be independently chosen . Here we can let:

 Let ; then  and , so  and  can be chosen

independently simply by choosing  and  independently.

This reduces (10.1.32) to a simple equation by eliminating its second term, yielding:

which is called the inhomogeneous vector Helmholtz equation (the homogeneous version has no source term on the right hand side;

 = 0 ). It is a wave equation for  driven by the current source .

A similar inhomogeneous wave equation relating the electric potential  to the charge distribution  can also be derived.
Substituting (10.1.30) into Gauss’s law (10.1.24) yields:

Replacing  using (10.1.33) then produces:

which is more commonly written as the inhomogeneous scalar Helmholtz equation:

analogous to the vector version (10.1.34) for . These inhomogeneous scalar and vector Helmholtz equations, (10.1.34) and
(10.1.37), permit us to calculate the electric and magnetic potentials and fields produced anywhere in vacuum as a result of
arbitrary source charges and currents, as explained below.

The solutions to the Helmholtz equations must reduce to: a) the traveling-wave solutions [e.g., (2.2.9)] for the wave equation [e.g.,
(2.2.7)] when the source terms are zero, and b) the static solutions (10.1.10) and (10.1.21) when ∂/∂t = 0. The essential feature of
solutions to wave equations is that their separate dependences on space and time must have the same form because their second
derivatives with respect to space and time are identical within a constant multiplier. These solutions can therefore be expressed as
an arbitrary function of a single argument that sums time and space, e.g. (z - ct) or (t - r /c). The solutions must also have the form
of the static solutions because they reduce to them when the source is static. Thus the solutions to the Helmholtz inhomogeneous
equations are the static solutions expressed in terms of the argument (t - r /c):

These solutions are the dynamic scalar Poisson integral and the dynamic vector Poisson integral, respectively. Note that  and 

 depend on the state of the sources at some time in the past, not on their instantaneous values. The delay r /c is the ratio of the
distance r  between the source and observer, and the velocity of light c. That is, r /c is simply the propagation time between
source and observer.

This page titled 10.1: Radiation from charges and currents is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by David H. Staelin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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