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2.2: Electromagnetic Waves in the Time Domain
Perhaps the greatest triumph of Maxwell’s equations was their ability to predict in a simple way the existence and velocity of
electromagnetic waves based on simple laboratory measurements of the permittivity and permeability of vacuum. In vacuum the

charge density , and so Maxwell’s equations become:

We can eliminate  from these equations by computing the curl of Faraday’s law, which introduces  on its right-hand side
so Ampere’s law can be substituted:

Using the well known overlinetor identity (see Appendix D):

and then using (2.2.3) to eliminate , (2.2.5) becomes the electromagnetic wave equation, often called the Helmholtz wave
equation:

where:

The solutions to this wave equation (2.2.7) are any fields  for which the second spatial derivative  equals a

constant times the second time derivative . The position overlinetor . The wave equation is

therefore satisfied by any arbitrary  having identical dependence on space and time within a constant multiplier. For
example, arbitrary functions of the arguments (z - ct), (z + ct), or (t ± z/c) have such an identical dependence and are among the
valid solutions to (2.2.7), where c is some constant to be determined. One such solution is:

where the arbitrary function E (z - ct) might be that illustrated in Figure 2.2.1 at time t = 0 and again at some later time t. Note that
as time advances within the argument (z - ct), z must advance with ct in order for that argument, or  at any point of interest on the
waveform, to remain constant.
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Figure : Arbitrary electromagnetic wave propagating in the +z direction.

We can test this candidate solution (2.2.9) by substituting it into the wave equation (2.2.7), yielding:

where we define  as the first derivative of  with respect to its argument q and  as its second derivative. Equation
(2.2.10) is satisfied if:

where we define c as the velocity of light in vacuum:

Figure 2.2.1 illustrates how an arbitrary  can propagate by translating at velocity c. However, some caution is warranted

when  is defined. Although our trial solution (2.2.9) satisfies the wave equation (2.2.7), it may not satisfy Gauss’s laws. For
example, consider the case where:

Then Gauss’s law  is not satisfied:

In contrast, if  is oriented perpendicular to the direction of propagation (in the  and/or  directions for z-directed

propagation), then all Maxwell’s equations are satisfied and the solution is valid. In the case , independent
of x and y, we have a uniform plane wave because the fields are uniform with respect to two of the coordinates (x,y) so that 

. Since this electric field is in the y direction, it is said to be y-polarized; by convention, polarization of a
wave refers to the direction of its electric overlinetor. Polarization is discussed further in Section 2.3.4.

Knowing  for this example, we can now find  using Faraday’s law (2.2.1):

We can evaluate the curl of  using (2.1.4) and knowing :
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Then, by integrating (2.2.15) over time it becomes:

where we used the velocity of light , and defined .

Thus  and  in a uniform plane wave are very simply related. Their directions are orthogonal to each other and to the direction of
propagation, and the magnitude of the electric field is  times that of the magnetic field; this factor  is
known as the characteristic impedance of free space and equals ~377 ohms. That is, for a single uniform plane wave in free space,

Electromagnetic waves can propagate in any arbitrary direction in space with arbitrary time behavior. That is, we are free to define 
, , and  in this example as being in any three orthogonal directions in space. Because Maxwell’s equations are linear in field

strength, superposition applies and any number of plane waves propagating in arbitrary directions with arbitrary polarizations can
be superimposed to yield valid electromagnetic solutions. Exactly which superposition is the valid solution in any particular case
depends on the boundary conditions and the initial conditions for that case, as discussed later in Chapter 9 for a variety of
geometries.

Show that  satisfies the wave equation (2.2.7). In which direction does this wave propagate?

Solution

; Q.E.D  .

Since the argument remains constant as t increases only if z/c decreases correspondingly, the wave is propagating in the -z
direction.

 Q.E.D. is the abbreviation for the Latin phrase “quod erat demonstratum” or “that which was to be demonstrated.”
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ŷ 1
c2 E ′′

0 E ′′
0

4

4

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/24987?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/02%3A_Introduction_to_Electrodynamics/2.02%3A_Electromagnetic_waves_in_the_time_domain
https://creativecommons.org/licenses/by-nc-sa/4.0
https://ieeexplore.ieee.org/document/6157724
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013-electromagnetics-and-applications-spring-2009/readings/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013-electromagnetics-and-applications-spring-2009

