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2.6: Boundary conditions for electromagnetic fields
 
 

2.6.1: Introduction
Maxwell’s equations characterize macroscopic matter by means of its permittivity ε, permeability μ, and conductivity σ, where
these properties are usually represented by scalars and can vary among media. Section 2.5 discussed media for which ε, μ, and σ
are represented by matrices, complex quantities, or other means. This Section 2.6 discusses how Maxwell’s equations strongly
constrain the behavior of electromagnetic fields at boundaries between two media having different properties, where these
constraint equations are called boundary conditions. Section 2.6.2 discusses the boundary conditions governing field components
perpendicular to the boundary, and Section 2.6.3 discusses the conditions governing the parallel field components. Section 2.6.4
then treats the special case of fields adjacent to perfect conductors.

One result of these boundary conditions is that waves at boundaries are generally partially transmitted and partially reflected with
directions and amplitudes that depend on the two media and the incident angles and polarizations. Static fields also generally have
different amplitudes and directions on the two sides of a boundary. Some boundaries in both static and dynamic situations also
possess surface charge or carry surface currents that further affect the adjacent fields.

The boundary conditions governing the perpendicular components of  and  follow from the integral forms of Gauss’s laws:

We may integrate these equations over the surface S and volume V of the thin infinitesimal pillbox illustrated in Figure 2.6.1. The
pillbox is parallel to the surface and straddles it, half being on each side of the boundary. The thickness δ of the pillbox approaches
zero faster than does its surface area S, where S is approximately twice the area A of the top surface of the box.

Figure : Elemental volume for deriving boundary conditions for perpendicular field components.

Beginning with the boundary condition for the perpendicular component D , we integrate Gauss’s law (2.6.1) over the pillbox to
obtain:

where ρ  is the surface charge density [Coulombs m ]. The subscript s for surface charge ρ  distinguishes it from the volume
charge density ρ [C m ]. The pillbox is so thin (δ → 0) that: 1) the contribution to the surface integral of the sides of the pillbox
vanishes in comparison to the rest of the integral, and 2) only a surface charge q can be contained within it, where ρ  = q/A = lim ρδ
as the charge density ρ → ∞ and δ → 0. Thus (2.6.3) becomes D  - D  = ρ , which can be written as:
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where  is the unit overlinetor normal to the boundary and points into medium 1. Thus the perpendicular component of the electric
displacement overlinetor  changes value at a boundary in accord with the surface charge density ρ .

Because Gauss’s laws are the same for electric and magnetic fields, except that there are no magnetic charges, the same analysis for
the magnetic flux density  in (2.6.2) yields a similar boundary condition:

Thus the perpendicular component of  must be continuous across any boundary.

2.6.2: Boundary conditions for parallel field components

The boundary conditions governing the parallel components of  and  follow from Faraday’s and Ampere’s laws:

We can integrate these equations around the elongated rectangular contour C that straddles the boundary and has infinitesimal area
A, as illustrated in Figure 2.6.2. We assume the total height δ of the rectangle is much less than its length W, and circle C in a right-
hand sense relative to the surface normal .

Figure : Elemental contour for deriving boundary conditions for parallel field components.

Beginning with Faraday’s law, (2.6.6), we find:

where the integral of  over area A approaches zero in the limit where δ approaches zero too; there can be no impulses in . Since
W ≠ 0, it follows from (2.6.8) that E  - E  = 0, or more generally:

Thus the parallel component of  must be continuous across any boundary.

A similar integration of Ampere’s law, (2.6.7), under the assumption that the contour C is chosen to lie in a plane perpendicular to

the surface current  and is traversed in the right-hand sense, yields:
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where we note that the area integral of  approaches zero as δ → 0, but not the integral over the surface current , which

occupies a surface layer thin compared to δ. Thus , or more generally:

where  is defined as pointing from medium 2 into medium 1. If the medium is nonconducting, .

A simple static example illustrates how these boundary conditions generally result in fields on two sides of a boundary pointing in

different directions. Consider the magnetic fields  and  illustrated in Figure 2.6.3, where , and both media are

insulators so the surface current must be zero. If we are given , then the magnitude and angle of  are determined because 

 and  are continuous across the boundary, where . More specifically, , and:

Figure : Static magnetic field directions at a boundary.

It follows that:

Thus θ  approaches 90 degrees when μ  >> μ , almost regardless of θ , so the magnetic flux inside high permeability materials is
nearly parallel to the walls and trapped inside, even when the field orientation outside the medium is nearly perpendicular to the
interface. The flux escapes high-μ material best when θ  ≅ 90°. This phenomenon is critical to the design of motors or other
systems incorporating iron or nickel.

If a static surface current  flows at the boundary, then the relations between  and  are altered along with those for 

and . Similar considerations and methods apply to static electric fields at a boundary, where any static surface charge on the

boundary alters the relationship between  and . Surface currents normally arise only in non-static or “dynamic” cases.

Two insulating planar dielectric slabs having ε  and ε  are bonded together. Slab 1 has  at angle θ  to the surface normal.

What are  and θ  if we assume the surface charge at the boundary ρ  = 0? What are the components of \) if ρs ≠ 0?

Solution

 is continuous across any boundary, and if  = 0, then  is continuous too, which implies 

. Also, , and . It follows that .
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2.6.3: Boundary conditions adjacent to perfect conductors
The four boundary conditions (2.6.4), (2.6.5), (2.6.9), and (2.6.11) are simplified when one medium is a perfect conductor (σ = ∞)
because electric and magnetic fields must be zero inside it. The electric field is zero because otherwise it would produce enormous 

 so as to redistribute the charges and to neutralize that  almost instantly, with a time constant  =εσ seconds, as shown
in Equation (4.3.3).

It can also be easily shown that  is zero inside perfect conductors. Faraday’s law says  so if = 0 , then 

. If the perfect conductor were created in the absence of  then  would always remain zero inside. It has further been
observed that when certain special materials become superconducting at low temperatures, as discussed in Section 2.5.2, any pre-
existing  is thrust outside.

The boundary conditions for perfect conductors are also relevant for normal conductors because most metals have sufficient
conductivity σ to enable  and ρ  to cancel the incident electric field, although not instantly. As discussed in Section 4.3.1, this
relaxation process by which charges move to cancel  is sufficiently fast for most metallic conductors that they largely obey the
perfect-conductor boundary conditions for most wavelengths of interest, from DC to beyond the infrared region. This relaxation
time constant is  = ε/σ seconds. One consequence of finite conductivity is that any surface current penetrates metals to some depth

, called the skin depth, as discussed in Section 9.2. At sufficiently low frequencies, even sea water with its limited
conductivity largely obeys the perfect-conductor boundary condition.

The four boundary conditions for fields adjacent to perfect conductors are presented below together with the more general
boundary condition from which they follow when all fields in medium 2 are zero:

These four boundary conditions state that magnetic fields can only be parallel to perfect conductors, while electric fields can only
be perpendicular. Moreover, the magnetic fields are always associated with surface currents flowing in an orthogonal direction;
these currents have a numerical value equal to . The perpendicular electric fields are always associated with a surface charge ρs
numerically equal to  ; the sign of σ is positive when  points away from the conductor.

What boundary conditions apply when μ→∞, σ = 0, and ε = ε ?

Solution

Inside this medium  = 0 and  = 0 because otherwise infinite energy densities, , are required; static  and  are

unconstrained, however. Since  inside, dynamic  and  = 0 there too. Since  and  are

continuous across the boundary,  and  can be anything at the boundary. Since  and  are continuous (let’s

assume ρ  = 0 if  = 0 ), static  and  are unconstrained at the boundary while dynamic  there because there is

no dynamic electric field inside and no dynamic surface charge. Since only  at the boundary, this is non-physical and
such media don’t exist. For example, there is no way to match boundary conditions for an incoming plane wave. This impasse

would be avoided if σ ≠ 0, for then dynamic  and  could be non-zero.
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