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2.3: Maxwell’s Equations, Waves, and Polarization in the Frequency Domain

2.3.1: Sinusoidal waves
Linear systems are easily characterized by the magnitude and phase of each output as a function of the frequency at which the input
is sinusoidally stimulated. This simple characterization is sufficient because sinusoids of different frequencies can be superimposed
to construct any arbitrary input waveform , and the output of a linear system is the superposition of its responses to each
superimposed input. Systems with multiple inputs and outputs can be characterized in the same way. Nonlinear systems are more
difficult to characterize because their output frequencies generally include harmonics of their inputs.

 The Fourier transform pair (10.4.17) and (10.4.18) relate arbitrary pulse waveforms h(t) to their corresponding spectra H(f),
where each frequency f has its own magnitude and phase represented by H(f).

Fortunately free space is a linear system, and therefore it is fully characterized by its response to sinusoidal plane waves. For
example, the arbitrary z-propagating x-polarized uniform plane wave of (2.2.9) and Figure 2.2.1 could be sinusoidal and
represented by:

where the wave amplitude E  is a constant and the factor k is related to frequency, as shown below.

It is more common to represent sinusoidal waves using the argument (ωt - kz) so that their frequency and spatial dependences are
more evident. The angular frequency ω is simply related to frequency f [Hz]:

and the spatial frequency k, often called the wavenumber, is simply related to ω and wavelength λ [m], which is the length of one
period in space:

The significance and dimensions of ω and k are directly analogous; they are radians s  and radians m , respectively.

Therefore we can alternatively represent the wave of (2.3.1) and (2.3.2) as:

Figure 2.3.1 suggests the form of this wave. Its wavelength is λ, the length of one cycle, where:

The figure illustrates how these electric and magnetic fields are in phase but orthogonal to each other and to the direction of
propagation. When the argument (ωt – kz) equals zero, the fields are maximum, consistent with cos(ωt - kz).
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ω = 2πf [ radians  ] (angular frequency) s−1 (2.3.3)

k = 2π/λ = ω/c [ radians  ] (wave number) m−1 (2.3.4)
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( , t) = cos(ωt −kz) [v ]E
→

r
→

x̂Eo m−1 (2.3.5)

(z, t) = cos(ωt −kz) [A ]H
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− −−−−
√ Eo m−1 (2.3.6)

λ = c/f[m] (wavelength) (2.3.7)
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Figure : +z propagating y-polarized uniform plane wave of wavelength λ.

This notation makes it easy to characterize uniform plane waves propagating in other directions as well. For example:

2.3.2: Maxwell’s equations in the complex-frequency domain
Electromagnetic fields are commonly characterized in the frequency domain in terms of their magnitudes and phases as a function
of position  for frequency f. For example, the  component of a general sinusoidally varying  might be:

This might become  for a uniform plane wave propagating in the +z direction.

It is generally more convenient to express phase using complex notation (see Appendix B). The x-component of the wave of
(2.3.12) can also be represented as:

where the spatial and frequency parts of  have been separated and  is called a phasor. The
simplicity will arise later when we omit  from our expressions as “understood”, so only the phasors remain. The
underoverline under  indicates  is not a function of time, but rather is a complex quantity with a real part and an imaginary
part, where:

and . A general overlinetor can also be a phasor, e.g., 

, where .

We can use such phasors to simplify Maxwell’s equations. For example, we can express Faraday’s law (2.2.1) as:

2.3.1

( , t) = cos(ωt +kz) (x -polarized wave in -z direction)E
→
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( , t) = cos(ωt −kx)  (y-polarized wave in +x direction) E
→
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→
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The other Maxwell equations can be similarly transformed, which suggests that the notation  can be omitted and

treated as understood. For example, removing this redundant notation from (2.3.15) results in: . Any problem

solution expressed as a phasor, e.g. , can be converted back into a time-domain expression by the operator .
These omissions of the understood notation result in the complex or time-harmonic Maxwell equations:

Note that these equations are the same as before [i.e., (2.2.1–4)], except that we have simply replaced the operator ∂/∂t with jω and
placed an underoverline under all variables, signifying that they are now phasors.

We can immediately derive the time-harmonic equation for conservation of charge (2.1.19) by computing the divergence of

(2.3.17), noting that  for any , and substituting  (2.3.18):

Convert the following expressions into their time-domain equivalents: , , and .

Solution

, , and .

Convert the following expressions into their complex frequency-domain equivalents: Acos (ω +t kz ), and Bsin (ω +t φ).

Solution

Ae  , and −jBe  = −jBcos φ + Bsin φ .

2.3.3: Sinusoidal uniform plane waves
We can readily derive from Maxwell’s equations the time-harmonic Helmholtz wave equation for vacuum (2.2.7) by substituting jω
for ∂/∂t or, as we did earlier, by taking the curl of Faraday’s law, using the well known overlinetor identity (2.2.6) and Gauss’s law,

replacing  by , and using Ampere’s law to replace . In both cases the Helmholtz wave equation becomes:

As before, the solution  to the wave equation can be any arbitrary function of space  such that its second spatial

derivative  equals a constant  times that same function . One solution with these properties is the time-

harmonic version of the timedomain expression :

Substituting (2.3.22) into the wave equation (2.3.21) yields:

{[ ] }Re ejωt

∇ × = −jωE––
→

B––
→

( )E––
→

r
→

{[ ] }Re ejωt

∇ × = −jω  (Faraday's law) E
––

→
B
––

→
(2.3.16)

∇ × = +jω (Ampere’s law) H
––

→
J
––

→
D
––

→
(2.3.17)

∇ ∙ = (Gauss’s law)D
––

→
ρ
––

(2.3.18)

∇ ∙ = 0 (Gauss’s law)B
––

→
(2.3.19)

∇ ∙ (∇ × ) = 0A
→

A ⃗  ∇ ∙ = ρD––
→

∇ ∙ +jω = 0J––
→

ρ
––

(2.3.20)

Example 2.3.A

jω∇ × = jQ
→

R
→

R
→

e−jkz = 3 + j4E––
→

x̂ ŷ

−ω(∇ × ) sin(ωt) = − sinωtQ
→

R
→

cos(ωt −kz)R
→

3 cos ωt −4 sinωtx̂ ŷ

Example 2.3.B

+jkz jφ

B
––

→
μo H

––

→
∇ × H

––

→

( + ) = 0  (wave equation) ∇2 ω2μoεo E––
→

(2.3.21)

( )E––
→

r
→

( )r
→

( )∇2 E––
→

(− )ω2εoμo ( )E–– r
→

( , t) = cos(ωt −kz)E
→

r
→

ŷEo

( ) = [v ]E––
→

r
→

ŷEoe−jkz m−1 (2.3.22)

([ /∂ ] + ) = ([−jk + ) = 0∂2 z2 ω2μoεo E––
→

]2 ω2μoεo E––
→

(2.3.23)
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which is satisfied if the wavenumber k is:

It is now an easy matter to find the magnetic field that corresponds to (2.3.22) by using Faraday’s law (2.3.16), , and the
definition of the “∇×” operator (2.1.1):

As before,  and  are orthogonal to each other and to the direction of propagation, and .

As another example, consider a z-polarized wave propagating in the -x direction; then:

It is easy to convert phasor expressions such as (2.3.26) into time-domain expressions. We simply divide the phasor expressions
into their real and imaginary parts, and note that the real part varies as cos(ωt - kz) and the imaginary part varies as sin(ωt - kz).
Thus the fields in (2.3.22) could be written instead as a real time-domain expression:

Had the electric field solution been instead the phasor , the time domain expression  would then be:

The conversion of complex phasors to time-domain expressions, and vice-versa, is discussed further in Appendix B.

2.3.4: Wave polarization
Complex notation simplifies the representation of wave polarization, which characterizes the behavior of the sinusoidally varying
electric field overlinetor as a function of time. It is quite distinct from the polarization of media discussed in Section 2.5.3.
Previously we have seen waves for which the time-varying electric overlinetor points only in the ±x, ±y, or ±z directions,
corresponding to x, y, or z polarization, respectively. By superimposing such waves at the same frequency and propagating in the
same direction we can obtain any other desired time-harmonic polarization. Linear polarization results when the oscillating electric
overlinetor points only along a single direction in the plane perpendicular to the direction of propagation, while elliptical
polarization results when the x and y components of the electric overlinetor are out of phase so that the tip of the electric
overlinetor traces an ellipse in the same plane. Circular polarization results only when the phase difference between x and y is 90
degrees and the two amplitudes are equal. These various polarizations for +  propagation are represented below at z = 0 in the time
domain and as phasors, and in Figure 2.3.2.

k = ω = = = [radians  ]μoεo
− −−−

√
ω

c

2πf

c

2π

λ
m−1 (2.3.24)
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(2.3.25)
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→
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( , t) = cos(ωt −kz)E
→

r
→

ŷEo (2.3.27)

ŷ jEoe−jkz { ( ) }Re E––
→

r
→

ejωt

( , t) = − sin(ωt −kz)E
→

r
→

ŷEo (2.3.28)

ẑ

(t) = cos ωt =  (y-polarized) E
→

ŷEo E
––

→
ŷEo (2.3.29)

(t) = cos ωt =  (x-polarized) E
→

x̂Eo E
––

→
x̂Eo (2.3.30)

(t) = ( + ) cos ωt = ( + ) ( -polarized)E
→

x̂ ŷ Eo E––
→

x̂ ŷ Eo 45∘ (2.3.31)

(t) = ( cos ωt + sinωt) = ( −j )  (right-circular) E
→

Eo x̂ ŷ E––
→

x̂ ŷ Eo (2.3.32)

(t) = ( cos ωt +1.5 sinωt) = ( −1.5j )  (right-elliptical) E
→

Eo x̂ ŷ E––
→

x̂ ŷ Eo (2.3.33)

(t) = [ cos ωt + cos(ωt + )] = ( + )  (left-elliptical) E
→

Eo x̂ ŷ 20∘ E––
→

x̂ e0.35jŷ Eo (2.3.34)
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Figure : Polarization ellipses for +z-propagating plane waves (into the page).

The Institute of Electrical and Electronics Engineers (IEEE) has defined polarization as right-handed if the electric overlinetor
traces a right-handed ellipse in the x-y plane for a wave propagating in the +z direction, as suggested in Figure 2.3.3. That is, for
right-handed polarization the fingers of the right hand circle in the direction taken by the electric overlinetor while the thumb
points in the direction of propagation. This legal definition is opposite that commonly used in physics, where that alternative
definition is consistent with the handedness of the “screw” formed by the instantaneous three-dimensional loci of the tips of the
electric overlinetors comprising a wave.

Figure : IEEE definition of right-handed polarization.

If , what polarizations correspond to: , , and ?

Solution

y polarization, linear polarization at angle tan 2 relative to the x-z plane, and rightcircular polarization.
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Example 2.3.C
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