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10.3: Antenna gain, effective area, and circuit properties
   

10.3.1: Antenna directivity and gain

The far-field intensity  [W m ] radiated by any antenna is a function of direction, as given for a short dipole antenna by
(10.2.27) and illustrated in Figure 10.2.4. Antenna gain G(θ,φ) is defined as the ratio of the intensity P(θ,φ,r) to the intensity [Wm
] that would result if the same total power available at the antenna terminals, P  [W], were radiated isotropically over 4π

steradians. G(θ,φ) is often called “gain over isotropic” where:

A related quantity is antenna directivity D(θ,φ), which is normalized to the total power radiated P  rather than to the power P
available at the antenna terminals:

The transmitted power is less than the available power if the antenna is mismatched or lossy. Since the total power radiated is 
, a useful relation follows from (10.3.2):

Equation (10.3.3) says that if the directivity or gain is large in one direction, it must be correspondingly diminished elsewhere, as
suggested in Figure 10.2.4, where the pattern is plotted relative to an isotropic radiator and exhibits its “main lobe” in the direction
θ = 90°. This pattern is independent of φ. The half-power antenna beamwidth in the θ direction is the angle θ  between two
directions where the radiated power is half that radiated at the peak, as illustrated. Thus (10.3.3) and the figure also suggest that
high directivity antennas have narrower beamwidths θ , or are more “directive”.

The ratio P /P  is that fraction of the power available at the antenna terminals (P ) that is radiated; it is defined as the radiation
efficiency :

The radiation efficiency is usually near unity because the resistive losses and the reflective losses due to impedance mismatches are
small in most systems. Typical exceptions to the rule  include most short dipoles and antennas that are used over
bandwidths much greater than an octave; their impedances are difficult to match.

The directivity of a short dipole antenna is given by substituting (10.2.27) and (10.2.28) into (10.3.2):

Lossless matched short dipole antennas have gain:

What is the maximum solid angle  [steradians] over which a lossless matched antenna can have constant gain G  = 40 dB?
If the beam is circular, approximately what is its diameter θ ? How much transmitter power P  is required to yield  volt
per meter at 10 kilometers?

Solution

(r, θ)P
→ -2

-

2
A

G(θ, ϕ) ≡ (antenna gain definition) 
P(r, θ, ϕ)

( /4π )PA r2
(10.3.1)

T A

D(θ, ϕ) ≡ (antenna directivity definition)
P(r, θ, ϕ)

( /4π )PT r2
(10.3.2)

= P(r, θ, ϕ) sinθdθdϕPT r2 ∫
4π

D(θ, ϕ) sinθdθdϕ = 4π∮
4π

(10.3.3)

B

B

T A A
ηR

≡ / (radiation efficiency)ηR PT PA (10.3.4)

G(θ, ϕ) ≡ D(θ, ϕ)ηR (10.3.5)

≅1ηR

D(θ, ϕ) = = 1.5 θ ( short dipole directivity )
( /2) θηo | d/λ2r|I–o

2
sin2

( π/3) /4πηo | d/λ|I–o
2

r2
sin2 (10.3.6)

G(θ, ϕ) = 1.5 θ (short-dipole antenna gain) sin2 (10.3.7)

 Example 10.3.A
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Since G(θ,φ) = D(θ,φ) for a lossless matched antenna, and , it follows that  since the
maximum gain results when all sidelobes have G = 0. Therefore , corresponding to 

. 
.

10.3.2: Circuit properties of antennas
Antennas connect to electrical circuits, and therefore it is important to understand the circuit properties of antennas. The linearity of
Maxwell’s equations applies to antennas, so they can therefore be modeled by a Thevenin equivalent circuit consisting of a
Thevenin equivalent impedance  in series with a Thevenin voltage source . This section evaluates the Thevenin equivalent
impedance , and Section 10.3.3 evaluates . The frequency dependence of these circuit equivalents usually does not map
neatly into that of inductors, capacitors, and resistors, and so we simply use complex notation and a generalized  instead,
where:

R(ω) is the resistive part of the impedance corresponding to the total power dissipated and radiated, and X(ω) is the reactive part,
corresponding to near-field energy storage.

To find  we can use the integral form of Poynting’s theorem (2.7.23) for a volume V bounded by surface area A to relate the
terminal voltage  and current  to the near and far fields of any antenna:

For example, the short dipole antenna in Figure 10.2.3 is shown surrounded by a surface area A = A' + A" + A''', where A' is the
cross-sectional area of the TEM feed line, A" is the outer surface of the coaxial feed line, and A''' is far from the antenna and
intercepts only radiated fields.

These three contributions (A', A", and A''') to the surface integral on the left-hand side of (10.3.9) are given by the next three
equations:

Equation (10.3.10) simply expresses in two different ways the power flowing away from the antenna through the TEM feed line;
the negative sign results because Poynting’s vector here is oriented outward and the current flow  is oriented inward. Because no
power flows perpendicular to the conducting sheath of the feed line, we have:

The third integral over the far fields A''' captures the total power radiated by the antenna, which must equal the real power into the
antenna associated with radiation, or , where (10.3.12) defines the radiation resistance R  of an antenna. In the far field
the left-hand side is purely real:

By combining the expression for  in (10.3.10) with equations (10.3.9–12) we obtain:
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X(ω) is the antenna reactance, and the integral in (10.3.14) is the dissipative component R (ω) of antenna resistance R(ω). If the
average near-field magnetic energy storage exceeds the electric energy storage, then the antenna reactance X is positive and
inductive; if the energy stored is predominantly electric, then X is negative and capacitive. In practice the real part of the jω term in

(10.3.14) is usually zero, as is the imaginary part of the  term in (10.3.15), but there can be exceptions. The R and X of
antennas are seldom computed analytically, but are usually determined by experiment or computational tools.

The radiation resistance R  of short dipole antennas can be estimated using (10.3.12) and (10.2.28); the dissipative resistance R  in
short wires given by (10.3.14) is usually negligible:

The effective length d  of a short dipole is approximately half its physical length [see (10.2.25) and Figure 10.2.3].

The reactance X of a short dipole antenna can be found using (10.3.15); it results primarily from the energy stored in the near

fields. The near-field energy for short or Hertzian dipoles is predominantly electric, since the near-field  (10.2.15) while

the near-field  (10.2.16), and r→ 0. Since the electric term of (10.3.15) is much greater than the magnetic term, X is
negative.

A certain matched antenna radiates one watt (P ) when driven with voltage  volts. What is the antenna radiation
resistance R ?

Solution

10.3.3: Receiving properties of antennas

Because Maxwell’s equations are linear in field strength, antennas have equivalent circuits consisting of a Thevenin equivalent
impedance , given by (10.3.13), in series with a Thevenin voltage source  that we can now evaluate. Non-zero
voltages appear when antennas receive signals, where these voltages depend upon the direction, polarization, and strength of the
intercepted waves.

Figure 10.3.1(a) illustrates the Thevenin equivalent circuit for any antenna, and Figure 10.3.1(b) illustrates the electric fields and
equipotentials associated with a short dipole antenna intercepting a uniform plane wave polarized parallel to the dipole axis. When
the wavelength λ greatly exceeds d and other local dimensions of interest, i.e. λ → ∞, then Maxwell’s equations become:

But these limits are the equations of electrostatics and magnetostatics. Therefore we can quickly sketch the electric field lines near
the short dipole of Figure 10.3.1 using a three-dimensional version of the quasistatic field mapping technique of Section 4.6.2.

d
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2
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 Example 10.3.B
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Figure : Thevenin voltage induced on a short dipole antenna.

Far from the dipole the field lines  in Figure 10.3.1(b) are those of the quasistatic incident plane wave, i.e., uniform and parallel

to the dipole. Close to the conducting dipole  is distorted to match the boundary conditions: 1) , and 2) each half of the dipole
is an equipotential, intercepting only one equipotential line (boldface, dashed). If the wires comprising the short dipole are very
thin, the effects of each wire on the other are negligible. Under these assumptions symmetry dictates the form for three of the
equipotentials in Figure 10.3.1—the equipotentials through the center of the dipole and through each of its two halves are straight

lines. The other equipotentials sketched with dashed lines curve around the conductors. The field lines  are sketched with solid
lines locally perpendicular to the equipotentials. The field lines terminate at charges on the surface of the conductors and possibly

at infinity, as governed by Gauss’s law: .

Figures 10.3.1(b) and (c) suggest why the open-circuit voltage V  of the short dipole antenna equals the potential difference
between the centers of the two halves of this ideal dipole:

The effective length of the dipole, , is defined by (10.3.19), and is the same as the effective length defined in terms of the
current distribution (10.2.25) for infinitesimally thin straight wires of length d << λ. Generally , which is the distance
between the centers of the two conductors. Each conductor is essentially sampling the electrostatic potential in its vicinity and

conveying that to the antenna terminals. The orientation of  is that of the dipole current flow that would be driven by external
sources having the defined terminal polarity.

The maximum power an antenna can deliver to an external circuit of impedance  is easily computed once the antenna equivalent
circuit is known. To maximize this transfer it is first necessary to add an external load reactance, -jX , in series to cancel the
antenna reactance +jX (X is negative for a short dipole antenna because it is capacitive). Then the resistive part of the load R  must
match that of the antenna, i.e., R  = R . Maximum power transfer occurs when the impedances match so incident waves are not
reflected. In this conjugate-match case (Z  = Z *), the antenna Thevenin voltage  is divided across the two resistors R  and R
so that the voltage across R  is  and the power received by the short dipole antenna is:

10.3.3
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Substitution into (10.3.20) of R  (10.3.16) and V  (10.3.19) yields the received power:

where I(θ,φ) is the power intensity [Wm ] of the plane wave arriving from direction (θ,φ), G(θ,φ) = D(θ,φ) = 1.5 sin θ is the
antenna gain of a lossless short-dipole antenna (10.3.7), and A(θ,φ) is the antenna effective area as defined by the equation P  ≡
I(θ,φ) A(θ,φ) [W] for the power received. Section 10.3.4 proves that the simple relation between gain G(θ,φ) and effective area
A(θ,φ) proven in (10.3.22) for a short dipole applies to essentially all  antennas:

 This expression requires that all media near the antenna be reciprocal, which means that no magnetized plasmas or ferrites
should be present so that the permittivity and permeabiliy matrices ε and μ everywhere equal their own transposes.

Equation (10.3.23) says that the effective area of a matched short-dipole antenna is equivalent to a square roughly λ/3 on a side,
independent of antenna length. A small wire structure (<< λ/3) can capture energy from this much larger area if it has a conjugate
match, which generally requires a high-Q resonance, large field strengths, and high losses. In practice, short-dipole antennas
generally have a reactive mismatch that reduces their effective area below optimum.

10.3.4: Generalized relation between antenna gain and effective area

Section 10.3.3 proved for a short-dipole antenna the basic relation (10.3.23) between antenna gain G(θ, ) and antenna effective
area A(θ, ):

This relation can be proven for any arbitrary antenna provided all media in and near the antenna are reciprocal media, i.e., their
complex permittivity, permeability, and conductivity matrices , , and  are all symmetric:

where we define the transpose operator t such that . Non-reciprocal media are rare, but include magnetized plasmas and
magnetized ferrites; they are not discussed in this text. Media characterized by matrices are discussed in Section 9.5.1.

To prove (10.3.24) we characterize a general linear 2-port network by its impedance matrix:

where  and  are the two-element voltage and current vectors  and , and  and  are the voltage and current at

terminal pair i. This matrix  does not depend on the network to which the 2-port is connected. If the 2-port system is a reciprocal

network, then , so .

Since Maxwell’s equations are linear,  is linearly related to , and we can define an antenna impedance  consisting of a real
part (10.3.14), typically dominated by the radiation resistance Rr (10.3.12), and a reactive part jX (10.3.15). Thus ,
where R  equals the sum of the dissipative resistance R  and the radiation resistance R . For most antennas R  << R .
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Figure 10.3.2 illustrates an unknown reciprocal antenna (1) that communicates with a shortdipole test antenna (2) that is aimed at
antenna (1). Because the relations between the voltages and currents at the terminals are determined by electromagnetic waves
governed by the linear Maxwell equations, the two antennas constitute a two-port network governed by (10.3.26) and (10.3.27) and

the complex impedance matrix . Complex notation is appropriate here because antennas are frequency dependent. This
impedance representation easily introduces the reciprocity constraint to the relation between G(θ, ) and A(θ, ). We assume each
antenna is matched to its load  so as to maximize power transfer.

Figure : Coupled reciprocal antennas for relating G(θ, ) to A(θ, ).

The power P  received by each antenna and dissipated in the load can be expressed in two equivalent ways—in terms of antenna
mutual impedance  and in terms of antenna gain and effective area:

Taking the ratio of these two equations in terms of G and A yields:

But the ratio of the same equations in terms of  also yields:

Therefore if reciprocity applies, so that , then (10.3.23) for a short dipole and substitution of (10.3.32) into
(10.3.31) proves that all reciprocal antennas obey the same A/G relationship:

10.3.5: Communication links

We now can combine the transmitting and receiving properties of antennas to yield the power that can be transmitted from one
place to another. For example, the intensity I(θ, ) at distance r that results from transmitting P  watts from an antenna with gain
G (θ, ) is:
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The power received by an antenna with effective area A(θ, ) in the direction θ,  from which the signal arrives is:

where use of the same angles θ,  for the transmission and reception implies here that the same ray is being both transmitted and
received, even though the transmitter and receiver coordinate systems are typically distinct. Equation (10.3.33) says:

where G  is the gain of the receiving antenna, so the power received (10.3.35) becomes:

Although (10.3.37) suggests the received power becomes infinite as r → 0, this would violate the far-field assumption that r >> λ/2
.

Two wireless phones with matched short dipole antennas having d  equal one meter communicate with each other over a ten
kilometer unobstructed path. What is the maximum power P  available to the receiver if one watt is transmitted at f = 1 MHz?
At 10 MHz? What is P  at 1 MHz if the two dipoles are 45° to each other?

Solution

P  = AI, where A is the effective area of the receiving dipole and I is the incident wave intensity [W m ]. 
 where  and G  ≤1.5; G  ≤1.5. Thus 

. At 10

MHz the available power out is ~1.3×10  [W]. If the dipoles are 45° to each other, the receiving cross section is reduced by a
factor of .

In terms of the incident electric field , what is the maximum Thevenin equivalent voltage source  for a small N-turn
loop antenna operating at frequency f? A loop antenna is made by winding N turns of a wire in a flat circle of diameter D,
where D << λ. If N = 1, what must D be in order for this loop antenna to have the same maximum  as a short dipole
antenna with effective length d ?

Solution

The open-circuit voltage  induced at the terminals of a small wire loop (D << λ) follows from Ampere’s law: 

. But , so 
. For a short dipole antenna the maximum , so 

.

This page titled 10.3: Antenna gain, effective area, and circuit properties is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by David H. Staelin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts
platform.
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