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9.5: Waves in complex media

9.5.1: Waves in anisotropic media
There are many types of media that can be analyzed simply using Maxwell’s equations, which characterize media by their
permittivity ε, permeability μ, and conductivity σ. In general ε, η, and σ can be complex, frequency dependent, and functions of
field direction. They can also be functions of density, temperature, field strength, and other quantities. Moreover they can also

couple  to ,  to . In this section we only treat the special cases of anisotropic media (Section 9.5.1), dispersive media
(Section 9.5.2), and plasmas (Section 9.5.3). Lossy media were treated in Sections 9.2.4 and 9.2.5.

Anisotropic media, by definition, have permittivities, permeabilities, and/or conductivities that are functions of field direction. We
can generally represent these dependences by 3×3 matrices (tensors), i.e.:

For example, (9.5.1) says:

Most media are symmetric so that ε  = ε ; in this case the matrix  can always be diagonalized by rotating the coordinate system
to define new directions x, y, and z that yield zeros off-axis:

These new axes are called the principal axes of the medium. The medium is isotropic if the permittivities of these three axes are
equal, uniaxial if only two of the three axes are equal, and biaxial if all three differ. For example, tetragonal, hexagonal, and
rhombohedral crystals are uniaxial, and orthorhombic, monoclinic, and triclinic crystals are biaxial. Most constitutive tensors are
symmetric (they equal their own transpose), the most notable exception being permeability tensors for magnetized media like
plasmas and ferrites, which are hermetian  and not discussed in this text.

 Hermetian matrices equal the complex conjugate of their transpose.

One immediate consequence of anisotropic permittivity and (9.5.4) is that  is generally no longer parallel to , as suggested in

Figure 9.5.1 for a uniaxial medium. When ε  ≠ ε ,  and  are parallel only if they lie along one of the principal axes. As
explained shortly, this property of uniaxial or biaxial media can be used to convert any wave polarization into any other.
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Figure :  and  in an anisotropic medium.

The origins of anisotropy in media are easy to understand in terms of simple models for crystals. For example, an isotropic cubic
lattice becomes uniaxial if it is compressed or stretched along one of those axes, as illustrated in Figure 9.5.2(a) for z-axis
compression. That such compressed columns act to increase the effective permittivity in their axial direction can be understood by
noting that each of these atomic columns functions like columns of dielectric between capacitor plates, as suggested in Figure
9.5.2(b). Parallel-plate capacitors were discussed in Section 3.1.3. Alternatively the same volume of dielectric could be layered
over one of the capacitor plates, as illustrated in Figure 9.5.2(c).

Figure : Uniaxial crystal and anisotropically filled capacitors.

Even though half the volume between the capacitor plates is occupied by dielectric in both these cases, the capacitance for the
columns [Figure 9.5.2(b)] is greater, corresponding to a greater effective permittivity . This can be shown using Equation
(3.1.10), which says that a parallel plate capacitor has , where A is the plate area and d is the distance between the
plates. The capacitances C  and C  for Figures 9.5.2(b) and (c) correspond to two capacitors in parallel and series, respectively,
where:

In the limit where ε >> ε  the permittivity ratio ε / ε  → ε/4ε  > 1. In all compressive cases ε  ≥ ε . If the crystal were
stretched rather than compressed, this inequality would be reversed. Exotic complex materials can exhibit inverted behavior,
however.

Since the permittivity here interacts directly only with , not , the velocity of propagation  depends only on the

permittivity in the direction of . We therefore expect slower propagation of waves linearly polarized so that  is parallel to an
axis with higher values of ε. We can derive this behavior from the source-free Maxwell’s equations and the matrix constitutive
relation (9.5.4).
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Combining the curl of Faraday’s law (9.5.8) with Ampere’s law (9.5.9), as we did in Section 2.3.3, yields:

We now assume, and later prove, that , so (9.5.12) becomes:

This expression can be separated into independent equations for each axis. Waves propagating in the z direction are governed by
the x and y components of (9.5.13):

The wave equation (9.5.14) characterizes the propagation of x-polarized waves and (9.5.15) characterizes y-polarized waves; their
wave velocities are  and , respectively. If ε  ≠ ε  then the axis with the lower velocity is called the “slow” axis,

and the other is the “fast” axis. This dual-velocity phenomenon is called birefringence. That our assumption  is correct
is easily seen by noting that the standard wave solution for both x- and y- polarized waves satisfies these constraints. Since ∇ is
distributive, the equation is also satisfied for arbitrary linear combinations of x- and y- polarized waves, which is the most general
case here.

If a wave has both x- and y-polarized components, the polarization of their superposition will evolve as they propagate along the z
axis at different velocities. For example, a linearly wave polarized at 45 degrees to the x and y axes will evolve into elliptical and
then circular polarization before evolving back into linear polarization orthogonal to the input.

This ability of a birefringent medium to transform polarization is illustrated in Figure 9.5.3. In this case we can represent the
linearly polarized wave at z = 0 as:

If the wave numbers for the x and y axes are k  and k , respectively, then the wave at position z will be:

The phase difference between the x- and y-polarized components of the electric field is therefore Δ  = (k  - k )z. As suggested in
the figure, circular polarization results when the two components are 90 degrees out of phase (Δ  = ±90 ), and the orthogonal
linear polarization results when Δ  = 180 .
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Figure : Polarization conversion in a birefringent medium.

Polarization conversion is commonly used in optical systems to convert linear polarization to circular, or vice-versa, via a quarter-
wave plate for which Δ  is 90 , equivalent to a quarter wavelength. A half-wave plate (Δ  = 180 ) reverses the sense of any
polarization.

A certain birefringent medium is characterized by μ , ε  = 2ε , ε  = 2.002ε . How thick D must a quarter-wave plate be if λ =
5×10 [m] in free space (visible light)? At what thickness D' might this same plate rotate appropriate linear polarization 90
degrees?

Solution

The phase lags along the x and y axes arise from  and , respectively, and the difference is  for
a quarter-wave plate. But , so 

. Since , therefore 
 where . Thus  mm, which is approximately the thickness of a

Vu-Graph transparency that acts as a quarter-wave plate. A differential phase lag of  yields 90° polarization rotation for
waves linearly polarized at an angle 45° from the principal axes x and y, so the thickness would be doubled to ~0.36 mm.

9.5.2: Waves in dispersive media
Dispersive media have wave velocities that are frequency dependent due to the frequency dependence of μ, ε, or σ. These
frequency dependencies arise in all materials because of the non-instantaneous physical responses of electrons to fields. Often these
time lags are so brief that only at optical frequencies do they become a significant fraction of a period, although propagation over
sufficiently long paths can introduce significant cumulative differences in effects across any frequency band or gap. Only vacuum
is essentially non-dispersive.

The principal consequence of dispersion is that narrowband pulse signals exhibit two velocities, the phase velocity v  of the
sinusoids within the pulse envelope, and the group velocity v  at which the pulse envelope, energy, and information propagate.
Because energy and information travel at the group velocity, it never exceeds the velocity of light although phase velocity
frequently does.

A simple way to reveal this phenomenon is to superimpose two otherwise identical sinusoidal waves propagating at slightly
different frequencies, ω ± Δω; superposition is valid because Maxwell’s equations are linear. The corresponding wave numbers are
k ± Δk, where Δk << k and Δω << ω. Such a superposition for two sinusoids propagating in the +z direction is:

where we used the identity . The first factor on the right-hand side of (9.5.18) is
a sine wave propagating at the center frequency ω at the phase velocity:
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The second factor is the low-frequency, long-wavelength modulation envelope that propagates at the group velocity ,
which is the slope of the ω(k) dispersion relation:

Figure 9.5.4(a) illustrates the original sinusoids plus their superposition at two points in time, and Figure 9.5.4(b) illustrates the
corresponding dispersion relation.

Figure : Phase and group velocity for two superimposed sinusoids.

Note that this dispersion relation has a phase velocity that approaches infinity at the lowest frequencies, which is what happens in
plasmas near the plasma frequency, as discussed in the next section.

Communications systems employ finite-duration pulses with Fourier components at all frequencies, so if such pulses travel
sufficiently far even the envelope with its finite bandwidth will become distorted. As a result dispersive media are either avoided or
compensated in most communications system unless the bandwidths are sufficiently narrow. Compensation is possible because
dispersion is a linear process so inverse filters are readily designed. Section 12.2.2 discusses dispersion further in the context of
optical fibers.

When , what are the phase and group velocities v  and v  in a medium having the dispersion relation ?

Solution

. .

9.5.3: Waves in plasmas
A plasma is a charge-neutral gaseous assembly of atoms or molecules with enough free electrons to significantly influence wave
propagation. Examples include the ionosphere , the sun, interiors of fluorescent bulbs or nuclear fusion reactors, and even
electrons in metals or electron pairs in superconductors. We can characterize fields in plasmas once we know their permittivity ε at
the frequency of interest.

 The terrestrial ionosphere is a partially ionized layer at altitudes ~50-5000 km, depending primarily upon solar ionization. Its
peak electron density is ~10  electrons m  at 100-300 km during daylight.

To compute the permittivity of a non-magnetized plasma we recall (2.5.8) and (2.5.13):

where q = -e is the electron charge,  is the mean field-induced displacement of the electrons from their equilibrium positions, and
n  is the number of electrons per cubic meter. Although positive ions are also displaced, these displacements are generally

= ω/k (phase velocity) vp (9.5.19)
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negligible in comparison to those of the electrons because the electron masses m  are so much less. We can take the mass m  of the
ions into account simply by replacing m  in the equations by m , the reduced mass of the electrons, where it can be shown that 

.

To determine ε in (9.5.21) for a collisionless plasma, we merely need to solve Newton’s law for , where the force  follows
from (1.2.1):

Solving (9.5.22) for  and substituting it into the expression for  yields:

Combining (9.5.21) and (9.5.23) yields:

where ω  is defined as the plasma frequency:

The plasma frequency is the natural frequency of oscillation of a displaced electron or cluster of electrons about their equilibrium
location in a neutral plasma, and we shall see that the propagation of waves above and below this frequency is markedly different.

The dispersion relation for a collisionless non-magnetic plasma is thus:

which is plotted as ω(k) in Figure 9.5.5 together with the slopes representing the phase and group velocities of waves in plasmas.
alt

Figure : Dispersion relation and velocities for a simple plasma.

Using the expressions (9.5.19) and (9.5.20) for phase and group velocity we find for plasmas:

Since v v  = c  , and since v  ≤ c, it follows that v  is always equal to or greater than c. However, for ω < ω  we find v  and v
become imaginary because normal wave propagation is replaced by another behavior.

From (9.5.26) we see that when ω < ω :
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Therefore an x-polarized wave propagating in the +z direction would be:

where the sign of ±jα was chosen (-) to correspond to exponential decay of the wave rather than growth. We find from (9.5.32) that

H(t) is delayed 90  behind E(t), that both decay exponentially with z, and that the Poynting vector  is purely imaginary:

Such an evanescent wave decays exponentially and carry only reactive power and no time-average power because of the time
orthogonality of E and H. Reactive power implies that below ω  the average energy stored is predominantly electric, but in this
case the stored energy is actually dominated by the kinetic energy of the electrons. It is this extra energy that allows the permittivity
ε to become negative below ω  although μ  remains constant. The frequency ω  below which conversion from propagation to
evanescence occurs is called the cut-off frequency, which is the plasma frequency here.

What is the plasma frequency f  [Hz] of the ionosphere when n  = 10  m ?

Solution

.
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