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5.1: Forces on Free Charges and Currents

5.1.1: Lorentz force equation and introduction to force
The Lorentz force equation (1.2.1) fully characterizes electromagnetic forces on stationary and moving charges. Despite the
simplicity of this equation, it is highly accurate and essential to the understanding of all electrical phenomena because these
phenomena are observable only as a result of forces on charges. Sometimes these forces drive motors or other actuators, and
sometimes they drive electrons through materials that are heated, illuminated, or undergoing other physical or chemical changes.
These forces also drive the currents essential to all electronic circuits and devices.

When the electromagnetic fields and the location and motion of free charges are known, the calculation of the forces acting on
those charges is straightforward and is explained in Sections 5.1.2 and 5.1.3. When these charges and currents are confined within
conductors instead of being isolated in vacuum, the approaches introduced in Section 5.2 can usually be used. Finally, when the
charges and charge motion of interest are bound within stationary atoms or spinning charged particles, the Kelvin force density
expressions developed in Section 5.3 must be added. The problem usually lies beyond the scope of this text when the force-
producing electromagnetic fields are not given but are determined by those same charges on which the forces are acting (e.g.,
plasma physics), and when the velocities are relativistic.

The simplest case involves the forces arising from known electromagnetic fields acting on free charges in vacuum. This case can be

treated using the Lorentz force equation (5.1.1) for the force vector  acting on a charge q [Coulombs]:

where  and  are the local electric and magnetic fields and  is the charge velocity vector [m s ].

5.1.2: Electric Lorentz forces on free electrons
The cathode-ray tube (CRT) used for displays in older computers and television sets, as illustrated in Figure 5.1.1, provides a
simple example of the Lorentz force law (5.1.1). Electrons thermally excited by a heated cathode at -V volts escape at low energy

and are accelerated in vacuum at acceleration  [m s ] toward the grounded anode by the electric field  between
anode and cathode ; V and s are the voltage across the tube and the cathode-anode separation, respectively. In electronics the
anode always has a more positive potential  than the cathode, by definition.

 The anode is grounded for safety reasons; it lies at the tube face where users may place their fingers on the other side of the glass

faceplate. Also, the cathode and anode are sometimes shaped so that the electric field , the force , and the acceleration  are

functions of z instead of being constant; i.e., .

Figure : Cathode ray tube.

The acceleration  is governed by Newton’s law:
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where m is the mass of the unconstrained accelerating particle. Therefore the acceleration a of the electron charge q = -e in an
electric field E = V/s is:

The subsequent velocity  and position z of the particle can be found by integration of the acceleration :

where we have defined the initial electron position and velocity at t = 0 as z  and , respectively.

The increase w  in the kinetic energy of the electron equals the accumulated work done on it by the electric field . That is, the
increase in the kinetic energy of the electron is the product of the constant force f acting on it and the distance s the electron moved

in the direction of  while experiencing that force. If s is the separation between anode and cathode, then:

Thus the kinetic energy acquired by the electron in moving through the potential difference V is eV Joules. If V = 1 volt, then wk is

one “electron volt”, or “e” Joules, where e ≅ 1.6 × 10  Coulombs. The kinetic energy increase equals eV even when  is a
function of z because:

Typical values for V in television CRT’s are generally less than 50 kV so as to minimize dangerous x-rays produced when the
electrons impact the phosphors on the CRT faceplate, which is often made of x-ray-absorbing leaded glass.

Figure 5.1.1 also illustrates how time-varying lateral electric fields  can be applied by deflection plates so as to scan the
electron beam across the CRT faceplate and “paint” the image to be displayed. At higher tube voltages V the electrons move so
quickly that the lateral electric forces have no time to act, and magnetic deflection is used instead because lateral magnetic forces
increase with electron velocity v.

5.1.3: Magnetic Lorentz forces on free charges
An alternate method for laterally scanning the electron beam in a CRT utilizes magnetic deflection applied by coils that produce a
magnetic field perpendicular to the electron beam, as illustrated in Figure 5.1.2. The magnetic Lorentz force on the charge q = -e
(1.6021×10  Coulombs) is easily found from (5.1.1) to be:

Thus the illustrated CRT electron beam would be deflected upwards, where the magnetic field  produced by the coil is directed
out of the paper; the magnitude of the force on each electron is evμ H [N].
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Figure : Magnetic deflection of electrons in a cathode ray tube.

The lateral force on the electrons evμ H can be related to the CRT voltage V. Electrons accelerated from rest through a potential
difference of V volts have kinetic energy eV [J], where:

Therefore the electron velocity v = (2eV/m) , where m is the electron mass (9.107×10  kg), and the lateral deflection increases
with tube voltage V, whereas it decreases if electrostatic deflection is used instead.

Another case of magnetic deflection is illustrated in Figure 5.1.3 where a free electron moving perpendicular to a magnetic field 

experiences a force  orthogonal to its velocity vector , since .

Figure : Cyclotron motion of an electron.

This force  is always orthogonal to  and therefore the trajectory of the electron will be circular with radius R at angular
frequency ω  [radians s ]:

where v = ω R. We can solve (5.1.9) for this “electron cyclotron frequency” ω :

which is independent of v and the electron energy, provided the electron is not relativistic. Thus the magnitudes of magnetic fields
can be measured by observing the radiation frequency ω  of free electrons in the region of interest.

What is the radius  of cyclotron motion for a 100 e.v. free electron in the terrestrial magnetosphere  where B ≅ 10  Tesla?
What is the radius  for a free proton with the same energy? The masses of electrons and protons are ~9.1×10  and 1.7×10
kg, respectively.

Solution
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The magnetic force on a charged particle is qvμ H = ma = mv /r, where the velocity v follows from (5.1.9): eV = mv  /2 ⇒ v =
(2eV/m) . Solving for r  yields

for electrons and ~2.5 km for protons.

 The magnetosphere extends from the ionosphere to several planetary radii; particle collisions are rare compared to the cyclotron
frequency.
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