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9.2: Waves incident on planar boundaries at angles

9.2.1: Introduction to waves propagating at angles

To determine electromagnetic fields we can generally solve a boundary value problem using the method of Section 9.1.1, the first
step of which involves characterization of the basic quasistatic or dynamic fields and waves that could potentially exist within each
separate region of the problem. The final solution is a linear combination of these basic fields and waves that matches all boundary
conditions at the interfaces between the various regions.

So far we have considered only waves propagating along boundaries or normal to them. The general case involves waves incident
upon boundaries at arbitrary angles, so we seek a compact notation characterizing such waves that simplifies the boundary value
equations and their solutions. Because wave behavior at boundaries often becomes frequency dependent, it is convenient to use
complex notation as introduced in Section 2.3.2 and reviewed in Appendix B, which can explicitly represent the frequency
dependence of wave phenomena. For example, we might represent the electric field associated with a uniform plane wave

- .
propagating in the +z direction as E e 7%, where:
— — . — .
E(z) = Ege 7 = Ege 7™/ (9.2.1)

% ~ ~
E, =2E, +yE, (9.2.2)

This notation is simpler than the time domain representation. For example, if this wave were x-polarized, then the compact
complex notation £E_ would be replaced in the time domain by:

E(t) =R, {2E.(2)e""} = #Re {(Re [Ex(2)] +jln [Ex(2)]) (coswt +jsinwt)}
=Z{Re [E,(z)] coswt — I, [E_(z)] sinwt} (9.2.3)

The more general time-domain expression including both x and y components would be twice as long. Thus complex notation
adequately characterizes frequency-dependent wave propagation and is more compact.

The physical significance of Equation 9.2.1 is divided into two parts: Eo tells us the polarization, amplitude, and absolute phase of
the wave at the origin, and e 32m/2 = &i9(9) tells us how the phase ¢ of this wave varies with position. In this case the phase
decreases 27 radians as z increases by one wavelength A. The physical significance of a phase shift ¢ of -27 radians for z = A is that
observers located at z = A experience a delay of 27 radians; for pure sinusoids a phase shift of 27 is of course not observable.

Waves propagating in arbitrary directions are therefore easily represented by expressions similar to Equation 9.2.1, but with a
phase ¢ that is a function of x, y, and z. For example, a general plane wave would be:

= o S R
E(z) = Ege o ilovils | ik (9-2.4)

where T = Zx+9yy+2z and:
%
k = &ky +§ky + 2k, (9.2.5)

We call k the propagation vector or wave number k. The wave numbers ky, ky, and k, have the dimensions of radians per meter
and determine how rapidly the wave phase ¢ varies with position along the x, y, and z axes, respectively. Positions having the same

_>
— . .
value for k e r have the same phase and are located on the same phase front. A wave with a planar phase fronts is a plane wave,
and if its amplitude is constant across any phase front, it is a uniform plane wave.
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Figure 9.2.1: Uniform plane wave propagating at angle 8 in the x-z plane.

The vector & points in the direction of propagation for uniform plane waves. The geometry is represented in Figure 9.2.1 for a
uniform plane wave propagating in the x-z plane at an angle 8 and wavelength A,. The planes of constant phase are perpendicular to

- -
the wave vector k because k e r must be constant everywhere in such a plane.

The solution (9.2.4) can be substituted into the wave equation (2.3.21):

2, 2 @
(V¥ +w’pe) E =0 (9.2.6)
This substitution yields*’:
2 12 1.2 2 1
[— (K2 4k +k2) +w'ue] E =0 (9.2.7)
=, = =
KAk =K =w’pue=|k[ =k ek (9.2.8)
47 o2 2/9.2 1 92 /902 2.2\ 7 2,12 12\
V?E = (0%/0x* + 8% /0y* +0°/02*) E = — (k; +k; +k,) E
Therefore the figure and (9.2.7) suggest that:
- -
ky, =k ez =k,sinf,k, = k ez =k, cosf (9.2.9)

The figure also includes the wave propagation vector components Zk, and zk,.

Three projected wavelengths, A,, A, and A,, are perceived by observers moving along those three axes. The distance between
successive wavefronts at 27 phase intervals is A, in the direction of propagation, and the distances separating these same
wavefronts as measured along the x and z axes are equal or greater, as illustrated in Figure 9.2.1. For example:

Az = Ao/ cosO=2m/k, > X, (9.2.10)
Combining (9.2.8) and (9.2.10) yields:

AN A =002 (9.2.11)

— —
The electric field E (?) for the wave of Figure 9.2.1 propagating in the x-z plane is orthogonal to the wave propagation vector k.

For simplicity we assume this wave is ypolarized:

— o
E(7)=jBye ¢ 9.2.12)

The corresponding magnetic field is:
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== = . - . .
E( r ) = _(V X E)/Jwﬂo = (XaEy/aZ - ZBEy/ax) /Jwﬂo
= (sinf— & cos) (B, /7o) e 7 (9.2.13)
One difference between this uniform y-polarized plane wave propagating at an angle and one propagating along a cartesian axis is

— — —
that H no longer lies along a single axis, although it remains perpendicular to both E and k. The next section treats such waves
further.

v/ Example 9.2.4

_>
If A = 2), in Figure 9.2.1, what are 8, A,, and k ?

Solution

By geometry, 6=tan 1()\,/)\;)=tan"10.5~27°. By (9.2.11) AZ=X2+X2=(0.25+ 1))\22 , )
_)

Ao =1.25%%), =0.89),. k = zky + 2k, = zk, sinf + 2k, cosO , where ko, =27/ A,. Alternatively,

%
k =827 /A + 227/ A,

9.2.2: Waves at planar dielectric boundaries

Waves at planar dielectric boundaries are solved using the boundary-value-problem method of Section 9.1.4 applied to waves
propagating at angles, as introduced in Section 9.2.1.

Because the behavior of waves at an interface depends upon their polarization we need a coordinate system for characterizing it.
*>

For this purpose the plane of incidence is defined as the plane of projection of the incident wave propagation vector k upon the

interface, as illustrated in Figure 9.2.2(a). One cartesian axis is traditionally defined as being normal to this plane of incidence; in

the figure it is the y axis.

(a) (b)

plane  of
incidence

1
]
]
1
[

z T
interface \)/ &

Figure 9.2.2: Uniform plane wave incident upon a planar interface.

T

We know from Section 2.3.4 that any pair of orthogonally polarized uniform plane waves can be superimposed to achieve any
arbitrary wave polarization. For example, x- and ypolarized waves can be superimposed. It is customary to recognize two simple
types of incident electromagnetic waves that can be superimposed to yield any incident wave polarization: transverse electric
waves (TE waves) are linearly polarized transverse to the plane of incidence (y-polarized in the figure), and transverse magnetic
waves (TM waves) have the orthogonal linear polarization so that the magnetic field is purely transverse (again if y-polarized). TE
and TM waves are typically transmitted and reflected with different amplitudes.

_>
Consider first a TE wave incident upon the planar interface of Figure 9.2.2(b) at the incidence angle 8;. The corresponding H lies
- = e
in the x-z plane and is orthogonal to E. H points downward in the figure, corresponding to power S = E x H propagating
_>
toward the interface, where S is the Poynting vector for the incident wave. The wavelength of the wave above the interface is

Ao =1/(f\/u€) in the medium characterized by permittivity € and permeability p. The medium into which the wave is partially
transmitted is characterized by €, and p,, and there the wave has wavelength Ay =1/ (f\/,utz-:t) and the same frequency f. This

incident TE wave can be characterized by:
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Ei =gE, & [Vm™] (9.2.14)

‘) . .
H; =—(E,/n) (&sin6; + 2 cos;) &2 [Am™!] (9.2.15)

1
. . . . . . . % . %
where the characteristic impedance of the incident medium is 7 = 1/ /¢, and H is orthogonal to E.

The transmitted wave would generally be similar, but with a different n, 6;, E;, and ?t. We might expect a reflected wave as well.
The boundary-value-problem method of Section 9.1.2 requires expressions for all waves that might be present in both regions of
this problem. In addition to the incident wave we therefore might add general expressions for reflected and transmitted waves
having the same TE polarization. If still other waves were needed then no solution satisfying all Maxwell’s equations would
emerge until they were added too; we shall see no others are needed here. These general reflected and transmitted waves are:

g . .
E, =gE e el [Vm ] (9.2.16)
H - 5 ek ik -1
H, = (E,/n) (—&sinb, + 2 cos b, ) e Frxkes [Am ™| (9.2.17)
- . .
E, =gE &%k [Vm™] (9.2.18)
H ; e x—jk -1
H, =—(E,/n) (&sin6; + 2 cos b, ) eoxkez [Am™] (9.2.19)

Boundary conditions that must be met everywhere on the non-conducting surface at x = 0 include:

" -
Ei)+E; =E, (9.2.20)
. — —
H,,+H,,=H, (9.2.21)

_>
Substituting into (9.2.20) the values of E /, at the boundaries yields:
Eje % + E e = E e Iker (9.2.22)
This equation can be satisfied for all values of z only if all exponents are equal. Therefore e} can be factored out, simplifying the

— —
boundary-condition equations for both E ,, and H ;.

E,+E, =E, (boundary condition for E/ /) (9.2.23)
E, E, E, o
7cos 0; — 7cos 0, = n—cos 0y (boundary condition for H,/) (9.2.24)
b

Because the exponential terms in (9.2.22) are all equal, it follows that the phases of all three waves must match along the full
boundary, and:

ki, =k;, = ki, =kisinf; =k;sinf, =k; sinf, =27/, (9.2.25)

This phase-matching condition implies that the wavelengths of all three waves in the z direction must equal the same A,. It also
implies that the angle of reflection 8, equals the angle of incidence 8;, and that the angle of transmission 8, is related to 6; by Snell’s
law:

sin 6, ki ¢ e
= —_— = — = —_— 117 1 2.2
eyl i / el (Snell’s law) (9.2.26)

9, =sin~! (sin@i /63) (9.2.27)
t

These phase-matching constraints, including Snell’s law, apply equally to TM waves.

If p = pg, then the angle of transmission becomes:
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The magnitudes of the reflected and transmitted TE waves can be found by solving the simultaneous equations (9.2.23) and

(9.2.24):
15 cosB; — 1 cos by nh—1
E/E,=T(6)= = 2.2
E./B, =L (8) 1 cos; +n cos by nh+1 ® 8)
2 o, 20!,
E,/E,=T ()= ——2"> S/ 9.2.29)

nycos; +ncosh;  mh+1

where we have defined the normalized angular impedance for TE waves as 7 = 1 cos6;/ (ncos@;). The complex angular
reflection and transmission coefficients I" and T' for TE waves approach those given by (9.1.19) and (9.1.20) for normal incidence
in the limit 8; — 0. The limit of grazing incidence is not so simple, and even the form of the transmitted wave can change markedly
if it becomes evanescent, as discussed in the next section. The results for incident TM waves are postponed to Section 9.2.6. Figure
9.2.6(a) plots |£(9)|2 for a typical dielectric interface. It is sometimes useful to note that (9.2.28) and (9.2.29) also apply to
equivalent TEM lines for which the characteristic impedances of the input and output lines are 7;/cos6; and 7/ cos6;,
respectively. When TM waves are incident, the corresponding equivalent impedances are 7; cos 6; and 7, cos 6, respectively.

v/ Example 9.2.B

What fraction of the normally incident power (8; = 0) is reflected by a single glass camera lense having € = 2.25¢,? If 8; = 30°,
what is 8; in the glass?

Solution

At each interface between air and glass, (9.2.28) yields for 6; = 0: Iy =(nh—1)/(nh+1), where
N = (Tglass 0565 ) / (Mair c0s6;) = (1/e4)"® =1/1.5. Thus L' = (1 —1.5)/(1+1.5) = —0.2, and |L|* =0.04, so ~4
percent of the power is reflected from each of the two curved surfaces for each independent lense, or ~8 percent total; these
reflections are incoherent so their reflected powers add. Modern lenses have many elements with different permittivities, but
coatings on them reduce these reflections, as discussed in Section 7.3.2 for quarter-wave transformers. Snell’s law (9.2.26)

yields 6, = sin~! [(si/st)o'Ssinﬁi} =sin~1[(1/1.5)(0.5)] = 19.5°.

9.2.3: Evanescent waves

Figure 9.2.3 suggests why a special form of electromagnetic wave is sometimes required in order to satisfy boundary conditions.
Figure 9.2.3(a) illustrates how the required equality of the z components of the incident, reflected, and transmitted wave

%
propagation vectors k controls the angles of reflection and transmission, 8, and 6;. The radii of the two semi-circles correspond to
— —
the magnitudes of k; and k.

Figure 9.2.3(b) shows that a wave incident at a certain critical angle 8, will produce a transmitted wave propagating parallel to the

— —
interface, provided ‘ k| <|kjl|.Snell’s law (9.2.26) can be evaluated for sin 8; = 1 to yield:
. =sin~!(c;/c;) for¢; < c; (critical angle) (9.2.30)
_>
Figures 9.2.3(b) illustrates why phase matching is impossible with uniform plane waves when 6> 6; k, > ‘ k ¢|. Therefore the A,

determined by A and 6; is less than A, the natural wavelength of the transmission medium at frequency w. A non-uniform plane
wave is then required for phase matching, as discussed below.
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(a) loci where () . loci  where
- 0.5 — 05
kil = o(ue) kil = o(pe)

loci
kel = o (nee )" <[kil

loci where
lk¢|= o(pgg )0‘5

Figure 9.2.3: Angles of reflection and transmission, and the critical angle 6.

— —
The wave propagation vector k must satisfy the wave equation (V2 —&-kf) E =0. Therefore the transmitted wave must be

proportional to e*jﬁf;, where ?t = l;;kt and k, = k; sin 6;, satisfy the expression:
k2 =W’ pe, = k2 +k2 (9.2.31)
When k? < k2 it follows that:
kix = £ (k3 —k2) " = Hja (9.2.32)

We choose the positive sign for a so that the wave amplitude decays with distance from the power source rather than growing
exponentially.

The transmitted wave then becomes:

E(x,2) = E &5 = gB e I (9.2.33)

. L . . 0.5 . .
Note that x is negative in the decay region. The rate of decay o = (kl2 sin? 6; —kt2 ) is zero when 6; = 0. and increases as 6;
increases past 8.; Waves that decay with distance from an interface and propagate power parallel to it are called surface waves.

_>
The associated magnetic field H, can be found by substituting (9.2.33) into Faraday’s law:

= = . ) A ax—jk,z
H,=VXxE/(—jwu) =—(E;/m) (£sinb; — z cos ;) e™ (9.2.34)

This is the same expression as (9.2.19), which was obtained for normal incidence, except that the magnetic field and wave now
decay with distance x from the interface rather than propagating in that direction. Also, since sin6, > 1 for 6; > 8., cos6, is now

— —
imaginary and positive, and H is not in phase with E. As a result, Poynting’s vector for these surface waves has a real part
corresponding to real power propagating parallel to the surface, and an imaginary part corresponding to reactive power flowing
perpendicular to the surface in the direction of wave decay:

e . =
S =ExH =(-jaz+k,z) (‘Et

/wut> e?ox [Wmfz] (9.2.35)

The reactive part flowing in the —Z direction is +ja|E, \2 Jwize®® and is therefore inductive (+), corresponding to an excess of
magnetic stored energy relative to electric energy within this surface wave. A wave such as this one that decays in a direction for
which the power flow is purely reactive is designated an evanescent wave.

An instantaneous view of the electric and magnetic fields of a non-uniform TE plane wave formed at such a dielectric boundary is
shown in Figure 9.2.4; these correspond to the fields of (9.2.33) and (9.2.34).
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‘\hi:/2 direction of
= // propagation

evanescent wave

Figure 9.2.4: Evanescent wave traveling in the +z direction at a dielectric interface.

The conventional notation used here indicates field strength by the density of symbols or field lines, and the arrows indicate field
direction. Small circles correspond to field lines pointing perpendicular to the page; center dots indicate field lines pointing out of
the page in the +y direction and center crosses indicate the opposite, i.e., field lines pointing into the page.

The time average wave intensity in the +Zz direction for x negative and outside the dielectric is:
— —* 9 5
P,=05R. {ExH = (kz@\ /2(%) ¢ [Wm 2] (9.2.36)

Since the real and imaginary parts of S are orthogonal, there is no decay in the direction of propagation, and therefore no power
absorption or heating of the media. Beyond the critical angle 8. the power is perfectly reflected. In the next section we shall see that

the real and imaginary parts of S are often neither orthogonal nor parallel.

9.2.3.1: Waves in lossy media

Sometimes one or both of the two media are conductive. This section explores the nature of waves propagating in such lossy media
having conductivity ¢ > 0. Section 9.2.5 then discusses reflections from such media. Losses can also arise if € or p are complex.
The quasistatic relaxation of charge, current, and field distributions in lossy media is discussed separately in Section 4.3.

_)
We can determine the nature of waves in lossy media using the approach of Section 2.3.3 and including the conduction currents J

in Ampere’s law:

— — - —
+jweE =0 E + jweE = jwe o E (9.2.37)
where the effective complex permittivity € ; is:
Eetr = €[1 — (jo/we)] (9.2.38)

The quantity o/we is called the loss tangent of the medium and indicates how fast waves decay. As we shall see, waves propagate
well if 0 we, sometimes within a fraction of a wavelength.

Substituting \(\underline{\varepsilon}_{\mathrm{eff}}) for € in K2 = w2p£ yields the dispersion relation:
k? = w?pell — (jo/we)] = (' —jk")* (9.2.39)
where we define the complex wavenumber k in terms of its real and imaginary parts as:

k =k —jk" (9.2.40)

The form of the wave solution, following (2.3.26), is therefore:

https://phys.libretexts.org/@go/page/25025
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H 1./ "
E(T)=§Eoe "% [vm™] (9.2.41)

This wave has wavelength X', frequency , and phase velocity v, inside the conductor related by:
K =27/\ =w/v, (9.2.42)
and the wave decays exponentially with z as e X% = ¢7%/A  Note that the wave decays in the same direction as it propagates,

corresponding to power dissipation, and that the 1/e penetration depth A is 1/k" meters. Inside conductors, A" and v, are much less
than their free-space values.

We now need to determine k' and k". In general, matching the real and imaginary parts of (9.2.39) yields two equations that can be
solved for k' and k":

(K)° = (&) = wpe (9.2.43)
2k'k" = wpo (9.2.44)
However, in the limits of very high or very low values of the loss tangent o/we, it is much easier to evaluate (9.2.39) directly.

In the low loss limit where o << wg, (9.2.39) yields:

k=w,/pell —(jo/we)] = w\/ue —jon/2 (o0 << we) (9.2.45)

where the approximate wave impedance of the medium is 7= /u/e, and we have used the Taylor series approximation
V146 =21+6§/2 for § << 1. In this limit we see from (9.2.45) that \' and Vp = c are approximately the same as they are for the
lossless case, and that the 1/e penetration depth A 22 2 /on, which becomes extremely large as 6 — 0.

In the high loss limit where o >> we, (9.2.39) yields:

k =w,/pel - (jo/we)] = \/—juwo (0 >> we) (9.2.46)
= oo/ =+, |22 (1)) (9.2.47)

The real and imaginary parts of k have the same magnitudes, and the choice of sign determines the direction of propagation. The
wave generally decays exponentially as it propagates, although exponential growth occurs in media with negative conductivity. The
penetration depth is commonly called the skin depth 6 in this limit (o >> we), where:

6 =1/kK" =~ (2/wpc)®® [m] (skin depth) (9.2.48)

Because the real and imaginary parts of k are equal here, both the skin depth and the wavelength A' inside the conductor are
extremely small compared to the free-space wavelength A; thus:

X =27/k' =276 [m] (wavelength in conductor) (9.2.49)

These distances § and A" are extremely short in common metals such as copper (o = 5.8x107 , u = ) at frequencies such as 1
GHz, where § = 2x10% m and A' = 13x10 m, which are roughly five orders of magnitude smaller than the 30-cm free space
wavelength. The phase velocity v, of the wave is reduced by the same large factor.

In the high conductivity limit, the wave impedance of the medium also becomes complex:

:\/;:\/%g\/j%ﬁ:\/;’:gaﬂ) (9.2.50)

where +j is consistent with a decaying wave in a lossy medium. The imaginary part of \(\underline \eta) corresponds to power
dissipation, and is non-zero whenever o # 0.

Often we wish to shield electronics from unwanted external radiation that could introduce noise, or to ensure that no radiation
escapes to produce radio frequency interference (RFI) that affects other systems. Although the skin depth effect shields
electromagnetic radiation, high conductivity will reflect most incident radiation in any event. Conductors generally provide good
shielding at higher frequencies for which the time intervals are short compared to the magnetic relaxation time (4.3.15) while
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remaining long compared to the charge relaxation time (4.3.3); Section 4.3.2 and Example 4.3B present examples of magnetic field
diffusion into conductors.

v/ Example 9.2.C

A uniform plane wave propagates at frequency f = ¢/A = 1 MHz in a medium characterized by &, 1, and conductivity o. If o
= 10"3we,, over what distance D would the wave amplitude decay by a factor of 1/e? What would be the 1/e wave penetration
depth § in a good conductor having ¢ = 10''ewe at this frequency?

Solution

In the low-loss limit where o << g kX~w/c—jon/2(9.2.45), so Eoe /% =¢ %P where
D=2/on=2(c0/ o) /10 2 wey = 2000c/w = 318X [m]. In the high-loss limit k 2 (1 +j)(wpo/2)*® so Eoce 7,
where §=(2/wpo)®5 = (2 x 1071 /w?ue) *° = (2 x10711) *°X /27 2 7.1 x 10 A =0.21 mm . This conductivity
corresponds to typical metal and the resulting penetration depth is a tiny fraction of a free-space wavelength.

9.2.3.2: Waves incident upon good conductors

This section focuses primarily on waves propagating inside good conductors. The field distributions produced outside good
conductors by the superposition of waves incident upon and reflected from them are discussed in Section 9.2.3.

Section 9.2.4 showed that uniform plane waves in lossy conductors decay as they propagate. The wave propagation constant k is
then complex in order to characterize exponential decay with distance:

k =k —jk" (9.2.51)
The form of a uniform plane wave in lossy media is therefore:
E(T) = §Ege ¥ [vm!] (9.2.52)
%
When a plane wave impacts a conducting surface at an angle, a complex wave propagation vector k , is required to represent the
*>

resulting transmitted wave. The real and imaginary parts of k, are generally at some angle to each other. The result is a non-
uniform plane wave because its intensity is non-uniform across each phase front.

To illustrate how such transmitted non-uniform plane waves can be found, consider a lossy transmission medium characterized by
€, 6, and 1, where we can combine € and o into a single effective complex permittivity, as done in (9.2.38)*:

Eepp = (1 —jor/we) (9.2.53)

. —
If we represent the electric field as Eoe‘lk'r and substitute it into the wave equation (V2 +w? ,us) E =0, we obtain for non-zero

_>
E the general dispersion relation for plane waves in isotropic lossy media:
- T -
(-ik)e(—jk)+wipey| E=0 (9.2.54)

%
ok =wlue (dispersion relation) (9.2.55)

=]

8 = = L = I —
¥VxH=J+jwE=0E +jwE = jue E
Once a plane of incidence such as the x-z plane is defined, this relation has four scalar unknowns—the real and imaginary parts for

each of the x and z (in-plane) components of k . At a planar boundary there are four such unknowns for each of the reflected and
%
transmitted waves, or a total of eight unknowns. Each of these four components of k (real and imaginary, parallel and

perpendicular) must satisfy a boundary condition, yielding four equations. The dispersion relation (9.2.55) has real and imaginary
parts for each side of the boundary, thus providing four more equations. The resulting set of eight equations can be solved for the

_)
eight unknowns, and generally lead to real and imaginary parts for k , that are neither parallel nor perpendicular to each other or to

— —
the boundary. That is, the real and imaginary parts of k and S can point in four different directions.
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It is useful to consider the special case of reflections from planar conductors for which ¢ >> we. In this limit the solution is simple
because the transmitted wave inside the conductor propagates almost perpendicular to the interface, which can be shown as
follows. Equation (9.2.47) gave the propagation constant k for a uniform plane wave in a medium with ¢ >> we:

k~+ w—ga(l =j) (9.2.56)

_)
The real part of such a k is so large that even for grazing angles of incidence, 8; = 90° , the transmission angle 0, must be nearly
zero in order to match phases, as suggested by Figure 9.2.3(a) in the limit where kt is orders of magnitude greater than k;. As a
result, the power dissipated in the conductor is essentially the same as for 8; = 0°, and therefore depends in a simple way on the

- =

induced surface current and parallel surface magnetic field H /7 H /) s simply twice that associated with the incident wave alone
%

(H = 0) ; essentially all the incident power is reflected so the incident and reflected waves have the same amplitudes and their

magnetic fields add.

The power density Py [W m™] dissipated by waves traveling in the +z direction in conductors with an interface at z = 0 can be
found using the Poynting vector:

1 = TE,|? 1 1
Py = —m{(g x H )oz} —R, TEF | _ “Re{ — pn2[H,T] (9.2.57)
2 Z=0+ 21_7t 2 ﬂt

The wave impedance n, of the conductor (o >> we) was derived in (9.2.50), and (9.2.29) showed that T =27 / (17’ + 1) =2

for TE waves and 1/ = Zf%:g: <1:
n, = (wpe/20)"°(143) (9.2.58)
Trg (61) =277 / (7_7; + 1) =2 = 2n, cosby/m = (2wutsi/pio)0'5(1 +j) cosb; (9.2.59)

Therefore (9.2.57), (9.2.58), and (9.2.59) yield:

i dwpees =7
pyo [T Mg LS, )P %[W/mﬂ (9.2.60)

2wp &
A simple way to remember (9.2.60) is to note that it yields the same dissipated power density that would result if the same surface

4>
current Jg flowed uniformly through a conducting slab having conductivity o and a thickness equal to the skin depth

0=1+/2/wpuc:

) = ox =5 4 -
Pd_ERe{@-; }—uﬁ——‘——m(z—mf % [W/m’] (9.2.61)

The significance of this result is that it simplifies calculation of power dissipated when waves impact conductors—we need only
evaluate the surface magnetic field under the assumption the conductor is perfect, and then use (9.2.61) to compute the power
dissipated per square meter.

v/ Example 9.2.D

What fraction of the 10-GHz power reflected by a satellite dish antenna is resistively dissipated in the metal if o = 5x10”
Siemens per meter? Assume normal incidence. A wire of diameter D and made of the same metal carries a current I. What is
the approximate power dissipated per meter if the skin depth § at the chosen frequency is much greater than D? What is this
dissipation if § << D?

Solution

The plane wave intensity is I =17,|H, |*/2 [W/m?], and the power absorbed by a good conductor is given by (9.2.61):
Pq=|2H, |2\/w,u/ 40, where the magnetic field near a good conductor is twice the incident magnetic field due to the
reflected wave. The fractional power absorbed is:
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Pa/1 =4, wp/o/n, =4y /we, /o =4 (2710"° x 8.8 x 10712 /5 x 107) *° = 4.2 x 107*.

If § >> D, then a wire dissipates |I|?R/2 watts = 2|I|*/oxD? [W/m?]. The magnetic field around a wire is: H=1/7D,
and if § << D, then the power dissipated per meter is: 7D|H|*\/wp/40 = |1*\/wp/4o/7D [W/m?], where the surface
area for dissipation is 7D [m?]. Note that the latter dissipation is now increases with the square-root of frequency and is
proportional to 1/4/c, not 1/o.

9.2.3.3: Duality and TM waves at dielectric boundaries

Transverse magnetic (TM) waves reflect from planar surfaces just as do TE waves, except with different amplitudes as a function
of angle. The angles of reflection and transmission are the same as for TE waves, however, because both TE and TM waves must
satisfy the same phase matching boundary condition (9.2.25).

The behavior of TE waves at planar boundaries is characterized by equations (9.2.14) and (9.2.15) for the incident electric and
magnetic fields, (9.2.16) and (9.2.17) for the reflected wave, and (9.2.18) and (9.2.19) for the transmitted wave, supplemented by
expressions for the complex reflection and transmission coefficients I' = E, /E,, (9.2.28), and T = E, /E,, (9.2.29). Although the
analogous behavior of TM waves could be derived using the same boundary-value problem solving method used in Section 9.2.2
for TE waves, the principle of duality can provide the same solutions with much less effort.

Duality works because Maxwell’s equations without charges or currents are duals of themselves. That is, by transforming

- = = —
E =H,H = —E and ¢ < u, the set of Maxwell’s equations is unchanged:

- — - —
VxE=-udH/8t — VxH=cE/ot (9.2.62)
= — - —
VxH=edE /0t — -VxE=pdH/ot (9.2.63)
- -
VeeE =0 — VeuH=0 (9.2.64)
- -
VepyH=0 — VecE =0 (9.2.65)

The transformed set of equations on the right-hand side of (9.2.62) to (9.2.65) is the same as the original, although sequenced
differently. As a result, any solution to Maxwell’s equations is also a solution to the dual problem where the variables and boundary
conditions are all transformed as indicated above.

- =
he boundary conditions derived in Section 2.6 for a planar interface between two insulating uncharged media are that E ,,, H //,
— —
puH |, and e E | be continuous across the boundary. Since the duality transformation leaves these boundary conditions unchanged,
%
they are dual too. However, duality cannot be used, for example, in the presence of perfect conductors that force E ;, to zero, but

H
not H//

(@) TE _
E

]

&, 1,1
&, M, Nt &, u, M w' = 8[1

Figure 9.2.5: Dual TE and TM waves incident upon a dual planar boundary.
Figure 9.2.5(b) illustrates a TM plane wave incident upon a planar boundary where both the wave and the boundary conditions are
dual to the TE wave illustrated in (a).

The behavior of TM waves at planar boundaries between non-conducting media is therefore characterized by duality
transformations of Equations (9.2.62-65) for TE waves, supplemented by similar transformations of the expressions for the
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complex reflection and transmission coefficients I' = E, /E,), (9.2.28), and\ (T = E,/E,, (9.2.29). After the transformations
e —
E=H,H = —E, and ¢ & p, Equations (9.2.14-19) become:

H, = jH,e " [Am™'] (9.2.66)
% ~ -~ B .
E; = (H,n) (zsin6; + 2 cos ;) e’z [Vm] (9.2.67)
H, =jHe 7% [Am™] (9.2.68)
= o 2 —ik,..x—jk,z -1
E, = (H,7) (&sinf; — 2 cosfy) e "= [Vm '] (9.2.69)
o ~ jkix—jk,z -1
Hy =gH %" [Am ™| (9.2.70)
= 2ol z ik, x—jk,z -1
E; = (Hyn,) (2sin6; + 2 cos ;) e " [V ™| (9.2.71)

The complex reflection and transmission coefficients for TM waves are transformed versions of (9.2.28) and (9.2.29), where we
define a new angle-dependent 7, by interchanging p « € innj, in (9.2.28):

H/H, =" -1)/ (" +1) (9.2.72)
H,/H,=2m"/ (u" +1) (9.2.73)
T " =108 6; / (1 cos ) (9.2.74)

These equations, (9.2.66) to (9.2.74), completely describe the TM case, once phase matching provides 8, and 6.
It is interesting to compare the power reflected for TE and TM waves as a function of the angle of incidence 6;. Power in uniform

plane waves is proportional to both |E>|2 and |ﬁ|2 Figure 9.2.6 sketches how the fractional power reflected or surface reflectivity
varies with angle of incidence 6; for both TE and TM waves for various impedance mismatches, assuming @ = ¢ and ¢ = 0
everywhere. If the wave is incident upon a medium with ¢, > €, then |T'|> — 1 as 6 — 90°, whereas |T|* — 1 at the critical angle
0. if g < &, and remains unity for 8, < 8 < 90° (this 8. case is not illustrated).

(a)

Figure 9.2.6: Power reflected from planar dielectric interfaces for p1 = py .

Figure 9.2.6 reveals an important phenomenon—there is perfect transmission at Brewster’s angle 0g for one of the two
polarizations. In this case Brewster’s angle occurs for the TM polarization because p is the same everywhere and ¢ is not, and it
would occur for TE polarization if p varied across the boundary while € did not. This phenomenon is widely used in glass
Brewster-angle windows when even the slightest reflection must be avoided or when pure linear polarization is required (the
reflected wave is pure).

We can compute 6y by noting H /H, and, using (9.2.72), g, = 1. If p = p,, then (9.2.74) yields -5 cos6; = %5 cos6; . Snell’s
law for p = y, yields €% sin6; = €)-sin 6, . These two equations are satisfied if siné; = cos6; and cos6; = sin6,. Dividing this
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form of Snell’s law by [cos#; = sin ;] yields: tan6; = (Et/Ei)O's , Or:

6 =tan"!, /ey /e; (9.2.75)

Moreover, dividing [sin 8; = cos 8,] by [cos 6; = sin 8,] yields tan 8z = cos 8,, which implies 65 + 8, = 90°. Using this equation it is
easy to show that 8 > 45° for interfaces where 8, < 6;, and when 6, > 8,, it follows that 8 < 45°.

One way to physically interpret Brewster’s angle for TM waves is to note that at 65 the polar axes of the electric dipoles induced in
the second dielectric & are pointed exactly at the angle of reflection mandated by phase matching, but dipoles radiate nothing along
their polar axis; Figure 9.2.6(b) illustrates the geometry. That is, 6g + 6; = 90°. For magnetic media magnetic dipoles are induced,
and for TE waves their axes point in the direction of reflection at Brewster’s angle.

Yet another way to physically interpret Brewster’s angle is to note that perfect transmission can be achieved if the boundary
conditions can be matched without invoking a reflected wave. This requires existence of a pair of incidence and transmission

— —

angles 6; and 8; such that the parallel components of both E and H for these two waves match across the boundary. Such a pair
consistent with Snell’s law always exists for TM waves at planar dielectric boundaries, but not for TE waves. Thus there is perfect
impedance matching at Brewster’s angle.

v/ Example 9.2.F

What is Brewster’s angle 05 if p, = 4y1;, and €, = €;, and for which polarization would the phenomenon be observed?
Solution

If the permeabilities differ, but not the permittivities, then Brewster’s angle is observed only for TE waves. At Brewster’s angle
B + 8, = 90", and Snell’s law says Rl 1/ % . But sinf; =sin(90° —60p) =cosfp , so Snell’s law becomes:

sin O
tanfp = /s /=2 and Op =2 63°.

This page titled 9.2: Waves incident on planar boundaries at angles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
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