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3.5: Two-element circuits and RLC resonators

3.5.1: Two-element circuits and uncoupled RLC resonators

RLC resonators typically consist of a resistor R, inductor L, and capacitor C connected in series or parallel, as illustrated in Figure
3.5.1. RLC resonators are of interest because they behave much like other electromagnetic systems that store both electric and
magnetic energy, which slowly dissipates due to resistive losses. First we shall find and solve the differential equations that
characterize RLC resonators and their simpler sub-systems: RC, RL, and LC circuits. This will lead to definitions of resonant
frequency w, and Q, which will then be related in Section 3.5.2 to the frequency response of RLC resonators that are coupled to
circuits.
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Figure 3.5.1: Series and parallel RLC resonators.

The differential equations that govern the voltages across R’s, L’s, and C’s are, respectively:
vg =iR (3.5.1)
vy =Ldi/dt (3.5.2)

vo— (1/0)/1 dt (3.5.3)
Kirchoff’s voltage law applied to the series RLC circuit of Figure 3.5.1(a) says that the sum of the voltages (3.5.1), (3.5.2), and
(3.5.3) is zero:
d%/dt? +(R/L)di/dt + (1/LC)i=0 (3.5.4)
where we have divided by L and differentiated to simplify the equation. Before solving it, it is useful to solve simpler versions for
RC, RL, and LC circuits, where we ignore one of the three elements.
In the RC limit where L. = 0 we add (3.5.1) and (3.5.3) to yield the differential equation:
di/dt+(1/RC)i=0 (3.5.5)

This says that i(t) can be any function with the property that the first derivative is the same as the original signal, times a constant.
This property is restricted to exponentials and their sums, such as sines and cosines. Let's represent i(t) by I,e%, where:

i(t) =Re {Ie™} (3.5.6)
where the complex frequency s is:
s=a+jw (3.5.7)
We can substitute (3.5.6) into (3.5.5) to yield:
Re{[s+ (1/RC)|Le™} =0 (3.5.8)

Since e is not always zero, to satisfy (3.5.8) it follows that s = - 1/RC and:
i(t) =Ie W/ROt —1 e7t/7 (RC current response) (3.5.9)

where 7 equals RC seconds and is the RC time constant. 1, is chosen to satisfy initial conditions, which were not given here.

A simple example illustrates how initial conditions can be incorporated in the solution. We simply need as many equations for t = 0
as there are unknown variables. In the present case we need one equation to determine I,. Suppose the RC circuit [of Figure
3.5.1(a) with L = 0] was at rest at t = 0, but the capacitor was charged to V, volts. Then we know that the initial current I, at t = 0
must be V/R.

https://phys.libretexts.org/@go/page/24998


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/24998?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/03%3A_Electromagnetic_fields_in_simple_devices_and_circuits/3.05%3A_Two-element_circuits_and_RLC_resonators

LibreTextsw

In the RL limit where C = oo we add (3.5.1) and (3.5.2) to yield di/dt + (R/L)i = 0, which has the same form of solution (3.5.6), so
that s = -R/L and:

i(t) =Te R/t =T et/ (RL current response) (3.5.10)
where the RL time constant T is L/R seconds.
In the LC limit where R = 0 we add (3.5.2) and (3.5.3) to yield:
d?i/dt® + (1/LC)i=0 (3.5.11)

Its solution also has the form (3.5.6). Because i(t) is real and e/ is complex, it is easier to assume sinusoidal solutions, where the
phase ¢ and magnitude I, would be determined by initial conditions. This form of the solution would be:

i(t) =1, cos(wot + @) (LC current response) (3.5.12)
where o, = 27f, is found by substituting (3.5.12) into (3.5.11) to yield [woz —(LC)1i(t) = 0, so:

Wo = | radians s_l} (LC resonant frequency) (3.5.13)

1
vLC
We could alternatively express this solution (3.5.12) as the sum of two exponentials using the identity coswt = (e e /%) /2.

RLC circuits exhibit both oscillatory resonance and exponential decay. If we substitute the generic solution I,e** (3.5.6) into the
RLC differential equation (3.5.4) for the series RLC resonator of Figure 3.5.1(a) we obtain:

(s°+sR/L+1/LC) I e = (s—s1) (s —s2) Ije =0 (3.5.14)
The RLC resonant frequencies s; and s; are solutions to (3.5.14) and can be found by solving this quadratic equation® to yield:

s;=—-R/2L+j[(1/LC) — (R/2L)2] 08 (series RLC resonant frequencies) (3.5.15)
When R = 0 this reduces to the LC resonant frequency solution (3.5.13).
9 A quadratic equation in x has the form ax? + bx + ¢ = 0 and the solution x = (-b + [b? - 4ac]®°)/2a.

The generic solution i(t) = I. e is complex, where Iy = Ipe?:
i(t) =R, {Ie"'} =R, {Ioei%*(R/ 2L>ttjwt} = Le ®/2L)t cog(wt + @) (3.5.16)

where w = [(LC)™* + (R/2L)? 09 (LC)™%5. 1, and ¢ can be found from the initial conditions, which are the initial current
through L and the initial voltage across C, corresponding to the initial energy storage terms. If we choose the time origin so that the
phase ¢ = 0, the instantaneous magnetic energy stored in the inductor (3.2.23) is:

Wi (t) = Li?/2 = (LI2/2) e ™" cos® wt = (LI2/4) e /(1 + cos 2ut) (3.5.17)

Because w,, = 0 twice per cycle and energy is conserved, the peak electric energy w,(t) stored in the capacitor must be intermediate
between the peak magnetic energies stored in the inductor (eRY/LLI 2 /2) during the preceding and following cycles. Also, since
dv/dt = i/C, the cosine variations of i(t) produce a sinusoidal variation in the voltage v(t) across the capacitor. Together these two
facts yield: w(t) = (LI2/2) e R/" sin? wt . If we define Vo as the maximum initial voltage corresponding to the maximum initial
current I, and recall the expression (3.1.16) for w,(t), we find:

we(t) = Cv?/2 = (CV2/2) e ™/ sin® wt = (CV2/4) e ®/L (1 — cos 2ut) (3.5.18)
Comparison of (3.5.17) and (3.5.18) in combination with conservation of energy yields:
V, = (L/C)""1, (3.5.19)

Figure 3.5.2 illustrates how the current and energy storage decays exponentially with time while undergoing conversion between
electric and magnetic energy storage at 2w radians s'; the time constant for current and voltage is 7 = 2L/R seconds, and that for
energy is L/R.

One useful way to characterize a resonance is by the dimensionless quantity Q, which is the number of radians required before the
total energy wr decays to 1/e of its original value, as illustrated in Figure 3.5.2(b). That is:
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The decay rate a for current and voltage is therefore simply related to Q:

a=w/2Q (3.5.21)

W = Wree 2 = wr,e /2 [J] (3.5.20)
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Figure 3.5.2: Time variation of current and energy storage in RLC circuits.

If we find the power dissipated P4 [W] by differentiating total energy wr with respect to time using (3.5.20), we can then derive a
common alternative definition for Q:

Py =—dwr/dt = (w/Q)wr (3.5.22)
Q=wwr /Py (one definition of Q) (3.5.23)
For the series RLC resonator a = R/2L and o = (LC) ™%, so (3.5.21) yields:
Q=w/2a =wL/R2=(L/C)*5/R (Q of series RLC resonator) (3.5.24)
Figure 3.5.1(b) illustrates a parallel RLC resonator. KCL says that the sum of the currents into any node is zero, so:
Cdv/dt+v/R+(1/L)/vdt:0 (3.5.25)
d?v/dt? + (1/RC)dv/dt+ (1/LC)v =0 (3.5.26)
If v =V, then:
[s>+(1/RC)s+(L/C)] =0 (3.5.27)
s=—(1/2RC) £j[(1/LC) — (1/2RC)2T)'5 (parallel RLC resonance) (3.5.28)
Analogous to (3.5.16) we find:
v(t) =Re { V] et} = Voe (/2RO cog(wt + ¢) (3.5.29)
where Vj = Ve . It follows that for a parallel RLC resonator:
w=[(LC)™" —(2RC)2]"’ = (LC) 05 (3.5.30)
Q =w/2a =wRC = R(C/L)*? (Q of parallel RLC resonator) (3.5.31)
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v/ Example 3.5.4

What values of L and C would give a parallel resonator at 1 MHz a Q of 100 if R = 10%/27?
Solution

LC = 1/o,? = 1/(2m10%)?, and Q = 100 = @RC = 2710%(10%/27)C so C = 10" [F] and L = 1/w,> ¢ = 2.5x10 [Hy].

3.5.2: Coupled RLC resonators

RLC resonators are usually coupled to an environment that can be represented by either its Thevenin or Norton equivalent circuit,
as illustrated in Figure 3.5.3(a) and (b), respectively, for purely resistive circuits.

b
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Figure 3.5.3: Series and parallel RLC resonators driven by Thevenin and Norton equivalent circuits.

A Thevenin equivalent consists of a voltage source Vry, in series with an impedance Zp, = Rty +jXry, , while a Norton
equivalent circuit consists of a current source Iy, in parallel with an admittance Y, = Gno +jUy, . The Thevenin equivalent of a
resistive Norton equivalent circuit has open-circuit voltage Vy, = Ino/Gno, @and Ry, = 1/Gyy; that is, their opencircuit voltages,
short-circuit currents, and impedances are the same. No single-frequency electrical experiment performed at the terminals can
distinguish ideal linear circuits from their Thevenin or Norton equivalents.

An important characteristic of a resonator is the frequency dependence of its power dissipation. If Rty = 0, the series RLC
resonator of Figure 3.5.3(a) dissipates:

P4 =R|I|?/2[W] (3.5.32)
Pi= [RIVn['/2] )[R+ Ls+C s = [RIVan /2] 18/ (s —s1) (s = 2)| (3.5.33)
where s; and s, are given by (3.5.15):
si=—-R/2L+j[(1/LC) — (R/2L)2} Y- _a +jw), (series RLC resonances) (3.5.34)
The maximum value of Pd is achieved when o = ', :
Pimax = [V /2R (3.5.35)

This simple expression is expected since the reactive impedances of L and C cancel at w,, leaving only R.

If (1/LC) > (R/2L) so that w, = wy , then as - w, increases from zero to a, |s — s1 | = | jo, — (jw, + @) | increases from « to
v2a. This departure from resonance approximately doubles the denominator of (3.5.33) and halves P4. As « departs still further
from wo and resonance, P4 eventually approaches zero because the impedances of L and C approach infinity at infinite and zero
frequency, respectively. The total frequency response Pd(f) of this series RLC resonator is suggested in Figure 3.5.4. The resonator
bandwidth or half-power bandwidth Aw is said to be the difference between the two half-power frequencies, or Aw = 2a = R/L for
this series circuit. Aw is simply related to o, and Q for both series and parallel resonances, as follows from (3.5.21):

Q=w,/2a =w,/Aw (Q versus bandwidth) (3.5.36)

Parallel RLC resonators behave similarly except that:

si=—G/2L+j[(1/LC) — (G/2L)2] - o +jwl, (parallel RLC resonances) (3.5.37)
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where R, L, and C in (3.5.34) have been replaced by their duals G, C, and L, respectively.
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Figure 3.5.4: RLC power dissipation near resonance.

Resonators reduce to their resistors at resonance because the impedance of the LC portion approaches zero or infinity for series or
parallel resonators, respectively. At resonance P4 is maximized when the source R, and load R resistances match, as is easily shown
by setting the derivative dP4/dR = 0 and solving for R. In this case we say the resonator is critically matched to its source, for all
available power is then transferred to the load at resonance.

This critically matched condition can also be related to the Q’s of a coupled resonator with zero Thevenin voltage applied from
outside, where we define internal Q (or Q) as corresponding to power dissipated internally in the resonator, external Q (or Qg) as
corresponding to power dissipated externally in the source resistance, and loaded Q (or Q) as corresponding to the total power
dissipated both internally (Ppy) and externally (Ppg). That is, following (3.5.23):

Qi =wwr/Ppr (internal Q) (3.5.38)
Qg =wwr/Ppg (external Q) (3.5.39)
Qr, =wwr/ (Ppr +Por) (loaded Q) (3.5.40)
Therefore these Q’s are simply related:
Q' =Qr +Qz! (3.5.41)

It is Qg that corresponds to Aw for coupled resonators (Qr, = ®/A®) .

For example, by applying Equations (3.5.38—40) to a series RLC resonator, we readily obtain:

Qr=wiL/R (3.5.42)
Qg = woL/Rrn (3.5.43)
Qr =woL/ (Rrn+R) (3.5.44)
For a parallel RLC resonator the Q’s become:
Qr =woRC (3.5.45)
Qg =woRmnC (3.5.46)
Qr =woCRThR/ (Rry +R) (3.5.47)

Since the source and load resistances are matched for maximum power dissipation at resonance, it follows from Figure 3.5.3 that a
critically coupled resonator or matched resonator results when Q; = Qg. These expressions for Q are in terms of energies stored
and power dissipated, and can readily be applied to electromagnetic resonances of cavities or other structures, yielding their
bandwidths and conditions for maximum power transfer to loads, as discussed in Section 9.4.
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