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7.2: TEM Lines with Junctions

7.2.1: Boundary value problems

A junction between two transmission lines forces the fields in the first line to conform to the fields at the second line at the
boundary between the two. This is a simple example of a broad class of problems called boundary value problems. The general
electromagnetic boundary value problem involves determining exactly which, if any, combination of waves matches any given set
of boundary conditions, which generally includes both active and passive boundaries, the active boundaries usually being sources.

Boundary conditions generally constrain  and/or  for all time on the boundary of the one-, two- or three-dimensional region of
interest.

The uniqueness theorem presented in Section 2.8 states that only one solution satisfies all Maxwell’s equations if the boundary
conditions are sufficient. Therefore we may solve boundary value problems simply by hypothesizing the correct combination of
waves and testing it against Maxwell’s equations. That is, we leave undetermined the numerical constants that characterize the
chosen combination of waves, and then determine which values of those constraints satisfy Maxwell’s equations. This strategy
eases the challenge of hypothesizing the final answer directly. Moreover, symmetry and other considerations often suggest the
nature of the wave combination required by the problem, thus reducing the numbers of unknown constants that must be
determined.

The four basic steps for solving boundary value problems are:

1. Determine the natural behavior of each homogeneous section of the system without the boundaries.
2. Express this general behavior as the superposition of waves or static fields characterized by unknown constants; symmetry and

other considerations can minimize the number of waves required. Here our basic building blocks are TEM waves.
3. Write equations for the boundary conditions that must be satisfied by these sets of superimposed waves, and then solve for the

unknown constants.
4. Test the resulting solution against any of Maxwell’s equations that have not already been imposed.

Variations of this four-step procedure can be used to solve almost any problem by replacing Maxwell’s equations with their
approximate equivalent for the given problem domain . For example, profitability, available capital, technological constraints,
employee capabilities, and customer needs are often “boundary conditions” when deriving strategies for start-up enterprises, while
“natural behavior” could include the probable family of behaviors of the entrepreneurial team and its customers, financiers, and
suppliers.

 A key benefit of a technical education involves learning precise ways of thinking and solving problems; this procedure, when
generalized, is an excellent example applicable to almost any career.

7.2.2: Waves at TEM junctions in the time domain

The boundary value problem approach described in Section 7.2.1 can be used for waves at TEM junctions. We assume that an
arbitrary incident wave will produce both reflected and transmitted waves. For this introductory problem we also assume that no
waves are incident from the other direction, for their solution could be superimposed later. Section 7.2.3 treats the same problem in
the complex domain. We represent TEM lines graphically by parallel lines and their characteristic impedance Z , as illustrated in
Figure 7.2.1 for lines a and b.

Figure : Junction of two TEM transmission lines.

Step one of the boundary value method involves characterizing the natural behavior of waves in the two media of interest, lines a
and b. This follows from (7.1.16) for v(z,t) and (7.1.18) for i(z,t). Step two involves hypothesizing the form of the reflected and
transmitted waves, v (z,t) and vt(z,t). For simplicity we assume the source v (z,t) is on the left, the TEM junction is at z = 0, and
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the line impedances Z  are constants independent of time and frequency. Step three is to write the boundary conditions for the
waves with unknown constants; v and i must both be constant across the junction at z = 0:

Step four involves solving (7.2.1) and (7.2.2) for the unknown waves v (z,t) and v (z,t). We can simplify the problem by taking the
ratios of reflection and transmission relative to the incident wave and provide its amplitude later. If we regard the arguments (z=0,
t) as understood, then (7.2.1) and (7.2.2) become:

To make the algebra for these two equations still more transparent it is customary to define v /v  as the reflection coefficient ,
v /v  as the transmission coefficient T, and Z /Z  = Z  as the normalized impedance for line b. Note that v , v , Z , and Z  are real,
and the fraction of incident power that is reflected from a junction is . Equations (7.2.3) and (7.2.4) then become:

Multiplying (7.2.6) by Z  and subtracting the result from (7.2.5) eliminates T and yields:

The transitions to (7.2.9) and (7.2.10) utilized the fact that if two functions of two arguments are equal for all values of their
arguments, then the functions remain equal as their arguments undergo the same numerical shifts. For example, if X(a) = Y(b)
where a and b have the same units, then X(a + c) = Y(b + c). Combining (7.2.3) and (7.2.7) yields the transmitted voltage v  in
terms of the source voltage v :

Two parallel plates of width W and separation d  = 1 cm are connected at z = D to a similar pair of plates spaced only d  = 2
mm apart. If the forward wave on the first line is V  cos(ωt - kz), what voltage v (t,z) is transmitted beyond the junction at z =
D?

Solution

where . Therefore for z > D,

7.2.3: Sinusoidal waves on TEM transmission lines and at junctions
The basic equations characterizing lossless TEM lines in the sinusoidal steady state correspond to the pair of differential equations
(7.1.25) and (7.1.26):

L and C are the inductance and capacitance of the line per meter, respectively.

o

v(z, t) = (z, t) + (z, t) = (z, t) ( at z = 0)v+ v− vt (7.2.1)

i(z, t) = [ (z, t) − (z, t)] = (t) ( at z = 0)Z−1
o v+ v− Z−1

t vt (7.2.2)

- t

1 +( / ) = /v− v+ vt v+ (7.2.3)

1 −( / ) = ( / ) /v− v+ Zo Zt vt v+ (7.2.4)

- + Γ

t + t o n - + o t
∣Γ∣2

1 +Γ = T (7.2.5)

1 −Γ = T/Zn (7.2.6)

n

Γ = =
v−

v+

−1Zn

+1Zn
(7.2.7)

(0, t) = [( −1) / ( +1)] (0, t)v− Zn Zn v+ (7.2.8)

(0 +ct) = [( −1) / ( +1)] (0 +ct)v− Zn Zn v+ (7.2.9)

(z +ct) = [( −1) / ( +1)] (z +ct)v− Zn Zn v+ (7.2.10)

t

+

(z −ct) = [2 / ( +1)] (z −ct)vt Zn Zn v+ (7.2.11)

Example 7.2.A

1 2

o t

(t, z) = (t, z) = (1 +Γ) (t, z) = 2 (t, z)/ ( +1)vt TV+ v+ ZnV+ Zn

= / = W/ W = / = 0.2Zn Zt Z0 η0d2 ηod1 d2 d1

(t, z) = (t, z)2 ×0.2/(0.2 +1) = ( /3) cos(ωt −kz) [V]vt v+ Vo

d (z)/dz = −jωL (z)V–– I– (7.2.12)

d (z)/dz = −jωC (z)I– V–– (7.2.13)
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This pair of equations leads easily to the transmission line wave equation:

The solution  to this wave equation involves exponentials in z because the second derivative of  equals a constant times 
. The exponents can be + or -, so in general a sum of these two alternatives is possible, where  and  are complex

constants determined later by boundary conditions and k is given by (7.1.30):

The corresponding current is readily found using (7.2.12):

where the characteristic impedance Z  of the line is:

The characteristic admittance Y  of the line is the reciprocal of Z , and has units of Siemens or ohms . It is important to
appreciate the physical significance of Z ; it is simply the ratio of voltage to current for a wave propagating in one direction only
on the line, e.g., for the + wave only. This ratio does not correspond to dissipative losses in the line, although it is related to the
power traveling down the line for any given voltage across the line.

Figure : TEM transmission line impedances and coupling.

When there are both forward and backward waves on a line, the voltage/current ratio is called the complex impedance and varies
with position, as suggested in Figure 7.2.2(a). The impedance at any point along the line is defined as:

The complex reflection coefficient  is defined as:

When z = 0 at the load, then  is defined at the load and  is the load reflection coefficient, denoted by the subscript L.

Equation (7.2.20) leads to a simple algorithm for relating impedances at different points along the line. We first define normalized
impedance  and relate it to the reflection coefficient  using (7.2.19); (7.2.22) follows from (7.2.21):

For example, we can see the effect of the load impedance  (z = 0) at some other point z on the line by using (7.2.20–22) in an
appropriate sequence:

A simple example of the use of (7.2.23) is the transformation of a 50-ohm resistor by a 100-ohm line λ/4 long. Using (7.2.23) in
sequence, we see , ,  from (7.2.22),  from (7.2.20) where 

(z)/d = − LC (z) (wave equation)d2V–– z2 ω2 V–– (7.2.14)

(z)V–– (z)V––
(z)V–– V––+ V––−

(z) = +  [V] (TEM voltage)V–– V–– +e−jkz V––−e+jkz (7.2.15)

(z) = (j/ωL)d (z)/dz = (j/ωL)(−jk +jk )I– V–– V––+e−jkz V––−e+jkz (7.2.16)

(z) = (1/ )( − ) ( TEM current )I– Z0 V––
−jkz
+ V––−e+jkz (7.2.17)

o

= = ωL/k = cL = (L/C  [ohms]  (characteristic impedance) Zo Y−1
o )0.5 (7.2.18)

o o
-1

o

7.2.2

(z)Z–– ≡ (z)/ (z) = [1 + (z)]/[1 − (z)] (line impedance)V–– I– Z0 Γ–– Γ––
= [1 + (z)][1 − (z)] ohms Z0 I– Γ–– (7.2.19)

(z)Γ––

(z) ≡ / = ( / ) =  (reflection coefficient) Γ–– V–– −e+jkz V––+e−jkz V––− V––+ e2jkz Γ––Le2jkz (7.2.20)

/V––− V––+ Γ––L

Z––n (z)Γ––

(z) ≡ = (normalized impedance)Z––n

(z)Z––
Zo

1 + (z)Γ––
1 − (z)Γ––

(7.2.21)

(z) =Γ––
(z) −1Z––n

(z) +1Z––n

(7.2.22)

Z––L

→ → → (z) → (z) → (z)  (impedance transformation) Z––L Z––Ln Γ––L Γ–– Z––n Z–– (7.2.23)

= 50Z––L = 50/100 = 0.5Z––Ln = −1/3Γ––L (z = −λ/4) = +1/3Γ––
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,  from (7.2.21), and therefore .

Two other impedance transformation techniques are often used instead: a direct equation and the Smith chart (Section 7.3). The
direct equation (7.2.24) can be derived by first substituting , i.e. (7.2.22), into ,
where  and  are given by (7.2.15) and (7.2.17), respectively, and . The next step involves grouping the
exponentials to yield sin kz and cos kz, and then dividing sin by cos to yield tan and the solution:

A closely related problem is illustrated in Figure 7.2.2(b) where two transmission lines are connected together and the right-hand
line presents the impedance  at z = 0. To illustrate the general method for solving boundary value problems outlined in Section
7.2.1, we shall use it to compute the reflection and transmission coefficients at this junction. The expressions (7.2.15) and (7.2.17)
nearly satisfy the first two steps of that method, which involve writing trial solutions composed of superimposed waves with
unknown coefficients that satisfy the wave equation within each region of interest. The third step is to write equations for these
waves that satisfy the boundary conditions, and then to solve for the unknown coefficients. Here the boundary conditions are that
both  and  are continuous across the junction at z = 0; the subscript t corresponds to the transmitted wave. The two waves on the
left-hand side have amplitudes  and , whereas the wave on the right-hand side has amplitude . We assume no energy
enters from the right. Therefore:

We define the complex reflection and transmission coefficients at the junction (z = 0) to be  and , respectively, where:

We may solve for  and  by first dividing (7.2.25) and (7.2.26) by :

This pair of equations is readily solved for  and :

where normalized impedance was defined in (7.2.21) as . For example, (7.2.31) says that the reflection coefficient  is
zero when the normalized impedance is unity and the line impedance is matched, so ; (7.2.32) then yields .

The complex coefficients  and  refer to wave amplitudes, but often it is power that is of interest. In general the time-average
power incident upon the junction is:

Similarly the reflected and transmitted powers are P  and P , where  and .

Another consequence of having both forward and backward moving waves on a TEM line is that the magnitudes of the voltage and
current vary along the length of the line. The expression for voltage given in (7.2.15) can be rearranged as:

The magnitude of  is independent of z, so the factor  controls the magnitude of voltage on the line, where 
 (7.2.20). Figure 7.2.3(a) illustrates the behavior of |V(z)|; it is quasi-sinusoidal with period λ/2 because of the 2jkz

in the exponent. The maximum value  occurs when .

= = = −1e+2jkz e2j(2π/λ)(−λ/4) e−jπ (−λ/4) = 2Z––n (−λ/4) = 200 ohms Z––

= ( − ) / ( + )Γ––L Z––L Z0 Z––L Z0 (z) = (z)/ (z)Z–– V–– I–
(z)V–– (z)I– / =V––− V––+ Γ––L

(z) = (transformation equation)Z–– Zo

−j tankzZ––L Zo

−j tankzZo Z––L

(7.2.24)

Z––t

V–– I–
V–– + V–– − V–– t

(0) = + =V–– V––+ V––− V––t (7.2.25)

(0) = ( − )/ = /I– V––+ V––− Z0 V––t Z––t (7.2.26)

Γ–– T––

= /  (complex reflection coefficient) Γ–– V––− V––+ (7.2.27)

= /  (complex transmission coefficient) T–– V––t V––+ (7.2.28)

Γ–– T–– V–– +

1 + =Γ–– T–– (7.2.29)

1 − = ( / )Γ–– Zo Z––t T–– (7.2.30)

Γ–– T––

= =Γ––
−Z––t Zo

+Z––t Zo

−1Z––n

+1Z––n
(7.2.31)

= +1 =T–– Γ––
2 nZ––

+1Z––n
(7.2.32)

≡ /Z––n Z––t Zo Γ––
=Z––t Z0 = 1T––

Γ–– T––

= /2 = /2  [W] (incident power)P+ V––+ I–
∗
+ ∣∣V––+∣∣

2
Zo (7.2.33)

- t = /2P− ∣∣V––−
∣∣
2

Z0 = /2  [W ]Pt | |V–– t
2

Zt

| (z)| = + = ∥l + (z)V––
∣∣V––+e−jkz V––−e+jkz ∣∣ ∣∣V––+e−jkz Γ––

∣∣ (7.2.34)

∣∣V–– +e−jk ∣∣ |1 + (z)|Γ––
(z) =Γ–– Γ––Le2jkz

|V(z) = | | +| ||max V+ V− (z) = | |Γ–– Γ––

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25018?pdf


7.2.5 https://phys.libretexts.org/@go/page/25018

Figure : Standing waves on a TEM line and the Gamma plane.

The origins of this behavior of  is suggested in Figure 7.2.3(b), which illustrates the z dependence of  in the complex
gamma plane, where the horizontal and vertical axes are the real and imaginary parts of , respectively. Increases in z simply
rotate the vector  clockwise, preserving its magnitude [see (7.2.20) and Figure 7.2.3(b)].

The quasi-sinusoidal form of  arises because , which is the length of the vector linking  with the
point -1 on the gamma plane, as illustrated in Figure 7.2.3(b). As the phase  of  varies with z and circles the diagram, the vector 

 varies as might an arm turning a crank, and so it is sometimes called the “crank diagram”. When  then 
resembles a weak sinusoid oscillating about a mean value of , whereas when  then  resembles a fully rectified
sinusoid. The voltage envelope  is called the standingwave pattern, and fields have a standing-wave component when 

. The figure also illustrates how  exhibits the same quasi-sinusoidal variation as , but 180 degrees
out of phase.

Because  and  are generally easy to measure along any transmission line, it is useful to note that such measurements
can be used to determine not only the fraction of power that has been reflected from any load, and thus the efficiency of any
connection, but also the impedance of the load itself. First we define the voltage standing wave ratio or VSWR as:

Therefore:

This simple relation between VSWR and fractional power reflected (P /P ) helped make VSWR a common specification for
electronic equipment.

To find the load impedance  from observations of  such as those plotted in Figure 7.2.3(a) we first associate any voltage
minimum with that point on the gamma plane that corresponds to . Then we can rotate on the gamma plane counter-clockwise
(toward the load) an angle  = 2kD = 4 D/λ radians that corresponds to the distance D between that voltage minimum and the
load, where a full revolution in the gamma plane corresponds to D = λ/2. Once  for the load is determined, it follows from
(7.2.21) that:

If more than two TEM lines join a single junction then their separate impedances combine in series or parallel, as suggested in
Figure 7.2.4. The impedances add in parallel for Figure 7.2.4(a) so the impedance at the junction as seen from the left would be:

For Figure 7.2.4(b) the lines are connected in series so the impedance seen from the left would be .

7.2.3

| (z)|V–– (z)Γ––
(z)Γ––

(z)Γ––
| (z)|V–– | (z)| ∝ |1 + (z)|V–– Γ–– (z)Γ––

ϕ Γ––
1 + (z)Γ–– | | << 1Γ–– | (z)|V––

∣∣V–– +
∣∣ | | ≅1Γ–– ∣ (z)∣V––

∣ (z)∣V––
| | > 0Γ–– | (z)| ∝ |1 − (z)|I– Γ–– | (z)|V––

|V (z)| |I(z)|

VSWR ≡ | (z) / = ( + )/ ( − ) = (1+ ∣ )/(1− ∣ )V–– |max (z)|V–– min
∣∣V––+

∣∣ ∣∣V––−
∣∣ ∣∣V––+

∣∣ ∣∣V––−
∣∣ Γ–– Γ–– (7.2.35)

∣ ∣= (VSWR −1)/(VSWR +1)Γ–– (7.2.36)

/ =∣ = [(VSWR −1)/(VSWR +1)P− P+ Γ–– ∣2 ]2 (7.2.37)

- +

Z––L | (z)|V––
−| |Γ––

ϕ π

Γ––

= [1 + ]/[1 − ]Z––L Zo Γ–– Γ–– (7.2.38)

= / ( + )Z––parallel  Z––aZb Za Z––b (7.2.39)

+Z––a Z––b

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25018?pdf


7.2.6 https://phys.libretexts.org/@go/page/25018

Figure : Multiple connected TEM lines.

Figure 7.2.4(c) illustrates how TEM lines can be concatenated. In this case the impedance  seen at the left-hand terminals could
be determined by transforming the impedance  at terminals (3) to the impedance  that would be seen at terminals (2). The
impedance seen at (2) could then be transformed a second time to yield the impedance seen at the left-hand end. The algorithm for
this might be:

Note that Z  is normalized with respect to Z  and Z ' is normalized with respect to Z ; both are defined at junction (2). Also,  is
the reflection coefficient at junction (2) within the line Z , and  is the reflection coefficient at junction (2) within the line Z .

A 100-ohm air-filled TEM line is terminated at z = 0 with a capacitor C = 10-11 farads. What is ? At what positions z < 0
are voltage minima located on the line when f = 1/2  GHz? What is the VSWR? At z = - λ/4, what is the equivalent
impedance?

Solution

The normalized load impedance , and (7.2.22) gives 
. . (7.2.34) gives 

 when , where n =0,1,2… Therefore 2jkz = -j( /2 + n2 ), so
z(nulls) = -( /2 + n2 )λ/4  = -(λ/8)(1 + 4n). But f = 10 /2 , and so λ = c/f = 2 c×10  = 0.6  [m]. (7.2.34) gives 

. At z = -λ/4,  via (7.2.20), so by (7.2.38)

The VSWR observed on a 100-ohm air-filled TEM transmission line is 2. The voltage minimum is 15 cm from the load and the
distance between minima is 30 cm. What is the frequency of the radiation? What is the impedance  of the load?

Solution

The distance between minima is λ/2, so λ = 60 cm and f = c/λ = 3×10  /0.6 = 500 MHz. The load impedance is 
 (7.2.38) where  from (5.2.83).  is rotated on the

Smith chart 180 degrees counter-clockwise (toward the load) from the voltage minimum, corresponding to a quarter
wavelength. The voltage minimum must lie on the negative real  axis, and therefore  lies on the positive real  axis.
Therefore  and .

This page titled 7.2: TEM Lines with Junctions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
H. Staelin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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Z––1

Z––L Z––2

→ → → → → → → → → →Z––L Z––Ln Γ––3 Γ––2 Z––n2 Z––2 Z––n2′ Γ––2′ Γ––1 Z––nl Z––1 (7.2.40)

n2 a n2 o Γ––2

a Γ––
′
2 o

Example 7.2.B

(z)Γ––
π

/ ≡ = 1/jω = −j/ ( × ×100) = −jZL Zo ZLn CZo 109 10−11

= ( −1) / ( +1) = −(1 +j)/(1 −j) = −jΓ––L Z––Ln Z––Ln (z) = = −Γ–– Γ––Le2jkz je2jkz

| (z)| ∝ |1 + (z)| = 1 − = 0V–– Γ––
∣∣ je2jkz∣∣ = −j =e2jkz e−j(π/2+n2π) π π

π π π 9 π π -9 π

VSWR = (1 +| |)/(1 −| |) = ∞Γ–– Γ–– → − = +jΓ–– Γ––L

= [1 + ]/[1 − ] = 100[1 +j]/[1 −j] = j100 = jω ⇒ = 100/ω = 100/ =  [H]Z–– Zo Γ–– Γ–– Lo Lo 109 10−7

Example 7.2.C

Z––L

8

= [1 + ] / [1 − ]Z––L Zo Γ––L Γ––L | | = (VSWR −1)/(VSWR +1) = 1/3Γ––L Γ––L

Γ–– Γ––L Γ––
= 1/3Γ––L = 100(1 +1/3)/(1 −1/3) = 200 ohmsZ––L
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