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6.4: Linear magnetic motors and actuators
 
 

6.4.1: Solenoid Actuators
Compact actuators that flip latches or switches, increment a positioner, or impact a target are often implemented using solenoids.
Solenoid actuators are usually cylindrical coils with a slideably disposed high-permeability cylindrical core that is partially inserted
at rest, and is drawn into the solenoid when current flows, as illustrated in Figure 6.4.1. A spring (not illustrated) often holds the
core near its partially inserted rest position.

Figure : Solenoid actuator and fields (B and H are plotted on different scales).

If we assume the diameter of the solenoid is small compared to its length, then the fringing fields at the ends of the coil and core

can be neglected relative to the field energy stored elsewhere along the solenoid. If we integrate  along contour C  (see figure)

we obtain zero from Ampere’s law because no net current flows through C  and :

This implies  outside the solenoid unless H  is approximately uniform outside, a possibility that is energetically disfavored

relative to H being purely internal to the coil. Direct evaluation of  using the Biot-Savart law (1.4.6) also yields  outside.

If we integrate  along contour C , which passes along the axis of the solenoid for unit distance, we obtain:

where N  is defined as the number of turns of wire per meter of solenoid length. We obtain the same answer (6.4.2) regardless of
the permeability along the contour C , provided we are not near the ends of the solenoid or its moveable core. For example, (6.4.2)

also applies to contour C , while the integral of  around C  is zero because the encircled current there is zero.

Since (6.4.2) requires that H  along the solenoid axis be approximately constant, B  must be a factor of μ/μ  greater in the

permeable core than it is in the air-filled portions of the solenoid. Because boundary conditions require  to be continuous at the
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core-air boundary,  must be discontinuous there so that , where H  and H  are the axial values of H in the core

and air, respectively. This appears to conflict with (6.4.2), which suggests  inside the solenoid is independent of μ, but this
applies only if we neglect fringing fields at the ends of the solenoid or near boundaries where μ changes. Thus the axial H varies
approximately as suggested in Figure 6.4.1(b): it has a discontinuity at the boundary that relaxes toward constant H = N I away
from the boundary over a distance comparable to the solenoid diameter. Two representative field lines in Figure 6.4.1(a) suggest

how  diverges strongly at the end of the magnetic core within the solenoid while other field lines remain roughly constant until
they diverge at the right end of the solenoid. The transition region between the two values of B  at the end of the solenoid occurs

over a distance roughly equal to the solenoid diameter, as suggested in Figure 6.4.1(b). The magnetic field lines  and  "repel"
each other along the protruding end of the high permeability core on the left side of the figure, resulting in a nearly linear decline in

magnetic field within the core there; at the left end of the core there is again a discontinuity in |H | because  must be
continuous.

Having approximated the field distribution we can now calculate energies and forces using the expression for magnetic energy
density, W  = μH /2 [J m ]. Except in the negligible fringing field regions at the ends of the solenoid and at the ends of its core,
|H| ≅ N I (6.4.2) and μH  >> μ H , so to simplify the solution we neglect the energy stored in air as we compute the magnetic
force f  pulling on the core in the +z direction:

The energy in the core is confined largely to the length z within the solenoid, which has a crosssectional area A [m ]. The total
magnetic energy w  thus approximates:

If we assume w  = w  and differentiate (6.4.4) assuming H is independent of z, we find the magnetic force expels the core from the
solenoid, the reverse of the truth. To obtain the correct answer we must differentiate the total energy w  in the system, which
includes any energy in the power source supplying the current I. To avoid considering a power supply we may alternatively assume
the coil is short-circuited and carrying the same I as before. Since the instantaneous force on the core depends on the instantaneous
I and is the same whether it is short-circuited or connected to a power source, we may set:

where:

H  is the value of H inside the core (μ) and N z is the number of turns of wire circling the core, where N  is the number of turns per
meter of coil length. But H  = J  [A m ] = N I, so:

We now can compute w  using only w  because we have replaced the power source with a short circuit that stores no energy:

So (6.4.9) and (6.4.6) yield the force pulling the core into the solenoid:

where H  = H. This force is exactly the area A of the end of the core times the same magnetic pressure μH /2 [Nm ] we saw in
(6.3.25), but this time the magnetic field is pulling on the core in the direction of the magnetic field lines, whereas before the
magnetic field was pushing perpendicular to the field lines. This pressure equals the magnetic energy density W , as before. A
slight correction for the non-zero influence of μ  and associated small pressure from the air side could be made here, but more
exact answers to this problem generally also require consideration of the fringing fields and use of computer tools.
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It is interesting to note how electric and magnetic pressure [N/m ] approximates the energy density [J m ] stored in the fields,
where we have neglected the pressures applied from the lowfield side of the boundary when ε >> ε  or μ >> μ . We have now seen

examples where  and  both push or pull on boundaries from the high-field (usually air) side of a boundary, where both  and 

 pull in the direction of their field lines, and push perpendicular to them.

6.4.2: MEMS magnetic actuators
One form of magnetic MEMS switch is illustrated in Figure 6.4.2. A control current I  deflects a beam carrying current I . When
the beam is pulled down toward the substrate, the switch (not shown) will close, and when the beam is repelled upward the switch

will open. The Lorentz force law (1.2.1) states that the magnetic force  on a charge q is , and therefore the force

density per unit length  [N m ] on a current  induced by the magnetic field  at position 1 produced by I  is:

N is the number of moving charges per meter of conductor length, and we assume that all forces on these charges are conveyed
directly to the body of the conductor.

Figure : Magnetic MEMS switch.

If the plate separation d << W, then fringing fields can be neglected and the I -induced magnetic field affecting current I  is ,
which can be found from Ampere’s law (1.4.1) computed for a contour C circling I  in a right-hand sense:

Thus . The upward pressure on the upper beam found from (6.4.11) and (6.4.12) is then:

If I  = -I  then the magnetic field between the two closely spaced currents is H ′ = I /W and (6.4.13) becomes  [N
m ]; this expression for magnetic pressure is derived differently in (6.4.15).

This pressure on the top is downward if both currents flow in the same direction, upward if they are opposite, and zero if either is
zero. This device therefore can perform a variety of logic functions. For example, if a switch is arranged so its contacts are closed
in state “1” when the beam is forced upward by both I  and I  being positive (these currents were defined in the figure as flowing in
opposite directions), and not otherwise, this is an “and” gate.

An alternate way to derive magnetic pressure (6.4.13) is to note that if the two currents I  and I  are anti-parallel, equal, and close

together (d << W), then  outside the two conductors and H ' is doubled in the gap between them so WH ' = I . That is, if the
integration contour C circles either current alone then (6.4.12) becomes:

But not all electrons comprising these currents see the same magnetic field because the currents closer to the two innermost
conductor surfaces screen the outer currents, causing the magnetic field to approach zero inside the conductors, as suggested in
Figure 6.4.3.
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Figure : Surface current and force distribution in a conductor.

Therefore the average moving electron sees a magnetic field H '/2, half that at the surface . Thus the total magnetic pressure
upward on the upper beam given by (6.4.13) and (6.4.14) is:

where H ' is the total magnetic field magnitude between the two conductors, and there is no magnetic field on the top of the upper
beam to press in the opposite direction. This magnetic pressure [N m ] equals the magnetic energy density [J m ] stored in the
magnetic field adjacent to the conductor (2.7.8).

 A simple integral of the form used in (5.2.4) yields this same result for pressure.
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