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9.1: Waves at planar boundaries at normal incidence

9.1.1: Introduction to boundary value problems
Section 2.2 showed how uniform planes waves could propagate in any direction with any polarization, and could be superimposed
in any combination to yield a total electromagnetic field. The general electromagnetic boundary value problem treated in Sections
9.1–4 involves determining exactly which, if any, combination of waves matches any given set of boundary conditions, which are
the relations between the electric and magnetic fields adjacent to both sides of each boundary. These boundaries can generally be

both active and passive, the active boundaries usually being sources. Boundary conditions generally constrain  and/or  for all
time on the boundary of the two- or three-dimensional region of interest.

The uniqueness theorem presented in Section 2.8 states that only one solution satisfies all Maxwell’s equations if the boundary
conditions are sufficient. Therefore we may solve boundary value problems simply by hypothesizing the correct combination of
waves and testing it against Maxwell’s equations. That is, we leave undetermined the numerical constants that characterize the
chosen combination of waves, and then determine which values of those constraints satisfy Maxwell’s equations. This strategy
eases the challenge of hypothesizing the final answer directly. Moreover, symmetry and other considerations often suggest the
nature of the wave combination required by the problem, thus reducing the numbers of unknown constants that must be
determined.

The four basic steps for solving boundary value problems are:

1. Determine the natural behavior of each homogeneous section of the system in isolation (absent its boundaries).
2. Express this natural behavior as the superposition of waves characterized by unknown constants; symmetry and other

considerations can minimize the number of waves required. Here our basic building blocks are usually uniform plane
waves, but other more compact expansions are typically used if the symmetry of the problem permits, as illustrated in
Section 4.5.2 for cylindrical and spherical geometries, Section 7.2.2 for TEM transmission lines, and Section 9.3.1 for
waveguide modes.

3. Write equations for the boundary conditions that must be satisfied by these sets of superimposed waves, and then solve
for the unknown constants.

4. Test the resulting solution against any of Maxwell’s equations that have not already been imposed.

Variations of this four-step procedure can be used to solve almost any problem by replacing Maxwell’s equations with their
approximate equivalent for the given problem domain.

9.1.2: Reflection from perfect conductors
One of the simplest examples of a boundary value problem is that of a uniform plane wave in vacuum normally incident upon a
planar perfect conductor at z ≥ 0, as illustrated in Figure 9.1.1(a). Step 1 of the general boundary-problem solution method of
Section 9.1.2 is simply to note that electromagnetic fields in the medium can be represented by superimposed uniform plane waves.

Figure : Plane wave at normal incidence reflecting from a perfect conductor.

For this incompletely defined example, the initial part of Step 2 of the method involves refinement of the problem definition by
describing more explicitly the incident wave, for example:

E
→

H
→

9.1.1

(z, t) = cos(ωt −kz)  [ ]E
→

x̂Eo Vm−1 (9.1.1)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25024?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/09%3A_Electromagnetic_Waves/9.01%3A_Waves_at_planar_boundaries_at_normal_incidence


9.1.2 https://phys.libretexts.org/@go/page/25024

where the wave number k = 2 /λ = ω/c = ω(μ ε ) , (2.3.24). The associated magnetic field (2.3.25) is:

This unambiguously defines the source, and the boundary is similarly unambigous: σ = ∞ and therefore  for z ≥ 0. This more
complete problem definition is sufficient to yield a unique solution. Often the first step in solving a problem is to ensure its
definition is complete.

Since there can be no waves inside the perfect conductor, and since the source field alone does not satisfy the boundary condition 

 at z = 0, one or more additional plane waves must be superimposed to yield a valid solution. In particular, we need to

match the boundary condition at z = 0. This can be done by adding a single uniform plane wave propagating in the -z
direction with an electric field that cancels the incident electric field at z = 0 for all time t. Thus we hypothesize that the total
electric field is:

where we have introduced the constants E  and φ.

In Step 3 of the method we must solve the equation (9.1.3) that characterizes the boundary value constraints:

The result (9.1.5) yields the final trial solution:

Note that the sign of the reflected  and wave is reversed from that of the reflected , consistent with the reversal of the Poynting
vector for the reflected wave alone. We have used the identities:

Also note that  is 90  out of phase with  with respect to both time and space.

We also need a trial solution for z > 0. Inside the conductor , and boundary conditions (2.6.17) require a surface
current:

The fourth and final step of this problem-solving method is to test the full trial solution against all of Maxwell’s equations. We
know that our trial solution satisfies the wave equation in our source-free region because our solution is the superposition of waves
that do; it therefore also satisfies Faraday’s and Ampere’s laws in a source-free region, as well as Gauss’s laws. At the perfectly

conducting boundary we require  and ; these constraints are also satisfied by our trial solution, and therefore the
problem is solved for the vacuum. Zero-value fields inside the conductor satisfy all Maxwell’s equations, and the surface current 

 (9.1.10) satisfies the final boundary condition.

The nature of this solution is interesting. Note that the total electric field is zero not only at the surface of the conductor, but also at
a series of null planes parallel to the conductor and spaced at intervals Δ along the z axis such that kz  = -n , where n = 0, 1, 2,
... That is, the null spacing Δ = /k = λ/2, where λ is the wavelength. On the other hand, the magnetic field is maximum at those
planes where E is zero (the null planes of E), and has nulls where E is maximum. Since the time average power flow and the
Poynting vector are clearly zero at each of these planes, there is no net power flow to the right. Except at the field nulls, however,
there is reactive power, as discussed in Section 2.7.3. Because no average power is flowing via these waves and the energy and
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ŷE0 ηo ŷ Eo ηo (9.1.7)

H
→

E
→

cos α +cos β = 2 cos[(α +β)/2] cos[(α −β)/2] (9.1.8)

cos α −cos β = −2 sin[(α +β)/2] sin[(α −β)/2] (9.1.9)

(z, t)H
→ o (z, t)E

→

= = 0E
→

H
→

= ×   [ ]J
→

S n̂ H
→

Am−1 (9.1.10)

= 0E
→

// = 0H
→

⊥

J
→

S

nulls π

π

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25024?pdf


9.1.3 https://phys.libretexts.org/@go/page/25024

waves are approximately stationary in space, the solution is called a standing wave, as illustrated in Figures 7.2.3 for VSWR and
7.4.1 for resonance on perfectly reflecting TEM transmission lines.

9.1.3: Reflection from transmissive boundaries
Often more than one wave must be added to the given incident wave to satisfy all boundary conditions. For example, assume the
same uniform plane wave (9.1.1–2) in vacuum is incident upon the same planar interface, where a medium having μ,ε ≠ μ ,ε  for z
≥ 0 has replaced the conductor. We have no reason to suspect that the fields beyond the interface are zero, so we might try a trial
solution with both a reflected wave E (z,t) and a transmitted wave E (z,t) having unknown amplitudes (E  and E ) and phases (φ and
θ) for which we can solve:

where , , , and .

Using these four equations to match boundary conditions at z = 0 for  and , both of which are continuous across an
insulating boundary, and dividing by E , yields:

First we note that for these equations to be satisfied for all time t we must have φ = θ = 0, unless we reverse the signs of E  or E
and let φ or θ = , respectively, which is equivalent.

Dividing these two equations by cos ωt yields:

These last two equations can easily be solved to yield the wave reflection coefficient and the wave transmission coefficient:

The wave transmission coefficient E /E  follows from (9.1.17) and (9.1.19). When the characteristic impedance  of the dielectric
equals that of the incident medium, , there are no reflections and the transmitted wave equals the incident wave. We then have an

impedance match. These values for E /E  and E /E  can be substituted into (9.1.11–14) to yield the final solution for  and 

.

The last step of the four-step method for solving boundary value problems involves checking this solution against all Maxwell’s
equations—they are satisfied.

A 1-Wm  uniform plane wave in vacuum, \(\hat{x} \mathrm{E}_{+} \cos (\omega \mathrm{t}-\mathrm{kz})), is normally

incident upon a planar dielectric with ε = 4ε . What fraction of the incident power P  is reflected? What is  at the
dielectric surface (z = 0)?

Solution
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, using (5.1.19). Since , therefore: 

. For the forward wave:  and 

, where , so  The sum of the
incident and reflected magnetic fields at z = 0 is
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