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4.4: Static fields in inhomogeneous materials
   

4.4.1: Static electric fields in inhomogeneous materials
Many practical problems involve inhomogeneous media where the boundaries may be abrupt, as in most capacitors or motors, or
graded, as in many semiconductor or optoelectronic devices. The basic issues are well illustrated by the static cases discussed
below. Sections 4.4.1 and 4.4.2 discuss static electric and magnetic fields, respectively, in inhomogeneous media. To simplify the
discussion, only media characterized by real scalar values for ε, μ, and σ will be considered, where all three properties can be a
function of position.

Static electric fields in all media are governed by the static forms of Faraday’s and Gauss’s laws:

and by the constitutive relations:

A few simple cases illustrate how these laws can be used to characterize inhomogeneous conductors and dielectrics. Perhaps the
simplest case is that of a wire or other conducting structure (1) imbedded in a perfectly insulating medium (2) having conductivity
σ = 0. Since charge is conserved, the perpendicular components of current must be the same on both sides of the boundary so that 

. Therefore all currents in the conducting medium are trapped within it and at the surface must flow parallel
to that surface.

Let’s consider next the simple case of an inhomogeneous slab between two parallel perfectly conducting plates spaced L apart in
the x direction at a potential difference of V  volts, where the terminal at x = 0 has the greater voltage. Suppose that the medium
has permittivity ε, current density J , and inhomogeneous conductivity σ(x), where:

The associated electric field follows from (4.4.4):

The free charge density in the medium then follows from (4.4.2) and is:

Note from the derivative in (4.4.7) that abrupt discontinuities in conductivity generally produce free surface charge ρ  at the
discontinuity. Although inhomogeneous conductors have a net free charge density throughout the volume, they may or may not

also have a net polarization charge density , which is defined in (2.5.12) and can be deduced from the polarization

vector  using (4.4.7):

Now let’s consider the effects of inhomogeneous permittivity ε(x) in an insulating medium (σ = 0) where:
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Since the insulating slab should contain no free charge and the boundaries force  to be in the x direction, therefore  cannot be a

function of x because . But ; therefore the x dependence of  must cancel that of ε, so:

E  is an unknown constant and can be found relative to the applied voltage V :

Combining (4.4.9–11) leads to a displacement vector  that is independent of x (boundary conditions mandate continuity of ),
and a non-zero polarization charge density ρ  distributed throughout the medium:

A similar series of computations readily handles the case where both ε and σ are inhomogeneous.

A certain capacitor consists of two parallel conducting plates, one at z = 0 and +V volts and one at z = d and zero volts. They
are separated by a dielectric slab of permittivity ε, for which the conductivity is small and different in the two halves of the
dielectric, each of which is d/2 thick; σ  = 3σ . Assume the interface between σ  and σ  is parallel to the capacitor plates and is

located at z = 0. What is the free charge density ρ (z) in the dielectric, and what is  where z is the coordinate
perpendicular to the plates?

Solution

Since charge is conserved, , so . But , so 

, and . The surface charge on the lower plate is , and

ρ  on the upper plate is . Thefree charge at the dielectric interface is 
. Charge can accumulate at all three surfaces because the dielectric

conducts. The net charge is zero. The electric field between capacitor plates was discussed in Section 3.1.2.

4.4.2: Static magnetic fields in inhomogeneous materials
Static magnetic fields in most media are governed by the static forms of Ampere’s and Gauss’s laws:

and by the constitutive relations:

One simple case illustrates how these laws characterize inhomogeneous magnetic materials. Consider a magnetic material that is

characterized by μ(x) and has an imposed magnetic field  in the x direction. Since  it follows that  is constant 

 throughout, and that  is a function of x:
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As a result, higher-permeability regions of magnetic materials generally host weaker magnetic fields , as shown in Section 3.2.2

for the toroidal inductors with gaps. In many magnetic devices μ might vary four to six orders of magnitude, as would .

4.4.3: Electric and magnetic flux trapping in inhomogeneous systems

Currents generally flow in conductors that control the spatial distribution of  and electric potential . Similarly, high-

permeability materials with μ >> μ  can be used to form magnetic circuits that guide  and control the spatial form of the static
curl-free magnetic potential .

Faraday’s law says that static electric fields  are curl-free:

Since  in static cases, it follows that:

where  is the electric potential [volts] as a function of position in space. But Gauss’s law says  in regions where ρ

is constant. Therefore  and:

In static current-free regions of space with constant permeability μ, Ampere’s law (2.1.6) says:

and therefore , like , can be related to a scalar magnetic potential [Amperes] :

Since  when μ is independent of position, it follows that  and:

The perfect parallel between Laplace’s equations (4.4.20) and (4.4.23) for electric and magnetic fields in charge-free regions offers

a parallel between current density  and magnetic flux density , and also between conductivity σ and
permeability μ as they relate to gradients of electric and magnetic potential, respectively:

Just as current is confined to flow within wires imbedded in insulating media having σ ≅ 0, so is magnetic flux  trapped within
high-permeability materials imbedded in very low permeability media, as suggested by the discussion in Section 3.2.2 of how
magnetic fields are confined within high-permeability toroids.

The boundary condition (2.6.5) that  is continuous requires that  at boundaries with media having μ ≅ 0; thus
essentially all magnetic flux⎯B is confined within permeable magnetic media having μ >> 0.
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Figure : Current and magnetic flux-divider circuits.

Two parallel examples that help clarify the issues are illustrated in Figure 4.4.1. In Figure 4.4.1(a) a battery connected to perfect
conductors apply the same voltage  across two conductors in parallel; A , σ , d , and I  are respectively their cross-sectional area,
conductivity, length, and current flow for i = 1,2. The current through each conductor is given by (4.4.26) and:

where:

is the resistance of conductor i, and I = V/R is Ohm’s law.

For the magnetic circuit of Figure 4.4.1(b) a parallel set of relations is obtained, where the total magnetic flux Λ = BA [Webers]
through a cross-section of area A is analogous to current I = JA. The magnetic flux Λ through each magnetic branch is given by
(4.4.26) so that:

where:

is the magnetic reluctance of branch i, analogous to the resistance of a conductive branch.

Because of the parallel between current I and magnetic flux Λ, they divide similarly between alternative parallel paths. That is, the
total current is:

The value of  found from (4.4.31) leads directly to the current-divider equation:

So, if R  = ∞, all Io flows through R ; R  = 0 implies no current flows through R ; and R  = R  implies half flows through each
branch. The corresponding equations for total magnetic flux and flux division in magnetic circuits are:

Although the conductivity of insulators surrounding wires is generally over ten orders of magnitude smaller than that of the wires,
the same is not true for the permeability surrounding high-μ materials, so there generally is some small amount of flux leakage

from such media; the trapping is not perfect. In this case  outside the high-μ material is nearly perpendicular to its surface, as
shown in (2.6.13).

The magnetic circuit of Figure 4.4.1(b) is driven by a wire that carries 3 amperes and is wrapped 50 times around the leftmost
vertical member in a clockwise direction as seen from the top. That member has infinite permeability (μ = ∞), as do the top and

bottom members. If the rightmost member is missing, what is the magnetic field  in the vertical member R , for which the

length is d and μ >> μ ? If both R  and R  are in place and identical, what then are  and ? If R  is removed and R
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consists of two long thin bars in series having lengths d  and d , crosssectional areas A  and A , and permeabilities μ  and μ ,

respectively, what then are  and ?

Solution

For this static problem Ampere’s law (4.1.2) becomes

Therefore , where  and  are upward due to the right-hand rule associated with Ampere’s law. If R

is added, both the integrals of  through the two branches must still equal NI, so  remains  150/d [A m ] in both

branches. For the series case the integral of  yields H d  + H d  = NI. Because the magnetic flux is trapped within this
branch, it is constant: μ H A  = B A  = B A  = μ H A . Therefore H  = H (μ A /μ A ) and H [d  + d (μ A /μ A )] = NI, so 

.
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a ẑ da db μaAa μbAb m−1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25002?pdf
https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/04%3A_Static_and_Quasistatic_Fields/4.04%3A_Static_fields_in_inhomogeneous_materials
https://creativecommons.org/licenses/by-nc-sa/4.0
https://ieeexplore.ieee.org/document/6157724
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013-electromagnetics-and-applications-spring-2009/readings/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013-electromagnetics-and-applications-spring-2009

