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9.4: Cavity resonators

9.4.1: Rectangular cavity resonators
Rectangular cavity resonators are hollow rectangular conducting boxes of width a, height b, and length d, where d ≥ a ≥ b by
convention. Since they are simply rectangular waveguides terminated at both ends by conducting walls, and the electric fields must

still obey the wave equation, , therefore  for TE modes must have the form of the TE waveguide fields
(9.3.27), but with a sinusoidal z dependence that matches the boundary conditions at z = 0 and z = d; for example, equal forward- and
backward-propagating waves would form the standing wave:

where B = 0 ensures  at z = 0, and k  = p /d ensures it for z = d, where p = 1, 2, ...

Unlike rectangular waveguides that propagate any frequency above cut-off for the spatial field distribution (mode) of interest, cavity
resonators operate only at specific resonant frequencies or combinations of them in order to match all boundary conditions. The
resonant frequencies ω  for a rectangular cavity resonator follow from the dispersion relation:

The fundamental mode for a cavity resonator is the lowest frequency mode. Since boundary conditions can not be met unless at least
two of the quantum numbers m, n, and p are non-zero, the lowest resonant frequency is associated with the two longest dimensions, d
and a. Therefore the lowest resonant frequency is:

Cavity resonators are therefore sometimes filled with dielectrics or magnetic materials to reduce their resonant frequencies by
reducing c.

The fields for the fundamental mode of a rectangular cavity resonator, TE , follow from (9.4.1) and Faraday’s law:

The total energy w [J] = w (t) + w (t) in each mode m,n,p of a cavity resonator can be calculated using (2.7.28) and (2.7.29), and will
decay exponentially at a rate that depends on total power dissipation P  [W] due to losses in the walls and in any insulator filling the
cavity interior:

Wall losses and any dissipation in insulators can be estimated by integrating (9.2.60) and (2.7.30), respectively, over the volume of
the cavity resonator. The energy stored, power dissipation, and Q can be quite different for different modes, and are characterized by
w , P , and Q , respectively, as defined by either (3.5.23) or (7.4.43):

What are the lowest resonant frequency and its Q for a perfectly conducting metallic cavity of dimensions a, b, d if it is filled
with a medium characterized by ε, μ, and σ. Assume Q >> 1.

Solution

The lowest resonant frequency ω  is given by (9.4.4), where : . 
 where the total energy stored w  is twice the average electric energy stored since the total electric

and magnetic energy storages are equal. At each point in the resonator the time-average electric energy density stored is 
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 Example 9.4.A
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 and the time-average power dissipated is , [W m ] so the electric-energy/dissipation density
ratio everywhere is ε/2σ, and thus , so .

9.4.2: Perturbation of resonator frequencies
Often we would like to tune a resonance to some nearby frequency. This can generally be accomplished by changing the shape of the
resonator slightly. Although the relationship between shape and resonant frequency can be evaluated using Maxwell’s equations, a
simpler and more physical approach is taken here.

The energy stored in a resonator can be regarded as a population of N trapped photons at frequency f bouncing about inside. Since the
energy E per photon is hf (1.1.10), the total energy in the resonator is:

If we force the walls of a resonator to move slowly toward its new shape, they will move either opposite to the forces imposed by the
electromagnetic fields inside, or in the same direction, and thereby do positive or negative work, respectively, on those fields. If we
do positive work, then the total electromagnetic energy w  must increase. Since the number of photons remains constant if the shape
change is slow compared to the frequency, positive work on the fields results in increased electromagnetic energy and frequency f. If
the resonator walls move in the direction of the applied electromagnetic forces, the externally applied work on the fields is negative
and the energy and resonant frequency decrease.

The paradigm above leads to a simple expression for the change in resonant frequency of any resonator due to small physical
changes. Consider the case of an air-filled metallic cavity of any shape that is perturbed by pushing in or out the walls slightly in one
or more places. The electromagnetic force on a conductor has components associated with both the attractive electric and repulsive
magnetic pressures on conductors given by (4.1.15) and (4.1.23), respectively. For sinusoidal waves these pressures are:

But these pressures, except for the negative sign of P  (corresponding to attraction), are the electric and magnetic energy densities [J
m ].

The work Δw done in moving the cavity boundary slightly is the pressure P  applied, times the area over which it is applied, times
the distance moved perpendicular to the boundary. For example, Δw equals the inward electromagnetic pressure (± energy density)
times the increase in volume added by the moving boundary. But this increase in total stored electromagnetic energy is simply:

The signs for the increases in electric and magnetic energy storage Δw  and Δw  and pressures P  and P  are different because the
pressures P  and P  are in opposite directions, where Δw  = W Δv , and . Δw  is defined as the
electric energy stored in the increased volume of the cavity, Δv , assuming the electric field strength remains constant as the wall
moves slightly; Δw  is defined similarly. The main restriction here is that the walls cannot be moved so far that the force density on
the walls changes, nor can their shape change abruptly for the same reason. For example, a sharp point concentrates electric fields and
would violate this constraint.

Dividing (9.4.12) by  yields the frequency perturbation equation:

A simple example illustrates its use. Consider a rectangular cavity resonator operating in the TE  mode with the fields given by

(5.4.37) and (5.4.38). If we push in the center of the top or bottom of the cavity where  and  we are reducing the
volume allocated to electric energy storage, so Δw  is negative and the resonant frequency will drop in accord with (9.4.13). If we
push in the sides, however, the resonant frequency will increase because we are reducing the volume where magnetic energy is stored
and Δw  is negative; the electric energy density at the sidewalls is zero. In physical terms, pushing in the top center where the electric
fields pull inward on the wall means that those fields are doing work on the moving wall and therefore lose energy and frequency.
Pushing in where the magnetic fields are pushing outward does work on the fields, increasing their energy and frequency. This
technique can be used to determine experimentally the unknown resonant mode of a cavity as well as tuning it.
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