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8.1: Propagation and reflection of transient signals on TEM transmission lines

8.1.1: Lossless transmission lines
The speed of computation and signal processing is limited by the time required for charges to move within and between devices,
and by the time required for signals to propagate between elements. If the devices partially reflect incoming signals there can be
additional delays while the resulting reverberations fade. Finally, signals may distort as they propagate, smearing pulse shapes and
arrival times. These three sources of delay, i.e., propagation plus reverberation, device response times, and signal distortion are
discussed in Sections 8.1, 8.2, and 8.3, respectively. These same issues apply to any system combining transmission lines and
circuits, such as integrated analog or digital circuits, printed circuit boards, interconnections between circuits or antennas, and
electrical power lines.

Transmission lines are usually paired parallel conductors that convey signals between devices. They are fundamental to every
electronic system, from integrated circuits to large systems. Section 7.1.2 derived from Maxwell’s equations the behavior of
transverse electromagnetic (TEM) waves propagating between parallel plate conductors, and Section 7.1.3 showed that the same
equations also govern any structure, even a dissipative one, for which the cross-section is constant along its length and that has at
least two perfectly conducting elements between which the exciting voltage is applied. Using differential RLC circuit elements, this
section below derives the same transmission-line behavior in a form that can readily be extended to transmission lines with
resistive wires, as discussed later in Section 8.3.1. Since resistive wires introduce longitudinal electric fields, such lines are no
longer pure TEM lines.

Equations (7.1.10) and (7.1.11) characterized the voltage v(t,z) and current i(t,z) on TEM structures with inductance L [H m ] and
capacitance C [F m ] as:

These expressions were combined to yield the wave equation (7.1.14) for lossless TEM lines:

One general solution to this wave equation is (7.1.16):

which corresponds to the superposition of forward and backward propagating waves moving at velocity .
The current i(t,z) corresponding to (8.1.4) follows from substitution of (8.1.4) into (8.1.1) or (8.1.2), and differentiation followed by
integration:

Y  is the characteristic admittance of the line, and the reciprocal of the characteristic impedance Z :

The value of Y  follows directly from the steps above.

A more intuitive way to derive these equations utilizes an equivalent distributed circuit for the transmission line composed of an
infinite number of differential elements with series inductance and parallel capacitance, as illustrated in Figure 8.1.1(a). This model
is easily extended to non-TEM lines with resistive wires.
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dv/dz = −Ldi/dt (8.1.1)

di/dz = −Cdv/dt (8.1.2)

( /d −LC / )v(z, t) = 0  (TEM wave equation) d2 z2 d2 dt2 (8.1.3)

v(z, t) = (z −ct) + (z +ct) (TEM voltage) v+ v− (8.1.4)

c = (LC = (με)−0.5 )−0.5

i(z, t) = [ (z −ct) − (z +ct)] (TEM current)Yo v+ v− (8.1.5)

o o

= = (L/C  [Ohms]  (characteristic impedance of lossless TEM line) Zo Y−1
o )0.5 (8.1.6)
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Figure : Distributed circuit model for lossless TEM transmission lines.

The inductance L [Henries m ] of the two conductors arises from the magnetic energy stored per meter of length, and produces a
voltage drop dv across each incremental length dz of wire which is proportional to the time derivative of current through it :

 An alternate equivalent circuit would have a second inductor in the lower branch equivalent to that in the upper branch; both
would have value Ldz/2, and v(t,z) and i(t,z) would remain the same.

Any current increase di across the distance dz, defined as di = i(t, z+dz) - i(t,z), would be supplied from charge stored in C [F m ]:

These two equations for dv and di are equivalent to (8.1.1) and (8.1.2), respectively, and lead to the same wave equation and
general solutions derived in Section 7.1.2 and summarized above, where arbitrary waveforms propagate down TEM lines in both
directions and superimpose to produce the total v(z,t) and i(t,z).

Two equivalent solutions exist for this wave equation: (8.1.4) and (8.1.9):

The validity of (8.1.9) is easily shown by substitution into the wave equation (8.1.3), where again c = (LC) . This alternate form
is useful when relating line signals to sources or loads for which z is constant, as illustrated below. The first form (8.1.4) in terms of
(z - ct) is more convenient when t is constant and z varies.

Waves can be launched on TEM lines as suggested in Figure 8.1.1(b). The line is driven by the Thevenin equivalent source v (t) in
series with the source resistance Z , which is matched to the transmission line in this case. Equations (8.1.4) and (8.1.5) say that if
there is no negative traveling wave, then the ratio of the voltage to current for the forward wave on the line must equal Z  = Y .
The equivalent circuit for this TEM line is therefore simply a resistor of value Z , as suggested in Figure 8.1.1(c). If the source
resistance is also Z , then only half the source voltage v (t) appears across the TEM line terminals at z = 0. Therefore the voltages
at the left terminals (z = 0) and on the line v(t,z) are:

where we have used the solution form of (8.1.9). The propagating wave in Figure 8.1.1(b) has half the amplitude of the Thevenin
source v (t) because the source was matched to the line so as to maximize the power transmitted from the given voltage v (t). Note
that (8.1.11) is the same as (8.1.10) except that z/c was subtracted from each. Equality is preserved if all arguments in an equation
are shifted the same amount.

If the Thevenin source resistance were R, then the voltage-divider equation would yield the terminal and propagating voltage v(t,z):

This more general expression reduces to (8.1.10) when R = Z  and z = 0.

8.1.1
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dv = −Ldz(di/dt) (8.1.7)

40

-1

di = −Cdz(dv/dt) (8.1.8)

v(z, t) = (t −z/c) + (t +z/c)f+ f− (8.1.9)
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v(t, z = 0) = (t)/2 = (t, z = 0)vs v+ (8.1.10)

v(t, z) = (t −z/c) = (t −z/c)/2 (transmitted signal)v+ vs (8.1.11)

s s

v(t, z) = (t −z/c) [ / (R + )]vs Zo Zo (8.1.12)
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A certain integrated circuit with μ = μ  propagates signals at velocity c/2, and its TEM wires exhibit Z  = 100 ohms. What are
ε, L, and C for these TEM lines?

Solution

, and ; so ε = 4ε . Since v = (LC)  and , 
, and .

8.1.2: Reflections at transmission line junctions
If a transmission line connecting a source to a load is sufficiently short, then the effects of the line on reflections can be modeled by
simply replacing it with a small lumped capacitor across the source terminals representing the capacitance between the wires, and a
resistor in series with an inductor and the load, representing the resistance and inductance of the wires. If, however, the line length
D is such that the propagation time  is a non-trivial fraction of the shortest time constant of the load , then we
should use transmission line models governed by the wave equation (e.g., 8.1.3). That is, the TEM wave equation should be used
unless the line length D is:

For larger values of D the propagation delays become important and a transmission line model must be used, as explained in
Section 8.1.1. Section 8.1.1 also explained how signals are launched and propagate on TEM lines, and how the Thevenin
equivalent circuit (8.1.6) for a passive transmission line as seen by the source is simply a resistor Z  = (L/C) . This characteristic
impedance Z  of the transmission line is the ratio of the forward voltage v (t,z) to the associated current i (z,t). TEM signals are
partially transmitted and partially reflected at each junction they encounter, where these junctions may be the intended load or
simply places where the impedance Z  of the transmission line changes. Sometimes multiple transmission lines meet at such
junctions.

Section 7.2.2 (7.2.7) derived the reflection coefficient  for an arbitrary TEM wave v (t,z) reflected by a load resistance R at z,
where the normalized impedance of the load is R  = R/Z :

It is important to distinguish the difference between  for purely resistive loads, which is real, and , which is complex and
applies to any complex load impedance . Here R and  are real.

Consider the example illustrated in Figure 8.1.2(a), where a TEM line is characterized by impedance Z  and phase velocity c. The
line is D meters long, open circuit at the right-hand end, and driven by a unit-step  voltage u(t). The equivalent circuit at the
source end of the line is illustrated in (b), which is simply a voltage divider that places v (t)/2 volts across the line. But the voltage
across the line equals the sum of the forward and backward moving waves, where a passive line at rest has no backward wave.
Therefore the forward wave here at z = 0+ is simply u(t)/2, and the result is a voltage of 0.5 volts that moves down the line at
velocity c, as illustrated in Figure 8.1.2(c) for t = t . The associated current i(z, t) is plotted in (d) for t = t , and is proportional to
the voltage.

 We use the notation u(t) to represent a unit-step function that is zero for t < 0, and unity for t ≥ 0. A unit impulse is represented
by δ(t), which is zero for all |t| > ε in the limit where ε → 0, and the integral of δ(t) ≡ 0. .

Example 8.1.A

o o

c = ( )μ0ε0
−0.5

v = c/2 = ( ε)μo
−0.5

o
-0.5 = (L/CZ0 )0.5

L = /v = 200/c = 6.67 ×  [Hy]Zo 10−7 C = 1/ = 1/200c = 1.67 ×  [F]vZ0 10−11

= D/cτ line  τ load

D ≪ cτ load (8.1.13)

o
0.5

o + +

o

Γ +

n o

(t, z) = Γ (t, z)v− v+ (8.1.14)

Γ = ( −1) / ( +1)Rn Rn (8.1.15)

≡ R/Rn Z0 (8.1.16)

Γ (ω)Γ––
Z––L Γ

o
41

s

o o

41

∫ δ(t)dt = u(t)
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Figure : Step-function transients on a lossless transmission line.

Once the transient reaches the right-hand end, boundary conditions must again be satisfied, so there is a reflected voltage wave
having , where  = +1, as given by (8.1.15) for R  → ∞. The total voltage on the line (8.1.9) is the
sum of the forward and backward waves, each of value 0.5 volts, as illustrated in Figure 8.1.2(c) for t = t  > D/c. At t  the reflected
voltage step is propagating leftward toward the source. The current at t = t  is plotted in Figure 8.1.2(d).

Although these voltage and current transients are most easily represented and understood graphically, they can also be derived and
represented algebraically. For example, v(t, z=0) = u(t)/2 here, and therefore for t < D/c we have v(t,z) = v (t - z/c) = u(t - z/c)/2.
Note that if we translate an argument on one side of an equation, we must impose the same translation on the other; thus v(t,0)→v(t
- z/c) forces u(t,0)→u(t - z/c). Once the wave reflects from the open circuit we have v(z,t) = v (t - z/c) + v (t + z/c). At z = D for t <
3D/c the boundary condition at the open circuit requires  = +1, so v (t + D/c) = v (t - D/c) = u(t - D/c)/2. From v (t + D/c) we can
find the more general expression v (t + z/c) simply by operating on their arguments: v (t + z/c) = v (t + D/c –D/c + z/c) = u(t - 2D/c
+ z/c). The total voltage for t < 2D/c is the sum of these forward and backward waves: v(t,z) = [u(t - z/c) + u(t - 2D/c + z/c)]/2. The
same approach can represent line currents and also more complex examples.

When the reflected wave arrives back at the source,  = 0 because this source is matched to the transmission line. In this special
case there are no further reflections. Steady state is therefore one volt on the line everywhere, with v  = v  = 0.5 in perpetuity. The
total line current is the difference between the forward and backward wave (8.1.5), as plotted in Figure 8.1.2(d) for t . The steady-
state current is therefore zero. These steady state values correspond to ω → 0 and λ → ∞, so the line is then much shorter than any
wavelength of interest and can be considered static. We can easily see that an open-circuit line connected to a voltage source via
any impedance at all will eventually assume the same voltage as the source, and the current will be zero, as it is here.

If the line were short-circuited at the right-hand end, then  = -1 and the voltage v(z) at t1 would resemble that of the current in
Figure 8.1.2(d), with the values 0.5 and 0 volts, while the current i(z) at t  would resemble that of the voltage in (c), with the values
0.5/Z  and 1/Z . The steady state values for voltage and current in this short-circuit case are zero and 1/Z , respectively.

If the first transmission line were connected to a second passive infinite line of impedance Z , as illustrated in Figure 8.1.3(a), then
the same computations would yield v(t,z) and i(t,z) on the first transmission line, where R  = Z /Z . The solution on the second line
follows from the boundary conditions: v(t) and i(t) are both continuous across the boundary. The resulting waveforms v(t ,z) and
i(t ,z) at time D/c < t  < 2D/c are plotted in Figure 8.1.3(b) for the case R  = 0.5, so  = - 1/3. In this case the current is increased
by the reflection while the voltage is diminished. Independent of the incident waveform, the fraction of the incident power that is
reflected is , where the reflection coefficient  is given by (8.1.15); the transmitted fraction is .

8.1.2

(t, z = D) = Γ (t, z = D)v− v+ Γ n
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Figure : Step function incident upon a mismatched TEM line.

The principal consequence of this reflection phenomenon is that the voltage across a device may not be what was intended if there
is an impedance mismatch between the TEM line and the device. This is an issue only when the line is sufficiently long that line
delays are non-negligible compared to circuit time constants (8.1.13). The analysis above is for linear resistive loads, but most
loads are non-linear or reactive, and their treatment is discussed in Section 8.1.4.

8.1.3: Multiple Reflections and Reverberations
The reflected waves illustrated in Figures 8.1.2 and 8.1.3 eventually impact the source and may be reflected yet again. Since
superposition applies if the sources and loads are linear, the contributions from each reflection can be separately determined and
then added to yield the total voltage and current. That is, the reflected v (t,z) will yield its own reflection at the source, and the fate
of this reflection can be followed independently of the original forward wave. As usual when analyzing linear circuits, all sources
are set to zero when determining the contribution of an independent source such as v (t,z).

This paradigm is illustrated in Figure 8.1.4, which involves a unit-step current source driving an open-circuited TEM line that is
characterized by Z , c, and length D. Figures 8.1.4(a), (b), and (c) illustrate the circuit, the voltage at t , and the current at t ,
respectively, where t  = D/2c. The reflection coefficient  = 1 (8.1.15) for the open circuit at z = D, so the incident Z volt step is
reflected positively, and the total voltage where they superimpose is 2Z  volts, as illustrated in (d) for t  = 1.5D/c. The current at
this moment is Y [v (t - z/c) - v (t + z/c)], which is zero where the forward and reverse waves overlap, as illustrated in (e). When v
(t + z/c) is reflected from the left-hand end it sees  = +1 because, when using superposition, we consider the current source to be
zero, corresponding to an open circuit. Thus an additional Z  volts, associated with v , adds to v  and v  to yield a total of 3Z
volts, as illustrated in (f) at t ; the notation v  refers to the ith forward wave v . This process continues indefinitely, with the
voltage continuing to increase by Z  volts every D/c seconds until something breaks down. Voltage breakdowns are expected when
current sources feed open circuits; the finite rate of voltage increase is related to the total capacitance of the TEM line.

Figure : Transients for a current source driving an open-circuited TEM line.
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The behavior of the current i(t,z) is interesting too. Figure 8.1.4(c) illustrates how the oneampere current from the current source
propagates down the line at velocity c, and (e) shows how the “message” that the line is open-circuited is returned: the current is
returning to zero. When this left-moving wave is reflected at the left-hand end the current is again forced to be one ampere by the
current source. Thus the current distribution (c) also applies to (f) at t . This oscillation between one and zero amperes continues
indefinitely, much like an unresolved argument between two people, each end of the line forcing the current to satisfy its own
boundary conditions while that message propagates back and forth at velocity c.

A unit step voltage source u(t) with no source resistance drives a short-circuited air-filled TEM line of length D and
characteristic impedance Z  = 1 ohm. What current i(t) flows through the short circuit at the end of this TEM line?

Solution

The unit step will propagate down the line, be reflected at the short circuit at z = D where the reflection coefficient  = -1,
and travel back to the voltage source at z = 0, which this transient sees as a short circuit (Δv = 0), also having  = -1. So, after
a round-trip delay of 2D/c, the voltage everywhere on the line is zero, after which a new step voltage travels down the line and
superimposes on the first step voltage, thus adding a second step to the current i(t, z=D). This process continues indefinitely as
i(t) steps in 1-ampere increments every 2D/C seconds monotonically toward infinity, which is the expected current when a
voltage source is shortcircuited. The effect of the line is simply to slow this result as the current and stored magnetic energy on
the line build up. More precisely, . , so the TEM line
presents an equivalent circuit at z = D having Thevenin voltage , and Thevenin impedance
Z ; this yields  for t < 3D/c. Therefore , so 

. At z = D this second step increases the Thevenin voltage by 2u(t - 3D/c) and
increases the current by 2u(t - 3D/c)/Z , where Z  = 1 ohm. Therefore .

8.1.4: Reflections by mnemonic or non-linear loads
Most junctions involve mnemonic  or non-linear loads, where mnemonic loads are capacitors, inductors, or other energy storage
devices that have characteristics depending on the past. Nonlinear loads include diodes, transistors, and voltage- or current-
dependent capacitors and inductors. In either case the response to arbitrary waveforms cannot be determined by the simple methods
described in the previous section. However by simply replacing the transmission line by its equivalent circuit, the voltage and
current can generally be easily found, first at the junction and then on the transmission line.

 Mnemonic means “involving memory”.

The equivalent circuit for an unexcited transmission line is simply a resistor of value Z  because the ratio Δv/Δi for any excitation
is always Z . Determining the voltage across this Z  is generally straightforward even if the source driving the line contains
capacitors, inductors, diodes, or similar devices. The forward-propagating wave voltage is simply the terminal voltage, as
demonstrated in Figures 8.1.2–4.

The Thevenin equivalent circuit for an energized TEM line has a Thevenin voltage source V  in series with the Thevenin
impedance of the line: Z  = Z . Note that the equivalent impedance for a TEM line is exactly Z , regardless of any loads on the
line. The influence of the load at the far end of the line is manifest only in reflected waves that may propagate from it toward the
observer, as discussed in the previous section.

The Thevenin equivalent voltage of any linear system is simply its open-circuit voltage. The open-circuit voltage of a transmission
line is twice the amplitude of any incident voltage waveform because the reflection coefficient  for an open circuit is +1, which
doubles the incidence voltage at the junction position z :

The procedure for analyzing a TEM line terminated by any load at z = z  is then to: 1) solve for the wave v (t - z/c) traveling
toward the load of interest, 2) set  and Z  = Z , 3) solve for the terminal voltage v(t, z ), 4) solve for v
(t,z ), and 5) find v (t + z/c), where we define z as increasing toward the load:

3

Example 8.1.B

o

ΓD

ΓS

v(t, z = 0) ≡ u(t) = (t, z = 0)v+1 (t, z = D) = u(t −D/c)v+1

= 2 (t, D) = 2u(t −D/c)vTh v+1

o i(t) = 2u(t −D/c)/Zo (t D)  = (t, D) = −u(t −D/c)v−1 ΓDv+1

(t, 0) = (t, 0) = u(t −2D/c)V+2 ΓSv−1

o o i(t) = 2u(t −[2n+1]D/c)Σ∞
n=0

42

42

o

o o

Th

Th o o

Γ

J

(t, ) = (t, ) + (t, ) = 2 (t, )VTh zJ v+ zJ v− zJ v+ zJ (8.1.17)

J +
= 2 (t − /c)VTh v+ zJ Th o J -

J -

(t, ) = v (t, ) − (t, ) ≡ (t +[ /c])v− zJ zJ v+ zJ v− zJ (8.1.18)

(t +z/c) = (t +[(z − ) /c] , ) (wave reflected by load)v− v− zJ zJ (8.1.19)
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Equation (8.1.19) says v (t + z/c) is simply the v (t, z ) given by (8.1.18), but delayed by (z  - z)/c.

This procedure is best demonstrated by a simple example. Figure 8.1.5(a) illustrates a TEM line driven by a matched unit step
voltage source and terminated with a capacitor C. This voltage step, reduced by a factor of two by the voltage divider, propagates
toward the capacitor at velocity c, as illustrated in (b). The capacitor sees the Thevenin equivalent circuit illustrated in (c); it
consists of Z  in series with a Thevenin voltage source that is twice v , where v (t,D) is a 0.5-volt step delayed by the propagation
time D/c. Therefore V  = u(t - D/c), as illustrated in Figure 8.1.5(c) and (d). The solution to the circuit problem of (c) is the
junction voltage v (t) plotted in (e); it rises exponentially toward its 1-volt asymptote with a time constant  seconds.

To solve for v (t,z ) we subtract v (t,z ) from v (t), as shown in (8.1.18) and illustrated in (f); this then yields v (t + z/c) using
(8.1.19). The total voltage v(t ,z) on the line at time D/c < t  < 2D/c is plotted in (g) and is the sum of v (t - z/c), which is 0.5 volts,
and v (t + z/c). The corresponding current i(t ,z) is plotted in (h) and equals Y  times the difference between the forward and
reverse voltage waves, as given by (8.1.5). When v (t,z) arrives at the source, it can be treated just as such waves were treated in
Section 8.1.3. In this case the source is matched, so there are no further reflections.

Figure : Transient voltages and currents on a capacitor-terminated TEM line.

Most digital circuits are non-linear, so this same technique is often used to determine the waveforms on longer TEM lines.
Consider the circuit and ramp-pulse voltage source illustrated in Figure 8.1.6(a) and (b).

- - J J

o + +

Th

J τ = CZ0
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Figure : Transient TEM waveforms produced by reflection from a non-linear load.

In this case there is no source resistance (an arbitrary choice), so the full value of the source voltage appears across the TEM line.
Part (c) shows the equivalent circuit of the transmission line driving the load, which consists of a back-biased diode. The Thevenin
voltage V (t,z ) = 2v (t,z ) is plotted in (d), the resulting junction voltage v (t) is plotted in (e), v (t,z ) is plotted in (f), and v (t,z )
= v (t,z ) - v (t,z ) is plotted in (g). The line voltage and currents at D/c < t  < 2D/c are plotted in (h) and (i), respectively. Note that
these reflected waveforms do not resemble the incident waveform.

If the circuit illustrated in Figure 8.1.5(a) were terminated by L instead of C, what would be v(t, D), v (t, D), and v(t,0)?

Solution

Figures 8.1.5(a–d) still apply, except that L replaces C. The one-volt Thevenin step voltage at z = D in series with the Thevenin
line impedance Z  yields a voltage v(t, D) across the inductor of u(t - D/c)e- . Therefore 

 and, since there are no further reflections at
the matched load at z = 0, it follows that .

8.1.5: Initial conditions and transient creation
Often transmission lines have an initial voltage and current that is interrupted in some way, producing transients. For example, a
charged TEM line at rest may have a switch thrown at one end that suddenly connects it to a load, or disconnects it; such a switch
could be located in the middle of a line too, either in series or parallel. The solution method has two main steps: 1) determine v
(t,z) and v (t,z) at t = 0  before the change occurs, and 2) solve for the subsequent behavior of the forward and backward moving
waves for the given network configuration.

8.1.6

Th J + J J + J - J

J J + J 1

Example 8.1.C

-

o
tL/R

(t, D) = v(t, D) −v +(t, D) = u(t −D/c) −0.5u(t −D/c)v− e−(t−D/c)L/R

v(t, 0) = 0.5u(t) +u(t −2D/c) −0.5u(t −2D/c)e−(t−2D/c)LR

+

- -
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Figure : Transients induced by momentarily open-circuited active TEM line.

The simple example of Figure 8.1.7 illustrates the method. Assume an air-filled 2-meter long 100-ohm TEM line is feeding a 200-
ohm load R with I = 50 milliamperes, when suddenly at t = 0 the line is open-circuited at z = 1 meters for 10  seconds, after which
it returns to normal. What are the voltage and current on the line as a result of this temporary event?

Using the method suggested above, we first solve for the forward and backward waves prior to t = 0; the current i(t<0, z) is given
as I = 50 milliamperes, and the voltage v(t<0, z) = IR is 0.05 × 200 ohms = 10 volts. Note that in steady state Z  does not affect
v(t<0, z). We know from (8.1.4) and (8.1.5) that:

Solving these two equations for v  and v  yields:

These two voltages are shown in Figure 8.1.7(b), 7.5 volts for the forward wave and 2.5 volts for the reflected wave; this is
consistent with the given 50-ma current.

When the switch opens at t = 0 for 10  seconds, it momentarily interrupts both v+ and v-, which see an open circuit at the switch
and  = +1. Therefore in (c) we see 7.5 volts reflected back to the left from the switch, and 2.5 volts reflected back toward the
right. At distances closer to the switch than ct [m] we therefore see 15 volts to the left and 5 volts to the right; this zone is
propagating outward at velocity c. When the switch closes again, these mid-line reflections cease and the voltages and currents
return to normal as the two transient pulses of 15 and 5 volts continue to propagate toward the two ends of the line, as shown in (d),
where they might be reflected further.

The currents associated with Figure 8.1.7(d) can easily be surmised using (8.1.21). The effects of the switch are only felt for that
brief 10 -second interval, and otherwise the current on the line is the original 50 ma. In the brief interval when the switch was open
the current was forced to zero, and so zero-current pulses of duration 10  seconds propagate away from the switch in both
directions.

A 100-ohm air-filled TEM line of length D is feeding 1 ampere to a 50-ohm load when it is momentarily short-circuited in its
middle for a time T < D/2c. What are v (z - ct) and v (z + ct) prior to the short circuit, and during it?

Solution

For t<0,  where Z  = 50/100. Since the line
voltage v(z,t) equals the current i times the load resistance (v = 50 volts), it follows that , and
therefore  volts, and v (z + ct) = -25. During the short circuit the voltage within a distance d = ct of the
short is altered. On the source side the short circuit reflects v  = -v  = -75, so the total voltage (v  + v ) within ct meters of the

8.1.7

-9

o

v(z, t) = (z −ct) + (z +ct)v+ v− (8.1.20)

i(z, t) = [ (z −ct) − (z +ct)]Yo v+ v− (8.1.21)

+ -

(z −ct) = [v(z, t) + i(z, t)] /2 = [10 +5]/2 = 7.5 volts v+ Z0 (8.1.22)

(z +ct) = [v(z, t) − i(z, t)] /2 = [10 −5]/2 = 2.5 volts v− Z0 (8.1.23)

-9

Γ

-9

-9

Example 8.1.D

+ -

Γ = (D −ct)/v +(D +ct) = ( −1) / ( +1) = −0.5/1.5 = −1/3v− Zn Zn n
+ = 2 /3 = 50v+ v− v+

= (z −ct) = 75v+ v+ -

- + + -
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short circuit is zero, and on the load side v  = -v  = 25 is reflected, so the total voltage is again zero. The currents left and right
of the short are different, however, because the original v  ≠ v , and i  = v /Z . Therefore, on the source side near the short
circuit, . On the load side near the short circuit, I = -2×25/50 = -1 [A].
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+ -

+ - + + o
i = ( − ) / = 2 / = 2 ×75/50 = 3 [A]v+ ΓV+ Z0 v+ Z0
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