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6.1: Time-dependent Schrödinger Equation
When we first introduced quantum mechanics, we saw that the fourth postulate of QM states that: The evolution of a closed system
is unitary (reversible). The evolution is given by the time-dependent Schrödinger equation

where  is the Hamiltonian of the system (the energy operator) and  is the reduced Planck constant (  with  the Planck
constant, allowing conversion from energy to frequency units).

We will focus mainly on the Schrödinger equation to describe the evolution of a quantum-mechanical system. The statement that
the evolution of a closed quantum system is unitary is however more general. It means that the state of a system at a later time  is
given by , where  is a unitary operator. An operator is unitary if its adjoint U  (obtained by taking the transpose and the
complex conjugate of the operator, ) is equal to its inverse:  and .

Note that the expression  is an integral equation relating the state at time zero with the state at time . For
example, classically we could write that  (where  is the speed, for constant speed). We can as well write a
differential equation that provides the same information: the Schrödinger equation. Classically for example, (in the example above)
the equivalent differential equation would be  (more generally we would have Newton’s equation linking the acceleration to
the force). In QM we have a differential equation that control the evolution of closed systems. This is the Schrödinger equation:

where  is the system’s Hamiltonian. The solution to this partial differential equation gives the wavefunction  at any later
time, when  is known.

Solutions to the Schrödinger equation

We first try to find a solution in the case where the Hamiltonian  is such that the potential  is time
independent (we can then write ). In this case we can use separation of variables to look for solutions. That is, we look for
solutions that are a product of a function of position only and a function of time only:

Then, when we take the partial derivatives we have that

The Schrödinger equation simplifies to

Dividing by  we have:

Now the LHS is a function of time only, while the RHS is a function of position only. For the equation to hold, both sides have then
to be equal to a constant (separation constant):

The two equations we find are a simple equation in the time variable:
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and

that we have already seen as the time-independent Schrödinger equation. We have extensively studied the solutions of the this last
equation, as they are the eigenfunctions of the energy-eigenvalue problem, giving the stationary (equilibrium) states of quantum
systems. Note that for these stationary solutions  we can still find the corresponding total wavefunction, given as stated above
by , which does describe also the time evolution of the system:

Does this mean that the states that up to now we called stationary are instead evolving in time?

The answer is yes, but with a caveat. Although the states themselves evolve as stated above, any measurable quantity (such as the
probability density  or the expectation values of observable,  are still time-independent.
(Check it!)

Thus we were correct in calling these states stationary and neglecting in practice their time-evolution when studying the properties
of systems they describe.

Notice that the wavefunction built from one energy eigenfunction, , is only a particular solution of the
Schrödinger equation, but many other are possible. These will be complicated functions of space and time, whose shape will
depend on the particular form of the potential . How can we describe these general solutions? We know that in general we can
write a basis given by the eigenfunction of the Hamiltonian. These are the functions  (as defined above by the time-
independent Schrödinger equation). The eigenstate of the Hamiltonian do not evolve. However we can write any wavefunction as

This just corresponds to express the wavefunction in the basis given by the energy eigenfunctions. As usual, the coefficients 
can be obtained at any instant in time by taking the inner product: .

What is the evolution of such a function? Substituting in the Schrödinger equation we have

that becomes

For each  we then have the equation in the coefficients only

A general solution of the Schrödinger equation is then

We can define the eigen-frequencies  from the eigen-energies. Thus we see that the wavefunction is a superposition
of waves  propagating in time each with a different frequency .

The behavior of quantum systems –even particles– thus often is similar to the propagation of waves. One example is the
diffraction pattern for electrons (and even heavier objects) when scattering from a slit. We saw an example in the electron
diffraction video at the beginning of the class.
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What is the probability of measuring a certain energy  at a time ? It is given by the coefficient of the  eigenfunction, 

. This means that the probability for the given energy is constant, does not change in

time. Energy is then a so-called constant of the motion. This is true only for the energy eigenvalues, not for other observables‘.

Consider instead the probability of finding the system at a certain position, . This of course changes in time.
For example, let

with

and  normalized energy eigenfunctions. Then at a later time we have

What is ?

Solution

The last term describes a wave interference between different components of the initial wavefunction.

The expressions found above for the time-dependent wavefunction are only valid if the potential is itself time-independent. If
this is not the case, the solutions are even more difficult to obtain.

Unitary Evolution
We saw two equivalent formulation of the quantum mechanical evolution, the Schrödinger equation and the Heisenberg equation.
We now present a third possible formulation: following the 4  postulate we express the evolution of a state in terms of a unitary
operator, called the propagator:

with . (Notice that a priori the unitary operator  could also be a function of space). We can show that this is equivalent
to the Schrödinger equation, by verifying that  above is a solution:

where in the second step we used the fact that since the equation holds for any wavefunction  it must hold for the operator
themselves. If the Hamiltonian is time independent, the second equation can be solved easily, obtaining:

where we set . Notice that as desired  is unitary, .
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†
Û Û
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