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7.1: Gamma Decay
Gamma decay is the third type of radioactive decay. Unlike the two other types of decay, it does not involve a change in the
element. It is just a simple decay from an excited to a lower (ground) state. In the process of course some energy is released that is
carried away by a photon. Similar processes occur in atomic physics, however there the energy changes are usually much smaller,
and photons that emerge are in the visible spectrum or x-rays.

The nuclear reaction describing gamma decay can be written as

where  indicates an excited state.

We have said that the photon carries aways some energy. It also carries away momentum, angular momentum and parity (but no
mass or charge) and all these quantities need to be conserved. We can thus write an equation for the energy and momentum carried
away by the gamma-photon.

From special relativity we know that the energy of the photon (a massless particle) is

(while for massive particles in the non-relativistic limit  we have .) In quantum mechanics we have seen that
the momentum of a wave (and a photon is well described by a wave) is  with  the wave number. Then we have

This is the energy for photons which also defines the frequency  (compare this to the energy for massive particles, 
).

Gamma photons are particularly energetic because they derive from nuclear transitions (that have much higher energies than e.g.
atomic transitions involving electronic levels). The energies involved range from , giving 

. Than the wavelengths are , much longer than the typical nuclear dimensions.

Gamma ray spectroscopy is a basic tool of nuclear physics, for its ease of observation (since it’s not absorbed in air), accurate
energy determination and information on the spin and parity of the excited states. Also, it is the most important radiation used in
nuclear medicine.

Figure : Schematics of gamma decay (CC BY-NC-ND; Paola Cappellaro)

Classical Theory of Radiation
From the theory of electrodynamics it is known that an accelerating charge radiates. The power radiated is given by the integral of
the energy flux (as given by the Poynting vector) over all solid angles. This gives the radiated power as:

where  is the acceleration. This is the so-called Larmor formula for a non-relativistic accelerated charge.
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As an important example we consider an electric dipole. An electric dipole can be considered as an oscillating charge, over a
range , such that the electric dipole is given by . Then the equation of motion is

and the acceleration

Averaged over a period , this is

Finally we obtain the radiative power for an electric dipole:

Electromagnetic Multipoles

In order to determine the classical e.m. radiation we need to evaluate the charge distribution that gives rise to it. The electrostatic
potential of a charge distribution  is given by the integral:

When treating radiation we are only interested in the potential outside the charge and we can assume the charge (e.g. a particle!) to
be well localized ( ). Then we can expand  in power series. First, we express explicitly the norm

We set

and

This is a small quantity, given the assumption . Then we can expand:

Replacing  with its expression we have:
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We recognized in the coefficients to the powers of  the Legendre Polynomials  (with  the power of , and note that for
powers > 3 we should have included higher terms in the original  expansion):

With this result we can as well calculate the potential:

The various terms in the expansion are the multipoles. The few lowest ones are :

This type of expansion can be carried out as well for the magnetostatic potential and for the electromagnetic, time-dependent field.

At large distances, the lowest orders in this expansion are the only important ones. Thus, instead of considering the total radiation
from a charge distribution, we can approximate it by considering the radiation arising from the first few multipoles: i.e. radiation
from the electric dipole, the magnetic dipole, the electric quadrupole etc.

Each of these radiation terms have a peculiar angular dependence. This will be reflected in the quantum mechanical treatment by a
specific angular momentum value of the radiation field associated with the multipole. In turns, this will give rise to selection rules
determined by the addition rules of angular momentum of the particles and radiation involved in the radiative process.

Quantum mechanical theory
In quantum mechanics, gamma decay is expressed as a transition from an excited to a ground state of a nucleus. Then we can study
the transition rate of such a decay via Fermi’s Golden rule

There are two important ingredients in this formula, the density of states  and the interaction potential .

Density of states

The density of states is defined as the number of available states per energy: , where  is the number of states. We

have seen at various time the concept of degeneracy: as eigenvalues of an operator can be degenerate, there might be more than one
eigenfunction sharing the same eigenvalues. In the case of the Hamiltonian, when there are degeneracies it means that more than
one state share the same energy.

By considering the nucleus+radiation to be enclosed in a cavity of volume L , we have for the emitted photon a wavefunction
represented by the solution of a particle in a 3D box that we saw in a Problem Set.
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As for the 1D case, we have a quantization of the momentum (and hence of the wave-number ) in order to fit the wavefunction in
the box. Here we just have a quantization in all 3 directions:

(with  integers). Then, going to spherical coordinates, we can count the number of states in a spherical shell between  and 
 to be . Expressing this in terms of , we have . If we consider just a small solid angle 

 instead of  we have then the number of state . Since , we finally obtain the density of

states:

Figure : Density of states: counting the states 2D (CC BY-NC-ND; Paola Cappellaro)

The vector potential

Next we consider the potential causing the transition. The interaction of a particle with the e.m. field can be expressed in terms of

the vector potential  of the e.m. field as:

where  is the particle’s momentum. The vector potential  in QM is an operator that can create or annihilate photons,

where  annihilates (creates) one photon of momentum . Also,  is the polarization of the e.m. field. Since gamma decay

(and many other atomic and nuclear processes) is able to create photons (or absorb them) it makes sense that the operator
describing the e.m. field would be able to describe the creation and annihilation of photons. The second characteristic of this

operator are the terms  which describe a plane wave, as expected for e.m. waves, with momentum  and frequency .

Dipole transition for gamma decay

To calculate the transition rate from the Fermi’s Golden rule,

we are really only interested in the matrix element , where the initial state does not have any photon, and the final has

one photon of momentum  and energy . Then, the only element in the sum above for the vector potential that gives a
non-zero contribution will be the term , with the appropriate  momentum:
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( )âk â
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This can be simplified as follow. Remember that . Thus we can write, 

. We introduced the nuclear Hamiltonian : thus we

have . Taking the expectation value

and remembering that  are eigenstates of the Hamiltonian, we have

where we used the fact that  by conservation of energy. Thus we obtain

We have seen that the wavelengths of gamma photons are much larger than the nuclear size. Then  and we can make an

expansion in series : . This series is very similar in meaning to the multipole series
we saw for the classical case.

For example, for  = 0 we obtain:

which is the dipolar approximation, since it can be written also using the electric dipole operator .

The angle between the polarization of the e.m. field and the position  is 

The transition rate for the dipole radiation,  is then:

and integrating over all possible direction of emission ( ):

Multiplying the transition rate (or photons emitted per unit time) by the energy of the photons emitted we obtain the radiated power,
:

Notice the similarity of this formula with the classical case:

We can estimate the transition rate by using a typical energy  for the photon emitted (equal to a typical energy difference
between excited and ground state nuclear levels) and the expectation value for the dipole ( ). Then, the
transition rate is evaluated to be

= ⋅⟨ ⟩Vif
e

mc

2πℏc2

V ωk

− −−−−−

√ ϵ ⃗ k p ⃗ ^e−i ⋅k⃗ r ⃗ 

[ , ] = −2iℏp ⃗ ^2
r ⃗ ^ p ⃗ ^

= [ , ] = [ , ] = [ + ( ), ]p ⃗ ^ i
2ℏ

p ⃗ ^2
r ⃗ ^ im

ℏ
p ⃗ ^2

2m
r ⃗ ^ im

ℏ
p ⃗ ^2

2m
Vnuc r ⃗ ^ r ⃗ ^ = + ( )Hnuc

p ⃗ ^2

2m
Vnuc r ⃗ ^

= [ , ]p ⃗ ^ im

ℏ
Hnuc r ⃗ ^

⟨ | | ⟩ = (⟨ ⟩−⟨ ⟩)ψf p ⃗ ^ ψi

im

ℏ
ψf

∣
∣Hnucr ⃗ ^∣

∣ψi ψf
∣
∣r ⃗ ^
Hnuc

∣
∣ψi

| ⟩ψi,f

⟨ | | ⟩ = ( − )⟨ | | ⟩ = im ⟨ | | ⟩ ,ψf p ⃗ ^ ψi

im

ℏ
Ef Ei ψf r ⃗ ^ ψi ωk ψf r ⃗ ^ ψi

( − ) = ℏEf Ei ωk

= imω ⋅⟨ ⟩ = i ⋅⟨ ⟩Vif
e

mc

2πℏc2

V ωk

− −−−−−

√ ϵ ⃗ k r ⃗ ^e−i ⋅k⃗ r ⃗  2πℏe2ωk

V

− −−−−−−
√ ϵ ⃗ k r ⃗ ^e−i ⋅k⃗ r ⃗ 

⋅ ≪ 1k⃗  r ⃗ 

∼ (−i ⋅ = (−ikr cosϑe− ⋅k⃗ r ⃗  ∑l
1
l!

k⃗  r ⃗ )l ∑l
1
l!

)l

l

= ⟨ ⟩ ⋅Vif
2πℏe2ωk

V

− −−−−−−
√ r ⃗ ^ ϵ ⃗ k

er ⃗ ^

r ⃗ ^ ⟨ ⟩ ⋅ = ⟨ ⟩ sinϑr ⃗ ^ ϵ ⃗  r ⃗ ^

W ≡ λ(E1)

λ(E1) = ρ ( ) = |⟨ ⟩ ϑdΩ
2π

ℏ
⟨ | | ⟩∣

∣ ψf V̂ ψi
∣
∣
2

Ef

ω3

2π ℏc3
r ⃗ ^ |

2
sin2

dφ ( ϑ) sinϑdϑ = 2π∫ 2π
0

∫ π

0
sin2 4

3

λ(E1) = |⟨ ⟩
4

3

e2ω3

ℏc3
r ⃗ ^ |2

P = Wℏω

P = |⟨ ⟩
4

3

e2ω4

c3
r ⃗ ^ |

2

=PE1
1

3

e2ω4

c3
| |r ⃗ 0

2

E = ℏω

|⟨ ⟩| ∼ ≈r ⃗ ^ Rnuc r0A
1/3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25731?pdf


7.1.6 https://phys.libretexts.org/@go/page/25731

(with E in MeV). For example, for A = 64 and E = 1MeV the rate is  or  (femtoseconds!) for E =
0.1MeV  is on the order of picoseconds.

Because of the large energies involved, very fast processes are expected in the nuclear decay from excited states, in accordance
with Fermi’s Golden rule and the energy/time uncertainty relation.

Extension to Multipoles
We obtained above the transition rate for the electric dipole, i.e. when the interaction between the nucleus and the e.m. field is
described by an electric dipole and the emitted radiation has the character of electric dipole radiation. This type of radiation can
only carry out of the nucleus one quantum of angular momentum (i.e. , between excited and ground state). In general,
excited levels differ by more than 1 , thus the radiation emitted need to be a higher multipole radiation in order to conserve angular
momentum.

Electric Multipoles

We can go back to the expansion of the radiation interaction in multipoles:

Then the transition rate becomes:

Notice the strong dependence on the  quantum number. Setting again  we also have a strong dependence on the
mass number.

Thus, we have the following estimates for the rates of different electric multipoles:

Magnetic Multipoles

The e.m. potential can also contain magnetic interactions, leading to magnetic transitions. The transition rates can be calculated
from a similar formula:

where  is the magnetic moment of the proton (and  its mass).

Estimates for the transition rates can be found by setting :
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Selection Rules
The angular momentum must be conserved during the decay. Thus the difference in angular momentum between the initial
(excited) state and the final state is carried away by the photon emitted. Another conserved quantity is the total parity of the system.

Parity change

The parity of the gamma photon is determined by its character, either magnetic or electric multipole. We have

Then if we have a parity change from the initial to the final state  this is accounted for by the emitted photon as:

This of course limits the type of multipole transitions that are allowed given an initial and final state.

Angular momentum

From the conservation of the angular momentum:

the allowed values for the angular momentum quantum number of the photon, , are restricted to

Once the allowed  have been found from the above relationship, the character (magnetic or electric) of the multipole is found by
looking at the parity.

In general then, the most important transition will be the one with the lowest allowed , . Higher multipoles are also possible, but
they are going to lead to much slower processes.

Table : Angular momentum and parity of the gamma multipoles (CC BY-NC-ND; Paola Cappellaro)

Dominant Decay Modes

In general we have the following predictions of which transitions will happen:

1. The lowest permitted multipole dominates
2. Electric multipoles are more probable than the same magnetic multipole by a factor ∼ 10  (however, which one is going to

happen depends on the parity) 

3. Emission from the multipole  + 1 is 10  times less probable than the -multipole emission. 

4. Combining 2 and 3, we have: 
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Thus E2 competes with M1 while that’s not the case for M2 vs. E1

Internal conversion

What happen if no allowed transitions can be found? This is the case for even-even nuclides, where the decay from the 0  excited
state must happen without a change in angular momentum. However, the photon always carries some angular momentum, thus
gamma emission is impossible.

Then another process happens, called internal conversion:

where  is a ionized state and  is one of the atomic electrons.

Besides the case of even-even nuclei, internal conversion is in general a competing process of gamma decay (see Krane for more
details).

This page titled 7.1: Gamma Decay is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola Cappellaro
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