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6.1: Time-dependent Schrodinger Equation

When we first introduced quantum mechanics, we saw that the fourth postulate of QM states that: The evolution of a closed system
is unitary (reversible). The evolution is given by the time-dependent Schrddinger equation
oly)
th——=H
o = M)
where H is the Hamiltonian of the system (the energy operator) and k is the reduced Planck constant (h = h/2m with h the Planck
constant, allowing conversion from energy to frequency units).

We will focus mainly on the Schrodinger equation to describe the evolution of a quantum-mechanical system. The statement that
the evolution of a closed quantum system is unitary is however more general. It means that the state of a system at a later time ¢ is
given by , where U(t) is a unitary operator. An operator is unitary if its adjoint UT (obtained by taking the transpose and the

complex conjugate of the operator, U = (U *)T ) is equal to its inverse: UT =U ! and UUT =1.

Note that the expression |¢(¢)) = U(¢)|%(0)) is an integral equation relating the state at time zero with the state at time ¢. For
example, classically we could write that z(¢) = 2(0) +vt (where v is the speed, for constant speed). We can as well write a
differential equation that provides the same information: the Schrodinger equation. Classically for example, (in the example above)
the equivalent differential equation would be i—j = v (more generally we would have Newton’s equation linking the acceleration to
the force). In QM we have a differential equation that control the evolution of closed systems. This is the Schrodinger equation:

MY(x,t)

where H is the system’s Hamiltonian. The solution to this partial differential equation gives the wavefunction v (z, t) at any later
time, when ¢ (z, 0) is known.

Solutions to the Schrodinger equation

~2
We first try to find a solution in the case where the Hamiltonian H = 2—+ V() is such that the potential V(z, ) is time
independent (we can then write V'(z)). In this case we can use separation of variables to look for solutions. That is, we look for
solutions that are a product of a function of position only and a function of time only:

P(z,t) = () f(t)
Then, when we take the partial derivatives we have that
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The Schrodinger equation simplifies to
_dft) R d%(a)
IREC 2 (@) = — 5= (1) + V(@)p(@)f (1)

Dividing by v (z, t) we have:
Ldft) 1 R dp(z) 1

! Tf(t)__2m z2 () Viz)

Now the LHS is a function of time only, while the RHS is a function of position only. For the equation to hold, both sides have then
to be equal to a constant (separation constant):

dft) 1 K2 d?p(z) 1
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The two equations we find are a simple equation in the time variable:
df(t) i

o = R EI®), = f(t)=f(0)e
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and
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that we have already seen as the time-independent Schrédinger equation. We have extensively studied the solutions of the this last
equation, as they are the eigenfunctions of the energy-eigenvalue problem, giving the stationary (equilibrium) states of quantum

systems. Note that for these stationary solutions ¢ (x) we can still find the corresponding total wavefunction, given as stated above
by ¥(z,t) = ¢(z)f(¢), which does describe also the time evolution of the system:

V(zx)=FE
2m =z

. Et

P(x,t) = p(z)e"

Does this mean that the states that up to now we called stationary are instead evolving in time?

The answer is yes, but with a caveat. Although the states themselves evolve as stated above, any measurable quantity (such as the
probability density |t (x,t)|* or the expectation values of observable, (A) = [4)(z,t)* A[sb(z,t)]) are still time-independent.
(Check it!)

Thus we were correct in calling these states stationary and neglecting in practice their time-evolution when studying the properties
of systems they describe.

Notice that the wavefunction built from one energy eigenfunction, ¥ (z,t) = ¢(z)f(t), is only a particular solution of the
Schrodinger equation, but many other are possible. These will be complicated functions of space and time, whose shape will
depend on the particular form of the potential V(). How can we describe these general solutions? We know that in general we can
write a basis given by the eigenfunction of the Hamiltonian. These are the functions {¢(z)} (as defined above by the time-
independent Schrodinger equation). The eigenstate of the Hamiltonian do not evolve. However we can write any wavefunction as

=" clt)pn(e)
k

This just corresponds to express the wavefunction in the basis given by the energy eigenfunctions. As usual, the coefficients c(t)
can be obtained at any instant in time by taking the inner product: (¢, | ¥(z,t)).

What is the evolution of such a function? Substituting in the Schrédinger equation we have

(Zk Ck Z er(t)How(x

that becomes
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For each ¢y, we then have the equation in the coefficients only

dey B
h? —Ekck( ) — Ck(t) :ck(O)e A

A general solution of the Schrédinger equation is then

Byt

Pz, t) = cr(0)e " k()

k

We can define the eigen-frequencies Aiwy, = Ej from the eigen-energies. Thus we see that the wavefunction is a superposition
of waves (}, propagating in time each with a different frequency wy.

The behavior of quantum systems —even particles— thus often is similar to the propagation of waves. One example is the
diffraction pattern for electrons (and even heavier objects) when scattering from a slit. We saw an example in the electron
diffraction video at the beginning of the class.
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What is the probability of measuring a certain energy Ej, at a time ¢? It is given by the coefficient of the ¢}, eigenfunction,
t 2
|ex(t)* =

i 2t
ck(0)e "
time. Energy is then a so-called constant of the motion. This is true only for the energy eigenvalues, not for other observables*.

v/ Example 6.1.1

Consider instead the probability of finding the system at a certain position, p() = |t(z, t)|%. This of course changes in time.
For example, let

= |ex(0)[* . This means that the probability for the given energy is constant, does not change in

Y(z,0) = c1(0)p1(x) +c2(0)pa(z),
with

|e1(0)” + |e2(0)* = |ex [ +]eaf” =1
and (1 » normalized energy eigenfunctions. Then at a later time we have

¥(z,0)=c; (O)efiwltwl (z)+co (O)efi“’2t<p2 (z).
What is p(z, t)?
Solution
ler(0)e 1ty () +¢5(0)e 2t s ()|
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The last term describes a wave interference between different components of the initial wavefunction.

The expressions found above for the time-dependent wavefunction are only valid if the potential is itself time-independent. If
this is not the case, the solutions are even more difficult to obtain.

Unitary Evolution

We saw two equivalent formulation of the quantum mechanical evolution, the Schrodinger equation and the Heisenberg equation.
We now present a third possible formulation: following the 4™ postulate we express the evolution of a state in terms of a unitary
operator, called the propagator:

P(z,t) =U(t)p(z,0)

with U f[)' = 1. (Notice that a priori the unitary operator U could also be a function of space). We can show that this is equivalent
to the Schrodinger equation, by verifying that 1(z, t) above is a solution:

_OUY(z,0) . , L

where in the second step we used the fact that since the equation holds for any wavefunction 1 it must hold for the operator
themselves. If the Hamiltonian is time independent, the second equation can be solved easily, obtaining:

oU

m%{]:m) - U(t)=e /P

where we set U (t =0) =1. Notice that as desired Uis unitary, UTU = eMt/he /R — 1
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