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1.1: Basic Concepts

In this chapter we review some notations and basic concepts in Nuclear Physics. The chapter is meant to setup a common language
for the rest of the material we will cover as well as rising questions that we will answer later on.

Terminology
A given atom is specified by the number of

e neutrons: N
e protons: Z
o electrons: there are Z electron in neutral atoms

Atoms of the same element have same atomic number Z. They are not all equal, however. Isotopes of the same element have
different # of neutrons N .

Isotopes are denoted by 4 Xy or more often by
A
7X

where X is the chemical symbol and A = Z + N is the mass number. E.g.: 3§5U , 2387 [the Z number is redundant, thus it is often
omitted].

When talking of different nuclei we can refer to them as

e Nuclide: atom/nucleus with a specific N and Z.

e Isobar: nuclides with same mass # A (# Z, N).

« Isotone: nuclides with same N, # Z.

o Isomer: same nuclide (but different energy state).

Units, dimensions and physical constants

Nuclear energies are measured in powers of the unit Electronvolt: 1V = 1.6 x 107*? J . The electronvolt corresponds to the
kinetic energy gained by an electron accelerated through a potential difference of 1 volt. Nuclear energies are usually in the range
of MeV (mega-electronvolt, or 106 eV).

Nuclear masses are measured in terms of the atomic mass unit : 1 amu or 1u = 1.66 x 10> kg . One amu is equivalent to 1/12 of
the mass of a neutral ground-state atom of '?C. Since electrons are much lighter than protons and neutrons (and protons and
neutrons have similar mass), one nucleon has mass of about 1 amu.

Because of the mass-energy equivalence, we will often express masses in terms of energy units. To convert between energy (in
MeV) and mass (in amu) the conversion factor is of course the speed of light square (since E = mc?). In these units we have:
c? =931.502 MeV /u.

o Proton mass: 938.280MeV/c?
o Neutron mass: 938.573MeV/c?
o Electron mass: 0.511MeV/c?

Note: you can find most of these values in Krane (and online!)

Scales of magnitude for typical lengths are femtometer (1 fm=10"'°>m) also called Fermi (F) and Angstrom 1° A = 10"'° m (for
atomic properties) while typical time scales span a very broad range.

Physical constants that we will encounter include the speed of light, ¢ = 299, 792, 458 m s L the electron charge, e = 1.602176487
x 10719 C, the Planck constant h = 6.62606896 x 1073* J s and k, Avogadro’s number N, = 6.02214179 x 1023 mol ™, the
permittivity of vacuum ey = 8.854187817 x 10712 Fm~! (F=Faraday) and many others. A good reference (online) is NIST:
http://physics.nist.gov/cuu/index.html

There you can also find a tool to convert energy in different units: http://physics.nist.gov/cuu/Constants/energy.html

https://phys.libretexts.org/@go/page/25689
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Nuclear Radius

The radius of a nucleus is not well defined, since we cannot describe a nucleus as a rigid sphere with a given radius. However, we
can still have a practical definition for the range at which the density of the nucleons inside a nucleus approximate our simple
model of a sphere for many experimental situations (e.g. in scattering experiments). A simple formula that links the nucleus radius
to the number of nucleons is the empirical radius formula:

This page titled 1.1: Basic Concepts is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola Cappellaro
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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1.2: Binding energy and Semi-empirical mass formula

Binding Energy

Two important nuclear properties that we want to study are the nuclear binding energy and the mass of nuclides. You could think
that since we know the masses of the proton and the neutron, we could simply find the masses of all nuclides with the simple
formula:

my = Zmy + Nm,. (1.2.1)

However, it is seen experimentally that this is not the case. From special relativity theory, we know that to each mass corresponds
some energy, E = mc?. Then if we just sum up the masses of all the constituents of a nucleus we would have how much energy
they represent. The mass of a nucleus is also related to its intrinsic energy. It thus makes sense that this is not only the sum of its
constituent energies, since we expect that some other energy is spent to keep the nucleus together. If the energy were equal, then it
wouldn’t be favorable to have bound nuclei, and all the nuclei would be unstable, constantly changing from their bound state to a
sum of protons and neutrons.

The binding energy of a nucleus is then given by the difference in mass energy between the nucleus and its constituents. For a
nucleus ‘gX ~ the binding energy B is given by

B= [Zmp +Nm, —my (AX)] e

However, we want to express this quantity in terms of experimentally accessible quantities. Thus we write the nuclear mass in
terms of the atomic mass, that we can measure,

my (A X) & = [ma (AX) — Zm.] * + B. (1.2.2)
where m 4 (AX ) is the atomic mass of the nucleus. We further neglect the electronic binding energy B, by setting
my (AX) = [mA (AX) —Zme] . (1.2.3)

We finally obtain the expression for the nuclear binding energy:

B= {Zmp—l—Nmn — [mA (AX) —Zme] } &

50 100 150 200 250
Figure 1.2.1: Binding energy per nucleon n (B/A in MeV vs. A) of stables nuclides (Red) and unstable nuclides (Gray). (CC BY-
NC-ND; Paola Cappellaro)

Quantities of interest are also the neutron and proton separation energies:

S = B(4Xn) ~B (4 X 1)
5 = B(4Xx) - B(21Xx)

https://phys.libretexts.org/@go/page/25690
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which are the analogous of the ionization energies in atomic physics, reflecting the energies of the valence nucleons. We will see
that these energies show signatures of the shell structure of nuclei.

Semi-empirical mass formula

The binding energy is usually plotted as B/A or binding energy per nucleon. This illustrates that the binding energy is overall
simply proportional to A, since B/A is mostly constant.

There are however corrections to this trend. The dependence of B/A on A (and Z) is captured by the semi-empirical mass formula.
This formula is based on first principle considerations (a model for the nuclear force) and on experimental evidence to find the
exact parameters defining it. In this model, the so-called liquid-drop model, all nucleons are uniformly distributed inside a nucleus
and are bound together by the nuclear force while the Coulomb interaction causes repulsion among protons. Characteristics of the
nuclear force (its short range) and of the Coulomb interaction explain part of the semi-empirical mass formula. However, other
(smaller) corrections have been introduced to take into account variations in the binding energy that emerge because of its
quantum-mechanical nature (and that give rise to the nuclear shell model).

The semi-empirical mass formula (SEMF) is
M(Z,A)=Zm (*H) + Nm, — B(Z, A)/c’

where the binding energy B(Z, A) is given by the following formula:

. A—-27)?
B(A Z)=a,A — a, A% — acZ(Z — 1)44_1/3 — Gsym % + (5(‘-;1‘4_3/4
/ T T T N
volume  surface Coulomb symmetry pairing

We will now study each term in the SEMF.

Volume term
The first term is the volume term a,A that describes how the binding energy is mostly proportional to A. Why is that so?

Remember that the binding energy is a measure of the interaction among nucleons. Since nucleons are closely packed in the
nucleus and the nuclear force has a very short range, each nucleon ends up interacting only with a few neighbors. This means that
independently of the total number of nucleons, each one of them contribute in the same way. Thus the force is not proportional to
A(A - 1)2 ~ A? (the total # of nucleons one nucleon can interact with) but it’s simply proportional to A. The constant of
proportionality is a fitting parameter that is found experimentally to be a, = 15.5MeV.

This value is smaller than the binding energy of the nucleons to their neighbors as determined by the strength of the nuclear
(strong) interaction. It is found (and we will study more later) that the energy binding one nucleon to the other nucleons is on the
order of 50 MeV. The total binding energy is instead the difference between the interaction of a nucleon to its neighbor and the
kinetic energy of the nucleon itself. As for electrons in an atom, the nucleons are fermions, thus they cannot all be in the same state
with zero kinetic energy, but they will fill up all the kinetic energy levels according to Pauli’s exclusion principle. This model,
which takes into account the nuclear binding energy and the kinetic energy due to the filling of shells, indeed gives an accurate
estimate for ay,.

Surface term

The surface term, —a, A2/3, also based on the strong force, is a correction to the volume term. We explained the volume term as
arising from the fact that each nucleon interacts with a constant number of nucleons, independent of A. While this is valid for
nucleons deep within the nucleus, those nucleons on the surface of the nucleus have fewer nearest neighbors. This term is similar to
surface forces that arise for example in droplets of liquids, a mechanism that creates surface tension in liquids.

Since the volume force is proportional to By o« A, we expect a surface force to be ~ (BV)2/ 3 (since the surface S ~ V23 ). Also
the term must be subtracted from the volume term and we expect the coefficient a5 to have a similar order of magnitude as a,. In
fact ag = 13 — 18MeV.

https://phys.libretexts.org/@go/page/25690
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Coulomb term

The third term —a.Z(Z — 1)A*1/ 3 derives from the Coulomb interaction among protons, and of course is proportional to Z. This
term is subtracted from the volume term since the Coulomb repulsion makes a nucleus containing many protons less favorable
(more energetic).

To motivate the form of the term and estimate the coefficient a., the nucleus is modeled as a uniformly charged sphere. The
potential energy of such a charge distribution is

1 37
 4mey 5 R

since from the uniform distribution inside the sphere we have the charge g(r) = %71'7"3 p=Q (%) % and the potential energy is then:

E-r /dq(?)@ = L/d?’?p&?) = L/{)Rdmwzpm

- 47eg |7 T d7e 7| YN T

1 B3 31 1 (R 3@t 1 3@Q?
= 47r/ dr Q er(L) - = / dr Qr = 3Q°
4meg 0 A7 R3 R/ r 4drep Jo RS 4meg 5 R
Using the empirical radius formula R = RyA'/® and the total charge Q? = e*Z (Z—1) (reflecting the fact that this term will
appear only if Z > 1, i.e. if there are at least two protons) we have :

Q> €Z(z-1)
R Ry Al/3

2
which gives the shape of the Coulomb term. Then the constant a. can be estimated from a, ~ % ﬁ , with Ry = 1.25 fm, to be a,
0110

~ 0.691 MeV, not far from the experimental value.

Volume
15

Volume + Surface
10 Volume + Surface+Coulomb
M
3 Volume + Surface+Coulomb+Asymmetry

-

5ig

50 700 150 200

Figure 1.2.2: SEMF for stable nuclides. We plot B(Z, A)/A vs. A. The various term contributions are added one by one to arrive at
the final formula. (CC BY-NC-ND; Paola Cappellaro)

Symmetry term

The Coulomb term seems to indicated that it would be favorable to have less protons in a nucleus and more neutrons. However, this
is not the case and we have to invoke something beyond the liquid-drop model in order to explain the fact that we have roughly the
same number of neutrons and protons in stable nuclei. There is thus a correction term in the SEMF which tries to take into account
the symmetry in protons and neutrons. This correction (and the following one) can only be explained by a more complex model of
the nucleus, the shell model, together with the quantum-mechanical exclusion principle, that we will study later in the class. If we
were to add more neutrons, they will have to be more energetic, thus increasing the total energy of the nucleus. This increase more
than off-set the Coulomb repulsion, so that it is more favorable to have an approximately equal number of protons and neutrons.

A_27)?
The shape of the symmetry term is ( jZ) . It can be more easily understood by considering the fact that this term goes to zero for
A = 2Z and its effect is smaller for larger A (while for smaller nuclei the symmetry effect is more important). The coefficient is
=23 MeV.

dsym
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Pairing term

The final term is linked to the physical evidence that like-nucleons tend to pair off. Then it means that the binding energy is greater
(6 > 0) if we have an even-even nucleus, where all the neutrons and all the protons are paired-off. If we have a nucleus with both an
odd number of neutrons and of protons, it is thus favorable to convert one of the protons into a neutrons or vice-versa (of course,
taking into account the other constraints above). Thus, with all other factor constant, we have to subtract (6 < 0) a term from the
binding energy for odd-odd configurations. Finally, for even-odd configurations we do not expect any influence from this pairing

energy (6 = 0). The pairing term is then

+a,A~%/* even-even
+5apA’3/ 4= ¢ 0even-odd

—a, A% odd-odd
with a, ¥ 34MeV. [Sometimes the form « A™"? is also found].
Line of Stability in the Chart of nuclides
By taking the first derivative wrt Z we can calculate the optimal Z such that the mass is minimum. We obtain:

1 A-1/3_a
A [1rias e

Qsym

2\ 1+ larsts

-1
~ 4 (1 + 1A2/3&>

Zmin =

2 4 Gsym
AL s ae
2 4 Osym

which gives Z = % at small A, but has a correction for larger A such that Z ~ 0.41A for heavy nuclei. [ Note the approximation
and series expansion is taken because a. < sy, ]

If we plot Z/ A vs. A the nuclides lie between 1/2 and 0.41. There is a line of stability, following the stable isotopes (red in Figure
1.2.4 and black in Figure 1.2.3). The isotopes are then variously labeled, for example here by their lifetime. Interactive information

is available at www.nndc.bnl.gov/chart/.

Figure 1.2.3: Chart of nuclides from www.nndc.bnl.gov/chart/ . Each nuclide is color-labeled by its half-life (black for stable
nuclides) © Brookhaven National Laboratory. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.
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Figure 1.2.4: Nuclide chart (obtained with the software Mathematica). Left: Z vs. A, Right: Z/A vs. A. In red, stable nuclides. The
black line represents Z = A/2. (CC BY-NC-ND; Paola Cappellaro)

This page titled 1.2: Binding energy and Semi-empirical mass formula is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts
platform.
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1.3: Radioactive decay

Radioactive decay is the process in which an unstable nucleus spontaneously loses energy by emitting ionizing particles and
radiation. This decay, or loss of energy, results in an atom of one type, called the parent nuclide, transforming to an atom of a
different type, named the daughter nuclide.

The three principal modes of decay are called the alpha, beta and gamma decays. We will study their differences and exact
mechanisms later in the class. However these decay modes share some common feature that we describe now. What these
radioactive decays describe are fundamentally quantum processes, i.e. transitions among two quantum states. Thus, the radioactive
decay is statistical in nature, and we can only describe the evolution of the expectation values of quantities of interest, for example
the number of atoms that decay per unit time. If we observe a single unstable nucleus, we cannot know a priori when it will decay
to its daughter nuclide. The time at which the decay happens is random, thus at each instant we can have the parent nuclide with
some probability p and the daughter with probability 1 — p. This stochastic process can only be described in terms of the quantum
mechanical evolution of the nucleus. However, if we look at an ensemble of nuclei, we can predict at each instant the average
number of parent an daughter nuclides.

If we call the number of radioactive nuclei N, the number of decaying atoms per unit time is dN/dt. It is found that this rate is
constant in time and it is proportional to the number of nuclei themselves:

dN

S =AN()

The constant of proportionality A is called the decay constant. We can also rewrite the above equation as
dN/dt
N

where the RHS is the probability per unit time for one atom to decay. The fact that this probability is a constant is a characteristic of
all radioactive decay. It also leads to the exponential law of radioactive decay:

N(t) = N(0)e

A=—

We can also define the mean lifetime
and the half-life

t12 =1n(2)/A
which is the time it takes for half of the atoms to decay, and the activity

A(t) = AN(2)

Since A can also be obtained as ‘%
0t <L ty)a.

, the activity can be estimated from the number of decays AN during a small time &t such that

A common situation occurs when the daughter nuclide is also radioactive. Then we have a chain of radioactive decays, each
governed by their decay laws. For example, in a chain N; — N — N3 , the decay of Ny and Ny is given by:

dNy = —A1Nidt, dNy =+ Nidt — AaNadt

Another common characteristic of radioactive decays is that they are a way for unstable nuclei to reach a more energetically
favorable (hence stable) configuration. In o and 8 decays, a nucleus emits a a or 3 particle, trying to approach the most stable
nuclide, while in the y decay an excited state decays toward the ground state without changing nuclear species.

Alpha decay

If we go back to the binding energy per mass number plot (B/A vs. A) we see that there is a bump (a peak) for A ~ 60 — 100. This
means that there is a corresponding minimum (or energy optimum) around these numbers. Then the heavier nuclei will want to
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decay toward this lighter nuclides, by shedding some protons and neutrons. More specifically, the decrease in binding energy at
high A is due to Coulomb repulsion. Coulomb repulsion grows in fact as Z2, much faster than the nuclear force which is « A.

This could be thought as a similar process to what happens in the fission process: from a parent nuclide, two daughter nuclides are
created. In the o decay we have specifically:

AXN —r 7 4X’ ot
where a is the nucleus of He-4: 5 Hes.

The o decay should be competing with other processes, such as the fission into equal daughter nuclides, or into pairs including 2
and '°0 that have larger B/A then a. However o decay is usually favored. In order to understand this, we start by looking at the
energetic of the decay, but we will need to study the quantum origin of the decay to arrive at a full explanation.

a Particle /

& “He %
o »

8%—»(‘9\» ’rg

Image by MIT OpenCourseWare.
Figure 1.3.1: Alpha decay schematics. (CC BY-NC-ND; Paola Cappellaro)
Energetics

In analyzing a radioactive decay (or any nuclear reaction) an important quantity is Q, the net energy released in the decay:
Q = (mx —myx —m,)c? . This is also equal to the total kinetic energy of the fragments, here Q = Tx' + T, (here assuming
that the parent nuclide is at rest).

When Q > 0 energy is released in the nuclear reaction, while for Q < 0 we need to provide energy to make the reaction happen. As
in chemistry, we expect the first reaction to be a spontaneous reaction, while the second one does not happen in nature without
intervention. (The first reaction is exo-energetic the second endo-energetic). Notice that it’s no coincidence that it’s called Q. In
practice given some reagents and products, Q give the quality of the reaction, i.e. how energetically favorable, hence probable, it is.
For example in the alpha-decay log (t1 /2) o ﬁ, which is the Geiger-Nuttall rule (1928).

The alpha particle carries away most of the kinetic energy (since it is much lighter) and by measuring this kinetic energy
experimentally it is possible to know the masses of unstable nuclides. We can calculate Q using the SEMF. Then:

Qu=B(43 X, ,)+B(*He) —B(4Xy) =B(A—4,Z-2)—-B(A, Z)+ B (*He)
We can approximate the finite difference with the relevant gradient:
Qo =[B(A—4,Z-2)-B(A,Z-2)|+[B(A,Z -2)— B(A, Z)] + B (*He) ~= —4%8 298 | B (“He)
~28.3~da, + 30,470 10, (1- ) () ~ dagm (1 - £ +30,477/%)

Since we are looking at heavy nuclei, we know that Z ~ 0.41A (instead of Z ~ A/2) and we obtain

Qo ~ —36.68+44.9471/3 1 1.024%/3,

where the second term comes from the surface contribution and the last term is the Coulomb term (we neglect the pairing term,
since a priori we do not know if aj, is zero or not).
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Then, the Coulomb term, although small, makes Q increase at large A. We find that Q > 0 for A 2 150, and it is Q ~ 6MeV for A =
200. Although Q > 0, we find experimentally that o decay only arise for A > 200.

Further, take for example Francium-200 (590 Fr113). If we calculate @, from the experimentally found mass differences we
obtain Q, ~ 7.6MeV (the product is °®At.) We can do the same calculation for the hypothetical decay into a >C and remaining

fragment (é?g T1107):
Quo =< [m (3 Xn) —m (412 X} ;) —m (°C)] ~28MeV
Thus this second reaction seems to be more energetic, hence more favorable than the alpha-decay, yet it does not occur (some
decays involving C-12 have been observed, but their branching ratios are much smaller).
Thus, looking only at the energetic of the decay does not explain some questions that surround the alpha decay:

o Why there’s no 12C-decay? (or to some of this tightly bound nuclides, e.g O-16 etc.)
o Why there’s no spontaneous fission into equal daughters?

o Why there’s alpha decay only for A > 200?

o What is the explanation of Geiger-Nuttall rule? log?; 2 ﬁ

Beta decay

The beta decay is a radioactive decay in which a proton in a nucleus is converted into a neutron (or vice-versa). Thus A is constant,
but Z and N change by 1. In the process the nucleus emits a beta particle (either an electron or a positron) and quasi-massless
particle, the neutrino

Beta-minus Decay

Carbon-14 Nitrogen-14
B_ : Antineutrino Electron
- + e+ ¢
6 protons 7 protons
8 neutrons 7 neutrons

Beta-plus Decay

Carbon-10 Boron-10
B+ Neutrino Positron
- + ¢ + ¢
6 protons 3 protons
4 nentrons 5 nentrons

Courtesy of Thomas Jefferson National Accelerator Facility - Office
of Science Education. Used with permission.

Figure 1.3.2: Beta decay schematics (CC BY-NC-ND; Paola Cappellaro)
There are 3 types of beta decay:
$XN 4 X e 40
This is the 8~ decay (or negative beta decay). The underlying reaction is:
n—pt+e +v

that corresponds to the conversion of a proton into a neutron with the emission of an electron and an anti-neutrino. There are two
other types of reactions, the 8+ reaction,

2XN =4 Xy, te +ry = ponte tv

which sees the emission of a positron (the electron anti-particle) and a neutrino; and the electron capture:
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éXN +e” —>‘§71XJ’V+1 +v < p+e —n+v
a process that competes with, or substitutes, the positron emission.

Recall the mass of nuclide as given by the semi-empirical mass formula. If we keep A fixed, the SEMF gives the binding energy as
a function of Z. The only term that depends explicitly on Z is the Coulomb term. By inspection we see that B « Z2. Then from the
SEMF we have that the masses of possible nuclides with the same mass number lie on a parabola. Nuclides lower in the parabola
have smaller M and are thus more stable. In order to reach that minimum, unstable nuclides undergo a decay process to transform
excess protons in neutrons (and vice-versa).

Figure 1.3.3: Nuclear Mass Chain for A=125, (left) and A=128 (right). (CC BY-NC-ND; Paola Cappellaro)

The beta decay is the radioactive decay process that can convert protons into neutrons (and vice-versa). We will study more in
depth this mechanism, but here we want simply to point out how this process can be energetically favorable, and thus we can
predict which transitions are likely to occur, based only on the SEMF.

For example, for A = 125 if Z < 52 we have a favorable n — p conversion (beta decay) while for Z > 52 we have p —» n (or
positron beta decay), so that the stable nuclide is Z = 52 (tellurium).
Conservation laws

As the neutrino is hard to detect, initially the beta decay seemed to violate energy conservation. Introducing an extra particle in the
process allows one to respect conservation of energy.

The Q value of a beta decay is given by the usual formula:
Qs = [mx (A2) ~mx (4, X") ~m] &
Using the atomic masses and neglecting the electron’s binding energies as usual we have
Qs ={[ma (*X) = Zmc] — [ma (4, X') = (Z+ D)me] —me} & = [ma (*X) —ma (4, X')] .

The kinetic energy (equal to the Q) is shared by the neutrino and the electron (we neglect any recoil of the massive nucleus). Then,
the emerging electron (remember, the only particle that we can really observe) does not have a fixed energy, as it was for example
for the gamma photon. But it will exhibit a spectrum of energy (or the number of electron at a given energy) as well as a
distribution of momenta. We will see how we can reproduce these plots by analyzing the QM theory of beta decay.

Examples

610y $Zn+e +7, Qz=0.57MeV
WEUNMNiIfet +u, Qp=0.66 MeV
The neutrino and beta particle (3%) share the energy. Since the neutrinos are very difficult to detect (as we will see they are almost

massless and interact very weakly with matter), the electrons/positrons are the particles detected in beta-decay and they present a
characteristic energy spectrum (see Fig. 1.3.4).

The difference between the spectrum of the 8% particles is due to the Coulomb repulsion or attraction from the nucleus.
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Figure 1.3.4: Beta decay spectra: Distribution of momentum (top plots) and kinetic energy (bottom) for 3~ (left) and 8T (right)

decay.
Notice that the neutrinos also carry away angular momentum. They are spin-1/2 particles, with no charge (hence the name) and

very small mass. For many years it was actually believed to have zero mass. However it has been confirmed that it does have a
mass in 1998.

Other conserved quantities are:

e Momentum: The momentum is also shared between the electron and the neutrino. Thus the observed electron momentum
ranges from zero to a maximum possible momentum transfer.

e Angular momentum (both the electron and the neutrino have spin 1/2)

o Parity? It turns out that parity is not conserved in this decay. This hints to the fact that the interaction responsible violates parity
conservation (so it cannot be the same interactions we already studies, e.m. and strong interactions)

o Charge (thus the creation of a proton is for example always accompanied by the creation of an electron)

¢ Lepton number: we do not conserve the total number of particles (we create beta and neutrinos). However the number of
massive, heavy particles (or baryons, composed of 3 quarks) is conserved. Also the lepton number is conserved. Leptons are
fundamental particles (including the electron, muon and tau, as well as the three types of neutrinos associated with these 3). The
lepton number is +1 for these particles and -1 for their antiparticles. Then an electron is always accompanied by the creation of
an antineutrino, e.g., to conserve the lepton number (initially zero).

Although the energy involved in the decay can predict whether a beta decay will occur (Q > 0), and which type of beta decay does
occur, the decay rate can be quite different even for similar Q-values. Consider for example >2Na and *C1. They both decay by £
decay:

%fNan —>%g Neps +8"+v, Q=0.22MeV, T% = 2.6 years
38Cly =38 Arig+8~ +7  Q =0.25MeV, T, =3x 10° years

Even if they have very close Q-values, there is a five order magnitude in the lifetime. Thus we need to look closer to the nuclear
structure in order to understand these differences.

Gamma decay

In the gamma decay the nuclide is unchanged, but it goes from an excited to a lower energy state. These states are called isomeric
states. Usually the reaction is written as:

F X5 — 4 XN+

where the star indicate an excited state. We will study that the gamma energy depends on the energy difference between these two
states, but which decays can happen depend, once again, on the details of the nuclear structure and on quantum-mechanical
selection rules associated with the nuclear angular momentum.
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Spontaneous fission

Some nuclei can spontaneously undergo a fission, even outside the particular conditions found in a nuclear reactor. In the process a
heavy nuclide splits into two lighter nuclei, of roughly the same mass.

Branching Ratios

Some nuclei only decay via a single process, but sometimes they can undergo many different radioactive processes, that compete
one with the other. The relative intensities of the competing decays are called branching ratios.

Branching ratios are expressed as percentage or sometimes as partial half-lives. For example, if a nucleus can decay by beta decay
(and other modes) with a branching ration bg the partial half-life for the beta decay is Ag = bgA.

This page titled 1.3: Radioactive decay is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola
Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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2.1: Laws of Quantum Mechanics

Every physical theory is formulated in terms of mathematical objects. It is thus necessary to establish a set of rules to map physical
concepts and objects into mathematical objects that we use to represent them. Sometimes this mapping is evident, as in classical
mechanics, while for other theories, such as quantum mechanics, the mathematical objects are not intuitive.

In the same way as classical mechanics is founded on Newton’s laws or electrodynamics on the Maxwell-Boltzmann equations,
quantum mechanics is also based on some fundamental laws, which are called the postulates or axioms of quantum mechanics.

We want in particular to develop a mathematical model for the dynamics of closed quantum systems!: therefore we are
interested in defining

states — observables — measurements — evolution

Some subtleties will arise since we are trying to define measurement in a closed system, when the measuring person is instead
outside the system itself. A more complete picture, that can explain some of the confusion arising from the measurement process, is
possible, but we will not study it in this course.

We are interested in giving a description of physical phenomena and in particular in how they emerge during an experiment.

1 We define a closed system any system that is isolated, thus not exchanging any input or output and not interacting with any
other system. An open system instead interacts e.g., with an external environment.

Experiments — A physical experiment can be divided into two steps: preparation and measurement. In classical mechanics (CM):

o the first step determines the possible outcomes of the experiment,
o while the measurement retrieves the value of the outcome.

In quantum mechanics (QM) the situation is slightly different:

o the first step (preparation) determines the probabilities of the various possible outcomes,
o the second step (measurement) retrieve the value of a particular outcome, in a statistic manner.

This separation of the experiment in two steps is reflected into the two types of operators that we find in QM.

e The first step corresponds to the concept of a state of the system,
e while the second step corresponds to observables.

In CM the state of a system is described by a set of properties. For example, if we consider a ball, we can define its state by giving
its position, momentum, energy, angular momentum (if for example the ball is spinning), its temperature etc. We can then perform
a measurement on this ball, for example measuring its position. This will give us one value for one possible observable (the
position).

We can express this process in mathematical terms. The state of the system is defined by a set of values: {¥,p, E, L, T, ...}. All of
these values (and there might be of course more that I haven’t written down) are needed to fully describe the state of the ball.
Performing a measurement of the position, will retrieve the values {r,, r,,7,} =7 (the same values that describe the state).

If we now consider a nucleus, we can as well give a description of its state. In quantum mechanics, a complete description of the
state of a quantum object (or system) is given mathematically by the state vector |1) (or wavefunction (7)) . The situation is
however different than in classical mechanics.

The state vector is no longer a collection of values for different properties of the system. The state gives instead a complete
description of the set of probabilities for all the physical properties (or observables). All the information is contained in the state,
irrespectively on how I got the state, of its previous history.

On the other hand, the observables are all the physical properties that in principle can be measured, in the same way as it was in
classical mechanics. Since however the state only gives probabilities for all observables, the result of measurement will be a

statistical variable.
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All of these considerations are made more formal in the axioms of quantum mechanics that also indicate the mathematical
formalism to be used.

1. The properties of a quantum system are completely defined by specification of its state vector |t). The state vector is an
element of a complex Hilbert space H called the space of states.

2. With every physical property A (energy, position, momentum, angular momentum, ...) there exists an associated linear,
Hermitian operator A (usually called observable), which acts in the space of states H. The eigenvalues of the operator are the
possible values of the physical properties.

3. (a) If |¢) is the vector representing the state of a system and if |¢) represents another physical state, there exists a probability
(), |¢)) of finding |v) in state |p), which is given by the squared modulus of the inner product on

H:p(|9),|9)) = (% | )* (Bom Rule).

(b) If A is an observable with eigenvalues a,, and eigenvectors |n) [such that the eigenvalue equation is A|n) = a,|n)], given a
system in the state |1), the probability of obtaining a,, as the outcome of the measurement of A is p (a,) = |(n | 1)|* . After
the measurement the system is left in the state projected on the subspace of the eigenvalue a,, (Wave function collapse).
4. The evolution of a closed system is unitary (reversible). The evolution is given by the time-dependent Schrodinger equation
ol¢)
th——=H
L~ )
where H is the Hamiltonian of the system (the energy operator) and £ is the reduced Planck constant h/27 (with A the Planck
constant, allowing conversion from energy to frequency units).

This page titled 2.1: Laws of Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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2.2: States, Observables and Eigenvalues

& Definition: State vector

From the first postulate we see that the state of a quantum system is given by the state vector |¢(¢)) (or the wavefunction
1 (Z, t)). The state vector contains all possible information about the system. The state vector is a vector in the Hilbert space. A
Hilbert space H is a complex vector space that possess an inner product.

An example of Hilbert space is the usual Euclidean space of geometric vectors. This is a particularly simple case since the space in
this case is real. In general as we will see, Hilbert space vectors can be complex (that is, some of their components can be complex
numbers). In the 3D Euclidean space we can define vectors, with a representation such as v = {v,, vy, v, } or:

This representation corresponds to choose a particular basis for the vector (in this case, the usual {z, y, z} coordinates). We can
also define the inner product between two vectors, ¥ and % (which is just the usual scalar product):
Uy

v-u=[v, vy U] | Uy | =vpus Fuyuy Fou,

Uy

. - T . . .
Notice that we have taken the transpose of the vector v, v" in order to calculate the inner product. In general, in a Hilbert space, we
can define the dual of any vector. The Dirac notation makes this more clear.

The notation |1)) is called the Dirac notation and the symbol |-) is called ket. This is useful in calculating inner products of state
vectors using the bra (-| which is the dual of the ket), for example (¢|. An inner product is then written as (y | ¥) (this is a
bracket, hence the names).

We will often describe states by their wavefunction instead of state vector. The wavefunction is just a particular way of writing
down the state vector, where we express the state vector in a basis linked to the position of a particle itself (this is called the
position representation). This particular case is however the one we are mostly interested in this course. Mathematically, the
wavefunction is a complex function of space and time. In the position representation (that is, the position basis) the state is
expressed by the wavefunction via the inner product ¥ (z) = (z | ¥).

The properties of Hilbert spaces, kets and bras and of the wavefunction can be expressed in a more rigorous mathematical way. In
this course as said we are mostly interested in systems that are nicely described by the wavefunction. Thus we will just use this
mathematical tool, without delving into the mathematical details. We will see some more properties of the wavefunction once we
have defined observables and measurement.

# Definition: Observable

All physical observables (defined by the prescription of experiment or measurement ) are represented by a linear operator that
operates in the Hilbert space H (a linear, complex, inner product vector space).

In mathematics, an operator is a type of function that acts on functions to produce other functions. Formally, an operator is a
mapping between two function spaces? A : g(I) — f(I) that assigns to each function g € g(I) a function f = A(g) € f(I) .

Examples of observables are what we already mentioned, e.g. position, momentum, energy, angular momentum. These operators
are associated to classical variables. To distinguish them from their classical variable counterpart, we will thus put a hat on the
operator name. For example, the position operators will be &,y,z. The momentum operators p,,p,,p, and the angular
momentum operators iz, f/y, iz. The energy operator is called Hamiltonian (this is also true in classical mechanics) and is usually
denoted by the symbol #.

There are also some operators that do not have a classical counterpart (remember that quantum-mechanics is more general than

classical mechanics). This is the case of the spin operator, an observable that is associated to each particle (electron, nucleon, atom
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etc.). For example, the spin of an electron is usually denoted by S; this is also a vector variable (i.e. we can define \(S_{x}, S_{y},
S_{z})). I am omitting here the hat since there is no classical variable we can confuse the spin with. While the position, momentum
etc. observable are continuous operator, the spin is a discrete operator.

The second postulate states that the possible values of the physical properties are given by the eigenvalues of the operators.

2 A function space f(I) is a collection of functions satisfying certain properties.

# Definition: Eigenvalues and eigenfunctions

Eigenvalues and eigenfunctions of an operator are defined as the solutions of the eigenvalue problem:

[4[u,(@)] = arua @)

where n = 1, 2, . . . indexes the possible solutions. The a,, are the eigenvalues of A (they are scalars) and u, () are the
eigenfunctions.

The eigenvalue problem consists in finding the functions such that when the operator A is applied to them, the result is the function
itself multiplied by a scalar. (Notice that we indicate the action of an operator on a function by A[f(-)]).

You should have seen the eigenvalue problem in linear algebra, where you studied eigenvectors and eigenvalues of matrices.
Consider for example the spin operator for the electron S. The spin operator can be represented by the following matrices (this is
called a matrix representation of the operator; it’s not unique and depends on the basis chosen):

1/0 1 1/0 —i 1/1 0
Sz:_ ) Sy=—7 ) Sz:_
2(1 0) v 2<i 0) 2(0 —1)

We can calculate what are the eigenvalues and eigenvectors of this operators with some simple algebra. In class we considered the
eigenvalue equations for S, and S,. The eigenvalue problem can be solved by setting the determinant of the matrix S, — sl equal
to zero. We find that the eigenvalues are i% for both operators. The eigenvectors are different:

o[ 5[}

- 1|1 - 1 1
v = — , Uy =——
V2|1 V2 |-1
We proved also that v; - v2 =0 (that is, the eigenvectors are orthogonal) and that they form a complete basis (we can write any
other vector, describing the state of the electron spin, as a linear combination of either the eigenvectors of S, or of S;).

The eigenvalue problem can be solved in a similar way for continuous operators. Consider for example the differential operator,

%. The eigenvalue equation for this operator reads:

df(z)
dz

=af(z)

where a is the eigenvalue and f(z) is the eigenfunction.

what is f(z)? What are all the possible eigenvalues (and their corresponding eigenfunctions)?

d[]

The eigenvalue equation for the operator is a:d—g'v is:
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which is solved by f(z) ==z

n —
,a=n.

1 —z%/2

The ”standard” Gaussian function Wik is the eigenfunction of the Fourier transform. The Fourier transform is an

operation that transforms one complex-valued function of a real variable into another one (thus it is an operator):
& : 3 1 > —ikz
Foif@) = fl), with F®)=Flf@I0=— [ e

Notice that sometimes different normalizations are used. With this definition, we also find that the inverse Fourier transform is
given by:

- 1 € )
Fl:f(k)— f(z), m:—/ k)e* dk
v f (k)= f(z), f(=z) m_mf()
Let’s now turn to quantum mechanical operators.

# Definition: Position operator

The position operator for a single particle Z is simply given by the scalar Z. This means that the operator Z acting on the
wavefunction () simply multiplies the wavefunction by Z. We can write

Z[Y(3)] = F(3).

We can now consider the eigenvalue problem for the position operator. For example, for the x-component of Z this is written as:
Z [up(z)] = zpun(z) = zun(z) = Thu,(z)

where we used the definition of the position operator. Here z,, is the eigenvalue and u,, () the eigenfunction. The solution to this
equation is not a proper function, but a distribution (a generalized function): the Dirac delta function: u,(z) = ¢ (z — z,,)

# Definition: Dirac Delta function

Dirac Delta function § (z — ) is equal to zero everywhere except at o where it is infinite. The Dirac Delta function also has
the property that ff; d(z)dz =1 and of course zd (z —zp) = o0 (x —z¢) (which corresponds to the eigenvalue problem
above). We also have:

/d:cé(:c—xg)f(:v) — ()

That is, the integral of any function multiplied by the delta function gives back the function itself evaluated at the point xg. [See
any textbook (and recitations) for other properties.]

How many solutions are there to the eigenvalue problem defined above for the position operator? One per each possible position,
that is an infinite number of solutions. Conversely, all possible positions are allowed values for the measurement of the position (a
continuum of solutions in this case).

# Definition: Momentum operator

The momentum operator is defined (in analogy with classical mechanics) as the generator of translations. This means that the
momentum modifies the position of a particle from Z to # +dZ . It is possible to show that this definition gives the following
form of the position operator (in the position representation, or position basis)

. 9 . 9§ . 0
pw__Zha_wapy__'l’hgapz_ Zhaz

or in vector notation p = —¢AV . Here k is the reduced Planck constant h /27 (with h the Planck constant) with value

h=1.054 x107%* Js.
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| Planck’s constant is introduced in order to make the values of quantum observables consistent with the corresponding classical
values.

f(x) E_f(x) A
Ve [T ] [
8(x-x0) e 0 a 8(x-x0)
— :_
X0-€/2 Xo+€/2 _
-----.J.\I.....\JAJKm...l.u.....\ :----Juuu.......\..........I.........
X0 X X0 X

Figure 2.2.1: Schematics of Dirac’s delta function. Left: the rectangular function of base € and height € becomes the delta-function
(right) in the limit of € — 0. (CC BY-NC-ND; Paola Cappellaro)

We now study the momentum operator eigenvalue problem in 1D. The problem’s statement is

b [ @)] = Pt (@) i 22 (a)

This is a differential equation that we can solve quite easily. We set k =p/h and call k the wavenumber (for reasons clear in a
moment). The differential equation is then

6un—(x):ik: Uy ()

oz

which has as solution the complex function:
i . Pn
up(z) = Ae"™® = Ae'n®
The momentum eigenfunctions and eigenvalues are thus u,, = Ae*"* and k, .

Now remember the meaning of the eigenvalues. By the second postulate, the eigenvalues of an operator are the possible values that
one can obtain in a measurement.

Obs. 1 There are no restrictions on the possible values obtained from a momentum measurements. All values p = hk are possible.

Obs. 2 The eigenfunction u, (x) corresponds to a wave traveling to the right with momentum p,, = kk,, . This was also expressed
by De Broglie when he postulated the existence of matter waves.

Louis de Broglie (1892-1987) was a French physicist. In his Ph.D thesis he postulated a relationship between the momentum of a
particle and the wavelength of the wave associated with the particle (1922). In de Broglie’s equation a particle wavelength is the
Planck’s constant divided by the particle momentum. We can see this behavior in the electron interferometer video®. For classical
objects the momentum is very large (since the mass is large), then the wavelength is very small and the object loose its wave
behavior. De Broglie equation was experimentally confirmed in 1927 when physicists Lester Germer and Clinton Davisson fired
electrons at a crystalline nickel target and the resulting diffraction pattern was found to match the predicted values.

3 A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki and H. Ezawa, Am. J. of Phys. 57, 117 (1989)

Properties of eigenfunctions

From these examples we can notice two properties of eigenfunctions which are valid for any operator:
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1. The eigenfunctions of an operator are orthogonal functions. We will as well assume that they are normalized. Consider two
eigenfunctions uy,, u,, of an operator A and the inner product defined by (f | g) = [d®z f*(x)g(x) . Then we have

/ 4 28 (%)t (%) = G

2. The set of eigenfunctions forms a complete basis.
This means that any other function can be written in terms of the set of eigenfunctions {u, (x)} of an operator A:

flx)= chun(x), with ¢, = /d3xu;§(x)f(x)

[Note that the last equality is valid iif the eigenfunctions are normalized, which is exactly the reason for normalizing them].
If the eigenvalues are a continuous parameter, we have a continuum of eigenfunctions, and we will have to replace the sum over
n with an integral.

Consider the two examples we saw. From the property of the Dirac Delta function we know that we can write any function as:

f@)= [ 5@ ~2) 1 @)

We can interpret this equation as to say that any function can be written in terms of the position eigenfunction § (z' —z) (notice
that we are in the continuous case mentioned before, since the x-eigenvalue is a continuous function). In this case the coefficient ¢,
becomes also a continuous function

cn —c(zy) = /da:S(m —z,) f(z) = f(z,).

This is not surprising as we are already expressing everything in the position basis.

If we want instead to express the function f(z) using the basis given by the momentum operator eigenfunctions we have: (consider
1D case)

f(z)= /dkuk(a})c(k) = /dkeikwc(k)

where again we need an integral since there is a continuum of possible eigenvalues. The coefficient c(k) can be calculated from

c(k)= /dmuz(m)f(w) = /dxe_ikxf(m)
We then have that ¢(k) is just the Fourier transform of the function f(z) (up to a multiplier).
The Fourier transform is an operation that transforms one complex-valued function of a real variable into another:

Foif(2) = f(k), with f(k)=Fu[f(x)](k) = # [m F)e e de

Notice that sometimes different normalizations are used. With this definition, we also find that the inverse Fourier transform is
given by:

Ff(k) - fz), flz) = % / " F et dk

Review of linear Algebra

This is a very concise review of concepts in linear algebra, reintroducing some of the ideas we saw in the previous paragraphs in a
slightly more formal way.

Vectors and vector spaces

Quantum mechanics is a linear theory, thus it is well described by vectors and vector spaces. Vectors are mathematical objects
(distinct from scalars) that can be added one to another and multiplied by a scalar. In QM we denote vectors by the Dirac notation:
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|}, |}, . . . Then, these have the properties:
o If [4p1) and |4p2) are vectors, then |13) = |¢h1) + |t2) is also a vector.
o Given ascalars, |t4) = s|t)1) is also a vector.

A vector space is a collection of vectors. For example, for vectors of finite dimensions, we can define a vector space of dimensions
N over the complex numbers as the collection of all complex-valued N-dimensional vectors.

v/ Example A.1

A familiar example of vectors and vector space are the Euclidean vectors and the real 3D space.

v/ Example A.2

Another example of a vector space is the space of polynomials of order n. Its elements, the polynomials
P,=ag+aix+ayx®+---+a,z" can be proved to be vectors since they can be summed to obtain another polynomial

and multiplied by a scalar. The dimension of this vector space is n + 1.

v/ Example A.3

In general, functions can be considered vectors of a vector space with infinite dimension (of course, if we restrict the set of
functions that belong to a given space, we must ensure that this is still a well-defined vector space. For example, the collection
of all function f(z) bounded by 3[f(z) < 3, Vx| is not a well defined vector-space, since sf(z) (with s a scalar > 1) is not a

vector in the space.

Inner product

We denote by (¢ | ¢) the scalar product between the two vectors |t) and |¢). The inner product or scalar product is a mapping
from two vectors to a complex scalar, with the following properties:

o Itis linear in the second argument: (¢ | a1p1 +a2p2) = a1 (Y | v1) +az (Y | v2)

« It has the property of complex conjugation: (¢ | @) = (¢ | ¥)* .
o It is positive-definite: (¢ | ) =0 < |¢) =0 .

v/ Example B.1

For Euclidean vectors the inner product is the usual scalar product 95 - Uy = |v1| |v2] cos? .

v/ Example B.2

For functions, the inner product is defined as:

tlo= [ sy sere

Linearly independent vectors (and functions)

We can define linear combinations of vectors as |¢)) =ay |¢1)+as|ps)—+... . If a vector cannot be expressed as a linear
superposition of a set of vectors, than it is said to be linearly independent from these vectors. In mathematical terms, if

1€) # Zai lpi), Vaj

then |€) is linearly independent of the vectors {|¢;)}.

Basis
A basis is a linearly independent set of vectors that spans the space. The number of vectors in the basis is the vector space
dimension. Any other vector can be expressed as a linear combination of the basis vectors. The basis is not unique, and we will

usually choose an orthonormal basis.
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v/ Example D.1

For the Polynomial vector space, a basis are the monomials {w’“} ,k=0,...,n. For Euclidean vectors the vectors along the 3
coordinate axes form a basis.

We have seen in class that eigenvectors of operators form a basis.

Unitary and Hermitian operators

An important class of operators are self adjoint or Hermitian operators, as observables are described by them. We need first to
define the adjoint of an operator A. This is denoted A" and it is defined by the relation:

((A'9) [ @) = (o | (Ap)) V{|9), |0}
This condition can also be written (by using the second property of the inner product) as:
(¥ |AT| @) = (p|Aly)*

If the operator is represented by a matrix, the adjoint of an operator is the conjugate transpose of that operator:
AL = (K|AT[4) = (GlAIR)* = A%,

& Definition: Self-adjoint

A self adjoint operator is an operator such that AT = A, or more precisely

(¥l Alp) = (| AlY)"

For matrix operators, Ay; = A%, .

An important properties of Hermitian operators is that their eigenvalues are always real (even if the operators are defined on the
complex numbers). Then, all the observables must be represented by hermitian operators, since we want their eigenvalues to be
real, as the eigenvalues are nothing else than possible outcomes of experiments (and we wouldn’t want the position of a particle,
for example, to be a complex number).

Then, for example, the Hamiltonian of any system is an hermitian operator. For a particle in a potential, it’s easy to check that the
operator is real, thus it is also hermitian.

# Definition: Unitary operators

U are such that their inverse is equal to their adjoint: U ! = UT, or

vut=vtu=1.

We will see that the evolution of a system is given by a unitary operator, which implies that the evolution is time-reversible.

This page titled 2.2: States, Observables and Eigenvalues is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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2.3: Measurement and Probability

From the second postulate we have seen that the possible outcomes of a measurement are the eigenvalues of the operator
corresponding to the measured observable. The question of which one of the eigenvalue we will obtain is still open. This question
is resolved by the third postulate, which gives a recipe on how to predict which outcome will be observed. However, this
mathematical recipe does not tell us (in general) with absolute certainty which one of the eigenvalue will be the outcome. It only
provides us with the probability of obtaining each eigenvalue.

In postulate 3.b we consider an observable A and a system in the state |1). The eigenvalue equation for the operator A
(corresponding to .A) can be expressed as

Aln) = ay|n)

where a,, are the eigenvalues and |n) the eigenvectors . The postulate states that the probability of obtaining a,, as the outcome of
the measurement of A is p (a,) = |(n | ¥)|*.

We want to re-express the postulate in terms of the wavefunction (). To do so, we need to define the inner product in the Hilbert
space of the wavefunctions. Given two wave functions % (Z) and ¢ (Z), the inner product (¢ | %) is given by:

(0| 9) = / Bp(x) ()

(where * indicates the complex conjugate).

We first rewrite the eigenvalue problem for the operator A in terms of the eigenfunctions u,, (%) and the associated eigenvalues a, :
Alun (7)) = anuy (2)

Then, we have seen that any function can be expressed in terms of the eigenfunctions u, (Z). We can as well express the
wavefunction in terms of these eigenfunctions:

9(E) = Y can(@), withe, = [ d'Gui @)

Finally, according to postulate 3.b the probability of obtaining the outcome a,, if the system is in the state 1(Z) is given by the
inner product :

2 2
= len]

pla) =| [ dus @)0(@)

where the last equality follows from the orthogonality of the eigenfunctions f d32u}, (Z)um (Z) =0, for m #n. Since
len|? =p (an) is a probability, the coefficients ¢, of the wavefunction expansion are called probability amplitudes. We now
confirm that the wavefunction contain all information about the state of the system, since given the wavefunction we can calculate
all the probabilities of each outcome for each possible observable with the following procedure:

1. Find the eigenfunctions of the observable’s operator. E.g., given an operator O, we will calculate its eigenfunctions w, (x), such
that O [wy, (z)] = opwp ().

2. Find the probability amplitude of the wavefunction with respect to the eigenfunction of the desired eigenvalue outcome.
E.g., if the outcome is op,, such that O [wy, (z)] = 0w (x) we will calculate ¢, = [ d3Zws, (Z)(Z) .

3. The probability of obtaining the given eigenvalue in the measurement is the probability amplitude modulus square. E.g.

2
P (0m) = lem|”

Wavefunction collapse

The third postulate states also that after the measurement the system is left in the eigenstate corresponding to the eigenvalue found
(more generally, if more than one eigenstate is associated to the same eigenvalue, the state is projected on the subspace of the
eigenvalue a,, that is, the subspace spanned by all the eigenstates associated with a,,).

This is the wavefunction collapse, a concept that is usually quite puzzling in quantum mechanics. We can make this statement at
least a bit less puzzling by taking into account the following two considerations.
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The wavefunction collapse is puzzling because it predicts an instantaneous evolution of the system from its pre-measurement state
¥(z) to its post-measurement state u,, (z) (when we measure a,,). This type of evolution is very different than the usual evolution
predicted by the fourth postulate (that we will see in a later lecture). However, this weird behavior arises from considering the
measurement apparatus (and hence the measurement) as a classical system, outside the realm of quantum mechanics. Although this
view gives most of the time a correct answer — and thus we will use it in this class — it is a quite imprecise description. More
rigorous descriptions of the measurement process, invoking for example decoherence®, can give a better picture of what actually
happens (e.g. the wave-function collapse can take a finite time and be measured experimentally in some cases).

More pragmatically, the wavefunction collapse is needed in order to make experiment consistent. What the collapse entails is that if
I make a measurement and I obtain as an outcome the eigenvalue a,, I can check that result again, by repeating the measurement
just after the first one (with no time for any change in the system between the two measurement). If I could not make this second
check, I could never be able to be confident that I got the correct answer the first time (e.g. my detector could be wrong) and so I
could never gain any knowledge at all on my system.

Obs.: T want to clarify the meaning of “subspace of the eigenvalue a,”. If there is a set of eigenstates associated with the
eigenvalue a,, |n;), then the state [t)) is projected onto a superposition of these eigenstates |¢) — [n) =" ¢; [n;) .

4 Decoherence is the phenomenon by which an open quantum system, interacting with the environment, undergoes an
irreversible evolution that often leaves it in a state best described by the rules of classical mechanics.

Position measurement

We have already calculated the eigenvalues and eigenfunctions of the position operator. The eigenfunctions were
up(z) =6 (x —x,) with eigenvalues z,,. We also calculated the expansion of a function in terms of the position eigenfunctions.
Repeating the calculation for the wavefunction we find:

c(en) = [[ded (@ = 20) 6(e) = (@),
from which we obtain that the probability of finding a particle in the position z,, is given by:

p(zn) = [t (mn)‘2

More generally, since x is continuous, we can drop the subscript 7, as any value of  is an eigenvalue. Then, generalizing to the 3D
case, we can say that the probability of finding a particle described by the wavefunction (%) at the position Z is given by the
modulus square of the wavefunction itself:

p(@) = |y (@)

We can also say that the wavefunction is the probability amplitude for the position measurement. More precisely, we should say
that the probability of finding a particle between z and 4 dz is p(z)dz = | (z)|*dx while [1(z)|? is a probability density (per
unit length). In 3D, |4(Z)|? is the probability density per unit volume and the probability is given by |+ (Z)[>d®.

Given this interpretation of the wavefunction, it becomes natural to require that the wavefunction be normalized. We require that
integrating the probability of a particular position over all possible position we obtain 1 (i.e. certainty, the particle has to be
somewhere!). Then

/d3:_ép(5) 1S /d3z|¢(z)|2 —1

From being a very abstract notion, the wavefunction has thus assumed a very physical meaning. We can still say that the
wavefunction describes the state of a system and contains all the information about this system. In addition, and more concretely,
the absolute value of the wavefunction tells us where it is more probable to find the system.

https://phys.libretexts.org/@go/page/25698


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25698?pdf

LibreTextsw

Momentum measurement

We calculated the eigenvalues and eigenfunctions of the momentum operator to be
p=hk and u(z)="Te**

(Notice that we could have labeled the wave-numbers as k, —and the momentum p,— to have the eigenvalue equation:
PU, = Py, but we omitted the subscript m since momentum is a continuous variable; then we also simply label the
eigenfunctions by & instead of n).

As usual, we would like the eigenfunctions to be normalized. However notice that [u}(z)uy(z)dz = [ 1T’ dz = 00, so we

cannot fix Y such that the result is normalized as usual. For convention we set T = —# cup(z) =— \/12_ e (we are
™ ™

considering the 1D case). Now we can calculate the probability amplitude for the momentum measurement, by calculating the
coefficients of the expansion of the wavefunction in terms of the momentum eigenfunctions basis. Here we rename the coefficients
c(k) of the expansion (k). This is given by:

(k) = 90) = [ us(@)blz) > ) = = [ e (a)

Notice that this last equation is simply stating that the probability amplitude for the momentum measurement is the Fourier
transform of the wavefunction, ¢ (k) = F[¢(z)]. Then

p(k — k+dk) = |p(k)*dk
is the probability of finding that the particle has a momentum between khk and %i(k 4+ dk) when measuring the momentum.

Flux of particles

The choice of the coefficient T implies that:

/u;(w)ukr (x)dz =6 (k—K')

which is not the usual normalization for the wavefunction.
Why is it not possible to normalize the momentum eigenstates?

We saw that for the wavefunction, the normalization was related to its interpretation as the probability amplitude for the position. If
a wavefunction is in a momentum eigenstate (x) = uy(z), then we cannot really talk about a particle, but rather the system is
better described by a wave. In fact, the probability of finding the system at any position z is constant and equal to Y. Thus the
coefficient Y can be better linked to a flux of particles rather than a particle density.

We can set v|1/)\2 =T where v= % = '}n—k is the velocity and I" correspond to a flux of particle, as described by the plane wave
e, Then 2£|T|* =T fixes the value of T to T = , /2L

Expectation values

We have just seen that the outcome of a measurement is a random quantity (although it is of course limited to a given set of values
—the eigenvalues— from which we can choose from). In order to know more about the state of a system we need then to repeat the
measurement several times, in order to build a statistics of the observable.

For example, we could be interested in knowing what is the average of the measurements of a particular observable. This quantity
is usually called in QM the expectation value of an observable.

How do we usually calculate the average of a given quantity? Consider for example the average number obtained by throwing a
dice. In an experiment, I would have to repeatedly throw the dice, record the number that comes out (say n;) and then calculate the
sum: (n) = # Zfil n; . Equivalently, I could count the number of times ¢,, that each number n appears and calculate the average
number from the frequencies v, =t,,/N : (n) = EL v, . In the limit of N — oo, the frequencies v, approach the probabilities
Vn — Dy - Then for the dice we have p, =1/6(Vn) and the average is just calculates from the sum §(1+2+...6) =3.5.

The procedure for calculating the average (or expectation value) of a quantity is very general. We have for discrete and continuous
probability distribution functions respectively
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(z) = szfb‘z (z) = /dmp(a;)m

In QM we just need to replace the probability p by its value as given by the third postulate. For example, the expectation value of
the position can be expressed in terms of the probability density function given by the modulus square of the wavefunction:

() = / " (e, )2

o]

How can we in practice obtain this expectation value? (that is, by performing real experiments). If we make a first measurement on
a single particle and then repeat the measurement over and over again this is not what we measure. In fact, in that case we know
(from the postulates) that after the first measurement we expect always to get the same result. In fact, these repeated successive
measurement are only a way to check that yes, we got the first answer correct. (otherwise we could never be certain of anything,
since we would not even know that our experimental apparatus works).

Instead what we can do is adopt one of two strategies. Either we can repeat the same experiment (not measurement) many times on
the same system. This implies first preparing the system in a given state with a reproducible procedure and then performing a
measurement. The second option is to make the experiment on a set (an ensemble ) of identical systems. In order to obtain the exact
expectation value we would need an infinite number (of repetitions or systems), however a large enough sample is usually
practically enough.

Obs.: Notice that we can rewrite the expression above for the expectation value of the position as

<x>:/: w(m,t)*w(m,t)dm:/:@b(w,t)*i[z/)(w,t)]dw

This last form is a more general one that is valid for any operator.

# Definition: Expectation value

The expectation value of an observable O is

@)= wiol) = [ " (e, £) Ol (z, H)dz

where we first used the Dirac notation to express the expectation value, which is an even more general expression.

v/ Example

The expectation value for the momentum operator is given by:

[ veorstaitae= [ ve,or (-ine ) ds

L

This page titled 2.3: Measurement and Probability is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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2.4: Energy Eigenvalue Problem

The energy operator is called Hamiltonian. The first postulate stated that the time dependence of the wavefunction is dictated by
the Schrédinger equation:
0y(2,t)

th =Hy(z,t)

If we assume that ¥(Z, t) is the product of a time-dependent part T(t) and a time-independent one ¢ (%), we can attempt to solve
the equation by separation of variables. From (%, t) = T'(t)¢(Z), we can rewrite the Schrédinger equation (using the fact that
does not change T(t)):

T (t)p(%)
ot

and we rearrange terms based on their dependence on t or Z

1 aT®) 1 B
0" o :cp(f)H[(P(x,t)]

oT(t)
ot

ih =H[T(t)p(Zt)] — (@) ik =T(t)-Hp(2,1)]

Each side has to be equal to a constant, in order for the equality to hold. Then the time-independent wavefunction obeys the time-
independent Schrédinger equation:

| Heo(&) = Bo(3) |

where E is identified as the energy of the system. If the wavefunction is given by just its time-independent part, ¥(%,t) = ¢(Z),
the state is stationary. Thus, the time-independent Schrédinger equation allows us to find stationary states of the system, given a
certain Hamiltonian.

Notice that the time-independent Schrodinger equation is nothing else than the eigenvalue equation for the Hamiltonian operator. It
is thus particularly interesting to study eigenvalues and eigenfunctions of this operator (which, as said, correspond to the energies
and stationary states of the system)®.

In general, the wavefunction describing the state of a quantum system is not.
The energy of a particle has contributions from the kinetic energy as well as the potential energy:
1
B=5—(pi+py+p) +V(2,9,2)

In quantum mechanics we can find the equivalent operator by substituting the quantum operators for the position and momentum in
the above expression:
H=— (p2+52+57) +V (2,9, )
2m \"® Y TF T
or more explicitly:

K2 o2 9? H?
H= —%(@ + @4—8?) +V($,y,z)

and in a compact form

2

_ M

(Notice that V (x, y, z) is just a multiplicative operator, in the same way as the position is).

5 1 want to clarify the distinction between eigenfunctions and wavefunctions. In this class we are interested in both. The
eigenfunctions are related to a given operator, and they are the solutions to the eigenvalue equation for that operator. They are
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important since they form a basis and they allow us to calculate the probability of obtaining a given measurement outcome.
The wavefunction describes the state of the quantum system. In general, it is not an eigenfunction. However, if we are
considering a stationary state, the wavefunction that represents it must be an eigenfunction of the Hamiltonian (energy)
operator. Thus in that particular case only (which is a quite common case!) the wavefunction is also an eigenfunction.

Free particle

In 1D, for a free particle there is no potential energy, but only kinetic energy that we can rewrite as:

2m 2m Ox?
The eigenvalue problem Hw,, (z) = E,wy,(z) is then the differential equation
R 0%w,(z)
Huwy,(z) = E wy(z) — _%8—::2 = E,wy(z)
we rewrite it as:
O*w,(z)  2mE, 8wy (z)
+ “wp =0 = ———— + k2w, =0
Oz? h? Oz?
where we used the identity
h2k2
n — En
2m

between the kinetic energy eigenvalue E,, and the wavenumber k,, ( and the momentum p,, = hk,, ).

For a free particle there is no restriction on the possible energies, E,, can be any positive number. The solution to the eigenvalue
problem is then the eigenfunction:

Wp, (-T) = ASlIl(kna)) +BCOS(kna:) _ Aleiknm +B’e_ik"x

We see that there are two independent functions for each eigenvalue E,,. Also there are two distinct momentum eigenvalues +k,
for each energy eigenvalue, which correspond to two different directions of propagation of the wave function e,

This page titled 2.4: Energy Eigenvalue Problem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola
Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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2.5: Operators, Commutators and Uncertainty Principle

Commutator

# Definition: Commutator

The Commutator of two operators A, B is the operator C = [A, B] such that C = AB — BA.

v/ Example 2.5.1

If the operators A and B are scalar operators (such as the position operators) then AB = BA and the commutator is always zero.

v/ Example 2.5.2

If the operators A and B are matrices, then in general AB # BA . Consider for example:

1/0 1 1/1 0
A== , B=<=
2(1 o) 2(0 —1)

Then

Then [A, B] = 2AB.

v/ Example 2.5.3

A is Turn to your right. B is Take 3 steps to your left.

[ Question|

Do these two operators commute?

Figure 2.5.1: Two rotations A, B along the x-axis. Left: we apply AB (first the 37/4 rotation), right we apply BA. Since the
two operators commute, the result is the same. (CC BY-NC-ND; Paola Cappellaro)

v/ Example 2.5.4

Let A and B be two rotations. First assume that A is a 7/4 rotation around the x direction and B a 37/4 rotation in the same
direction. Now assume that the vector to be rotated is initially around z. Then, if we apply AB (that means, first a 37r/4 rotation
around x and then a 7/4 rotation), the vector ends up in the negative z direction. The same happen if we apply BA (first A and
then B).
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Figure 2.5.2: Two rotations A, B along the x- and z-axis. Left: we apply AB (first the 7/2 rotation along z), right: we apply

BA. Since the two operators do not commute, the result is not the same. (CC BY-NC-ND; Paola Cappellaro)
Now assume that A is a 7r/2 rotation around the x direction and B around the z direction. When we apply AB, the vector ends
up (from the z direction) along the y-axis (since the first rotation does not do anything to it), if instead we apply BA the vector
is aligned along the x direction. In this case the two rotations along different axes do not commute.

These examples show that commutators are not specific of quantum mechanics but can be found in everyday life. We now want an
example for QM operators.

The most famous commutation relationship is between the position and momentum operators. Consider first the 1D case. We want
to know what is [, ] (I’ll omit the subscript on the momentum). We said this is an operator, so in order to know what it is, we
apply it to a function (a wavefunction). Let’s call this operator Cyp,, Cap = [£,D,,].

(2,09 (z) = Cap ()] = 2[D[¢

,\
>
8
|
I
|
8
SN—
=
8
SN—

o)) — plafu(e)] =—m(

ik (x d’zgf) - %(w(m))) — iR (x de’) (@) — d¢iw)) — ihy()

8

d
From [Z, p]v(z) = ik (z) which is valid for all 1)(z) we can write

[z,p] =ih

Considering now the 3D case, we write the position components as {7, 7,7 }. Then we have the commutator relationships:

[flaaﬁb] = iMa,b |

that is, vector components in different directions commute (the commutator is zero).

Properties of commutators

« Any operator commutes with scalars [4, a] =0

e [A,BC]=[A, B]JC + B[A, C]and [AB, C] = A[B, C] +[A, C]B

e Any operator commutes with itself [A, A] = 0, with any power of itself [A, A"] = 0 and with any function of itself
[4, f(A)] = 0 (from previous property and with power expansion of any function).

From these properties, we have that the Hamiltonian of the free particle commutes with the momentum: [p, H] = 0 since for the
free particle H = p? /2m. Also, [m,p2] = [z, p]p +p[z,p] = 2ihp

We now prove an important theorem that will have consequences on how we can describe states of a systems, by measuring
different observables, as well as how much information we can extract about the expectation values of different observables.

& Theorem 2.5.1

If A and B commute, then they have a set of non-trivial common eigenfunctions.

Proof

Let ¢, be an eigenfunction of A with eigenvalue a:

Ap, = ap,
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Then
BAp, = aBp,
But since [A, B] = 0 we have BA = AB. Let’s substitute in the LHS:
A(B¢a) = a(Bpa)

This means that (Byp,) is also an eigenfunction of A with the same eigenvalue a. If ¢, is the only linearly independent
eigenfunction of A for the eigenvalue a, then By, is equal to ¢, at most up to a multiplicative constant: By, x ¢, .

That is, we can write
BQDQ S ba Pa

But this equation is nothing else than an eigenvalue equation for B. Then ¢, is also an eigenfunction of B with eigenvalue
b,. We thus proved that ¢, is a common eigenfunction for the two operators A and B. [

v/ Example 2.5.5

We have just seen that the momentum operator commutes with the Hamiltonian of a free particle. Then the two operators
should share common eigenfunctions.

This is indeed the case, as we can verify. Consider the eigenfunctions for the momentum operator:

iy,

dz

D[] =hkr — —ih =Rk, — = Ae

What is the Hamiltonian applied to 1y ?
h2 d2 (Aefika:) h2]€2

Hvel = " 2m dz? 2m

Ae™™ = By

thus we found that 1y, is also a solution of the eigenvalue equation for the Hamiltonian, which is to say that it is also an
eigenfunction for the Hamiltonian.

Commuting observables

Degeneracy

In the proof of the theorem about commuting observables and common eigenfunctions we took a special case, in which we assume
that the eigenvalue a was non-degenerate. That is, we stated that ¢, was the only linearly independent eigenfunction of A for the
eigenvalue a (functions such as 4¢,, ap, don’t count, since they are not linearly independent from ¢, ).

# Definition: Degeneracy

In general, an eigenvalue is degenerate if there is more than one eigenfunction that has the same eigenvalue. The degeneracy of
an eigenvalue is the number of eigenfunctions that share that eigenvalue.

For example a is n-degenerate if there are n eigenfunction {go;’} ,j=1,2,...,n, such that Ago;? =ayp] .

What happens if we relax the assumption that the eigenvalue a is not degenerate in the theorem above? Consider for example that
there are two eigenfunctions associated with the same eigenvalue:
Apf =apl and Ap§ =ap

then any linear combination ¢® = c; ] +co5 is also an eigenfunction with the same eigenvalue (there’s an infinity of such
eigenfunctions). From the equality A (Bp®) = a (By®) we can still state that (Byp®) is an eigenfunction of A but we don’t know
which one. Most generally, there exist ¢; and ¢» such that

Byl = ¢19] + Ca¢p5
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but in general Bp$d e, or ¢ is not an eigenfunction of B too.

v/ Example 2.5.6
K2k

Consider again the energy eigenfunctions of the free particle. To each energy E = = are associated two linearly-
independent eigenfunctions (the eigenvalue is doubly degenerate). We can choose for example g = e™** and Yp=¢€"
Notice that these are also eigenfunctions of the momentum operator (with eigenvalues +k). If we had chosen instead as the

eigenfunctions cos(kx) and sin(kx) these are not eigenfunctions of p.

ikx

& Theorem 2.5.2

In general, it is always possible to choose a set of (linearly independent) eigenfunctions of A for the eigenvalue a such that
they are also eigenfunctions of B.

For the momentum/Hamiltonian for example we have to choose the exponential functions instead of the trigonometric
functions. Also, if the eigenvalue of A is degenerate, it is possible to label its corresponding eigenfunctions by the eigenvalue
of B, thus lifting the degeneracy. For example, there are two eigenfunctions associated with the energy E: ¢z = e**** . We can
distinguish between them by labeling them with their momentum eigenvalue +k: ¢g 1 = e*® and B,k = etk

Proof

Assume now we have an eigenvalue a with an n-fold degeneracy such that there exists n independent eigenfunctions ¢, k
=1, ..., n Any linear combination of these functions is also an eigenfunction ¢* = ZZ:1 Crpy, - For any of these
eigenfunctions (let’s take the ht" one) we can write:

B[A[¢;]] = A[Bh]] = aB [4}]

so that 7 = B [go;’l] is an eigenfunction of A with eigenvalue a. Then this function can be written in terms of the {cpz} :
Bgi] = &5 = enaef
k

This notation makes it clear that ¢, is a tensor (an n X n matrix) operating a transformation from a set of eigenfunctions of
A (chosen arbitrarily) to another set of eigenfunctions. We can write an eigenvalue equation also for this tensor,

EvJ:b’v] — Zéh’kvi :b7v7
h

where the eigenvectors v’ are vectors of length n.

If we now define the functions z/);? => ”2902 , we have that z/)? are of course eigenfunctions of A with eigenvalue a. Also
n
Blys] =S i Bles] =S 0l Y enaet
h h k=1
=D e e =) e =8 Y vl =
k h k k

We have thus proved that ¢v‘; are eigenfunctions of B with eigenvalues &’. The ¢‘; are simultaneous eigenfunctions of both
A and B.

Consider the set of functions {¢? } From the point of view of A they are not distinguishable, they all have the same eigenvalue so

they are degenerate. Taking into account a second operator B, we can lift their degeneracy by labeling them with the index j
corresponding to the eigenvalue of B (7).
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Assume that we choose ¢; =sin(kz) and @2 = cos(kz) as the degenerate eigenfunctions of H with the same eigenvalue
E, = % . We now want to find with this method the common eigenfunctions of p. We first need to find the matrix ¢ (here a
2x2 matrix), by applying p to the eigenfunctions.

Py = —m% — ihkcos(kz) = —ifkeps

and Py = ihkep; . Then the matrix € is:
with eigenvalues , and eigenvectors (not normalized)

We then write the v eigenfunctions:

ikx kx

' = vl +olps = —isin(kz) +cos(kz) cce ™, ? =v2p) +v2py = isin(kz) + cos(kx) o €

Complete set of commuting observables

We have seen that if an eigenvalue is degenerate, more than one eigenfunction is associated with it. Then, if we measure the
observable A obtaining a we still do not know what the state of the system after the measurement is. If we take another observable
B that commutes with A we can measure it and obtain b. We have thus acquired some extra information about the state, since we
know that it is now in a common eigenstate of both A and B with the eigenvalues a and b. Still, this could be not enough to fully
define the state, if there is more than one state (.. We can then look for another observable C, that commutes with both A and B
and so on, until we find a set of observables such that upon measuring them and obtaining the eigenvalues a, b, ¢, d, . . . the
function @gpeq... is uniquely defined. Then the set of operators {A, B, C, D, . . . } is called a complete set of commuting
observables. The eigenvalues a, b, c, d, . . . that specify the state are called good quantum numbers and the state is written in Dirac
notation as |abed . . .).

Obs. The set of commuting observable is not unique.

Uncertainty principle

Uncertainty for waves

The uncertainty principle, which you probably already heard of, is not found just in QM. Consider for example the propagation of a
wave. If you shake a rope rhythmically, you generate a stationary wave, which is not localized (where is the wave??) but it has a
well defined wavelength (and thus a momentum).

W\/\/_’
+ 5 10 15 20 25

X (feet)
Image by MIT OpenCourseWare.
Figure 2.5.3: A wave with a well defined wavelength but no well-defined position (CC BY-NC-ND; Paola Cappellaro)
If instead you give a sudden jerk, you create a well localized wavepacket. Now however the wavelength is not well defined (since

we have a superposition of waves with many wavelengths). The position and wavelength cannot thus be well defined at the same

2th  Then we have Oz0p > % . We are

time. In QM we express this fact with an inequality involving position and momentum p = <= .

now going to express these ideas in a more rigorous way.

https://phys.libretexts.org/@go/page/25700



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25700?pdf

LibreTextsw

Y

5 10 15 20 25
x (feet)
Image by MIT OpenCourseWare.
Figure 2.5.4: A wave packet with a well defined position but no well-defined wavelength. (From Griffith) (CC BY-NC-ND; Paola
Cappellaro)
Repeated measurements
Recall that the third postulate states that after a measurement the wavefunction collapses to the eigenfunction of the eigenvalue

observed.

Let us assume that I make two measurements of the same operator A one after the other (no evolution, or time to modify the system
in between measurements). In the first measurement I obtain the outcome a;, (an eigenvalue of A). Then for QM to be consistent, it
must hold that the second measurement also gives me the same answer a;. How is this possible? We know that if the system is in
the state 9 =, cpr, with @, the eigenfunction corresponding to the eigenvalue aj, (assume no degeneracy for simplicity), the
probability of obtaining ay, is |ck|2. If T want to impose that |ck|2 =1, I must set the wavefunction after the measurement to be
1) = g, (as all the other ¢y, h # k are zero). This is the so-called collapse of the wavefunction. It is not a mysterious accident, but
it is a prescription that ensures that QM (and experimental outcomes) are consistent (thus it’s included in one of the postulates).

Now consider the case in which we make two successive measurements of two different operators, A and B. First we measure A
and obtain aj. We now know that the state of the system after the measurement must be ¢;. We now have two possibilities.

If [A, B] = 0 (the two operator commute, and again for simplicity we assume no degeneracy) then ¢y, is also an eigenfunction of B.
Then, when we measure B we obtain the outcome b;, with certainty. There is no uncertainty in the measurement. If I measure A
again, I would still obtain a. If T inverted the order of the measurements, I would have obtained the same kind of results (the first
measurement outcome is always unknown, unless the system is already in an eigenstate of the operators).

This is not so surprising if we consider the classical point of view, where measurements are not probabilistic in nature.

The second scenario is if [A, B] # 0. Then, ¢, is not an eigenfunction of B but instead can be written in terms of eigenfunctions of

B, or=> c’,id;h (where vy, are eigenfunctions of B with eigenvalue b;,). A measurement of B does not have a certain outcome.
. . s 2

We would obtain by, with probability |c§' .

There is then an intrinsic uncertainty in the successive measurement of two non-commuting observables. Also, the results of
successive measurements of A, B and A again, are different if I change the order B, A and B.

It means that if I try to know with certainty the outcome of the first observable (e.g. by preparing it in an eigenfunction) I have an
uncertainty in the other observable. We saw that this uncertainty is linked to the commutator of the two observables. This statement
can be made more precise.

& Theorem 2.5.3

Define C = [A, B] and AA and AB the uncertainty in the measurement outcomes of A and B: AA? = (A4%) — (A)? , where

(é) is the expectation value of the operator 0] (that is, the average over the possible outcomes, for a given state:
2 2 2

(0) = (¥|O[¥) = >k Oklek|™).

Then:

AAAB > %\<c>|

This is Heisenberg Uncertainty Principle.
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v/ Example 2.5.8

The most important example is the uncertainty relation between position and momentum. We know that these two operators do

not commute and their commutator is [£, p] = ¢k. Then

AzA

~

>

| St
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3.1: Review - Energy Eigenvalue Problem
3.2: Unbound Problems in Quantum Mechanics
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Thumbnail: Alpha particle decay of a nucleus. (Public Domain; Inductiveload via Wikipedia)
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3.1: Review - Energy Eigenvalue Problem

The time-independent wavefunction obeys the time-independent Schrédinger equation:
| Heo(&) = Bo(3) |

where E is identified as the energy of the system. If the wavefunction is given by just its time-independent part, ¥(Z, t) = p(Z),
the state is stationary. Thus, the time-independent Schrodinger equation allows us to find stationary states of the system, given a
certain Hamiltonian.

Notice that the time-independent Schrédinger equation is nothing else than the eigenvalue equation for the Hamiltonian operator.

The energy of a particle has contributions from the kinetic energy as well as the potential energy:
1 0 9 . PO
H=7— (Pi +P§+PZ) +V(2,9,2)
or more explicitly:

2m

K? [ 82 o2 0?
(@ E¥ + @) +V(z,y,2)

which can be written in a compact form as

K2 9
H= ==V +V(2,y,2)

(Notice that V (x, y, z) is just a multiplicative operator, in the same way as the position is).
In 1D, for a free particle there is no potential energy, but only kinetic energy that we can rewrite as:

1, R* 8°
7-{_2mp "~ 2m 022

The eigenvalue problem Hw,, (z) = E,w,(z) is then the differential equation

K2 8%wy(x)
Huwy(z) = Eywn () — “om e E,w,(z)

For a free particle there is no restriction on the possible energies, E, can be any positive number. The solution to the eigenvalue
problem is then the eigenfunction:

wy(z) = Asin(k,z) + Bcos(k,z) = A’ 1 Ble~thne
which represents two waves traveling in opposite directions.

We see that there are two independent functions for each eigenvalue E;. Also there are two distinct momentum eigenvalues +k,
for each energy eigenvalue, which correspond to two different directions of propagation of the wave function e~
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3.2: Unbound Problems in Quantum Mechanics

We will then solve the time-independent Schrodinger equation in some interesting 1D cases that relate to scattering problems.

Infinite Barrier
We first consider a potential as in Figure 3.2.1. We consider two cases:

o Case A. The system (a particle) has a total energy larger than the potential barrier E > Vi .
o Case B. The energy is smaller than the potential barrier, E < V.

V(x) 1

E,
VH

E>

&

g

Figure 3.2.1: Potential function and total energy of the particle. (CC BY-NC-ND; Paola Cappellaro)

Let’s first consider the classical problem. The system is a rigid ball with total energy E given by the sum of the kinetic and potential
energy. If we keep the total energy fixed, the kinetic energies are different in the two regions:

Tr=FE Tip=FE-Vyg

If E > Vp, the kinetic energy in region two is Tj; = % = FE — Vg , yielding simply a reduced velocity for the particle. If E < Vg
instead, we would obtain a negative Ty; kinetic energy. This is not an allowed solution, but it means that the particle cannot travel
into Region II and it’s instead confined in Region I: The particle bounces off the potential barrier.

In quantum mechanics we need to solve the Schrodinger equation in order to find the wavefunction describing the particle at any
position. The time-independent Schrédinger equation is

2 d%y(x) . .
E2d2 _h_m = Ey(z) in RegionI
@) V@) = Bylr) >
mdx A = (E —Vg)y(x) in RegionII

2m  da?

Hy(w) = -

The two cases differ because in Region II the energy difference AE = E — Vs either positive or negative.

Positive energy

Let’s first consider the case in which AE = E — Vg > 0 . In both regions the particle behaves as a free particle with energy E; = E
and Ej; = E — V5. We have already seen the solutions to such differential equation. These are:

'(/)1(117) :Aeikm +Be—ikx

1/)11 (l‘) _ Ceik'z +D67ik,z

272 2702
whereg—k:E and LE =FE—-Vy.
m 2m

We already interpreted the function e**® as a wave traveling from left to right and e~ as a wave traveling from right to left. We

then consider a case similar to the classical case, in which a ball was sent toward a barrier. Then the particle is initially described as
a wave traveling from left to right in Region I. At the potential barrier the particle can either be reflected, giving rise to a wave
traveling from right to left in Region I, or be transmitted, yielding a wave traveling from left to right in Region II. This solution is
described by the equations above if we set D = 0, implying that there is no wave originating from the far right.
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Since the wavefunction should describe a physical situation, we want it to be a continuous function and with continuous derivative.
Thus we have to match the solution values and their derivatives at the boundary x = 0. This will give equations for the coefficients,
allowing us to find the exact solution of the Schrodinger equation. This is a boundary conditions problem.

From

$1(0) =41 (0) and  ¢3(0) =11, (0)
and D = 0 we obtain the conditions:
A+B=C, ik(A—B)=ik'C
with solutions
kE—F 2k
B=gmw? “Tww
We can further find A by interpreting the wavefunction in terms of a flux of particles. We thus fix the incoming wave flux to be I'

which sets |A| = 4/ ’;—,1; (we can consider A to be a real, positive number for simplicity). Then we have:

_ koW fmT o 2k [mD
k+k 'V RE’ k+k 'V RE

We can also verify the following identity
k|A]” =k|B* +¥|C|?

which follows from:

2
kB2 +K|C|? —ﬁ[k(k—k’f—kk’(zk)?]

+ /

_ KA (k—K)> +4Kk

(k+k)®
Let us multiply it by A/m =:
hk 2 2
A= IBI L ICI

Recall the interpretation of 1 (z) = Ae™** as a wave giving a flux of particles |1,ZJ(:L')| v= |A|2 2k This relationship similarly holds
for the flux in region II as well as for the reflected flux. Then we can interpret the equality above as an equality of particle flux:

The incoming flux I' = %|A|2 is equal to the sum of the reflected I'y = 2 |B| and transmitted 'y = 2£ —1C |? fluxes. The
particle flux is conserved. We can then define the reflection and transmission coeff1c1ents as:

I'=Tg+IT'r=RI'+TT
where

_ kB

k|Al

kE—K\?
(55)’
_ ke
kAP

[ 2k K
\k+tk ) Kk
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It’s then easy to see that T+ R =1 and we can interpret the reflection and transmission coefficients as the reflection and
transmission probability, respectively.

In line with the probabilistic nature of quantum mechanics, we see that the solution of the Schrédinger equation does not give us a
precise location for the particle. Instead it describes the probability of finding the particle at any point in space. Given the
wavefunction found above we can then calculate various quantity of interest, such as the probability of the particle having a given
momentum, position and energy.

Negative Energy

Now we turn to the case where E < Vy, so that AE < 0.. In the classical case we saw that this implied the impossibility for the

ball to be in region II. In quantum mechanics we cannot simply guess a solution based on our intuition, but we need again to solve

the Schrodinger equation. The only difference is that now in region II we have % =FE-Vg<0.
m

As quantum mechanics is defined in a complex space, this does not pose any problem (we can have negative kinetic energies even

if the total energy is positive) and we can solve for k' simply finding an imaginary number k" =ik, k = 271_7;1 (Vug — E) (with k
real).

The solutions to the eigenvalue problem are similar to what already seen:
w[(a:) — Aeikm +Be—ikx
’(,Z)H(Z‘) = Ceik"z = Ceim,
where we took D = 0 as before.

Quantum mechanics allows the particle to enter the classical forbidden region, but the wavefunction becomes a vanishing
exponential function. This means that even if the particle can indeed enter the forbidden region, it cannot go very far, the
probability of finding the particle far away from the potential barrier (given by P(z > 0) = |47 (x)[> = |C|?e~2® becomes
smaller and smaller.

Again we match the function and its derivatives at the boundary to find the coefficients:
¥1(0) =9 (0) > A+B=C
¥7(0) = ¢, (0) = ik(A - B) = —C
with solutions
k—1 2k
L

B: =
k+ik ™’ k+ik

The situation in terms of flux is instead quite different. We now have the equality: k| B> = k| A|? :

k—ik
k+ik

2_ k2+,€2

2 _

In terms of flux, we can write this relationship as I' =I'g , which implies R = 1 and T = 0. Thus we have no transmission, just
perfect reflection, although there is a penetration of the probability in the forbidden region. This can be called an evanescent
transmitted wave.

Finite barrier

We now consider a different potential which creates a finite barrier of height Vi between x = 0 and L. As depicted in Figure 3.2.2
this potential divides the space in 3 regions. Again we consider two cases, where the total energy of the particle is greater or
smaller than Vy. Classically, we consider a ball initially in Region I. Then in the case where
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Figure 3.2.2: Finite barrier potential (CC BY-NC-ND; Paola Cappellaro)
E > Vy the ball can travel everywhere, in all the three regions, while for E < Vy it is going to be confined in Region I, and we have
perfect reflection. We will consider now the quantum mechanical case.
Positive kinetic energy

First we consider the case where AE = E — Vg > 0 . The kinetic energies in the three regions are

Regionl RegionII Region III
h2 k2 h2 k/2 h2 k2
2m 2m 2m
And the wavefunction is
RegionI Region II Region III

Aeikz +Be—ikz Ceik':l: +De—ik’z Eeikz
(again we put the term Fe ** =0 for physical reasons, in analogy with the classical case studied). The coefficients can be
calculated by considering the boundary conditions.

In particular, we are interested in the probability of transmission of the beam through the barrier and into region III. The
transmission coefficient is then the ratio of the outgoing flux in Region III to the incoming flux in Region I (both of these fluxes
travel to the Right, so we label them by R):

2
o MUl MEP|BP
MR kAP AP
while the reflection coefficient is the ratio of the reflected (from right to left, labeled L) and incoming (from left to right, labeled R)
flux in Region I:

p Mvil” _ MBE _|BP
Elgf kAP (AP

We can solve explicitly the boundary conditions:
Yr(0) =411(0) Y11 (L) = (L)
’l,bi,(O) =¢}I(0) IH(L) = /H[(L)

and find the coefficients B, C, D, E (A is determined from the flux intensity I". From the full solution we can verify that T + R = 1,
as it should be physically.

Obs. Notice that we could also have found a different solution, e.g. in which we set F'# 0 and A = 0, corresponding to a particle
originating from the right.
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Negative Energy

In the case where AE = E — Vy < 0 , in region IT we expect as before an imaginary momentum. In fact we find

Regionl RegionII Region III
N e Y e N
And the wavefunction is
RegionlI RegionII Region III

Aeikw +Befikz Ce ke + Der® Eeikx

The difference here is that a finite transmission through the barrier is possible and the transmission coefficient is not zero. Indeed,
from the full solution of the boundary condition problem, we can find as in the previous case the coefficients T and R and we have
T+R=1.

There is thus a probability that the particle tunnels through the finite barrier and appears in Region III, then continuing to x — oo.

Obs. Although we have been describing the situation in terms of wave traveling in one direction or the other, what we are
describing here is not a time-dependent problem. There is no time-dependence at all in this problem (all the solutions are only a
function of x, not of time). This is the same situation as stationary waves for example in a rope. The state of the system is not
evolving. It is always (at any time) described by the same waves and thus at any time we will have the same outcomes and
probability outcomes for any measurement.

Estimates and Scaling

Instead of solving exactly the problem for the second case, we try to make some estimates in the case there is a very small
tunneling probability. In this case we have the following approximations for the coefficients A, B, C and D.

e Assuming T << 1 we expect D #~ 0 since if there is a very small probability for the particle to be in region III, the probability of
coming back from it through the barrier must be even smaller (in other words, if D # 0 we would have an increasing
probability to have a wave coming out of the barrier).

e Also, T < 1 implies R ~ 1. This means that B/A~ 1 or B = A.

e Matching the wavefunction at x = 0, we have C = A + B = 2A.

o Finally matching the wavefunction at x = L. we obtain:

(L) = Ce ™ =24 = B

K|’
B

CKEP B 4|Afe %t
KlAP® AP A

We can then calculate the transmission probability T from 7" = with these assumptions. We obtain

— T =4e 2L

Thus the transmission probability depends on the length of the potential barrier (the longer the barrier the less transmission we
have, as it is intuitive) and on the coefficient k. Notice that x depends on the difference between the particle energy and the
potential strength: If the particle energy is near the edge of the potential barrier (that is, AE ~ 0) then x = 0 and there’s a high
probability of tunneling. This case is however against our first assumptions of small tunneling (that’s why we obtain the unphysical
result that T ~ 4!1). The case we are considering is instead where the particle energy is small compared to the potential, so that x is
large, and the particle has a very low probability of tunneling through.
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3.3: Alpha Decay

If we go back to the binding energy per mass number plot (B/A vs. A) we see that there is a bump (a peak) for A ~ 60 —100.
This means that there is a corresponding minimum (or energy optimum) around these numbers. Then the heavier nuclei will want
to decay toward this lighter nuclides, by shedding some protons and neutrons. More specifically, the decrease in binding energy at
high A is due to Coulomb repulsion. Coulomb repulsion grows in fact as Z2, much faster than the nuclear force which is
proportional to A.

This could be thought as a similar process to what happens in the fission process: from a parent nuclide, two daughter nuclides are
created. In the a decay we have specifically:

A A4
XN — 55X\, o
where « is the nucleus of He —4 : JHe, .

The o decay should be competing with other processes, such as the fission into equal daughter nuclides, or into pairs including >C
or 80 that have larger B/A then .. However a decay is usually favored. In order to understand this, we start by looking at the
energetic of the decay, but we will need to study the quantum origin of the decay to arrive at a full explanation.

4 /7
. ‘He %

a Particle

Image by MIT OpenCourseWare.

Figure 3.3.1: Alpha decay schematics (CC BY-NC-ND; Paola Cappellaro)

Energetics

In analyzing a radioactive decay (or any nuclear reaction) an important quantity is ), the net energy released in the decay:
Q = (mx —myx —my)c? . This is also equal to the total kinetic energy of the fragments, here Q =Ty +T, (here assuming
that the parent nuclide is at rest).

When @ > 0 energy is released in the nuclear reaction, while for ) < 0 we need to provide energy to make the reaction happen. As
in chemistry, we expect the first reaction to be a spontaneous reaction, while the second one does not happen in nature without
intervention. (The first reaction is exo-energetic the second endo-energetic). Notice that it’s no coincidence that it’s called Q. In
practice given some reagents and products, ) give the quality of the reaction, i.e. how energetically favorable, hence probable, it is.
For example in the alpha-decay log (t; /) o ﬁ, which is the Geiger-Nuttall rule (1928).

The alpha particle carries away most of the kinetic energy (since it is much lighter) and by measuring this kinetic energy
experimentally it is possible to know the masses of unstable nuclides.

We can calculate @ using the SEMF. Then:

Q.=B ( ’;*: ]'H) +B(*He) —B($Xn) =B(A—4,Z—2)—B(A, Z)+ B (*He)
We can approximate the finite difference with the relevant gradient:
Qo =[B(A—4,Z-2)—B(A,Z—2)]+[B(A,Z—2)—B(A, Z)] + B (*He) (3.3.1)
0B 0B
~-4— -2—+B(‘H 3.3.2
g 8 i Z Z\ 2Z A%
=28.3 —4a, + 3asA +4a, (1 3A YIE dagm (1 T +3a,A (3.3.3)

Since we are looking at heavy nuclei, we know that Z ~ 0.41 A (instead of Z ~ A/2) and we obtain
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where the second term comes from the surface contribution and the last term is the Coulomb term (we neglect the pairing term,
since a priori we do not know if a,, is zero or not).

Qo ~ —36.68+44.9471/3 1 1.024%/3,

Then, the Coulomb term, although small, makes @ increase at large A. We find that @ > 0 for A = 150, and it is Q ~ 6MeV for A
=200. Although @ > 0, we find experimentally that « decay only arise for A > 200.

Further, take for example Francium-200 (ggOFru;;). If we calculate @, from the experimentally found mass differences we obtain
Q. ~7.6MeV (the product is '%°At). We can do the same calculation for the hypothetical decay into a '>C and remaining
fragment (§35TT107):

A A—12
Q12C =c2 [m (ZXN> —m( 76 vaﬁ) —m(mC’)] ~ 28 MeV

Thus this second reaction seems to be more energetic, hence more favorable than the alpha-decay, yet it does not occur (some
decays involving C-12 have been observed, but their branching ratios are much smaller).

Thus, looking only at the energetic of the decay does not explain some questions that surround the alpha decay:

o Why there’s no >C-decay? (or to some of this tightly bound nuclides, e.g O-16 etc.)
o Why there’s no spontaneous fission into equal daughters?
e Why there’s alpha decay only for A > 2007?

o What is the explanation of Geiger-Nuttall rule? log¢; ;2 o \/%

Quantum mechanics description of alpha decay

We will use a semi-classical model (that is, combining quantum mechanics with classical physics) to answer the questions above.

In order to study the quantum mechanical process underlying alpha decay, we consider the interaction between the daughter nuclide
and the alpha particle. Just prior to separation, we can consider this pair to be already present inside the parent nuclide, in a bound
state. We will describe this pair of particles in their center of mass coordinate frames: thus we are interested in the relative motion
(and kinetic energy) of the two particles. As often done in these situations, we can describe the relative motion of two particles as

/
the motion of a single particle of reduced mass p = ;i’;, (where m' is the mass of the daughter nuclide).

Consider for example the reaction 238U — 2*4Th 4« . What is the interaction between the Th and alpha particle in the bound
state?

o At short distance we have the nuclear force binding the 238U.

e Atlong distances, the coulomb interaction predominates

The nuclear force is a very strong, attractive force, while the Coulomb force among protons is repulsive and will tend to expel the
alpha particle.

Since the final state is known to have an energy Q, = 4.3 MeV, we will take this energy to be as well the initial energy of the two
particles in the potential well (we assume that Q, = E since @ is the kinetic energy while the potential energy is zero). The size of
the potential well can be calculated as the sum of the daughter nuclide (?3*Th) and alpha radii:

R=R +R, =R, ((234)1/3 +41/3) —9.3fm

On the other side, the Coulomb energy at this separation is Vg = €22’ Z,/R =28 MeV > Q, (here Z' = Z — 2 ). Then, the
particles are inside a well, with a high barrier (as Voo > @) but there is some probability of tunneling, since Q > 0 and the state
is not stably bound.

Thus, if the parent nuclide, 28U, was really composed of an alpha-particle and of the daughter nuclide, 23*Th, then with some
probability the system would be in a bound state and with some probability in a decayed state, with the alpha particle outside the
potential barrier. This last probability can be calculated from the tunneling probability Pt we studied in the previous section, given

by the amplitude square of the wavefunction outside the barrier, Py = [t) (Rou)|” .

How do we relate this probability to the decay rate?

https://phys.libretexts.org/@go/page/25705



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25705?pdf

LibreTextsw

We need to multiply the probability of tunneling Pt by the frequency f at which 233U could actually be found as being in two
fragments 2>*Th + a (although still bound together inside the potential barrier). The decay rate is then given by Ao, = fPr.

To estimate the frequency f, we equate it with the frequency at which the compound particle in the center of mass frame is at the
well boundary: f =wv;, /R, where vy, is the velocity of the particles when they are inside the well (see cartoon in Figure 3.3.3).
We have %mvfn = Qq +Vy = 40MeV , from which we have v;, ~ 4 x 10*2fm/s . Then the frequency is f ~ 4.3 x 10%.

10. MeV

: Vz
s
Qu

R

60

Nucleus-a separation (fm)

Figure 3.3.2: Potential well for alpha decay tunneling. The inner radius is R while the intersection of @, with the potential is Rc>
(not to scale). (CC BY-NC-ND; Paola >Cappellaro>)

Lab frame Center of mass frame

parent

Compo

daughter

Figure 3.3.3: Positions of daughter and alpha particles in the nucleus, as seen in (left) the laboratory frame and (right) in the center

of mass frame. When the relative distance is zero, this correspond to a undivided (parent) nuclide. When the relative distance is R,

it corresponds to a separate alpha and daughter nuclide inside the nucleus. (CC BY-NC-ND; Paola Cappellaro)
The probability of tunneling is given by the amplitude square of the wavefunction just outside the barrier, Pr = |4 (R.)|*, where
R, is the coordinate at which Voow (R.) = Qa , such that the particle has again a positive kinetic energy:

2,7
Qa

Recall that in the case of a square barrier, we expressed the wavefunction inside a barrier (in the classically forbidden region) as a
plane wave with imaginary momentum, hence a decaying exponential ¥;, (r) ~ e~*" . What is the relevant momentum fix here?
Since the potential is no longer a square barrier, we expect the momentum (and kinetic energy) to be a function of position.

R. = ~ 63fm

The total energy is given by £ =), and is the sum of the potential (Coulomb) and kinetic energy. As we’ve seen that the
Coulomb energy is higher than @), we know that the kinetic energy is negative:

h2k? n Z,7'e?
r

Qo =T +Veou=

with p the reduced mass
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and k*> = —k%(with\ (k € R). This equation is valid at any position inside the barrier:

<) = B Vo) Q) = \/ (2= -a)

If we were to consider a small slice of the barrier, from r to 7+ dr, then the probability to pass through this barrier would be
dPr(r) =e 28" 1f we divide then the total barrier range into small slices, the final probability is the product of the
probabilities dP} of passing through all of the slices. Then log(Pr) =3, log(dP}) and taking the continuous limit

log(Pr) = [i° log[dPr(r)] = =2 [ x(r)dr.

Finally the probability of tunneling is given by Py = e 2¢ | where G is calculated from the integral

Re Re 2 [ ZoZ'e?
G’—/R drk(r) —/R dr\/ﬁ ( . —Qa)

ZoZ'e?
Qa

Zo Zye? 2,uc2/1 1
G= (e dy,[=—1
ke Qo Jr/Re Ny
Zo7'e?  [2uc? R R R Z,7'e® [2uct w R
T e [af““(\/z)‘\/m/l‘z “he a2 \(R

where to simplify the notation we used the function
2 2
g(z)=— (arccos(w) —zy/1—x ) .
m

We can solve the integral analytically, by letting r = R.y =y , then

which yields

Finally the decay rate is given by

where G is the so-called Gamow factor.

In order to get some insight on the behavior of G we consider the approximation R < R:

oLl [Ec RY 1 /B |, 4 R
2V o \WR. | T2\ Q. =\ R,

where Eg is the Gamow energy:

Eq = (_27rZaZe2 )2 ”_62

R.
exponent is thus a large number, giving a very low tunneling probabily: e 2¢ =89 =4 x 107% . Then, \y =1.6 10" s or
t1/2 =4.5 % 10° years, close to what observed.

For example for the 238U decay studied Eg = 122, 000MeV (huge!) so that /Eg/Qs = 171 while g( i) ~0.518. The

These results finally give an answer to the questions we had regarding alpha decay. The decay probability has a very strong
dependence on not only ), but also on Z,Z; (where Z; are the number of protons in the two daughters). This leads to the following
observations:

o Other types of decay are less likely, because the Coulomb energy would increase considerably, thus the barrier becomes too
high to be overcome.
o The same is true for spontaneous fission, despite the fact that ) is much higher (~ 200MeV).
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o We thus find that alpha decay is the optimal mechanism. Still, it can happen only for A > 200 exactly because otherwise the
tunneling probability is very small.

o The Geiger-Nuttall law is a direct consequence of the quantum tunneling theory. Also, the large variations of the decay rates
with @ are a consequence of the exponential dependence on Q).

A final word of caution about the model: the semi-classical model used to describe the alpha decay gives quite accurate predictions
of the decay rates over many order of magnitudes. However it is not to be taken as an indication that the parent nucleus is really
already containing an alpha particle and a daughter nucleus (only, it behaves as if it were, as long as we calculate the alpha decay
rates).

This page titled 3.3: Alpha Decay is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola Cappellaro
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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4.1: Bound Problems

In the previous chapter we studied stationary problems in which the system is best described as a (time-independent) wave,
“scattering” and “tunneling” (that is, showing variation on its intensity) because of obstacles given by changes in the potential
energy.

Although the potential determined the space-dependent wavefunction, there was no limitation imposed on the possible
wavenumbers and energies involved. An infinite number of continuous energies were possible solutions to the time- independent
Schrédinger equation.

In this chapter, we want instead to describe systems which are best described as particles confined inside a potential. This type of
system well describe atoms or nuclei whose constituents are bound by their mutual interactions. We shall see that because of the
particle confinement, the solutions to the energy eigenvalue equation (i.e. the time- independent Schrodinger equation) are now
only a discrete set of possible values (a discrete set os energy levels). The energy is therefore quantized. Correspondingly, only a
discrete set of eigenfunctions will be solutions, thus the system, if it’s in a stationary state, can only be found in one of these
allowed eigenstates.

We will start to describe simple examples. However, after learning the relevant concepts (and mathematical tricks) we will see how
these same concepts are used to predict and describe the energy of atoms and nuclei. This theory can predict for example the
discrete emission spectrum of atoms and the nuclear binding energy.

Energy in Square infinite well (particle in a box)

The simplest system to be analyzed is a particle in a box: classically, in 3D, the particle is stuck inside the box and can never leave.
Another classical analogy would be a ball at the bottom of a well so deep that no matter how much kinetic energy the ball possess,
it will never be able to exit the well.

We consider again a particle in a 1D space. However now the particle is no longer free to travel but is confined to be between the
positions 0 and L. In order to confine the particle there must be an infinite force at these boundaries that repels the particle and
forces it to stay only in the allowed space. Correspondingly there must be an infinite potential in the forbidden region.

Thus the potential function is as depicted in Figure 4.1.2: V(x) = o for x < 0 and x > L; and V(x) = 0 for 0 < x < L. This last
condition means that the particle behaves as a free particle inside the well (or box) created by the potential.

V(x)

_

—

X
Figure 4.1.1: Potential of an infinite well (CC BY-NC-ND; Paola Cappellaro)
We can then write the energy eigenvalue problem inside the well:
K2 8w, (x)
2m  Oz?

Outside the well we cannot write a proper equation because of the infinities. We can still set the values of w,, () at the boundaries
0, L. Physically, we expect w,(z) =0 in the forbidden region. In fact, we know that ¢)(z) = 0 in the forbidden region (since the
particle has zero probability of being there)S. Then if we write any %(z) in terms of the energy eigenfunctions,
P(x) =3, chwn () this has to be zero Ve, in the forbidden region, thus the wj, have to be zero.

H

= E,wy(z)

wy] =

7.

At the boundaries we can thus write the boundary conditions
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We can solve the eigenvalue problem inside the well as done for the free particle, obtaining the eigenfunctions

w{n(x) _ Alezknz +Ble—zknac’

h2K2

n

with eigenvalues E, = <-=.
m

It is easier to solve the boundary conditions by considering instead:
wy(z) = Asin(kp,z) + Bcos(k,z)
We have:
wp(0)=Ax0+Bx1=B=0
Thus from w,, (0) = 0 we have that B = 0. The second condition states that
wy (L) = Asin(k,L) =0

The second condition thus does not set the value of A (that can be done by the normalization condition). In order to satisfy the
condition, instead, we have to set
nmw

L: = —_—
k., nr — k, T

for integer n. This condition then in turns sets the allowed values for the energies:

Kh2k2 R2r2
T 2m  2mlL?

n n? = E;m2

2.2
where we set F; = 2h ’]’Lz and n is called a quantum number (associated with the energy eigenvalue). From this, we see that only
m.

some values of the energies are allowed. There are still an infinite number of energies, but now they are not a continuous set. We
say that the energies are quantized. The quantization of energies (first the photon energies in black-body radiation and photo-
electric effect, then the electron energies in the atom) is what gave quantum mechanics its name. However, as we saw from the
scattering problems in the previous chapter, the quantization of energies is not a general property of quantum mechanical systems.
Although this is common (and the rule any time that the particle is bound, or confined in a region by a potential) the quantization is
always a consequence of a particular characteristic of the potential. There exist potentials (as for the free particle, or in general for
unbound particles) where the energies are not quantized and do form a continuum (as in the classical case).

6 Note that this is true because the potential is infinite. The energy eigenvalue function (for the Hamiltonian operator) is
always valid. The only way for the equation to be valid outside the well it is if w, (z) = 0.

7 Note that in this case we cannot require that the first derivative be continuous, since the potential becomes infir boundary. In
the cases we examined to describe scattering, the potential had only discontinuity of the first kind.
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Figure 4.1.2: Quantized energy levels (E, for n = 0 — 4) in red. Also, in green the position probability distribution |w,, (z) |2 (Cc
BY-NC-ND; Paola Cappellaro)

Finally we calculate the normalization of the energy eigenfunctions:

/d$|wn|—1—>/Asmkw = A_1 A= /%

Notice that because the system is bound inside a well defined region of space, the normalization condition has now a very clear
physical meaning (and thus we must always apply it): if the system is represented by one of the eigenfunctions (and it is thus
stationary) we know that it must be found somewhere between 0 and L. Thus the probability of finding the system somewhere in

that region must be one. This corresponds to the condition fOL p(z)dz =1 or fOL |9 (x)*dz =1.

[2 h2m?
wy(x) = fsinknm, knan—Tr, E, = 2m7;2n2

Now assume that a particle is in an energy eigenstate, that is ¥(z) = wy, (z) for some n: ¢¥(z) = \/E s1n( “IZ) . We plot in Figure

Finally, we have

4.1.3 some possible wavefunctions.

i ‘ Tl
Ay
054 /‘
-m.\‘ I ‘ | ‘m I M‘ | Lu ‘ W

Figure 4.1.3: Energy eigenfunctions. Blue: n=1, Mauve n=2, Brown n=10, Green n=100 (CC BY-NC-ND; Paola Cappellaro)

Consider for examplen =1

Exercise 4.1.1

What does an energy measurement yield? What is the probability of this measurement?

Answer

(E = 22 with probability 1)
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Exercise 4.1.2

what does a postion measurement yield? What is the probability of finding the particle at 0 < x < L? and at x = 0, L?

Exercise 4.1.3

What is the difference in energy between n and n + 1 when n — ? And what about the position probability |'wn|2 at large n?
What does that say about a possible classical limit?

Answer

In the limit of large quantum numbers or small deBroglie wavelength A o< 1/k on average the quantum mechanical
description recovers the classical one (Bohr correspondence principle).

Finite Square Well

We now consider a potential which is very similar to the one studied for scattering (compare Figure 3.2.2 to Figure 4.1.4), but that
represents a completely different situation. The physical picture modeled by this potential is that of a bound particle. Specifically if
we consider the case where the total energy of the particle E, < 0 is negative, then classically we would expect the particle to be
trapped inside the potential well. This is similar to what we already saw when studying the infinite well. Here however the height
of the well is finite, so that we will see that the quantum mechanical solution allows for a finite penetration of the wavefunction in
the classically forbidden region.

Exercise 4.1.4

What is the expect behavior of a classical particle? (consider for example a snowboarder in a half-pipe. If she does not have
enough speed she’s not going to be able to jump over the slope, and will be confined inside)

| V(x)

E1=+E
-a a X

E,=-E

%k
Figure 4.1.4: Potential of a finite well. The potential is non-zero and equal to —Vy in the region —a < x < a. (CC BY-NC-ND; Paola
Cappellaro)

For a quantum mechanical particle we want instead to solve the Schrodinger equation. We consider two cases. In the first case, the
kinetic energy is always positive:

2
G E+y(z)in RegionI

2m  dz?

2d? 2 g
Hp(z) = — mda? Y(z) +V(z)y(z) = Ey(z) — —;L—m % = (E+Vg)y(x) in RegionII

_ B2 A Ev(z) in Region I1I

2m  dz?

so we expect to find a solution in terms of traveling waves. This is not so interesting, we only note that this describes the case of an
unbound particle. The solutions will be similar to scattering solutions (see mathematica demonstration). In the second case, the
kinetic energy is greater than zero for |z| < a and negative otherwise (since the total energy is negative). Notice that I set E to be a
positive quantity, and the system’s energy is —E. We also assume that E < V. The equations are thus rewritten as:
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‘Z; ddwz(Z = —Ey(z) in RegionI
2d2 :
Hip(z) = — 2mdaz? Y(z) +V(e)h(z) = By(z) > § —L a’ 12:; — (Vi — E) ¥() in Region II
’ij ddtz = —E%(x) in Region I1I

Then we expect waves inside the well and an imaginary momentum (yielding exponentially decaying probability of finding the
particle) in the outside regions. More precisely, in the 3 regions we find:

Regionl RegionII Region III
K =ik, R A
o — 72;2)32 _ 2;;1215 2m(‘;1;fE) o — 2;an

Figure 4.1.5: cot z (Red) and z cot z (Black) (CC BY-NC-ND; Paola Cappellaro)

And the wavefunction is

Regionl
Cle—nlxl

RegionII
Al eikac 4 B e—ikac

Region III
D/e—KXE

(Notice that in the first region I can write either C’e I?l or C'e"*. The first notation makes it clear that we have an exponential

decay). We now want to match the boundary conditions in order to find the coefficients. Also, we remember from the infinite well
that the boundary conditions gave us not the coefficient A, B but a condition on the allowed values of the energy. We expect
something similar here, since the infinite case is just a limit of the present case.

First we note that the potential is an even function of x. The differential operator is also an even function of x. Then the solution
has to either be odd or even for the equation to hold. This means that A and B have to be chosen so that 1)(z) = A’e** + B'e~ikz
is either even or odd. This is arranged by setting ¢(z) = A cos(kz) [even solution] or ¢ (z) = Asin(kz) [odd solution]. Here I

choose the odd solution, ¥(—z) = —(z). That also sets C’ = —D' and we rewrite this constant as —C' = D' =C'.
We then have:
RegionI RegionII Region IT1
PY(z)=—Cer*  p(x) = Asin(kx) Y(z) =Ce "
Y(z)=—kCe™ (z)=kAcos(kz) '(z)=-rCe ™
Since we know that ¢(—z) = —(z) (odd solution) we can consider the boundary matching condition only at x = a.

The two equations are:
{ Asin(ka) = Ce=*e
Akcos(ka) = —kCe™

Substituting the first equation into the second we find: Akcos(ka) = —kAsin(ka) . Then we obtain an equation not for the
coefficient A (as it was the case for the infinite well) but a constraint on the eigenvalues &k and «:

= —kcot(ka)
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This is a condition on the eigenvalues that allows only a subset of solutions. This equation cannot be solved analytically, we thus
search for a solution graphically (it could be done of course numerically!).

To do so, we first make a change of variable, multiplying both sides by a and setting ka = z, ka = z; . Notice that 22 = Imk 2
3
— 2
and 22 = Wtﬁ. Setting 27 = % ,wehave 22 = 22 — 22 orka = 4/22 —22 . Then we can
: ka tan(ka
ka cot(ka) ! (ka)
2n 3n i ka

|  Nzg%(ka)?

\

RN Arans

Figure 4.1.6: Graphic solution of the eigenvalue equation. Left: odd solutions; Right: even solutions. The red curves of different
tone are the function — /2% — 2% (left) or 4/22 — 2% (right) for different (increasing) values of zo. Crossings (solutions) are
marked by a black dot. (CC BY-NC-ND; Paola Cappellaro)

Region| Regipn i | Region Ii

Figure 4.1.7: Left: Odd solution for the finite barrier potential, for two potential depth. Ground state of the wavefunction. The
wavefunction is a sinusoidal in Region II (Black) and an exponential decay in regions I and III (Blue). Notice that for the shallower
potential (dashed lines) the wavefunction just barely “fit” inside the well. Right: Odd solution, for larger k& vector (higher quantum
number), allowing two oscillations. (CC BY-NC-ND; Paola Cappellaro)

rewrite the equation ka = —ka cot(ka) — z; = —zcot(2) as /22 —z2 = —zcot(z), or:

22— 2" = —zcot(z)

This is a transcendental equation for z (and hence E) as a function of zj, which gives the depth of the well (via Vy). To find

solutions we plot both sides of the equation and look for crossings. That is, we plot y1(z) = —4 /22 — 22 , which represent a quarter

. o . IV
circle (as z is positive) of radius zg = % and y2(2) = zcot(2) .

X Observation 1

The coefficient A (and thus C and D) can be found (once the eigenfunctions have been found numerically or graphically) by
imposing that the eigenfunction is normalized.

X Observation 2

Notice that the first red curve never crosses the blue curves. That means that there are no solutions. If zy < 7/2 there are no

2
solutions (That is, if the well is too shallow there are no bound solutions, the particle can escape). Only if Vg > # %2 there’s

a bound solution.
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X Observation 3

There’s a finite number of solutions, given a value of z; > /2. For example, for 7/2 < zy < 3m/2 there’s only one solution,
2for3m/2 < zg < 57/2, etc.

Remember however that we only considered the odd solutions. A bound solution is always possible if we consider the even

solutions., since the equation to be solved is
ka = katan(ka) = /22 — 2%.

Importantly, we found that for the odd solution there is a minimum size of the potential well (width and depth) that supports bound

states. How can we estimate this size? A bound state requires a negative total energy, or a kinetic energy smaller than the potential:
272

Eyin = % < Vg . This poses a constraint on the wavenumber k and thus the wavelength, A = 2—k” .

27h
\/2mVH

However, in order to satisfy the boundary conditions (that connect the oscillating wavefunction to the exponentially decay one) we
need to fit at least half of a wavelength inside the 2a width of the potential, %)\ < 2a. Then we obtain

A>

L I

‘\

‘-\-
-

I
A
I

1
1
\
[l
\ 1
\ !
;
VT
Vi
VB
VEo
(Y]
VEr

7

- - -

Figure 4.1.8: Even solution for the finite barrier potential. The wavefunction is o cos(kz) in Region II (Black) and an exponential

decay in regions I and IIT (Blue). Left: any wavefunction can “fit” in the well and satisfy the boundary condition (there’s no

minimum well depth and width). Right, wavefunction with a higher quantum number, showing two oscillations a relationship
between the minimum potential depth and width

2 2
2R <o o Vs T

kY4 2mVH ma2 8

Although we solved a 1D problem, the square well represents a 3D problem as well. Consider for example a spherical well in 3D:
The potential is zero inside a region of radius a and is Vy for r > a. Then we can rewrite the timeindependent Schrodinger equation
in 3D for this potential in spherical coordinates and use separation of variables ({r, ", ¢}). Because of symmetry, the wavefunction
is a constant in ¥ and ¢, thus we will have to solve just a single differential equation for the radial variable, very similar to what
found here. We must then choose the odd-parity solution in order to obtain a finite wavefunction at r = 0. Thus in 3D, only the odd

solutions are possible and we need a minimum potential well depth in order to find a bound state. (CC BY-NC-ND; Paola
Cappellaro)

This page titled 4.1: Bound Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola Cappellaro
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: Quantum Mechanics in 3D - Angular momentum
Schrédinger equation in spherical coordinates
We now go back to the time-independent Schrédinger equation

(_h—2v2 +V(z,y, z)) P(z) = EY(z)

2m

We have already studied some solutions to this equations — for specific potentials in one dimension. Now we want to solve QM
problems in 3D. Specifically, we look at 3D problems where the potential V' (Z) is isotropic, that is, it only depends on the distance
from the origin. Then, instead of using cartesian coordinates Z = {z, v, z}, it is convenient to use spherical coordinates

Z={r9,0}:

x =rsind cosp r=./ 2% +y?+22
y=rsindsinp & ﬂ:arctan(z/\/m)

z =7rcos? Y= arctan(y/aj)

Figure 4.2.1: Spherical Coordinates (CC BY-NC-ND; Paola Cappellaro)

First, we express the Laplacian V? in spherical coordinates:

Cr2 or or r2singd 09 09 r2sin® 9 Op?
To look for solutions, we use again the separation of variable methods, writing ¥ (Z) = ¥(r, 9, ¢) = R(r)Y (9, ¢):

R2[Y d [ ,dR R 0 /(. .0Y R 9%
- 2m |:1~2 dr (T dr ) + r2sing 09 <51n19 619) + r2sin? 9 Op? ] +V(r)RY = ERY

We then divide by RY/r? and rearrange the terms as

R2[1 d [ ,dR ) R? 1 8 (. 8y 1 8%
“om [E%(’" d_)} r (V_E)_W[M%(Smﬁ%) +ﬁw]

Each side is a function of r only and ¥, ¢, so they must be independently equal to a constant C that we set (for reasons to be seen

later) equal to C' = f%l (I+1) . We obtain two equations:

1d/(,dR 2mr? B

and

5 = —(+1)Y

1 i . ﬂa_Y 1 8%
sind 99 \° sin? 9 dp?

This last equation is the angular equation. Notice that it can be considered an eigenvalue equation for an operator
2
L0 (sinﬁ%) —1—%3— What is the meaning of this operator?
S1.

sind 09 29 0%
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Angular momentum operator

We take one step back and look at the angular momentum operator. From its classical form L =7 xp we can define the QM
operator:

~
~ —

Xp=—ir xV

<S>

L p—
In cartesian coordinates this reads
=  n I . 9 9
Ly =yp.—p,z =—ih (ya— - 3—yZ)

- sa A . 8
L,=zp, —p,z2=—ih (25 — Ez)
L,

Some very important properties of this vector operator regard its commutator. Consider for example [Lz, Ly] :

|:Lw7Ly:| = [:&ﬁz _ﬁyzAa éﬁw _ﬁzi] = [gﬁzv gﬁx] - [ﬁyz, zﬁx] - [:&ﬁzaﬁzi] + [ﬁygaﬁzi]
Now remember that [z;, ;] = [p;, p;] =0 and [x;, p;] =id;;. Also [AB, C] = A[B, C] +[A, C|B. This simplifies matters a lot

By performing a cyclic permutation of the indexes, we can show that this holds in general:

[za, ﬁ,,] — ikl

Since the different components of the angular momentum do not commute, they do not possess common eigenvalues and there
is an uncertainty relation for them. If for example I know with absolute precision the angular momentum along the z direction,
I cannot have any knowledge of the components along x and y.

Exercise 4.2.1

What is the uncertainty relation for the x and y components?

ALALy > ZI(L)

Exercise 4.2.2

Assume we know with certainty the angular momentum along the z direction. What is the uncertainty in the angular
momentum in the x and y directions?

Answer

From the uncertainty relations, AL, AL, > %|<Ly)| and AL,AL, > %|(Lw>|, we have that if AL, =0 (perfect
knowledge) then we have a complete uncertainty in L, and L.

Consider the squared length of the angular momentum vector f}2 = f}i +f}§ —1—133 . We can show that [f}a, f/Z] =0 (for

a ={z,y, z}). Thus we can always know the length of the angular momentum plus one of its components.
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For example, choosing the z-component, we can represent the angular momentum as a cone, of length (L), projection on the z-
axis (L,) and with complete uncertainty of its projection along x and y.

We now express the angular momentum using spherical coordinates. This simplifies particularly how the azimuthal angular
momentum L, is expressed:

L, =ik (Simp% +Cot19cos<p%) ,

j}y =—ih (cosgo% —cott?singo%) ,

~2
The form of L should be familiar:

5 1 0 d 1 &
L" = —h? oo (sind— | + ———
[smﬂ 9 (Sm a«s) pe Bsoz]

37

Figure 4.2.2: Graphical representation of the angular momentum, with fixed L. and L?, but complete uncertainty in L, and L.
(CC BY-NC-ND; Paola Cappellaro)

as you should recognize the angular part of the 3D Schrédinger equation. We can then write the eigenvalue equations for these two
operators:

1809, 0) = R+ 1)2(9, )
and
L.2(9,¢) = hm. (9, )
where we already used the fact that they share common eigenfunctions (then, we can label these eigenfunctions by ! and
m; : @y m (9, ).

The allowed values for [ and m, are integers such that [/ =0,1,2,...and m, = —I[,...,l—1,[. This result can be inferred from
the commutation relationship. For interested students, the derivation is below.

Derivation of the eigenvalues. Assume that the eigenvalues of L? and L, are unknown, and call them A and p. We introduce two
new operators, the raising and lowering operators L, =L, +4L, and L_ =L,—4L,. The commutator with L, is
[L.,L.] =+hL. (while they of course commute with L.%). Now consider the function f. = L. f, where f is an eigenfunction of
LZand L,:

L*fe =L L*f =L Af=M\fs
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and

L.fe =[L;, L) f+LiL.f =3hL.f+Lipf=(pth)fs

Then f. = L. f is also an eigenfunction of L? and L. Furthermore, we can keep finding eigenfunctions of L. with higher and
higher eigenvalues ' = u+h+h+... , by applying the L, operator (or lower and lower with L_), while the L eigenvalue is
fixed. Of course there is a limit, since we want ¢’ < . Then there is a maximum eigenfunction such that L, fa; =0 and we set
the corresponding eigenvalue to fily;. Now notice that we can write L? instead of by using L, byusing L:

L*=L L, +L2+hL,
Using this relationship on fj; we find:
L*fo=Mfm — (L-Ly+L2+AL,) far=[0+R°E, +h(Bly)] fu — A=R’lu(u+1)

In the same way, there is also a minimum eigenvalue [,, and eigenfunction s.t. L_ f,, =0 and we can find A = K2l (ln—1).
Since X is always the same, we also have I, (I,, —1) =57 (Ips +1) , with solution I, = —I; (the other solution would have
l;n, > lpr). Finally we have found that the eigenvalues of L, are between 4kl and —hl with integer increases, so that [ = -1+ N
giving [ = N/2: that is,  is either an integer or an half-integer. We thus set A = h2l(I+1) and = hm,m = —I, -1 +1,...,1.0

We can gather some intuition about the eigenvalues if we solve first the second equation, finding

6q>l,m

—ih 5 =hm,®(9,9), Bna(D,p)=0,(0)e™*

where, because of the periodicity in ¢,m, can only take on integer values (positive and negative) so that
Py, (19, Y+ 27‘(‘) = ‘I’lm(’ﬂ, ga) .

If we solve the first equation, we would find for each eigenvalue [ there are many eigenfunctions. What is the degeneracy of the
eigenvalue [? We know that given [,m, can take many values (between —I and [), in particular 2] + 1 values. This is the
degeneracy of [.

Exercise 4.2.3

What are the possible values of IA@ ifI=7and m, = 5?

We know that we can define quantum numbers m,,) such that they take integer numbers m,

y=—1...,1—1,1. Also, we have
the relation among the expectation values:

(L) = (Lot Ly+L2) > 10+ 1) =m2 + (L7 + Ly ) /B2
so in general
<zi> <R[I1+1)—m?]
Then here we have

<Li> < R2(56 — 25) = 31K?

If I:z could only take its maximum value (with probability one) we would have < =Y PL2,=L2 . thus we have

i;
— ~2 ~2
Lz max < bh (with 5 the closest integer to 4/31). Often, because of symmetry, we have <Lm> = <Ly> and,

(£2) =1 [10+1)=m2] /2

thus restricting even further the maximum value of L.
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Spin angular momentum

The quantization of angular momentum gave the result that the angular momentum quantum number was defined by integer values.
There is another quantum operator that has the same commutation relationship as the angular momentum but has no classical

counterpart and can assume half-integer values. It is called the intrinsic spin angular momentum S (or for short, spin). Because it is
not a classical properties, we cannot write spin in terms of position and momentum operator. The spin is defined in an abstract spin
space (not the usual phase space). Every elementary particle has a specific and immutable value of the intrinsic spin quantum

2

number s (with s determining the eigenvalues of S , h2s(s +1)), which we call the spin of that particular species: pi mesons have
spin 0; electrons have spin 1/2; photons have spin 1; gravitons have spin 2; and so on. By contrast, the orbital angular momentum
quantum number [ of a particle can a priori take on any (integer) value, and [ will change when the system is perturbed.

The eigenvectors of the spin operators are not spherical harmonics. Actually, since the spin is not defined in terms of position and
momentum, they are not a function of position and are not defined on the usual phase space. The eigenstates are instead described
by linear vectors, for example, two-dimensional vectors for the spin—%. Thus the operators will be as well represented by matrices.

We already saw the operators describing the spin—% operators and we even calculated their eigenvalues and eigenvectors (see
section 2.2).

We can then also define the total angular momentum, which is the sum of the usual angular momentum (called the orbital angular
momentum) and the spin:

J=L+8§

What is the meaning of the sum of two angular momentum operators and what are the eigenvalues and eigenfunctions of the
resulting operators?

Addition of angular momentum

We have seen above that any elementary particle posses an intrinsic spin. Then, we can always define the total angular momentum
as the sum of the orbital angular momentum and the intrinsic spin. This is an example of addition of angular momentum. Then of
course we could also consider two distinct particles and ask what is the total orbital angular momentum of the two particles (or of
more particles). There are thus many cases of addition of angular momentum, for example:

LJ=L+§

3.0 = J1+Js = L1+ 8 +Ls+5
4.5 =8 +85+5s

5.

Consider for example the second case. A possible state of the two particles can be described by the eigenvalues/eigenfunctions of
each particle angular momentum. For example we could specify I; and m} as well as I and m? (I will from now on just write m;
and m} etc.). Then a state could be for example written in Dirac’s notation as |l;, m1, l2,m2). This however does not tell us
anything about the total system and its angular momentum. Sometime this quantity is more interesting (for example if the two
particles are interacting, their total angular momentum is bound to determine their energy, and not the state of each particle alone).

Coupled and uncoupled representations
The sum of angular momentum satisfy the general commutation rules, [L2, Lz] =0,[Ly, Ly] =iL, etc. We can then also define

the eigenvalues (and eigenfunctions) of the total angular momentum f/, for example [ (for L2) and m (for L,). However, since we
only have 2 quantum numbers, we expect the eigenfunctions to be degenerate and we still need to find two more quantum numbers.
Equivalently, what we need to do is to find a complete set of commuting observables, such that an eigenfunction (common to all
these observables) is well defined —no ambiguity in it— by the set of eigenvalues (or quantum numbers) of the observables.

The first question we can ask is : are these eigenfunctions going to be in common with the single particle operators? To determine
this, we need to look at the commutation of the operators.

Now we know that [L?, L.1| = 0, but what about [L?, L. ]?
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We first express L2 explicitly: L? =

2

El + i2 = L% + Lg + 2E1 . Eg . Then the commutator is:

[L*,L.1] = [L3+ L2 +2 (Ly1La2 + Ly Lyo + LLL2) L, 1]
=[2(LopLop+LyaLy2), Lan] =20 (Ly1Lap — Ly Ly 2) # 0
Thus the two operators do not commute and do not share common eigenfunctions. What about L3?

[L*,L%] = [L2+ L2 +2 (Ly1 Ly + Ly Ly + LLL2) , L] =0

since [Lf, La,l] = 0. This means that there are common eigenfunctions of Lf

, Lg, L? and L,. These operators are a complete set
of commuting observables. An eigenfunction is thus well defined by the set of eigenvalues I, m,[; and [z and we can write the

eigenstates as ¥y, 1. 1, or |1, m, l1, I2).

There are then two possible representations of the combined system (two possible basis to represent a general state):

Representation Eigenstates Complete set of commuting observables
Uncoupled 11, m1,lo, ma), L3,L3,L; and Ly,
Coupled |1, m,li,l), L3, L3, L*and L,

How do we go from one basis to the other? As usual this is done by expressing each vector in one basis as a linear combination of
vectors in the other basis:

‘l7m7l17l2> = Z cinl,mz |l1’m17l27m2>

mi,m2
Notice that since the total angular momentum in the z direction must be m, we limit the sum to terms s.t. m; +mo =m .
. . ]
What are the coefficients ¢, m,?

Since the two representations are two orthogonal basis, we have that (l’l, mi, L, m, | 1, m1,ls, my) =0 unless all the indexes are
equal. Then the coefficient can be calculated (as usual!) from the inner product of |l;, my, 1, my) and |I,m, 11, 15):

nymy, = (L, ma, lo,ma | Lmy 1, 1)
These coefficients are called the Clebsch-Gordon coefficients.

Addition rules: Two particles
In describing the energy levels of atoms and nuclei it is very convenient to be able to find the allowed values of (I, m) given the

A2
values of (I1,l2) for two given particles (e.g. electrons, protons or neutrons). Indeed, we saw that the operator L appears in the
Hamiltonian of the system. Thus its eigenvalue A21(l + 1) will be important in determining the system energy.

Even if we cannot fix the value of [ if we only know l;, m1,ls and my we can at least restrict the possible values of I. In order to
do so, one has to analyze the possible maximum length of the total angular momentum and the degeneracy of the eigenvalues.

1. Maximum [: For two particles with quantum numbers /; and /s we know that in the coupled representation we cannot fix the
values of m; and my. However, we know that given /; and [ only some values of m; and my are allowed (e.g.
my = —ly, -1l +1,...,1; . Then the maximum values of m; and ms are m; =1I; and ms =I5 . This also determines the
maximum value of m : M. =13 + 12 . But m itself can only take values m = —1I,...,1—1,1.
Then the maximum value of 1 is Myax = lmax -
Thus, what we just proved is that ] <1y +15 .
2. Minimum /: To find the minimum ! value we need to look at the degeneracy of the state |, m, l1, l2). Since this state could be
also written (in the uncoupled representation) as Zml +my=m Chnymy |11, M1, la, m2), the degeneracy of the state must be the
same. What are the two degeneracies?

We know that for a given angular momentum operator L with total angular momentum quantum number [, there are 21 + 1
states with the same angular momentum A21(1 +1).
Then, considering the uncoupled representation we have D = (21; +1) (2l3 +1) possible states with I; and I5. In the coupled

representation instead we have to consider all the states that have an allowed [ : D = Zf;ﬁfn (21 +1) . We want these two
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(K+1

quantities to be equal Now remember that Zle k= . Then ZZIHZ Q2l+1)=01+0hL+ l2) —12,, ,sothat

Boo=(1+h+1) 2 — 2L +1) (2l +1) = (Il —1y) 2
Using the degeneracy condition we thus proved that I > |I; — 5] .

The addition rule states thus that

| The total angular momentum quantum number is bounded by |I; —lo| <1 <1y +1y

v/ Example 4.2.1

Consider two spins-1/2 particles (for example two electrons with zero orbital angular momentum). Since we choose spin—% we
have only 1 possible value s = % and two values for m, : m, = £35 L 'We can omit writing explicitly the s quantum number
(since it’s always +, and we write [+£,+3) = [+3) and [+, ——> =|-3) - A basis for the uncoupled representation is

then given by:

[+3,+3,+3,+3) = |+3,+
[+, 43,48, -2 =4, -

'+%’ 2’+2’+ >_' 2’""%
b =4 b

Nalb—l =

)
)

317m1752am2> =

Consider now the coupled representation. The possible values for s are 1 or 0. In the first case, we have 3 possible values for m
= -1, 0, 1. While the second only has m = 0. Again, since the values of s; and s» are fixed we do not write them:

00;272 :|0a0>
y_]bL 23 =1L -1)
s,m, 81,82) =
10,272 =11,0)
1,1,1,1y=|1,1)

In this particular example it is easy to calculate the Clebsch-Gordon coefficients and we find the relations between the two
representations:

|0’0> =

3
I1,-1) = |_%’_%>
U GO e
|1,0>: ‘ 2 2>\/§| 2 2>
L= |+5+3)

Addition rules: many particles

The addition rules can be generalized to many particles, by just repetitively applying the two-particle rules. We then find for N

particles:
d lmax N lk
b lmm = max {0 2lN max}

where Iy is the largest of the {lj}.

This page titled 4.2: Quantum Mechanics in 3D - Angular momentum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts

platform.
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4.3: Solutions to the Schrddinger Equation in 3D

We now go back to the Schrodinger equation in spherical coordinates and we consider the angular and radial equation separately to
find the energy eigenvalues and eigenfunctions.

Angular Equation

The angular equation was found to be:

1 0 (. 03¢ 1 Y"(%,e) _
sind +
sind 99 oY sin? 9 Op?

—1(1+1)Y," (9, ¢)

Notice that this equation does not depend at all on the potential, thus it will be common to all problems with an isotropic potential.

We can solve the equation by using again separation of variables: Y (9, ¢) = ©(3)®(¢) . By multiplying both sides of the equation
by sin?(9) /Y (9, ¢) we obtain:

1 d doe .2 1 d’®
W[Smﬁdﬁ (sm19 dﬁ)] +1(1+1)sin ﬁ——mw

As usual we separate the two equations in the different variables and introduce a constant C = m2:

d’® )
P ®(¢)

d d®
smﬂ% (smﬁﬁ) = [m® —1(1+1)sin’ 9] ©(9)
The first equation is easily solved to give ®(p) = €™ with m =0,41,+2, ... since we need to impose the periodicity of ®,
such that ®(¢ + 27) = ().

The solutions to the second equations are associated Legendre Polynomials: ©(9) = Ale(cos ), the first few of 1 which are in
table 1. Notice that, as previously found when solving for the eigenvalues of the angular momentum, we have that
m=-l,—l+1,...,l,withl=0,1,....

N |0 |1 | 2 | 3

0 |[[PV=1

1 P = cos¥ P} =sin

2 Py =1(3cos?d — 1) P} = 3cos¥sindd P} = 3sin® 9

3 Py = g( 5cos® ) —3cosV) | P} = 2(5cos? ) — 1)sind | P§ =15cosUsin®d | P§ = 15sin® o)

Table 4.3.1: Legendre Polynomials

The normalized angular eigenfunctions are then Spherical Harmonic functions, given by the normalized Legendre polynomial
times the solution to the equation in ¢ (see also Table 2)

— |
R e

(cos®)e™?

As we expect from eigenfunctions, the Spherical Harmonics are orthogonal:
dQY;™ (0, ) Y™ (9, 0) = 6, ¢t
4m

The radial equation

We now turn to the radial equation:

d (ﬁ dR(r)) 2m?

- (V—B) = {1+ DR(r)
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[ alt
2,4 . - g
Y, 2(9, ¢) = 11 % sin? 1) e~ 2i¢
09 4y /1 ™
Yo (-:) ) =\/1z .
1 —1lrqg 1y 1 15 ich
o j 51/ 2. sind cosve”

" T (R CO R
(9, ¢) =1/ 5z sinde . -
Ygﬂ(ﬂ,gb}:%\/z(ﬁ cos? 9 — 1)
/3 a4V =
O, 0) = i cost N
Y7 (9, 0) = S/

p sind cos ¥ '
t) o) 5o sin 9 e'?

,2i¢h

YEZ(0,$) = 11/52 sin®de

Table 4.3.2: Spherical Harmonics
To simplify the solution, we introduce a different function u(r) = rR(r). Then the equation reduces to:

K? d’u K2 I(1+1)
2m 7 - |:V+ % 2 :| ’LL(’I“) —Eu(r)

B2 L(1+1)

2m 7'2

This equation is very similar to the Schrédinger equation in 1D if we define an effective potential V'(r) = V(r) + . The

second term in this effective potential is called the centrifugal term.

Solutions can be found for some forms of the potential V (r), by first calculating the equation solutions u, (r), then finding
R, 1(r) =un (r)/r and finally the wavefunction

(s 9, 0) = R ()Y (9, 0).
Notice that we need 3 quantum numbers (n, I, m) to define the eigenfunctions of the Hamiltonian in 3D.

For example we can have a simple spherical well: V (r) = 0 for 7 < ry and V(r) = Vj otherwise. In the case of [ = 0, this is the
same equation as for the square well in 1D. Notice however that since the boundary conditions need to be such that R(r) is finite
for all r, we need to impose that u(r = 0) = 0, hence only the odd solutions are acceptable (as we had anticipated). For [ > 0 we
can find solutions in terms of Bessel functions.

2
Two other important examples of potential are the harmonic oscillator potential V(r) = Vo —Vy (which is an approximation for
0

2

any potential close to its minimum) and the Coulomb potential V' (r) = — 4;0 %, which describes the atomic potential and in

particular the Hydrogen atom.

The Hydrogen atom

We want to solve the radial equation for the Coulomb potential, or at least find the eigenvalues of the equation. Notice we are

looking for bound states, thus the total energy is negative E < 0. Then we define the real quantity x = _?E , and the

quantitiesgz

dmegh? K2

Bohr radius: ag = o) Rydberg constant: R =
€

2
2mag

and \2 = I EI The values of the two constants are ag = 5.29 x 1071 m and R = 13.6eV (thus X is a dimensionless parameter).

The Bohr radius gives the distance at which the kinetic energy of an electron (classically) orbiting around the nucleus equals the

. . 2 . . . . .
Coulomb interaction: %mev2 = 4;6 67 In the semi-classical Bohr model, the angular momentum L = m.vr is quantized, with
0

lowest value L = h, then by inserting in the equation above, we find 7 = ay . We will see that the Rydberg energy gives instead the
minimum energy for the hydrogen.

We further apply a change of variablep = 2k, and we rewrite the radial equation as:
d%u 1 X U(l+1)
There are two limiting cases:

(i+1) 1+1

For p — 0, the equation reduces to % =

u, with solution u(p) ~ p
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d’u u(p)
4

For p — 0o we have =4 giving u(p) ~ e*/2.

8 Note that the definition of the Bohr radius is slightly different if the Coulomb potential is not expressed in SI units but in cgs
units

A general solution can then be written as u(p) = e#/2p"*1S(p) (with S to be determined). We then expand S(p) in series as
S(p) =27 s;p’ and try to find the coefficients s;. By inserting u(p) = e #/2p\*! >0 sjp’ in the equation we have:

d? d
—+214+2—-p)——(1+1-X)| S(p)=0
o 2= P 1) 800

From which we obtain:

Z [p{iG+1)sj1p 4+ (214+2—p) {(G+1)sj010"} —(I+1 =) {550’ }] =0

J
(where the terms in brackets correspond to the derivatives of S(p)). This equation defines a recursive equation for the coefficients
sj:
JHI+1-=A
G+ @G

Sj+1 =

If we want the function u(p) to be well defined, we must impose that u(p) — 0 for p — co. This imposes a maximum value for
J» Jmax, such that all the higher coefficients s; > jyax are zero.

Then we have that jiy.x +1+1—A =0 . But this is an equation for A, which in turns determines the energy eigenvalue:

A = Jmax +1+1.
We then rename the parameter A the principal quantum number 7 since it is an integer (as j and 1 are integers). Then the energy is
given by E = f% and the allowed energies are given by the famous Bohr formula:

5 _ 1 m, e? 2
" n2? 22 \ 47e

Note that the energy is only determined by the principal quantum number. What is the degeneracy of thenquantum number?
We know that the full eigenfunction is specified by knowing the angular momentum L? and one of its components (e.g. L.).
From the equation above, n = jnax +1+1 , we see that for each n, [ can vary from [ = 0 to [ =n— 1. Then we also have 2] + 1
m values for each | (and 2 spin states for each m). Finally, the degeneracy is then given by

—_

n—

2(21+1) =2n?

N
I
oS

Atomic periodic structure

We calculated the energy levels for the Hydrogen atom. This will give us spectroscopy information about the excited states that we
can excite using, for example, laser light. How can we use this information to infer the structure of the atoms?

A neutral atom, of atomic number Z, consists of a heavy nucleus, with electric charge Ze, surrounded by Z electrons (mass m and
charge -e). The Hamiltonian for this system is

Z 2

z 5 )
v Z h 1 Ze 1 1 e
=1 2m 7 4mey 2 4meg ; 7 — Tk
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The first term is simply the kinetic energy of each electron in the atom. The second term is the potential energy of the jth electron
in the electric field created by the nucleus. Finally the last sum (which runs over all values of j and k except j = k) is the potential
energy associated with the mutual repulsion of the electrons (the factor of 1/2 in front corrects for the fact that the summation
counts each pair twice).

Given this Hamiltonian, we want to find the energy levels (and in particular the ground state, which will give us the stable atomic
configuration). We then need to solve Schrédinger ’s equation. But what would an eigenstate of this equation now be?

Consider for example Helium, an atom with only two electrons. Neglecting for the moment spin, we can write the wavefunction as
U (71,79, t) (and stationary wavefunctions, 9 (71, 72)), that is, we have a function of the spatial coordinates of both electrons. The
physical interpretation of the wavefunction is a simple extension of the one-particle wavefunction: |4 (71, 72)|>d371d37 is the
probability of finding contemporaneously the two electrons at the positions 7#; and 73, respectively. The wavefunction must then be
normalized as f [ (71, F2)|2d3F1d372 = 1. The generalization to many electrons (or more generally to many particles) is then
evident.

To determine the ground state of an atom we will then have to solve the Schrédinger equation
HY (F1,...,7z) =EY (F1,...,72)

This equation has not been solved (yet) except for the case Z=1 of the Hydrogen atom we saw earlier. What we can do is to make a
very crude approximation and ignore the Coulomb repulsion among electrons. Mathematically this simplifies tremendously the
equation, since now we can simply use separation of variables to write many equations for each independent electron. Physically,
this is often a good enough approximation because mutual repulsion of electron is not as strong as the attraction from all the
protons. Then the Schrédinger equation becomes:

z 2 2
R 1 Ze o - = =
2:[__v]2,_ — | Y F1y..,T2) = B (F1,...,72)

and we can write ¥ (71, ...,7z) =9 (F1) ¥ (¥2) ... ¥ (T2)

Then, we can solve for each electron separately, as we did for the Hydrogen atom equation, and find for each electron the same

2

level structure as for the Hydrogen, except that the since the potential energy is now ﬁ ZTL the electron energy (Bohr’s formula)
0 J

is now multiplied by Z. The solutions to the time-independent Schrédinger equations are then the same eigenfunctions we found for

the hydrogen atom, ¥ (7 = Y (7,9, ¢).

Thus if we ignore the mutual repulsion among electrons, the individual electrons occupy one-particle hydrogenic states (n, 1, m),
called orbitals, in the Coulomb potential of a nucleus with charge Ze.

There are 2n? hydrogenic wave functions (all with the same energy E,,) for a given value of n. Looking at the Periodic Table we
see this periodicity, with two elements in then= 1 shell, 8 in then= 2 shell, 18 in the third shell. Higher shells however are more
influenced by the electron-electron repulsion that we ignored, thus simple considerations from this model are no longer valid.

However, we would expect instead the electrons in the atoms to occupy the state with lowest energy. The ground state would then
be a situation were all the electron occupy their own ground state (n = 0, [ = 0, m = 0). But is this correct? This is not what is
observed in nature, otherwise all the atom would show the same chemical properties. So what happens?
To understand, we need to analyze the statistical properties of identical particles. But before that, we will introduce the solution for
2
another central potential, the harmonic oscillator potential V(r) = V5 —V; (which is an approximation for any potential close to
To

its minimum).

The Harmonic Oscillator Potential

The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of evenly spaced
energy levels. The energy difference between two consecutive levels is AE. The number of levels is infinite, but there must exist a
minimum energy, since the energy must always be positive. Given this spectrum, we expect the Hamiltonian will have the form

Hi) = (3 ) win)
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where each level in the ladder is identified by a number n. The name of the model is due to the analogy with characteristics of
classical h.o., which we will review first.

Classical harmonic oscillator and h.o. model

A classical h.o. is described by a potential energy V = %kxz (the radial potential considered above, V (r) = Vj é — W , has this
o

form). If the system has a finite energy E, the motion is bound by two values +x, such that V' (z¢) = E . The equation of motion

is given by
¢
% = py(n_)7 d2$
dp — mﬁ =—kz,
E = —k.’l?
and the kinetic energy is of course
1 p?
T=—-—mi?==——.
2" T om

The energy is constant since it is a conservative system, with no dissipation. Most of the time the particle is in the position x( since
there the velocity is zero, while at x = 0 the velocity is maximum.

The h.o. oscillator in QM is an important model that describes many different physical situations. It describes e.g. the
electromagnetic field, vibrations of solid-state crystals and (a simplified model of) the nuclear potential. This is because any

potential with a local minimum can be locally described by an h.o.. Provided that the energy is low enough (or x close to x), any
&2V

potential can in fact be expanded in series, giving: V(z) ~ V (z¢) +b(z — x¢) > +... where b= o |
XL g

It is easy to solve the equation of motion. Instead of just solving the usual equation, we follow a slightly different route. We define
dimensionless variables,

where we defined a parameter with units of frequency: w = 1/k/m and we introduce a complex classical variable (following Roy
J. Glauber —Phys. Rev. 131, 2766-2788 (1963))

1
—2(X+iP).

o=

The classical equations of motion for x and p define the evolution of the variable a:

de _ P do
d — m? .

— = —iwa(t)
% =—kz dt

The evolution of « is therefore just a rotation in its phase space: a.(t) = a(0)e **.

Since X = v/2Re(a) and P = v/20peratornamelm(a), X and P oscillate, as usual in the classical case:

_ ﬁ (aoe—iwt +aaeiwt)
P = _T; (aoe—iwt _ a(ﬂ;eiwt)

The classical energy, given by w/2 (X LR P2) = waﬁ , is constant at all time.

Oscillator Hamiltonian: Position and momentum operators

Using the operators associated with position and momentum, the Hamiltonian of the quantum h.o. is written as:

2 2 2
_ Pkt p 1 oo
He ot —ap tymwe

In terms of the dimensionless variables, P and X, the Hamiltonian is % = % (X2 4 P?) .
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In analogy with the classical variable a(t) [and its complex conjugate a*(t), which simplified the equation of motion, we introduce
two operators, a, a', hoping to simplify the eigenvalue equation (time-independent Schrodinger equation):

o= T X-+iP) = 5 (vimme + i)
T— L (X—iP)= L i
a' = \/ﬁ(X zP)—\/ﬁ (1/mwx T ),

Also, we define the number operator as N = a'a, with eigenvalues n and eigenfunctions |n). The Hamiltonian can be written in
terms of these operators. We substitute a, a' at the place of X and P, yielding H = fuw (ana + %) = hw (N + %) and the minimum
energy w/2 is called the zero point energy.

The commutation properties are: [a,al] =1 and [N, a] = —a, [N, af] =a'. Also we have:
z=1/5s (@' +a)

p=iy/ 5 (o' —q)

O Prove the commutation relationships of the raising and lowering operators.
)

L[X,P) = 2 [e,p] =1

[a,al] = %[X—HP,X—@'P] = %([X, —iP]+[iP, X]) = =
So we also have aal = [a, aT] +ala=1+ala=1+N

[N,a] = [aTa, a] = [aT,a] a=-a and [N, aT] = [aTa, aT] =al [a, aT] =al
O
From the commutation relationships we have:

aln) = [a, N]|n) = an|n) — Na|n) — N(a|n)) = (n—1)(a|n)),

that is, a|n) is also an eigenvector of the N operator, with eigenvalue (n — 1). Thus we confirm that this is the lowering operator:
a|n) = ¢,|n—1) . Similarly, af|n) is an eigenvector of N with eigenvalue n + 1:

alln) = [N, a'] |n) = Naf|n) —aln|n) — N (af|n)) = (n+1)(a|n)).
We thus have a|n) = c,|n —1) and a'|n) = d,,|n+1) . What are the coefficients ¢, d,?
Since

(n|N|n) = (n |aTa|n> =n
and
(n ’aTa| n) = ((an|)(aln)) = (n—1|n—1)c},
we must have ¢,, = /n. Analogously, since aat = N +1 , as seen from the commutation relationship:
d2(n+1|n+1)=(a'n|aln) = <n’aaT‘n> n|(N+1)n)=n+1

So in the end we have :

aln) =y/aln—1); aljn) = VaFTln+1)

All the n eigenvalues of N have to be non-negative since n = (n|N|n) = (1, | ¥n,) >0 (this follows from the properties of the
inner product and the fact that [, ) = a|n) is just a regular state vector). However, if we apply over and over the a (lowering)
operator, we could arrive at negative numbers n: we therefore require that a|0) =0 to truncate this process. The action of the
raising operator a' can then produce any eigenstate, starting from the 0 eigenstate:

(a')"

In) =

|0).

Vn!
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The matrix representation of these operator in the |n) basis (with infinite-dimensional matrices) is particularly simple, since
(nla|n’) =8y n_1/n and< |aT|n> O/ mi1v/n+1:

Vi 0 ... 0
0 V2 ... al = \/T
0 0 0 V2

0 0 O
a=10 0 0
0 0

Position representation

2 '-i

Figure 4.3.1: Left: Harmonic oscillator wavefunction. Right: corresponding probability distribution function for n = 2 (blue) and n

= 3 (Red, dotted). (Copyright; author via source)
We have now started from a (physical) description of the h.o. Hamiltonian and made a change of basis in order to arrive at a simple
diagonal form of it. Now that we know its eigenkets, we would like to go back to a more intuitive picture of position and
momentum. We thus want to express the eigenkets |n) in terms of the position representation.

06+ 0.4
04f

0.3
ql2]

—04}

-10

Figure 4.3.2: Left: Harmonic oscillator wavefunction. Right: corresponding probability distribution function for n = 40. In Red, the
classical probability. (Copyright; author via source)

The position  representation Corresponds to expressing a state vector [¢) in the position  basis:
f dz(z | Y)|x) f dz(z)|z) (where |z) is the eigenstate of the position operator that is a continuous variable, hence the

1ntegral). This defines the wavefunctlon Y(x) = (x| ).

The wave function description in the x representation of the quantum h.o. can be found by starting with the ground state

wavefunction. Since a|0) =0 we have 7% n(X +iP)|0) = \/ = (\/mwm + \;im) |0) =0 . In the x representation, given
Yo(z) = (2| 0)

()"

The other eigenstates are built using Hermite Polynomials H,, (), using the formula® |n) = ey |0) to derive differential

equations:
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with solutions ¥, (z) = (z | n) = ﬁHn (z)o(z). The n = 2 and n = 3 wavefunctions are plotted in the following figure, while
the second figure displays the probability distribution function. Notice the different parity for even and odd number and the number
of zeros of these functions. Classically, the probability that the oscillating particle is at a given value of x is simply the fraction of

time that it spends there, which is inversely proportional to its velocity v(z) = zow, /1 — % at that position. For large n, the
Zo

probability distribution becomes close to the classical one (see Fig. 4.3.2).

9 For more details on Hermite Polynomials and their generator function, look on Cohen-Tannoudji. Online information from:
Eric W. Weisstein. Hermite Polynomial. From MathWorld—A Wolfram Web Resource.

This page titled 4.3: Solutions to the Schrodinger Equation in 3D is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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4.4: |dentical Particles

We start first with the simplest case of a two-particle system. The wavefunction is then: 1 (71, 72) and if we assume that there is no
interaction between the two particles, we will be able to describe the states using separation of variables:

¥ (F1,72) = a (F1) 95 (72)

where a and b label two different single-particle states. Implicit in this expression is the assumption that I can distinguish the two
particles by some mean, and link particle one to the position 1 and the state a. However, if we consider two identical particles (2
electrons, two photons, two neutrons) there is no physical mean to distinguish them. Even if we try to measure them in order to
keep track of which one is which, we know that in the process we destroy the state (by the wavefunction collapse) so not even this
is a possibility.

Bosons, fermions

In quantum mechanics identical particle are fundamentally indistinguishable. Then the expression above does not correctly describe
the state anymore. In order to faithfully describe a state in which we cannot know if particle a or b is at ry or rp, we can take a linear
combination of these two possibilities: ¥ (7'1,72) = A1, (T1) ¥y (T2) + A2ty (T1) ¥4 (T2) . Now, since the two possibilities have

the same probability, we have |A;| = | 42| = % . Then there are two possible combinations:
- 1 - S S S
Y (r1,72) = —=[Ya (F1) ¥ (12) 9 (71) Pa (72)]

V2

These two combinations describe two types of particle. The combination with the plus sign describes besons, particles that are
invariant under exchange of a particle pair. The combination with the minus sign describes fermions:

o all particles with integer spin are bosons
o all particles with half-integer spin are fermions

(This can be proved in relativistic QM).

Exchange operator

We can define an operator P that interchanges the two particles:
P [ (71, 72)] =9 (72, 71)
~ ~ ~2 ~
Since of course P [P [v (Fl,FQ)}] =1 (F1,72), we have that P =1. Then the eigenvalues of P must be +1. [If ¢, is an

eigenfunction of P with eigenvalue p,, we have 132 On = p% n = pn , from which p,% = 1.] If two particles are identical, then the
Hamiltonian is invariant with respect to their exchange and [#, 15] = 0. Then we can find energy eigenfunctions that are common
eigenfunctions of the exchange operator, or v (¥1,72) =+t (T9,71). Then if the system is initially in such a state, it will be
always be in a state with the same exchange symmetry. For the considerations above, however, we have seen that the wavefunction
is not only allowed, but it must be in a state with a definite symmetry:

¢(F1,?2){¢(T2’T1) bosons

—1 (F9,71) fermions

Pauli exclusion principle

From the form of the allowed wavefunction for fermions, it follows that two fermions cannot occupy the same state. Assume that
¥, () = 1y (7) , then we always have that

1

V2

Y5 (F1,72) = —=[tha (F1) s (F2) — ¥ (1) ¥a (72)] = 0.

This is the well-known Pauli exclusion principle. Notice that of course it applies to any fermions. For example, it applies to
electrons, and this is the reason why electrons do not pile up in the lowest energy level of the atomic structure, but form a shell
model. We will see that the same applies as well to protons and neutrons, giving rise to the shell model for nuclei.
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5.1: Characteristics of the Nuclear Force

In this part of the course we want to study the structure of nuclei. This in turns will give us insight on the energies and forces that
bound nuclei together and thus of the phenomena (that we’ll study later on) that can break them apart or create them.

In order to study the nuclear structure we need to know the constituents of nuclei (the nucleons, that is, protons and neutrons) and
treat them as QM objects. From the point of view of QM as we studied until now, we want first to know what is the state of the
system (at equilibrium). Thus we want to solve the time-independent Schrodinger equation. This will give us the energy levels of
the nuclei.

The exact nature of the forces that keep together the nucleus constituents are the study of quantum chromodynamics, that describes
and look for the source of the strong interaction, one of the four fundamental interactions, along with gravitation, the
electromagnetic force and the weak interaction. This theory is well-beyond this course. Here we want only to point out some of the
properties of the nucleon-nucleon interaction:

o At short distances is stronger than the Coulomb force: we know that nuclei comprise tightly packed protons, thus to keep these
protons together the nuclear force has to beat the Coulomb repulsion.

o The nuclear force is short range. This is supported by the fact that interactions among e.g. two nuclei in a molecule are only
dictated by the Coulomb force and no longer by the nuclear force.

o Not all the particles are subjected to the nuclear force (a notable exception are electrons)

o The nuclear force does not depend at all on the particle charge, e.g. it is the same for protons and neutrons.

e The nuclear force does depend on spin, as we will prove in the case of the deuteron.

o Experiments can reveal other properties, such as the fact that there is a repulsive term at very short distances and that there is a
component that is angular-dependent (the force is then not central and angular momentum is not conserved, although we can
neglect this to a first approximation).

We will first see how these characteristics are reflected into the Hamiltonian of the simplest (non-trivial) nucleus, the deuteron.
This is the only nucleus that we can attempt to solve analytically by forming a full model of the interaction between two nucleons.
Comparing the model prediction with experimental results, we can verify if the characteristics of the nuclear force we described are
correct. We will then later study how the nuclear force properties shape the nature and composition of stable and unstable nuclei.

This page titled 5.1: Characteristics of the Nuclear Force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
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5.2: The Deuteron

Reduced Hamiltonian in the center-of-mass frame

We start with the simplest problem, a nucleus formed by just one neutron and one proton: the deuteron. We will at first neglect the
spins of these two particles and solve the energy eigenvalue problem (time-independent Schriodinger equation) for a bound p-n
system. The Hamiltonian is then given by the kinetic energy of the proton and the neutron and by their mutual interaction.

]. ~2 +
2m, Pn 2my,

H= ]512;+Vnuc(|xp_wn|)

Here we stated that the interaction depends only on the distance between the two particles (and not for example the angle...)

We could try to solve the Schrédinger equation for the wavefunction ¥ = ¥ (Z,, Z,, t) . This is a wavefunction that treats the two
particles as fundamentally independent (that is, described by independent variables). However, since the two particles are
interacting, it might be better to consider them as one single system. Then we can use a different type of variables (position and
momentum).

We can make the transformation from {Z,, %, } — {R, 7} where R describes the average position of the two particles (i.e. the
position of the total system, to be accurately defined) and 7 describes the relative position of one particle wrt the other:

m,+m,,

= m,T,+m,z,
{ R =-——2t——  center of mass
P

T =T, —Tn relative position

We can also invert these equations and define Z, =z,(R,7) and Z, =, (R,7). Also, we can define the center of mass
momentum and relative momentum (and velocity):

ﬁcm :ﬁp +ﬁn
1_;7' = (mnﬁp _mpﬁn) /M

Then the (classical) Hamiltonian, using these variables, reads

1 1
H = 2Mp%m + 2Mp72« +Vnuc(|7'|)
where M =m;, +m, and p= nzn’f:: is the reduced mass. Now we can just write the quantum version of this classical
p n

Hamiltonian, using

in the equation

1,1, X
H=gaPom + 2ﬂpr+Vnuc(|7‘|)

Now, since the variables r and R are independent (same as 7, and r,,) they commute. This is also true for p.,, and r (and p, and R).

Then, p.,, commutes with the whole Hamiltonian, [pcm, ’H} = 0. This implies that f;'cm is a constant of the motion. This is also

true for E.,, = ﬁ

E,, =0 and this is not ever going to change. In general, it means that we can ignore the first term in the Hamiltonian and just
solve

A2
D » the energy of the center of mass. If we solve the problem in the center-of-mass frame, then we can set

B, B}
%D = _2_,UJVT +Vnuc(|r|)

In practice, this corresponds to having applied separation of variables to the original total Schrodinger equation. The Hamiltonian
‘Hp (the deuteron Hamiltonian) is now the Hamiltonian of a single-particle system, describing the motion of a reduced mass
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particle in a central potential (a potential that only depends on the distance from the origin). This motion is the motion of a neutron
and a proton relative to each other. In order to proceed further we need to know the shape of the central potential.

Ground state

What are the most important characteristics of the nuclear potential? It is known to be very strong and short range. These are the
only characteristics that are of interest now; also, if we limit ourselves to these characteristics and build a simple, fictitious potential
based on those, we can hope to be able to solve exactly the problem.

If we looked at a more complex, albeit more realistic, potential, then most probably we cannot find an exact solution and would
have to simplify the problem. Thus, we just take a very simple potential, a nuclear square well of range Ry = 2.1 fm and of depth
—Vo =—-35MeV.

We need to write the Hamiltonian in spherical coordinates (for the reduced variables). The kinetic energy term is given by:

R, R 18(/,0\ R [1 0/ .0 1 82 R1o[(,0\ L
——Vi=—————\(7"— | - — — | sind— | + — == |+
2u 2p r2 Or or 2pur? | sind 09 oY sinZ 1 Op? 2p 2 Or or 2ur?

A V(r)

R0I= 2.1fm r
E;=2.2MeV

Y

1 Vg =-35MeV

Figure 5.2.1: Nuclear potential (CC BY-NC-ND; Paola Cappellaro)

A2
where we used the angular momentum operator (for the reduced particle) L .

The Schrodinger equation then reads

~2
R21 0 (,0 L
l_ 2p 72 Or (r 87') + 2ur? F Viuelr)

an,l,m("’, 197 90) = En\IIn,l,m(ra 195 <P)

We can now also check that [ﬁz,’){] =0. Then ﬁZ is a constant of the motion and it has common eigenfunctions with the
Hamiltonian.
We have already solved the eigenvalue problem for the angular momentum. We know that solutions are the spherical harmonics
Y, (9, p):

A2

LY (9, 0) = A1+ 1)Y;™(9, )

Then we can solve the Hamiltonian above with the separation of variables methods, or more simply look for a solution
\Iln,l,m = lpn,l(r)yvlm(ﬁa SO) :

K21 0 231/1"1(7“))
2 G (b Y ym .
2p 72 Or (r or (05 0) + Yna(r)

Y9, 9)]

e (B — Vi (7)] (1) Y, (9, 0)

and then we can eliminate Y, to obtain:

ERYPLING

RA(I+1)
“ouzar\"  dr ) + [V""C(TH—

2;“”2 1/}n,l(7‘) - Enz/)n,l('r)

Now we write 1y, ;() =ty ;(r) /7. Then the radial part of the Schrédinger equation becomes
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h? d?u K2 I(1+1)
2p dr? 2u 72

u(r) = Eu(r)
with boundary conditions
un(0) =0 —  (0)is finite
upi(00) =0 —  bound state
This equation is just a 1D Schrédinger equation in which the potential V' (r) is replaced by an effective potential
R2U(1+1)

Vers(r) = Vaue(r) + 2
2ur

that presents the addition of a centrifugal potential (that causes an outward force).

A y 3
V(r) V(r)
Ry=2.1fm > Ry=2.1fm r,
E,=-2.2MeV E,=-2.2MeV
-+ -Vy=-35MeV + -V =-35MeV

Figure 5.2.2: Nuclear potential for [ 7 0. Left, nuclear potential and centrifugal potential. Right, the effective potential (CC BY-
NC-ND; Paola Cappellaro)

Notice that if [ is large, the centrifugal potential is higher. The ground state is then found for [ = 0. In that case there is no
centrifugal potential and we only have a square well potential (that we already solved).

R 1 9?
_ﬂ;ﬁ ~|—Vmw(7') UO(T) = E(]’LL()(T‘)

This gives the eigenfunctions
u(r) = Asin(kr) + Bceos(kr), 0<r <R
and
u(r)=Ce™ +De", r>Ry

The allowed eigenfunctions (as determined by the boundary conditions) have eigenvalues found from the odd-parity solutions to
the equation

—k =kcot(kRy)

with

(with Ey < 0).

Recall that we found that there was a minimum well depth and range in order to have a bound state. To satisfy the continuity
condition at r = Ry we need A/4 < Ry or kR > %27r = 7. Then Ry > ﬁ .

In order to find a bound state, we need the potential energy to be higher than the kinetic energy Vy > Ej;, . If we know Ry we can
use k > 2—;;0 to find
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v R2m?  w? R @ (191MeV fm)’ 93 1MeV
"7 ouR: T 8 uRE 8 469MeV(2.1fm)? ¢

We thus find that indeed a bound state is possible, but the binding energy Ey = Ey;, — Vi is quite small. Solving numerically the
trascendental equation for Eq we find that

[Eo = —2.2MeV]

Notice that in our procedure we started from a model of the potential that includes the range Ry and the strength V4 in order to find
the ground state energy (or binding energy). Experimentally instead we have to perform the inverse process. From scattering
experiments it is possible to determine the binding energy (such that the neutron and proton get separated) and from that, based on
our theoretical model, a value of V{) can be inferred.

Deuteron excited state
Are bound excited states for the deuteron possible?

Consider first [ = 0. We saw that the binding energy for the ground state was already small. The next odd solution would have

k= ;}g =3ky. Then the kinetic energy is 9 times the ground state kinetic energy or

km = 9E,8m =9 x32.8MeV =295.2MeV . . The total energy thus becomes positive, the indication that the state is no longer
bound (in fact, we then have no longer a discrete set of solutions, but a continuum of solutions).

(l+1)

Consider then [ > 0. In this case the potential is increased by an amount >18.75MeV (for I = 1). The potential thus

becomes shallower (and narrower). Thus also in this case the state is no longer bound. The deuteron has only one bound state.

Spin dependence of nuclear force

Until now we neglected the fact that both neutron and proton possess a spin. The question remains how the spin influences the
interaction between the two particles.

The total angular momentum for the deuteron (or in general for a nucleus) is usually denoted by I. Here it is given by

S~
LNy
218

I=L+8,+

n

~ ~
5 >

For the bound deuteron state /=0and I =.5,+.S, =5 . A priori we can have S =0 or 1 (recall the rules for addition of angular
momentum, here ,,,, = 1).

There are experimental signatures that the nuclear force depends on the spin. In fact the deuteron is only found with §=1
(meaning that this configuration has a lower energy).

The simplest form that a spin-dependent potential could assume is Vpin o< S D S n (since we want the potential to be a scalar). The
coefficient of proportionality V; (r)/h? can have a spatial dependence. Then, we guess the form for the spin-dependent potential to

be Vi =V1 (r)/R? § »* gn . What is the potential for the two possible configurations of the neutron and proton spins?

~2
The configuration are either S =1 or S = 0. Let us write S = hS(S+1) in terms of the two spins:

Wy
[V
[V

:Sp+

The last term is the one we are looking for:

~2
Because S a

S S commute, we can write an equation for the expectation values wrt eigenfunctions of these operatorsloz

nd
<§ .S, >_<5,5p,sn,sz

ny

z> h;(S(S+1) Sp (Sp+1)—85, (S, +1))

s Pps

https://phys.libretexts.org/@go/page/25718


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://phys.libretexts.org/@go/page/25718?pdf

LibreTextsm

since S, = % , we obtain

5 2 —|—h—2 Triplet State, |S =
<s s> 2<S(S+1)—;): r P |

1,
B singlet State, [S =0, 2,
—=  singlet State, >

M|i—t
lo|r—l

,m.)
,0)

If V4(r) is an attractive potential (< 0), the total potential is V| s =Vr=W+ %Vl for a triplet state, while its strength is

m|»—t

reduced to Vyye|g—o = Vs = Vo — %Vl for a singlet state. How large is V1?

We can compute V and V; from knowing the binding energy of the triplet state and the energy of the unbound virtual state of the
singlet (since this is very close to zero, it can still be obtained experimentally). We have Er = —2.2MeV (as before, since this is
the experimental data) and Eg = 77keV. Solving the eigenvalue problem for a square well, knowing the binding energy Et and
setting Eg ~ 0, we obtain Vp = -35MeV and Vs = —25MeV (Notice that of course Vt is equal to the value we had previously set
for the deuteron potential in order to find the correct binding energy of 2.2MeV, we just —wrongly— neglected the spin earlier on).
From these values by solving a system of two equations in two variables:

Vo+5Vi=Vr
Vo—4Vi=Vs

we obtain V = —32.5MeV V; = —-10MeV. Thus the spin-dependent part of the potential is weaker, but not negligible.

10 Note that of course we use the coupled representation since the properties of the deuteron, and of its spin-dependent energy,
are set by the common state of proton and neutron

This page titled 5.2: The Deuteron is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola Cappellaro

(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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5.3: Nuclear Models

In the case of the simplest nucleus (the deuterium, with 1p-1n) we have been able to solve the time independent Schrodinger
equation from first principles and find the wavefunction and energy levels of the system —of course with some approximations,
simplifying for example the potential. If we try to do the same for larger nuclei, we soon would find some problems, as the number
of variables describing position and momentum increases quickly and the math problems become very complex.

Another difficulty stems from the fact that the exact nature of the nuclear force is not known, as there’s for example some evidence
that there exist also 3-body interactions, which have no classical analog and are difficult to study via scattering experiments.

Then, instead of trying to solve the problem exactly, starting from a microscopic description of the nucleus constituents, nuclear
scientists developed some models describing the nucleus. These models need to yield results that agree with the already known
nuclear properties and be able to predict new properties that can be measured in experiments. We are now going to review some of
these models.

Shell structure

The atomic shell model

You might already be familiar with the atomic shell model. In the atomic shell model, shells are defined based on the atomic
quantum numbers that can be calculated from the atomic Coulomb potential (and ensuing the eigenvalue equation) as given by the
nuclear’s protons.

Shells are filled by electrons in order of increasing energies, such that each orbital (level) can contain at most 2 electrons (by the
Pauli exclusion principle). The properties of atoms are then mostly determined by electrons in a non-completely filled shell. This
leads to a periodicity of atomic properties, such as the atomic radius and the ionization energy, that is reflected in the periodic table
of the elements. We have seen when solving for the hydrogen

0.30 -

0.25 b

S
i
=
.
.

Rariius [nm]

=3

=
.

.

oosh * -

a 20 40 B0 BO

z
Figure 5.3.1: Atomic Radius vs Z. (CC BY-NC-ND; Paola Cappellaro)

atom that a quantum state is described by the quantum numbers: |1 = |n, [, m where n is the principle quantum number (that in the
hydrogen atom was giving the energy). [ is the angular momentum quantum number (or azimuthal quantum number ) and m the
magnetic quantum number. This last one is m = —1,...,l— 1,1 thus together with the spin quantum number, sets the degeneracy
of each orbital (determined by n and ! <n) to be D(I) =2(2l+1). Historically, the orbitals have been called with the
spectroscopic notation as follows:

1 01| 2 3 4 15| 6

Spectroscopi¢c s | p | d f g | h i

notation

D(1) 21610 14 [ 18|22 26
historic structure | heavy nuclei

The historical notations come from the description of the observed spectral lines:
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Figure 5.3.2: Ionization energy vs Z. (CC BY-NC-ND; Paola Cappellaro)

Orbitals (or energy eigenfunctions) are then collected into groups of similar energies (and similar properties). The degeneracy of
each orbital gives the following (cumulative) occupancy numbers for each one of the energy group:

|2, 10, 18, 36, 54, 70, 86|

Notice that these correspond to the well known groups in the periodic table.

There are some difficulties that arise when trying to adapt this model to the nucleus, in particular the fact that the potential is not
external to the particles, but created by themselves, and the fact that the size of the nucleons is much larger than the electrons, so
that it makes much less sense to speak of orbitals. Also, instead of having just one type of particle (the electron) obeying Pauli’s
exclusion principle, here matters are complicated because we need to fill shells with two types of particles, neutrons and protons.

In any case, there are some compelling experimental evidences that point in the direction of a shell model.

Evidence of nuclear shell structure: Two-nucleon separation energy

The two-nucleon separation energy (2p- or 2n-separation energy) is the equivalent of the ionization energy for atoms, where
nucleons are taken out in pair to account for a term in the nuclear potential that favor the pairing of nucleons. From this first set of
data we can infer that there exist shells with occupation numbers

[8, 20, 28, 50, 82, 126

These are called Magic numbers in nuclear physics. Comparing to the size of the atomic shells, we can see that the atomic magic
numbers are quite different from the nuclear ones (as expected since there are two-types of particles and other differences.) Only
the guiding principle is the same. The atomic shells are determined by solving the energy eigenvalue equation. We can attempt to
do the same for the nucleons.

Nucleons Hamiltonian

The Hamiltonian for the nucleus is a complex many-body Hamiltonian. The potential is the combination of the nuclear and
coulomb interaction:

H=Y PN Voo (F )+ Y ———

i< i< |“” mﬂ'

sum on protons only

There is not an external potential as for the electrons (where the protons create a strong external central potential for each electron).
We can still simplify this Hamiltonian by using mean field theory!!.
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11 This is a concept that is relevant in many other physical situations
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Figure 5.3.3: Top: Two-proton separation energies of isotones (constant N). Bottom: two-neutron separation energies of isotopes
(constant Z). On the x-axis: nucleon number. The sudden changes at the magic number are apparent. From Krane, fig 5.2

We can rewrite the Hamiltonian above by picking 1 nucleon, e.g. the 5% neutron:

n ﬁ] - -
%j = om, +ZVHM(|%’ _mj|)

i<y

or the k" proton:

~2
p S o
WP = 2’”]; +2Vnm(|wi—wk| Z
n

i<k i<k |"'3Z —

sum on protons only

then the total Hamiltonian is just the sum over these one-particle Hamiltonians:

H= > M+ ZH”

j (neutrons) k( protons )
The Hamiltonians #H; and HY describe a single nucleon subjected to a potential Vie (1Zj]) —  or
VI(|Z5]) = Vidue (1Z5]) +ch) . (|Z;]) for a proton. These potentials are the effect of all the other nucleons on the nucleon we
picked, and only their sum comes into play. The nucleon we focused on is then evolving in the mean field created by all the other
nucleons. Of course this is a simplification, because the field created by the other nucleons depends also on the 5 nucleon, since
this nucleon influences (for example) the position of the other nucleons. This kind of back-action is ignored in the mean-field
approximation, and we considered the mean-field potential as fixed (that is, given by nucleons with a fixed position).
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We then want to adopt a model for the mean-field Vn];w and Vci - Let’s start with the nuclear potential. We modeled the interaction
between two nucleons by a square well, with depth =V and range Ry. The range of the nuclear well is related to the nuclear radius,
which is known to depend on the nuclear mass number A, as R ~ 1.25AY/3fm. Then Vn];m is the sum of many of these square
wells, each with a different range (depending on the separation of the nucleons). The depth is instead almost constant at Vo =
50MeV, when we consider large-A nuclei (this correspond to

Figure 5.3.4: Potential obtained from the sum of many rectangular potential wells. Black, the potential range increases
proportionally to the number of nucleons considered. Red, R ~ A/3 . Blue, harmonic potential, that approximates the desired
potential. (CC BY-NC-ND; Paola Cappellaro)
the average strength of the total nucleon potential). What is the sum of many square wells? The potential smooths out. We can
approximate this with a parabolic potential. [Notice that for any continuous function, a minimum can always be approximated by a
parabolic function, since a minimum is such that the first derivative is zero]. This type of potential is useful because we can find an
analytical solution that will give us a classification of nuclear states. Of course, this is a crude approximation. This is the oscillator
potential model:

" 1).2
Now we need to consider the Coulomb potential for protons. The potential is given by: Viou = % [% - %] for r < Ry,
0

which is just the potential for a sphere of radius Rg containing a uniform charge (Z —1)e . Then we can write an effective (mean-
field, in the parabolic approximation) potential as

Ve (Yo _ 2D [ 3 (Z-De
¢ RZ 2R} ‘T2 R
= mwr? ="

_ 2

We defined here a modified nuclear square well potential V|| =V, % (Z Ri)e for protons, which is shallower than for neutrons.
. 2
Also, we defined the harmonic oscillator frequencies w? = % (% — (Zzég)e ) .
0

The proton well is thus slightly shallower and wider than the neutron well because of the Coulomb repulsion. This potential model
has limitations but it does predict the lower magic numbers.

The eigenvalues of the potential are given by the sum of the harmonic potential in 3D (as seen in recitation) and the square well:
3 !
Ey=hw| N+ 5 — VO .

(where we take V' = V, for the neutron).

Note that solving the equation for the harmonic oscillator potential is not equivalent to solve the full radial equation, where the
. 1141
centrifugal term h2%

r2

must be taken into account. We could have solved that total equation and found the energy eigenvalues

labeled by the radial and orbital quantum numbers. Comparing the two solutions, we find that the h.o. quantum number N can be
expressed in terms of the radial and orbital quantum numbers as

N=2(n—1)+I
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Sincel =0,1,...n—1 we have the selection rule for [ as a function of N : =N, N —2,... (with [ > 0). The degeneracy of
the Ey eigenvalues is then D'(N) =37, _y y o  (20+1)= %(N+1)(N+2) (ignoring spin) or D(N) = (N +1)(N +2)
when including the spin.

We can now use these quantum numbers to fill the nuclear levels. Notice that we have separate levels for neutrons and protons.
Then we can build a table of the levels occupations numbers, which predicts the first 3 magic numbers.

. Cumulative
N ! Spectr.oscoplc % D) | DV | of nucle-
Notation
ons#

0 1s 1 2 2

1 1 1p 3 6 8

21 0,2 |2s,1d 6 12 |20

31 1,3 |2p,1f 10 20 |40
410,2,4|3s,2d,1¢g 15 30 |70

For higher levels there are discrepancies thus we need a more precise model to obtain a more accurate prediction. The other
problem with the oscillator model is that it predicts only 4 levels to have lower energy than the 50MeV well potential (thus only 4

. . . 28V (Z-1)e? 2K22Vp .
bound energy levels). The separation between oscillator levels is in fact hw = 2 am ryreal Inserting the
miy, 0 methy

2(200MeVfm)" x50MeV 51.5A-1/3  Then the separation between oscillator levels is on the order

numerical values we find Aw = >
938MeV 1.25 fmA1/3)

of 10-20MeV.

Spin orbit interaction

In order to predict the higher magic numbers, we need to take into account other interactions between the nucleons. The first
interaction we analyze is the spin-orbit coupling.
The associated potential can be written as

1 R

ﬁvm(r)i.;

where 5 and! are spin and angular momentum operators for a single nucleon. This potential is to be added to the single-nucleon
mean-field potential seen before. We have seen previously that in the interaction between two nucleons there was a spin
component. This type of interaction motivates the form of the potential above (which again is to be taken in a mean-field picture).

We can calculate the dot product with the same trick already used:

{-5)= ; (Az 132 52) —%[j(j+1)l(l+1)%

~

where 3 is the total angular momentum for the nucleon. Since the spin of the nucleon is s = %, the possible values of j are
j=1£% .Thenj(j+1)—1(I+1)=(1£3) (I£5+1)—I(+1) ,andwe obtain

5 . B forj=1+1
<Z-§>={l2 .o

—(+1)%  forj=1-1
and the total potential is

Vo+Ves  forj=1+1
Vnuc = 1
VE) VsoJrT fOI‘jzl—%

Now recall that both Vj is negative and choose also Vi, negative. Then:
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o when the spin is aligned with the angular momentum (j =1+ % ) the potential becomes more negative, i.e. the well is deeper
and the state more tightly bound.
o when spin and angular momentum are anti-aligned the system’s energy is higher.

The energy levels are thus split by the spin-orbit coupling (see figure 5.3.5). This splitting is directly proportional to the angular
momentum [ (is larger for higher I): AE = 7‘2—2(2l +1) . The two states in the same energy configuration but with the spin aligned
or anti-aligned are called a doublet.

v/ Example 5.3.1

Consider the N = 3 h.o. level. The level 17/, is pushed far down (because of the high I). Then its energy is so different that it
makes a shell on its own. We had found that the occupation number up to N = 2 was 20 (the 3rd magic number). Then if we
take the degeneracy of , , we obtain the 4th magic number 28.

[Notice that since here j already includes the spin, D(j) =2j+1 .]

Since the 1 f7 /5 level now forms a shell on its own and it does not belong to the N = 3 shell anymore, the residual degeneracy
of N = 3 is just 12 instead of 20 as before. To this degeneracy, we might expect to have to add the lowest level of the N = 4
manifold. The highest I possible for N = 4 is obtained with 7 = 1 from the formula N =2(n—1)+1—1=4 (this would be
1g). Then the lowest level is for j=1+1/2=4+1/2 =9/2 with degeneracy D = 2(9/2 + 1) = 10. This new combined shell
comprises then 12 + 10 levels. In turns this gives us the magic number 50.

2Py,

2 -
P s,

Af 2P

Figure 5.3.5: The energy levels from the harmonic oscillator level (labeled by N) are first shifted by the angular momentum
potential (2p, 1f). Each 1 level is then split by the spin-orbit interaction, which pushes the energy up or down, depending on the
spin and angular momentum alignment (CC BY-NC-ND; Paola Cappellaro)
Using these same considerations, the splittings given by the spin-orbit coupling can account for all the magic numbers and
even predict a new one at 184:

o N=4,1g— 1gy7/5 and 1gg/5. Then we have 20 — 8 = 12 +D(9/2) = 10. From 28 we add another 22 to arrive at the magic
number 50.

e N=5,1h— 1hg/s and 1h;; /2. The shell thus combines the N = 4 levels not already included above, and the
D (1h11 /2) = 12 levels obtained from the N = 51h,; 5. The degeneracy of N = 4 was 30, from which we subtract the 10
levels included in N = 3. Then we have (30 —10) + D (1h11/2) =20+12 =32 . From 50 we add arrive at the magic
number 82.

e N=6,1i — 1iy; and 13 5. The shell thus have D(N =5) — D (1hy; ) + D (1i13/5) =42 —12+14 =44 levels
(D(N) = (N + 1)(N + 2)). The predicted magic number is then 126.

o N =7 1ji5/2 is added to the N = 6 shell, to give D(N = 6) — D (1i13/2) + D (1j15/2) =56 —14+16 =58 ,
predicting a yet not-observed 184 magic number.
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Figure 5.3.6: Shell Model prediction of the magic numbers. Level splittings due to h.o. levels, l-quantum number and spin-orbit
coupling. Notice that further variations in the position of the levels are actually present (see Krane Fig. 5.6). Here only the shiftings
leading to new shell groupings are shown. (CC BY-NC-ND; Paola Cappellaro)
These predictions do not depend on the exact shape of the square well potential, but only on the spin-orbit coupling and its relative
strength to the nuclear interaction Vj as set in the harmonic oscillator potential (we had seen that the separation between oscillator
levels was on the order of 10MeV.) In practice, if one studies in more detail the potential well, one finds that the oscillator levels
with higher [ are lowered with respect to the others, thus enhancing the gap created by the spin-orbit coupling.

The shell model that we have just presented is quite a simplified model. However it can make many predictions about the nuclide
properties. For example it predicts the nuclear spin and parity, the magnetic dipole moment and electric quadrupolar moment, and it
can even be used to calculate the probability of transitions from one state to another as a result of radioactive decay or nuclear
reactions.
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Image by MIT OpenCourseWare. After Krane.

Figure 5.3.7: Shell Model energy levels (from Krane Fig. 5.6). Left: Calculated energy levels based on potential. To the right of
each level are its capacity and cumulative number of nucleons up to that level. The spin-orbit interaction splits the levels with 1 > 0
into two new levels. Note that the shell effect is quite apparent, and magic numbers are reproduced exactly.

Spin pairing and valence nucleons

In the extreme shell model (or extreme independent particle model), the assumption is that only the last unpaired nucleon dictates
the properties of the nucleus. A better approximation would be to consider all the nucleons above a filled shell as contributing to
the properties of a nucleus. These nucleons are called the valence nucleons.

Properties that can be predicted by the characteristics of the valence nucleons include the magnetic dipole moment, the electric
quadrupole moment, the excited states and the spin-parity (as we will see). The shell model can be then used not only to predict
excited states, but also to calculate the rate of transitions from one state to another due to radioactive decay or nuclear reactions.

As the proton and neutron levels are filled the nucleons of each type pair off, yielding a zero angular momentum for the pair. This
pairing of nucleons implies the existence of a pairing force that lowers the energy of the system when the nucleons are paired-off.

Since the nucleons get paired-off, the total spin and parity of a nucleus is only given by the last unpaired nucleon(s) (which
reside(s) in the highest energy level). Specifically we can have either one neutron or one proton or a pair neutron-proton.

The parity for a single nucleon is (—1)’ , and the overall parity of a nucleus is the product of the single nucleon parity. (The parity
indicates if the wavefunction changes sign when changing the sign of the coordinates. This is of course dictated by the angular part
of the wavefunction — as in spherical coordinates Then if you look back at the angular wavefunction for a central potential it is
easy to see that the spherical harmonics change sign iff [ is odd).

The shell model with pairing force predicts a nuclear spin I = 0 and parity IT = even (or I = 0™) for all even-even nuclides.

Odd-Even nuclei

Despite its crudeness, the shell model with the spin-orbit correction describes well the spin and parity of all odd-A nuclei. In
particular, all odd-A nuclei will have half-integer spin (since the nucleons, being fermions, have half-integer spin).
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$807 and 7Oy. (of course 16O has spin zero and even parity because all the nucleons are paired). The first ({ }_{8}/{15}
\mathrm{O}_{7}\)) has an unpaired neutron in the p, / shell, than [ = 1, s = 1/2 and we would predict the isotope to have spin
1/2 and odd parity. The ground state of 51;709 instead has the last unpaired neutron in the ds /> shell, with [ =2 and s = 5/2, thus
implying a spin 5/2 with even parity. Both these predictions are confirmed by experiments.

v/ Example 5.3.3

These are even-odd nuclides (i.e. with A odd).

123

51 Obr2 has lprotonin 1 g; /5 :— %+

_>
123 g 7+
— 57Sbrz has lprotonin 1 gy :— 5 .
35 ; ., 3%
— 17Cl has lprotonin 1dz/ :— 5
. . +
— %ZS’L has 1 neutron in 2 sy /3 :— % .

— %ZS’L' has paired nucleons: — 07 .

v/ Example 5.3.4

There are some nuclides that seem to be exceptions:

— %Sbm has last proton in 2 dj ; instead of 1 g7 /5 :— g+ (details in the potential could account for the inversion of the
two level order)

— &37Sngs has last proton in 2f; , instead of 1 hg 5 :— %_
— ggBr44 has last neutron in 2p3 5 instead of 1f; 5 : — %7

— §g7Pb125. Here we invert 1i;3/5 with 3p; /2 This seems to be wrong because the 1i level must be quite more energetic than
the 3p one. However, when we move a neutron from the 3p to the 1i all the neutrons in the 1i level are now paired, thus

lowering the energy of this new configuration.

Odd-Odd nuclei

Only five stable nuclides contain both an odd number of protons and an odd number of neutrons: the first four odd-odd nuclides
%H, gLi, %0 B, and %4 N. These nuclides have two unpaired nucleons (or odd-odd nuclides), thus their spin is more complicated to
calculate. The total angular momentum can then take values between |j; — ja| and j; + ja .

Two processes are at play:

1. the nuclei tends to have the smallest angular momentum, and
2. the nucleon spins tend to align (this was the same effect that we saw for example in the deuteron In any case, the resultant

nuclear spin is going to be an integer number.

Nuclear Magnetic Resonance

The nuclear spin is important in chemical spectroscopy and medical imaging. The manipulation of nuclear spin by radiofrequency
waves is at the basis of nuclear magnetic resonance and of magnetic resonance imaging. Then, the spin property of a particular
isotope can be predicted when you know the number of neutrons and protons and the shell model. For example, it is easy to predict
that hydrogen, which is present in most of the living cells, will have spin 1/2. We already saw that deuteron instead has spin 1.
What about Carbon, which is also commonly found in biomolecules? %20 is of course and even-even nucleus, so we expect it to

have spin-0. é3C7 instead has one unpaired neutron. Then '3C has spin—%.
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Why can nuclear spin be manipulated by electromagnetic fields? To each spin there is an associated magnetic dipole, given by:

where ~yy is called the gyromagnetic ratio, g is the g-factor (that we are going to explain) and ppy is the nuclear magneton
uN = % ~3x10°% eV/T (with m the proton mass). The g factor is derived from a combination of the angular momentum g-
factor and the spin g-factor. For protons g; = 1, while it is g; = 0 for neutrons as they don’t have any charge. The spin g-factor can
be calculated by solving the relativistic quantum mechanics equation, so it is a property of the particles themselves (and a
dimensionless number). For protons and neutrons we have: g, , = 5.59 and g, ,, = —3.83.

In order to have an operational definition of the magnetic dipole associated to a given angular momentum, we define it to be the
expectation value of [ when the system is in the state with the maximum 2 angular momentum:

() = Bl +gus:) = B g + (02— 90)52)

Then under our assumptions j, = jh (and of course [, = hm, and s, = km; ) we have

(1) = 5 (it (g0 — 1) (52))

How can we calculate s,? There are two cases, either j =1+ % orj=1— % . And notice that we want to find the projection of .S
1S-7|J

in the state which is aligned with J, so we want the expectation value of i
J

. By replacing the operators with their expectation
values (in the case where j, = jh ), we obtain
(s.) :Jr% forj:lJr% .
—_h =71
(82) = —73 77 forj=1—3.
(thus we have a small correction due to the fact that we are taking an expectation value with respect to a tilted state and not the

usual state aligned with S,. Remember that the state is well defined in the coupled representation, so the uncoupled representation
states are no longer good eigenstates).

Finally the dipole is
.1 gs
() = pn |:9l (J— 2) + 9 ]

j(j+§) g 1
Jr1 2 G+l

forj:l—i—% and

(1) = pNgi |f]l

otherwise. Notice that the exact g-factor or gyromagnetic ratio of an isotope is difficult to calculate: this is just an approximation
based on the last unpaired nucleon model, interactions among all nucleons should in general be taken into account.

More complex structures

Other characteristics of the nuclear structure can be explained by more complex interactions and models. For example all even-
even nuclides present an anomalous 2* excited state (Since all even-even nuclides are 0* we have to look at the excited levels to
learn more about the spin configuration.) This is a hint that the properties of all nucleons play a role into defining the nuclear
structure. This is exactly the terms in the nucleons Hamiltonian that we had decided to neglect in first approximation. A different
model would then to consider all the nucleons (instead of a single nucleons in an external potential) and describe their property in a
collective way. This is similar to a liquid drop model. Then important properties will be the vibrations and rotations of this model.

A different approach is for example to consider not only the effects of the last unpaired nucleon but also all the nucleons outside the

last closed shell. For more details on these models, see Krane.

This page titled 5.3: Nuclear Models is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola Cappellaro
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

6: Time Evolution in Quantum Mechanics

Until now we used quantum mechanics to predict properties of atoms and nuclei. Since we were interested mostly in the
equilibrium states of nuclei and in their energies, we only needed to look at a time-independent description of quantum-mechanical
systems. To describe dynamical processes, such as radiation decays, scattering and nuclear reactions, we need to study how

quantum mechanical systems evolve in time.

6.1: Time-dependent Schrodinger Equation

6.2: Evolution of Wave-packets

6.3: Evolution of Operators and Expectation Values
6.4: Fermi’s Golden Rule

This page titled 6: Time Evolution in Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: Time-dependent Schrodinger Equation

When we first introduced quantum mechanics, we saw that the fourth postulate of QM states that: The evolution of a closed system
is unitary (reversible). The evolution is given by the time-dependent Schrddinger equation
oly)
th——=H
o = M)
where H is the Hamiltonian of the system (the energy operator) and k is the reduced Planck constant (h = h/2m with h the Planck
constant, allowing conversion from energy to frequency units).

We will focus mainly on the Schrodinger equation to describe the evolution of a quantum-mechanical system. The statement that
the evolution of a closed quantum system is unitary is however more general. It means that the state of a system at a later time ¢ is
given by , where U(t) is a unitary operator. An operator is unitary if its adjoint UT (obtained by taking the transpose and the

complex conjugate of the operator, U = (U *)T ) is equal to its inverse: UT =U ! and UUT =1.

Note that the expression |¢(¢)) = U(¢)|%(0)) is an integral equation relating the state at time zero with the state at time ¢. For
example, classically we could write that z(¢) = 2(0) +vt (where v is the speed, for constant speed). We can as well write a
differential equation that provides the same information: the Schrodinger equation. Classically for example, (in the example above)
the equivalent differential equation would be i—j = v (more generally we would have Newton’s equation linking the acceleration to
the force). In QM we have a differential equation that control the evolution of closed systems. This is the Schrodinger equation:

MY(x,t)

where H is the system’s Hamiltonian. The solution to this partial differential equation gives the wavefunction v (z, t) at any later
time, when ¢ (z, 0) is known.

Solutions to the Schrodinger equation

~2
We first try to find a solution in the case where the Hamiltonian H = 2—+ V() is such that the potential V(z, ) is time
independent (we can then write V'(z)). In this case we can use separation of variables to look for solutions. That is, we look for
solutions that are a product of a function of position only and a function of time only:

P(z,t) = () f(t)
Then, when we take the partial derivatives we have that

db(,t) _ df(t) Ob(,t) _ dp(a) Ph(a,t) _ dp(a)

ot @ PO o~ g JWand =55 il
The Schrodinger equation simplifies to
_dft) R d%(a)
IREC 2 (@) = — 5= (1) + V(@)p(@)f (1)

Dividing by v (z, t) we have:
Ldft) 1 R dp(z) 1

! Tf(t)__2m z2 () Viz)

Now the LHS is a function of time only, while the RHS is a function of position only. For the equation to hold, both sides have then
to be equal to a constant (separation constant):

dft) 1 K2 d?p(z) 1
ih————=FE,———————+V(z)=F
a0 P Tm 2 e
The two equations we find are a simple equation in the time variable:
df(t) i

o = R EI®), = f(t)=f(0)e
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and

B dp@) 1
- R C))
that we have already seen as the time-independent Schrédinger equation. We have extensively studied the solutions of the this last
equation, as they are the eigenfunctions of the energy-eigenvalue problem, giving the stationary (equilibrium) states of quantum

systems. Note that for these stationary solutions ¢ (x) we can still find the corresponding total wavefunction, given as stated above
by ¥(z,t) = ¢(z)f(¢), which does describe also the time evolution of the system:

V(zx)=FE
2m =z

. Et

P(x,t) = p(z)e"

Does this mean that the states that up to now we called stationary are instead evolving in time?

The answer is yes, but with a caveat. Although the states themselves evolve as stated above, any measurable quantity (such as the
probability density |t (x,t)|* or the expectation values of observable, (A) = [4)(z,t)* A[sb(z,t)]) are still time-independent.
(Check it!)

Thus we were correct in calling these states stationary and neglecting in practice their time-evolution when studying the properties
of systems they describe.

Notice that the wavefunction built from one energy eigenfunction, ¥ (z,t) = ¢(z)f(t), is only a particular solution of the
Schrodinger equation, but many other are possible. These will be complicated functions of space and time, whose shape will
depend on the particular form of the potential V(). How can we describe these general solutions? We know that in general we can
write a basis given by the eigenfunction of the Hamiltonian. These are the functions {¢(z)} (as defined above by the time-
independent Schrodinger equation). The eigenstate of the Hamiltonian do not evolve. However we can write any wavefunction as

=" clt)pn(e)
k

This just corresponds to express the wavefunction in the basis given by the energy eigenfunctions. As usual, the coefficients c(t)
can be obtained at any instant in time by taking the inner product: (¢, | ¥(z,t)).

What is the evolution of such a function? Substituting in the Schrédinger equation we have

(Zk Ck Z er(t)How(x

that becomes

iy _a (e ch )Exen(@

k
For each ¢y, we then have the equation in the coefficients only

dey B
h? —Ekck( ) — Ck(t) :ck(O)e A

A general solution of the Schrédinger equation is then

Byt

Pz, t) = cr(0)e " k()

k

We can define the eigen-frequencies Aiwy, = Ej from the eigen-energies. Thus we see that the wavefunction is a superposition
of waves (}, propagating in time each with a different frequency wy.

The behavior of quantum systems —even particles— thus often is similar to the propagation of waves. One example is the
diffraction pattern for electrons (and even heavier objects) when scattering from a slit. We saw an example in the electron
diffraction video at the beginning of the class.
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What is the probability of measuring a certain energy Ej, at a time ¢? It is given by the coefficient of the ¢}, eigenfunction,
t 2
|ex(t)* =

i 2t
ck(0)e "
time. Energy is then a so-called constant of the motion. This is true only for the energy eigenvalues, not for other observables*.

v/ Example 6.1.1

Consider instead the probability of finding the system at a certain position, p() = |t(z, t)|%. This of course changes in time.
For example, let

= |ex(0)[* . This means that the probability for the given energy is constant, does not change in

Y(z,0) = c1(0)p1(x) +c2(0)pa(z),
with

|e1(0)” + |e2(0)* = |ex [ +]eaf” =1
and (1 » normalized energy eigenfunctions. Then at a later time we have

¥(z,0)=c; (O)efiwltwl (z)+co (O)efi“’2t<p2 (z).
What is p(z, t)?
Solution
ler(0)e 1ty () +¢5(0)e 2t s ()|
=c1(0) |1 (@) + [e2(0)*| 02 () + i eagpipae it ¢y cx oy 3 eilwrwn)t
=le |2 +|eo |2 +2Re [c;c%o;me_i(“z_wl)t]

The last term describes a wave interference between different components of the initial wavefunction.

The expressions found above for the time-dependent wavefunction are only valid if the potential is itself time-independent. If
this is not the case, the solutions are even more difficult to obtain.

Unitary Evolution

We saw two equivalent formulation of the quantum mechanical evolution, the Schrodinger equation and the Heisenberg equation.
We now present a third possible formulation: following the 4™ postulate we express the evolution of a state in terms of a unitary
operator, called the propagator:

P(z,t) =U(t)p(z,0)

with U f[)' = 1. (Notice that a priori the unitary operator U could also be a function of space). We can show that this is equivalent
to the Schrodinger equation, by verifying that 1(z, t) above is a solution:

_OUY(z,0) . , L

where in the second step we used the fact that since the equation holds for any wavefunction 1 it must hold for the operator
themselves. If the Hamiltonian is time independent, the second equation can be solved easily, obtaining:

oU

m%{]:m) - U(t)=e /P

where we set U (t =0) =1. Notice that as desired Uis unitary, UTU = eMt/he /R — 1
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6.2: Evolution of Wave-packets

In Section 6.1.1 we looked at the evolution of a general wavefunction under a time-independent Hamiltonian. The solution to the
Schrodinger equation was given in terms of a linear superposition of energy eigenfunctions, each acquiring a time-dependent phase
factor. The solution was then the superposition of waves each with a different frequency.

Now we want to study the case where the eigenfunctions form a continuous basis, {¢r} — {¢(k)}. More precisely, we want to
describe how a free particle evolves in time. We already found the eigenfunctions of the free particle Hamiltonian (H = ﬁ2 /2m):
they were given by the momentum eigenfunctions e’** and describe more properly a traveling wave. A particle localized in space
instead can be described by wavepacket ¢(z, 0) initially well localized in x-space (for example, a Gaussian wavepacket).

How does this wave-function evolve in time? First, following Section 2.2.1, we express the wavefunction in terms of momentum
(and energy) eigenfunctions:

1 /°° o
z,0) = — k)e** dk,
w0 =—= [
We saw that this is equivalent to the Fourier transform of 1/_)(k), then ¢(z,0) and @(k) are a Fourier pair (can be obtained from

each other via a Fourier transform).

Thus the function z/_z(k) is obtained by Fourier transforming the wave-function at ¢ = 0. Notice again that the function 1/_)(19) is the
continuous-variable equivalent of the coefficients ¢ (0).

The second step is to evolve in time the superposition. From the previous section we know that each energy eigenfunction evolves
by acquiring a phase e @Bt where w(k) = Ey/h is the energy eigenvalue. Then the time evolution of the wavefunction is

bla,t) = / " (k)W dk,

where

o(k) = kz — w(k)t.
For the free particle we have w;, = g—ﬁi . If the particle encounters instead a potential (such as in the potential barrier or potential
well problems we already saw) wy could have a more complex form. We will thus consider this more general case.

Now, if 1(k) is strongly peaked around k = ky, it is a reasonable approximation to Taylor expand (k) about kg. We can then
approximate (k) by

B (k—ko)

ORI

and keeping terms up to second-order in k — ky , we obtain

0o (k*ko)2
1
w(m,t)a[ e 4w’ exp[—ikx —&-i{goﬁ-% (k—kg)—i—gga()’(k—ko)QH,

where
Yo =@ (ko) = k‘ox *OJgt,
/ dy (kﬂ)
Yy = 7 =T —gt,
d*¢ (ko)
0= g b
1
—ikz 41 {kgzr —wot+ (. —vgt) (k—ko) + §¢g(k—k0)2}
with
dw (k()) d2w (k‘())
wy =w(ko), vg= p
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As usual, the variance of the initial wavefunction and of its Fourier transform are relates: Ak =1/(2Az), where Az is the initial
width of the wave-packet and Ak the spread in the momentum. Changing the variable of integration to y = (k — ko) /(2Ak) , we
get

Y(z,t) o elkor—wot) /OO elfiy— (148" gy
—00
where
Bi =240k (z —z9 —vgt),
By =2a(Ak)%t,
The above expression can be rearranged to give

P(x,t) o ei(kow—wot)—(l‘Fiﬁz)ﬂZ/‘l /°° e_(1+iﬂ2)(y—yo)2dy’

where yo =i8/2and 8 =31/ (1 +i82) .

Again changing the variable of integration to z = (1 +155) 1/2 (y—wo) , we get

G(w,t) o (1+iBs) 1 2ei(kor—en) ~(14i8)8°/4 / ¥

—00
The integral now just reduces to a number. Hence, we obtain

(z—og—vgt) 2[1-i20842{]

ei(koszot) e 40(t)2
1/)(‘/1"7"/) 0.8 ’
V1T 2a(Ak)%
where
242
2 2 ot
t)=(Az)" + ——.
) = (8o + g

Note that even if we made an approximation earlier by Taylor expanding the phase factor ¢ (k) about k = kg, the above wave-
function is still identical to our original wave-function at ¢ = 0.

The probability density of our particle as a function of times is written

[z, t)[* oc o (2) expl‘w] :

202(t)
Hence, the probability distribution is a Gaussian, of characteristic width o(¢) (increasing in time), which peaks at & = ¢ + vyt .

Now, the most likely position of our particle obviously coincides with the peak of the distribution function. Thus, the particle’s
most likely position is given by

T = o +vg4t.
It can be seen that the particle effectively moves at the uniform velocity

dw

dk’

which is known as the group-velocity. In other words, a plane-wave travels at the phase-velocity, v, = w/k, whereas a wave-
packet travels at the group-velocity, v, = dw/dtv, = dw/dt . From the dispersion relation for particle waves the group velocity is

dlhw) dE p

YT amk)  dp om

’Ug:

which is identical to the classical particle velocity. Hence, the dispersion relation turns out to be consistent with classical physics,
after all, as soon as we realize that particles must be identified with wave-packets rather than plane-waves.
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Note that the width of our wave-packet grows as time progresses: the characteristic time for a wave-packet of original width
Ax Az to double in spatial extent is
2
m(Ax)
P

So, if an electron is originally localized in a region of atomic scale (i.e., Az ~ 10*° m ) then the doubling time is only about
107, Clearly, particle wave-packets (for freely moving particles) spread very rapidly.

ty ~

The rate of spreading of a wave-packet is ultimately governed by the second derivative of w(k) with respect to k, ‘227‘;’. This is why

the relationship between w and & is generally known as a dispersion relation, because it governs how wave-packets disperse as
time progresses.

If we consider light-waves, then w is a linear function of k and the second derivative of w with respect to k is zero. This implies
that there is no dispersion of wave-packets, wave-packets propagate without changing shape. This is of course true for any other
wave for which w(k) oc k. Another property of linear dispersion relations is that the phase-velocity, v, = w/k, and the group-
velocity, vy = dw/dk are identical. Thus a light pulse propagates at the same speed of a plane light-wave; both propagate through
a vacuum at the characteristic speed ¢ = 3 x 108 m/s .

Of course, the dispersion relation for particle waves is not linear in k (for example for free particles is quadratic). Hence, particle
plane-waves and particle wave-packets propagate at different velocities, and particle wave-packets also gradually disperse as time
progresses.

This page titled 6.2: Evolution of Wave-packets is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola
Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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6.3: Evolution of Operators and Expectation Values

The Schrodinger equation describes how the state of a system evolves. Since via experiments we have access to observables and
their outcomes, it is interesting to find a differential equation that directly gives the evolution of expectation values.

Heisenberg Equation

We start from the definition of expectation value and take its derivative wrt time

S = [t Ay, 0)
:/d%ww(m,w+/d3x¢(x,t)*%i¢(w,t)+/d3w¢(%t)*1‘i%
We then use the Schrodinger equation:
WED_ Lysen, 20D L6,y

and the fact (Hy(z,t))* = ¥(z,t)*H* = (x,t)*H (since the Hamiltonian is hermitian H* = H ). With this, we have

" .
d——%/d%wm “HAY(z, t) /d3:m/193t %‘? /d3w¢mt *AHY(x, 1)

:%/ﬁ%¢@¢rmﬁ_Amwwxrﬁ/¢%¢@iféé¢””)

We now rewrite [HA — AH] = [#, fi] as a commutator and the integrals as expectation values:

d(A)y A dA
2 A ==
This is an equivalent formulation of the system’s evolution (equivalent to the Schrodinger equation).

X Observation

Notice that if the observable itself is time independent, then the equation reduces to <f <[’H A]> . Then if the observable

A commutes with the Hamiltonian, we have no evolution at all of the expectation value. An observable that commutes with the
Hamiltonian is a constant of the motion. For example, we see again why energy is a constant of the motion (as seen before).

Notice that since we can take the expectation value with respect to any wavefunction, the equation above must hold also for the
operators themselves. Then we have:

F7 T

This is an equivalent formulation of the system’s evolution (equivalent to the Schrédinger equation).

X Observation

Notice that if the operator A is time independent and it commutes with the Hamiltonian #{ then the operator is conserved, it is
a constant of the motion (not only its expectation value).

~2
Consider for example the angular momentum operator L for a central potential system (i.e. with potential that only depends

on the distance, V(r)). We have seen when solving the 3D time-independent equation that [’H, ﬁ] =0. Thus the angular

momentum is a constant of the motion.
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Ehrenfest's Theorem

We now apply this result to calculate the evolution of the expectation values for position and momentum.

2m

<[H,i~]>=i<lﬁ— V()8

Now we know that [V(z), Z] = 0 and we already calculated [ﬁz, :i?:| = —2ihp . So we have:

d(z)
dt

1 .
== () (6.3.1)

Notice that this is the same equation that links the classical position with momentum (remember p/m = v velocity). Now we turn
to the equation for the momentum:

~2
Here of course [;)— , ﬁ} =0, so we only need to calculate [V'(z), p]. We substitute the explicit expression for the momentum:
m

V(@),p)f(z) =V (2) [_hf?f;_;)] _ [_hw]
—v@in@ 2D o 12y a2 g
Then,
w = (%) 652

X Observation

Notice that in both Equations 6.3.1 and 6.3.2, k canceled out. Moreover, both equations only involves real variables (as in
classical mechanics).

V(z)

Usually, the derivative of a potential function is a force, so we can write ——~ = F(x). If we could approximate
(F(z)) ~ F((z)), then both two Equations 6.3.1and 6.3.2 are rewritten:

di) 1. d{)
5 ) o =F(e)

m

These are two equations in the expectation values only. Then we could just make the substitutions (p) — p and (&) — z (i.e.
identify the expectation values of QM operators with the corresponding classical variables). We obtain in this way the usual
classical equation of motions. This is Ehrenfest’s theorem.
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F(<x>) = <F(x)> F(<x>) = <F(x)>

Figure 6.3.1: Localized (left) and spread-out (right) wavefunction. In the plot the absolute value square of the wavefunction is
shown in blue (corresponding to the position probability density) for a system approaching the classical limit (left) or showing
more quantum behavior. The force acting on the system is shown in black (same in the two plots). The shaded areas indicate
the region over which |1/1(ac)|2 is non-negligible, thus giving an idea of the region over which the force is averaged. The
wavefunctions give the same average position (z). However, while for the left one F({z)) ~ (F(z)) for the right
wavefunction F'({(z)) # (F(z))(CC BY-NC-ND; Paola Cappellaro)

. This means that the wavefunction is localized enough such

When is the approximation above valid? We want <8V(z) > ~ @)

oz d(z)
that the width of the position probability distribution is small compared to the typical length scale over which the potential varies.
When this condition is satisfied, then the expectation values of quantum-mechanical probability observable will follow a classical
trajectory.

Assume for example t(z) is an eigenstate of the position operator ¢(z) = §(z — Z) . Then () = [dz zé(z —z)* =Z and
o)\ _ [oV(z), OV ((x))
< Ox > N Oz O —(z))dz = o(z)

If instead the wavefunction is a packet centered around (z) but with a finite width Az (i.e. a Gaussian function) we no longer have
1 V(=)
V. oz

1
an equality but only an approximation if Ax < L = (or localized wavefunction).

This page titled 6.3: Evolution of Operators and Expectation Values is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,

and/or curated by Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts
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6.4: Fermi's Golden Rule

We consider now a system with an Hamiltonian H,, of which we know the eigenvalues and eigenfunctions:
Houg(z) = Erug(z) = hwpug(z)

Here I just expressed the energy eigenvalues in terms of the frequencies wy, = E} /. Then, a general state will evolve as:
¥(z,t) = Z cr(0)e “uy (x)
k

If the system is in its equilibrium state, we expect it to be stationary, thus the wavefunction will be one of the eigenfunctions of the
Hamiltonian. For example, if we consider an atom or a nucleus, we usually expect to find it in its ground state (the state with the
lowest energy). We consider this to be the initial state of the system:

P(z,0) = ui(z)
where ¢ stands for initial ). Now we assume that a perturbation is applied to the system. For example, we could have a laser
illuminating the atom, or a neutron scattering with the nucleus. This perturbation introduces an extra potential V in the system’s
Hamiltonian (a priori V' can be a function of both position and time V(z,t), but we will consider the simpler case of time-
independent potential V'(x)). Now the hamiltonian reads:

H="Ho+V(x)

What we should do, is to find the eigenvalues { E} } and eigenfunctions {vj(z)} of this new Hamiltonian and express u;(z) in this
new basis and see how it evolves:

wi(@) =Y du()vn  — ¢ (z,t) = dn(0)e Ei/ vy (x).
h h

Most of the time however, the new Hamiltonian is a complex one, and we cannot calculate its eigenvalues and eigenfunctions.
Then we follow another strategy.

Consider the examples above (atom+laser or nucleus+neutron): What we want to calculate is the probability of making a transition
from an atom/nucleus energy level to another energy level, as induced by the interaction. Since #; is the original Hamiltonian
describing the system, it makes sense to always describe the state in terms of its energy levels (i.e. in terms of its eigenfunctions).
Then, we guess a solution for the state of the form:

/ —dwit
P (z,t) = ch(t)e K ()
k
This is very similar to the expression for (z,t) above, except that now the coefficient ¢ are time dependent. The time-
dependency derives from the fact that we added an extra potential interaction to the Hamiltonian.

Let us now insert this guess into the Schrédinger equation, ih% =Ho + V@ZJ’ :
ih E [er(t)e ™ uy(z) —iweg (t)e “uy(z)] = Z c(t)e ™ (’ngk(m) +V [y (a:)])
% %
(where ¢ is the time derivative). Using the eigenvalue equation to simplify the RHS we find

Z [ihé g (t)e ™ uy () +hweg (t)e g (z)] = Z [cx (t)e™™* Rwyuk () + ck (t)e @tV [uk(x)}]

D ihér(t)e “up(z) =Y cx(t)e VY [uy(z)]

k

Now let us take the inner product of each side with u (z):

oo

> iheg(t)e /_ u;(m)uk(x)dm:;ck(t)e_i“’kt / w (2)V [uy(z)] dz

k o0 —00
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In the LHS we find that [ uj (z)ui(z)dz =0 for b # k and it is 1 for h = k (the eigenfunctions are orthonormal). Then in the
sum over k the only term that survives is the one k = h :

> ihég(t)e / ” w (z)up(z)dz = ihiéy (t)e ™t
k
On the RHS we do not have any simplification. To shorten the notation however, we call V3, the integral:
V= [ o)V furte) do
The equation then simplifies to:
nlt) =~ D v

This is a differential equation for the coefficients ¢y (). We can express the same relation using an integral equation:
; t
cn(t) = _r Z/ e (t) eileon—wi)t' 2 dy! +en(0)
h = Jo

We now make an important approximation. We said at the beginning that the potential V is a perturbation, thus we assume that its
effects are small (or the changes happen slowly). Then we can approximate c (') in the integral with its value at time O,
ck(t=0):

. t ) ,
en(t) =5 D ex(0) /0 = Vit +¢,(0)
k

[Notice: for a better approximation, an iterative procedure can be used which replaces cj (#') with its first order solution, then
second etc.].

Now let’s go back to the initial scenario, in which we assumed that the system was initially at rest, in a stationary state
¥(z,0) = u; (). This means that c;(0) = 0 for all k # ¢. The equation then reduces to:

; t
cn(t) = _%/0 R T

or, by calling Awp, = wp, —w; ,

Vhi
hAwh

; t
ch(t) _ —thi / eiAwht’dtl — (1 _ eiAwht)

h 0
What we are really interested in is the probability of making a transition from the initial state u;(z) to another state
up(z) : P(i — ) =|cn(t)|* . This transition is caused by the extra potential V but we assume that both initial and final states are
eigenfunctions of the original Hamiltonian H, (notice however that the final state will be a superposition of all possible states to
which the system can transition to).

We obtain

P(i —h)

R2Aw? 2

2 2
41V |® . (Awht)
= sin
sin(Awt/2)
Aw/2
the state of the system after the new potential has had a long time to change the state of the quantum system) the sinc function

becomes very narrow, until when we can approximate it with a delta function. The exact limit of the function gives us:

sin z

The function #2£ is called a sinc function (see Figure 6.4.1). Take . In the limit £ — oo (i.e. assuming we are describing

. 27| Vi 't
P(i—h)= h—;&(Awh)
We can then find the transition rate from 7 — h as the probability of transition per unit time, W, = % :
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2m
Wip, = h—2|Vhi|25(Awh)

This is the so-called Fermi’s Golden Rule, describing the transition rate between states.

This transition rate describes the transition from wu; to a single level u; with a given energy Ej, = hwy, . In many cases the final
state is an unbound state, which, as we saw, can take on a continuous of possible energy available. Then, instead of the point-
like delta function, we consider the transition to a set of states with energies in a small interval £ — E + dE . The transition
rate is then proportional to the number of states that can be found with this energy. The number of state is given by
dn = p(E)dE , where p(E) is called the density of states (we will see how to calculate this in a later lecture). Then, Fermi’s
Golden rule is more generally expressed as:

2
Win = 7|Vhi|2p(Eh)

Ey=FE;

[Note, before making the substitution §(Aw) — p(E) we need to write
§(Aw) = hé(hAw) = hé (En, — E;) — hp (En)| g,—p, - This is why in the final formulation for the Golden rule we only have
a factor A and not its square.]

Aw

Al Aw

sin(Awt/2)
Aw/2
becoming narrower and closer to a Dirac delta function (CC BY-NC-ND; Paola Cappellaro)

Figure 6.4.1: Sinc function . Left: Sinc function at short times. Right: Sinc function at longer times, the function
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CHAPTER OVERVIEW

7: Radioactive Decay Il

Radioactive decay is the process in which an unstable nucleus spontaneously loses energy by emitting ionizing particles and
radiation. This decay, or loss of energy, results in an atom of one type, called the parent nuclide, transforming to an atom of a
different type, named the daughter nuclide.

The three principal modes of decay are called the alpha, beta and gamma decays. We already introduced the general principles of
radioactive decay in Section 1.3 and we studied more in depth alpha decay in Section 3.3. In this chapter we consider the other two
type of radioactive decay, beta and gamma decay, making use of our knowledge of quantum mechanics and nuclear structure.

7.1: Gamma Decay
7.2: Beta Decay

Thumbnail: Beta particle emission of a nucleus.( Public Domain; Inductiveload via Wikipedia)
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7.1: Gamma Decay

Gamma decay is the third type of radioactive decay. Unlike the two other types of decay, it does not involve a change in the
element. It is just a simple decay from an excited to a lower (ground) state. In the process of course some energy is released that is
carried away by a photon. Similar processes occur in atomic physics, however there the energy changes are usually much smaller,
and photons that emerge are in the visible spectrum or x-rays.

The nuclear reaction describing gamma decay can be written as

Ax* _ A

72X =5 X+
where * indicates an excited state.

We have said that the photon carries aways some energy. It also carries away momentum, angular momentum and parity (but no
mass or charge) and all these quantities need to be conserved. We can thus write an equation for the energy and momentum carried
away by the gamma-photon.

From special relativity we know that the energy of the photon (a massless particle) is

E:,/m2c4+p2c2 — FE=pc

2
(while for massive particles in the non-relativistic limit v < ¢ we have E ~ mc? + 2”—m .) In quantum mechanics we have seen that
the momentum of a wave (and a photon is well described by a wave) is p = hk with k the wave number. Then we have

E — ke = huwy,

This is the energy for photons which also defines the frequency wy = kc (compare this to the energy for massive particles,
21,2
E=1k)

2m

Gamma photons are particularly energetic because they derive from nuclear transitions (that have much higher energies than e.g.
atomic transitions involving electronic levels). The energies involved range from FE ~.1-+10MeV, giving
k~107'+10fm™" . Than the wavelengths are A = 2% ~ 100+ 10*fm , much longer than the typical nuclear dimensions.

Gamma ray spectroscopy is a basic tool of nuclear physics, for its ease of observation (since it’s not absorbed in air), accurate
energy determination and information on the spin and parity of the excited states. Also, it is the most important radiation used in
nuclear medicine.

Ei L 1L
Ey=hw=E; Ef
I,=TLiTl¢
Ly
Ef, If, I1f
Figure 7.1.1: Schematics of gamma decay (CC BY-NC-ND; Paola Cappellaro)

Classical Theory of Radiation

From the theory of electrodynamics it is known that an accelerating charge radiates. The power radiated is given by the integral of
the energy flux (as given by the Poynting vector) over all solid angles. This gives the radiated power as:

2 e2|al?
p_2 |a|
3 3

where a is the acceleration. This is the so-called Larmor formula for a non-relativistic accelerated charge.
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As an important example we consider an electric dipole. An electric dipole can be considered as an oscillating charge, over a
range 7, such that the electric dipole is given by d(t) = gr(¢) . Then the equation of motion is

r(t) = rq cos(wt)
and the acceleration
a =7+ = —rw? cos(wt)
Averaged over a period T' = 27 /w, this is

w

2 g L
= _ 12
(a®) = 27r/0 dtal(t) 570w

Finally we obtain the radiative power for an electric dipole:

1ewt . o
Pg =— 7
01 =5 o IFo

Electromagnetic Multipoles

In order to determine the classical e.m. radiation we need to evaluate the charge distribution that gives rise to it. The electrostatic
potential of a charge distribution p, () is given by the integral:

/
T
1 /. Pe
Vol |- ’

i

V(r) = 4meg

When treating radiation we are only interested in the potential outside the charge and we can assume the charge (e.g. a particle!) to
be well localized (7 < r). Then we can expand —— in power series. First, we express explicitly the norm

=
=]

7 2 /
|F—F/ =/ +7"2 =27 cos® :r\/l—i— (r_) —2L cos®.
r r

We set

and
e=R?>—2Rcos?¥.

This is a small quantity, given the assumption 7' < r. Then we can expand:

1 1 1 1 1 8, 54
= — = — — —€ —€ — —€ . e
|F_;-” ryl+te T 2 8 16

Replacing e with its expression we have:
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S =

:

:%(1—%(R2—2Rcos19)+g(R2—2Rcosz9)2_i(R2_2RCOSﬂ)3+'”)

1+e 16

:l 1+ —1R2+Rcost9 + ER4—E]?,?’cosz9—|—§R2coszﬁ
r 2 8 2 2

5R® 15 . 15 4 O b33
+{_1_6+§R (ﬁ)—TR cos (19)+5R cos*(¥)| +...
2 5cos®(9)  3cos(¥
~ (14 Reoso+ B2 (2950 LY L g cos’(9) _ 3cos() +...
r 2 2 2 2

We recognized in the coefficients to the powers of R the Legendre Polynomials P;(cos®) (with [ the power of R!, and note that for
powers > 3 we should have included higher terms in the original € expansion):

/

1 1 1 TV EAY
- 1+6;ZRPI(cosﬁ)Tz<r)Pl(cos19)

1=0 =0

With this result we can as well calculate the potential:

V) = / DESNE P(cos )’
r 47T607' Vol,p 4 r T t\cosvjar

=0

The various terms in the expansion are the multipoles. The few lowest ones are :

Q
4o %fVol' ( )dr = dneor Monopole
L o p(F) 7P (cosﬁ)dﬁ =17 () cos19d;> _ i Dipole
Ameg 2 Vol' P 1 ~ dmey 12 JVol P T 4weor? p
%
2L [ 0 ()P Pa(cost)dr = L [ o (7)1 (Scos?9— 1) dr  Quadrupole

This type of expansion can be carried out as well for the magnetostatic potential and for the electromagnetic, time-dependent field.

At large distances, the lowest orders in this expansion are the only important ones. Thus, instead of considering the total radiation
from a charge distribution, we can approximate it by considering the radiation arising from the first few multipoles: i.e. radiation
from the electric dipole, the magnetic dipole, the electric quadrupole etc.

Each of these radiation terms have a peculiar angular dependence. This will be reflected in the quantum mechanical treatment by a
specific angular momentum value of the radiation field associated with the multipole. In turns, this will give rise to selection rules
determined by the addition rules of angular momentum of the particles and radiation involved in the radiative process.

Quantum mechanical theory

In quantum mechanics, gamma decay is expressed as a transition from an excited to a ground state of a nucleus. Then we can study
the transition rate of such a decay via Fermi’s Golden rule

p(Ey)

There are two important ingredients in this formula, the density of states p (Ey) and the interaction potential V.

W = 2| Vs )|

Density of states

The density of states is defined as the number of available states per energy: p (Ey) = % , where N is the number of states. We

have seen at various time the concept of degeneracy: as eigenvalues of an operator can be degenerate, there might be more than one
eigenfunction sharing the same eigenvalues. In the case of the Hamiltonian, when there are degeneracies it means that more than
one state share the same energy.

By considering the nucleus+radiation to be enclosed in a cavity of volume L3, we have for the emitted photon a wavefunction
represented by the solution of a particle in a 3D box that we saw in a Problem Set.
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As for the 1D case, we have a quantization of the momentum (and hence of the wave-number k) in order to fit the wavefunction in
the box. Here we just have a quantization in all 3 directions:

2 2 2
—ﬂnz, ky:—ﬂny, k:Z:—an

L L L
(with n integers). Then, going to spherical coordinates, we can count the number of states in a spherical shell between n and
n+dn to be dN, = 4wn’dn. Expressing this in terms of k, we have dN, = 4nk*dk

ky =

: 2,;3)3 . If we consider just a small solid angle

d(2 instead of 47 we have then the number of state dN, = ( 2’“3)3 k?dkdS) . Since E = hkc = hw , we finally obtain the density of

states:

dN, L 29k o L? k2dQ w? L

p(E) = dE  (27)3 dE Wﬁ " het (2m)3

Figure 7.1.2: Density of states: counting the states 2D (CC BY-NC-ND; Paola Cappellaro)

The vector potential

Next we consider the potential causing the transition. The interaction of a particle with the e.m. field can be expressed in terms of
the vector potential A of the e.m. field as:

e 5

PR

V:
mc

where g is the particle’s momentum. The vector potential A in QM is an operator that can create or annihilate photons,

5 2rhe® (. gn et g -
A:; Ver (akel "+age’ r)ek

where aj, (&L) annihilates (creates) one photon of momentum k. Also, €, is the polarization of the e.m. field. Since gamma decay

(and many other atomic and nuclear processes) is able to create photons (or absorb them) it makes sense that the operator
describing the e.m. field would be able to describe the creation and annihilation of photons. The second characteristic of this

operator are the terms o< e “**" which describe a plane wave, as expected for e.m. waves, with momentum %k and frequency ck.

Dipole transition for gamma decay

To calculate the transition rate from the Fermi’s Golden rule,
2 N 2
= (wilV1w)| o (Ep),

we are really only interested in the matrix element <1/J f|1}|1/1,->, where the initial state does not have any photon, and the final has

one photon of momentum %k and energy hw = hkc. . Then, the only element in the sum above for the vector potential that gives a

non-zero contribution will be the term oc @, , with the appropriate £ momentum:
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e [2mwhc? 5 g
Vi, = — g X <ﬂ e—zk~r>
T me Vwg BoAP
52 4 5
This can be simplified as follow. Remember that p ,r| =—2ihp. Thus we can write,

~2

T N s . A5 3
P=5 [p ,r] =im [p r] =i [;’—m + Ve (7), r] . We introduced the nuclear Hamiltonian H,,,e = 2= + Vy,c (%) : thus we

2m? h 2m

have p = & [’Hnuc, F} . Taking the expectation value

(o) 2 (o )~ (o )
and remembering that |1; ¢) are eigenstates of the Hamiltonian, we have
(valpl ) = S (Bp — o) (17l ) = ima (31710 )

where we used the fact that (Ey — E;) = fwy, by conservation of energy. Thus we obtain

e 2mhc? AT 2mhe2wy, A
V = — y z. . <“ —Zk~7‘> —4 2. <~» —1k'7‘>
it = — Vo imwey, - ( Fe W& {Te

We have seen that the wavelengths of gamma photons are much larger than the nuclear size. Then k-7 <1 and we can make an

expansion in series : e *7 ~ 37, %(—zk A=Y %(—ikr cos¥)! . This series is very similar in meaning to the multipole series
we saw for the classical case.

For example, for [ = 0 we obtain:

2rhewy 5
Wf:\/Tk<7“>'6k

which is the dipolar approximation, since it can be written also using the electric dipole operator er.
The angle between the polarization of the e.m. field and the position 7 is (¥) - € = (¥) sind
The transition rate for the dipole radiation, W = A(E1) is then:

UJS

N
27rc3h|<r>| sin” 9dQ

*o(By) =

ME1) = 2| (3179 )

and integrating over all possible direction of emission ( f027r dp fow (sin2 19) sinddy = 2%% ):

4% o
AB1) = 5 S5
Multiplying the transition rate (or photons emitted per unit time) by the energy of the photons emitted we obtain the radiated power,
P =Whw:
4wt A o
P=g=— 1)
Notice the similarity of this formula with the classical case:
1ewt . o
Py = 3 3 |70

We can estimate the transition rate by using a typical energy E = hw for the photon emitted (equal to a typical energy difference

between excited and ground state nuclear levels) and the expectation value for the dipole (|(r')| ~ Ry ~ rgA'/?). Then, the
transition rate is evaluated to be
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ME1) = e E—3r2A2/3 =1.0 x 101 4%*E3
Fc (Fe)3 ° )
(with E in MeV). For example, for A = 64 and E = 1MeV the rate is A ~ 1.6 x 10'%s™! or 7 =107% (femtoseconds!) for E =
0.1MeV T is on the order of picoseconds.

Because of the large energies involved, very fast processes are expected in the nuclear decay from excited states, in accordance
with Fermi’s Golden rule and the energy/time uncertainty relation.

Extension to Multipoles

We obtained above the transition rate for the electric dipole, i.e. when the interaction between the nucleus and the e.m. field is
described by an electric dipole and the emitted radiation has the character of electric dipole radiation. This type of radiation can
only carry out of the nucleus one quantum of angular momentum (i.e. Al = 41, between excited and ground state). In general,
excited levels differ by more than 1 [, thus the radiation emitted need to be a higher multipole radiation in order to conserve angular
momentum.

Electric Multipoles

We can go back to the expansion of the radiation interaction in multipoles:
v 1 i 501
Then the transition rate becomes:

=2 (2T () oy

Notice the strong dependence on the ! quantum number. Setting again |<1_:' )| ~roAl/3 we also have a strong dependence on the
mass number.

Thus, we have the following estimates for the rates of different electric multipoles:

o ME1)=1.0x10"4?3E3

o \(E2)=7.3x10"AY3E5
e AE3)=34A%E"

e ME4)=1.1x10"°A4%3E?
Magnetic Multipoles

The e.m. potential can also contain magnetic interactions, leading to magnetic transitions. The transition rates can be calculated

from a similar formula:
8r(l+1) e EX+/ 3 \? ~ . . [ & 1
Ao = o S B () el [ (- )
N2I+1)N"2 ke he \1+3 mpc I+1

where i, is the magnetic moment of the proton (and 1, its mass).

Estimates for the transition rates can be found by setting p, — 14+1 ~10:

e A(M1)=5.6 x102E?
A(M2) =3.5 x 107 A2/3E5

o AN(M3)=16A*3E"
A(M4)

M4)=4.5x10"°%A42E"
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Selection Rules

The angular momentum must be conserved during the decay. Thus the difference in angular momentum between the initial
(excited) state and the final state is carried away by the photon emitted. Another conserved quantity is the total parity of the system.

Parity change
The parity of the gamma photon is determined by its character, either magnetic or electric multipole. We have
IL,(El) = (—1)"  Electric multipole

IL,(Ml) = (-1)""'  Magnetic multipole

Then if we have a parity change from the initial to the final state IT; — II this is accounted for by the emitted photon as:
IL, =ILII,

This of course limits the type of multipole transitions that are allowed given an initial and final state.

AIIl =no — Even Electric, Odd Magnetic

AIl = yes — Odd Electric, Even Magnetic

Angular momentum

From the conservation of the angular momentum:

=

f i = f ft+ L’Y
the allowed values for the angular momentum quantum number of the photon, /, are restricted to
l,y = |Ii—If| ,...,Ii—ﬁ-If

Once the allowed [ have been found from the above relationship, the character (magnetic or electric) of the multipole is found by
looking at the parity.

In general then, the most important transition will be the one with the lowest allowed I, II. Higher multipoles are also possible, but
they are going to lead to much slower processes.

Multipolarity Angular Parity || Multipolarity Angular Parity
Momentum [ I Momentum [ 7
M1 1 + E1 1 -
M2 2 - E2 2 +
M3 3 + E3 3 -
M4 4 - E4 4 +
M5 5 + E5 5 -

Table 7.1.1: Angular momentum and parity of the gamma multipoles (CC BY-NC-ND; Paola Cappellaro)

Dominant Decay Modes

In general we have the following predictions of which transitions will happen:

1. The lowest permitted multipole dominates
2. Electric multipoles are more probable than the same magnetic multipole by a factor ~ 10 (however, which one is going to
happen depends on the parity)
A(ED)

—_ 02

A(MI)
3. Emission from the multipole [ + 1 is 107> times less probable than the I-multipole emission.

MEI+1) L s MM D)

~

~ , ~107°
M(ED) (M)

4. Combining 2 and 3, we have:
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AM,14+1)

A(E,1+1 B -
MELH) 3, ~1077

M) T A(ED)

Thus E2 competes with M1 while that’s not the case for M2 vs. E1

Internal conversion

What happen if no allowed transitions can be found? This is the case for even-even nuclides, where the decay from the 0* excited
state must happen without a change in angular momentum. However, the photon always carries some angular momentum, thus
gamma emission is impossible.

Then another process happens, called internal conversion:
4 . B
ZX =5 X+e
where éX is a ionized state and e~ is one of the atomic electrons.

Besides the case of even-even nuclei, internal conversion is in general a competing process of gamma decay (see Krane for more
details).

This page titled 7.1: Gamma Decay is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paocla Cappellaro
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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7.2: Beta Decay

The beta decay is a radioactive decay in which a proton in a nucleus is converted into a neutron (or vice-versa). In the process the
nucleus emits a beta particle (either an electron or a positron) and quasi-massless particle, the neutrino.

Beta-minus Decay

Carbon-14 Nitrogen-14
B : Antineutrino  Electron
- + © 4+ ©
& protons 7 protons
2 neutrons 7 neutrons

Beta-plus Decay
Carbon-10 Boron-10

Neutrino Positron

+ ¢ + ©

& protons 3 protons
4 nentrons S reutrans

Courtesy of Thomas Jefferson National Accelerator Facility - Office of Science Education.
Used with permission.

Figure 7.2.1: Beta decay schematics (CC BY-NC-ND; Paola Cappellaro)

Recall the mass chain and Beta decay plots of Fig. 7. When studying the binding energy from the SEMF we saw that at fixed A
there was a minimum in the nuclear mass for a particular value of Z. In order to reach that minimum, unstable nuclides undergo
beta decay to transform excess protons in neutrons (and vice-versa).

Reactions and Phenomenology
The beta-decay reaction is written as:
A A~t — —
2 Xn 7 g Xy te AT
This is the 8~ decay. (or negative beta decay) The underlying reaction is:
n—p+e +v

which converts a proton into a neutron with the emission of an electron and an anti-neutrino. There are two other types of reactions,
the 87 reaction,

Xy — g AKG +eT 4y
with this underlying reaction
p—n+et +v
which sees the emission of a positron (the electron anti-particle) and a neutrino; and the electron capture:
gXnte 2§ Xy v
with this underlying reaction

p+e —n'v

a process that competes with, or substitutes, the positron emission.
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v/ Example 7.2.1

' %Znte +v, Qs=0.5TMeV

64Cu
2000\ $iNi+et +v, Qp=0.66MeV

The neutrino and beta particle (3F) share the energy.

Since the neutrinos are very difficult to detect (as we will see they are almost massless and interact very weakly with matter), the
electrons/positrons are the particles detected in beta-decay and they present a characteristic energy spectrum (see Fig. 45). The
difference between the spectrum of the 3% particles is due to the Coulomb repulsion or attraction from the nucleus. Notice that the
neutrinos also carry away angular momentum. They are spin-1/2 particles, with no charge (hence the name) and very small mass.
For many years it was actually believed to have zero mass. However it has been confirmed that it does have a mass in 1998.

number of particles

number of particles
T

kinetic energy kinetic energy

Figure \(\Pagelndex{2}\): : Beta decay spectra: Distribution of momentum (top plots) and kinetic
energy (bottom) for 8~ (left) and 37 (right) decay. © Neil Spooner. All rights reserved. This
content is excluded from the Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

Conservation Laws

As the neutrino is hard to detect, initially the beta decay seemed to violate energy conservation. Introducing an extra particle in the
process allows one to respect conservation of energy. Besides energy, there are other conserved quantities:

o Energy: The Q value of a beta decay is given by the usual formula:
Qs = [mx (*X) —my (3, X7) —me] .
Using the atomic masses and neglecting the electron’s binding energies as usual we have
Qs ={[ma ("X) = Zme] — [ma (3, X') = (Z+ )me] —me} &
= [ma ("X) =ma (3, X)] .

The kinetic energy (equal to the @) is shared by the neutrino and the electron (we neglect any recoil of the massive nucleus). Then,
the emerging electron (remember, the only particle that we can really observe) does not have a fixed energy, as it was for example
for the gamma photon. But it will exhibit a spectrum of energy (which is the number of electron at a given energy) as well as a
distribution of momenta. We will see how we can reproduce these plots by analyzing the QM theory of beta decay.

e Momentum: The momentum is also shared between the electron and the neutrino. Thus the observed electron momentum
ranges from zero to a maximum possible momentum transfer.

e Angular momentum (both the electron and the neutrino have spin 1/2)

o Parity? It turns out that parity is not conserved in this decay. This hints to the fact that the interaction responsible violates parity
conservation (so it cannot be the same interactions we already studies, e.m. and strong interactions)

o Charge (thus the creation of a proton is for example always accompanied by the creation of an electron)
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¢ Lepton number: we do not conserve the total number of particles (we create beta and neutrinos). However the number of
massive, heavy particles (or baryons, composed of 3 quarks) is conserved. Also the lepton number is conserved. Leptons are
fundamental particles (including the electron, muon and tau, as well as the three types of neutrinos associated with these 3). The
lepton number is +1 for these particles and -1 for their antiparticles. Then an electron is always accompanied by the creation of
an antineutrino, e.g., to conserve the lepton number (initially zero).

Fermi’'s Theory of Beta Decay

The properties of beta decay can be understood by studying its quantum-mechanical description via Fermi’s Golden rule, as done
for gamma decay.

W =22 (g Vio)| o (E))

In gamma decay process we have seen how the e.m. field is described as an operator that can create (or destroy) photons. Nobody
objected to the fact that we can create this massless particles. After all, we are familiar with charged particles that produce (create)
an e.m. field. However in QM photons are also particles, and by analogy we can have also creation of other types of particles, such
as the electron and the neutrino.

For the beta decay we need another type of interaction that is able to create massive particles (the electron and neutrino). The
interaction cannot be given by the e.m. field; moreover, in the light of the possibilities of creating and annihilating particles, we
also need to find a new description for the particles themselves that allows these processes. All of this is obtained by quantum
field theory and the second quantization. Quantum field theory gives a unification of e.m. and weak force (electro-weak
interaction) with one coupling constant e. The interaction responsible for the creation of the electron and neutrino in the beta decay
is called the weak interaction and its one of the four fundamental interactions (together with gravitation, electromagnetism and the
strong interaction that keeps nucleons and quarks together). One characteristic of this interaction is parity violation.

Matrix element

The weak interaction can be written in terms of the particle field wavefunctions:
Vint = gL 0,

where ¥, (\Il:rl) annihilates (creates) the particle a, and g is the coupling constant that determines how strong the interaction is.
Remember that the analogous operator for the e.m. field was a;'c (creating one photon of momentum k).

Then the matrix element

Vip = (s [Hint| i)

can be written as:
Vi =g [@556) 1@V ¥.@)

(Here 1 — * since we have scalar operators).

To first approximation the electron and neutrino can be taken as plane waves:

&8 ik, E

e e

vV VYV

Vi =g [ 3% ¥, (@)

and since kR < 1 we can approximate this with

We then write this matrix element as
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where M, is a very complicated function of the nuclear spin and angular momentum states. In addition, we will use in the Fermi’s
Golden Rule the expression

‘an|2 - |an|2F(ZOa Qp)

where the Fermi function F' (Zy, @) accounts for the Coulomb interaction between the nucleus and the electron that we had
neglected in the previous expression (where we only considered the weak interaction).

Density of states

In studying the gamma decay we calculated the density of states, as required by the Fermi’s Golden Rule. Here we need to do the
same, but the problem is complicated by the fact that there are two types of particles (electron and neutrino) as products of the
reaction and both can be in a continuum of possible states. Then the number of states in a small energy volume is the product of the
electron and neutrino’s states:

d*N; =dN.dN,.
The two particles share the @ energy:
Q 5= T.+T,.

For simplicity we assume that the mass of the neutrino is zero (it’s much smaller than the electron mass and of the kinetic mass of
the neutrino itself). Then we can take the relativistic expression

T, =cpy,

E?=p’c*+m?’c* — E=T.+m.? withT, =/pc®+m2c* —m.c?

and we then write the kinetic energy of the neutrino as a function of the electron's,

TV:Q,B_

The number of states for the electron can be calculated from the quantized momentum, under the assumption that the electron state

while for the electron

is a free particle (1/) ~ eik'p) in a region of volume V = L3 :

_ArV 24
- (2 h)?’pe pe

L\3
dN, = (—) Arkidk,
2

and the same for the neutrino,

47V
(2mh)3

pidp,

v =

where we used the relationship between momentum and wavenumber: g = hk.

At a given momentum/energy value for the electron, we can write the density of states as

dN, & 5 dpy V2 2
P (pe) dpe = dT ( h) pe dpepu dT, = 47r4h6c3 [Q T, ] dpe
where we used : =(Qs—T.)/c.

The density of states is then

2

(p2) dpe — \% (Q —T.)*p2dp, — V2 [Q (/ m2ét 2)}220[
P \Pe) APe = At RO B e| Pe@Pe = AmAF6 3 PeC mecC meC De@Pe

or rewriting this expression in terms of the electron kinetic energy:

V2 2 2dpe V2 [ 2 2 2
p(TE) 47T4h663 [Q ] dTe = 40671'47'7,6 [Q T] Te +2Temec (Te +mec )
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as pedpe = (T +me ?) /c*dT,
( ( /

Knowing the density of states, we can calculate how many electrons are emitted in the beta decay with a given energy. This will be
proportional to the rate of emission calculated from the Fermi Golden Rule, times the density of states:

2 2 2
N(p) = CF(Z,Q)\Viil 51Q TP = CF(Z,Q)Vil* 5 [@ - (y/pe +mic* —m.c") |

and

N(T.) = CESF(Z’ Q)|sz‘2 @ *Te]z\/ T2 +2T.m.c* (Te +mec2)

These distributions are nothing else than the spectrum of the emitted beta particles (electron or positron). In these expression we
collected in the constant C various parameters deriving from the Fermi Golden Rule and density of states calculations, since we
want to highlight only the dependence on the energy and momentum. Also, we introduced a new function, F(Z, Q), called the
Fermi function, that takes into account the shape of the nuclear wavefunction and in particular it describes the Coulomb attraction
or repulsion of the electron or positron from the nucleus. Thus, F(Z, Q) is different, depending on the type of decay. These
distributions were plotted in Fig. 45. Notice that these distributions (as well as the decay rate below) are the product of three terms:

2
o the Statistical factor (arising from the density of states calculation), 1:—2 [Q —T)?
o the Fermi function (accounting for the Coulomb interaction), F(Z, Q)
o and the Transition amplitude from the Fermi Golden Rule, |V; |2
These three terms reflect the three ingredients that determine the spectrum and decay rate of in beta decay processes.
Decay rate

The decay rate is obtained from Fermi’s Golden rule:
2m 2
W = ZX|ViyPp(E)

where p(E) is the total density of states. p(E) (and thus the decay rate) is obtained by summing over all possible states of the beta
particle, as counted by the density of states. Thus, in practice, we need to integrate the density of states over all possible momentum
of the outgoing electron/positron. Upon integration over p. we obtain:

ymax 5
v: v 2 v: (@-me)
E)y=——— d —T."p2 ~
p( ) 471'477,603 /0 pe [Q 6] pe 47r4h6c3 30C3
(where we took T, =~ pc in the relativistic limit for high electron speed).
We can finally write the decay rate as:
5
2 2 2m [’ 2 2 V2 (Q _mc2)
= Vig Po(B) = L | Moy (2,Q5) i 2o
5
Q- ch)
= G2 |M,,|*F (Z, (—
¢|Mul"F (2,Q5) 6073 R(Rc)S
where we introduced the constant
1 2
Gp = gm;c
23 R

which gives the strength of the weak interaction. Comparing to the strength of the electromagnetic interaction, as given by the fine

2 . . . . . —
constant o = % ~ % , the weak is interaction is much smaller, with a constant ~ 1075.

dw
dp,

We can also write the differential decay rate

aw 2w

. =7 Wil ) <F(Z,Q)[Q ~T.] 't
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The square root of this quantity is then a linear function in the neutrino kinetic energy, @ — T :

w_1 _ o-T
dpe ng(Z’Q)

This is the Fermi-Kurie relation. Usually, the Fermi-Kurie plot is used to infer by linear regression the maximum electron energy
(or Q) by finding the straight line intercept.

-,

b

el L R =
*

... D)/ D FEpN}'’

0.5 ll.O 1I_5 2.0
kinetic energy (T, MeV)

Figure 7.2.3: Example of Fermi-Kurie plot (see also Krane, Fig. 9.4, 9.5) (CC BY-NC-ND; Paola Cappellaro)

This page titled 7.2: Beta Decay is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola Cappellaro
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

8: Applications of Nuclear Science

We have now a clearer picture of the nuclear structure and of the radioactive decays, as well as the formalism —based on quantum
mechanics and quantum field theory— that describes their dynamics. We can turn to the study of some applications of these ideas.

First, we will study how radiation interacts with matter. This is fundamental both in order to know what are the effects of radiation
emitted during nuclear processes on the materials around (and the people) and in order to devise detectors that can measure these
radiations. At the same time the knowledge of how radiation interacts with matter leads to many important applications in e.g.
nuclear medicine, for imaging and therapy, in materials science, for imaging and diagnostic, in agriculture, archeology etc. Most of
you might have already studied these applications in 22.01 and also analyzed the processes that give rise to the interactions. Thus
we will be here only have a quick review, focusing mostly on the physical processes.

Then we will study two nuclear reactions (fission and fusion) that can be used as sources of energy (or in the case of fusion, that
holds that promise).

8.1: Interaction of Radiation with Matter

This page titled 8: Applications of Nuclear Science is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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8.1: Interaction of Radiation with Matter

Cross Section

Classically, the cross section is the area on which a colliding projectile can impact. Thus for example the cross section of a
spherical target of radius r is just given by 772 The cross section has then units of an area. Let’s consider for example a nucleus
with mass number A. The radius of the nucleus is then R ~ Ry A3 =1.25A4"3fm and the classical cross section would be
o= WRgAz/ 3~5A%3m?. For a typical heavy nucleus, such as gold, A = 197, we have
o ~100fm* = 1 barn ( symbol b, 16 =107 m? = 107! cm? = 100fm? .

When scattering a particle off a target however, what becomes important is not the head-on collision (as between balls) but the
interaction between the particle and the target (e.g. Coulomb, nuclear interaction, weak interaction etc.). For macroscopic objects
the details of these interactions are lumped together and hidden. For single particles this is not the case, and for example we can as
well have a collision even if the distance between projectile and target is larger than the target radius. Thus the cross section takes
on a different meaning and it is now defined as the effective area or more precisely as a measure of the probability of a collision.
Even in the classical analogy, it is easy to see why the cross section has this statistical meaning, since in a collision there is a certain
(probabilistic) distribution of the impact distance. The cross section also describes the probability of a given (nuclear) reaction to
occur, a reaction that can be generally written as:

a+X—>X'+b or X(a,b)X'
where X is an heavy target and a a small projectile (such as a neutron, proton, alpha...) while X’ and b are the reaction products
(again with b being nucleons or light nucleus, or in some cases a gamma ray).

Then let I, be the current of incoming particles, hitting on an heavy (hence stationary) target. The heavy product X’ will also be
almost stationary and only b will escape the material and be measured. Thus we will observe the b products arriving at a detector at
arate Rp. If there are n target nuclei per unit area, the cross section can then be written as

T ILin

(o

This quantity do not always agree with the estimated cross section based on the nucleus radius. For example, proton scattering x-
section can be higher than neutrons, because of the Coulomb interaction. Neutrinos x-section then will be even smaller, because
they only interact via the weak interaction.

Differential Cross Section

The outgoing particles (b) are scattered in all directions. However most of the time the detector only occupies a small region of
space. Thus we can only measure the rate R}, at a particular location, identified by the angles ¥, ¢. What we are actually measuring
is the rate of scattered particles in the small solid angle d2, (¢, ¢), and the relevant cross section is the differential cross section

do  r(9,¢)

dQ ~ 4rln

From this quantity, the total cross section, defined above, can be calculated as

/ﬁdn/”-ﬂdﬂ/%dﬁ
77 Jaa® T, YY) “Pan

(Notice that having added the factor 47 gives o = 47r3—g for constant j—g).

Doubly differential cross section

When one is also interested in the energy of the outgoing particles Ey, because this can give information e.g. on the structure of the
target or on the characteristic of the projectile-target interaction, the quantity that is measured is the cross section as a function of
energy. This can be simply

do
dE,

if the detector is energy-sensitive but collect particles in any direction, or the doubly differential cross section
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Neutron Scattering and Absorption

When neutrons travel inside a material, they will undergo scattering (elastic and inelastic) as well as other reactions, while
interacting with the nuclei via the strong, nuclear force. Given a beam of neutron with intensity I, when traveling through matter it
will interact with the nuclei with a probability given by the total cross section o. At high energies, reactions such as (n,p), (n, )
are possible, but at lower energy usually what happens is the capture of the neutron (n, ) with the emission of energy in the form
of gamma rays. Then, when crossing a small region of space dx the beam is reduced by an amount proportional to the number of
nuclei in that region:

dI = —Iyorndz — I(z)=1Ie "™

This formula, however, is too simplistic: on one side the cross section depends on the neutron energy (the cross section increases at
lower velocity as 1/v and at higher energies, the cross section can present some resonances — some peaks) and neutrons will lose
part of their energy while traveling, thus the actual cross section will depend on the position. On the other side, not all reactions are
absorption reactions, many of them will ”produce” another neutron (i.e., they will only change the energy of the neutron or its
direction, thus not attenuating the beam). We then need a better description of the fate of a neutron beam in matter. For example,
when one neutron with energy ~ 1MeV enters the material, it is first slowed down by elastic and inelastic collisions and it is then
finally absorbed.

We then want to know how many collisions are necessary to slow down a neutron and to calculate that, we first need to know how
much energy does the neutron loose in one collision. Different materials can have different cross sections, however the energy
exchange in collision is much higher the lightest the target. Consider an elastic collision with a nucleus of mass M. In the lab frame,
the nucleus is initially at rest and the neutron has energy Ey and momentum muvy. After the scattering, the neutron energy is F1,

speed ¥; at an angle ¢ with vy, while the nucleus recoil gives a momentum MV at an angle 9 (I will use the notation w for the

HE-3 Cross Section (data from ENDF-VI.1 NJOY99)
|
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Figure 8.1.1: Cross section o(F) for the neutron-He3 reactions. The data and plot can be obtained online from
Lipz lanl govidata/mdviewerhiml. (CC BY-NC-ND; Paola Cappellaro)
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U-235 cross sections FROM ENDF-VI.3
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Figure 8.1.2: Cross section o( E) for the neutron-U235 reactions. Notice the 1/v dependence at higher energies and resonances at
lower energies. (CC BY-NC-ND; Paola Cappellaro)

magnitude of a vector @, w = |®@|). The collision is better analyzed in the center of mass frame, where the condition of elastic

scattering implies that the relative velocities only change their direction but not their magnitude.

m1_50+MV o m
m+M T m+M

as U = U — Yoy - We can calculate the neutron (kinetic) energy after the collision from E; = %m|i’;1 . An expression for |3, |* is

obtained from the CM speed:

Vg . Relative velocities in the center of mass frame are defined

The center of mass velocity is defined as v¢yr =

— 12 — — 2 - 2 - 2 - o 2 5
[v1]” = |u1r +venm|” = |ua]” + |[vom|” +2u1 - vom = uf + gy, + 2u1vom cos Y
where we defined 4 as the scattering angle in the center of mass frame (see Figure 8.1.3).

Lab Frame Center of Mass Frame

m, Vo, Eo

M,V, E

Figure 8.1.3: Neutron scattering from a nucleus. Left, lab frame. Right, center of mass frame (CC BY-NC-ND; Paola Cappellaro)

. . . . — — m M
Given the assumption of elastic scattering, we have |u;| = |ug| = ug, but ug = vy — vy = vg (1 - — +M) = 7 00

Finally, we can express everything in terms of vy:

M?+m?+2mM cos?
(m+ M)?

M? 2 m? 2 o M
v v
(m+ M)? 0 (m+M)? 0 (m+ M)

|171\2 = vy vy cos VY = v

m
(m+M)
We now simplify this expression by making the approximation M /m = A, where A is the mass number of the nucleus.
In terms of the neutron energy, we finally have

A%2+1+2Acos?d

E, = E,

(A+1)? ’
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This means that the final energy can be equal to Ej (the initial one) if ¥ =0 — corresponding to no collision— and reaches a

2 2
minimum value of E; = Ej @ =akFE, ford = (here a = (A7) ) .

(A+1)? (4+1)*

Notice that from this expression it is clear that the neutron loose more energy in the impact with lighter nuclei, in particular all the
energy in the impact with proton:

2
o« fA>1,E,~E, A t24cos¥ Ej , that is, almost no energy is lost.

A‘Z
o fA=1E, = E,x2es?

2
25 = Eycos (%), and for ¥ = all the energy is lost.

2

For low energy, the cross section is independent of 1} thus we have a flat distribution of the outgoing energies: the probability to
scatter in any direction is constant, thus P(cos?) = % What is the probability of a given energy E;?

P(E+)

g Eo

Figure 8.1.4: Probability distribution of the outgoing energy in neutron scattering from a nucleus. (CC BY-NC-ND; Paola

Cappellaro)
We have P (E;) dE; = —P(cos¥)d(cos®¥) = —1sin?ddd . Then, since % =— (iﬁ":; sind, the probability of a given scattering
2
energy is constant, as expected, and equal to P (E;) = (f;) 1)1 . Notice that the probability is different than zero only for

aEy < E; < Ey. The average scattering energy is then (F;) = EOHTa and the average energy lost in a scattering event is
(Bloss) = By 52

It still requires many collision to lose enough energy so that a final capture is probable. How many?

The average energy after one collision is (E;)= EOHTO‘ . After two collision it can be approximated by (FEs) =~
(Ey) HT"‘ =FEy (HT"‘)2 Then, after n collision, we have (E,) ~ Fy (HT"‘>R =E, ( <§;> )n . Thus, if we want to know how
many collisions are needed to reach an average thermal energy Ey, = (E,) we need to calculate n:

%:%%<%)n . nlog(%):bg(g—?) — n:10g<%)/log<%>

However, this calculation is not very precise, since the approximation we made, that we can calculate the average energy after the
n' scattering (E,) considering only the average after the (n — 1)

scattering is not a good one, since the energy distribution is

En—l

i ) and take the average over the possible

not peaked around its average (but is quite flat). Consider instead the quantity log (

final energy (note that this is the same as calculating for the first collision):
By Bt (Eaa B (Baa) (A+1)° (A-1)?
! = 1 P(E,)dE, = 1 ————dE, =14+ ——1
Coe(5)) = L e remmam= [, s ) g =1 g
A-1
A+1

The expression £ = <10g (%) > does not depend on the energy, but only on the moderating nucleus (it depends on A).

Then we have that <10g(%)> = <10g (%)n> or (log(E,)) =1og(Ey) —né, from which we can calculate the En En

number of collisions needed to arrive at a certain energy:
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1 E
’n(E() — Eth) = ZlOg(ﬁ)

with £ the average logarithmic energy loss:

L A—ry A-1
E=1+ — e 7

For protons (1H) ,€=1 and it takes 18 collision to moderate neutrons emitted in fission (E = 2MeV) while 2200 collisions are

needed in 238U.

Material A Qo 13 n

H 1 0 1 18.2
H-0 1&16 — 0.920 19.8
D 2 0.111 0.725 25.1
He 4 0.360 0.425 42.8
Be 9 0.640 0.207 88.1
C 12 0.716 0.158 115
U 238 0.983 0.0084 2172

Charged particle interaction

Charged particles (such as alpha particles and electrons/positrons) going through matter can interact both with the nuclei —via the
nuclear interaction and the coulomb interaction— and with the electron cloud —via the Coulomb interaction. Although the effects of
a collision with the light electron is going to affect the colliding particle much less than an impact with the heavy nucleus, the
probability of such a collision is much higher. This can be intuitively understood by analyzing the effective size of the nucleus and
the electronic cloud. While the nucleus have a radius of about 8fm, the atomic radius is on the order of angstroms (or 105fm)
Then the area offered to the incoming particle is on the order of (8 fm)? ~ 200 fm? = 2 barns .

. ) 2 . . .
On the other side, the electronic cloud present an area of 7r(105 fm) ~ 7108 barns to the incoming particle. Although the cross
section of the reaction (or the probability of interaction between particles) is not the same as the area (as it is for classical particles)
still these rough estimates give the correct order of magnitude for it.

Thus the interactions with the electrons in the atom dominate the overall charged particle/matter interaction. However the collision
with the nucleus gives rise to a peculiar angular distribution, which is what lead to the discovery of the nucleus itself. We will thus
study both types of scattering for light charged projectiles such as alpha particles and protons.

Alpha particles collision with the electronic cloud

Let us consider first the slowing down of alpha particles in matter. We first analyze the collision of one alpha particle with one
electron.

Before collision
L] Igs

\' | [ ¥]
Alpha N ® a L\
& —> -3 ;
ok i After collision
b | ™ s ,
L] % ) { (@
P 2 Va=Va * °
—

Ve=2Va
Figure 8.1.5: Left: Charged particles interact mostly with the electronic cloud. Right: Conservation of momentum and kinetic
energy in the collision of a very heavy object with a very light one (CC BY-NC-ND; Paola Cappellaro)
If the collision is elastic, momentum and kinetic energy are conserved (here we consider a classical, non-relativistic collision)

2 12 2
MaVo = mavix FTMeVe, MaVs = Mg Vg +MeVe

Solving for v}, and v, we find:
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Since m./m, < 1, we can approximate the electron velocity by v, & 2v,, . Then the change in energy for the alpha particle, given
by the energy acquired by the electron, is

1

1
AE = Emevg = Eme(Zva)2 Rl

E,

Mq
thus the alpha particle looses a tiny fraction of its original energy due to the collision with a single electron:

AFE, Me

1
. p— <

The small fractional energy loss yields the characteristics of alpha slowing down:

1. Thousands of events (collisions) are needed to effectively slow down and stop the alpha particle

2. As the alpha particle momentum is barely perturbed by individual collisions, the particle travels in a straight line inside matter.

3. The collisions are due to Coulomb interaction, which is an infinite-range interaction. Then, the alpha particle interacts
simultaneously with many electrons, yielding a continuous slowing down until the particle is stopped and a certain stopping
range.

4. [ The electrons which are the collision targets get ionized, thus they lead to a visible trail in the alpha particle path (e.g. in cloud
chambers)

# Definition: Stopping power

We calculated the energy lost by the alpha particle in the collision with one electron. A more important quantity is the average
energy loss of the particle per unit path length, which is called the stopping power.

We consider an alpha particle traveling along the x direction and interacting with an electron at the origin of the x-axis and at a
distance b from it. It is natural to assume cylindrical coordinates for this problem.

electron A

Figure 8.1.6: Geometry for the alpha/electron collision. Left: Impact parameter b and cylindrical coordinates (x,b). Right:
Coulomb force parallel to the momentum change (in the y direction). (CC BY-NC-ND; Paola Cappellaro)

The change in momentum of the electron is given by the Coulomb force, integrated over the interaction time. The Coulomb
eQ 7

T— —7 , Where 7 =7 is the vector joining the alpha to the electron. Only the component of the force
T |r|

interaction is given by F' =
in the “radial” (y) direction gives rise to a change in momentum (the longitudinal force when integrated has a zero net
b

and finally the force
(z2+b2)

contribution), so we calculate F-g =|F|r-y . From the figure above we have 7.y = 7

F, @ __ b The change in momentum is then

= 47eg (1‘2+b2)3/2
o0 ® dzx €27 b
do [ ran= [T E L _
0 —0 Va 4Ty (g2 4 p?) /

where we used the relation % = v, between the alpha particle velocity (which is constant with time under our assumptions) and

Q = Z,e = 2e . By considering the electron initially at rest we have

e2Z d¢ e’ Z,
Iy

=2
1 +§2)3/2 4megvab

Ap —p. —
P = Pe 4megvb
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where we used £ = z/b. Then, the energy lost by the alpha particle due to one electron is

2 4172
e*Z
AE = Pe _ 2—0‘
2m (4meg) mevb?
db
/1 by .
(RE X
alpha °
dx
Figure 8.1.7: To find the stopping power we integrate over all impact parameters b, in a small thickness dx. (CC BY-NC-ND; Paola
Cappellaro)
We now sum over all electrons in the material. The number of electrons in an infinitesimal cylinder is d N, = n.27wbdbdx, where
N is the electron’s number density (which can be e.g. calculate from n, = NZZ’) , with N, Avogadro’s number and p the mass

density of the material).

Then

dE

dre* Z2n,
—dE = 2ndz / neABbdb — — = ~2m / ne AB(b)bdb — — ¢ Zane [ db

(4meg’mevd J b

The integral should be evaluated between 0 and c. However this is not mathematically possible (since it diverges) and it is also
physically unsound. We expect in fact to have a distance of closest approach such that the maximum energy exchange (as in the

hard-on collision studied previously) is achieved. We had obtained E, = 2m.v2. Then we set this energy equal to the electron’s

Coulomb potential energy: E, ~ —— -

from which we obtain
4mey bmin

1 e?

4dey 2m,v2

bmin ~

The maximum b is given by approximately the Bohr radius (or the atom’s radius). This can be calculated by setting ﬁ N Er

bmax

where E is the mean excitation energy of the atomic electrons. Then what we are stating is that the maximum impact parameter is
the one at which the minimum energy exchange happen, and this minimum energy is the minimum energy required to excite
(knock off) an electron out of the atom. Although the mean excitation energy of the atomic electrons is a concept related to the
ionization energy (which is on the order of 4 — 15eV) here E7 is taken as an empirical parameter, which has been found to be well
approximated by E; ~ 10ZeV (with Z the atomic number of the target). Finally we have

bmax o 2mev%¢
bmin N ZaEI

and the stopping power is

InA

2

brmin (4meg )2me v,

dE dre* Z2n, ( Dmax ) dre*Z2n,
—_——_— = 2 ln =

de  (4mep)*mevd
with A called the Coulomb logarithm.

Since the stopping power, or energy lost per unit length, is given by the energy lost in one collision (or AFE) times the number of
collision (given by the number of electron per unit volume times the probability of one electron collision, given by the cross
section) we have the relation:

dFE
—— =o.n.AFE
dz
from which we can obtain the cross section itself. Since AE = 2m,v?, we have
2metZ2
o, = %lnA
(4mep) m2ug,
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This can also be rewritten in terms of more general constants. We define the classical electron radius as

1 e?
= ~ 2.8fm,
're 47’[’60 me 02 m

which is the distance at which the Coulomb energy is equal to the rest mass. Although this is not close to the real size of an electron
(as for example we would expect the electron radius —if it could be well defined— to be much smaller than the nucleus radius) it
gives the correct order of magnitude of the effective area in the collision by charged particles. Also we write § = £, so that

72
0. =272 ==InA

B4
Since S is usually quite small for alpha particles, the cross section can be quite large. For example for a typical alpha energy of
E, =4MeV, and its rest mass mgyc? ~ 4000MeV, we have z—z ~2x10"% . The Coulomb logarithm is on the order of
InA ~5—15, while 2772 ~ % barn. Then the cross section is o, ~ %4 . 106/4 -10b =5 x 10 .

# Definition: Stopping length

This is defined by

1 dE
1/l =———.
/la E dz
Then we can write an exponential decay for the energy as a function of distance traveled inside a material:

E(z) = Eyexp(—z/l,). Thus the stopping length also gives the distance at which the energy has been reduced by

1/e(=63%).
gm 1000 g'ﬂ
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Figure 8.1.8: Stopping power for alpha particles (left) and protons (right) in graphite. x-axis: Energy in MeV. y-axis: Stopping
power (MeV cmz/g). The red curve is the total stopping power, given by the Coulomb stopping power from collision with the
electrons (blue) and the Rutherford stopping power (black) from collision with the nuclei. The data is taken from NIST. (CC BY-
NC-ND; Paola Cappellaro)

In terms of the cross section the stopping length is:
m
1/l, = 4—20¢Zn,
Mq

where n, the atomic number density can be expressed in terms of the mass density and the Avogadro number, n = %N 4.

v/ Example 8.1.1

Stopping length for lead: 1/1, =4 x 10* cm~! orl, =2.5 x 107° cm . The range of the particle in the material is however
many stopping lengths (on the order of 10), thus the range in lead is around 2.5pm.
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The range is more precisely defined as the distance a particle travels before coming to rest. Then, the range for a particle of

initial kinetic energy E,, is defined as
r(E=0) E, -1
R(E,) = do = — 9EN iE
d
r(Ea) 0 €z

Notice that these is a strong dependence of the stopping power on the mass density of the material (a linear dependence) such
that heavier materials are better at stopping charged particles.

However, for alpha particles, it doesn’t take a lot to be stopped. For example, they are stopped in 5 mm of air.

# Definition: Bragg curve

The Bragg curve describes the Stopping power as a function of the distance traveled inside matter. As the stopping power (and
the cross section) increase at lower energies, toward the end of the trajectory there is an increase in energy lost per unit length.
This gives rise to a characteristic Bragg peak in the curve. This feature is exploited for example for radiation therapy, since it
allows a more precise spatial delivery of the dose at the desired location.

Stopping power

10 20 30 40

Range (mm)

Figure 8.1.9: Bragg curve for protons (distance in mm) (CC BY-NC-ND; Paola Cappellaro)

B. Rutherford - Coulomb scattering
Elastic Coulomb scattering is called Rutherford scattering because of the experiments carried out in Rutherford lab in 1911-1913

that lead to the discovery of the nucleus. The experiments involved scattering alpha particles off a thin layer of gold and observing
the scattering angle (as a function of the gold layer thickness).

The interaction is given as before by the Coulomb interaction, but this time between the alpha and the protons in the nucleus. Thus
we have some difference with respect to the previous case. First, the interaction is repulsive (as both particle have positive charges).
Then more importantly, the projectile is now the smaller particle, thus loosing considerable energy and momentum in the
interaction.

What we want to calculate in this interaction is the differential cross section j—g. The differential (infinitesimal) cross section can
be calculated (in a classical picture) by considering the impact parameter b and the small annular region between b and b+ db :

do = 27bdb

Then the differential cross-section, calculated from the solid angle dQ2 = dp sin?¥d¥ — 27 sin¥dd (given the symmetry about
), is:
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d_a _ 2mbdb b ﬂ
dQ  27sinddd  sind dY

What we need is then a relationship between the impact parameter and the scattered angle U (see figure).

Ap

e

pP=mvq

Figure 8.1.10: Rutherford scattering and momentum change (CC BY-NC-ND; Paola Cappellaro)
In order to find b(J) we study the variation of energy, momentum and angular momentum. Conservation of energy states that:
1 _ 1 v 2Z¢e*
27707 9 4dmegr

which gives the minimum distance (or distance of closest approach) for zero impact parameter b = 0, that happens when the particle
2 2Ze?
0 ™ 4dmepd *

stops and gets deflected back: %mv

The momentum changes due to the Coulomb force, as seen in the case of interaction with electrons. Here however the nucleus
almost does not acquire any momentum at all, so that only the momentum direction is changed, but not its absolute value: initially
the momentum is pg = mwv, along the incoming (x) direction, and at the end of the interaction it is still mwvy but along the ¢
direction. Then the change in momentum is Ap = 2pg sin% =2muyg sin% (see Fig. above). This momentum difference is along
the direction ép, which is at an angle % with x. We then switch to a reference frame where 7 = {r,~}, with r the distance ||
and + the angle between the particle position and 0p.

The momentum change is brought about by the force in that direction:

R Zer [ +.6p Ze? [ cos
Ap:/ F.opdt — 2252 / TP gy ZZC / Tt
0 47l'€() 0 ‘T'2| 47‘(‘60 0 r2

Notice thatatt=0, v = —% (as 7 is almost aligned with x) and at t = o0, y = % (Fig). How does -y changes with time?

The angular momentum conservation (which is always satisfied in central potential) provides the answer. At t = 0, the angular
momentum is simply L = mugb. At any later time, we have L =m7 X v . In the coordinate system 7 = {r,~v} the velocity has a
radial and an angular component:

T =i 197

and only this last one contributes to the angular momentum (the other being parallel):

d 1 j
IR AN =7

dt 2 b

L=m

Ap

p=mvq d Nucleus

Figure 8.1.11: Momentum change and coordinate system ({r,~}) for Rutherford scattering. (CC BY-NC-ND; Paola Cappellaro)
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Inserting into the integral we have :

w+9

A 2Z€? /Oo cosv’ydt 2Z€? /’ﬂT cos*yd 2Z€?
0 A

0s

= = = 2 —_—
47!'60 ’Ugb 47!'6() ’Uob v 47l'60’U0b ¢ 2

2

By equating the two expressions for Ap, we have the desired relationship between b and U:

9 o 276> 5 ) o 2Ze? ¢
mugsin— = ——2cos — =——cot—
0% 2 7 drequob 2 4megmu3 2

2 2
do _ (zze ) (4T,) sin4(ﬁ)
dQ 4meg 2

(where T, = %mvg is the incident —alpha— particle kinetic energy). In particular, the Z2, T2 and sin™* dependence are in

Finally the cross section is:

excellent agreement with the experiments. The last dependence is characteristic of single scattering events and observing particles
at large angles (although less probable) confirm the presence of a massive nucleus. Consider gold foil of thickness { = 2um and an
incident beam of 8MeV alpha particles. The impact parameter that gives a scattering angle of 90 degrees or more is
b< % = 14fm . Then the fraction of particles with that impact parameter is o 7b?, thus we have (nmb® ~ 7.5 x 10™° particles
scattering at an angle > 90° (with n the target density). Although this is a small number, it is quite large compared to the scattering
from a uniformly dense target.

C. Electron stopping in matter

Electrons interact with matter mainly due to the Coulomb interaction. However, there are differences in the interaction effects with
respect to heavier particles. The differences between the alpha particle and electron behavior in matter is due to their very different
mass:

1. Electron-electron collisions change the momentum of the incoming electron, thus deflecting it. Then the path of the electron is
not straight anymore.

2. The stopping power is much less, so that e.g. the range is 1cm in lead. (remember that the ratio of the energy lost to the initial
energy for alpha particles was small, since it was proportional to the ratio of masses -electron to alpha. Here the masses ratio is
1, and we expect a large change in energy).

3. Electrons have more often a relativistic speed. For example, electrons emitted in the beta decay travel at relativistic speed.

4. There is a second mechanism for deceleration. Since the electrons can undergo rapid changes of velocity due to the collision, it
is constantly accelerating (or decelerating) and thus it radiates. This radiation is called Bremsstrahlung, or braking radiation (in
German).

The stopping power due to the Coulomb interaction can be calculated in a very similar way to what done for the alpha particle. We
obtain:

dE e \’ZpN, 1 ,
—— =4 InA
dz 4meg A m.c2p?
T+mc?
Here A’ is now a different ratio than the one obtained for the alpha particles, but with a similar meaning: A’ = 273 ) % ’

where again we can recognize the ratio of the electron energy (determining the minimum distance) and the mean excitation energy
E (which sets the maximum distance) as well as a correction due to relativistic effects.
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Figure 8.1.12: Stopping power for electrons in graphite (left) and Lead (right). x-axis: Energy in MeV. y-axis: Stopping power
(MeV cm?/g). The red curve is the total stopping power, given by the Coulomb stopping power (blue) and the radiative stopping
power (black). Note the different contributions of the two types of processes for the two nuclides: the Bremsstrahlung is much
higher for heavier elements such as Lead. The data is taken from NIST. (CC BY-NC-ND; Paola Cappellaro)

A quantum mechanical calculation gives some corrections (for the alpha as well) that become important at relativistic energies (see
Krane):
dE

9 N\ 2
ZpN. 1
== 4r ( 4260 ) [14 A oY [In A’ + relativistic corrections |

To this stopping power, we must add the effects due to the “braking radiation”. Instead of calculating the exact contribution (see
Krane), we just want to estimate the relative contribution of Bremsstrahlung to the Compton scattering. The ratio between the
radiation stopping power and the coulomb stopping power is given by

_4E
dz

dE

_dE et Z T+m.c? N T+mec® Z
r dx

. hcf. m.®  mucz 1600

2
where f. ~ 10 —12 is a factor that takes into account relativistic corrections and remember ;—C ~ %
power is important only if 7' >> m.c? and for large Z. This expression is valid only for relativistic energies; below 1MeV the

radiation losses are negligible. Then the total stopping power is given by the sum of the two contributions:

dE _dE|  dE
dz = dz dzx

. Then the radiation stopping

C T

Since the electron do not have a linear path in the materials (but a random path with many collisions) it becomes more difficult to
calculate ranges from first principles (in practice, we cannot just take dt = dx /v as done in the calculations for alphas). The ranges
are then calculated empirically from experiments in which the energy of monoenergetic electron beams is varied to calculate R(E).
NIST provides databases of stopping power and ranges for electrons (as well as for alpha particles and protons, see the STAR
database at http://www.nist.gov/pml/data/star/index.cfm. Since the variation with the material characteristics (once normalized by
the density) is not large, the range measured for one material can be used to estimate ranges for other materials.
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8.1.4 Electromagnetic radiation

The interaction of the electromagnetic radiation with matter depends on the energy (thus frequency) of the e.m. radiation itself. We
studied the origin of the gamma radiation, since it derives from nuclear reactions. However, it is interesting to also study the
behavior of less energetic radiations in matter.

In order of increasing photon energy, the interaction of matter with e.m. radiation can be classified as:

Rayleigh  Photoelectric ~ Compton Pair
Scattering ~ Absorption Scattering  Production
hw < Ey hw > Ef hw ~ mec®  hw > 2m.c?
~eV ~keV ~MeV >MeV
Visible X-rays ~-rays hard ~-rays

Here Ej is the ionization energy for the given target atom.

A classical picture is enough to give some scaling for the scattering cross section. We consider the effects of the interaction of the
e.m. wave with an oscillating dipole (as created by an atomic electron).

The electron can be seen as being attached to the atom by a ”spring”, and oscillating around its rest position with frequency wy.
When the e.m. is incident on the electron, it exerts an additional force. The force acting on the electron is F' = —eE(t), with
E(t) = Eysin(wt) the oscillating electric field. This oscillating driving force is in addition to the attraction of the electron to the
atom ~ —kzx, , where k (given by the Coulomb interaction strength and related to the binding energy E7y) is linked to the electron’s
oscillating frequency by wg = k/m, . The equation of motion for the electron is then

e
meZ, = —kz, —eE(t) — . +wg:z:e =——EF(t)
Me
We seek a solution of the form z(t) = Asin(wt) , then we have the equation

e 1 e
(—w2+w(2))A:—m Ey, — A= > o
e w —UJO e

Eq

We have already seen that an accelerated charge (or an oscillating dipole) radiates, with a power

2 ¢? 9
=——aqa
3¢

where the accelaration a is here a = —w? A sin(wt) , giving a mean square acceleration

<a2>— w? ¢ o 21
- w%—wZ Me )

The radiated power is then
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Figure 8.1.13: Range for alpha particles (black) and electrons (red) in Lead (solid curves) and air (dashed). x-axis: Energy in MeV.
y-axis: Range (g/cm?). Note the much longer range for electrons than for alpha particles. Only at very high energy, for lead, the
range is shorter for electrons, thanks to the contribution from Bremsstrahlung. The data is taken from NIST. (CC BY-NC-ND;
Paola Cappellaro)

.. . . . . cEO2 . . . 1 12 . .
The radiation intensity is given by Ip = —— (recall that the e.m. energy density is given by u = 5 E“ and the intensity, or power
per unit area, is then I ~ cu). Then we can express the radiated power as cross-sectionxradiation intensity:

P:UI()

This yields the cross section for the interaction of e.m. radiation with atoms :

2
87r< e? ) w?
o=—
3 \m.c? wg—wz

or in SI units:

9 2 2
8w e? w? Arr? 2 w?
oc=— =4rri— | ——
3 \ 4mweymec? w? — w? 3\ wi—w?

where we used the classical electron radius 7.

A. Rayleigh Scattering

We first consider the limit in which the e.m. radiation has very low energy: w < wyq . In this limit the electron is initially bound to

the atom and the e.m. is not going to change that (and break the bound). We can simplify the frequency factor in the scattering
cross-section by wz“’fz
0

2
— ~ % , then we have:
0
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8T e’ % wh
op=—|—"—) —
™3 dregmec? ) wy
The Rayleigh scattering has a very strong dependence on the wavelength of the e.m. wave. This is what gives the blue color to the
sky (and the red color to the sunsets).

B. Thomson Scattering
Thomson scattering is scattering of e.m. radiation that is energetic enough that the electron appears to be initially unbound from the

atom (or a free electron) but not energetic enough to impart a relativistic speed to the electron. (If the electron is a free electron, the
final frequency of the electron will be the e.m. frequency).

We are then considering the limit:
hwy < hw < m.c?

where the first inequalities tells us that the binding energy is much smaller than the e.m. energy (hence free electron) while the
second tells us that the electron will not gain enough energy to become relativistic.

2 . . .
@ — —1_ ~ 1 and the cross section is simply

wp—w? (wp/w)?~1
8 e? 2
or=—| —
773 dmegm,c?

with o ~ % barn. Notice that contrasting with the Rayleigh scattering, Thomson scattering cross-section is completely
independent of the frequency of the incident e.m. radiation (as long as this is in the given range). Both these two types of scattering
are elastic scattering, meaning that the atom is left in the same state as it was initially (so conservation of energy is satisfied without
any additional energy coming from the internal atomic energy). Even in Thomson scattering we neglect the recoil of the electron
(as stated by the inequality hw < m,c?). This means that the electron is not changed by this scattering event (the atom is not
ionized) even if in its interaction with the e.m. field it behaves as a free electron.

Then we can simplify the factor

Notice that the cross section is proportional to the classical electron radius square: o7 = 8—;7% .

C. Photoelectric Effect

At resonance w ~ wy the cross-section becomes (mathematically) infinite. The resonance condition means that the e.m. energy is

equal to the ionization energy Er of the electron. Thus, what it really happens is that the electron gets ejected from the atom. Then

our simple model, from which we calculated the cross section, is no longer valid (hence the infinite cross section) and we need QM

to fully calculate the cross-section. This is the photoelectric effect. Its cross section is strongly dependent on the atomic number (as
Z5

Ope X Z°).

D. Compton Scattering

Compton scattering is the scattering of highly energetic photons from electrons in atoms. In the process the electron acquire an
energy high enough to become relativistic and escape the atom (that gets ionized). Thus the scattering is now inelastic (compared to
the previous two scattering) and the scattering is an effective way for e.m. radiation to lose energy in matter. At lower energies, we
would have the photoelectric effect, in which the photon is absorbed by the atom. The effect is important because it demonstrates
that light cannot be explained purely as a wave phenomenon.
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Figure 8.1.14: Photon/Electron collision in Compton scattering. (CC BY-NC-ND; Paola Cappellaro)
From conservation of energy and momentum, we can calculate the energy of the scattered photon.
E,+E.=E,+E. — hwtm.?=h +./|p*c+m?c*

hk = hk' cos? +pcosyp

- -/
hk=hk +p —
P { kK sind = psingp

From these equations we find p? = @ [A(w —w)—2mc?] and cosp = \/ 1 —h2k2sin%9/p? . Solving for the change in
the wavelength \ = 27” we find (with w = kc):
27h
AXx=Z (1 —cos)
mec

or for the frequency:

-1

' = Fuw |1+

i (1 —cos®)

The cross section needs to be calculated from a full QM theory. The result is that

mec?

hw

oc o

thus Compton scattering decreases at larger energies.

E. Pair Production

Pair production is the creation of an electron and a positron pair when a high-energy photon interacts in the vicinity of a nucleus. In
order not to violate the conservation of momentum, the momentum of the initial photon must be absorbed by something. Thus, pair
production cannot occur in empty space out of a single photon; the nucleus (or another photon) is needed to conserve both
momentum and energy .

Photon-nucleus pair production can only occur if the photons have an energy exceeding twice the rest mass (m.c?) of an electron
(1.022 MeV):

hwo=T, +m. c?+To +meic? > 2mec? =1.022MeV

Pair production becomes important after the Compton scattering falls off (since its cross-section is \propto 1 / \omega\)).

This page titled 8.1: Interaction of Radiation with Matter is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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