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CHAPTER OVERVIEW

1: Units and Measurement
The thumbnail image is of the Whirlpool Galaxy, which we examine in the first section of this chapter. Galaxies are as immense as
atoms are small, yet the same laws of physics describe both, along with all the rest of nature—an indication of the underlying unity
in the universe. The laws of physics are surprisingly few, implying an underlying simplicity to nature’s apparent complexity. In this
text, you learn about the laws of physics. Galaxies and atoms may seem far removed from your daily life, but as you begin to
explore this broad-ranging subject, you may soon come to realize that physics plays a much larger role in your life than you first
thought, no matter your life goals or career choice.

1.1: Prelude to Units and Measurement
1.2: The Scope and Scale of Physics
1.3: Units and Standards
1.4: Unit Conversion
1.5: Dimensional Analysis
1.6: Estimates and Fermi Calculations
1.7: Significant Figures
1.8: Solving Problems in Physics
1.A: Units and Measurement (Answers)
1.E: Units and Measurement (Exercises)
1.S: Units and Measurement (Summary)

Thumbnail: This image might be showing any number of things. It might be a whirlpool in a tank of water or perhaps a collage of
paint and shiny beads done for art class. Without knowing the size of the object in units we all recognize, such as meters or inches,
it is difficult to know what we’re looking at. In fact, this image shows the Whirlpool Galaxy (and its companion galaxy), which is
about 60,000 light-years in diameter (about 6 × 10  km across). (credit: S. Beckwith (STScI) Hubble Heritage Team,
(STScI/AURA), ESA, NASA)
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1.1: Prelude to Units and Measurement
Galaxies are as immense as atoms are small, yet the same laws of physics describe both, along with all the rest of nature—an
indication of the underlying unity in the universe. The laws of physics are surprisingly few, implying an underlying simplicity to
nature’s apparent complexity. In this text, you learn about the laws of physics. Galaxies and atoms may seem far removed from
your daily life, but as you begin to explore this broad-ranging subject, you may soon come to realize that physics plays a much
larger role in your life than you first thought, no matter your life goals or career choice.

Figure : This image might be showing any number of things. It might be a whirlpool in a tank of water or perhaps a collage
of paint and shiny beads done for art class. Without knowing the size of the object in units we all recognize, such as meters or

inches, it is difficult to know what we’re looking at. In fact, this image shows the Whirlpool Galaxy (and its companion galaxy),
which is about 60,000 light-years in diameter (about 6×1017km across). (credit: S. Beckwith (STScI) Hubble Heritage Team,

(STScI/AURA), ESA, NASA)

This page titled 1.1: Prelude to Units and Measurement is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

1.1: Prelude to Units and Measurement by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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1.2: The Scope and Scale of Physics

Describe the scope of physics.
Calculate the order of magnitude of a quantity.
Compare measurable length, mass, and timescales quantitatively.
Describe the relationships among models, theories, and laws.

Physics is devoted to the understanding of all natural phenomena. In physics, we try to understand physical phenomena at all scales
—from the world of subatomic particles to the entire universe. Despite the breadth of the subject, the various subfields of physics
share a common core. The same basic training in physics will prepare you to work in any area of physics and the related areas of
science and engineering. In this section, we investigate the scope of physics; the scales of length, mass, and time over which the
laws of physics have been shown to be applicable; and the process by which science in general, and physics in particular, operates.

The Scope of Physics
Take another look at the thumbnail image. The Whirlpool Galaxy contains billions of individual stars as well as huge clouds of gas
and dust. Its companion galaxy is also visible to the right. This pair of galaxies lies a staggering billion trillion miles (1.4 x 10 mi)
from our own galaxy (which is called the Milky Way). The stars and planets that make up the Whirlpool Galaxy might seem to be
the furthest thing from most people’s everyday lives, but the Whirlpool is a great starting point to think about the forces that hold
the universe together. The forces that cause the Whirlpool Galaxy to act as it does are thought to be the same forces we contend
with here on Earth, whether we are planning to send a rocket into space or simply planning to raise the walls for a new home. The
gravity that causes the stars of the Whirlpool Galaxy to rotate and revolve is thought to be the same as what causes water to flow
over hydroelectric dams here on Earth. When you look up at the stars, realize the forces out there are the same as the ones here on
Earth. Through a study of physics, you may gain a greater understanding of the interconnectedness of everything we can see and
know in this universe.

Think, now, about all the technological devices you use on a regular basis. Computers, smartphones, global positioning systems
(GPSs), MP3 players, and satellite radio might come to mind. Then, think about the most exciting modern technologies you have
heard about in the news, such as trains that levitate above tracks, “invisibility cloaks” that bend light around them, and microscopic
robots that fight cancer cells in our bodies. All these groundbreaking advances, commonplace or unbelievable, rely on the
principles of physics. Aside from playing a significant role in technology, professionals such as engineers, pilots, physicians,
physical therapists, electricians, and computer programmers apply physics concepts in their daily work. For example, a pilot must
understand how wind forces affect a flight path; a physical therapist must understand how the muscles in the body experience
forces as they move and bend. As you will learn in this text, the principles of physics are propelling new, exciting technologies, and
these principles are applied in a wide range of careers.

The underlying order of nature makes science in general, and physics in particular, interesting and enjoyable to study. For example,
what do a bag of chips and a car battery have in common? Both contain energy that can be converted to other forms. The law of
conservation of energy (which says that energy can change form but is never lost) ties together such topics as food calories,
batteries, heat, light, and watch springs. Understanding this law makes it easier to learn about the various forms energy takes and
how they relate to one another. Apparently unrelated topics are connected through broadly applicable physical laws, permitting an
understanding beyond just the memorization of lists of facts.

Science consists of theories and laws that are the general truths of nature, as well as the body of knowledge they encompass.
Scientists are continuously trying to expand this body of knowledge and to perfect the expression of the laws that describe it.
Physics, which comes from the Greek phúsis, meaning “nature,” is concerned with describing the interactions of energy, matter,
space, and time to uncover the fundamental mechanisms that underlie every phenomenon. This concern for describing the basic
phenomena in nature essentially defines the scope of physics.

Physics aims to understand the world around us at the most basic level. It emphasizes the use of a small number of quantitative
laws to do this, which can be useful to other fields pushing the performance boundaries of existing technologies. Consider a
smartphone (Figure ). Physics describes how electricity interacts with the various circuits inside the device. This knowledge
helps engineers select the appropriate materials and circuit layout when building a smartphone. Knowledge of the physics
underlying these devices is required to shrink their size or increase their processing speed. Or, think about a GPS. Physics describes

 Learning Objectives
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the relationship between the speed of an object, the distance over which it travels, and the time it takes to travel that distance. When
you use a GPS in a vehicle, it relies on physics equations to determine the travel time from one location to another.

Figure : The Apple iPhone is a common smartphone with a GPS function. Physics describes the way that electricity flows
through the circuits of this device. Engineers use their knowledge of physics to construct an iPhone with features that consumers
will enjoy. One specific feature of an iPhone is the GPS function. A GPS uses physics equations to determine the drive time
between two locations on a map.

Knowledge of physics is useful in everyday situations as well as in nonscientific professions. It can help you understand how
microwave ovens work, why metals should not be put into them, and why they might affect pacemakers. Physics allows you to
understand the hazards of radiation and to evaluate these hazards rationally and more easily. Physics also explains the reason why a
black car radiator helps remove heat in a car engine, and it explains why a white roof helps keep the inside of a house cool.
Similarly, the operation of a car’s ignition system as well as the transmission of electrical signals throughout our body’s nervous
system are much easier to understand when you think about them in terms of basic physics.

Physics is a key element of many important disciplines and contributes directly to others. Chemistry, for example—since it deals
with the interactions of atoms and molecules—has close ties to atomic and molecular physics. Most branches of engineering are
concerned with designing new technologies, processes, or structures within the constraints set by the laws of physics. In
architecture, physics is at the heart of structural stability and is involved in the acoustics, heating, lighting, and cooling of buildings.
Parts of geology rely heavily on physics, such as radioactive dating of rocks, earthquake analysis, and heat transfer within Earth.
Some disciplines, such as biophysics and geophysics, are hybrids of physics and other disciplines.

Physics has many applications in the biological sciences. On the microscopic level, it helps describe the properties of cells and their
environments. On the macroscopic level, it explains the heat, work, and power associated with the human body and its various
organ systems. Physics is involved in medical diagnostics, such as radiographs, magnetic resonance imaging, and ultrasonic blood
flow measurements. Medical therapy sometimes involves physics directly; for example, cancer radiotherapy uses ionizing
radiation. Physics also explains sensory phenomena, such as how musical instruments make sound, how the eye detects color, and
how lasers transmit information.

It is not necessary to study all applications of physics formally. What is most useful is knowing the basic laws of physics and
developing skills in the analytical methods for applying them. The study of physics also can improve your problem-solving skills.
Furthermore, physics retains the most basic aspects of science, so it is used by all the sciences, and the study of physics makes
other sciences easier to understand.

The Scale of Physics
From the discussion so far, it should be clear that to accomplish your goals in any of the various fields within the natural sciences
and engineering, a thorough grounding in the laws of physics is necessary. The reason for this is simply that the laws of physics
govern everything in the observable universe at all measurable scales of length, mass, and time. Now, that is easy enough to say,
but to come to grips with what it really means, we need to get a little bit quantitative. So, before surveying the various scales that
physics allows us to explore, let’s first look at the concept of “order of magnitude,” which we use to come to terms with the vast
ranges of length, mass, and time that we consider in this text (Figure ).
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Figure : (a) Using a scanning tunneling microscope, scientists can see the individual atoms (diameters around 10  m) that
compose this sheet of gold. (b) Tiny phytoplankton swim among crystals of ice in the Antarctic Sea. They range from a few
micrometers (1 μm is 10  m) to as much as 2 mm (1 mm is 10  m) in length. (c) These two colliding galaxies, known as NGC
4676A (right) and NGC 4676B (left), are nicknamed “The Mice” because of the tail of gas emanating from each one. They are
located 300 million light-years from Earth in the constellation Coma Berenices. Eventually, these two galaxies will merge into one.
(credit a: modification of work by Erwinrossen; credit b: modification of work by Prof. Gordon T. Taylor, Stony Brook University;
NOAA Corps Collections; credit c: modification of work by NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin
(STScI), G. Hartig (STScI), the ACS Science Team, and ESA)

Order of Magnitude

The order of magnitude of a number is the power of 10 that most closely approximates it. Thus, the order of magnitude refers to
the scale (or size) of a value. Each power of 10 represents a different order of magnitude. For example, 10 , 10 , 10 , and so forth,
are all different orders of magnitude, as are 10  = 1, 10 , 10 , and 10 . To find the order of magnitude of a number, take the
base-10 logarithm of the number and round it to the nearest integer, then the order of magnitude of the number is simply the
resulting power of 10. For example, the order of magnitude of 800 is 10  because log  800 ≈ 2.903, which rounds to 3. Similarly,
the order of magnitude of 450 is 10  because log  450 ≈ 2.653, which rounds to 3 as well. Thus, we say the numbers 800 and 450
are of the same order of magnitude: 10 . However, the order of magnitude of 250 is 10  because log 250 ≈ 2.397, which rounds to
2.

An equivalent but quicker way to find the order of magnitude of a number is first to write it in scientific notation and then check to
see whether the first factor is greater than or less than  = 10  ≈ 3. The idea is that  = 10  is halfway between 1 = 10
and 10 = 10  on a log base-10 scale. Thus, if the first factor is less than , then we round it down to 1 and the order of
magnitude is simply whatever power of 10 is required to write the number in scientific notation. On the other hand, if the first
factor is greater than , then we round it up to 10 and the order of magnitude is one power of 10 higher than the power needed
to write the number in scientific notation. For example, the number 800 can be written in scientific notation as 8 x 10 . Because 8 is
bigger than  ≈ 3, we say the order of magnitude of 800 is 10  = 10 . The number 450 can be written as 4.5 x 10 , so its
order of magnitude is also 10 because 4.5 is greater than 3. However, 250 written in scientific notation is 2.5 x 10  and 2.5 is less
than 3, so its order of magnitude is 10 .

The order of magnitude of a number is designed to be a ballpark estimate for the scale (or size) of its value. It is simply a way of
rounding numbers consistently to the nearest power of 10. This makes doing rough mental math with very big and very small
numbers easier. For example, the diameter of a hydrogen atom is on the order of 10  m, whereas the diameter of the Sun is on the
order of 10  m, so it would take roughly 10 /10 = 10  hydrogen atoms to stretch across the diameter of the Sun. This is much
easier to do in your head than using the more precise values of 1.06 x 10 m for a hydrogen atom diameter and 1.39 x 10 m for
the Sun’s diameter, to find that it would take 1.31 x 10  hydrogen atoms to stretch across the Sun’s diameter. In addition to being
easier, the rough estimate is also nearly as informative as the precise calculation.

Known Ranges of Length, Mass, and Time

The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known
lengths, masses, and times (given as orders of magnitude) in Figure . Examining this table will give you a feeling for the range
of possible topics in physics and numerical values. A good way to appreciate the vastness of the ranges of values in Figure  is
to try to answer some simple comparative questions, such as the following:

a. How many hydrogen atoms does it take to stretch across the diameter of the Sun?
b. How many protons are there in a bacterium?
c. How many floating-point operations can a supercomputer do in 1 day?
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Answer a

10  m/10  m = 10 hydrogen atoms

Answer b

10  kg/10  kg = 10 protons

Answer c

10  s/10  s = 10  floating-point operations

In studying Figure , take some time to come up with similar questions that interest you and then try answering them. Doing
this can breathe some life into almost any table of numbers.

Figure : This table shows the orders of magnitude of length, mass, and time.

Building Models
How did we come to know the laws governing natural phenomena? What we refer to as the laws of nature are concise descriptions
of the universe around us. They are human statements of the underlying laws or rules that all natural processes follow. Such laws
are intrinsic to the universe; humans did not create them and cannot change them. We can only discover and understand them. Their
discovery is a very human endeavor, with all the elements of mystery, imagination, struggle, triumph, and disappointment inherent
in any creative effort (Figure 1.5). The cornerstone of discovering natural laws is observation; scientists must describe the universe
as it is, not as we imagine it to be.
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Figure : (a) Enrico Fermi (1901–1954) was born in Italy. On accepting the Nobel Prize in Stockholm in 1938 for his work on
artificial radioactivity produced by neutrons, he took his family to America rather than return home to the government in power at
the time. He became an American citizen and was a leading participant in the Manhattan Project. (b) Marie Curie (1867–1934)
sacrificed monetary assets to help finance her early research and damaged her physical well-being with radiation exposure. She is
the only person to win Nobel prizes in both physics and chemistry. One of her daughters also won a Nobel Prize. (credit a: United
States Department of Energy)

A model is a representation of something that is often too difficult (or impossible) to display directly. Although a model is justified
by experimental tests, it is only accurate in describing certain aspects of a physical system. An example is the Bohr model of
single-electron atoms, in which the electron is pictured as orbiting the nucleus, analogous to the way planets orbit the Sun (Figure 

). We cannot observe electron orbits directly, but the mental image helps explain some of the observations we can make, such
as the emission of light from hot gases (atomic spectra). However, other observations show that the picture in the Bohr model is not
really what atoms look like. The model is “wrong,” but is still useful for some purposes. Physicists use models for a variety of
purposes. For example, models can help physicists analyze a scenario and perform a calculation or models can be used to represent
a situation in the form of a computer simulation. Ultimately, however, the results of these calculations and simulations need to be
double-checked by other means—namely, observation and experimentation.

Figure : What is a model? The Bohr model of a single-electron atom shows the electron orbiting the nucleus in one of several
possible circular orbits. Like all models, it captures some, but not all, aspects of the physical system.

The word theory means something different to scientists than what is often meant when the word is used in everyday conversation.
In particular, to a scientist a theory is not the same as a “guess” or an “idea” or even a “hypothesis.” The phrase “it’s just a theory”
seems meaningless and silly to scientists because science is founded on the notion of theories. To a scientist, a theory is a testable
explanation for patterns in nature supported by scientific evidence and verified multiple times by various groups of researchers.
Some theories include models to help visualize phenomena whereas others do not. Newton’s theory of gravity, for example, does
not require a model or mental image, because we can observe the objects directly with our own senses. The kinetic theory of gases,
on the other hand, is a model in which a gas is viewed as being composed of atoms and molecules. Atoms and molecules are too
small to be observed directly with our senses—thus, we picture them mentally to understand what the instruments tell us about the
behavior of gases. Although models are meant only to describe certain aspects of a physical system accurately, a theory should
describe all aspects of any system that falls within its domain of applicability. In particular, any experimentally testable implication
of a theory should be verified. If an experiment ever shows an implication of a theory to be false, then the theory is either thrown
out or modified suitably (for example, by limiting its domain of applicability).

A law uses concise language to describe a generalized pattern in nature supported by scientific evidence and repeated experiments.
Often, a law can be expressed in the form of a single mathematical equation. Laws and theories are similar in that they are both
scientific statements that result from a tested hypothesis and are supported by scientific evidence. However, the designation law is
usually reserved for a concise and very general statement that describes phenomena in nature, such as the law that energy is
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conserved during any process, or Newton’s second law of motion, which relates force (F), mass (m), and acceleration (a) by the
simple equation F = ma. A theory, in contrast, is a less concise statement of observed behavior. For example, the theory of
evolution and the theory of relativity cannot be expressed concisely enough to be considered laws. The biggest difference between
a law and a theory is that a theory is much more complex and dynamic. A law describes a single action whereas a theory explains
an entire group of related phenomena. Less broadly applicable statements are usually called principles (such as Pascal’s principle,
which is applicable only in fluids), but the distinction between laws and principles often is not made carefully.

The models, theories, and laws we devise sometimes imply the existence of objects or phenomena that are as yet unobserved.
These predictions are remarkable triumphs and tributes to the power of science. It is the underlying order in the universe that
enables scientists to make such spectacular predictions. However, if experimentation does not verify our predictions, then the
theory or law is wrong, no matter how elegant or convenient it is. Laws can never be known with absolute certainty because it is
impossible to perform every imaginable experiment to confirm a law for every possible scenario. Physicists operate under the
assumption that all scientific laws and theories are valid until a counterexample is observed. If a good-quality, verifiable
experiment contradicts a well-established law or theory, then the law or theory must be modified or overthrown completely. The
study of science in general, and physics in particular, is an adventure much like the exploration of an uncharted ocean. Discoveries
are made; models, theories, and laws are formulated; and the beauty of the physical universe is made more sublime for the insights
gained.
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1.3: Units and Standards

Describe how SI base units are defined.
Describe how derived units are created from base units.
Express quantities given in SI units using metric prefixes.

As we saw previously, the range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a
nucleus to the age of Earth, from the tiny sizes of subnuclear particles to the vast distance to the edges of the known universe, from
the force exerted by a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the
imagination of even the most experienced scientist. Giving numerical values for physical quantities and equations for physical
principles allows us to understand nature much more deeply than qualitative descriptions alone. To comprehend these vast ranges,
we must also have accepted units in which to express them. We shall find that even in the potentially mundane discussion of
meters, kilograms, and seconds, a profound simplicity of nature appears: all physical quantities can be expressed as combinations
of only seven base physical quantities.

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from other measurements.
For example, we might define distance and time by specifying methods for measuring them, such as using a meter stick and a
stopwatch. Then, we could define average speed by stating that it is calculated as the total distance traveled divided by time of
travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length of a
race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners). Without
standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful way
(Figure ).

Figure : Distances given in unknown units are maddeningly useless.

Two major systems of units are used in the world: SI units (for the French Système International d’Unités), also known as the
metric system, and English units (also known as the customary or imperial system). English units were historically used in
nations once ruled by the British Empire and are still widely used in the United States. English units may also be referred to as the
foot–pound–second (fps) system, as opposed to the centimeter–gram–second (cgs) system. You may also encounter the term
SAE units, named after the Society of Automotive Engineers. Products such as fasteners and automotive tools (for example,
wrenches) that are measured in inches rather than metric units are referred to as SAE fasteners or SAE wrenches.

Virtually every other country in the world (except the United States) now uses SI units as the standard. The metric system is also
the standard system agreed on by scientists and mathematicians.

SI Units: Base and Derived Units
In any system of units, the units for some physical quantities must be defined through a measurement process. These are called the
base quantities for that system and their units are the system’s base units. All other physical quantities can then be expressed as
algebraic combinations of the base quantities. Each of these physical quantities is then known as a derived quantity and each unit
is called a derived unit. The choice of base quantities is somewhat arbitrary, as long as they are independent of each other and all
other quantities can be derived from them. Typically, the goal is to choose physical quantities that can be measured accurately to a
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high precision as the base quantities. The reason for this is simple. Since the derived units can be expressed as algebraic
combinations of the base units, they can only be as accurate and precise as the base units from which they are derived.

Based on such considerations, the International Standards Organization recommends using seven base quantities, which form the
International System of Quantities (ISQ). These are the base quantities used to define the SI base units. Table  lists these seven
ISQ base quantities and the corresponding SI base units.

Table : ISQ Base Quantities and Their SI Units

ISQ Base Quantity SI Base Unit

Length meter (m)

Mass kilogram (kg)

Time second (s)

Electrical Current ampere (A)

Thermodynamic Temperature kelvin (K)

Amount of Substance mole (mol)

Luminous Intensity candela (cd)

You are probably already familiar with some derived quantities that can be formed from the base quantities in Table . For
example, the geometric concept of area is always calculated as the product of two lengths. Thus, area is a derived quantity that can
be expressed in terms of SI base units using square meters (m x m = m ). Similarly, volume is a derived quantity that can be
expressed in cubic meters (m ). Speed is length per time; so in terms of SI base units, we could measure it in meters per second
(m/s). Volume mass density (or just density) is mass per volume, which is expressed in terms of SI base units such as kilograms per
cubic meter (kg/m ). Angles can also be thought of as derived quantities because they can be defined as the ratio of the arc length
subtended by two radii of a circle to the radius of the circle. This is how the radian is defined. Depending on your background and
interests, you may be able to come up with other derived quantities, such as the mass flow rate (kg/s) or volume flow rate (m /s) of
a fluid, electric charge (A • s), mass flux density [kg/(m • s)], and so on. We will see many more examples throughout this text. For
now, the point is that every physical quantity can be derived from the seven base quantities in Table , and the units of every
physical quantity can be derived from the seven SI base units.

For the most part, we use SI units in this text. Non-SI units are used in a few applications in which they are in very common use,
such as the measurement of temperature in degrees Celsius (°C), the measurement of fluid volume in liters (L), and the
measurement of energies of elementary particles in electron-volts (eV). Whenever non-SI units are discussed, they are tied to SI
units through conversions. For example, 1 L is 10  m .

Check out a comprehensive source of information on SI units at the National Institute of Standards and Technology (NIST)
Reference on Constants, Units, and Uncertainty.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram
The initial chapters in this textmap are concerned with mechanics, fluids, and waves. In these subjects all pertinent physical
quantities can be expressed in terms of the base units of length, mass, and time. Therefore, we now turn to a discussion of these
three base units, leaving discussion of the others until they are needed later.

The Second

The SI unit for time, the second (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day.
More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a nonvarying or constant
physical phenomenon (because the solar day is getting longer as a result of the very gradual slowing of Earth’s rotation). Cesium
atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967, the second
was redefined as the time required for 9,192,631,770 of these vibrations to occur (Figure ). Note that this may seem like more
precision than you would ever need, but it isn’t—GPSs rely on the precision of atomic clocks to be able to give you turn-by-turn
directions on the surface of Earth, far from the satellites broadcasting their location.
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Figure : An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a
microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image looks down from the top of an
atomic fountain nearly 30 feet tall. (credit: Steve Jurvetson)

The Meter

The SI unit for length is the meter (abbreviated m); its definition has also changed over time to become more precise. The meter
was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in
1889 by redefining the meter to be the distance between two engraved lines on a platinum–iridium bar now kept near Paris. By
1960, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again redefined
as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its current definition (in part
for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second (Figure ). This change came after
knowing the speed of light to be exactly 299,792,458 m/s. The length of the meter will change if the speed of light is someday
measured with greater accuracy.

Figure : The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is
speed multiplied by time.

The Kilogram

The SI unit for mass is the kilogram (abbreviated kg); From 1795–2018 it was defined to be the mass of a platinum–iridium
cylinder kept with the old meter standard at the International Bureau of Weights and Measures near Paris. However, this cylinder
has lost roughly 50 micrograms since it was created. Because this is the standard, this has shifted how we defined a kilogram.
Therefore, a new definition was adopted in May 2019 based on the Planck constant and other constants which will never change in
value. We will study Planck’s constant in quantum mechanics, which is an area of physics that describes how the smallest pieces of
the universe work. The kilogram is measured on a Kibble balance (see ). When a weight is placed on a Kibble balance, an
electrical current is produced that is proportional to Planck’s constant. Since Planck’s constant is defined, the exact current
measurements in the balance define the kilogram.
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Figure : Redefining the SI unit of mass. The U.S. National Institute of Standards and Technology’s Kibble balance is a
machine that balances the weight of a test mass with the resulting electrical current needed for a force to balance it.

Metric Prefixes
SI units are part of the metric system, which is convenient for scientific and engineering calculations because the units are
categorized by factors of 10. Table  lists the metric prefixes and symbols used to denote various factors of 10 in SI units. For
example, a centimeter is one-hundredth of a meter (in symbols, 1 cm = 10  m) and a kilometer is a thousand meters (1 km = 10
m). Similarly, a megagram is a million grams (1 Mg = 10  g), a nanosecond is a billionth of a second (1 ns = 10  s), and a
terameter is a trillion meters (1 Tm = 10  m).

Table : Metric Prefixes for Powers of 10 and Their Symbols

Prefix Symbol Meaning Prefix Symbol Meaning

yotta- Y 10 yocto- Y 10

zetta- Z 10 zepto- Z 10

exa- E 10 atto- E 10

peta- P 10 femto- P 10

tera- T 10 pico- T 10

giga- G 10 nano- G 10

mega- M 10 micro- M 10

kilo- k 10 milli- k 10

hecto- h 10 centi- h 10

deka- da 10 deci- da 10

The only rule when using metric prefixes is that you cannot “double them up.” For example, if you have measurements in
petameters (1 Pm = 10  m), it is not proper to talk about megagigameters, although 10  x 10  = 10 . In practice, the only time this
becomes a bit confusing is when discussing masses. As we have seen, the base SI unit of mass is the kilogram (kg), but metric
prefixes need to be applied to the gram (g), because we are not allowed to “double-up” prefixes. Thus, a thousand kilograms (10
kg) is written as a megagram (1 Mg) since
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Incidentally, 10  kg is also called a metric ton, abbreviated t. This is one of the units outside the SI system considered acceptable
for use with SI units.

As we see in the next section, metric systems have the advantage that conversions of units involve only powers of 10. There are
100 cm in 1 m, 1000 m in 1 km, and so on. In nonmetric systems, such as the English system of units, the relationships are not as
simple—there are 12 in in 1 ft, 5280 ft in 1 mi, and so on.

Another advantage of metric systems is that the same unit can be used over extremely large ranges of values simply by scaling it
with an appropriate metric prefix. The prefix is chosen by the order of magnitude of physical quantities commonly found in the task
at hand. For example, distances in meters are suitable in construction, whereas distances in kilometers are appropriate for air travel,
and nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular
applications. Instead, we rescale the units with which we are already familiar.

Restate the mass 1.93 x 10  kg using a metric prefix such that the resulting numerical value is bigger than one but less than
1000.

Strategy

Since we are not allowed to “double-up” prefixes, we first need to restate the mass in grams by replacing the prefix symbol k
with a factor of 10  (Table ). Then, we should see which two prefixes in Table  are closest to the resulting power of
10 when the number is written in scientific notation. We use whichever of these two prefixes gives us a number between one
and 1000.

Solution
Replacing the k in kilogram with a factor of 10 , we find that

From Table , we see that 10  is between “peta-” (10 ) and “exa-” (10 ). If we use the “peta-” prefix, then we find that
1.93 × 10  g = 1.93 × 10  Pg, since 16 = 1 + 15. Alternatively, if we use the “exa-” prefix we find that 1.93 x 10  g = 1.93 x
10 Eg, since 16 = −2 + 18. Because the problem asks for the numerical value between one and 1000, we use the “peta-”
prefix and the answer is 19.3 Pg.

Significance
It is easy to make silly arithmetic errors when switching from one prefix to another, so it is always a good idea to check that
our final answer matches the number we started with. An easy way to do this is to put both numbers in scientific notation and
count powers of 10, including the ones hidden in prefixes. If we did not make a mistake, the powers of 10 should match up. In
this problem, we started with 1.93 x 10  kg, so we have 13 + 3 = 16 powers of 10. Our final answer in scientific notation is
1.93 x 10  Pg, so we have 1 + 15 = 16 powers of 10. So, everything checks out.

If this mass arose from a calculation, we would also want to check to determine whether a mass this large makes any sense in
the context of the problem. For this, Figure 1.4 might be helpful.

Restate 4.79 x 10  kg using a metric prefix such that the resulting number is bigger than one but less than 1000.

Answer

Add texts here. Do not delete this text first.
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1.4: Unit Conversion

Use conversion factors to express the value of a given quantity in different units.

It is often necessary to convert from one unit to another. For example, if you are reading a European cookbook, some quantities
may be expressed in units of liters and you need to convert them to cups. Or perhaps you are reading walking directions from one
location to another and you are interested in how many miles you will be walking. In this case, you may need to convert units of
feet or meters to miles.

Let’s consider a simple example of how to convert units. Suppose we want to convert 80 m to kilometers. The first thing to do is to
list the units you have and the units to which you want to convert. In this case, we have units in meters and we want to convert to
kilometers. Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio that
expresses how many of one unit are equal to another unit. For example, there are 12 in. in 1 ft, 1609 m in 1 mi, 100 cm in 1 m, 60 s
in 1 min, and so on. Refer to Appendix B for a more complete list of conversion factors. In this case, we know that there are 1000
m in 1 km. Now we can set up our unit conversion. We write the units we have and then multiply them by the conversion factor so
the units cancel out, as shown:

Note that the unwanted meter unit cancels, leaving only the desired kilometer unit. You can use this method to convert between any
type of unit. Now, the conversion of 80 m to kilometers is simply the use of a metric prefix, as we saw in the preceding section, so
we can get the same answer just as easily by noting that

since “kilo-” means 10  and 1 = −2 + 3. However, using conversion factors is handy when converting between units that are not
metric or when converting between derived units, as the following examples illustrate.

The distance from the university to home is 10 mi and it usually takes 20 min to drive this distance. Calculate the average
speed in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units, then we can get the average speed into the desired units by picking
the correct conversion factors and multiplying by them. The correct conversion factors are those that cancel the unwanted units
and leave the desired units in their place. In this case, we want to convert miles to meters, so we need to know the fact that
there are 1609 m in 1 mi. We also want to convert minutes to seconds, so we use the conversion of 60 s in 1 min.

Solution
1. Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for

now. Average speed and other motion concepts are covered in later chapters.) In equation form,

2. Substitute the given values for distance and time:

3. Convert miles per minute to meters per second by multiplying by the conversion factor that cancels miles and leave meters,
and also by the conversion factor that cancels minutes and leave seconds:

 Learning Objectives

80 × = 0.080 km.m
1 km

1000 m
(1.4.1)

80 m = 8.0 × m = 8.0 × km = 0.080 km,101 10−2 (1.4.2)
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Significance
Check the answer in the following ways:

1. Be sure the units in the unit conversion cancel correctly. If the unit conversion factor was written upside down, the units do
not cancel correctly in the equation. We see the “miles” in the numerator in 0.50 mi/min cancels the “mile” in the
denominator in the first conversion factor. Also, the “min” in the denominator in 0.50 mi/min cancels the “min” in the
numerator in the second conversion factor.

2. Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units of
meters per second and, after the cancelations, the only units left are a meter (m) in the numerator and a second (s) in the
denominator, so we have indeed obtained these units.

Light travels about 9 Pm in a year. Given that a year is about 3 x 10  s, what is the speed of light in meters per second?

Answer

Add texts here. Do not delete this text first.

The density of iron is 7.86 g/cm  under standard conditions. Convert this to kg/m .

Strategy

We need to convert grams to kilograms and cubic centimeters to cubic meters. The conversion factors we need are 1 kg = 10  g
and 1 cm = 10 m. However, we are dealing with cubic centimeters (cm  = cm x cm x cm), so we have to use the second
conversion factor three times (that is, we need to cube it). The idea is still to multiply by the conversion factors in such a way
that they cancel the units we want to get rid of and introduce the units we want to keep.

Solution

Significance
Remember, it’s always important to check the answer.

1. Be sure to cancel the units in the unit conversion correctly. We see that the gram (“g”) in the numerator in 7.86 g/cm
cancels the “g” in the denominator in the first conversion factor. Also, the three factors of “cm” in the denominator in 7.86
g/cm  cancel with the three factors of “cm” in the numerator that we get by cubing the second conversion factor.

2. Check that the units of the final answer are the desired units. The problem asked for us to convert to kilograms per cubic
meter. After the cancelations just described, we see the only units we have left are “kg” in the numerator and three factors
of “m” in the denominator (that is, one factor of “m” cubed, or “m ”). Therefore, the units on the final answer are correct.

We know from Figure 1.4 that the diameter of Earth is on the order of 10  m, so the order of magnitude of its surface area is
10  m . What is that in square kilometers (that is, km )? (Try doing this both by converting 10  m to km and then squaring it
and then by converting 10  m  directly to square kilometers. You should get the same answer both ways.)

Answer

Add texts here. Do not delete this text first.

0.50 × × = m/s = 13 m/s.
mile

min

1609 m

1 mile

1 min

60 s

(0.50)(1609)

60
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3 3

3

−2 3

7.86 × × = kg/ = 7.86 × kg/
g

cm3

kg

103 g
( )

cm

m10−2

3
7.86

( )( )103 10−6
m3 103 m3

3

3

3

 Exercise 1.4.2

7

14 2 2 7

14 2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46027?pdf


1.4.3 https://phys.libretexts.org/@go/page/46027

Unit conversions may not seem very interesting, but not doing them can be costly. One famous example of this situation was seen
with the Mars Climate Orbiter. This probe was launched by NASA on December 11, 1998. On September 23, 1999, while
attempting to guide the probe into its planned orbit around Mars, NASA lost contact with it. Subsequent investigations showed a
piece of software called SM_FORCES (or “small forces”) was recording thruster performance data in the English units of pound-
seconds (lb • s). However, other pieces of software that used these values for course corrections expected them to be recorded in the
SI units of newton-seconds (N • s), as dictated in the software interface protocols. This error caused the probe to follow a very
different trajectory from what NASA thought it was following, which most likely caused the probe either to burn up in the Martian
atmosphere or to shoot out into space. This failure to pay attention to unit conversions cost hundreds of millions of dollars, not to
mention all the time invested by the scientists and engineers who worked on the project.

Given that 1 lb (pound) is 4.45 N, were the numbers being output by SM_FORCES too big or too small?

This page titled 1.4: Unit Conversion is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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1.5: Dimensional Analysis

Find the dimensions of a mathematical expression involving physical quantities.
Determine whether an equation involving physical quantities is dimensionally consistent.

The dimension of any physical quantity expresses its dependence on the base quantities as a product of symbols (or powers of
symbols) representing the base quantities. Table  lists the base quantities and the symbols used for their dimension. For
example, a measurement of length is said to have dimension L or L , a measurement of mass has dimension M or M , and a
measurement of time has dimension T or T . Like units, dimensions obey the rules of algebra. Thus, area is the product of two
lengths and so has dimension L , or length squared. Similarly, volume is the product of three lengths and has dimension L , or
length cubed. Speed has dimension length over time, L/T or LT . Volumetric mass density has dimension M/L  or ML , or mass
over length cubed. In general, the dimension of any physical quantity can be written as

for some powers a, b, c, d, e, f, and g. We can write the dimensions of a length in this form with a = 1 and the remaining six powers
all set equal to zero:

Any quantity with a dimension that can be written so that all seven powers are zero (that is, its dimension is )
is called dimensionless (or sometimes “of dimension 1,” because anything raised to the zero power is one). Physicists often call
dimensionless quantities pure numbers.

Table : Base Quantities and Their Dimensions

Base Quantity Symbol for Dimension

Length L

Mass M

Time T

Current I

Thermodynamic Temperature

Amount of Substance N

Luminous Intensity J

Physicists often use square brackets around the symbol for a physical quantity to represent the dimensions of that quantity. For
example, if r is the radius of a cylinder and h is its height, then we write [r] = L and [h] = L to indicate the dimensions of the radius
and height are both those of length, or L. Similarly, if we use the symbol A for the surface area of a cylinder and V for its volume,
then [A] = L  and [V] = L . If we use the symbol m for the mass of the cylinder and  for the density of the material from which
the cylinder is made, then [m] = M and [ ] = ML .

The importance of the concept of dimension arises from the fact that any mathematical equation relating physical quantities must
be dimensionally consistent, which means the equation must obey the following rules:

Every term in an expression must have the same dimensions; it does not make sense to add or subtract quantities of differing
dimension (think of the old saying: “You can’t add apples and oranges”). In particular, the expressions on each side of the
equality in an equation must have the same dimensions.
The arguments of any of the standard mathematical functions such as trigonometric functions (such as sine and cosine),
logarithms, or exponential functions that appear in the equation must be dimensionless. These functions require pure numbers
as inputs and give pure numbers as outputs.
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If either of these rules is violated, an equation is not dimensionally consistent and cannot possibly be a correct statement of physical
law. This simple fact can be used to check for typos or algebra mistakes, to help remember the various laws of physics, and even to
suggest the form that new laws of physics might take. This last use of dimensions is beyond the scope of this text, but is something
you will undoubtedly learn later in your academic career.

Suppose we need the formula for the area of a circle for some computation. Like many people who learned geometry too long
ago to recall with any certainty, two expressions may pop into our mind when we think of circles:  and . One expression
is the circumference of a circle of radius r and the other is its area. But which is which?

Strategy

One natural strategy is to look it up, but this could take time to find information from a reputable source. Besides, even if we
think the source is reputable, we shouldn’t trust everything we read. It is nice to have a way to double-check just by thinking
about it. Also, we might be in a situation in which we cannot look things up (such as during a test). Thus, the strategy is to find
the dimensions of both expressions by making use of the fact that dimensions follow the rules of algebra. If either expression
does not have the same dimensions as area, then it cannot possibly be the correct equation for the area of a circle.

Solution
We know the dimension of area is L . Now, the dimension of the expression  is

since the constant  is a pure number and the radius r is a length. Therefore,  has the dimension of area. Similarly, the
dimension of the expression  is

since the constants 2 and  are both dimensionless and the radius r is a length. We see that  has the dimension of length,
which means it cannot possibly be an area.

We rule out  because it is not dimensionally consistent with being an area. We see that  is dimensionally consistent with
being an area, so if we have to choose between these two expressions,  is the one to choose.

Significance
This may seem like kind of a silly example, but the ideas are very general. As long as we know the dimensions of the
individual physical quantities that appear in an equation, we can check to see whether the equation is dimensionally consistent.
On the other hand, knowing that true equations are dimensionally consistent, we can match expressions from our imperfect
memories to the quantities for which they might be expressions. Doing this will not help us remember dimensionless factors
that appear in the equations (for example, if you had accidentally conflated the two expressions from the example into ,
then dimensional analysis is no help), but it does help us remember the correct basic form of equations.

Suppose we want the formula for the volume of a sphere. The two expressions commonly mentioned in elementary discussions
of spheres are  and . One is the volume of a sphere of radius r and the other is its surface area. Which one is the
volume?

Answer

Add texts here. Do not delete this text first.

Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT , [a] = LT , and [t] = T. Determine whether
each of the following equations is dimensionally consistent:

 Example : Using Dimensions to Remember an Equation1.5.1

πr2 2πr

2 πr2

[π ] = [π]⋅ [r = 1⋅ = ,r2 ]2 L2 L2 (1.5.3)

π πr2

2πr

[2πr] = [2]⋅ [π]⋅ [r] = 1⋅ 1⋅L = L, (1.5.4)

π 2πr

2πr πr2

πr2

2πr2
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a. s = vt + 0.5at ;
b. s = vt  + 0.5at; and
c. v = sin ( ).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same dimensions as
the other terms in that equation and that the arguments of any standard mathematical functions are dimensionless.

Solution
a. There are no trigonometric, logarithmic, or exponential functions to worry about in this equation, so we need only look at

the dimensions of each term appearing in the equation. There are three terms, one in the left expression and two in the
expression on the right, so we look at each in turn:

b. Again, there are no trigonometric, exponential, or logarithmic functions, so we only need to look at the dimensions of each
of the three terms appearing in the equation:

None of the three terms has the same dimension as any other, so this is about as far from being dimensionally consistent as you
can get. The technical term for an equation like this is nonsense.

c. This equation has a trigonometric function in it, so first we should check that the argument of the sine function is
dimensionless:

The argument is dimensionless. So far, so good. Now we need to check the dimensions of each of the two terms (that is, the left
expression and the right expression) in the equation:

The two terms have different dimensions—meaning, the equation is not dimensionally consistent. This equation is another
example of “nonsense.”

Significance
If we are trusting people, these types of dimensional checks might seem unnecessary. But, rest assured, any textbook on a
quantitative subject such as physics (including this one) almost certainly contains some equations with typos. Checking
equations routinely by dimensional analysis save us the embarrassment of using an incorrect equation. Also, checking the
dimensions of an equation we obtain through algebraic manipulation is a great way to make sure we did not make a mistake (or
to spot a mistake, if we made one).

Is the equation v = at dimensionally consistent?

Answer

2

2

at2

s

[s] = L (1.5.5)

[vt] = [v]⋅ [t] = L ⋅T = L = LT −1 T 0 (1.5.6)

[0.5a ] = [a]⋅ [t = L ⋅ = L = L.t2 ]2 T −2 T 2 T 0 (1.5.7)

[s] = L (1.5.8)

[v ] = [v]⋅ [t = L ⋅ = LTt2 ]2 T −1 T 2 (1.5.9)

[at] = [a]⋅ [t] = L ⋅T = L .T −2 T −1 (1.5.10)

[ ] = = = = 1.
at2

s

[a]⋅ [t]2

[s]

L ⋅T −2 T 2

L

L

L
(1.5.11)

[v] = LT −1 (1.5.12)

[sin( )] = 1.
at2

s
(1.5.13)
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Add texts here. Do not delete this text first.

One further point that needs to be mentioned is the effect of the operations of calculus on dimensions. We have seen that
dimensions obey the rules of algebra, just like units, but what happens when we take the derivative of one physical quantity with
respect to another or integrate a physical quantity over another? The derivative of a function is just the slope of the line tangent to
its graph and slopes are ratios, so for physical quantities v and t, we have that the dimension of the derivative of v with respect to t
is just the ratio of the dimension of v over that of t:

Similarly, since integrals are just sums of products, the dimension of the integral of v with respect to t is simply the dimension of v
times the dimension of t:

By the same reasoning, analogous rules hold for the units of physical quantities derived from other quantities by integration or
differentiation.

This page titled 1.5: Dimensional Analysis is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

1.5: Dimensional Analysis by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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[v]

[t]
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[∫ vdt] = [v]⋅ [t]. (1.5.15)
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1.6: Estimates and Fermi Calculations

Estimate the values of physical quantities.

On many occasions, physicists, other scientists, and engineers need to make estimates for a particular quantity. Other terms
sometimes used are guesstimates, order-of-magnitude approximations, back-of-the-envelope calculations, or Fermi
calculations. (The physicist Enrico Fermi mentioned earlier was famous for his ability to estimate various kinds of data with
surprising precision.) Will that piece of equipment fit in the back of the car or do we need to rent a truck? How long will this
download take? About how large a current will there be in this circuit when it is turned on? How many houses could a proposed
power plant actually power if it is built? Note that estimating does not mean guessing a number or a formula at random. Rather,
estimation means using prior experience and sound physical reasoning to arrive at a rough idea of a quantity’s value. Because the
process of determining a reliable approximation usually involves the identification of correct physical principles and a good guess
about the relevant variables, estimating is very useful in developing physical intuition. Estimates also allow us perform “sanity
checks” on calculations or policy proposals by helping us rule out certain scenarios or unrealistic numbers. They allow us to
challenge others (as well as ourselves) in our efforts to learn truths about the world.

Many estimates are based on formulas in which the input quantities are known only to a limited precision. As you develop physics
problem-solving skills (which are applicable to a wide variety of fields), you also will develop skills at estimating. You develop
these skills by thinking more quantitatively and by being willing to take risks. As with any skill, experience helps. Familiarity with
dimensions (see Table 1.5.1) and units (see Table 1.3.1 and Table 1.3.2), and the scales of base quantities (see Figure 1.2.3) also
helps.

To make some progress in estimating, you need to have some definite ideas about how variables may be related. The following
strategies may help you in practicing the art of estimation:

Get big lengths from smaller lengths. When estimating lengths, remember that anything can be a ruler. Thus, imagine
breaking a big thing into smaller things, estimate the length of one of the smaller things, and multiply to get the length of the
big thing. For example, to estimate the height of a building, first count how many floors it has. Then, estimate how big a single
floor is by imagining how many people would have to stand on each other’s shoulders to reach the ceiling. Last, estimate the
height of a person. The product of these three estimates is your estimate of the height of the building. It helps to have
memorized a few length scales relevant to the sorts of problems you find yourself solving. For example, knowing some of the
length scales in Figure 1.2.3 might come in handy. Sometimes it also helps to do this in reverse—that is, to estimate the length
of a small thing, imagine a bunch of them making up a bigger thing. For example, to estimate the thickness of a sheet of paper,
estimate the thickness of a stack of paper and then divide by the number of pages in the stack. These same strategies of breaking
big things into smaller things or aggregating smaller things into a bigger thing can sometimes be used to estimate other physical
quantities, such as masses and times.
Get areas and volumes from lengths. When dealing with an area or a volume of a complex object, introduce a simple model
of the object such as a sphere or a box. Then, estimate the linear dimensions (such as the radius of the sphere or the length,
width, and height of the box) first, and use your estimates to obtain the volume or area from standard geometric formulas. If you
happen to have an estimate of an object’s area or volume, you can also do the reverse; that is, use standard geometric formulas
to get an estimate of its linear dimensions.
Get masses from volumes and densities. When estimating masses of objects, it can help first to estimate its volume and then
to estimate its mass from a rough estimate of its average density (recall, density has dimension mass over length cubed, so mass
is density times volume). For this, it helps to remember that the density of air is around 1 kg/m , the density of water is 10
kg/m , and the densest everyday solids max out at around 10  kg/m . Asking yourself whether an object floats or sinks in either
air or water gets you a ballpark estimate of its density. You can also do this the other way around; if you have an estimate of an
object’s mass and its density, you can use them to get an estimate of its volume.
If all else fails, bound it. For physical quantities for which you do not have a lot of intuition, sometimes the best you can do is
think something like: Well, it must be bigger than this and smaller than that. For example, suppose you need to estimate the
mass of a moose. Maybe you have a lot of experience with moose and know their average mass offhand. If so, great. But for
most people, the best they can do is to think something like: It must be bigger than a person (of order 10  kg) and less than a car
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(of order 10  kg). If you need a single number for a subsequent calculation, you can take the geometric mean of the upper and
lower bound—that is, you multiply them together and then take the square root. For the moose mass example, this would be

The tighter the bounds, the better. Also, no rules are unbreakable when it comes to estimation. If you think the value of the
quantity is likely to be closer to the upper bound than the lower bound, then you may want to bump up your estimate from the
geometric mean by an order or two of magnitude.
One “sig. fig.” is fine. There is no need to go beyond one significant figure when doing calculations to obtain an estimate. In
most cases, the order of magnitude is good enough. The goal is just to get in the ballpark figure, so keep the arithmetic as
simple as possible.
Ask yourself: Does this make any sense? Last, check to see whether your answer is reasonable. How does it compare with the
values of other quantities with the same dimensions that you already know or can look up easily? If you get some wacky answer
(for example, if you estimate the mass of the Atlantic Ocean to be bigger than the mass of Earth, or some time span to be longer
than the age of the universe), first check to see whether your units are correct. Then, check for arithmetic errors. Then, rethink
the logic you used to arrive at your answer. If everything checks out, you may have just proved that some slick new idea is
actually bogus.

Estimate the total mass of the oceans on Earth.

Strategy

We know the density of water is about 10  kg/m , so we start with the advice to “get masses from densities and volumes.”
Thus, we need to estimate the volume of the planet’s oceans. Using the advice to “get areas and volumes from lengths,” we can
estimate the volume of the oceans as surface area times average depth, or V = AD. We know the diameter of Earth from Figure
1.4 and we know that most of Earth’s surface is covered in water, so we can estimate the surface area of the oceans as being
roughly equal to the surface area of the planet. By following the advice to “get areas and volumes from lengths” again, we can
approximate Earth as a sphere and use the formula for the surface area of a sphere of diameter d—that is, A = , to estimate
the surface area of the oceans. Now we just need to estimate the average depth of the oceans. For this, we use the advice: “If all
else fails, bound it.” We happen to know the deepest points in the ocean are around 10 km and that it is not uncommon for the
ocean to be deeper than 1 km, so we take the average depth to be around (10  x 10 )  ≈ 3 x 10 m. Now we just need to put it
all together, heeding the advice that “one ‘sig. fig.’ is fine.”

Solution
We estimate the surface area of Earth (and hence the surface area of Earth’s oceans) to be roughly

Next, using our average depth estimate of D = 3 x 10 m, which was obtained by bounding, we estimate the volume of Earth’s
oceans to be

Last, we estimate the mass of the world's oceans to be

Thus, we estimate that the order of magnitude of the mass of the planet’s oceans is 10  kg.

Significance
To verify our answer to the best of our ability, we first need to answer the question: Does this make any sense? From Figure
1.4, we see the mass of Earth’s atmosphere is on the order of 10  kg and the mass of Earth is on the order of 10  kg. It is
reassuring that our estimate of 10  kg for the mass of Earth’s oceans falls somewhere between these two. So, yes, it does seem
to make sense. It just so happens that we did a search on the Web for “mass of oceans” and the top search results all said 1.4 x
10  kg, which is the same order of magnitude as our estimate. Now, rather than having to trust blindly whoever first put that

3

= = × ≈ 3 × kg.( × )102 103 0.5
102.5 100.5 102 102 (1.6.1)

 Example : Mass of Earth’s Oceans1.6.1

3 3

πd2

3 4 0.5 3

A = π = π ≈ 3 × .d2 ( m)107 2
1014 m2 (1.6.2)

3

V = AD = (3 × ) (3 × m) = 9 × .1014 m2 103 1017m3 (1.6.3)

M = ρV = ( kg/ ) (9 × ) = 9 × kg.103 m3 1017 m3 1020 (1.6.4)
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number up on a website (most of the other sites probably just copied it from them, after all), we can have a little more
confidence in it.

Figure 1.4 says the mass of the atmosphere is 10  kg. Assuming the density of the atmosphere is 1 kg/m , estimate the height
of Earth’s atmosphere. Do you think your answer is an underestimate or an overestimate? Explain why.

How many piano tuners are there in New York City? How many leaves are on that tree? If you are studying photosynthesis or
thinking of writing a smartphone app for piano tuners, then the answers to these questions might be of great interest to you.
Otherwise, you probably couldn’t care less what the answers are. However, these are exactly the sorts of estimation problems that
people in various tech industries have been asking potential employees to evaluate their quantitative reasoning skills. If building
physical intuition and evaluating quantitative claims do not seem like sufficient reasons for you to practice estimation problems,
how about the fact that being good at them just might land you a high-paying job?

For practice estimating relative lengths, areas, and volumes, check out this PhET simulation, titled “Estimation.”

This page titled 1.6: Estimates and Fermi Calculations is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

1.6: Estimates and Fermi Calculations by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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1.7: Significant Figures

Determine the correct number of significant figures for the result of a computation.
Describe the relationship between the concepts of accuracy, precision, uncertainty, and discrepancy.
Calculate the percent uncertainty of a measurement, given its value and its uncertainty.
Determine the uncertainty of the result of a computation involving quantities with given uncertainties.

Figure  shows two instruments used to measure the mass of an object. The digital scale has mostly replaced the double-pan
balance in physics labs because it gives more accurate and precise measurements. But what exactly do we mean by accurate and
precise? Aren’t they the same thing? In this section we examine in detail the process of making and reporting a measurement.

Figure : (a) A double-pan mechanical balance is used to compare different masses. Usually
an object with unknown mass is placed in one pan and objects of known mass are placed in
the other pan. When the bar that connects the two pans is horizontal, then the masses in both
pans are equal. The “known masses” are typically metal cylinders of standard mass such as 1
g, 10 g, and 100 g. (b) Many mechanical balances, such as double-pan balances, have been
replaced by digital scales, which can typically measure the mass of an object more precisely.
A mechanical balance may read only the mass of an object to the nearest tenth of a gram, but
many digital scales can measure the mass of an object up to the nearest thousandth of a gram.
(credit a: modification of work by Serge Melki; credit b: modification of work by Karel
Jakubec)

Accuracy and Precision of a Measurement
Science is based on observation and experiment—that is, on measurements. Accuracy is how close a measurement is to the
accepted reference value for that measurement. For example, let’s say we want to measure the length of standard printer paper. The
packaging in which we purchased the paper states that it is 11.0 in. long. We then measure the length of the paper three times and
obtain the following measurements: 11.1 in., 11.2 in., and 10.9 in. These measurements are quite accurate because they are very
close to the reference value of 11.0 in. In contrast, if we had obtained a measurement of 12 in., our measurement would not be very
accurate. Notice that the concept of accuracy requires that an accepted reference value be given.

The precision of measurements refers to how close the agreement is between repeated independent measurements (which are
repeated under the same conditions). Consider the example of the paper measurements. The precision of the measurements refers to
the spread of the measured values. One way to analyze the precision of the measurements is to determine the range, or difference,
between the lowest and the highest measured values. In this case, the lowest value was 10.9 in. and the highest value was 11.2 in.
Thus, the measured values deviated from each other by, at most, 0.3 in. These measurements were relatively precise because they
did not vary too much in value. However, if the measured values had been 10.9 in., 11.1 in., and 11.9 in., then the measurements
would not be very precise because there would be significant variation from one measurement to another. Notice that the concept of
precision depends only on the actual measurements acquired and does not depend on an accepted reference value.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not
precise, or they are precise but not accurate. Let’s consider an example of a GPS attempting to locate the position of a restaurant in
a city. Think of the restaurant location as existing at the center of a bull’s-eye target and think of each GPS attempt to locate the
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restaurant as a black dot. In Figure , we see the GPS measurements are spread out far apart from each other, but they are all
relatively close to the actual location of the restaurant at the center of the target. This indicates a low-precision, high-accuracy
measuring system. However, in Figure , the GPS measurements are concentrated quite closely to one another, but they are far
away from the target location. This indicates a high-precision, low-accuracy measuring system.

Figure : A GPS attempts to locate a restaurant at the center of the bull’s-eye. The black dots represent each attempt to pinpoint
the location of the restaurant. (a) The dots are spread out quite far apart from one another, indicating low precision, but they are
each rather close to the actual location of the restaurant, indicating high accuracy. (b) The dots are concentrated rather closely to
one another, indicating high precision, but they are rather far away from the actual location of the restaurant, indicating low
accuracy. (credit a and credit b: modification of works by Dark Evil)

Accuracy, Precision, Uncertainty, and Discrepancy
The precision of a measuring system is related to the uncertainty in the measurements whereas the accuracy is related to the
discrepancy from the accepted reference value. Uncertainty is a quantitative measure of how much your measured values deviate
from one another. There are many different methods of calculating uncertainty, each of which is appropriate to different situations.
Some examples include taking the range (that is, the biggest less the smallest) or finding the standard deviation of the
measurements. Discrepancy (or “measurement error”) is the difference between the measured value and a given standard or
expected value. If the measurements are not very precise, then the uncertainty of the values is high. If the measurements are not
very accurate, then the discrepancy of the values is high.

Recall our example of measuring paper length; we obtained measurements of 11.1 in., 11.2 in., and 10.9 in., and the accepted value
was 11.0 in. We might average the three measurements to say our best guess is 11.1 in.; in this case, our discrepancy is 11.1 – 11.0
= 0.1 in., which provides a quantitative measure of accuracy. We might calculate the uncertainty in our best guess by using the
range of our measured values: 0.3 in. Then we would say the length of the paper is 11.1 in. plus or minus 0.3 in. The uncertainty in
a measurement, A, is often denoted as A (read “delta A”), so the measurement result would be recorded as A ± A. Returning to
our paper example, the measured length of the paper could be expressed as 11.1 ± 0.3 in. Since the discrepancy of 0.1 in. is less
than the uncertainty of 0.3 in., we might say the measured value agrees with the accepted reference value to within experimental
uncertainty.

Some factors that contribute to uncertainty in a measurement include the following:

Limitations of the measuring device
The skill of the person taking the measurement
Irregularities in the object being measured
Any other factors that affect the outcome (highly dependent on the situation)

In our example, such factors contributing to the uncertainty could be the smallest division on the ruler is 1/16 in., the person using
the ruler has bad eyesight, the ruler is worn down on one end, or one side of the paper is slightly longer than the other. At any rate,
the uncertainty in a measurement must be calculated to quantify its precision. If a reference value is known, it makes sense to
calculate the discrepancy as well to quantify its accuracy.

Percent uncertainty

Another method of expressing uncertainty is as a percent of the measured value. If a measurement A is expressed with uncertainty 
A, the percent uncertainty is defined as

1.7.1a

1.7.1b

1.7.2

δ δ

δ

P ercent uncertainty = ×100%
δA

A
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A grocery store sells 5-lb bags of apples. Let’s say we purchase four bags during the course of a month and weigh the bags
each time. We obtain the following measurements:

Week 1 weight: 4.8 lb
Week 2 weight: 5.3 lb
Week 3 weight: 4.9 lb
Week 4 weight: 5.4 lb

We then determine the average weight of the 5-lb bag of apples is 5.1 ± 0.3 lb. What is the percent uncertainty of the bag’s
weight?

Strategy

First, observe that the average value of the bag’s weight, A, is 5.1 lb. The uncertainty in this value, A, is 0.3 lb. We can use
the following equation to determine the percent uncertainty of the weight:

Solution
Substitute the values into the equation:

Significance
We can conclude the average weight of a bag of apples from this store is 5.1 lb ± 6%. Notice the percent uncertainty is
dimensionless because the units of weight in A = 0.3 lb canceled those inn A = 5.1 lb when we took the ratio.

A high school track coach has just purchased a new stopwatch. The stopwatch manual states the stopwatch has an uncertainty
of ±0.05 s. Runners on the track coach’s team regularly clock 100-m sprints of 11.49 s to 15.01 s. At the school’s last track
meet, the first-place sprinter came in at 12.04 s and the second-place sprinter came in at 12.07 s. Will the coach’s new
stopwatch be helpful in timing the sprint team? Why or why not?

Uncertainties in Calculations

Uncertainty exists in anything calculated from measured quantities. For example, the area of a floor calculated from measurements
of its length and width has an uncertainty because the length and width have uncertainties. How big is the uncertainty in something
you calculate by multiplication or division? If the measurements going into the calculation have small uncertainties (a few percent
or less), then the method of adding percents can be used for multiplication or division. This method states the percent
uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to
make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m, with uncertainties of 2% and 1%,
respectively, then the area of the floor is 12.0 m  and has an uncertainty of 3%. (Expressed as an area, this is 0.36 m  [ 12.0 m  x
0.03 ], which we round to 0.4 m  since the area of the floor is given to a tenth of a square meter.)

Precision of Measuring Tools and Significant Figures
An important factor in the precision of measurements involves the precision of the measuring tool. In general, a precise measuring
tool is one that can measure values in very small increments. For example, a standard ruler can measure length to the nearest
millimeter whereas a caliper can measure length to the nearest 0.01 mm. The caliper is a more precise measuring tool because it
can measure extremely small differences in length. The more precise the measuring tool, the more precise the measurements.

When we express measured values, we can only list as many digits as we measured initially with our measuring tool. For example,
if we use a standard ruler to measure the length of a stick, we may measure it to be 36.7 cm. We can’t express this value as 36.71
cm because our measuring tool is not precise enough to measure a hundredth of a centimeter. It should be noted that the last digit in

 Example : Calculating Percent Uncertainty: A Bag of Apples1.7.1
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A
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a measured value has been estimated in some way by the person performing the measurement. For example, the person measuring
the length of a stick with a ruler notices the stick length seems to be somewhere in between 36.6 cm and 36.7 cm, and he or she
must estimate the value of the last digit. Using the method of significant figures, the rule is that the last digit written down in a
measurement is the first digit with some uncertainty. To determine the number of significant digits in a value, start with the first
measured value at the left and count the number of digits through the last digit written on the right. For example, the measured
value 36.7 cm has three digits, or three significant figures. Significant figures indicate the precision of the measuring tool used to
measure a value.

Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant because they are
placeholders that locate the decimal point. There are two significant figures in 0.053. The zeros in 10.053 are not placeholders; they
are significant. This number has five significant figures. The zeros in 1300 may or may not be significant, depending on the style of
writing numbers. They could mean the number is known to the last digit or they could be placeholders. So 1300 could have two,
three, or four significant figures. To avoid this ambiguity, we should write 1300 in scientific notation as 1.3 x 10 , 1.30 x 10 , or
1.300 x 10 , depending on whether it has two, three, or four significant figures. Zeros are significant except when they serve
only as placeholders.

Significant Figures in Calculations

When combining measurements with different degrees of precision, the number of significant digits in the final answer can be
no greater than the number of significant digits in the least-precise measured value. There are two different rules, one for
multiplication and division and the other for addition and subtraction.

1. For multiplication and division, the result should have the same number of significant figures as the quantity with the
least number of significant figures entering into the calculation. For example, the area of a circle can be calculated from its
radius using A = . Let’s see how many significant figures the area has if the radius has only two—say, r = 1.2 m. Using a
calculator with an eight-digit output, we would calculate

But because the radius has only two significant figures, it limits the calculated quantity to two significant figures, or

although  is good to at least eight digits.
2. For addition and subtraction, the answer can contain no more decimal places than the least-precise measurement.

Suppose we buy 7.56 kg of potatoes in a grocery store as measured with a scale with precision 0.01 kg, then we drop off 6.052
kg of potatoes at your laboratory as measured by a scale with precision 0.001 kg. Then, we go home and add 13.7 kg of
potatoes as measured by a bathroom scale with precision 0.1 kg. How many kilograms of potatoes do we now have and how
many significant figures are appropriate in the answer? The mass is found by simple addition and subtraction:

Next, we identify the least-precise measurement: 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final
answer must also be expressed to the 0.1 decimal place. Thus, the answer is rounded to the tenths place, giving us 15.2 kg.

Significant Figures in This Text

In this text, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant figures are
used in all worked examples. An answer given to three digits is based on input good to at least three digits, for example. If the input
has fewer significant figures, the answer will also have fewer significant figures. Care is also taken that the number of significant
figures is reasonable for the situation posed. In some topics, particularly in optics, more accurate numbers are needed and we use
more than three significant figures. Finally, if a number is exact, such as the two in the formula for the circumference of a circle, C
= , it does not affect the number of significant figures in a calculation. Likewise, conversion factors such as 100 cm/1 m are
considered exact and do not affect the number of significant figures in a calculation.

3 3

3

πr2

A = π = (3.1415927...) ×(1.2 m = 4.5238934 .r2 )2 m2 (1.7.4)

A = 4.5 .m2 (1.7.5)

π

7.56

−6.052

+13.7

15.208

kg

kg

kg
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1.8: Solving Problems in Physics

Describe the process for developing a problem-solving strategy.
Explain how to find the numerical solution to a problem.
Summarize the process for assessing the significance of the numerical solution to a problem.

Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the ability to apply broad
physical principles—usually represented by equations—to specific situations is a very powerful form of knowledge. It is much
more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations
whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for
solving problems in this text and for applying physics in everyday life.

.
Figure : Problem-solving skills are essential to your success in physics. (credit: “scui3asteveo”/Flickr)

As you are probably well aware, a certain amount of creativity and insight is required to solve problems. No rigid procedure works
every time. Creativity and insight grow with experience. With practice, the basics of problem solving become almost automatic.
One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section
problems as possible, starting with the easiest to build confidence and then progressing to the more difficult. After you become
involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom,
just as is done in many of the applications in this text.

Although there is no simple step-by-step method that works for every problem, the following three-stage process facilitates
problem solving and makes it more meaningful. The three stages are strategy, solution, and significance. This process is used in
examples throughout the book. Here, we look at each stage of the process in turn.

Strategy
Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a
strategy for solving it. Some general advice for this stage is as follows:

Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the
outset. You often need to decide which direction is positive and note that on your sketch. When you have identified the physical
principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation
is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical
quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.
Make a list of what is given or can be inferred from the problem as stated (identify the “knowns”). Many problems are
stated very succinctly and require some inspection to determine what is known. Drawing a sketch be very useful at this point as
well. Formally identifying the knowns is of particular importance in applying physics to real-world situations. For example, the
word stopped means the velocity is zero at that instant. Also, we can often take initial time and position as zero by the
appropriate choice of coordinate system.
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Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it
is not always obvious what needs to be found or in what sequence. Making a list can help identify the unknowns.
Determine which physical principles can help you solve the problem. Since physical principles tend to be expressed in the
form of mathematical equations, a list of knowns and unknowns can help here. It is easiest if you can find equations that contain
only one unknown—that is, all the other variables are known—so you can solve for the unknown easily. If the equation contains
more than one unknown, then additional equations are needed to solve the problem. In some problems, several unknowns must
be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to
avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

Solution
The solution stage is when you do the math. Substitute the knowns (along with their units) into the appropriate equation and
obtain numerical solutions complete with units. That is, do the algebra, calculus, geometry, or arithmetic necessary to find the
unknown from the knowns, being sure to carry the units through the calculations. This step is clearly important because it produces
the numerical answer, along with its units. Notice, however, that this stage is only one-third of the overall problem-solving process.

Significance
After having done the math in the solution stage of problem solving, it is tempting to think you are done. But, always remember
that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us understand nature. So, after you obtain a
numerical answer, you should always assess its significance:

Check your units. If the units of the answer are incorrect, then an error has been made and you should go back over your
previous steps to find it. One way to find the mistake is to check all the equations you derived for dimensional consistency.
However, be warned that correct units do not guarantee the numerical part of the answer is also correct.
Check the answer to see whether it is reasonable. Does it make sense? This step is extremely important: –the goal of physics
is to describe nature accurately. To determine whether the answer is reasonable, check both its magnitude and its sign, in
addition to its units. The magnitude should be consistent with a rough estimate of what it should be. It should also compare
reasonably with magnitudes of other quantities of the same type. The sign usually tells you about direction and should be
consistent with your prior expectations. Your judgment will improve as you solve more physics problems, and it will become
possible for you to make finer judgments regarding whether nature is described adequately by the answer to a problem. This
step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper
understanding of physics than just being able to solve a problem mechanically.
Check to see whether the answer tells you something interesting. What does it mean? This is the flip side of the question:
Does it make sense? Ultimately, physics is about understanding nature, and we solve physics problems to learn a little
something about how nature operates. Therefore, assuming the answer does make sense, you should always take a moment to
see if it tells you something about the world that you find interesting. Even if the answer to this particular problem is not very
interesting to you, what about the method you used to solve it? Could the method be adapted to answer a question that you do
find interesting? In many ways, it is in answering questions such as these science that progresses.
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1.A: Units and Measurement (Answers)

Check your Understanding
1.1.  Mg

1.2. 

1.3. 

1.4. The numbers were too small, by a factor of 4.45.

1.5. 

1.6. yes

1.7.  or 30 km. It is probably an underestimate because the density of the atmosphere decreases with altitude. (In
fact, 30 km does not even get us out of the stratosphere.)

1.8. No, the coach’s new stopwatch will not be helpful. The uncertainty in the stopwatch is too great to differentiate between
the sprint times effectively.

Conceptual Questions
1. Physics is the science concerned with describing the interactions of energy, matter, space, and time to uncover the
fundamental mechanisms that underlie every phenomenon.

3. No, neither of these two theories is more valid than the other. Experimentation is the ultimate decider. If experimental
evidence does not suggest one theory over the other, then both are equally valid. A given physicist might prefer one theory
over another on the grounds that one seems more simple, more natural, or more beautiful than the other, but that physicist
would quickly acknowledge that he or she cannot say the other theory is invalid. Rather, he or she would be honest about the
fact that more experimental evidence is needed to determine which theory is a better description of nature.

5. Probably not. As the saying goes, “Extraordinary claims require extraordinary evidence.”

7. Conversions between units require factors of 10 only, which simplifies calculations. Also, the same basic units can be
scaled up or down using metric prefixes to sizes appropriate for the problem at hand.

9. a. Base units are defined by a particular process of measuring a base quantity whereas derived units are defined as
algebraic combinations of base units.

b. A base quantity is chosen by convention and practical considerations. Derived quantities are expressed as algebraic
combinations of base quantities.

c. A base unit is a standard for expressing the measurement of a base quantity within a particular system of units. So, a
measurement of a base quantity could be expressed in terms of a base unit in any system of units using the same base
quantities. For example, length is a base quantity in both SI and the English system, but the meter is a base unit in the
SI system only.

11. a. Uncertainty is a quantitative measure of precision. b. Discrepancy is a quantitative measure of accuracy.

13. Check to make sure it makes sense and assess its significance.

Problems
15. a. ;

b. ;

c. ;

d. ;

e. ;

f. 

4.79 ×102

3 × m/s108

k108 m2

4π /3r3

3 × m104

103

105

102

1015

102

1057
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17.  generations

19.  atoms

21.  nerve impulses/s

23.  floating-point operations per human lifetime

25. a. 957 ks;

b. 4.5 cs or 45 ms;

c. 550 ns;

d. 31.6 Ms

27. a. 75.9 Mm;

b. 7.4 mm;

c. 88 pm;

d. 16.3 Tm

29. a. 3.8 cg or 38 mg;

b. 230 Eg;

c. 24 ng;

d. 8 Eg

e. 4.2 g

31. a. 27.8 m/s;

b. 62 mi/h

33. a. 3.6 km/h;

b. 2.2 mi/h

35. 

37. 8.847 km

39. a. ;

b. 40 km/My

41. 

43. 62.4 

45. 0.017 rad

47. 1 light-nanosecond

49. 

51. a. Yes, both terms have dimension 

b. No.

c. Yes, both terms have dimension 

d. Yes, both terms have dimension 

53. a. ;

b. ;

c. ;

d. ;

102

1011

103

1026

1.05 × f105 t2

1.3 × m10−9

Mg/μL106

lbm/ft3

3.6 ×10−4m3

L2T −2

LT −1

LT −2

[v] = LT –1

[a] = LT –2

[∫ vdt] = L

[∫ adt] = LT –1
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e. 

55. a. L;

b. L;

c.  (that is, it is dimensionless)

57.  atoms

59.  molecules

61.  solar systems

63. a. Volume = , diameter is  m.;

b.  m

65. a. A reasonable estimate might be one operation per second for a total of  in a lifetime.;

b. about , or about 10 ns

67. 2 kg

69. 4%

71. 67 mL

73. a. The number 99 has 2 significant figures; 100. has 3 significant figures.

b. 1.00%;

c. percent uncertainties

75. a. 2%;

b. 1 mm Hg

77. 7.557 

79. a. 37.2 lb; because the number of bags is an exact value, it is not considered in the significant figures;

b. 1.4 N; because the value 55 kg has only two significant figures, the final value must also contain two significant
figures

Additional Problems
81. a.  and units are meters (m);

b.  and units are meters per second (m/s);

c.  and units are meters per second squared ( );

d.  and units are meters per second cubed ( );

e.  and units are ;

f.  and units are .

83. a. 0.059%;

b. 0.01%;

c. 4.681 m/s;

d. 0.07%,

0.003 m/s

85. a. 0.02%;

b.  lbm

87. a. 143.6 ;

[ ] = Lda

dt
T –3

= 1L0

1028

1051

1016

1027m3 109

1011

10^

( )( s) = s109 10–17 10–8

cm2

[ ] = Ls0

[ ] = Lv0 T −1

[ ] = La0 T −2 m/s2

[ ] = Lj0 T −3 m/s3

[ ] = LS0 T −4 m/s4

[c] = LT −5 m/s5

1 ×104

cm3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46032?pdf


1.A.4 https://phys.libretexts.org/@go/page/46032

b. 0.2  or 0.14%

Challenge Problems
89. Since each term in the power series involves the argument raised to a different power, the only way that every term in the
power series can have the same dimension is if the argument is dimensionless. To see this explicitly, suppose 

. Then, . If we want , then an = a, bn = b, and cn = c for all n. The
only way this can happen is if a = b = c = 0.
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1.E: Units and Measurement (Exercises)

Conceptual Questions

1.1 The Scope and Scale of Physics
1. What is physics?
2. Some have described physics as a “search for simplicity.” Explain why this might be an appropriate description.
3. If two different theories describe experimental observations equally well, can one be said to be more valid than the other

(assuming both use accepted rules of logic)?
4. What determines the validity of a theory?
5. Certain criteria must be satisfied if a measurement or observation is to be believed. Will the criteria necessarily be as strict for

an expected result as for an unexpected result?
6. Can the validity of a model be limited or must it be universally valid? How does this compare with the required validity of a

theory or a law?

1.2 Units and Standards
7. Identify some advantages of metric units.
8. What are the SI base units of length, mass, and time?
9. What is the difference between a base unit and a derived unit? (b) What is the difference between a base quantity and a derived

quantity? (c) What is the difference between a base quantity and a base unit?
10. For each of the following scenarios, refer to Figure 1.4 and Table 1.2 to determine which metric prefix on the meter is most

appropriate for each of the following scenarios. (a) You want to tabulate the mean distance from the Sun for each planet in the
solar system. (b) You want to compare the sizes of some common viruses to design a mechanical filter capable of blocking the
pathogenic ones. (c) You want to list the diameters of all the elements on the periodic table. (d) You want to list the distances to
all the stars that have now received any radio broadcasts sent from Earth 10 years ago.

1.6 Significant Figures
11. (a) What is the relationship between the precision and the uncertainty of a measurement? (b) What is the relationship between

the accuracy and the discrepancy of a measurement?

1.7 Solving Problems in Physics
12. What information do you need to choose which equation or equations to use to solve a problem?
13. What should you do after obtaining a numerical answer when solving a problem?

Problems

1.1 The Scope and Scale of Physics
14. Find the order of magnitude of the following physical quantities.

a. The mass of Earth’s atmosphere: 5.1 × 10  kg;
b. The mass of the Moon’s atmosphere: 25,000 kg;
c. The mass of Earth’s hydrosphere: 1.4 × 10  kg;
d. The mass of Earth: 5.97 × 10  kg;
e. The mass of the Moon: 7.34 × 10  kg;
f. The Earth–Moon distance (semi-major axis): 3.84 × 10 m;
g. The mean Earth–Sun distance: 1.5 × 10 m;
h. The equatorial radius of Earth: 6.38 × 10 m;
i. The mass of an electron: 9.11 × 10  kg;
j. The mass of a proton: 1.67 × 10  kg;
k. The mass of the Sun: 1.99 × 10  kg.

15. Use the orders of magnitude you found in the previous problem to answer the following questions to within an order of
magnitude.
a. How many electrons would it take to equal the mass of a proton?
b. How many Earths would it take to equal the mass of the Sun?

18

21

24

22

8 

11 

6 

−31

−27

30
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c. How many Earth–Moon distances would it take to cover the distance from Earth to the Sun?
d. How many Moon atmospheres would it take to equal the mass of Earth’s atmosphere?
e. How many moons would it take to equal the mass of Earth?
f. How many protons would it take to equal the mass of the Sun?

For the remaining questions, you need to use Figure 1.4 to obtain the necessary orders of magnitude of lengths, masses, and times.

16. Roughly how many heartbeats are there in a lifetime?
17. A generation is about one-third of a lifetime. Approximately how many generations have passed since the year 0 AD?
18. Roughly how many times longer than the mean life of an extremely unstable atomic nucleus is the lifetime of a human?
19. Calculate the approximate number of atoms in a bacterium. Assume the average mass of an atom in the bacterium is 10 times

the mass of a proton.
20. (a) Calculate the number of cells in a hummingbird assuming the mass of an average cell is 10 times the mass of a bacterium.

(b) Making the same assumption, how many cells are there in a human?
21. Assuming one nerve impulse must end before another can begin, what is the maximum firing rate of a nerve in impulses per

second?
22. About how many floating-point operations can a supercomputer perform each year?
23. Roughly how many floating-point operations can a supercomputer perform in a human lifetime?

1.2 Units and Standards
24. The following times are given using metric prefixes on the base SI unit of time: the second. Rewrite them in scientific notation

without the prefix. For example, 47 Ts would be rewritten as 4.7 × 10  s.
a. 980 Ps;
b. 980 fs;
c. 17 ns;
d. 577 µs.

25. The following times are given in seconds. Use metric prefixes to rewrite them so the numerical value is greater than one but less
than 1000. For example, 7.9 × 10  s could be written as either 7.9 cs or 79 ms.

a. 9.57 × 10  s;
b. 0.045 s;
c. 5.5 × 10  s;
d. 3.16 × 10  s.

26. The following lengths are given using metric prefixes on the base SI unit of length: the meter. Rewrite them in scientific
notation without the prefix. For example, 4.2 Pm would be rewritten as 4.2 × 10 m.
a. 89 Tm;
b. 89 pm;
c. 711 mm;
d. 0.45 µm.

27. The following lengths are given in meters. Use metric prefixes to rewrite them so the numerical value is bigger than one but less
than 1000. For example, 7.9 × 10  m could be written either as 7.9 cm or 79 mm.
a. 7.59 × 10 m;
b. 0.0074 m;
c. 8.8 × 10 m;
d. 1.63 × 10 m.

28. The following masses are written using metric prefixes on the gram. Rewrite them in scientific notation in terms of the SI base
unit of mass: the kilogram. For example, 40 Mg would be written as 4 × 10  kg.
a. 23 mg;
b. 320 Tg;
c. 42 ng;
d. 7 g;
e. 9 Pg.

13

−2

5

−7

7

15 

−2

7 

−11 

13 

4
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29. The following masses are given in kilograms. Use metric prefixes on the gram to rewrite them so the numerical value is bigger
than one but less than 1000. For example, 7 × 10−4 kg could be written as 70 cg or 700 mg.
a. 3.8 × 10−5 kg;
b. 2.3 × 1017 kg;
c. 2.4 × 10−11 kg;
d. 8 × 1015 kg;
e. 4.2 × 10−3 kg.

1.3 Unit Conversion
30. The volume of Earth is on the order of 10  m . (a) What is this in cubic kilometers (km )? (b) What is it in cubic miles (mi )?

(c) What is it in cubic centimeters (cm )?
31. The speed limit on some interstate highways is roughly 100 km/h. (a) What is this in meters per second? (b) How many miles

per hour is this?
32. A car is traveling at a speed of 33 m/s. (a) What is its speed in kilometers per hour? (b) Is it exceeding the 90 km/ h speed limit?
33. In SI units, speeds are measured in meters per second (m/s). But, depending on where you live, you’re probably more

comfortable of thinking of speeds in terms of either kilometers per hour (km/h) or miles per hour (mi/h). In this problem, you
will see that 1 m/s is roughly 4 km/h or 2 mi/h, which is handy to use when developing your physical intuition. More precisely,
show that (a) 1.0 m/s = 3.6 km/h and (b) 1.0 m/s = 2.2 mi/h.

34. American football is played on a 100-yd-long field, excluding the end zones. How long is the field in meters? (Assume that 1 m
= 3.281 ft.)

35. Soccer fields vary in size. A large soccer field is 115 m long and 85.0 m wide. What is its area in square feet? (Assume that 1 m
= 3.281 ft.)

36. What is the height in meters of a person who is 6 ft 1.0 in. tall?
37. Mount Everest, at 29,028 ft, is the tallest mountain on Earth. What is its height in kilometers? (Assume that 1 m = 3.281 ft.)
38. The speed of sound is measured to be 342 m/s on a certain day. What is this measurement in kilometers per hour?
39. Tectonic plates are large segments of Earth’s crust that move slowly. Suppose one such plate has an average speed of 4.0 cm/yr.

(a) What distance does it move in 1.0 s at this speed? (b) What is its speed in kilometers per million years?
40. The average distance between Earth and the Sun is 1.5 × 10 m. (a) Calculate the average speed of Earth in its orbit (assumed

to be circular) in meters per second. (b) What is this speed in miles per hour?
41. The density of nuclear matter is about 10  kg/m . Given that 1 mL is equal in volume to cm , what is the density of nuclear

matter in megagrams per microliter (that is, Mg/µL)?
42. The density of aluminum is 2.7 g/cm . What is the density in kilograms per cubic meter?
43. A commonly used unit of mass in the English system is the pound-mass, abbreviated lbm, where 1 lbm = 0.454 kg. What is the

density of water in pound-mass per cubic foot?
44. A furlong is 220 yd. A fortnight is 2 weeks. Convert a speed of one furlong per fortnight to millimeters per second.
45. It takes  radians (rad) to get around a circle, which is the same as 360°. How many radians are in 1°?
46. Light travels a distance of about 3 × 10 m/s. A light-minute is the distance light travels in 1 min. If the Sun is 1.5 × 10 m

from Earth, how far away is it in lightminutes?
47. A light-nanosecond is the distance light travels in 1 ns. Convert 1 ft to light-nanoseconds.
48. An electron has a mass of 9.11 × 10  kg. A proton has a mass of 1.67 × 10  kg. What is the mass of a proton in electron-

masses?
49. A fluid ounce is about 30 mL. What is the volume of a 12 fl-oz can of soda pop in cubic meters?

1.4 Dimensional Analysis
50. A student is trying to remember some formulas from geometry. In what follows, assume A is area, V is volume, and all other

variables are lengths. Determine which formulas are dimensionally consistent. (a) V = ; (b) A = ; (c) V =
0.5bh; (d) V =  ; (e) V = 

51. Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT , [a] = LT , and [t] = T. Determine whether
each of the following equations is dimensionally consistent. (a) v  = 2as; (b) s = vt  + 0.5at ; (c) v = s/t; (d) a = v/t.

52. Consider the physical quantities m, s, v, a, and t with dimensions [m] = M, [s] = L, [v] = LT , [a] = LT , and [t] = T. Assuming
each of the following equations is dimensionally consistent, find the dimension of the quantity on the left-hand side of the
equation: (a) F = ma; (b) K = 0.5mv  ; (c) p = mv; (d) W = mas; (e) L = mvr.

21 3 3 3

3

11 

18 3 3

3

2π
8 11 

−31 −27

π hr2 2π +2πrhr2

πd2 πd3

6
−1 −2

2 2 2
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53. Suppose quantity s is a length and quantity t is a time. Suppose the quantities v and a are defined by v = ds/dt and a = dv/dt. (a)
What is the dimension of v? (b) What is the dimension of the quantity a? What are the dimensions of (c) vdt, (d) adt, and (e)
da/dt?

54. Suppose [V] = L3 , [ρ] = ML , and [t] = T. (a) What is the dimension of dV ? (b) What is the dimension of dV/dt? (c) What
is the dimension of (dV/dt)?

55. The arc length formula says the length s of arc subtended by angle  in a circle of radius r is given by the equation s = r .
What are the dimensions of (a) s, (b) r, and (c) ?

1.5 Estimates and Fermi Calculations
56. Assuming the human body is made primarily of water, estimate the volume of a person.
57. Assuming the human body is primarily made of water, estimate the number of molecules in it. (Note that water has a molecular

mass of 18 g/mol and there are roughly 10  atoms in a mole.)
58. Estimate the mass of air in a classroom.
59. Estimate the number of molecules that make up Earth, assuming an average molecular mass of 30 g/mol. (Note there are on the

order of 10  objects per mole.)
60. Estimate the surface area of a person.
61. Roughly how many solar systems would it take to tile the disk of the Milky Way?
62. (a) Estimate the density of the Moon. (b) Estimate the diameter of the Moon. (c) Given that the Moon subtends at an angle of

about half a degree in the sky, estimate its distance from Earth.
63. The average density of the Sun is on the order 10  kg/ m . (a) Estimate the diameter of the Sun. (b) Given that the Sun subtends

at an angle of about half a degree in the sky, estimate its distance from Earth. 64. Estimate the mass of a virus.
64. A floating-point operation is a single arithmetic operation such as addition, subtraction, multiplication, or division. (a) Estimate

the maximum number of floating-point operations a human being could possibly perform in a lifetime. (b) How long would it
take a supercomputer to perform that many floating-point operations?

1.6 Significant Figures
66. Consider the equation 4000/400 = 10.0. Assuming the number of significant figures in the answer is correct, what can you say

about the number of significant figures in 4000 and 400?
67. Suppose your bathroom scale reads your mass as 65 kg with a 3% uncertainty. What is the uncertainty in your mass (in

kilograms)?
68. A good-quality measuring tape can be off by 0.50 cm over a distance of 20 m. What is its percent uncertainty?
69. An infant’s pulse rate is measured to be 130 ± 5 beats/ min. What is the percent uncertainty in this measurement?
70. (a) Suppose that a person has an average heart rate of 72.0 beats/min. How many beats does he or she have in 2.0 years? (b) In

2.00 years? (c) In 2.000 years?
71. A can contains 375 mL of soda. How much is left after 308 mL is removed?
72. State how many significant figures are proper in the results of the following calculations: (a) (106.7)(98.2) / (46.210)(1.01); (b)

(18.7)  ; (c) (1.60 × 10 )(3712)
73. (a) How many significant figures are in the numbers 99 and 100.? (b) If the uncertainty in each number is 1, what is the percent

uncertainty in each? (c) Which is a more meaningful way to express the accuracy of these two numbers: significant figures or
percent uncertainties?

74. (a) If your speedometer has an uncertainty of 2.0 km/h at a speed of 90 km/h, what is the percent uncertainty? (b) If it has the
same percent uncertainty when it reads 60 km/ h, what is the range of speeds you could be going?

75. (a) A person’s blood pressure is measured to be 120 ± 2 mm Hg. What is its percent uncertainty? (b) Assuming the same
percent uncertainty, what is the uncertainty in a blood pressure measurement of 80 mm Hg?

76. A person measures his or her heart rate by counting the number of beats in 30 s. If 40 ± 1 beats are counted in 30.0 ± 0.5 s, what
is the heart rate and its uncertainty in beats per minute?

77. What is the area of a circle 3.102 cm in diameter?
78. Determine the number of significant figures in the following measurements: (a) 0.0009, (b) 15,450.0, (c) 6×103 , (d) 87.990,

and (e) 30.42.
79. Perform the following calculations and express your answer using the correct number of significant digits. (a) A woman has

two bags weighing 13.5 lb and one bag with a weight of 10.2 lb. What is the total weight of the bags? (b) The force F on an
object is equal to its mass m multiplied by its acceleration a. If a wagon with mass 55 kg accelerates at a rate of 0.0255 m/s ,
what is the force on the wagon? (The unit of force is called the newton and it is expressed with the symbol N.)

∫ ∫

–3 ∫ ρ
ρ
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Additional Problems
80. Consider the equation y = mt +b, where the dimension of y is length and the dimension of t is time, and m and b are constants.

What are the dimensions and SI units of (a) m and (b) b?

81. Consider the equation , where s is a length and t is a time. What are the dimensions
and SI units of (a) s , (b) v , (c) a , (d) j , (e) S , and (f) c?

82. (a) A car speedometer has a 5% uncertainty. What is the range of possible speeds when it reads 90 km/h? (b) Convert this range
to miles per hour. Note 1 km = 0.6214 mi.

83. A marathon runner completes a 42.188-km course in 2 h, 30 min, and 12 s. There is an uncertainty of 25 m in the distance
traveled and an uncertainty of 1 s in the elapsed time. (a) Calculate the percent uncertainty in the distance. (b) Calculate the
percent uncertainty in the elapsed time. (c) What is the average speed in meters per second? (d) What is the uncertainty in the
average speed?

84. The sides of a small rectangular box are measured to be 1.80 ± 0.1 cm, 2.05 ± 0.02 cm, and 3.1 ± 0.1 cm long. Calculate its
volume and uncertainty in cubic centimeters.

85. When nonmetric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was used, where 1 lbm =
0.4539 kg. (a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty? (b) Based on that
percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?

86. The length and width of a rectangular room are measured to be 3.955 ± 0.005 m and 3.050 ± 0.005 m. Calculate the area of the
room and its uncertainty in square meters.

87. A car engine moves a piston with a circular cross-section of 7.500 ± 0.002 cm in diameter a distance of 3.250 ± 0.001 cm to
compress the gas in the cylinder. (a) By what amount is the gas decreased in volume in cubic centimeters? (b) Find the
uncertainty in this volume.

Challenge Problems
88. The first atomic bomb was detonated on July 16, 1945, at the Trinity test site about 200 mi south of Los Alamos. In 1947, the

U.S. government declassified a film reel of the explosion. From this film reel, British physicist G. I. Taylor was able to
determine the rate at which the radius of the fireball from the blast grew. Using dimensional analysis, he was then able to
deduce the amount of energy released in the explosion, which was a closely guarded secret at the time. Because of this, Taylor
did not publish his results until 1950. This problem challenges you to recreate this famous calculation.
a. Using keen physical insight developed from years of experience, Taylor decided the radius r of the fireball should depend

only on time since the explosion, t, the density of the air, ρ, and the energy of the initial explosion, E. Thus, he made the
educated guess that  for some dimensionless constant k and some unknown exponents a, b, and c. Given that
[E] = ML T , determine the values of the exponents necessary to make this equation dimensionally consistent. (Hint:
Notice the equation implies that  and that [k] = 1.)

b. By analyzing data from high-energy conventional explosives, Taylor found the formula he derived seemed to be valid as
long as the constant k had the value 1.03. From the film reel, he was able to determine many values of r and the
corresponding values of t. For example, he found that after 25.0 ms, the fireball had a radius of 130.0 m. Use these values,
along with an average air density of 1.25 kg/m , to calculate the initial energy release of the Trinity detonation in joules (J).
(Hint: To get energy in joules, you need to make sure all the numbers you substitute in are expressed in terms of SI base
units.) (c) The energy released in large explosions is often cited in units of “tons of TNT” (abbreviated “t TNT”), where 1 t
TNT is about 4.2 GJ. Convert your answer to (b) into kilotons of TNT (that is, kt TNT). Compare your answer with the
quick-and-dirty estimate of 10 kt TNT made by physicist Enrico Fermi shortly after witnessing the explosion from what was
thought to be a safe distance. (Reportedly, Fermi made his estimate by dropping some shredded bits of paper right before the
remnants of the shock wave hit him and looked to see how far they were carried by it.)

89. The purpose of this problem is to show the entire concept of dimensional consistency can be summarized by the old saying
“You can’t add apples and oranges.” If you have studied power series expansions in a calculus course, you know the standard
mathematical functions such as trigonometric functions, logarithms, and exponential functions can be expressed as infinite sums
of the form  where the a  are dimensionless constants for all n = 0, 1, 2, ⋯ and
x is the argument of the function. (If you have not studied power series in calculus yet, just trust us.) Use this fact to explain
why the requirement that all terms in an equation have the same dimensions is sufficient as a definition of dimensional
consistency. That is, it actually implies the arguments of standard mathematical functions must be dimensionless, so it is not
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really necessary to make this latter condition a separate requirement of the definition of dimensional consistency as we have
done in this section.
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1.S: Units and Measurement (Summary)

Key Terms

accuracy
the degree to which a measured value agrees with an accepted

reference value for that measurement

base quantity
physical quantity chosen by convention and practical

considerations such that all other physical quantities can be
expressed as algebraic combinations of them

base unit
standard for expressing the measurement of a base quantity within
a particular system of units; defined by a particular procedure used

to measure the corresponding base quantity

conversion factor
a ratio that expresses how many of one unit are equal to another

unit

derived quantity
physical quantity defined using algebraic combinations of base

quantities

derived units
units that can be calculated using algebraic combinations of the

fundamental units

dimension

expression of the dependence of a physical quantity on the base
quantities as a product of powers of symbols representing the base

quantities; in general, the dimension of a quantity has the form 
 for some powers a, b, c, d, e, f, and g

dimensionally consistent
equation in which every term has the same dimensions and the

arguments of any mathematical functions appearing in the equation
are dimensionless

dimensionless
quantity with a dimension of = 1; also called

quantity of dimension 1 or a pure number

discrepancy
the difference between the measured value and a given standard or

expected value

English units
system of measurement used in the United States; includes units of

measure such as feet, gallons, and pounds

estimation

using prior experience and sound physical reasoning to arrive at a
rough idea of a quantity’s value; sometimes called an “order-of-

magnitude approximation,” a “guesstimate,” a “back-of-the-
envelope calculation”, or a “Fermi calculation”

kilogram SI unit for mass, abbreviated kg

law
description, using concise language or a mathematical formula, of

a generalized pattern in nature supported by scientific evidence
and repeated experiments

meter SI unit for length, abbreviated m

method of adding percents
the percent uncertainty in a quantity calculated by multiplication or
division is the sum of the percent uncertainties in the items used to

make the calculation

metric system system in which values can be calculated in factors of 10

model
representation of something often too difficult (or impossible) to

display directly

LaM bT cI dΘeN fJ g

L0M 0T 0I 0ΘeN 0J 0
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order of magnitude the size of a quantity as it relates to a power of 10

percent uncertainty
the ratio of the uncertainty of a measurement to the measured

value, expressed as a percentage

physical quantity
characteristic or property of an object that can be measured or

calculated from other measurements

physics
science concerned with describing the interactions of energy,

matter, space, and time; especially interested in what fundamental
mechanisms underlie every phenomenon

precision the degree to which repeated measurements agree with each other

second the SI unit for time, abbreviated s

SI units
the international system of units that scientists in most countries

have agreed to use; includes units such as meters, liters, and grams

significant figures
used to express the precision of a measuring tool used to measure a

value

theory
testable explanation for patterns in nature supported by scientific

evidence and verified multiple times by various groups of
researchers

uncertainty
a quantitative measure of how much measured values deviate from

one another

units standards used for expressing and comparing measurements

Key Equations

Percent uncertainty

Summary

1.1 The Scope and Scale of Physics
Physics is about trying to find the simple laws that describe all natural phenomena.
Physics operates on a vast range of scales of length, mass, and time. Scientists use the concept of the order of magnitude of a
number to track which phenomena occur on which scales. They also use orders of magnitude to compare the various scales.
Scientists attempt to describe the world by formulating models, theories, and laws

1.2 Units and Standards
Systems of units are built up from a small number of base units, which are defined by accurate and precise measurements of
conventionally chosen base quantities. Other units are then derived as algebraic combinations of the base units.
Two commonly used systems of units are English units and SI units. All scientists and most of the other people in the world use
SI, whereas nonscientists in the United States still tend to use English units.
The SI base units of length, mass, and time are the meter (m), kilogram (kg), and second (s), respectively.
SI units are a metric system of units, meaning values can be calculated by factors of 10. Metric prefixes may be used with
metric units to scale the base units to sizes appropriate for almost any application.

1.3 Unit Conversion
To convert a quantity from one unit to another, multiply by conversion factors in such a way that you cancel the units you want
to get rid of and introduce the units you want to end up with.
Be careful with areas and volumes. Units obey the rules of algebra so, for example, if a unit is squared we need two factors to
cancel it.

Percent uncertainty = × 100%
δA

A
(1.S.1)
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1.4 Dimensional Analysis
The dimension of a physical quantity is just an expression of the base quantities from which it is derived.
All equations expressing physical laws or principles must be dimensionally consistent. This fact can be used as an aid in
remembering physical laws, as a way to check whether claimed relationships between physical quantities are possible, and even
to derive new physical laws.

1.5 Estimates and Fermi Calculations
An estimate is a rough educated guess at the value of a physical quantity based on prior experience and sound physical
reasoning. Some strategies that may help when making an estimate are as follows:

Get big lengths from smaller lengths.
Get areas and volumes from lengths.
Get masses from volumes and densities.
If all else fails, bound it. One “sig. fig.” is fine.
Ask yourself: Does this make any sense?

1.6 Significant Figures
Accuracy of a measured value refers to how close a measurement is to an accepted reference value. The discrepancy in a
measurement is the amount by which the measurement result differs from this value.
Precision of measured values refers to how close the agreement is between repeated measurements. The uncertainty of a
measurement is a quantification of this.
The precision of a measuring tool is related to the size of its measurement increments. The smaller the measurement increment,
the more precise the tool.
Significant figures express the precision of a measuring tool.
When multiplying or dividing measured values, the final answer can contain only as many significant figures as the least-
precise value.
When adding or subtracting measured values, the final answer cannot contain more decimal places than the least-precise value.

1.7 Solving Problems in Physics

The three stages of the process for solving physics problems used in this textmap are as follows:

Strategy: Determine which physical principles are involved and develop a strategy for using them to solve the problem.
Solution: Do the math necessary to obtain a numerical solution complete with units.
Significance: Check the solution to make sure it makes sense (correct units, reasonable magnitude and sign) and assess its
significance.
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CHAPTER OVERVIEW

2: Motion Along a Straight Line
A full treatment of kinematics considers motion in two and three dimensions. For now, we discuss motion in one dimension, which
provides us with the tools necessary to study multidimensional motion. A good example of an object undergoing one-dimensional
motion is the maglev (magnetic levitation) train depicted at the beginning of this chapter. As it travels, say, from Tokyo to Kyoto, it
is at different positions along the track at various times in its journey, and therefore has displacements, or changes in position. It
also has a variety of velocities along its path and it undergoes accelerations (changes in velocity). With the skills learned in this
chapter we can calculate these quantities and average velocity. All these quantities can be described using kinematics, without
knowing the train’s mass or the forces involved.

2.1: Prelude Motion Along a Straight Line
2.2: Position, Displacement, and Average Velocity
2.3: Instantaneous Velocity and Speed
2.4: Average and Instantaneous Acceleration
2.5: Motion with Constant Acceleration (Part 1)
2.6: Motion with Constant Acceleration (Part 2)
2.7: Free Fall
2.8: Finding Velocity and Displacement from Acceleration
2.E: Motion Along a Straight Line (Exercises)
2.S: Motion Along a Straight Line (Summary)

Thumbnail: A JR Central L0 series five-car maglev (magnetic levitation) train undergoing a test run on the Yamanashi Test Track.
The maglev train’s motion can be described using kinematics, the subject of this chapter. (credit: modification of work by
“Maryland GovPics”/Flickr).
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2.1: Prelude Motion Along a Straight Line
Our universe is full of objects in motion. From the stars, planets, and galaxies; to the motion of people and animals; down to the
microscopic scale of atoms and molecules—everything in our universe is in motion. We can describe motion using the two
disciplines of kinematics and dynamics. We study dynamics, which is concerned with the causes of motion, in Newton’s Laws of
Motion; but, there is much to be learned about motion without referring to what causes it, and this is the study of kinematics.
Kinematics involves describing motion through properties such as position, time, velocity, and acceleration.

Figure : A JR Central L0 series five-car maglev (magnetic levitation) train undergoing a test run on the Yamanashi Test Track.
The maglev train’s motion can be described using kinematics, the subject of this chapter. (credit: modification of work by
“Maryland GovPics”/Flickr)

A full treatment of kinematics considers motion in two and three dimensions. For now, we discuss motion in one dimension, which
provides us with the tools necessary to study multidimensional motion. A good example of an object undergoing one-dimensional
motion is the maglev (magnetic levitation) train depicted at the beginning of this chapter. As it travels, say, from Tokyo to Kyoto, it
is at different positions along the track at various times in its journey, and therefore has displacements, or changes in position. It
also has a variety of velocities along its path and it undergoes accelerations (changes in velocity). With the skills learned in this
chapter we can calculate these quantities and average velocity. All these quantities can be described using kinematics, without
knowing the train’s mass or the forces involved.

This page titled 2.1: Prelude Motion Along a Straight Line is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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2.2: Position, Displacement, and Average Velocity

Define position, displacement, and distance traveled.
Calculate the total displacement given the position as a function of time.
Determine the total distance traveled.
Calculate the average velocity given the displacement and elapsed time.

When you’re in motion, the basic questions to ask are: Where are you? Where are you going? How fast are you getting there? The
answers to these questions require that you specify your position, your displacement, and your average velocity—the terms we
define in this section.

Position
To describe the motion of an object, you must first be able to describe its position (x): where it is at any particular time. More
precisely, we need to specify its position relative to a convenient frame of reference. A frame of reference is an arbitrary set of axes
from which the position and motion of an object are described. Earth is often used as a frame of reference, and we often describe
the position of an object as it relates to stationary objects on Earth. For example, a rocket launch could be described in terms of the
position of the rocket with respect to Earth as a whole, whereas a cyclist’s position could be described in terms of where she is in
relation to the buildings she passes Figure . In other cases, we use reference frames that are not stationary but are in motion
relative to Earth. To describe the position of a person in an airplane, for example, we use the airplane, not Earth, as the reference
frame. To describe the position of an object undergoing onedimensional motion, we often use the variable x. Later in the chapter,
during the discussion of free fall, we use the variable y.

Figure : These cyclists in Vietnam can be described by their position relative to buildings or a canal. Their motion can be
described by their change in position, or displacement, in a frame of reference. (credit: Suzan Black)

Displacement
If an object moves relative to a frame of reference—for example, if a professor moves to the right relative to a whiteboard Figure 

—then the object’s position changes. This change in position is called displacement. The word displacement implies that an
object has moved, or has been displaced. Although position is the numerical value of x along a straight line where an object might
be located, displacement gives the change in position along this line. Since displacement indicates direction, it is a vector and can
be either positive or negative, depending on the choice of positive direction. Also, an analysis of motion can have many
displacements embedded in it. If right is positive and an object moves 2 m to the right, then 4 m to the left, the individual
displacements are 2 m and −4 m, respectively.
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Figure : A professor paces left and right while lecturing. Her position relative to Earth is given by x. The +2.0-m displacement
of the professor relative to Earth is represented by an arrow pointing to the right.

Displacement x is the change in position of an object:

where x is displacement, x  is the final position, and x  is the initial position.

We use the uppercase Greek letter delta ( ) to mean “change in” whatever quantity follows it; thus, x means change in position
(final position less initial position). We always solve for displacement by subtracting initial position x  from final position x . Note
that the SI unit for displacement is the meter, but sometimes we use kilometers or other units of length. Keep in mind that when
units other than meters are used in a problem, you may need to convert them to meters to complete the calculation (see Appendix
B).

Objects in motion can also have a series of displacements. In the previous example of the pacing professor, the individual
displacements are 2 m and −4 m, giving a total displacement of −2 m. We define total displacement x , as the sum of the
individual displacements, and express this mathematically with the equation

where x  are the individual displacements. In the earlier example,

Similarly,

Thus,

The total displacement is 2 − 4 = −2 m to the left, or in the negative direction. It is also useful to calculate the magnitude of the
displacement, or its size. The magnitude of the displacement is always positive. This is the absolute value of the displacement,
because displacement is a vector and cannot have a negative value of magnitude. In our example, the magnitude of the total
displacement is 2 m, whereas the magnitudes of the individual displacements are 2 m and 4 m.

The magnitude of the total displacement should not be confused with the distance traveled. Distance traveled x , is the total
length of the path traveled between two positions. In the previous problem, the distance traveled is the sum of the magnitudes of
the individual displacements:

2.2.2

 Displacement

Δ

Δx = − ,xf x0 (2.2.1)

Δ f 0

Δ Δ

0 f

Δ Total

Δ =∑Δ ,xTotal xi (2.2.2)

δ i

Δ = − = 2 −0 = 2 m.x1 x1 x0 (2.2.3)

Δ = − = −2 −(2) = −4 m.x2 x2 x1 (2.2.4)

Δ = + = 2 −4 = −2 m.xtotal x1 x2 (2.2.5)

Total

= | | +| | = 2 +4 = 6 m.xtotal x1 x2 (2.2.6)
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Average Velocity
To calculate the other physical quantities in kinematics we must introduce the time variable. The time variable allows us not only to
state where the object is (its position) during its motion, but also how fast it is moving. How fast an object is moving is given by
the rate at which the position changes with time.

For each position x , we assign a particular time t . If the details of the motion at each instant are not important, the rate is usually
expressed as the average velocity . This vector quantity is simply the total displacement between two points divided by the time
taken to travel between them. The time taken to travel between two points is called the elapsed time t.

If x  and x  are the positions of an object at times t  and t , respectively, then

It is important to note that the average velocity is a vector and can be negative, depending on positions x  and x .

Jill sets out from her home to deliver flyers for her yard sale, traveling due east along her street lined with houses. At 0.5 km
and 9 minutes later she runs out of flyers and has to retrace her steps back to her house to get more. This takes an additional 9
minutes. After picking up more flyers, she sets out again on the same path, continuing where she left off, and ends up 1.0 km
from her house. This third leg of her trip takes 15 minutes. At this point she turns back toward her house, heading west. After
1.75 km and 25 minutes she stops to rest.

a. What is Jill’s total displacement to the point where she stops to rest?
b. What is the magnitude of the final displacement?
c. What is the average velocity during her entire trip?
d. What is the total distance traveled?
e. Make a graph of position versus time. A sketch of Jill’s movements is shown in Figure .

Figure : Timeline of Jill’s movements.

Strategy

The problem contains data on the various legs of Jill’s trip, so it would be useful to make a table of the physical quantities. We
are given position and time in the wording of the problem so we can calculate the displacements and the elapsed time. We take
east to be the positive direction. From this information we can find the total displacement and average velocity. Jill’s home is
the starting point x . The following table gives Jill’s time and position in the first two columns, and the displacements are
calculated in the third column.

Time t  (min) Position x  (km) Displacement  x  (km)

t  = 0 x  = 0  x  = 0

t  = 9 x  = 0.5 x  = x  − x  = 0.5

i i
v̄

Δ

 Average Velocity

1 2 1 2

Average velocity = =v̄
Displacement between two points

Elapsed time between two points

= = .v̄
Δx

Δt

−x2 x1

−t2 t1

1 2
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t  = 18 x = 0 x2= x  − x  = -0.5

t  = 33 x  = 1.0 x  = x  − x  = 1.0

t  = 58 x  = -0.75 x  = x  − x  = -1.75

Solution
a. From the above table, the total displacement is

b. The magnitude of the total displacement is |−0.75| km = 0.75 km.

c. 

d. The total distance traveled (sum of magnitudes of individual displacements) is

e. We can graph Jill’s position versus time as a useful aid to see the motion; the graph is shown in Figure .

Figure : This graph depicts Jill’s position versus time. The average velocity is the slope of a line connecting the initial and
final points.

Significance
Jill’s total displacement is −0.75 km, which means at the end of her trip she ends up 0.75 km due west of her home. The
average velocity means if someone was to walk due west at 0.013 km/min starting at the same time Jill left her home, they both
would arrive at the final stopping point at the same time. Note that if Jill were to end her trip at her house, her total
displacement would be zero, as well as her average velocity. The total distance traveled during the 58 minutes of elapsed time
for her trip is 3.75 km.

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is his displacement? (b) What is the distance
traveled? (c) What is the magnitude of his displacement?

This page titled 2.2: Position, Displacement, and Average Velocity is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

3.2: Position, Displacement, and Average Velocity by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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4 4 Δ 4 4 3

∑Δ = 0.5 −0.5 +1.0 −1.75 km = −0.75 km.xi (2.2.7)

Average velocity = = = = −0.013 km/min
Total displacement

Elapsed time
v̄

−0.75 km

58 min
(2.2.8)

=∑ |Δ | = 0.5 +0.5 +1.0 +1.75 km = 3.75 km.xTotal xi (2.2.9)
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2.3: Instantaneous Velocity and Speed

Explain the difference between average velocity and instantaneous velocity.
Describe the difference between velocity and speed.
Calculate the instantaneous velocity given the mathematical equation for the velocity.
Calculate the speed given the instantaneous velocity.

We have now seen how to calculate the average velocity between two positions. However, since objects in the real world move
continuously through space and time, we would like to find the velocity of an object at any single point. We can find the velocity of
the object anywhere along its path by using some fundamental principles of calculus. This section gives us better insight into the
physics of motion and will be useful in later chapters.

Instantaneous Velocity
The quantity that tells us how fast an object is moving anywhere along its path is the instantaneous velocity, usually called simply
velocity. It is the average velocity between two points on the path in the limit that the time (and therefore the displacement)
between the two points approaches zero. To illustrate this idea mathematically, we need to express position x as a continuous

function of t denoted by x(t). The expression for the average velocity between two points using this notation is . To
find the instantaneous velocity at any position, we let t  = t and t  = t + t. After inserting these expressions into the equation for
the average velocity and taking the limit as t → 0, we find the expression for the instantaneous velocity:

The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the
derivative of x with respect to t:

Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific
time point t  is the rate of change of the position function, which is the slope of the position function x(t) at t . Figure  shows
how the average velocity  between two times approaches the instantaneous velocity at t . The instantaneous velocity is
shown at time t , which happens to be at the maximum of the position function. The slope of the position graph is zero at this point,
and thus the instantaneous velocity is zero. At other times, t , t , and so on, the instantaneous velocity is not zero because the slope
of the position graph would be positive or negative. If the position function had a minimum, the slope of the position graph would
also be zero, giving an instantaneous velocity of zero there as well. Thus, the zeros of the velocity function give the minimum and
maximum of the position function.

Figure : In a graph of position versus time, the instantaneous velocity is the slope of the tangent line at a given point. The
average velocities  between times t = t  − t , t = t  − t , and t = t  − t  are shown. When t → 0, the
average velocity approaches the instantaneous velocity at t = t .
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Given the position-versus-time graph of Figure , find the velocity-versus-time graph.

Figure : The object starts out in the positive direction, stops for a short time, and then reverses direction, heading back
toward the origin. Notice that the object comes to rest instantaneously, which would require an infinite force. Thus, the graph is
an approximation of motion in the real world. (The concept of force is discussed in Newton’s Laws of Motion.)

Strategy

The graph contains three straight lines during three time intervals. We find the velocity during each time interval by taking the
slope of the line using the grid.

Solution
Time interval 0 s to 0.5 s: 

Time interval 0.5 s to 1.0 s: 

Time interval 1.0 s to 2.0 s: 

The graph of these values of velocity versus time is shown in Figure .

Figure : The velocity is positive for the first part of the trip, zero when the object is stopped, and negative when the object
reverses direction.

Significance
During the time interval between 0 s and 0.5 s, the object’s position is moving away from the origin and the position-versus-
time curve has a positive slope. At any point along the curve during this time interval, we can find the instantaneous velocity
by taking its slope, which is +1 m/s, as shown in Figure . In the subsequent time interval, between 0.5 s and 1.0 s, the
position doesn’t change and we see the slope is zero. From 1.0 s to 2.0 s, the object is moving back toward the origin and the
slope is −0.5 m/s. The object has reversed direction and has a negative velocity.

Speed

In everyday language, most people use the terms speed and velocity interchangeably. In physics, however, they do not have the
same meaning and are distinct concepts. One major difference is that speed has no direction; that is, speed is a scalar.

We can calculate the average speed by finding the total distance traveled divided by the elapsed time:

 Example 3.2: Finding Velocity from a Position-Versus-Time Graph

2.3.2

2.3.2
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Δt
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0.0 m−0.0 m
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= = = −0.5 m/sv̄ Δx
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0.0 m−0.5 m
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2.3.3

2.3.3

2.3.3

Average speed = = .s̄
T otal distance

Elapsed time
(2.3.3)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45962?pdf


2.3.3 https://phys.libretexts.org/@go/page/45962

Average speed is not necessarily the same as the magnitude of the average velocity, which is found by dividing the magnitude of
the total displacement by the elapsed time. For example, if a trip starts and ends at the same location, the total displacement is zero,
and therefore the average velocity is zero. The average speed, however, is not zero, because the total distance traveled is greater
than zero. If we take a road trip of 300 km and need to be at our destination at a certain time, then we would be interested in our
average speed.

However, we can calculate the instantaneous speed from the magnitude of the instantaneous velocity:

If a particle is moving along the x-axis at +7.0 m/s and another particle is moving along the same axis at −7.0 m/s, they have
different velocities, but both have the same speed of 7.0 m/s. Some typical speeds are shown in the following table.

Table 3.1 - Speeds of Various Objects

Speed m/s mi/h

Continental drift 10 2 x 10

Brisk walk 1.7 3.9

Cyclist 4.4 10

Sprint runner 12.2 27

Rural speed limit 24.6 56

Official land speed record 341.1 763

Speed of sound at sea level 343 768

Space shuttle on reetry 7800 17,500

Escape velocity of Earth* 11,200 25,000

Orbital speed of Earth around the Sun 29,783 66,623

Speed of light in a vacuum 299,792,458 670,616,629

*Escape velocity is the velocity at which an object must be launched so that it overcomes Earth’s gravity and is not pulled back toward
Earth.

Calculating Instantaneous Velocity

When calculating instantaneous velocity, we need to specify the explicit form of the position function x(t). If each term in the x(t)
equation has the form of At  where A is a constant and n is an integer, this can be differentiated using the power rule to be:

Note that if there are additional terms added together, this power rule of differentiation can be done multiple times and the solution
is the sum of those terms. The following example illustrates the use of Equation .

The position of a particle is given by x(t) = 3.0t + 0.5t  m.

a. Using Equation  and Equation , find the instantaneous velocity at t = 2.0 s.
b. Calculate the average velocity between 1.0 s and 3.0 s.

Strategy

Equation  give the instantaneous velocity of the particle as the derivative of the position function. Looking at the form of
the position function given, we see that it is a polynomial in t. Therefore, we can use Equation , the power rule from
calculus, to find the solution. We use Equation  to calculate the average velocity of the particle.

Instantaneous speed = |v(t)|. (2.3.4)

-7 -7

n

= An .
d (A )tn

dt
tn−1 (2.3.5)

2.3.5

 Example 3.3: Instantaneous Velocity Versus Average Velocity
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Solution
a. v(t) =  = 3.0 + 1.5t  m/s. Substituting t = 2.0 s into this equation gives v(2.0 s) = [3.0 + 1.5(2.0) ] m/s = 9.0 m/s.
b. To determine the average velocity of the particle between 1.0 s and 3.0 s, we calculate the values of x(1.0 s) and x(3.0 s):

Then the average velocity is

Significance
In the limit that the time interval used to calculate  goes to zero, the value obtained for  converges to the value of v.

Consider the motion of a particle in which the position is x(t) = 3.0t − 3t  m.

a. What is the instantaneous velocity at t = 0.25 s, t = 0.50 s, and t = 1.0 s?
b. What is the speed of the particle at these times?

Strategy

The instantaneous velocity is the derivative of the position function and the speed is the magnitude of the instantaneous
velocity. We use Equation  and Equation  to solve for instantaneous velocity.

Solution
a. v(t) =  = 3.0 − 6.0t m/s
b. v(0.25 s) = 1.50 m/s, v(0.5 s) = 0 m/s, v(1.0 s) = −3.0 m/s
c. Speed = |v(t)| = 1.50 m/s, 0.0 m/s, and 3.0 m/s

Significance
The velocity of the particle gives us direction information, indicating the particle is moving to the left (west) or right (east).
The speed gives the magnitude of the velocity. By graphing the position, velocity, and speed as functions of time, we can
understand these concepts visually Figure . In (a), the graph shows the particle moving in the positive direction until t =
0.5 s, when it reverses direction. The reversal of direction can also be seen in (b) at 0.5 s where the velocity is zero and then
turns negative. At 1.0 s it is back at the origin where it started. The particle’s velocity at 1.0 s in (b) is negative, because it is
traveling in the negative direction. But in (c), however, its speed is positive and remains positive throughout the travel time. We
can also interpret velocity as the slope of the position-versus-time graph. The slope of x(t) is decreasing toward zero, becoming
zero at 0.5 s and increasingly negative thereafter. This analysis of comparing the graphs of position, velocity, and speed helps
catch errors in calculations. The graphs must be consistent with each other and help interpret the calculations.

Figure : (a) Position: x(t) versus time. (b) Velocity: v(t) versus time. The slope of the position graph is the velocity. A
rough comparison of the slopes of the tangent lines in (a) at 0.25 s, 0.5 s, and 1.0 s with the values for velocity at the
corresponding times indicates they are the same values. (c) Speed: |v(t)| versus time. Speed is always a positive number.

dx(t)

dt
2 2

x(1.0s) = [(3.0)(1.0) +0.5(1.0 ]m = 3.5 m)3 (2.3.6)

x(3.0s) = [(3.0)(3.0) +0.5(3.0 ]m = 22.5 m)3 (2.3.7)

= = = 9.5 m/s.v̄
x(3.0 s) −x(1.0 s)

t(3.0 s) − t(1.0 s)

22.5 −3.5 m

3.0 −1.0 s
(2.3.8)
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The position of an object as a function of time is x(t) = −3t  m. (a) What is the velocity of the object as a function of time? (b)
Is the velocity ever positive? (c) What are the velocity and speed at t = 1.0 s?

This page titled 2.3: Instantaneous Velocity and Speed is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

3.3: Instantaneous Velocity and Speed by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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2.4: Average and Instantaneous Acceleration

Calculate the average acceleration between two points in time.
Calculate the instantaneous acceleration given the functional form of velocity.
Explain the vector nature of instantaneous acceleration and velocity.
Explain the difference between average acceleration and instantaneous acceleration.
Find instantaneous acceleration at a specified time on a graph of velocity versus time.

The importance of understanding acceleration spans our day-to-day experience, as well as the vast reaches of outer space and the
tiny world of subatomic physics. In everyday conversation, to accelerate means to speed up; applying the brake pedal causes a
vehicle to slow down. We are familiar with the acceleration of our car, for example. The greater the acceleration, the greater the
change in velocity over a given time. Acceleration is widely seen in experimental physics. In linear particle accelerator
experiments, for example, subatomic particles are accelerated to very high velocities in collision experiments, which tell us
information about the structure of the subatomic world as well as the origin of the universe. In space, cosmic rays are subatomic
particles that have been accelerated to very high energies in supernovas (exploding massive stars) and active galactic nuclei. It is
important to understand the processes that accelerate cosmic rays because these rays contain highly penetrating radiation that can
damage electronics flown on spacecraft, for example.

Average Acceleration
The formal definition of acceleration is consistent with these notions just described, but is more inclusive.

Average acceleration is the rate at which velocity changes:

where  is average acceleration, v is velocity, and t is time. (The bar over the a means average acceleration.)

Because acceleration is velocity in meters divided by time in seconds, the SI units for acceleration are often abbreviated m/s —that
is, meters per second squared or meters per second per second. This literally means by how many meters per second the velocity
changes every second. Recall that velocity is a vector—it has both magnitude and direction—which means that a change in velocity
can be a change in magnitude (or speed), but it can also be a change in direction. For example, if a runner traveling at 10 km/h due
east slows to a stop, reverses direction, continues her run at 10 km/h due west, her velocity has changed as a result of the change in
direction, although the magnitude of the velocity is the same in both directions. Thus, acceleration occurs when velocity changes
in magnitude (an increase or decrease in speed) or in direction, or both.

Acceleration is a vector in the same direction as the change in velocity, v. Since velocity is a vector, it can change in
magnitude or in direction, or both. Acceleration is, therefore, a change in speed or direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the direction of motion.
When an object slows down, its acceleration is opposite to the direction of its motion. Although this is commonly referred to as
deceleration Figure , we say the train is accelerating in a direction opposite to its direction of motion.
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ā

2

 Acceleration as a Vector

Δ

2.4.1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45963?pdf
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/02%3A_Motion_Along_a_Straight_Line/2.04%3A_Average_and_Instantaneous_Acceleration


2.4.2 https://phys.libretexts.org/@go/page/45963

Figure : A subway train in Sao Paulo, Brazil, decelerates as it comes into a station. It is accelerating in a direction opposite to
its direction of motion. (credit: Yusuke Kawasaki)

The term deceleration can cause confusion in our analysis because it is not a vector and it does not point to a specific direction
with respect to a coordinate system, so we do not use it. Acceleration is a vector, so we must choose the appropriate sign for it in
our chosen coordinate system. In the case of the train in Figure , acceleration is in the negative direction in the chosen
coordinate system, so we say the train is undergoing negative acceleration.

If an object in motion has a velocity in the positive direction with respect to a chosen origin and it acquires a constant negative
acceleration, the object eventually comes to a rest and reverses direction. If we wait long enough, the object passes through the
origin going in the opposite direction. This is illustrated in Figure .

Figure : An object in motion with a velocity vector toward the east under negative acceleration comes to a rest and reverses
direction. It passes the origin going in the opposite direction after a long enough time.

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its average
acceleration?

Figure : Racehorses accelerating out of the gate. (credit: Jon Sullivan)

Strategy

First we draw a sketch and assign a coordinate system to the problem Figure . This is a simple problem, but it always
helps to visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

Figure : Identify the coordinate system, the given information, and what you want to determine.

We can solve this problem by identifying v and t from the given information, and then calculating the average acceleration
directly from the equation .

Solution
First, identify the knowns: v  = 0, v  = −15.0 m/s (the negative sign indicates direction toward the west), t = 1.80 s. Second,
find the change in velocity. Since the horse is going from zero to –15.0 m/s, its change in velocity equals its final velocity:

2.4.1

2.4.1

2.4.2

2.4.2
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Last, substitute the known values ( v and t) and solve for the unknown :

Significance
The negative sign for acceleration indicates that acceleration is toward the west. An acceleration of 8.33 m/s  due west means
the horse increases its velocity by 8.33 m/s due west each second; that is, 8.33 meters per second per second, which we write as
8.33 m/s . This is truly an average acceleration, because the ride is not smooth. We see later that an acceleration of this
magnitude would require the rider to hang on with a force nearly equal to his weight.

Protons in a linear accelerator are accelerated from rest to 2.0 × 10  m/s in 10  s. What is the average acceleration of the
protons?

Instantaneous Acceleration
Instantaneous acceleration a, or acceleration at a specific instant in time, is obtained using the same process discussed for
instantaneous velocity. That is, we calculate the average velocity between two points in time separated by t and let t approach
zero. The result is the derivative of the velocity function v(t), which is instantaneous acceleration and is expressed
mathematically as

Thus, similar to velocity being the derivative of the position function, instantaneous acceleration is the derivative of the velocity
function. We can show this graphically in the same way as instantaneous velocity. In Figure , instantaneous acceleration at
time t  is the slope of the tangent line to the velocity-versus-time graph at time t . We see that average acceleration 
approaches instantaneous acceleration as Δt approaches zero. Also in part (a) of the figure, we see that velocity has a maximum
when its slope is zero. This time corresponds to the zero of the acceleration function. In part (b), instantaneous acceleration at the
minimum velocity is shown, which is also zero, since the slope of the curve is zero there, too. Thus, for a given velocity function,
the zeros of the acceleration function give either the minimum or the maximum velocity

Figure : In a graph of velocity versus time, instantaneous acceleration is the slope of the tangent line. (a) Shown is average
acceleration  between times t = t  − t , t = t  − t , and t = t  − t . When t → 0, the average acceleration
approaches instantaneous acceleration at time t . In view (a), instantaneous acceleration is shown for the point on the velocity curve
at maximum velocity. At this point, instantaneous acceleration is the slope of the tangent line, which is zero. At any other time, the
slope of the tangent line—and thus instantaneous acceleration—would not be zero. (b) Same as (a) but shown for instantaneous
acceleration at minimum velocity.

To illustrate this concept, let’s look at two examples. First, a simple example is shown using Figure 3.3.4(b), the velocityversus-
time graph of Example 3.3, to find acceleration graphically. This graph is depicted in Figure (a), which is a straight line. The
corresponding graph of acceleration versus time is found from the slope of velocity and is shown in Figure (b). In this
example, the velocity function is a straight line with a constant slope, thus acceleration is a constant. In the next example, the
velocity function is has a more complicated functional dependence on time.

Δv= − = = −15.0 m/s.vf v0 vf (2.4.2)
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Figure : (a, b) The velocity-versus-time graph is linear and has a negative constant slope (a) that is equal to acceleration,
shown in (b).

If we know the functional form of velocity, v(t), we can calculate instantaneous acceleration a(t) at any time point in the motion
using Equation .

A particle is in motion and is accelerating. The functional form of the velocity is v(t) = 20t − 5t  m/s.

a. Find the functional form of the acceleration.
b. Find the instantaneous velocity at t = 1, 2, 3, and 5 s.
c. Find the instantaneous acceleration at t = 1, 2, 3, and 5 s.
d. Interpret the results of (c) in terms of the directions of the acceleration and velocity vectors.

Strategy

We find the functional form of acceleration by taking the derivative of the velocity function. Then, we calculate the values of
instantaneous velocity and acceleration from the given functions for each. For part (d), we need to compare the directions of
velocity and acceleration at each time.

Solution
a. a(t) = dv(t) dt = 20 − 10t m/s
b. v(1 s) = 15 m/s, v(2 s) = 20 m/s, v(3 s) = 15 m/s, v(5 s) = −25 m/s
c. a(1 s) = 10m/s , a(2 s) = 0m/s , a(3 s) = −10m/s , a(5 s) = −30m/s
d. At t = 1 s, velocity v(1 s) = 15 m/s is positive and acceleration is positive, so both velocity and acceleration are in the same

direction. The particle is moving faster.

At t = 2 s, velocity has increased to v(2 s) = 20 m/s , where it is maximum, which corresponds to the time when the
acceleration is zero. We see that the maximum velocity occurs when the slope of the velocity function is zero, which is just the
zero of the acceleration function.

At t = 3 s, velocity is v(3 s) = 15 m/s and acceleration is negative. The particle has reduced its velocity and the acceleration
vector is negative. The particle is slowing down.

At t = 5 s, velocity is v(5 s) = −25 m/s and acceleration is increasingly negative. Between the times t = 3 s and t = 5 s the
particle has decreased its velocity to zero and then become negative, thus reversing its direction. The particle is now speeding
up again, but in the opposite direction.

We can see these results graphically in Figure .

2.4.6

2.4.4
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Figure : (a) Velocity versus time. Tangent lines are indicated at times 1, 2, and 3 s. The slopes of the tangents lines are the
accelerations. At t = 3 s, velocity is positive. At t = 5 s, velocity is negative, indicating the particle has reversed direction. (b)
Acceleration versus time. Comparing the values of accelerations given by the black dots with the corresponding slopes of the
tangent lines (slopes of lines through black dots) in (a), we see they are identical.

Significance
By doing both a numerical and graphical analysis of velocity and acceleration of the particle, we can learn much about its
motion. The numerical analysis complements the graphical analysis in giving a total view of the motion. The zero of the
acceleration function corresponds to the maximum of the velocity in this example. Also in this example, when acceleration is
positive and in the same direction as velocity, velocity increases. As acceleration tends toward zero, eventually becoming
negative, the velocity reaches a maximum, after which it starts decreasing. If we wait long enough, velocity also becomes
negative, indicating a reversal of direction. A real-world example of this type of motion is a car with a velocity that is
increasing to a maximum, after which it starts slowing down, comes to a stop, then reverses direction.

An airplane lands on a runway traveling east. Describe its acceleration.

Getting a Feel for Acceleration
You are probably used to experiencing acceleration when you step into an elevator, or step on the gas pedal in your car. However,
acceleration is happening to many other objects in our universe with which we don’t have direct contact. Table 3.2 presents the
acceleration of various objects. We can see the magnitudes of the accelerations extend over many orders of magnitude.

Table 3.2 - Typical Values of Acceleration

(credit: Wikipedia: Orders of Magnitude (acceleration))

Acceleration Value (m/s )

High-speed train 0.25

Elevator 2

Cheetah 5

Object in a free fall without air resistance near the surface of Earth 9.8

2.4.7
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Acceleration Value (m/s )

Space shuttle maximum during launch 29

Parachutist peak during normal opening of parachute 59

F16 aircraft pulling out of a dive 79

Explosive seat ejection from aircraft 147

Sprint missile 982

Fastest rocket sled peak acceleration 1540

Jumping flea 3200

Baseball struck by a bat 30,000

Closing jaws of a trap-jaw ant 1,000,000

Proton in the large Hadron collider 1.9 x 10

In this table, we see that typical accelerations vary widely with different objects and have nothing to do with object size or how
massive it is. Acceleration can also vary widely with time during the motion of an object. A drag racer has a large acceleration just
after its start, but then it tapers off as the vehicle reaches a constant velocity. Its average acceleration can be quite different from its
instantaneous acceleration at a particular time during its motion. Figure  compares graphically average acceleration with
instantaneous acceleration for two very different motions.

Figure : Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Acceleration varies
only slightly and is always in the same direction, since it is positive. The average over the interval is nearly the same as the
acceleration at any given time. (b) Acceleration varies greatly, perhaps representing a package on a post office conveyor belt that is
accelerated forward and backward as it bumps along. It is necessary to consider small time intervals (such as from 0–1.0 s) with
constant or nearly constant acceleration in such a situation.

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with a mouse and plot his motion.
Set the position, velocity, or acceleration and let the simulation move the man for you. Visit this link to use the moving man
simulation.

This page titled 2.4: Average and Instantaneous Acceleration is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

3.4: Average and Instantaneous Acceleration by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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2.5: Motion with Constant Acceleration (Part 1)

Identify which equations of motion are to be used to solve for unknowns.
Use appropriate equations of motion to solve a two-body pursuit problem.

You might guess that the greater the acceleration of, say, a car moving away from a stop sign, the greater the car’s displacement in
a given time. But, we have not developed a specific equation that relates acceleration and displacement. In this section, we look at
some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration. We
first investigate a single object in motion, called single-body motion. Then we investigate the motion of two objects, called two-
body pursuit problems.

Notation
First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a
great simplification. Since elapsed time is t = t  − t , taking t  = 0 means that t = t , the final time on the stopwatch. When
initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, x  is the initial
position and v  is the initial velocity. We put no subscripts on the final values. That is, t is the final time, x is the final position,
and v is the final velocity. This gives a simpler expression for elapsed time, t = t. It also simplifies the expression for x
displacement, which is now x = x − x . Also, it simplifies the expression for change in velocity, which is now v = v − v . To
summarize, using the simplified notation, with the initial time taken to be zero,

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under
consideration.

We now make the important assumption that acceleration is constant. This assumption allows us to avoid using calculus to find
instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal—that is,

Thus, we can use the symbol a for acceleration at all times. Assuming acceleration to be constant does not seriously limit the
situations we can study nor does it degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number
of situations. Furthermore, in many other situations we can describe motion accurately by assuming a constant acceleration equal to
the average acceleration for that motion. Lastly, for motion during which acceleration changes drastically, such as a car accelerating
to top speed and then braking to a stop, motion can be considered in separate parts, each of which has its own constant acceleration.

Displacement and Position from Velocity
To get our first two equations, we start with the definition of average velocity:

Substituting the simplified notation for x and t yields

Solving for x gives us

where the average velocity is
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= .v̄
Δx

Δt
(2.5.5)

Δ Δ

= .v̄
x −x0

t
(2.5.6)

x = + t,x0 v̄ (2.5.7)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45964?pdf
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/02%3A_Motion_Along_a_Straight_Line/2.05%3A_Motion_with_Constant_Acceleration_(Part_1)


2.5.2 https://phys.libretexts.org/@go/page/45964

The equation  reflects the fact that when acceleration is constant, v is just the simple average of the initial and final
velocities. Figure  illustrates this concept graphically. In part (a) of the figure, acceleration is constant, with velocity
increasing at a constant rate. The average velocity during the 1-h interval from 40 km/h to 80 km/h is 60 km/h:

In part (b), acceleration is not constant. During the 1-h interval, velocity is closer to 80 km/h than 40 km/h. Thus, the average
velocity is greater than in part (a).

Figure : (a) Velocity-versus-time graph with constant acceleration showing the initial and final velocities v  and v. The
average velocity is (v + v) = 60 km/h. (b) Velocity-versus-time graph with an acceleration that changes with time. The average
velocity is not given by (v + v), but is greater than 60 km/h.

Solving for Final Velocity from Acceleration and Time
We can derive another useful equation by manipulating the definition of acceleration:

Substituting the simplified notation for v and t gives us

Solving for v yields

An airplane lands with an initial velocity of 70.0 m/s and then decelerates at 1.50 m/s  for 40.0 s. What is its final velocity?

Strategy

First, we identify the knowns: v  = 70 m/s, a = −1.50 m/s , t = 40 s.

Second, we identify the unknown; in this case, it is final velocity v .

Last, we determine which equation to use. To do this we figure out which kinematic equation gives the unknown in terms of
the knowns. We calculate the final velocity using Equation , v = v  + at.

Solution
Substitute the known values and solve:

Figure  is a sketch that shows the acceleration and velocity vectors.
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Figure : The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before heading for
the terminal. Note the acceleration is negative because its direction is opposite to its velocity, which is positive.

Significance
The final velocity is much less than the initial velocity, as desired when slowing down, but is still positive (see figure). With jet
engines, reverse thrust can be maintained long enough to stop the plane and start moving it backward, which is indicated by a
negative final velocity, but is not the case here.

In addition to being useful in problem solving, the equation v = v  + at gives us insight into the relationships among velocity,
acceleration, and time. We can see, for example, that

Final velocity depends on how large the acceleration is and how long it lasts
If the acceleration is zero, then the final velocity equals the initial velocity (v = v ), as expected (in other words, velocity is
constant)
If a is negative, then the final velocity is less than the initial velocity

All these observations fit our intuition. Note that it is always useful to examine basic equations in light of our intuition and
experience to check that they do indeed describe nature accurately.

Solving for Final Position with Constant Acceleration

We can combine the previous equations to find a third equation that allows us to calculate the final position of an object
experiencing constant acceleration. We start with

Adding v to each side of this equation and dividing by 2 gives

Since  for constant acceleration, we have

Now we substitute this expression for  into the equation for displacement, x = x  + t, yielding

Dragsters can achieve an average acceleration of 26.0 m/s . Suppose a dragster accelerates from rest at this rate for 5.56 s
Figure . How far does it travel in this time?

Figure : U.S. Army Top Fuel pilot Tony “The Sarge” Schumacher begins a race with a controlled burnout. (credit: Lt.
Col. William Thurmond. Photo Courtesy of U.S. Army.)
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Strategy

First, let’s draw a sketch Figure . We are asked to find displacement, which is x if we take x  to be zero. (Think about x
as the starting line of a race. It can be anywhere, but we call it zero and measure all other positions relative to it.) We can use
the equation  when we identify v , a, and t from the statement of the problem.

Figure : Sketch of an accelerating dragster.

Solution
First, we need to identify the knowns. Starting from rest means that v  = 0 , a is given as 26.0 m/s  and t is given as 5.56 s.

Second, we substitute the known values into the equation to solve for the unknown:

Since the initial position and velocity are both zero, this equation simplifies to

Substituting the identified values of a and t gives

Significance
If we convert 402 m to miles, we find that the distance covered is very close to one-quarter of a mile, the standard distance for
drag racing. So, our answer is reasonable. This is an impressive displacement to cover in only 5.56 s, but top-notch dragsters
can do a quarter mile in even less time than this. If the dragster were given an initial velocity, this would add another term to
the distance equation. If the same acceleration and time are used in the equation, the distance covered would be much greater.

What else can we learn by examining the equation ? We can see the following relationships:

Displacement depends on the square of the elapsed time when acceleration is not zero. In Example 3.8, the dragster covers only
one-fourth of the total distance in the first half of the elapsed time.
If acceleration is zero, then initial velocity equals average velocity (v  = ) , and  becomes x = x  + v t.

Solving for Final Velocity from Distance and Acceleration
A fourth useful equation can be obtained from another algebraic manipulation of previous equations. If we solve v = v  + at for t,
we get

Substituting this and  into , we get

Calculate the final velocity of the dragster in Example 3.8 without using information about time.

Strategy
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The equation  is ideally suited to this task because it relates velocities, acceleration, and displacement,
and no time information is required.

Solution
First, we identify the known values. We know that v  = 0, since the dragster starts from rest. We also know that x − x  = 402 m
(this was the answer in Example 3.8). The average acceleration was given by a = 26.0 m/s . Second, we substitute the knowns
into the equation  and solve for v:

Thus,

Significance
A velocity of 145 m/s is about 522 km/h, or about 324 mi/h, but even this breakneck speed is short of the record for the quarter
mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the
acceleration.

An examination of the equation  can produce additional insights into the general relationships among
physical quantities:

The final velocity depends on how large the acceleration is and the distance over which it acts.
For a fixed acceleration, a car that is going twice as fast doesn’t simply stop in twice the distance. It takes much farther to stop.
(This is why we have reduced speed zones near schools.)

This page titled 2.5: Motion with Constant Acceleration (Part 1) is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

3.5: Motion with Constant Acceleration (Part 1) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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2.6: Motion with Constant Acceleration (Part 2)

Putting Equations Together

In the following examples, we continue to explore one-dimensional motion, but in situations requiring slightly more algebraic
manipulation. The examples also give insight into problem-solving techniques. The note that follows is provided for easy reference
to the equations needed. Be aware that these equations are not independent. In many situations we have two unknowns and need
two equations from the set to solve for the unknowns. We need as many equations as there are unknowns to solve a given situation.

Before we get into the examples, let’s look at some of the equations more closely to see the behavior of acceleration at extreme
values. Rearranging , we have

From this we see that, for a finite time, if the difference between the initial and final velocities is small, the acceleration is small,
approaching zero in the limit that the initial and final velocities are equal. On the contrary, in the limit t → 0 for a finite difference
between the initial and final velocities, acceleration becomes infinite.

Similarly, rearranging , we can express acceleration in terms of velocities and displacement:

Thus, for a finite difference between the initial and final velocities acceleration becomes infinite in the limit the displacement
approaches zero. Acceleration approaches zero in the limit the difference in initial and final velocities approaches zero for a finite
displacement.

On dry concrete, a car can decelerate at a rate of 7.00 m/s , whereas on wet concrete it can decelerate at only 5.00 m/s . Find
the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) on (a) dry concrete and (b) wet concrete. (c) Repeat
both calculations and find the displacement from the point where the driver sees a traffic light turn red, taking into account his
reaction time of 0.500 s to get his foot on the brake.

Strategy

First, we need to draw a sketch Figure . To determine which equations are best to use, we need to list all the known values
and identify exactly what we need to solve for.

 Summary of Kinematic Equations (constant a)
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Figure : Sample sketch to visualize deceleration and stopping distance of a car.

Solution
a. First, we need to identify the knowns and what we want to solve for. We know that v  = 30.0 m/s, v = 0, and a = −7.00 m/s

(a is negative because it is in a direction opposite to velocity). We take x0 to be zero. We are looking for displacement x,
or x − x . Second, we identify the equation that will help us solve the problem. The best equation to use is

This equation is best because it includes only one unknown, x. We know the values of all the other variables in this
equation. (Other equations would allow us to solve for x, but they require us to know the stopping time, t, which we do not
know. We could use them, but it would entail additional calculations.) Third, we rearrange the equation to solve for x:

and substitute the known values:

Thus,

b. This part can be solved in exactly the same manner as (a). The only difference is that the acceleration is −5.00 m/s . The
result is

c. When the driver reacts, the stopping distance is the same as it is in (a) and (b) for dry and wet concrete. So, to answer this
question, we need to calculate how far the car travels during the reaction time, and then add that to the stopping time. It is
reasonable to assume the velocity remains constant during the driver’s reaction time. To do this, we, again, identify the
knowns and what we want to solve for. We know that  = 30.0 m/s, t  = 0.500 s, and a  = 0. We take x  to
be zero. We are looking for x . Second, as before, we identify the best equation to use. In this case, x = x  + t works
well because the only unknown value is x, which is what we want to solve for. Third, we substitute the knowns to solve the
equation:

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet
concrete 15.0 m greater than if he reacted instantly. Last, we then add the displacement during the reaction time to the
displacement when braking (Figure ),

and find (a) to be 64.3 m + 15.0 m = 79.3 m when dry and (b) to be 90.0 m + 15.0 m = 105 m when wet.
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Figure : The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown
here are the braking distances for dry and wet pavement, as calculated in this example, for a car traveling initially at 30.0 m/s.
Also shown are the total distances traveled from the point when the driver first sees a light turn red, assuming a 0.500-s
reaction time.

Significance
The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a car on
wet pavement than dry. It is interesting that reaction time adds significantly to the displacements, but more important is the
general approach to solving problems. We identify the knowns and the quantities to be determined, then find an appropriate
equation. If there is more than one unknown, we need as many independent equations as there are unknowns to solve. There is
often more than one way to solve a problem. The various parts of this example can, in fact, be solved by other methods, but the
solutions presented here are the shortest.

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at 2.00
m/s , how long does it take the car to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy

First, we draw a sketch Figure . We are asked to solve for time t. As before, we identify the known quantities to choose a
convenient physical relationship (that is, an equation with one unknown, t.)

Figure : Sketch of a car accelerating on a freeway ramp.

Solution
Again, we identify the knowns and what we want to solve for. We know that x  = 0, v  = 10 m/s, a = 2.00 m/s , and x = 200 m.

We need to solve for t. The equation x = x + v t + at  works best because the only unknown in the equation is the variable t,
for which we need to solve. From this insight we see that when we input the knowns into the equation, we end up with a
quadratic equation.

We need to rearrange the equation to solve for t, then substituting the knowns into the equation:

We then simplify the equation. The units of meters cancel because they are in each term. We can get the units of seconds to
cancel by taking t = t s, where t is the magnitude of time and s is the unit. Doing so leaves

We then use the quadratic formula to solve for t,

2.6.2

 Example 3.11: Calculating Time

2

2.6.3

2.6.3

0 0
2

0 0
1
2

2

200 m = 0 m+(10.0 m/s)t+ (2.00 m/ ) .
1

2
s2 t2 (2.6.15)

200 = 10t+ .t
2 (2.6.16)

+10t−200 = 0t
2 (2.6.17)

t = ,
−b± −4acb2− −−−−−−

√

2a
(2.6.18)
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which yields two solutions: t = 10.0 and t = −20.0. A negative value for time is unreasonable, since it would mean the event
happened 20 s before the motion began. We can discard that solution. Thus,

Significance
Whenever an equation contains an unknown squared, there are two solutions. In some problems both solutions are meaningful;
in others, only one solution is reasonable. The 10.0-s answer seems reasonable for a typical freeway on-ramp.

A manned rocket accelerates at a rate of 20 m/s during launch. How long does it take the rocket to reach a velocity of 400
m/s?

A spaceship has left Earth’s orbit and is on its way to the Moon. It accelerates at 20 m/s  for 2 min and covers a distance of
1000 km. What are the initial and final velocities of the spaceship?

Strategy

We are asked to find the initial and final velocities of the spaceship. Looking at the kinematic equations, we see that one
equation will not give the answer. We must use one kinematic equation to solve for one of the velocities and substitute it into
another kinematic equation to get the second velocity. Thus, we solve two of the kinematic equations simultaneously.

Solution
First we solve for v  using :

Then we substitute v  into v = v  + at to solve for the final velocity:

Significance
There are six variables in displacement, time, velocity, and acceleration that describe motion in one dimension. The initial
conditions of a given problem can be many combinations of these variables. Because of this diversity, solutions may not be
easy as simple substitutions into one of the equations. This example illustrates that solutions to kinematics may require solving
two simultaneous kinematic equations.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of
developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and
insights into physical relationships. The next level of complexity in our kinematics problems involves the motion of two
interrelated bodies, called two-body pursuit problems.

Two-Body Pursuit Problems

Up until this point we have looked at examples of motion involving a single body. Even for the problem with two cars and the
stopping distances on wet and dry roads, we divided this problem into two separate problems to find the answers. In a two-body
pursuit problem, the motions of the objects are coupled—meaning, the unknown we seek depends on the motion of both objects.
To solve these problems we write the equations of motion for each object and then solve them simultaneously to find the unknown.
This is illustrated in Figure .

t = 10.0 s. (2.6.19)

 Exercise 3.5

2 

 Example 3.12: Acceleration of a Spaceship

2

0 x = + t+ a =x0 v0
1
2

t2 1
2
t2

x− = t+ a =x0 v0
1

2
t

2 1

2
t

2 (2.6.20)

1.0 × m = (120.0 s) + (20.0 m/ )(120.0 s106 v0
1

2
s2 )2 (2.6.21)

= 7133.3 m/s.v0 (2.6.22)

0 0

v= +at = 7133.3 m/s+(20.0 m/ )(120.0 s) = 9533.3 m/s.v0 s2 (2.6.23)
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Figure : A two-body pursuit scenario where car 2 has a constant velocity and car 1 is behind with a constant acceleration. Car
1 catches up with car 2 at a later time.

The time and distance required for car 1 to catch car 2 depends on the initial distance car 1 is from car 2 as well as the velocities of
both cars and the acceleration of car 1. The kinematic equations describing the motion of both cars must be solved to find these
unknowns.

Consider the following example.

A cheetah waits in hiding behind a bush. The cheetah spots a gazelle running past at 10 m/s. At the instant the gazelle passes
the cheetah, the cheetah accelerates from rest at 4 m/s  to catch the gazelle. (a) How long does it take the cheetah to catch the
gazelle? (b) What is the displacement of the gazelle and cheetah?

Strategy

We use the set of equations for constant acceleration to solve this problem. Since there are two objects in motion, we have
separate equations of motion describing each animal. But what links the equations is a common parameter that has the same
value for each animal. If we look at the problem closely, it is clear the common parameter to each animal is their position x at a
later time t. Since they both start at x = 0, their displacements are the same at a later time t, when the cheetah catches up with
the gazelle. If we pick the equation of motion that solves for the displacement for each animal, we can then set the equations
equal to each other and solve for the unknown, which is time.

Solution
a. Equation for the gazelle: The gazelle has a constant velocity, which is its average velocity, since it is not accelerating.

Therefore, we use Equation 3.5.7 with x  = 0:

Equation for the cheetah: The cheetah is accelerating from rest, so we use Equation 3.5.17 with x  = 0 and v  = 0:

Now we have an equation of motion for each animal with a common parameter, which can be eliminated to find the
solution. In this case, we solve for t:

The gazelle has a constant velocity of 10 m/s, which is its average velocity. The acceleration of the cheetah is 4 m/s .
Evaluating t, the time for the cheetah to reach the gazelle, we have

b. To get the displacement, we use either the equation of motion for the cheetah or the gazelle, since they should both give the
same answer. Displacement of the cheetah:

Displacement of the gazelle:

We see that both displacements are equal, as expected.

2.6.4

 Example 3.13: Cheetah Catching a Gazelle

2

0 

0

x = + t = t.x0 v̄ v̄ (2.6.24)

0 0

x = + t+ a = a .x0 v0
1

2
t2 1

2
t2 (2.6.25)

x = t = av̄
1

2
t2 (2.6.26)

t = .
2v̄

a
(2.6.27)

2

t = = = 5 s.
2v̄

a

2(10)

4
(2.6.28)

x = a = (4)(5 −50 m.
1

2
t2 1

2
)2 (2.6.29)

x = t = 10(5) = 50 m.v̄ (2.6.30)
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Significance
It is important to analyze the motion of each object and to use the appropriate kinematic equations to describe the individual
motion. It is also important to have a good visual perspective of the two-body pursuit problem to see the common parameter
that links the motion of both objects.

A bicycle has a constant velocity of 10 m/s. A person starts from rest and begins to run to catch up to the bicycle in 30 s when
the bicycle is at the same position as the person. What is the acceleration of the person?

This page titled 2.6: Motion with Constant Acceleration (Part 2) is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

3.6: Motion with Constant Acceleration (Part 2) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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2.7: Free Fall

Use the kinematic equations with the variables y and g to analyze free-fall motion.
Describe how the values of the position, velocity, and acceleration change during a free fall.
Solve for the position, velocity, and acceleration as functions of time when an object is in a free fall.

An interesting application of Equation 3.3.2 through Equation 3.5.22 is called free fall, which describes the motion of an object
falling in a gravitational field, such as near the surface of Earth or other celestial objects of planetary size. Let’s assume the body is
falling in a straight line perpendicular to the surface, so its motion is one-dimensional. For example, we can estimate the depth of a
vertical mine shaft by dropping a rock into it and listening for the rock to hit the bottom. But “falling,” in the context of free fall,
does not necessarily imply the body is moving from a greater height to a lesser height. If a ball is thrown upward, the equations of
free fall apply equally to its ascent as well as its descent.

Gravity
The most remarkable and unexpected fact about falling objects is that if air resistance and friction are negligible, then in a given
location all objects fall toward the center of Earth with the same constant acceleration, independent of their mass. This
experimentally determined fact is unexpected because we are so accustomed to the effects of air resistance and friction that we
expect light objects to fall slower than heavy ones. Until Galileo Galilei (1564–1642) proved otherwise, people believed that a
heavier object has a greater acceleration in a free fall. We now know this is not the case. In the absence of air resistance, heavy
objects arrive at the ground at the same time as lighter objects when dropped from the same height Figure .

Figure : A hammer and a feather fall with the same constant acceleration if air resistance is negligible. This is a general
characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated in 1971 on the Moon, where the acceleration
from gravity is only 1.67 m/s  and there is no atmosphere.

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball reaches
the ground after a baseball dropped at the same time. (It might be difficult to observe the difference if the height is not large.) Air
resistance opposes the motion of an object through the air, and friction between objects—such as between clothes and a laundry
chute or between a stone and a pool into which it is dropped—also opposes motion between them.

For the ideal situations of these first few chapters, an object falling without air resistance or friction is defined to be in free fall.
The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects is therefore called
acceleration due to gravity. Acceleration due to gravity is constant, which means we can apply the kinematic equations to any
falling object where air resistance and friction are negligible. This opens to us a broad class of interesting situations.

Acceleration due to gravity is so important that its magnitude is given its own symbol, g. It is constant at any given location on
Earth and has the average value

Although g varies from 9.78 m/s  to 9.83 m/s , depending on latitude, altitude, underlying geological formations, and local
topography, let’s use an average value of 9.8 m/s  rounded to two significant figures in this text unless specified otherwise.
Neglecting these effects on the value of g as a result of position on Earth’s surface, as well as effects resulting from Earth’s rotation,
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we take the direction of acceleration due to gravity to be downward (toward the center of Earth). In fact, its direction defines what
we call vertical. Note that whether acceleration a in the kinematic equations has the value +g or −g depends on how we define our
coordinate system. If we define the upward direction as positive, then a = −g = −9.8 m/s , and if we define the downward direction
as positive, then a = g = 9.8 m/s .

One-Dimensional Motion Involving Gravity
The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress toward
more complex ones. So, we start by considering straight up-and-down motion with no air resistance or friction. These assumptions
mean the velocity (if there is any) is vertical. If an object is dropped, we know the initial velocity is zero when in free fall. When
the object has left contact with whatever held or threw it, the object is in free fall. When the object is thrown, it has the same initial
speed in free fall as it did before it was released. When the object comes in contact with the ground or any other object, it is no
longer in free fall and its acceleration of g is no longer valid. Under these circumstances, the motion is one-dimensional and has
constant acceleration of magnitude g. We represent vertical displacement with the symbol y.

We assume here that acceleration equals −g (with the positive direction upward).

1. Decide on the sign of the acceleration of gravity. In Equation  through Equation , acceleration g is negative,
which says the positive direction is upward and the negative direction is downward. In some problems, it may be useful to
have acceleration g as positive, indicating the positive direction is downward.

2. Draw a sketch of the problem. This helps visualize the physics involved.
3. Record the knowns and unknowns from the problem description. This helps devise a strategy for selecting the appropriate

equations to solve the problem.
4. Decide which of Equation  through Equation  are to be used to solve for the unknowns.

Figure  shows the positions of a ball, at 1-s intervals, with an initial velocity of 4.9 m/s downward, that is thrown from the
top of a 98-m-high building. (a) How much time elapses before the ball reaches the ground? (b) What is the velocity when it
arrives at the ground?

Figure : The positions and velocities at 1-s intervals of a ball thrown downward from a tall building at 4.9 m/s.

Strategy

Choose the origin at the top of the building with the positive direction upward and the negative direction downward. To find
the time when the position is −98 m, we use Equation , with y  = 0, v  = −4.9 m/s, and g = 9.8 m/s .

Solution

2

2

 Kinematic Equations for Objects in Free Fall

v = −gtv0 (2.7.2)

y = + t − gy0 v0
1

2
t2 (2.7.3)

= −2g(y − )v2 v2
0 y0 (2.7.4)
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a. Substitute the given values into the equation:

This simplifies to

This is a quadratic equation with roots t = −5.0 s and t = 4.0 s. The positive root is the one we are interested in, since time t
= 0 is the time when the ball is released at the top of the building. (The time t = −5.0 s represents the fact that a ball thrown
upward from the ground would have been in the air for 5.0 s when it passed by the top of the building moving downward at
4.9 m/s.)

b. Using Equation , we have

Significance
For situations when two roots are obtained from a quadratic equation in the time variable, we must look at the physical
significance of both roots to determine which is correct. Since t = 0 corresponds to the time when the ball was released, the
negative root would correspond to a time before the ball was released, which is not physically meaningful. When the ball hits
the ground, its velocity is not immediately zero, but as soon as the ball interacts with the ground, its acceleration is not g and it
accelerates with a different value over a short time to zero velocity. This problem shows how important it is to establish the
correct coordinate system and to keep the signs of g in the kinematic equations consistent.

A batter hits a baseball straight upward at home plate and the ball is caught 5.0 s after it is struck Figure . (a) What is the
initial velocity of the ball? (b) What is the maximum height the ball reaches? (c) How long does it take to reach the maximum
height? (d) What is the acceleration at the top of its path? (e) What is the velocity of the ball when it is caught? Assume the ball
is hit and caught at the same location.

Figure : A baseball hit straight up is caught by the catcher 5.0 s later.

Strategy

Choose a coordinate system with a positive y-axis that is straight up and with an origin that is at the spot where the ball is hit
and caught.

Solution
a. Equation  gives

y = + t − gy0 v0
1

2
t2 (2.7.5)

−98.0 m = 0 −(4.9 m/s)t − (9.8 m/ ) .
1

2
s2 t2 (2.7.6)

+ t −20 = 0.t2 (2.7.7)

2.7.2

v = −gt = −4.9 m/s −(9.8 m/ )(4.0 s) = −44.1 m/s.v0 s2 (2.7.8)
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which gives v  = 24.5 m/sec.
b. At the maximum height, v = 0. With v  = 24.5 m/s, Equation  gives

or

c. To find the time when v = 0 , we use Equation :

This gives t = 2.5 s. Since the ball rises for 2.5 s, the time to fall is 2.5 s.
d. The acceleration is 9.8 m/s  everywhere, even when the velocity is zero at the top of the path. Although the velocity is zero

at the top, it is changing at the rate of 9.8 m/s  downward.
e. The velocity at t = 5.0 s can be determined with Equation :

Significance
The ball returns with the speed it had when it left. This is a general property of free fall for any initial velocity. We used a
single equation to go from throw to catch, and did not have to break the motion into two segments, upward and downward. We
are used to thinking of the effect of gravity is to create free fall downward toward Earth. It is important to understand, as
illustrated in this example, that objects moving upward away from Earth are also in a state of free fall.

A chunk of ice breaks off a glacier and falls 30.0 m before it hits the water. Assuming it falls freely (there is no air resistance),
how long does it take to hit the water? Which quantity increases faster, the speed of the ice chunk or its distance traveled?

A small rocket with a booster blasts off and heads straight upward. When at a height of 5.0 km and velocity of 200.0 m/s, it
releases its booster. (a) What is the maximum height the booster attains? (b) What is the velocity of the booster at a height of
6.0 km? Neglect air resistance.

0

0 2.7.4

= −2g(y − )v2 v2
0

y0 (2.7.11)

0 = (24.5 m/ ) −2(9.8 m/ )(y −0)s2 s2 (2.7.12)

y = 30.6 m. (2.7.13)

2.7.2

v = −gtv0 (2.7.14)

0 = 24..5 m/s −(9.8 m/ )t.s2 (2.7.15)

2

2

2.7.2

v = −gtv0

= 24.5 m/s −9.8 m/ (5.0 s)s2

= −24.5 m/s.
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Figure : A rocket releases its booster at a given height and velocity. How high and how fast does the booster go?

Strategy

We need to select the coordinate system for the acceleration of gravity, which we take as negative downward. We are given the
initial velocity of the booster and its height. We consider the point of release as the origin. We know the velocity is zero at the
maximum position within the acceleration interval; thus, the velocity of the booster is zero at its maximum height, so we can
use this information as well. From these observations, we use Equation , which gives us the maximum height of the
booster. We also use Equation  to give the velocity at 6.0 km. The initial velocity of the booster is 200.0 m/s.

Solution
a. From Equation , . With v = 0 and y  = 0, we can solve for y:

This solution gives the maximum height of the booster in our coordinate system, which has its origin at the point of release,
so the maximum height of the booster is roughly 7.0 km.

b. An altitude of 6.0 km corresponds to y = 1.0 x 10  m in the coordinate system we are using. The other initial conditions are
y  = 0, and v  = 200.0 m/s. We have, from Equation ,

Significance
We have both a positive and negative solution in (b). Since our coordinate system has the positive direction upward, the +142.8
m/s corresponds to a positive upward velocity at 6000 m during the upward leg of the trajectory of the booster. The value v =
−142.8 m/s corresponds to the velocity at 6000 m on the downward leg. This example is also important in that an object is
given an initial velocity at the origin of our coordinate system, but the origin is at an altitude above the surface of Earth, which
must be taken into account when forming the solution.

Visit this site to learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the
curves for the individual terms (for example, y = bx) to see how they add to generate the polynomial curve.

This page titled 2.7: Free Fall is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

3.7: Free Fall by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
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2.8: Finding Velocity and Displacement from Acceleration

Derive the kinematic equations for constant acceleration using integral calculus.
Use the integral formulation of the kinematic equations in analyzing motion.
Find the functional form of velocity versus time given the acceleration function.
Find the functional form of position versus time given the velocity function.

This section assumes you have enough background in calculus to be familiar with integration. In Instantaneous Velocity and Speed
and Average and Instantaneous Acceleration we introduced the kinematic functions of velocity and acceleration using the
derivative. By taking the derivative of the position function we found the velocity function, and likewise by taking the derivative of
the velocity function we found the acceleration function. Using integral calculus, we can work backward and calculate the velocity
function from the acceleration function, and the position function from the velocity function.

Kinematic Equations from Integral Calculus
Let’s begin with a particle with an acceleration a(t) is a known function of time. Since the time derivative of the velocity function is
acceleration,

we can take the indefinite integral of both sides, finding

where C  is a constant of integration. Since , the velocity is given by

Similarly, the time derivative of the position function is the velocity function,

Thus, we can use the same mathematical manipulations we just used and find

where C  is a second constant of integration.

We can derive the kinematic equations for a constant acceleration using these integrals. With a(t) = a, a constant, and doing the
integration in Equation , we find

If the initial velocity is v(0) = v , then

Then, C  = v  and

which is Equation 3.5.12. Substituting this expression into Equation  gives

Learning Objectives

v(t) = a(t),
d

dt
(2.8.1)

∫ v(t)dt = ∫ a(t)dt+ ,
d

dt
C1 (2.8.2)

1 ∫ v(t)dt = v(t)d

dt

v(t) = ∫ a(t)dt+ .C1 (2.8.3)

x(t) = v(t).
d

dt
(2.8.4)

x(t) = ∫ v(t)dt+ ,C2 (2.8.5)

2

2.8.3

v(t) = ∫ adt+ = at+ .C1 C1 (2.8.6)

0

= 0 + .v0 C1 (2.8.7)

1 0

v(t) = +at,v0 (2.8.8)

2.8.5

x(t) = ∫ ( +at)dt+ .v0 C2 (2.8.9)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45967?pdf
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/02%3A_Motion_Along_a_Straight_Line/2.08%3A_Finding_Velocity_and_Displacement_from_Acceleration
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.03%3A_Instantaneous_Velocity_and_Speed
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.04%3A_Average_and_Instantaneous_Acceleration
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.05%3A_Motion_with_Constant_Acceleration_(Part_1)#Eq.+3.12


2.8.2 https://phys.libretexts.org/@go/page/45967

Doing the integration, we find

If x(0) = x , we have

so, C  = x . Substituting back into the equation for x(t), we finally have

which is Equation 3.5.17.

A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its acceleration is
a(t) =  t m/s . (a) What is the velocity function of the motorboat? (b) At what time does the velocity reach zero? (c) What is
the position function of the motorboat? (d) What is the displacement of the motorboat from the time it begins to decelerate to
when the velocity is zero? (e) Graph the velocity and position functions.

Strategy

(a) To get the velocity function we must integrate and use initial conditions to find the constant of integration. (b) We set the
velocity function equal to zero and solve for t. (c) Similarly, we must integrate to find the position function and use initial
conditions to find the constant of integration. (d) Since the initial position is taken to be zero, we only have to evaluate the
position function at t = 0 .

Solution

We take t = 0 to be the time when the boat starts to decelerate.

a. From the functional form of the acceleration we can solve Equation  to get v(t):

At t = 0 we have v(0) = 5.0 m/s = 0 + C , so C  = 5.0 m/s or v(t) = 5.0 m/s −  t .
b. v(t) = 0 = 5.0 m/s −  t  t = 6.3 s
c. Solve Equation :

At t = 0, we set x(0) = 0 = x , since we are only interested in the displacement from when the boat starts to decelerate. We
have

Therefore, the equation for the position is

d. Since the initial position is taken to be zero, we only have to evaluate x(t) when the velocity is zero. This occurs at t = 6.3 s.
Therefore, the displacement is

x(t) = t+ a + .v0
1

2
t

2
C2 (2.8.10)

0

= 0 +0 + .x0 C2 (2.8.11)

2 0

x(t) = + t+ a .x0 v0
1

2
t
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Example 3.17: Motion of a Motorboat
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Figure : (a) Velocity of the motorboat as a function of time. The motorboat decreases its velocity to zero in 6.3 s. At times
greater than this, velocity becomes negative—meaning, the boat is reversing direction. (b) Position of the motorboat as a
function of time. At t = 6.3 s, the velocity is zero and the boat has stopped. At times greater than this, the velocity becomes
negative—meaning, if the boat continues to move with the same acceleration, it reverses direction and heads back toward
where it originated.

Significance

The acceleration function is linear in time so the integration involves simple polynomials. In Figure , we see that if we
extend the solution beyond the point when the velocity is zero, the velocity becomes negative and the boat reverses direction.
This tells us that solutions can give us information outside our immediate interest and we should be careful when interpreting
them.

A particle starts from rest and has an acceleration function . (a) What is the velocity function? (b)
What is the position function? (c) When is the velocity zero?

This page titled 2.8: Finding Velocity and Displacement from Acceleration is shared under a CC BY license and was authored, remixed, and/or
curated by OpenStax.

3.8: Finding Velocity and Displacement from Acceleration by OpenStax is licensed CC BY 4.0. Original source:
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2.E: Motion Along a Straight Line (Exercises)

Conceptual Questions

3.1 Position, Displacement, and Average Velocity
1. Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of

displacement. Identify each quantity in your example specifically.
2. Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which

magnitude of displacement and displacement are exactly the same?
3. Bacteria move back and forth using their flagella (structures that look like little tails). Speeds of up to 50 m/s (50 x 10

m/s) have been observed. The total distance traveled by a bacterium is large for its size, whereas its displacement is small.
Why is this?

4. Give an example of a device used to measure time and identify what change in that device indicates a change in time.
5. Does a car’s odometer measure distance traveled or displacement?
6. During a given time interval the average velocity of an object is zero. What can you say conclude about its displacement

over the time interval?

3.2 Instantaneous Velocity and Speed
7. There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the

difference between these two quantities.
8. Does the speedometer of a car measure speed or velocity?
9. If you divide the total distance traveled on a car trip (as determined by the odometer) by the elapsed time of the trip, are

you calculating average speed or magnitude of average velocity? Under what circumstances are these two quantities the
same?

10. How are instantaneous velocity and instantaneous speed related to one another? How do they differ?

3.3 Average and Instantaneous Acceleration
11. Is it possible for speed to be constant while acceleration is not zero?
12. Is it possible for velocity to be constant while acceleration is not zero? Explain.
13. Give an example in which velocity is zero yet acceleration is not.
14. If a subway train is moving to the left (has a negative velocity) and then comes to a stop, what is the direction of its

acceleration? Is the acceleration positive or negative?
15. Plus and minus signs are used in one-dimensional motion to indicate direction. What is the sign of an acceleration that

reduces the magnitude of a negative velocity? Of a positive velocity?

3.4 Motion with Constant Acceleration
16. When analyzing the motion of a single object, what is the required number of known physical variables that are needed to

solve for the unknown quantities using the kinematic equations?
17. State two scenarios of the kinematics of single object where three known quantities require two kinematic equations to

solve for the unknowns.

3.5 Free Fall
18. What is the acceleration of a rock thrown straight upward on the way up? At the top of its flight? On the way down?

Assume there is no air resistance.
19. An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b)

Does its velocity change direction? (c) Does the acceleration have the same sign on the way up as on the way down?
20. Suppose you throw a rock nearly straight up at a coconut in a palm tree and the rock just misses the coconut on the way

up but hits the coconut on the way down. Neglecting air resistance and the slight horizontal variation in motion to account
for the hit and miss of the coconut, how does the speed of the rock when it hits the coconut on the way down compare
with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way
up or down? Explain.

21. The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration from gravity
being the same, how many times higher could a safe fall on the Moon than on Earth (gravitational acceleration on the

μ −6
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Moon is about one-sixth that of the Earth)?
22. How many times higher could an astronaut jump on the Moon than on Earth if her takeoff speed is the same in both

locations (gravitational acceleration on the Moon is about on-sixth of that on Earth)?

3.6 Finding Velocity and Displacement from Acceleration
23. When given the acceleration function, what additional information is needed to find the velocity function and position

function?

Problems

3.1 Position, Displacement, and Average Velocity
24. Consider a coordinate system in which the positive x axis is directed upward vertically. What are the positions of a

particle (a) 5.0 m directly above the origin and (b) 2.0 m below the origin?
25. A car is 2.0 km west of a traffic light at t = 0 and 5.0 km east of the light at t = 6.0 min. Assume the origin of the

coordinate system is the light and the positive x direction is eastward. (a) What are the car’s position vectors at these two
times? (b) What is the car’s displacement between 0 min and 6.0 min?

26. The Shanghai maglev train connects Longyang Road to Pudong International Airport, a distance of 30 km. The journey
takes 8 minutes on average. What is the maglev train’s average velocity?

27. The position of a particle moving along the x-axis is given by x(t) = 4.0 − 2.0t m. (a) At what time does the particle cross
the origin? (b) What is the displacement of the particle between t = 3.0 s and t = 6.0 s?

28. A cyclist rides 8.0 km east for 20 minutes, then he turns and heads west for 8 minutes and 3.2 km. Finally, he rides east
for 16 km, which takes 40 minutes. (a) What is the final displacement of the cyclist? (b) What is his average velocity?

29. On February 15, 2013, a superbolide meteor (brighter than the Sun) entered Earth’s atmosphere over Chelyabinsk,
Russia, and exploded at an altitude of 23.5 km. Eyewitnesses could feel the intense heat from the fireball, and the blast
wave from the explosion blew out windows in buildings. The blast wave took approximately 2 minutes 30 seconds to
reach ground level. (a) What was the average velocity of the blast wave? b) Compare this with the speed of sound, which
is 343 m/s at sea level.

3.2 Instantaneous Velocity and Speed
30. A woodchuck runs 20 m to the right in 5 s, then turns and runs 10 m to the left in 3 s. (a) What is the average velocity of

the woodchuck? (b) What is its average speed?
31. Sketch the velocity-versus-time graph from the following position-versus-time graph.

32. Sketch the velocity-versus-time graph from the following position-versus-time graph.

33. Given the following velocity-versus-time graph, sketch the position-versus-time graph.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45968?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.08%3A_Finding_Velocity_and_Displacement_from_Acceleration
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.02%3A_Position_Displacement_and_Average_Velocity
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line/3.03%3A_Instantaneous_Velocity_and_Speed


2.E.3 https://phys.libretexts.org/@go/page/45968

34. An object has a position function x(t) = 5t m. (a) What is the velocity as a function of time? (b) Graph the position
function and the velocity function. 35. A particle moves along the x-axis according to x(t) = 10t − 2t  m. (a) What is the
instantaneous velocity at t = 2 s and t = 3 s? (b) What is the instantaneous speed at these times? (c) What is the average
velocity between t = 2 s and t = 3 s?

35. Unreasonable results. A particle moves along the x-axis according to x(t) = 3t  + 5t . At what time is the velocity of the
particle equal to zero? Is this reasonable?

3.3 Average and Instantaneous Acceleration
37. A cheetah can accelerate from rest to a speed of 30.0 m/s in 7.00 s. What is its acceleration?
38. Dr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme acceleration on the human body. On

December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s and
was brought jarringly back to rest in only 1.40 s. Calculate his (a) acceleration in his direction of motion and (b)
acceleration opposite to his direction of motion. Express each in multiples of g (9.80 m/s ) by taking its ratio to the
acceleration of gravity.

39. Sketch the acceleration-versus-time graph from the following velocity-versus-time graph.

40. A commuter backs her car out of her garage with an acceleration of 1.40 m/s . (a) How long does it take her to reach a
speed of 2.00 m/s? (b) If she then brakes to a stop in 0.800 s, what is her acceleration?

41. Assume an intercontinental ballistic missile goes from rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual speed
and time are classified). What is its average acceleration in meters per second and in multiples of g (9.80 m/s )?

42. An airplane, starting from rest, moves down the runway at constant acceleration for 18 s and then takes off at a speed of
60 m/s. What is the average acceleration of the plane?

3.4 Motion with Constant Acceleration
43. A particle moves in a straight line at a constant velocity of 30 m/s. What is its displacement between t = 0 and t = 5.0 s?
44. A particle moves in a straight line with an initial velocity of 0 m/s and a constant acceleration of 30 m/s . If x = 0 at t = 0,

what is the particle’s position at t = 5 s?
45. A particle moves in a straight line with an initial velocity of 30 m/s and constant acceleration 30 m/s . (a) What is its

displacement at t = 5 s? (b) What is its velocity at this same time?
46. (a) Sketch a graph of velocity versus time corresponding to the graph of displacement versus time given in the following

figure. (b) Identify the time or times (t , t , t , etc.) at which the instantaneous velocity has the greatest positive value. (c)
At which times is it zero? (d) At which times is it negative?
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47. (a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in the following
figure. (b) Identify the time or times (ta , tb, tc , etc.) at which the acceleration has the greatest positive value. (c) At
which times is it zero? (d) At which times is it negative?

48. A particle has a constant acceleration of 6.0 m/s . (a) If its initial velocity is 2.0 m/s, at what time is its displacement 5.0
m? (b) What is its velocity at that time?

49. At t = 10 s, a particle is moving from left to right with a speed of 5.0 m/s. At t = 20 s, the particle is moving right to left
with a speed of 8.0 m/s. Assuming the particle’s acceleration is constant, determine (a) its acceleration, (b) its initial
velocity, and (c) the instant when its velocity is zero.

50. A well-thrown ball is caught in a well-padded mitt. If the acceleration of the ball is 2.10 x 10  m/s , and 1.85 ms (1 ms =
10  s) elapses from the time the ball first touches the mitt until it stops, what is the initial velocity of the ball?

51. A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of 6.20 x 10  m/s  for
8.10 x 10  s. What is its muzzle velocity (that is, its final velocity)?

52. (a) A light-rail commuter train accelerates at a rate of 1.35 m/s . How long does it take to reach its top speed of 80.0
km/h, starting from rest? (b) The same train ordinarily decelerates at a rate of 1.65 m/s . How long does it take to come to
a stop from its top speed? (c) In emergencies, the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30
s. What is its emergency acceleration in meters per second squared?

53. While entering a freeway, a car accelerates from rest at a rate of 2.04 m/s  for 12.0 s. (a) Draw a sketch of the situation.
(b) List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the
unknown, then indicate how you chose the appropriate equation to solve for it. After choosing the equation, show your
steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car’s
final velocity? Solve for this unknown in the same manner as in (c), showing all steps explicitly.

54. Unreasonable results At the end of a race, a runner decelerates from a velocity of 9.00 m/s at a rate of 2.00 m/s . (a)
How far does she travel in the next 5.00 s? (b) What is her final velocity? (c) Evaluate the result. Does it make sense?

55. Blood is accelerated from rest to 30.0 cm/s in a distance of 1.80 cm by the left ventricle of the heart. (a) Make a sketch of
the situation. (b) List the knowns in this problem. (c) How long does the acceleration take? To solve this part, first
identify the unknown, then discuss how you chose the appropriate equation to solve for it. After choosing the equation,
show your steps in solving for the unknown, checking your units. (d) Is the answer reasonable when compared with the
time for a heartbeat?

56. During a slap shot, a hockey player accelerates the puck from a velocity of 8.00 m/s to 40.0 m/s in the same direction. If
this shot takes 3.33 x 10  s , what is the distance over which the puck accelerates?

57. A powerful motorcycle can accelerate from rest to 26.8 m/s (100 km/h) in only 3.90 s. (a) What is its average
acceleration? (b) Assuming constant acceleration, how far does it travel in that time?

58. Freight trains can produce only relatively small accelerations. (a) What is the final velocity of a freight train that
accelerates at a rate of 0.0500 m/s  for 8.00 min, starting with an initial velocity of 4.00 m/s? (b) If the train can slow
down at a rate of 0.550 m/s , how long will it take to come to a stop from this velocity? (c) How far will it travel in each
case?
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59. A fireworks shell is accelerated from rest to a velocity of 65.0 m/s over a distance of 0.250 m. (a) Calculate the
acceleration. (b) How long did the acceleration last?

60. A swan on a lake gets airborne by flapping its wings and running on top of the water. (a) If the swan must reach a
velocity of 6.00 m/s to take off and it accelerates from rest at an average rate of 0.35 m/s , how far will it travel before
becoming airborne? (b) How long does this take?

61. A woodpecker’s brain is specially protected from large accelerations by tendon-like attachments inside the skull. While
pecking on a tree, the woodpecker’s head comes to a stop from an initial velocity of 0.600 m/s in a distance of only 2.00
mm. (a) Find the acceleration in meters per second squared and in multiples of g, where g = 9.80 m/s . (b) Calculate the
stopping time. (c) The tendons cradling the brain stretch, making its stopping distance 4.50 mm (greater than the head
and, hence, less acceleration of the brain). What is the brain’s acceleration, expressed in multiples of g?

62. An unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full
stop after compressing the padding and his body 0.350 m. (a) What is his acceleration? (b) How long does the collision
last?

63. A care package is dropped out of a cargo plane and lands in the forest. If we assume the care package speed on impact is
54 m/s (123 mph), then what is its acceleration? Assume the trees and snow stops it over a distance of 3.0 m.

64. An express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of 0.150
m/s  as it goes through. The station is 210.0 m long. (a) How fast is it going when the nose leaves the station? (b) How
long is the nose of the train in the station? (c) If the train is 130 m long, what is the velocity of the end of the train as it
leaves? (d) When does the end of the train leave the station?

65. Unreasonable results Dragsters can actually reach a top speed of 145.0 m/s in only 4.45 s. (a) Calculate the average
acceleration for such a dragster. (b) Find the final velocity of this dragster starting from rest and accelerating at the rate
found in (a) for 402.0 m (a quarter mile) without using any information on time. (c) Why is the final velocity greater than
that used to find the average acceleration? (Hint: Consider whether the assumption of constant acceleration is valid for a
dragster. If not, discuss whether the acceleration would be greater at the beginning or end of the run and what effect that
would have on the final velocity.)

3.5 Free Fall
66. Calculate the displacement and velocity at times of (a) 0.500 s, (b) 1.00 s, (c) 1.50 s, and (d) 2.00 s for a ball thrown

straight up with an initial velocity of 15.0 m/s. Take the point of release to be y  = 0.
67. Calculate the displacement and velocity at times of (a) 0.500 s, (b) 1.00 s, (c) 1.50 s, (d) 2.00 s, and (e) 2.50 s for a rock

thrown straight down with an initial velocity of 14.0 m/s from the Verrazano Narrows Bridge in New York City. The
roadway of this bridge is 70.0 m above the water.

68. A basketball referee tosses the ball straight up for the starting tip-off. At what velocity must a basketball player leave the
ground to rise 1.25 m above the floor in an attempt to get the ball?

69. A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight
down to the victim with an initial velocity of 1.40 m/s and observes that it takes 1.8 s to reach the water. (a) List the
knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the
helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity
is reasonable.

70. Unreasonable results A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List
the knowns in this problem. (b) How high does his body rise above the water? To solve this part, first note that the final
velocity is now a known, and identify its value. Then, identify the unknown and discuss how you chose the appropriate
equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and
discuss whether the answer is reasonable. (c) How long a time is the dolphin in the air? Neglect any effects resulting from
his size or orientation.

71. A diver bounces straight up from a diving board, avoiding the diving board on the way down, and falls feet first into a
pool. She starts with a velocity of 4.00 m/s and her takeoff point is 1.80 m above the pool. (a) What is her highest point
above the board? (b) How long a time are her feet in the air? (c) What is her velocity when her feet hit the water?

72. (a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff
with an initial velocity of 8.00 m/s. (b) How long a time would it take to reach the ground if it is thrown straight down
with the same speed?

73. A very strong, but inept, shot putter puts the shot straight up vertically with an initial velocity of 11.0 m/s. How long a
time does he have to get out of the way if the shot was released at a height of 2.20 m and he is 1.80 m tall?
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74. You throw a ball straight up with an initial velocity of 15.0 m/s. It passes a tree branch on the way up at a height of 7.0 m.
How much additional time elapses before the ball passes the tree branch on the way back down?

75. A kangaroo can jump over an object 2.50 m high. (a) Considering just its vertical motion, calculate its vertical speed
when it leaves the ground. (b) How long a time is it in the air?

76. Standing at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a
height of 105.0 m. He can’t see the rock right away, but then does, 1.50 s later. (a) How far above the hiker is the rock
when he can see it? (b) How much time does he have to move before the rock hits his head?

77. There is a 250-m-high cliff at Half Dome in Yosemite National Park in California. Suppose a boulder breaks loose from
the top of this cliff. (a) How fast will it be going when it strikes the ground? (b) Assuming a reaction time of 0.300 s, how
long a time will a tourist at the bottom have to get out of the way after hearing the sound of the rock breaking loose
(neglecting the height of the tourist, which would become negligible anyway if hit)? The speed of sound is 335.0 m/s on
this day.

3.6 Finding Velocity and Displacement from Acceleration
78. The acceleration of a particle varies with time according to the equation a(t) = pt  − qt . Initially, the velocity and position

are zero. (a) What is the velocity as a function of time? (b) What is the position as a function of time?
79. Between t = 0 and t = t , a rocket moves straight upward with an acceleration given by a(t) = A − Bt , where A and B

are constants. (a) If x is in meters and t is in seconds, what are the units of A and B? (b) If the rocket starts from rest, how
does the velocity vary between t = 0 and t = t ? (c) If its initial position is zero, what is the rocket’s position as a function
of time during this same time interval?

80. The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt , where A = 2 m/s, B =
0.25 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration and position of the particle at t = 2.0 s and t = 5.0 s. Assume that
x(t = 1 s) = 0.

81. A particle at rest leaves the origin with its velocity increasing with time according to v(t) = 3.2t m/s. At 5.0 s, the
particle’s velocity starts decreasing according to [16.0 – 1.5(t – 5.0)] m/s. This decrease continues until t = 11.0 s, after
which the particle’s velocity remains constant at 7.0 m/s. (a) What is the acceleration of the particle as a function of time?
(b) What is the position of the particle at t = 2.0 s, t = 7.0 s, and t = 12.0 s?

Additional Problems
82. Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity,

how long did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher’s mound? Compare this
with the average reaction time of a human to a visual stimulus, which is 0.25 s.

83. An airplane leaves Chicago and makes the 3000-km trip to Los Angeles in 5.0 h. A second plane leaves Chicago one-half
hour later and arrives in Los Angeles at the same time. Compare the average velocities of the two planes. Ignore the
curvature of Earth and the difference in altitude between the two cities.

84. Unreasonable Results A cyclist rides 16.0 km east, then 8.0 km west, then 8.0 km east, then 32.0 km west, and finally
11.2 km east. If his average velocity is 24 km/ h, how long did it take him to complete the trip? Is this a reasonable time?

85. An object has an acceleration of +1.2 cm/s . At t = 4.0 s , its velocity is −3.4 cm/s. Determine the object’s velocities at t =
1.0 s and t = 6.0 s.

86. A particle moves along the x-axis according to the equation x(t) = 2.0 − 4.0t  m. What are the velocity and acceleration at
t = 2.0 s and t = 5.0 s?

87. A particle moving at constant acceleration has velocities of 2.0 m/s at t = 2.0 s and −7.6 m/s at t = 5.2 s. What is the
acceleration of the particle?

88. A train is moving up a steep grade at constant velocity (see following figure) when its caboose breaks loose and starts
rolling freely along the track. After 5.0 s, the caboose is 30 m behind the train. What is the acceleration of the caboose?
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89. An electron is moving in a straight line with a velocity of 4.0 x 10  m/s. It enters a region 5.0 cm long where it undergoes
an acceleration of 6.0 x 10  m/s  along the same straight line. (a) What is the electron’s velocity when it emerges from
this region? b) How long does the electron take to cross the region?

90. An ambulance driver is rushing a patient to the hospital. While traveling at 72 km/h, she notices the traffic light at the
upcoming intersections has turned amber. To reach the intersection before the light turns red, she must travel 50 m in 2.0
s. (a) What minimum acceleration must the ambulance have to reach the intersection before the light turns red? (b) What
is the speed of the ambulance when it reaches the intersection?

91. A motorcycle that is slowing down uniformly covers 2.0 successive km in 80 s and 120 s, respectively. Calculate (a) the
acceleration of the motorcycle and (b) its velocity at the beginning and end of the 2-km trip.

92. A cyclist travels from point A to point B in 10 min. During the first 2.0 min of her trip, she maintains a uniform
acceleration of 0.090 m/s . She then travels at constant velocity for the next 5.0 min. Next, she decelerates at a constant
rate so that she comes to a rest at point B 3.0 min later. (a) Sketch the velocity-versus-time graph for the trip. (b) What is
the acceleration during the last 3 min? (c) How far does the cyclist travel?

93. Two trains are moving at 30 m/s in opposite directions on the same track. The engineers see simultaneously that they are
on a collision course and apply the brakes when they are 1000 m apart. Assuming both trains have the same acceleration,
what must this acceleration be if the trains are to stop just short of colliding?

94. A 10.0-m-long truck moving with a constant velocity of 97.0 km/h passes a 3.0-m-long car moving with a constant
velocity of 80.0 km/h. How much time elapses between the moment the front of the truck is even with the back of the car
and the moment the back of the truck is even with the front of the car?

95. A police car waits in hiding slightly off the highway. A speeding car is spotted by the police car doing 40 m/s. At the
instant the speeding car passes the police car, the police car accelerates from rest at 4 m/s  to catch the speeding car. How
long does it take the police car to catch the speeding car?

96. Pablo is running in a half marathon at a velocity of 3 m/s. Another runner, Jacob, is 50 meters behind Pablo with the same
velocity. Jacob begins to accelerate at 0.05 m/s . (a) How long does it take Jacob to catch Pablo? (b) What is the distance
covered by Jacob? (c) What is the final velocity of the Jacob?

97. Unreasonable results A runner approaches the finish line and is 75 m away; her average speed at this position is 8 m/s.
She decelerates at this point at 0.5 m/s . How long does it take her to cross the finish line from 75 m away? Is this
reasonable?

98. An airplane accelerates at 5.0 m/s  for 30.0 s. During this time, it covers a distance of 10.0 km. What are the initial and
final velocities of the airplane?

99. Compare the distance traveled of an object that undergoes a change in velocity that is twice its initial velocity with an
object that changes its velocity by four times its initial velocity over the same time period. The accelerations of both
objects are constant.

100. An object is moving east with a constant velocity and is at position x  at time t  = 0. (a) With what acceleration must the
object have for its total displacement to be zero at a later time t? (b) What is the physical interpretation of the solution in
the case for t → ?
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101. A ball is thrown straight up. It passes a 2.00-m-high window 7.50 m off the ground on its path up and takes 1.30 s to go
past the window. What was the ball’s initial velocity?

102. A coin is dropped from a hot-air balloon that is 300 m above the ground and rising at 10.0 m/s upward. For the coin, find
(a) the maximum height reached, (b) its position and velocity 4.00 s after being released, and (c) the time before it hits the
ground.

103. A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate
its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c)
Calculate its acceleration during contact with the floor if that contact lasts 3.50 ms (3.50 x 10  s) (d) How much did the
ball compress during its collision with the floor, assuming the floor is absolutely rigid?

104. Unreasonable results. A raindrop falls from a cloud 100 m above the ground. Neglect air resistance. What is the speed
of the raindrop when it hits the ground? Is this a reasonable number?

105. Compare the time in the air of a basketball player who jumps 1.0 m vertically off the floor with that of a player who
jumps 0.3 m vertically.

106. Suppose that a person takes 0.5 s to react and move his hand to catch an object he has dropped. (a) How far does the
object fall on Earth, where g = 9.8 m/s ? (b) How far does the object fall on the Moon, where the acceleration due to
gravity is 1/6 of that on Earth?

107. A hot-air balloon rises from ground level at a constant velocity of 3.0 m/s. One minute after liftoff, a sandbag is dropped
accidentally from the balloon. Calculate (a) the time it takes for the sandbag to reach the ground and (b) the velocity of
the sandbag when it hits the ground.

108. (a) A world record was set for the men’s 100-m dash in the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica.
Bolt “coasted” across the finish line with a time of 9.69 s. If we assume that Bolt accelerated for 3.00 s to reach his
maximum speed, and maintained that speed for the rest of the race, calculate his maximum speed and his acceleration. (b)
During the same Olympics, Bolt also set the world record in the 200-m dash with a time of 19.30 s. Using the same
assumptions as for the 100-m dash, what was his maximum speed for this race?

109. An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the first
second. (b) Determine the final velocity at which the object hits the ground. (c) Determine the distance traveled during
the last second of motion before hitting the ground.

110. A steel ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.45 m. (a) Calculate its
velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c)
Calculate its acceleration during contact with the floor if that contact lasts 0.0800 ms (8.00 x 10  s) (d) How much did
the ball compress during its collision with the floor, assuming the floor is absolutely rigid?

111. An object is dropped from a roof of a building of height h. During the last second of its descent, it drops a distance h/3.
Calculate the height of the building.

Challenge Problems
112. In a 100-m race, the winner is timed at 11.2 s. The second-place finisher’s time is 11.6 s. How far is the second-place

finisher behind the winner when she crosses the finish line? Assume the velocity of each runner is constant throughout
the race.

113. The position of a particle moving along the x-axis varies with time according to x(t) = 5.0t  − 4.0t  m. Find (a) the
velocity and acceleration of the particle as functions of time, (b) the velocity and acceleration at t = 2.0 s, (c) the time at
which the position is a maximum, (d) the time at which the velocity is zero, and (e) the maximum position.

114. A cyclist sprints at the end of a race to clinch a victory. She has an initial velocity of 11.5 m/s and accelerates at a rate of
0.500 m/s  for 7.00 s. (a) What is her final velocity? (b) The cyclist continues at this velocity to the finish line. If she is
300 m from the finish line when she starts to accelerate, how much time did she save? (c) The second-place winner was
5.00 m ahead when the winner started to accelerate, but he was unable to accelerate, and traveled at 11.8 m/s until the
finish line. What was the difference in finish time in seconds between the winner and runner-up? How far back was the
runner-up when the winner crossed the finish line?

115. In 1967, New Zealander Burt Munro set the world record for an Indian motorcycle, on the Bonneville Salt Flats in Utah,
of 295.38 km/h. The one-way course was 8.00 km long. Acceleration rates are often described by the time it takes to
reach 96.0 km/h from rest. If this time was 4.00 s and Burt accelerated at this rate until he reached his maximum speed,
how long did it take Burt to complete the course?
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2.S: Motion Along a Straight Line (Summary)

Key Terms
acceleration due to gravity acceleration of an object as a result of gravity

average acceleration the rate of change in velocity; the change in velocity over time

average speed the total distance traveled divided by elapsed time

average velocity
the displacement divided by the time over which displacement

occurs

displacement the change in position of an object

distance traveled the total length of the path traveled between two positions

elapsed time the difference between the ending time and the beginning time

free fall the state of movement that results from gravitational force only

instantaneous acceleration acceleration at a specific point in time

instantaneous speed the absolute value of the instantaneous velocity

instantaneous velocity the velocity at a specific instant or time point

kinematics
the description of motion through properties such as position, time,

velocity, and acceleration

position the location of an object at a particular time

total displacement the sum of individual displacements over a given time period

two-body pursuit problem
a kinematics problem in which the unknowns are calculated by
solving the kinematic equations simultaneously for two moving

objects

Key Equations

Displacement

Total displacement

Average velocity

Instantaneous velocity

Average speed

Instantaneous speed

Average acceleration

Δx = −xf xi (2.S.1)

Δ = ∑ΔxTotal xi (2.S.2)

= =v̄
Δx

Δt

−x2 x1

−t2 t1
(2.S.3)

v(t) =
dx(t)

dt
(2.S.4)

=s̄
Total distance

Elapsed time
(2.S.5)

Instantaneous speed = |v(t)| (2.S.6)

= =ā
Δv

Δt

−vf x0

−tf t0
(2.S.7)
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Instantaneous acceleration

Position from average velocity

Average velocity

Velocity from acceleration

Position from velocity and acceleration

Velocity from distance

Velocity of free fall

Height of free fall

Velocity of free fall from height

Velocity from acceleration

Position from velocity

Summary

3.1 Position, Displacement, and Average Velocity
Kinematics is the description of motion without considering its causes. In this chapter, it is limited to motion along a straight
line, called one-dimensional motion.
Displacement is the change in position of an object. The SI unit for displacement is the meter. Displacement has direction as
well as magnitude.
Distance traveled is the total length of the path traveled between two positions.
Time is measured in terms of change. The time between two position points x  and x  is t = t − t . Elapsed time for an event
is t = t  − t , where t  is the final time and t  is the initial time. The initial time is often taken to be zero.
Average velocity  is defined as displacement divided by elapsed time. If x , t  and x , t  are two position time points, the
average velocity between these points is

3.2 Instantaneous Velocity and Speed
Instantaneous velocity is a continuous function of time and gives the velocity at any point in time during a particle’s motion. We
can calculate the instantaneous velocity at a specific time by taking the derivative of the position function, which gives us the
functional form of instantaneous velocity v(t).
Instantaneous velocity is a vector and can be negative.
Instantaneous speed is found by taking the absolute value of instantaneous velocity, and it is always positive.
Average speed is total distance traveled divided by elapsed time.

a(t) =
dv(t)

dt
(2.S.8)

x = + tx0 v̄ (2.S.9)

=v̄
+ vv0

2
(2.S.10)

v = + at (constant a)v0 (2.S.11)

x = + t + a (constant a)x0 v0
1

2
t

2 (2.S.12)

= + 2a(x− ) (constant a)v
2

v2
0 x0 (2.S.13)

v = − gt(positive upward)v0 (2.S.14)

y = + t − gy0 v0
1

2
t

2 (2.S.15)

= − 2g(y− )v
2

v2
0 y0 (2.S.16)

v(t) = ∫ a(t)dt +C1 (2.S.17)

x(t) = ∫ v(t)dt +C2 (2.S.18)

1 2 Δ 2 1
Δ f 0 f 0

v̄ 1 1 2 2

= = .v̄
Δx

Δt

−x2 x1

−t2 t1
(2.S.19)
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The slope of a position-versus-time graph at a specific time gives instantaneous velocity at that time.

3.3 Average and Instantaneous Acceleration
Acceleration is the rate at which velocity changes. Acceleration is a vector; it has both a magnitude and direction. The SI unit
for acceleration is meters per second squared.
Acceleration can be caused by a change in the magnitude or the direction of the velocity, or both.
Instantaneous acceleration a(t) is a continuous function of time and gives the acceleration at any specific time during the
motion. It is calculated from the derivative of the velocity function. Instantaneous acceleration is the slope of the velocity-
versus-time graph.
Negative acceleration (sometimes called deceleration) is acceleration in the negative direction in the chosen coordinate system.

3.4 Motion with Constant Acceleration
When analyzing one-dimensional motion with constant acceleration, identify the known quantities and choose the appropriate
equations to solve for the unknowns. Either one or two of the kinematic equations are needed to solve for the unknowns,
depending on the known and unknown quantities.
Two-body pursuit problems always require two equations to be solved simultaneously for the unknowns.

3.5 Free Fall
An object in free fall experiences constant acceleration if air resistance is negligible.
On Earth, all free-falling objects have an acceleration g due to gravity, which averages g = 9.81 m/s .
For objects in free fall, the upward direction is normally taken as positive for displacement, velocity, and acceleration.

3.6 Finding Velocity and Displacement from Acceleration
Integral calculus gives us a more complete formulation of kinematics.
If acceleration a(t) is known, we can use integral calculus to derive expressions for velocity v(t) and position x(t).
If acceleration is constant, the integral equations reduce to Equation 3.12 and Equation 3.13 for motion with constant
acceleration.
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CHAPTER OVERVIEW

3: Vectors
Vectors are a component part of physics in much the same way as sentences are a component part of literature. In introductory
physics, vectors are Euclidean quantities that have geometric representations as arrows in one dimension (in a line), in two
dimensions (in a plane), or in three dimensions (in space). They can be added, subtracted, or multiplied. In this chapter, we explore
elements of vector algebra for applications in mechanics and in electricity and magnetism. Vector operations also have numerous
generalizations in other branches of physics.

3.1: Prelude to Vectors
3.2: Scalars and Vectors (Part 1)
3.3: Scalars and Vectors (Part 2)
3.4: Coordinate Systems and Components of a Vector (Part 1)
3.5: Coordinate Systems and Components of a Vector (Part 2)
3.6: Algebra of Vectors
3.7: Algebra of Vectors Examples
3.8: Products of Vectors (Part 1)
3.9: Products of Vectors (Part 2)
3.A: Vectors (Answers)
3.E: Vectors (Exercises)
3.S: Vectors (Summary)

Thumbnail: A signpost gives information about distances and directions to towns or to other locations relative to the location of the
signpost. Distance is a scalar quantity. Knowing the distance alone is not enough to get to the town; we must also know the
direction from the signpost to the town. The direction, together with the distance, is a vector quantity commonly called the
displacement vector. A signpost, therefore, gives information about displacement vectors from the signpost to towns. (credit:
modification of work by “studio tdes”/Flickr).
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3.1: Prelude to Vectors
Vectors are essential to physics and engineering. Many fundamental physical quantities are vectors, including displacement,
velocity, force, and electric and magnetic vector fields. Scalar products of vectors define other fundamental scalar physical
quantities, such as energy. Vector products of vectors define still other fundamental vector physical quantities, such as torque and
angular momentum. In other words, vectors are a component part of physics in much the same way as sentences are a component
part of literature.

Figure : A signpost gives information about distances and directions to towns or to other locations relative to the location of
the signpost. Distance is a scalar quantity. Knowing the distance alone is not enough to get to the town; we must also know the
direction from the signpost to the town. The direction, together with the distance, is a vector quantity commonly called the
displacement vector. A signpost, therefore, gives information about displacement vectors from the signpost to towns. (credit:
modification of work by “studio tdes”/Flickr)

In introductory physics, vectors are Euclidean quantities that have geometric representations as arrows in one dimension (in a line),
in two dimensions (in a plane), or in three dimensions (in space). They can be added, subtracted, or multiplied. In this chapter, we
explore elements of vector algebra for applications in mechanics and in electricity and magnetism. Vector operations also have
numerous generalizations in other branches of physics.
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3.2: Scalars and Vectors (Part 1)

Describe the difference between vector and scalar quantities.
Identify the magnitude and direction of a vector.
Explain the effect of multiplying a vector quantity by a scalar.
Describe how one-dimensional vector quantities are added or subtracted.
Explain the geometric construction for the addition or subtraction of vectors in a plane.
Distinguish between a vector equation and a scalar equation.

Many familiar physical quantities can be specified completely by giving a single number and the appropriate unit. For example, “a
class period lasts 50 min” or “the gas tank in my car holds 65 L” or “the distance between two posts is 100 m.” A physical quantity
that can be specified completely in this manner is called a scalar quantity. Scalar is a synonym of “number.” Time, mass, distance,
length, volume, temperature, and energy are examples of scalar quantities.

Scalar quantities that have the same physical units can be added or subtracted according to the usual rules of algebra for numbers.
For example, a class ending 10 min earlier than 50 min lasts 50 min − 10 min = 40 min. Similarly, a 60-cal serving of corn
followed by a 200-cal serving of donuts gives 60 cal + 200 cal = 260 cal of energy. When we multiply a scalar quantity by a
number, we obtain the same scalar quantity but with a larger (or smaller) value. For example, if yesterday’s breakfast had 200 cal of
energy and today’s breakfast has four times as much energy as it had yesterday, then today’s breakfast has 4(200 cal) = 800 cal of
energy. Two scalar quantities can also be multiplied or divided by each other to form a derived scalar quantity. For example, if a
train covers a distance of 100 km in 1.0 h, its speed is 100.0 km/1.0 h = 27.8 m/s, where the speed is a derived scalar quantity
obtained by dividing distance by time.

Many physical quantities, however, cannot be described completely by just a single number of physical units. For example, when
the U.S. Coast Guard dispatches a ship or a helicopter for a rescue mission, the rescue team must know not only the distance to the
distress signal, but also the direction from which the signal is coming so they can get to its origin as quickly as possible. Physical
quantities specified completely by giving a number of units (magnitude) and a direction are called vector quantities. Examples of
vector quantities include displacement, velocity, position, force, and torque. In the language of mathematics, physical vector
quantities are represented by mathematical objects called vectors (Figure ). We can add or subtract two vectors, and we can
multiply a vector by a scalar or by another vector, but we cannot divide by a vector. The operation of division by a vector is not
defined.

Figure : We draw a vector from the initial point or origin (called the “tail” of a vector) to the end or terminal point (called the
“head” of a vector), marked by an arrowhead. Magnitude is the length of a vector and is always a positive scalar quantity. (credit:
modification of work by Cate Sevilla)

Let’s examine vector algebra using a graphical method to be aware of basic terms and to develop a qualitative understanding. In
practice, however, when it comes to solving physics problems, we use analytical methods, which we’ll see in the next section.
Analytical methods are more simple computationally and more accurate than graphical methods. From now on, to distinguish
between a vector and a scalar quantity, we adopt the common convention that a letter in bold type with an arrow above it denotes a
vector, and a letter without an arrow denotes a scalar. For example, a distance of 2.0 km, which is a scalar quantity, is denoted by d
= 2.0 km, whereas a displacement of 2.0 km in some direction, which is a vector quantity, is denoted by .

Suppose you tell a friend on a camping trip that you have discovered a terrific fishing hole 6 km from your tent. It is unlikely your
friend would be able to find the hole easily unless you also communicate the direction in which it can be found with respect to your
campsite. You may say, for example, “Walk about 6 km northeast from my tent.” The key concept here is that you have to give not
one but two pieces of information—namely, the distance or magnitude (6 km) and the direction (northeast).
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Displacement is a general term used to describe a change in position, such as during a trip from the tent to the fishing hole.
Displacement is an example of a vector quantity. If you walk from the tent (location A) to the hole (location B), as shown in Figure 

, the vector , representing your displacement, is drawn as the arrow that originates at point A and ends at point B. The
arrowhead marks the end of the vector. The direction of the displacement vector  is the direction of the arrow. The length of the
arrow represents the magnitude D of vector . Here, D = 6 km. Since the magnitude of a vector is its length, which is a positive
number, the magnitude is also indicated by placing the absolute value notation around the symbol that denotes the vector; so, we
can write equivalently that D ≡ | |. To solve a vector problem graphically, we need to draw the vector  to scale. For example, if
we assume 1 unit of distance (1 km) is represented in the drawing by a line segment of length u = 2 cm, then the total displacement
in this example is represented by a vector of length d = 6u = 6(2 cm) = 12 cm , as shown in Figure . Notice that here, to avoid
confusion, we used D = 6 km to denote the magnitude of the actual displacement and d = 12 cm to denote the length of its
representation in the drawing.

Figure : The displacement vector from point A (the initial position at the campsite) to point B (the final position at the fishing
hole) is indicated by an arrow with origin at point A and end at point B. The displacement is the same for any of the actual paths
(dashed curves) that may be taken between points A and B.

Figure : A displacement of magnitude 6 km is drawn to scale as a vector of length 12 cm when the length of 2 cm
represents 1 unit of displacement (which in this case is 1 km).

Suppose your friend walks from the campsite at A to the fishing pond at B and then walks back: from the fishing pond at B to the
campsite at A. The magnitude of the displacement vector  from A to B is the same as the magnitude of the displacement
vector  from B to A (it equals 6 km in both cases), so we can write  = . However, vector  is not equal to vector 

 because these two vectors have different directions:  ≠ . In Figure 2.3, vector  would be represented by a
vector with an origin at point B and an end at point A, indicating vector  points to the southwest, which is exactly 180°
opposite to the direction of vector . We say that vector  is antiparallel to vector  and write  = , where
the minus sign indicates the antiparallel direction.

Two vectors that have identical directions are said to be parallel vectors—meaning, they are parallel to each other. Two parallel
vectors  and  are equal, denoted by  = , if and only if they have equal magnitudes | | = | |. Two vectors with directions
perpendicular to each other are said to be orthogonal vectors. These relations between vectors are illustrated in Figure .
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Figure : Various relations between two vectors  and . (a)  ≠  because A ≠ B . (b)  ≠  because they are not parallel
and A ≠ B . (c)  ≠  because they have different directions (even though |  | = |  | = A) . (d)  =  because they are
parallel and have identical magnitudes A = B. (e)  ≠  because they have different directions (are not parallel); here, their
directions differ by 90° —meaning, they are orthogonal.

Two motorboats named Alice and Bob are moving on a lake. Given the information about their velocity vectors in each of the
following situations, indicate whether their velocity vectors are equal or otherwise.

a. Alice moves north at 6 knots and Bob moves west at 6 knots.
b. Alice moves west at 6 knots and Bob moves west at 3 knots.
c. Alice moves northeast at 6 knots and Bob moves south at 3 knots.
d. Alice moves northeast at 6 knots and Bob moves southwest at 6 knots.
e. Alice moves northeast at 2 knots and Bob moves closer to the shore northeast at 2 knots.

Algebra of Vectors in One Dimension
Vectors can be multiplied by scalars, added to other vectors, or subtracted from other vectors. We can illustrate these vector
concepts using an example of the fishing trip seen in Figure .

Figure : Displacement vectors for a fishing trip. (a) Stopping to rest at point C while walking from camp (point A) to the pond
(point B). (b) Going back for the dropped tackle box (point D). (c) Finishing up at the fishing pond.

Suppose your friend departs from point A (the campsite) and walks in the direction to point B (the fishing pond), but, along the
way, stops to rest at some point C located three-quarters of the distance between A and B, beginning from point A (Figure ).
What is his displacement vector  when he reaches point C? We know that if he walks all the way to B, his displacement vector
relative to A is , which has magnitude D  = 6 km and a direction of northeast. If he walks only a 0.75 fraction of the total
distance, maintaining the northeasterly direction, at point C he must be 0.75 D  = 4.5 km away from the campsite at A. So, his
displacement vector at the rest point C has magnitude D  = 4.5 km = 0.75 D  and is parallel to the displacement vector .
All of this can be stated succinctly in the form of the following vector equation:

3.2.4 A ⃗  B⃗  A ⃗  B⃗  A ⃗  B⃗ 
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⃗  −A

⃗ 
A
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In a vector equation, both sides of the equation are vectors. The previous equation is an example of a vector multiplied by a
positive scalar (number)  = 0.75. The result, , of such a multiplication is a new vector with a direction parallel to the
direction of the original vector . In general, when a vector  is multiplied by a positive scalar , the result is a new vector 

 that is parallel to :

The magnitude | | of this new vector is obtained by multiplying the magnitude | | of the original vector, as expressed by the
scalar equation:

In a scalar equation, both sides of the equation are numbers. Equation  is a scalar equation because the magnitudes of vectors
are scalar quantities (and positive numbers). If the scalar  is negative in the vector equation Equation , then the magnitude |

| of the new vector is still given by Equation , but the direction of the new vector  is antiparallel to the direction of .
These principles are illustrated in Figure  by two examples where the length of vector  is 1.5 units. When  = 2, the new
vector  = 2  has length B = 2A = 3.0 units (twice as long as the original vector) and is parallel to the original vector. When  =
−2, the new vector  = −2  has length C = |−2| A = 3.0 units (twice as long as the original vector) and is antiparallel to the
original vector.

Figure : Algebra of vectors in one dimension. (a) Multiplication by a scalar. (b) Addition of two vectors (  is called the
resultant of vectors (  and ( ). (c) Subtraction of two vectors (  is the difference of vectors (  and ).

Now suppose your fishing buddy departs from point A (the campsite), walking in the direction to point B (the fishing hole), but he
realizes he lost his tackle box when he stopped to rest at point C (located three-quarters of the distance between A and B, beginning
from point A). So, he turns back and retraces his steps in the direction toward the campsite and finds the box lying on the path at
some point D only 1.2 km away from point C (see Figure ). What is his displacement vector  when he finds the box at
point D? What is his displacement vector  from point D to the hole? We have already established that at rest point C his
displacement vector is  = 0.75 . Starting at point C, he walks southwest (toward the campsite), which means his new
displacement vector  from point C to point D is antiparallel to . Its magnitude | | is D  = 1.2 km = 0.2 D , so his
second displacement vector is  = −0.2 . His total displacement  relative to the campsite is the vector sum of the two
displacement vectors: vector  (from the campsite to the rest point) and vector  (from the rest point to the point where he
finds his box):

The vector sum of two (or more vectors is called the resultant vector or, for short, the resultant. When the vectors on the right-
hand-side of Equation  are known, we can find the resultant  as follows:

When your friend finally reaches the pond at B, his displacement vector  from point A is the vector sum of his displacement
vector  from point A to point D and his displacement vector  from point D to the fishing hole:  =  +  (see
Figure ). This means his displacement vector  is the difference of two vectors:
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Notice that a difference of two vectors is nothing more than a vector sum of two vectors because the second term in Equation 
is vector  (which is antiparallel to ). When we substitute Equation  into Equation , we obtain the second
displacement vector:

This result means your friend walked D  = 0.45 D  = 0.45(6.0 km) = 2.7 km from the point where he finds his tackle box to the
fishing hole.

When vectors  and  lie along a line (that is, in one dimension), such as in the camping example, their resultant  =  +  and
their difference  =  −  both lie along the same direction. We can illustrate the addition or subtraction of vectors by drawing
the corresponding vectors to scale in one dimension, as shown in Figure .

To illustrate the resultant when  and  are two parallel vectors, we draw them along one line by placing the origin of one vector
at the end of the other vector in head-to-tail fashion (see Figure (\PageIndex{6b}\)). The magnitude of this resultant is the sum of
their magnitudes: R = A + B. The direction of the resultant is parallel to both vectors. When vector  is antiparallel to vector , we
draw them along one line in either head-to-head fashion (Figure (\PageIndex{6c}\)) or tail-to-tail fashion. The magnitude of the
vector difference, then, is the absolute value D = |A − B| of the difference of their magnitudes. The direction of the difference
vector  is parallel to the direction of the longer vector.

In general, in one dimension—as well as in higher dimensions, such as in a plane or in space—we can add any number of vectors
and we can do so in any order because the addition of vectors is commutative,

and associative,

Moreover, multiplication by a scalar is distributive:

We used the distributive property in Equation  and Equation .

When adding many vectors in one dimension, it is convenient to use the concept of a unit vector. A unit vector, which is denoted
by a letter symbol with a hat, such as , has a magnitude of one and does not have any physical unit so that | | ≡ u = 1. The only
role of a unit vector is to specify direction. For example, instead of saying vector  has a magnitude of 6.0 km and a direction
of northeast, we can introduce a unit vector  that points to the northeast and say succinctly that  = (6.0 km) . Then the
southwesterly direction is simply given by the unit vector . In this way, the displacement of 6.0 km in the southwesterly direction
is expressed by the vector

This page titled 3.2: Scalars and Vectors (Part 1) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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3.3: Scalars and Vectors (Part 2)

A long measuring stick rests against a wall in a physics laboratory with its 200-cm end at the floor. A ladybug lands on the
100-cm mark and crawls randomly along the stick. It first walks 15 cm toward the floor, then it walks 56 cm toward the wall,
then it walks 3 cm toward the floor again. Then, after a brief stop, it continues for 25 cm toward the floor and then, again, it
crawls up 19 cm toward the wall before coming to a complete rest (Figure ). Find the vector of its total displacement and
its final resting position on the stick.

Strategy

If we choose the direction along the stick toward the floor as the direction of unit vector , then the direction toward the floor
is  and the direction toward the wall is . The ladybug makes a total of five displacements:

The total displacement  is the resultant of all its displacement vectors.

Figure : Five displacements of the ladybug. Note that in this schematic drawing, magnitudes of displacements are not
drawn to scale. (credit: modification of work by “Persian Poet Gal”/Wikimedia Commons)

Solution
The resultant of all the displacement vectors is

In this calculation, we use the distributive law given by Equation 2.2.9. The result reads that the total displacement vector
points away from the 100-cm mark (initial landing site) toward the end of the meter stick that touches the wall. The end that
touches the wall is marked 0 cm, so the final position of the ladybug is at the (100 – 32) cm = 68-cm mark.

A cave diver enters a long underwater tunnel. When her displacement with respect to the entry point is 20 m, she accidentally
drops her camera, but she doesn’t notice it missing until she is some 6 m farther into the tunnel. She swims back 10 m but
cannot find the camera, so she decides to end the dive. How far from the entry point is she? Taking the positive direction out of
the tunnel, what is her displacement vector relative to the entry point?

 Example : A Ladybug Walker3.3.1
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û

+û −û
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D⃗ 

3.3.1

D⃗  = + + + +D⃗ 
1 D⃗ 

2 D⃗ 
3 D⃗ 

4 D⃗ 
5

= (15 cm)(+ ) +(56 cm)(− ) +(3 cm)(+ ) +(25 cm)(+ ) +(19 cm)(− )û û û û û
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Algebra of Vectors in Two Dimensions
When vectors lie in a plane—that is, when they are in two dimensions—they can be multiplied by scalars, added to other vectors,
or subtracted from other vectors in accordance with the general laws expressed by Equation 2.2.1, Equation 2..2.2, Equation 2.2.7,
and Equation 2.2.8. However, the addition rule for two vectors in a plane becomes more complicated than the rule for vector
addition in one dimension. We have to use the laws of geometry to construct resultant vectors, followed by trigonometry to find
vector magnitudes and directions. This geometric approach is commonly used in navigation (Figure ). In this section, we need
to have at hand two rulers, a triangle, a protractor, a pencil, and an eraser for drawing vectors to scale by geometric constructions.

Figure : In navigation, the laws of geometry are used to draw resultant displacements on nautical maps.

For a geometric construction of the sum of two vectors in a plane, we follow the parallelogram rule. Suppose two vectors  and 
 are at the arbitrary positions shown in Figure . Translate either one of them in parallel to the beginning of the other vector,

so that after the translation, both vectors have their origins at the same point. Now, at the end of vector  we draw a line parallel to
vector  and at the end of vector  we draw a line parallel to vector  (the dashed lines in Figure ). In this way, we obtain a
parallelogram. From the origin of the two vectors we draw a diagonal that is the resultant  of the two vectors:  =  +  (Figure 

). The other diagonal of this parallelogram is the vector difference of the two vectors  =  − , as shown in Figure .
Notice that the end of the difference vector is placed at the end of vector .

Figure : The parallelogram rule for the addition of two vectors. Make the parallel translation of each vector to a point where
their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides
(indicated by dashed lines) parallel to the vectors. (a) Draw the resultant vector  along the diagonal of the parallelogram from the
common point to the opposite corner. Length R of the resultant vector is not equal to the sum of the magnitudes of the two vectors.
(b) Draw the difference vector  =  −  along the diagonal connecting the ends of the vectors. Place the origin of vector  at
the end of vector  and the end (arrowhead) of vector  at the end of vector . Length D of the difference vector is not equal to
the difference of magnitudes of the two vectors.

It follows from the parallelogram rule that neither the magnitude of the resultant vector nor the magnitude of the difference vector
can be expressed as a simple sum or difference of magnitudes A and B, because the length of a diagonal cannot be expressed as a
simple sum of side lengths. When using a geometric construction to find magnitudes | | and | |, we have to use trigonometry laws
for triangles, which may lead to complicated algebra. There are two ways to circumvent this algebraic complexity. One way is to
use the method of components, which we examine in the next section. The other way is to draw the vectors to scale, as is done in
navigation, and read approximate vector lengths and angles (directions) from the graphs. In this section we examine the second
approach.

If we need to add three or more vectors, we repeat the parallelogram rule for the pairs of vectors until we find the resultant of all of
the resultants. For three vectors, for example, we first find the resultant of vector 1 and vector 2, and then we find the resultant of
this resultant and vector 3. The order in which we select the pairs of vectors does not matter because the operation of vector
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addition is commutative and associative (see Equation 2.2.7 and Equation 2.2.8). Before we state a general rule that follows from
repetitive applications of the parallelogram rule, let’s look at the following example.

Suppose you plan a vacation trip in Florida. Departing from Tallahassee, the state capital, you plan to visit your uncle Joe in
Jacksonville, see your cousin Vinny in Daytona Beach, stop for a little fun in Orlando, see a circus performance in Tampa, and visit
the University of Florida in Gainesville. Your route may be represented by five displacement vectors , , , , and , which
are indicated by the red vectors in Figure . What is your total displacement when you reach Gainesville? The total
displacement is the vector sum of all five displacement vectors, which may be found by using the parallelogram rule four times.
Alternatively, recall that the displacement vector has its beginning at the initial position (Tallahassee) and its end at the final
position (Gainesville), so the total displacement vector can be drawn directly as an arrow connecting Tallahassee with Gainesville
(see the green vector in Figure ). When we use the parallelogram rule four times, the resultant  we obtain is exactly this
green vector connecting Tallahassee with Gainesville:  =  +  +  +  + .

Figure : When we use the parallelogram rule four times, we obtain the resultant vector  =  +  +  +  + , which is the
green vector connecting Tallahassee with Gainesville.

Drawing the resultant vector of many vectors can be generalized by using the following tail-to-head geometric construction.
Suppose we want to draw the resultant vector  of four vectors , , , and  (Figure ). We select any one of the vectors
as the first vector and make a parallel translation of a second vector to a position where the origin (“tail”) of the second vector
coincides with the end (“head”) of the first vector. Then, we select a third vector and make a parallel translation of the third vector
to a position where the origin of the third vector coincides with the end of the second vector. We repeat this procedure until all the
vectors are in a head-to-tail arrangement like the one shown in Figure . We draw the resultant vector  by connecting the
origin (“tail”) of the first vector with the end (“head”) of the last vector. The end of the resultant vector is at the end of the last
vector. Because the addition of vectors is associative and commutative, we obtain the same resultant vector regardless of which
vector we choose to be first, second, third, or fourth in this construction.

Figure : Tail-to-head method for drawing the resultant vector  =  +  +  + . (a) Four vectors of different magnitudes
and directions. (b) Vectors in (a) are translated to new positions where the origin (“tail”) of one vector is at the end (“head”) of
another vector. The resultant vector is drawn from the origin (“tail”) of the first vector to the end (“head”) of the last vector in this
arrangement.
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The three displacement vectors , , and  in Figure  are specified by their magnitudes A = 10.0, B = 7.0, and C = 8.0,
respectively, and by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 30°. The
physical units of the magnitudes are centimeters. Choose a convenient scale and use a ruler and a protractor to find the
following vector sums: (a)  =  + , (b)  =  − , and (c)  =  −  + .

Figure : Vectors used in Example  and in the Exercise feature that follows.

Strategy

In geometric construction, to find a vector means to find its magnitude and its direction angle with the horizontal direction. The
strategy is to draw to scale the vectors that appear on the right-hand side of the equation and construct the resultant vector.
Then, use a ruler and a protractor to read the magnitude of the resultant and the direction angle. For parts (a) and (b) we use the
parallelogram rule. For (c) we use the tail-to-head method.

Solution
For parts (a) and (b), we attach the origin of vector  to the origin of vector , as shown in Figure , and construct a
parallelogram. The shorter diagonal of this parallelogram is the sum  + . The longer of the diagonals is the difference  − 

. We use a ruler to measure the lengths of the diagonals, and a protractor to measure the angles with the horizontal. For the
resultant , we obtain R = 5.8 cm and  ≈ 0°. For the difference , we obtain D = 16.2 cm and  = 49.3°, which are shown
in Figure .

Figure : Using the parallelogram rule to solve (a) (finding the resultant, red) and (b) (finding the difference, blue).

For (c), we can start with vector −3  and draw the remaining vectors tail-to-head as shown in Figure . In vector addition,
the order in which we draw the vectors is unimportant, but drawing the vectors to scale is very important. Next, we draw vector

 from the origin of the first vector to the end of the last vector and place the arrowhead at the end of . We use a ruler to
measure the length of , and find that its magnitude is S = 36.9 cm. We use a protractor and find that its direction angle is  =
52.9°. This solution is shown in Figure .

 Example : Geometric Construction of the Resultant3.3.2

A ⃗  B⃗  C ⃗  3.3.6

α β γ

R⃗  A ⃗  B⃗  D⃗  A ⃗  B⃗  S ⃗  A ⃗  3B⃗  C ⃗ 

3.3.6 3.3.2

B⃗  A ⃗  3.3.7

A ⃗  B⃗  A ⃗ 

B⃗ 

R⃗  θR D⃗  θD
3.3.7

3.3.7

B⃗  3.3.8

S ⃗  S ⃗ 

S ⃗  θS
3.3.8

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46038?pdf


3.3.5 https://phys.libretexts.org/@go/page/46038

Figure : Using the tail-to-head method to solve (c) (finding vector , green).

Using the three displacement vectors , , and  in Figure , choose a convenient scale, and use a ruler and a protractor
to find vector  given by the vector equation  =  +  − .

Observe the addition of vectors in a plane by visiting this vector calculator and this PhET simulation.

This page titled 3.3: Scalars and Vectors (Part 2) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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3.4: Coordinate Systems and Components of a Vector (Part 1)

Describe vectors in two and three dimensions in terms of their components, using unit vectors along the axes.
Distinguish between the vector components of a vector and the scalar components of a vector.
Explain how the magnitude of a vector is defined in terms of the components of a vector.
Identify the direction angle of a vector in a plane.
Explain the connection between polar coordinates and Cartesian coordinates in a plane.

Vectors are usually described in terms of their components in a coordinate system. Even in everyday life we naturally invoke the
concept of orthogonal projections in a rectangular coordinate system. For example, if you ask someone for directions to a particular
location, you will more likely be told to go 40 km east and 30 km north than 50 km in the direction 37° north of east.

In a rectangular (Cartesian) xy-coordinate system in a plane, a point in a plane is described by a pair of coordinates (x, y). In a
similar fashion, a vector  in a plane is described by a pair of its vector coordinates. The x-coordinate of vector  is called its x-
component and the y-coordinate of vector  is called its y-component. The vector x-component is a vector denoted by . The
vector y-component is a vector denoted by . In the Cartesian system, the x and y vector components of a vector are the
orthogonal projections of this vector onto the - and -axes, respectively. In this way, following the parallelogram rule for vector
addition, each vector on a Cartesian plane can be expressed as the vector sum of its vector components:

As illustrated in Figure , vector  is the diagonal of the rectangle where the x-component  is the side parallel to the x-axis
and the y-component  is the side parallel to the y-axis. Vector component  is orthogonal to vector component .

Figure : Vector  in a plane in the Cartesian coordinate system is the vector sum of its vector x- and y-components. The x-
vector component  is the orthogonal projection of vector  onto the x-axis. The y-vector component  is the orthogonal
projection of vector  onto the y-axis. The numbers A  and A  that multiply the unit vectors are the scalar components of the
vector.

It is customary to denote the positive direction on the x-axis by the unit vector  and the positive direction on the y-axis by the unit
vector . Unit vectors of the axes,  and , define two orthogonal directions in the plane. As shown in Figure , the x- and y-
components of a vector can now be written in terms of the unit vectors of the axes:

The vectors  and  defined by Equation 2.11 are the vector components of vector . The numbers A  and A  that define the
vector components in Equation  are the scalar components of vector . Combining Equation  with Equation , we
obtain the component form of a vector:
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If we know the coordinates  of the origin point of a vector (where b stands for “beginning”) and the coordinates e(x , y )
of the end point of a vector (where e stands for “end”), we can obtain the scalar components of a vector simply by subtracting the
origin point coordinates from the end point coordinates:

A mouse pointer on the display monitor of a computer at its initial position is at point (6.0 cm, 1.6 cm) with respect to the
lower left-side corner. If you move the pointer to an icon located at point (2.0 cm, 4.5 cm), what is the displacement vector of
the pointer?

Strategy

The origin of the xy-coordinate system is the lower left-side corner of the computer monitor. Therefore, the unit vector  on the
x-axis points horizontally to the right and the unit vector  on the y-axis points vertically upward. The origin of the
displacement vector is located at point b(6.0, 1.6) and the end of the displacement vector is located at point e(2.0, 4.5).
Substitute the coordinates of these points into Equation  to find the scalar components D  and D of the displacement
vector . Finally, substitute the coordinates into Equation  to write the displacement vector in the vector component
form.

Solution
We identify x  = 6.0, x  = 2.0, y  = 1.6, and y  = 4.5, where the physical unit is 1 cm. The scalar x- and y-components of the
displacement vector are

The vector component form of the displacement vector is

This solution is shown in Figure .

Figure : The graph of the displacement vector. The vector points from the origin point at  to the end point at .

Significance

Notice that the physical unit—here, 1 cm—can be placed either with each component immediately before the unit vector or
globally for both components, as in Equation . Often, the latter way is more convenient because it is simpler.

The vector x-component  = −4.0  = 4.0( ) of the displacement vector has the magnitude | | = |− 4.0|| | = 4.0 because
the magnitude of the unit vector is | | = 1. Notice, too, that the direction of the x-component is , which is antiparallel to the
direction of the +x-axis; hence, the x-component vector  points to the left, as shown in Figure . The scalar x-
component of vector  is D  = −4.0. Similarly, the vector y-component  =  of the displacement vector has magnitude
| | = |2.9|| | = 2.9 because the magnitude of the unit vector is | | = 1. The direction of the y-component is , which is

b( , )xb yb e e

{
= −Ax xe xb

= − .Ay ye yb
(3.4.4)
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parallel to the direction of the +y-axis. Therefore, the y-component vector  points up, as seen in Figure . The scalar y-
component of vector  is D  = + 2.9. The displacement vector  is the resultant of its two vector components.

The vector component form of the displacement vector Equation  tells us that the mouse pointer has been moved on the
monitor 4.0 cm to the left and 2.9 cm upward from its initial position.

A blue fly lands on a sheet of graph paper at a point located 10.0 cm to the right of its left edge and 8.0 cm above its bottom
edge and walks slowly to a point located 5.0 cm from the left edge and 5.0 cm from the bottom edge. Choose the rectangular
coordinate system with the origin at the lower left-side corner of the paper and find the displacement vector of the fly. Illustrate
your solution by graphing.

When we know the scalar components A  and A  of a vector , we can find its magnitude A and its direction angle . The
direction angle—or direction, for short—is the angle the vector forms with the positive direction on the x-axis. The angle  is
measured in the counterclockwise direction from the +x-axis to the vector (Figure ). Because the lengths A, A , and A  form a
right triangle, they are related by the Pythagorean theorem:

This equation works even if the scalar components of a vector are negative. The direction angle  of a vector is defined via the
tangent function of angle  in the triangle shown in Figure :

Figure : For vector , its magnitude A and its direction angle  are related to the magnitudes of its scalar components
because A, A , and A  form a right triangle.

When the vector lies either in the first quadrant or in the fourth quadrant, where component A  is positive (Figure ), the angle 
 in Equation ) is identical to the direction angle . For vectors in the fourth quadrant, angle  is negative, which means that

for these vectors, direction angle  is measured clockwise from the positive x-axis. Similarly, for vectors in the second quadrant,
angle  is negative. When the vector lies in either the second or third quadrant, where component A  is negative, the direction
angle is  =  + 180° (Figure ).
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Figure : Scalar components of a vector may be positive or negative. Vectors in the first quadrant (I) have both scalar
components positive and vectors in the third quadrant have both scalar components negative. For vectors in quadrants II and III, the
direction angle of a vector is  =  + 180°.

You move a mouse pointer on the display monitor from its initial position at point (6.0 cm, 1.6 cm) to an icon located at point
(2.0 cm, 4.5 cm). What is the magnitude and direction of the displacement vector of the pointer?

Strategy

In Example , we found the displacement vector  of the mouse pointer (see Equation ). We identify its scalar
components D  = −4.0 cm and D  = + 2.9 cm and substitute into Equation  and Equation  to find the magnitude D
and direction , respectively.

Solution
The magnitude of vector  is

The direction angle is

Vector  lies in the second quadrant, so its direction angle is

If the displacement vector of a blue fly walking on a sheet of graph paper is  cm, find its magnitude
and direction.

In many applications, the magnitudes and directions of vector quantities are known and we need to find the resultant of many
vectors. For example, imagine 400 cars moving on the Golden Gate Bridge in San Francisco in a strong wind. Each car gives the
bridge a different push in various directions and we would like to know how big the resultant push can possibly be. We have
already gained some experience with the geometric construction of vector sums, so we know the task of finding the resultant by
drawing the vectors and measuring their lengths and angles may become intractable pretty quickly, leading to huge errors. Worries
like this do not appear when we use analytical methods. The very first step in an analytical approach is to find vector components
when the direction and magnitude of a vector are known.

Let us return to the right triangle in Figure . The quotient of the adjacent side A  to the hypotenuse A is the cosine function of
direction angle , A /A = cos , and the quotient of the opposite side A  to the hypotenuse A is the sine function of , A /A =
sin . When magnitude A and direction  are known, we can solve these relations for the scalar components:

3.4.4

θA θ

 Example : Magnitude and Direction of the Displacement Vector3.4.2

3.4.1 D⃗  3.4.7

x y 3.4.8 3.4.9

θD

D⃗ 

D = = = cm = 4.9 cm.+D2
x D2

y

− −−−−−−
√ (−4.0 cm +(2.9 cm)2 )2

− −−−−−−−−−−−−−−−−−−
√ (4.0 +(2.9)2 )2

− −−−−−−−−−−
√ (3.4.10)

tanθ = = = −0.725 ⇒ θ = (−0.725) = − .
Dy

Dx

+2.9 cm

−4.0 cm
tan−1 35.9o (3.4.11)

D⃗ 

= θ + = − + = .θD 180o 35.9o 180o 144.1o (3.4.12)

 Exercise 2.5

= (−5.00 −3.00 )D⃗  î ĵ

3.4.3 x
θA x θA y θA y

θA θA
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When calculating vector components with Equation , care must be taken with the angle. The direction angle  of a vector is
the angle measured counterclockwise from the positive direction on the x-axis to the vector. The clockwise measurement gives a
negative angle.

A rescue party for a missing child follows a search dog named Trooper. Trooper wanders a lot and makes many trial sniffs
along many different paths. Trooper eventually finds the child and the story has a happy ending, but his displacements on
various legs seem to be truly convoluted. On one of the legs he walks 200.0 m southeast, then he runs north some 300.0 m. On
the third leg, he examines the scents carefully for 50.0 m in the direction 30° west of north. On the fourth leg, Trooper goes
directly south for 80.0 m, picks up a fresh scent and turns 23° west of south for 150.0 m. Find the scalar components of
Trooper’s displacement vectors and his displacement vectors in vector component form for each leg.

Strategy

Let’s adopt a rectangular coordinate system with the positive x-axis in the direction of geographic east, with the positive y-
direction pointed to geographic north. Explicitly, the unit vector  of the x-axis points east and the unit vector  of the y-axis
points north. Trooper makes five legs, so there are five displacement vectors. We start by identifying their magnitudes and
direction angles, then we use Equation  to find the scalar components of the displacements and Equation  for the
displacement vectors.

Solution
On the first leg, the displacement magnitude is L  = 200.0 m and the direction is southeast. For direction angle  we can take
either 45° measured clockwise from the east direction or 45° + 270° measured counterclockwise from the east direction. With
the first choice,  = −45°. With the second choice,  = + 315°. We can use either one of these two angles. The components
are

The displacement vector of the first leg is

On the second leg of Trooper’s wanderings, the magnitude of the displacement is L  = 300.0 m and the direction is north. The
direction angle is  = + 90°. We obtain the following results:

On the third leg, the displacement magnitude is L  = 50.0 m and the direction is 30° west of north. The direction angle
measured counterclockwise from the eastern direction is  = 30° + 90° = + 120°. This gives the following answers:

On the fourth leg of the excursion, the displacement magnitude is L  = 80.0 m and the direction is south. The direction angle
can be taken as either  = −90° or \(\theta_{4} = + 270°. We obtain

{
= A cosAx θA

= A sin .Ay θA
(3.4.13)

3.4.13 θA

 Example : Components of Displacement Vectors3.4.3

î ĵ

3.4.13 3.4.3

1 θ1

θ1 θ1

= cos = (200.0 m) cos = 141.4 m,L1x L1 θ1 315o (3.4.14)

= sin = (200.0 m) sin = −141.4 m,L1y L1 θ1 315o (3.4.15)

= + = (14.4 −141.4 ) m.L⃗ 
1 L1x î L1y ĵ î ĵ (3.4.16)

2
θ2

= cos = (300.0 m) cos = 0.0,L2x L2 θ2 90o (3.4.17)

= sin = (300.0 m) sin = 300.0 m,L2y L2 θ2 90o (3.4.18)

= + = (300.0 m) .L⃗ 
2 L2x î L2y ĵ ĵ (3.4.19)

3
θ3

= cos = (50.0 m) cos = −25.0 m,L3x L3 θ3 120o (3.4.20)

= sin = (50.0 m) sin = +43.3 m,L3y L3 θ3 120o (3.4.21)

= + = (−25.0 +43.3 ) m.L⃗ 
3 L3x î L3y ĵ î ĵ (3.4.22)

4
θ4

= cos = (80.0 m) cos(− ) = 0,L4x L4 θ4 90o (3.4.23)

= sin = (80.0 m) sin(− ) = −80.0 m,L4y L4 θ4 90o (3.4.24)
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On the last leg, the magnitude is L  = 150.0 m and the angle is  = −23° + 270° = + 247° (23° west of south), which gives

If Trooper runs 20 m west before taking a rest, what is his displacement vector?

This page titled 3.4: Coordinate Systems and Components of a Vector (Part 1) is shared under a CC BY license and was authored, remixed, and/or
curated by OpenStax.

= + = (−80.0 m) .L⃗ 
4 L4x î L4y ĵ ĵ (3.4.25)

5 θ5

= cos = (150.0 m) cos = −58.6 m,L5x L5 θ5 247o (3.4.26)

= sin = (150.0 m) sin = −138.1 m,L5y L5 θ5 247o (3.4.27)

= + = (−58.6 −138.1 ) m.L⃗ 
5 L5x î L5y ĵ î ĵ (3.4.28)
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3.5: Coordinate Systems and Components of a Vector (Part 2)

Polar Coordinates
To describe locations of points or vectors in a plane, we need two orthogonal directions. In the Cartesian coordinate system these
directions are given by unit vectors  and  along the x-axis and the y-axis, respectively. The Cartesian coordinate system is very
convenient to use in describing displacements and velocities of objects and the forces acting on them. However, it becomes
cumbersome when we need to describe the rotation of objects. When describing rotation, we usually work in the polar coordinate
system.

In the polar coordinate system, the location of point P in a plane is given by two polar coordinates (Figure ). The first polar
coordinate is the radial coordinate r, which is the distance of point P from the origin. The second polar coordinate is an angle 
that the radial vector makes with some chosen direction, usually the positive x-direction. In polar coordinates, angles are measured
in radians, or rads. The radial vector is attached at the origin and points away from the origin to point P. This radial direction is
described by a unit radial vector . The second unit vector  is a vector orthogonal to the radial direction . The positive + 
direction indicates how the angle  changes in the counterclockwise direction. In this way, a point P that has coordinates (x, y) in
the rectangular system can be described equivalently in the polar coordinate system by the two polar coordinates (r, ). Equation
2.4.13 is valid for any vector, so we can use it to express the x- and y-coordinates of vector . In this way, we obtain the connection
between the polar coordinates and rectangular coordinates of point P:

Figure : Using polar coordinates, the unit vector  defines the positive direction along the radius r (radial direction) and,
orthogonal to it, the unit vector  defines the positive direction of rotation by the angle .

A treasure hunter finds one silver coin at a location 20.0 m away from a dry well in the direction 20° north of east and finds
one gold coin at a location 10.0 m away from the well in the direction 20° north of west. What are the polar and rectangular
coordinates of these findings with respect to the well?

Strategy

The well marks the origin of the coordinate system and east is the +x-direction. We identify radial distances from the locations
to the origin, which are r  = 20.0 m (for the silver coin) and r  = 10.0 m (for the gold coin). To find the angular coordinates, we
convert 20° to radians: 20° =  = . We use Equation  to find the x- and y-coordinates of the coins.

Solution

The angular coordinate of the silver coin is  = , whereas the angular coordinate of the gold coin is  =  −  = .
Hence, the polar coordinates of the silver coin are (r , ) = (20.0 m, ) and those of the gold coin are (r , ) = (10.0 m,
\frac{8 \pi}{9}\)). We substitute these coordinates into Equation  to obtain rectangular coordinates. For the gold coin, the
coordinates are

î ĵ

3.5.1

φ

r̂ t̂ r̂ t̂

φ

φ

r ⃗ 

{ .
x = r cos φ

y = r sinφ
(3.5.1)

3.5.1 r̂

t̂ φ

 Example : Polar Coordinates3.5.1

S G
π 20
180

π
9

3.5.1

φS
π

9
φG π π

9
8π

9

S φS
π

9 G φG

3.5.1

{ ⇒ ( , ) = (−9.4 m, 3.4 m).
= cos = (10.0 m) cos = −9.4 mxG rG φG

8π

9

= sin = (10.0 m) sin = 3.4 myG rG φG
8π

9

xG yG (3.5.2)
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For the silver coin, the coordinates are

Vectors in Three Dimensions
To specify the location of a point in space, we need three coordinates (x, y, z), where coordinates x and y specify locations in a
plane, and coordinate z gives a vertical positions above or below the plane. Three-dimensional space has three orthogonal
directions, so we need not two but three unit vectors to define a three-dimensional coordinate system. In the Cartesian coordinate
system, the first two unit vectors are the unit vector of the x-axis  and the unit vector of the y-axis . The third unit vector  is the
direction of the z-axis (Figure ). The order in which the axes are labeled, which is the order in which the three unit vectors
appear, is important because it defines the orientation of the coordinate system. The order x-y-z, which is equivalent to the order  -

 - , defines the standard right-handed coordinate system (positive orientation).

Figure : Three unit vectors define a Cartesian system in three-dimensional space. The order in which these unit vectors appear
defines the orientation of the coordinate system. The order shown here defines the right-handed orientation.

In three-dimensional space, vector  has three vector components: the x-component  = A  , which is the part of vector  along
the x-axis; the y-component  = A  , which is the part of  along the y-axis; and the z-component  = A  , which is the part
of the vector along the z-axis. A vector in three-dimensional space is the vector sum of its three vector components (Figure ):

If we know the coordinates of its origin b(x , y , z ) and of its end e(x  y , z ), its scalar components are obtained by taking their
differences: A  and A  are given by

and the z-component is given by

Magnitude A is obtained by generalizing Equation 2.4.8 to three dimensions:

This expression for the vector magnitude comes from applying the Pythagorean theorem twice. As seen in Figure , the

diagonal in the xy-plane has length  and its square adds to the square A  to give A . Note that when the z-component

is zero, the vector lies entirely in the xy-plane and its description is reduced to two dimensions.

{ ⇒ ( , ) = (18.9 m, 6.8 m).
= cos = (20.0 m) cos = 18.9 mxS rS φS

π
9

= sin = (20.0 m) sin = 6.8 myS rS φS
π

9

xS yS (3.5.3)

î ĵ k̂

3.5.2

î

ĵ k̂

3.5.2

A ⃗  A ⃗ 
x x î A ⃗ 

A ⃗ 
y y ĵ A ⃗  A ⃗ 

z z k̂

3.5.3

= + + .A ⃗  Ax î Ay ĵ Azk̂ (3.5.4)

b b b e e e

x y

{
= −Ax xe xb

= − .Ay ye yb

= − .Az ze zb (3.5.5)

A = .+ +A2
x A2

y A2
z

− −−−−−−−−−−
√ (3.5.6)

3.5.3

+A2
x A2

y

− −−−−−−
√ z

2 2
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Figure : A vector in three-dimensional space is the vector sum of its three vector components.

During a takeoff of IAI Heron (Figure ), its position with respect to a control tower is 100 m above the ground, 300 m to
the east, and 200 m to the north. One minute later, its position is 250 m above the ground, 1200 m to the east, and 2100 m to
the north. What is the drone’s displacement vector with respect to the control tower? What is the magnitude of its displacement
vector?

Figure : The drone IAI Heron in flight. (credit: SSgt Reynaldo Ramon, USAF)

Strategy

We take the origin of the Cartesian coordinate system as the control tower. The direction of the +x-axis is given by unit vector 
 to the east, the direction of the +y-axis is given by unit vector  to the north, and the direction of the +z-axis is given by unit

vector , which points up from the ground. The drone’s first position is the origin (or, equivalently, the beginning) of the
displacement vector and its second position is the end of the displacement vector.

Solution
We identify b(300.0 m, 200.0 m, 100.0 m) and e(480.0 m, 370.0 m, 250.0m), and use Equation 2.4.4 and Equation  to find
the scalar components of the drone’s displacement vector:

We substitute these components into Equation  to find the displacement vector:

We substitute into Equation  to find the magnitude of the displacement:

If the average velocity vector of the drone in the displacement in Example 2.7 is  = (15.0  + 31.7  + 2.5 ) m/s, what is the
magnitude of the drone’s velocity vector?

3.5.3

 Example : Takeoff of a Drone3.5.2

3.5.4

3.5.4

î ĵ

k̂

3.5.5

⎧

⎩
⎨

= − = 1200.0 m −300.0 m = 900.0 m,Dx xe xb

= − = 2100.0 m −200.0 m = 1900.0 m,Dy ye yb

= − = 250.0 m −100.0 m = 150 m.Dz ze zb

(3.5.7)

3.5.4

= + + = 900.0 +1900.0 +150.0 = (0.90 +1.90 +0.15 ) km.D⃗  Dx î Dy ĵ Dz k̂ î ĵ k̂ î ĵ k̂ (3.5.8)

3.5.6

D = = = 4.44 km.+ +D2
x D2

y D2
z

− −−−−−−−−−−−
√ (0.90 km +(1.90 km +(0.15 km)2 )2 )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√ (3.5.9)
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3.6: Algebra of Vectors

Apply analytical methods of vector algebra to find resultant vectors and to solve vector equations for unknown vectors.
Interpret physical situations in terms of vector expressions.

Vectors can be added together and multiplied by scalars. Vector addition is associative (Equation 2.2.8) and commutative (Equation
2.2.7), and vector multiplication by a sum of scalars is distributive (Equation 2.2.9). Also, scalar multiplication by a sum of vectors is
distributive:

In this equation,  is any number (a scalar). For example, a vector antiparallel to vector  = A   + A   + A   can be expressed
simply by multiplying  by the scalar  = −1:

In a Cartesian coordinate system where  denotes geographic east,  denotes geographic north, and  denotes altitude above sea
level, a military convoy advances its position through unknown territory with velocity  = (4.0  + 3.0  + 0.1 ) km/h. If the
convoy had to retreat, in what geographic direction would it be moving?

Solution
The velocity vector has the third component  = (+ 0.1 km/h) , which says the convoy is climbing at a rate of 100 m/h through
mountainous terrain. At the same time, its velocity is 4.0 km/h to the east and 3.0 km/h to the north, so it moves on the ground in
direction tan (3 /4) ≈ 37° north of east. If the convoy had to retreat, its new velocity vector  would have to be antiparallel to 
and be in the form , where  is a positive number. Thus, the velocity of the retreat would be  = (−4.0  − 3.0  − 0.1 

) km/h. The negative sign of the third component indicates the convoy would be descending. The direction angle of the retreat
velocity is tan (−3  − 4 ) ≈ 37° south of west. Therefore, the convoy would be moving on the ground in direction 37° south
of west while descending on its way back.

The generalization of the number zero to vector algebra is called the null vector, denoted by . All components of the null vector are
zero,  = 0 + 0  + 0 , so the null vector has no length and no direction.

Two vectors  and  are equal vectors if and only if their difference is the null vector:  =  −  = (A   + A   + A  ) − (B   +
B   + B  ) = (A  − B )  + (A  − B )  + (A  − B ) . This vector equation means we must have simultaneously A  − B  = 0, A  −
B  = 0, and A  − B  = 0. Hence, we can write  if and only if the corresponding components of vectors  and  are equal:

Two vectors are equal when their corresponding scalar components are equal. Resolving vectors into their scalar components (i.e.,
finding their scalar components) and expressing them analytically in vector component form (given by Equation 2.5.4) allows us to
use vector algebra to find sums or differences of many vectors analytically (i.e., without using graphical methods). For example, to
find the resultant of two vectors  and , we simply add them component by component, as follows:

In this way, using Equation , scalar components of the resultant vector  = R   + R   + R   are the sums of corresponding
scalar components of vectors  and :

 Learning Objectives

α( + ) = α +αB.A ⃗  B⃗  A ⃗  (3.6.1)

α A ⃗ 
x î y ĵ z k̂

A ⃗  α

− = − − .A ⃗  Ax î Ay ĵ Azk̂ (3.6.2)

 Example : Direction of Motion3.6.1

î ĵ k̂

v ⃗  î ĵ k̂

v ⃗ z k̂

−1 u⃗  v ⃗ 

= −αu⃗  v ⃗  α u⃗  α î ĵ

k̂
−1 α α

0⃗ 

0⃗  î ĵ k̂

A ⃗  B⃗  0⃗  A ⃗  B⃗  x î y ĵ z k̂ x î

y ĵ z k̂ x x î y y ĵ z z k̂ x x y

y z z =A ⃗  B⃗  A ⃗  B⃗ 

= ⇔ .A ⃗  B⃗ 
⎧

⎩
⎨

=Ax Bx

=Ay By

=Az Bz

(3.6.3)

A ⃗  B⃗ 

= + = ( + + ) +( + + ) = ( + ) +( + ) +( + ) .R⃗  A ⃗  B⃗  Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂ Ax Bx î Ay By ĵ Az Bz k̂ (3.6.4)

3.6.3 R⃗ 
x î y ĵ z k̂

A ⃗  B⃗ 
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Analytical methods can be used to find components of a resultant of many vectors. For example, if we are to sum up N vectors , 
, , … , , where each vector is  = F   + F   + F  , the resultant vector  is

Therefore, scalar components of the resultant vector are

Having found the scalar components, we can write the resultant in vector component form:

Analytical methods for finding the resultant and, in general, for solving vector equations are very important in physics because many
physical quantities are vectors. For example, we use this method in kinematics to find resultant displacement vectors and resultant
velocity vectors, in mechanics to find resultant force vectors and the resultants of many derived vector quantities, and in electricity
and magnetism to find resultant electric or magnetic vector fields.

In many physical situations, we often need to know the direction of a vector. For example, we may want to know the direction of a
magnetic field vector at some point or the direction of motion of an object. We have already said direction is given by a unit vector,
which is a dimensionless entity—that is, it has no physical units associated with it. When the vector in question lies along one of the
axes in a Cartesian system of coordinates, the answer is simple, because then its unit vector of direction is either parallel or
antiparallel to the direction of the unit vector of an axis. For example, the direction of vector  = −5 m  is unit vector  = − . The
general rule of finding the unit vector  of direction for any vector  is to divide it by its magnitude V:

We see from this expression that the unit vector of direction is indeed dimensionless because the numerator and the denominator in
Equation  have the same physical unit. In this way, Equation  allows us to express the unit vector of direction in terms of
unit vectors of the axes. Example 2.7.6 illustrates this principle.
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⎧

⎩
⎨

= + ,Rx Ax Bx

= + ,Ry Ay By

= +Rz Az Bz

(3.6.5)

F ⃗ 
1

F ⃗ 
2 F ⃗ 

3 F ⃗ 
N F ⃗ 

k kx î ky ĵ kz k̂ F ⃗ 
R

= + + +… + = = ( + + ) =( ) +( )F ⃗ 
R F ⃗ 

1 F ⃗ 
2 F ⃗ 

3 F ⃗ 
N ∑

k=1

N

F ⃗ 
k ∑

k=1

N

Fkx î Fky ĵ Fkzk̂ ∑
k=1

N

Fkx î ∑
k=1

N

Fky ĵ

+( ) .∑
k=1

N

Fkz k̂

(3.6.6)

⎧

⎩
⎨
⎪

⎪

= = + +… +FRx ∑N
k=1 Fkx F1x F2x FNx

= = + +… +FRy ∑N
k=1 Fky F1y F2y FNy

= = + +… + .FRz ∑N
k=1 Fkz F1z F2z FNz

(3.6.7)

= + + .F ⃗ 
R FRx î FRy ĵ FRz k̂ (3.6.8)

d ⃗  î d̂ î

V̂ V ⃗ 

= .V̂
V ⃗ 

V
(3.6.9)

3.6.9 3.6.9
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3.7: Algebra of Vectors Examples

Three displacement vectors , , and  in a plane (Figure 2.3.6) are specified by their magnitudes A = 10.0, B = 7.0, and C = 8.0,
respectively, and by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 30°. The physical units
of the magnitudes are centimeters. Resolve the vectors to their scalar components and find the following vector sums:

a.  =  +  + ,
b.  =  − , and
c.  =  − 3  + .

Strategy

First, we use Equation 2.4.13 to find the scalar components of each vector and then we express each vector in its vector component

form given by . Then, we use analytical methods of vector algebra to find the resultants.

Solution

We resolve the given vectors to their scalar components:

For (a) we may substitute directly into Equation 2.6.7 to find the scalar components of the resultant:

Therefore, the resultant vector is cm. For (b), we may want to write the vector difference as

Hence the difference vector is cm.

For (c), we can write vector  in the following explicit form:

Then, the scalar components of  are

The vector is cm.

Significance

Having found the vector components, we can illustrate the vectors by graphing or we can compute magnitudes and direction angles, as
shown in Figure . Results for the magnitudes in (b) and (c) can be compared with results for the same problems obtained with the
graphical method, shown in Figure 2.3.7 and Figure 2.3.8. Notice that the analytical method produces exact results and its accuracy is
not limited by the resolution of a ruler or a protractor, as it was with the graphical method used in Example 2.3.2 for finding this same
resultant.

 Example : Analytical Computation of a Resultant3.7.1

A ⃗  B⃗  C ⃗ 

α β γ

R⃗  A ⃗  B⃗  C ⃗ 

D⃗  A ⃗  B⃗ 

S ⃗  A ⃗  B⃗  C ⃗ 

= +A
→

Ax î Ay ĵ

{
= A cosα = (10.0 cm) cos = 8.19 cmAx 35o

= A sinα = (10.0 cm) sin = 5.73 cmAy 35o
(3.7.1)

{
= B cosβ = (7.0 cm) cos(− ) = −2.39 cmBx 110o

= B sinβ = (7.0 cm) sin(− ) = −6.58 cmBy 110o
(3.7.2)

{
= C cosγ = (8.0 cm) cos( ) = 6.93 cmCx 30o

= C sinγ = (8.0 cm) sin( ) = 4.00 cmCy 30o
(3.7.3)

{
= + + = 8.19 cm−2.39 cm+6.93 cm = 12.73 cmRx Ax Bx Cx

= + + = 5.73 cm−6.58 cm+4.00 cm = 3.15 cmRy Ay By Cy
(3.7.4)

= + = (12.7 +3.1 )R⃗  Rx î Ry ĵ î ĵ

= − = ( + ) −( + ) = ( − ) +( − ) .D⃗  A ⃗  B⃗  Ax î Ay ĵ Bx î By ĵ Ax Bx î Ay By ĵ (3.7.5)

= + = (10.6 +12.3 )D⃗  Dx î Dy ĵ î ĵ

S ⃗ 

= −3 + = ( + ) −3( + ) +( + ) = ( −3 + ) +( −3 + ) .S ⃗  A ⃗  B⃗  C ⃗  Ax î Ay ĵ Bx î By ĵ Cx î Cy ĵ Ax Bx Cx î Ay By Cy ĵ (3.7.6)

S ⃗ 

{
= −3 + = 8.19 cm−3(−2.39 cm) +6.93 cm = 22.29 cmSx Ax Bx Cx

= −3 + = 5.73 cm−3(−6.58 cm) +4.00 cm = 29.47 cmSy Ay By Cy
(3.7.7)

= + = (22.3 +29.5 )S ⃗  Sx î Sy ĵ î ĵ

3.7.1
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Figure : Graphical illustration of the solutions obtained analytically.

Three displacement vectors , , and  (Figure 2.3.6) are specified by their magnitudes A = 10.00, B = 7.00, and F = 20.00,
respectively, and by their respective direction angles with the horizontal direction  = 35°,  = −110°, and  = 110°. The physical
units of the magnitudes are centimeters. Use the analytical method to find vector  =  + 2  − . Verify that G = 28.15 cm and that 

 = −68.65°.

Four dogs named Astro, Balto, Clifford, and Dug play a tug-of-war game with a toy (Figure ). Astro pulls on the toy in direction 
 = 55° south of east, Balto pulls in direction  = 60° east of north, and Clifford pulls in direction  = 55° west of north. Astro pulls

strongly with 160.0 units of force (N), which we abbreviate as A = 160.0 N. Balto pulls even stronger than Astro with a force of
magnitude B = 200.0 N, and Clifford pulls with a force of magnitude C = 140.0 N. When Dug pulls on the toy in such a way that his
force balances out the resultant of the other three forces, the toy does not move in any direction. With how big a force and in what
direction must Dug pull on the toy for this to happen?

Figure : Four dogs play a tug-of-war game with a toy.

Strategy

We assume that east is the direction of the positive x-axis and north is the direction of the positive y-axis. As in Example , we
have to resolve the three given forces —  (the pull from Astro),  (the pull from Balto), and  (the pull from Clifford)—into their
scalar components and then find the scalar components of the resultant vector  =  +  + . When the pulling force  from Dug
balances out this resultant, the sum of  and  must give the null vector  +  = . This means that  =  so the pull from Dug
must be antiparallel to .

Solution
The direction angles are  =  = −55°,  = 90° −  = 30°, and  = 90° +  = 145°, and substituting them into Equation 2.4.13
gives the scalar components of the three given forces:

3.7.1

 Exercise 2.8

A ⃗  B⃗  F ⃗ 

α β φ

F ⃗  A ⃗  B⃗  F ⃗ 

θG

 Example : The Tug-of-War Game3.7.2

3.7.2

α β γ

3.7.2

3.7.1

A ⃗  B⃗  C ⃗ 

R⃗  A ⃗  B⃗  C ⃗  D⃗ 

D⃗  R⃗  D⃗  R⃗  0⃗  D⃗  −R⃗ 

R⃗ 

θA −α θB β θC γ

{
= A cos = (160.0 N) cos(− ) = +91.8 NAx θA 55o

= A sin = (160.0 N) sin(− ) = −131.1 NAy θA 55o
(3.7.8)
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Now we compute scalar components of the resultant vector :

The antiparallel vector to the resultant  is

The magnitude of Dug's pulling force is

The direction of Dug's pulling force is

Dug pulls in the direction 18.1° south of west because both components are negative, which means the pull vector lies in the third
quadrant (Figure 2.4.4).

Suppose that Balto in Example  leaves the game to attend to more important matters, but Astro, Clifford, and Dug continue
playing. Astro and Clifford’s pull on the toy does not change, but Dug runs around and bites on the toy in a different place. With how
big a force and in what direction must Dug pull on the toy now to balance out the combined pulls from Clifford and Astro? Illustrate
this situation by drawing a vector diagram indicating all forces involved.

Find the magnitude of the vector  that satisfies the equation 2  − 6  + 3  = 2 ,  =  − 2  and  = −  +  .

Strategy

We first solve the given equation for the unknown vector . Then we substitute  and ; group the terms along each of the three
directions , , and ; and identify the scalar components C , C , and C . Finally, we substitute into Equation 2.5.6 to find magnitude
C.

Solution

The components are C  = , C  = , and C  = , and substituting into Equation 2.5.6 gives

{
= B cos = (200.0 N) cos = +173.2 NBx θB 30o

= B sin = (200.0 N) sin = +100.0 NBy θB 30o
(3.7.9)

{
= C cos = (140.0 N) cos = −114.7 NCx θC 145o

= C sin = (140.0 N) sin = +80.3 NCy θC 145o
(3.7.10)

= + +R⃗  A ⃗  B⃗  C ⃗ 

{
= + + = +91.8 N +173.2 N −114.7 N = +150.3 NRx Ax Bx Cx

= + + = −131.1 N +100.0 N +80.3 N = +49.2 NRy Ay By Cy
(3.7.11)

R⃗ 

= − = − − = (−150.3 −49.2 )N .D⃗  R⃗  Rx î Ry ĵ î ĵ (3.7.12)

D = = N = 158.1 N .+D2
x D2

y

− −−−−−−
√ (−150.3 +(−49.2)2 )2

− −−−−−−−−−−−−−−−−
√ (3.7.13)

θ = ( ) = ( ) = ( ) = .tan−1
Dy

Dx

tan−1 −49.2 N

−150.3 N
tan−1 49.2

150.3
18.1o (3.7.14)

 Exercise 2.9

3.7.2

 Example : Vector Algebra3.7.3

C ⃗  A ⃗  B⃗  C ⃗  ĵ A ⃗  î k̂ B⃗  ĵ k̂

2

C ⃗  A ⃗  B⃗ 

î ĵ k̂ x y z

2 −6 +A ⃗  B⃗  3 = 2C ⃗  ĵ

3 = 2 −2 +6C ⃗  ĵ A ⃗  B⃗ 

= − +2C ⃗  2

3
ĵ

2

3
A ⃗  B⃗ 

= − ( −2 ) +2(− + )
2

3
ĵ

2

3
î k̂ ĵ

k̂

2

= − + −2 +
2

3
ĵ

2

3
î

4

3
k̂ ĵ k̂

= − +( −2) +(   +1)
2

3
î

2

3
ĵ

4

3
k̂

= − − +
2

3
î

4

3
ĵ

7

3
k̂

x − 2
3 y − 4

3 z
7
3
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Starting at a ski lodge, a cross-country skier goes 5.0 km north, then 3.0 km west, and finally 4.0 km southwest before taking a rest.
Find his total displacement vector relative to the lodge when he is at the rest point. How far and in what direction must he ski from the
rest point to return directly to the lodge?

Strategy

We assume a rectangular coordinate system with the origin at the ski lodge and with the unit vector  pointing east and the unit vector 
 pointing north. There are three displacements: , , and . We identify their magnitudes as D  = 5.0 km , D  = 3.0 km , and D

= 4.0 km . We identify their directions are the angles  = 90°,  = 180°, and  = 180° + 45° = 225°. We resolve each displacement
vector to its scalar components and substitute the components into Equation 2.6.5 to obtain the scalar components of the resultant
displacement  from the lodge to the rest point. On the way back from the rest point to the lodge, the displacement is  = − .
Finally, we find the magnitude and direction of .

Solution

Scalar components of the displacement vectors are

Scalar components of the net displacement vector are

Hence, the skier’s net displacement vector is  = D   + D   = (−5.8  + 2.2 )km . On the way back to the lodge, his displacement

is  = −  = −(−5.8 + 2.2 )km = (5.8  − 2.2 )km. Its magnitude is B =  =  km = 6.2 km and its

direction angle is = tan  = −20.8°. Therefore, to return to the lodge, he must go 6.2 km in a direction about 21° south of

east.

Significance

Notice that no figure is needed to solve this problem by the analytical method. Figures are required when using a graphical method;
however, we can check if our solution makes sense by sketching it, which is a useful final step in solving any vector problem.

A jogger runs up a flight of 200 identical steps to the top of a hill and then runs along the top of the hill 50.0 m before he stops at a
drinking fountain (Figure ). His displacement vector from point A at the bottom of the steps to point B at the fountain is  =
(−90.0  + 30.0 )m. What is the height and width of each step in the flight? What is the actual distance the jogger covers? If he
makes a loop and returns to point A, what is his net displacement vector?

C = = = .+ +C 2
x C 2

y C 2
z

− −−−−−−−−−−
√ + +(− )

2

3

2

(− )
4

3

2

( )
7

3

2
− −−−−−−−−−−−−−−−−−−−−−

√
23

3

−−−
√ (3.7.15)

 Example : Displacement of a Skier3.7.4

î

ĵ D⃗ 
1 D⃗ 

2 D⃗ 
3 1 2 3

θ1 θ2 θ3

D⃗  B⃗  D⃗ 

B⃗ 

{
= cos = (5.0 km) cos = 0D1x D1 θ1 90o

= sin = (5.0 km) sin = 5.0 kmD1y D1 θ1 90o
(3.7.16)

{
= cos = (3.0 km) cos = −3.0 kmD2x D2 θ2 180o

= sin = (3.0 km) sin = 0D2y D2 θ2 180o
(3.7.17)

{
= cos = (4.0 km) cos = −2.8 kmD3x D3 θ3 225o

= sin = (4.0 km) sin = −2.8 kmD3y D3 θ3 225o
(3.7.18)

{
= + + = (0 −3.0 −2.8)km = −5.8 kmDx D1x D2x D3x

= + + = (5.0 +0 −2.8)km = +2.2 kmDy D1y D2y D3y
(3.7.19)

D⃗  x î y ĵ î ĵ

B⃗  D⃗  î ĵ î ĵ +B2
x B2

y

− −−−−−−
√ (5.8 +(−2.2)2 )2− −−−−−−−−−−−−

√

θ −1( )
−2.2

5.8

 Example : Displacement of a Jogger3.7.5

3.7.3 D⃗ 
AB

î ĵ
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Figure : A jogger runs up a flight of steps.

Strategy

The displacement vector  is the vector sum of the jogger’s displacement vector  along the stairs (from point A at the bottom
of the stairs to point T at the top of the stairs) and his displacement vector  on the top of the hill (from point T at the top of the
stairs to the fountain at point B). We must find the horizontal and the vertical components of . If each step has width w and height
h, the horizontal component of  must have a length of 200w and the vertical component must have a length of 200h. The actual
distance the jogger covers is the sum of the distance he runs up the stairs and the distance of 50.0 m that he runs along the top of the
hill.

Solution
In the coordinate system indicated in Figure , the jogger’s displacement vector on the top of the hill is  = (−50.0 m) . His
net displacement vector is

Therefore, his displacement vector  along the stairs is

Its scalar components are D  = −40.0 m and D  = 30.0 m. Therefore, we must have

Hence, the step width is w =  = 0.2 m = 20 cm, and the step height is w =  = 0.15 m = 15 cm. The distance that the jogger
covers along the stairs is

Thus, the actual distance he runs is D  + D  = 50.0 m + 50.0 m = 100.0 m. When he makes a loop and comes back from the
fountain to his initial position at point A, the total distance he covers is twice this distance,or 200.0 m. However, his net displacement
vector is zero, because when his final position is the same as his initial position, the scalar components of his net displacement vector
are zero (Equation 2.4.4).

In many physical situations, we often need to know the direction of a vector. For example, we may want to know the direction of a
magnetic field vector at some point or the direction of motion of an object. We have already said direction is given by a unit vector, which
is a dimensionless entity—that is, it has no physical units associated with it. When the vector in question lies along one of the axes in a
Cartesian system of coordinates, the answer is simple, because then its unit vector of direction is either parallel or antiparallel to the
direction of the unit vector of an axis. For example, the direction of vector  = -5 m  is unit vector  = - . The general rule of finding the
unit vector  of direction for any vector  is to divide it by its magnitude V:

We see from this expression that the unit vector of direction is indeed dimensionless because the numerator and the denominator in
Equation  have the same physical unit. In this way, Equation  allows us to express the unit vector of direction in terms of unit
vectors of the axes. The following example illustrates this principle.

3.7.3

D⃗ 
AB D⃗ 

AT

D⃗ 
RB

D⃗ 
TB

D⃗ 
TB

3.7.3 D⃗ 
RB î

= + .D⃗ 
AB D⃗ 

AT D⃗ 
TB

D⃗ 
TB

D⃗ 
AT = − = (−90.0 +30.0 )m−(−50.0m) ) = [(−90.050.0)hati+30.0 )]mD⃗ 

AB D⃗ 
TB î ĵ î ĵ

= (−40.0 +30.0 )m.î ĵ

ATx ATy

200w = | −40.0|m and 200h = 30.0 m.

40.0 m

200
30.0 m

200

= = m = 50.0 m.D⃗ 
AT +D⃗ 2

ATx D⃗ 2
ATy

− −−−−−−−−−−
√ (−40.0 +(30.0)2 )2

− −−−−−−−−−−−−−−
√

AT TB

d ⃗  î d ⃗  î

V ⃗  V ⃗ 

= ⋅V̂
V
→

V
(3.7.20)

3.7.20 3.7.20
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If the velocity vector of the military convoy in Example 2.6.1 is  = (4.000  + 3.000  + 0.100 )km/h, what is the unit vector of its
direction of motion.

Strategy

The unit vector of the convoy’s direction of motion is the unit vector  that is parallel to the velocity vector. The unit vector is
obtained by dividing a vector by its magnitude, in accordance with Equation .

Solution

The magnitude of the vector  is

To obtain the unit vector , divide  by its magnitude:

Significance

Note that when using the analytical method with a calculator, it is advisable to carry out your calculations to at least three decimal
places and then round off the final answer to the required number of significant figures, which is the way we performed calculations in
this example. If you round off your partial answer too early, you risk your final answer having a huge numerical error, and it may be
far off from the exact answer or from a value measured in an experiment.

Verify that vector  obtained in Example  is indeed a unit vector by computing its magnitude. If the convoy in Example 2.6.1
was moving across a desert flatland—that is, if the third component of its velocity was zero—what is the unit vector of its direction of
motion? Which geographic direction does it represent?

This page titled 3.7: Algebra of Vectors Examples is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

 Example : The Unit Vector of Direction3.7.6

v ⃗  î ĵ k̂

v̂

3.7.20

v ⃗ 

v= = km/h = 5.001 km/h.+ +v2
x v2

y v2
z

− −−−−−−−−−
√ + +4.0002 3.0002 0.1002− −−−−−−−−−−−−−−−−−−

√

v̂ v ⃗ 

v̂ = =
v ⃗ 

v

(4.000 +3.00 +0.100 )km/hî ĵ k̂

5.001 km/h

=
(4.000 +3.000 +0.1100 )î ĵ k̂

5.001

= + +
4.000

5.001
î

3.000

5.001
ĵ

0.100

5.001
k̂

= (79.98 +59.99 +2.00 ) × .î ĵ k̂ 10−2

 Exercise 2.10

v̂ 3.7.3
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3.8: Products of Vectors (Part 1)

Explain the difference between the scalar product and the vector product of two vectors.
Determine the scalar product of two vectors.
Determine the vector product of two vectors.
Describe how the products of vectors are used in physics.

A vector can be multiplied by another vector but may not be divided by another vector. There are two kinds of products of vectors
used broadly in physics and engineering. One kind of multiplication is a scalar multiplication of two vectors. Taking a scalar
product of two vectors results in a number (a scalar), as its name indicates. Scalar products are used to define work and energy
relations. For example, the work that a force (a vector) performs on an object while causing its displacement (a vector) is defined as
a scalar product of the force vector with the displacement vector. A quite different kind of multiplication is a vector multiplication
of vectors. Taking a vector product of two vectors returns as a result a vector, as its name suggests. Vector products are used to
define other derived vector quantities. For example, in describing rotations, a vector quantity called torque is defined as a vector
product of an applied force (a vector) and its lever arm (a vector). It is important to distinguish between these two kinds of vector
multiplications because the scalar product is a scalar quantity and a vector product is a vector quantity.

The Scalar Product of Two Vectors (the Dot Product)
Scalar multiplication of two vectors yields a scalar product.

The scalar product  of two vectors  and  is a number defined by the equation

where  is the angle between the vectors (shown in Figure ). The scalar product is also called the dot product because of
the dot notation that indicates it.

In the definition of the dot product, the direction of angle  does not matter, and  can be measured from either of the two vectors
to the other because  =  = . The dot product is a negative number when 90° <  ≤ 180° and is a positive
number when 0° ≤  < 90°. Moreover, the dot product of two parallel vectors is  = AB cos 0° = AB, and the dot product of
two antiparallel vectors is  = AB cos 180° = −AB. The scalar product of two orthogonal vectors vanishes:  = AB cos
90° = 0. The scalar product of a vector with itself is the square of its magnitude:

Figure : The scalar product of two vectors. (a) The angle between the two vectors. (b) The orthogonal projection A  of vector
 onto the direction of vector . (c) The orthogonal projection B  of vector  onto the direction of vector .

For the vectors shown in Figure 2.3.6, find the scalar product .

Strategy

 Learning Objectives

 Definition: Scalar Product (Dot Product)

⋅A ⃗  B⃗  A ⃗  B⃗ 

⋅ = AB cosφ,A ⃗  B⃗  (3.8.1)

ϕ 3.8.1

φ φ

cosφ cos(−φ) cos(2π−φ) φ

ϕ ⋅A ⃗  B⃗ 

⋅A ⃗  B⃗  ⋅A ⃗  B⃗ 

≡ ⋅ = AA cos =A ⃗ 2 A ⃗  A ⃗  0o A2 (3.8.2)

3.8.1 ⊥

A ⃗  B⃗ 
⊥ B⃗  A ⃗ 

 Example : The Scalar Product3.8.1

⋅A ⃗  F ⃗ 
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From Figure 2.3.6, the magnitudes of vectors  and  are A = 10.0 and F = 20.0. Angle , between them, is the difference: 
 = 110° − 35° = 75°. Substituting these values into Equation  gives the scalar product.

Solution
A straightforward calculation gives us

For the vectors given in Figure 2.3.6, find the scalar products  and .

In the Cartesian coordinate system, scalar products of the unit vector of an axis with other unit vectors of axes always vanish
because these unit vectors are orthogonal:

In these equations, we use the fact that the magnitudes of all unit vectors are one:  = 1. For unit vectors of the axes,
Equation  gives the following identities:

The scalar product  can also be interpreted as either the product of B with the projection A  of vector  onto the direction of
vector  (Figure (b)) or the product of A with the projection B  of vector  onto the direction of vector  (Figure (c)):

For example, in the rectangular coordinate system in a plane, the scalar x-component of a vector is its dot product with the unit
vector , and the scalar y-component of a vector is its dot product with the unit vector :

Scalar multiplication of vectors is communtative,

and obeys the distributive law:

We can use the commutative and distributive laws to derive various relations for vectors, such as expressing the dot product of two
vectors in terms of their scalar components.

For vector  in a rectangular coordinate system, use Equation  through Equation  to show
that  and .

When the vectors in Equation  are given in their vector component forms,

A ⃗  B⃗  θ

θ = φ−α 3.8.1

⋅ = AF cosθ = (10.0)(20.0) cos = 51.76.A ⃗  F ⃗  75o (3.8.3)

 Exercise 2.11

⋅A ⃗  B⃗  ⋅B⃗  C ⃗ 

⋅ = | || | cos = (1)(1)(0) = 0,î ĵ î ĵ 90o (3.8.4)

⋅ = | || | cos = (1)(1)(0) = 0,î k̂ î k̂ 90o (3.8.5)

⋅ = | || | cos = (1)(1)(0) = 0.k̂ ĵ k̂ ĵ 90o (3.8.6)

| | = | | = | |î ĵ k̂

3.8.2

⋅ = = ⋅ = = ⋅ = 1.î î i2 ĵ ĵ j2 k̂ k̂ (3.8.7)

⋅A ⃗  B⃗ 
∥ A ⃗ 

B⃗  3.8.1 ∥ B⃗  A ⃗  3.8.1

⋅A ⃗  B⃗ = AB cosφ

= B(A cosφ) = BA∥

= A(B cosφ) = A .B∥

î ĵ

{
⋅ = | || | cos = A cos = A cos =A ⃗  î A ⃗  î θA θA θA Ax

⋅ = | || | cos( − ) = A sin =A ⃗  ĵ A ⃗  ĵ 90o θA θA Ay

(3.8.8)

⋅ = ⋅ ,A ⃗  B⃗  B⃗  A ⃗  (3.8.9)

⋅ ( + ) = ⋅ + ⋅ .A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (3.8.10)

 Exercise 2.12

= + +A ⃗  Ax î Ay ĵ Az k̂ 3.8.4 3.8.10

⋅ = ⋅ =A ⃗  î AxA ⃗  ĵ Ay ⋅ =A ⃗  k̂ Az

3.8.1

= + + and = + + ,A ⃗  Ax î Ay ĵ Az k̂ B⃗  Bx î By ĵ Bz k̂ (3.8.11)
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we can compute their scalar product as follows:

Since scalar products of two different unit vectors of axes give zero, and scalar products of unit vectors with themselves give one
(see Equation  and Equation ), there are only three nonzero terms in this expression. Thus, the scalar product simplifies
to

We can use Equation  for the scalar product in terms of scalar components of vectors to find the angle between two vectors.
When we divide Equation  by AB, we obtain the equation for cos , into which we substitute Equation :

Angle  between vectors  and  is obtained by taking the inverse cosine of the expression in Equation .

Three dogs are pulling on a stick in different directions, as shown in Figure . The first dog pulls with force  = (10.0  −
20.4  + 2.0 )N, the second dog pulls with force  = (−15.0  − 6.2 )N , and the third dog pulls with force  = (5.0  +
12.5 )N . What is the angle between forces  and ?

Figure : Three dogs are playing with a stick.

Strategy

The components of force vector  are F  = 10.0 N, F = −20.4 N, and F  = 2.0 N, whereas those of force vector  are F
= −15.0 N, F  = 0.0 N, and F  = −6.2 N. Computing the scalar product of these vectors and their magnitudes, and substituting
into Equation  gives the angle of interest.

Solution
The magnitudes of forces  and  are

and

Substituting the scalar components into Equation  yields the scalar product

⋅A ⃗  B⃗  = ( + + ) ⋅ ( + + )Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂

= ⋅ + ⋅ + ⋅AxBx î î AxBy î ĵ AxBz î k̂

+ ⋅ + ⋅ + ⋅AyBx ĵ î AyBy ĵ ĵ AyBz ĵ k̂

+ ⋅ + ⋅ + ⋅ .AzBx k̂ î AzBy k̂ ĵ AzBz k̂ k̂

3.8.4 3.8.7

⋅ = + + .A ⃗  B⃗  AxBx AyBy AzBz (3.8.12)

3.8.12
3.8.1 φ 3.8.12

cosφ = = .
⋅A ⃗  B⃗ 

AB

+ +AxBx AyBy AzBz

AB
(3.8.13)

φ A ⃗  B⃗  3.8.13

 Example 3.8.2

3.8.2 F ⃗ 
1 î

ĵ k̂ F ⃗ 
2 î k̂ F ⃗ 

3 î

ĵ F ⃗ 
1 F ⃗ 

2

3.8.2

F ⃗ 
1 1x 1y 1z F ⃗ 

2 2x

2y 2z
3.8.13

F ⃗ 
1 F ⃗ 

2

= = N = 22.8 NF1 + +F 2
1x F 2

1y F 2
1z

− −−−−−−−−−−−
√ + +10.02 20.42 2.02− −−−−−−−−−−−−−−−

√ (3.8.14)

= = N = 16.2 N .F2 + +F 2
2x F 2

2y F 2
2z

− −−−−−−−−−−−
√ +15.02 6.22− −−−−−−−−−

√ (3.8.15)

3.8.12

⋅F ⃗ 
1 F ⃗ 

2 = + +F1xF2x F1yF2y F1zF2z

= (10.0 N)(−15.0 N) +(−20.4 N)(0.0 N) +(2.0 N)(−6.2 N)

= −162.4 .N 2
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Finally, substituting everything into Equation  gives the angle

Significance

Notice that when vectors are given in terms of the unit vectors of axes, we can find the angle between them without knowing
the specifics about the geographic directions the unit vectors represent. Here, for example, the +x-direction might be to the east
and the +y-direction might be to the north. But, the angle between the forces in the problem is the same if the +x-direction is to
the west and the +y-direction is to the south.

Find the angle between forces  and  in Example .

When force  pulls on an object and when it causes its displacement , we say the force performs work. The amount of work
the force does is the scalar product . If the stick in Example  moves momentarily and gets displaced by vector  =
(−7.9  − 4.2 )cm, how much work is done by the third dog in Example ?

Strategy

We compute the scalar product of displacement vector  with force vector  = (5.0  + 12.5 )N, which is the pull from the
third dog. Let’s use W  to denote the work done by force  on displacement .

Solution
Calculating the work is a straightforward application of the dot product:

Significance

The SI unit of work is called the joule (J) , where 1 J = 1 N · m. The unit cm · N can be written as 10 m · N = 10  J, so the
answer can be expressed as W  = −0.9875 J ≈ −1.0 J.

How much work is done by the first dog and by the second dog in Example  on the displacement in Example ?

Contributors and Attributions
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3.8.13

cosφ = = = −0.439 ⇒ φ = (−0.439) = .
⋅F ⃗ 

1 F ⃗ 
2

F1F2

−162.4 N 2

(22.8 N)(16.2 N)
cos−1 116.0o (3.8.16)

 Exercise 2.13

F ⃗ 
1 F ⃗ 

3 3.8.2

 Example : The Work of a Force3.8.3

F ⃗  D⃗ 

⋅F ⃗  D⃗  3.8.2 D⃗ 

ĵ k̂ 3.8.2

D⃗  F ⃗ 
3 î ĵ

3 F ⃗ 
3 D⃗ 

W3 = ⋅ = + +F ⃗ 
3 D⃗  F3xDx F3yDy F3zDz

= (5.0 N)(0.0 cm) +(12.5 N)(−7.9 cm) +(0.0 N)(−4.2 cm)

= −98.7 N ⋅ cm.

−2 −2

3

 Exercise 2.14

3.8.2 3.8.3
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3.9: Products of Vectors (Part 2)

The Vector Products of Two Vectors (the Cross Product)

Vector multiplication of two vectors yields a vector product.

The vector product of two vectors  and  is denoted by  ×  and is often referred to as a cross product. The vector product
is a vector that has its direction perpendicular to both vectors  and . In other words, vector  ×  is perpendicular to the
plane that contains vectors  and , as shown in Figure . The magnitude of the vector product is defined as

where angle , between the two vectors, is measured from vector  (first vector in the product) to vector  (second vector in
the product), as indicated in Figure , and is between 0° and 180°.

According to Equation , the vector product vanishes for pairs of vectors that are either parallel (  = 0°) or antiparallel (  =
180°) because sin 0° = sin 180° = 0.

Figure : The vector product of two vectors is drawn in three-dimensional space. (a) The vector product  is a vector
perpendicular to the plane that contains vectors  and . Small squares drawn in perspective mark right angles between  and ,
and between  and  so that if  and  lie on the floor, vector  points vertically upward to the ceiling. (b) The vector product 

 is a vector antiparallel to vector .

On the line perpendicular to the plane that contains vectors  and  there are two alternative directions—either up or down, as
shown in Figure —and the direction of the vector product may be either one of them. In the standard right-handed orientation,
where the angle between vectors is measured counterclockwise from the first vector, vector  points upward, as seen in
Figure (a). If we reverse the order of multiplication, so that now  comes first in the product, then vector  must point
downward, as seen in Figure (b). This means that vectors  and  are antiparallel to each other and that vector
multiplication is not commutative but anticommutative. The anticommutative property means the vector product reverses the
sign when the order of multiplication is reversed:

The corkscrew right-hand rule is a common mnemonic used to determine the direction of the vector product. As shown in Figure 
, a corkscrew is placed in a direction perpendicular to the plane that contains vectors  and , and its handle is turned in the

direction from the first to the second vector in the product. The direction of the cross product is given by the progression of the
corkscrew.

 Vector Product (Cross Product)

A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  B⃗  A ⃗  B⃗ 

A ⃗  B⃗  3.9.1

| × | = AB sinφ,A ⃗  B⃗  (3.9.1)

φ A ⃗  B⃗ 

3.9.1

3.9.1 φ φ

3.9.1 ×A ⃗  B⃗ 

A ⃗  B⃗  A ⃗  C ⃗ 

B⃗  C ⃗  A ⃗  B⃗  B⃗ 

×B⃗  A ⃗  ×A ⃗  B⃗ 

A ⃗  B⃗ 

3.9.1

×A ⃗  B⃗ 

3.9.1 B⃗  ×B⃗  A ⃗ 

3.9.1 ×A ⃗  B⃗  ×B⃗  A ⃗ 

× = − × .A ⃗  B⃗  B⃗  A ⃗  (3.9.2)

3.9.2 A ⃗  B⃗ 
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Figure : The corkscrew right-hand rule can be used to determine the direction of the cross product . Place a corkscrew
in the direction perpendicular to the plane that contains vectors  and , and turn it in the direction from the first to the second
vector in the product. The direction of the cross product is given by the progression of the corkscrew. (a) Upward movement means
the cross-product vector points up. (b) Downward movement means the cross-product vector points downward.

The mechanical advantage that a familiar tool called a wrench provides (Figure ) depends on magnitude F of the applied
force, on its direction with respect to the wrench handle, and on how far from the nut this force is applied. The distance R from
the nut to the point where force vector  is attached is called the lever arm and is represented by the radial vector . The
physical vector quantity that makes the nut turn is called torque (denoted by ), and it is the vector product of the lever arm
with the force: .

To loosen a rusty nut, a 20.00-N force is applied to the wrench handle at angle  = 40° and at a distance of 0.25 m from the
nut, as shown in Figure (a). Find the magnitude and direction of the torque applied to the nut. What would the magnitude
and direction of the torque be if the force were applied at angle  = 45°, as shown in Figure (b)? For what value of angle 

 does the torque have the largest magnitude?

Figure : A wrench provides grip and mechanical advantage in applying torque to turn a nut. (a) Turn counterclockwise to
loosen the nut. (b) Turn clockwise to tighten the nut.

Strategy

We adopt the frame of reference shown in Figure , where vectors  and  lie in the xy-plane and the origin is at the
position of the nut. The radial direction along vector  (pointing away from the origin) is the reference direction for measuring
the angle  because  is the first vector in the vector product  = . Vector  must lie along the z-axis because this is the
axis that is perpendicular to the xy-plane, where both  and  lie. To compute the magnitude , we use Equation . To
find the direction of , we use the corkscrew right-hand rule (Figure ).

Solution
For the situation in (a), the corkscrew rule gives the direction of  in the positive direction of the z-axis. Physically, it
means the torque vector  points out of the page, perpendicular to the wrench handle. We identify F = 20.00 N and R = 0.25 m,
and compute the magnitude using Equation :

3.9.2 ×A ⃗  B⃗ 

A ⃗  B⃗ 

 Example : The Torque of a Force3.9.1

3.9.3

F ⃗  R⃗ 

τ ⃗ 

= ×τ ⃗  R⃗  F ⃗ 

φ

3.9.3

φ 3.9.3

φ

3.9.3

3.9.3 R⃗  F ⃗ 

R⃗ 

φ R⃗  τ ⃗  ×R⃗  F ⃗  τ ⃗ 

R⃗  F ⃗  τ 3.9.1

τ ⃗  3.9.2

×R⃗  F ⃗ 

τ ⃗ 

3.9.1

τ = | × | = RF sinφ = (0.25 m)(20.00 N) sin = 3.21 N ⋅ m.R⃗  F ⃗  40o (3.9.3)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46044?pdf


3.9.3 https://phys.libretexts.org/@go/page/46044

For the situation in (b), the corkscrew rule gives the direction of  in the negative direction of the z-axis. Physically, it
means the vector  points into the page, perpendicular to the wrench handle. The magnitude of this torque is

The torque has the largest value when sin  = 1, which happens when  = 90°. Physically, it means the wrench is most
effective—giving us the best mechanical advantage—when we apply the force perpendicular to the wrench handle. For the
situation in this example, this best-torque value is  = RF = (0.25 m)(20.00 N) = 5.00 N • m.

Significance

When solving mechanics problems, we often do not need to use the corkscrew rule at all, as we’ll see now in the following
equivalent solution. Notice that once we have identified that vector  lies along the z-axis, we can write this vector in
terms of the unit vector  of the z-axis:

In this equation, the number that multiplies  is the scalar z-component of the vector . In the computation of this
component, care must be taken that the angle  is measured counterclockwise from  (first vector) to  (second vector)
Following this principle for the angles, we obtain RF sin (+ 40°) = + 3.2 N • m for the situation in (a), and we obtain RF sin
(−45°) = −3.5 N • m for the situation in (b). In the latter case, the angle is negative because the graph in Figure  indicates
the angle is measured clockwise; but, the same result is obtained when this angle is measured counterclockwise because +(360°
− 45°) = + 315° and sin (+ 315°) = sin (−45°). In this way, we obtain the solution without reference to the corkscrew rule. For
the situation in (a), the solution is  = + 3.2 N • m ; for the situation in (b), the solution is  = −3.5 N • m .

For the vectors given in Figure 2.3.6, find the vector products  and .

Similar to the dot product (Equation 2.8.10), the cross product has the following distributive property:

The distributive property is applied frequently when vectors are expressed in their component forms, in terms of unit vectors of
Cartesian axes. When we apply the definition of the cross product, Equation , to unit vectors , , and  that define the
positive x-, y-, and z-directions in space, we find that

All other cross products of these three unit vectors must be vectors of unit magnitudes because , , and  are orthogonal. For
example, for the pair  and , the magnitude is | | = ij sin 90° = (1)(1)(1) = 1. The direction of the vector product  must
be orthogonal to the xy-plane, which means it must be along the z-axis. The only unit vectors along the z-axis are −  or + . By the
corkscrew rule, the direction of vector  must be parallel to the positive z-axis. Therefore, the result of the multiplication 
is identical to + . We can repeat similar reasoning for the remaining pairs of unit vectors. The results of these multiplications are

Notice that in Equation , the three unit vectors , , and  appear in the cyclic order shown in a diagram in Figure (a).
The cyclic order means that in the product formula,  follows  and comes before , or  follows  and comes before , or 
follows  and comes before . The cross product of two different unit vectors is always a third unit vector. When two unit vectors
in the cross product appear in the cyclic order, the result of such a multiplication is the remaining unit vector, as illustrated in
Figure (b). When unit vectors in the cross product appear in a different order, the result is a unit vector that is antiparallel to
the remaining unit vector (i.e., the result is with the minus sign, as shown by the examples in Figure (c) and Figure (d).

×R⃗  F ⃗ 

τ ⃗ 

τ = | × | = RF sinφ = (0.25 m)(20.00 N) sin = 3.53 N ⋅ m.R⃗  F ⃗  45o (3.9.4)

φ φ

τbest

×R⃗  F ⃗ 

k̂

× = RF sinφ .R⃗  F ⃗  k̂ (3.9.5)

k̂ ×R⃗  F ⃗ 

φ R⃗  F ⃗ 

3.9.3

×R⃗  F ⃗  k̂ ×R⃗  F ⃗  k̂

 Exercise 2.15

×A ⃗  B⃗  ×C ⃗  F ⃗ 

×( + ) = × + × .A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (3.9.6)

3.9.1 î ĵ k̂

× = × = × = 0.î î ĵ ĵ k̂ k̂ (3.9.7)

î ĵ k̂

î ĵ ×î ĵ ×î ĵ

k̂ k̂

×î ĵ ×î ĵ

k̂

⎧

⎩
⎨
⎪

⎪

× = + ,î ĵ k̂

× = + ,ĵ k̂ î

× = + .k̂ î ĵ

(3.9.8)

3.9.8 î ĵ k̂ 3.9.4

î k̂ ĵ k̂ ĵ î ĵ

î k̂

3.9.4

3.9.4 3.9.4
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In practice, when the task is to find cross products of vectors that are given in vector component form, this rule for the cross-
multiplication of unit vectors is very useful.

Figure : (a) The diagram of the cyclic order of the unit vectors of the axes. (b) The only cross products where the unit vectors
appear in the cyclic order. These products have the positive sign. (c, d) Two examples of cross products where the unit vectors do
not appear in the cyclic order. These products have the negative sign.

Suppose we want to find the cross product  for vectors = A + A  + A  and  = B  + B  + B . We can use the
distributive property (Equation ), the anticommutative property (Equation ), and the results in Equation  and
Equation  for unit vectors to perform the following algebra:

When performing algebraic operations involving the cross product, be very careful about keeping the correct order of
multiplication because the cross product is anticommutative. The last two steps that we still have to do to complete our task are,
first, grouping the terms that contain a common unit vector and, second, factoring. In this way we obtain the following very useful
expression for the computation of the cross product:

In this expression, the scalar components of the cross-product vector are

When finding the cross product, in practice, we can use either Equation  or Equation , depending on which one of them
seems to be less complex computationally. They both lead to the same final result. One way to make sure if the final result is
correct is to use them both.

When moving in a magnetic field, some particles may experience a magnetic force. Without going into details—a detailed
study of magnetic phenomena comes in later chapters—let’s acknowledge that the magnetic field  is a vector, the magnetic
force  is a vector, and the velocity  of the particle is a vector. The magnetic force vector is proportional to the vector product

3.9.4

×A ⃗  B⃗  A ⃗ 
x î y ĵ z k̂ B⃗ 

x î y ĵ z k̂

3.9.6 3.9.2 3.9.7

3.9.8

×A ⃗  B⃗  = ( + + ) ×( + + )Ax î Ay ĵ Az k̂ Bx î By ĵ Bz k̂

= ×( + + ) + ×( + + ) + ×( + + )Ax î Bx î By ĵ Bz k̂ Ay ĵ Bx î By ĵ Bz k̂ Az k̂ Bx î By ĵ Bz k̂

= × + × + ×AxBx î î AxBy î ĵ AzBz î k̂

+ × + × + ×AyBx ĵ î AyBy ĵ ĵ AyBz ĵ k̂

+ × + × + ×AzBx k̂ î AzBy k̂ ĵ AzBz k̂ k̂

= (0) + (+ ) + (− )AxBx AxBy k̂ AxBz ĵ

+ (− ) + (0) + (+ )AyBx k̂ AyBy AyBz î

+ (+ ) + (− ) + (0).AzBx ĵ AzBy î AzBz

= × = ( − ) +( − ) +( − ) .C ⃗  A ⃗  B⃗  AyBz AzBy î AzBx AxBz ĵ AxBy AyBx k̂ (3.9.9)

⎧

⎩
⎨
⎪

⎪

= − ,Cx AyBz AzBy

= − ,Cy AzBx AxBz

= − .Cz AxBy AyBx

(3.9.10)

3.9.1 3.9.9

 Example : A Particle in a Magnetic Field3.9.2

B⃗ 

F ⃗  u⃗ 
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of the velocity vector with the magnetic field vector, which we express as  = . In this equation, a constant  takes care
of the consistency in physical units, so we can omit physical units on vectors  and . In this example, let’s assume the
constant  is positive. A particle moving in space with velocity vector  = −5.0  − 2.0 + 3.5  enters a region with a
magnetic field and experiences a magnetic force. Find the magnetic force  on this particle at the entry point to the region
where the magnetic field vector is (a)  = 7.2  −  − 2.4  and (b)  = 4.5 . In each case, find magnitude F of the magnetic
force and angle  the force vector  makes with the given magnetic field vector .

Strategy

First, we want to find the vector product , because then we can determine the magnetic force using  = .

Magnitude F can be found either by using components, F = , or by computing the magnitude | |

directly using Equation . In the latter approach, we would have to find the angle between vectors  and . When we have
, the general method for finding the direction angle  involves the computation of the scalar product  and substitution

into Equation 2.8.13. To compute the vector product we can either use Equation  or compute the product directly,
whichever way is simpler.

Solution
The components of the velocity vector are u  = −5.0, u  = −2.0, and u  = 3.5. (a) The components of the magnetic field vector
are B  = 7.2, B  = −1.0, and B  = −2.4. Substituting them into Equation  gives the scalar components of vector 

:

Thus, the magnetic force is  = (8.3  + 13.2  + 19.4 ) and its magnitude is

To compute angle , we may need to find the magnitude of the magnetic field vector

and the scalar product :

Now, substituting into Equation 2.8.13 gives angle :

Hence, the magnetic force vector is perpendicular to the magnetic field vector. (We could have saved some time if we had
computed the scalar product earlier.)

(b) Because vector  = 4.5  has only one component, we can perform the algebra quickly and find the vector product
directly:

The magnitude of the magnetic force is

Because the scalar product is

F ⃗  ζ ×u⃗  B⃗  ζ

u⃗  B⃗ 

ζ u⃗  î ĵ k̂

F ⃗ 

B⃗  î ĵ k̂ B⃗  k̂

θ F ⃗  B⃗ 

×u⃗  B⃗  F ⃗  ζ ×u⃗  B⃗ 

+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ ×u⃗  B⃗ 

3.9.1 u⃗  B⃗ 

F ⃗  θ ⋅F ⃗  B⃗ 

3.9.9

x y z

x y z 3.9.10

= ζ ×F ⃗  u⃗  B⃗ 

⎧

⎩
⎨
⎪

⎪

= ζ( − ) = ζ[(−2.0)(−2.4) −(3.5)(−1.0)] = 8.3ζFx uyBz uzBy

= ζ( − ) = ζ[(3.5)(7.2) −(−5.0)(−2.4)] = 13.2ζFy uzBx uxBz

= ζ( − ) = ζ[(−5.0)(−1.0) −(−2.0)(7.2)] = 19.4ζFz uxBy uyBx

(3.9.11)

F ⃗  ζ î ĵ k̂

F = = ζ = 24.9ζ.+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ (8.3 +(13.2 +(19.4)2 )2 )2

− −−−−−−−−−−−−−−−−−−−
√ (3.9.12)

θ

B = = = 7.6,+ +B2
x B2

y B2
z

− −−−−−−−−−−
√ (7.2 +(−1.0 +(−2.4)2 )2 )2

− −−−−−−−−−−−−−−−−−−−−
√ (3.9.13)

⋅F ⃗  B⃗ 

⋅ = + + = (8.3ζ)(7.2) +(13.2ζ)(−1.0) +(19.4ζ)(−2.4) =.F ⃗  B⃗  FxBx FyBy FzBz (3.9.14)

θ

cos θ = = = 0 ⇒ θ = .
⋅F ⃗  B⃗ 

F B

0

(18.2ζ)(7.6)
90o (3.9.15)

B⃗  k̂

F ⃗  = ζ × = ζ(−5.0 −2.0 +3.5 ) ×(4.5 )u⃗  B⃗  î ĵ k̂ k̂

= ζ[(−5.0)(4.5) × +(−2.0)(4.5) × +(3.5)(4.5) × ]î k̂ ĵ k̂ k̂ k̂

= ζ[−22.5(− ) −9.0(+ ) +0] = ζ(−9.0 +22.5 ).ĵ î î ĵ

F = = ζ = 24.2ζ.+ +F 2
x F 2

y F 2
z

− −−−−−−−−−−−
√ (−9.0 +(22.5 +(0.0)2 )2 )2

− −−−−−−−−−−−−−−−−−−−
√ (3.9.16)
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the magnetic force vector  is perpendicular to the magnetic field vector .

Significance

Even without actually computing the scalar product, we can predict that the magnetic force vector must always be
perpendicular to the magnetic field vector because of the way this vector is constructed. Namely, the magnetic force vector is
the vector product  =  and, by the definition of the vector product (see Figure ), vector  must be perpendicular
to both vectors  and .

Given two vectors  and  = 3  − , find (a) , (b) | |, (c) the angle between  and , and (d) the
angle between  and vector .

In conclusion to this section, we want to stress that “dot product” and “cross product” are entirely different mathematical objects
that have different meanings. The dot product is a scalar; the cross product is a vector. Later chapters use the terms dot product
and scalar product interchangeably. Similarly, the terms cross product and vector product are used interchangeably.
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⋅ = + + = (−9.0ζ)(90) +(22.5ζ)(0) +(0)(4.5) = 0,F ⃗  B⃗  FxBx FyBy FzBz (3.9.17)

F ⃗  B⃗ 

F ⃗  ζ ×u⃗  B⃗  3.9.1 F ⃗ 

u⃗  B⃗ 

 Exercise 2.16

= − +A ⃗  î ĵ B⃗  î ĵ ×A ⃗  B⃗  ×(A ⃗  B⃗  A ⃗  B⃗ 

×A ⃗  B⃗  = +C ⃗  î k̂

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46044?pdf
http://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/03%3A_Vectors/3.09%3A_Products_of_Vectors_(Part_2)
https://creativecommons.org/licenses/by/
https://openstax.org/


3.A.1 https://phys.libretexts.org/@go/page/46045

3.A: Vectors (Answers)

Check Your Understanding

2.1. a. not equal because they are orthogonal;

b. not equal because they have different magnitudes;

c. not equal because they have different magnitudes and directions;

d. not equal because they are antiparallel;

e. equal.

2.2. 16 m; 

2.3. G = 28.2 cm, 

2.4. ; the fly moved 5.0 cm to the left and 3.0 cm down from its landing site.

2.5. 5.83 cm, 

2.6. 

2.7. 35.1 m/s = 126.4 km/h

2.8. 

2.9. D = 55.7 N; direction  north of east

2.10.  north of east

2.11. 

2.13. 

2.14. 

2.15.  or, equivalently, , and the direction is into the page;  or, equivalently, 

, and the direction is out of the page.

2.16. a. ,

b. 2,

c. ,

d. 

Conceptual Questions
1. scalar

3. answers may vary

5. parallel, sum of magnitudes, antiparallel, zero

7. no, yes

9. zero, yes

11. no

13. equal, equal, the same

15. a unit vector of the x-axis

17. They are equal.

19. yes

= −16mD⃗  û

= 291°θG

= (−5.0 −3.0 )cmD⃗  î ĵ

211°

= (−20m)D⃗  ĵ

= (10.25 −26.22 )cmG⃗  î ĵ

65.7°

= 0.8 +0.6 , 36.87°v̂ î ĵ

⋅ = −57.3, ⋅ = 27.8A ⃗  B⃗  F ⃗  C ⃗ 

131.9°

= 1.5J, = 0.3JW1 W2

× = −40.1A ⃗  B⃗  k̂ × ∣= 40.1∣
∣A

⃗  B⃗  × = +157.6C ⃗  F ⃗  k̂

× ∣= 157.6∣
∣C

⃗  F ⃗ 

−2k̂

153.4°

135°
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21. a. 

b.  or 

c. ,

d. ,

e. ,

f. ,

g. left side is a scalar and right side is a vector,

h. ,

i. ,

j. 

23. They are orthogonal.

Problems

25. , 49 m

27. 30.8 m,  west of north

29. 134 km, 

31. 7.34 km,  south of east

33. 3.8 km east, 3.2 km north, 7.0 km

35. 14.3 km, 

37. a. ,

b. ,

c. ,

d. ,

f. 

C = ⋅A ⃗  B⃗ 

= ⋅C ⃗  A ⃗  B⃗  = −C ⃗  A ⃗  B⃗ 

= ×C ⃗  A ⃗  B⃗ 

= AC ⃗  B⃗ 

+2 =C ⃗  A ⃗  B⃗ 

= ×C ⃗  A ⃗  B⃗ 

= 2 ×C ⃗  A ⃗  B⃗ 

= /BC ⃗  A ⃗ 

= /BC ⃗  A ⃗ 

= −49mh⃗  û

35.7°

80°

63.5°

65°

= +8.66 +5.00A ⃗  î ĵ

= +3.01 +3.99B⃗  î ĵ

= +6.00 −10.39C ⃗  î ĵ

= −15.97 +12.04D⃗ 
→

î ĵ

= −17.32 −10.00F ⃗  î ĵ
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39. a. 1.94 km, 7.24 km;

b. proof

41. 3.8 km east, 3.2 km north, 2.0 km, \(\vec{D}=(3.8\hat{i}+3.2\hat{j})km

43. 

45. 8.60 m, 

47. a. , ;

b. 

49. a. ;

b. .

51. 

53. a. ,

b. 

55. , D = 360.5 yd,  north of east; The numerical answers would stay the same but the physical unit
would be meters. The physical meaning and distances would be about the same because 1 yd is comparable with 1 m.

57. 

59. 

61. a. ;

b. |R→B−R→D|=14.414km

63. a. 8.66,

b. 10.39,

c. 0.866,

d. 17.32

65. 

(2.165m, 1.250m), (−1.900m, 3.290m), 5.27mP1 P2

A(2 m, 0.647π),B(3 m, 0.75π)5
–

√ 2
–

√

+ = −4 −6A ⃗  B⃗  î ĵ | + ∣= 7.211, θ = 236.3°A ⃗  B⃗ 

− = −2 +2 , ∣ − ∣= 2 , θ = 135°A ⃗  B⃗  î ĵ A ⃗  B⃗  2
–√

= (5.0 −1.0 −3.0 )m,C = 5.92mC ⃗  î ĵ k̂

= (4.0 −11.0 +15.0 )m,D = 19.03mD⃗  î ĵ k̂

= (3.3 −6.6 )km, istotheeast, 7.34km, −63.5°D⃗  î ĵ î

= −1.35 −22.04R⃗  î ĵ

= −17.98 +0.89R⃗  î ĵ

= (200 +300 )ydD⃗  î ĵ 56.3°

= −3 −16R⃗  î ĵ

= E , = +178.9V /m, = −357.8V /m, = 0.0V /m, = −ta (2)E ⃗ 
→

Ê Ex Ey Ez θE n−1

= (12.278 +7.089 +2.500 )km, \( = (−0.262 +3.000 )kmR⃗ 
B î ĵ k̂ R⃗ 

D î k̂

− ∣= 14.414km∣
∣R⃗

 
B R⃗ 

D

= 64.12°, = 150.79°, = 77.39°θi θj θk
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67. a. 

b. ,

c. ,

d. ,

e. ,

f. ,

g. ,

h. 0

69. a. 0,

b. 173,194,

c. +199,993

Additional Problems
71. a. 18.4 km and 26.2 km,

b. 31.5 km and 5.56 km

73. a. ,

b. ,

c. 

75. 

77. proof

79. a. 10.00 m,

b. ,

c. 0

81. 22.2 km/h, . south of west

83. 240.2 m,  south of west

85.  or 

87. proof

Challenge Problems

89. 

91. proof

This page titled 3.A: Vectors (Answers) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

−119.98k̂

0k̂

+93.69k̂

−240.0k̂

+3.993k̂

−3.009k̂

+14.99k̂

k̂

(r,φ+π/2)

(2r,φ+2π)(

(3r, −φ)

= 33.12nmi = 61.34km, = 35.47nmi = 65.69kmdPM dNP

5πm

35.8°

2.2°

= −4.0 +3.0B⃗  î ĵ = 4.0 −3.0B⃗  î ĵ

= 2375 ≈ 9792G⊥ 17
−−

√
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3.E: Vectors (Exercises)

Conceptual Questions

2.1 Scalars and Vectors
1. A weather forecast states the temperature is predicted to be −5 °C the following day. Is this temperature a vector or a

scalar quantity? Explain.
2. Which of the following is a vector: a person’s height, the altitude on Mt. Everest, the velocity of a fly, the age of Earth,

the boiling point of water, the cost of a book, Earth’s population, or the acceleration of gravity?
3. Give a specific example of a vector, stating its magnitude, units, and direction.
4. What do vectors and scalars have in common? How do they differ?
5. Suppose you add two vectors  and . What relative direction between them produces the resultant with the greatest

magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the
smallest magnitude? What is the minimum magnitude?

6. Is it possible to add a scalar quantity to a vector quantity?
7. Is it possible for two vectors of different magnitudes to add to zero? Is it possible for three vectors of different magnitudes

to add to zero? Explain.
8. Does the odometer in an automobile indicate a scalar or a vector quantity?
9. When a 10,000-m runner competing on a 400-m track crosses the finish line, what is the runner’s net displacement? Can

this displacement be zero? Explain.
10. A vector has zero magnitude. Is it necessary to specify its direction? Explain.
11. Can a magnitude of a vector be negative?
12. Can the magnitude of a particle’s displacement be greater that the distance traveled?
13. If two vectors are equal, what can you say about their components? What can you say about their magnitudes? What can

you say about their directions?
14. If three vectors sum up to zero, what geometric condition do they satisfy?

2.2 Coordinate Systems and Components of a Vector
15. Give an example of a nonzero vector that has a component of zero.
16. Explain why a vector cannot have a component greater than its own magnitude.
17. If two vectors are equal, what can you say about their components?
18. If vectors  and  are orthogonal, what is the component of  along the direction of ? What is the component of 

along the direction of ?
19. If one of the two components of a vector is not zero, can the magnitude of the other vector component of this vector be

zero?
20. If two vectors have the same magnitude, do their components have to be the same?

2.4 Products of Vectors
21. What is wrong with the following expressions? How can you correct them?

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,
g. ,
h. ,
i. , and
j.  .

22. If the cross product of two vectors vanishes, what can you say about their directions?

A ⃗  B⃗ 

A ⃗  B⃗  B⃗  A ⃗  A ⃗ 

B⃗ 

C = A ⃗ B⃗ 

=C ⃗  A ⃗ B⃗ 

C = ×A ⃗  B⃗ 

C = AB⃗ 

C +2 = BA ⃗ 

= A ×C ⃗  B⃗ 

⋅ = ×A ⃗  B⃗  A ⃗  B⃗ 

= 2 ⋅C ⃗  A ⃗  B⃗ 

C = /A ⃗  B⃗ 

C = /BA ⃗ 
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23. If the dot product of two vectors vanishes, what can you say about their directions?
24. What is the dot product of a vector with the cross product that this vector has with another vector?

Problems

2.1 Scalars and Vectors
25. A scuba diver makes a slow descent into the depths of the ocean. His vertical position with respect to a boat on the

surface changes several times. He makes the first stop 9.0 m from the boat but has a problem with equalizing the
pressure, so he ascends 3.0 m and then continues descending for another 12.0 m to the second stop. From there, he
ascends 4 m and then descends for 18.0 m, ascends again for 7 m and descends again for 24.0 m, where he makes a stop,
waiting for his buddy. Assuming the positive direction up to the surface, express his net vertical displacement vector in
terms of the unit vector. What is his distance to the boat?

26. In a tug-of-war game on one campus, 15 students pull on a rope at both ends in an effort to displace the central knot to
one side or the other. Two students pull with force 196 N each to the right, four students pull with force 98 N each to the
left, five students pull with force 62 N each to the left, three students pull with force 150 N each to the right, and one
student pulls with force 250 N to the left. Assuming the positive direction to the right, express the net pull on the knot in
terms of the unit vector. How big is the net pull on the knot? In what direction?

27. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point and what
is the compass direction of a line connecting your starting point to your final position? Use a graphical method.

28. For the vectors given in the following figure, use a graphical method to find the following resultants:

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,
g. .

29. A delivery man starts at the post office, drives 40 km north, then 20 km west, then 60 km northeast, and finally 50 km
north to stop for lunch. Use a graphical method to find his net displacement vector.

30. An adventurous dog strays from home, runs three blocks east, two blocks north, one block east, one block north, and two
blocks west. Assuming that each block is about 100 m, how far from home and in what direction is the dog? Use a
graphical method.

31. In an attempt to escape a desert island, a castaway builds a raft and sets out to sea. The wind shifts a great deal during the
day and he is blown along the following directions: 2.50 km and 45.0° north of west, then 4.70 km and 60.0° south of
east, then 1.30 km and 25.0° south of west, then 5.10 km straight east, then 1.70 km and 5.00° east of north, then 7.20 km
and 55.0° south of west, and finally 2.80 km and 10.0° north of east. Use a graphical method to find the castaway’s final
position relative to the island.

+A ⃗  B⃗ 

+C ⃗  B⃗ 

+D⃗  F ⃗ 

−A ⃗  B⃗ 

−D⃗  F ⃗ 

+2A ⃗  F ⃗ 

−4 +2A ⃗  D⃗  F ⃗ 
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32. A small plane flies 40.0 km in a direction 60° north of east and then flies 30.0 km in a direction 15° north of east. Use a
graphical method to find the total distance the plane covers from the starting point and the direction of the path to the
final position.

33. A trapper walks a 5.0-km straight-line distance from his cabin to the lake, as shown in the following figure. Use a
graphical method (the parallelogram rule) to determine the trapper’s displacement directly to the east and displacement
directly to the north that sum up to his resultant displacement vector. If the trapper walked only in directions east and
north, zigzagging his way to the lake, how many kilometers would he have to walk to get to the lake?

34. A surveyor measures the distance across a river that flows straight north by the following method. Starting directly across
from a tree on the opposite bank, the surveyor walks 100 m along the river to establish a baseline. She then sights across
to the tree and reads that the angle from the baseline to the tree is 35°. How wide is the river?

35. A pedestrian walks 6.0 km east and then 13.0 km north. Use a graphical method to find the pedestrian’s resultant
displacement and geographic direction.

36. The magnitudes of two displacement vectors are A = 20 m and B = 6 m. What are the largest and the smallest values of
the magnitude of the resultant ?

2.2 Coordinate Systems and Components of a Vector
37. Assuming the +x-axis is horizontal and points to the right, resolve the vectors given in the following figure to their scalar

components and express them in vector component form.

38. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point? What is
your displacement vector? What is the direction of your displacement? Assume the +x-axis is to the east.

39. You drive 7.50 km in a straight line in a direction 15° east of north. (a) Find the distances you would have to drive
straight east and then straight north to arrive at the same point. (b) Show that you still arrive at the same point if the east
and north legs are reversed in order. Assume the +xaxis is to the east.

40. A sledge is being pulled by two horses on a flat terrain. The net force on the sledge can be expressed in the Cartesian
coordinate system as vector = (−2980.0  + 8200.0 )N , where  and  denote directions to the east and north,
respectively. Find the magnitude and direction of the pull.

41. A trapper walks a 5.0-km straight-line distance from her cabin to the lake, as shown in the following figure. Determine
the east and north components of her displacement vector. How many more kilometers would she have to walk if she
walked along the component displacements? What is her displacement vector?

= +R⃗  A ⃗  B⃗ 

F ⃗  î ĵ î ĵ
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42. The polar coordinates of a point are  and 5.50 m. What are its Cartesian coordinates?
43. Two points in a plane have polar coordinates P (2.500 m, ) and P  (3.800 m, ). Determine their Cartesian

coordinates and the distance between them in the Cartesian coordinate system. Round the distance to a nearest centimeter.
44. A chameleon is resting quietly on a lanai screen, waiting for an insect to come by. Assume the origin of a Cartesian

coordinate system at the lower left-hand corner of the screen and the horizontal direction to the right as the +x-direction.
If its coordinates are (2.000 m, 1.000 m), (a) how far is it from the corner of the screen? (b) What is its location in polar
coordinates?

45. Two points in the Cartesian plane are A(2.00 m, −4.00 m) and B(−3.00 m, 3.00 m). Find the distance between them and
their polar coordinates.

46. A fly enters through an open window and zooms around the room. In a Cartesian coordinate system with three axes along
three edges of the room, the fly changes its position from point b(4.0 m, 1.5 m, 2.5 m) to point e(1.0 m, 4.5 m, 0.5 m).
Find the scalar components of the fly’s displacement vector and express its displacement vector in vector component
form. What is its magnitude?

2.3 Algebra of Vectors

47. For vectors  and , calculate (a)  and its magnitude and direction angle, and (b) 
 and its magnitude and direction angle.

48. A particle undergoes three consecutive displacements given by vectors  = (3.0  − 4.0  − 2.0 )mm,  = (1.0  −
7.0  + 4.0 )mm, and  = (−7.0  + 4.0  + 1.0 )mm. (a) Find the resultant displacement vector of the particle. (b)
What is the magnitude of the resultant displacement? (c) If all displacements were along one line, how far would the
particle travel?

49. Given two displacement vectors  = (3.00  − 4.00  + 4.00 )m and  = (2.00  + 3.00  − 7.00 )m, find the
displacements and their magnitudes for (a)  and (b) .

50. A small plane flies 40.0 km in a direction 60° north of east and then flies 30.0 km in a direction 15° north of east. Use the
analytical method to find the total distance the plane covers from the starting point, and the geographic direction of its
displacement vector. What is its displacement vector?

51. . In an attempt to escape a desert island, a castaway builds a raft and sets out to sea. The wind shifts a great deal during
the day, and she is blown along the following straight lines: 2.50 km and 45.0° north of west, then 4.70 km and 60.0°
south of east, then 1.30 km and 25.0° south of west, then 5.10 km due east, then 1.70 km and 5.00° east of north, then
7.20 km and 55.0° south of west, and finally 2.80 km and 10.0° north of east. Use the analytical method to find the
resultant vector of all her displacement vectors. What is its magnitude and direction?

52. Assuming the +x-axis is horizontal to the right for the vectors given in the following figure, use the analytical method to
find the following resultants:

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,
g. , and
h. .

4π

3

1 
π
6 2

2π
3

= − −4B⃗  î ĵ = −3 −2A ⃗  î ĵ +A ⃗  B⃗ 

−A ⃗  B⃗ 

D⃗ 
1 î ĵ k̂ D⃗ 

2 î

ĵ î D⃗ 
3 î ĵ k̂

A ⃗  î ĵ k̂ B⃗  î ĵ k̂

= +C ⃗  A ⃗  B⃗  = 2 −D⃗  A ⃗  B⃗ 

+A ⃗  B⃗ 

+C ⃗  B⃗ 

+D⃗  F ⃗ 

−A ⃗  B⃗ 

−D⃗  F ⃗ 

+2A ⃗  F ⃗ 

−2 +3C ⃗  B⃗  F ⃗ 

−4 +2A ⃗  D⃗  F ⃗ 
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53. Given the vectors in the preceding figure, find vector  that solves equations (a)  and (b) 
. Assume the +x-axis is horizontal to the right.

54. A delivery man starts at the post office, drives 40 km north, then 20 km west, then 60 km northeast, and finally 50 km
north to stop for lunch. Use the analytical method to determine the following: (a) Find his net displacement vector. (b)
How far is the restaurant from the post office? (c) If he returns directly from the restaurant to the post office, what is his
displacement vector on the return trip? (d) What is his compass heading on the return trip? Assume the +x-axis is to the
east.

55. An adventurous dog strays from home, runs three blocks east, two blocks north, and one block east, one block north, and
two blocks west. Assuming that each block is about a 100 yd, use the analytical method to find the dog’s net displacement
vector, its magnitude, and its direction. Assume the +x-axis is to the east. How would your answer be affected if each
block was about 100 m?

56. If  = (6.00  − 8.00 m,  = (−8.00  + 3.00 )m , and  = (26.0  + 19.0 )m, find the unknown constants a and b
such that a .

57. Given the displacement vector  = (3  − 4 )m, find the displacement vector  so that  +  = −4D .
58. Find the unit vector of direction for the following vector quantities: (a) Force  = (3.0  − 2.0 )N, (b) displacement  =

(−3.0  − 4.0 )m, and (c) velocity  = (−5.00  + 4.00 )m/s.
59. At one point in space, the direction of the electric field vector is given in the Cartesian system by the unit vector 

. If the magnitude of the electric field vector is E = 400.0 V/m, what are the scalar components E , E ,

and E  of the electric field vector  at this point? What is the direction angle  of the electric field vector at this point?
60. A barge is pulled by the two tugboats shown in the following figure. One tugboat pulls on the barge with a force of

magnitude 4000 units of force at 15° above the line AB (see the figure and the other tugboat pulls on the barge with a
force of magnitude 5000 units of force at 12° below the line AB. Resolve the pulling forces to their scalar components
and find the components of the resultant force pulling on the barge. What is the magnitude of the resultant pull? What is
its direction relative to the line AB?

61. In the control tower at a regional airport, an air traffic controller monitors two aircraft as their positions change with
respect to the control tower. One plane is a cargo carrier Boeing 747 and the other plane is a Douglas DC-3. The Boeing
is at an altitude of 2500 m, climbing at 10° above the horizontal, and moving 30° north of west. The DC-3 is at an altitude
of 3000 m, climbing at 5° above the horizontal, and cruising directly west. (a) Find the position vectors of the planes
relative to the control tower. (b) What is the distance between the planes at the moment the air traffic controller makes a
note about their positions?

2.4 Products of Vectors
62. Assuming the +x-axis is horizontal to the right for the vectors in the following figure, find the following scalar products:

a. ,
b. ,
c. ,
d. ,
e. ,
f. ,
g.  and
h. .

R⃗  + =D⃗  R⃗  F ⃗ 

−2 +5 = 3C ⃗  D⃗  R⃗  F ⃗ 

D⃗  î ĵ B⃗  î ĵ A ⃗  î ĵ

+b + =D⃗  B⃗  A ⃗  0⃗ 

D⃗  î ĵ R⃗  D⃗  R⃗  ĵ

F ⃗  î ĵ D⃗ 

î ĵ v ⃗  î ĵ

= −Ê 1
5√

î 2
5√

ĵ x y

z E ⃗  θE

⋅A ⃗  C ⃗ 

⋅A ⃗  F ⃗ 

⋅D⃗  C ⃗ 

⋅ ( +2 )A ⃗  F ⃗  C ⃗ 

⋅î B⃗ 

⋅ĵ B⃗ 

(3 − )⋅î ĵ B⃗ 

⋅B̂ B⃗ 
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63. Assuming the +x-axis is horizontal to the right for the vectors in the preceding figure, find (a) the component of vector 
along vector , (b) the component of vector  along vector , (c) the component of vector  along vector , and (d) the
component of vector  along vector .

64. Find the angle between vectors for

a.  = (−3.0  − 4.0 )m and  = (−3.0  + 4.0 )m and
b.  = (2.0  − 4.0  + )m and  = (−2.0  + 3.0  + 2.0 )m.

65. Find the angles that vector  = (2.0  − 4.0  + )m makes with the x-, y-, and z-axes.
66. Show that the force vector  = (2.0  − 4.0  + )N is orthogonal to the force vector  = (3.0  + 4.0 + 10.0 )N.
67. Assuming the +x-axis is horizontal to the right for the vectors in the following figure, find the following vector products:

a. ,
b. ,
c. 
d. ,
e. ,
f. ,
g.  and
h. .

68. Find the cross product  for

a.  = 2.0  − 4.0  +  and  = 3.0  + 4.0  + 10.0 ,
b.  = 3.0  + 4.0  + 10.0  and  = 2.0  − 4.0  + ,
c.  = −3.0  − 4.0  and  = −3.0  + 4.0  , and
d.  = −2.0  + 3.0  + 2.0  and  = −9.0  .

A ⃗ 

C ⃗  C ⃗  A ⃗  î F ⃗ 

F ⃗  î

D⃗  î ĵ A ⃗  î ĵ

D⃗  î ĵ k̂ B⃗  î ĵ k̂

D⃗  î ĵ k̂

D⃗  î ĵ k̂ G⃗  î ĵ k̂

×A ⃗  C ⃗ 

×A ⃗  F ⃗ 

×D⃗  C ⃗ 

×( +2 )A ⃗  F ⃗  C ⃗ 

×î B⃗ 

×ĵ B⃗ 

(3 − ) ×î ĵ B⃗ 

×B̂ B⃗ 

×A ⃗  C ⃗ 

A ⃗  î ĵ k̂ C ⃗  î ĵ k̂

A ⃗  î ĵ k̂ C ⃗  î ĵ k̂

A ⃗  î ĵ C ⃗  î ĵ

C ⃗  î ĵ k̂ A ⃗  ĵ
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69. For the vectors in the following figure, find (a) ( ), (b) ( ), and (c) ( ).

70. (a) If , can we conclude  = ? (b) If  = , can we conclude  = ? (c) If  = , can we
conclude  = ? Why or why not?

Additional Problems
71. You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to

fly due south and then due west to arrive at the same point. (b) Find the distances you would have to fly first in a
direction 45.0° south of west and then in a direction 45.0° west of north. Note these are the components of the
displacement along a different set of axes—namely, the one rotated by 45° with respect to the axes in (a).

72. Rectangular coordinates of a point are given by (2, y) and its polar coordinates are given by (r, ). Find y and r.
73. If the polar coordinates of a point are (r, ) and its rectangular coordinates are (x, y), determine the polar coordinates of

the following points: (a) (−x, y), (b) (−2x, −2y), and (c) (3x, −3y).
74. Vectors  and  have identical magnitudes of 5.0 units. Find the angle between them if  +  = 5 2 .
75. Starting at the island of Moi in an unknown archipelago, a fishing boat makes a round trip with two stops at the islands of

Noi and Poi. It sails from Moi for 4.76 nautical miles (nmi) in a direction 37° north of east to Noi. From Noi, it sails 69°
west of north to Poi. On its return leg from Poi, it sails 28° east of south. What distance does the boat sail between Noi
and Poi? What distance does it sail between Moi and Poi? Express your answer both in nautical miles and in kilometers.
Note: 1 nmi = 1852 m.

76. An air traffic controller notices two signals from two planes on the radar monitor. One plane is at altitude 800 m and in a
19.2-km horizontal distance to the tower in a direction 25° south of west. The second plane is at altitude 1100 m and its
horizontal distance is 17.6 km and 20° south of west. What is the distance between these planes?

77. Show that when  +  = , then C  = A  + B  + 2AB cos , where  is the angle between vectors  and .
78. Four force vectors each have the same magnitude f. What is the largest magnitude the resultant force vector may have

when these forces are added? What is the smallest magnitude of the resultant? Make a graph of both situations.
79. A skater glides along a circular path of radius 5.00 m in clockwise direction. When he coasts around one-half of the

circle, starting from the west point, find (a) the magnitude of his displacement vector and (b) how far he actually skated.
(c) What is the magnitude of his displacement vector when he skates all the way around the circle and comes back to the
west point?

80. A stubborn dog is being walked on a leash by its owner. At one point, the dog encounters an interesting scent at some
spot on the ground and wants to explore it in detail, but the owner gets impatient and pulls on the leash with force  =
(98.0  + 132.0  + 32.0 )N along the leash. (a) What is the magnitude of the pulling force? (b) What angle does the
leash make with the vertical?

81. If the velocity vector of a polar bear is  = (−18.0  − 13.0 )km/h , how fast and in what geographic direction is it
heading? Here,  and  are directions to geographic east and north, respectively.

82. Find the scalar components of three-dimensional vectors  and  in the following figure and write the vectors in vector
component form in terms of the unit vectors of the axes.

× ⋅A ⃗  F ⃗  D⃗  × )⋅ ( ×A ⃗  F ⃗  A ⃗  C ⃗  ⋅ )( ×A ⃗  F ⃗  D⃗  B⃗ 

× = ×A ⃗  F ⃗  B⃗  F ⃗  A ⃗  B⃗  ⋅A ⃗  F ⃗  ⋅B⃗  F ⃗  A ⃗  B⃗  F A ⃗  FB⃗ 

A ⃗  B⃗ 

π

6

φ

A ⃗  B⃗  A ⃗  B⃗  ĵ

A ⃗  B⃗  C ⃗  2 2 2 φ φ A ⃗  B⃗ 

F ⃗ 

î ĵ ĵ

u⃗  î ĵ

î ĵ

G⃗  H⃗ 
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83. A diver explores a shallow reef off the coast of Belize. She initially swims 90.0 m north, makes a turn to the east and
continues for 200.0 m, then follows a big grouper for 80.0 m in the direction 30° north of east. In the meantime, a local
current displaces her by 150.0 m south. Assuming the current is no longer present, in what direction and how far should
she now swim to come back to the point where she started?

84. A force vector  has x- and y-components, respectively, of −8.80 units of force and 15.00 units of force. The x- and y-
components of force vector  are, respectively, 13.20 units of force and −6.60 units of force. Find the components of
force vector  that satisfies the vector equation −  + 3  = 0.

85. Vectors  and  are two orthogonal vectors in the xy-plane and they have identical magnitudes. If  = 3.0  + 4.0 ,
find .

86. For the three-dimensional vectors in the following figure, find (a) , (b) | | , and (c) .

A ⃗ 

B⃗ 

C ⃗  A ⃗  B⃗  C ⃗ 

A ⃗  B⃗  A ⃗  î ĵ

B⃗ 

×G⃗  H⃗  ×G⃗  H⃗  ⋅G⃗  H⃗ 
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87. Show that  is the volume of the parallelepiped, with edges formed by the three vectors in the following
figure.

Challenge Problems

88. Vector  is 5.0 cm long and vector  is 4.0 cm long. Find the angle between these two vectors when | | = 3.0 cm
and |  − | = 3.0 cm.

89. What is the component of the force vector  = (3.0  + 4.0  + 10.0 )N along the force vector  = (1.0  + 4.0 )N?
90. The following figure shows a triangle formed by the three vectors ,  and . If vector  is drawn between the

midpoints of vectors  and , show that  = .

91. Distances between points in a plane do not change when a coordinate system is rotated. In other words, the magnitude of
a vector is invariant under rotations of the coordinate system. Suppose a coordinate system S is rotated about its origin
by angle  to become a new coordinate system S′, as shown in the following figure. A point in a plane has coordinates (x,
y) in S and coordinates (x′, y′) in S′.
a. Show that, during the transformation of rotation, the coordinates in S′ are expressed in terms of the coordinates in S

by the following relations:

( × )⋅B⃗  C ⃗  A ⃗ 

B⃗  A ⃗  +A ⃗  B⃗ 

A ⃗  B⃗ 

G⃗  î ĵ k̂ H⃗  î ĵ

A ⃗  B⃗  C ⃗  C ⃗ ′

A ⃗  B⃗  C ⃗ ′ C ⃗ 

2

φ
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b. Show that the distance of point P to the origin is invariant under rotations of the coordinate system. Here, you have to
show that

c. Show that the distance between points P and Q is invariant under rotations of the coordinate system. Here, you have to
show that

Contributors
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authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).

This page titled 3.E: Vectors (Exercises) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

{ .
= x cos φ +y sinφx′

= −x sinφ +y cos φy′ (3.E.1)

= .+x2 y2
− −−−−−

√ +x′2 y′2
− −−−−−−

√ (3.E.2)

= .( − +( −xP xQ)2 yP yQ)2
− −−−−−−−−−−−−−−−−−−

√ ( − +( −x′
P x′

Q
)2 y′

P y′
Q

)2
− −−−−−−−−−−−−−−−−−−
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3.S: Vectors (Summary)

Key Terms
anticommutative property change in the order of operation introduces the minus sign

antiparallel vectors two vectors with directions that differ by 180°

associative terms can be grouped in any fashion

commutative operations can be performed in any order

component form of a vector a vector written as the vector sum of its components in terms of unit vectors

corkscrew right-hand rule a rule used to determine the direction of the vector product

cross product
the result of the vector multiplication of vectors is a vector called a cross

product; also called a vector product

difference of two vectors vector sum of the first vector with the vector antiparallel to the second

direction angle
in a plane, an angle between the positive direction of the x-axis and the vector,

measured counterclockwise from the axis to the vector

displacement change in position

distributive multiplication can be distributed over terms in summation

dot product
the result of the scalar multiplication of two vectors is a scalar called a dot

product; also called a scalar product

equal vectors
two vectors are equal if and only if all their corresponding components are

equal; alternately, two parallel vectors of equal magnitudes

magnitude length of a vector

null vector a vector with all its components equal to zero

orthogonal vectors
two vectors with directions that differ by exactly 90°, synonymous with

perpendicular vectors

parallel vectors two vectors with exactly the same direction angles

parallelogram rule geometric construction of the vector sum in a plane

polar coordinate system
an orthogonal coordinate system where location in a plane is given by polar

coordinates

polar coordinates a radial coordinate and an angle

radical coordinate distance to the origin in a polar coordinate system

resultant vector vector sum of two (or more) vectors

scalar a number, synonymous with a scalar quantity in physics

scalar component a number that multiplies a unit vector in a vector component of a vector

scalar equation equation in which the left-hand and right-hand sides are numbers

scalar product
the result of the scalar multiplication of two vectors is a scalar called a scalar

product; also called a dot product

scalar quantity
quantity that can be specified completely by a single number with an

appropriate physical unit

tail-to-head geometric construction geometric construction for drawing the resultant vector of many vectors

unit vector vector of a unit magnitude that specifies direction; has no physical unit

unit vectors of the axes unit vectors that define orthogonal directions in a plane or in space

vector mathematical object with magnitude and direction

vector components
orthogonal components of a vector; a vector is the vector sum of its vector

components

vector equation equation in which the left-hand and right-hand sides are vectors
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vector product
the result of the vector multiplication of vectors is a vector called a vector

product; also called a cross product

vector quantity
physical quantity described by a mathematical vector—that is, by specifying

both its magnitude and its direction; synonymous with a vector in physics

vector sum resultant of the combination of two (or more) vectors

Key Equations

Multiplication by a scalar (vector equation)

Multiplication by a scalar (scalar equation for magnitudes)

Resultant of two vectors

Commutative law

Associative law

Distributive law

The component form of a vector in two dimensions

Scalar components of a vector in two dimensions

Magnitude of a vector in a plane

The direction angle of a vector in a plane

Scalar components of a vector in a plane

Polar coordinates in a plane

The component form of a vector in three dimensions

The scalar z-component of a vector in three dimensions

Magnitude of a vector in three dimensions

Distributive property

Antiparallel vector to 

Equal vectors

= αB⃗  A ⃗  (3.S.1)

B = |α|A (3.S.2)

= +D⃗ 
AD D⃗ 

AC D⃗ 
CD (3.S.3)

+ = +A ⃗  B⃗  B⃗  A ⃗  (3.S.4)

( + ) + = + ( + )A ⃗  B⃗  C ⃗  A ⃗  B⃗  C ⃗  (3.S.5)

+ = ( + )α1A ⃗  α2A ⃗  α1 α2 A ⃗  (3.S.6)

= +A ⃗  Ax î Ay ĵ (3.S.7)

{
= −Ax xe xb

= −Ay ye yb
(3.S.8)

A = +A2
x A2

y

− −−−−−−
√ (3.S.9)

= ( )θA tan−1
Ay

Ax

(3.S.10)

{
= AcosAx θA

= A sinAy θA
(3.S.11)

{
x = r cos φ

y = r sin φ
(3.S.12)

= + +A ⃗  Ax î Ay ĵ Azk̂ (3.S.13)

= −Az ze zb (3.S.14)

A = + +A2
x A2

y A2
z

− −−−−−−−−−−
√ (3.S.15)

α( + ) = α + αA ⃗  B⃗  A ⃗  B⃗  (3.S.16)

A ⃗  − = − −A ⃗  Ax î Ay ĵ Azk̂ (3.S.17)

= ⇔A ⃗  B⃗ 
⎧

⎩
⎨

=Ax Bx

=Ay By

=Az Bz

(3.S.18)
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Components of the resultant of N vectors

General unit vector

Definition of the scalar product

Commutative property of the scalar product

Distributive property of the scalar product

Scalar product in terms of scalar components of vectors

Cosine of the angle between two vectors

Dot products of unit vectors

Magnitude of the vector product (definition)

Anticommutative property of the vector product

Distributive property of the vector product

Cross products of unit vectors

The cross product in terms of scalar components of vectors

Summary

2.1 Scalars and Vectors
A vector quantity is any quantity that has magnitude and direction, such as displacement or velocity.
Geometrically, vectors are represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive
scalar. On a plane, the direction of a vector is given by the angle the vector makes with a reference direction, often an angle with the horizontal. The
direction angle of a vector is a scalar.
Two vectors are equal if and only if they have the same magnitudes and directions. Parallel vectors have the same direction angles but may have
different magnitudes. Antiparallel vectors have direction angles that differ by 180°. Orthogonal vectors have direction angles that differ by 90°.
When a vector is multiplied by a scalar, the result is another vector of a different length than the length of the original vector. Multiplication by a
positive scalar does not change the original direction; only the magnitude is affected. Multiplication by a negative scalar reverses the original direction.
The resulting vector is antiparallel to the original vector. Multiplication by a scalar is distributive. Vectors can be divided by nonzero scalars but cannot
be divided by vectors.
Two or more vectors can be added to form another vector. The vector sum is called the resultant vector. We can add vectors to vectors or scalars to
scalars, but we cannot add scalars to vectors. Vector addition is commutative and associative.
To construct a resultant vector of two vectors in a plane geometrically, we use the parallelogram rule. To construct a resultant vector of many vectors in
a plane geometrically, we use the tail-to-head method.

2.2 Coordinate Systems and Components of a Vector
Vectors are described in terms of their components in a coordinate system. In two dimensions (in a plane), vectors have two components. In three
dimensions (in space), vectors have three components.
A vector component of a vector is its part in an axis direction. The vector component is the product of the unit vector of an axis with its scalar
component along this axis. A vector is the resultant of its vector components.

⎧

⎩
⎨
⎪

⎪

= = + + … +FRx ∑N
k=1 Fkx F1x F2x FNx

= = + + … +FRy ∑N
k=1 Fky F1y F2y FNy

= = + + … +FRz ∑N
k=1 Fkz F1z F2z FNz

(3.S.19)

=V̂
V ⃗ 

V
(3.S.20)

⋅ = AB cos φA ⃗  B⃗  (3.S.21)

⋅ = ⋅A ⃗  B⃗  B⃗  A ⃗  (3.S.22)

⋅ ( + ) = ⋅ + ⋅A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (3.S.23)

⋅ = + +A ⃗  B⃗  AxBx AyBy AzBz (3.S.24)

cos φ =
⋅A ⃗  B⃗ 

AB
(3.S.25)

⋅ = ⋅ = ⋅ = 0î ĵ ĵ k̂ k̂ î (3.S.26)

| × | = AB sin φA ⃗  B⃗  (3.S.27)

| × = − ×A ⃗  B⃗  B⃗  A ⃗  (3.S.28)

× ( + ) = × + ×A ⃗  B⃗  C ⃗  A ⃗  B⃗  A ⃗  C ⃗  (3.S.29)

⎧

⎩
⎨
⎪

⎪

× = + ,î ĵ k̂

× = + ,ĵ l̂ î

× = + .l̂ î ĵ

(3.S.30)

× = ( − ) + ( − ) + ( − )A ⃗  B⃗  AyBz AzBy î AzBx AxBz ĵ AxBy AyBx k̂
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Scalar components of a vector are differences of coordinates, where coordinates of the origin are subtracted from end point coordinates of a vector. In a
rectangular system, the magnitude of a vector is the square root of the sum of the squares of its components.
In a plane, the direction of a vector is given by an angle the vector has with the positive x-axis. This direction angle is measured counterclockwise. The
scalar x-component of a vector can be expressed as the product of its magnitude with the cosine of its direction angle, and the scalar y-component can
be expressed as the product of its magnitude with the sine of its direction angle.
In a plane, there are two equivalent coordinate systems. The Cartesian coordinate system is defined by unit vectors  and  along the x-axis and the y-
axis, respectively. The polar coordinate system is defined by the radial unit vector , which gives the direction from the origin, and a unit vector ,
which is perpendicular (orthogonal) to the radial direction.

2.3 Algebra of Vectors
Analytical methods of vector algebra allow us to find resultants of sums or differences of vectors without having to draw them. Analytical methods of
vector addition are exact, contrary to graphical methods, which are approximate.
Analytical methods of vector algebra are used routinely in mechanics, electricity, and magnetism. They are important mathematical tools of physics.

2.4 Products of Vectors
There are two kinds of multiplication for vectors. One kind of multiplication is the scalar product, also known as the dot product. The other kind of
multiplication is the vector product, also known as the cross product. The scalar product of vectors is a number (scalar). The vector product of vectors
is a vector.
Both kinds of multiplication have the distributive property, but only the scalar product has the commutative property. The vector product has the
anticommutative property, which means that when we change the order in which two vectors are multiplied, the result acquires a minus sign.
The scalar product of two vectors is obtained by multiplying their magnitudes with the cosine of the angle between them. The scalar product of
orthogonal vectors vanishes; the scalar product of antiparallel vectors is negative.
The vector product of two vectors is a vector perpendicular to both of them. Its magnitude is obtained by multiplying their magnitudes by the sine of
the angle between them. The direction of the vector product can be determined by the corkscrew right-hand rule. The vector product of two either
parallel or antiparallel vectors vanishes. The magnitude of the vector product is largest for orthogonal vectors.
The scalar product of vectors is used to find angles between vectors and in the definitions of derived scalar physical quantities such as work or energy.
The cross product of vectors is used in definitions of derived vector physical quantities such as torque or magnetic force, and in describing rotations.
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CHAPTER OVERVIEW

4: Motion in Two and Three Dimensions
To give a complete description of kinematics, we must explore motion in two and three dimensions. After all, most objects in our
universe do not move in straight lines; rather, they follow curved paths. From kicked footballs to the flight paths of birds to the
orbital motions of celestial bodies and down to the flow of blood plasma in your veins, most motion follows curved trajectories. In
this chapter we also explore two special types of motion in two dimensions: projectile motion and circular motion. Last, we
conclude with a discussion of relative motion. In the chapter-opening picture, each jet has a relative motion with respect to any
other jet in the group or to the people observing the air show on the ground.

4.1: Prelude to Motion in Two and Three Dimensions
4.2: Displacement and Velocity Vectors
4.3: Acceleration Vector
4.4: Projectile Motion
4.5: Uniform Circular Motion
4.6: Relative Motion in One and Two Dimensions
4.E: Motion in Two and Three Dimensions (Exercises)
4.S: Motion in Two and Three Dimensions (Summary)

Thumbnail: The Red Arrows is the aerobatics display team of Britain’s Royal Air Force. Based in Lincolnshire, England, they
perform precision flying shows at high speeds, which requires accurate measurement of position, velocity, and acceleration in three
dimensions. (credit: modification of work by Phil Long).
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4.1: Prelude to Motion in Two and Three Dimensions
To give a complete description of kinematics, we must explore motion in two and three dimensions. After all, most objects in our
universe do not move in straight lines; rather, they follow curved paths. From kicked footballs to the flight paths of birds to the
orbital motions of celestial bodies and down to the flow of blood plasma in your veins, most motion follows curved trajectories.

Figure : The Red Arrows is the aerobatics display team of Britain’s Royal Air Force. Based in Lincolnshire, England, they
perform precision flying shows at high speeds, which requires accurate measurement of position, velocity, and acceleration in three
dimensions. (credit: modification of work by Phil Long)

Fortunately, the treatment of motion in one dimension in the previous chapter has given us a foundation on which to build, as the
concepts of position, displacement, velocity, and acceleration defined in one dimension can be expanded to two and three
dimensions. Consider the Red Arrows, also known as the Royal Air Force Aerobatic team of the United Kingdom. Each jet follows
a unique curved trajectory in three-dimensional airspace, as well as has a unique velocity and acceleration. Thus, to describe the
motion of any of the jets accurately, we must assign to each jet a unique position vector in three dimensions as well as a unique
velocity and acceleration vector. We can apply the same basic equations for displacement, velocity, and acceleration we derived in
Motion Along a Straight Line to describe the motion of the jets in two and three dimensions, but with some modifications—in
particular, the inclusion of vectors.

In this chapter we also explore two special types of motion in two dimensions: projectile motion and circular motion. Last, we
conclude with a discussion of relative motion. In the chapter-opening picture, each jet has a relative motion with respect to any
other jet in the group or to the people observing the air show on the ground.

This page titled 4.1: Prelude to Motion in Two and Three Dimensions is shared under a CC BY license and was authored, remixed, and/or curated
by OpenStax.

4.1: Prelude to Motion in Two and Three Dimensions by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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4.2: Displacement and Velocity Vectors

Calculate position vectors in a multidimensional displacement problem.
Solve for the displacement in two or three dimensions.
Calculate the velocity vector given the position vector as a function of time.
Calculate the average velocity in multiple dimensions.

Displacement and velocity in two or three dimensions are straightforward extensions of the one-dimensional definitions. However,
now they are vector quantities, so calculations with them have to follow the rules of vector algebra, not scalar algebra.

Displacement Vector
To describe motion in two and three dimensions, we must first establish a coordinate system and a convention for the axes. We
generally use the coordinates , , and  to locate a particle at point  in three dimensions. If the particle is moving, the
variables , , and  are functions of time ( ):

The position vector from the origin of the coordinate system to point P is . In unit vector notation, introduced in Coordinate
Systems and Components of a Vector, (t) is

Figure  shows the coordinate system and the vector to point , where a particle could be located at a particular time . Note
the orientation of the x, y, and z axes. This orientation is called a right-handed coordinate system and it is used throughout the
chapter.

Figure : A three-dimensional coordinate system with a particle at position .

With our definition of the position of a particle in three-dimensional space, we can formulate the three-dimensional displacement.
Figure  shows a particle at time t  located at P  with position vector (t ). At a later time t , the particle is located at P  with
position vector (t ). The displacement vector  is found by subtracting  from :

Vector addition is discussed in Vectors. Note that this is the same operation we did in one dimension, but now the vectors are in
three-dimensional space.

Figure : The displacement  is the vector from  to .

The following examples illustrate the concept of displacement in multiple dimensions

 LEARNING OBJECTIVES

x y z P (x, y, z)

x y z t

x = x(t) y = y(t) z = z(t). (4.2.1)

(t)r ⃗ 

r ⃗ 

(t) = x(t) +y(t) +z(t) .r ⃗  î ĵ k̂ (4.2.2)

4.2.1 P t

4.2.1 P (x(t),y(t),z(t))

4.2.3 1 1 r ⃗  1 2 2
r ⃗  2 Δr ⃗  ( )r ⃗ t1 ( )r ⃗ t2

Δ = ( ) − ( ).r ⃗  r ⃗ t2 r ⃗ t1 (4.2.3)

4.2.2 Δ = ( ) − ( )r ⃗  r ⃗  t2 r ⃗  t1 P1 P2
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A satellite is in a circular polar orbit around Earth at an altitude of 400 km—meaning, it passes directly overhead at the North
and South Poles. What is the magnitude and direction of the displacement vector from when it is directly over the North Pole
to when it is at −45° latitude?

Strategy

We make a picture of the problem to visualize the solution graphically. This will aid in our understanding of the displacement.
We then use unit vectors to solve for the displacement.

Solution
Figure  shows the surface of Earth and a circle that represents the orbit of the satellite. Although satellites are moving in
three-dimensional space, they follow trajectories of ellipses, which can be graphed in two dimensions. The position vectors are
drawn from the center of Earth, which we take to be the origin of the coordinate system, with the y-axis as north and the x-axis
as east. The vector between them is the displacement of the satellite. We take the radius of Earth as 6370 km, so the length of
each position vector is 6770 km.

Figure : Two position vectors are drawn from the center of Earth, which is the origin of the coordinate system, with the y-
axis as north and the x-axis as east. The vector between them is the displacement of the satellite.

In unit vector notation, the position vectors are

Evaluating the sine and cosine, we have

Now we can find , the displacement of the satellite:

The magnitude of the displacement is

The angle the displacement makes with the x-axis is

Significance

 Example 4.1: Polar Orbiting Satellite

4.2.3

4.2.3

( )r ⃗ t1

( )r ⃗ t2

= 6770. km ĵ

= 6770. km(cos(−45°)) +6770. km(sin(−45°)) .î ĵ

( )r ⃗ t1

( )r ⃗ t2

= 6770. ĵ

= 4787 −4787 .î ĵ

Δr ⃗ 

Δ = ( ) − ( ) = 4787 −11, 557 .r ⃗  r ⃗ t2 r ⃗ t1 î ĵ

|Δ | = = 12, 509 km.r ⃗  (4787 +(−11, 557)2 )2
− −−−−−−−−−−−−−−−−

√

θ = ( ) = − .tan−1 −11, 557

4787
67.5o

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45972?pdf


4.2.3 https://phys.libretexts.org/@go/page/45972

Plotting the displacement gives information and meaning to the unit vector solution to the problem. When plotting the
displacement, we need to include its components as well as its magnitude and the angle it makes with a chosen axis—in this
case, the x-axis (Figure ).

Figure : Displacement vector with components, angle, and magnitude.

Note that the satellite took a curved path along its circular orbit to get from its initial position to its final position in this
example. It also could have traveled 4787 km east, then 11,557 km south to arrive at the same location. Both of these paths are
longer than the length of the displacement vector. In fact, the displacement vector gives the shortest path between two points in
one, two, or three dimensions.

Many applications in physics can have a series of displacements, as discussed in the previous chapter. The total displacement is
the sum of the individual displacements, only this time, we need to be careful, because we are adding vectors. We illustrate this
concept with an example of Brownian motion.

Brownian motion is a chaotic random motion of particles suspended in a fluid, resulting from collisions with the molecules of
the fluid. This motion is three-dimensional. The displacements in numerical order of a particle undergoing Brownian motion
could look like the following, in micrometers (Figure ):

What is the total displacement of the particle from the origin?

Figure : Trajectory of a particle undergoing random displacements of Brownian motion. The total displacement is shown
in red.

Solution
We form the sum of the displacements and add them as vectors:

4.2.4

4.2.4

 Example 4.2: Brownian Motion

4.2.5

Δ = 2.0 + +3.0r ⃗ 1 î ĵ k̂ (4.2.4)

Δ = − +3.0r ⃗ 2 î k̂ (4.2.5)

Δ = 4.0 −2.0 +r ⃗ 3 î ĵ k̂ (4.2.6)

Δ = −3.0 + +3.0 .r ⃗ 4 î ĵ k̂ (4.2.7)

4.2.5
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To complete the solution, we express the displacement as a magnitude and direction,

with respect to the x-axis in the xz-plane.

Significance
From the figure we can see the magnitude of the total displacement is less than the sum of the magnitudes of the individual
displacements.

Velocity Vector
In the previous chapter we found the instantaneous velocity by calculating the derivative of the position function with respect to
time. We can do the same operation in two and three dimensions, but we use vectors. The instantaneous velocity vector is now

Let’s look at the relative orientation of the position vector and velocity vector graphically. In Figure  we show the vectors (t)
and (t + t), which give the position of a particle moving along a path represented by the gray line. As t goes to zero, the
velocity vector, given by Equation , becomes tangent to the path of the particle at time t.

Figure : A particle moves along a path given by the gray line. In the limit as t approaches zero, the velocity vector becomes
tangent to the path of the particle.

Equation  can also be written in terms of the components of (t). Since

we can write

where

If only the average velocity is of concern, we have the vector equivalent of the one-dimensional average velocity for two and three
dimensions:

The position function of a particle is (t) = 2.0t   + (2.0 + 3.0t) + 5.0t  m. (a) What is the instantaneous velocity and speed
at t = 2.0 s? (b) What is the average velocity between 1.0 s and 3.0 s?

Δr ⃗ Total =∑Δ = Δ +Δ +Δ +Δr ⃗ i r ⃗ 1 r ⃗ 2 r ⃗ 3 r ⃗ 4

= (2.0 −1.0 +4.0 −3.0) +(1.0 +0 −2.0 +1.0) +(3.0 +3.0 +1.0 +2.0)î ĵ k̂

= 2.0 +0 +9.0 μm.î ĵ k̂

|Δ | = = 9.2μm, θ = ( ) = ,r ⃗ Total + +2.02 02 9.02− −−−−−−−−−−−−
√ tan−1 9

2
77o (4.2.8)

(t) = = .v ⃗  lim
Δt→0

(t+Δt) − (t)r ⃗  r ⃗ 

Δt

dr ⃗ 

dt
(4.2.9)

4.2.6 r ⃗ 

r ⃗  Δ Δ

4.2.9

4.2.6 Δ

4.2.9 v ⃗ 

(t) = x(t) +y(t) +z(t) ,r ⃗  î ĵ k̂ (4.2.10)

(t) = (t) + (t) + (t)v ⃗  vx î vy ĵ vz k̂ (4.2.11)

(t) = , (t) = , (t) = .vx
dx(t)

dt
vy

dy(t)

dt
vz

dz(t)

dt
(4.2.12)

= .v ⃗ avg
( ) − ( )r ⃗ t2 r ⃗ t1

−t2 t1
(4.2.13)

 Example 4.3: Calculating the Velocity Vector

r ⃗  2 î ĵ k̂
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Solution
Using Equation  and Equation , and taking the derivative of the position function with respect to time, we find

a. 

b. From Equation ,

Significance
We see the average velocity is the same as the instantaneous velocity at t = 2.0 s, as a result of the velocity function being
linear. This need not be the case in general. In fact, most of the time, instantaneous and average velocities are not the same.

The position function of a particle is (t) = 3.0t   + 4.0 . (a) What is the instantaneous velocity at t = 3 s? (b) Is the average
velocity between 2 s and 4 s equal to the instantaneous velocity at t = 3 s?

The Independence of Perpendicular Motions
When we look at the three-dimensional equations for position and velocity written in unit vector notation, Equation  and
Equation , we see the components of these equations are separate and unique functions of time that do not depend on one
another. Motion along the x direction has no part of its motion along the y and z directions, and similarly for the other two
coordinate axes. Thus, the motion of an object in two or three dimensions can be divided into separate, independent motions along
the perpendicular axes of the coordinate system in which the motion takes place.

To illustrate this concept with respect to displacement, consider a woman walking from point A to point B in a city with square
blocks. The woman taking the path from A to B may walk east for so many blocks and then north (two perpendicular directions)
for another set of blocks to arrive at B. How far she walks east is affected only by her motion eastward. Similarly, how far she
walks north is affected only by her motion northward.

In the kinematic description of motion, we are able to treat the horizontal and vertical components of motion separately. In
many cases, motion in the horizontal direction does not affect motion in the vertical direction, and vice versa.

An example illustrating the independence of vertical and horizontal motions is given by two baseballs. One baseball is dropped
from rest. At the same instant, another is thrown horizontally from the same height and it follows a curved path. A stroboscope
captures the positions of the balls at fixed time intervals as they fall (Figure ).

4.2.11 4.2.12

v(t) = = 4.0t +3.0 +5.0 m/s
d (t)r ⃗ 

dt
î ĵ k̂ (4.2.14)

(2.0 s) = 8.0 +3.0 +5.0 m/sv ⃗  î ĵ k̂ (4.2.15)

Speed | (2.0 s)| = = 9.9 m/s.v ⃗  + +82 32 52− −−−−−−−−−√ (4.2.16)

4.2.13

v ⃗ avg = = =
( ) − ( )r ⃗ t2 r ⃗ t1

−t2 t1

(3.0 s) − (1.0 s)r ⃗  r ⃗ 

3.0 s−1.0 s

(18 +11 +15 )m−(2 +5 +5 )mî ĵ k̂ î ĵ k̂

2.0 s

= = 8.0 +3.0 +5.0 m/s.
(16 +6 +10 )mî ĵ k̂

2.0 s
î ĵ k̂

 Exercise 4.1

r ⃗  3 î ĵ

4.2.2

4.2.11

 Independence of Motion

4.2.7
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Figure : A diagram of the motions of two identical balls: one falls from rest and the other has an initial horizontal velocity.
Each subsequent position is an equal time interval. Arrows represent the horizontal and vertical velocities at each position. The ball
on the right has an initial horizontal velocity whereas the ball on the left has no horizontal velocity. Despite the difference in
horizontal velocities, the vertical velocities and positions are identical for both balls, which shows the vertical and horizontal
motions are independent.

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This similarity implies vertical
motion is independent of whether the ball is moving horizontally. (Assuming no air resistance, the vertical motion of a falling
object is influenced by gravity only, not by any horizontal forces.) Careful examination of the ball thrown horizontally shows it
travels the same horizontal distance between flashes. This is because there are no additional forces on the ball in the horizontal
direction after it is thrown. This result means horizontal velocity is constant and is affected neither by vertical motion nor by
gravity (which is vertical). Note this case is true for ideal conditions only. In the real world, air resistance affects the speed of the
balls in both directions.

The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional motions
(horizontal and vertical). The key to analyzing such motion, called projectile motion, is to resolve it into motions along
perpendicular directions. Resolving two-dimensional motion into perpendicular components is possible because the components
are independent.

This page titled 4.2: Displacement and Velocity Vectors is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

4.2: Displacement and Velocity Vectors by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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4.3: Acceleration Vector

Calculate the acceleration vector given the velocity function in unit vector notation.
Describe the motion of a particle with a constant acceleration in three dimensions.
Use the one-dimensional motion equations along perpendicular axes to solve a problem in two or three dimensions with a
constant acceleration.
Express the acceleration in unit vector notation.

Instantaneous Acceleration
In addition to obtaining the displacement and velocity vectors of an object in motion, we often want to know its acceleration
vector at any point in time along its trajectory. This acceleration vector is the instantaneous acceleration and it can be obtained
from the derivative with respect to time of the velocity function, as we have seen in a previous chapter. The only difference in two
or three dimensions is that these are now vector quantities. Taking the derivative with respect to time (t), we find

The acceleration in terms of components is

Also, since the velocity is the derivative of the position function, we can write the acceleration in terms of the second derivative of
the position function:

A particle has a velocity of .

a. What is the acceleration function?
b. What is the acceleration vector at t = 2.0 s? Find its magnitude and direction.

Solution
a. We take the first derivative with respect to time of the velocity function to find the acceleration. The derivative is taken

component by component:

b. Evaluating  gives us the direction in unit vector notation. The magnitude of the
acceleration is

Significance
In this example we find that acceleration has a time dependence and is changing throughout the motion. Let’s consider a
different velocity function for the particle.

A particle has a position function: .

a. What is the velocity?
b. What is the acceleration?

 Learning Objectives

v ⃗ 

(t) = = .a⃗  lim
t→0

(t+Δt) − (t)v ⃗  v ⃗ 

Δt

d (t)v ⃗ 

dt
(4.3.1)

(t) = + + .a⃗ 
d (t)vx

dt
î

d (t)vy

dt
ĵ

d (t)vz

dt
k̂ (4.3.2)

(t) = + + .a⃗ 
x(t)d2

dt2
î

y(t)d2

dt2
ĵ

z(t)d2

dt2
k̂ (4.3.3)

 Example 4.4: Finding an Acceleration Vector

(t) = 5.0t + −2.0 m/sv ⃗  î t2 ĵ t3k̂

(t) = 5.0 +2.0t −6.0 m/ .a⃗  î ĵ t2 k̂ s2

(2.0 s) = 5.0 +4.0 −24.0 m/a⃗  î ĵ k̂ s2

| (2.20 s)| = = 24.8 m/ .a⃗  + +(−24.05.02 4.02 )2
− −−−−−−−−−−−−−−−−−

√ s
2

 Example 4.5: Finding a Particle Acceleration

(t) = (10t− ) +5t +5t mr ⃗  t2 î ĵ k̂
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c. Describe the motion from .

Strategy

We can gain some insight into the problem by looking at the position function. It is linear in y and z, so we know the
acceleration in these directions is zero when we take the second derivative. Also, note that the position in the x direction is zero
for t = 0 s and t = 10 s.

Solution
a. Taking the derivative with respect to time of the position function, we find . The

velocity function is linear in time in the x direction and is constant in the y and z directions.
b. Taking the derivative of the velocity function, we find

The acceleration vector is a constant in the negative x-direction.
c. The trajectory of the particle can be seen in Figure . Let’s look in the y and z directions first. The particle’s position

increases steadily as a function of time with a constant velocity in these directions. In the x direction, however, the particle
follows a path in positive x until t = 5 s, when it reverses direction. We know this from looking at the velocity function,
which becomes zero at this time and negative thereafter. We also know this because the acceleration is negative and
constant—meaning, the particle is decelerating, or accelerating in the negative direction. The particle’s position reaches 25
m, where it then reverses direction and begins to accelerate in the negative x direction. The position reaches zero at t = 10 s.

Figure : The particle starts at point (x, y, z) = (0, 0, 0) with position vector  = 0. The projection of the trajectory onto the
xy-plane is shown. The values of y and z increase linearly as a function of time, whereas x has a turning point at t = 5 s and 25
m, when it reverses direction. At this point, the x component of the velocity becomes negative. At t = 10 s, the particle is back
to 0 m in the x direction.

Suppose the acceleration function has the form (t) = a  + b  + c  m/s , where a, b, and c are constants. What can be said
about the functional form of the velocity function?

Constant Acceleration
Multidimensional motion with constant acceleration can be treated the same way as shown in the previous chapter for one-
dimensional motion. Earlier we showed that three-dimensional motion is equivalent to three one-dimensional motions, each along
an axis perpendicular to the others. To develop the relevant equations in each direction, let’s consider the two-dimensional problem
of a particle moving in the xy plane with constant acceleration, ignoring the z-component for the moment. The acceleration vector
is

t = 0 s

(t) = (10 −2t) +5 +5 m/sv ⃗  î ĵ k̂

(t) = −2 m/ .a⃗  î s2

4.3.1

4.3.1 r ⃗ 

 Exercise 4.2

a⃗  î ĵ k̂ 2

= + .a⃗  a0x î a0y ĵ (4.3.4)
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Each component of the motion has a separate set of equations similar to Equation 3.10–Equation 3.14 of the previous chapter on
one-dimensional motion. We show only the equations for position and velocity in the x- and y-directions. A similar set of kinematic
equations could be written for motion in the z-direction:

Here the subscript 0 denotes the initial position or velocity. Equation  to  can be substituted into Equation 4.2 and
Equation 4.5 without the z-component to obtain the position vector and velocity vector as a function of time in two dimensions:

and

The following example illustrates a practical use of the kinematic equations in two dimensions.

Figure  shows a skier moving with an acceleration of 2.1 m/s  down a slope of 15° at t = 0. With the origin of the
coordinate system at the front of the lodge, her initial position and velocity are

and

a. What are the x- and y-components of the skier’s position and velocity as functions of time?
b. What are her position and velocity at t = 10.0 s?

Figure : A skier has an acceleration of 2.1 m/s  down a slope of 15°. The origin of the coordinate system is at the ski
lodge.

Strategy

x(t) = +( tx0 vx)avg (4.3.5)

(t) = + tvx v0x ax (4.3.6)

x(t) = + t+x0 v0x
1

2
axt

2 (4.3.7)

(t) = +2 (x− )v2
x v2

0x ax x0 (4.3.8)

y(t) = +( ty0 vy)avg (4.3.9)

(t) = + tvy v0y ay (4.3.10)

y(t) = + t+y0 v0y
1

2
ayt

2 (4.3.11)

(t) = +2 (y− ).v2
y v2

0y ay y0 (4.3.12)

4.3.5 4.3.12

(t) = x(t) +y(t)r ⃗  î ĵ (4.3.13)

(t) = (t) + (t) .v ⃗  vx î vy ĵ (4.3.14)

 Example 4.6: A Skier

4.3.2 2

(0) = (7.50 −50.0 )mr ⃗  î ĵ

(0) = (4.1 −1.1 )m/sv ⃗  î ĵ

4.3.2 2
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Since we are evaluating the components of the motion equations in the x and y directions, we need to find the components of
the acceleration and put them into the kinematic equations. The components of the acceleration are found by referring to the
coordinate system in Figure . Then, by inserting the components of the initial position and velocity into the motion
equations, we can solve for her position and velocity at a later time t.

Solution
a. The origin of the coordinate system is at the top of the hill with y-axis vertically upward and the x-axis horizontal. By

looking at the trajectory of the skier, the x-component of the acceleration is positive and the y-component is negative. Since
the angle is 15° down the slope, we find

Inserting the initial position and velocity into Equations  and  for x, we have

For y, we have

b. Now that we have the equations of motion for x and y as functions of time, we can evaluate them at t = 10.0 s:

The position and velocity at t = 10.0 s are, finally

The magnitude of the velocity of the skier at 10.0 s is 25 m/s, which is 60 mi/h.

Significance
It is useful to know that, given the initial conditions of position, velocity, and acceleration of an object, we can find the
position, velocity, and acceleration at any later time.

With Equations -  we have completed the set of expressions for the position, velocity, and acceleration of an object
moving in two or three dimensions. If the trajectories of the objects look something like the “Red Arrows” in the opening picture
for the chapter, then the expressions for the position, velocity, and acceleration can be quite complicated. In the sections to follow
we examine two special cases of motion in two and three dimensions by looking at projectile motion and circular motion.

At this University of Colorado Boulder website, you can explore the position velocity and acceleration of a ladybug with an
interactive simulation that allows you to change these parameters.

This page titled 4.3: Acceleration Vector is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

4.3.2

= (2.1 m/ ) cos( ) = 2.0 m/ax s
2 15o s

2 (4.3.15)

= (−2.1 m/ ) sin( ) = −0.54 m/ .ay s
2 15o s

2 (4.3.16)

4.3.6 4.3.7

x(t) = 75.0 m+(4.1 m/s)t+ (2.0 m/ )
1

2
s

2
t

2 (4.3.17)

(t) = 4.1 m/s+(2.0 m/ )t.vx s2 (4.3.18)

y(t) = −50.0.0 m+(−1.1 m/s)t+ (−0.54 m/ )
1

2
s2 t2 (4.3.19)

(t) = −1.1 m/s+(−0.54 m/ )t.vy s2 (4.3.20)

x(10.0 s) = 75.0 m+(4.1 m/s)(10.0 s) + (2.0 m/ )(10.0 s = 216.0 m
1

2
s2 )2 (4.3.21)

(10.0 s) = 4.1 m/s+(2.0 m/ )(10.0 s) = 24.1 m/svx s2 (4.3.22)

y(10.0) = −50.0.0 m+(−1.1 m/s)(10.0 s) + (−0.54 m/ )(10.0 s
1

2
s2 )2 (4.3.23)

(10.0 s) = −1.1 m/s+(−0.54 m/ )(10.0 s).vy s2 (4.3.24)

(10.0 s) = (216.0 −88.0 )mr ⃗  î ĵ (4.3.25)

(10.0 s) = (24.1 −6.5 )m/s.v ⃗  î ĵ (4.3.26)

4.3.1 4.3.3
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4.4: Projectile Motion

Use one-dimensional motion in perpendicular directions to analyze projectile motion.
Calculate the range, time of flight, and maximum height of a projectile that is launched and impacts a flat, horizontal
surface.
Find the time of flight and impact velocity of a projectile that lands at a different height from that of launch.
Calculate the trajectory of a projectile.

Projectile motion is the motion of an object thrown or projected into the air, subject only to acceleration as a result of gravity. The
applications of projectile motion in physics and engineering are numerous. Some examples include meteors as they enter Earth’s
atmosphere, fireworks, and the motion of any ball in sports. Such objects are called projectiles and their path is called a
trajectory. The motion of falling objects as discussed in Motion Along a Straight Line is a simple one-dimensional type of
projectile motion in which there is no horizontal movement. In this section, we consider two-dimensional projectile motion, and
our treatment neglects the effects of air resistance.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be analyzed
separately. We discussed this fact in Displacement and Velocity Vectors, where we saw that vertical and horizontal motions are
independent. The key to analyzing two-dimensional projectile motion is to break it into two motions: one along the horizontal axis
and the other along the vertical. (This choice of axes is the most sensible because acceleration resulting from gravity is vertical;
thus, there is no acceleration along the horizontal axis when air resistance is negligible.) As is customary, we call the horizontal
axis the x-axis and the vertical axis the y-axis. It is not required that we use this choice of axes; it is simply convenient in the case
of gravitational acceleration. In other cases we may choose a different set of axes. Figure  illustrates the notation for
displacement, where we define  to be the total displacement, and  and  are its component vectors along the horizontal and
vertical axes, respectively. The magnitudes of these vectors are s, x, and y.

Figure : The total displacement s of a soccer ball at a point along its path. The vector  has components  and  along the
horizontal and vertical axes. Its magnitude is s and it makes an angle  with the horizontal.

To describe projectile motion completely, we must include velocity and acceleration, as well as displacement. We must find their
components along the x- and y-axes. Let’s assume all forces except gravity (such as air resistance and friction, for example) are
negligible. Defining the positive direction to be upward, the components of acceleration are then very simple:

Because gravity is vertical, a  = 0. If a  = 0, this means the initial velocity in the x direction is equal to the final velocity in the x
direction, or v  = v . With these conditions on acceleration and velocity, we can write the kinematic Equation 4.11 through
Equation 4.18 for motion in a uniform gravitational field, including the rest of the kinematic equations for a constant acceleration

 Learning Objectives

4.4.1

s ⃗  x⃗  y ⃗ 

4.4.1 s ⃗  x⃗  y ⃗ 
ϕ

= −g = −9.8 m/ (−32 ft/ ).ay s2 s2 (4.4.1)
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from Motion with Constant Acceleration. The kinematic equations for motion in a uniform gravitational field become kinematic
equations with a  = −g, a  = 0:

Horizontal Motion

Vertical Motion

Using this set of equations, we can analyze projectile motion, keeping in mind some important points.

1. Resolve the motion into horizontal and vertical components along the x- and y-axes. The magnitudes of the components of
displacement  along these axes are x and y. The magnitudes of the components of velocity  are v  = vcos  and v  = vsin

, where v is the magnitude of the velocity and  is its direction relative to the horizontal, as shown in Figure .
2. Treat the motion as two independent one-dimensional motions: one horizontal and the other vertical. Use the kinematic

equations for horizontal and vertical motion presented earlier.
3. Solve for the unknowns in the two separate motions: one horizontal and one vertical. Note that the only common variable

between the motions is time t. The problem-solving procedures here are the same as those for one-dimensional kinematics
and are illustrated in the following solved examples.

4. Recombine quantities in the horizontal and vertical directions to find the total displacement  and velocity . Solve for the
magnitude and direction of the displacement and velocity using

where  is the direction of the displacement .

y x

= , x = + tv0x vx x0 vx (4.4.2)

y = + ( + )ty0
1

2
v0y vy (4.4.3)

= −gtvy v0y (4.4.4)

y = + t − gy0 v0y

1

2
t2 (4.4.5)

= +2g(y − )v2
y v2

0y y0 (4.4.6)

 Problem-Solving Strategy: Projectile Motion

s ⃗  v ⃗  x θ y
θ θ 4.4.2

s ⃗  v ⃗ 

s = . ϕ = ( ), v = .+x2 y2
− −−−−−

√ tan−1 y

x
+v2

x v2
y

− −−−−−
√ (4.4.7)
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Figure : (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions
along the vertical and horizontal axes. (b) The horizontal motion is simple, because a  = 0 and v  is a constant. (c) The velocity in
the vertical direction begins to decrease as the object rises. At its highest point, the vertical velocity is zero. As the object falls
toward Earth again, the vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical
velocity. (d) The x and y motions are recombined to give the total velocity at any given point on the trajectory.

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above the horizontal,
as illustrated in Figure . The fuse is timed to ignite the shell just as it reaches its highest point above the ground. (a)
Calculate the height at which the shell explodes. (b) How much time passes between the launch of the shell and the explosion?
(c) What is the horizontal displacement of the shell when it explodes? (d) What is the total displacement from the point of
launch to the highest point?

Figure : The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which
is found to be at a height of 233 m and 125 m away horizontally.

Strategy

The motion can be broken into horizontal and vertical motions in which a  = 0 and a  = −g. We can then define x  and y  to be
zero and solve for the desired quantities.

Solution
a. By “height” we mean the altitude or vertical position y above the starting point. The highest point in any trajectory, called

the apex, is reached when v  = 0. Since we know the initial and final velocities, as well as the initial position, we use the
following equation to find y:

4.4.2

x x

 Example 4.7: A Fireworks Projectile Explodes high and away

4.4.3

4.4.3

x y 0 0

y
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Because y  and v  are both zero, the equation simplifies to

Solving for y gives

Now we must find v , the component of the initial velocity in the y direction. It is given by v  = v  sin , where v  is the
initial velocity of 70.0 m/s and  = 75° is the initial angle. Thus

and y is

Thus, we have

Note that because up is positive, the initial vertical velocity is positive, as is the maximum height, but the acceleration
resulting from gravity is negative. Note also that the maximum height depends only on the vertical component of the initial
velocity, so that any projectile with a 67.6-m/s initial vertical component of velocity reaches a maximum height of 233 m
(neglecting air resistance). The numbers in this example are reasonable for large fireworks displays, the shells of which do
reach such heights before exploding. In practice, air resistance is not completely negligible, so the initial velocity would
have to be somewhat larger than that given to reach the same height.

b. As in many physics problems, there is more than one way to solve for the time the projectile reaches its highest point. In
this case, the easiest method is to use v  = v  − gt. Because v  = 0 at the apex, this equation reduces

or

This time is also reasonable for large fireworks. If you are able to see the launch of fireworks, notice that several seconds
pass before the shell explodes. Another way of finding the time is by using y = y  + (v  + v )t. This is left for you as an
exercise to complete.

c. Because air resistance is negligible, a  = 0 and the horizontal velocity is constant, as discussed earlier. The horizontal
displacement is the horizontal velocity multiplied by time as given by x = x  + v t, where x  is equal to zero. Thus,

where v  is the x-component of the velocity, which is given by

Time t for both motions is the same, so x is

Horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could be
useful in keeping the fireworks fragments from falling on spectators. When the shell explodes, air resistance has a major
effect, and many fragments land directly below.

d. The horizontal and vertical components of the displacement were just calculated, so all that is needed here is to find the
magnitude and direction of the displacement at the highest point:

= −2g(y − ).v2
y v2

0y y0 (4.4.8)

0 y

0 = −2gy.v2
0y

(4.4.9)

y = .
v2

0y

2g
(4.4.10)

0y 0y 0 θ0 0
θ0

= sinθ = (70.0 m/s) sin = 67.6 m/sv0y v0 75o (4.4.11)

y = .
(67.6 m/s)2

2(9.80 m/ )s2
(4.4.12)

y = 233 m. (4.4.13)

y 0y y

0 = −gtv0y (4.4.14)

t = = = 6.90 s.
v0y

g

67.6 m/s

9.80 m/s2
(4.4.15)

0
1
2 0y y

x

0 x 0

x = t,vx (4.4.16)

x

= cos θ = (70.0 m/s) cos = 18.1 m/s.vx v0 75o (4.4.17)

x = (18.1 m/s)(6.90 s) = 125 m. (4.4.18)
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Note that the angle for the displacement vector is less than the initial angle of launch. To see why this is, review Figure 
, which shows the curvature of the trajectory toward the ground level. When solving Example 4.7(a), the expression

we found for y is valid for any projectile motion when air resistance is negligible. Call the maximum height y = h. Then,

This equation defines the maximum height of a projectile above its launch position and it depends only on the vertical
component of the initial velocity.

A rock is thrown horizontally off a cliff 100.0 m high with a velocity of 15.0 m/s. (a) Define the origin of the coordinate
system. (b) Which equation describes the horizontal motion? (c) Which equations describe the vertical motion? (d) What is the
rock’s velocity at the point of impact?

A tennis player wins a match at Arthur Ashe stadium and hits a ball into the stands at 30 m/s and at an angle 45° above the
horizontal (Figure ). On its way down, the ball is caught by a spectator 10 m above the point where the ball was hit. (a)
Calculate the time it takes the tennis ball to reach the spectator. (b) What are the magnitude and direction of the ball’s velocity
at impact?

Figure : The trajectory of a tennis ball hit into the stands.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions allows us to solve for the desired
quantities. The time a projectile is in the air is governed by its vertical motion alone. Thus, we solve for t first. While the ball is
rising and falling vertically, the horizontal motion continues at a constant velocity. This example asks for the final velocity.
Thus, we recombine the vertical and horizontal results to obtain  at final time t, determined in the first part of the example.

Solution
a. While the ball is in the air, it rises and then falls to a final position 10.0 m higher than its starting altitude. We can find the

time for this by using Equation :

If we take the initial position y  to be zero, then the final position is y = 10 m. The initial vertical velocity is the vertical
component of the initial velocity:

= 125 +233s ⃗  î ĵ (4.4.19)

| | = = 264 ms ⃗  +1252 2332− −−−−−−−−√ (4.4.20)

θ = ( ) = .tan−1 233

125
61.8o (4.4.21)

4.4.1

h = .
v2

0y

2g
(4.4.22)

 Exercise 4.3

 Example 4.8: Calculating projectile motion- Tennis Player

4.4.4

4.4.4

v ⃗ 

4.4.5

y = + t − g .y0 v0y

1

2
t2 (4.4.23)

0

= sin = (30.0 m/s) sin = 21.2 m/s.v0y v0 θ0 45o (4.4.24)
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Substituting into Equation  for y gives us

Rearranging terms gives a quadratic equation in t:

Use of the quadratic formula yields t = 3.79 s and t = 0.54 s. Since the ball is at a height of 10 m at two times during its
trajectory—once on the way up and once on the way down—we take the longer solution for the time it takes the ball to
reach the spectator:

The time for projectile motion is determined completely by the vertical motion. Thus, any projectile that has an initial
vertical velocity of 21.2 m/s and lands 10.0 m above its starting altitude spends 3.79 s in the air.

b. We can find the final horizontal and vertical velocities v  and v  with the use of the result from (a). Then, we can combine
them to find the magnitude of the total velocity vector  and the angle  it makes with the horizontal. Since v  is constant,
we can solve for it at any horizontal location. We choose the starting point because we know both the initial velocity and
the initial angle. Therefore,

The final vertical velocity is given by Equation :

Since  was found in part (a) to be 21.2 m/s, we have

The magnitude of the final velocity  is

The direction  is found using the inverse tangent:

Significance
a. As mentioned earlier, the time for projectile motion is determined completely by the vertical motion. Thus, any projectile

that has an initial vertical velocity of 21.2 m/s and lands 10.0 m above its starting altitude spends 3.79 s in the air.
b. The negative angle means the velocity is 53.1° below the horizontal at the point of impact. This result is consistent with the

fact that the ball is impacting at a point on the other side of the apex of the trajectory and therefore has a negative y
component of the velocity. The magnitude of the velocity is less than the magnitude of the initial velocity we expect since it
is impacting 10.0 m above the launch elevation.

Time of Flight, Trajectory, and Range
Of interest are the time of flight, trajectory, and range for a projectile launched on a flat horizontal surface and impacting on the
same surface. In this case, kinematic equations give useful expressions for these quantities, which are derived in the following
sections.

Time of flight

We can solve for the time of flight of a projectile that is both launched and impacts on a flat horizontal surface by performing some
manipulations of the kinematic equations. We note the position and displacement in y must be zero at launch and at impact on an
even surface. Thus, we set the displacement in y equal to zero and find

4.4.5

10.0 m = (21.2 m/s)t −(4.90 m/ ) .s2 t2 (4.4.25)

(4.90 m/ ) −(21.2 m/s)t +10.0 m = 0.s2 t2 (4.4.26)

t = 3.79 s. (4.4.27)

x y
v ⃗  θ x

= cos = (30 m/s) cos = 21.2 m/s.vx v0 θ0 45o (4.4.28)

4.4.4

= −gt.vy v0y (4.4.29)

v0y

= 21.2 m/s −(9.8 m/ )(3.79s) = −15.9 m/s.vy s2 (4.4.30)

v ⃗ 

v = = = 26.5 m/s.+v2
x v2

y

− −−−−−
√ (21.2 m/s +(−15.9 m/s)2 )2

− −−−−−−−−−−−−−−−−−−−−−
√ (4.4.31)

θv

= ( ) = ( ) = − .θv tan−1
vy

vx

tan−1 21.2

−15.9
53.1o (4.4.32)

y − = t − g = ( sin )t − g = 0.y0 v0y

1

2
t2 v0 θ0

1

2
t2 (4.4.33)
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Factoring, we have

Solving for t gives us

This is the time of flight for a projectile both launched and impacting on a flat horizontal surface. Equation  does not apply
when the projectile lands at a different elevation than it was launched, as we saw in Example 4.8 of the tennis player hitting the ball
into the stands. The other solution, t = 0, corresponds to the time at launch. The time of flight is linearly proportional to the initial
velocity in the y direction and inversely proportional to g. Thus, on the Moon, where gravity is one-sixth that of Earth, a projectile
launched with the same velocity as on Earth would be airborne six times as long.

Trajectory

The trajectory of a projectile can be found by eliminating the time variable t from the kinematic equations for arbitrary t and
solving for y(x). We take x  = y  = 0 so the projectile is launched from the origin. The kinematic equation for x gives

Substituting the expression for t into the equation for the position y = (v  sin )t −  gt  gives

Rearranging terms, we have

This trajectory equation is of the form y = ax + bx , which is an equation of a parabola with coefficients

Range

From the trajectory equation we can also find the range, or the horizontal distance traveled by the projectile. Factoring Equation 
, we have

The position y is zero for both the launch point and the impact point, since we are again considering only a flat horizontal surface.
Setting y = 0 in this equation gives solutions x = 0, corresponding to the launch point, and

corresponding to the impact point. Using the trigonometric identity 2sin cos  = sin2  and setting x = R for range, we find

Note particularly that Equation  is valid only for launch and impact on a horizontal surface. We see the range is directly
proportional to the square of the initial speed v  and sin , and it is inversely proportional to the acceleration of gravity. Thus, on
the Moon, the range would be six times greater than on Earth for the same initial velocity. Furthermore, we see from the factor sin

 that the range is maximum at 45°. These results are shown in Figure . In (a) we see that the greater the initial velocity, the
greater the range. In (b), we see that the range is maximum at 45°. This is true only for conditions neglecting air resistance. If air

t( sin − ) = 0.v0 θ0
gt

2
(4.4.34)

= .Ttof

2( sin )v0 θ0

g
(4.4.35)

4.4.35

0 0

x = t ⇒ t = = .v0x

x

v0x

x

cosv0 θ0
(4.4.36)

0 θ0
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cosv0 θ0
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2
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x

cosv0 θ0

2

(4.4.37)

y = (tan )x −[ ] .θ0
g

2( cosv0 θ0)2
x2 (4.4.38)

2

a = tan , b = − .θ0
g

2( cosv0 θ0)2
(4.4.39)

4.4.38

y = x[ tan − x].θ0
g

2( cosv0 θ0)2
(4.4.40)
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0 θ0 θ0

g
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resistance is considered, the maximum angle is somewhat smaller. It is interesting that the same range is found for two initial
launch angles that sum to 90°. The projectile launched with the smaller angle has a lower apex than the higher angle, but they both
have the same range.

Figure : Trajectories of projectiles on level ground. (a) The greater the initial speed v , the greater the range for a given initial
angle. (b) The effect of initial angle (\theta_{0}\) on the range of a projectile with a given initial speed. Note that the range is the
same for initial angles of 15° and 75°, although the maximum heights of those paths are different.

A golfer finds himself in two different situations on different holes. On the second hole he is 120 m from the green and wants
to hit the ball 90 m and let it run onto the green. He angles the shot low to the ground at 30° to the horizontal to let the ball roll
after impact. On the fourth hole he is 90 m from the green and wants to let the ball drop with a minimum amount of rolling
after impact. Here, he angles the shot at 70° to the horizontal to minimize rolling after impact. Both shots are hit and impacted
on a level surface. (a) What is the initial speed of the ball at the second hole? (b) What is the initial speed of the ball at the
fourth hole? (c) Write the trajectory equation for both cases. (d) Graph the trajectories.

Strategy

We see that the range equation has the initial speed and angle, so we can solve for the initial speed for both (a) and (b). When
we have the initial speed, we can use this value to write the trajectory equation.

Solution
a. 

b. 

c. 

Second hole:

Fourth hole:

d. Using a graphing utility, we can compare the two trajectories, which are shown in Figure .

4.4.5 0

 Example 4.9: Comparing golf shots

R = ⇒ = = = 31.9 m/s
sin2v2

0 θ0

g
v0

Rg

sin2θ0

− −−−−−

√
(90.0 m)(9.8 m/ )s2

sin(2( ))30o

− −−−−−−−−−−−−−−−

√ (4.4.43)

R = ⇒ = = = 37.0 m/s
sin2v2

0 θ0

g
v0

Rg

sin2θ0

− −−−−−

√
(90.0 m)(9.8 m/ )s2

sin(2( ))70o

− −−−−−−−−−−−−−−−

√ (4.4.44)

y = x[ tan − x]θ0
g

2( cosv0 θ0)2
(4.4.45)

y = x[ tan − x] = 0.58x −0.006430o 9.8 m/s2

2[(31.9 m/s)(cos )30o ]2
x2 (4.4.46)

y = x[ tan − x] = 2.75x −0.030670o 9.8 m/s2

2[(37.0 m/s)(cos )70o ]2
x2 (4.4.47)
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Figure : Two trajectories of a golf ball with a range of 90 m. The impact points of both are at the same level as the launch
point.

Significance
The initial speed for the shot at 70° is greater than the initial speed of the shot at 30°. Note from Figure  that two
projectiles launched at the same speed but at different angles have the same range if the launch angles add to 90°. The launch
angles in this example add to give a number greater than 90°. Thus, the shot at 70° has to have a greater launch speed to reach
90 m, otherwise it would land at a shorter distance.

If the two golf shots in Example 4.9 were launched at the same speed, which shot would have the greatest range?

When we speak of the range of a projectile on level ground, we assume R is very small compared with the circumference of Earth.
If, however, the range is large, Earth curves away below the projectile and the acceleration resulting from gravity changes direction
along the path. The range is larger than predicted by the range equation given earlier because the projectile has farther to fall than it
would on level ground, as shown in Figure , which is based on a drawing in Newton’s Principia. If the initial speed is great
enough, the projectile goes into orbit. Earth’s surface drops 5 m every 8000 m. In 1 s an object falls 5 m without air resistance.
Thus, if an object is given a horizontal velocity of 8000 m/s (or 18,000 mi/hr) near Earth’s surface, it will go into orbit around the
planet because the surface continuously falls away from the object. This is roughly the speed of the Space Shuttle in a low Earth
orbit when it was operational, or any satellite in a low Earth orbit. These and other aspects of orbital motion, such as Earth’s
rotation, are covered in greater depth in Gravitation.

Figure : Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance.
With increasing initial speed, the range increases and becomes longer than it would be on level ground because Earth curves away
beneath its path. With a speed of 8000 m/s, orbit is achieved.

At PhET Explorations: Projectile Motion, learn about projectile motion in terms of the launch angle and initial velocity.
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4.5: Uniform Circular Motion

Solve for the centripetal acceleration of an object moving on a circular path.
Use the equations of circular motion to find the position, velocity, and acceleration of a particle executing circular motion.
Explain the differences between centripetal acceleration and tangential acceleration resulting from nonuniform circular
motion.
Evaluate centripetal and tangential acceleration in nonuniform circular motion, and find the total acceleration vector.

Uniform circular motion is a specific type of motion in which an object travels in a circle with a constant speed. For example, any
point on a propeller spinning at a constant rate is executing uniform circular motion. Other examples are the second, minute, and
hour hands of a watch. It is remarkable that points on these rotating objects are actually accelerating, although the rotation rate is a
constant. To see this, we must analyze the motion in terms of vectors.

Centripetal Acceleration
In one-dimensional kinematics, objects with a constant speed have zero acceleration. However, in two- and three-dimensional
kinematics, even if the speed is a constant, a particle can have acceleration if it moves along a curved trajectory such as a circle. In
this case the velocity vector is changing, or  ≠ 0. This is shown in Figure . As the particle moves counterclockwise in time 

t on the circular path, its position vector moves from  to . The velocity vector has constant magnitude and is
tangent to the path as it changes from (t) to , changing its direction only. Since the velocity vector  is perpendicular
to the position vector (t), the triangles formed by the position vectors and , and the velocity vectors and  are similar.
Furthermore, since

and

the two triangles are isosceles. From these facts we can make the assertion

or

 Learning Objectives

dv ⃗ 

dt
4.5.1

Δ (t)r ⃗  (t+Δt)r ⃗ 
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Figure : (a) A particle is moving in a circle at a constant speed, with position and velocity vectors at times  and . (b)
Velocity vectors forming a triangle. The two triangles in the figure are similar. The vector  points toward the center of the circle
in the limit 

We can find the magnitude of the acceleration from

The direction of the acceleration can also be found by noting that as t and therefore  approach zero, the vector  approaches
a direction perpendicular to . In the limit   is perpendicular to . Since  is tangent to the circle, the acceleration 
points toward the center of the circle. Summarizing, a particle moving in a circle at a constant speed has an acceleration with
magnitude

The direction of the acceleration vector is toward the center of the circle (Figure ). This is a radial acceleration and is called
the centripetal acceleration, which is why we give it the subscript . The word centripetal comes from the Latin words centrum
(meaning “center”) and petere (meaning to seek”), and thus takes the meaning “center seeking.”

Figure : The centripetal acceleration vector points toward the center of the circular path of motion and is an acceleration in the
radial direction. The velocity vector is also shown and is tangent to the circle.

Let’s investigate some examples that illustrate the relative magnitudes of the velocity, radius, and centripetal acceleration.

A jet is flying at 134.1 m/s along a straight line and makes a turn along a circular path level with the ground. What does the
radius of the circle have to be to produce a centripetal acceleration of 1 g on the pilot and jet toward the center of the circular
trajectory?

Strategy

Given the speed of the jet, we can solve for the radius of the circle in the expression for the centripetal acceleration.

Solution

4.5.1 t t+ Δt
Δv ⃗ 

Δt → 0.

a = ( ) = ( ) = .lim
Δt→0

Δv

Δt

v

r
lim

Δt→0

Δr

Δt

v2

r
(4.5.3)

Δ Δθ Δv ⃗ 

v ⃗  Δt → 0, Δv ⃗  v ⃗  v ⃗  dv ⃗ 

dt

= .ac
v2

r
(4.5.4)

4.5.2

c

4.5.2

 Example : Creating an Acceleration of 1 g4.5.1
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Set the centripetal acceleration equal to the acceleration of gravity: 9.8 m/s  = .

Solving for the radius, we find

Significance
To create a greater acceleration than g on the pilot, the jet would either have to decrease the radius of its circular trajectory or
increase its speed on its existing trajectory or both.

A flywheel has a radius of 20.0 cm. What is the speed of a point on the edge of the flywheel if it experiences a centripetal
acceleration of 900.0 cm/s ?

Centripetal acceleration can have a wide range of values, depending on the speed and radius of curvature of the circular path.
Typical centripetal accelerations are given in Table .

Table : Typical Centripetal Accelerations

Object Centripetal Acceleration (m/s  or factors of g)

Earth around the Sun 5.93 x 10

Moon around the Earth 2.73 x 10

Satellite in geosynchronous orbit 0.233

Outer edge of a CD when playing 5.75

Jet in a barrel roll (2-3 g)

Roller coaster (5 g)

Electron orbiting a proton in a simple Bohr model of the atom 9.0 x 10

Equations of Motion for Uniform Circular Motion
A particle executing circular motion can be described by its position vector . Figure  shows a particle executing circular
motion in a counterclockwise direction. As the particle moves on the circle, its position vector sweeps out the angle  with the x-
axis. Vector  making an angle  with the x-axis is shown with its components along the x- and y-axes. The magnitude of the
position vector is  and is also the radius of the circle, so that in terms of its components,

Here,  is a constant called the angular frequency of the particle. The angular frequency has units of radians (rad) per second and
is simply the number of radians of angular measure through which the particle passes per second. The angle  that the position
vector has at any particular time is t.

If  is the period of motion, or the time to complete one revolution ( ), then

2 v2

r

r = = 1835 m = 1.835 km.
(134.1 m/s)2

9.8 m/s2
(4.5.5)

 Exercise 4.5

2

4.5.1

4.5.1

2

-3

-3

22

(t)r ⃗  4.5.3

θ

(t)r ⃗  θ

A = | (t)|r ⃗ 

(t) = A cosω +A sinωt .r ⃗  î ĵ (4.5.6)
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Figure : The position vector for a particle in circular motion with its components along the x- and y-axes. The particle moves
counterclockwise. Angle  is the angular frequency  in radians per second multiplied by .

Velocity and acceleration can be obtained from the position function by differentiation:

It can be shown from Figure  that the velocity vector is tangential to the circle at the location of the particle, with magnitude A
. Similarly, the acceleration vector is found by differentiating the velocity:

From this equation we see that the acceleration vector has magnitude A  and is directed opposite the position vector, toward the
origin, because (t) = − (t).

A proton has speed 5 x 10  m/s and is moving in a circle in the xy plane of radius r = 0.175 m. What is its position in the xy
plane at time t = 2.0 x 10  s = 200 ns? At t = 0, the position of the proton is 0.175 m  and it circles counterclockwise. Sketch
the trajectory.

Solution
From the given data, the proton has period and angular frequency:

The position of the particle at t = 2.0 x 10  s with A = 0.175 m is

From this result we see that the proton is located slightly below the x-axis. This is shown in Figure .

4.5.3
θ ω t

(t) = = −Aω sinωt +Aωcosωt .v ⃗ 
d (t)r ⃗ 

dt
î ĵ (4.5.7)

4.5.3

ω

(t) = = −A cosωt −A sinωt .a⃗ 
d (t)v ⃗ 

dt
ω2 î ω2 ĵ (4.5.8)

ω2

a⃗  ω2r ⃗ 

 Example : Circular Motion of a Proton4.5.2

6

−7 î
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v
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10−7

ω = = = 2.856 × rad/s.
2π

T

2π

2.20 × s10−7
107

−7

(2.0 × s)r ⃗  10−7 = A cosω(2.0 × s) +A sinω(2.0 × s) m10−7 î 10−7 ĵ

= 0.175 cos(2.856 × rad/s)(2.0 × s) +0.175 sin(2.856 × rad/s)(2.0 × s) m107 10−7 î 107 10−7 ĵ

= 0.175 cos(5.712 rad) +0.175 sin(5.172 rad) mî ĵ
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Figure : Position vector of the proton at . The trajectory of the proton is shown. The angle
through which the proton travels along the circle is 5.712 rad, which a little less than one complete revolution.

Significance
We picked the initial position of the particle to be on the x-axis. This was completely arbitrary. If a different starting position
were given, we would have a different final position at t = 200 ns.

Nonuniform Circular Motion
Circular motion does not have to be at a constant speed. A particle can travel in a circle and speed up or slow down, showing an
acceleration in the direction of the motion.

In uniform circular motion, the particle executing circular motion has a constant speed and the circle is at a fixed radius. If the
speed of the particle is changing as well, then we introduce an additional acceleration in the direction tangential to the circle. Such
accelerations occur at a point on a top that is changing its spin rate, or any accelerating rotor. In Displacement and Velocity Vectors
we showed that centripetal acceleration is the time rate of change of the direction of the velocity vector. If the speed of the particle
is changing, then it has a tangential acceleration that is the time rate of change of the magnitude of the velocity:

The direction of tangential acceleration is tangent to the circle whereas the direction of centripetal acceleration is radially inward
toward the center of the circle. Thus, a particle in circular motion with a tangential acceleration has a total acceleration that is the
vector sum of the centripetal and tangential accelerations:

The acceleration vectors are shown in Figure . Note that the two acceleration vectors  and  are perpendicular to each
other, with  in the radial direction and  in the tangential direction. The total acceleration  points at an angle between  and 

.

Figure : The centripetal acceleration points toward the center of the circle. The tangential acceleration is tangential to the
circle at the particle’s position. The total acceleration is the vector sum of the tangential and centripetal accelerations, which are
perpendicular.

4.5.4 t = 2.0 × ms = 200ns10−7

= .aT
d| |v ⃗ 

dt
(4.5.9)
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A particle moves in a circle of radius r = 2.0 m. During the time interval from t = 1.5 s to t = 4.0 s its speed varies with time
according to

What is the total acceleration of the particle at t = 2.0 s?

Strategy

We are given the speed of the particle and the radius of the circle, so we can calculate centripetal acceleration easily. The
direction of the centripetal acceleration is toward the center of the circle. We find the magnitude of the tangential acceleration
by taking the derivative with respect to time of |v(t)| using Equation  and evaluating it at t = 2.0 s. We use this and the
magnitude of the centripetal acceleration to find the total acceleration.

Solution
Centripetal acceleration is

directed toward the center of the circle. Tangential acceleration is

Total acceleration is

and  = tan   = 64° from the tangent to the circle. See Figure .

Figure : The tangential and centripetal acceleration vectors. The net acceleration  is the vector sum of the two
accelerations.

Significance
The directions of centripetal and tangential accelerations can be described more conveniently in terms of a polar coordinate
system, with unit vectors in the radial and tangential directions. This coordinate system, which is used for motion along curved
paths, is discussed in detail later in the book.

This page titled 4.5: Uniform Circular Motion is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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4.6: Relative Motion in One and Two Dimensions

Explain the concept of reference frames.
Write the position and velocity vector equations for relative motion.
Draw the position and velocity vectors for relative motion.
Analyze one-dimensional and two-dimensional relative motion problems using the position and velocity vector equations.

Motion does not happen in isolation. If you’re riding in a train moving at 10 m/s east, this velocity is measured relative to the
ground on which you’re traveling. However, if another train passes you at 15 m/s east, your velocity relative to this other train is
different from your velocity relative to the ground. Your velocity relative to the other train is 5 m/s west. To explore this idea
further, we first need to establish some terminology.

Reference Frames
To discuss relative motion in one or more dimensions, we first introduce the concept of reference frames. When we say an object
has a certain velocity, we must state it has a velocity with respect to a given reference frame. In most examples we have examined
so far, this reference frame has been Earth. If you say a person is sitting in a train moving at 10 m/s east, then you imply the person
on the train is moving relative to the surface of Earth at this velocity, and Earth is the reference frame. We can expand our view of
the motion of the person on the train and say Earth is spinning in its orbit around the Sun, in which case the motion becomes more
complicated. In this case, the solar system is the reference frame. In summary, all discussion of relative motion must define the
reference frames involved. We now develop a method to refer to reference frames in relative motion.

Relative Motion in One Dimension
We introduce relative motion in one dimension first, because the velocity vectors simplify to having only two possible directions.
Take the example of the person sitting in a train moving east. If we choose east as the positive direction and Earth as the reference
frame, then we can write the velocity of the train with respect to the Earth as  = 10 m/s  east, where the subscripts TE refer to
train and Earth. Let’s now say the person gets up out of /her seat and walks toward the back of the train at 2 m/s. This tells us she
has a velocity relative to the reference frame of the train. Since the person is walking west, in the negative direction, we write her
velocity with respect to the train as  = −2 m/s . We can add the two velocity vectors to find the velocity of the person with
respect to Earth. This relative velocity is written as

Note the ordering of the subscripts for the various reference frames in Equation . The subscripts for the coupling reference
frame, which is the train, appear consecutively in the right-hand side of the equation. Figure  shows the correct order of
subscripts when forming the vector equation.

Figure : When constructing the vector equation, the subscripts for the coupling reference frame appear consecutively on the
inside. The subscripts on the left-hand side of the equation are the same as the two outside subscripts on the right-hand side of the
equation.

Adding the vectors, we find  = 8 m/s , so the person is moving 8 m/s east with respect to Earth. Graphically, this is shown in
Figure .

Figure : Velocity vectors of the train with respect to Earth, person with respect to the train, and person with respect to Earth.

Relative Velocity in Two Dimensions
We can now apply these concepts to describing motion in two dimensions. Consider a particle P and reference frames S and S′, as
shown in Figure . The position of the origin of S′ as measured in S is , the position of P as measured in S′ is , and the
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position of P as measured in S is .

Figure : The positions of particle P relative to frames S and S′ are  and , respectively.

From Figure  we see that

The relative velocities are the time derivatives of the position vectors. Therefore,

The velocity of a particle relative to S is equal to its velocity relative to S′ plus the velocity of S′ relative to S.

We can extend Equation  to any number of reference frames. For particle P with velocities , , and  in frames A, B,
and C,

We can also see how the accelerations are related as observed in two reference frames by differentiating Equation :

We see that if the velocity of S′ relative to S is a constant, then  = 0 and

This says the acceleration of a particle is the same as measured by two observers moving at a constant velocity relative to each
other.

A truck is traveling south at a speed of 70 km/h toward an intersection. A car is traveling east toward the intersection at a speed
of 80 km/h (Figure ). What is the velocity of the car relative to the truck?

Figure : A car travels east toward an intersection while a truck travels south toward the same intersection.

Strategy

First, we must establish the reference frame common to both vehicles, which is Earth. Then, we write the velocities of each
with respect to the reference frame of Earth, which enables us to form a vector equation that links the car, the truck, and Earth

r ⃗ PS

4.6.3 r ⃗ PS r ⃗ 
PS

′

4.6.3

= + .r ⃗ PS r ⃗ PS r ⃗ 
SS

′ (4.6.2)

= + .v ⃗ PS v ⃗ PS ′ v ⃗  SS ′ (4.6.3)

4.6.3 v ⃗ PA v ⃗ PB v ⃗ PC

= + + .v ⃗ PC v ⃗ PA v ⃗ AB v ⃗ BC (4.6.4)

4.6.3

= + .a⃗ PS a⃗ PS ′ a⃗  SS ′ (4.6.5)

a⃗  SS ′

= .a⃗ PS a⃗ PS
′ (4.6.6)

 Example 4.13: Motion of a Car Relative to a Truck
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to solve for the velocity of the car with respect to the truck.

Solution
The velocity of the car with respect to Earth is  = 80 km/h . The velocity of the truck with respect to Earth is  = −70
km/h . Using the velocity addition rule, the relative motion equation we are seeking is

Here,  is the velocity of the car with respect to the truck, and Earth is the connecting reference frame. Since we have the
velocity of the truck with respect to Earth, the negative of this vector is the velocity of Earth with respect to the truck: 

. The vector diagram of this equation is shown in Figure .

Figure : Vector diagram of the vector Equation .

We can now solve for the velocity of the car with respect to the truck:

and

Significance
Drawing a vector diagram showing the velocity vectors can help in understanding the relative velocity of the two objects.

A boat heads north in still water at 4.5 m/s directly across a river that is running east at 3.0 m/s. What is the velocity of the boat
with respect to Earth?

A pilot must fly his plane due north to reach his destination. The plane can fly at 300 km/h in still air. A wind is blowing out of
the northeast at 90 km/h. (a) What is the speed of the plane relative to the ground? (b) In what direction must the pilot head her
plane to fly due north?

Strategy

The pilot must point her plane somewhat east of north to compensate for the wind velocity. We need to construct a vector
equation that contains the velocity of the plane with respect to the ground, the velocity of the plane with respect to the air, and
the velocity of the air with respect to the ground. Since these last two quantities are known, we can solve for the velocity of the
plane with respect to the ground. We can graph the vectors and use this diagram to evaluate the magnitude of the plane’s
velocity with respect to the ground. The diagram will also tell us the angle the plane’s velocity makes with north with respect
to the air, which is the direction the pilot must head her plane.

v ⃗ CE î v ⃗ T E

ĵ

= + .v ⃗ CT v ⃗ CE v ⃗ ET (4.6.7)
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√
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Solution
The vector equation is , where P = plane, A = air, and G = ground. From the geometry in Figure , we
can solve easily for the magnitude of the velocity of the plane with respect to the ground and the angle of the plane’s heading, 

.

Figure : Vector diagram for Equation  showing the vectors , , and .

a. Known quantities:

Substituting into the equation of motion, we obtain  = 230 km/h.

b. The angle  = tan   = 12° east of north.

This page titled 4.6: Relative Motion in One and Two Dimensions is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

4.6: Relative Motion in One and Two Dimensions by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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4.E: Motion in Two and Three Dimensions (Exercises)

Conceptual Questions

4.1 Displacement and Velocity Vectors
1. What form does the trajectory of a particle have if the distance from any point A to point B is equal to the magnitude of

the displacement from A to B?
2. Give an example of a trajectory in two or three dimensions caused by independent perpendicular motions.
3. If the instantaneous velocity is zero, what can be said about the slope of the position function?

4.2 Acceleration Vector
4. If the position function of a particle is a linear function of time, what can be said about its acceleration?
5. If an object has a constant x-component of the velocity and suddenly experiences an acceleration in the y direction, does

the x-component of its velocity change?
6. If an object has a constant x-component of velocity and suddenly experiences an acceleration at an angle of 70° in the x

direction, does the x-component of velocity change?

4.3 Projectile Motion
7. Answer the following questions for projectile motion on level ground assuming negligible air resistance, with the initial

angle being neither 0° nor 90° : (a) Is the velocity ever zero? (b) When is the velocity a minimum? A maximum? (c) Can
the velocity ever be the same as the initial velocity at a time other than at t = 0? (d) Can the speed ever be the same as the
initial speed at a time other than at t = 0?

8. Answer the following questions for projectile motion on level ground assuming negligible air resistance, with the initial
angle being neither 0° nor 90° : (a) Is the acceleration ever zero? (b) Is the vector  ever parallel or antiparallel to the
vector ? (c) Is the vector  ever perpendicular to the vector ? If so, where is this located?

9. A dime is placed at the edge of a table so it hangs over slightly. A quarter is slid horizontally on the table surface
perpendicular to the edge and hits the dime head on. Which coin hits the ground first?

4.4 Uniform Circular Motion
10. Can centripetal acceleration change the speed of a particle undergoing circular motion?
11. Can tangential acceleration change the speed of a particle undergoing circular motion?

4.5 Relative Motion in One and Two Dimensions
12. What frame or frames of reference do you use instinctively when driving a car? When flying in a commercial jet?
13. A basketball player dribbling down the court usually keeps his eyes fixed on the players around him. He is moving fast.

Why doesn’t he need to keep his eyes on the ball?
14. If someone is riding in the back of a pickup truck and throws a softball straight backward, is it possible for the ball to fall

straight down as viewed by a person standing at the side of the road? Under what condition would this occur? How would
the motion of the ball appear to the person who threw it?

15. The hat of a jogger running at constant velocity falls off the back of his head. Draw a sketch showing the path of the hat
in the jogger’s frame of reference. Draw its path as viewed by a stationary observer. Neglect air resistance.

16. A clod of dirt falls from the bed of a moving truck. It strikes the ground directly below the end of the truck. (a) What is
the direction of its velocity relative to the truck just before it hits? (b) Is this the same as the direction of its velocity
relative to ground just before it hits? Explain your answers.

Problems

4.1 Displacement and Velocity Vectors
17. The coordinates of a particle in a rectangular coordinate system are (1.0, –4.0, 6.0). What is the position vector of the

particle?
18. The position of a particle changes from  = (2.0  + 3.0 )cm to  = (−4.0  + 3.0 ) cm. What is the particle’s

displacement?
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19. The 18th hole at Pebble Beach Golf Course is a dogleg to the left of length 496.0 m. The fairway off the tee is taken to be
the x direction. A golfer hits his tee shot a distance of 300.0 m, corresponding to a displacement  = 300.0 m , and
hits his second shot 189.0 m with a displacement  = 172.0 m  + 80.3 m . What is the final displacement of the golf
ball from the tee?

20. A bird flies straight northeast a distance of 95.0 km for 3.0 h. With the x-axis due east and the y-axis due north, what is
the displacement in unit vector notation for the bird? What is the average velocity for the trip?

21. A cyclist rides 5.0 km due east, then 10.0 km 20° west of north. From this point she rides 8.0 km due west. What is the
final displacement from where the cyclist started?

22. New York Rangers defenseman Daniel Girardi stands at the goal and passes a hockey puck 20 m and 45° from straight
down the ice to left wing Chris Kreider waiting at the blue line. Kreider waits for Girardi to reach the blue line and passes
the puck directly across the ice to him 10 m away. What is the final displacement of the puck? See the following figure.

23. The position of a particle is (t) = 4.0t   − 3.0  + 2.0t  m. (a) What is the velocity of the particle at 0 s and at 1.0 s?
(b) What is the average velocity between 0 s and 1.0 s?

24. Clay Matthews, a linebacker for the Green Bay Packers, can reach a speed of 10.0 m/s. At the start of a play, Matthews
runs downfield at 45° with respect to the 50-yard line and covers 8.0 m in 1 s. He then runs straight down the field at 90°
with respect to the 50-yard line for 12 m, with an elapsed time of 1.2 s. (a) What is Matthews’ final displacement from
the start of the play? (b) What is his average velocity?

25. The F-35B Lighting II is a short-takeoff and vertical landing fighter jet. If it does a vertical takeoff to 20.00-m height
above the ground and then follows a flight path angled at 30° with respect to the ground for 20.00 km, what is the final
displacement?

4.2 Acceleration Vector

26. The position of a particle is  (t) = (3.0   + 5.0  − 6.0t ) m. (a) Determine its velocity and acceleration as functions of
time. (b) What are its velocity and acceleration at time t = 0?

27. A particle’s acceleration is (4.0  + 3.0 )m/s . At t = 0, its position and velocity are zero. (a) What are the particle’s
position and velocity as functions of time? (b) Find the equation of the path of the particle. Draw the x- and y-axes and
sketch the trajectory of the particle.

28. A boat leaves the dock at t = 0 and heads out into a lake with an acceleration of 2.0 m/s  . A strong wind is pushing the
boat, giving it an additional velocity of 2.0 m/s  + 1.0 m/s . (a) What is the velocity of the boat at t = 10 s? (b) What is
the position of the boat at t = 10s? Draw a sketch of the boat’s trajectory and position at t = 10 s, showing the x- and y-
axes.

29. The position of a particle for t > 0 is given by (t) = (3.0t   − 7.0t   − 5.0t ) m. (a) What is the velocity as a function
of time? (b) What is the acceleration as a function of time? (c) What is the particle’s velocity at t = 2.0 s? (d) What is its
speed at t = 1.0 s and t = 3.0 s? (e) What is the average velocity between t = 1.0 s and t = 2.0 s?

30. The acceleration of a particle is a constant. At t = 0 the velocity of the particle is (10  + 20 )m/s. At t = 4 s the velocity
is 10  m/s. (a) What is the particle’s acceleration? (b) How do the position and velocity vary with time? Assume the
particle is initially at the origin.

31. A particle has a position function (t) = cos(1.0t)  + sin(1.0t)  + t , where the arguments of the cosine and sine
functions are in radians. (a) What is the velocity vector? (b) What is the acceleration vector?

32. A Lockheed Martin F-35 II Lighting jet takes off from an aircraft carrier with a runway length of 90 m and a takeoff
speed 70 m/s at the end of the runway. Jets are catapulted into airspace from the deck of an aircraft carrier with two
sources of propulsion: the jet propulsion and the catapult. At the point of leaving the deck of the aircraft carrier, the F-
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35’s acceleration decreases to a constant acceleration of 5.0 m/s  at 30° with respect to the horizontal. (a) What is the
initial acceleration of the F-35 on the deck of the aircraft carrier to make it airborne? (b) Write the position and velocity
of the F-35 in unit vector notation from the point it leaves the deck of the aircraft carrier. (c) At what altitude is the fighter
5.0 s after it leaves the deck of the aircraft carrier? (d) What is its velocity and speed at this time? (e) How far has it
traveled horizontally?

4.3 Projectile Motion
33. A bullet is shot horizontally from shoulder height (1.5 m) with and initial speed 200 m/s. (a) How much time elapses

before the bullet hits the ground? (b) How far does the bullet travel horizontally?
34. A marble rolls off a tabletop 1.0 m high and hits the floor at a point 3.0 m away from the table’s edge in the horizontal

direction. (a) How long is the marble in the air? (b) What is the speed of the marble when it leaves the table’s edge? (c)
What is its speed when it hits the floor?

35. A dart is thrown horizontally at a speed of 10 m/ s at the bull’s-eye of a dartboard 2.4 m away, as in the following figure.
(a) How far below the intended target does the dart hit? (b) What does your answer tell you about how proficient dart
players throw their darts?

36. An airplane flying horizontally with a speed of 500 km/h at a height of 800 m drops a crate of supplies (see the following
figure). If the parachute fails to open, how far in front of the release point does the crate hit the ground?

37. Suppose the airplane in the preceding problem fires a projectile horizontally in its direction of motion at a speed of 300
m/s relative to the plane. (a) How far in front of the release point does the projectile hit the ground? (b) What is its speed
when it hits the ground?

38. A fastball pitcher can throw a baseball at a speed of 40 m/s (90 mi/h). (a) Assuming the pitcher can release the ball 16.7
m from home plate so the ball is moving horizontally, how long does it take the ball to reach home plate? (b) How far
does the ball drop between the pitcher’s hand and home plate?

39. A projectile is launched at an angle of 30° and lands 20 s later at the same height as it was launched. (a) What is the initial
speed of the projectile? (b) What is the maximum altitude? (c) What is the range? (d) Calculate the displacement from the
point of launch to the position on its trajectory at 15 s.

40. A basketball player shoots toward a basket 6.1 m away and 3.0 m above the floor. If the ball is released 1.8 m above the
floor at an angle of 60° above the horizontal, what must the initial speed be if it were to go through the basket?

41. At a particular instant, a hot air balloon is 100 m in the air and descending at a constant speed of 2.0 m/s. At this exact
instant, a girl throws a ball horizontally, relative to herself, with an initial speed of 20 m/s. When she lands, where will
she find the ball? Ignore air resistance.

42. A man on a motorcycle traveling at a uniform speed of 10 m/s throws an empty can straight upward relative to himself
with an initial speed of 3.0 m/s. Find the equation of the trajectory as seen by a police officer on the side of the road.
Assume the initial position of the can is the point where it is thrown. Ignore air resistance.

43. An athlete can jump a distance of 8.0 m in the broad jump. What is the maximum distance the athlete can jump on the
Moon, where the gravitational acceleration is onesixth that of Earth?

44. The maximum horizontal distance a boy can throw a ball is 50 m. Assume he can throw with the same initial speed at all
angles. How high does he throw the ball when he throws it straight upward?

45. A rock is thrown off a cliff at an angle of 53° with respect to the horizontal. The cliff is 100 m high. The initial speed of
the rock is 30 m/s. (a) How high above the edge of the cliff does the rock rise? (b) How far has it moved horizontally
when it is at maximum altitude? (c) How long after the release does it hit the ground? (d) What is the range of the rock?
(e) What are the horizontal and vertical positions of the rock relative to the edge of the cliff at t = 2.0 s, t = 4.0 s, and t =
6.0 s?
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46. Trying to escape his pursuers, a secret agent skis off a slope inclined at 30° below the horizontal at 60 km/h. To survive
and land on the snow 100 m below, he must clear a gorge 60 m wide. Does he make it? Ignore air resistance.

47. A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits
the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?

48. A projectile is shot at a hill, the base of which is 300 m away. The projectile is shot at 60° above the horizontal with an
initial speed of 75 m/s. The hill can be approximated by a plane sloped at 20° to the horizontal. Relative to the coordinate
system shown in the following figure, the equation of this straight line is y = (tan 20°)x − 109. Where on the hill does the
projectile land?

49. An astronaut on Mars kicks a soccer ball at an angle of 45° with an initial velocity of 15 m/s. If the acceleration of gravity
on Mars is 3.7 m/s, (a) what is the range of the soccer kick on a flat surface? (b) What would be the range of the same
kick on the Moon, where gravity is one-sixth that of Earth?

50. Mike Powell holds the record for the long jump of 8.95 m, established in 1991. If he left the ground at an angle of 15°,
what was his initial speed?

51. MIT’s robot cheetah can jump over obstacles 46 cm high and has speed of 12.0 km/h. (a) If the robot launches itself at an
angle of 60° at this speed, what is its maximum height? (b) What would the launch angle have to be to reach a height of
46 cm?

52. Mt. Asama, Japan, is an active volcano. In 2009, an eruption threw solid volcanic rocks that landed 1 km horizontally
from the crater. If the volcanic rocks were launched at an angle of 40° with respect to the horizontal and landed 900 m
below the crater, (a) what would be their initial velocity and (b) what is their time of flight?

53. Drew Brees of the New Orleans Saints can throw a football 23.0 m/s (50 mph). If he angles the throw at 10° from the
horizontal, what distance does it go if it is to be caught at the same elevation as it was thrown?

54. The Lunar Roving Vehicle used in NASA’s late Apollo missions reached an unofficial lunar land speed of 5.0 m/s by
astronaut Eugene Cernan. If the rover was moving at this speed on a flat lunar surface and hit a small bump that projected
it off the surface at an angle of 20°, how long would it be “airborne” on the Moon?

55. A soccer goal is 2.44 m high. A player kicks the ball at a distance 10 m from the goal at an angle of 25°. What is the
initial speed of the soccer ball?

56. Olympus Mons on Mars is the largest volcano in the solar system, at a height of 25 km and with a radius of 312 km. If
you are standing on the summit, with what initial velocity would you have to fire a projectile from a cannon horizontally
to clear the volcano and land on the surface of Mars? Note that Mars has an acceleration of gravity of 3.7 m/s .

57. In 1999, Robbie Knievel was the first to jump the Grand Canyon on a motorcycle. At a narrow part of the canyon (69.0 m
wide) and traveling 35.8 m/s off the takeoff ramp, he reached the other side. What was his launch angle?

58. You throw a baseball at an initial speed of 15.0 m/s at an angle of 30° with respect to the horizontal. What would the
ball’s initial speed have to be at 30° on a planet that has twice the acceleration of gravity as Earth to achieve the same
range? Consider launch and impact on a horizontal surface.
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59. Aaron Rogers throws a football at 20.0 m/s to his wide receiver, who is running straight down the field at 9.4 m/s. If
Aaron throws the football when the wide receiver is 10.0 m in front of him, what angle does Aaron have to launch the
ball at so the receiver catches it 20.0 m in front of Aaron?

4.4 Uniform Circular Motion
60. A flywheel is rotating at 30 rev/s. What is the total angle, in radians, through which a point on the flywheel rotates in 40

s?
61. A particle travels in a circle of radius 10 m at a constant speed of 20 m/s. What is the magnitude of the acceleration?
62. Cam Newton of the Carolina Panthers throws a perfect football spiral at 8.0 rev/s. The radius of a pro football is 8.5 cm at

the middle of the short side. What is the centripetal acceleration of the laces on the football?
63. A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders

follow has an 8.00-m radius, at how many revolutions per minute are the riders subjected to a centripetal acceleration
equal to that of gravity?

64. A runner taking part in the 200-m dash must run around the end of a track that has a circular arc with a radius of
curvature of 30.0 m. The runner starts the race at a constant speed. If she completes the 200-m dash in 23.2 s and runs at
constant speed throughout the race, what is her centripetal acceleration as she runs the curved portion of the track?

65. What is the acceleration of Venus toward the Sun, assuming a circular orbit?
66. An experimental jet rocket travels around Earth along its equator just above its surface. At what speed must the jet travel

if the magnitude of its acceleration is g?
67. A fan is rotating at a constant 360.0 rev/min. What is the magnitude of the acceleration of a point on one of its blades

10.0 cm from the axis of rotation?
68. A point located on the second hand of a large clock has a radial acceleration of 0.1 cm/s . How far is the point from the

axis of rotation of the second hand?

4.5 Relative Motion in One and Two Dimensions
69. The coordinate axes of the reference frame S′ remain parallel to those of S, as S′ moves away from S at a constant

velocity  = (4.0  + 3.0  + 5.0 ) m/s. (a) If at time t = 0 the origins coincide, what is the position of the origin O′ in
the S frame as a function of time? (b) How is particle position for (t) and (t), as measured in S and S′, respectively,
related? (c) What is the relationship between particle velocities (t) and (t)? (d) How are accelerations (t) and  (t)
related?

70. The coordinate axes of the reference frame S′ remain parallel to those of S, as S′ moves away from S at a constant
velocity  = (1.0  + 2.0  + 3.0 )t m/s. (a) If at time t = 0 the origins coincide, what is the position of origin O′ in the
S frame as a function of time? (b) How is particle position for (t) and (t) , as measured in S and S′, respectively,
related? (c) What is the relationship between particle velocities (t) and (t)? (d) How are accelerations (t) and (t)
related?

71. The velocity of a particle in reference frame A is (2.0  + 3.0 ) m/s. The velocity of reference frame A with respect to
reference frame B is 4.0  m/s, and the velocity of reference frame B with respect to C is 2.0  m/s. What is the velocity
of the particle in reference frame C?

72. Raindrops fall vertically at 4.5 m/s relative to the earth. What does an observer in a car moving at 22.0 m/s in a straight
line measure as the velocity of the raindrops?

73. A seagull can fly at a velocity of 9.00 m/s in still air. (a) If it takes the bird 20.0 min to travel 6.00 km straight into an
oncoming wind, what is the velocity of the wind? (b) If the bird turns around and flies with the wind, how long will it
take the bird to return 6.00 km?

74. A ship sets sail from Rotterdam, heading due north at 7.00 m/s relative to the water. The local ocean current is 1.50 m/s in
a direction 40.0° north of east. What is the velocity of the ship relative to Earth?

75. A boat can be rowed at 8.0 km/h in still water. (a) How much time is required to row 1.5 km downstream in a river
moving 3.0 km/h relative to the shore? (b) How much time is required for the return trip? (c) In what direction must the
boat be aimed to row straight across the river? (d) Suppose the river is 0.8 km wide. What is the velocity of the boat with
respect to Earth and how much time is required to get to the opposite shore? (e) Suppose, instead, the boat is aimed
straight across the river. How much time is required to get across and how far downstream is the boat when it reaches the
opposite shore?
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r ⃗  r ⃗ 
′

v ⃗  v ⃗ 
′

a⃗  a⃗ 
′

î ĵ
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https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45977?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/04%3A_Motion_in_Two_and_Three_Dimensions/4.05%3A_Uniform_Circular_Motion
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/04%3A_Motion_in_Two_and_Three_Dimensions/4.06%3A_Relative_Motion_in_One_and_Two_Dimensions


4.E.6 https://phys.libretexts.org/@go/page/45977

76. A small plane flies at 200 km/h in still air. If the wind blows directly out of the west at 50 km/h, (a) in what direction
must the pilot head her plane to move directly north across land and (b) how long does it take her to reach a point 300 km
directly north of her starting point?

77. A cyclist traveling southeast along a road at 15 km/h feels a wind blowing from the southwest at 25 km/h. To a stationary
observer, what are the speed and direction of the wind?

78. A river is moving east at 4 m/s. A boat starts from the dock heading 30° north of west at 7 m/s. If the river is 1800 m
wide, (a) what is the velocity of the boat with respect to Earth and (b) how long does it take the boat to cross the river?

Additional Problems
79. A Formula One race car is traveling at 89.0 m/s along a straight track enters a turn on the race track with radius of

curvature of 200.0 m. What centripetal acceleration must the car have to stay on the track?
80. A particle travels in a circular orbit of radius 10 m. Its speed is changing at a rate of 15.0 m/s  at an instant when its speed

is 40.0 m/s. What is the magnitude of the acceleration of the particle?
81. The driver of a car moving at 90.0 km/h presses down on the brake as the car enters a circular curve of radius 150.0 m. If

the speed of the car is decreasing at a rate of 9.0 km/h each second, what is the magnitude of the acceleration of the car at
the instant its speed is 60.0 km/h?

82. A race car entering the curved part of the track at the Daytona 500 drops its speed from 85.0 m/s to 80.0 m/s in 2.0 s. If
the radius of the curved part of the track is 316.0 m, calculate the total acceleration of the race car at the beginning and
ending of reduction of speed.

83. An elephant is located on Earth’s surface at a latitude . Calculate the centripetal acceleration of the elephant resulting
from the rotation of Earth around its polar axis. Express your answer in terms of , the radius RE of Earth, and time T for
one rotation of Earth. Compare your answer with g for  = 40°.

84. A proton in a synchrotron is moving in a circle of radius 1 km and increasing its speed by v(t) = c  + c t , where c  = 2.0
x 10 m/s, c  = 10 m/s . (a) What is the proton’s total acceleration at t = 5.0 s? (b) At what time does the expression for
the velocity become unphysical?

85. A propeller blade at rest starts to rotate from t = 0 s to t = 5.0 s with a tangential acceleration of the tip of the blade at 3.00
m/s . The tip of the blade is 1.5 m from the axis of rotation. At t = 5.0 s, what is the total acceleration of the tip of the
blade?

86. A particle is executing circular motion with a constant angular frequency of  = 4.00 rad/s. If time t = 0 corresponds to
the position of the particle being located at y = 0 m and x = 5 m, (a) what is the position of the particle at t = 10 s? (b)
What is its velocity at this time? (c) What is its acceleration?

87. A particle’s centripetal acceleration is a  = 4.0 m/s  at t = 0 s where it is on the x-axis and moving counterclockwise in
the xy plane. It is executing uniform circular motion about an axis at a distance of 5.0 m. What is its velocity at t = 10 s?

88. A rod 3.0 m in length is rotating at 2.0 rev/s about an axis at one end. Compare the centripetal accelerations at radii of (a)
1.0 m, (b) 2.0 m, and (c) 3.0 m.

89. A particle located initially at (1.5  + 4.0 )m undergoes a displacement of (2.5  + 3.2  − 1.2 ) m. What is the final
position of the particle?
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90. The position of a particle is given by (t) = (50 m/s)t  − (4.9 m/s )t  . (a) What are the particle’s velocity and
acceleration as functions of time? (b) What are the initial conditions to produce the motion?

91. A spaceship is traveling at a constant velocity of (t) = 250.0  m/s when its rockets fire, giving it an acceleration of (t)
= (3.0  + 4.0 )m/s . What is its velocity 5 s after the rockets fire?

92. A crossbow is aimed horizontally at a target 40 m away. The arrow hits 30 cm below the spot at which it was aimed.
What is the initial velocity of the arrow?

93. A long jumper can jump a distance of 8.0 m when he takes off at an angle of 45° with respect to the horizontal. Assuming
he can jump with the same initial speed at all angles, how much distance does he lose by taking off at 30°?

94. On planet Arcon, the maximum horizontal range of a projectile launched at 10 m/s is 20 m. What is the acceleration of
gravity on this planet?

95. A mountain biker encounters a jump on a race course that sends him into the air at 60° to the horizontal. If he lands at a
horizontal distance of 45.0 m and 20 m below his launch point, what is his initial speed?

96. Which has the greater centripetal acceleration, a car with a speed of 15.0 m/s along a circular track of radius 100.0 m or a
car with a speed of 12.0 m/s along a circular track of radius 75.0 m?

97. A geosynchronous satellite orbits Earth at a distance of 42,250.0 km and has a period of 1 day. What is the centripetal
acceleration of the satellite?

98. Two speedboats are traveling at the same speed relative to the water in opposite directions in a moving river. An observer
on the riverbank sees the boats moving at 4.0 m/s and 5.0 m/s. (a) What is the speed of the boats relative to the river? (b)
How fast is the river moving relative to the shore?

Challenge Problems
99. World’s Longest Par 3. The tee of the world’s longest par 3 sits atop South Africa’s Hanglip Mountain at 400.0 m above

the green and can only be reached by helicopter. The horizontal distance to the green is 359.0 m. Neglect air resistance
and answer the following questions. (a) If a golfer launches a shot that is 40° with respect to the horizontal, what initial
velocity must she give the ball? (b) What is the time to reach the green?

100. When a field goal kicker kicks a football as hard as he can at 45° to the horizontal, the ball just clears the 3-m-high
crossbar of the goalposts 45.7 m away. (a) What is the maximum speed the kicker can impart to the football? (b) In
addition to clearing the crossbar, the football must be high enough in the air early during its flight to clear the reach of the
onrushing defensive lineman. If the lineman is 4.6 m away and has a vertical reach of 2.5 m, can he block the 45.7-m
field goal attempt? (c) What if the lineman is 1.0 m away?

101. A truck is traveling east at 80 km/h. At an intersection 32 km ahead, a car is traveling north at 50 km/h. (a) How long
after this moment will the vehicles be closest to each other? (b) How far apart will they be at that point?
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v ⃗  î a⃗ 

i ⃗  k̂ 2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45977?pdf
http://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/04%3A_Motion_in_Two_and_Three_Dimensions/4.E%3A_Motion_in_Two_and_Three_Dimensions_(Exercises)
https://creativecommons.org/licenses/by/
https://openstax.org/
https://phys.libretexts.org/@go/page/5690
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-1


4.S.1 https://phys.libretexts.org/@go/page/45978

4.S: Motion in Two and Three Dimensions (Summary)

Key Terms

acceleration vector
instantaneous acceleration found by taking the derivative of the

velocity function with respect to time in unit vector notation

angular frequency
, rate of change of an angle with which an object that is moving

on a circular path

centripetal acceleration
component of acceleration of an object moving in a circle that is

directed radially inward toward the center of the circle

displacement vector
vector from the initial position to a final position on a trajectory of

a particle

position vector
vector from the origin of a chosen coordinate system to the

position of a particle in two- or threedimensional space

projectile motion motion of an object subject only to the acceleration of gravity

range maximum horizontal distance a projectile travels

reference frame
coordinate system in which the position, velocity, and acceleration

of an object at rest or moving is measured

relative velocity
velocity of an object as observed from a particular reference frame,

or the velocity of one reference frame with respect to another
reference frame

tangential accleration
magnitude of which is the time rate of change of speed. Its

direction is tangent to the circle.

time of flight elapsed time a projectile is in the air

total accleration vector sum of centripetal and tangential accelerations

trajectory path of a projectile through the air

velocity vector
vector that gives the instantaneous speed and direction of a

particle; tangent to the trajectory

Key Equations

Position vector

Displacement vector

Velocity vector

Velocity in terms of components

Velocity components

Average velocity

ω

(t) = x(t) + y(t) + z(t)r ⃗  î ĵ k̂ (4.S.1)

Δ = ( ) − ( )r ⃗  r ⃗  t2 r ⃗  t1 (4.S.2)

(t) = =v ⃗  lim
Δt→0

(t + Δt) − (t)r ⃗  r ⃗ 

Δt

dr ⃗ 

dt
(4.S.3)

(t) = (t) + (t) + (t)v ⃗  vx î vy ĵ vz k̂ (4.S.4)

(t) = (t) = (t) =vx
dx(t)

dt
vy

dy(t)

dt
vz

dz(t)

dt
(4.S.5)

=v ⃗ avg
( ) − ( )r ⃗  t2 r ⃗  t1

−t2 t1
(4.S.6)
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Instantaneous acceleration

Instantaneous acceleration, component form

Instantaneous acceleration as second derivatives of position

Time of flight

Trajectory

Range

Centripetal accleration

Position vector, uniform circular motion

Velocity vector, uniform circular motion

Acceleration vector, uniform circular motion

Tangential acceleration

Total acceleration

Position vector in frame S is the position vector in frame S′ plus
the vector from the origin of S to the origin of S′

Relative velocity equation connecting two reference frames

Relative velocity equation connecting more than two reference
frames

Relative acceleration equation

Summary

4.1 Displacement and Velocity Vectors
The position function (t) gives the position as a function of time of a particle moving in two or three dimensions. Graphically,
it is a vector from the origin of a chosen coordinate system to the point where the particle is located at a specific time.

(t) = =a⃗  lim
Δt→0

(t + Δt) − (t)v ⃗  v ⃗ 

Δt

dv ⃗ 

dt
(4.S.7)

(t) = + +a⃗ 
d (t)vx

dt
î

d (t)vy

dt
ĵ

d (t)vz

dt
k̂ (4.S.8)

(t) = + +a⃗ 
x(t)d2

dt2
î

y(t)d2

dt2

z(t)d2

dt2
k̂ (4.S.9)

=Ttof
2( sin θ)v0

g
(4.S.10)

y = (tan )x− [ ]θ0
g

2( cosv0 θ0)2
x2 (4.S.11)

R =
sin 2v2

0 θ0

g
(4.S.12)

=aC
v2

r
(4.S.13)

(t) = Acosωt +A sinωtr ⃗  î ĵ (4.S.14)

(t) = = −Aω sinωt +Aω cosωtv ⃗ 
d (t)r ⃗ 

dt
î ĵ (4.S.15)

(t) = = −A cosωt −A sinωta⃗ 
d (t)v ⃗ 

dt
ω2 î ω2 ĵ (4.S.16)

=aT
d| |v ⃗ 

dt
(4.S.17)

= +a⃗  a⃗ C a⃗ T (4.S.18)

= +r ⃗ PS r ⃗ PS ′ r ⃗  SS ′ (4.S.19)

= +v ⃗ PS v ⃗ PS ′ v ⃗  SS ′ (4.S.20)

= + +v ⃗ PC v ⃗ PA v ⃗ AB v ⃗ BC (4.S.21)

= +a⃗ PS a⃗ PS ′ a⃗  SS ′ (4.S.22)
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The displacement vector  gives the shortest distance between any two points on the trajectory of a particle in two or three
dimensions.
Instantaneous velocity gives the speed and direction of a particle at a specific time on its trajectory in two or three dimensions,
and is a vector in two and three dimensions.
The velocity vector is tangent to the trajectory of the particle.
Displacement (t) can be written as a vector sum of the one-dimensional displacements (t), (t), (t) along the x, y, and z
directions.
Velocity (t) can be written as a vector sum of the one-dimensional velocities v (t), v (t), v (t) along the x, y, and z directions.
Motion in any given direction is independent of motion in a perpendicular direction.

4.2 Acceleration Vector
In two and three dimensions, the acceleration vector can have an arbitrary direction and does not necessarily point along a given
component of the velocity.
The instantaneous acceleration is produced by a change in velocity taken over a very short (infinitesimal) time period.
Instantaneous acceleration is a vector in two or three dimensions. It is found by taking the derivative of the velocity function
with respect to time.
In three dimensions, acceleration (t) can be written as a vector sum of the one-dimensional accelerations a (t), a (t), and a  (t)
along the x-, y-, and z-axes.
The kinematic equations for constant acceleration can be written as the vector sum of the constant acceleration equations in the
x, y, and z directions.

4.3 Projectile Motion
Projectile motion is the motion of an object subject only to the acceleration of gravity, where the acceleration is constant, as
near the surface of Earth.
To solve projectile motion problems, we analyze the motion of the projectile in the horizontal and vertical directions using the
one-dimensional kinematic equations for x and y.
The time of flight of a projectile launched with initial vertical velocity v  on an even surface is given by

This equation is valid only when the projectile lands at the same elevation from which it was launched.
The maximum horizontal distance traveled by a projectile is called the range. Again, the equation for range is valid only when
the projectile lands at the same elevation from which it was launched.

4.4 Uniform Circular Motion
Uniform circular motion is motion in a circle at constant speed.
Centripetal acceleration  is the acceleration a particle must have to follow a circular path. Centripetal acceleration always
points toward the center of rotation and has magnitude a  = .
Nonuniform circular motion occurs when there is tangential acceleration of an object executing circular motion such that the
speed of the object is changing. This acceleration is called tangential acceleration . The magnitude of tangential acceleration
is the time rate of change of the magnitude of the velocity. The tangential acceleration vector is tangential to the circle, whereas
the centripetal acceleration vector points radially inward toward the center of the circle. The total acceleration is the vector sum
of tangential and centripetal accelerations.
An object executing uniform circular motion can be described with equations of motion. The position vector of the object is (t)
= A cos t  + A sin t , where A is the magnitude | (t)|, which is also the radius of the circle, and  is the angular frequency.

4.5 Relative Motion in One and Two Dimensions
When analyzing motion of an object, the reference frame in terms of position, velocity, and acceleration needs to be specified.
Relative velocity is the velocity of an object as observed from a particular reference frame, and it varies with the choice of
reference frame.
If S and S′ are two reference frames moving relative to each other at a constant velocity, then the velocity of an object relative
to S is equal to its velocity relative to S′ plus the velocity of S′ relative to S.

Δr ⃗ 

r ⃗  x⃗  y ⃗  z ⃗ 

v ⃗  x y z

a⃗  x y z

0y

=Ttof
2( sinθ)v0

g
(4.S.23)

a⃗ C

C
v2

r

a⃗ T

r ⃗ 

ω î ω ĵ r ⃗  ω
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If two reference frames are moving relative to each other at a constant velocity, then the accelerations of an object as observed
in both reference frames are equal.
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CHAPTER OVERVIEW

5: Relativity
The theory of relativity led to a profound change in the way we perceive space and time. The “common sense” rules that we use to
relate space and time measurements in the Newtonian worldview differ seriously from the correct rules at speeds near the speed of
light. Unlike Newtonian mechanics, which describes the motion of particles, or Maxwell's equations, which specify how the
electromagnetic field behaves, special relativity is not restricted to a particular type of phenomenon. Instead, its rules on space and
time affect all fundamental physical theories.

5.1: Prelude to Relativity
5.2: Invariance of Physical Laws
5.3: Relativity of Simultaneity
5.4: Time Dilation
5.5: Length Contraction
5.6: The Lorentz Transformation
5.7: Relativistic Velocity Transformation
5.8: Doppler Effect for Light
5.9: Relativistic Momentum
5.10: Relativistic Energy
5.A: Relativity (Answers)
5.E: Relativity (Exercises)
5.S: Relativity (Summary)

Thumbnail: The light cone consists of all the world lines followed by light from the event A at the vertex of the cone. (CC BY 4.0;
OpenStax)
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5.1: Prelude to Relativity
The special theory of relativity was proposed in 1905 by Albert Einstein (1879–1955). It describes how time, space, and physical
phenomena appear in different frames of reference that are moving at constant velocity with respect to each other. This differs from
Einstein’s later work on general relativity, which deals with any frame of reference, including accelerated frames.

Figure : Special relativity explains how time passes slightly differently on Earth and within the rapidly moving global
positioning satellite (GPS). GPS units in vehicles could not find their correct location on Earth without taking this correction into
account. (credit: USAF)

The theory of relativity led to a profound change in the way we perceive space and time. The “common sense” rules that we use to
relate space and time measurements in the Newtonian worldview differ seriously from the correct rules at speeds near the speed of
light. For example, the special theory of relativity tells us that measurements of length and time intervals are not the same in
reference frames moving relative to one another. A particle might be observed to have a lifetime of  in one reference
frame, but a lifetime of  in another; and an object might be measured to be 2.0 m long in one frame and 3.0 m long in
another frame. These effects are usually significant only at speeds comparable to the speed of light, but even at the much lower
speeds of the global positioning satellite, which requires extremely accurate time measurements to function, the different lengths of
the same distance in different frames of reference are significant enough that they need to be taken into account.

Unlike Newtonian mechanics, which describes the motion of particles, or Maxwell's equations, which specify how the
electromagnetic field behaves, special relativity is not restricted to a particular type of phenomenon. Instead, its rules on space and
time affect all fundamental physical theories.

The modifications of Newtonian mechanics in special relativity do not invalidate classical Newtonian mechanics or require its
replacement. Instead, the equations of relativistic mechanics differ meaningfully from those of classical Newtonian mechanics only
for objects moving at relativistic speeds (i.e., speeds less than, but comparable to, the speed of light). In the macroscopic world that
you encounter in your daily life, the relativistic equations reduce to classical equations, and the predictions of classical Newtonian
mechanics agree closely enough with experimental results to disregard relativistic corrections.

This page titled 5.1: Prelude to Relativity is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

5.1: Prelude to Relativity by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
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5.2: Invariance of Physical Laws

By the end of this section, you will be able to:

Describe the theoretical and experimental issues that Einstein’s theory of special relativity addressed.
State the two postulates of the special theory of relativity.

Suppose you calculate the hypotenuse of a right triangle given the base angles and adjacent sides. Whether you calculate the
hypotenuse from one of the sides and the cosine of the base angle, or from the Pythagorean theorem, the results should agree.
Predictions based on different principles of physics must also agree, whether we consider them principles of mechanics or
principles of electromagnetism.

Albert Einstein pondered a disagreement between predictions based on electromagnetism and on assumptions made in classical
mechanics. Specifically, suppose an observer measures the velocity of a light pulse in the observer’s own rest frame; that is, in the
frame of reference in which the observer is at rest. According to the assumptions long considered obvious in classical mechanics, if
an observer measures a velocity  in one frame of reference, and that frame of reference is moving with velocity  past a second
reference frame, an observer in the second frame measures the original velocity as

This sum of velocities is often referred to as Galilean relativity. If this principle is correct, the pulse of light that the observer
measures as traveling with speed c travels at speed c + u measured in the frame of the second observer. If we reasonably assume
that the laws of electrodynamics are the same in both frames of reference, then the predicted speed of light (in vacuum) in both
frames should be

Each observer should measure the same speed of the light pulse with respect to that observer’s own rest frame. To reconcile
difficulties of this kind, Einstein constructed his special theory of relativity, which introduced radical new ideas about time and
space that have since been confirmed experimentally.

Inertial Frames
All velocities are measured relative to some frame of reference. For example, a car’s motion is measured relative to its starting
position on the road it travels on; a projectile’s motion is measured relative to the surface from which it is launched; and a planet’s
orbital motion is measured relative to the star it orbits. The frames of reference in which mechanics takes the simplest form are
those that are not accelerating. Newton’s first law, the law of inertia, holds exactly in such a frame.

An inertial frame of reference is a reference frame in which a body at rest remains at rest and a body in motion moves at a
constant speed in a straight line unless acted upon by an outside force.

For example, to a passenger inside a plane flying at constant speed and constant altitude, physics seems to work exactly the same as
when the passenger is standing on the surface of Earth. When the plane is taking off, however, matters are somewhat more
complicated. In this case, the passenger at rest inside the plane concludes that a net force F on an object is not equal to the product
of mass and acceleration, ma. Instead, F is equal to ma plus a fictitious force. This situation is not as simple as in an inertial frame.
Special relativity handles accelerating frames as a constant and velocities as relative to the observer. General relativity treats both
velocity and acceleration as relative to the observer, thus making the use of curved space-time.

Einstein’s First Postulate
Not only are the principles of classical mechanics simplest in inertial frames, but they are the same in all inertial frames. Einstein
based the first postulate of his theory on the idea that this is true for all the laws of physics, not merely those in mechanics.

 Learning Objectives
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The laws of physics are the same in all inertial frames of reference.

This postulate denies the existence of a special or preferred inertial frame. The laws of nature do not give us a way to endow any
one inertial frame with special properties. For example, we cannot identify any inertial frame as being in a state of “absolute rest.”
We can only determine the relative motion of one frame with respect to another.

There is, however, more to this postulate than meets the eye. The laws of physics include only those that satisfy this postulate. We
will see that the definitions of energy and momentum must be altered to fit this postulate. Another outcome of this postulate is the
famous equation , which relates energy to mass.

Einstein’s Second Postulate
The second postulate upon which Einstein based his theory of special relativity deals with the speed of light. Late in the nineteenth
century, the major tenets of classical physics were well established. Two of the most important were the laws of electromagnetism
and Newton’s laws. Investigations such as Young’s double-slit experiment in the early 1800s had convincingly demonstrated that
light is a wave. Maxwell’s equations of electromagnetism implied that electromagnetic waves travel at  in a
vacuum, but they do not specify the frame of reference in which light has this speed. Many types of waves were known, and all
travelled in some medium. Scientists therefore assumed that some medium carried the light, even in a vacuum, and that light travels
at a speed c relative to that medium (often called “the aether”).

Starting in the mid-1880s, the American physicist A.A. Michelson, later aided by E.W. Morley, made a series of direct
measurements of the speed of light. They intended to deduce from their data the speed  at which Earth was moving through the
mysterious medium for light waves. The speed of light measured on Earth should have been  when Earth’s motion was
opposite to the medium’s flow at speed  past the Earth, and  when Earth was moving in the same direction as the medium
(Figure ). The results of their measurements were startling.

Figure : Michelson and Morley's interferometric setup, mounted on a stone slab that floats in an annular trough of mercury.

The eventual conclusion derived from this result is that light, unlike mechanical waves such as sound, does not need a medium to
carry it. Furthermore, the Michelson-Morley results implied that the speed of light c is independent of the motion of the source
relative to the observer. That is, everyone observes light to move at speed c regardless of how they move relative to the light source
or to one another. For several years, many scientists tried unsuccessfully to explain these results within the framework of Newton’s
laws.

The Michelson-Morley experiment demonstrated that the speed of light in a vacuum is independent of the motion of Earth
about the Sun.
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In addition, there was a contradiction between the principles of electromagnetism and the assumption made in Newton’s laws about
relative velocity. Classically, the velocity of an object in one frame of reference and the velocity of that object in a second frame of
reference relative to the first should combine like simple vectors to give the velocity seen in the second frame. If that were correct,
then two observers moving at different speeds would see light traveling at different speeds. Imagine what a light wave would look
like to a person traveling along with it (in vacuum) at a speed . If such a motion were possible, then the wave would be stationary
relative to the observer. It would have electric and magnetic fields whose strengths varied with position but were constant in time.
This is not allowed by Maxwell’s equations. So either Maxwell’s equations are different in different inertial frames, or an object
with mass cannot travel at speed . Einstein concluded that the latter is true: An object with mass cannot travel at speed .
Maxwell’s equations are correct, but Newton’s addition of velocities is not correct for light.

Not until 1905, when Einstein published his first paper on special relativity, was the currently accepted conclusion reached. Based
mostly on his analysis that the laws of electricity and magnetism would not allow another speed for light, and only slightly aware
of the Michelson-Morley experiment, Einstein detailed his second postulate of special relativity.

Light travels in a vacuum with the same speed  in any direction in all inertial frames.

In other words, the speed of light has the same definite speed for any observer, regardless of the relative motion of the source. This
deceptively simple and counterintuitive postulate, along with the first postulate, leave all else open for change. Among the changes
are the loss of agreement on the time between events, the variation of distance with speed, and the realization that matter and
energy can be converted into one another. We describe these concepts in the following sections.

Explain how special relativity differs from general relativity.

Answer

Special relativity applies only to objects moving at constant velocity, whereas general relativity applies to objects that
undergo acceleration

This page titled 5.2: Invariance of Physical Laws is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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5.3: Relativity of Simultaneity

By the end of this section, you will be able to:

Show from Einstein's postulates that two events measured as simultaneous in one inertial frame are not necessarily
simultaneous in all inertial frames.
Describe how simultaneity is a relative concept for observers in different inertial frames in relative motion.

Do time intervals depend on who observes them? Intuitively, it seems that the time for a process, such as the elapsed time for a foot
race (Figure ), should be the same for all observers. In everyday experiences, disagreements over elapsed time have to do with
the accuracy of measuring time. No one would be likely to argue that the actual time interval was different for the moving runner
and for the stationary clock displayed. Carefully considering just how time is measured, however, shows that elapsed time does
depends on the relative motion of an observer with respect to the process being measured.

Figure : Elapsed time for a foot race is the same for all observers, but at relativistic speeds, elapsed time depends on the
motion of the observer relative to the location where the process being timed occurs. (credit: "Jason Edward Scott Bain"/Flickr)

Consider how we measure elapsed time. If we use a stopwatch, for example, how do we know when to start and stop the watch?
One method is to use the arrival of light from the event. For example, if you’re in a moving car and observe the light arriving from
a traffic signal change from green to red, you know it’s time to step on the brake pedal. The timing is more accurate if some sort of
electronic detection is used, avoiding human reaction times and other complications.

Now suppose two observers use this method to measure the time interval between two flashes of light from flash lamps that are a
distance apart (Figure ). An observer A is seated midway on a rail car with two flash lamps at opposite sides equidistant from
her. A pulse of light is emitted from each flash lamp and moves toward observer A, shown in frame (a) of the figure. The rail car is
moving rapidly in the direction indicated by the velocity vector in the diagram. An observer B standing on the platform is facing
the rail car as it passes and observes both flashes of light reach him simultaneously, as shown in frame (c). He measures the
distances from where he saw the pulses originate, finds them equal, and concludes that the pulses were emitted simultaneously.

However, because of Observer A’s motion, the pulse from the right of the railcar, from the direction the car is moving, reaches her
before the pulse from the left, as shown in frame (b). She also measures the distances from within her frame of reference, finds
them equal, and concludes that the pulses were not emitted simultaneously.

The two observers reach conflicting conclusions about whether the two events at well-separated locations were simultaneous. Both
frames of reference are valid, and both conclusions are valid. Whether two events at separate locations are simultaneous depends
on the motion of the observer relative to the locations of the events.
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Figure : (a) Two pulses of light are emitted simultaneously relative to observer B. (c) The pulses reach observer B’s position
simultaneously. (b) Because of A’s motion, she sees the pulse from the right first and concludes the bulbs did not flash
simultaneously. Both conclusions are correct.

Here, the relative velocity between observers affects whether two events a distance apart are observed to be simultaneous.
Simultaneity is not absolute. We might have guessed (incorrectly) that if light is emitted simultaneously, then two observers
halfway between the sources would see the flashes simultaneously. But careful analysis shows this cannot be the case if the speed
of light is the same in all inertial frames.

This type of thought experiment (in German, “Gedankenexperiment”) shows that seemingly obvious conclusions must be
changed to agree with the postulates of relativity. The validity of thought experiments can only be determined by actual
observation, and careful experiments have repeatedly confirmed Einstein’s theory of relativity.
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5.4: Time Dilation

By the end of this section, you will be able to:

Explain how time intervals can be measured differently in different reference frames.
Describe how to distinguish a proper time interval from a dilated time interval.
Describe the significance of the muon experiment.
Explain why the twin paradox is not a contradiction.
Calculate time dilation given the speed of an object in a given frame.

The analysis of simultaneity shows that Einstein’s postulates imply an important effect: Time intervals have different values when
measured in different inertial frames. Suppose, for example, an astronaut measures the time it takes for a pulse of light to travel a
distance perpendicular to the direction of his ship’s motion (relative to an earthbound observer), bounce off a mirror, and return
(Figure ). How does the elapsed time that the astronaut measures in the spacecraft compare with the elapsed time that an
earthbound observer measures by observing what is happening in the spacecraft?

Examining this question leads to a profound result. The elapsed time for a process depends on which observer is measuring it. In
this case, the time measured by the astronaut (within the spaceship where the astronaut is at rest) is smaller than the time measured
by the earthbound observer (to whom the astronaut is moving). The time elapsed for the same process is different for the observers,
because the distance the light pulse travels in the astronaut’s frame is smaller than in the earthbound frame, as seen in Figure 

. Light travels at the same speed in each frame, so it takes more time to travel the greater distance in the earthbound frame.

Figure : (a) An astronaut measures the time  for light to travel distance 2D in the astronaut’s frame. (b) A NASA scientist
on Earth sees the light follow the longer path 2s and take a longer time . (c) These triangles are used to find the relationship
between the two distances D and s.
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Time dilation is the lengthening of the time interval between two events for an observer in an inertial frame that is moving
with respect to the rest frame of the events (in which the events occur at the same location).

To quantitatively compare the time measurements in the two inertial frames, we can relate the distances in Figure  to each
other, then express each distance in terms of the time of travel (respectively either  or ) of the pulse in the corresponding
reference frame. The resulting equation can then be solved for  in terms of .

The lengths  and  in Figure  are the sides of a right triangle with hypotenuse . From the Pythagorean theorem,

The lengths  and  are, respectively, the distances that the pulse of light and the spacecraft travel in time  in the earthbound
observer’s frame. The length  is the distance that the light pulse travels in time  in the astronaut’s frame. This gives us three
equations:

Note that we used Einstein’s second postulate by taking the speed of light to be c in both inertial frames. We substitute these results
into the previous expression from the Pythagorean theorem:

Then we rearrange to obtain

Finally, solving for  in terms of  gives us

This is equivalent to

where  is the relativistic factor (often called the Lorentz factor) given by

and  and  are the speeds of the moving observer and light, respectively.

Note the asymmetry between the two measurements. Only one of them is a measurement of the time interval between two events—
the emission and arrival of the light pulse—at the same position. It is a measurement of the time interval in the rest frame of a
single clock. The measurement in the earthbound frame involves comparing the time interval between two events that occur at
different locations. The time interval between events that occur at a single location has a separate name to distinguish it from the
time measured by the earthbound observer, and we use the separate symbol  to refer to it throughout this chapter.

The proper time interval  between two events is the time interval measured by an observer for whom both events occur at
the same location.
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The equation relating  and  is truly remarkable. First, as stated earlier, elapsed time is not the same for different observers
moving relative to one another, even though both are in inertial frames. A proper time interval  for an observer who, like the
astronaut, is moving with the apparatus, is smaller than the time interval for other observers. It is the smallest possible measured
time between two events. The earthbound observer sees time intervals within the moving system as dilated (i.e., lengthened)
relative to how the observer moving relative to Earth sees them within the moving system. Alternatively, according to the
earthbound observer, less time passes between events within the moving frame. Note that the shortest elapsed time between events
is in the inertial frame in which the observer sees the events (e.g., the emission and arrival of the light signal) occur at the same
point.

This time effect is real and is not caused by inaccurate clocks or improper measurements. Time-interval measurements of the same
event differ for observers in relative motion. The dilation of time is an intrinsic property of time itself. All clocks moving relative to
an observer, including biological clocks, such as a person’s heartbeat, or aging, are observed to run more slowly compared with a
clock that is stationary relative to the observer.

Note that if the relative velocity is much less than the speed of light (v << c), then  is extremely small, and the elapsed times 
 and  are nearly equal. At low velocities, physics based on modern relativity approaches classical physics—everyday

experiences involve very small relativistic effects. However, for speeds near the speed of light,  is close to one, so 
 is very small and  becomes significantly larger than .

Half-Life of a Muon
There is considerable experimental evidence that the equation  is correct. One example is found in cosmic ray particles
that continuously rain down on Earth from deep space. Some collisions of these particles with nuclei in the upper atmosphere result
in short-lived particles called muons. The half-life (amount of time for half of a material to decay) of a muon is 1.52 μs when it is
at rest relative to the observer who measures the half-life. This is the proper time interval . This short time allows very few
muons to reach Earth’s surface and be detected if Newtonian assumptions about time and space were correct. However, muons
produced by cosmic ray particles have a range of velocities, with some moving near the speed of light. It has been found that the
muon’s half-life as measured by an earthbound observer ( ) varies with velocity exactly as predicted by the equation .
The faster the muon moves, the longer it lives. We on Earth see the muon last much longer than its half-life predicts within its own
rest frame. As viewed from our frame, the muon decays more slowly than it does when at rest relative to us. A far larger fraction of
muons reach the ground as a result.

Before we present the first example of solving a problem in relativity, we state a strategy you can use as a guideline for these
calculations.

1. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look in particular for
information on relative velocity v.

2. Identify exactly what needs to be determined in the problem (identify the unknowns).
3. Make certain you understand the conceptual aspects of the problem before making any calculations (express the answer as

an equation). Decide, for example, which observer sees time dilated or length contracted before working with the equations
or using them to carry out the calculation. If you have thought about who sees what, who is moving with the event being
observed, who sees proper time, and so on, you will find it much easier to determine if your calculation is reasonable.

4. Determine the primary type of calculation to be done to find the unknowns identified above (do the calculation). You will
find the section summary helpful in determining whether a length contraction, relativistic kinetic energy, or some other
concept is involved.

Note that you should not round off during the calculation. As noted in the text, you must often perform your calculations to
many digits to see the desired effect. You may round off at the very end of the problem solution, but do not use a rounded number
in a subsequent calculation. Also, check the answer to see if it is reasonable: Does it make sense? This may be more difficult for
relativity, which has few everyday examples to provide experience with what is reasonable. But you can look for velocities greater
than c or relativistic effects that are in the wrong direction (such as a time contraction where a dilation was expected).
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The Hypersonic Technology Vehicle 2 (HTV-2) is an experimental rocket vehicle capable of traveling at 21,000 km/h (5830
m/s). If an electronic clock in the HTV-2 measures a time interval of exactly 1-s duration, what would observers on Earth
measure the time interval to be?

Strategy

Apply the time dilation formula to relate the proper time interval of the signal in HTV-2 to the time interval measured on the
ground.

Solution

1. Identify the knowns: ; 
2. Identify the unknown: .
3. Express the answer as an equation:

4. Do the calculation. Use the expression for  to determine  from :

Significance
The very high speed of the HTV-2 is still only 10  times the speed of light. Relativistic effects for the HTV-2 are negligible for
almost all purposes, but are not zero.

What Speeds are Relativistic?

How fast must a vehicle travel for 1 second of time measured on a passenger’s watch in the vehicle to differ by 1% for an
observer measuring it from the ground outside?

Strategy

Use the time dilation formula to find v/c for the given ratio of times.

Solution
1. Identify the known:

2. Identify the unknown: v/c.
3. Express the answer as an equation:

 Example : Time Dilation in a High-Speed Vehicle5.4.1A
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4. Do the calculation:

Significance
The result shows that an object must travel at very roughly 10% of the speed of light for its motion to produce significant
relativistic time dilation effects.

Calculating  for a Relativistic Event

Suppose a cosmic ray colliding with a nucleus in Earth’s upper atmosphere produces a muon that has a velocity .
The muon then travels at constant velocity and lives 2.20 μs as measured in the muon’s frame of reference. (You can imagine
this as the muon’s internal clock.) How long does the muon live as measured by an earthbound observer (Figure )?

Figure : A muon in Earth’s atmosphere lives longer as measured by an earthbound observer than as measured by the
muon’s internal clock.

As we will discuss later, in the muon’s reference frame, it travels a shorter distance than measured in Earth’s reference frame.

Strategy

A clock moving with the muon measures the proper time of its decay process, so the time we are given is . The
earthbound observer measures  as given by the equation . Because the velocity is given, we can calculate the
time in Earth’s frame of reference.

Solution

1. Identify the knowns: ; .
2. Identify the unknown: .
3. Express the answer as an equation. Use:
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with

4. Do the calculation. Use the expression for  to determine  from :

Remember to keep extra significant figures until the final answer.

Significance
One implication of this example is that because  at 95.0% of the speed of light ( ), the relativistic effects
are significant. The two time intervals differ by a factor of 3.20, when classically they would be the same. Something moving
at 0.950c is said to be highly relativistic.

A non-flat screen, older-style television display (Figure ) works by accelerating electrons over a short distance to
relativistic speed, and then using electromagnetic fields to control where the electron beam strikes a fluorescent layer at the
front of the tube. Suppose the electrons travel at  through a distance of 0.200m0.200m from the start of the
beam to the screen.

a. What is the time of travel of an electron in the rest frame of the television set?
b. What is the electron’s time of travel in its own rest frame?

Figure : The electron beam in a cathode ray tube television display.

Strategy for (a)

(a) Calculate the time from . Even though the speed is relativistic, the calculation is entirely in one frame of reference,
and relativity is therefore not involved.
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Solution
1. Identify the knowns:

2. Identify the unknown: the time of travel .
3. Express the answer as an equation:

4. Do the calculation:

Significance
The time of travel is extremely short, as expected. Because the calculation is entirely within a single frame of reference,
relativity is not involved, even though the electron speed is close to c.

Strategy for (b)

(b) In the frame of reference of the electron, the vacuum tube is moving and the electron is stationary. The electron-emitting
cathode leaves the electron and the front of the vacuum tube strikes the electron with the electron at the same location.
Therefore we use the time dilation formula to relate the proper time in the electron rest frame to the time in the television
frame.

Solution

1. Identify the knowns (from part a):

2. Identify the unknown: .
3. Express the answer as an equation:

4. Do the calculation:

Significance
The time of travel is shorter in the electron frame of reference. Because the problem requires finding the time interval
measured in different reference frames for the same process, relativity is involved. If we had tried to calculate the time in the
electron rest frame by simply dividing the 0.200 m by the speed, the result would be slightly incorrect because of the
relativistic speed of the electron.

What is  if ?

Answer

v= 6.00 × m/s d = 0.200 m.107
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The Twin Paradox
An intriguing consequence of time dilation is that a space traveler moving at a high velocity relative to Earth would age less than
the astronaut’s earthbound twin. This is often known as the twin paradox. Imagine the astronaut moving at such a velocity that 

, as in Figure . A trip that takes 2.00 years in her frame would take 60.0 years in the earthbound twin’s frame.
Suppose the astronaut travels 1.00 year to another star system, briefly explores the area, and then travels 1.00 year back. An
astronaut who was 40 years old at the start of the trip would be would be 42 when the spaceship returns. Everything on Earth,
however, would have aged 60.0 years. The earthbound twin, if still alive, would be 100 years old.

The situation would seem different to the astronaut in Figure . Because motion is relative, the spaceship would seem to be
stationary and Earth would appear to move. (This is the sensation you have when flying in a jet.) Looking out the window of the
spaceship, the astronaut would see time slow down on Earth by a factor of . Seen from the spaceship, the earthbound
sibling will have aged only 2/30, or 0.07, of a year, whereas the astronaut would have aged 2.00 years.

Figure : The twin paradox consists of the conflicting conclusions about which twin ages more as a result of a long space
journey at relativistic speed.

The paradox here is that the two twins cannot both be correct. As with all paradoxes, conflicting conclusions come from a false
premise. In fact, the astronaut’s motion is significantly different from that of the earthbound twin. The astronaut accelerates to a
high velocity and then decelerates to view the star system. To return to Earth, she again accelerates and decelerates. The spacecraft
is not in a single inertial frame to which the time dilation formula can be directly applied. That is, the astronaut twin changes
inertial references. The earthbound twin does not experience these accelerations and remains in the same inertial frame. Thus, the
situation is not symmetric, and it is incorrect to claim that the astronaut observes the same effects as her twin. The lack of
symmetry between the twins will be still more evident when we analyze the journey later in this chapter in terms of the path the
astronaut follows through four-dimensional space-time.

In 1971, American physicists Joseph Hafele and Richard Keating verified time dilation at low relative velocities by flying
extremely accurate atomic clocks around the world on commercial aircraft. They measured elapsed time to an accuracy of a few
nanoseconds and compared it with the time measured by clocks left behind. Hafele and Keating’s results were within experimental
uncertainties of the predictions of relativity. Both special and general relativity had to be taken into account, because gravity and
accelerations were involved as well as relative motion.
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a. A particle travels at  and lives  when at rest relative to an observer. How long does the particle
live as viewed in the laboratory?

Answer

Spacecraft A and B pass in opposite directions at a relative speed of . An internal clock in spacecraft A causes
it to emit a radio signal for 1.00 s. The computer in spacecraft B corrects for the beginning and end of the signal having
traveled different distances, to calculate the time interval during which ship A was emitting the signal. What is the time interval
that the computer in spacecraft B calculates?

Answer

Only the relative speed of the two spacecraft matters because there is no absolute motion through space. The signal is
emitted from a fixed location in the frame of reference of A, so the proper time interval of its emission is . The
duration of the signal measured from frame of reference B is then

This page titled 5.4: Time Dilation is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

5.4: Time Dilation by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-3.
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5.5: Length Contraction

By the end of this section, you will be able to:

Explain how simultaneity and length contraction are related.
Describe the relation between length contraction and time dilation and use it to derive the length-contraction equation.

The length of the train car in Figure  is the same for all the passengers. All of them would agree on the simultaneous location
of the two ends of the car and obtain the same result for the distance between them. But simultaneous events in one inertial frame
need not be simultaneous in another. If the train could travel at relativistic speeds, an observer on the ground would see the
simultaneous locations of the two endpoints of the car at a different distance apart than observers inside the car. Measured distances
need not be the same for different observers when relativistic speeds are involved.

Figure : People might describe distances differently, but at relativistic speeds, the distances really are different. (credit:
“russavia”/Flickr).

Proper Length
Two observers passing each other always see the same value of their relative speed. Even though time dilation implies that the train
passenger and the observer standing alongside the tracks measure different times for the train to pass, they still agree that relative
speed, which is distance divided by elapsed time, is the same. If an observer on the ground and one on the train measure a different
time for the length of the train to pass the ground observer, agreeing on their relative speed means they must also see different
distances traveled.

The muon discussed previously illustrates this concept (Figure ). To an observer on Earth, the muon travels at 0.950c for 7.05
μs from the time it is produced until it decays. Therefore, it travels a distance relative to Earth of:

In the muon frame, the lifetime of the muon is 2.20 μs. In this frame of reference, the Earth, air, and ground have only enough time
to travel:

The distance between the same two events (production and decay of a muon) depends on who measures it and how they are moving
relative to it.
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Proper length  is the distance between two points measured by an observer who is at rest relative to both of the points.

The earthbound observer measures the proper length  because the points at which the muon is produced and decays are
stationary relative to Earth. To the muon, Earth, air, and clouds are moving, so the distance L it sees is not the proper length.

Figure : (a) The earthbound observer sees the muon travel 2.01 km. (b) The same path has length 0.627 km seen from the
muon’s frame of reference. The Earth, air, and clouds are moving relative to the muon in its frame, and have smaller lengths along
the direction of travel.

Length Contraction
To relate distances measured by different observers, note that the velocity relative to the earthbound observer in our muon example
is given by

The time relative to the earthbound observer is , because the object being timed is moving relative to this observer. The velocity
relative to the moving observer is given by

The moving observer travels with the muon and therefore observes the proper time . The two velocities are identical; thus,

We know that  and substituting this into Equation  gives

Substituting for  gives an equation relating the distances measured by different observers.

Length contraction is the decrease in the measured length of an object from its proper length when measured in a reference
frame that is moving with respect to the object:

where  is the length of the object in its rest frame, and  is the length in the frame moving with velocity .

If we measure the length of anything moving relative to our frame, we find its length L to be smaller than the proper length  that
would be measured if the object were stationary. For example, in the muon’s rest frame, the distance Earth moves between where
the muon was produced and where it decayed is shorter than the distance traveled as seen from the Earth’s frame. Those points are
fixed relative to Earth but are moving relative to the muon. Clouds and other objects are also contracted along the direction of
motion as seen from muon’s rest frame.

 Definition: Proper Length
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Thus, two observers measure different distances along their direction of relative motion, depending on which one is measuring
distances between objects at rest.

But what about distances measured in a direction perpendicular to the relative motion? Imagine two observers moving along their
x-axes and passing each other while holding meter sticks vertically in the y-direction. Figure  shows two meter sticks M and
M' that are at rest in the reference frames of two boys S and S', respectively. A small paintbrush is attached to the top (the 100-cm
mark) of stick M'. Suppose that S' is moving to the right at a very high speed v relative to S, and the sticks are oriented so that they
are perpendicular, or transverse, to their relative velocity vector. The sticks are held so that as they pass each other, their lower ends
(the 0-cm marks) coincide. Assume that when S looks at his stick M afterwards, he finds a line painted on it, just below the top of
the stick. Because the brush is attached to the top of the other boy’s stick M', S can only conclude that stick M' is less than 1.0 m
long.

Figure : Meter sticks M and M'M′ are stationary in the reference frames of observers S and S', respectively. As the sticks pass,
a small brush attached to the 100-cm mark of M' paints a line on M.

Now when the boys approach each other, S', like S, sees a meter stick moving toward him with speed v. Because their situations are
symmetric, each boy must make the same measurement of the stick in the other frame. So, if S measures stick M' to be less than 1.0
m long, S' must measure stick M to be also less than 1.0 m long, and S' must see his paintbrush pass over the top of stick M and not
paint a line on it. In other words, after the same event, one boy sees a painted line on a stick, while the other does not see such a
line on that same stick!

Einstein’s first postulate requires that the laws of physics (as, for example, applied to painting) predict that S and S', who are both
in inertial frames, make the same observations; that is, S and S' must either both see a line painted on stick M, or both not see that
line. We are therefore forced to conclude our original assumption that S saw a line painted below the top of his stick was wrong!
Instead, S finds the line painted right at the 100-cm mark on M. Then both boys will agree that a line is painted on M, and they will
also agree that both sticks are exactly 1 m long. We conclude then that measurements of a transverse length must be the same in
different inertial frames.

Suppose an astronaut, such as the twin in the twin paradox discussion, travels so fast that . (a) The astronaut travels
from Earth to the nearest star system, Alpha Centauri, 4.300 light years (ly) away as measured by an earthbound observer. How
far apart are Earth and Alpha Centauri as measured by the astronaut? (b) In terms of c, what is the astronaut’s velocity relative
to Earth? You may neglect the motion of Earth relative to the sun (Figure ).

5.5.3

5.5.3

 Example : Calculating Length Contraction5.5.4
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Figure : (a) The earthbound observer measures the proper distance between Earth and Alpha Centauri. (b) The astronaut
observes a length contraction because Earth and Alpha Centauri move relative to her ship. She can travel this shorter distance
in a smaller time (her proper time) without exceeding the speed of light.

Strategy

First, note that a light year (ly) is a convenient unit of distance on an astronomical scale—it is the distance light travels in a
year. For part (a), the 4.300-ly distance between Alpha Centauri and Earth is the proper distance , because it is measured by
an earthbound observer to whom both stars are (approximately) stationary. To the astronaut, Earth and Alpha Centauri are
moving past at the same velocity, so the distance between them is the contracted length L. In part (b), we are given , so we
can find  by rearranging the definition of  to express  in terms of .

Solution for (a)

For part (a):

1. Identify the knowns: ;
2. Identify the unknown: L.

3. Express the answer as an equation: .

4. Do the calculation:

Solution for (b)

For part (b):

1. Identify the known: .
2. Identify the unknown: v in terms of c.
3. Express the answer as an equation. Start with:
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Then solve for the unknown v/c by first squaring both sides and then rearranging:

4. Do the calculation:

or

Significance: Remember not to round off calculations until the final answer, or you could get erroneous results. This is
especially true for special relativity calculations, where the differences might only be revealed after several decimal places. The
relativistic effect is large here ( ), and we see that v is approaching (not equaling) the speed of light. Because the
distance as measured by the astronaut is so much smaller, the astronaut can travel it in much less time in her frame.

People traveling at extremely high velocities could cover very large distances (thousands or even millions of light years) and age
only a few years on the way. However, like emigrants in past centuries who left their home, these people would leave the Earth they
know forever. Even if they returned, thousands to millions of years would have passed on Earth, obliterating most of what now
exists. There is also a more serious practical obstacle to traveling at such velocities; immensely greater energies would be needed to
achieve such high velocities than classical physics predicts can be attained. This will be discussed later in the chapter.

Why don’t we notice length contraction in everyday life? The distance to the grocery store does not seem to depend on whether we
are moving or not. Examining Equation , we see that at low velocities ( ), the lengths are nearly equal, which is the
classical expectation. However, length contraction is real, if not commonly experienced. For example, a charged particle such as an
electron traveling at relativistic velocity has electric field lines that are compressed along the direction of motion as seen by a
stationary observer (Figure ). As the electron passes a detector, such as a coil of wire, its field interacts much more briefly, an
effect observed at particle accelerators such as the 3-km-long Stanford Linear Accelerator (SLAC). In fact, to an electron traveling
down the beam pipe at SLAC, the accelerator and Earth are all moving by and are length contracted. The relativistic effect is so
great that the accelerator is only 0.5 m long to the electron. It is actually easier to get the electron beam down the pipe, because the
beam does not have to be as precisely aimed to get down a short pipe as it would to get down a pipe 3 km long. This, again, is an
experimental verification of the special theory of relativity.
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Figure : The electric field lines of a high-velocity charged particle are compressed along the direction of motion by length
contraction, producing an observably different signal as the particle goes through a coil.

A particle is traveling through Earth’s atmosphere at a speed of . To an earthbound observer, the distance it travels is
2.50 km. How far does the particle travel as viewed from the particle’s reference frame?

Answer

This page titled 5.5: Length Contraction is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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5.6: The Lorentz Transformation

Describe the Galilean transformation of classical mechanics, relating the position, time, velocities, and accelerations
measured in different inertial frames
Derive the corresponding Lorentz transformation equations, which, in contrast to the Galilean transformation, are consistent
with special relativity
Explain the Lorentz transformation and many of the features of relativity in terms of four-dimensional space-time

We have used the postulates of relativity to examine, in particular examples, how observers in different frames of reference
measure different values for lengths and the time intervals. We can gain further insight into how the postulates of relativity change
the Newtonian view of time and space by examining the transformation equations that give the space and time coordinates of
events in one inertial reference frame in terms of those in another. We first examine how position and time coordinates transform
between inertial frames according to the view in Newtonian physics. Then we examine how this has to be changed to agree with
the postulates of relativity. Finally, we examine the resulting Lorentz transformation equations and some of their consequences in
terms of four-dimensional space-time diagrams, to support the view that the consequences of special relativity result from the
properties of time and space itself, rather than electromagnetism.

The Galilean Transformation Equations
An event is specified by its location and time  relative to one particular inertial frame of reference . As an example, 

 could denote the position of a particle at time , and we could be looking at these positions for many different times to
follow the motion of the particle. Suppose a second frame of reference  moves with velocity  with respect to the first. For
simplicity, assume this relative velocity is along the x-axis. The relation between the time and coordinates in the two frames of
reference is then

Implicit in these equations is the assumption that time measurements made by observers in both  and  are the same. That is,

Equations -  are known collectively as the Galilean transformation.

We can obtain the Galilean velocity and acceleration transformation equations by differentiating these equations with respect to
time. We use  for the velocity of a particle throughout this chapter to distinguish it from , the relative velocity of two reference
frames. Note that, for the Galilean transformation, the increment of time used in differentiating to calculate the particle velocity is
the same in both frames, . Differentiation yields

and

We denote the velocity of the particle by  rather than  to avoid confusion with the velocity  of one frame of reference with
respect to the other. Velocities in each frame differ by the velocity that one frame has as seen from the other frame. Observers in
both frames of reference measure the same value of the acceleration. Because the mass is unchanged by the transformation, and
distances between points are uncharged, observers in both frames see the same forces  acting between objects and the
same form of Newton’s second and third laws in all inertial frames. The laws of mechanics are consistent with the first postulate of
relativity.
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The Lorentz Transformation Equations
The Galilean transformation nevertheless violates Einstein’s postulates, because the velocity equations state that a pulse of light
moving with speed  along the x-axis would travel at speed  in the other inertial frame. Specifically, the spherical pulse has
radius  at time  in the unprimed frame, and also has radius  at time t' in the primed frame. Expressing these relations
in Cartesian coordinates gives

The left-hand sides Equations  and  can be set equal because both are zero. Because  and , we obtain

This cannot be satisfied for nonzero relative velocity  of the two frames if we assume the Galilean transformation results in 
with .

To find the correct set of transformation equations, assume the two coordinate systems  and  in Figure . First suppose that
an event occurs at  in  and at  in , as depicted in Figure .

Figure : An event occurs at  in  and at  in . The Lorentz transformation equations relate events in
the two systems.

Suppose that at the instant that the origins of the coordinate systems in S and S' coincide, a flash bulb emits a spherically spreading
pulse of light starting from the origin. At time t, an observer in S finds the origin of S' to be at . With the help of a friend in
S, the S' observer also measures the distance from the event to the origin of S' and finds it to be . This follows
because we have already shown the postulates of relativity to imply length contraction. Thus the position of the event in S is

and

The postulates of relativity imply that the equation relating distance and time of the spherical wave front:

must apply both in terms of primed and unprimed coordinates, which was shown above to lead to Equation:

We combine this with Equation  that relates  and  to obtain the relation between  and :

The equations relating the time and position of the events as seen in  are then
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This set of equations, relating the position and time in the two inertial frames, is known as the Lorentz transformation. They are
named in honor of H.A. Lorentz (1853–1928), who first proposed them. Interestingly, he justified the transformation on what was
eventually discovered to be a fallacious hypothesis. The correct theoretical basis is Einstein’s special theory of relativity.

The reverse transformation expresses the variables in  in terms of those in S'. Simply interchanging the primed and unprimed
variables and substituting gives:

Spacecraft S' is on its way to Alpha Centauri when Spacecraft S passes it at relative speed . The captain of S' sends a radio
signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformation to find the time interval of the signal
measured by the communications officer of spaceship S.

Solution
1. Identify the known: 
2. Identify the unknown: .
3. Express the answer as an equation. The time signal starts as ( ) and stops at ( ). Note that the x' coordinate of both

events is the same because the clock is at rest in S'. Write the first Lorentz transformation equation in terms of 
, , and similarly for the primed coordinates, as:

Because the position of the clock in S' is fixed, , and the time interval  becomes:

4. Do the calculation. 
With  this gives:

Note that the Lorentz transformation reproduces the time dilation equation.
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A surveyor measures a street to be  long in Earth frame . Use the Lorentz transformation to obtain an expression
for its length measured from a spaceship , moving by at speed , assuming the  coordinates of the two frames coincide
at time .

Solution
1. Identify the known: ; ; .
2. Identify the unknown: .
3. Express the answer as an equation. The surveyor in frame S has measured the two ends of the stick simultaneously, and

found them at rest at  and  a distance  apart. The spaceship crew measures the simultaneous
location of the ends of the sticks in their frame. To relate the lengths recorded by observers in S' and S, respectively, write
the second of the four Lorentz transformation equations as:

4. Do the calculation. Because , the length of the moving stick is equal to:

Note that the Lorentz transformation gave the length contraction equation for the street.

The observer shown in Figure  standing by the railroad tracks sees the two bulbs flash simultaneously at both ends of the
26 m long passenger car when the middle of the car passes him at a speed of . Find the separation in time between when the
bulbs flashed as seen by the train passenger seated in the middle of the car.

Figure : An person watching a train go by observes two bulbs flash simultaneously at opposite ends of a passenger car.
There is another passenger inside of the car observing the same flashes but from a different perspective.

Solution
1. Identify the known: .

Note that the spatial separation of the two events is between the two lamps, not the distance of the lamp to the passenger.

2. Identify the unknown: .

Again, note that the time interval is between the flashes of the lamps, not between arrival times for reaching the passenger.

3. Express the answer as an equation:

 Example : Using the Lorentz Transformation for Length5.6.2
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4. Do the calculation:

Significance
The sign indicates that the event with the larger  namely, the flash from the right, is seen to occur first in the  frame, as
found earlier for this example, so that .

Space-Time
Relativistic phenomena can be analyzed in terms of events in a four-dimensional space-time. When phenomena such as the twin
paradox, time dilation, length contraction, and the dependence of simultaneity on relative motion are viewed in this way, they are
seen to be characteristic of the nature of space and time, rather than specific aspects of electromagnetism.

In three-dimensional space, positions are specified by three coordinates on a set of Cartesian axes, and the displacement of one
point from another is given by:

The distance  between the points is

The distance  is invariant under a rotation of axes. If a new set of Cartesian axes rotated around the origin relative to the original
axes are used, each point in space will have new coordinates in terms of the new axes, but the distance  given by

That has the same value that  had. Something similar happens with the Lorentz transformation in space-time.

Define the separation between two events, each given by a set of x, y, z¸ and ct along a four-dimensional Cartesian system of axes
in space-time, as

Also define the space-time interval  between the two events as

If the two events have the same value of ct in the frame of reference considered,  would correspond to the distance  between
points in space.

The path of a particle through space-time consists of the events (x, y, z¸ ct) specifying a location at each time of its motion. The
path through space-time is called the world line of the particle. The world line of a particle that remains at rest at the same location
is a straight line that is parallel to the time axis. If the particle moves at constant velocity parallel to the x-axis, its world line would
be a sloped line , corresponding to a simple displacement vs. time graph. If the particle accelerates, its world line is curved.
The increment of s along the world line of the particle is given in differential form as

Just as the distance  is invariant under rotation of the space axes, the space-time interval:

Δt = .
Δ +vΔ /t′ x′ c2

1 − /v2 c2− −−−−−−−
√
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2
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2c
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is invariant under the Lorentz transformation. This follows from the postulates of relativity, and can be seen also by substitution of
the previous Lorentz transformation equations into the expression for the space-time interval:

In addition, the Lorentz transformation changes the coordinates of an event in time and space similarly to how a three-dimensional
rotation changes old coordinates into new coordinates:

Lorentz transformation (x, t coordinates): Axis–rotation around z - a axis (x, t coordinates):

where  and .

Lorentz transformations can be regarded as generalizations of spatial rotations to space-time. However, there are some differences
between a three-dimensional axis rotation and a Lorentz transformation involving the time axis, because of differences in how the
metric, or rule for measuring the displacements  and , differ. Although  is invariant under spatial rotations and  is
invariant also under Lorentz transformation, the Lorentz transformation involving the time axis does not preserve some features,
such as the axes remaining perpendicular or the length scale along each axis remaining the same.

Note that the quantity  can have either sign, depending on the coordinates of the space-time events involved. For pairs of
events that give it a negative sign, it is useful to define  as . The significance of  as just defined follows by
noting that in a frame of reference where the two events occur at the same location, we have  and therefore
(from the equation for ):

Therefore  is the time interval  in the frame of reference where both events occur at the same location. It is the same
interval of proper time discussed earlier. It also follows from the relation between  and that  that because  is Lorentz
invariant, the proper time is also Lorentz invariant. All observers in all inertial frames agree on the proper time intervals between
the same two events.

Show that if a time increment  elapses for an observer who sees the particle moving with velocity , it corresponds to a
proper time particle increment for the particle of .

Answer

Start with the definition of the proper time increment:

where  are measured in the inertial frame of an observer who does not necessarily see that particle at rest.
This therefore becomes

Δs2 = (Δx +(Δy +(Δz −(cΔt .)2 )2 )2 )2

= +(Δ +(Δ −( )
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− −−−−−−−

√

2

y′)2 z′)2 c

⎛

⎝

⎜⎜⎜

Δ +t′ vΔx′

c2

1 − /v2 c2
− −−−−−−−

√

⎞

⎠

⎟⎟⎟

2

= (Δ +(Δ +(Δ −(cΔx′)2 y′)2 z′)2 t′)2

= Δ .s′2
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The Light Cone

We can deal with the difficulty of visualizing and sketching graphs in four dimensions by imagining the three spatial coordinates to
be represented collectively by a horizontal axis, and the vertical axis to be the ct-axis. Starting with a particular event in space-time
as the origin of the space-time graph shown, the world line of a particle that remains at rest at the initial location of the event at the
origin then is the time axis. Any plane through the time axis parallel to the spatial axes contains all the events that are simultaneous
with each other and with the intersection of the plane and the time axis, as seen in the rest frame of the event at the origin.

It is useful to picture a light cone on the graph, formed by the world lines of all light beams passing through the origin event A, as
shown in Figure . The light cone, according to the postulates of relativity, has sides at an angle of 45° if the time axis is
measured in units of ct, and, according to the postulates of relativity, the light cone remains the same in all inertial frames. Because
the event A is arbitrary, every point in the space-time diagram has a light cone associated with it.

Figure : The light cone consists of all the world lines followed by light from the event A at the vertex of the cone.

Consider now the world line of a particle through space-time. Any world line outside of the cone, such as one passing from A
through C, would involve speeds greater than c, and would therefore not be possible. Events such as C that lie outside the light
cone are said to have a space-like separation from event A. They are characterized by:

An event like B that lies in the upper cone is reachable without exceeding the speed of light in vacuum, and is characterized by

The event is said to have a time-like separation from A. Time-like events that fall into the upper half of the light cone occur at
greater values of t than the time of the event A at the vertex and are in the future relative to A. Events that have time-like separation
from A and fall in the lower half of the light cone are in the past, and can affect the event at the origin. The region outside the light
cone is labeled as neither past nor future, but rather as “elsewhere.”

For any event that has a space-like separation from the event at the origin, it is possible to choose a time axis that will make the two
events occur at the same time, so that the two events are simultaneous in some frame of reference. Therefore, which of the events
with space-like separation comes before the other in time also depends on the frame of reference of the observer. Since space-like
separations can be traversed only by exceeding the speed of light; this violation of which event can cause the other provides

dt 1 −[ + + ] /( )
dx

dt

2

( )
dy

dt

2

( )
dz

dt

2

c2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⎷
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another argument for why particles cannot travel faster than the speed of light, as well as potential material for science fiction about
time travel. Similarly for any event with time-like separation from the event at the origin, a frame of reference can be found that
will make the events occur at the same location. Because the relations

and

are Lorentz invariant, whether two events are time-like and can be made to occur at the same place or space-like and can be made
to occur at the same time is the same for all observers. All observers in different inertial frames of reference agree on whether two
events have a time-like or space-like separation.

The twin paradox seen in space-time

The twin paradox discussed earlier involves an astronaut twin traveling at near light speed to a distant star system, and returning
to Earth. Because of time dilation, the space twin is predicted to age much less than the earthbound twin. This seems paradoxical
because we might have expected at first glance for the relative motion to be symmetrical and naively thought it possible to also
argue that the earthbound twin should age less.

To analyze this in terms of a space-time diagram, assume that the origin of the axes used is fixed in Earth. The world line of the
earthbound twin is then along the time axis.

The world line of the astronaut twin, who travels to the distant star and then returns, must deviate from a straight line path in order
to allow a return trip. As seen in Figure , the circumstances of the two twins are not at all symmetrical. Their paths in space-
time are of manifestly different length. Specifically, the world line of the earthbound twin has length , which then gives the
proper time that elapses for the earthbound twin as . The distance to the distant star system is . The proper time that
elapses for the space twin is  where

This is considerably shorter than the proper time for the earthbound twin by the ratio

consistent with the time dilation formula. The twin paradox is therefore seen to be no paradox at all. The situation of the two twins
is not symmetrical in the space-time diagram. The only surprise is perhaps that the seemingly longer path on the space-time
diagram corresponds to the smaller proper time interval, because of how  and  depend on  and .

Figure . The space twin and the earthbound twin, in the twin paradox example, follow world lines of different length through
space-time.

Lorentz Transformations in Space-time

We have already noted how the Lorentz transformation leaves

unchanged and corresponds to a rotation of axes in the four-dimensional space-time. If the S and S' frames are in relative motion
along their shared x-direction the space and time axes of S' are rotated by an angle αα as seen from S, in the way shown in shown
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in Figure , where:

This differs from a rotation in the usual three-dimension sense, insofar as the two space-time axes rotate toward each other
symmetrically in a scissors-like way, as shown. The rotation of the time and space axes are both through the same angle. The mesh
of dashed lines parallel to the two axes show how coordinates of an event would be read along the primed axes. This would be
done by following a line parallel to the x' and one parallel to the t'-axis, as shown by the dashed lines. The length scale of both axes
are changed by:

The line labeled “v = c” at 45° to the x-axis corresponds to the edge of the light cone, and is unaffected by the Lorentz
transformation, in accordance with the second postulate of relativity. The “v = c” line, and the light cone it represents, are the same
for both the S and S' frame of reference.

Figure : The Lorentz transformation results in new space and time axes rotated in a scissors-like way with respect to the
original axes.

Simultaneity

Simultaneity of events at separated locations depends on the frame of reference used to describe them, as given by the scissors-like
“rotation” to new time and space coordinates as described. If two events have the same  values in the unprimed frame of reference,
they need not have the same values measured along the -axis, and would then not be simultaneous in the primed frame.

As a specific example, consider the near-light-speed train in which flash lamps at the two ends of the car have flashed
simultaneously in the frame of reference of an observer on the ground. The space-time graph is shown Figure . The flashes of
the two lamps are represented by the dots labeled “Left flash lamp” and “Right flash lamp” that lie on the light cone in the past.
The world line of both pulses travel along the edge of the light cone to arrive at the observer on the ground simultaneously. Their
arrival is the event at the origin. They therefore had to be emitted simultaneously in the unprimed frame, as represented by the point
labeled as  (both). But time is measured along the ct'-axis in the frame of reference of the observer seated in the middle of the train
car. So in her frame of reference, the emission event of the bulbs labeled as  (left) and  (right) were not simultaneous.

5.6.5
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Figure : The train example revisited. The flashes occur at the same time t (both) along the time axis of the ground observer,
but at different times, along the t't′ time axis of the passenger.

In terms of the space-time diagram, the two observers are merely using different time axes for the same events because they are in
different inertial frames, and the conclusions of both observers are equally valid. As the analysis in terms of the space-time
diagrams further suggests, the property of how simultaneity of events depends on the frame of reference results from the properties
of space and time itself, rather than from anything specifically about electromagnetism.

This page titled 5.6: The Lorentz Transformation is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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5.7: Relativistic Velocity Transformation

By the end of this section, you will be able to:

Derive the equations consistent with special relativity for transforming velocities in one inertial frame of reference into
another.
Apply the velocity transformation equations to objects moving at relativistic speeds.
Examine how the combined velocities predicted by the relativistic transformation equations compare with those expected
classically.

Remaining in place in a kayak in a fast-moving river takes effort. The river current pulls the kayak along. Trying to paddle against
the flow can move the kayak upstream relative to the water, but that only accounts for part of its velocity relative to the shore. The
kayak’s motion is an example of how velocities in Newtonian mechanics combine by vector addition. The kayak’s velocity is the
vector sum of its velocity relative to the water and the water’s velocity relative to the riverbank. However, the relativistic addition
of velocities is quite different.

Velocity Transformations
Imagine a car traveling at night along a straight road, as in Figure . The driver sees the light leaving the headlights at speed 
within the car’s frame of reference. If the Galilean transformation applied to light, then the light from the car’s headlights would
approach the pedestrian at a speed , contrary to Einstein’s postulates.

Figure : According to experimental results and the second postulate of relativity, light from the car’s headlights moves away
from the car at speed  and toward the observer on the sidewalk at speed .

Both the distance traveled and the time of travel are different in the two frames of reference, and they must differ in a way that
makes the speed of light the same in all inertial frames. The correct rules for transforming velocities from one frame to another can
be obtained from the Lorentz transformation equations.

Relativistic Transformation of Velocity
Suppose an object P is moving at constant velocity  as measured in the  frame. The  frame is moving along
its x'-axis at velocity . In an increment of time dt', the particle is displaced by  along the x'-axis. Applying the Lorentz
transformation equations gives the corresponding increments of time and displacement in the unprimed axes:
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The velocity components of the particle seen in the unprimed coordinate system are then

We thus obtain the equations for the velocity components of the object as seen in frame :

Compare this with how the Galilean transformation of classical mechanics says the velocities transform, by adding simply as
vectors:

When the relative velocity of the frames is much smaller than the speed of light, that is, when  the special relativity velocity
addition law reduces to the Galilean velocity law. When the speed  of  relative to  is comparable to the speed of light, the
relativistic velocity addition law gives a much smaller result than the classical (Galilean) velocity addition does.

Suppose a spaceship heading directly toward Earth at half the speed of light sends a signal to us on a laser-produced beam of
light (Figure ). Given that the light leaves the ship at speed  as observed from the ship, calculate the speed at which it
approaches Earth.

Figure : How fast does a light signal approach Earth if sent from a spaceship traveling at ?

Strategy

Because the light and the spaceship are moving at relativistic speeds, we cannot use simple velocity addition. Instead, we
determine the speed at which the light approaches Earth using relativistic velocity addition.

Solution
Identify the knowns: ; .

Identify the unknown: .
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Express the answer as an equation: .

Do the calculation:

Significance
Relativistic velocity addition gives the correct result. Light leaves the ship at speed  and approaches Earth at speed . The
speed of light is independent of the relative motion of source and observer, whether the observer is on the ship or earthbound.

Velocities cannot add to greater than the speed of light, provided that  is less than  and  does not exceed . The following
example illustrates that relativistic velocity addition is not as symmetric as classical velocity addition.

Suppose the spaceship in the previous example approaches Earth at half the speed of light and shoots a canister at a speed of 
 (Figure ).

a. At what velocity does an earthbound observer see the canister if it is shot directly toward Earth?
b. If it is shot directly away from Earth?

Figure : A canister is fired at 0.7500c toward Earth or away from Earth.

Strategy

Because the canister and the spaceship are moving at relativistic speeds, we must determine the speed of the canister by an
earthbound observer using relativistic velocity addition instead of simple velocity addition.

Solution for (a)

1. Identify the knowns: ; .
2. Identify the unknown: .

3. Express the answer as an equation: .

4. Do the calculation:

u =
v+u′

1 +
vu′

c2

u =
v+u′

1 +
vu′

c2

=
0.500c+c

1 +
(0.500c)(c)

c2

= = c.
(0.500 +1)c

( )
+0.500c2 c2

c2

c c

v c u′ c

 Example : Relativistic Package Delivery5.7.2

0.750c 5.7.3

5.7.3

v= 0.500c = 0.750cu′

u

u =
v+u′

1 +
vu′

c2
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Solution for (b)

1. Identify the knowns: ; .
2. Identify the unknown: .

3. Express the answer as an equation: .

4. Do the calculation:

Significance
The minus sign indicates a velocity away from Earth (in the opposite direction from ), which means the canister is heading
toward Earth in part (a) and away in part (b), as expected. But relativistic velocities do not add as simply as they do classically.
In part (a), the canister does approach Earth faster, but at less than the vector sum of the velocities, which would give .
In part (b), the canister moves away from Earth at a velocity of −0.400c, which is faster than the −0.250c expected classically.
The differences in velocities are not even symmetric: In part (a), an observer on Earth sees the canister and the ship moving
apart at a speed of 0.409c, and at a speed of 0.900c in part (b).

Distances along a direction perpendicular to the relative motion of the two frames are the same in both frames. Why then are
velocities perpendicular to the x-direction different in the two frames?

Answer

Although displacements perpendicular to the relative motion are the same in both frames of reference, the time interval
between events differ, and differences in  and  lead to different velocities seen from the two frames.

This page titled 5.7: Relativistic Velocity Transformation is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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u =
v+u′

1 +
vu′

c2

=
0.500c+0.750c

1 +
(0.500c)(0.750c)

c2

= 0.909c.

v= 0.500c = −0.750cu′

u

u =
v+u′

1 +
vu′

c2

u =
v+u′

1 +
vu′

c2

=
0.500c+(−0.750c)

1 +
(0.500c)(−0.750c)

c2

= −0.400c.

v

1.250c
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5.8: Doppler Effect for Light

By the end of this section, you will be able to:

Explain the origin of the shift in frequency and wavelength of the observed wavelength when observer and source moved
toward or away from each other
Derive an expression for the relativistic Doppler shift
Apply the Doppler shift equations to real-world examples

As discussed in the chapter on sound, if a source of sound and a listener are moving farther apart, the listener encounters fewer
cycles of a wave in each second, and therefore lower frequency, than if their separation remains constant. For the same reason, the
listener detects a higher frequency if the source and listener are getting closer. The resulting Doppler shift in detected frequency
occurs for any form of wave. For sound waves, however, the equations for the Doppler shift differ markedly depending on whether
it is the source, the observer, or the air, which is moving. Light requires no medium, and the Doppler shift for light traveling in
vacuum depends only on the relative speed of the observer and source.

The Relativistic Doppler Effect
Suppose an observer in  sees light from a source in  moving away at velocity  (Figure ). The wavelength of the light
could be measured within  — for example, by using a mirror to set up standing waves and measuring the distance between
nodes. These distances are proper lengths with  as their rest frame, and change by a factor  when measured in the
observer’s frame , where the ruler measuring the wavelength in  is seen as moving.

Figure : (a) When a light wave is emitted by a source fixed in the moving inertial frame S', the observer in S sees the
wavelength measured in S'. to be shorter by a factor . (b) Because the observer sees the source moving away within S,
the wave pattern reaching the observer in S is also stretched by the factor .

If the source were stationary in S, the observer would see a length cΔt of the wave pattern in time Δt. But because of the motion of
S' relative to S, considered solely within S, the observer sees the wave pattern, and therefore the wavelength, stretched out by a
factor of

as illustrated in (b) of Figure . The overall increase from both effects gives
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where  is the wavelength of the light seen by the source in S' and  is the wavelength that the observer detects within S.

Red Shifts and Blue Shifts
The observed wavelength  of electromagnetic radiation is longer (called a “red shift”) than that emitted by the source when the
source moves away from the observer. Similarly, the wavelength is shorter (called a “blue shift”) when the source moves toward
the observer. The amount of change is determined by

where  is the wavelength in the frame of reference of the source, and  is the relative velocity of the two frames  and . The
velocity  is positive for motion away from an observer and negative for motion toward an observer. In terms of source frequency
and observed frequency, this equation can be written as

Notice that the signs are different from those of the wavelength equation.

Suppose a galaxy is moving away from Earth at a speed 0.825c. It emits radio waves with a wavelength of

0.525 m. What wavelength would we detect on Earth?

Strategy

Because the galaxy is moving at a relativistic speed, we must determine the Doppler shift of the radio waves using the
relativistic Doppler shift instead of the classical Doppler shift.

Solution
1. Identify the knowns: ; .
2. Identify the unknown: .
3. Express the answer as an equation:

4. Do the calculation:

λobs = (1 + )λsrc
v

c

1

1 − v2

c2

− −−−−−

√

= (1 + )λsrc
v

c

1

(1 + ) (1 − )v
c

v
c

− −−−−−−−−−−−−

√

= λsrc
(1 + )vc
(1 − )v

c

− −−−−−−

⎷




λsrc λobs

λobs

=λobs λs
(1 + )v

c

(1 − )v
c

− −−−−−−

⎷




λs v S S ′

v

=fobs fs
(1 − )vc
(1 + )vc

− −−−−−−

⎷


 (5.8.1)

 Example : Calculating a Doppler Shift5.8.1

u = 0.825c = 0.525 mλs
λobs

= .λobs λs
1 + v

c

1 − v
c

− −−−−

√

λobs = λs
1 + v

c

1 − v
c

− −−−−

√

= (0.525 m)
1 + 0.825c

c

1 − 0.825c
c

− −−−−−−−

⎷




= 1.70 m.
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Significance
Because the galaxy is moving away from Earth, we expect the wavelengths of radiation it emits to be redshifted. The
wavelength we calculated is 1.70 m, which is redshifted from the original wavelength of 0.525 m. You will see in Particle
Physics and Cosmology that detecting redshifted radiation led to present-day understanding of the origin and evolution of the
universe.

Suppose a space probe moves away from Earth at a speed 0.350c. It sends a radio-wave message back to Earth at a frequency
of 1.50 GHz. At what frequency is the message received on Earth?

Solution
We can substitute the data directly into the equation for relativistic Doppler frequency (Equation ):

The relativistic Doppler effect has applications ranging from Doppler radar storm monitoring to providing information on the
motion and distance of stars. We describe some of these applications in the exercises.

This page titled 5.8: Doppler Effect for Light is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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fobs = fs
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c
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c

− −−−−

√
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1 − 0.350c

c

1 + 0.350c
c

− −−−−−−−

⎷




= 1.04 GHz.
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5.9: Relativistic Momentum

By the end of this section, you will be able to:

Define relativistic momentum in terms of mass and velocity
Show how relativistic momentum relates to classical momentum
Show how conservation of relativistic momentum limits objects with mass to speeds less than c

Momentum is a central concept in physics. The broadest form of Newton’s second law is stated in terms of momentum. Momentum
is conserved whenever the net external force on a system is zero. This makes momentum conservation a fundamental tool for
analyzing collisions (Figure ). Much of what we know about subatomic structure comes from the analysis of collisions of
accelerator-produced relativistic particles, and momentum conservation plays a crucial role in this analysis.

Figure : Momentum is an important concept for these football players from the University of California at Berkeley and the
University of California at Davis. A player with the same velocity but greater mass collides with greater impact because his
momentum is greater. For objects moving at relativistic speeds, the effect is even greater.

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Does the law of conservation of
momentum survive this requirement at high velocities? It can be shown that the momentum calculated as merely , even if
it is conserved in one frame of reference, may not be conserved in another after applying the Lorentz transformation to the
velocities. The correct equation for momentum can be shown, instead, to be the classical expression in terms of the increment dτ of
proper time of the particle, observed in the particle’s rest frame:
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Relativistic momentum  is classical momentum multiplied by the relativistic factor :

where  is the rest mass of the object,  is its velocity relative to an observer, and  is the relativistic factor:

Note that we use  for velocity here to distinguish it from relative velocity  between observers. The factor  that occurs here has
the same form as the previous relativistic factor  except that it is now in terms of the velocity of the particle  instead of the
relative velocity v of two frames of reference.

With p expressed in this way, total momentum  is conserved whenever the net external force is zero, just as in classical physics.
Again we see that the relativistic quantity becomes virtually the same as the classical quantity at low velocities, where  is small
and  is very nearly equal to 1. Relativistic momentum has the same intuitive role as classical momentum. It is greatest for large
masses moving at high velocities, but because of the factor , relativistic momentum approaches infinity as  approaches  (Figure 

). This is another indication that an object with mass cannot reach the speed of light. If it did, its momentum would become
infinite—an unreasonable value.

Figure : Relativistic momentum approaches infinity as the velocity of an object approaches the speed of light.

The relativistically correct definition of momentum (Equation ) is sometimes taken to imply that mass varies with
velocity: , particularly in older textbooks. However, note that  is the mass of the object as measured by a person
at rest relative to the object. Thus,  is defined to be the rest mass, which could be measured at rest, perhaps using gravity.
When a mass is moving relative to an observer, the only way that its mass can be determined is through collisions or other
means involving momentum. Because the mass of a moving object cannot be determined independently of momentum, the
only meaningful mass is rest mass. Therefore, when we use the term “mass,” assume it to be identical to “rest mass.”

Relativistic momentum is defined in such a way that conservation of momentum holds in all inertial frames. Whenever the net
external force on a system is zero, relativistic momentum is conserved, just as is the case for classical momentum. This has been
verified in numerous experiments.

What is the momentum of an electron traveling at a speed ? The rest mass of the electron is .

Answer

Substitute the data into Equation :

 Definition: Relativistic Momentum and Rest Mass

p ⃗  γ

= γmp ⃗  u⃗  (5.9.1)

m u⃗  γ

γ = .
1

1 − u2

c2

− −−−−
√

(5.9.2)

u v γ

γ u

ptot
u/c

γ

γ u c

5.9.2

5.9.2

 Mass vs. Rest mass

5.9.1
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5.10: Relativistic Energy

By the end of this section, you will be able to:

Explain how the work-energy theorem leads to an expression for the relativistic kinetic energy of an object
Show how the relativistic energy relates to the classical kinetic energy, and sets a limit on the speed of any object with mass
Describe how the total energy of a particle is related to its mass and velocity
Explain how relativity relates to energy-mass equivalence, and some of the practical implications of energy-mass
equivalence

The tokamak in Figure  is a form of experimental fusion reactor, which can change mass to energy. Nuclear reactors are
proof of the relationship between energy and matter.

Figure : The National Spherical Torus Experiment (NSTX) is a fusion reactor in which hydrogen isotopes undergo fusion to
produce helium. In this process, a relatively small mass of fuel is converted into a large amount of energy. (credit: Princeton Plasma
Physics Laboratory)

Conservation of energy is one of the most important laws in physics. Not only does energy have many important forms, but each
form can be converted to any other. We know that classically, the total amount of energy in a system remains constant.
Relativistically, energy is still conserved, but energy-mass equivalence must now be taken into account, for example, in the
reactions that occur within a nuclear reactor. Relativistic energy is intentionally defined so that it is conserved in all inertial frames,
just as is the case for relativistic momentum. As a consequence, several fundamental quantities are related in ways not known in
classical physics. All of these relationships have been verified by experimental results and have fundamental consequences. The
altered definition of energy contains some of the most fundamental and spectacular new insights into nature in recent history.

Kinetic Energy and the Ultimate Speed Limit

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Einstein showed that the law of
conservation of energy of a particle is valid relativistically, but for energy expressed in terms of velocity and mass in a way
consistent with relativity. Consider first the relativistic expression for the kinetic energy. We again use  for velocity to distinguish
it from relative velocity  between observers. Classically, kinetic energy is related to mass and speed by the familiar expression

The corresponding relativistic expression for kinetic energy can be obtained from the work-energy theorem. This theorem states
that the net work on a system goes into kinetic energy. Specifically, if a force, expressed as
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accelerates a particle from rest to its final velocity, the work done on the particle should be equal to its final kinetic energy. In
mathematical form, for one-dimensional motion:

Integrate this by parts to obtain

Therefore, the relativistic kinetic energy of any particle of mass  is

When an object is motionless, its speed is  and

so that  at rest, as expected. However, the expression for relativistic kinetic energy (such as total energy and rest energy)

does not look much like the classical . To show that the expression for  reduces to the classical expression for kinetic

energy at low speeds, we use the binomial expansion to obtain an approximation for  valid for small :

by neglecting the very small terms in and higher powers of . Choosing  and  leads to the conclusion that 

at nonrelativistic speeds, where  is small, satisfies

A binomial expansion is a way of expressing an algebraic quantity as a sum of an infinite series of terms. In some cases, as in the
limit of small speed here, most terms are very small. Thus, the expression derived here for  is not exact, but it is a very accurate
approximation. Therefore, at low speed:
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= m ∫ u ( ) dt.
d

dt

u

1 −(u/c)2− −−−−−−−
√

K = −m ∫ dt
mu2

1 −(u/c)2− −−−−−−−
√

∣

∣
∣

u

0

u

1 −(u/c)2− −−−−−−−
√

du

dt

= −m ∫ du
mu2

1 −(u/c)2− −−−−−−−√

u

1 −(u/c)2− −−−−−−−√

= −m ( )
mu2

1 −(u/c)2− −−−−−−−√
c2 1 −(u/c)2

− −−−−−−−
√

∣

∣
∣

u

0

= + −m
mu2

1 −(u/c)2− −−−−−−−√

mu2

1 −(u/c)2− −−−−−−−√
c2

= m [ ]−mc2 ( / ) +1 −( / )u2 c2 u2 c2

1 −(u/c)2− −−−−−−−
√

c2

= −m .
mc2

1 −(u/c)2− −−−−−−−
√

c2

m

= (γ−1)m .Krel c2 (5.10.1)

u = 0

γ = = 1
1

1 −
u2

c2

− −−−−−
√

= 0Krel

m
1

2
u2 Krel

(1 +ε)n ε

(1 +ε = 1 +nε+ + +⋯ ≈ 1 +nε)n
 n(n−1)

2!
ε2 n(n−1)(n−2)

3!
ε3

ε2 ε ε = − /u2 c2 n = −
1

2
γ

ε = u/c

γ = (1 − / ≈ 1 + ( ) .u2 c2)−1/2 1

2

u2

c2

γ

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45989?pdf
https://math.libretexts.org/TextMaps/Calculus_TextMaps/Map%3A_Active_Calculus_(Boelkins_et_al.)/5%3A_Finding_Antiderivatives_and_Evaluating_Integrals/5.4%3A_Integration_by_Parts


5.10.3 https://phys.libretexts.org/@go/page/45989

Entering this into the expression for relativistic kinetic energy (Equation ) gives

That is, relativistic kinetic energy becomes the same as classical kinetic energy when .

It is even more interesting to investigate what happens to kinetic energy when the speed of an object approaches the speed of light.
We know that  becomes infinite as  approaches , so that  also becomes infinite as the velocity approaches the speed of light
(Figure ). The increase in  is far larger than in  as  approaches . An infinite amount of work (and, hence, an
infinite amount of energy input) is required to accelerate a mass to the speed of light.

No object with mass can attain the speed of light.
The speed of light is the ultimate speed limit for any particle having mass. All of this is consistent with the fact that velocities less
than c always add to less than . Both the relativistic form for kinetic energy and the ultimate speed limit being  have been
confirmed in detail in numerous experiments. No matter how much energy is put into accelerating a mass, its velocity can only
approach—not reach—the speed of light.

Figure :This graph of  versus velocity shows how kinetic energy increases without bound as velocity approaches the
speed of light. Also shown is , the classical kinetic energy.

An electron has a velocity .

a. Calculate the kinetic energy in MeV of the electron.
b. Compare this with the classical value for kinetic energy at this velocity. (The mass of an electron is .)

Strategy

The expression for relativistic kinetic energy is always correct, but for (a), it must be used because the velocity is highly
relativistic (close to ). First, we calculate the relativistic factor , and then use it to determine the relativistic kinetic energy.
For (b), we calculate the classical kinetic energy (which would be close to the relativistic value if  were less than a few
percent of ) and see that it is not the same.

Solution for (a)

1. Identify the knowns: ; 
2. Identify the unknown: .

3. Express the answer as an equation:  with 

γ−1 ≈ ( ) .
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2
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4. Do the calculation. First calculate . Keep extra digits because this is an intermediate calculation:

Now use this value to calculate the kinetic energy (Equatoin ):

5. Convert units:

Solution for (b)

1. List the knowns: ; .
2. List the unknown: 
3. Express the answer as an equation:
4. Do the calculation:

5. Convert units:

Significance
As might be expected, because the velocity is 99.0% of the speed of light, the classical kinetic energy differs significantly from
the correct relativistic value. Note also that the classical value is much smaller than the relativistic value. In fact, 

 in this case. This illustrates how difficult it is to get a mass moving close to the speed of light. Much more
energy is needed than predicted classically. Ever-increasing amounts of energy are needed to get the velocity of a mass a little
closer to that of light. An energy of 3 MeV is a very small amount for an electron, and it can be achieved with present-day
particle accelerators. SLAC, for example, can accelerate electrons to over .

Is there any point in getting v a little closer to c than 99.0% or 99.9%? The answer is yes. We learn a great deal by doing this. The
energy that goes into a high-velocity mass can be converted into any other form, including into entirely new particles. In the Large
Hadron Collider in Figure , charged particles are accelerated before entering the ring-like structure. There, two beams of
particles are accelerated to their final speed of about 99.7% the speed of light in opposite directions, and made to collide, producing
totally new species of particles. Most of what we know about the substructure of matter and the collection of exotic short-lived
particles in nature has been learned this way. Patterns in the characteristics of these previously unknown particles hint at a basic
substructure for all matter. These particles and some of their characteristics will be discussed in a later chapter on particle physics.

γ

γ =
1

1 − /u2 c2− −−−−−−−
√

=
1

1 −
(0.990c)2

c2

− −−−−−−−−−−
√

= 7.0888.

5.10.1

Krel = (γ−1)mc2

= (7.0888 −1)(9.11 × kg)(3.00 × m/ )10−31 108 s2

= 4.9922 × J10−13

Krel = (4.9922 × J)( )10−13 1 MeV

1.60 × J10−13

= 3.12 MeV .

v= 0.990c m = 9.11 × kg10−31

Krel

Kclass = m
1

2
u2

= (9.11 × kg)(0.990 (3.00 × m/s
1

2
10−31 )2 108 )2

= 4.0179 × J.10−14

Kclass = 4.0179 × J( )10−14 1 MeV

1.60 × J10−13

= 0.251 MeV .

/ = 12.4Krel Kclass

50 × eV = 50, 000 MeV109
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Figure : The European Organization for Nuclear Research (called CERN after its French name) operates the largest particle
accelerator in the world, straddling the border between France and Switzerland.

Total Relativistic Energy
The expression for kinetic energy can be rearranged to:

Einstein argued in a separate article, also later published in 1905, that if the energy of a particle changes by , its mass changes
by . Abundant experimental evidence since then confirms that  corresponds to the energy that the particle of
mass  has when at rest. For example, when a neutral pion of mass  at rest decays into two photons, the photons have zero mass
but are observed to have total energy corresponding to  for the pion. Similarly, when a particle of mass  decays into two or
more particles with smaller total mass, the observed kinetic energy imparted to the products of the decay corresponds to the
decrease in mass. Thus,  is the total relativistic energy of the particle, and  is its rest energy.

Total energy ( ) of a particle is

where  is mass,  is the speed of light, , and  is the velocity of the mass relative to an observer.

Rest energy of an object is

Equation  is the correct form of Einstein’s most famous equation, which for the first time showed that energy is related to the
mass of an object at rest. For example, if energy is stored in the object, its rest mass increases. This also implies that mass can be
destroyed to release energy. The implications of these first two equations regarding relativistic energy are so broad that they were
not completely recognized for some years after Einstein published them in 1905, nor was the experimental proof that they are

5.10.3

E =
mc2

1 − /u2 c2− −−−−−−−
√

= K+m .c2

ΔE

Δm = ΔE/C 2 mc2

m m

mc2 m

E mc2

 Definition: Total Energy

E

E = γmc2

m c γ =
1

1 −
u2

c2

− −−−−−
√

u

 Definition: Rest Enerey

= m .E0 c2 (5.10.2)
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correct widely recognized at first. Einstein, it should be noted, did understand and describe the meanings and implications of his
theory.

Calculate the rest energy of a 1.00-g mass.

Strategy

One gram is a small mass—less than one-half the mass of a penny. We can multiply this mass, in SI units, by the speed of light
squared to find the equivalent rest energy.

Solution
1. Identify the knowns: ; .
2. Identify the unknown: .
3. Express the answer as an equation: .
4. Do the calculation:

5. Convert units. Noting that , we see the rest energy is:

Significance
This is an enormous amount of energy for a 1.00-g mass. Rest energy is large because the speed of light c is a large number
and  is a very large number, so that  is huge for any macroscopic mass. The  rest mass energy for 1.00 g is
about twice the energy released by the Hiroshima atomic bomb and about 10,000 times the kinetic energy of a large aircraft
carrier.

Today, the practical applications of the conversion of mass into another form of energy, such as in nuclear weapons and nuclear
power plants, are well known. But examples also existed when Einstein first proposed the correct form of relativistic energy, and he
did describe some of them. Nuclear radiation had been discovered in the previous decade, and it had been a mystery as to where its
energy originated. The explanation was that, in some nuclear processes, a small amount of mass is destroyed and energy is released
and carried by nuclear radiation. But the amount of mass destroyed is so small that it is difficult to detect that any is missing.
Although Einstein proposed this as the source of energy in the radioactive salts then being studied, it was many years before there
was broad recognition that mass could be and, in fact, commonly is, converted to energy (Figure ).

Figure : (a) The sun and (b) the Susquehanna Steam Electric Station both convert mass into energy—the sun via nuclear
fusion, and the electric station via nuclear fission. (credit a: modification of work by NASA; credit b: modification of work by
“ChNPP”/Wikimedia Commons)

Because of the relationship of rest energy to mass, we now consider mass to be a form of energy rather than something separate.
There had not been even a hint of this prior to Einstein’s work. Energy-mass equivalence is now known to be the source of the
sun’s energy, the energy of nuclear decay, and even one of the sources of energy keeping Earth’s interior hot.

 Example : Calculating Rest Energy5.10.2

m = 1.00 × kg10−3 c = 3.00 × m/s108

E0

= mE0 c2

= m = (1.00 × kg)(3.00 × m/s = 9.00 × kg ⋅ / .E0 c2 10−3 108 )2 1013 m2 s2

1 kg ⋅ / = 1 Jm2 s2

= 9.00 × J.E0 1013

c2 mc2 9.00 × J1013

5.10.4

5.10.4
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Stored Energy and Potential Energy
What happens to energy stored in an object at rest, such as the energy put into a battery by charging it, or the energy stored in a toy
gun’s compressed spring? The energy input becomes part of the total energy of the object and thus increases its rest mass. All
stored and potential energy becomes mass in a system. In seeming contradiction, the principle of conservation of mass (meaning
total mass is constant) was one of the great laws verified by nineteenth-century science. Why was it not noticed to be incorrect?
The following example helps answer this question.

A car battery is rated to be able to move 600 ampere-hours  of charge at 12.0 V.

a. Calculate the increase in rest mass of such a battery when it is taken from being fully depleted to being fully charged,
assuming none of the chemical reactants enter or leave the battery.

b. What percent increase is this, given that the battery’s mass is 20.0 kg?

Strategy

In part (a), we first must find the energy stored as chemical energy  in the battery, which equals the electrical energy the
battery can provide. Because , we have to calculate the charge  in , which is the product of the current 
and the time . We then multiply the result by 12.0 V. We can then calculate the battery’s increase in mass using 

. Part (b) is a simple ratio converted into a percentage.

Solution for (a)

1. Identify the knowns:

2. Identify the unknown: .
3. Express the answer as an equation:

4. Do the calculation:

5. Write amperes A as coulombs per second (C/s), and convert hours into seconds:

where we have used the conversion .

Solution for (b)

For part (b):

1. Identify the knowns: ; .
2. Identify the unknown: % change.
3. Express the answer as an equation:

 Example : Calculating Rest Mass5.10.3

(A ⋅h)

Ebatt

= qVEbatt q 600 A ⋅h I

t

= (Δm)Ebatt c2

I ⋅ t = 600 A ⋅h; V = 12.0 V ; c = 3.00 × m/s.108

Δm

Ebatt

Δm

= (Δm)c2

=
Ebatt

c2

=
qV

c2

= .
(It)V

c2

Δm = .
(600 A ⋅h)(12.0 V )

(3.00 ×108)2

Δm =

(600 C/s ⋅h)( ) (12.0 J/C)
3600 s

1 h

(3.00 × m/s108 )2

= 2.88 × kg.10−10

1 kg ⋅ / = 1 J.m2 s2

δm = 2.88 × kg10−10 m = 20.0 kg
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4. Do the calculation:

Significance
Both the actual increase in mass and the percent increase are very small, because energy is divided by , a very large number.
We would have to be able to measure the mass of the battery to a precision of a billionth of a percent, or 1 part in , to
notice this increase. It is no wonder that the mass variation is not readily observed. In fact, this change in mass is so small that
we may question how anyone could verify that it is real. The answer is found in nuclear processes in which the percentage of
mass destroyed is large enough to be measured accurately. The mass of the fuel of a nuclear reactor, for example, is measurably
smaller when its energy has been used. In that case, stored energy has been released (converted mostly into thermal energy to
power electric generators) and the rest mass has decreased. A decrease in mass also occurs from using the energy stored in a
battery, except that the stored energy is much greater in nuclear processes, making the change in mass measurable in practice
as well as in theory.

Relativistic Energy and Momentum

We know classically that kinetic energy and momentum are related to each other, because:

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their defining
equations. This yields:

where  is the relativistic total energy,

and  is the relativistic momentum. This relationship between relativistic energy and relativistic momentum is more complicated
than the classical version, but we can gain some interesting new insights by examining it. First, total energy is related to momentum
and rest mass. At rest, momentum is zero, and the equation gives the total energy to be the rest energy  (so this equation is
consistent with the discussion of rest energy above). However, as the mass is accelerated, its momentum  increases, thus
increasing the total energy. At sufficiently high velocities, the rest energy term  becomes negligible compared with the
momentum term ; thus,  at extremely relativistic velocities.

If we consider momentum  to be distinct from mass, we can determine the implications of the equation

for a particle that has no mass. If we take  to be zero in this equation, then . Massless particles have this
momentum. There are several massless particles found in nature, including photons (which are packets of electromagnetic
radiation). Another implication is that a massless particle must travel at speed c and only at speed c. It is beyond the scope of this
text to examine the relationship in the equation  in detail, but you can see that the relationship has important
implications in special relativity.

% increase = ×100%.
δm

m

% increase = ×100%
Δm

m

= ×100%
2.88 × kg10−10

20.0 kg

= 1.44 × %10−9

c2

1011

= = = m .Kclass

p2

2m

(mu)2

2m

1

2
u2

= (pc +(m ,E2 )2 c2)2 (5.10.3)

E

E =
mc2

1 − /u2 c2− −−−−−−−
√

p

mc2

p

(mc2)2

(pc)2 E = pc

p

= (pc +(m ,E2 )2 c2)2

m E = pc, orp = E/c

= (pc +(mE2 )2 c2)2
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What is the kinetic energy of an electron if its speed is ?

Answer

This page titled 5.10: Relativistic Energy is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

5.10: Relativistic Energy by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-
3.

 Exercise 5.10.1

0.992c

Krel = (γ−1)m = −1 mc2

⎛

⎝

⎜⎜⎜⎜

1

1 −
u2

c2

− −−−−−
√

⎞

⎠

⎟⎟⎟⎟
c2

= −1 (9.11 × kg)(3.00 × m/s

⎛

⎝

⎜⎜⎜⎜⎜⎜

1

1 −
(0.992c)2

c2

− −−−−−−−−−−

√

⎞

⎠

⎟⎟⎟⎟⎟⎟
10−31 108 )2

= 5.67 × J10−13
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5.A: Relativity (Answers)

Check Your Understanding

5.1. Special relativity applies only to objects moving at constant velocity, whereas general relativity applies to objects that
undergo acceleration.

5.2. 

5.3. a. .

b. Only the relative speed of the two spacecraft matters because there is no absolute motion through space. The signal
is emitted from a fixed location in the frame of reference of A, so the proper time interval of its emission is .
The duration of the signal measured from frame of reference B is then

.

5.4. 

5.5. Start with the definition of the proper time increment:

.

where  are measured in the inertial frame of an observer who does not necessarily see that particle at
rest. This therefore becomes

.

5.6. Although displacements perpendicular to the relative motion are the same in both frames of reference, the time interval
between events differ, and differences in dt and  lead to different velocities seen from the two frames.

5.7. We can substitute the data directly into the equation for relativistic Doppler frequency:

5.8. Substitute the data into the given equation:

.

5.9. 

γ = = = 1.32
1

1 − v2

c2

− −−−−
√

1

1 −
(0.650c)2

c2

− −−−−−−−−
√

Δt = = = 2.71 × s
Δτ

1 − v2

c2

− −−−−
√

2.10 × s10−8

1 −
(1.90× m/s108 )2

(3.00× m/s108 )
2

− −−−−−−−−−−−−
√

10−8

τ = 1.00s

Δt = = = 1.01s
Δτ

1 − v2

c2

− −−−−
√

1.00s

1 −
(4.00× m/s107 )

2

(3.00× m/s108 )2

− −−−−−−−−−−−−
√

L = = (2.50km) = 1.65kmL0 1 −
v2

c2

− −−−−−

√ 1 −
(0.750c)2

c2

− −−−−−−−−−−

√

dτ = =−(ds /)2 c2
− −−−−−−−

√ d −(d +d +d )/t2 x2 x2 x2 c2
− −−−−−−−−−−−−−−−−−−−−

√

(dx, dy, dx, cdt)

= =dτ −(ds /)2 c2
− −−−−−−−

√ d −[(dx +(dy +(dz ]/t2 )2 )2 )2 c2
− −−−−−−−−−−−−−−−−−−−−−−−−

√

= dt 1 −[( +( +( ]/
dx

dt
)2 dy

dt
)2 dz

dt
)2 c2

− −−−−−−−−−−−−−−−−−−−−−−−−
√

= dt 1 − /v2 c2
− −−−−−−−

√

dt = γdτ

dt′

= = (1.50GHz) = 1.04GHz.fobs fs
1 − v

c

1 + v

c

− −−−−

√
1 − 0.350c

c

1 + 0.350c
c

− −−−−−−−

⎷




p = γmu = = = 1.56 × kg−m/s
mu

1 − u2

c2

− −−−−
√

(9.11 × kg)(0.985)(3.00 × m/s)10−31 108

1 −
(0.985c)

2

c2

− −−−−−−−−
√

10−21

= (γ−1)m = ( m = ( (9.11 × kg)(3.00 × m/s = 5.67 × JKrel c2 1

1 − u2

c2

− −−−−
√

c2 1

−11 −
(0.992c)2

c2

− −−−−−−−−
√

10−31 108 )2 10−13
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Conceptual Questions
1. the second postulate, involving the speed of light; classical physics already included the idea that the laws of mechanics, at
least, were the same in all inertial frames, but the velocity of a light pulse was different in different frames moving with
respect to each other

3. yes, provided the plane is flying at constant velocity relative to the Earth; in that case, an object with no force acting on it
within the plane has no change in velocity relative to the plane and no change in velocity relative to the Earth; both the plane
and the ground are inertial frames for describing the motion of the object

5. The observer moving with the process sees its interval of proper time, which is the shortest seen by any observer.

7. The length of an object is greatest to an observer who is moving with the object, and therefore measures its proper length.

9. a. No, not within the astronaut’s own frame of reference.

b. He sees Earth clocks to be in their rest frame moving by him, and therefore sees them slowed.

c. No, not within the astronaut’s own frame of reference.

d. Yes, he measures the distance between the two stars to be shorter.

e. The two observers agree on their relative speed.

11. There is no measured change in wavelength or frequency in this case. The relativistic Doppler effect depends only on the
relative velocity of the source and the observer, not any speed relative to a medium for the light waves.

13. It shows that the stars are getting more distant from Earth, that the universe is expanding, and doing so at an accelerating
rate, with greater velocity for more distant stars.]

15. Yes. This can happen if the external force is balanced by other externally applied forces, so that the net external force is
zero.

17. Because it loses thermal energy, which is the kinetic energy of the random motion of its constituent particles, its mass
decreases by an extremely small amount, as described by energy-mass equivalence.

19. Yes, in principle there would be a similar effect on mass for any decrease in energy, but the change would be so small for
the energy changes in a chemical reaction that it would be undetectable in practice.

21. Not according to special relativity. Nothing with mass can attain the speed of light.

Problems
23. a. 1.0328;

b. 1.15

25. 

27. 0.800c

29. 0.140c

31. 48.6 m

33. Using the values given in Example 5.3:

a. 1.39 km;

b. 0.433 km;

c. 0.433 km

35. a. 10.0c;

b. The resulting speed of the canister is greater than c, an impossibility.

c. It is unreasonable to assume that the canister will move toward the earth at 1.20c.

37. The angle α approaches , and the  and  rotate toward the edge of the light cone.

5.96 × s10−8

45° −t′ −axesx′
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39. 15 m/s east

41. 32 m/s

43. a. The second ball approaches with velocity  and comes to rest while the other ball continues with velocity ;

b. This conserves momentum.

45. a. ;

b. ;

47. 0.615c

49. 0.696c

51. (Proof)

53. 

55. a. ;

b. 1.000000005

57. 

59. 0.512 MeV according to the number of significant figures stated. The exact value is closer to 0.511 MeV.

61. ; to two digits because the difference in rest mass energies is found to two digits

63. a. ;

b. 

65. a. 

b. ;

c.  is greater for hydrogen

67. a. 208;

b. 0.999988c; six digits used to show difference from c

69. a. ;

b. 1.54

71. a. 0.914c;

b. The rest mass energy of an electron is 0.511 MeV, so the kinetic energy is approximately 150% of the rest mass
energy. The electron should be traveling close to the speed of light.

Additional Problems
73. a. 0.866c;

b. 0.995c

75. a. 4.303 y to four digits to show any effect;

b. 0.1434 y;

c. .

77. a. 4.00;

−v −v

= 0; = 0t′
1 x′

1

= τ; = 0;t′
2 x′

2

= 0; = 0t′
1 x′

1

= ; =t′
2

τ

1 − /v2 c2− −−−−−−−√
x′

2

−vτ

1 − /v2 c2− −−−−−−−√

4.09 × kg ⋅m/s10−19

3.000000015 × kg ⋅m/s1013

2.988 × m/s108

2.3 × kg10−30

1.11 × kg1027

5.56 ×10 −5

7.1 × kg;10−3

7.1 × = 7.1 ×10−3 10−3

Δm

m

6.92 × J105

1/ = 29.88.(1 − / )v2 c2
− −−−−−−−−

√
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b. 

79. a. A sends a radio pulse at each heartbeat to B, who knows their relative velocity and uses the time dilation formula to
calculate the proper time interval between heartbeats from the observed signal.

b.  beats/min

81. a. first photon:  at ; second photon:

=1.15m\)

b. simultaneous in A, not simultaneous in B

83. 

85. 

;

since , we can ignore the term  and find

The breakdown of Newtonian simultaneity is negligibly small, but not exactly zero, at realistic train speeds of 50 m/s.

87. 

89. Note that all answers to this problem are reported to five significant figures, to distinguish the results.

a. 0.99947c;

b. ;

c. 

91. a. –0.400c;

v= 0.867c

(66beats/min) = 57.11 − /v2 c2
− −−−−−−−

√

(0, 0, 0) t = t'

= = = = 1.93 × st′ −vx/c2

1 − /v2 c2− −−−−−−−
√

−(c/2)(1.00m)/c2

0.75
− −−−

√

0.577m

c
10−9

= =x′ x

1 − /v2 c2
− −−−−−−−

√

1.00m

0.75
− −−−

√

= =t′ t−vx/c2

1 − /v2 c2− −−−−−−−
√

(4.5 × s)−(0.6c)( )10−4 150× m103

c2

1 −(0.6)2− −−−−−−−
√

= 1.88 × s10−4

= =x′ x−vt

1 − /v2 c2− −−−−−−−
√

150 × m −(0.60)(3.00 × m/s) (4.5 × s)103 108 10−4

1 −(0.6)2− −−−−−−−
√

= 8.6 × m = 86 km104

y = = 15 kmy′

z = = 1 kmz′

Δt =
Δ +vΔ /t′ x′ c2

1 − /v2 c2− −−−−−−−
√

0 =
Δ +v(500m)/t′ c2

1 − /v2 c2− −−−−−−−√

v≪ c /v2 c2

Δ = − = −2.78 × st′ (50m/s)(500m)

(3.00 × m/s108 )2
10−13

Δ =t′ Δt−vΔx/c2

1 − /v2 c2− −−−−−−−
√

0 =
(0.30s) −

(v)(2.0× m)109

(3.00× m/s108 )2

1 − /v2 c2− −−−−−−−
√

v= (3.00 × m/s
(0.30s)

(2.0 × m)109
108 )2

v= 1.35 × m/s107

1.2064 × y1011

1.2058 × y1011
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b. –0.909c

93. a. 1.65 km/s;

b. Yes, if the speed of light were this small, speeds that we can achieve in everyday life would be larger than 1% of the
speed of light and we could observe relativistic effects much more often.

95. 775 MHz

97. a. ;

b. The small speed tells us that the mass of a protein is substantially smaller than that of even a tiny amount of
macroscopic matter.

99. a. ;

b. 

101. 90.0 MeV

103. a. ;

b. yes

105. 

107. a. ;

b. ; therefore, 

109. a. 0.314c;

b. 0.99995c (Five digits used to show difference from c)

111. a. 1.00 kg;

b. This much mass would be measurable, but probably not observable just by looking because it is 0.01% of the total
mass.

113. a. 

b. 

c. ;

d. 
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1.12 × m/s10−8

F = = ( ) = ( ) − 2 =
dp

dt

d

dt

mu

1 − /u2 c2− −−−−−−−
√

du

dt

m

1 − /u2 c2− −−−−−−−
√

1

2

mu2

(1 − /u2 c2)3/2

du

dt

m

(1 − /u2 c2)3/2

du

dt

F = = (1m/ ) = 1.53N
m

(1 − /u2 c2)3/2

du

dt

1kg

(1 −( 1
2

)2)3/2
s2

−1γ2

1.07 ×103

6.56 × kg10−8

m = (200L)(1 /1000L)(750kg/ ) = 150kgm3 m3 = 4.37 ×
Δm

m
10−10

6.06 × kg/s;1011

4.67 × y;1010

4.27 × kg109

0.32
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5.E: Relativity (Exercises)

Conceptual Questions

5.1 Invariance of Physical Laws

1. Which of Einstein’s postulates of special relativity includes a concept that does not fit with the ideas of classical physics?
Explain.

2. Is Earth an inertial frame of reference? Is the sun? Justify your response.

3. When you are flying in a commercial jet, it may appear to you that the airplane is stationary and Earth is moving beneath
you. Is this point of view valid? Discuss briefly.

5.3 Time Dilation

4. (a) Does motion affect the rate of a clock as measured by an observer moving with it?

(b) Does motion affect how an observer moving relative to a clock measures its rate?

5. To whom does the elapsed time for a process seem to be longer, an observer moving relative to the process or an observer
moving with the process? Which observer measures the interval of proper time?

6. (a) How could you travel far into the future of Earth without aging significantly?

(b) Could this method also allow you to travel into the past?

5.4 Length Contraction

7. To whom does an object seem greater in length, an observer moving with the object or an observer moving relative to the
object? Which observer measures the object’s proper length?

8. Relativistic effects such as time dilation and length contraction are present for cars and airplanes. Why do these effects
seem strange to us?

9. Suppose an astronaut is moving relative to Earth at a significant fraction of the speed of light.

(a) Does he observe the rate of his clocks to have slowed?

(b) What change in the rate of earthbound clocks does he see?

(c) Does his ship seem to him to shorten?

(d) What about the distance between two stars that lie in the direction of his motion? (e) Do he and an earthbound
observer agree on his velocity relative to Earth?

5.7 Doppler Effect for Light

10. Explain the meaning of the terms “red shift” and “blue shift” as they relate to the relativistic Doppler effect.

11. What happens to the relativistic Doppler effect when relative velocity is zero? Is this the expected result?

12. Is the relativistic Doppler effect consistent with the classical Doppler effect in the respect that  is larger for motion
away?

13. All galaxies farther away than about  ly exhibit a red shift in their emitted light that is proportional to distance,
with those farther and farther away having progressively greater red shifts. What does this imply, assuming that the only
source of red shift is relative motion?

5.8 Relativistic Momentum

14. How does modern relativity modify the law of conservation of momentum?

15. Is it possible for an external force to be acting on a system and relativistic momentum to be conserved? Explain.

λobs

50 ×106
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5.9 Relativistic Energy

16. How are the classical laws of conservation of energy and conservation of mass modified by modern relativity?

17. What happens to the mass of water in a pot when it cools, assuming no molecules escape or are added? Is this observable
in practice? Explain.

18. Consider a thought experiment. You place an expanded balloon of air on weighing scales outside in the early morning.
The balloon stays on the scales and you are able to measure changes in its mass. Does the mass of the balloon change as the
day progresses? Discuss the difficulties in carrying out this experiment.

19. The mass of the fuel in a nuclear reactor decreases by an observable amount as it puts out energy. Is the same true for the
coal and oxygen combined in a conventional power plant? If so, is this observable in practice for the coal and oxygen?
Explain.

20. We know that the velocity of an object with mass has an upper limit of c. Is there an upper limit on its momentum? Its
energy? Explain.

21. Given the fact that light travels at c , can it have mass? Explain.

22. If you use an Earth-based telescope to project a laser beam onto the moon, you can move the spot across the moon’s
surface at a velocity greater than the speed of light. Does this violate modern relativity? (Note that light is being sent from
the Earth to the moon, not across the surface of the moon.)

Problems

5.3 Time Dilation

23. (a) What is  if ?

(b) If ?

24. (a) What is  if ?

(b) If ?

25. Particles called -mesons are produced by accelerator beams. If these particles travel at  and live 
 when at rest relative to an observer, how long do they live as viewed in the laboratory?

26. Suppose a particle called a kaon is created by cosmic radiation striking the atmosphere. It moves by you at , and it
lives  when at rest relative to an observer. How long does it live as you observe it?

27. A neutral -meson is a particle that can be created by accelerator beams. If one such particle lives  as
measured in the laboratory, and  when at rest relative to an observer, what is its velocity relative to the
laboratory?

28. A neutron lives 900 s when at rest relative to an observer. How fast is the neutron moving relative to an observer who
measures its life span to be 2065 s?

29. If relativistic effects are to be less than 1%, then  must be less than 1.01. At what relative velocity is ?

30. If relativistic effects are to be less than 3%, then  must be less than 1.03. At what relative velocity is ?

5.4 Length Contraction

31. A spaceship, 200 m long as seen on board, moves by the Earth at 0.970c. What is its length as measured by an
earthbound observer?

32. How fast would a 6.0 m-long sports car have to be going past you in order for it to appear only 5.5 m long?

33. (a) How far does the muon in Example 5.1 travel according to the earthbound observer?

(b) How far does it travel as viewed by an observer moving with it? Base your calculation on its velocity relative to the
Earth and the time it lives (proper time).

(c) Verify that these two distances are related through length contraction .

34. (a) How long would the muon in Example 5.1 have lived as observed on Earth if its velocity was ?

γ v= 0.250c

v= 0.500c

γ v= 0.100c

v= 0.900c

π 2.70 × m/s108

2.60 × s10−8

0.980c

1.24 × s10−8

π 1.40 × s10−16

0.840 × s10−16

γ γ = 1.01

γ γ = 1.03

γ = 3.20

0.0500c
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(b) How far would it have traveled as observed on Earth?

(c) What distance is this in the muon’s frame?

35. Unreasonable Results A spaceship is heading directly toward Earth at a velocity of 0.800c. The astronaut on board
claims that he can send a canister toward the Earth at 1.20c relative to Earth.

(a) Calculate the velocity the canister must have relative to the spaceship.

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

5.5 The Lorentz Transformation

36. Describe the following physical occurrences as events, that is, in the form (x, y, z, t):

(a) A postman rings a doorbell of a house precisely at noon.

(b) At the same time as the doorbell is rung, a slice of bread pops out of a toaster that is located 10 m from the door in
the east direction from the door.

(c) Ten seconds later, an airplane arrives at the airport, which is 10 km from the door in the east direction and 2 km to
the south.

37. Describe what happens to the angle , and therefore to the transformed axes in Figure 5.17, as the relative
velocity v of the S and  frames of reference approaches c.

38. Describe the shape of the world line on a space-time diagram of

(a) an object that remains at rest at a specific position along the x-axis;

(b) an object that moves at constant velocity u in the x-direction;

(c) an object that begins at rest and accelerates at a constant rate of in the positive x-direction.

39. A man standing still at a train station watches two boys throwing a baseball in a moving train. Suppose the train is
moving east with a constant speed of 20 m/s and one of the boys throws the ball with a speed of 5 m/s with respect to himself
toward the other boy, who is 5 m west from him. What is the velocity of the ball as observed by the man on the station?

40. When observed from the sun at a particular instant, Earth and Mars appear to move in opposite directions with speeds
108,000 km/h and 86,871 km/h, respectively. What is the speed of Mars at this instant when observed from Earth?

41. A man is running on a straight road perpendicular to a train track and away from the track at a speed of 12 m/s. The train
is moving with a speed of 30 m/s with respect to the track. What is the speed of the man with respect to a passenger sitting at
rest in the train?

42. A man is running on a straight road that makes 30° with the train track. The man is running in the direction on the road
that is away from the track at a speed of 12 m/s. The train is moving with a speed of 30 m/s with respect to the track. What is
the speed of the man with respect to a passenger sitting at rest in the train?

43. In a frame at rest with respect to the billiard table, a billiard ball of mass m moving with speed v strikes another billiard
ball of mass m at rest. The first ball comes to rest after the collision while the second ball takes off with speed v in the
original direction of the motion of the first ball. This shows that momentum is conserved in this frame.

(a) Now, describe the same collision from the perspective of a frame that is moving with speed v in the direction of the
motion of the first ball.

(b) Is the momentum conserved in this frame?

44. In a frame at rest with respect to the billiard table, two billiard balls of same mass m are moving toward each other with
the same speed v. After the collision, the two balls come to rest.

(a) Show that momentum is conserved in this frame.

(b) Now, describe the same collision from the perspective of a frame that is moving with speed v in the direction of the
motion of the first ball.

α = tan(v/c)

S ′
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(c) Is the momentum conserved in this frame?

45. In a frame S, two events are observed: event 1: a pion is created at rest at the origin and event 2: the pion disintegrates
after time . Another observer in a frame  is moving in the positive direction along the positive x-axis with a constant
speed v and observes the same two events in his frame. The origins of the two frames coincide at .

(a) Find the positions and timings of these two events in the frame  (a) according to the Galilean transformation, and

(b) according to the Lorentz transformation.

5.6 Relativistic Velocity Transformation

46. If two spaceships are heading directly toward each other at 0.800c, at what speed must a canister be shot from the first
ship to approach the other at 0.999c as seen by the second ship?

47. Two planets are on a collision course, heading directly toward each other at 0.250c. A spaceship sent from one planet
approaches the second at 0.750c as seen by the second planet. What is the velocity of the ship relative to the first planet?

48. When a missile is shot from one spaceship toward another, it leaves the first at 0.950c and approaches the other at 0.750c.
What is the relative velocity of the two ships?

49. What is the relative velocity of two spaceships if one fires a missile at the other at 0.750c and the other observes it to
approach at 0.950c?

50. Prove that for any relative velocity v between two observers, a beam of light sent from one to the other will approach at
speed c (provided that v is less than c, of course).

51. Show that for any relative velocity v between two observers, a beam of light projected by one directly away from the
other will move away at the speed of light (provided that v is less than c, of course).

5.7 Doppler Effect for Light

52. A highway patrol officer uses a device that measures the speed of vehicles by bouncing radar off them and measuring the
Doppler shift. The outgoing radar has a frequency of 100 GHz and the returning echo has a frequency 15.0 kHz higher. What
is the velocity of the vehicle? Note that there are two Doppler shifts in echoes. Be certain not to round off until the end of the
problem, because the effect is small.

5.8 Relativistic Momentum

53. Find the momentum of a helium nucleus having a mass of  that is moving at 0.200c.

54. What is the momentum of an electron traveling at 0.980c?

55. (a) Find the momentum of a  asteroid heading towards Earth at 30.0 km/s.

(b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that 
 at low velocities.)

56. (a) What is the momentum of a 2000-kg satellite orbiting at 4.00 km/s? (b) Find the ratio of this momentum to the
classical momentum. (Hint: Use the approximation that  at low velocities.)

57. What is the velocity of an electron that has a momentum of ? Note that you must calculate the
velocity to at least four digits to see the difference from c.

58. Find the velocity of a proton that has a momentum of .

5.9 Relativistic Energy

59. What is the rest energy of an electron, given its mass is ? Give your answer in joules and MeV.

60. Find the rest energy in joules and MeV of a proton, given its mass is .

61. If the rest energies of a proton and a neutron (the two constituents of nuclei) are 938.3 and 939.6 MeV, respectively, what
is the difference in their mass in kilograms?

62. The Big Bang that began the universe is estimated to have released  of energy. How many stars could half this
energy create, assuming the average star’s mass is ?

τ S ′

t = = 0t′

S ′

6.68 × kg10−27

1.00 × −kg109

γ = 1 +(1/2) /v2 c2

γ = 1 +(1/2) /v2 c2

3.04 × kg ⋅m/s10−21

4.48 × kg ⋅m/s10−19

9.11 × kg10−31

1.67 × kg10−27

J1068

4.00 × kg1030
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63. A supernova explosion of a  star produces  of energy.

(a) How many kilograms of mass are converted to energy in the explosion?

(b) What is the ratio  of mass destroyed to the original mass of the star?

64. (a) Using data from Potential Energy of a System, calculate the mass converted to energy by the fission of 1.00 kg of
uranium.

(b) What is the ratio of mass destroyed to the original mass, ?

65. (a) Using data from Potential Energy of a System, calculate the amount of mass converted to energy by the fusion of 1.00
kg of hydrogen.

(b) What is the ratio of mass destroyed to the original mass, ?

(c) How does this compare with  for the fission of 1.00 kg of uranium?

66. There is approximately  of energy available from fusion of hydrogen in the world’s oceans.

(a) If  of this energy were utilized, what would be the decrease in mass of the oceans?

(b) How great a volume of water does this correspond to?

(c) Comment on whether this is a significant fraction of the total mass of the oceans.

67. A muon has a rest mass energy of 105.7 MeV, and it decays into an electron and a massless particle.

(a) If all the lost mass is converted into the electron’s kinetic energy, find  for the electron.

(b) What is the electron’s velocity?

68. A -meson is a particle that decays into a muon and a massless particle. The -meson has a rest mass energy of 139.6
MeV, and the muon has a rest mass energy of 105.7 MeV. Suppose the -meson is at rest and all of the missing mass goes
into the muon’s kinetic energy. How fast will the muon move?

69. (a) Calculate the relativistic kinetic energy of a 1000-kg car moving at 30.0 m/s if the speed of light were only 45.0 m/s.

(b) Find the ratio of the relativistic kinetic energy to classical.

70. Alpha decay is nuclear decay in which a helium nucleus is emitted. If the helium nucleus has a mass of 
and is given 5.00 MeV of kinetic energy, what is its velocity?

71. (a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what
is its velocity?

(b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of
the electron.

Additional Problems
72. (a) At what relative velocity is ?

(b) At what relative velocity is ?γ=100?

73. (a) At what relative velocity is ?

(b) At what relative velocity is ?

74. Unreasonable Results (a) Find the value of  required for the following situation. An earthbound observer measures
23.9 h to have passed while signals from a high-velocity space probe indicate that 24.0 h have passed on board.

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

75. (a) How long does it take the astronaut in Example 5.5 to travel 4.30 ly at  (as measured by the earthbound
observer)?

(b) How long does it take according to the astronaut?

2.00 × kg1031 1.00 × J1044

Δm/m

Δm/m

Δm/m

Δm/m

J1034

J1033

γ

π π

π

6.80 × kg10−27

γ = 1.50

γ = 100

γ = 2.00

γ = 10.0

γ

0.99944c
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(c) Verify that these two times are related through time dilation with  as given.

76. (a) How fast would an athlete need to be running for a 100-  race to look 100 yd long?

(b) Is the answer consistent with the fact that relativistic effects are difficult to observe in ordinary circumstances?
Explain.

77. (a) Find the value of  for the following situation. An astronaut measures the length of his spaceship to be 100 m, while
an earthbound observer measures it to be 25.0 m.

(b) What is the speed of the spaceship relative to Earth?

78. A clock in a spaceship runs one-tenth the rate at which an identical clock on Earth runs. What is the speed of the
spaceship?

79. An astronaut has a heartbeat rate of 66 beats per minute as measured during his physical exam on Earth. The heartbeat
rate of the astronaut is measured when he is in a spaceship traveling at 0.5c with respect to Earth by an observer (A) in the
ship and by an observer (B) on Earth.

(a) Describe an experimental method by which observer B on Earth will be able to determine the heartbeat rate of the
astronaut when the astronaut is in the spaceship.

(b) What will be the heartbeat rate(s) of the astronaut reported by observers A and B?

80. A spaceship (A) is moving at speed c/2 with respect to another spaceship (B). Observers in A and B set their clocks so
that the event at (x, y, z, t) of turning on a laser in spaceship B has coordinates (0, 0, 0, 0) in A and also (0, 0, 0, 0) in B. An
observer at the origin of B turns on the laser at  and turns it off at  in his time. What is the time duration between
on and off as seen by an observer in A?

81. Same two observers as in the preceding exercise, but now we look at two events occurring in spaceship A. A photon
arrives at the origin of A at its time  and another photon arrives at  at  in the frame of ship A.

(a) Find the coordinates and times of the two events as seen by an observer in frame B.

(b) In which frame are the two events simultaneous and in which frame are they are not simultaneous?

82. Same two observers as in the preceding exercises. A rod of length 1 m is laid out on the x-axis in the frame of B from
origin to . What is the length of the rod observed by an observer in the frame of spaceship A?

83. An observer at origin of inertial frame S sees a flashbulb go off at , and  at time 
. At what time and position in the  system did the flash occur, if  is moving along shared x-direction

with S at a velocity ?

84. An observer sees two events  apart at a separation of 800 m. How fast must a second observer be moving
relative to the first to see the two events occur simultaneously?

85. An observer standing by the railroad tracks sees two bolts of lightning strike the ends of a 500-m-long train
simultaneously at the instant the middle of the train passes him at 50 m/s. Use the Lorentz transformation to find the time
between the lightning strikes as measured by a passenger seated in the middle of the train.

86. Two astronomical events are observed from Earth to occur at a time of 1 s apart and a distance separation of 
from each other.

(a) Determine whether separation of the two events is space like or time like.

(b) State what this implies about whether it is consistent with special relativity for one event to have caused the other?

87. Two astronomical events are observed from Earth to occur at a time of 0.30 s apart and a distance separation of 
 from each other. How fast must a spacecraft travel from the site of one event toward the other to make the

events occur at the same time when measured in the frame of reference of the spacecraft?

88. A spacecraft starts from being at rest at the origin and accelerates at a constant rate g, as seen from Earth, taken to be an
inertial frame, until it reaches a speed of c/2.

(a) Show that the increment of proper time is related to the elapsed time in Earth’s frame by:

γ = 30.00

m

γ

t = 0 t = τ

t = 0 (x = 1.00m, 0, 0) t = 0

(x = 1.00m, 0, 0)

x = 150km, y = 15.0km z = 1.00km

t = 4.5 × s10−4 S ′ S ′

v= 0.6c

1.5 × s10−8

1.5 × m109

2.0 × m109
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.

(b) Find an expression for the elapsed time to reach speed c/2 as seen in Earth’s frame.

(c) Use the relationship in (a) to obtain a similar expression for the elapsed proper time to reach c/2 as seen in the
spacecraft, and determine the ratio of the time seen from Earth with that on the spacecraft to reach the final speed.

89. (a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy  away is receding
from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as
measured from that galaxy?

(b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the
velocity of the other galaxy remains constant.

(c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not
practical.)

90. Suppose a spaceship heading straight toward the Earth at 0.750c can shoot a canister at 0.500c relative to the ship.

(a) What is the velocity of the canister relative to Earth, if it is shot directly at Earth?

(b) If it is shot directly away from Earth?

91. Repeat the preceding problem with the ship heading directly away from Earth.

92. If a spaceship is approaching the Earth at 0.100c and a message capsule is sent toward it at 0.100c relative to Earth, what
is the speed of the capsule relative to the ship?

93. (a) Suppose the speed of light were only 3000 m/s. A jet fighter moving toward a target on the ground at 800 m/s shoots
bullets, each having a muzzle velocity of 1000 m/s. What are the bullets’ velocity relative to the target?

(b) If the speed of light was this small, would you observe relativistic effects in everyday life? Discuss.

94. If a galaxy moving away from the Earth has a speed of 1000 km/s and emits 656 nm light characteristic of hydrogen (the
most common element in the universe).

(a) What wavelength would we observe on Earth?

(b) What type of electromagnetic radiation is this? (c) Why is the speed of Earth in its orbit negligible here?

95. A space probe speeding towards the nearest star moves at  and sends radio information at a broadcast frequency of
1.00 GHz. What frequency is received on Earth?

96. Near the center of our galaxy, hydrogen gas is moving directly away from us in its orbit about a black hole. We receive
1900 nm electromagnetic radiation and know that it was 1875 nm when emitted by the hydrogen gas. What is the speed of
the gas?

97. (a) Calculate the speed of a  particle of dust that has the same momentum as a proton moving at 0.999c.

(b) What does the small speed tell us about the mass of a proton compared to even a tiny amount of macroscopic
matter?

98. (a) Calculate  for a proton that has a momentum of .

(b) What is its speed? Such protons form a rare component of cosmic radiation with uncertain origins.

99. Show that the relativistic form of Newton’s second law is

(a) ;

(b) Find the force needed to accelerate a mass of 1 kg by 1  when it is traveling at a velocity of c/2.

100. A positron is an antimatter version of the electron, having exactly the same mass. When a positron and an electron meet,
they annihilate, converting all of their mass into energy.

dτ = dt1 −v2/c2
− −−−−−−−

√

12.0 × ly109

0.250c

1.00 −μg

γ 1.00kg ⋅m/s

F = m
du

dt

1

(1 − /u2 c2)3/2

m/s2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45990?pdf


5.E.8 https://phys.libretexts.org/@go/page/45990

(a) Find the energy released, assuming negligible kinetic energy before the annihilation.

(b) If this energy is given to a proton in the form of kinetic energy, what is its velocity?

(c) If this energy is given to another electron in the form of kinetic energy, what is its velocity?

101. What is the kinetic energy in MeV of a π-meson that lives  as measured in the laboratory, and 
 when at rest relative to an observer, given that its rest energy is 135 MeV?

102. Find the kinetic energy in MeV of a neutron with a measured life span of 2065 s, given its rest energy is 939.6 MeV, and
rest life span is 900s.

103. (a) Show that . This means that at large velocities .

(b) Is  when , as for the astronaut discussed in the twin paradox?

104. One cosmic ray neutron has a velocity of  relative to the Earth.

(a) What is the neutron’s total energy in MeV?

(b) Find its momentum.

(c) Is  in this situation? Discuss in terms of the equation given in part (a) of the previous problem.

105. What is  for a proton having a mass energy of 938.3 MeV accelerated through an effective potential of 1.0 TV
(teravolt)?

106. (a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if  for
them?

(b) What is their total energy (nearly the same as kinetic in this case) in GeV?

107. (a) Using data from Potential Energy of a System, find the mass destroyed when the energy in a barrel of crude oil is
released.

(b) Given these barrels contain 200 liters and assuming the density of crude oil is , what is the ratio of mass
destroyed to original mass, ?

108. (a) Calculate the energy released by the destruction of 1.00 kg of mass.

(b) How many kilograms could be lifted to a 10.0 km height by this amount of energy?

109. A Van de Graaff accelerator utilizes a 50.0 MV potential difference to accelerate charged particles such as protons.

(a) What is the velocity of a proton accelerated by such a potential?

(b) An electron?

110. Suppose you use an average of  of electric energy per month in your home.

(a) How long would 1.00 g of mass converted to electric energy with an efficiency of 38.0% last you?

(b) How many homes could be supplied at the  per month rate for one year by the energy from the
described mass conversion?

111. (a) A nuclear power plant converts energy from nuclear fission into electricity with an efficiency of 35.0%. How much
mass is destroyed in one year to produce a continuous 1000 MW of electric power?

(b) Do you think it would be possible to observe this mass loss if the total mass of the fuel is ?

112. Nuclear-powered rockets were researched for some years before safety concerns became paramount.

(a) What fraction of a rocket’s mass would have to be destroyed to get it into a low Earth orbit, neglecting the decrease
in gravity? (Assume an orbital altitude of 250 km, and calculate both the kinetic energy (classical) and the gravitational
potential energy needed.)

(b) If the ship has a mass of  (100 tons), what total yield nuclear explosion in tons of TNT is needed?

113. The sun produces energy at a rate of  W by the fusion of hydrogen. About 0.7% of each kilogram of
hydrogen goes into the energy generated by the Sun.

1.40 × s10−16

0.840 × s10−16

(pc /(m = −1)2 c2)2 γ2 pc >> mc2

E ≈ pc γ = 30.0

0.250c

E ≈ pc

γ

γ = 1.00 ×105

750kg/m3

Δm/m

500kW ⋅h

500kW ⋅h

kg104

1.00 × kg105

3.85 ×1026
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(a) How many kilograms of hydrogen undergo fusion each second?

(b) If the sun is 90.0% hydrogen and half of this can undergo fusion before the sun changes character, how long could
it produce energy at its current rate?

(c) How many kilograms of mass is the sun losing per second?

(d) What fraction of its mass will it have lost in the time found in part (b)?

114. Show that  for a particle is invariant under Lorentz transformations.
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5.S: Relativity (Summary)

Key Terms

classical (Galilean) velocity addition

method of adding velocities when ; velocities add like
regular numbers in one-dimensional motion: , where v
is the velocity between two observers, u is the velocity of an object
relative to one observer, and  is the velocity relative to the other

observer

event
occurrence in space and time specified by its position and time
coordinates (x, y, z, t) measured relative to a frame of reference

first postulate of special relativity laws of physics are the same in all inertial frames of reference

Galilean relativity

if an observer measures a velocity in one frame of reference, and
that frame of reference is moving with a velocity past a second
reference frame, an observer in the second frame measures the

original velocity as the vector sum of these velocities

Galilean transformation
relation between position and time coordinates of the same events

as seen in different reference frames, according to classical
mechanics

inertial frame of reference
reference frame in which a body at rest remains at rest and a body
in motion moves at a constant speed in a straight line unless acted

on by an outside force

length contraction
decrease in observed length of an object from its proper length 
to length L when its length is observed in a reference frame where

it is traveling at speed v

Lorentz transformation
relation between position and time coordinates of the same events

as seen in different reference frames, according to the special
theory of relativity

Michelson-Morley experiment
investigation performed in 1887 that showed that the speed of light
in a vacuum is the same in all frames of reference from which it is

viewed

proper length

; the distance between two points measured by an observer who
is at rest relative to both of the points; for example, earthbound
observers measure proper length when measuring the distance

between two points that are stationary relative to Earth

proper time
 is the time interval measured by an observer who sees the

beginning and end of the process that the time interval measures
occur at the same location

relativistic kinetic energy kinetic energy of an object moving at relativistic speeds

relativistic momentum
, the momentum of an object moving at relativistic velocity; 

lativistic velocity addition
method of adding velocities of an object moving at a relativistic

speeds

rest energy energy stored in an object at rest: 

rest frame frame of reference in which the observer is at rest

v << c

u = v + u′

u′

L0

L0

Δτ

p ⃗ 

= γmp ⃗  u⃗ 

= mE0 c2
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rest mass
mass of an object as measured by an observer at rest relative to the

object

second postulate of special relativity
light travels in a vacuum with the same speed c in any direction in

all inertial frames

special theory of relativity

theory that Albert Einstein proposed in 1905 that assumes all the
laws of physics have the same form in every inertial frame of

reference, and that the speed of light is the same within all inertial
frames

speed of light ultimate speed limit for any particle having mass

time dilation
lengthening of the time interval between two events when seen in a

moving inertial frame rather than the rest frame of the events (in
which the events occur at the same location)

total energy

sum of all energies for a particle, including rest energy and kinetic
energy, given for a particle of mass m and speed u by ,

where 

world line path through space-time

Key Equations

Time dilation

Lorentz factor

Length contraction

Galilean transformation

Lorentz transformation

Inverse Lorentz transformation

Space-time invariants

Relativistic velocity addition

E = γmc2

γ =
1

1 − u2

c2

− −−−−
√

Δt = = γτ
Δτ

1 − v2

c2

− −−−−
√

γ =
1

1 − v2

c2

− −−−−
√

L = =L0 1 −
v2

c2

− −−−−−

√
L0

γ

x = + vt, y = , z = , t =x′ y′ z′ t′

t =
+ v /t′ x′ c2

1 − /v2 c2− −−−−−−−
√

x =
+ vx′ t′

1 − /v2 c2− −−−−−−−
√

y = y
′

z = z
′

=t′ t − vx/c2

1 − /v2 c2− −−−−−−−
√

=x
′ x − vt

1 − /v2 c2− −−−−−−−
√

= yy′

= zz′

(Δs = (Δx + (Δy + (Δz − (Δt)2 )2 )2 )2 c2 )2

(Δτ = −(Δs / = (Δt −)2 )2 c2 )2 [(Δx + (Δy + (Δz ])2 )2 )2

c2

= ( ), = ( ), = ( )ux

u + v'x

1 + vu /'x c2
uy

u /γ'y

1 + vu /'x c2
uz

u /γ'z

1 + vu /'x c2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45992?pdf


5.S.3 https://phys.libretexts.org/@go/page/45992

Relativistic Doppler effect for wavelength

Relativistic Doppler effect for frequency

Relativistic momentum

Relativistic total energy ,where 

Relativistic kinetic energy , where 

Summary

5.1 Invariance of Physical Laws
Relativity is the study of how observers in different reference frames measure the same event.
Modern relativity is divided into two parts. Special relativity deals with observers in uniform (unaccelerated) motion, whereas
general relativity includes accelerated relative motion and gravity. Modern relativity is consistent with all empirical evidence
thus far and, in the limit of low velocity and weak gravitation, gives close agreement with the predictions of classical (Galilean)
relativity.
An inertial frame of reference is a reference frame in which a body at rest remains at rest and a body in motion moves at a
constant speed in a straight line unless acted upon by an outside force.
Modern relativity is based on Einstein’s two postulates. The first postulate of special relativity is that the laws of physics are the
same in all inertial frames of reference. The second postulate of special relativity is that the speed of light c is the same in all
inertial frames of reference, independent of the relative motion of the observer and the light source.
The Michelson-Morley experiment demonstrated that the speed of light in a vacuum is independent of the motion of Earth
about the sun.

5.2 Relativity of Simultaneity
Two events are defined to be simultaneous if an observer measures them as occurring at the same time (such as by receiving
light from the events).
Two events at locations a distance apart that are simultaneous for an observer at rest in one frame of reference are not
necessarily simultaneous for an observer at rest in a different frame of reference.

5.3 Time Dilation
Two events are defined to be simultaneous if an observer measures them as occurring at the same time. They are not necessarily
simultaneous to all observers—simultaneity is not absolute.
Time dilation is the lengthening of the time interval between two events when seen in a moving inertial frame rather than the
rest frame of the events (in which the events occur at the same location).
Observers moving at a relative velocity v do not measure the same elapsed time between two events. Proper time  is the time
measured in the reference frame where the start and end of the time interval occur at the same location. The time interval 
measured by an observer who sees the frame of events moving at speed v is related to the proper time interval  of the events
by the equation:

,

where

.

=λobs λs

1 + v
c

1 − v
c

− −−−−

√

=fobs fs

1 − v
c

1 + v
c

− −−−−

√

= γm =p ⃗  u⃗ 
mu⃗ 

1 − u2

c2

− −−−−
√

E = γmc2 γ =
1

1 − u2

c2

− −−−−
√

= (γ − 1)mKrel c2 γ =
1

1 − u2

c2

− −−−−
√

Δτ

Δt

Δτ

Δt = = γΔτ
Δτ

1 − v2

c2

− −−−−
√

γ =
1

1 − v2

c2

− −−−−
√
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The premise of the twin paradox is faulty because the traveling twin is accelerating. The journey is not symmetrical for the two
twins.
Time dilation is usually negligible at low relative velocities, but it does occur, and it has been verified by experiment.
The proper time is the shortest measure of any time interval. Any observer who is moving relative to the system being observed
measures a time interval longer than the proper time.

5.4 Length Contraction
All observers agree upon relative speed.
Distance depends on an observer’s motion. Proper length  is the distance between two points measured by an observer who is
at rest relative to both of the points.
Length contraction is the decrease in observed length of an object from its proper length  to length L when its length is
observed in a reference frame where it is traveling at speed v.
The proper length is the longest measurement of any length interval. Any observer who is moving relative to the system being
observed measures a length shorter than the proper length.

5.5 The Lorentz Transformation
The Galilean transformation equations describe how, in classical nonrelativistic mechanics, the position, velocity, and
accelerations measured in one frame appear in another. Lengths remain unchanged and a single universal time scale is assumed
to apply to all inertial frames.
Newton’s laws of mechanics obey the principle of having the same form in all inertial frames under a Galilean transformation,
given by

.

The concept that times and distances are the same in all inertial frames in the Galilean transformation, however, is
inconsistent with the postulates of special relativity.

The relativistically correct Lorentz transformation equations are

Lorentz transformation Inverse Lorentz transformation

 

√ 

 

 

 

 

We can obtain these equations by requiring an expanding spherical light signal to have the same shape and speed of growth,
c, in both reference frames.

Relativistic phenomena can be explained in terms of the geometrical properties of four-dimensional space-time, in which
Lorentz transformations correspond to rotations of axes.
The Lorentz transformation corresponds to a space-time axis rotation, similar in some ways to a rotation of space axes, but in
which the invariant spatial separation is given by  rather than distances , and that the Lorentz transformation involving
the time axis does not preserve perpendicularity of axes or the scales along the axes.
The analysis of relativistic phenomena in terms of space-time diagrams supports the conclusion that these phenomena result
from properties of space and time itself, rather than from the laws of electromagnetism.

5.6 Relativistic Velocity Transformation
With classical velocity addition, velocities add like regular numbers in one-dimensional motion: , where v is the
velocity between two observers, u is the velocity of an object relative to one observer, and u'u′ is the velocity relative to the
other observer.
Velocities cannot add to be greater than the speed of light.
Relativistic velocity addition describes the velocities of an object moving at a relativistic velocity.

L0

L0

x = +vt, y = , z = , t =x′ y′ z′ t′

t =
+ v /t′ x′ c2

1 − /v2 c2− −−−−−−−
√

x =
+ vx′ t′

1 − /v2 c2− −−−−−−−
√

y = y′

z = z′

=t′
t − vx/c2

1 − /v2 c2− −−−−−−−
√

=x′ x − vt

1 − /v2 c2− −−−−−−−
√

= yy
′

= zz
′

Δs Δr

u = v+u′
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5.7 Doppler Effect for Light
An observer of electromagnetic radiation sees relativistic Doppler effects if the source of the radiation is moving relative to the
observer. The wavelength of the radiation is longer (called a red shift) than that emitted by the source when the source moves
away from the observer and shorter (called a blue shift) when the source moves toward the observer. The shifted wavelength is
described by the equation:

.

where  is the observed wavelength,  is the source wavelength, and v is the relative velocity of the source to the
observer.

5.8 Relativistic Momentum
The law of conservation of momentum is valid for relativistic momentum whenever the net external force is zero. The
relativistic momentum is , where m is the rest mass of the object, u is its velocity relative to an observer, and the

relativistic factor is .

At low velocities, relativistic momentum is equivalent to classical momentum.
Relativistic momentum approaches infinity as u approaches c. This implies that an object with mass cannot reach the speed of
light.

5.9 Relativistic Energy
The relativistic work-energy theorem is .
Relativistically,  where  is the relativistic kinetic energy.

An object of mass m at velocity u has kinetic energy , where .

At low velocities, relativistic kinetic energy reduces to classical kinetic energy.
No object with mass can attain the speed of light, because an infinite amount of work and an infinite amount of energy input is
required to accelerate a mass to the speed of light.
Relativistic energy is conserved as long as we define it to include the possibility of mass changing to energy.

The total energy of a particle with mass m traveling at speed u is defined as , where  and u denotes

the velocity of the particle.
The rest energy of an object of mass m is , meaning that mass is a form of energy. If energy is stored in an object, its
mass increases. Mass can be destroyed to release energy.
We do not ordinarily notice the increase or decrease in mass of an object because the change in mass is so small for a large
increase in energy. The equation  relates the relativistic total energy E and the relativistic momentum p.
At extremely high velocities, the rest energy  becomes negligible, and .
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= 1 −λobs λs 1 +
v

c

− −−−−
√

v

c

λobs λs

p = γmu

γ =
1

1 − u2

c2

− −−−−
√

= E − = γm −m = (γ −1)mWnet E0 c2 c2 c2

=Wnet Krel Krel

= (γ −1)mKrel c2 γ =
1

1 − u2

c2

− −−−−
√

E = γmc2 γ =
1

1 − u2

c2

− −−−−
√

= mE0 c2

= (pc +(mE2 )2 c2)2

mc2 E = pc
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CHAPTER OVERVIEW

6: Newton's Laws of Motion
When you drive across a bridge, you expect it to remain stable. You also expect to speed up or slow your car in response to traffic
changes. In both cases, you deal with forces. The forces on the bridge are in equilibrium, so it stays in place. In contrast, the force
produced by your car engine causes a change in motion. Isaac Newton discovered the laws of motion that describe these situations.
Forces affect every moment of your life. Your body is held to Earth by force and held together by the forces of charged particles.
When you open a door, walk down a street, lift your fork, or touch a baby’s face, you are applying forces. Zooming in deeper, your
body’s atoms are held together by electrical forces, and the core of the atom, called the nucleus, is held together by the strongest
force we know—strong nuclear force.

6.1: Prelude to Newton's Laws of Motion
6.2: Forces
6.3: Newton's First Law
6.4: Newton's Second Law
6.5: Mass and Weight
6.6: Newton’s Third Law
6.7: Common Forces
6.8: Drawing Free-Body Diagrams
6.E: Newton's Laws of Motion (Exercises)
6.S: Newton's Laws of Motion (Summary)

Thumbnail:The Golden Gate Bridge, one of the greatest works of modern engineering, was the longest suspension bridge in the
world in the year it opened, 1937. It is still among the 10 longest suspension bridges as of this writing. In designing and building a
bridge, what physics must we consider? What forces act on the bridge? What forces keep the bridge from falling? How do the
towers, cables, and ground interact to maintain stability?
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6.1: Prelude to Newton's Laws of Motion

Figure : The Golden Gate Bridge, one of the greatest works of modern engineering, was the longest suspension bridge in the
world in the year it opened, 1937. It is still among the 10 longest suspension bridges as of this writing. In designing and building a
bridge, what physics must we consider? What forces act on the bridge? What forces keep the bridge from falling? How do the
towers, cables, and ground interact to maintain stability?

When you drive across a bridge, you expect it to remain stable. You also expect to speed up or slow your car in response to traffic
changes. In both cases, you deal with forces. The forces on the bridge are in equilibrium, so it stays in place. In contrast, the force
produced by your car engine causes a change in motion. Isaac Newton discovered the laws of motion that describe these situations.

Forces affect every moment of your life. Your body is held to Earth by force and held together by the forces of charged particles.
When you open a door, walk down a street, lift your fork, or touch a baby’s face, you are applying forces. Zooming in deeper, your
body’s atoms are held together by electrical forces, and the core of the atom, called the nucleus, is held together by the strongest
force we know—strong nuclear force.

This page titled 6.1: Prelude to Newton's Laws of Motion is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

5.1: Prelude to Newton's Laws of Motion by OpenStax is licensed CC BY 4.0. Original source:
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6.2: Forces

Distinguish between kinematics and dynamics
Understand the definition of force
Identify simple free-body diagrams
Define the SI unit of force, the newton
Describe force as a vector

The study of motion is called kinematics, but kinematics only describes the way objects move—their velocity and their
acceleration. Dynamics is the study of how forces affect the motion of objects and systems. It considers the causes of motion of
objects and systems of interest, where a system is anything being analyzed. The foundation of dynamics are the laws of motion
stated by Isaac Newton (1642–1727). These laws provide an example of the breadth and simplicity of principles under which
nature functions. They are also universal laws in that they apply to situations on Earth and in space.

Newton’s laws of motion were just one part of the monumental work that has made him legendary (Figure ). The development
of Newton’s laws marks the transition from the Renaissance to the modern era. Not until the advent of modern physics was it
discovered that Newton’s laws produce a good description of motion only when the objects are moving at speeds much less than
the speed of light and when those objects are larger than the size of most molecules (about 10  m in diameter). These constraints
define the realm of Newtonian mechanics. At the beginning of the twentieth century, Albert Einstein (1879–1955) developed the
theory of relativity and, along with many other scientists, quantum mechanics. Quantum mechanics does not have the constraints
present in Newtonian physics. All of the situations we consider in this chapter, and all those preceding the introduction of relativity
in Relativity, are in the realm of Newtonian physics.

Figure : Isaac Newton (1642–1727) published his amazing work, Philosophiae Naturalis Principia Mathematica, in 1687. It
proposed scientific laws that still apply today to describe the motion of objects (the laws of motion). Newton also discovered the
law of gravity, invented calculus, and made great contributions to the theories of light and color.

Working Definition of Force
Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a working definition of
force. An intuitive definition of force—that is, a push or a pull—is a good place to start. We know that a push or a pull has both
magnitude and direction (therefore, it is a vector quantity), so we can define force as the push or pull on an object with a specific
magnitude and direction. Force can be represented by vectors or expressed as a multiple of a standard force.

The push or pull on an object can vary considerably in either magnitude or direction. For example, a cannon exerts a strong force
on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny downward pull on a flea. Our everyday
experiences also give us a good idea of how multiple forces add. If two people push in different directions on a third person, as
illustrated in Figure , we might expect the total force to be in the direction shown. Since force is a vector, it adds just like
other vectors. Forces, like other vectors, are represented by arrows and can be added using the familiar head-to-tail method or
trigonometric methods. These ideas were developed in Vectors.
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Figure : (a) An overhead view of two ice skaters pushing on a third skater. Forces are vectors and add like other vectors, so
the total force on the third skater is in the direction shown. (b) A free-body diagram representing the forces acting on the third
skater.

Figure (b) is our first example of a free-body diagram, which is a sketch showing all external forces acting on an object or
system. The object or system is represented by a single isolated point (or free body), and only those forces acting on it that
originate outside of the object or system—that is, external forces—are shown. (These forces are the only ones shown because only
external forces acting on the free body affect its motion. We can ignore any internal forces within the body.) The forces are
represented by vectors extending outward from the free body.

Free-body diagrams are useful in analyzing forces acting on an object or system, and are employed extensively in the study and
application of Newton’s laws of motion. You will see them throughout this text and in all your studies of physics. The following
steps briefly explain how a free-body diagram is created; we examine this strategy in more detail in Drawing Free-Body Diagrams.

1. Draw the object under consideration. If you are treating the object as a particle, represent the object as a point. Place this
point at the origin of an xy-coordinate system.

2. Include all forces that act on the object, representing these forces as vectors. However, do not include the net force on the
object or the forces that the object exerts on its environment.

3. Resolve all force vectors into x- and y-components.
4. Draw a separate free-body diagram for each object in the problem.

We illustrate this strategy with two examples of free-body diagrams (Figure ). The terms used in this figure are explained in
more detail later in the chapter.

Figure : In these free-body diagrams,  is the normal force,  is the weight of the object, and  is the friction.

The steps given here are sufficient to guide you in this important problem-solving strategy. The final section of this chapter
explains in more detail how to draw free-body diagrams when working with the ideas presented in this chapter.

Development of the Force Concept
A quantitative definition of force can be based on some standard force, just as distance is measured in units relative to a standard
length. One possibility is to stretch a spring a certain fixed distance (Figure ) and use the force it exerts to pull itself back to its
relaxed shape—called a restoring force—as a standard. The magnitude of all other forces can be considered as multiples of this
standard unit of force. Many other possibilities exist for standard forces. Some alternative definitions of force will be given later in
this chapter.
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Figure : The force exerted by a stretched spring can be used as a standard unit of force. (a) This spring has a length x when
undistorted. (b) When stretched a distance x , the spring exerts a restoring force  restore, which is reproducible. (c) A spring
scale is one device that uses a spring to measure force. The force  restore is exerted on whatever is attached to the hook. Here,
this force has a magnitude of six units of the force standard being employed.

Let’s analyze force more deeply. Suppose a physics student sits at a table, working diligently on his homework (Figure ).
What external forces act on him? Can we determine the origin of these forces?

Figure  : (a) The forces acting on the student are due to the chair, the table, the floor, and Earth’s gravitational attraction. (b) In
solving a problem involving the student, we may want to consider the forces acting along the line running through his torso. A free-
body diagram for this situation is shown.

In most situations, forces are grouped into two categories: contact forces and field forces. As you might guess, contact forces are
due to direct physical contact between objects. For example, the student in Figure  experiences the contact forces , , and 

, which are exerted by the chair on his posterior, the floor on his feet, and the table on his forearms, respectively. Field forces,
however, act without the necessity of physical contact between objects. They depend on the presence of a “field” in the region of
space surrounding the body under consideration. Since the student is in Earth’s gravitational field, he feels a gravitational force ;
in other words, he has weight.

You can think of a field as a property of space that is detectable by the forces it exerts. Scientists think there are only four
fundamental force fields in nature. These are the gravitational, electromagnetic, strong nuclear, and weak fields (we consider these
four forces in nature later in this text). As noted for  in Figure , the gravitational field is responsible for the weight of a body.
The forces of the electromagnetic field include those of static electricity and magnetism; they are also responsible for the attraction
among atoms in bulk matter. Both the strong nuclear and the weak force fields are effective only over distances roughly equal to a
length of scale no larger than an atomic nucleus (10  m). Their range is so small that neither field has influence in the
macroscopic world of Newtonian mechanics.

Contact forces are fundamentally electromagnetic. While the elbow of the student in Figure  is in contact with the tabletop,
the atomic charges in his skin interact electromagnetically with the charges in the surface of the table. The net (total) result is the
force . Similarly, when adhesive tape sticks to a piece of paper, the atoms of the tape are intermingled with those of the paper to
cause a net electromagnetic force between the two objects. However, in the context of Newtonian mechanics, the electromagnetic
origin of contact forces is not an important concern.

Vector Notation for Force
As previously discussed, force is a vector; it has both magnitude and direction. The SI unit of force is called the newton
(abbreviated N), and 1 N is the force needed to accelerate an object with a mass of 1 kg at a rate of 1 m/s : 1 N = 1 kg • m/s . An
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easy way to remember the size of a newton is to imagine holding a small apple; it has a weight of about 1 N.

We can thus describe a two-dimensional force in the form  = a  + b  (the unit vectors  and  indicate the direction of these
forces along the x-axis and the y-axis, respectively) and a three-dimensional force in the form  = a  + b  + c . In Figure ,
let’s suppose that ice skater 1, on the left side of the figure, pushes horizontally with a force of 30.0 N to the right; we represent this
as  = 30.0  N. Similarly, if ice skater 2 pushes with a force of 40.0 N in the positive vertical direction shown, we would write 

 = 40.0  N. The resultant of the two forces causes a mass to accelerate—in this case, the third ice skater. This resultant is called
the net external force  and is found by taking the vector sum of all external forces acting on an object or system (thus, we can
also represent net external force as ):

This equation can be extended to any number of forces.

In this example, we have  =  =  +  = 30.0  + 40.0 . The hypotenuse of the triangle shown in Figure  is the
resultant force, or net force. It is a vector. To find its magnitude (the size of the vector, without regard to direction), we use the rule
given in Vectors, taking the square root of the sum of the squares of the components:

The direction is given by

measured from the positive x-axis, as shown in the free-body diagram in Figure (b).

Let’s suppose the ice skaters now push the third ice skater with  = 3.0  + 8.0  N and  = 5.0  + 4.0  N. What is the
resultant of these two forces? We must recognize that force is a vector; therefore, we must add using the rules for vector addition:

Find the magnitude and direction of the net force in the ice skater example just given.

View this interactive simulation to learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum
them together. The magnitude, angle, and components of each vector can be displayed in several formats.

This page titled 6.2: Forces is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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6.3: Newton's First Law

Describe Newton's first law of motion
Recognize friction as an external force
Define inertia
Identify inertial reference frames
Calculate equilibrium for a system

Experience suggests that an object at rest remains at rest if left alone and that an object in motion tends to slow down and stop
unless some effort is made to keep it moving. However, Newton’s first law gives a deeper explanation of this observation.

A body at rest remains at rest or, if in motion, remains in motion at constant velocity unless acted on by a net external force.

Note the repeated use of the verb “remains.” We can think of this law as preserving the status quo of motion. Also note the
expression “constant velocity;” this means that the object maintains a path along a straight line, since neither the magnitude nor the
direction of the velocity vector changes. We can use Figure  to consider the two parts of Newton’s first law.

Figure : (a) A hockey puck is shown at rest; it remains at rest until an outside force such as a hockey stick changes its state of
rest; (b) a hockey puck is shown in motion; it continues in motion in a straight line until an outside force causes it to change its
state of motion. Although it is slick, an ice surface provides some friction that slows the puck.

Rather than contradicting our experience, Newton’s first law says that there must be a cause for any change in velocity (a change in
either magnitude or direction) to occur. This cause is a net external force, which we defined earlier in the chapter. An object sliding
across a table or floor slows down due to the net force of friction acting on the object. If friction disappears, will the object still
slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For example, consider what
happens to an object sliding along a rough horizontal surface. The object quickly grinds to a halt. If we spray the surface with
talcum powder to make the surface smoother, the object slides farther. If we make the surface even smoother by rubbing lubricating
oil on it, the object slides farther yet. Extrapolating to a frictionless surface and ignoring air resistance, we can imagine the object
sliding in a straight line indefinitely. Friction is thus the cause of slowing (consistent with Newton’s first law). The object would
not slow down if friction were eliminated.

Consider an air hockey table (Figure ). When the air is turned off, the puck slides only a short distance before friction slows it
to a stop. However, when the air is turned on, it creates a nearly frictionless surface, and the puck glides long distances without
slowing down. Additionally, if we know enough about the friction, we can accurately predict how quickly the object slows down.

Figure : An air hockey table is useful in illustrating Newton’s laws. When the air is off, friction quickly slows the puck; but
when the air is on, it minimizes contact between the puck and the hockey table, and the puck glides far down the table.
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Newton’s first law is general and can be applied to anything from an object sliding on a table to a satellite in orbit to blood pumped
from the heart. Experiments have verified that any change in velocity (speed or direction) must be caused by an external force. The
idea of generally applicable or universal laws is important—it is a basic feature of all laws of physics. Identifying these laws is
like recognizing patterns in nature from which further patterns can be discovered. The genius of Galileo, who first developed the
idea for the first law of motion, and Newton, who clarified it, was to ask the fundamental question: “What is the cause?” Thinking
in terms of cause and effect is fundamentally different from the typical ancient Greek approach, when questions such as “Why does
a tiger have stripes?” would have been answered in Aristotelian fashion, such as “That is the nature of the beast.” The ability to
think in terms of cause and effect is the ability to make a connection between an observed behavior and the surrounding world.

Gravitation and Inertia
Regardless of the scale of an object, whether a molecule or a subatomic particle, two properties remain valid and thus of interest to
physics: gravitation and inertia. Both are connected to mass. Roughly speaking, mass is a measure of the amount of matter in
something. Gravitation is the attraction of one mass to another, such as the attraction between yourself and Earth that holds your
feet to the floor. The magnitude of this attraction is your weight, and it is a force.

Mass is also related to inertia, the ability of an object to resist changes in its motion—in other words, to resist acceleration.
Newton’s first law is often called the law of inertia. As we know from experience, some objects have more inertia than others. It is
more difficult to change the motion of a large boulder than that of a basketball, for example, because the boulder has more mass
than the basketball. In other words, the inertia of an object is measured by its mass. The relationship between mass and weight is
explored later in this chapter.

Inertial Reference Frames
Earlier, we stated Newton’s first law as “A body at rest remains at rest or, if in motion, remains in motion at constant velocity
unless acted on by a net external force.” It can also be stated as “Every body remains in its state of uniform motion in a straight line
unless it is compelled to change that state by forces acting on it.” To Newton, “uniform motion in a straight line” meant constant
velocity, which includes the case of zero velocity, or rest. Therefore, the first law says that the velocity of an object remains
constant if the net force on it is zero.

Newton’s first law is usually considered to be a statement about reference frames. It provides a method for identifying a special
type of reference frame: the inertial reference frame. In principle, we can make the net force on a body zero. If its velocity
relative to a given frame is constant, then that frame is said to be inertial. So by definition, an inertial reference frame is a reference
frame in which Newton’s first law is valid. Newton’s first law applies to objects with constant velocity. From this fact, we can infer
the following statement.

A reference frame moving at constant velocity relative to an inertial frame is also inertial. A reference frame accelerating
relative to an inertial frame is not inertial.

Are inertial frames common in nature? It turns out that well within experimental error, a reference frame at rest relative to the most
distant, or “fixed,” stars is inertial. All frames moving uniformly with respect to this fixed-star frame are also inertial. For example,
a nonrotating reference frame attached to the Sun is, for all practical purposes, inertial, because its velocity relative to the fixed
stars does not vary by more than one part in 10 . Earth accelerates relative to the fixed stars because it rotates on its axis and
revolves around the Sun; hence, a reference frame attached to its surface is not inertial. For most problems, however, such a frame
serves as a sufficiently accurate approximation to an inertial frame, because the acceleration of a point on Earth’s surface relative to
the fixed stars is rather small (< 3.4 x 10 m/s ). Thus, unless indicated otherwise, we consider reference frames fixed on Earth to
be inertial.

Finally, no particular inertial frame is more special than any other. As far as the laws of nature are concerned, all inertial frames are
equivalent. In analyzing a problem, we choose one inertial frame over another simply on the basis of convenience.

Newton’s First Law and Equilibrium
Newton’s first law tells us about the equilibrium of a system, which is the state in which the forces on the system are balanced.
Returning to Forces and the ice skaters in Figure 5.2.2, we know that the forces  and  combine to form a resultant force, or
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the net external force:  =  =  + . To create equilibrium, we require a balancing force that will produce a net force of
zero. This force must be equal in magnitude but opposite in direction to , which means the vector must be . Referring to
the ice skaters, for which we found  to be 30.0  + 40.0  N, we can determine the balancing force by simply finding  =
−30.0  − 40.0  N. See the free-body diagram in Figure 5.2.2b.

We can give Newton’s first law in vector form:

This equation says that a net force of zero implies that the velocity  of the object is constant. (The word “constant” can indicate
zero velocity.)

Newton’s first law is deceptively simple. If a car is at rest, the only forces acting on the car are weight and the contact force of the
pavement pushing up on the car (Figure ). It is easy to understand that a nonzero net force is required to change the state of
motion of the car. However, if the car is in motion with constant velocity, a common misconception is that the engine force
propelling the car forward is larger in magnitude than the friction force that opposes forward motion. In fact, the two forces have
identical magnitude.

Figure : A car is shown (a) parked and (b) moving at constant velocity. How do Newton’s laws apply to the parked car? What
does the knowledge that the car is moving at constant velocity tell us about the net horizontal force on the car?

Newton’s laws can be applied to all physical processes involving force and motion, including something as mundane as driving
a car.

a. Your car is parked outside your house. Does Newton’s first law apply in this situation? Why or why not?
b. Your car moves at constant velocity down the street. Does Newton’s first law apply in this situation? Why or why not?

Strategy

In (a), we are considering the first part of Newton’s first law, dealing with a body at rest; in (b), we look at the second part of
Newton’s first law for a body in motion.

Solution
a. When your car is parked, all forces on the car must be balanced; the vector sum is 0 N. Thus, the net force is zero, and

Newton’s first law applies. The acceleration of the car is zero, and in this case, the velocity is also zero.
b. When your car is moving at constant velocity down the street, the net force must also be zero according to Newton’s first

law. The car’s engine produces a forward force; friction, a force between the road and the tires of the car that opposes
forward motion, has exactly the same magnitude as the engine force, producing the net force of zero. The body continues in
its state of constant velocity until the net force becomes nonzero. Realize that a net force of zero means that an object is
either at rest or moving with constant velocity, that is, it is not accelerating. What do you suppose happens when the
car accelerates? We explore this idea in the next section.

Significance
As this example shows, there are two kinds of equilibrium. In (a), the car is at rest; we say it is in static equilibrium. In (b),
the forces on the car are balanced, but the car is moving; we say that it is in dynamic equilibrium. (We examine this idea in
more detail in Static Equilibrium and Elasticity.) Again, it is possible for two (or more) forces to act on an object yet for the
object to move. In addition, a net force of zero cannot produce acceleration.

F ⃗ 
R F ⃗ 

net F ⃗ 
1 F ⃗ 

2

F ⃗ 
R −F ⃗ 

R

F ⃗ 
R î ĵ −F ⃗ 

R

î ĵ

= constant when = N .v ⃗  F ⃗ 
net 0⃗  (6.3.1)
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 Example 5.1: When Does Newton’s First Law Apply to Your Car?
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A skydiver opens his parachute, and shortly thereafter, he is moving at constant velocity. (a) What forces are acting on him? (b)
Which force is bigger?

Engage in this simulation to predict, qualitatively, how an external force will affect the speed and direction of an object’s
motion. Explain the effects with the help of a free-body diagram. Use free-body diagrams to draw position, velocity,
acceleration, and force graphs, and vice versa. Explain how the graphs relate to one another. Given a scenario or a graph,
sketch all four graphs.

This page titled 6.3: Newton's First Law is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

5.3: Newton's First Law by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-
1.
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6.4: Newton's Second Law

Distinguish between external and internal forces
Describe Newton's second law of motion
Explain the dependence of acceleration on net force and mass

Newton’s second law is closely related to his first law. It mathematically gives the cause-and-effect relationship between force and
changes in motion. Newton’s second law is quantitative and is used extensively to calculate what happens in situations involving a
force. Before we can write down Newton’s second law as a simple equation that gives the exact relationship of force, mass, and
acceleration, we need to sharpen some ideas we mentioned earlier.

Force and Acceleration
First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A change in
velocity means, by definition, that there is acceleration. Newton’s first law says that a net external force causes a change in motion; thus,
we see that a net external force causes nonzero acceleration.

We defined external force in Forces as force acting on an object or system that originates outside of the object or system. Let’s consider
this concept further. An intuitive notion of external is correct—it is outside the system of interest. For example, in Figure , the
system of interest is the car plus the person within it. The two forces exerted by the two students are external forces. In contrast, an
internal force acts between elements of the system. Thus, the force the person in the car exerts to hang on to the steering wheel is an
internal force between elements of the system of interest. Only external forces affect the motion of a system, according to Newton’s first
law. (The internal forces cancel each other out, as explained in the next section.) Therefore, we must define the boundaries of the system
before we can determine which forces are external. Sometimes, the system is obvious, whereas at other times, identifying the boundaries
of a system is more subtle. The concept of a system is fundamental to many areas of physics, as is the correct application of Newton’s
laws. This concept is revisited many times in the study of physics.

Figure : Different forces exerted on the same mass produce different accelerations. (a) Two students push a stalled car. All external
forces acting on the car are shown. (b) The forces acting on the car are transferred to a coordinate plane (free-body diagram) for simpler
analysis. (c) The tow truck can produce greater external force on the same mass, and thus greater acceleration.

From this example, you can see that different forces exerted on the same mass produce different accelerations. In Figure , the two
students push a car with a driver in it. Arrows representing all external forces are shown. The system of interest is the car and its driver.
The weight  of the system and the support of the ground  are also shown for completeness and are assumed to cancel (because there
was no vertical motion and no imbalance of forces in the vertical direction to create a change in motion). The vector  represents the
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friction acting on the car, and it acts to the left, opposing the motion of the car. (We discuss friction in more detail in the next chapter.) In
Figure , all external forces acting on the system add together to produce the net force . The free-body diagram shows all of
the forces acting on the system of interest. The dot represents the center of mass of the system. Each force vector extends from this dot.
Because there are two forces acting to the right, the vectors are shown collinearly. Finally, in Figure , a larger net external force
produces a larger acceleration ( ) when the tow truck pulls the car.

It seems reasonable that acceleration would be directly proportional to and in the same direction as the net external force acting on a
system. This assumption has been verified experimentally and is illustrated in Figure . To obtain an equation for Newton’s second
law, we first write the relationship of acceleration  and net external force  as the proportionality

where the symbol  means “proportional to.” (Recall from Forces that the net external force is the vector sum of all external forces and
is sometimes indicated as .) This proportionality shows what we have said in words—acceleration is directly proportional to net
external force. Once the system of interest is chosen, identify the external forces and ignore the internal ones. It is a tremendous
simplification to disregard the numerous internal forces acting between objects within the system, such as muscular forces within the
students’ bodies, let alone the myriad forces between the atoms in the objects. Still, this simplification helps us solve some complex
problems.

It also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other words, the larger the mass
(the inertia), the smaller the acceleration produced by a given force. As illustrated in Figure , the same net external force applied to
a basketball produces a much smaller acceleration when it is applied to an SUV. The proportionality is written as

where m is the mass of the system and a is the magnitude of the acceleration. Experiments have shown that acceleration is exactly
inversely proportional to mass, just as it is directly proportional to net external force.

Figure : The same force exerted on systems of different masses produces different accelerations. (a) A basketball player pushes on
a basketball to make a pass. (Ignore the effect of gravity on the ball.) (b) The same player exerts an identical force on a stalled SUV and
produces far less acceleration. (c) The free-body diagrams are identical, permitting direct comparison of the two situations. A series of
patterns for free-body diagrams will emerge as you do more problems and learn how to draw them in Drawing Free-Body Diagrams.

It has been found that the acceleration of an object depends only on the net external force and the mass of the object. Combining the two
proportionalities just given yields Newton’s second law.

The acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system and
is inversely proportion to its mass. In equation form, Newton’s second law is

where  is the acceleration,  is the net force, and m is the mass. This is often written in the more familiar form

but the first equation gives more insight into what Newton’s second law means. When only the magnitude of force and acceleration
are considered, this equation can be written in the simpler scalar form:
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The law is a cause-and-effect relationship among three quantities that is not simply based on their definitions. The validity of the second
law is based on experimental verification. The free-body diagram, which you will learn to draw in Drawing Free-Body Diagrams, is the
basis for writing Newton’s second law.

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 lb.) parallel to the ground
(Figure ). The mass of the mower is 24 kg. What is its acceleration?

Figure : (a) The net force on a lawn mower is 51 N to the right. At what rate does the lawn mower accelerate to the right? (b)
The free-body diagram for this problem is shown.

Strategy

This problem involves only motion in the horizontal direction; we are also given the net force, indicated by the single vector, but we
can suppress the vector nature and concentrate on applying Newton’s second law. Since F  and m are given, the acceleration can
be calculated directly from Newton’s second law as F  = ma.

Solution
The magnitude of the acceleration a is a = . Entering known values gives

Substituting the unit of kilograms times meters per square second for newtons yields

Significance
The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground. This is a result of the
vector relationship expressed in Newton’s second law, that is, the vector representing net force is the scalar multiple of the
acceleration vector. There is no information given in this example about the individual external forces acting on the system, but we
can say something about their relative magnitudes. For example, the force exerted by the person pushing the mower must be greater
than the friction opposing the motion (since we know the mower moved forward), and the vertical forces must cancel because no
acceleration occurs in the vertical direction (the mower is moving only horizontally). The acceleration found is small enough to be
reasonable for a person pushing a mower. Such an effort would not last too long, because the person’s top speed would soon be
reached.

At the time of its launch, the HMS Titanic was the most massive mobile object ever built, with a mass of 6.0 x 10  kg. If a force of
6 MN (6 x 10  N) was applied to the ship, what acceleration would it experience?

In the preceding example, we dealt with net force only for simplicity. However, several forces act on the lawn mower. The weight 
(discussed in detail in Mass and Weight) pulls down on the mower, toward the center of Earth; this produces a contact force on the
ground. The ground must exert an upward force on the lawn mower, known as the normal force , which we define in Common Forces.
These forces are balanced and therefore do not produce vertical acceleration. In the next example, we show both of these forces. As you
continue to solve problems using Newton’s second law, be sure to show multiple forces.

= ma.F ⃗ 
net (6.4.5)

 Example 5.2: What Acceleration Can a Person Produce When Pushing a Lawn Mower?
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a. The car shown in Figure  is moving at a constant speed. Which force is bigger,  or ? Explain.
b. The same car is now accelerating to the right. Which force is bigger,  or ? Explain.

Figure : A car is shown (a) moving at constant speed and (b) accelerating. How do the forces acting on the car compare in each
case? (a) What does the knowledge that the car is moving at constant velocity tell us about the net horizontal force on the car
compared to the friction force? (b) What does the knowledge that the car is accelerating tell us about the horizontal force on the car
compared to the friction force?

Strategy

We must consider Newton’s first and second laws to analyze the situation. We need to decide which law applies; this, in turn, will
tell us about the relationship between the forces.

Solution
a. The forces are equal. According to Newton’s first law, if the net force is zero, the velocity is constant.
b. In this case,  must be larger than . According to Newton’s second law, a net force is required to cause

acceleration.

Significance
These questions may seem trivial, but they are commonly answered incorrectly. For a car or any other object to move, it must be
accelerated from rest to the desired speed; this requires that the engine force be greater than the friction force. Once the car is
moving at constant velocity, the net force must be zero; otherwise, the car will accelerate (gain speed). To solve problems involving
Newton’s laws, we must understand whether to apply Newton’s first law (where  = ) or Newton’s second law (where  is
not zero). This will be apparent as you see more examples and attempt to solve problems on your own.

Before manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects
at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets.

Calculate the magnitude of force exerted by each rocket, called its thrust T, for the four-rocket propulsion system shown in Figure 
. The sled’s initial acceleration is 49 m/s , the mass of the system is 2100 kg, and the force of friction opposing the motion is

650 N.

 Example 5.3: Which Force Is Bigger?
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 Example 5.4: What Rocket Thrust Accelerates This Sled?
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Figure : A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T. The system
here is the sled, its rockets, and its rider, so none of the forces between these objects are considered. The arrow representing friction
( ) is drawn larger than scale.

Strategy

Although forces are acting both vertically and horizontally, we assume the vertical forces cancel because there is no vertical
acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus
or minus signs, with right taken as the positive direction. See the free-body diagram in Figure .

Solution
Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust
of the engines. We have defined the direction of the force and acceleration as acting “to the right,” so we need to consider only the
magnitudes of these quantities in the calculations. Hence we begin with

where F  is the net force along the horizontal direction. We can see from the figure that the engine thrusts add, whereas friction
opposes the thrust. In equation form, the net external force is

Substituting this into Newton’s second law gives us

Using a little algebra, we solve for the total thrust 4T:

Substituting known values yields

Therefore, the total thrust is

Significance
The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s to test the
limits of human endurance, and the setup was designed to protect human subjects in jet fighter emergency ejections. Speeds of 1000
km/h were obtained, with accelerations of 45 g’s. (Recall that g, acceleration due to gravity, is 9.80 m/s . When we say that
acceleration is 45 g’s, it is 45 x 9.8 m/s , which is approximately 440 m/s .) Although living subjects are not used anymore, land
speeds of 10,000 km/h have been obtained with a rocket sled.

In this example, as in the preceding one, the system of interest is obvious. We see in later examples that choosing the system of
interest is crucial—and the choice is not always obvious.

Newton’s second law is more than a definition; it is a relationship among acceleration, force, and mass. It can help us make
predictions. Each of those physical quantities can be defined independently, so the second law tells us something basic and
universal about nature.
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A 550-kg sports car collides with a 2200-kg truck, and during the collision, the net force on each vehicle is the force exerted by the
other. If the magnitude of the truck’s acceleration is 10 m/s , what is the magnitude of the sports car’s acceleration?

Component Form of Newton’s Second Law
We have developed Newton’s second law and presented it as a vector equation in Equation . This vector equation can be written as
three component equations:

The second law is a description of how a body responds mechanically to its environment. The influence of the environment is the net
force , the body’s response is the acceleration , and the strength of the response is inversely proportional to the mass m. The larger
the mass of an object, the smaller its response (its acceleration) to the influence of the environment (a given net force). Therefore, a
body’s mass is a measure of its inertia, as we explained in Newton’s First Law.

A 0.400-kg soccer ball is kicked across the field by a player; it undergoes acceleration given by  = 3.00  + 7.00  m/s . Find (a)
the resultant force acting on the ball and (b) the magnitude and direction of the resultant force.

Strategy

The vectors in  and  format, which indicate force direction along the x-axis and the y-axis, respectively, are involved, so we apply
Newton’s second law in vector form.

Solution
a. We apply Newton’s second law:

b. . Magnitude and direction are found using the components of :

Significance
We must remember that Newton’s second law is a vector equation. In (a), we are multiplying a vector by a scalar to determine the
net force in vector form. While the vector form gives a compact representation of the force vector, it does not tell us how “big” it is,
or where it goes, in intuitive terms. In (b), we are determining the actual size (magnitude) of this force and the direction in which it
travels.

Find the mass of a car if a net force of −600.0  N produces an acceleration of −0.2  m/s .

Strategy

Vector division is not defined, so  cannot be performed. However, mass m is a scalar, so we can use the scalar form of

Newton’s second law, .

Solution
We use m =  and substitute the magnitudes of the two vectors: F  = 600.0 N and a = 0.2 m/s . Therefore,

Significance
Force and acceleration were given in the  and  format, but the answer, mass m, is a scalar and thus is not given in  and  form.
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Several Forces on a Particle A particle of mass m = 4.0 kg is acted upon by four forces of magnitudes. F  = 10.0 N, F  = 40.0 N, F
= 5.0 N, and F  = 2.0 N, with the directions as shown in the free-body diagram in Figure . What is the acceleration of the
particle?

Figure : Four forces in the xy-plane are applied to a 4.0-kg particle.

Strategy

Because this is a two-dimensional problem, we must use a free-body diagram. First,  must be resolved into x- and y-components.
We can then apply the second law in each direction.

Solution
We draw a free-body diagram as shown in Figure . Now we apply Newton’s second law. We consider all vectors resolved into
x- and y-components:

Thus, the net acceleration is

which is a vector of magnitude 8.4 m/s  directed at 276° to the positive x-axis.

Significance
Numerous examples in everyday life can be found that involve three or more forces acting on a single object, such as cables running
from the Golden Gate Bridge or a football player being tackled by three defenders. We can see that the solution of this example is
just an extension of what we have already done.

A car has forces acting on it, as shown below. The mass of the car is 1000.0 kg. The road is slick, so friction can be ignored. (a)
What is the net force on the car? (b) What is the acceleration of the car?

 Example 5.7
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Newton’s Second Law and Momentum
Newton actually stated his second law in terms of momentum: “The instantaneous rate at which a body’s momentum changes is equal to
the net force acting on the body.” (“Instantaneous rate” implies that the derivative is involved.) This can be given by the vector equation

This means that Newton’s second law addresses the central question of motion: What causes a change in motion of an object?
Momentum was described by Newton as “quantity of motion,” a way of combining both the velocity of an object and its mass. We
devote Linear Momentum and Collisions to the study of momentum.

For now, it is sufficient to define momentum  as the product of the mass of the object m and its velocity :

Since velocity is a vector, so is momentum.

It is easy to visualize momentum. A train moving at 10 m/s has more momentum than one that moves at 2 m/s. In everyday life, we
speak of one sports team as “having momentum” when they score points against the opposing team.

If we substitute Equation  into Equation , we obtain

When m is constant, we have

Thus, we see that the momentum form of Newton’s second law reduces to the form given earlier in this section.

Explore the forces at work when pulling a cart or pushing a refrigerator, crate, or person. Create an applied force and see how it
makes objects move. Put an object on a ramp and see how it affects its motion.

This page titled 6.4: Newton's Second Law is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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6.5: Mass and Weight

Explain the difference between mass and weight
Explain why falling objects on Earth are never truly in free fall
Describe the concept of weightlessness

Mass and weight are often used interchangeably in everyday conversation. For example, our medical records often show our weight
in kilograms but never in the correct units of newtons. In physics, however, there is an important distinction. Weight is the pull of
Earth on an object. It depends on the distance from the center of Earth. Unlike weight, mass does not vary with location. The mass
of an object is the same on Earth, in orbit, or on the surface of the Moon.

Units of Force
The equation F  = ma is used to define net force in terms of mass, length, and time. As explained earlier, the SI unit of force is the
newton. Since F  = ma,

Although almost the entire world uses the newton for the unit of force, in the United States, the most familiar unit of force is the
pound (lb), where 1 N = 0.225 lb. Thus, a 225-lb person weighs 1000 N.

Weight and Gravitational Force
When an object is dropped, it accelerates toward the center of Earth. Newton’s second law says that a net force on an object is
responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly
called its weight , or its force due to gravity acting on an object of mass m. Weight can be denoted as a vector because it has a
direction; down is, by definition, the direction of gravity, and hence, weight is a downward force. The magnitude of weight is
denoted as w. Galileo was instrumental in showing that, in the absence of air resistance, all objects fall with the same acceleration
g. Using Galileo’s result and Newton’s second law, we can derive an equation for weight.

Consider an object with mass m falling toward Earth. It experiences only the downward force of gravity, which is the weight .
Newton’s second law says that the magnitude of the net external force on an object is . We know that the acceleration
of an object due to gravity is , or . Substituting these into Newton’s second law gives us the following equations.

The gravitational force on a mass is its weight. We can write this in vector form, where  is weight and m is mass, as

In scalar form, we can write

Since g = 9.80 m/s  on Earth, the weight of a 1.00-kg object on Earth is 9.80 N:

When the net external force on an object is its weight, we say that it is in free fall, that is, the only force acting on the object is
gravity. However, when objects on Earth fall downward, they are never truly in free fall because there is always some upward
resistance force from the air acting on the object.

Acceleration due to gravity g varies slightly over the surface of Earth, so the weight of an object depends on its location and is not
an intrinsic property of the object. Weight varies dramatically if we leave Earth’s surface. On the Moon, for example, acceleration
due to gravity is only 1.67 m/s . A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on the Moon.

 Learning Objectives
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The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it from the nearest large
body, such as Earth, the Moon, or the Sun. This is the most common and useful definition of weight in physics. It differs
dramatically, however, from the definition of weight used by NASA and the popular media in relation to space travel and
exploration. When they speak of “weightlessness” and “microgravity,” they are referring to the phenomenon we call “free fall” in
physics. We use the preceding definition of weight, force  due to gravity acting on an object of mass m, and we make careful
distinctions between free fall and actual weightlessness.

Be aware that weight and mass are different physical quantities, although they are closely related. Mass is an intrinsic property of
an object: It is a quantity of matter. The quantity or amount of matter of an object is determined by the numbers of atoms and
molecules of various types it contains. Because these numbers do not vary, in Newtonian physics, mass does not vary; therefore, its
response to an applied force does not vary. In contrast, weight is the gravitational force acting on an object, so it does vary
depending on gravity. For example, a person closer to the center of Earth, at a low elevation such as New Orleans, weighs slightly
more than a person who is located in the higher elevation of Denver, even though they may have the same mass.

It is tempting to equate mass to weight, because most of our examples take place on Earth, where the weight of an object varies
only a little with the location of the object. In addition, it is difficult to count and identify all of the atoms and molecules in an
object, so mass is rarely determined in this manner. If we consider situations in which  is a constant on Earth, we see that weight 

 is directly proportional to mass m, since , that is, the more massive an object is, the more it weighs. Operationally, the
masses of objects are determined by comparison with the standard kilogram, as we discussed in Units and Measurement. But by
comparing an object on Earth with one on the Moon, we can easily see a variation in weight but not in mass. For instance, on Earth,
a 5.0-kg object weighs 49 N; on the Moon, where g is 1.67 m/s , the object weighs 8.4 N. However, the mass of the object is still
5.0 kg on the Moon.

A farmer is lifting some moderately heavy rocks from a field to plant crops. He lifts a stone that weighs 40.0 lb. (about 180 N).
What force does he apply if the stone accelerates at a rate of 1.5 m/s ?

Strategy

We were given the weight of the stone, which we use in finding the net force on the stone. However, we also need to know its
mass to apply Newton’s second law, so we must apply the equation for weight, w = mg, to determine the mass.

Solution
No forces act in the horizontal direction, so we can concentrate on vertical forces, as shown in the following free-body
diagram. We label the acceleration to the side; technically, it is not part of the free-body diagram, but it helps to remind us that
the object accelerates upward (so the net force is upward).

Significance

w⃗ 

g ⃗ 

w⃗  = mw⃗  g ⃗ 

2

 Example : Clearing a Field6.5.1

2

w = mg

m = = = 18 kg
w

g

180 N

9.8 m/s2

∑F = ma

F −w = ma

F −180 N = (18 kg)(1.5 m/ )s
2

F −180 N = 27 N

F = 207 N = 210 N  to two significant figures

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/45998?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/01%3A_Units_and_Measurement


6.5.3 https://phys.libretexts.org/@go/page/45998

To apply Newton’s second law as the primary equation in solving a problem, we sometimes have to rely on other equations,
such as the one for weight or one of the kinematic equations, to complete the solution.

For , find the acceleration when the farmer’s applied force is 230.0 N

Can you avoid the boulder field and land safely just before your fuel runs out, as Neil Armstrong did in 1969? This version of
the classic video game accurately simulates the real motion of the lunar lander, with the correct mass, thrust, fuel consumption
rate, and lunar gravity. The real lunar lander is hard to control.

This page titled 6.5: Mass and Weight is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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6.6: Newton’s Third Law

State Newton’s third law of motion
Identify the action and reaction forces in different situations
Apply Newton’s third law to define systems and solve problems of motion

We have thus far considered force as a push or a pull; however, if you think about it, you realize that no push or pull ever occurs by
itself. When you push on a wall, the wall pushes back on you. This brings us to Newton’s third law.

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite
in direction to the force that it exerts. Mathematically, if a body A exerts a force  on body B, then B simultaneously exerts a
force  on A, or in vector equation form,

Newton’s third law represents a certain symmetry in nature: Forces always occur in pairs, and one body cannot exert a force on
another without experiencing a force itself. We sometimes refer to this law loosely as “action-reaction,” where the force exerted is
the action and the force experienced as a consequence is the reaction. Newton’s third law has practical uses in analyzing the origin
of forces and understanding which forces are external to a system.

We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off the
side of a pool (Figure ). She pushes against the wall of the pool with her feet and accelerates in the direction opposite that of
her push. The wall has exerted an equal and opposite force on the swimmer. You might think that two equal and opposite forces
would cancel, but they do not because they act on different systems. In this case, there are two systems that we could investigate:
the swimmer and the wall. If we select the swimmer to be the system of interest, as in the figure, then F  is an external
force on this system and affects its motion. The swimmer moves in the direction of this force. In contrast, the force F   acts
on the wall, not on our system of interest. Thus, F does not directly affect the motion of the system and does not cancel
F . The swimmer pushes in the direction opposite that in which she wishes to move. The reaction to her push is thus in the
desired direction. In a free-body diagram, such as the one shown in Figure , we never include both forces of an action-reaction
pair; in this case, we only use F , not F .

Figure : When the swimmer exerts a force on the wall, she accelerates in the opposite direction; in other words, the net
external force on her is in the direction opposite of F . This opposition occurs because, in accordance with Newton’s third
law, the wall exerts a force F  on the swimmer that is equal in magnitude but in the direction opposite to the one she exerts
on it. The line around the swimmer indicates the system of interest. Thus, the free-body diagram shows only F , w (the
gravitational force), and BF, which is the buoyant force of the water supporting the swimmer’s weight. The vertical forces w and
BF cancel because there is no vertical acceleration.

Other examples of Newton’s third law are easy to find:

As a professor paces in front of a whiteboard, he exerts a force backward on the floor. The floor exerts a reaction force forward
on the professor that causes him to accelerate forward.
A car accelerates forward because the ground pushes forward on the drive wheels, in reaction to the drive wheels pushing
backward on the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw the
rocks backward.

 Learning Objectives
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Rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large backward force on the
gas in the rocket combustion chamber; therefore, the gas exerts a large reaction force forward on the rocket. This reaction force,
which pushes a body forward in response to a backward force, is called thrust. It is a common misconception that rockets
propel themselves by pushing on the ground or on the air behind them. They actually work better in a vacuum, where they can
more readily expel the exhaust gases.
Helicopters create lift by pushing air down, thereby experiencing an upward reaction force.
Birds and airplanes also fly by exerting force on the air in a direction opposite that of whatever force they need. For example,
the wings of a bird force air downward and backward to get lift and move forward.
An octopus propels itself in the water by ejecting water through a funnel from its body, similar to a jet ski.
When a person pulls down on a vertical rope, the rope pulls up on the person (Figure ).

Figure : When the mountain climber pulls down on the rope, the rope pulls up on the mountain climber.

There are two important features of Newton’s third law. First, the forces exerted (the action and reaction) are always equal in
magnitude but opposite in direction. Second, these forces are acting on different bodies or systems: A’s force acts on B and B’s
force acts on A. In other words, the two forces are distinct forces that do not act on the same body. Thus, they do not cancel each
other.

For the situation shown in Figure 5.2.5, the third law indicates that because the chair is pushing upward on the boy with force , he
is pushing downward on the chair with force . Similarly, he is pushing downward with forces  and  on the floor and
table, respectively. Finally, since Earth pulls downward on the boy with force , he pulls upward on Earth with force . If that
student were to angrily pound the table in frustration, he would quickly learn the painful lesson (avoidable by studying Newton’s
laws) that the table hits back just as hard.

A person who is walking or running applies Newton’s third law instinctively. For example, the runner in Figure  pushes
backward on the ground so that it pushes him forward.

Figure : The runner experiences Newton’s third law. (a) A force is exerted by the runner on the ground. (b) The reaction force
of the ground on the runner pushes him forward.

The package in Figure  is sitting on a scale. The forces on the package are , which is due to the scale, and , which is
due to Earth’s gravitational field. The reaction forces that the package exerts are  on the scale and  on Earth. Because the
package is not accelerating, application of the second law yields

6.6.2

6.6.2

C ⃗ 

−C ⃗  −F ⃗  −T ⃗ 

w⃗  −w⃗ 

6.6.3

6.6.3

 Example 5.9: Forces on a Stationary Object
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so

Thus, the scale reading gives the magnitude of the package’s weight. However, the scale does not measure the weight of the
package; it measures the force  on its surface. If the system is accelerating,  and  would not be equal, as explained in
Applications of Newton’s Laws.

Figure : (a) The forces on a package sitting on a scale, along with their reaction forces. The force  is the weight of the
package (the force due to Earth’s gravity) and  is the force of the scale on the package. (b) Isolation of the package-scale
system and the package-Earth system makes the action and reaction pairs clear.

A physics professor pushes a cart of demonstration equipment to a lecture hall (Figure ). Her mass is 65.0 kg, the cart’s
mass is 12.0 kg, and the equipment’s mass is 7.0 kg. Calculate the acceleration produced when the professor exerts a backward
force of 150 N on the floor. All forces opposing the motion, such as friction on the cart’s wheels and air resistance, total 24.0
N.

Figure : A professor pushes the cart with her demonstration equipment. The lengths of the arrows are proportional to the
magnitudes of the forces (except for , because it is too small to drawn to scale). System 1 is appropriate for this example,
because it asks for the acceleration of the entire group of objects. Only  and  are external forces acting on System 1
along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for the next example so
that  is an external force and enters into Newton’s second law. The free-body diagrams, which serve as the basis for
Newton’s second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in Figure .
The professor pushes backward with a force F of 150 N. According to Newton’s third law, the floor exerts a forward
reaction force F  of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force in the vertical

= .S ⃗  w⃗  (6.6.3)

−S ⃗  S ⃗  −w⃗ 
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 Example 5.10: Getting Up to Speed: Choosing the Correct System
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direction. Therefore, the problem is one-dimensional along the horizontal direction. As noted, friction f opposes the motion and
is thus in the opposite direction of F . We do not include the forces F  or F  because these are internal forces, and we do
not include F  because it acts on the floor, not on the system. There are no other significant forces acting on System 1. If the
net external force can be found from all this information, we can use Newton’s second law to find the acceleration as
requested. See the free-body diagram in the figure.

Solution
Newton’s second law is given by

The net external force on System 1 is deduced from Figure  and the preceding discussion to be

The mass of System 1 is

These values of F and m produce an acceleration of

Significance
None of the forces between components of System 1, such as between the professor’s hands and the cart, contribute to the net
external force because they are internal to System 1. Another way to look at this is that forces between components of a system
cancel because they are equal in magnitude and opposite in direction. For example, the force exerted by the professor on the
cart results in an equal and opposite force back on the professor. In this case, both forces act on the same system and therefore
cancel. Thus, internal forces (between components of a system) cancel. Choosing System 1 was crucial to solving this problem.

Calculate the force the professor exerts on the cart in Figure , using data from the previous example if needed.

Strategy

If we define the system of interest as the cart plus the equipment (System 2 in Figure ), then the net external force on
System 2 is the force the professor exerts on the cart minus friction. The force she exerts on the cart, F , is an external force
acting on System 2. F was internal to System 1, but it is external to System 2 and thus enters Newton’s second law for this
system.

Solution
Newton’s second law can be used to find F . We start with

The magnitude of the net external force on System 2 is

We solve for F , the desired quantity:

The value of f is given, so we must calculate net F . That can be done because both the acceleration and the mass of System 2
are known. Using Newton’s second law, we see that

floor prof cart

foot

a = .
Fnet

m
(6.6.4)

6.6.5

= −f = 150 N −24.0 N = 126 N .Fnet Ffloor (6.6.5)

m = (65.0 +12.0 +7.0) kg = 84 kg. (6.6.6)
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m
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 Example 5.11: Force on the Cart: Choosing a New System
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where the mass of System 2 is 19.0 kg (m = 12.0 kg + 7.0 kg) and its acceleration was found to be a = 1.5 m/s  in the previous
example. Thus,

Now we can find the desired force:

Significance
This force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of that 150-N force is
transmitted to the cart; some of it accelerates the professor. The choice of a system is an important analytical step both in
solving problems and in thoroughly understanding the physics of the situation (which are not necessarily the same things).

Two blocks are at rest and in contact on a frictionless surface as shown below, with m  = 2.0 kg, m  = 6.0 kg, and applied force
24 N. (a) Find the acceleration of the system of blocks. (b) Suppose that the blocks are later separated. What force will give the
second block, with the mass of 6.0 kg, the same acceleration as the system of blocks?

View this video to watch examples of action and reaction. View this video to watch examples of Newton’s laws and internal
and external forces.

This page titled 6.6: Newton’s Third Law is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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= ma = (19.0 kg)(1.5 m/ ) = 29 N .Fnet s2 (6.6.12)
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6.7: Common Forces

Define normal and tension forces
Distinguish between real and fictitious forces
Apply Newton’s laws of motion to solve problems involving a variety of forces

Forces are given many names, such as push, pull, thrust, and weight. Traditionally, forces have been grouped into several categories
and given names relating to their source, how they are transmitted, or their effects. Several of these categories are discussed in this
section, together with some interesting applications. Further examples of forces are discussed later in this text.

A Catalog of Forces: Normal, Tension, and Other Examples of Forces
A catalog of forces will be useful for reference as we solve various problems involving force and motion. These forces include
normal force, tension, friction, and spring force.

Normal force

Weight (also called the force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an object from
falling. You must support the weight of a heavy object by pushing up on it when you hold it stationary, as illustrated in Figure 

(a). But how do inanimate objects like a table support the weight of a mass placed on them, such as shown in Figure (b)?
When the bag of dog food is placed on the table, the table sags slightly under the load. This would be noticeable if the load were
placed on a card table, but even a sturdy oak table deforms when a force is applied to it. Unless an object is deformed beyond its
limit, it will exert a restoring force much like a deformed spring (or a trampoline or diving board). The greater the deformation, the
greater the restoring force. Thus, when the load is placed on the table, the table sags until the restoring force becomes as large as
the weight of the load. At this point, the net external force on the load is zero. That is the situation when the load is stationary on
the table. The table sags quickly and the sag is slight, so we do not notice it. But it is similar to the sagging of a trampoline when
you climb onto it.

Figure : (a) The person holding the bag of dog food must supply an upward force  hand equal in magnitude and opposite in
direction to the weight of the food  so that it doesn’t drop to the ground. (b) The card table sags when the dog food is placed on it,
much like a stiff trampoline. Elastic restoring forces in the table grow as it sags until they supply a force  equal in magnitude and
opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the weight of the load,
as we assumed in a few of the previous examples. If the force supporting the weight of an object, or a load, is perpendicular to the
surface of contact between the load and its support, this force is defined as a normal force and here is given by the symbol .
(This is not the newton unit for force, or N.) The word normal means perpendicular to a surface. This means that the normal force
experienced by an object resting on a horizontal surface can be expressed in vector form as follows:
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In scalar form, this becomes

The normal force can be less than the object’s weight if the object is on an incline.

Consider the skier on the slope in Figure . Her mass including equipment is 60.0 kg. (a) What is her acceleration if
friction is negligible? (b) What is her acceleration if friction is 45.0 N?

Figure : Since the acceleration is parallel to the slope and acting down the slope, it is most convenient to project all forces
onto a coordinate system where one axis is parallel to the slope and the other is perpendicular to it (axes shown to the left of
the skier).  is perpendicular to the slope and  is parallel to the slope, but  has components along both axes, namely, w
and w . Here,  has a squiggly line to show that it has been replaced by these components. The force  is equal in magnitude
to w , so there is no acceleration perpendicular to the slope, but f is less than w , so there is a downslope acceleration (along
the axis parallel to the slope).

Strategy

This is a two-dimensional problem, since not all forces on the skier (the system of interest) are parallel. The approach we have
used in two-dimensional kinematics also works well here. Choose a convenient coordinate system and project the vectors onto
its axes, creating two one-dimensional problems to solve. The most convenient coordinate system for motion on an incline is
one that has one coordinate parallel to the slope and one perpendicular to the slope. (Motions along mutually perpendicular
axes are independent.) We use x and y for the parallel and perpendicular directions, respectively. This choice of axes simplifies
this type of problem, because there is no motion perpendicular to the slope and the acceleration is downslope. Regarding the
forces, friction is drawn in opposition to motion (friction always opposes forward motion) and is always parallel to the slope,
w  is drawn parallel to the slope and downslope (it causes the motion of the skier down the slope), and w  is drawn as the
component of weight perpendicular to the slope. Then, we can consider the separate problems of forces parallel to the slope
and forces perpendicular to the slope.

Solution
The magnitude of the component of weight parallel to the slope is

and the magnitude of the component of the weight perpendicular to the slope is

a. Neglect friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the slope. (Forces
perpendicular to the slope add to zero, since there is no acceleration in that direction.) The forces parallel to the slope are
the component of the skier’s weight parallel to slope w  and friction f. Using Newton’s second law, with subscripts to
denote quantities parallel to the slope,

where F  = w  - mg sin 25°, assuming no friction for this part. Therefore,

N = mg.
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is the acceleration.
b. Include friction. We have a given value for friction, and we know its direction is parallel to the slope and it opposes motion

between surfaces in contact. So the net external force is

Substituting this into Newton’s second law, , gives

We substitute known values to obtain

This give us

which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Significance
Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is
none. It is a general result that if friction on an incline is negligible, then the acceleration down the incline is a = g sin ,
regardless of mass. As discussed previously, all objects fall with the same acceleration in the absence of air resistance.
Similarly, all objects, regardless of mass, slide down a frictionless incline with the same acceleration (if the angle is the same).

When an object rests on an incline that makes an angle  with the horizontal, the force of gravity acting on the object is divided
into two components: a force acting perpendicular to the plane, wy , and a force acting parallel to the plane, wx (Figure ). The
normal force  is typically equal in magnitude and opposite in direction to the perpendicular component of the weight w . The
force acting parallel to the plane, w , causes the object to accelerate down the incline.

Figure : An object rests on an incline that makes an angle θ with the horizontal.

Be careful when resolving the weight of the object into components. If the incline is at an angle θ to the horizontal, then the
magnitudes of the weight components are

and

We use the second equation to write the normal force experienced by an object resting on an inclined plane:

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, we draw the right angle
formed by the three weight vectors. The angle  of the incline is the same as the angle formed between w and w . Knowing this
property, we can use trigonometry to determine the magnitude of the weight components:

= = = g sinax
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A force of 1150 N acts parallel to a ramp to push a 250-kg gun safe into a moving van. The ramp is frictionless and inclined at
17°. (a) What is the acceleration of the safe up the ramp? (b) If we consider friction in this problem, with a friction force of 120
N, what is the acceleration of the safe?

Tension

A tension is a force along the length of a medium; in particular, it is a pulling force that acts along a stretched flexible connector,
such as a rope or cable. The word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords
that carry muscle forces to other parts of the body are called tendons. Any flexible connector, such as a string, rope, chain, wire, or
cable, can only exert a pull parallel to its length; thus, a force carried by a flexible connector is a tension with a direction parallel to
the connector. Tension is a pull in a connector. Consider the phrase: “You can’t push a rope.” Instead, tension force pulls outward
along the two ends of a rope. Consider a person holding a mass on a rope, as shown in Figure . If the 5.00-kg mass in the
figure is stationary, then its acceleration is zero and the net force is zero. The only external forces acting on the mass are its weight
and the tension supplied by the rope. Thus,

where T and w are the magnitudes of the tension and weight, respectively, and their signs indicate direction, with up being positive.
As we proved using Newton’s second law, the tension equals the weight of the supported mass:

Thus, for a 5.00-kg mass (neglecting the mass of the rope), we see that

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct
observation and measure of the tension force in the rope.

Figure : When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force , that
force must be parallel to the length of the rope, as shown. By Newton’s third law, the rope pulls with equal force but in opposite
directions on the hand and the supported mass (neglecting the weight of the rope). The rope is the medium that carries the equal
and opposite forces between the two objects. The tension anywhere in the rope between the hand and the mass is equal. Once you
have determined the tension in one location, you have determined the tension at all locations along the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a tendon, or a bicycle
brake cable. If there is no friction, the tension transmission is undiminished; only its direction changes, and it is always parallel to
the flexible connector, as shown in Figure .
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w
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wx

w
wx
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Figure : (a) Tendons in the finger carry force T from the muscles to other parts of the finger, usually changing the force’s
direction but not its magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension T from
the brake lever on the handlebars to the brake mechanism. Again, the direction but not the magnitude of T is changed.

Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure .

Figure : The weight of a tightrope walker causes a wire to sag by 5.0°. The system of interest is the point in the wire at
which the tightrope walker is standing.

Strategy

As you can see in Figure , the wire is bent under the person’s weight. Thus, the tension on either side of the person has an
upward component that can support his weight. As usual, forces are vectors represented pictorially by arrows that have the
same direction as the forces and lengths proportional to their magnitudes. The system is the tightrope walker, and the only
external forces acting on him are his weight  and the two tensions  (left tension) and  (right tension). It is reasonable to
neglect the weight of the wire. The net external force is zero, because the system is static. We can use trigonometry to find the
tensions. One conclusion is possible at the outset—we can see from Figure (b) that the magnitudes of the tensions T  and
T  must be equal. We know this because there is no horizontal acceleration in the rope and the only forces acting to the left and
right are T  and T . Thus, the magnitude of those horizontal components of the forces must be equal so that they cancel each
other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is to
pick a convenient coordinate system and project the vectors onto its axes. In this case, the best coordinate system has one
horizontal axis (x) and one vertical axis (y).

Solution
First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to look at a new free-body
diagram showing all horizontal and vertical components of each force acting on the system (Figure ).

Figure : When the vectors are projected onto vertical and horizontal axes, their components along these axes must add to
zero, since the tightrope walker is stationary. The small angle results in T being much greater than w.

Consider the horizontal components of the forces (denoted with a subscript x):
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The net external horizontal force F  = 0, since the person is stationary. Thus,

Now observe Figure . You can use trigonometry to determine the magnitude of T  and T :

Equating T  and T :

Thus,

as predicted. Now, considering the vertical components (denoted by a subscript y), we can solve for T. Again, since the person
is stationary, Newton’s second law implies that F  = 0. Thus, as illustrated in the free-body diagram,

We can use trigonometry to determine the relationships among T , T , and T. As we determined from the analysis in the
horizontal direction, T  = T  = T:

Now we can substitute the vales for T  and T , into the net force equation in the vertical direction:

and

so

and the tension is

Significance
The vertical tension in the wire acts as a force that supports the weight of the tightrope walker. The tension is almost six times
the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical component of its tension is only a
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fraction of the tension in the wire. The large horizontal components are in opposite directions and cancel, so most of the
tension in the wire is not used to support the weight of the tightrope walker.

If we wish to create a large tension, all we have to do is exert a force perpendicular to a taut flexible connector, as illustrated in
Figure . As we saw in Example 5.13, the weight of the tightrope walker acts as a force perpendicular to the rope. We saw that
the tension in the rope is related to the weight of the tightrope walker in the following way:

We can extend this expression to describe the tension T created when a perpendicular force (F ) is exerted at the middle of a
flexible connector:

The angle between the horizontal and the bent connector is represented by . In this case, T becomes large as  approaches zero.
Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were
horizontal (i.e.,  = 0 and sin  = 0). For example, Figure  shows a situation where we wish to pull a car out of the mud when
no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as straight as possible. The tension in
the chain is given by T = , and since  is small, T is large. This situation is analogous to the tightrope walker, except that the
tensions shown here are those transmitted to the car and the tree rather than those acting at the point where F  is applied.

Figure : We can create a large tension in the chain—and potentially a big mess—by pushing on it perpendicular to its length,
as shown.

One end of a 3.0-m rope is tied to a tree; the other end is tied to a car stuck in the mud. The motorist pulls sideways on the
midpoint of the rope, displacing it a distance of 0.25 m. If he exerts a force of 200.0 N under these conditions, determine the
force exerted on the car.

In Applications of Newton’s Laws, we extend the discussion on tension in a cable to include cases in which the angles shown are
not equal.

Friction

Friction is a resistive force opposing motion or its tendency. Imagine an object at rest on a horizontal surface. The net force acting
on the object must be zero, leading to equality of the weight and the normal force, which act in opposite directions. If the surface is
tilted, the normal force balances the component of the weight perpendicular to the surface. If the object does not slide downward,
the component of the weight parallel to the inclined plane is balanced by friction. Friction is discussed in greater detail in the next
chapter.

Spring force

A spring is a special medium with a specific atomic structure that has the ability to restore its shape, if deformed. To restore its
shape, a spring exerts a restoring force that is proportional to and in the opposite direction in which it is stretched or compressed.
This is the statement of a law known as Hooke’s law, which has the mathematical form

The constant of proportionality k is a measure of the spring’s stiffness. The line of action of this force is parallel to the spring axis,
and the sense of the force is in the opposite direction of the displacement vector (Figure ). The displacement must be
measured from the relaxed position; x = 0 when the spring is relaxed.
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Figure : A spring exerts its force proportional to a displacement, whether it is compressed or stretched. (a) The spring is in a
relaxed position and exerts no force on the block. (b) The spring is compressed by displacement  of the object and exerts
restoring force . (c) The spring is stretched by displacement  of the object and exerts restoring force .

Real Forces and Inertial Frames
There is another distinction among forces: Some forces are real, whereas others are not. Real forces have some physical origin,
such as a gravitational pull. In contrast, fictitious forces arise simply because an observer is in an accelerating or noninertial frame
of reference, such as one that rotates (like a merry-go-round) or undergoes linear acceleration (like a car slowing down). For
example, if a satellite is heading due north above Earth’s Northern Hemisphere, then to an observer on Earth, it will appear to
experience a force to the west that has no physical origin. Instead, Earth is rotating toward the east and moves east under the
satellite. In Earth’s frame, this looks like a westward force on the satellite, or it can be interpreted as a violation of Newton’s first
law (the law of inertia). We can identify a fictitious force by asking the question, “What is the reaction force?” If we cannot name
the reaction force, then the force we are considering is fictitious. In the example of the satellite, the reaction force would have to be
an eastward force on Earth. Recall that an inertial frame of reference is one in which all forces are real and, equivalently, one in
which Newton’s laws have the simple forms given in this chapter.

Earth’s rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise experiments to observe
fictitious forces and the slight departures from Newton’s laws, such as the effect just described. On a large scale, such as for the
rotation of weather systems and ocean currents, the effects can be easily observed (Figure ).

Figure : Hurricane Fran is shown heading toward the southeastern coast of the United States in September 1996. Notice the
characteristic “eye” shape of the hurricane. This is a result of the Coriolis effect, which is the deflection of objects (in this case, air)
when considered in a rotating frame of reference, like the spin of Earth.

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates relative to a known
inertial frame. Unless stated otherwise, all phenomena discussed in this text are in inertial frames.

The forces discussed in this section are real forces, but they are not the only real forces. Lift and thrust, for example, are more
specialized real forces. In the long list of forces, are some more basic than others? Are some different manifestations of the same
underlying force? The answer to both questions is yes, as you will see in the treatment of modern physics later in the text

Explore forces and motion in this interactive simulation as you push household objects up and down a ramp. Lower and raise
the ramp to see how the angle of inclination affects the parallel forces. Graphs show forces, energy, and work.
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Stretch and compress springs in this activity to explore the relationships among force, spring constant, and displacement.
Investigate what happens when two springs are connected in series and in parallel.

This page titled 6.7: Common Forces is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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6.8: Drawing Free-Body Diagrams

Explain the rules for drawing a free-body diagram
Construct free-body diagrams for different situations

The first step in describing and analyzing most phenomena in physics involves the careful drawing of a free-body diagram. Free-
body diagrams have been used in examples throughout this chapter. Remember that a free-body diagram must only include the
external forces acting on the body of interest. Once we have drawn an accurate free-body diagram, we can apply Newton’s first law
if the body is in equilibrium (balanced forces; that is, ) or Newton’s second law if the body is accelerating (unbalanced
force; that is, ).

In Forces, we gave a brief problem-solving strategy to help you understand free-body diagrams. Here, we add some details to the
strategy that will help you in constructing these diagrams.

Observe the following rules when constructing a free-body diagram:

1. Draw the object under consideration; it does not have to be artistic. At first, you may want to draw a circle around the
object of interest to be sure you focus on labeling the forces acting on the object. If you are treating the object as a particle
(no size or shape and no rotation), represent the object as a point. We often place this point at the origin of an xy-coordinate
system.

2. Include all forces that act on the object, representing these forces as vectors. Consider the types of forces described in
Common Forces—normal force, friction, tension, and spring force—as well as weight and applied force. Do not include the
net force on the object. With the exception of gravity, all of the forces we have discussed require direct contact with the
object. However, forces that the object exerts on its environment must not be included. We never include both forces of an
action-reaction pair.

3. Convert the free-body diagram into a more detailed diagram showing the x- and y-components of a given force (this is
often helpful when solving a problem using Newton’s first or second law). In this case, place a squiggly line through the
original vector to show that it is no longer in play—it has been replaced by its x- and y-components.

4. If there are two or more objects, or bodies, in the problem, draw a separate free-body diagram for each object.

Note: If there is acceleration, we do not directly include it in the free-body diagram; however, it may help to indicate
acceleration outside the free-body diagram. You can label it in a different color to indicate that it is separate from the free-body
diagram.

Let’s apply the problem-solving strategy in drawing a free-body diagram for a sled. In Figure , a sled is pulled by force  at
an angle of 30°. In part (b), we show a free-body diagram for this situation, as described by steps 1 and 2 of the problem-solving
strategy. In part (c), we show all forces in terms of their x- and y-components, in keeping with step 3.

Figure : (a) A moving sled is shown as (b) a free-body diagram and (c) a free-body diagram with force components.

Construct the free-body diagram for object A and object B in Figure .

Strategy

We follow the four steps listed in the problem-solving strategy.
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Solution

We start by creating a diagram for the first object of interest. In Figure , object A is isolated (circled) and represented by
a dot.

Figure : (a) The free-body diagram for isolated object A. (b) The free-body diagram for isolated object B. Comparing the
two drawings, we see that friction acts in the opposite direction in the two figures. Because object A experiences a force that
tends to pull it to the right, friction must act to the left. Because object B experiences a component of its weight that pulls it to
the left, down the incline, the friction force must oppose it and act up the ramp. Friction always acts opposite the intended
direction of motion.

We now include any force that acts on the body. Here, no applied force is present. The weight of the object acts as a force
pointing vertically downward, and the presence of the cord indicates a force of tension pointing away from the object. Object A
has one interface and hence experiences a normal force, directed away from the interface. The source of this force is object B,
and this normal force is labeled accordingly. Since object B has a tendency to slide down, object A has a tendency to slide up
with respect to the interface, so the friction f  is directed downward parallel to the inclined plane.

As noted in step 4 of the problem-solving strategy, we then construct the free-body diagram in Figure 5.32(b) using the same
approach. Object B experiences two normal forces and two friction forces due to the presence of two contact surfaces. The
interface with the inclined plane exerts external forces of N  and f , and the interface with object B exerts the normal force
N  and friction f ; N  is directed away from object B, and f  is opposing the tendency of the relative motion of object B
with respect to object A.

Significance
The object under consideration in each part of this problem was circled in gray. When you are first learning how to draw free-
body diagrams, you will find it helpful to circle the object before deciding what forces are acting on that particular object. This
focuses your attention, preventing you from considering forces that are not acting on the body

A force is applied to two blocks in contact, as shown.

Strategy

Draw a free-body diagram for each block. Be sure to consider Newton’s third law at the interface where the two blocks touch.

Solution

6.8.2a

6.8.2

BA

B B

AB AB AB AB

 Example : Two Blocks in Contact6.8.2
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Significance
 is the action force of block 2 on block 1.  is the reaction force of block 1 on block 2. We use these free-body diagrams

in Applications of Newton’s Laws.

A block rests on the table, as shown. A light rope is attached to it and runs over a pulley. The other end of the rope is attached
to a second block. The two blocks are said to be coupled. Block m  exerts a force due to its weight, which causes the system
(two blocks and a string) to accelerate.

Strategy

We assume that the string has no mass so that we do not have to consider it as a separate object. Draw a free-body diagram for
each block.

Solution

Significance
Each block accelerates (notice the labels shown for  and ); however, assuming the string remains taut, they accelerate at
the same rate. Thus, we have | | = | |. If we were to continue solving the problem, we could simply call the acceleration .
Also, we use two free-body diagrams because we are usually finding tension T, which may require us to use a system of two
equations in this type of problem. The tension is the same on both m  and m .

a. Draw the free-body diagram for the situation shown.
b. Redraw it showing components; use x-axes parallel to the two ramps.

A ⃗ 
21 A ⃗ 
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 Example : Block on the Table (Coupled Blocks)6.8.3
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View this simulation to predict, qualitatively, how an external force will affect the speed and direction of an object’s motion.
Explain the effects with the help of a free-body diagram. Use free-body diagrams to draw position, velocity, acceleration, and
force graphs, and vice versa. Explain how the graphs relate to one another. Given a scenario or a graph, sketch all four graphs.

This page titled 6.8: Drawing Free-Body Diagrams is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

5.8: Drawing Free-Body Diagrams by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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6.E: Newton's Laws of Motion (Exercises)

Conceptual Questions

5.1 Forces
1. What properties do forces have that allow us to classify them as vectors?

5.2 Newton's First Law
2. Taking a frame attached to Earth as inertial, which of the following objects cannot have inertial frames attached to them,

and which are inertial reference frames?
a. A car moving at constant velocity
b. A car that is accelerating
c. An elevator in free fall
d. A space capsule orbiting Earth
e. An elevator descending uniformly

3. A woman was transporting an open box of cupcakes to a school party. The car in front of her stopped suddenly; she
applied her brakes immediately. She was wearing her seat belt and suffered no physical harm (just a great deal of
embarrassment), but the cupcakes flew into the dashboard and became “smushcakes.” Explain what happened.

5.3 Newton's Second Law
4. Why can we neglect forces such as those holding a body together when we apply Newton’s second law?
5. A rock is thrown straight up. At the top of the trajectory, the velocity is momentarily zero. Does this imply that the force

acting on the object is zero? Explain your answer.

5.4 Mass and Weight
6. What is the relationship between weight and mass? Which is an intrinsic, unchanging property of a body?
7. How much does a 70-kg astronaut weight in space, far from any celestial body? What is her mass at this location?
8. Which of the following statements is accurate?

a. Mass and weight are the same thing expressed in different units.
b. If an object has no weight, it must have no mass.
c. If the weight of an object varies, so must the mass.
d. Mass and inertia are different concepts.
e. Weight is always proportional to mass.

9. When you stand on Earth, your feet push against it with a force equal to your weight. Why doesn’t Earth accelerate away
from you?

10. How would you give the value of  in vector form?

5.5 Newton’s Third Law
11. Identify the action and reaction forces in the following situations:

a. Earth attracts the Moon,
b. a boy kicks a football,
c. a rocket accelerates upward,
d. a car accelerates forward,
e. a high jumper leaps, and
f. a bullet is shot from a gun.

12. Suppose that you are holding a cup of coffee in your hand. Identify all forces on the cup and the reaction to each force.
13. (a) Why does an ordinary rifle recoil (kick backward) when fired? (b) The barrel of a recoilless rifle is open at both ends.

Describe how Newton’s third law applies when one is fired. (c) Can you safely stand close behind one when it is fired?

5.6 Common Forces
14. A table is placed on a rug. Then a book is placed on the table. What does the floor exert a normal force on?
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15. A particle is moving to the right. (a) Can the force on it to be acting to the left? If yes, what would happen? (b) Can that
force be acting downward? If yes, why?

5.7 Drawing Free-Body Diagrams
16. In completing the solution for a problem involving forces, what do we do after constructing the free-body diagram? That

is, what do we apply?
17. If a book is located on a table, how many forces should be shown in a free-body diagram of the book? Describe them.
18. If the book in the previous question is in free fall, how many forces should be shown in a free-body diagram of the book?

Describe them.

Problems

5.1 Forces

19. Two ropes are attached to a tree, and forces of  = 2.0  + 4.0  N and  = 3.0  + 6.0  N are applied. The forces are
coplanar (in the same plane). (a) What is the resultant (net force) of these two force vectors? (b) Find the magnitude and
direction of this net force.

20. A telephone pole has three cables pulling as shown from above, with  = (300.0  + 500.0 ),  = −200.0 , and  =
−800.0 . (a) Find the net force on the telephone pole in component form. (b) Find the magnitude and direction of this net
force.

21. Two teenagers are pulling on ropes attached to a tree. The angle between the ropes is 30.0°. David pulls with a force of
400.0 N and Stephanie pulls with a force of 300.0 N. (a) Find the component form of the net force. (b) Find the
magnitude of the resultant (net) force on the tree and the angle it makes with David’s rope.

5.2 Newton's First Law

22. Two forces of  = 75.0 2 (  − ) N and  =  N act on an object. Find the third force  that is needed to

balance the first two forces.
23. While sliding a couch across a floor, Andrea and Jennifer exert forces  and  on the couch. Andrea’s force is due

north with a magnitude of 130.0 N and Jennifer’s force is 32° east of north with a magnitude of 180.0 N. (a) Find the net
force in component form. (b) Find the magnitude and direction of the net force. (c) If Andrea and Jennifer’s housemates,
David and Stephanie, disagree with the move and want to prevent its relocation, with what combined force  should
they push so that the couch does not move?

5.3 Newton's Second Law
24. Andrea, a 63.0-kg sprinter, starts a race with an acceleration of 4.200 m/s . What is the net external force on her?
25. If the sprinter from the previous problem accelerates at that rate for 20.00 m and then maintains that velocity for the

remainder of a 100.00-m dash, what will her time be for the race?
26. A cleaner pushes a 4.50-kg laundry cart in such a way that the net external force on it is 60.0 N. Calculate the magnitude

of his cart’s acceleration.
27. Astronauts in orbit are apparently weightless. This means that a clever method of measuring the mass of astronauts is

needed to monitor their mass gains or losses, and adjust their diet. One way to do this is to exert a known force on an
astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted, and an astronaut’s
acceleration is measured to be 0.893 m/s . (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in
which she orbits experiences an equal and opposite force. Use this knowledge to find an equation for the acceleration of
the system (astronaut and spaceship) that would be measured by a nearby observer. (c) Discuss how this would affect the
measurement of the astronaut’s acceleration. Propose a method by which recoil of the vehicle is avoided.
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28. In Figure 5.4.3, the net external force on the 24-kg mower is given as 51 N. If the force of friction opposing the motion is
24 N, what force F (in newtons) is the person exerting on the mower? Suppose the mower is moving at 1.5 m/s when the
force F is removed. How far will the mower go before stopping?

29. The rocket sled shown below decelerates at a rate of 196 m/s . What force is necessary to produce this deceleration?
Assume that the rockets are off. The mass of the system is 2.10 x 10  kg.

30. If the rocket sled shown in the previous problem starts with only one rocket burning, what is the magnitude of this
acceleration? Assume that the mass of the system is 2.10 x 10  kg, the thrust T is 2.40 x 10  N, and the force of friction
opposing the motion is 650.0 N. (b) Why is the acceleration not one-fourth of what it is with all rockets burning?

31. What is the deceleration of the rocket sled if it comes to rest in 1.10 s from a speed of 1000.0 km/h? (Such deceleration
caused one test subject to black out and have temporary blindness.)

32. Suppose two children push horizontally, but in exactly opposite directions, on a third child in a wagon. The first child
exerts a force of 75.0 N, the second exerts a force of 90.0 N, friction is 12.0 N, and the mass of the third child plus wagon
is 23.0 kg. (a) What is the system of interest if the acceleration of the child in the wagon is to be calculated? (See the free-
body diagram.) (b) Calculate the acceleration. (c) What would the acceleration be if friction were 15.0 N?

33. A powerful motorcycle can produce an acceleration of 3.50 m/s while traveling at 90.0 km/h. At that speed, the forces
resisting motion, including friction and air resistance, total 400.0 N. (Air resistance is analogous to air friction. It always
opposes the motion of an object.) What is the magnitude of the force that motorcycle exerts backward on the ground to
produce its acceleration if the mass of the motorcycle with rider is 245 kg?

34. A car with a mass of 1000.0 kg accelerates from 0 to 90.0 km/h in 10.0 s. (a) What is its acceleration? (b) What is the net
force on the car?

35. The driver in the previous problem applies the brakes when the car is moving at 90.0 km/h, and the car comes to rest after
traveling 40.0 m. What is the net force on the car during its deceleration?

36. An 80.0-kg passenger in an SUV traveling at 1.00 x 10  km/h is wearing a seat belt. The driver slams on the brakes and
the SUV stops in 45.0 m. Find the force of the seat belt on the passenger.

37. A particle of mass 2.0 kg is acted on by a single force  = 18  N. (a) What is the particle’s acceleration? (b) If the
particle starts at rest, how far does it travel in the first 5.0 s?

38. Suppose that the particle of the previous problem also experiences forces  = −15  N and  = 6.0  N. What is its
acceleration in this case?

39. Find the acceleration of the body of mass 5.0 kg shown below.

40. In the following figure, the horizontal surface on which this block slides is frictionless. If the two forces acting on it each
have magnitude F = 30.0 N and M = 10.0 kg , what is the magnitude of the resulting acceleration of the block?
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5.4 Mass and Weight
41. The weight of an astronaut plus his space suit on the Moon is only 250 N. (a) How much does the suited astronaut weigh

on Earth? (b) What is the mass on the Moon? On Earth?
42. Suppose the mass of a fully loaded module in which astronauts take off from the Moon is 1.00 x 10  kg. The thrust of its

engines is 3.00 x 10  N. (a) Calculate the module’s magnitude of acceleration in a vertical takeoff from the Moon. (b)
Could it lift off from Earth? If not, why not? If it could, calculate the magnitude of its acceleration.

43. A rocket sled accelerates at a rate of 49.0 m/s . Its passenger has a mass of 75.0 kg. (a) Calculate the horizontal
component of the force the seat exerts against his body. Compare this with his weight using a ratio. (b) Calculate the
direction and magnitude of the total force the seat exerts against his body.

44. Repeat the previous problem for a situation in which the rocket sled decelerates at a rate of 201 m/s . In this problem, the
forces are exerted by the seat and the seat belt.

45. A body of mass 2.00 kg is pushed straight upward by a 25.0 N vertical force. What is its acceleration?
46. A car weighing 12,500 N starts from rest and accelerates to 83.0 km/h in 5.00 s. The friction force is 1350 N. Find the

applied force produced by the engine.
47. A body with a mass of 10.0 kg is assumed to be in Earth’s gravitational field with g = 9.80 m/s . What is the net force on

the body if there are no other external forces acting on the object?
48. A fireman has mass m; he hears the fire alarm and slides down the pole with acceleration a (which is less than g in

magnitude). (a) Write an equation giving the vertical force he must apply to the pole. (b) If his mass is 90.0 kg and he
accelerates at 5.00 m/s , what is the magnitude of his applied force?

49. A baseball catcher is performing a stunt for a television commercial. He will catch a baseball (mass 145 g) dropped from
a height of 60.0 m above his glove. His glove stops the ball in 0.0100 s. What is the force exerted by his glove on the
ball?

50. When the Moon is directly overhead at sunset, the force by Earth on the Moon, F , is essentially at 90° to the force by
the Sun on the Moon, F , as shown below. Given that F  = 1.98 x 10  N and F  = 4.36 x 10  N, all other forces on
the Moon are negligible, and the mass of the Moon is 7.35 x 10  kg, determine the magnitude of the Moon’s
acceleration.

5.5 Newton’s Third Law
51. (a) What net external force is exerted on a 1100.0-kg artillery shell fired from a battleship if the shell is accelerated at

2.40 x 10  m/s ? (b) What is the magnitude of the force exerted on the ship by the artillery shell, and why?
52. A brave but inadequate rugby player is being pushed backward by an opposing player who is exerting a force of 800.0 N

on him. The mass of the losing player plus equipment is 90.0 kg, and he is accelerating backward at 1.20 m/s . (a) What
is the force of friction between the losing player’s feet and the grass? (b) What force does the winning player exert on the
ground to move forward if his mass plus equipment is 110.0 kg?

53. A history book is lying on top of a physics book on a desk, as shown below; a free-body diagram is also shown. The
history and physics books weigh 14 N and 18 N, respectively. Identify each force on each book with a double subscript
notation (for instance, the contact force of the history book pressing against physics book can be described as ), and
determine the value of each of these forces, explaining the process used.
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54. A truck collides with a car, and during the collision, the net force on each vehicle is essentially the force exerted by the
other. Suppose the mass of the car is 550 kg, the mass of the truck is 2200 kg, and the magnitude of the truck’s
acceleration is 10 m/s . Find the magnitude of the car’s acceleration.

5.6 Common Forces
55. A leg is suspended in a traction system, as shown below. (a) Which part of the figure is used to calculate the force exerted

on the foot? (b) What is the tension in the rope? Here  is the tension,  is the weight of the leg, and  is the weight
of the load that provides the tension.

56. Suppose the shinbone in the preceding image was a femur in a traction setup for a broken bone, with pulleys and rope
available. How might we be able to increase the force along the femur using the same weight?

57. A team of nine members on a tall building tug on a string attached to a large boulder on an icy surface. The boulder has a
mass of 200 kg and is tugged with a force of 2350 N. (a) What is magnitude of the acceleration? (b) What force would be
required to produce a constant velocity?

58. What force does a trampoline have to apply to Jennifer, a 45.0-kg gymnast, to accelerate her straight up at 7.50 m/s ? The
answer is independent of the velocity of the gymnast—she can be moving up or down or can be instantly stationary.

59. (a) Calculate the tension in a vertical strand of spider web if a spider of mass 2.00 x 10  kg hangs motionless on it. (b)
Calculate the tension in a horizontal strand of spider web if the same spider sits motionless in the middle of it much like
the tightrope walker in Figure 5.26. The strand sags at an angle of 12° below the horizontal. Compare this with the
tension in the vertical strand (find their ratio).

60. Suppose Kevin, a 60.0-kg gymnast, climbs a rope. (a) What is the tension in the rope if he climbs at a constant speed? (b)
What is the tension in the rope if he accelerates upward at a rate of 1.50 m/s ?

61. Show that, as explained in the text, a force F  exerted on a flexible medium at its center and perpendicular to its length
(such as on the tightrope wire in Figure 5.26) gives rise to a tension of magnitude .

62. Consider Figure 5.28. The driver attempts to get the car out of the mud by exerting a perpendicular force of 610.0 N, and
the distance she pushes in the middle of the rope is 1.00 m while she stands 6.00 m away from the car on the left and 6.00
m away from the tree on the right. What is the tension T in the rope, and how do you find the answer?

63. A bird has a mass of 26 g and perches in the middle of a stretched telephone line. (a) Show that the tension in the line can
be calculated using the equation . Determine the tension when (b)  = 5° and (c)  = 0.5°. Assume that each
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half of the line is straight.

64. One end of a 30-m rope is tied to a tree; the other end is tied to a car stuck in the mud. The motorist pulls sideways on the
midpoint of the rope, displacing it a distance of 2 m. If he exerts a force of 80 N under these conditions, determine the
force exerted on the car.

65. Consider the baby being weighed in the following figure. (a) What is the mass of the infant and basket if a scale reading
of 55 N is observed? (b) What is tension T  in the cord attaching the baby to the scale? (c) What is tension T  in the cord
attaching the scale to the ceiling, if the scale has a mass of 0.500 kg? (d) Sketch the situation, indicating the system of
interest used to solve each part. The masses of the cords are negligible.

66. What force must be applied to a 100.0-kg crate on a frictionless plane inclined at 30° to cause an acceleration of 2.0 m/s
up the plane?

67. A 2.0-kg block is on a perfectly smooth ramp that makes an angle of 30° with the horizontal. (a) What is the block’s
acceleration down the ramp and the force of the ramp on the block? (b) What force applied upward along and parallel to
the ramp would allow the block to move with constant velocity?

5.7 Drawing Free-Body Diagrams
68. A ball of mass m hangs at rest, suspended by a string. (a) Sketch all forces. (b) Draw the free-body diagram for the ball.
69. A car moves along a horizontal road. Draw a free-body diagram; be sure to include the friction of the road that opposes

the forward motion of the car.
70. A runner pushes against the track, as shown. (a) Provide a free-body diagram showing all the forces on the runner. (Hint:

Place all forces at the center of his body, and include his weight.) (b) Give a revised diagram showing the xy-component
form.
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71. The traffic light hangs from the cables as shown. Draw a free-body diagram on a coordinate plane for this situation.

Additional Problems
72. Two small forces,  = −2.40  − 6.10t  N and  = 8.50  − 9.70  N, are exerted on a rogue asteroid by a pair of

space tractors. (a) Find the net force. (b) What are the magnitude and direction of the net force? (c) If the mass of the
asteroid is 125 kg, what acceleration does it experience (in vector form)? (d) What are the magnitude and direction of the
acceleration?

73. Two forces of 25 and 45 N act on an object. Their directions differ by 70°. The resulting acceleration has magnitude of
10.0 m/s . What is the mass of the body?

74. A force of 1600 N acts parallel to a ramp to push a 300-kg piano into a moving van. The ramp is inclined at 20°. (a) What
is the acceleration of the piano up the ramp? (b) What is the velocity of the piano when it reaches the top if the ramp is
4.0 m long and the piano starts from rest?

75. Draw a free-body diagram of a diver who has entered the water, moved downward, and is acted on by an upward force
due to the water which balances the weight (that is, the diver is suspended).

76. For a swimmer who has just jumped off a diving board, assume air resistance is negligible. The swimmer has a mass of
80.0 kg and jumps off a board 10.0 m above the water. Three seconds after entering the water, her downward motion is
stopped. What average upward force did the water exert on her?

77. (a) Find an equation to determine the magnitude of the net force required to stop a car of mass m, given that the initial
speed of the car is v  and the stopping distance is x. (b) Find the magnitude of the net force if the mass of the car is 1050
kg, the initial speed is 40.0 km/h, and the stopping distance is 25.0 m.

78. A sailboat has a mass of 1.50 x 10  kg and is acted on by a force of 2.00 x 10  N toward the east, while the wind acts
behind the sails with a force of 3.00 x 10  N in a direction 45° north of east. Find the magnitude and direction of the
resulting acceleration.

79. Find the acceleration of the body of mass 10.0 kg shown below.

F ⃗ 
1 î ĵ F ⃗ 
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80. A body of mass 2.0 kg is moving along the x-axis with a speed of 3.0 m/s at the instant represented below. (a) What is the
acceleration of the body? (b) What is the body’s velocity 10.0 s later? (c) What is its displacement after 10.0 s?

81. Force  has twice the magnitude of force . Find the direction in which the particle accelerates in this figure.

82. Shown below is a body of mass 1.0 kg under the influence of the forces , , and m . If the body accelerates to the
left at 20 m/s , what are  and ?

83. A force acts on a car of mass m so that the speed v of the car increases with position x as v = kx , where k is constant and
all quantities are in SI units. Find the force acting on the car as a function of position.

84. A 7.0-N force parallel to an incline is applied to a 1.0-kg crate. The ramp is tilted at 20° and is frictionless. (a) What is the
acceleration of the crate? (b) If all other conditions are the same but the ramp has a friction force of 1.9 N, what is the
acceleration?

85. Two boxes, A and B, are at rest. Box A is on level ground, while box B rests on an inclined plane tilted at angle  with
the horizontal. (a) Write expressions for the normal force acting on each block. (b) Compare the two forces; that is, tell
which one is larger or whether they are equal in magnitude. (c) If the angle of incline is 10°, which force is greater?

86. A mass of 250.0 g is suspended from a spring hanging vertically. The spring stretches 6.00 cm. How much will the spring
stretch if the suspended mass is 530.0 g?

87. As shown below, two identical springs, each with the spring constant 20 N/m, support a 15.0-N weight. (a) What is the
tension in spring A? (b) What is the amount of stretch of spring A from the rest position?

F ⃗ 
B F ⃗ 

A

F ⃗ 
A F ⃗ 

B g ⃗ 
2 F ⃗ 

A F ⃗ 
B
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88. Shown below is a 30.0-kg block resting on a frictionless ramp inclined at 60° to the horizontal. The block is held by a
spring that is stretched 5.0 cm. What is the force constant of the spring?

89. In building a house, carpenters use nails from a large box. The box is suspended from a spring twice during the day to
measure the usage of nails. At the beginning of the day, the spring stretches 50 cm. At the end of the day, the spring
stretches 30 cm. What fraction or percentage of the nails have been used?

90. A force is applied to a block to move it up a 30° incline. The incline is frictionless. If F = 65.0 N and M = 5.00 kg, what is
the magnitude of the acceleration of the block?

91. Two forces are applied to a 5.0-kg object, and it accelerates at a rate of 2.0 m/s  in the positive y-direction. If one of the
forces acts in the positive x-direction with magnitude 12.0 N, find the magnitude of the other force.

92. The block on the right shown below has more mass than the block on the left (m  > m ). Draw free-body diagrams for
each block.
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Challenge Problems
93. If two tugboats pull on a disabled vessel, as shown here in an overhead view, the disabled vessel will be pulled along the

direction indicated by the result of the exerted forces. (a) Draw a free-body diagram for the vessel. Assume no friction or
drag forces affect the vessel. (b) Did you include all forces in the overhead view in your free-body diagram? Why or why
not?

94. A 10.0-kg object is initially moving east at 15.0 m/s. Then a force acts on it for 2.00 s, after which it moves northwest,
also at 15.0 m/s. What are the magnitude and direction of the average force that acted on the object over the 2.00-s
interval?

95. On June 25, 1983, shot-putter Udo Beyer of East Germany threw the 7.26-kg shot 22.22 m, which at that time was a
world record. (a) If the shot was released at a height of 2.20 m with a projection angle of 45.0°, what was its initial
velocity? (b) If while in Beyer’s hand the shot was accelerated uniformly over a distance of 1.20 m, what was the net
force on it?

96. A body of mass m moves in a horizontal direction such that at time t its position is given by x(t) = at  + bt  + ct, where a,
b, and c are constants. (a) What is the acceleration of the body? (b) What is the time-dependent force acting on the body?

97. A body of mass m has initial velocity v  in the positive x-direction. It is acted on by a constant force F for time t until the
velocity becomes zero; the force continues to act on the body until its velocity becomes −v  in the same amount of time.
Write an expression for the total distance the body travels in terms of the variables indicated.

98. The velocities of a 3.0-kg object at t = 6.0 s and t = 8.0 s are (3.0  − 6.0  + 4.0 ) m/s and (−2.0  + 4.0 ) m/s,
respectively. If the object is moving at constant acceleration, what is the force acting on it?

99. A 120-kg astronaut is riding in a rocket sled that is sliding along an inclined plane. The sled has a horizontal component
of acceleration of 5.0 m/s  and a downward component of 3.8 m/s . Calculate the magnitude of the force on the rider by
the sled. (Hint: Remember that gravitational acceleration must be considered.)

100. Two forces are acting on a 5.0-kg object that moves with acceleration 2.0 m/s  in the positive y-direction. If one of the
forces acts in the positive x-direction and has magnitude of 12 N, what is the magnitude of the other force?

101. Suppose that you are viewing a soccer game from a helicopter above the playing field. Two soccer players simultaneously
kick a stationary soccer ball on the flat field; the soccer ball has mass 0.420 kg. The first player kicks with force 162 N at
9.0° north of west. At the same instant, the second player kicks with force 215 N at 15° east of south. Find the
acceleration of the ball in  and  form.

102. A 10.0-kg mass hangs from a spring that has the spring constant 535 N/m. Find the position of the end of the spring away
from its rest position. (Use g = 9.80 m/s .)

103. A 0.0502-kg pair of fuzzy dice is attached to the rearview mirror of a car by a short string. The car accelerates at constant
rate, and the dice hang at an angle of 3.20° from the vertical because of the car’s acceleration. What is the magnitude of
the acceleration of the car?

104. At a circus, a donkey pulls on a sled carrying a small clown with a force given by 2.48  + 4.33  N . A horse pulls on the
same sled, aiding the hapless donkey, with a force of 6.56  + 5.33  N. The mass of the sled is 575 kg. Using  and 
form for the answer to each problem, find (a) the net force on the sled when the two animals act together, (b) the
acceleration of the sled, and (c) the velocity after 6.50 s.

105. Hanging from the ceiling over a baby bed, well out of baby’s reach, is a string with plastic shapes, as shown here. The
string is taut (there is no slack), as shown by the straight segments. Each plastic shape has the same mass m, and they are
equally spaced by a distance d, as shown. The angles labeled  describe the angle formed by the end of the string and the
ceiling at each end. The center length of sting is horizontal. The remaining two segments each form an angle with the
horizontal, labeled . Let T  be the tension in the leftmost section of the string, T  be the tension in the section adjacent
to it, and T  be the tension in the horizontal segment. (a) Find an equation for the tension in each section of the string in
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terms of the variables m, g, and . (b) Find the angle  in terms of the angle . (c) If  = 5.10°, what is the value of ? (d)
Find the distance x between the endpoints in terms of d and .

106. A bullet shot from a rifle has mass of 10.0 g and travels to the right at 350 m/s. It strikes a target, a large bag of sand,
penetrating it a distance of 34.0 cm. Find the magnitude and direction of the retarding force that slows and stops the
bullet.

107. An object is acted on by three simultaneous forces:  =(−3.00  + 2.00 ) N,  = (6.00  − 4.00 ) N, and  = (2.00 
 + 5.00 ) N. The object experiences acceleration of 4.23 m/s . (a) Find the acceleration vector in terms of m. (b) Find

the mass of the object. (c) If the object begins from rest, find its speed after 5.00 s. (d) Find the components of the
velocity of the object after 5.00 s.

108. In a particle accelerator, a proton has mass 1.67 x 10  kg and an initial speed of 2.00 x 10  m/s. It moves in a straight
line, and its speed increases to 9.00 x 10  m/s in a distance of 10.0 cm. Assume that the acceleration is constant. Find the
magnitude of the force exerted on the proton.

109. A drone is being directed across a frictionless ice-covered lake. The mass of the drone is 1.50 kg, and its velocity is 3.00 
 m/s. After 10.0 s, the velocity is 9.00  + 4.00  m/s. If a constant force in the horizontal direction is causing this

change in motion, find (a) the components of the force and (b) the magnitude of the force.
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î î ĵ
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6.S: Newton's Laws of Motion (Summary)

Key Terms
dynamics study of how forces affect the motion of objects and systems

external force
force acting on an object or system that originates outside of the

object or system

force
push or pull on an object with a specific magnitude and direction;

can be represented by vectors or expressed as a multiple of a
standard force

free fall situation in which the only force acting on an object is gravity

free-body diagram
sketch showing all external forces acting on an object or system;

the system is represented by a single isolated point, and the forces
are represented by vectors extending outward from that point

Hooke's law
in a spring, a restoring force proportional to and in the opposite

direction of the imposed displacement

inertia ability of an object to resist changes in its motion

inertial reference frame
reference frame moving at constant velocity relative to an inertial
frame is also inertial; a reference frame accelerating relative to an

inertial frame is not inertial

law of inertia see Newton’s first law of motion

net external force
vector sum of all external forces acting on an object or system;

causes a mass to accelerate

newton
SI unit of force; 1 N is the force needed to accelerate an object

with a mass of 1 kg at a rate of 1 m/s

Newton’s first law of motion
body at rest remains at rest or, if in motion, remains in motion at

constant velocity unless acted on by a net external force; also
known as the law of inertia

Newton’s second law of motion
acceleration of a system is directly proportional to and in the same

direction as the net external force acting on the system and is
inversely proportional to its mass

Newton’s third law of motion
whenever one body exerts a force on a second body, the first body

experiences a force that is equal in magnitude and opposite in
direction to the force that it exerts

normal force

force supporting the weight of an object, or a load, that is
perpendicular to the surface of contact between the load and its
support; the surface applies this force to an object to support the

weight of the object

tension
pulling force that acts along a stretched flexible connector, such as

a rope or cable

thrust
reaction force that pushes a body forward in response to a

backward force

weight force  due to gravity acting on an object of mass m
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Key Equations

Net external force

Newton's first law

Newton’s second law, vector form

Newton’s second law, scalar form

Newton’s second law, component form

Newton’s second law, momentum form

Definition of weight, vector form

Definition of weight, scalar form

Newton's third law

Normal force on an object resting on a horizontal surface, vector
form

Normal force on an object resting on a horizontal surface, scalar
form

Normal force on an object resting on an inclined plane, scalar
form

Tension in a cable supporting an object of mass m at rest, scalar
form

Summary

5.1 Forces
Dynamics is the study of how forces affect the motion of objects, whereas kinematics simply describes the way objects move.
Force is a push or pull that can be defined in terms of various standards, and it is a vector that has both magnitude and direction.
External forces are any outside forces that act on a body. A free-body diagram is a drawing of all external forces acting on a
body.
The SI unit of force is the newton (N).

5.2 Newton's First Law
According to Newton’s first law, there must be a cause for any change in velocity (a change in either magnitude or direction) to
occur. This law is also known as the law of inertia.
Friction is an external force that causes an object to slow down.
Inertia is the tendency of an object to remain at rest or remain in motion. Inertia is related to an object’s mass.
If an object’s velocity relative to a given frame is constant, then the frame is inertial. This means that for an inertial reference
frame, Newton’s first law is valid.
Equilibrium is achieved when the forces on a system are balanced.
A net force of zero means that an object is either at rest or moving with constant velocity; that is, it is not accelerating.

=∑ = + + …F ⃗ 
net F ⃗  F ⃗ 

1 F ⃗ 
2 (6.S.1)

= constant when = Nv ⃗  F ⃗ 
net 0⃗  (6.S.2)

=∑ = mF ⃗ 
net F ⃗  a⃗  (6.S.3)

= maF ⃗ 
net (6.S.4)

∑ = m ,∑ = m ,∑ = mF ⃗ 
x a⃗ x F ⃗ 

y a⃗ y F ⃗ 
z a⃗ z (6.S.5)

=F ⃗ 
net

dp ⃗ 

dt
(6.S.6)

= mw⃗  g ⃗  (6.S.7)

w = mg (6.S.8)

= −F ⃗ 
AB F ⃗ 

BA (6.S.9)

= −mN ⃗  g ⃗  (6.S.10)

N = mg (6.S.11)

N = mg cos θ (6.S.12)

T = w = mg (6.S.13)
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5.3 Newton's Second Law
An external force acts on a system from outside the system, as opposed to internal forces, which act between components
within the system.
Newton’s second law of motion says that the net external force on an object with a certain mass is directly proportional to and
in the same direction as the acceleration of the object.
Newton’s second law can also describe net force as the instantaneous rate of change of momentum. Thus, a net external force
causes nonzero acceleration.

5.4 Mass and Weight
Mass is the quantity of matter in a substance.
The weight of an object is the net force on a falling object, or its gravitational force. The object experiences acceleration due to
gravity.
Some upward resistance force from the air acts on all falling objects on Earth, so they can never truly be in free fall.
Careful distinctions must be made between free fall and weightlessness using the definition of weight as force due to gravity
acting on an object of a certain mass.

5.5 Newton’s Third Law
Newton’s third law of motion represents a basic symmetry in nature, with an experienced force equal in magnitude and opposite
in direction to an exerted force.
Two equal and opposite forces do not cancel because they act on different systems.
Action-reaction pairs include a swimmer pushing off a wall, helicopters creating lift by pushing air down, and an octopus
propelling itself forward by ejecting water from its body. Rockets, airplanes, and cars are pushed forward by a thrust reaction
force.
Choosing a system is an important analytical step in understanding the physics of a problem and solving it.

5.6 Common Forces
When an object rests on a surface, the surface applies a force to the object that supports the weight of the object. This
supporting force acts perpendicular to and away from the surface. It is called a normal force.
When an object rests on a nonaccelerating horizontal surface, the magnitude of the normal force is equal to the weight of the
object.
When an object rests on an inclined plane that makes an angle  with the horizontal surface, the weight of the object can be
resolved into components that act perpendicular and parallel to the surface of the plane.
The pulling force that acts along a stretched flexible connector, such as a rope or cable, is called tension. When a rope supports
the weight of an object at rest, the tension in the rope is equal to the weight of the object. If the object is accelerating, tension is
greater than weight, and if it is decelerating, tension is less than weight.
The force of friction is a force experienced by a moving object (or an object that has a tendency to move) parallel to the
interface opposing the motion (or its tendency).
The force developed in a spring obeys Hooke’s law, according to which its magnitude is proportional to the displacement and
has a sense in the opposite direction of the displacement.
Real forces have a physical origin, whereas fictitious forces occur because the observer is in an accelerating or noninertial frame
of reference.

5.7 Drawing Free-Body Diagrams
To draw a free-body diagram, we draw the object of interest, draw all forces acting on that object, and resolve all force vectors
into x- and y-components. We must draw a separate free-body diagram for each object in the problem.
A free-body diagram is a useful means of describing and analyzing all the forces that act on a body to determine equilibrium
according to Newton’s first law or acceleration according to Newton’s second law.
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CHAPTER OVERVIEW

7: Applications of Newton's Laws
Car racing has grown in popularity in recent years. As each car moves in a curved path around the turn, its wheels also spin rapidly.
The wheels complete many revolutions while the car makes only part of one (a circular arc). How can we describe the velocities,
accelerations, and forces involved? What force keeps a racecar from spinning out, hitting the wall bordering the track? What
provides this force? Why is the track banked? We answer all of these questions in this chapter as we expand our consideration of
Newton’s laws of motion.
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Thumbnail: Stock cars racing in the Grand National Divisional race at Iowa Speedway in May, 2015. Cars often reach speeds of
200 mph (320 km/h).
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7.1: Prelude to Applications of Newton's Laws

Figure : Stock cars racing in the Grand National Divisional race at Iowa Speedway in May, 2015. Cars often reach speeds of
200 mph (320 km/h).

Car racing has grown in popularity in recent years. As each car moves in a curved path around the turn, its wheels also spin rapidly.
The wheels complete many revolutions while the car makes only part of one (a circular arc). How can we describe the velocities,
accelerations, and forces involved? What force keeps a racecar from spinning out, hitting the wall bordering the track? What
provides this force? Why is the track banked? We answer all of these questions in this chapter as we expand our consideration of
Newton’s laws of motion.

This page titled 7.1: Prelude to Applications of Newton's Laws is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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7.2: Solving Problems with Newton's Laws (Part 1)

Apply problem-solving techniques to solve for quantities in more complex systems of forces
Use concepts from kinematics to solve problems using Newton’s laws of motion
Solve more complex equilibrium problems
Solve more complex acceleration problems
Apply calculus to more advanced dynamics problems

Success in problem solving is necessary to understand and apply physical principles. We developed a pattern of analyzing and
setting up the solutions to problems involving Newton’s laws in Newton’s Laws of Motion; in this chapter, we continue to discuss
these strategies and apply a step-by-step process.

Problem-Solving Strategies
We follow here the basics of problem solving presented earlier in this text, but we emphasize specific strategies that are useful in
applying Newton’s laws of motion. Once you identify the physical principles involved in the problem and determine that they
include Newton’s laws of motion, you can apply these steps to find a solution. These techniques also reinforce concepts that are
useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, so the
following techniques should reinforce skills you have already begun to develop.

1. Identify the physical principles involved by listing the givens and the quantities to be calculated.
2. Sketch the situation, using arrows to represent all forces.
3. Determine the system of interest. The result is a free-body diagram that is essential to solving the problem.
4. Apply Newton’s second law to solve the problem. If necessary, apply appropriate kinematic equations from the chapter on

motion along a straight line.
5. Check the solution to see whether it is reasonable.

Let’s apply this problem-solving strategy to the challenge of lifting a grand piano into a second-story apartment. Once we have
determined that Newton’s laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful
sketch of the situation. Such a sketch is shown in Figure . Then, as in Figure , we can represent all forces with arrows.
Whenever sufficient information exists, it is best to label these arrows carefully and make the length and direction of each
correspond to the represented force.

Figure : (a) A grand piano is being lifted to a second-story apartment. (b) Arrows are used to represent all forces: 
is the tension in the rope above the piano,  is the force that the piano exerts on the rope, and  is the weight of the piano.
All other forces, such as the nudge of a breeze, are assumed to be negligible. (c) Suppose we are given the piano’s mass and
asked to find the tension in the rope. We then define the system of interest as shown and draw a free-body diagram. Now 

 Learning Objectives
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 is no longer shown, because it is not a force acting on the system of interest; rather,  acts on the outside world. (d)
Showing only the arrows, the head-to-tail method of addition is used. It is apparent that if the piano is stationary,  = .

As with most problems, we next need to identify what needs to be determined and what is known or can be inferred from the
problem as stated, that is, make a list of knowns and unknowns. It is particularly crucial to identify the system of interest, since
Newton’s second law involves only external forces. We can then determine which forces are external and which are internal, a
necessary step to employ Newton’s second law. (See Figure .) Newton’s third law may be used to identify whether forces are
exerted between components of a system (internal) or between the system and something outside (external). As illustrated in
Newton’s Laws of Motion, the system of interest depends on the question we need to answer. Only forces are shown in free-body
diagrams, not acceleration or velocity. We have drawn several free-body diagrams in previous worked examples. Figure 
shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Once a free-body diagram is drawn, we apply Newton’s second law. This is done in Figure  for a particular situation. In
general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into
equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces
are parallel—then the forces can be handled algebraically. If the problem is two-dimensional, then it must be broken down into a
pair of one-dimensional problems. We do this by projecting the force vectors onto a set of axes chosen for convenience. As seen in
previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one
axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel
to the direction of motion, if this is known. Generally, just write Newton’s second law in components along the different directions.
Then, you have the following equations:

(If, for example, the system is accelerating horizontally, then you can then set ay = 0.) We need this information to determine
unknown forces acting on a system.

As always, we must check the solution. In some cases, it is easy to tell whether the solution is reasonable. For example, it is
reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice,
intuition develops gradually through problem solving; with experience, it becomes progressively easier to judge whether an answer
is reasonable. Another way to check a solution is to check the units. If we are solving for force and end up with units of millimeters
per second, then we have made a mistake.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve
also to illustrate some further subtleties of physics and to help build problem-solving skills. We look first at problems involving
particle equilibrium, which make use of Newton’s first law, and then consider particle acceleration, which involves Newton’s
second law.

Particle Equilibrium
Recall that a particle in equilibrium is one for which the external forces are balanced. Static equilibrium involves objects at rest,
and dynamic equilibrium involves objects in motion without acceleration, but it is important to remember that these conditions are
relative. For example, an object may be at rest when viewed from our frame of reference, but the same object would appear to be in
motion when viewed by someone moving at a constant velocity. We now make use of the knowledge attained in Newton’s Laws of
Motion, regarding the different types of forces and the use of free-body diagrams, to solve additional problems in particle
equilibrium.

Consider the traffic light (mass of 15.0 kg) suspended from two wires as shown in Figure . Find the tension in each wire,
neglecting the masses of the wires.

F ⃗ 
T F ⃗ 

T

T ⃗  −w⃗ 

7.2.1c

7.2.1c

7.2.1d

∑ = m , ∑ = m .Fx ax Fy ay (7.2.1)

 Example 6.1: Different Tensions at Different Angles
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Figure : A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the
system are shown here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical

(y) and horizontal (x) axes. The horizontal components of the tensions must cancel, and the sum of the vertical
components of the tensions must equal the weight of the traffic light. (e) The free-body diagram shows the vertical and

horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in Figure . The three forces involved are not
parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis vertical
and one horizontal, and the vector projections on it are shown in Figure . There are two unknowns in this problem (T
and T ), so two equations are needed to find them. These two equations come from applying Newton’s second law along the
vertical and horizontal axes, noting that the net external force is zero along each axis because acceleration is zero.

Solution
First consider the horizontal or x-axis:

Thus, as you might expect,

This give us the following relationship:

Thus,

Note that T  and T  are not equal in this case because the angles on either side are not equal. It is reasonable that T  ends up
being greater than T  because it is exerted more vertically than T .

Now consider the force components along the vertical or y-axis:

This implies

Substituting the expressions for the vertical components gives

7.2.2

7.2.2c

7.2.2d 1

2

= − = 0.Fnetx T2x T1x (7.2.2)

= .T1x T2x (7.2.3)

cos = cos .T1 30o T2 45o (7.2.4)

= 1.225 .T2 T1 (7.2.5)

1 2 2

1 1

= + −w = 0.Fnety T1y T1x (7.2.6)

+ = w.T1y T2y (7.2.7)

sin + sin = w.T1 30o T2 45o (7.2.8)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46050?pdf


7.2.4 https://phys.libretexts.org/@go/page/46050

There are two unknowns in this equation, but substituting the expression for T  in terms of T  reduces this to one equation with
one unknown:

which yields

Solving this last equation gives the magnitude of T  to be

Finally, we find the magnitude of T  by using the relationship between them, T  = 1.225 T , found above. Thus we obtain

Significance
Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either side
are the same (as they were in the earlier example of a tightrope walker in Newton’s Laws of Motion.

Two tugboats push on a barge at different angles (Figure ). The first tugboat exerts a force of 2.7 x 10 N in the x-
direction, and the second tugboat exerts a force of 3.6 x 10  N in the y-direction. The mass of the barge is 5.0 × 106 kg and its
acceleration is observed to be 7.5 x 10  m/s  in the direction shown. What is the drag force of the water on the barge resisting
the motion? (Note: Drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of
the object. Since the barge is flat bottomed, we can assume that the drag force is in the direction opposite of motion of the
barge.)

Figure : (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship
contains only forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the

buoyant force of the water supporting it cancel and are not shown. Note that  is the total applied force of the
tugboats.

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure . We define the total force of
the tugboats on the barge as  so that

The drag of the water  is in the direction opposite to the direction of motion of the boat; this force thus works against ,
as shown in the free-body diagram in Figure . The system of interest here is the barge, since the forces on it are given as
well as its acceleration. Because the applied forces are perpendicular, the x- and y-axes are in the same direction as  and .
The problem quickly becomes a one-dimensional problem along the direction of , since friction is in the direction opposite
to . Our strategy is to find the magnitude and direction of the net applied force  and then apply Newton’s second law
to solve for the drag force .

2 1

(0.500) +(1.225 )(0.707) = w = mg,T1 T1 (7.2.9)

1.366 = (15.0 kg)(9.80 m/ ).T1 s2 (7.2.10)

1

= 108 N .T1 (7.2.11)

2 2 1

= 132 N .T2 (7.2.12)

 Example 6.2: Drag Force on a Barge
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Solution
Since F  and F  are perpendicular, we can find the magnitude and direction of  directly. First, the resultant magnitude is
given by the Pythagorean theorem:

The angle is given by

From Newton’s first law, we know this is the same direction as the acceleration. We also know that  is in the opposite
direction of , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as ,
but its magnitude is slightly less than . The problem is now one-dimensional. From the free-body diagram, we can see that

However, Newton's second law states that

Thus,

This can be solved for the magnitude of the drag force of the water F  in terms of known quantities:

Substituting known values gives

The direction of  has already been determined to be in the direction opposite to , or at an angle of 53° south of west.

Significance
The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger
accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively small
for a well-designed hull at low speeds, consistent with the answer to this example, where F  is less than 1/600th of the weight
of the ship.

In Newton’s Laws of Motion, we discussed the normal force, which is a contact force that acts normal to the surface so that an
object does not have an acceleration perpendicular to the surface. The bathroom scale is an excellent example of a normal force
acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can
you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride?

Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a
constant speed? Take a guess before reading the next example.

Figure  shows a 75.0-kg man (weight of about 165 lb.) standing on a bathroom scale in an elevator. Calculate the scale
reading: (a) if the elevator accelerates upward at a rate of 1.20 m/s , and (b) if the elevator moves upward at a constant speed of
1 m/s.

x y F ⃗ 
app

= = = 4.5 × N .F ⃗ 
app +F 2

1 F 2
2

− −−−−−−
√ (2.7 × N +(3.6 × N105 )2 105 )2

− −−−−−−−−−−−−−−−−−−−−−−−−
√ 105 (7.2.14)

θ = ( ) = ( ) = .tan−1 F2

F1
tan−1 3.6 × N105

2.7 × N105
53.1o (7.2.15)
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F ⃗ 
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= − .Fnet Fapp FD (7.2.16)

= ma.Fnet (7.2.17)

− = ma.Fapp FD (7.2.18)

D

= −ma.FD Fapp (7.2.19)

= (4.5 × N) −(5.0 × kg)(7.5 × m/ ) = 7.5 × N .FD 105 106 10−2 s2 104 (7.2.20)
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 Example 6.3: What does the Bathroom Scale Read in an Elevator?
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Figure : (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are
approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be

drawn to scale.  is the tension in the supporting cable,  is the weight of the person,  is the weight of the scale, 
is the weight of the elevator,  is the force of the scale on the person,  is the force of the person on the scale,  is
the force of the scale on the floor of the elevator, and  is the force of the floor upward on the scale. (b) The free-body
diagram shows only the external forces acting on the designated system of interest—the person—and is the diagram we

use for the solution of the problem.

Strategy

If the scale at rest is accurate, its reading equals , the magnitude of the force the person exerts downward on it. Figure 
 shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look much

more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn, as in Figure .
Analysis of the free-body diagram using Newton’s laws can produce answers to both Figure  and (b) of this example, as
well as some other questions that might arise. The only forces acting on the person are his weight  and the upward force of
the scale . According to Newton’s third law,  and  are equal in magnitude and opposite in direction, so that we need to
find F  in order to find what the scale reads. We can do this, as usual, by applying Newton’s second law,

From the free-body diagram, we see that , so we have

Solving for F  gives us an equation with only one unknown:

or, because w = mg, simply

No assumptions were made about the acceleration, so this solution should be valid for a variety of accelerations in addition to
those in this situation. (Note: We are considering the case when the elevator is accelerating upward. If the elevator is
accelerating downward, Newton’s second law becomes F  − w = −ma.)

Solution
a. We have a = 1.20 m/s , so that

yielding

7.2.4

T ⃗  w⃗  w⃗ s w⃗ e

F ⃗ 
s F ⃗ 

p F ⃗ 
t

N ⃗ 

F ⃗ 
p

7.2.4a

7.2.4b

7.2.4a

w⃗ 

F ⃗ 
s F ⃗ 

p F ⃗ 
s

s

= m .F ⃗ 
net a⃗  (7.2.21)

= −F ⃗ 
net F ⃗ 

s w⃗ 

−w = ma.Fs (7.2.22)
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b. Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight?
For any constant velocity—up, down, or stationary—acceleration is zero because  and . Thus,

or

which gives

Significance
The scale reading in Figure  is about 185 lb. What would the scale have read if he were stationary? Since his
acceleration would be zero, the force of the scale would be equal to his weight:

Thus, the scale reading in the elevator is greater than his 735-N (165-lb.) weight. This means that the scale is pushing up on the
person with a force greater than his weight, as it must in order to accelerate him upward.

Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly
accelerating versus slowly accelerating elevators. In Figure , the scale reading is 735 N, which equals the person’s
weight. This is the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

Now calculate the scale reading when the elevator accelerates downward at a rate of 1.20 m/s .

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator
accelerates downward, a is negative, and the scale reading is less than the weight of the person. If a constant downward velocity is
reached, the scale reading again becomes equal to the person’s weight. If the elevator is in free fall and accelerating downward at g,
then the scale reading is zero and the person appears to be weightless.

Figure  shows a block of mass m  on a frictionless, horizontal surface. It is pulled by a light string that passes over a
frictionless and massless pulley. The other end of the string is connected to a block of mass m . Find the acceleration of the
blocks and the tension in the string in terms of m , m , and g.

Figure : (a) Block 1 is connected by a light string to block 2. (b) The free-body diagrams of the blocks.

= 825 N .Fs (7.2.26)

a = Δv

Δt
Δv= 0

= ma+mg = 0 +mgFs (7.2.27)

= (75.0 kg)(9.80 m/ ),Fs s2 (7.2.28)

= 735 N .Fs (7.2.29)

7.2.4a

= ma = 0 = −wFnet Fs (7.2.30)

= w = mgFs (7.2.31)

= (75.0 kg)(9.80 m/ ) = 735 N .Fs s2 (7.2.32)
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Strategy

We draw a free-body diagram for each mass separately, as shown in Figure . Then we analyze each one to find the
required unknowns. The forces on block 1 are the gravitational force, the contact force of the surface, and the tension in the
string. Block 2 is subjected to the gravitational force and the string tension. Newton’s second law applies to each, so we write
two vector equations:

For block 1: 

For block 2: .

Notice that  is the same for both blocks. Since the string and the pulley have negligible mass, and since there is no friction in
the pulley, the tension is the same throughout the string. We can now write component equations for each block. All forces are
either horizontal or vertical, so we can use the same horizontal/vertical coordinate system for both objects.

Solution
The component equations follow from the vector equations above. We see that block 1 has the vertical forces balanced, so we
ignore them and write an equation relating the x-components. There are no horizontal forces on block 2, so only the y-equation
is written. We obtain these results:

Block 1 Block 2

When block 1 moves to the right, block 2 travels an equal distance downward; thus, a  = −a . Writing the common
acceleration of the blocks as a = a  = −a , we now have

and

From these two equations, we can express a and T in terms of the masses m  and m , and g:

and

Significance
Notice that the tension in the string is less than the weight of the block hanging from the end of it. A common error in problems
like this is to set T = m g. You can see from the free-body diagram of block 2 that cannot be correct if the block is accelerating.

Calculate the acceleration of the system, and the tension in the string, when the masses are m  = 5.00 kg and m  = 3.00 kg.

A classic problem in physics, similar to the one we just solved, is that of the Atwood machine, which consists of a rope running
over a pulley, with two objects of different mass attached. It is particularly useful in understanding the connection between
force and motion. In Figure , m  = 2.00 kg and m  = 4.00 kg. Consider the pulley to be frictionless. (a) If m  is released,
what will its acceleration be? (b) What is the tension in the string?

7.2.5

+ + =T ⃗  w⃗ 1 N ⃗  m1a⃗ 1

+ =T ⃗  w⃗ 2 m2a⃗ 2

T ⃗ 

∑ = mFx ax (7.2.33)

=Tx m1a1x (7.2.34)

∑ = mFy ay (7.2.35)

− g =Ty m2 m2a2y (7.2.36)

1x 2y

1x 2y

T = am1 (7.2.37)

T − g = − a.m2 m2 (7.2.38)

1 2

a = g
m2

+m1 m2
(7.2.39)

T = g.
m1m2

+m1 m2
(7.2.40)

2

 Check Your Understanding 6.2

1 2

 Example 6.5: Atwood Machine
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Figure : An Atwood machine and free-body diagrams for each of the two blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in the figure. Then we analyze each diagram to find the
required unknowns. This may involve the solution of simultaneous equations. It is also important to note the similarity with the
previous example. As block 2 accelerates with acceleration a  in the downward direction, block 1 accelerates upward with
acceleration a . Thus, a = a  = −a .

Solution
a. We have

(The negative sign in front of m  a indicates that m  accelerates downward; both blocks accelerate at the same rate, but in
opposite directions.) Solve the two equations simultaneously (subtract them) and the result is

Solving for a:

b. Observing the first block, we see that

Significance
The result for the acceleration given in the solution can be interpreted as the ratio of the unbalanced force on the system, (m  −
m )g, to the total mass of the system, m  + m . We can also use the Atwood machine to measure local gravitational field
strength.

Determine a general formula in terms of m , m  and g for calculating the tension in the string for the Atwood machine shown
above.

This page titled 7.2: Solving Problems with Newton's Laws (Part 1) is shared under a CC BY license and was authored, remixed, and/or curated
by OpenStax.

6.2: Solving Problems with Newton's Laws (Part 1) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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2

1 1 2

For ,∑ = T − g = a. For ,∑ = T − g = − a.m1 Fy m1 m1 m2 Fy m2 m2 (7.2.41)

2 2

( − )g = ( + )a.m2 m1 m1 m2 (7.2.42)

a = g = (9.8 m/ ) = 3.27 m/ .
−m2 m1

+m1 m2

4 kg−2 kg

4 kg+2 kg
s2 s2 (7.2.43)

T − g = am1 m1 (7.2.44)

T = (g+a) = (2 kg)(9.8 m/ +3.27 m/ ) = 26.1 N .m1 s2 s2 (7.2.45)
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1 1 2
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7.3: Solving Problems with Newton's Laws (Part 2)

Newton’s Laws of Motion and Kinematics
Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical
principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to
solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier
chapters.

When approaching problems that involve various types of forces, acceleration, velocity, and/or position, listing the givens and the
quantities to be calculated will allow you to identify the principles involved. Then, you can refer to the chapters that deal with a
particular topic and solve the problem using strategies outlined in the text. The following worked example illustrates how the
problem-solving strategy given earlier in this chapter, as well as strategies presented in other chapters, is applied to an integrated
concept problem.

A soccer player starts at rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What is her average
acceleration? (b) What average force does the ground exert forward on the runner so that she achieves this acceleration? The
player’s mass is 70.0 kg, and air resistance is negligible.

Strategy

To find the answers to this problem, we use the problem-solving strategy given earlier in this chapter. The solutions to each
part of the example illustrate how to apply specific problem-solving steps. In this case, we do not need to use all of the steps.
We simply identify the physical principles, and thus the knowns and unknowns; apply Newton’s second law; and check to see
whether the answer is reasonable.

Solution
a. We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is v = 8.00 m/s . We

are given the elapsed time, so t = 2.50 s. The unknown is acceleration, which can be found from its definition:

Substituting the known values yields

b. Here we are asked to find the average force the ground exerts on the runner to produce this acceleration. (Remember that
we are dealing with the force or forces acting on the object of interest.) This is the reaction force to that exerted by the
player backward against the ground, by Newton’s third law. Neglecting air resistance, this would be equal in magnitude to
the net external force on the player, since this force causes her acceleration. Since we now know the player’s acceleration
and are given her mass, we can use Newton’s second law to find the force exerted. That is,

Substituting the known values of m and a gives

This is a reasonable result: The acceleration is attainable for an athlete in good condition. The force is about 50 pounds, a
reasonable average force.

Significance
This example illustrates how to apply problem-solving strategies to situations that include topics from different chapters. The
first step is to identify the physical principles, the knowns, and the unknowns involved in the problem. The second step is to
solve for the unknown, in this case using Newton’s second law. Finally, we check our answer to ensure it is reasonable. These

 Example 6.6: What Force Must a Soccer Player Exert to Reach Top Speed?

Δ

Δ

a = .
Δv

Δt
(7.3.1)

a = = 3.20 m/ .
8.00 m/s

2.50 s
s

2 (7.3.2)

= ma.Fnet (7.3.3)

= (70.0 kg)(3.20 m/ ) = 224 N .Fnet s
2 (7.3.4)
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techniques for integrated concept problems will be useful in applications of physics outside of a physics course, such as in your
profession, in other science disciplines, and in everyday life.

The soccer player stops after completing the play described above, but now notices that the ball is in position to be stolen. If
she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her, how long will it take her to
get to the ball?

A 1.50-kg model helicopter has a velocity of 5.00  m/s at t = 0. It is accelerated at a constant rate for two seconds (2.00 s)
after which it has a velocity of (6.00  + 12.00 ) m/s. What is the magnitude of the resultant force acting on the helicopter
during this time interval?

Strategy

We can easily set up a coordinate system in which the x-axis (  direction) is horizontal, and the y-axis (  direction) is vertical.
We know that t = 2.00s and v = (6.00  + 12.00  m/s) − (5.00  m/s). From this, we can calculate the acceleration by the
definition; we can then apply Newton’s second law.

Solution
We have

The magnitude of the force is now easily found:

Significance
The original problem was stated in terms of  −  vector components, so we used vector methods. Compare this example with
the previous example.

Find the direction of the resultant for the 1.50-kg model helicopter.

Figure (a) shows a baggage tractor pulling luggage carts from an airplane. The tractor has mass 650.0 kg, while cart A has
mass 250.0 kg and cart B has mass 150.0 kg. The driving force acting for a brief period of time accelerates the system from
rest and acts for 3.00 s. (a) If this driving force is given by F = (820.0t) N, find the speed after 3.00 seconds. (b) What is the
horizontal force acting on the connecting cable between the tractor and cart A at this instant?

 Exercise 6.4

 Example 6.7: What Force Acts on a Model Helicopter?

ĵ

î ĵ

î ĵ

Δ Δ î ĵ ĵ

a = = = 3.00 +3.50 m/ $$$$∑ = m
Δv

Δt

(6.00 +12.00 m/s) −(5.00 m/s)î ĵ ĵ

2.00 s
î ĵ s2 F ⃗  a⃗ 

= (1.50 kg)(3.00 +3.50 m/ ) = 4.50 +5.25 N .î ĵ s2 î ĵ

(7.3.5)

F = = 6.91 N .(4.50 N +(5.25 N)2 )2
− −−−−−−−−−−−−−−−−

√ (7.3.6)

î ĵ
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 Example 6.8: Baggage Tractor
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Figure : (a) A free-body diagram is shown, which indicates all the external forces on the system consisting of the tractor
and baggage carts for carrying airline luggage. (b) A free-body diagram of the tractor only is shown isolated in order to
calculate the tension in the cable to the carts.

Strategy

A free-body diagram shows the driving force of the tractor, which gives the system its acceleration. We only need to consider
motion in the horizontal direction. The vertical forces balance each other and it is not necessary to consider them. For part b,
we make use of a free-body diagram of the tractor alone to determine the force between it and cart A. This exposes the
coupling force , which is our objective.

Solution
a. 

so

Since acceleration is a function of time, we can determine the velocity of the tractor by using a =  with the initial
condition that v  = 0 at t = 0. We integrate from t = 0 to t = 3:

b. Refer to the free-body diagram in Figure (b)

Significance
Since the force varies with time, we must use calculus to solve this problem. Notice how the total mass of the system was
important in solving Figure (a), whereas only the mass of the truck (since it supplied the force) was of use in Figure 

(b).

Recall that v =  and a = . If acceleration is a function of time, we can use the calculus forms developed in Motion Along a
Straight Line, as shown in this example. However, sometimes acceleration is a function of displacement. In this case, we can derive
an important result from these calculus relations. Solving for dt in each, we have dt =  and dt = . Now, equating these
expressions, we have  = . We can rearrange this to obtain a ds = v dv.

A 10.0-kg mortar shell is fired vertically upward from the ground, with an initial velocity of 50.0 m/s (see Figure ).
Determine the maximum height it will travel if atmospheric resistance is measured as F  = (0.0100 v ) N, where v is the speed
at any instant.

7.3.7

T ⃗ 

∑ = and ∑ = 820.0t,Fx msystem ax Fx (7.3.7)

820.0t = (650.0 +250.0 +150.0)a (7.3.8)

a = 0.7809t. (7.3.9)

dv

dt

0

dv

dv∫
3

0

v

= adt

= adt = 0.7809tdt∫
3.00

0

∫
3.00

0

= 0.3905 = 3.51 m/s.t
2]

3.00

0

7.3.7

∑Fx

820.0t−T

(820.0)(3.00) −T

T

= mtractorax

= (0.7805)tmtractor

= (650.0)(0.7805)(3.00)

= 938 N .

7.3.7

7.3.7
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dv

dt
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dv
a
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 Example 6.9: Motion of a Projectile Fired Vertically
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Figure : (a) The mortar fires a shell straight up; we consider the friction force provided by the air. (b) A free-body
diagram is shown which indicates all the forces on the mortar shell.

Strategy

The known force on the mortar shell can be related to its acceleration using the equations of motion. Kinematics can then be
used to relate the mortar shell’s acceleration to its position.

Solution
Initially, y  = 0 and v  = 50.0 m/s. At the maximum height y = h, v = 0. The free-body diagram shows F  to act downward,
because it slows the upward motion of the mortar shell. Thus, we can write

The acceleration depends on v and is therefore variable. Since a = f(v), we can relate a to v using the rearrangement described
above,

We replace ds with dy because we are dealing with the vertical direction,

We now separate the variables (v’s and dv’s on one side; dy on the other):

Thus, h = 114 m.

Significance
Notice the need to apply calculus since the force is not constant, which also means that acceleration is not constant. To make
matters worse, the force depends on v (not t), and so we must use the trick explained prior to the example. The answer for the
height indicates a lower elevation if there were air resistance. We will deal with the effects of air resistance and other drag
forces in greater detail in Drag Force and Terminal Speed.

7.3.8

0 0 D

∑Fy

− −wFD

−0.0100 −98.0v2

a

= may

= may

= 10.0a

= −0.00100 −9.80.v2

ads = vdv. (7.3.10)

ady

(−0.00100 −9.80)dyv
2

= vdv

= vdv.

dy∫
h

0

= ∫
0

50.0

vdv

(−0.00100 −9.80)v2

= −∫
0

50.0

vdv

(−0.00100 +9.80)v2

= (−5 × ) ln(0.00100 +9.80) .103
v

2 ∣
∣
0

50.0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46051?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/06%3A_Applications_of_Newton's_Laws/6.07%3A_Drag_Force_and_Terminal_Speed


7.3.5 https://phys.libretexts.org/@go/page/46051

If atmospheric resistance is neglected, find the maximum height for the mortar shell. Is calculus required for this solution?

Explore the forces at work in this simulation when you try to push a filing cabinet. Create an applied force and see the resulting
frictional force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View
a free-body diagram of all the forces (including gravitational and normal forces).

This page titled 7.3: Solving Problems with Newton's Laws (Part 2) is shared under a CC BY license and was authored, remixed, and/or curated
by OpenStax.
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7.6: Centripetal Force

Explain the equation for centripetal acceleration
Apply Newton’s second law to develop the equation for centripetal force
Use circular motion concepts in solving problems involving Newton’s laws of motion

In Motion in Two and Three Dimensions, we examined the basic concepts of circular motion. An object undergoing circular
motion, like one of the race cars shown at the beginning of this chapter, must be accelerating because it is changing the direction of
its velocity. We proved that this centrally directed acceleration, called centripetal acceleration, is given by the formula

where v is the velocity of the object, directed along a tangent line to the curve at any instant. If we know the angular velocity ,
then we can use

Angular velocity gives the rate at which the object is turning through the curve, in units of rad/s. This acceleration acts along the
radius of the curved path and is thus also referred to as a radial acceleration.

An acceleration must be produced by a force. Any force or combination of forces can cause a centripetal or radial acceleration. Just
a few examples are the tension in the rope on a tether ball, the force of Earth’s gravity on the Moon, friction between roller skates
and a rink floor, a banked roadway’s force on a car, and forces on the tube of a spinning centrifuge. Any net force causing uniform
circular motion is called a centripetal force. The direction of a centripetal force is toward the center of curvature, the same as the
direction of centripetal acceleration. According to Newton’s second law of motion, net force is mass times acceleration: F  = ma.
For uniform circular motion, the acceleration is the centripetal acceleration: a = a . Thus, the magnitude of centripetal force F is

By substituting the expressions for centripetal acceleration a  ( ), we get two expressions for the centripetal force
F  in terms of mass, velocity, angular velocity, and radius of curvature:

You may use whichever expression for centripetal force is more convenient. Centripetal force  is always perpendicular to the
path and points to the center of curvature, because  is perpendicular to the velocity and points to the center of curvature. Note
that if you solve the first expression for r, you get

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve, as
in Figure .

Figure : The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to
velocity and causes uniform circular motion. The larger the F , the smaller the radius of curvature r and the sharper the curve. The
second curve has the same v, but a larger F  produces a smaller r′.

 Learning Objectives
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a. Calculate the centripetal force exerted on a 900.0-kg car that negotiates a 500.0-m radius curve at 25.00 m/s.
b. Assuming an unbanked curve, find the minimum static coefficient of friction between the tires and the road, static friction

being the reason that keeps the car from slipping (Figure ).

Figure : This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a
circular path is due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move
in a larger-radius curve and leave the roadway.

Strategy

a. We know that . Thus

b. Figure  shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car
from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case.
We know that the maximum static friction (at which the tires roll but do not slip) is  N, where  is the static coefficient
of friction and N is the normal force. The normal force equals the car’s weight on level ground, so N = mg. Thus the
centripetal force in this situation is

Now we have a relationship between centripetal force and the coefficient of friction. Using the equation

we obtain

We solve this for , noting that mass cancels, and obtain

Substituting the knowns,

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Significance
The coefficient of friction found in Figure  is much smaller than is typically found between tires and roads. The car still
negotiates the curve if the coefficient is greater than 0.13, because static friction is a responsive force, able to assume a value
less than but no more than N. A higher coefficient would also allow the car to negotiate the curve at a higher speed, but if
the coefficient of friction is less, the safe speed would be less than 25 m/s. Note that mass cancels, implying that, in this
example, it does not matter how heavily loaded the car is to negotiate the turn. Mass cancels because friction is assumed

 Example : What Coefficient of Friction Do Cars Need on a Flat Curve?7.6.1
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proportional to the normal force, which in turn is proportional to mass. If the surface of the road were banked, the normal force
would be less, as discussed next.

A car moving at 96.8 km/h travels around a circular curve of radius 182.9 m on a flat country road. What must be the minimum
coefficient of static friction to keep the car from slipping?

Banked Curves
Let us now consider banked curves, where the slope of the road helps you negotiate the curve (Figure ). The greater the angle
θ , the faster you can take the curve. Race tracks for bikes as well as cars, for example, often have steeply banked curves. In an
“ideally banked curve,” the angle  is such that you can negotiate the curve at a certain speed without the aid of friction between
the tires and the road. We will derive an expression for  for an ideally banked curve and consider an example related to it.

Figure : The car on this banked curve is moving away and turning to the left.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The components of the
normal force N in the horizontal and vertical directions must equal the centripetal force and the weight of the car, respectively. In
cases in which forces are not parallel, it is most convenient to consider components along perpendicular axes—in this case, the
vertical and horizontal directions.

Figure  shows a free-body diagram for a car on a frictionless banked curve. If the angle  is ideal for the speed and radius,
then the net external force equals the necessary centripetal force. The only two external forces acting on the car are its weight 
and the normal force of the road . (A frictionless surface can only exert a force perpendicular to the surface—that is, a normal
force.) These two forces must add to give a net external force that is horizontal toward the center of curvature and has magnitude 

. Because this is the crucial force and it is horizontal, we use a coordinate system with vertical and horizontal axes. Only the
normal force has a horizontal component, so this must equal the centripetal force, that is,

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical components of
the two external forces must be equal in magnitude and opposite in direction. From Figure , we see that the vertical
component of the normal force is N cos , and the only other vertical force is the car’s weight. These must be equal in magnitude;
thus,

Now we can combine these two equations to eliminate N and get an expression for , as desired. Solving the second equation for N
=  and substituting this into the first yields

Taking the inverse tangent gives
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This expression can be understood by considering how  depends on v and r. A large  is obtained for a large v and a small r. That
is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take the curve at greater
or lower speed than if the curve were frictionless. Note that  does not depend on the mass of the vehicle.

Curves on some test tracks and race courses, such as Daytona International Speedway in Florida, are very steeply banked. This
banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very high speed. To
illustrate, calculate the speed at which a 100.0-m radius curve banked at 31.0° should be driven if the road were frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we need
only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution
Starting with

we get

Noting that tan 31.0° = 0.609, we obtain

Significance
This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to take
the curve at significantly higher speeds.

Airplanes also make turns by banking. The lift force, due to the force of the air on the wing, acts at right angles to the wing. When
the airplane banks, the pilot is obtaining greater lift than necessary for level flight. The vertical component of lift balances the
airplane’s weight, and the horizontal component accelerates the plane. The banking angle shown in Figure  is given by . We
analyze the forces in the same way we treat the case of the car rounding a banked curve.

Figure : In a banked turn, the horizontal component of lift is unbalanced and accelerates the plane. The normal component of
lift balances the plane’s weight. The banking angle is given by . Compare the vector diagram with that shown in Figure 6.22.

θ = ( ).tan−1 v2

rg
(7.6.14)

θ θ
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 Example : What Is the Ideal Speed to Take a Steeply Banked Tight Curve?7.6.2
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Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle or choose a constant
angular velocity or angular acceleration. Explore how circular motion relates to the bug’s xy-position, velocity, and
acceleration using vectors or graphs.

A circular motion requires a force, the so-called centripetal force, which is directed to the axis of rotation. This simplified
model of a carousel demonstrates this force.

Inertial Forces and Noninertial (Accelerated) Frames: The Coriolis Force
What do taking off in a jet airplane, turning a corner in a car, riding a merry-go-round, and the circular motion of a tropical cyclone
have in common? Each exhibits inertial forces—forces that merely seem to arise from motion, because the observer’s frame of
reference is accelerating or rotating. When taking off in a jet, most people would agree it feels as if you are being pushed back into
the seat as the airplane accelerates down the runway. Yet a physicist would say that you tend to remain stationary while the seat
pushes forward on you. An even more common experience occurs when you make a tight curve in your car—say, to the right
(Figure ). You feel as if you are thrown (that is, forced) toward the left relative to the car. Again, a physicist would say that
you are going in a straight line (recall Newton’s first law) but the car moves to the right, not that you are experiencing a force from
the left.

Figure : (a) The car driver feels herself forced to the left relative to the car when she makes a right turn. This is an inertial
force arising from the use of the car as a frame of reference. (b) In Earth’s frame of reference, the driver moves in a straight line,
obeying Newton’s first law, and the car moves to the right. There is no force to the left on the driver relative to Earth. Instead, there
is a force to the right on the car to make it turn.

We can reconcile these points of view by examining the frames of reference used. Let us concentrate on people in a car. Passengers
instinctively use the car as a frame of reference, whereas a physicist might use Earth. The physicist might make this choice because
Earth is nearly an inertial frame of reference, in which all forces have an identifiable physical origin. In such a frame of reference,
Newton’s laws of motion take the form given in Newton’s Laws of Motion. The car is a noninertial frame of reference because it
is accelerated to the side. The force to the left sensed by car passengers is an inertial force having no physical origin (it is due
purely to the inertia of the passenger, not to some physical cause such as tension, friction, or gravitation). The car, as well as the
driver, is actually accelerating to the right. This inertial force is said to be an inertial force because it does not have a physical
origin, such as gravity.

A physicist will choose whatever reference frame is most convenient for the situation being analyzed. There is no problem to a
physicist in including inertial forces and Newton’s second law, as usual, if that is more convenient, for example, on a merry-go-
round or on a rotating planet. Noninertial (accelerated) frames of reference are used when it is useful to do so. Different frames of
reference must be considered in discussing the motion of an astronaut in a spacecraft traveling at speeds near the speed of light, as
you will appreciate in the study of the special theory of relativity.

Let us now take a mental ride on a merry-go-round—specifically, a rapidly rotating playground merry-go-round (Figure ).
You take the merry-go-round to be your frame of reference because you rotate together. When rotating in that noninertial frame of
reference, you feel an inertial force that tends to throw you off; this is often referred to as a centrifugal force (not to be confused
with centripetal force). Centrifugal force is a commonly used term, but it does not actually exist. You must hang on tightly to
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counteract your inertia (which people often refer to as centrifugal force). In Earth’s frame of reference, there is no force trying to
throw you off; we emphasize that centrifugal force is a fiction. You must hang on to make yourself go in a circle because otherwise
you would go in a straight line, right off the merry-go-round, in keeping with Newton’s first law. But the force you exert acts
toward the center of the circle.

Figure : (a) A rider on a merry-go-round feels as if he is being thrown off. This inertial force is sometimes mistakenly called
the centrifugal force in an effort to explain the rider’s motion in the rotating frame of reference. (b) In an inertial frame of reference
and according to Newton’s laws, it is his inertia that carries him off (the unshaded rider has F  = 0 and heads in a straight line). A
force, F , is needed to cause a circular path.

This inertial effect, carrying you away from the center of rotation if there is no centripetal force to cause circular motion, is put to
good use in centrifuges (Figure ). A centrifuge spins a sample very rapidly, as mentioned earlier in this chapter. Viewed from
the rotating frame of reference, the inertial force throws particles outward, hastening their sedimentation. The greater the angular
velocity, the greater the centrifugal force. But what really happens is that the inertia of the particles carries them along a line
tangent to the circle while the test tube is forced in a circular path by a centripetal force.

Figure : Centrifuges use inertia to perform their task. Particles in the fluid sediment settle out because their inertia carries
them away from the center of rotation. The large angular velocity of the centrifuge quickens the sedimentation. Ultimately, the
particles come into contact with the test tube walls, which then supply the centripetal force needed to make them move in a circle
of constant radius.

Let us now consider what happens if something moves in a rotating frame of reference. For example, what if you slide a ball
directly away from the center of the merry-go-round, as shown in Figure ? The ball follows a straight path relative to Earth
(assuming negligible friction) and a path curved to the right on the merry-go-round’s surface. A person standing next to the merry-
go-round sees the ball moving straight and the merry-go-round rotating underneath it. In the merry-go-round’s frame of reference,
we explain the apparent curve to the right by using an inertial force, called the Coriolis force, which causes the ball to curve to the
right. The Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths and allows us
to apply Newton’s laws in noninertial frames of reference.
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Figure : Looking down on the counterclockwise rotation of a merry-go-round, we see that a ball slid straight toward the edge
follows a path curved to the right. The person slides the ball toward point B, starting at point A. Both points rotate to the shaded
positions (A’ and B’) shown in the time that the ball follows the curved path in the rotating frame and a straight path in Earth’s
frame.

Up until now, we have considered Earth to be an inertial frame of reference with little or no worry about effects due to its rotation.
Yet such effects do exist—in the rotation of weather systems, for example. Most consequences of Earth’s rotation can be
qualitatively understood by analogy with the merry-go-round. Viewed from above the North Pole, Earth rotates counterclockwise,
as does the merry-go-round in Figure . As on the merry-go-round, any motion in Earth’s Northern Hemisphere experiences a
Coriolis force to the right. Just the opposite occurs in the Southern Hemisphere; there, the force is to the left. Because Earth’s
angular velocity is small, the Coriolis force is usually negligible, but for large-scale motions, such as wind patterns, it has
substantial effects.

The Coriolis force causes hurricanes in the Northern Hemisphere to rotate in the counterclockwise direction, whereas tropical
cyclones in the Southern Hemisphere rotate in the clockwise direction. (The terms hurricane, typhoon, and tropical storm are
regionally specific names for cyclones, which are storm systems characterized by low pressure centers, strong winds, and heavy
rains.) Figure  helps show how these rotations take place. Air flows toward any region of low pressure, and tropical cyclones
contain particularly low pressures. Thus winds flow toward the center of a tropical cyclone or a low-pressure weather system at the
surface. In the Northern Hemisphere, these inward winds are deflected to the right, as shown in the figure, producing a
counterclockwise circulation at the surface for low-pressure zones of any type. Low pressure at the surface is associated with rising
air, which also produces cooling and cloud formation, making low-pressure patterns quite visible from space. Conversely, wind
circulation around high-pressure zones is clockwise in the Southern Hemisphere but is less visible because high pressure is
associated with sinking air, producing clear skies.

Figure : (a) The counterclockwise rotation of this Northern Hemisphere hurricane is a major consequence of the Coriolis
force. (b) Without the Coriolis force, air would flow straight into a low-pressure zone, such as that found in tropical cyclones. (c)
The Coriolis force deflects the winds to the right, producing a counterclockwise rotation. (d) Wind flowing away from a high-
pressure zone is also deflected to the right, producing a clockwise rotation. (e) The opposite direction of rotation is produced by the
Coriolis force in the Southern Hemisphere, leading to tropical cyclones. (credit a and credit e: modifications of work by NASA)

The rotation of tropical cyclones and the path of a ball on a merry-go-round can just as well be explained by inertia and the rotation
of the system underneath. When noninertial frames are used, inertial forces, such as the Coriolis force, must be invented to explain
the curved path. There is no identifiable physical source for these inertial forces. In an inertial frame, inertia explains the path, and
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no force is found to be without an identifiable source. Either view allows us to describe nature, but a view in an inertial frame is the
simplest in the sense that all forces have origins and explanations.
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7.4: Friction (Part 1)

Describe the general characteristics of friction
List the various types of friction
Calculate the magnitude of static and kinetic friction, and use these in problems involving Newton’s laws of motion

When a body is in motion, it has resistance because the body interacts with its surroundings. This resistance is a force of friction.
Friction opposes relative motion between systems in contact but also allows us to move, a concept that becomes obvious if you try
to walk on ice. Friction is a common yet complex force, and its behavior still not completely understood. Still, it is possible to
understand the circumstances in which it behaves.

Static and Kinetic Friction
The basic definition of friction is relatively simple to state.

Friction is a force that opposes relative motion between systems in contact.

There are several forms of friction. One of the simpler characteristics of sliding friction is that it is parallel to the contact surfaces
between systems and is always in a direction that opposes motion or attempted motion of the systems relative to each other. If two
systems are in contact and moving relative to one another, then the friction between them is called kinetic friction. For example,
friction slows a hockey puck sliding on ice. When objects are stationary, static friction can act between them; the static friction is
usually greater than the kinetic friction between two objects.

If two systems are in contact and stationary relative to one another, then the friction between them is called static friction. If
two systems are in contact and moving relative to one another, then the friction between them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you might push very hard on the crate and not move it
at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite direction of your
push. If you finally push hard enough, the crate seems to slip suddenly and starts to move. Now static friction gives way to kinetic
friction. Once in motion, it is easier to keep it in motion than it was to get it started, indicating that the kinetic frictional force is less
than the static frictional force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it
started and also to keep it moving. Furthermore, if you oiled the concrete you would find it easier to get the crate started and keep it
going (as you might expect).

Figure  is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of
these surfaces shows them to be rough. Thus, when you push to get an object moving (in this case, a crate), you must raise the
object until it can skip along with just the tips of the surface hitting, breaking off the points, or both. A considerable force can be
resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on the
crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules of the
two objects, which explains the dependence of friction on the nature of the substances. For example, rubber-soled shoes slip less
than those with leather soles. Adhesion varies with substances in contact and is a complicated aspect of surface physics. Once an
object is moving, there are fewer points of contact (fewer molecules adhering), so less force is required to keep the object moving.
At small but nonzero speeds, friction is nearly independent of speed.
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Figure : Frictional forces, such as , always oppose motion or attempted motion between objects in contact. Friction arises in
part because of the roughness of the surfaces in contact, as seen in the expanded view. For the object to move, it must rise to where
the peaks of the top surface can skip along the bottom surface. Thus, a force is required just to set the object in motion. Some of the
peaks will be broken off, also requiring a force to maintain motion. Much of the friction is actually due to attractive forces between
molecules making up the two objects, so that even perfectly smooth surfaces are not friction-free. (In fact, perfectly smooth, clean
surfaces of similar materials would adhere, forming a bond called a “cold weld.”)

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for situations involving
motion (kinetic friction). What follows is an approximate empirical (experimentally determined) model only. These equations for
static and kinetic friction are not vector equations.

The magnitude of static friction f  is

where  is the coefficient of static friction and N is the magnitude of the normal force.

The symbol ≤ means less than or equal to, implying that static friction can have a maximum value of N. Static friction is a
responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit. Once the applied
force exceeds f  (max), the object moves. Thus,

The magnitude of kinetic friction f  is given by

where  is the coefficient of kinetic friction.

A system in which f  = N is described as a system in which friction behaves simply. The transition from static friction to kinetic
friction is illustrated in Figure 

Figure : (a) The force of friction  between the block and the rough surface opposes the direction of the applied force . The
magnitude of the static friction balances that of the applied force. This is shown in the left side of the graph in (c). (b) At some
point, the magnitude of the applied force is greater than the force of kinetic friction, and the block moves to the right. This is shown
in the right side of the graph. (c) The graph of the frictional force versus the applied force; note that fs (max) > f . This means that 

 > 

As you can see in Table 6.1, the coefficients of kinetic friction are less than their static counterparts. The approximate values of 
are stated to only one or two digits to indicate the approximate description of friction given by the preceding two equations.
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Table 6.1 - Approximate Coefficients of Static and Kinetic Friction

System Static Friction Kinetic Friction 

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.5-0.7 0.3-0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.4 0.02

Equation  and Equation  include the dependence of friction on materials and the normal force. The direction of friction is
always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if the
crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force is equal to its weight,

perpendicular to the floor. If the coefficient of static friction is 0.45, you would have to exert a force parallel to the floor greater
than

to move the crate. Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only

keeps it moving at a constant speed. If the floor is lubricated, both coefficients are considerably less than they would be without
lubrication. Coefficient of friction is a unitless quantity with a magnitude usually between 0 and 1.0. The actual value depends on
the two surfaces that are in contact.

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have
much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which are
connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is a
ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage, which
provides a smooth, almost-glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A damaged
or arthritic joint can be replaced by an artificial joint (Figure ). These replacements can be made of metals (stainless steel or
titanium) or plastic (polyethylene), also with very small coefficients of friction.

μs μk

7.4.1 7.4.3

w = mg = (100 kg)(9.80 m/ ) = 980 N ,s2 (7.4.4)

(max) = N = (0.45)(980 N) = 440 Nfs μs (7.4.5)

= N = (0.30)(980 N) = 290 Nfk μk (7.4.6)
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Figure : Artificial knee replacement is a procedure that has been performed for more than 20 years. These post-operative X-
rays show a right knee joint replacement. (credit: Mike Baird)

Natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found between
organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a person moves.
Hospitals and doctor’s clinics commonly use artificial lubricants, such as gels, to reduce friction.

The equations given for static and kinetic friction are empirical laws that describe the behavior of the forces of friction. While these
formulas are very useful for practical purposes, they do not have the status of mathematical statements that represent general
principles (e.g., Newton’s second law). In fact, there are cases for which these equations are not even good approximations. For
instance, neither formula is accurate for lubricated surfaces or for two surfaces siding across each other at high speeds. Unless
specified, we will not be concerned with these exceptions.

A 20.0-kg crate is at rest on a floor as shown in Figure . The coefficient of static friction between the crate and floor is
0.700 and the coefficient of kinetic friction is 0.600. A horizontal force  is applied to the crate. Find the force of friction if (a)

 = 20.0 N, (b)  = 30.0 N, (c)  = 120.0 N, and (d)  = 180.0 N.

Figure : (a) A crate on a horizontal surface is pushed with a force . (b) The forces on the crate. Here,  may represent
either the static or the kinetic frictional force.

Strategy

The free-body diagram of the crate is shown in Figure . We apply Newton’s second law in the horizontal and vertical
directions, including the friction force in opposition to the direction of motion of the box.

Solution
Newton’s second law gives

Here we are using the symbol f to represent the frictional force since we have not yet determined whether the crate is subject to
station friction or kinetic friction. We do this whenever we are unsure what type of friction is acting. Now the weight of the
crate is

7.4.3

 Example 6.10: Static and Kinetic Friction
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which is also equal to N. The maximum force of static friction is therefore (0.700)(196 N) = 137 N. As long as  is less than
137 N, the force of static friction keeps the crate stationary and f  = . Thus, (a) f  = 20.0 N, (b) f  = 30.0 N, and (c) f  = 120.0
N. (d) If  = 180.0 N, the applied force is greater than the maximum force of static friction (137 N), so the crate can no longer
remain at rest. Once the crate is in motion, kinetic friction acts. Then

and the acceleration is

Significance
This example illustrates how we consider friction in a dynamics problem. Notice that static friction has a value that matches
the applied force, until we reach the maximum value of static friction. Also, no motion can occur until the applied force equals
the force of static friction, but the force of kinetic friction will then become smaller.

A block of mass 1.0 kg rests on a horizontal surface. The frictional coefficients for the block and surface are  = 0.50 and 
= 0.40. (a) What is the minimum horizontal force required to move the block? (b) What is the block’s acceleration when this
force is applied?

This page titled 7.4: Friction (Part 1) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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7.5: Friction (Part 2)

Friction and the Inclined Plane
One situation where friction plays an obvious role is that of an object on a slope. It might be a crate being pushed up a ramp to a
loading dock or a skateboarder coasting down a mountain, but the basic physics is the same. We usually generalize the sloping
surface and call it an inclined plane but then pretend that the surface is flat. Let’s look at an example of analyzing motion on an
inclined plane with friction.

A skier with a mass of 62 kg is sliding down a snowy slope at a constant velocity. Find the coefficient of kinetic friction for the
skier if friction is known to be 45.0 N.

Strategy

The magnitude of kinetic friction is given as 45.0 N. Kinetic friction is related to the normal force N by f  = N; thus, we can
find the coefficient of kinetic friction if we can find the normal force on the skier. The normal force is always perpendicular to
the surface, and since there is no motion perpendicular to the surface, the normal force should equal the component of the
skier’s weight perpendicular to the slope. (See Figure , which repeats a figure from the chapter on Newton’s laws of
motion.)

Figure : The motion of the skier and friction are parallel to the slope, so it is most convenient to project all forces onto a
coordinate system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). The
normal force  is perpendicular to the slope, and friction  is parallel to the slope, but the skier’s weight  has components
along both axes, namely  and . The normal force  is equal in magnitude to , so there is no motion perpendicular to
the slope. However,  is less than  in magnitude, so there is acceleration down the slope (along the x-axis).

We have

Substituting this into our expression for kinetic friction, we obtain

which can now be solved for the coefficient of kinetic friction .

Solution
Solving for  gives

Substituting known values on the right-hand side of the equation,

Significance
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This result is a little smaller than the coefficient listed in Table 6.1 for waxed wood on snow, but it is still reasonable since
values of the coefficients of friction can vary greatly. In situations like this, where an object of mass m slides down a slope that
makes an angle  with the horizontal, friction is given by f  =  mg cos . All objects slide down a slope with constant
acceleration under these circumstances.

We have discussed that when an object rests on a horizontal surface, the normal force supporting it is equal in magnitude to its
weight. Furthermore, simple friction is always proportional to the normal force. When an object is not on a horizontal surface, as
with the inclined plane, we must find the force acting on the object that is directed perpendicular to the surface; it is a component of
the weight.

We now derive a useful relationship for calculating coefficient of friction on an inclined plane. Notice that the result applies only
for situations in which the object slides at constant speed down the ramp.

An object slides down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to measure
the coefficient of kinetic friction between two objects. As shown in Example , the kinetic friction on a slope is f  =  mg cos 

. The component of the weight down the slope is equal to mg sin  (see the free-body diagram in Figure ). These forces act
in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing these out,

Solving for , we find that

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book lightly to
get the coin to move. Measure the angle of tilt relative to the horizontal and find . Note that the coin does not start to slide at all
until an angle greater than  is attained, since the coefficient of static friction is larger than the coefficient of kinetic friction. Think
about how this may affect the value for  and its uncertainty.

Atomic-Scale Explanations of Friction
The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been made in
the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic nature of friction
seems to have several fundamental characteristics. These characteristics not only explain some of the simpler aspects of friction—
they also hold the potential for the development of nearly friction-free environments that could save hundreds of billions of dollars
in energy which is currently being converted (unnecessarily) into heat.

Figure  illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have
noted that friction is proportional to the normal force, but not to the amount of area in contact, a somewhat counterintuitive notion.
When two rough surfaces are in contact, the actual contact area is a tiny fraction of the total area because only high spots touch.
When a greater normal force is exerted, the actual contact area increases, and we find that the friction is proportional to this area.

Figure : Two rough surfaces in contact have a much smaller area of actual contact than their total area. When the normal force
is larger as a result of a larger applied force, the area of actual contact increases, as does friction.

However, the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is
generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked with
one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially creating
sound waves that penetrate the material. The sound waves diminish with distance, and their energy is converted into heat. Chemical
reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure  shows how
the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag the tip can be
measured and is found to be related to shear stress, which is discussed in Static Equilibrium and Elasticity. The variation in shear
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stress is remarkable (more than a factor of 1012 ) and difficult to predict theoretically, but shear stress is yielding a fundamental
understanding of a large-scale phenomenon known since ancient times—friction.

Figure : The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of
how the force varies for different materials are yielding fundamental insights into the atomic nature of friction.

Describe a model for friction on a molecular level. Describe matter in terms of molecular motion. The description should
include diagrams to support the description; how the temperature affects the image; what are the differences and similarities
between solid, liquid, and gas particle motion; and how the size and speed of gas molecules relate to everyday objects.

The two blocks of Figure  are attached to each other by a massless string that is wrapped around a frictionless pulley.
When the bottom 4.00-kg block is pulled to the left by the constant force , the top 2.00-kg block slides across it to the right.
Find the magnitude of the force necessary to move the blocks at constant speed. Assume that the coefficient of kinetic friction
between all surfaces is 0.400.

Figure : (a) Each block moves at constant velocity. (b) Free-body diagrams for the blocks.

Strategy

We analyze the motions of the two blocks separately. The top block is subjected to a contact force exerted by the bottom block.
The components of this force are the normal force N  and the frictional force −0.400 N . Other forces on the top block are the
tension T in the string and the weight of the top block itself, 19.6 N. The bottom block is subjected to contact forces due to the
top block and due to the floor. The first contact force has components −N  and 0.400 N , which are simply reaction forces to
the contact forces that the bottom block exerts on the top block. The components of the contact force of the floor are N  and

7.5.3
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0.400 N . Other forces on this block are −P, the tension T, and the weight –39.2 N. Solution Since the top block is moving
horizontally to the right at constant velocity, its acceleration is zero in both the horizontal and the vertical directions. From
Newton’s second law,

Solving for the two unknowns, we obtain N  = 19.6 N and T = 0.40 N  = 7.84 N. The bottom block is also not accelerating, so
the application of Newton’s second law to this block gives

The values of N  and T were found with the first set of equations. When these values are substituted into the second set of
equations, we can determine N  and P. They are

Significance
Understanding what direction in which to draw the friction force is often troublesome. Notice that each friction force labeled in
Figure  acts in the direction opposite the motion of its corresponding block.

A 50.0-kg crate rests on the bed of a truck as shown in Figure . The coefficients of friction between the surfaces are  =
0.300 and  = 0.400. Find the frictional force on the crate when the truck is accelerating forward relative to the ground at (a)
2.00 m/s , and (b) 5.00 m/s .

Figure : (a) A crate rests on the bed of the truck that is accelerating forward. (b) The free-body diagram of the crate.

Strategy

The forces on the crate are its weight and the normal and frictional forces due to contact with the truck bed. We start by
assuming that the crate is not slipping. In this case, the static frictional force fs acts on the crate. Furthermore, the accelerations
of the crate and the truck are equal.

Solution
a. Application of Newton’s second law to the crate, using the reference frame attached to the ground, yields

We can now check the validity of our no-slip assumption. The maximum value of the force of static friction is

2

∑ =Fx m2ax (7.5.7)

T − 0.400 = 0N1 (7.5.8)

∑ =Fy m1ay (7.5.9)
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whereas the actual force of static friction that acts when the truck accelerates forward at 2.00 m/s  is only 1.00 x 10  N.
Thus, the assumption of no slipping is valid.

b. If the crate is to move with the truck when it accelerates at 5.0 m/s , the force of static friction must be

Since this exceeds the maximum of 196 N, the crate must slip. The frictional force is therefore kinetic and is

The horizontal acceleration of the crate relative to the ground is now found from $$

\]

Significance
Relative to the ground, the truck is accelerating forward at 5.0 m/s  and the crate is accelerating forward at 2.94 m/s . Hence
the crate is sliding backward relative to the bed of the truck with an acceleration 2.94 m/s  − 5.00 m/s = −2.06 m/s .

Earlier, we analyzed the situation of a downhill skier moving at constant velocity to determine the coefficient of kinetic
friction. Now let’s do a similar analysis to determine acceleration. The snowboarder of Figure  glides down a slope that is
inclined at  = 13° to the horizontal. The coefficient of kinetic friction between the board and the snow is  = 0.20. What is
the acceleration of the snowboarder?

Figure : (a) A snowboarder glides down a slope inclined at 13° to the horizontal. (b) The free-body diagram of the
snowboarder.

Strategy

The forces acting on the snowboarder are her weight and the contact force of the slope, which has a component normal to the
incline and a component along the incline (force of kinetic friction). Because she moves along the slope, the most convenient
reference frame for analyzing her motion is one with the x-axis along and the y-axis perpendicular to the incline. In this frame,
both the normal and the frictional forces lie along coordinate axes, the components of the weight are mg sin θ along the slope
and mg cos  at right angles into the slope , and the only acceleration is along the x-axis (a = 0).

Solution
We can now apply Newton’s second law to the snowboarder:

2 2

2

= m = (50.0 kg)(5.00 m/ ) = 250 N .fs ax s2 (7.5.17)
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From the second equation, N = mg cos . Upon substituting this into the first equation, we find

Significance
Notice from this equation that if  is small enough or  is large enough, a  is negative, that is, the snowboarder slows down.

The snowboarder is now moving down a hill with incline 10.0°. What is the skier’s acceleration?
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7.7: Drag Force and Terminal Speed

Express the drag force mathematically
Describe applications of the drag force
Define terminal velocity
Determine an object’s terminal velocity given its mass

Another interesting force in everyday life is the force of drag on an object when it is moving in a fluid (either a gas or a liquid).
You feel the drag force when you move your hand through water. You might also feel it if you move your hand during a strong
wind. The faster you move your hand, the harder it is to move. You feel a smaller drag force when you tilt your hand so only the
side goes through the air—you have decreased the area of your hand that faces the direction of motion.

Drag Forces
Like friction, the drag force always opposes the motion of an object. Unlike simple friction, the drag force is proportional to some
function of the velocity of the object in that fluid. This functionality is complicated and depends upon the shape of the object, its
size, its velocity, and the fluid it is in. For most large objects such as cyclists, cars, and baseballs not moving too slowly, the
magnitude of the drag force  is proportional to the square of the speed of the object. We can write this relationship
mathematically as . When taking into account other factors, this relationship becomes

where  is the drag coefficient,  is the area of the object facing the fluid, and  is the density of the fluid. (Recall that density is
mass per unit volume.) This equation can also be written in a more generalized fashion as , where b is a constant
equivalent to . We have set the exponent n for these equations as 2 because when an object is moving at high velocity
through air, the magnitude of the drag force is proportional to the square of the speed. As we shall see in Fluid Mechanics, for small
particles moving at low speeds in a fluid, the exponent n is equal to 1.

Drag force  is proportional to the square of the speed of the object. Mathematically,

where  is the drag coefficient,  is the area of the object facing the fluid, and  is the density of the fluid.

Athletes as well as car designers seek to reduce the drag force to lower their race times (Figure ). Aerodynamic shaping of
an automobile can reduce the drag force and thus increase a car’s gas mileage. The value of the drag coefficient  is determined
empirically, usually with the use of a wind tunnel (Figure ).
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Figure : (A) From racing cars to bobsled racers, aerodynamic shaping is crucial to achieving top speeds. Bobsleds are
designed for speed and are shaped like a bullet with tapered fins. (credit: “U.S. Army”/Wikimedia Commons) (B): NASA
researchers test a model plane in a wind tunnel. (credit: NASA/Ames).

The drag coefficient can depend upon velocity, but we assume that it is a constant here. Table  lists some typical drag
coefficients for a variety of objects. Notice that the drag coefficient is a dimensionless quantity. At highway speeds, over 50% of
the power of a car is used to overcome air drag. The most fuel-efficient cruising speed is about 70–80 km/h (about 45–50 mi/h).
For this reason, during the 1970s oil crisis in the United States, maximum speeds on highways were set at about 90 km/h (55 mi/h).

Table : Typical Values of Drag Coefficient C

Object C

Airfoil 0.05

Toyota Camry 0.28

Ford Focus 0.32

Honda Civic 0.36

Ferrari Testarossa 0.37

Dodge Ram Pickup 0.43

Sphere 0.45

Hummer H2 SUV 0.64

Skydiver (feet first) 0.70

Bicycle 0.90

Skydiver (horizontal) 1.0

Circular flat plate 1.12

Substantial research is under way in the sporting world to minimize drag. The dimples on golf balls are being redesigned, as are the
clothes that athletes wear. Bicycle racers and some swimmers and runners wear full bodysuits. Australian Cathy Freeman wore a
full body suit in the 2000 Sydney Olympics and won a gold medal in the 400-m race. Many swimmers in the 2008 Beijing
Olympics wore (Speedo) body suits; it might have made a difference in breaking many world records (Figure ). Most elite
swimmers (and cyclists) shave their body hair. Such innovations can have the effect of slicing away milliseconds in a race,
sometimes making the difference between a gold and a silver medal. One consequence is that careful and precise guidelines must
be continuously developed to maintain the integrity of the sport.
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Figure : Body suits, such as this LZR Racer Suit, have been credited with aiding in many world records after their release in
2008. Smoother “skin” and more compression forces on a swimmer’s body provide at least 10% less drag. (credit: NASA/Kathy
Barnstorff)

Terminal Velocity
Some interesting situations connected to Newton’s second law occur when considering the effects of drag forces upon a moving
object. For instance, consider a skydiver falling through air under the influence of gravity. The two forces acting on him are the
force of gravity and the drag force (ignoring the small buoyant force). The downward force of gravity remains constant regardless
of the velocity at which the person is moving. However, as the person’s velocity increases, the magnitude of the drag force
increases until the magnitude of the drag force is equal to the gravitational force, thus producing a net force of zero. A zero net
force means that there is no acceleration, as shown by Newton’s second law. At this point, the person’s velocity remains constant
and we say that the person has reached his terminal velocity ( ). Since  is proportional to the speed squared, a heavier
skydiver must go faster for F  to equal his weight. Let’s see how this works out more quantitatively.

At the terminal velocity,

Thus,

Using the equation for drag force, we have

Solving for the velocity, we obtain

Assume the density of air is  = 1.21 kg/m . A 75-kg skydiver descending head first has a cross-sectional area of approximately A
= 0.18 m  and a drag coefficient of approximately C = 0.70. We find that

This means a skydiver with a mass of 75 kg achieves a terminal velocity of about 350 km/h while traveling in a pike (head first)
position, minimizing the area and his drag. In a spread-eagle position, that terminal velocity may decrease to about 200 km/h as the
area increases. This terminal velocity becomes much smaller after the parachute opens.

Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Strategy

At terminal velocity, . Thus, the drag force on the skydiver must equal the force of gravity (the person’s weight).
Using the equation of drag force, we find .
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Solution
The terminal velocity  can be written as

Significance

This result is consistent with the value for v  mentioned earlier. The 75-kg skydiver going feet first had a terminal velocity of
v  = 98 m/s. He weighed less but had a smaller frontal area and so a smaller drag due to the air.

Find the terminal velocity of a 50-kg skydiver falling in spread-eagle fashion.

The size of the object that is falling through air presents another interesting application of air drag. If you fall from a 5-m-high
branch of a tree, you will likely get hurt—possibly fracturing a bone. However, a small squirrel does this all the time, without
getting hurt. You do not reach a terminal velocity in such a short distance, but the squirrel does.

The following interesting quote on animal size and terminal velocity is from a 1928 essay by a British biologist, J. B. S. Haldane,
titled “On Being the Right Size.”

“To the mouse and any smaller animal, [gravity] presents practically no dangers. You can
drop a mouse down a thousand-yard mine shaft; and, on arriving at the bottom, it gets a
slight shock and walks away, provided that the ground is fairly soft. A rat is killed, a man
is broken, and a horse splashes. For the resistance presented to movement by the air is
proportional to the surface of the moving object. Divide an animal’s length, breadth, and
height each by ten; its weight is reduced to a thousandth, but its surface only to a
hundredth. So the resistance to falling in the case of the small animal is relatively ten
times greater than the driving force.”

The above quadratic dependence of air drag upon velocity does not hold if the object is very small, is going very slow, or is in a
denser medium than air. Then we find that the drag force is proportional just to the velocity. This relationship is given by Stokes’
law.

For a spherical object falling in a medium, the drag force is

where  is the radius of the object,  is the viscosity of the fluid, and  is the object’s velocity.

Good examples of Stokes’ law are provided by microorganisms, pollen, and dust particles. Because each of these objects is so
small, we find that many of these objects travel unaided only at a constant (terminal) velocity. Terminal velocities for bacteria (size
about \(1\, \mu m) can be about \(2\, \mu m/s. To move at a greater speed, many bacteria swim using flagella (organelles shaped
like little tails) that are powered by little motors embedded in the cell.

Sediment in a lake can move at a greater terminal velocity (about 5 m/s), so it can take days for it to reach the bottom of the lake
after being deposited on the surface.

If we compare animals living on land with those in water, you can see how drag has influenced evolution. Fish, dolphins, and even
massive whales are streamlined in shape to reduce drag forces. Birds are streamlined and migratory species that fly large distances
often have particular features such as long necks. Flocks of birds fly in the shape of a spearhead as the flock forms a streamlined
pattern (Figure ). In humans, one important example of streamlining is the shape of sperm, which need to be efficient in their
use of energy.
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Figure : Geese fly in a V formation during their long migratory travels. This shape reduces drag and energy consumption for
individual birds, and also allows them a better way to communicate. (credit: “Julo”/Wikimedia Commons)

In lecture demonstrations, we do measurements of the drag force on different objects. The objects are placed in a uniform
airstream created by a fan. Calculate the Reynolds number and the drag coefficient.

Video : Fluid Mechanics - Drag force - Flow simulation

The Calculus of Velocity-Dependent Frictional Forces
When a body slides across a surface, the frictional force on it is approximately constant and given by . Unfortunately, the
frictional force on a body moving through a liquid or a gas does not behave so simply. This drag force is generally a complicated
function of the body’s velocity. However, for a body moving in a straight line at moderate speeds through a liquid such as water,
the frictional force can often be approximated by

where b is a constant whose value depends on the dimensions and shape of the body and the properties of the liquid, and  is the
velocity of the body. Two situations for which the frictional force can be represented this equation are a motorboat moving through
water and a small object falling slowly through a liquid.

Let’s consider the object falling through a liquid. The free-body diagram of this object with the positive direction downward is
shown in Figure . Newton’s second law in the vertical direction gives the differential equation

where we have written the acceleration as . As v increases, the frictional force  increases until it matches mg. At this point,
there is no acceleration and the velocity remains constant at the terminal velocity v . From the previous equation,

so

7.7.3

Fluid Mechanics - Drag force - Fluid Mechanics - Drag force - Flow siFlow si……
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Figure : Free-body diagram of an object falling through a resistive medium.

We can find the object’s velocity by integrating the differential equation for . First, we rearrange terms in this equation to obtain

Assuming that  at \9t = 0\), integration of Equation  yields

or

where  and  are dummy variables of integration. With the limits given, we find

Since , and  implies , we obtain

and

Notice that as t → , v →  = v , which is the terminal velocity.

The position at any time may be found by integrating the equation for v. With v = ,

Assuming y = 0 when t = 0,

which integrates to
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A motorboat is moving across a lake at a speed v  when its motor suddenly freezes up and stops. The boat then slows down
under the frictional force .

a. What are the velocity and position of the boat as functions of time?
b. If the boat slows down from 4.0 to 1.0 m/s in 10 s, how far does it travel before stopping?

Solution
a. With the motor stopped, the only horizontal force on the boat is f  = −bv, so from Newton’s second law,

which we can write as

Integrating this equation between the time zero when the velocity is v  and the time t when the velocity is v, we have

Thus,

which, since lnA = x implies e  = A, we can write this as

Now from the definition of velocity,

so we have

With the initial position zero, we have

and

As time increases,  → 0, and the position of the boat approaches a limiting value

Although this tells us that the boat takes an infinite amount of time to reach x , the boat effectively stops after a
reasonable time. For example, at t = , we have

whereas we also have

 Example : Effect of the Resistive Force on a Motorboat7.7.2
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Therefore, the boat’s velocity and position have essentially reached their final values.
b. With v = 4.0 m/s and v = 1.0 m/s, we have 1.0 m/s = (4.0 m/s) , so

and

Now the boat's limiting position is

Significance

In the both of the previous examples, we found “limiting” values. The terminal velocity is the same as the limiting velocity,
which is the velocity of the falling object after a (relatively) long time has passed. Similarly, the limiting distance of the boat is
the distance the boat will travel after a long amount of time has passed. Due to the properties of exponential decay, the time
involved to reach either of these values is actually not too long (certainly not an infinite amount of time!) but they are quickly
found by taking the limit to infinity.

Suppose the resistive force of the air on a skydiver can be approximated by . If the terminal velocity of a 100-kg
skydiver is 60 m/s, what is the value of b?

This page titled 7.7: Drag Force and Terminal Speed is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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7.E: Applications of Newton's Laws (Exercises)

Conceptual Questions

6.1 Solving Problems with Newton’s Laws
1. To simulate the apparent weightlessness of space orbit, astronauts are trained in the hold of a cargo aircraft that is

accelerating downward at g. Why do they appear to be weightless, as measured by standing on a bathroom scale, in this
accelerated frame of reference? Is there any difference between their apparent weightlessness in orbit and in the aircraft?

6.2 Friction
2. The glue on a piece of tape can exert forces. Can these forces be a type of simple friction? Explain, considering especially

that tape can stick to vertical walls and even to ceilings.
3. When you learn to drive, you discover that you need to let up slightly on the brake pedal as you come to a stop or the car

will stop with a jerk. Explain this in terms of the relationship between static and kinetic friction.
4. When you push a piece of chalk across a chalkboard, it sometimes screeches because it rapidly alternates between

slipping and sticking to the board. Describe this process in more detail, in particular, explaining how it is related to the
fact that kinetic friction is less than static friction. (The same slip-grab process occurs when tires screech on pavement.)

5. A physics major is cooking breakfast when she notices that the frictional force between her steel spatula and Teflon
frying pan is only 0.200 N. Knowing the coefficient of kinetic friction between the two materials, she quickly calculates
the normal force. What is it?

6.3 Centripetal Force
6. If you wish to reduce the stress (which is related to centripetal force) on high-speed tires, would you use large- or small-

diameter tires? Explain.
7. Define centripetal force. Can any type of force (for example, tension, gravitational force, friction, and so on) be a

centripetal force? Can any combination of forces be a centripetal force?
8. If centripetal force is directed toward the center, why do you feel that you are ‘thrown’ away from the center as a car goes

around a curve? Explain.
9. Race car drivers routinely cut corners, as shown below (Path 2). Explain how this allows the curve to be taken at the

greatest speed.

10. Many amusement parks have rides that make vertical loops like the one shown below. For safety, the cars are attached to
the rails in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will
supply the centripetal force. What other force acts and what is its direction if:
a. The car goes over the top at faster than this speed?
b. The car goes over the top at slower than this speed?
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11. What causes water to be removed from clothes in a spin-dryer?
12. As a skater forms a circle, what force is responsible for making his turn? Use a free-body diagram in your answer.
13. Suppose a child is riding on a merry-go-round at a distance about halfway between its center and edge. She has a lunch

box resting on wax paper, so that there is very little friction between it and the merry-go-round. Which path shown below
will the lunch box take when she lets go? The lunch box leaves a trail in the dust on the merry-go-round. Is that trail
straight, curved to the left, or curved to the right? Explain your answer.

14. Do you feel yourself thrown to either side when you negotiate a curve that is ideally banked for your car’s speed? What is
the direction of the force exerted on you by the car seat?

15. Suppose a mass is moving in a circular path on a frictionless table as shown below. In Earth’s frame of reference, there is
no centrifugal force pulling the mass away from the center of rotation, yet there is a force stretching the string attaching
the mass to the nail. Using concepts related to centripetal force and Newton’s third law, explain what force stretches the
string, identifying its physical origin.

16. When a toilet is flushed or a sink is drained, the water (and other material) begins to rotate about the drain on the way
down. Assuming no initial rotation and a flow initially directly straight toward the drain, explain what causes the rotation
and which direction it has in the Northern Hemisphere. (Note that this is a small effect and in most toilets the rotation is
caused by directional water jets.) Would the direction of rotation reverse if water were forced up the drain?

17. A car rounds a curve and encounters a patch of ice with a very low coefficient of kinetic fiction. The car slides off the
road. Describe the path of the car as it leaves the road.
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18. In one amusement park ride, riders enter a large vertical barrel and stand against the wall on its horizontal floor. The
barrel is spun up and the floor drops away. Riders feel as if they are pinned to the wall by a force something like the
gravitational force. This is an inertial force sensed and used by the riders to explain events in the rotating frame of
reference of the barrel. Explain in an inertial frame of reference (Earth is nearly one) what pins the riders to the wall, and
identify all forces acting on them.

19. Two friends are having a conversation. Anna says a satellite in orbit is in free fall because the satellite keeps falling
toward Earth. Tom says a satellite in orbit is not in free fall because the acceleration due to gravity is not 9.80 m/s . Who
do you agree with and why?

20. A nonrotating frame of reference placed at the center of the Sun is very nearly an inertial one. Why is it not exactly an
inertial frame?

6.4 Drag Force and Terminal Speed
21. Athletes such as swimmers and bicyclists wear body suits in competition. Formulate a list of pros and cons of such suits.
22. Two expressions were used for the drag force experienced by a moving object in a liquid. One depended upon the speed,

while the other was proportional to the square of the speed. In which types of motion would each of these expressions be
more applicable than the other one?

23. As cars travel, oil and gasoline leaks onto the road surface. If a light rain falls, what does this do to the control of the car?
Does a heavy rain make any difference?

24. Why can a squirrel jump from a tree branch to the ground and run away undamaged, while a human could break a bone in
such a fall?

Problems

6.1 Solving Problems with Newton’s Laws

25. A 30.0-kg girl in a swing is pushed to one side and held at rest by a horizontal force  so that the swing ropes are 30.0°
with respect to the vertical. (a) Calculate the tension in each of the two ropes supporting the swing under these conditions.
(b) Calculate the magnitude of .

26. Find the tension in each of the three cables supporting the traffic light if it weighs 2.00 x 10  N.

27. Three forces act on an object, considered to be a particle, which moves with constant velocity v = (3  − 2 ) m/s. Two of
the forces are  = (3  + 5  − 6k ) N and  = (4  − 7  + 2 ) N. Find the third force.

28. A flea jumps by exerting a force of 1.20 x 10  N straight down on the ground. A breeze blowing on the flea parallel to
the ground exerts a force of 0.500 x 10 N on the flea while the flea is still in contact with the ground. Find the direction
and magnitude of the acceleration of the flea if its mass is 6.00 x 10 kg . Do not neglect the gravitational force.

29. Two muscles in the back of the leg pull upward on the Achilles tendon, as shown below. (These muscles are called the
medial and lateral heads of the gastrocnemius muscle.) Find the magnitude and direction of the total force on the Achilles
tendon. What type of movement could be caused by this force?

2

F ⃗ 

F ⃗ 

2

î ĵ
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30. After a mishap, a 76.0-kg circus performer clings to a trapeze, which is being pulled to the side by another circus artist, as
shown here. Calculate the tension in the two ropes if the person is momentarily motionless. Include a free-body diagram
in your solution.

31. A 35.0-kg dolphin decelerates from 12.0 to 7.50 m/s in 2.30 s to join another dolphin in play. What average force was
exerted to slow the first dolphin if it was moving horizontally? (The gravitational force is balanced by the buoyant force
of the water.)

32. When starting a foot race, a 70.0-kg sprinter exerts an average force of 650 N backward on the ground for 0.800 s. (a)
What is his final speed? (b) How far does he travel?

33. A large rocket has a mass of 2.00 x 10  kg at takeoff, and its engines produce a thrust of 3.50 x 10  N. (a) Find its initial
acceleration if it takes off vertically. (b) How long does it take to reach a velocity of 120 km/h straight up, assuming
constant mass and thrust?

34. A basketball player jumps straight up for a ball. To do this, he lowers his body 0.300 m and then accelerates through this
distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him
0.900 m above the floor. (a) Calculate his velocity when he leaves the floor. (b) Calculate his acceleration while he is
straightening his legs. He goes from zero to the velocity found in (a) in a distance of 0.300 m. (c) Calculate the force he
exerts on the floor to do this, given that his mass is 110.0 kg.

35. A 2.50-kg fireworks shell is fired straight up from a mortar and reaches a height of 110.0 m. (a) Neglecting air resistance
(a poor assumption, but we will make it for this example), calculate the shell’s velocity when it leaves the mortar. (b) The
mortar itself is a tube 0.450 m long. Calculate the average acceleration of the shell in the tube as it goes from zero to the
velocity found in (a). (c) What is the average force on the shell in the mortar? Express your answer in newtons and as a
ratio to the weight of the shell.

36. A 0.500-kg potato is fired at an angle of 80.0° above the horizontal from a PVC pipe used as a “potato gun” and reaches a
height of 110.0 m. (a) Neglecting air resistance, calculate the potato’s velocity when it leaves the gun. (b) The gun itself is
a tube 0.450 m long. Calculate the average acceleration of the potato in the tube as it goes from zero to the velocity found
in (a). (c) What is the average force on the potato in the gun? Express your answer in newtons and as a ratio to the weight
of the potato.

37. An elevator filled with passengers has a mass of 1.70 x 10  kg. (a) The elevator accelerates upward from rest at a rate of
1.20 m/s  for 1.50 s. Calculate the tension in the cable supporting the elevator. (b) The elevator continues upward at
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constant velocity for 8.50 s. What is the tension in the cable during this time? (c) The elevator decelerates at a rate of
0.600 m/s  for 3.00 s. What is the tension in the cable during deceleration? (d) How high has the elevator moved above its
original starting point, and what is its final velocity?

38. A 20.0-g ball hangs from the roof of a freight car by a string. When the freight car begins to move, the string makes an
angle of 35.0° with the vertical. (a) What is the acceleration of the freight car? (b) What is the tension in the string?

39. A student’s backpack, full of textbooks, is hung from a spring scale attached to the ceiling of an elevator. When the
elevator is accelerating downward at 3.8 m/s , the scale reads 60 N. (a) What is the mass of the backpack? (b) What does
the scale read if the elevator moves upward while slowing down at a rate 3.8 m/s ? (c) What does the scale read if the
elevator moves upward at constant velocity? (d) If the elevator had no brakes and the cable supporting it were to break
loose so that the elevator could fall freely, what would the spring scale read?

40. A service elevator takes a load of garbage, mass 10.0 kg, from a floor of a skyscraper under construction, down to ground
level, accelerating downward at a rate of 1.2 m/s . Find the magnitude of the force the garbage exerts on the floor of the
service elevator?

41. A roller coaster car starts from rest at the top of a track 30.0 m long and inclined at 20.0° to the horizontal. Assume that
friction can be ignored. (a) What is the acceleration of the car? (b) How much time elapses before it reaches the bottom of
the track?

42. The device shown below is the Atwood’s machine considered in Example 6.5. Assuming that the masses of the string and
the frictionless pulley are negligible, (a) find an equation for the acceleration of the two blocks; (b) find an equation for
the tension in the string; and (c) find both the acceleration and tension when block 1 has mass 2.00 kg and block 2 has
mass 4.00 kg.

43. Two blocks are connected by a massless rope as shown below. The mass of the block on the table is 4.0 kg and the
hanging mass is 1.0 kg. The table and the pulley are frictionless. (a) Find the acceleration of the system. (b) Find the
tension in the rope. (c) Find the speed with which the hanging mass hits the floor if it starts from rest and is initially
located 1.0 m from the floor.

44. Shown below are two carts connected by a cord that passes over a small frictionless pulley. Each cart rolls freely with
negligible friction. Calculate the acceleration of the carts and the tension in the cord.
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45. A 2.00 kg block (mass 1) and a 4.00 kg block (mass 2) are connected by a light string as shown; the inclination of the
ramp is 40.0°. Friction is negligible. What is (a) the acceleration of each block and (b) the tension in the string?

6.2 Friction
46. (a) When rebuilding his car’s engine, a physics major must exert 3.00 x 10  N of force to insert a dry steel piston into a

steel cylinder. What is the normal force between the piston and cylinder? (b) What force would he have to exert if the
steel parts were oiled?

47. (a) What is the maximum frictional force in the knee joint of a person who supports 66.0 kg of her mass on that knee? (b)
During strenuous exercise, it is possible to exert forces to the joints that are easily 10 times greater than the weight being
supported. What is the maximum force of friction under such conditions? The frictional forces in joints are relatively
small in all circumstances except when the joints deteriorate, such as from injury or arthritis. Increased frictional forces
can cause further damage and pain.

48. Suppose you have a 120-kg wooden crate resting on a wood floor, with coefficient of static friction 0.500 between these
wood surfaces. (a) What maximum force can you exert horizontally on the crate without moving it? (b) If you continue to
exert this force once the crate starts to slip, what will its acceleration then be? The coefficient of sliding friction is known
to be 0.300 for this situation.

49. (a) If half of the weight of a small 1.00 x 10 -kg utility truck is supported by its two drive wheels, what is the maximum
acceleration it can achieve on dry concrete? (b) Will a metal cabinet lying on the wooden bed of the truck slip if it
accelerates at this rate? (c) Solve both problems assuming the truck has four-wheel drive.

50. A team of eight dogs pulls a sled with waxed wood runners on wet snow (mush!). The dogs have average masses of 19.0
kg, and the loaded sled with its rider has a mass of 210 kg. (a) Calculate the acceleration of the dogs starting from rest if
each dog exerts an average force of 185 N backward on the snow. (b) Calculate the force in the coupling between the
dogs and the sled.

51. Consider the 65.0-kg ice skater being pushed by two others shown below. (a) Find the direction and magnitude of F , the
total force exerted on her by the others, given that the magnitudes F  and F  are 26.4 N and 18.6 N, respectively. (b) What
is her initial acceleration if she is initially stationary and wearing steel-bladed skates that point in the direction of F ? (c)
What is her acceleration assuming she is already moving in the direction of F ? (Remember that friction always acts in
the direction opposite that of motion or attempted motion between surfaces in contact.)
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52. Show that the acceleration of any object down a frictionless incline that makes an angle  with the horizontal is a = g sin 
. (Note that this acceleration is independent of mass.)

53. Show that the acceleration of any object down an incline where friction behaves simply (that is, where f  = N) is a =
g(sin  −  cos ). Note that the acceleration is independent of mass and reduces to the expression found in the previous
problem when friction becomes negligibly small (  = 0).

54. Calculate the deceleration of a snow boarder going up a 5.00° slope, assuming the coefficient of friction for waxed wood
on wet snow. The result of the preceding problem may be useful, but be careful to consider the fact that the snow boarder
is going uphill.

55. A machine at a post office sends packages out a chute and down a ramp to be loaded into delivery vehicles. (a) Calculate
the acceleration of a box heading down a 10.0° slope, assuming the coefficient of friction for a parcel on waxed wood is
0.100. (b) Find the angle of the slope down which this box could move at a constant velocity. You can neglect air
resistance in both parts.

56. If an object is to rest on an incline without slipping, then friction must equal the component of the weight of the object
parallel to the incline. This requires greater and greater friction for steeper slopes. Show that the maximum angle of an
incline above the horizontal for which an object will not slide down is  = tan  . You may use the result of the
previous problem. Assume that a = 0 and that static friction has reached its maximum value.

57. Calculate the maximum acceleration of a car that is heading down a 6.00° slope (one that makes an angle of 6.00° with
the horizontal) under the following road conditions. You may assume that the weight of the car is evenly distributed on all
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four tires and that the coefficient of static friction is involved—that is, the tires are not allowed to slip during the
deceleration. (Ignore rolling.) Calculate for a car: (a) On dry concrete. (b) On wet concrete. (c) On ice, assuming that  =
0.100, the same as for shoes on ice.

58. Calculate the maximum acceleration of a car that is heading up a 4.00° slope (one that makes an angle of 4.00° with the
horizontal) under the following road conditions. Assume that only half the weight of the car is supported by the two drive
wheels and that the coefficient of static friction is involved—that is, the tires are not allowed to slip during the
acceleration. (Ignore rolling.) (a) On dry concrete. (b) On wet concrete. (c) On ice, assuming that  = 0.100, the same as
for shoes on ice.

59. Repeat the preceding problem for a car with four-wheel drive.
60. A freight train consists of two 8.00 x 10 -kg engines and 45 cars with average masses of 5.50 x 10  kg. (a) What force

must each engine exert backward on the track to accelerate the train at a rate of 5.00 x 10 m/s  if the force of friction is
7.50 x 10  N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system.
Rolling friction for trains is small, and consequently, trains are very energy-efficient transportation systems. (b) What is
the force in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have
the same mass and that friction is evenly distributed among all of the cars and engines?

61. Consider the 52.0-kg mountain climber shown below. (a) Find the tension in the rope and the force that the mountain
climber must exert with her feet on the vertical rock face to remain stationary. Assume that the force is exerted parallel to
her legs. Also, assume negligible force exerted by her arms. (b) What is the minimum coefficient of friction between her
shoes and the cliff?

62. A contestant in a winter sporting event pushes a 45.0-kg block of ice across a frozen lake as shown below. (a) Calculate
the minimum force F he must exert to get the block moving. (b) What is its acceleration once it starts to move, if that
force is maintained?

63. The contestant now pulls the block of ice with a rope over his shoulder at the same angle above the horizontal as shown
below. Calculate the minimum force F he must exert to get the block moving. (b) What is its acceleration once it starts to
move, if that force is maintained?

64. At a post office, a parcel that is a 20.0-kg box slides down a ramp inclined at 30.0° with the horizontal. The coefficient of
kinetic friction between the box and plane is 0.0300. (a) Find the acceleration of the box. (b) Find the velocity of the box
as it reaches the end of the plane, if the length of the plane is 2 m and the box starts at rest.
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6.3 Centripetal Force
65. (a) A 22.0-kg child is riding a playground merry-go-round that is rotating at 40.0 rev/min. What centripetal force is

exerted if he is 1.25 m from its center? (b) What centripetal force is exerted if the merry-go-round rotates at 3.00 rev/min
and he is 8.00 m from its center? (c) Compare each force with his weight.

66. Calculate the centripetal force on the end of a 100-m (radius) wind turbine blade that is rotating at 0.5 rev/s. Assume the
mass is 4 kg.

67. What is the ideal banking angle for a gentle turn of 1.20-km radius on a highway with a 10  km/h speed limit (about 65
mi/h), assuming everyone travels at the limit?

68. What is the ideal speed to take a 100.0-m-radius curve banked at a 20.0° angle?
69. (a) What is the radius of a bobsled turn banked at 75.0° and taken at 30.0 m/s, assuming it is ideally banked? (b)

Calculate the centripetal acceleration. (c) Does this acceleration seem large to you?
70. Part of riding a bicycle involves leaning at the correct angle when making a turn, as seen below. To be stable, the force

exerted by the ground must be on a line going through the center of gravity. The force on the bicycle wheel can be
resolved into two perpendicular components—friction parallel to the road (this must supply the centripetal force) and the
vertical normal force (which must equal the system’s weight). (a) Show that  (as defined as shown) is related to the

speed v and radius of curvature r of the turn in the same way as for an ideally banked roadway—that is,  = tan  .

(b) Calculate  for a 12.0-m/s turn of radius 30.0 m (as in a race).

71. If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the
curve (a problem on icy mountain roads). (a) Calculate the ideal speed to take a 100.0 m radius curve banked at 15.0°. (b)
What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 20.0 km/h?

72. Modern roller coasters have vertical loops like the one shown here. The radius of curvature is smaller at the top than on
the sides so that the downward centripetal acceleration at the top will be greater than the acceleration due to gravity,
keeping the passengers pressed firmly into their seats. What is the speed of the roller coaster at the top of the loop if the
radius of curvature there is 15.0 m and the downward acceleration of the car is 1.50 g?

73. A child of mass 40.0 kg is in a roller coaster car that travels in a loop of radius 7.00 m. At point A the speed of the car is
10.0 m/s, and at point B, the speed is 10.5 m/s. Assume the child is not holding on and does not wear a seat belt. (a) What
is the force of the car seat on the child at point A? (b) What is the force of the car seat on the child at point B? (c) What
minimum speed is required to keep the child in his seat at point A?
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74. In the simple Bohr model of the ground state of the hydrogen atom, the electron travels in a circular orbit around a fixed
proton. The radius of the orbit is 5.28 x 10  m, and the speed of the electron is 2.18 x 10  m/s. The mass of an electron
is 9.11 x 10  kg. What is the force on the electron?

75. Railroad tracks follow a circular curve of radius 500.0 m and are banked at an angle of 5.0°. For trains of what speed are
these tracks designed?

76. The CERN particle accelerator is circular with a circumference of 7.0 km. (a) What is the acceleration of the protons (m =
1.67 x 10  kg) that move around the accelerator at 5% of the speed of light? (The speed of light is v = 3.00 x 10  m/s.)
(b) What is the force on the protons?

77. A car rounds an unbanked curve of radius 65 m. If the coefficient of static friction between the road and car is 0.70, what
is the maximum speed at which the car traverse the curve without slipping?

78. A banked highway is designed for traffic moving at 90.0 km/h. The radius of the curve is 310 m. What is the angle of
banking of the highway?

6.4 Drag Force and Terminal Speed
79. The terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid. Find

the terminal velocity (in meters per second and kilometers per hour) of an 80.0-kg skydiver falling in a pike (headfirst)
position with a surface area of 0.140 m .

80. A 60.0-kg and a 90.0-kg skydiver jump from an airplane at an altitude of 6.00 x 10 m, both falling in the pike position.
Make some assumption on their frontal areas and calculate their terminal velocities. How long will it take for each
skydiver to reach the ground (assuming the time to reach terminal velocity is small)? Assume all values are accurate to
three significant digits.

81. A 560-g squirrel with a surface area of 930 cm  falls from a 5.0-m tree to the ground. Estimate its terminal velocity. (Use
a drag coefficient for a horizontal skydiver.) What will be the velocity of a 56-kg person hitting the ground, assuming no
drag contribution in such a short distance?

82. To maintain a constant speed, the force provided by a car’s engine must equal the drag force plus the force of friction of
the road (the rolling resistance). (a) What are the drag forces at 70 km/h and 100 km/h for a Toyota Camry? (Drag area is
0.70 m ) (b) What is the drag force at 70 km/h and 100 km/h for a Hummer H2? (Drag area is 2.44 m ) Assume all values
are accurate to three significant digits.

83. By what factor does the drag force on a car increase as it goes from 65 to 110 km/h?
84. Calculate the velocity a spherical rain drop would achieve falling from 5.00 km (a) in the absence of air drag (b) with air

drag. Take the size across of the drop to be 4 mm, the density to be 1.00 x 10  kg/m , and the surface area to be r .
85. Using Stokes’ law, verify that the units for viscosity are kilograms per meter per second.
86. Find the terminal velocity of a spherical bacterium (diameter 2.00 ) falling in water. You will first need to note that the

drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.10 x 10  kg/m .
87. Stokes’ law describes sedimentation of particles in liquids and can be used to measure viscosity. Particles in liquids

achieve terminal velocity quickly. One can measure the time it takes for a particle to fall a certain distance and then use
Stokes’ law to calculate the viscosity of the liquid. Suppose a steel ball bearing (density 7.8 x 10  kg/m , diameter 3.0
mm) is dropped in a container of motor oil. It takes 12 s to fall a distance of 0.60 m. Calculate the viscosity of the oil.

88. Suppose that the resistive force of the air on a skydiver can be approximated by f = −bv . If the terminal velocity of a
50.0-kg skydiver is 60.0 m/s, what is the value of b?

89. A small diamond of mass 10.0 g drops from a swimmer’s earring and falls through the water, reaching a terminal velocity
of 2.0 m/s. (a) Assuming the frictional force on the diamond obeys f = −bv, what is b? (b) How far does the diamond fall
before it reaches 90 percent of its terminal speed?

−11 6

−31

−27 8

2

3 

2

2 2

3 3 π 2

μm
3 3

3 3

2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46056?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/06%3A_Applications_of_Newton's_Laws/6.07%3A_Drag_Force_and_Terminal_Speed


7.E.11 https://phys.libretexts.org/@go/page/46056

Additional Problems
90. (a) What is the final velocity of a car originally traveling at 50.0 km/h that decelerates at a rate of 0.400 m/s  for 50.0 s?

Assume a coefficient of friction of 1.0. (b) What is unreasonable about the result? (c) Which premise is unreasonable, or
which premises are inconsistent?

91. A 75.0-kg woman stands on a bathroom scale in an elevator that accelerates from rest to 30.0 m/s in 2.00 s. (a) Calculate
the scale reading in newtons and compare it with her weight. (The scale exerts an upward force on her equal to its
reading.) (b) What is unreasonable about the result? (c) Which premise is unreasonable, or which premises are
inconsistent?

92. (a) Calculate the minimum coefficient of friction needed for a car to negotiate an unbanked 50.0 m radius curve at 30.0
m/s. (b) What is unreasonable about the result? (c) Which premises are unreasonable or inconsistent?

93. As shown below, if M = 5.50 kg, what is the tension in string 1?

94. As shown below, if F = 60.0 N and M = 4.00 kg, what is the magnitude of the acceleration of the suspended object? All
surfaces are frictionless.

95. As shown below, if M = 6.0 kg, what is the tension in the connecting string? The pulley and all surfaces are frictionless.

96. A small space probe is released from a spaceship. The space probe has mass 20.0 kg and contains 90.0 kg of fuel. It starts
from rest in deep space, from the origin of a coordinate system based on the spaceship, and burns fuel at the rate of 3.00
kg/s. The engine provides a constant thrust of 120.0 N. (a) Write an expression for the mass of the space probe as a
function of time, between 0 and 30 seconds, assuming that the engine ignites fuel beginning at t = 0. (b) What is the
velocity after 15.0 s? (c) What is the position of the space probe after 15.0 s, with initial position at the origin? (d) Write
an expression for the position as a function of time, for t > 30.0 s.

97. A half-full recycling bin has mass 3.0 kg and is pushed up a 40.0° incline with constant speed under the action of a 26-N
force acting up and parallel to the incline. The incline has friction. What magnitude force must act up and parallel to the
incline for the bin to move down the incline at constant velocity?
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98. A child has mass 6.0 kg and slides down a 35° incline with constant speed under the action of a 34-N force acting up and
parallel to the incline. What is the coefficient of kinetic friction between the child and the surface of the incline?

99. The two barges shown here are coupled by a cable of negligible mass. The mass of the front barge is 2.00 x 10  kg and
the mass of the rear barge is 3.00 x 10  kg. A tugboat pulls the front barge with a horizontal force of magnitude 20.0 x
10  N, and the frictional forces of the water on the front and rear barges are 8.00 x 10  N and 10.0 x 10  N, respectively.
Find the horizontal acceleration of the barges and the tension in the connecting cable.

100. If the order of the barges of the preceding exercise is reversed so that the tugboat pulls the 3.00 x 10  -kg barge with a
force of 20.0 x 10  N, what are the acceleration of the barges and the tension in the coupling cable?

101. An object with mass m moves along the x-axis. Its position at any time is given by x(t) = pt  + qt  where p and q are
constants. Find the net force on this object for any time t.

102. A helicopter with mass 2.35 x 10  kg has a position given by (t) = (0.020 t )  + (2.2t)  − (0.060 t ) |9\hat{k}\). Find
the net force on the helicopter at t = 3.0 s.

103. Located at the origin, an electric car of mass m is at rest and in equilibrium. A time dependent force of (t) is applied at
time t = 0, and its components are F (t) = p + nt and F (t) = qt where p, q, and n are constants. Find the position (t) and
velocity (t) as functions of time t.

104. A particle of mass m is located at the origin. It is at rest and in equilibrium. A time-dependent force of (t) is applied at
time t = 0, and its components are F (t) = pt and F (t) = n + qt where p, q, and n are constants. Find the position (t) and
velocity (t) as functions of time t.

105. A 2.0-kg object has a velocity of 4.0  m/s at t = 0. A constant resultant force of (2.0  + 4.0 ) N then acts on the object
for 3.0 s. What is the magnitude of the object’s velocity at the end of the 3.0-s interval?

106. A 1.5-kg mass has an acceleration of (4.0  − 3.0 ) m/s . Only two forces act on the mass. If one of the forces is (2.0  −
1.4 ) N, what is the magnitude of the other force?

107. A box is dropped onto a conveyor belt moving at 3.4 m/s. If the coefficient of friction between the box and the belt is
0.27, how long will it take before the box moves without slipping?

108. Shown below is a 10.0-kg block being pushed by a horizontal force  of magnitude 200.0 N. The coefficient of kinetic
friction between the two surfaces is 0.50. Find the acceleration of the block.

109. As shown below, the mass of block 1 is m = 4.0 kg, while the mass of block 2 is m  = 8.0 kg. The coefficient of friction
between m  and the inclined surface is  = 0.40. What is the acceleration of the system?

110. A student is attempting to move a 30-kg mini-fridge into her dorm room. During a moment of inattention, the mini-fridge
slides down a 35 degree incline at constant speed when she applies a force of 25 N acting up and parallel to the incline.
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What is the coefficient of kinetic friction between the fridge and the surface of the incline?
111. A crate of mass 100.0 kg rests on a rough surface inclined at an angle of 37.0° with the horizontal. A massless rope to

which a force can be applied parallel to the surface is attached to the crate and leads to the top of the incline. In its present
state, the crate is just ready to slip and start to move down the plane. The coefficient of friction is 80% of that for the
static case. (a) What is the coefficient of static friction? (b) What is the maximum force that can be applied upward along
the plane on the rope and not move the block? (c) With a slightly greater applied force, the block will slide up the plane.
Once it begins to move, what is its acceleration and what reduced force is necessary to keep it moving upward at constant
speed? (d) If the block is given a slight nudge to get it started down the plane, what will be its acceleration in that
direction? (e) Once the block begins to slide downward, what upward force on the rope is required to keep the block from
accelerating downward?

112. A car is moving at high speed along a highway when the driver makes an emergency braking. The wheels become locked
(stop rolling), and the resulting skid marks are 32.0 meters long. If the coefficient of kinetic friction between tires and
road is 0.550, and the acceleration was constant during braking, how fast was the car going when the wheels became
locked?

113. A crate having mass 50.0 kg falls horizontally off the back of the flatbed truck, which is traveling at 100 km/h. Find the
value of the coefficient of kinetic friction between the road and crate if the crate slides 50 m on the road in coming to rest.
The initial speed of the crate is the same as the truck, 100 km/h.

114. A 15-kg sled is pulled across a horizontal, snow-covered surface by a force applied to a rope at 30 degrees with the
horizontal. The coefficient of kinetic friction between the sled and the snow is 0.20. (a) If the force is 33 N, what is the
horizontal acceleration of the sled? (b) What must the force be in order to pull the sled at constant velocity?

115. A 30.0-g ball at the end of a string is swung in a vertical circle with a radius of 25.0 cm. The tangential velocity is 200.0
cm/s. Find the tension in the string: (a) at the top of the circle, (b) at the bottom of the circle, and (c) at a distance of 12.5
cm from the center of the circle (r = 12.5 cm).

116. A particle of mass 0.50 kg starts moves through a circular path in the xy-plane with a position given by (t) = (4.0 cos 3t) 
 + (4.0 sin 3t)  where r is in meters and t is in seconds. (a) Find the velocity and acceleration vectors as functions of

time. (b) Show that the acceleration vector always points toward the center of the circle (and thus represents centripetal
acceleration). (c) Find the centripetal force vector as a function of time.

117. A stunt cyclist rides on the interior of a cylinder 12 m in radius. The coefficient of static friction between the tires and the
wall is 0.68. Find the value of the minimum speed for the cyclist to perform the stunt.

118. When a body of mass 0.25 kg is attached to a vertical massless spring, it is extended 5.0 cm from its unstretched length of
4.0 cm. The body and spring are placed on a horizontal frictionless surface and rotated about the held end of the spring at
2.0 rev/s. How far is the spring stretched?

119. Railroad tracks follow a circular curve of radius 500.0 m and are banked at an angle of 5.00°. For trains of what speed are
these tracks designed?

120. A plumb bob hangs from the roof of a railroad car. The car rounds a circular track of radius 300.0 m at a speed of 90.0
km/h. At what angle relative to the vertical does the plumb bob hang?

121. An airplane flies at 120.0 m/s and banks at a 30° angle. If its mass is 2.50 x 10  kg, (a) what is the magnitude of the lift
force? (b) what is the radius of the turn?

122. The position of a particle is given by (t) = A (cos t  + sin t ), where  is a constant. (a) Show that the particle
moves in a circle of radius A. (b) Calculate  and then show that the speed of the particle is a constant A . (c)
Determine  and show that a is given by a  = r . (d) Calculate the centripetal force on the particle. [Hint: For (b) and

(c), you will need to use (cos t) = −  sin t and (sin t) =  cos t.

123. Two blocks connected by a string are pulled across a horizontal surface by a force applied to one of the blocks, as shown
below. The coefficient of kinetic friction between the blocks and the surface is 0.25. If each block has an acceleration of
2.0 m/s  to the right, what is the magnitude F of the applied force?
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124. As shown below, the coefficient of kinetic friction between the surface and the larger block is 0.20, and the coefficient of
kinetic friction between the surface and the smaller block is 0.30. If F = 10 N and M = 1.0 kg, what is the tension in the
connecting string?

125. In the figure, the coefficient of kinetic friction between the surface and the blocks is . If M = 1.0 kg, find an expression
for the magnitude of the acceleration of either block (in terms of F, , and g).

126. Two blocks are stacked as shown below, and rest on a frictionless surface. There is friction between the two blocks
(coefficient of friction ). An external force is applied to the top block at an angle  with the horizontal. What is the
maximum force F that can be applied for the two blocks to move together?

127. A box rests on the (horizontal) back of a truck. The coefficient of static friction between the box and the surface on which
it rests is 0.24. What maximum distance can the truck travel (starting from rest and moving horizontally with constant
acceleration) in 3.0 s without having the box slide?

128. A double-incline plane is shown below. The coefficient of friction on the left surface is 0.30, and on the right surface
0.16. Calculate the acceleration of the system.

Challenge Problems

129. In a later chapter, you will find that the weight of a particle varies with altitude such that w =  where r  is the radius
of Earth and r is the distance from Earth’s center. If the particle is fired vertically with velocity v  from Earth’s surface,
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determine its velocity as a function of position r. (Hint: use a dr = v dv, the rearrangement mentioned in the text.)
130. A large centrifuge, like the one shown below, is used to expose aspiring astronauts to accelerations similar to those

experienced in rocket launches and atmospheric reentries. (a) At what angular velocity is the centripetal acceleration 10g
if the rider is 15.0 m from the center of rotation? (b) The rider’s cage hangs on a pivot at the end of the arm, allowing it to
swing outward during rotation as shown in the bottom accompanying figure. At what angle  below the horizontal will
the cage hang when the centripetal acceleration is 10g? (Hint: The arm supplies centripetal force and supports the weight
of the cage. Draw a free-body diagram of the forces to see what the angle  should be.)

131. A car of mass 1000.0 kg is traveling along a level road at 100.0 km/h when its brakes are applied. Calculate the stopping
distance if the coefficient of kinetic friction of the tires is 0.500. Neglect air resistance. (Hint: since the distance traveled
is of interest rather than the time, x is the desired independent variable and not t. Use the Chain Rule to change the
variable: .)

132. An airplane flying at 200.0 m/s makes a turn that takes 4.0 min. What bank angle is required? What is the percentage
increase in the perceived weight of the passengers?

133. A skydiver is at an altitude of 1520 m. After 10.0 seconds of free fall, he opens his parachute and finds that the air
resistance, F , is given by the formula F  = −bv, where b is a constant and v is the velocity. If b = 0.750, and the mass of
the skydiver is 82.0 kg, first set up differential equations for the velocity and the position, and then find: (a) the speed of
the skydiver when the parachute opens, (b) the distance fallen before the parachute opens, (c) the terminal velocity after
the parachute opens (find the limiting velocity), and (d) the time the skydiver is in the air after the parachute opens.

134. In a television commercial, a small, spherical bead of mass 4.00 g is released from rest at t = 0 in a bottle of liquid
shampoo. The terminal speed is observed to be 2.00 cm/s. Find (a) the value of the constant b in the equation v = 

, and (b) the value of the resistive force when the bead reaches terminal speed.
135. A boater and motor boat are at rest on a lake. Together, they have mass 200.0 kg. If the thrust of the motor is a constant

force of 40.0 N in the direction of motion, and if the resistive force of the water is numerically equivalent to 2 times the
speed v of the boat, set up and solve the differential equation to find: (a) the velocity of the boat at time t; (b) the limiting
velocity (the velocity after a long time has passed).
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7.S: Applications of Newton's Laws (Summary)

Key Terms

banked curve
curve in a road that is sloping in a manner that helps a vehicle

negotiate the curve

centripetal force any net force causing uniform circular motion

Coriolis force
inertial force causing the apparent deflection of moving objects

when viewed in a rotating frame of reference

drag force
force that always opposes the motion of an object in a fluid; unlike
simple friction, the drag force is proportional to some function of

the velocity of the object in that fluid

friction
force that opposes relative motion or attempts at motion between

systems in contact

ideal banking

sloping of a curve in a road, where the angle of the slope allows
the vehicle to negotiate the curve at a certain speed without the aid
of friction between the tires and the road; the net external force on
the vehicle equals the horizontal centripetal force in the absence of

friction

inertial force force that has no physical origin

kinetic friction
force that opposes the motion of two systems that are in contact

and moving relative to each other

noninertial frame of reference accelerated frame of reference

static friction
force that opposes the motion of two systems that are in contact

and are not moving relative to each other

terminal velocity
constant velocity achieved by a falling object, which occurs when

the weight of the object is balanced by the upward drag force

Key Equations

Magnitude of static friction

Magnitude of kinetic friction

Centripetal force

Ideal angle of a banked curve

Drag force

Stokes' law

≤ Nfs μs (7.S.1)

= Nfk μk (7.S.2)

Fc = m
v2

r

= mrω2

tan θ =
v2

rg
(7.S.3)

= CρAFD
1

2
v

2 (7.S.4)

= 6πrηvFs (7.S.5)
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Summary

6.1 Solving Problems with Newton’s Laws
Newton’s laws of motion can be applied in numerous situations to solve motion problems.
Some problems contain multiple force vectors acting in different directions on an object. Be sure to draw diagrams, resolve all
force vectors into horizontal and vertical components, and draw a free-body diagram. Always analyze the direction in which an
object accelerates so that you can determine whether F  = ma or F  = 0.
The normal force on an object is not always equal in magnitude to the weight of the object. If an object is accelerating
vertically, the normal force is less than or greater than the weight of the object. Also, if the object is on an inclined plane, the
normal force is always less than the full weight of the object.
Some problems contain several physical quantities, such as forces, acceleration, velocity, or position. You can apply concepts
from kinematics and dynamics to solve these problems.

6.2 Friction
Friction is a contact force that opposes the motion or attempted motion between two systems. Simple friction is proportional to
the normal force N supporting the two systems.
The magnitude of static friction force between two materials stationary relative to each other is determined using the coefficient
of static friction, which depends on both materials.
The kinetic friction force between two materials moving relative to each other is determined using the coefficient of kinetic
friction, which also depends on both materials and is always less than the coefficient of static friction.

6.3 Centripetal Force

Centripetal force  is a “center-seeking” force that always points toward the center of rotation. It is perpendicular to linear
velocity and has the magnitude

Rotating and accelerated frames of reference are noninertial. Inertial forces, such as the Coriolis force, are needed to explain
motion in such frames.

6.4 Drag Force and Terminal Speed
Drag forces acting on an object moving in a fluid oppose the motion. For larger objects (such as a baseball) moving at a velocity
in air, the drag force is determined using the drag coefficient (typical values are given in Table 6.2), the area of the object facing
the fluid, and the fluid density.
For small objects (such as a bacterium) moving in a denser medium (such as water), the drag force is given by Stokes’ law.
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CHAPTER OVERVIEW

8: Work and Kinetic Energy
The application of Newton’s laws usually requires solving differential equations that relate the forces acting on an object to the
accelerations they produce. Often, an analytic solution is intractable or impossible, requiring lengthy numerical solutions or
simulations to get approximate results. In such situations, more general relations, like the work-energy theorem (or the conservation
of energy), can still provide useful answers to many questions and require a more modest amount of mathematical calculation. In
particular, you will see how the work-energy theorem is useful in relating the speeds of a particle, at different points along its
trajectory, to the forces acting on it, even when the trajectory is otherwise too complicated to deal with. Thus, some aspects of
motion can be addressed with fewer equations and without vector decompositions.

8.1: Prelude to Work and Kinetic Energy
8.2: Work
8.3: Kinetic Energy
8.4: Work-Energy Theorem
8.5: Power
8.E: Work and Kinetic Energy (Exercises)
8.S: Work and Kinetic Energy (Summary)

Thumbnail: One form of energy is mechanical work, the energy required to move an object of mass  a distance d when opposed
by a force , such as gravity.
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8.1: Prelude to Work and Kinetic Energy
In this chapter, we discuss some basic physical concepts involved in every physical motion in the universe, going beyond the
concepts of force and change in motion, which we discussed in Motion in Two and Three Dimensions and Newton’s Laws of
Motion. These concepts are work, kinetic energy, and power. We explain how these quantities are related to one another, which will
lead us to a fundamental relationship called the work-energy theorem. In the next chapter, we generalize this idea to the broader
principle of conservation of energy.

Figure : A sprinter exerts her maximum power to do as much work on herself as possible in the short time that her foot is in
contact with the ground. This adds to her kinetic energy, preventing her from slowing down during the race. Pushing back hard on
the track generates a reaction force that propels the sprinter forward to win at the finish. (credit: modification of work by Marie-Lan
Nguyen)

The application of Newton’s laws usually requires solving differential equations that relate the forces acting on an object to the
accelerations they produce. Often, an analytic solution is intractable or impossible, requiring lengthy numerical solutions or
simulations to get approximate results. In such situations, more general relations, like the work-energy theorem (or the conservation
of energy), can still provide useful answers to many questions and require a more modest amount of mathematical calculation. In
particular, you will see how the work-energy theorem is useful in relating the speeds of a particle at different points along its
trajectory, to the forces acting on it, even when the trajectory is otherwise too complicated to deal with. Thus, some aspects of
motion can be addressed with fewer equations and without vector decompositions.

This page titled 8.1: Prelude to Work and Kinetic Energy is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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8.2: Work

Represent the work done by any force
Evaluate the work done for various forces

In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one
position to another. Forces can vary as a function of position, and displacements can be along various paths between two points. We
first define the increment of work dW done by a force  acting through an infinitesimal displacement d  as the dot product of
these two vectors:

Then, we can add up the contributions for infinitesimal displacements, along a path between two positions, to get the total work.

The work done by a force is the integral of the force with respect to displacement along the path of the displacement:

The vectors involved in the definition of the work done by a force acting on a particle are illustrated in Figure .

Figure : Vectors used to define work. The force acting on a particle and its infinitesimal displacement are shown at one point
along the path between A and B. The infinitesimal work is the dot product of these two vectors; the total work is the integral of the
dot product along the path.

We choose to express the dot product in terms of the magnitudes of the vectors and the cosine of the angle between them, because
the meaning of the dot product for work can be put into words more directly in terms of magnitudes and angles. We could equally
well have expressed the dot product in terms of the various components introduced in Vectors. In two dimensions, these were the x-
and y-components in Cartesian coordinates, or the r- and -components in polar coordinates; in three dimensions, it was just x-, y-,
and z-components. Which choice is more convenient depends on the situation. In words, you can express Equation  for the
work done by a force acting over a displacement as a product of one component acting parallel to the other component. From the
properties of vectors, it doesn’t matter if you take the component of the force parallel to the displacement or the component of the
displacement parallel to the force—you get the same result either way.

Recall that the magnitude of a force times the cosine of the angle the force makes with a given direction is the component of the
force in the given direction. The components of a vector can be positive, negative, or zero, depending on whether the angle
between the vector and the component-direction is between 0° and 90° or 90° and 180°, or is equal to 90°. As a result, the work
done by a force can be positive, negative, or zero, depending on whether the force is generally in the direction of the displacement,
generally opposite to the displacement, or perpendicular to the displacement. The maximum work is done by a given force when it
is along the direction of the displacement (cos  = ± 1), and zero work is done when the force is perpendicular to the displacement
(cos  = 0).

The units of work are units of force multiplied by units of length, which in the SI system is newtons times meters, N • m. This
combination is called a joule, for historical reasons that we will mention later, and is abbreviated as J. In the English system, still
used in the United States, the unit of force is the pound (lb) and the unit of distance is the foot (ft), so the unit of work is the foot-
pound (ft • lb).

 Learning Objectives
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Work Done by Constant Forces and Contact Forces
The simplest work to evaluate is that done by a force that is constant in magnitude and direction. In this case, we can factor out the
force; the remaining integral is just the total displacement, which only depends on the end points A and B, but not on the path
between them:

We can also see this by writing out Equation  in Cartesian coordinates and using the fact that the components of the force are
constant:

Figure  shows a person exerting a constant force  along the handle of a lawn mower, which makes an angle  with the
horizontal. The horizontal displacement of the lawn mower, over which the force acts, is . The work done on the lawn mower is

which the figure also illustrates as the horizontal component of the force times the magnitude of the displacement.

Figure : Work done by a constant force. (a) A person pushes a lawn mower with a constant force. The component of the force
parallel to the displacement is the work done, as shown in the equation in the figure. (b) A person holds a briefcase. No work is
done because the displacement is zero. (c) The person in (b) walks horizontally while holding the briefcase. No work is done
because cos  is zero.

Figure  shows a person holding a briefcase. The person must exert an upward force, equal in magnitude to the weight of the
briefcase, but this force does no work, because the displacement over which it acts is zero. So why do you eventually feel tired just
holding the briefcase, if you’re not doing any work on it? The answer is that muscle fibers in your arm are contracting and doing
work inside your arm, even though the force your muscles exert externally on the briefcase doesn’t do any work on it. (Part of the
force you exert could also be tension in the bones and ligaments of your arm, but other muscles in your body would be doing work
to maintain the position of your arm.)

In Figure , where the person in (b) is walking horizontally with constant speed, the work done by the person on the briefcase
is still zero, but now because the angle between the force exerted and the displacement is 90° (  perpendicular to ) and cos 90° =
0.

= ⋅ d = ⋅ ( − ) = | || − | cosθ (constant force).WAB F ⃗  ∫
B

A

r ⃗  F ⃗  r ⃗ B r ⃗ A F ⃗  r ⃗ B r ⃗ A
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How much work is done on the lawn mower by the person in Figure  if he exerts a constant force of 75.0 N at an angle
35° below the horizontal and pushes the mower 25.0 m on level ground?

Strategy

We can solve this problem by substituting the given values into the definition of work done on an object by a constant force,
stated in the equation W = Fd cos . The force, angle, and displacement are given, so that only the work W is unknown.

Solution
The equation for the work is

Substituting the known values gives

Significance
Even though one and a half kilojoules may seem like a lot of work, we will see in Potential Energy and Conservation of Energy
that it’s only about as much work as you could do by burning one sixth of a gram of fat.

When you mow the grass, other forces act on the lawn mower besides the force you exert—namely, the contact force of the ground
and the gravitational force of Earth. Let’s consider the work done by these forces in general. For an object moving on a surface, the
displacement d  is tangent to the surface. The part of the contact force on the object that is perpendicular to the surface is the
normal force . Since the cosine of the angle between the normal and the tangent to a surface is zero, we have

The normal force never does work under these circumstances. (Note that if the displacement d  did have a relative component
perpendicular to the surface, the object would either leave the surface or break through it, and there would no longer be any normal
contact force. However, if the object is more than a particle, and has an internal structure, the normal contact force can do work on
it, for example, by displacing it or deforming its shape. This will be mentioned in the next chapter.)

The part of the contact force on the object that is parallel to the surface is friction, . For this object sliding along the surface,
kinetic friction  is opposite to d , relative to the surface, so the work done by kinetic friction is negative. If the magnitude of 
is constant (as it would be if all the other forces on the object were constant), then the work done by friction is

where |l | is the path length on the surface. (Note that, especially if the work done by a force is negative, people may refer to the
work done against this force, where dW  = −dW . The work done against a force may also be viewed as the work required to
overcome this force, as in “How much work is required to overcome…?”) The force of static friction, however, can do positive or
negative work. When you walk, the force of static friction exerted by the ground on your back foot accelerates you for part of each
step. If you’re slowing down, the force of the ground on your front foot decelerates you. If you’re driving your car at the speed
limit on a straight, level stretch of highway, the negative work done by kinetic friction of air resistance is balanced by the positive
work done by the static friction of the road on the drive wheels. You can pull the rug out from under an object in such a way that it
slides backward relative to the rug, but forward relative to the floor. In this case, kinetic friction exerted by the rug on the object
could be in the same direction as the displacement of the object, relative to the floor, and do positive work. The bottom line is that
you need to analyze each particular case to determine the work done by the forces, whether positive, negative or zero.

You decide to move your couch to a new position on your horizontal living room floor. The normal force on the couch is 1 kN
and the coefficient of friction is 0.6. (a) You first push the couch 3 m parallel to a wall and then 1 m perpendicular to the wall
(A to B in Figure ). How much work is done by the frictional force? (b) You don’t like the new position, so you move the

 Example : Calculating the Work You Do to Push a Lawn Mower8.2.1

8.2.2a

θ

W = Fd cosθ.

W = (75.0 N)(25.0 m) cos( ) = 1.54 × J.35.0o 103
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couch straight back to its original position (B to A in Figure ). What was the total work done against friction moving the
couch away from its original position and back again?

Figure : Top view of paths for moving a couch.

Strategy

The magnitude of the force of kinetic friction on the couch is constant, equal to the coefficient of friction times the normal
force, f  = N. Therefore, the work done by it is W  = −f d, where d is the path length traversed. The segments of the paths
are the sides of a right triangle, so the path lengths are easily calculated. In part (b), you can use the fact that the work done
against a force is the negative of the work done by the force.

Solution
a. The work done by friction is

b. The length of the path along the hypotenuse is  m, so the total work done against friction is

Significance
The total path over which the work of friction was evaluated began and ended at the same point (it was a closed path), so that
the total displacement of the couch was zero. However, the total work was not zero. The reason is that forces like friction are
classified as nonconservative forces, or dissipative forces, as we discuss in the next chapter.

Can kinetic friction ever be a constant force for all paths?

The other force on the lawn mower mentioned above was Earth’s gravitational force, or the weight of the mower. Near the surface
of Earth, the gravitational force on an object of mass m has a constant magnitude, mg, and constant direction, vertically down.
Therefore, the work done by gravity on an object is the dot product of its weight and its displacement. In many cases, it is
convenient to express the dot product for gravitational work in terms of the x-, y-, and z-components of the vectors. A typical
coordinate system has the x-axis horizontal and the y-axis vertically up. Then the gravitational force is −mg , so the work done by
gravity, over any path from A to B, is

The work done by a constant force of gravity on an object depends only on the object’s weight and the difference in height through
which the object is displaced. Gravity does negative work on an object that moves upward (y  > y ), or, in other words, you must
do positive work against gravity to lift an object upward. Alternately, gravity does positive work on an object that moves downward
(y  < y ), or you do negative work against gravity to “lift” an object downward, controlling its descent so it doesn’t drop to the
ground. (“Lift” is used as opposed to “drop”.)

You lift an oversized library book, weighing 20 N, 1 m vertically down from a shelf, and carry it 3 m horizontally to a table
(Figure ). How much work does gravity do on the book? (b) When you’re finished, you move the book in a straight line
back to its original place on the shelf. What was the total work done against gravity, moving the book away from its original
position on the shelf and back again?

8.2.3

8.2.3

K μK fr K

W = −(0.6)(1 kN)(3 m+1 m) = −2.4 kJ.

10
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√
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−−
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Figure : Side view of the paths for moving a book to and from a shelf.

Strategy

We have just seen that the work done by a constant force of gravity depends only on the weight of the object moved and the
difference in height for the path taken, W  = −mg(yB − y ). We can evaluate the difference in height to answer (a) and (b).

Solution

a. Since the book starts on the shelf and is lifted down y  − y  = −1 m, we have

b. There is zero difference in height for any path that begins and ends at the same place on the shelf, so W = 0.

Significance
Gravity does positive work (20 J) when the book moves down from the shelf. The gravitational force between two objects is an
attractive force, which does positive work when the objects get closer together. Gravity does zero work (0 J) when the book
moves horizontally from the shelf to the table and negative work (−20 J) when the book moves from the table back to the shelf.
The total work done by gravity is zero [20 J + 0 J + (−20 J) = 0].

Unlike friction or other dissipative forces, described in Example , the total work done against gravity, over any closed
path, is zero. Positive work is done against gravity on the upward parts of a closed path, but an equal amount of negative work
is done against gravity on the downward parts. In other words, work done against gravity, lifting an object up, is “given back”
when the object comes back down. Forces like gravity (those that do zero work over any closed path) are classified as
conservative forces and play an important role in physics.

Can Earth’s gravity ever be a constant force for all paths?

Work Done by Forces that Vary
In general, forces may vary in magnitude and direction at points in space, and paths between two points may be curved. The
infinitesimal work done by a variable force can be expressed in terms of the components of the force and the displacement along
the path,

Here, the components of the force are functions of position along the path, and the displacements depend on the equations of the
path. (Although we chose to illustrate dW in Cartesian coordinates, other coordinates are better suited to some situations.) Equation

 defines the total work as a line integral, or the limit of a sum of infinitesimal amounts of work. The physical concept of work
is straightforward: you calculate the work for tiny displacements and add them up. Sometimes the mathematics can seem
complicated, but the following example demonstrates how cleanly they can operate.

An object moves along a parabolic path y = (0.5 m )x  from the origin A = (0, 0) to the point B = (2 m, 2 m) under the action
of a force  = (5 N/m)y  + (10 N/m)x  (Figure ). Calculate the work done.

8.2.4

AB A

B A

W = −(20 N)(−1 m) = 20J.

8.2.2

 Exercise 7.2
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Figure : The parabolic path of a particle acted on by a given force.

Strategy

The components of the force are given functions of x and y. We can use the equation of the path to express y and dy in terms of
x and dx; namely,

Then, the integral for the work is just a definite integral of a function of x.

Solution
The infinitesimal element of work is

The integral of x  is , so

Significance
This integral was not hard to do. You can follow the same steps, as in this example, to calculate line integrals representing
work for more complicated forces and paths. In this example, everything was given in terms of x- and y-components, which
are easiest to use in evaluating the work in this case. In other situations, magnitudes and angles might be easier.

Find the work done by the same force in Example  over a cubic path, y = (0.25 m )x , between the same points A = (0,
0) and B = (2 m, 2 m).

You saw in Example  that to evaluate a line integral, you could reduce it to an integral over a single variable or parameter.
Usually, there are several ways to do this, which may be more or less convenient, depending on the particular case. In Example 

, we reduced the line integral to an integral over x, but we could equally well have chosen to reduce everything to a function
of y. We didn’t do that because the functions in y involve the square root and fractional exponents, which may be less familiar, but
for illustrative purposes, we do this now. Solving for x and dx, in terms of y, along the parabolic path, we get

The components of the force, in terms of y, are

so the infinitesimal work element becomes

The integral of y  is  y , so the work done from A to B is

8.2.5
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As expected, this is exactly the same result as before.

One very important and widely applicable variable force is the force exerted by a perfectly elastic spring, which satisfies Hooke’s
law  = −k , where k is the spring constant, and  =  −  is the displacement from the spring’s unstretched (equilibrium)
position (Newton’s Laws of Motion). Note that the unstretched position is only the same as the equilibrium position if no other
forces are acting (or, if they are, they cancel one another). Forces between molecules, or in any system undergoing small
displacements from a stable equilibrium, behave approximately like a spring force.

To calculate the work done by a spring force, we can choose the x-axis along the length of the spring, in the direction of increasing
length, as in Figure , with the origin at the equilibrium position x  = 0. (Then positive x corresponds to a stretch and negative
x to a compression.) With this choice of coordinates, the spring force has only an x-component, F  = −kx, and the work done when
x changes from x  to x  is

Figure : (a) The spring exerts no force at its equilibrium position. The spring exerts a force in the opposite direction to (b) an
extension or stretch, and (c) a compression.

Notice that W  depends only on the starting and ending points, A and B, and is independent of the actual path between them, as
long as it starts at A and ends at B. That is, the actual path could involve going back and forth before ending.

Another interesting thing to notice about Equation  is that, for this one-dimensional case, you can readily see the
correspondence between the work done by a force and the area under the curve of the force versus its displacement. Recall that, in
general, a one-dimensional integral is the limit of the sum of infinitesimals, f(x)dx , representing the area of strips, as shown in
Figure . In Equation , since F = −kx is a straight line with slope −k, when plotted versus x, the “area” under the line is
just an algebraic combination of triangular “areas,” where “areas” above the x-axis are positive and those below are negative, as
shown in Figure . The magnitude of one of these “areas” is just one-half the triangle’s base, along the x-axis, times the
triangle’s height, along the force axis. (There are quotation marks around “area” because this base-height product has the units of
work, rather than square meters.)

Figure : A curve of f(x) versus x showing the area of an infinitesimal strip, f(x)dx, and the sum of such areas, which is the
integral of f(x) from x  to x .

W = (17.7 N ⋅ ) dy = (17.7 N ⋅ ) (2 m = 33.3 J.∫
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0
m−1/2 y1/2 m−1/2 2
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Figure : Curve of the spring force f(x) = −kx versus x, showing areas under the line, between x  and x , for both positive and
negative values of x . When x  is negative, the total area under the curve for the integral in Equation  is the sum of positive
and negative triangular areas. When x  is positive, the total area under the curve is the difference between two negative triangles.

A perfectly elastic spring requires 0.54 J of work to stretch 6 cm from its equilibrium position, as in Figure . (a) What is
its spring constant k? (b) How much work is required to stretch it an additional 6 cm?

Strategy

Work “required” means work done against the spring force, which is the negative of the work in Equation , that is

For part (a), x  = 0 and x  = 6 cm; for part (b), x  = 6 cm and x  = 12 cm. In part (a), the work is given and you can solve for
the spring constant; in part (b), you can use the value of k, from part (a), to solve for the work.

Solution
a. \[W = 0.54\; J = \frac{1}{2} k [(6\; cm)^{2} - 0],\; so\; k = 3\; N/cm \ldotp \nonumber$$
b. \[W = \frac{1}{2} (3\; N/cm) [(12\; cm)^{2} - (6\; cm)^{2}],\; so\; k = 1.62\; J \ldotp \nonumber$$

Significance
Since the work done by a spring force is independent of the path, you only needed to calculate the difference in the quantity 

kx  at the end points. Notice that the work required to stretch the spring from 0 to 12 cm is four times that required to stretch
it from 0 to 6 cm, because that work depends on the square of the amount of stretch from equilibrium, kx . In this
circumstance, the work to stretch the spring from 0 to 12 cm is also equal to the work for a composite path from 0 to 6 cm
followed by an additional stretch from 6 cm to 12 cm. Therefore, 4W(0 cm to 6 cm) = W(0 cm to 6 cm) + W(6 cm to 12 cm) ,
or W(6 cm to 12 cm) = 3W(0 cm to 6 cm) , as we found above.

The spring in Example  is compressed 6 cm from its equilibrium length. (a) Does the spring force do positive or negative
work and (b) what is the magnitude?

This page titled 8.2: Work is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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8.3: Kinetic Energy

Calculate the kinetic energy of a particle given its mass and its velocity or momentum
Evaluate the kinetic energy of a body, relative to different frames of reference

It’s plausible to suppose that the greater the velocity of a body, the greater effect it could have on other bodies. This does not
depend on the direction of the velocity, only its magnitude. At the end of the seventeenth century, a quantity was introduced into
mechanics to explain collisions between two perfectly elastic bodies, in which one body makes a head-on collision with an
identical body at rest. The first body stops, and the second body moves off with the initial velocity of the first body. (If you have
ever played billiards or croquet, or seen a model of Newton’s Cradle, you have observed this type of collision.) The idea behind
this quantity was related to the forces acting on a body and was referred to as “the energy of motion.” Later on, during the
eighteenth century, the name kinetic energy was given to energy of motion.

Newton's cradle in motion. One ball is set in motion and soon collides with the rest, conveying the energy through the rest of the
balls and eventually to the last ball, which in turn is set in motion. (CC SA-BY 3.0; Dominique Toussaint).

With this history in mind, we can now state the classical definition of kinetic energy. Note that when we say “classical,” we mean
non-relativistic, that is, at speeds much less that the speed of light. At speeds comparable to the speed of light, the special theory of
relativity requires a different expression for the kinetic energy of a particle, as discussed in Relativity. Since objects (or systems) of
interest vary in complexity, we first define the kinetic energy of a particle with mass m.

The kinetic energy of a particle is one-half the product of the particle’s mass m and the square of its speed :

We then extend this definition to any system of particles by adding up the kinetic energies of all the constituent particles:

Note that just as we can express Newton’s second law in terms of either the rate of change of momentum or mass times the rate of
change of velocity, so the kinetic energy of a particle can be expressed in terms of its mass and momentum (  = m ), instead of its
mass and velocity. Since v = , we see that

also expresses the kinetic energy of a single particle. Sometimes, this expression is more convenient to use than Equation .
The units of kinetic energy are mass times the square of speed, or kg • m /s . But the units of force are mass times acceleration, kg
• m/s , so the units of kinetic energy are also the units of force times distance, which are the units of work, or joules. You will see in
the next section that work and kinetic energy have the same units, because they are different forms of the same, more general,
physical property.

 Learning Objectives
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a. What is the kinetic energy of an 80-kg athlete, running at 10 m/s?
b. The Chicxulub crater in Yucatan, one of the largest existing impact craters on Earth, is thought to have been created by an

asteroid, traveling at 22 km/s and releasing 4.2 x 10  J of kinetic energy upon impact. What was its mass?
c. In nuclear reactors, thermal neutrons, traveling at about 2.2 km/s, play an important role. What is the kinetic energy of such

a particle?

Strategy

To answer these questions, you can use the definition of kinetic energy in Equation . You also have to look up the mass of
a neutron.

Solution
Do not forget to convert km into m to do these calculations, although, to save space, we omitted showing these conversions.

a. 

b. 

c. 

Significance
In this example, we used the way mass and speed are related to kinetic energy, and we encountered a very wide range of values
for the kinetic energies. Different units are commonly used for such very large and very small values. The energy of the
impactor in part (b) can be compared to the explosive yield of TNT and nuclear explosions, 1 megaton = 4.18 x 10 J. The
Chicxulub asteroid’s kinetic energy was about a hundred million megatons. At the other extreme, the energy of subatomic
particle is expressed in electron-volts, 1 eV = 1.6 x 10  J. The thermal neutron in part (c) has a kinetic energy of about one
fortieth of an electronvolt.

a. A car and a truck are each moving with the same kinetic energy. Assume that the truck has more mass than the car. Which
has the greater speed?

b. A car and a truck are each moving with the same speed. Which has the greater kinetic energy?

Because velocity is a relative quantity, you can see that the value of kinetic energy must depend on your frame of reference. You
can generally choose a frame of reference that is suited to the purpose of your analysis and that simplifies your calculations. One
such frame of reference is the one in which the observations of the system are made (likely an external frame). Another choice is a
frame that is attached to, or moves with, the system (likely an internal frame). The equations for relative motion, discussed in
Motion in Two and Three Dimensions, provide a link to calculating the kinetic energy of an object with respect to different frames
of reference.

A 75.0-kg person walks down the central aisle of a subway car at a speed of 1.50 m/s relative to the car, whereas the train is
moving at 15.0 m/s relative to the tracks.

a. What is the person’s kinetic energy relative to the car?
b. What is the person’s kinetic energy relative to the tracks?
c. What is the person’s kinetic energy relative to a frame moving with the person?

Strategy

Since speeds are given, we can use mv  to calculate the person’s kinetic energy. However, in part (a), the person’s speed is
relative to the subway car (as given); in part (b), it is relative to the tracks; and in part (c), it is zero. If we denote the car frame

 Example : Kinetic Energy of an Object8.3.1
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by C, the track frame by T, and the person by P, the relative velocities in part (b) are related by  =  + . We can
assume that the central aisle and the tracks lie along the same line, but the direction the person is walking relative to the car
isn’t specified, so we will give an answer for each possibility, v  = v  ± v , as shown in Figure .

Figure : The possible motions of a person walking in a train are (a) toward the front of the car and (b) toward the back of
the car.

Solution
a. 

b. 

Therefore, the two possible values for kinetic energy relative to the car are

and

c. In a frame where v  = 0, K = 0 as well.

Significance
You can see that the kinetic energy of an object can have very different values, depending on the frame of reference. However,
the kinetic energy of an object can never be negative, since it is the product of the mass and the square of the speed, both of
which are always positive or zero.

You are rowing a boat parallel to the banks of a river. Your kinetic energy relative to the banks is less than your kinetic energy
relative to the water. Are you rowing with or against the current?

The kinetic energy of a particle is a single quantity, but the kinetic energy of a system of particles can sometimes be divided into
various types, depending on the system and its motion. For example:

If all the particles in a system have the same velocity, the system is undergoing translational motion and has translational
kinetic energy.
If an object is rotating, it could have rotational kinetic energy.
If it is vibrating, it could have vibrational kinetic energy.

The kinetic energy of a system, relative to an internal frame of reference, may be called internal kinetic energy. The kinetic energy
associated with random molecular motion may be called thermal energy. These names will be used in later chapters of the book,
when appropriate. Regardless of the name, every kind of kinetic energy is the same physical quantity, representing energy
associated with motion.

a. A player lobs a mid-court pass with a 624-g basketball, which covers 15 m in 2 s. What is the basketball’s horizontal
translational kinetic energy while in flight?

b. An average molecule of air, in the basketball in part (a), has a mass of 29 u, and an average speed of 500 m/s, relative to the
basketball. There are about 3 x 10 molecules inside it, moving in random directions, when the ball is properly inflated.
What is the average translational kinetic energy of the random motion of all the molecules inside, relative to the basketball?

v ⃗ PT v ⃗ PC v ⃗ CT

PT CT PC 8.3.1
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c. How fast would the basketball have to travel relative to the court, as in part (a), so as to have a kinetic energy equal to the
amount in part (b)?

Strategy

In part (a), first find the horizontal speed of the basketball and then use the definition of kinetic energy in terms of mass and
speed, K = . Then in part (b), convert unified units to kilograms and then use K =  to get the average translational
kinetic energy of one molecule, relative to the basketball. Then multiply by the number of molecules to get the total result.
Finally, in part (c), we can substitute the amount of kinetic energy in part (b), and the mass of the basketball in part (a), into the
definition K = , and solve for v.

Solution
a. The horizontal speed is , so the horizontal kinetic energy of the basketball is

b. The average translational kinetic energy of a molecule is

and the total kinetic energy of all the molecules is

c. 

Significance
In part (a), this kind of kinetic energy can be called the horizontal kinetic energy of an object (the basketball), relative to its
surroundings (the court). If the basketball were spinning, all parts of it would have not just the average speed, but it would also
have rotational kinetic energy. Part (b) reminds us that this kind of kinetic energy can be called internal or thermal kinetic
energy. Notice that this energy is about a hundred times the energy in part (a). How to make use of thermal energy will be the
subject of the chapters on thermodynamics. In part (c), since the energy in part (b) is about 100 times that in part (a), the speed
should be about 10 times as big, which it is (76 compared to 7.5 m/s).

This page titled 8.3: Kinetic Energy is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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8.4: Work-Energy Theorem

Apply the work-energy theorem to find information about the motion of a particle, given the forces acting on it
Use the work-energy theorem to find information about the forces acting on a particle, given information about its motion

We have discussed how to find the work done on a particle by the forces that act on it, but how is that work manifested in the
motion of the particle? According to Newton’s second law of motion, the sum of all the forces acting on a particle, or the net force,
determines the rate of change in the momentum of the particle, or its motion. Therefore, we should consider the work done by all
the forces acting on a particle, or the net work, to see what effect it has on the particle’s motion.

Let’s start by looking at the net work done on a particle as it moves over an infinitesimal displacement, which is the dot product of
the net force and the displacement:

Newton’s second law tells us that

so

For the mathematical functions describing the motion of a physical particle, we can rearrange the differentials dt, etc., as algebraic
quantities in this expression, that is,

where we substituted the velocity for the time derivative of the displacement and used the commutative property of the dot product.
Since derivatives and integrals of scalars are probably more familiar to you at this point, we express the dot product in terms of
Cartesian coordinates before we integrate between any two points A and B on the particle’s trajectory. This gives us the net work
done on the particle:

In the middle step, we used the fact that the square of the velocity is the sum of the squares of its Cartesian components, and in the
last step, we used the definition of the particle’s kinetic energy. This important result is called the work-energy theorem.

The net work done on a particle equals the change in the particle’s kinetic energy:

 Learning Objectives

d = ⋅ d .Wnet F ⃗ 
net r ⃗ 

= m( )F ⃗ 
net

dv ⃗ 

dt

d = m( ) ⋅ d .Wnet

dv ⃗ 

dt
r ⃗ 

dWnet = m( ) ⋅ d
dv ⃗ 

dt
r ⃗ 

= md ⋅( )v ⃗ 
dr ⃗ 

dt

= m ⋅ d ,v ⃗  v ⃗ 

Wnet, AB = (m d +m d +m d∫
B

A

vx vx vy vy vz vz

= m = = − .
1

2
+ +∣∣v2

x v2
y v2

z ∣∣
B

A m
∣
∣
∣
1

2
v2∣

∣
∣
B

A

KB KA

(8.4.1)

(8.4.2)

 Work-Energy Theorem

= − .Wnet KB KA (8.4.3)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46062?pdf
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/08%3A_Work_and_Kinetic_Energy/8.04%3A_Work-Energy_Theorem
https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/12%3A_Vectors_in_Space/12.3%3A_The_Dot_Product


8.4.2 https://phys.libretexts.org/@go/page/46062

Figure : Horse pulls are common events at state fairs. The work done by the horses pulling on the load results in a change in
kinetic energy of the load, ultimately going faster. (credit: “Jassen”/ Flickr)

According to this theorem, when an object slows down, its final kinetic energy is less than its initial kinetic energy, the change in
its kinetic energy is negative, and so is the net work done on it. If an object speeds up, the net work done on it is positive. When
calculating the net work, you must include all the forces that act on an object. If you leave out any forces that act on an object, or if
you include any forces that do not act on it, you will get a wrong result.

The importance of the work-energy theorem, and the further generalizations to which it leads, is that it makes some types of
calculations much simpler to accomplish than they would be by trying to solve Newton’s second law. For example, in the section
on Newton’s Laws of Motion, we found the speed of an object sliding down a frictionless plane by solving Newton’s second law
for the acceleration and using kinematic equations for constant acceleration, obtaining

where  is the displacement down the plane.

We can also get this result from the work-energy theorem (Equation ). Since only two forces are acting on the object—gravity
and the normal force—and the normal force does not do any work, the net work is just the work done by gravity. This only depends
on the object’s weight and the difference in height, so

where  is positive up. The work-energy theorem says that this equals the change in kinetic energy:

Using a right triangle, we can see that

so the result for the final speed is the same.

What is gained by using the work-energy theorem? The answer is that for a frictionless plane surface, not much. However,
Newton’s second law is easy to solve only for this particular case, whereas the work-energy theorem gives the final speed for any
shaped frictionless surface. For an arbitrary curved surface, the normal force is not constant, and Newton’s second law may be
difficult or impossible to solve analytically. Constant or not, for motion along a surface, the normal force never does any work,
because it’s perpendicular to the displacement. A calculation using the work-energy theorem avoids this difficulty and applies to
more general situations.

1. Draw a free-body diagram for each force on the object.
2. Determine whether or not each force does work over the displacement in the diagram. Be sure to keep any positive or

negative signs in the work done.
3. Add up the total amount of work done by each force.
4. Set this total work equal to the change in kinetic energy and solve for any unknown parameter.
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5. Check your answers. If the object is traveling at a constant speed or zero acceleration, the total work done should be zero
and match the change in kinetic energy. If the total work is positive, the object must have sped up or increased kinetic
energy. If the total work is negative, the object must have slowed down or decreased kinetic energy

The frictionless track for a toy car includes a loop-the-loop of radius . How high, measured from the bottom of the loop, must
the car be placed to start from rest on the approaching section of track and go all the way around the loop?

Figure : A frictionless track for a toy car has a loop-the-loop in it. How high must the car start so that it can go around the
loop without falling off?

Strategy

The free-body diagram at the final position of the object is drawn in Figure . The gravitational work is the only work done
over the displacement that is not zero. Since the weight points in the same direction as the net vertical displacement, the total
work done by the gravitational force is positive. From the work-energy theorem, the starting height determines the speed of the
car at the top of the loop,

where the notation is shown in the accompanying figure. At the top of the loop, the normal force and gravity are both down
and the acceleration is centripetal, so

The condition for maintaining contact with the track is that there must be some normal force, however slight; that is, .
Substituting for  and , we can find the condition for .

Solution
Implement the steps in the strategy to arrive at the desired result:

Significance
On the surface of the loop, the normal component of gravity and the normal contact force must provide the centripetal
acceleration of the car going around the loop. The tangential component of gravity slows down or speeds up the car. A child
would find out how high to start the car by trial and error, but now that you know the work-energy theorem, you can predict the
minimum height (as well as other more useful results) from physical principles. By using the work-energy theorem, you did
not have to solve a differential equation to determine the height.

Suppose the radius of the loop-the-loop in Example  is 15 cm and the toy car starts from rest at a height of 45 cm above
the bottom. What is its speed at the top of the loop?

In situations where the motion of an object is known, but the values of one or more of the forces acting on it are not known, you
may be able to use the work-energy theorem to get some information about the forces. Work depends on the force and the distance
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over which it acts, so the information is provided via their product.

A bullet has a mass of 40 grains (2.60 g) and a muzzle velocity of 1100 ft./s (335 m/s). It can penetrate eight 1-inch pine
boards, each with thickness 0.75 inches. What is the average stopping force exerted by the wood, as shown in Figure ?

Figure : The boards exert a force to stop the bullet. As a result, the boards do work and the bullet loses kinetic energy

Strategy

We can assume that under the general conditions stated, the bullet loses all its kinetic energy penetrating the boards, so the
work-energy theorem says its initial kinetic energy is equal to the average stopping force times the distance penetrated. The
change in the bullet’s kinetic energy and the net work done stopping it are both negative, so when you write out the work-
energy theorem, with the net work equal to the average force times the stopping distance, that’s what you get. The total
thickness of eight 1-inch pine boards that the bullet penetrates is 8 x  in. = 6 in. = 15.2 cm.

Solution
Applying the work-energy theorem, we get

so

Significance
We could have used Newton’s second law and kinematics in this example, but the work-energy theorem also supplies an
answer to less simple situations. The penetration of a bullet, fired vertically upward into a block of wood, is discussed in one
section of Asif Shakur’s recent article [“Bullet-Block Science Video Puzzle.” The Physics Teacher (January 2015) 53(1): 15-
16]. If the bullet is fired dead center into the block, it loses all its kinetic energy and penetrates slightly farther than if fired off-
center. The reason is that if the bullet hits off-center, it has a little kinetic energy after it stops penetrating, because the block
rotates. The work-energy theorem implies that a smaller change in kinetic energy results in a smaller penetration. You will
understand more of the physics in this interesting article after you finish reading Angular Momentum.

Learn more about work and energy in this PhET simulation (https://phet.colorado.edu/en/simulation/the-ramp) called “the
ramp.” Try changing the force pushing the box and the frictional force along the incline. The work and energy plots can be
examined to note the total work done and change in kinetic energy of the box.

This page titled 8.4: Work-Energy Theorem is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

7.4: Work-Energy Theorem by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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8.5: Power

Relate the work done during a time interval to the power delivered
Find the power expended by a force acting on a moving body

The concept of work involves force and displacement; the work-energy theorem relates the net work done on a body to the
difference in its kinetic energy, calculated between two points on its trajectory. None of these quantities or relations involves time
explicitly, yet we know that the time available to accomplish a particular amount of work is frequently just as important to us as the
amount itself. In the chapter-opening figure, several sprinters may have achieved the same velocity at the finish, and therefore did
the same amount of work, but the winner of the race did it in the least amount of time.

We express the relation between work done and the time interval involved in doing it, by introducing the concept of power. Since
work can vary as a function of time, we first define average power as the work done during a time interval, divided by the interval,

Then, we can define the instantaneous power (frequently referred to as just plain power).

Power is defined as the rate of doing work, or the limit of the average power for time intervals approaching zero,

If the power is constant over a time interval, the average power for that interval equals the instantaneous power, and the work done
by the agent supplying the power is

If the power during an interval varies with time (i.e., ), then the work done is the time integral of the power,

The work-energy theorem relates how work can be transformed into kinetic energy. Since there are other forms of energy as well,
as we discuss in the next chapter, we can also define power as the rate of transfer of energy. Work and energy are measured in units
of joules, so power is measured in units of joules per second, which has been given the SI name watts, abbreviation W: 1 J/s = 1 W.
Another common unit for expressing the power capability of everyday devices is horsepower: 1 hp = 746 W.

An 80-kg army trainee does pull-ups on a horizontal bar (Figure ). It takes the trainee 0.8 seconds to raise the body from a
lower position to where the chin is above the bar. How much power do the trainee’s muscles supply moving his body from the
lower position to where the chin is above the bar? (Hint: Make reasonable estimates for any quantities needed.)
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Figure : What is the power expended in doing ten pull-ups in ten seconds?

Strategy

The work done against gravity, going up or down a distance y, is mg y. Let’s assume that y = 2 ft ≈ 60 cm. Also, assume
that the arms comprise 10% of the body mass and are not included in the moving mass. With these assumptions, we can
calculate the work done.

Solution
The result we get, applying our assumptions, is

Significance
This is typical for power expenditure in strenuous exercise; in everyday units, it’s somewhat more than one horsepower (1 hp =
746 W).

Estimate the power expended by a weightlifter raising a 150-kg barbell 2 m in 3 s.

Answer

Add texts here. Do not delete this text first.

The power involved in moving a body can also be expressed in terms of the forces acting on it. If a force  acts on a body that is
displaced d  in a time dt, the power expended by the force is

where  is the velocity of the body. The fact that the limits implied by the derivatives exist, for the motion of a real body, justifies
the rearrangement of the infinitesimals.

How much power must an automobile engine expend to move a 1200-kg car up a 15% grade at 90 km/h (Figure )?
Assume that 25% of this power is dissipated overcoming air resistance and friction.

Figure : We want to calculate the power needed to move a car up a hill at constant speed.

Strategy
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At constant velocity, there is no change in kinetic energy, so the net work done to move the car is zero. Therefore the power
supplied by the engine to move the car equals the power expended against gravity and air resistance. By assumption, 75% of
the power is supplied against gravity, which equals m  = mgv sin , where  is the angle of the incline. A 15% grade means
tan  = 0.15. This reasoning allows us to solve for the power required.

Solution
Carrying out the suggested steps, we find

or

or about 78 hp. (You should supply the steps used to convert units.)

Significance
This is a reasonable amount of power for the engine of a small to mid-size car to supply (1 hp = 0.746 kW). Note that this is
only the power expended to move the car. Much of the engine’s power goes elsewhere, for example, into waste heat. That’s
why cars need radiators. Any remaining power could be used for acceleration, or to operate the car’s accessories.

This page titled 8.5: Power is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

7.5: Power by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
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8.E: Work and Kinetic Energy (Exercises)

Conceptual Questions

7.1 Work
1. Give an example of something we think of as work in everyday circumstances that is not work in the scientific sense. Is

energy transferred or changed in form in your example? If so, explain how this is accomplished without doing work.
2. Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it

does no work.
3. Describe a situation in which a force is exerted for a long time but does no work. Explain.
4. A body moves in a circle at constant speed. Does the centripetal force that accelerates the body do any work? Explain.
5. Suppose you throw a ball upward and catch it when it returns at the same height. How much work does the gravitational

force do on the ball over its entire trip?
6. Why is it more difficult to do sit-ups while on a slant board than on a horizontal surface? (See below.)

7. As a young man, Tarzan climbed up a vine to reach his tree house. As he got older, he decided to build and use a staircase
instead. Since the work of the gravitational force mg is path independent, what did the King of the Apes gain in using
stairs?

7.2 Kinetic Energy

8. A particle of m has a velocity of v   + v   + v  . Is its kinetic energy given by m(v   + v   + v  )/2? If not, what
is the correct expression?

9. One particle has mass m and a second particle has mass 2m. The second particle is moving with speed v and the first with
speed 2v. How do their kinetic energies compare?

10. A person drops a pebble of mass m  from a height h, and it hits the floor with kinetic energy K. The person drops another
pebble of mass m  from a height of 2h, and it hits the floor with the same kinetic energy K. How do the masses of the
pebbles compare?

7.3 Work-Energy Theorem

11. Under what conditions would it lose energy?

12. Work done on a system puts energy into it. Work done by a system removes energy from it. Give an example for each
statement.

x î y ĵ z k̂ x
2 î y

2 ĵ z
2 k̂

1

2
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13. Two marbles of masses m and 2m are dropped from a height h. Compare their kinetic energies when they reach the
ground.

14. Compare the work required to accelerate a car of mass 2000 kg from 30.0 to 40.0 km/h with that required for an
acceleration from 50.0 to 60.0 km/h.

15. Suppose you are jogging at constant velocity. Are you doing any work on the environment and vice versa?
16. Two forces act to double the speed of a particle, initially moving with kinetic energy of 1 J. One of the forces does 4 J of

work. How much work does the other force do?

7.4 Power
17. Most electrical appliances are rated in watts. Does this rating depend on how long the appliance is on? (When off, it is a

zero-watt device.) Explain in terms of the definition of power.
18. Explain, in terms of the definition of power, why energy consumption is sometimes listed in kilowatt-hours rather than

joules. What is the relationship between these two energy units?
19. A spark of static electricity, such as that you might receive from a doorknob on a cold dry day, may carry a few hundred

watts of power. Explain why you are not injured by such a spark.
20. Does the work done in lifting an object depend on how fast it is lifted? Does the power expended depend on how fast it is

lifted?
21. Can the power expended by a force be negative?
22. How can a 50-W light bulb use more energy than a 1000-W oven?

Problems

7.1 Work
23. How much work does a supermarket checkout attendant do on a can of soup he pushes 0.600 m horizontally with a force

of 5.00 N?
24. A 75.0-kg person climbs stairs, gaining 2.50 m in height. Find the work done to accomplish this task.
25. (a) Calculate the work done on a 1500-kg elevator car by its cable to lift it 40.0 m at constant speed, assuming friction

averages 100 N. (b) What is the work done on the lift by the gravitational force in this process? (c) What is the total work
done on the lift?

26. Suppose a car travels 108 km at a speed of 30.0 m/s, and uses 2.0 gal of gasoline. Only 30% of the gasoline goes into
useful work by the force that keeps the car moving at constant speed despite friction. (The energy content of gasoline is
about 140 MJ/gal.) (a) What is the magnitude of the force exerted to keep the car moving at constant speed? (b) If the
required force is directly proportional to speed, how many gallons will be used to drive 108 km at a speed of 28.0 m/s?

27. Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0° with
the horizontal (see below). He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be
certain to include the work he does on the crate and on his body to get up the ramp.

28. How much work is done by the boy pulling his sister 30.0 m in a wagon as shown below? Assume no friction acts on the
wagon.
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29. A shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in
a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the
cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper
exerts, using energy considerations. (e) What is the total work done on the cart?

30. Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant
speed, as shown below. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by
friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c)
What is the work done by the gravitational force on the sled? (d) What is the total work done?

31. A constant 20-N force pushes a small ball in the direction of the force over a distance of 5.0 m. What is the work done by
the force?

32. A toy cart is pulled a distance of 6.0 m in a straight line across the floor. The force pulling the cart has a magnitude of 20
N and is directed at 37° above the horizontal. What is the work done by this force?

33. A 5.0-kg box rests on a horizontal surface. The coefficient of kinetic friction between the box and surface is  = 0.50. A
horizontal force pulls the box at constant velocity for 10 cm. Find the work done by (a) the applied horizontal force, (b)
the frictional force, and (c) the net force.

34. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (µk = 0.20) at constant velocity by a force
directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total
work.

35. Suppose that the sled plus passenger of the preceding problem is pushed 20 m across the snow at constant velocity by a
force directed 30° below the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the
total work.

36. How much work does the force F(x) = (−2.0/x) N do on a particle as it moves from x = 2.0 m to x = 5.0 m?
37. How much work is done against the gravitational force on a 5.0-kg briefcase when it is carried from the ground floor to

the roof of the Empire State Building, a vertical climb of 380 m?
38. It takes 500 J of work to compress a spring 10 cm. What is the force constant of the spring?
39. A bungee cord is essentially a very long rubber band that can stretch up to four times its unstretched length. However, its

spring constant varies over its stretch [see Menz, P.G. “The Physics of Bungee Jumping.” The Physics Teacher
(November 1993) 31: 483-487]. Take the length of the cord to be along the x-direction and define the stretch x as the
length of the cord l minus its un-stretched length l0 ; that is, x = l − l  (see below). Suppose a particular bungee cord has a
spring constant, for 0 ≤ x ≤ 4.88 m, of k  = 204 N/m and for 4.88 m ≤ x, of k  = 111 N/m. (Recall that the spring constant
is the slope of the force F(x) versus its stretch x.) (a) What is the tension in the cord when the stretch is 16.7 m (the
maximum desired for a given jump)? (b) How much work must be done against the elastic force of the bungee cord to
stretch it 16.7 m?
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Figure 7.16 - (credit: Graeme Churchard)

40. A bungee cord exerts a nonlinear elastic force of magnitude F(x) = k x + k x , where x is the distance the cord is
stretched, k  = 204 N/m and k  = −0.233 N/m . How much work must be done on the cord to stretch it 16.7 m?

41. Engineers desire to model the magnitude of the elastic force of a bungee cord using the equation \[F(x) = a \Bigg[\frac{x
+ 9\; m}{9\; m} − \left(\dfrac{9\; m}{x + 9\; m}\right)^{2} \Bigg],$$where x is the stretch of the cord along its length
and a is a constant. If it takes 22.0 kJ of work to stretch the cord by 16.7 m, determine the value of the constant a.

42. A particle moving in the xy-plane is subject to a force

where x and y are in meters. Calculate the work done on the particle by this force, as it moves in a straight line from the
point (3 m, 4 m) to the point (8 m, 6 m).

43. A particle moves along a curved path y(x) = (10 m){1 + cos[(0.1 m )x]}, from x = 0 to x = 10  m, subject to a tangential
force of variable magnitude F(x) = (10 N)sin[(0.1 m )x]. How much work does the force do? (Hint: Consult a table of
integrals or use a numerical integration program.)

7.2 Kinetic Energy
44. Compare the kinetic energy of a 20,000-kg truck moving at 110 km/h with that of an 80.0-kg astronaut in orbit moving at

27,500 km/h.
45. (a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s? (b)

Discuss how the larger energies needed for the movement of larger animals would relate to metabolic rates.
46. Estimate the kinetic energy of a 90,000-ton aircraft carrier moving at a speed of at 30 knots. You will need to look up the

definition of a nautical mile to use in converting the unit for speed, where 1 knot equals 1 nautical mile per hour.
47. Calculate the kinetic energies of (a) a 2000.0-kg automobile moving at 100.0 km/h; (b) an 80.-kg runner sprinting at 10.

m/s; and (c) a 9.1 x 10 -kg electron moving at 2.0 x 10  m/s.
48. A 5.0-kg body has three times the kinetic energy of an 8.0-kg body. Calculate the ratio of the speeds of these bodies.
49. An 8.0-g bullet has a speed of 800 m/s. (a) What is its kinetic energy? (b) What is its kinetic energy if the speed is

halved?

7.3 Work-Energy Theorem
50. (a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly

typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to
a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).

51. A car’s bumper is designed to withstand a 4.0-km/h (1.1-m/s) collision with an immovable object without damage to the
body of the car. The bumper cushions the shock by absorbing the force over a distance. Calculate the magnitude of the
average force on a bumper that collapses 0.200 m while bringing a 900-kg car to rest from an initial speed of 1.1 m/s.

52. Boxing gloves are padded to lessen the force of a blow. (a) Calculate the force exerted by a boxing glove on an
opponent’s face, if the glove and face compress 7.50 cm during a blow in which the 7.00-kg arm and glove are brought to
rest from an initial speed of 10.0 m/s. (b) Calculate the force exerted by an identical blow in the days when no gloves
were used, and the knuckles and face would compress only 2.00 cm. Assume the change in mass by removing the glove

1 2
3

1 2
3
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is negligible. (c) Discuss the magnitude of the force with glove on. Does it seem high enough to cause damage even
though it is lower than the force with no glove?

53. Using energy considerations, calculate the average force a 60.0-kg sprinter exerts backward on the track to accelerate
from 2.00 to 8.00 m/s in a distance of 25.0 m, if he encounters a headwind that exerts an average force of 30.0 N against
him.

54. A 5.0-kg box has an acceleration of 2.0 m/s  when it is pulled by a horizontal force across a surface with  = 0.50. Find
the work done over a distance of 10 cm by (a) the horizontal force, (b) the frictional force, and (c) the net force. (d) What
is the change in kinetic energy of the box?

55. A constant 10-N horizontal force is applied to a 20-kg cart at rest on a level floor. If friction is negligible, what is the
speed of the cart when it has been pushed 8.0 m?

56. In the preceding problem, the 10-N force is applied at an angle of 45° below the horizontal. What is the speed of the cart
when it has been pushed 8.0 m?

57. Compare the work required to stop a 100-kg crate sliding at 1.0 m/s and an 8.0-g bullet traveling at 500 m/s.
58. A wagon with its passenger sits at the top of a hill. The wagon is given a slight push and rolls 100 m down a 10° incline

to the bottom of the hill. What is the wagon’s speed when it reaches the end of the incline. Assume that the retarding
force of friction is negligible.

59. An 8.0-g bullet with a speed of 800 m/s is shot into a wooden block and penetrates 20 cm before stopping. What is the
average force of the wood on the bullet? Assume the block does not move.

60. A 2.0-kg block starts with a speed of 10 m/s at the bottom of a plane inclined at 37° to the horizontal. The coefficient of
sliding friction between the block and plane is  = 0.30. (a) Use the work-energy principle to determine how far the
block slides along the plane before momentarily coming to rest. (b) After stopping, the block slides back down the plane.
What is its speed when it reaches the bottom? (Hint: For the round trip, only the force of friction does work on the
block.)

61. When a 3.0-kg block is pushed against a massless spring of force constant 4.5 x 10  N/m, the spring is compressed 8.0
cm. The block is released, and it slides 2.0 m (from the point at which it is released) across a horizontal surface before
friction stops it. What is the coefficient of kinetic friction between the block and the surface?

62. A small block of mass 200 g starts at rest at A, slides to B where its speed is v  = 8.0 m/s, then slides along the horizontal
surface a distance 10 m before coming to rest at C. (See below.) (a) What is the work of friction along the curved surface?
(b) What is the coefficient of kinetic friction along the horizontal surface?

63. A small object is placed at the top of an incline that is essentially frictionless. The object slides down the incline onto a
rough horizontal surface, where it stops in 5.0 s after traveling 60 m. (a) What is the speed of the object at the bottom of
the incline and its acceleration along the horizontal surface? (b) What is the height of the incline?

64. When released, a 100-g block slides down the path shown below, reaching the bottom with a speed of 4.0 m/s. How much
work does the force of friction do?

65. A 0.22LR-caliber bullet like that mentioned in Example 7.10 is fired into a door made of a single thickness of 1-inch pine
boards. How fast would the bullet be traveling after it penetrated through the door?

66. A sled starts from rest at the top of a snow-covered incline that makes a 22° angle with the horizontal. After sliding 75 m
down the slope, its speed is 14 m/s. Use the work-energy theorem to calculate the coefficient of kinetic friction between
the runners of the sled and the snowy surface.
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7.4 Power
67. A person in good physical condition can put out 100 W of useful power for several hours at a stretch, perhaps by pedaling

a mechanism that drives an electric generator. Neglecting any problems of generator efficiency and practical
considerations such as resting time: (a) How many people would it take to run a 4.00-kW electric clothes dryer? (b) How
many people would it take to replace a large electric power plant that generates 800 MW?

68. What is the cost of operating a 3.00-W electric clock for a year if the cost of electricity is $0.0900 per kW • h?
69. A large household air conditioner may consume 15.0 kW of power. What is the cost of operating this air conditioner 3.00

h per day for 30.0 d if the cost of electricity is $0.110 per kW • h?
70. (a) What is the average power consumption in watts of an appliance that uses 5.00 kW • h of energy per day? (b) How

many joules of energy does this appliance consume in a year?
71. (a) What is the average useful power output of a person who does 6.00 x 10  J of useful work in 8.00 h? (b) Working at

this rate, how long will it take this person to lift 2000 kg of bricks 1.50 m to a platform? (Work done to lift his body can
be omitted because it is not considered useful output here.)

72. A 500-kg dragster accelerates from rest to a final speed of 110 m/s in 400 m (about a quarter of a mile) and encounters an
average frictional force of 1200 N. What is its average power output in watts and horsepower if this takes 7.30 s?

73. (a) How long will it take an 850-kg car with a useful power output of 40.0 hp (1 hp equals 746 W) to reach a speed of
15.0 m/s, neglecting friction? (b) How long will this acceleration take if the car also climbs a 3.00-m high hill in the
process?

74. (a) Find the useful power output of an elevator motor that lifts a 2500-kg load a height of 35.0 m in 12.0 s, if it also
increases the speed from rest to 4.00 m/s. Note that the total mass of the counterbalanced system is 10,000 kg—so that
only 2500 kg is raised in height, but the full 10,000 kg is accelerated. (b) What does it cost, if electricity is $0.0900 per
kW • h ?

75. (a) How long would it take a 1.50 x 10 -kg airplane with engines that produce 100 MW of power to reach a speed of 250
m/s and an altitude of 12.0 km if air resistance were negligible? (b) If it actually takes 900 s, what is the power? (c) Given
this power, what is the average force of air resistance if the airplane takes 1200 s? (Hint: You must find the distance the
plane travels in 1200 s assuming constant acceleration.)

76. Calculate the power output needed for a 950-kg car to climb a 2.00° slope at a constant 30.0 m/s while encountering wind
resistance and friction totaling 600 N.

77. A man of mass 80 kg runs up a flight of stairs 20 m high in 10 s. (a) how much power is used to lift the man? (b) If the
man’s body is 25% efficient, how much power does he expend?

78. The man of the preceding problem consumes approximately 1.05 x 10  J (2500 food calories) of energy per day in
maintaining a constant weight. What is the average power he produces over a day? Compare this with his power
production when he runs up the stairs.

79. An electron in a television tube is accelerated uniformly from rest to a speed of 8.4 x 10  m/s over a distance of 2.5 cm.
What is the power delivered to the electron at the instant that its displacement is 1.0 cm?

80. Coal is lifted out of a mine a vertical distance of 50 m by an engine that supplies 500 W to a conveyer belt. How much
coal per minute can be brought to the surface? Ignore the effects of friction.

81. A girl pulls her 15-kg wagon along a flat sidewalk by applying a 10-N force at 37° to the horizontal. Assume that friction
is negligible and that the wagon starts from rest. (a) How much work does the girl do on the wagon in the first 2.0 s. (b)
How much instantaneous power does she exert at t = 2.0 s ?

82. A typical automobile engine has an efficiency of 25%. Suppose that the engine of a 1000-kg automobile has a maximum
power output of 140 hp. What is the maximum grade that the automobile can climb at 50 km/h if the frictional retarding
force on it is 300 N?

83. When jogging at 13 km/h on a level surface, a 70-kg man uses energy at a rate of approximately 850 W. Using the facts
that the “human engine” is approximately 25% efficient, determine the rate at which this man uses energy when jogging
up a 5.0° slope at this same speed. Assume that the frictional retarding force is the same in both cases.

Additional Problems
84. A cart is pulled a distance D on a flat, horizontal surface by a constant force F that acts at an angle  with the horizontal

direction. The other forces on the object during this time are gravity (F ), normal forces (F ) and (F ), and rolling
frictions F  and F , as shown below. What is the work done by each force?
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85. Consider a particle on which several forces act, one of which is known to be constant in time:  = (3 N)  + (4 N) . As
a result, the particle moves along the x-axis from x = 0 to x = 5 m in some time interval. What is the work done by ?

86. Consider a particle on which several forces act, one of which is known to be constant in time:  = (3 N)  + (4 N) . As
a result, the particle moves first along the x-axis from x = 0 to x = 5 m and then parallel to the y-axis from y = 0 to y = 6
m. What is the work done by ?

87. Consider a particle on which several forces act, one of which is known to be constant in time:  = (3 N)  + (4 N) . As
a result, the particle moves along a straight path from a Cartesian coordinate of (0 m, 0 m) to (5 m, 6 m). What is the
work done by ?

88. Consider a particle on which a force acts that depends on the position of the particle. This force is given by  = (2y)  +
(3x) . Find the work done by this force when the particle moves from the origin to a point 5 meters to the right on the x-
axis.

89. A boy pulls a 5-kg cart with a 20-N force at an angle of 30° above the horizontal for a length of time. Over this time
frame, the cart moves a distance of 12 m on the horizontal floor. (a) Find the work done on the cart by the boy. (b) What
will be the work done by the boy if he pulled with the same force horizontally instead of at an angle of 30° above the
horizontal over the same distance?

90. A crate of mass 200 kg is to be brought from a site on the ground floor to a third floor apartment. The workers know that
they can either use the elevator first, then slide it along the third floor to the apartment, or first slide the crate to another
location marked C below, and then take the elevator to the third floor and slide it on the third floor a shorter distance. The
trouble is that the third floor is very rough compared to the ground floor. Given that the coefficient of kinetic friction
between the crate and the ground floor is 0.100 and between the crate and the third floor surface is 0.300, find the work
needed by the workers for each path shown from A to E. Assume that the force the workers need to do is just enough to
slide the crate at constant velocity (zero acceleration). Note: The work by the elevator against the force of gravity is not
done by the workers.

91. A hockey puck of mass 0.17 kg is shot across a rough floor with the roughness different at different places, which can be
described by a position-dependent coefficient of kinetic friction. For a puck moving along the x-axis, the coefficient of
kinetic friction is the following function of x, where x is in m: (x) = 0.1 + 0.05x. Find the work done by the kinetic
frictional force on the hockey puck when it has moved (a) from x = 0 to x = 2 m, and (b) from x = 2 m to x = 4 m.

92. A horizontal force of 20 N is required to keep a 5.0 kg box traveling at a constant speed up a frictionless incline for a
vertical height change of 3.0 m. (a) What is the work done by gravity during this change in height? (b) What is the work
done by the normal force? (c) What is the work done by the horizontal force?

93. A 7.0-kg box slides along a horizontal frictionless floor at 1.7 m/s and collides with a relatively massless spring that
compresses 23 cm before the box comes to a stop. (a) How much kinetic energy does the box have before it collides with
the spring? (b) Calculate the work done by the spring. (c) Determine the spring constant of the spring.

94. You are driving your car on a straight road with a coefficient of friction between the tires and the road of 0.55. A large
piece of debris falls in front of your view and you immediate slam on the brakes, leaving a skid mark of 30.5 m (100-feet)
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long before coming to a stop. A policeman sees your car stopped on the road, looks at the skid mark, and gives you a
ticket for traveling over the 13.4 m/s (30 mph) speed limit. Should you fight the speeding ticket in court?

95. A crate is being pushed across a rough floor surface. If no force is applied on the crate, the crate will slow down and
come to a stop. If the crate of mass 50 kg moving at speed 8 m/s comes to rest in 10 seconds, what is the rate at which the
frictional force on the crate takes energy away from the crate?

96. Suppose a horizontal force of 20 N is required to maintain a speed of 8 m/s of a 50 kg crate. (a) What is the power of this
force? (b) Note that the acceleration of the crate is zero despite the fact that 20 N force acts on the crate horizontally.
What happens to the energy given to the crate as a result of the work done by this 20 N force?

97. Grains from a hopper falls at a rate of 10 kg/s vertically onto a conveyor belt that is moving horizontally at a constant
speed of 2 m/s. (a) What force is needed to keep the conveyor belt moving at the constant velocity? (b) What is the
minimum power of the motor driving the conveyor belt?

98. A cyclist in a race must climb a 5° hill at a speed of 8 m/s. If the mass of the bike and the biker together is 80 kg, what
must be the power output of the biker to achieve the goal?

Challenge Problems
99. Shown below is a 40-kg crate that is pushed at constant velocity a distance 8.0 m along a 30° incline by the horizontal

force . The coefficient of kinetic friction between the crate and the incline is  = 0.40. Calculate the work done by (a)
the applied force, (b) the frictional force, (c) the gravitational force, and (d) the net force.

100. The surface of the preceding problem is modified so that the coefficient of kinetic friction is decreased. The same
horizontal force is applied to the crate, and after being pushed 8.0 m, its speed is 5.0 m/s. How much work is now done
by the force of friction? Assume that the crate starts at rest.

101. The force F(x) varies with position, as shown below. Find the work done by this force on a particle as it moves from x =
1.0 m to x = 5.0 m.

102. Find the work done by the same force in Example 7.4, between the same points, A = (0, 0) and B = (2 m, 2 m) , over a
circular arc of radius 2 m, centered at (0, 2 m). Evaluate the path integral using Cartesian coordinates. (Hint: You will
probably need to consult a table of integrals.)

103. Answer the preceding problem using polar coordinates.
104. Find the work done by the same force in Example 7.4, between the same points, A = (0, 0) and B = (2 m, 2 m), over a

circular arc of radius 2 m, centered at (2 m, 0). Evaluate the path integral using Cartesian coordinates. (Hint: You will
probably need to consult a table of integrals.)

105. Answer the preceding problem using polar coordinates.
106. Constant power P is delivered to a car of mass m by its engine. Show that if air resistance can be ignored, the distance

covered in a time t by the car, starting from rest, is given by s = t .
107. Suppose that the air resistance a car encounters is independent of its speed. When the car travels at 15 m/ s, its engine

delivers 20 hp to its wheels. (a) What is the power delivered to the wheels when the car travels at 30 m/ s? (b) How much
energy does the car use in covering 10 km at 15 m/s? At 30 m/s? Assume that the engine is 25% efficient. (c) Answer the
same questions if the force of air resistance is proportional to the speed of the automobile. (d) What do these results, plus
your experience with gasoline consumption, tell you about air resistance?

108. Consider a linear spring, as in Figure 7.7(a), with mass M uniformly distributed along its length. The left end of the
spring is fixed, but the right end, at the equilibrium position x = 0, is moving with speed v in the x-direction. What is the
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total kinetic energy of the spring? (Hint: First express the kinetic energy of an infinitesimal element of the spring dm in
terms of the total mass, equilibrium length, speed of the right-hand end, and position along the spring; then integrate.)
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8.S: Work and Kinetic Energy (Summary)

Key Terms
average power work done in a time interval divided by the time interval

kinetic energy
energy of motion, one-half an object’s mass times the square of its

speed

net work work done by all the forces acting on an object

power (or instantaneous power) rate of doing work

work
done when a force acts on something that undergoes a

displacement from one position to another

work done by a force
integral, from the initial position to the final position, of the dot
product of the force and the infinitesimal displacement along the

path over which the force acts

work-energy theorem
net work done on a particle is equal to the change in its kinetic

energy

Key Equations

Work done by a force over an infinitesimal displacement

Work done by a force acting along a path from A to B

Work done by a constant force of kinetic friction

Work done going from A to B by Earth’s gravity, near its surface

Work done going from A to B by one-dimensional spring force

Kinetic energy of a non-relativistic particle

Work-energy theorem

Power as rate of doing work

Power as the dot product of force and velocity

Summary

7.1 Work
The infinitesimal increment of work done by a force, acting over an infinitesimal displacement, is the dot product of the force
and the displacement.
The work done by a force, acting over a finite path, is the integral of the infinitesimal increments of work done along the path.
The work done against a force is the negative of the work done by the force.

dW = ⋅ d = | ||d | cos θF ⃗  r ⃗  F ⃗  r ⃗  (8.S.1)

= ⋅ dWAB ∫
path AB

F ⃗  r ⃗  (8.S.2)

= − | |Wfr fk lAB (8.S.3)

= −mg( − )Wgrav, AB yB yA (8.S.4)

= ( k) ( − )Wspring, AB

1

2
x2
B x2

A (8.S.5)

K = m =
1

2
v2 p2

2m
(8.S.6)

= −Wnet KB KA (8.S.7)

P =
dW

dt
(8.S.8)

P = ⋅F ⃗  v ⃗  (8.S.9)
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The work done by a normal or frictional contact force must be determined in each particular case.
The work done by the force of gravity, on an object near the surface of Earth, depends only on the weight of the object and the
difference in height through which it moved.
The work done by a spring force, acting from an initial position to a final position, depends only on the spring constant and the
squares of those positions.

7.2 Kinetic Energy
The kinetic energy of a particle is the product of one-half its mass and the square of its speed, for non-relativistic speeds.
The kinetic energy of a system is the sum of the kinetic energies of all the particles in the system.
Kinetic energy is relative to a frame of reference, is always positive, and is sometimes given special names for different types of
motion.

7.3 Work-Energy Theorem
Because the net force on a particle is equal to its mass times the derivative of its velocity, the integral for the net work done on
the particle is equal to the change in the particle’s kinetic energy. This is the work-energy theorem.
You can use the work-energy theorem to find certain properties of a system, without having to solve the differential equation for
Newton’s second law.

7.4 Power
Power is the rate of doing work; that is, the derivative of work with respect to time.
Alternatively, the work done, during a time interval, is the integral of the power supplied over the time interval.
The power delivered by a force, acting on a moving particle, is the dot product of the force and the particle’s velocity
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CHAPTER OVERVIEW

9: Potential Energy and Conservation of Energy
In this chapter, we introduce the important concept of potential energy. This will enable us to formulate the law of conservation of
mechanical energy and to apply it to simple systems, making solving problems easier. In the final section on sources of energy, we
will consider energy transfers and the general law of conservation of energy. Throughout this textmap, the law of conservation of
energy will be applied in increasingly more detail, as you encounter more complex and varied systems, and other forms of energy.

9.1: Prelude to Potential Energy and Conservation of Energy
9.2: Potential Energy of a System
9.3: Conservative and Non-Conservative Forces
9.4: Conservation of Energy
9.5: Potential Energy Diagrams and Stability
9.6: Sources of Energy
9.E: Potential Energy and Conservation of Energy (Exercises)
9.S: Potential Energy and Conservation of Energy (Summary)

Thumbnail: Roller coaster "Blue Fire" at Europa Park. (CC SA 3.0; Coaster J).
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9.1: Prelude to Potential Energy and Conservation of Energy
In George Rhoads’ rolling ball sculpture, the principle of conservation of energy governs the changes in the ball’s kinetic energy
and relates them to changes and transfers for other types of energy associated with the ball’s interactions. In this chapter, we
introduce the important concept of potential energy. This will enable us to formulate the law of conservation of mechanical energy
and to apply it to simple systems, making solving problems easier. In the final section on sources of energy, we will consider
energy transfers and the general law of conservation of energy. Throughout this book, the law of conservation of energy will be
applied in increasingly more detail, as you encounter more complex and varied systems, and other forms of energy.

Figure : Shown here is part of a Ball Machine sculpture by George Rhoads. A ball in this contraption is lifted, rolls, falls,
bounces, and collides with various objects, but throughout its travels, its kinetic energy changes in definite, predictable amounts,
which depend on its position and the objects with which it interacts. (credit: modification of work by Roland Tanglao)

This page titled 9.1: Prelude to Potential Energy and Conservation of Energy is shared under a CC BY license and was authored, remixed, and/or
curated by OpenStax.

8.1: Prelude to Potential Energy and Conservation of Energy by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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9.2: Potential Energy of a System

Relate the difference of potential energy to work done on a particle for a system without friction or air drag
Explain the meaning of the zero of the potential energy function for a system
Calculate and apply the gravitational potential energy for an object near Earth’s surface and the elastic potential energy of a
mass-spring system

In Work, we saw that the work done on an object by the constant gravitational force, near the surface of Earth, over any
displacement is a function only of the difference in the positions of the end-points of the displacement. This property allows us to
define a different kind of energy for the system than its kinetic energy, which is called potential energy. We consider various
properties and types of potential energy in the following subsections.

Potential Energy Basics
In Motion in Two and Three Dimensions, we analyzed the motion of a projectile, like kicking a football in Figure . For this
example, let’s ignore friction and air resistance. As the football rises, the work done by the gravitational force on the football is
negative, because the ball’s displacement is positive vertically and the force due to gravity is negative vertically. We also noted that
the ball slowed down until it reached its highest point in the motion, thereby decreasing the ball’s kinetic energy. This loss in
kinetic energy translates to a gain in gravitational potential energy of the football-Earth system.

As the football falls toward Earth, the work done on the football is now positive, because the displacement and the gravitational
force both point vertically downward. The ball also speeds up, which indicates an increase in kinetic energy. Therefore, energy is
converted from gravitational potential energy back into kinetic energy.

Figure : As a football starts its descent toward the wide receiver, gravitational potential energy is converted back into kinetic
energy.

Based on this scenario, we can define the difference of potential energy from point A to point B as the negative of the work done:

This formula explicitly states a potential energy difference, not just an absolute potential energy. Therefore, we need to define
potential energy at a given position in such a way as to state standard values of potential energy on their own, rather than potential
energy differences. We do this by rewriting the potential energy function in terms of an arbitrary constant,

The choice of the potential energy at a starting location of  is made out of convenience in the given problem. Most importantly,
whatever choice is made should be stated and kept consistent throughout the given problem. There are some well-accepted choices
of initial potential energy. For example, the lowest height in a problem is usually defined as zero potential energy, or if an object is
in space, the farthest point away from the system is often defined as zero potential energy. Then, the potential energy, with respect
to zero at , is just .

 Learning Objectives

9.2.1

9.2.1

Δ = − = −UAB UB UA WAB (9.2.1)

ΔU = U( ) −U ( )r
→

r
→

0 (9.2.2)

r ⃗ 0

r ⃗ 0 U( )r ⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46068?pdf
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/09%3A_Potential_Energy_and_Conservation_of_Energy/9.02%3A_Potential_Energy_of_a_System
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/07%3A_Work_and_Kinetic_Energy/7.02%3A_Work
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/04%3A_Motion_in_Two_and_Three_Dimensions


9.2.2 https://phys.libretexts.org/@go/page/46068

As long as there is no friction or air resistance, the change in kinetic energy of the football equals negative of the change in
gravitational potential energy of the football. This can be generalized to any potential energy:

Let’s look at a specific example, choosing zero potential energy for gravitational potential energy at convenient points.

A particle moves along the x-axis under the action of a force given by F = -ax , where a = 3 N/m . (a) What is the difference in
its potential energy as it moves from x = 1 m to x = 2 m? (b) What is the particle’s potential energy at x = 1 m with respect to
a given 0.5 J of potential energy at x=0?

Strategy

(a) The difference in potential energy is the negative of the work done, as defined by Equation . The work is defined in
the previous chapter as the dot product of the force with the distance. Since the particle is moving forward in the x-direction,
the dot product simplifies to a multiplication (  = 1). To find the total work done, we need to integrate the function between
the given limits. After integration, we can state the work or the change in potential energy. (b) The potential energy function,
with respect to zero at x=0, is the indefinite integral encountered in part (a), with the constant of integration determined from
Equation . Then, we substitute the x-value into the function of potential energy to calculate the potential energy at x = 1.

Solution
a. The work done by the given force as the particle moves from coordinate x to x + dx in one dimension is

Substituting this expression into Equation , we obtain

b. The indefinite integral for the potential energy function in part (a) is

and we want the constant to be determined by

Thus, the potential energy with respect to zero at x = 0 is just

Therefore, the potential energy at x = 1 m is

Significance
In this one-dimensional example, any function we can integrate, independent of path, is conservative. Notice how we applied
the definition of potential energy difference to determine the potential energy function with respect to zero at a chosen point.
Also notice that the potential energy, as determined in part (b), at x = 1 m is U(1 m) = 1 J and at x = 2 m is U(2 m) = 8 J; their
difference is the result in part (a).

In Example , what are the potential energies of the particle at x = 1 m and x = 2 m with respect to zero at x = 1.5 m?
Verify that the difference of potential energy is still 7 J.

Δ = −ΔKAB UAB (9.2.3)

 Example : Basic Properties of Potential Energy9.2.1
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Systems of Several Particles
In general, a system of interest could consist of several particles. The difference in the potential energy of the system is the negative
of the work done by gravitational or elastic forces, which, as we will see in the next section, are conservative forces. The potential
energy difference depends only on the initial and final positions of the particles, and on some parameters that characterize the
interaction (like mass for gravity or the spring constant for a Hooke’s law force).

It is important to remember that potential energy is a property of the interactions between objects in a chosen system, and not just a
property of each object. This is especially true for electric forces, although in the examples of potential energy we consider below,
parts of the system are either so big (like Earth, compared to an object on its surface) or so small (like a massless spring), that the
changes those parts undergo are negligible when included in the system.

Types of Potential Energy
For each type of interaction present in a system, you can label a corresponding type of potential energy. The total potential energy
of the system is the sum of the potential energies of all the types. (This follows from the additive property of the dot product in the
expression for the work done.) Let’s look at some specific examples of types of potential energy discussed in Work. First, we
consider each of these forces when acting separately, and then when both act together.

Gravitational Potential Energy Near Earth's Surface

The system of interest consists of our planet, Earth, and one or more particles near its surface (or bodies small enough to be
considered as particles, compared to Earth). The gravitational force on each particle (or body) is just its weight mg near the surface
of Earth, acting vertically down. According to Newton’s third law, each particle exerts a force on Earth of equal magnitude but in
the opposite direction. Newton’s second law tells us that the magnitude of the acceleration produced by each of these forces on
Earth is mg divided by Earth’s mass. Since the ratio of the mass of any ordinary object to the mass of Earth is vanishingly small,
the motion of Earth can be completely neglected. Therefore, we consider this system to be a group of single-particle systems,
subject to the uniform gravitational force of Earth.

In Work, the work done on a body by Earth’s uniform gravitational force, near its surface, depended on the mass of the body, the
acceleration due to gravity, and the difference in height the body traversed, as given by Equation 7.2.4. By definition, this work is
the negative of the difference in the gravitational potential energy, so that difference is

You can see from this that the gravitational potential energy function, near Earth’s surface, is

You can choose the value of the constant, as described in the discussion of Equation ; however, for solving most problems, the
most convenient constant to choose is zero for when y=0, which is the lowest vertical position in the problem.

The summit of Great Blue Hill in Milton, MA, is 147 m above its base and has an elevation above sea level of 195 m (Figure 
). (Its Native American name, Massachusett, was adopted by settlers for naming the Bay Colony and state near its

location.) A 75-kg hiker ascends from the base to the summit. What is the gravitational potential energy of the hiker-Earth
system with respect to zero gravitational potential energy at base height, when the hiker is (a) at the base of the hill, (b) at the
summit, and (c) at sea level, afterward?

Figure : Sketch of the profile of Great Blue Hill, Milton, MA. The altitudes of the three levels are indicated.

Strategy

Δ = − = mg ( − ) .Ugrav Wgrav,AB yB yA (9.2.4)

U(y) = mgy+ const.  (9.2.5)
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First, we need to pick an origin for the y-axis and then determine the value of the constant that makes the potential energy zero
at the height of the base. Then, we can determine the potential energies from Equation , based on the relationship between
the zero potential energy height and the height at which the hiker is located.

Solution
a. Let’s choose the origin for the y-axis at base height, where we also want the zero of potential energy to be. This choice
makes the constant equal to zero and

b. At the summit, y = 147 m, so

c. At sea level, y = (147 - 195) m = -48 m, so

Significance
Besides illustrating the use of Equation  and Equation , the values of gravitational potential energy we found are
reasonable. The gravitational potential energy is higher at the summit than at the base, and lower at sea level than at the base.
Gravity does work on you on your way up, too! It does negative work and not quite as much (in magnitude), as your muscles
do. But it certainly does work. Similarly, your muscles do work on your way down, as negative work. The numerical values of
the potential energies depend on the choice of zero of potential energy, but the physically meaningful differences of potential
energy do not. [Note that since Equation  is a difference, the numerical values do not depend on the origin of coordinates.]

What are the values of the gravitational potential energy of the hiker at the base, summit, and sea level, with respect to a sea-
level zero of potential energy?

Elastic Potential Energy

In Work, we saw that the work done by a perfectly elastic spring, in one dimension, depends only on the spring constant and the
squares of the displacements from the unstretched position, as given in Equation 7.2.5. This work involves only the properties of a
Hooke’s law interaction and not the properties of real springs and whatever objects are attached to them. Therefore, we can define
the difference of elastic potential energy for a spring force as the negative of the work done by the spring force in this equation,
before we consider systems that embody this type of force. Thus,

where the object travels from point A to point B. The potential energy function corresponding to this difference is

If the spring force is the only force acting, it is simplest to take the zero of potential energy at x = 0, when the spring is at its
unstretched length. Then, the constant is Equation  is zero. (Other choices may be more convenient if other forces are acting.)

A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm. (a) How
much elastic potential energy does the spring contribute when its length is 23 cm? (b) How much more potential energy does it
contribute if its length increases to 26 cm?

Strategy

When the spring is at its unstretched length, it contributes nothing to the potential energy of the system, so we can use Equation
 with the constant equal to zero. The value of x is the length minus the unstretched length. When the spring is expanded,

9.2.5

U( base ) = U(0) = 0

U( summit ) = U(147 m) = mgh = (75 ×9.8 N)(147 m) = 108 kJ.

U  (sea-level)  = (75 ×9.8N)(−48m) = −35.3kJ.

9.2.4 9.2.5

9.2.2
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the spring’s displacement or difference between its relaxed length and stretched length should be used for the x-value in
calculating the potential energy of the spring.

Solution
a. The displacement of the spring is x = 23 cm − 20 cm = 3 cm, so the contributed potential energy is U = kx = (4 N/cm)

(3 cm) = 0.18 J.
b. When the spring’s displacement is x = 26 cm − 20 cm = 6 cm, the potential energy is U = kx = (4 N/cm)(6 cm) = 0.72

J, which is a 0.54-J increase over the amount in part (a).

Significance
Calculating the elastic potential energy and potential energy differences from Equation  involves solving for the potential
energies based on the given lengths of the spring. Since U depends on x , the potential energy for a compression (negative x) is
the same as for an extension of equal magnitude.

When the length of the spring in Example 8.2.3 changes from an initial value of 22.0 cm to a final value, the elastic potential
energy it contributes changes by −0.0800J. Find the final length.

Gravitational and Elastic Potential Energy

A simple system embodying both gravitational and elastic types of potential energy is a one-dimensional, vertical mass-spring
system. This consists of a massive particle (or block), hung from one end of a perfectly elastic, massless spring, the other end of
which is fixed, as illustrated in Figure .

Figure : A vertical mass-spring system, with the positive y-axis pointing upward. The mass is initially at an unstretched spring
length, point A. Then it is released, expanding past point B to point C, where it comes to a stop.

First, let's consider the potential energy of the system. We need to define the constant in the potential energy function of Equation 
. Often, the ground is a suitable choice for when the gravitational potential energy is zero; however, in this case, the highest

point or when y = 0 is a convenient location for zero gravitational potential energy. Note that this choice is arbitrary, and the
problem can be solved correctly even if another choice is picked.

We must also define the elastic potential energy of the system and the corresponding constant, as detailed in Equation . This is
where the spring is unstretched, or at the y = 0 position.

If we consider that the total energy of the system is conserved, then the energy at point A equals point C. The block is placed just
on the spring so its initial kinetic energy is zero. By the setup of the problem discussed previously, both the gravitational potential
energy and elastic potential energy are equal to zero. Therefore, the initial energy of the system is zero. When the block arrives at
point C, its kinetic energy is zero. However, it now has both gravitational potential energy and elastic potential energy. Therefore,
we can solve for the distance y that the block travels before coming to a stop:
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Figure : A bungee jumper transforms gravitational potential energy at the start of the jump into elastic potential energy at the
bottom of the jump.

A block weighing 1.2 N is hung from a spring with a spring constant of 6.0 N/m, as shown in Figure . (a) What is the
maximum expansion of the spring, as seen at point C? (b) What is the total potential energy at point B, halfway between A and
C? (c) What is the speed of the block at point B?

Strategy

In part (a) we calculate the distance y  as discussed in the previous text. Then in part (b), we use half of the y value to calculate
the potential energy at point B using equations Equation  and Equation . This energy must be equal to the kinetic
energy, Equation 7.3.1, at point B since the initial energy of the system is zero. By calculating the kinetic energy at point B, we
can now calculate the speed of the block at point B.

Solution
a. Since the total energy of the system is zero at point A as discussed previously, the maximum expansion of the spring is
calculated to be:

b. The position of y  is half of the position at y  or -0.20 m. The total potential energy at point B would therefore be:

c. The mass of the block is the weight divided by gravity.

The kinetic energy at point B therefore is 0.12 J because the total energy is zero. Therefore, the speed of the block at point B is
equal to

9.2.4

 Example : Potential energy of a vertical mass-spring system9.2.4
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Significance
Even though the potential energy due to gravity is relative to a chosen zero location, the solutions to this problem would be the
same if the zero energy points were chosen at different locations.

Suppose the mass in Equation  is doubled while keeping the all other conditions the same. Would the maximum
expansion of the spring increase, decrease, or remain the same? Would the speed at point B be larger, smaller, or the same
compared to the original mass?

View this simulation to learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view
the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

A sample chart of a variety of energies is shown in Table  to give you an idea about typical energy values associated with
certain events. Some of these are calculated using kinetic energy, whereas others are calculated by using quantities found in a form
of potential energy that may not have been discussed at this point.

Table : Energy of Various Objects and Phenomena

Object/phenomenon Energy in joules

Big Bang 10

Annual world energy use 4.0 x 10

Large fusion bomb (9 megaton) 3.8 x 10

Hiroshima-size fission bomb (10 kiloton) 4.2 x 10

1 barrel crude oil 5.9 x 10

1 ton TNT 4.2 x 10

1 gallon of gasoline 1.2 x 10

Daily adult food intake (recommended) 1.2 x 10

1000-kg car at 90 km/h 3.1 x 10

Tennis ball at 100 km/h 22

Mosquito (10  g at 0.5 m/s) 1.3 x 10

Single electron in a TV tube beam 4.0 x 10

Energy to break one DNA strand 10

This page titled 9.2: Potential Energy of a System is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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physics-volume-1.

K = m1
2

v2

v= = = 1.4 m/s2K
m

−−−
√ 2(0.12 J)

(0.12 kg)

− −−−−−
√

(9.2.9)

 Exercise 9.2.4

9.2.6

 Simulation

9.2.1

9.2.1

68

20

16

13

9

9

8

7

5

−2 -6

-15

-19

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46068?pdf
https://openstaxcollege.org/l/21conenerskat
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/09%3A_Potential_Energy_and_Conservation_of_Energy/9.02%3A_Potential_Energy_of_a_System
https://creativecommons.org/licenses/by/
https://openstax.org/
https://phys.libretexts.org/@go/page/4013
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-1


9.3.1 https://phys.libretexts.org/@go/page/46069

9.3: Conservative and Non-Conservative Forces

Characterize a conservative force in several different ways
Specify mathematical conditions that must be satisfied by a conservative force and its components
Relate the conservative force between particles of a system to the potential energy of the system
Calculate the components of a conservative force in various cases

In Potential Energy and Conservation of Energy, any transition between kinetic and potential energy conserved the total energy of
the system. This was path independent, meaning that we can start and stop at any two points in the problem, and the total energy of
the system—kinetic plus potential—at these points are equal to each other. This is characteristic of a conservative force. We dealt
with conservative forces in the preceding section, such as the gravitational force and spring force. When comparing the motion of
the football in Figure 8.2.1, the total energy of the system never changes, even though the gravitational potential energy of the
football increases, as the ball rises relative to ground and falls back to the initial gravitational potential energy when the football
player catches the ball. Non-conservative forces are dissipative forces such as friction or air resistance. These forces take energy
away from the system as the system progresses, energy that you can’t get back. These forces are path dependent; therefore it
matters where the object starts and stops.

The work done by a conservative force is independent of the path; in other words, the work done by a conservative force is the
same for any path connecting two points:

The work done by a non-conservative force depends on the path taken. Equivalently, a force is conservative if the work it does
around any closed path is zero:

In Equation , we use the notation of a circle in the middle of the integral sign for a line integral over a closed path, a notation
found in most physics and engineering texts.] Equations  and  are equivalent because any closed path is the sum of two
paths: the first going from A to B, and the second going from B to A. The work done going along a path from B to A is the
negative of the work done going along the same path from A to B, where A and B are any two points on the closed path:

You might ask how we go about proving whether or not a force is conservative, since the definitions involve any and all paths from
A to B, or any and all closed paths, but to do the integral for the work, you have to choose a particular path. One answer is that the
work done is independent of path if the infinitesimal work  is an exact differential, the way the infinitesimal net work was
equal to the exact differential of the kinetic energy, , when we derived the work-energy theorem in
Work-Energy Theorem. There are mathematical conditions that you can use to test whether the infinitesimal work done by a force
is an exact differential, and the force is conservative. These conditions only involve differentiation and are thus relatively easy to
apply. In two dimensions, the condition for  = F dx + F dy to be an exact differential is

You may recall that the work done by the force in Example 7.2.4 depended on the path. For that force,
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Therefore,

which indicates it is a non-conservative force. Can you see what you could change to make it a conservative force?

Figure : A grinding wheel applies a non-conservative force, because the work done depends on how many rotations the wheel
makes, so it is path-dependent.

Which of the following two-dimensional forces are conservative and which are not? Assume a and b are constants with
appropriate units:

a. 

b. 

c. 

Strategy

Apply the condition stated in Equation , namely, using the derivatives of the components of each force indicated. If the
derivative of the y-component of the force with respect to x is equal to the derivative of the x-component of the force with
respect to y, the force is a conservative force, which means the path taken for potential energy or work calculations always
yields the same results.

Solution
a:

and

so this force is non-conservative.

b:

and

= (5 N/m)y and = (10 N/m)x.Fx Fy (9.3.4)

( ) = 5 N/m ≠( ) = 10 N/m,
dFx

dy

dFy

dx
(9.3.5)
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so this force is conservative.

c:

again conservative.

Significance
The conditions in Equation  are derivatives as functions of a single variable; in three dimensions, similar conditions exist
that involve more derivatives.

A two-dimensional, conservative force is zero on the x- and y-axes, and satisfies the condition  = (4

N/m )xy. What is the magnitude of the force at the point ?

Before leaving this section, we note that non-conservative forces do not have potential energy associated with them because the
energy is lost to the system and can’t be turned into useful work later. So there is always a conservative force associated with every
potential energy. We have seen that potential energy is defined in relation to the work done by conservative forces. That relation,
Equation 8.2.1, involved an integral for the work; starting with the force and displacement, you integrated to get the work and the
change in potential energy. However, integration is the inverse operation of differentiation; you could equally well have started
with the potential energy and taken its derivative, with respect to displacement, to get the force. The infinitesimal increment of
potential energy is the dot product of the force and the infinitesimal displacement,

Here, we chose to represent the displacement in an arbitrary direction by d , so as not to be restricted to any particular coordinate
direction. We also expressed the dot product in terms of the magnitude of the infinitesimal displacement and the component of the
force in its direction. Both these quantities are scalars, so you can divide by dl to get

This equation gives the relation between force and the potential energy associated with it. In words, the component of a
conservative force, in a particular direction, equals the negative of the derivative of the corresponding potential energy, with respect
to a displacement in that direction. For one-dimensional motion, say along the x-axis, Equation  give the entire vector force,

In two dimensions,

From this equation, you can see why Equation  is the condition for the work to be an exact differential, in terms of the
derivatives of the components of the force. In general, a partial derivative notation is used. If a function has many variables in it,
the derivative is taken only of the variable the partial derivative specifies. The other variables are held constant. In three
dimensions, you add another term for the z-component, and the result is that the force is the negative of the gradient of the potential
energy. However, we won’t be looking at three-dimensional examples just yet.
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∂U

∂x
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The potential energy for a particle undergoing one-dimensional motion along the x-axis is

where c = 8 N/m . Its total energy at x = 0 is 2 J, and it is not subject to any non-conservative forces. Find (a) the positions
where its kinetic energy is zero and (b) the forces at those positions.

Strategy

a. We can find the positions where K = 0, so the potential energy equals the total energy of the given system.
b. Using Equation , we can find the force evaluated at the positions found from the previous part, since the mechanical

energy is conserved.

Solution
a. The total energy of the system of 2 J equals the quartic elastic energy as given in the problem

Solving for x  results in x  = ±1 m.
b. From Equation ,

Thus, evaluating the force at ±1 m , we get

At both positions, the magnitude of the forces is 8 N and the directions are toward the origin, since this is the potential
energy for a restoring force.

Significance
Finding the force from the potential energy is mathematically easier than finding the potential energy from the force, because
differentiating a function is generally easier than integrating one.

Find the forces on the particle in Example  when its kinetic energy is 1.0 J at .

This page titled 9.3: Conservative and Non-Conservative Forces is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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9.4: Conservation of Energy

Formulate the principle of conservation of mechanical energy, with or without the presence of non-conservative forces
Use the conservation of mechanical energy to calculate various properties of simple systems

In this section, we elaborate and extend the result we derived in Potential Energy of a System, where we re-wrote the work-energy
theorem in terms of the change in the kinetic and potential energies of a particle. This will lead us to a discussion of the important
principle of the conservation of mechanical energy. As you continue to examine other topics in physics, in later chapters of this
book, you will see how this conservation law is generalized to encompass other types of energy and energy transfers. The last
section of this chapter provides a preview.

The terms ‘conserved quantity’ and ‘conservation law’ have specific, scientific meanings in physics, which are different from the
everyday meanings associated with the use of these words. (The same comment is also true about the scientific and everyday uses
of the word ‘work.’) In everyday usage, you could conserve water by not using it, or by using less of it, or by re-using it. Water is
composed of molecules consisting of two atoms of hydrogen and one of oxygen. Bring these atoms together to form a molecule and
you create water; dissociate the atoms in such a molecule and you destroy water. However, in scientific usage, a conserved
quantity for a system stays constant, changes by a definite amount that is transferred to other systems, and/or is converted into
other forms of that quantity. A conserved quantity, in the scientific sense, can be transformed, but not strictly created or destroyed.
Thus, there is no physical law of conservation of water.

Systems with a Single Particle or Object
We first consider a system with a single particle or object. Returning to our development of Equation 8.2.2, recall that we first
separated all the forces acting on a particle into conservative and non-conservative types, and wrote the work done by each type of
force as a separate term in the work-energy theorem. We then replaced the work done by the conservative forces by the change in
the potential energy of the particle, combining it with the change in the particle’s kinetic energy to get Equation 8.2.2. Now, we
write this equation without the middle step and define the sum of the kinetic and potential energies, K + U = E; to be the
mechanical energy of the particle.

The mechanical energy E of a particle stays constant unless forces outside the system or non-conservative forces do work on it,
in which case, the change in the mechanical energy is equal to the work done by the non-conservative forces:

This statement expresses the concept of energy conservation for a classical particle as long as there is no non-conservative work.
Recall that a classical particle is just a point mass, is nonrelativistic, and obeys Newton’s laws of motion. In Relativity, we will see
that conservation of energy still applies to a non-classical particle, but for that to happen, we have to make a slight adjustment to
the definition of energy.

It is sometimes convenient to separate the case where the work done by non-conservative forces is zero, either because no such
forces are assumed present, or, like the normal force, they do zero work when the motion is parallel to the surface. Then

In this case, the conservation of mechanical energy can be expressed as follows: The mechanical energy of a particle does not
change if all the non-conservative forces that may act on it do no work. Understanding the concept of energy conservation is the
important thing, not the particular equation you use to express it.

1. Identify the body or bodies to be studied (the system). Often, in applications of the principle of mechanical energy
conservation, we study more than one body at the same time.

2. Identify all forces acting on the body or bodies.
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3. Determine whether each force that does work is conservative. If a non-conservative force (e.g., friction) is doing work, then
mechanical energy is not conserved. The system must then be analyzed with non-conservative work, Equation .

4. For every force that does work, choose a reference point and determine the potential energy function for the force. The
reference points for the various potential energies do not have to be at the same location.

5. Apply the principle of mechanical energy conservation by setting the sum of the kinetic energies and potential energies
equal at every point of interest.

A particle of mass m is hung from the ceiling by a massless string of length 1.0 m, as shown in Figure . The particle is
released from rest, when the angle between the string and the downward vertical direction is 30°. What is its speed when it
reaches the lowest point of its arc?

Figure : A particle hung from a string constitutes a simple pendulum. It is shown when released from rest, along with
some distances used in analyzing the motion.

Strategy

Using our problem-solving strategy, the first step is to define that we are interested in the particle-Earth system. Second, only
the gravitational force is acting on the particle, which is conservative (step 3). We neglect air resistance in the problem, and no
work is done by the string tension, which is perpendicular to the arc of the motion. Therefore, the mechanical energy of the
system is conserved, as represented by Equation , 0 = (K + U). Because the particle starts from rest, the increase in the
kinetic energy is just the kinetic energy at the lowest point. This increase in kinetic energy equals the decrease in the
gravitational potential energy, which we can calculate from the geometry. In step 4, we choose a reference point for zero
gravitational potential energy to be at the lowest vertical point the particle achieves, which is mid-swing. Lastly, in step 5, we
set the sum of energies at the highest point (initial) of the swing to the lowest point (final) of the swing to ultimately solve for
the final speed.

Solution
We are neglecting non-conservative forces, so we write the energy conservation formula relating the particle at the highest
point (initial) and the lowest point in the swing (final) as

Since the particle is released from rest, the initial kinetic energy is zero. At the lowest point, we define the gravitational
potential energy to be zero. Therefore our conservation of energy formula reduces to

The vertical height of the particle is not given directly in the problem. This can be solved for by using trigonometry and two
givens: the length of the pendulum and the angle through which the particle is vertically pulled up. Looking at the diagram, the
vertical dashed line is the length of the pendulum string. The vertical height is labeled h. The other partial length of the vertical
string can be calculated with trigonometry. That piece is solved for by

Therefore, by looking at the two parts of the string, we can solve for the height h,

9.4.2
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We substitute this height into the previous expression solved for speed to calculate our result:

Significance
We found the speed directly from the conservation of mechanical energy, without having to solve the differential equation for
the motion of a pendulum (see Oscillations). We can approach this problem in terms of bar graphs of total energy. Initially, the
particle has all potential energy, being at the highest point, and no kinetic energy. When the particle crosses the lowest point at
the bottom of the swing, the energy moves from the potential energy column to the kinetic energy column. Therefore, we can
imagine a progression of this transfer as the particle moves between its highest point, lowest point of the swing, and back to the
highest point (Figure ). As the particle travels from the lowest point in the swing to the highest point on the far right hand
side of the diagram, the energy bars go in reverse order from (c) to (b) to (a).

Figure : Bar graphs representing the total energy (E), potential energy (U), and kinetic energy (K) of the particle in
different positions. (a) The total energy of the system equals the potential energy and the kinetic energy is zero, which is found
at the highest point the particle reaches. (b) The particle is midway between the highest and lowest point, so the kinetic energy
plus potential energy bar graphs equal the total energy. (c) The particle is at the lowest point of the swing, so the kinetic energy
bar graph is the highest and equal to the total energy of the system.

How high above the bottom of its arc is the particle in the simple pendulum above, when its speed is 0.81 m/s?

A helicopter is hovering at an altitude of 1 km when a panel from its underside breaks loose and plummets to the ground
(Figure ). The mass of the panel is 15 kg, and it hits the ground with a speed of 45 m/s. How much mechanical energy
was dissipated by air resistance during the panel’s descent?

Figure : A helicopter loses a panel that falls until it reaches terminal velocity of 45 m/s. How much did air resistance
contribute to the dissipation of energy in this problem?

Strategy
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Step 1: Here only one body is being investigated.

Step 2: Gravitational force is acting on the panel, as well as air resistance, which is stated in the problem.

Step 3: Gravitational force is conservative; however, the non-conservative force of air resistance does negative work on the
falling panel, so we can use the conservation of mechanical energy, in the form expressed by Equation , to find the energy
dissipated. This energy is the magnitude of the work:

Step 4: The initial kinetic energy, at yi = 1 km, is zero. We set the gravitational potential energy to zero at ground level out of
convenience.

Step 5: The non-conservative work is set equal to the energies to solve for the work dissipated by air resistance.

Solution
The mechanical energy dissipated by air resistance is the algebraic sum of the gain in the kinetic energy and loss in potential
energy. Therefore the calculation of this energy is

Significance
Most of the initial mechanical energy of the panel (U ), 147 kJ, was lost to air resistance. Notice that we were able to calculate
the energy dissipated without knowing what the force of air resistance was, only that it was dissipative.

You probably recall that, neglecting air resistance, if you throw a projectile straight up, the time it takes to reach its maximum
height equals the time it takes to fall from the maximum height back to the starting height. Suppose you cannot neglect air
resistance, as in Example 8.8. Is the time the projectile takes to go up (a) greater than, (b) less than, or (c) equal to the time it
takes to come back down? Explain.

In these examples, we were able to use conservation of energy to calculate the speed of a particle just at particular points in its
motion. But the method of analyzing particle motion, starting from energy conservation, is more powerful than that. More
advanced treatments of the theory of mechanics allow you to calculate the full time dependence of a particle’s motion, for a given
potential energy. In fact, it is often the case that a better model for particle motion is provided by the form of its kinetic and
potential energies, rather than an equation for force acting on it. (This is especially true for the quantum mechanical description of
particles like electrons or atoms.)

We can illustrate some of the simplest features of this energy-based approach by considering a particle in one-dimensional motion,
with potential energy U(x) and no non-conservative interactions present. Equation  and the definition of velocity require

Separate the variables x and t and integrate, from an initial time t = 0 to an arbitrary time, to get

If you can do the integral in Equation , then you can solve for x as a function of t.
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Use the potential energy U(x) = −E , for E > 0, in Equation  to find the position x of a particle as a function of time

t.

Strategy

Since we know how the potential energy changes as a function of x, we can substitute for U(x) in Equation , integrate,
and then solve for x. This results in an expression of x as a function of time with constants of energy E, mass m, and the initial
position x .

Solution
Following the first two suggested steps in the above strategy,

Solving for the position, we obtain

Significance
The position as a function of time, for this potential, represents one-dimensional motion with constant acceleration, a = 

, starting at rest from position x . This is not so surprising, since this is a potential energy for a constant force, F = 

 = , and a = .

What potential energy U(x) can you substitute in Equation  that will result in motion with constant velocity of 2 m/s for a
particle of mass 1 kg and mechanical energy 1 J?

We will look at another more physically appropriate example of the use of Equation  after we have explored some further
implications that can be drawn from the functional form of a particle’s potential energy.

Systems with Several Particles or Objects
Systems generally consist of more than one particle or object. However, the conservation of mechanical energy, in one of the forms
in Equation  or Equation , is a fundamental law of physics and applies to any system. You just have to include the kinetic
and potential energies of all the particles, and the work done by all the non-conservative forces acting on them. Until you learn
more about the dynamics of systems composed of many particles, in Linear Momentum and Collisions, Fixed-Axis Rotation, and
Angular Momentum, it is better to postpone discussing the application of energy conservation to then.

This page titled 9.4: Conservation of Energy is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

8.4: Conservation of Energy by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.

 Example 8.9: Constant Acceleration

( )
x

x0

9.4.9

9.4.9

0

t = = −2 = .∫
x

x0

dx

( ) ( −x)
2E

mx0
x0

− −−−−−−−−−−−−−

√

1

( )
2E

mx0

− −−−−−−

√

∣
∣ ( −x)x0

− −−−−−−
√ ∣

∣
x

x0

−2 ( −x)x0
− −−−−−−√

( )
2E

mx0

− −−−−−−

√

(9.4.10)

x(t) = − ( ) .x0
1

2

E

mx0
t2 (9.4.11)

( )
E

mx0
0

− dU

dx

E
x0

F
m

 Exercise 8.9

9.4.2

9.4.2

9.4.1 9.4.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46070?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/09%3A_Linear_Momentum_and_Collisions
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/10%3A_Fixed-Axis_Rotation__Introduction
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/11%3A__Angular_Momentum
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/09%3A_Potential_Energy_and_Conservation_of_Energy/9.04%3A_Conservation_of_Energy
https://creativecommons.org/licenses/by/
https://openstax.org/
https://phys.libretexts.org/@go/page/4015
https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://openstax.org/details/books/university-physics-volume-1


9.5.1 https://phys.libretexts.org/@go/page/46071

9.5: Potential Energy Diagrams and Stability

Create and interpret graphs of potential energy
Explain the connection between stability and potential energy

Often, you can get a good deal of useful information about the dynamical behavior of a mechanical system just by interpreting a
graph of its potential energy as a function of position, called a potential energy diagram. This is most easily accomplished for a
one-dimensional system, whose potential energy can be plotted in one two-dimensional graph—for example, U(x) versus x—on a
piece of paper or a computer program. For systems whose motion is in more than one dimension, the motion needs to be studied in
three-dimensional space. We will simplify our procedure for one-dimensional motion only.

First, let’s look at an object, freely falling vertically, near the surface of Earth, in the absence of air resistance. The mechanical
energy of the object is conserved, E = K + U, and the potential energy, with respect to zero at ground level, is U(y) = mgy, which is
a straight line through the origin with slope mg . In the graph shown in Figure , the x-axis is the height above the ground y and
the y-axis is the object’s energy.

Figure : The potential energy graph for an object in vertical free fall, with various quantities indicated.

The line at energy E represents the constant mechanical energy of the object, whereas the kinetic and potential energies, K  and
U , are indicated at a particular height y . You can see how the total energy is divided between kinetic and potential energy as the
object’s height changes. Since kinetic energy can never be negative, there is a maximum potential energy and a maximum height,
which an object with the given total energy cannot exceed:

If we use the gravitational potential energy reference point of zero at y , we can rewrite the gravitational potential energy U as mgy.
Solving for y results in

We note in this expression that the quantity of the total energy divided by the weight (mg) is located at the maximum height of the
particle, or y . At the maximum height, the kinetic energy and the speed are zero, so if the object were initially traveling upward,
its velocity would go through zero there, and y would be a turning point in the motion. At ground level, y  = 0, the potential
energy is zero, and the kinetic energy and the speed are maximum:

The maximum speed ±v  gives the initial velocity necessary to reach y , the maximum height, and −v  represents the final
velocity, after falling from y . You can read all this information, and more, from the potential energy diagram we have shown.

Consider a mass-spring system on a frictionless, stationary, horizontal surface, so that gravity and the normal contact force do no
work and can be ignored (Figure ). This is like a one-dimensional system, whose mechanical energy E is a constant and whose
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potential energy, with respect to zero energy at zero displacement from the spring’s unstretched length, x = 0, is U(x) = kx .

Figure : (a) A glider between springs on an air track is an example of a horizontal mass-spring system. (b) The potential
energy diagram for this system, with various quantities indicated.

You can read off the same type of information from the potential energy diagram in this case, as in the case for the body in vertical
free fall, but since the spring potential energy describes a variable force, you can learn more from this graph. As for the object in
vertical free fall, you can deduce the physically allowable range of motion and the maximum values of distance and speed, from the
limits on the kinetic energy, 0 ≤ K ≤ E. Therefore, K = 0 and U = E at a turning point, of which there are two for the elastic spring
potential energy,

The glider’s motion is confined to the region between the turning points, −x  ≤ x ≤ x . This is true for any (positive) value of E
because the potential energy is unbounded with respect to x. For this reason, as well as the shape of the potential energy curve,
U(x) is called an infinite potential well. At the bottom of the potential well, x = 0, U = 0 and the kinetic energy is a maximum, K =

E, so v  = ± .

However, from the slope of this potential energy curve, you can also deduce information about the force on the glider and its
acceleration. We saw earlier that the negative of the slope of the potential energy is the spring force, which in this case is also the
net force, and thus is proportional to the acceleration. When x = 0, the slope, the force, and the acceleration are all zero, so this is an
equilibrium point. The negative of the slope, on either side of the equilibrium point, gives a force pointing back to the equilibrium
point, F = ±kx, so the equilibrium is termed stable and the force is called a restoring force. This implies that U(x) has a relative
minimum there. If the force on either side of an equilibrium point has a direction opposite from that direction of position change,
the equilibrium is termed unstable, and this implies that U(x) has a relative maximum there.

The potential energy for a particle undergoing one-dimensional motion along the x-axis is U(x) = 2(x  − x ), where U is in
joules and x is in meters. The particle is not subject to any non-conservative forces and its mechanical energy is constant at E =
−0.25 J. (a) Is the motion of the particle confined to any regions on the x-axis, and if so, what are they? (b) Are there any
equilibrium points, and if so, where are they and are they stable or unstable?

Strategy

First, we need to graph the potential energy as a function of x. The function is zero at the origin, becomes negative as x
increases in the positive or negative directions (x  is larger than x  for x < 1), and then becomes positive at sufficiently large
|x|. Your graph should look like a double potential well, with the zeros determined by solving the equation U(x) = 0, and the
extremes determined by examining the first and second derivatives of U(x), as shown in Figure .
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Figure : The potential energy graph for a one-dimensional, quartic and quadratic potential energy, with various quantities
indicated.

You can find the values of (a) the allowed regions along the x-axis, for the given value of the mechanical energy, from the
condition that the kinetic energy can’t be negative, and (b) the equilibrium points and their stability from the properties of the
force (stable for a relative minimum and unstable for a relative maximum of potential energy). You can just eyeball the graph
to reach qualitative answers to the questions in this example. That, after all, is the value of potential energy diagrams.

You can see that there are two allowed regions for the motion (E > U) and three equilibrium points (slope  = 0), of which

the central one is unstable , and the other two are stable .

Solution
a. To find the allowed regions for x, we use the condition

If we complete the square in x 2 , this condition simplifies to , which we can solve to obtain

This represents two allowed regions, x  ≤ x ≤ x  and −x  ≤ x ≤ − x , where x  = 0.38 and x  = 0.92 (in meters).
b. To find the equilibrium points, we solve the equation

and find x = 0 and x = ±x , where x  =  = 0.707 (meters). The second derivative

is negative at x = 0, so that position is a relative maximum and the equilibrium there is unstable. The second derivative is
positive at x = ±x , so these positions are relative minima and represent stable equilibria.

Significance
The particle in this example can oscillate in the allowed region about either of the two stable equilibrium points we found, but
it does not have enough energy to escape from whichever potential well it happens to initially be in. The conservation of
mechanical energy and the relations between kinetic energy and speed, and potential energy and force, enable you to deduce
much information about the qualitative behavior of the motion of a particle, as well as some quantitative information, from a
graph of its potential energy.
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Repeat Example 8.10 when the particle’s mechanical energy is +0.25 J.

Before ending this section, let’s practice applying the method based on the potential energy of a particle to find its position as a
function of time, for the one-dimensional, mass-spring system considered earlier in this section.

Find x(t) for a particle moving with a constant mechanical energy E > 0 and a potential energy U(x) = kx , when the particle
starts from rest at time t = 0.

Strategy

We follow the same steps as we did in Example 8.9. Substitute the potential energy U into Equation 8.4.9 and factor out the
constants, like m or k. Integrate the function and solve the resulting expression for position, which is now a function of time.

Solution
Substitute the potential energy in Equation 8.4.9 and integrate using an integral solver found on a web search:

\[t = \int_{x_{0}}^{x} \frac{dx}{\sqrt{\left(\dfrac{k}{m}\right) \Big[ \left(\dfrac{2E}{k}\right) - x^{2} \Big]}} =
\sqrt{\frac{m}{k}} \Bigg[ \sin^{-1} \left( \dfrac{x}{\sqrt{\frac{2E}{k}}}\right) - \sin^{-1} \left(\frac{x_{0}}{\sqrt{\frac{2E}
{k}}}\right) \Bigg] \ldotp$$From the initial conditions at t = 0, the initial kinetic energy is zero and the initial potential energy
is kx  = E, from which you can see that  = ±1 and sin  (±) = ±90°. Now you can solve for x:

Significance
A few paragraphs earlier, we referred to this mass-spring system as an example of a harmonic oscillator. Here, we anticipate

that a harmonic oscillator executes sinusoidal oscillations with a maximum displacement of  (called the amplitude)

and a rate of oscillation of  (called the frequency). Further discussions about oscillations can be found in

Oscillations.

Find x(t) for the mass-spring system in Example 8.11 if the particle starts from x  = 0 at t = 0. What is the particle’s initial
velocity?

This page titled 9.5: Potential Energy Diagrams and Stability is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

8.5: Potential Energy Diagrams and Stability by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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9.6: Sources of Energy

Describe energy transformations and conversions in general terms
Explain what it means for an energy source to be renewable or nonrenewable

In this section, we have studied energy. We learned that energy can take different forms and can be transferred from one form to
another. You will find that energy is discussed in many everyday, as well as scientific, contexts, because it is involved in all
physical processes. It will also become apparent that many situations are best understood, or most easily conceptualized, by
considering energy. So far, no experimental results have contradicted the conservation of energy. In fact, whenever measurements
have appeared to conflict with energy conservation, new forms of energy have been discovered or recognized in accordance with
this principle.

What are some other forms of energy? Many of these are covered in later chapters (also see Figure ), but let’s detail a few
here:

Atoms and molecules inside all objects are in random motion. The internal kinetic energy from these random motions is called
thermal energy, because it is related to the temperature of the object. Note that thermal energy can also be transferred from one
place to another, not transformed or converted, by the familiar processes of conduction, convection, and radiation. In this case,
the energy is known as heat energy.
Electrical energy is a common form that is converted to many other forms and does work in a wide range of practical
situations.
Fuels, such as gasoline and food, have chemical energy, which is potential energy arising from their molecular structure.
Chemical energy can be converted into thermal energy by reactions like oxidation. Chemical reactions can also produce
electrical energy, such as in batteries. Electrical energy can, in turn, produce thermal energy and light, such as in an electric
heater or a light bulb.
Light is just one kind of electromagnetic radiation, or radiant energy, which also includes radio, infrared, ultraviolet, X-rays,
and gamma rays. All bodies with thermal energy can radiate energy in electromagnetic waves.
Nuclear energy comes from reactions and processes that convert measurable amounts of mass into energy. Nuclear energy is
transformed into radiant energy in the Sun, into thermal energy in the boilers of nuclear power plants, and then into electrical
energy in the generators of power plants. These and all other forms of energy can be transformed into one another and, to a
certain degree, can be converted into mechanical work.

Figure : Energy that we use in society takes many forms, which be converted from one into another depending on the process
involved. We will study many of these forms of energy in later chapters in this text. (credit “sun”: EIT SOHO Consortium, ESA,
NASA; credit “solar panels”: “kjkolb”/Wikimedia Commons; credit “gas burner”: Steven Depolo)
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The transformation of energy from one form into another happens all the time. The chemical energy in food is converted into
thermal energy through metabolism; light energy is converted into chemical energy through photosynthesis. Another example of
energy conversion occurs in a solar cell. Sunlight impinging on a solar cell produces electricity, which can be used to run electric
motors or heat water. In an example encompassing many steps, the chemical energy contained in coal is converted into thermal
energy as it burns in a furnace, to transform water into steam, in a boiler. Some of the thermal energy in the steam is then converted
into mechanical energy as it expands and spins a turbine, which is connected to a generator to produce electrical energy. In these
examples, not all of the initial energy is converted into the forms mentioned, because some energy is always transferred to the
environment.

Energy is an important element at all levels of society. We live in a very interdependent world, and access to adequate and reliable
energy resources is crucial for economic growth and for maintaining the quality of our lives. The principal energy resources used in
the world are shown in Figure . The figure distinguishes between two major types of energy sources: renewable and non-
renewable, and further divides each type into a few more specific kinds. Renewable sources are energy sources that are replenished
through naturally occurring, ongoing processes, on a time scale that is much shorter than the anticipated lifetime of the civilization
using the source. Non-renewable sources are depleted once some of the energy they contain is extracted and converted into other
kinds of energy. The natural processes by which non-renewable sources are formed typically take place over geological time scales.

Figure : World energy consumption by source; the percentage of renewables is increasing, accounting for 19% in 2012.

Our most important non-renewable energy sources are fossil fuels, such as coal, petroleum, and natural gas. These account for
about 81% of the world’s energy consumption, as shown in the figure. Burning fossil fuels creates chemical reactions that
transform potential energy, in the molecular structures of the reactants, into thermal energy and products. This thermal energy can
be used to heat buildings or to operate steam-driven machinery. Internal combustion and jet engines convert some of the energy of
rapidly expanding gases, released from burning gasoline, into mechanical work. Electrical power generation is mostly derived from
transferring energy in expanding steam, via turbines, into mechanical work, which rotates coils of wire in magnetic fields to
generate electricity. Nuclear energy is the other non-renewable source shown in Figure  and supplies about 3% of the world’s
consumption. Nuclear reactions release energy by transforming potential energy, in the structure of nuclei, into thermal energy,
analogous to energy release in chemical reactions. The thermal energy obtained from nuclear reactions can be transferred and
converted into other forms in the same ways that energy from fossil fuels are used.

An unfortunate byproduct of relying on energy produced from the combustion of fossil fuels is the release of carbon dioxide into
the atmosphere and its contribution to global warming. Nuclear energy poses environmental problems as well, including the safety
and disposal of nuclear waste. Besides these important consequences, reserves of non-renewable sources of energy are limited and,
given the rapidly growing rate of world energy consumption, may not last for more than a few hundred years. Considerable effort is
going on to develop and expand the use of renewable sources of energy, involving a significant percentage of the world’s physicists
and engineers.

Four of the renewable energy sources listed in Figure —those using material from plants as fuel (biomass heat, ethanol,
biodiesel, and biomass electricity)—involve the same types of energy transformations and conversions as just discussed for fossil
and nuclear fuels. The other major types of renewable energy sources are hydropower, wind power, geothermal power, and solar
power.

Hydropower is produced by converting the gravitational potential energy of falling or flowing water into kinetic energy and then
into work to run electric generators or machinery. Converting the mechanical energy in ocean surface waves and tides is in
development. Wind power also converts kinetic energy into work, which can be used directly to generate electricity, operate mills,
and propel sailboats.
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The interior of Earth has a great deal of thermal energy, part of which is left over from its original formation (gravitational potential
energy converted into thermal energy) and part of which is released from radioactive minerals (a form of natural nuclear energy). It
will take a very long time for this geothermal energy to escape into space, so people generally regard it as a renewable source,
when actually, it’s just inexhaustible on human time scales.

The source of solar power is energy carried by the electromagnetic waves radiated by the Sun. Most of this energy is carried by
visible light and infrared (heat) radiation. When suitable materials absorb electromagnetic waves, radiant energy is converted into
thermal energy, which can be used to heat water, or when concentrated, to make steam and generate electricity (Figure ).
However, in another important physical process, known as the photoelectric effect, energetic radiation impinging on certain
materials is directly converted into electricity. Materials that do this are called photovoltaics (PV in Figure ). Some solar
power systems use lenses or mirrors to concentrate the Sun’s rays, before converting their energy through photovoltaics, and these
are qualified as CSP in Figure .

Figure : Solar cell arrays found in a sunny area converting the solar energy into stored electrical energy. (credit: Sarah
Swenty)

As we finish this chapter on energy and work, it is relevant to draw some distinctions between two sometimes misunderstood terms
in the area of energy use. As we mentioned earlier, the “law of conservation of energy” is a very useful principle in analyzing
physical processes. It cannot be proven from basic principles but is a very good bookkeeping device, and no exceptions have ever
been found. It states that the total amount of energy in an isolated system always remains constant. Related to this principle, but
remarkably different from it, is the important philosophy of energy conservation. This concept has to do with seeking to decrease
the amount of energy used by an individual or group through reducing activities (e.g., turning down thermostats, diving fewer
kilometers) and/or increasing conversion efficiencies in the performance of a particular task, such as developing and using more
efficient room heaters, cars that have greater miles-per-gallon ratings, energy-efficient compact fluorescent lights, etc.

Since energy in an isolated system is not destroyed, created, or generated, you might wonder why we need to be concerned about
our energy resources, since energy is a conserved quantity. The problem is that the final result of most energy transformations is
waste heat, that is, work that has been “degraded” in the energy transformation. We will discuss this idea in more detail in the
chapters on thermodynamics.

This page titled 9.6: Sources of Energy is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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9.E: Potential Energy and Conservation of Energy (Exercises)

Conceptual Questions

8.1 Potential Energy of a System
1. The kinetic energy of a system must always be positive or zero. Explain whether this is true for the potential energy of a

system.
2. The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is

negligible, describe changes in the potential energy of a diving board as a swimmer drives from it, starting just before the
swimmer steps on the board until just after his feet leave it.

3. Describe the gravitational potential energy transfers and transformations for a javelin, starting from the point at which an
athlete picks up the javelin and ending when the javelin is stuck into the ground after being thrown.

4. A couple of soccer balls of equal mass are kicked off the ground at the same speed but at different angles. Soccer ball A is
kicked off at an angle slightly above the horizontal, whereas ball B is kicked slightly below the vertical. How do each of
the following compare for ball A and ball B? (a) The initial kinetic energy and (b) the change in gravitational potential
energy from the ground to the highest point? If the energy in part (a) differs from part (b), explain why there is a
difference between the two energies.

5. What is the dominant factor that affects the speed of an object that started from rest down a frictionless incline if the only
work done on the object is from gravitational forces?

6. Two people observe a leaf falling from a tree. One person is standing on a ladder and the other is on the ground. If each
person were to compare the energy of the leaf observed, would each person find the following to be the same or different
for the leaf, from the point where it falls off the tree to when it hits the ground: (a) the kinetic energy of the leaf; (b) the
change in gravitational potential energy; (c) the final gravitational potential energy?

8.2 Conservative and Non-Conservative Forces
7. What is the physical meaning of a non-conservative force?
8. A bottle rocket is shot straight up in the air with a speed 30 m/s. If the air resistance is ignored, the bottle would go up to

a height of approximately 46 m. However, the rocket goes up to only 35 m before returning to the ground. What
happened? Explain, giving only a qualitative response.

9. An external force acts on a particle during a trip from one point to another and back to that same point. This particle is
only effected by conservative forces. Does this particle’s kinetic energy and potential energy change as a result of this
trip?

8.3 Conservation of Energy
10. When a body slides down an inclined plane, does the work of friction depend on the body’s initial speed? Answer the

same question for a body sliding down a curved surface.
11. Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out

of gasoline after a short distance (see below). The driver lets the car coast farther down the hill, then up and over a small
crest. He then coasts down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify
the forms of energy the car has, and how they are changed and transferred in this series of events.

12. A dropped ball bounces to one-half its original height. Discuss the energy transformations that take place.
13. “ E = K + U constant is a special case of the work-energy theorem.” Discuss this statement.
14. In a common physics demonstration, a bowling ball is suspended from the ceiling by a rope. The professor pulls the ball

away from its equilibrium position and holds it adjacent to his nose, as shown below. He releases the ball so that it swings
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directly away from him. Does he get struck by the ball on its return swing? What is he trying to show in this
demonstration?

15. A child jumps up and down on a bed, reaching a higher height after each bounce. Explain how the child can increase his
maximum gravitational potential energy with each bounce.

16. Can a non-conservative force increase the mechanical energy of the system?
17. Neglecting air resistance, how much would I have to raise the vertical height if I wanted to double the impact speed of a

falling object?
18. A box is dropped onto a spring at its equilibrium position. The spring compresses with the box attached and comes to

rest. Since the spring is in the vertical position, does the change in the gravitational potential energy of the box while the
spring is compressing need to be considered in this problem?

Problems

8.1 Potential Energy of a System
19. Using values from Table 8.2, how many DNA molecules could be broken by the energy carried by a single electron in the

beam of an old-fashioned TV tube? (These electrons were not dangerous in themselves, but they did create dangerous X-
rays. Later-model tube TVs had shielding that absorbed X-rays before they escaped and exposed viewers.)

20. If the energy in fusion bombs were used to supply the energy needs of the world, how many of the 9-megaton variety
would be needed for a year’s supply of energy (using data from Table 8.1)?

21. A camera weighing 10 N falls from a small drone hovering 20 m overhead and enters free fall. What is the gravitational
potential energy change of the camera from the drone to the ground if you take a reference point of (a) the ground being
zero gravitational potential energy? (b) The drone being zero gravitational potential energy? What is the gravitational
potential energy of the camera (c) before it falls from the drone and (d) after the camera lands on the ground if the
reference point of zero gravitational potential energy is taken to be a second person looking out of a building 30 m from
the ground?

22. Someone drops a 50 − g pebble off of a docked cruise ship, 70.0 m from the water line. A person on a dock 3.0 m from
the water line holds out a net to catch the pebble. (a) How much work is done on the pebble by gravity during the drop?
(b) What is the change in the gravitational potential energy during the drop? If the gravitational potential energy is zero at
the water line, what is the gravitational potential energy (c) when the pebble is dropped? (d) When it reaches the net?
What if the gravitational potential energy was 30.0 Joules at water level? (e) Find the answers to the same questions in (c)
and (d).

23. A cat’s crinkle ball toy of mass 15 g is thrown straight up with an initial speed of 3 m/s. Assume in this problem that air
drag is negligible. (a) What is the kinetic energy of the ball as it leaves the hand? (b) How much work is done by the
gravitational force during the ball’s rise to its peak? (c) What is the change in the gravitational potential energy of the ball
during the rise to its peak? (d) If the gravitational potential energy is taken to be zero at the point where it leaves your
hand, what is the gravitational potential energy when it reaches the maximum height? (e) What if the gravitational
potential energy is taken to be zero at the maximum height the ball reaches, what would the gravitational potential energy
be when it leaves the hand? (f) What is the maximum height the ball reaches?

8.2 Conservative and Non-Conservative Forces
24. A force F(x) = (3.0/x) N acts on a particle as it moves along the positive x-axis. (a) How much work does the force do on

the particle as it moves from x = 2.0 m to x = 5.0 m? (b) Picking a convenient reference point of the potential energy to
be zero at x = , find the potential energy for this force.

25. A force F(x) = (−5.0x  + 7.0x) N acts on a particle. (a) How much work does the force do on the particle as it moves from
x = 2.0 m to x = 5.0 m? (b) Picking a convenient reference point of the potential energy to be zero at x = , find the
potential energy for this force.

26. Find the force corresponding to the potential energy U(x) = .
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27. The potential energy function for either one of the two atoms in a diatomic molecule is often approximated by U(x) = 
 where x is the distance between the atoms. (a) At what distance of separation does the potential energy have a

local minimum (not at x = )? (b) What is the force on an atom at this separation? (c) How does the force vary with the
separation distance?

28. A particle of mass 2.0 kg moves under the influence of the force F(x) =  N. If its speed at x = 2.0 m is v = 6.0

m/s, what is its speed at x = 7.0 m?
29. A particle of mass 2.0 kg moves under the influence of the force F(x) = (−5x  + 7x) N. If its speed at x = −4.0 m is v =

20.0 m/s, what is its speed at x = 4.0 m?
30. A crate on rollers is being pushed without frictional loss of energy across the floor of a freight car (see the following

figure). The car is moving to the right with a constant speed v0 . If the crate starts at rest relative to the freight car, then
from the work-energy theorem, Fd = , where d, the distance the crate moves, and v, the speed of the crate, are both
measured relative to the freight car. (a) To an observer at rest beside the tracks, what distance d′ is the crate pushed when
it moves the distance d in the car? (b) What are the crate’s initial and final speeds v ′ and v′ as measured by the observer

beside the tracks? (c) Show that Fd′ =  and, consequently, that work is equal to the change in kinetic
energy in both reference systems.

8.3 Conservation of Energy
31. A boy throws a ball of mass 0.25 kg straight upward with an initial speed of 20 m/s When the ball returns to the boy, its

speed is 17 m/s How much much work does air resistance do on the ball during its flight?
32. A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its

fall, how much work is done on the mouse by air resistance?
33. Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above

water with an initial speed of 15.0 m/s strikes the water with a speed of 24.8 m/s independent of the direction thrown.
(Hint: show that K  + U  = K  + U )

34. A 1.0-kg ball at the end of a 2.0-m string swings in a vertical plane. At its lowest point the ball is moving with a speed of
10 m/s. (a) What is its speed at the top of its path? (b) What is the tension in the string when the ball is at the bottom and
at the top of its path?

35. Ignoring details associated with friction, extra forces exerted by arm and leg muscles, and other factors, we can consider a
pole vault as the conversion of an athlete’s running kinetic energy to gravitational potential energy. If an athlete is to lift
his body 4.8 m during a vault, what speed must he have when he plants his pole?

36. Tarzan grabs a vine hanging vertically from a tall tree when he is running at 9.0 m/s. (a) How high can he swing upward?
(b) Does the length of the vine affect this height?

37. Assume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow
back 50 cm and holds it in position with a force of 150 N. If the mass of the arrow is 50 g and the “spring” is massless,
what is the speed of the arrow immediately after it leaves the bow?

38. A 100 − kg man is skiing across level ground at a speed of 8.0 m/s when he comes to the small slope 1.8 m higher than
ground level shown in the following figure. (a) If the skier coasts up the hill, what is his speed when he reaches the top
plateau? Assume friction between the snow and skis is negligible. (b) What is his speed when he reaches the upper level
if an 80 − N frictional force acts on the skis?

39. A sled of mass 70 kg starts from rest and slides down a 10° incline 80 m long. It then travels for 20 m horizontally before
starting back up an 8° incline. It travels 80 m along this incline before coming to rest. What is the net work done on the
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sled by friction?
40. A girl on a skateboard (total mass of 40 kg) is moving at a speed of 10 m/s at the bottom of a long ramp. The ramp is

inclined at 20° with respect to the horizontal. If she travels 14.2 m upward along the ramp before stopping, what is the net
frictional force on her?

41. A baseball of mass 0.25 kg is hit at home plate with a speed of 40 m/s. When it lands in a seat in the left-field bleachers a
horizontal distance 120 m from home plate, it is moving at 30 m/s. If the ball lands 20 m above the spot where it was hit,
how much work is done on it by air resistance?

42. A small block of mass m slides without friction around the loop-the-loop apparatus shown below. (a) If the block starts
from rest at A, what is its speed at B? (b) What is the force of the track on the block at B?

43. The massless spring of a spring gun has a force constant k = 12 N/cm. When the gun is aimed vertically, a 15-g projectile
is shot to a height of 5.0 m above the end of the expanded spring. (See below.) How much was the spring compressed
initially?

44. A small ball is tied to a string and set rotating with negligible friction in a vertical circle. If the ball moves over the top of
the circle at its slowest possible speed (so that the tension in the string is negligible), what is the tension in the string at
the bottom of the circle, assuming there is no additional energy added to the ball during rotation?

8.4 Potential Energy Diagrams and Stability
45. A mysterious constant force of 10 N acts horizontally on everything. The direction of the force is found to be always

pointed toward a wall in a big hall. Find the potential energy of a particle due to this force when it is at a distance x from
the wall, assuming the potential energy at the wall to be zero.

46. A single force F(x) = −4.0x (in newtons) acts on a 1.0-kg body. When x = 3.5 m, the speed of the body is 4.0 m/s. What is
its speed at x = 2.0 m?

47. A particle of mass 4.0 kg is constrained to move along the x-axis under a single force F(x) = −cx , where c = 8.0 N/m .
The particle’s speed at A, where x  = 1.0 m, is 6.0 m/s. What is its speed at B, where x  = −2.0 m?

48. The force on a particle of mass 2.0 kg varies with position according to F(x) = −3.0x  (x in meters, F(x) in newtons). The
particle’s velocity at x = 2.0 m is 5.0 m/s. Calculate the mechanical energy of the particle using (a) the origin as the
reference point and (b) x = 4.0 m as the reference point. (c) Find the particle’s velocity at x = 1.0 m. Do this part of the
problem for each reference point.

49. A 4.0-kg particle moving along the x-axis is acted upon by the force whose functional form appears below. The velocity
of the particle at x = 0 is v = 6.0 m/s. Find the particle’s speed at x = (a) 2.0 m, (b) 4.0 m, (c) 10.0 m, (d) Does the particle
turn around at some point and head back toward the origin? (e) Repeat part (d) if v = 2.0 m/s at x = 0.
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50. A particle of mass 0.50 kg moves along the x-axis with a potential energy whose dependence on x is shown below. (a)
What is the force on the particle at x = 2.0, 5.0, 8.0, and 12 m? (b) If the total mechanical energy E of the particle is −6.0
J, what are the minimum and maximum positions of the particle? (c) What are these positions if E = 2.0 J? (d) If E = 16 J,
what are the speeds of the particle at the positions listed in part (a)?

51. (a) Sketch a graph of the potential energy function U(x) = , where k, A, and  are constants. (b) What is
the force corresponding to this potential energy? (c) Suppose a particle of mass m moving with this potential energy has a

velocity v  when its position is x = a. Show that the particle does not pass through the origin unless .

8.5 Sources of Energy
52. In the cartoon movie Pocahontas (https://openstaxcollege.org/l/21pocahontclip), Pocahontas runs to the edge of a cliff and

jumps off, showcasing the fun side of her personality. (a) If she is running at 3.0 m/s before jumping off the cliff and she
hits the water at the bottom of the cliff at 20.0 m/s, how high is the cliff? Assume negligible air drag in this cartoon. (b) If
she jumped off the same cliff from a standstill, how fast would she be falling right before she hit the water?

53. In the reality television show “Amazing Race” (https://openstaxcollege.org/l/21amazraceclip), a contestant is firing 12-kg
watermelons from a slingshot to hit targets down the field. The slingshot is pulled back 1.5 m and the watermelon is
considered to be at ground level. The launch point is 0.3 m from the ground and the targets are 10 m horizontally away.
Calculate the spring constant of the slingshot.

54. In the Back to the Future movies (https://openstaxcollege.org/l/21bactofutclip), a DeLorean car of mass 1230 kg travels at
88 miles per hour to venture back to the future. (a) What is the kinetic energy of the DeLorian? (b) What spring constant
would be needed to stop this DeLorean in a distance of 0.1m?

55. In the Hunger Games movie (https://openstaxcollege.org/l/21HungGamesclip), Katniss Everdeen fires a 0.0200-kg arrow
from ground level to pierce an apple up on a stage. The spring constant of the bow is 330 N/m and she pulls the arrow
back a distance of 0.55 m. The apple on the stage is 5.00 m higher than the launching point of the arrow. At what speed
does the arrow (a) leave the bow? (b) strike the apple?

56. In a “Top Fail” video (https://openstaxcollege.org/l/21topfailvideo), two women run at each other and collide by hitting
exercise balls together. If each woman has a mass of 50 kg, which includes the exercise ball, and one woman runs to the
right at 2.0 m/s and the other is running toward her at 1.0 m/s, (a) how much total kinetic energy is there in the system?
(b) If energy is conserved after the collision and each exercise ball has a mass of 2.0 kg, how fast would the balls fly off
toward the camera?

57. In a Coyote/Road Runner cartoon clip (https://openstaxcollege.org/l/21coyroadcarcl), a spring expands quickly and sends
the coyote into a rock. If the spring extended 5 m and sent the coyote of mass 20 kg to a speed of 15 m/s, (a) what is the
spring constant of this spring? (b) If the coyote were sent vertically into the air with the energy given to him by the
spring, how high could he go if there were no non-conservative forces?

58. In an iconic movie scene, Forrest Gump (https://openstaxcollege.org/l/21ForrGumpvid) runs around the country. If he is
running at a constant speed of 3 m/s, would it take him more or less energy to run uphill or downhill and why?
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59. In the movie Monty Python and the Holy Grail (https://openstaxcollege.org/l/21monpytmovcl) a cow is catapulted from
the top of a castle wall over to the people down below. The gravitational potential energy is set to zero at ground level.
The cow is launched from a spring of spring constant 1.1 × 10  N/m that is expanded 0.5 m from equilibrium. If the castle
is 9.1 m tall and the mass of the cow is 110 kg, (a) what is the gravitational potential energy of the cow at the top of the
castle? (b) What is the elastic spring energy of the cow before the catapult is released? (c) What is the speed of the cow
right before it lands on the ground?

60. A 60.0-kg skier with an initial speed of 12.0 m/s coasts up a 2.50-m high rise as shown. Find her final speed at the top,
given that the coefficient of friction between her skis and the snow is 0.80.

61. (a) How high a hill can a car coast up (engines disengaged) if work done by friction is negligible and its initial speed is
110 km/h? (b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0
m above its starting point, how much thermal energy was generated by friction? (c) What is the average force of friction
if the hill has a slope of 2.5° above the horizontal?

62. A 5.00 × 10 -kg subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the
end of its track. What is the spring constant k of the spring?

63. A pogo stick has a spring with a spring constant of 2.5 × 10  N/m, which can be compressed 12.0 cm. To what maximum
height from the uncompressed spring can a child jump on the stick using only the energy in the spring, if the child and
stick have a total mass of 40 kg?

64. A block of mass 500 g is attached to a spring of spring constant 80 N/m (see the following figure). The other end of the
spring is attached to a support while the mass rests on a rough surface with a coefficient of friction of 0.20 that is inclined
at angle of 30°. The block is pushed along the surface till the spring compresses by 10 cm and is then released from rest.
(a) How much potential energy was stored in the block-spring-support system when the block was just released? (b)
Determine the speed of the block when it crosses the point when the spring is neither compressed nor stretched. (c)
Determine the position of the block where it just comes to rest on its way up the incline.

65. A block of mass 200 g is attached at the end of a massless spring at equilibrium length of spring constant 50 N/m. The
other end of the spring is attached to the ceiling and the mass is released at a height considered to be where the
gravitational potential energy is zero. (a) What is the net potential energy of the block at the instant the block is at the
lowest point? (b) What is the net potential energy of the block at the midpoint of its descent? (c) What is the speed of the
block at the midpoint of its descent?

66. A T-shirt cannon launches a shirt at 5.00 m/s from a platform height of 3.00 m from ground level. How fast will the shirt
be traveling if it is caught by someone whose hands are (a) 1.00 m from ground level? (b) 4.00 m from ground level?
Neglect air drag.

67. A child (32 kg) jumps up and down on a trampoline. The trampoline exerts a spring restoring force on the child with a
constant of 5000 N/m. At the highest point of the bounce, the child is 1.0 m above the level surface of the trampoline.
What is the compression distance of the trampoline? Neglect the bending of the legs or any transfer of energy of the child
into the trampoline while jumping.

68. Shown below is a box of mass m1 that sits on a frictionless incline at an angle above the horizontal . This box is
connected by a relatively massless string, over a frictionless pulley, and finally connected to a box at rest over the ledge,
labeled m . If m  and m  are a height h above the ground and m >>m : (a) What is the initial gravitational potential
energy of the system? (b) What is the final kinetic energy of the system?
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Additional Problems
69. A massless spring with force constant k = 200 N/m hangs from the ceiling. A 2.0-kg block is attached to the free end of

the spring and released. If the block falls 17 cm before starting back upwards, how much work is done by friction during
its descent?

70. A particle of mass 2.0 kg moves under the influence of the force F(x) = (−5x  + 7x) N. Suppose a frictional force also
acts on the particle. If the particle’s speed when it starts at x = −4.0 m is 0.0 m/s and when it arrives at x = 4.0 m is 9.0
m/s, how much work is done on it by the frictional force between x = −4.0 m and x = 4.0 m?

71. Block 2 shown below slides along a frictionless table as block 1 falls. Both blocks are attached by a frictionless pulley.
Find the speed of the blocks after they have each moved 2.0 m. Assume that they start at rest and that the pulley has
negligible mass. Use m  = 2.0 kg and m  = 4.0 kg.

72. A body of mass m and negligible size starts from rest and slides down the surface of a frictionless solid sphere of radius
R. (See below.) Prove that the body leaves the sphere when  = cos  (2/3).

73. A mysterious force acts on all particles along a particular line and always points towards a particular point P on the line.
The magnitude of the force on a particle increases as the cube of the distance from that point; that is F r , if the distance
from P to the position of the particle is r. Let b be the proportionality constant, and write the magnitude of the force as F =
br . Find the potential energy of a particle subjected to this force when the particle is at a distance D from P, assuming the
potential energy to be zero when the particle is at P.

74. An object of mass 10 kg is released at point A, slides to the bottom of the 30° incline, then collides with a horizontal
massless spring, compressing it a maximum distance of 0.75 m. (See below.) The spring constant is 500 M/m, the height
of the incline is 2.0 m, and the horizontal surface is frictionless. (a) What is the speed of the object at the bottom of the
incline? (b) What is the work of friction on the object while it is on the incline? (c) The spring recoils and sends the
object back toward the incline. What is the speed of the object when it reaches the base of the incline? (d) What vertical
distance does it move back up the incline?
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75. Shown below is a small ball of mass m attached to a string of length a. A small peg is located a distance h below the point
where the string is supported. If the ball is released when the string is horizontal, show that h must be greater than 3a/5 if
the ball is to swing completely around the peg.

76. A block leaves a frictionless inclined surface horizontally after dropping off by a height h. Find the horizontal distance D
where it will land on the floor, in terms of h, H, and g

77. A block of mass m, after sliding down a frictionless incline, strikes another block of mass M that is attached to a spring of
spring constant k (see below). The blocks stick together upon impact and travel together. (a) Find the compression of the
spring in terms of m, M, h, g, and k when the combination comes to rest. (b) The loss of kinetic energy as a result of the
bonding of the two masses upon impact is stored in the so-called binding energy of the two masses. Calculate the binding
energy.

78. A block of mass 300 g is attached to a spring of spring constant 100 N/m. The other end of the spring is attached to a
support while the block rests on a smooth horizontal table and can slide freely without any friction. The block is pushed
horizontally till the spring compresses by 12 cm, and then the block is released from rest. (a) How much potential energy
was stored in the block-spring support system when the block was just released? (b) Determine the speed of the block
when it crosses the point when the spring is neither compressed nor stretched. (c) Determine the speed of the block when
it has traveled a distance of 20 cm from where it was released.

79. Consider a block of mass 0.200 kg attached to a spring of spring constant 100 N/m. The block is placed on a frictionless
table, and the other end of the spring is attached to the wall so that the spring is level with the table. The block is then
pushed in so that the spring is compressed by 10.0 cm. Find the speed of the block as it crosses (a) the point when the
spring is not stretched, (b) 5.00 cm to the left of point in (a), and (c) 5.00 cm to the right of point in (a).

80. A skier starts from rest and slides downhill. What will be the speed of the skier if he drops by 20 meters in vertical
height? Ignore any air resistance (which will, in reality, be quite a lot), and any friction between the skis and the snow.

81. Repeat the preceding problem, but this time, suppose that the work done by air resistance cannot be ignored. Let the work
done by the air resistance when the skier goes from A to B along the given hilly path be −2000 J. The work done by air
resistance is negative since the air resistance acts in the opposite direction to the displacement. Supposing the mass of the
skier is 50 kg, what is the speed of the skier at point B?

82. Two bodies are interacting by a conservative force. Show that the mechanical energy of an isolated system consisting of
two bodies interacting with a conservative force is conserved. (Hint: Start by using Newton’s third law and the definition
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of work to find the work done on each body by the conservative force.)
83. In an amusement park, a car rolls in a track as shown below. Find the speed of the car at A, B, and C. Note that the work

done by the rolling friction is zero since the displacement of the point at which the rolling friction acts on the tires is
momentarily at rest and therefore has a zero displacement.

84. A 200-g steel ball is tied to a 2.00-m “massless” string and hung from the ceiling to make a pendulum, and then, the ball
is brought to a position making a 30° angle with the vertical direction and released from rest. Ignoring the effects of the
air resistance, find the speed of the ball when the string (a) is vertically down, (b) makes an angle of 20° with the vertical
and (c) makes an angle of 10° with the vertical.

85. A hockey puck is shot across an ice-covered pond. Before the hockey puck was hit, the puck was at rest. After the hit, the
puck has a speed of 40 m/s. The puck comes to rest after going a distance of 30 m. (a) Describe how the energy of the
puck changes over time, giving the numerical values of any work or energy involved. (b) Find the magnitude of the net
friction force.

86. A projectile of mass 2 kg is fired with a speed of 20 m/s at an angle of 30° with respect to the horizontal. (a) Calculate the
initial total energy of the projectile given that the reference point of zero gravitational potential energy at the launch
position. (b) Calculate the kinetic energy at the highest vertical position of the projectile. (c) Calculate the gravitational
potential energy at the highest vertical position. (d) Calculate the maximum height that the projectile reaches. Compare
this result by solving the same problem using your knowledge of projectile motion.

87. An artillery shell is fired at a target 200 m above the ground. When the shell is 100 m in the air, it has a speed of 100 m/s.
What is its speed when it hits its target? Neglect air friction.

88. How much energy is lost to a dissipative drag force if a 60-kg person falls at a constant speed for 15 meters?
89. A box slides on a frictionless surface with a total energy of 50 J. It hits a spring and compresses the spring a distance of

25 cm from equilibrium. If the same box with the same initial energy slides on a rough surface, it only compresses the
spring a distance of 15 cm, how much energy must have been lost by sliding on the rough surface?
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9.S: Potential Energy and Conservation of Energy (Summary)

Key Terms
conservative force force that does work independent of path

conserved quantity
one that cannot be created or destroyed, but may be transformed

between different forms of itself

energy conservation total energy of an isolated system is constant

equilibrium point
position where the assumed conservative, net force on a particle,

given by the slope of its potential energy curve, is zero

exact differential
is the total differential of a function and requires the use of partial

derivatives if the function involves more than one dimension

mechanical energy sum of the kinetic and potential energies

non-conservative force force that does work that depends on path

non-renewable
energy source that is not renewable, but is depleted by human

consumption

potential energy
function of position, energy possessed by an object relative to the

system considered

potential energy diagram graph of a particle’s potential energy as a function of position

potential energy difference negative of the work done acting between two points in space

renewable
energy source that is replenished by natural processes, over human

time scales

turning point
position where the velocity of a particle, in one-dimensional

motion, changes sign

Key Equations

Difference of potential energy

Potential energy with respect to zero of potential energy at 

Gravitational potential energy near Earth’s surface

Potential energy for an ideal spring

Work done by conservative force over a closed path

Condition for conservative force in two dimensions

Conservative force is the negative derivative of potential energy

Conservation of energy with no non-conservative forces

Δ = − = −UAB UB UA WAB (9.S.1)

r ⃗  ΔU = U( ) −U( )r ⃗ 0 r ⃗  r ⃗ 0 (9.S.2)

U(y) = mgy+ const. (9.S.3)

U(x) = k + const.
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2
x

2 (9.S.4)
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cons r ⃗  (9.S.5)
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Summary

8.1 Potential Energy of a System
For a single-particle system, the difference of potential energy is the opposite of the work done by the forces acting on the
particle as it moves from one position to another.
Since only differences of potential energy are physically meaningful, the zero of the potential energy function can be chosen at
a convenient location.
The potential energies for Earth’s constant gravity, near its surface, and for a Hooke’s law force are linear and quadratic
functions of position, respectively.

8.2 Conservative and Non-Conservative Forces
A conservative force is one for which the work done is independent of path. Equivalently, a force is conservative if the work
done over any closed path is zero.
A non-conservative force is one for which the work done depends on the path.
For a conservative force, the infinitesimal work is an exact differential. This implies conditions on the derivatives of the force’s
components.
The component of a conservative force, in a particular direction, equals the negative of the derivative of the potential energy for
that force, with respect to a displacement in that direction.

8.3 Conservation of Energy
A conserved quantity is a physical property that stays constant regardless of the path taken.
A form of the work-energy theorem says that the change in the mechanical energy of a particle equals the work done on it by
non-conservative forces.
If non-conservative forces do no work and there are no external forces, the mechanical energy of a particle stays constant. This
is a statement of the conservation of mechanical energy and there is no change in the total mechanical energy.
For one-dimensional particle motion, in which the mechanical energy is constant and the potential energy is known, the
particle’s position, as a function of time, can be found by evaluating an integral that is derived from the conservation of
mechanical energy.

8.4 Potential Energy Diagrams and Stability
Interpreting a one-dimensional potential energy diagram allows you to obtain qualitative, and some quantitative, information
about the motion of a particle.
At a turning point, the potential energy equals the mechanical energy and the kinetic energy is zero, indicating that the direction
of the velocity reverses there.
The negative of the slope of the potential energy curve, for a particle, equals the one-dimensional component of the
conservative force on the particle. At an equilibrium point, the slope is zero and is a stable (unstable) equilibrium for a potential
energy minimum (maximum).

8.5 Sources of Energy
Energy can be transferred from one system to another and transformed or converted from one type into another. Some of the
basic types of energy are kinetic, potential, thermal, and electromagnetic.
Renewable energy sources are those that are replenished by ongoing natural processes, over human time scales. Examples are
wind, water, geothermal, and solar power.
Non-renewable energy sources are those that are depleted by consumption, over human time scales. Examples are fossil fuel
and nuclear power.
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CHAPTER OVERVIEW

10: Linear Momentum and Collisions
In this section, we develop and define another conserved quantity, called linear momentum, and another relationship (the
impulse-momentum theorem), which will put an additional constraint on how a system evolves in time. Conservation of
momentum is useful for understanding collisions, such as that shown in the above image. It is just as powerful, just as important,
and just as useful as conservation of energy and the work-energy theorem.

10.1: Prelude to Linear Momentum and Collisions
10.2: Linear Momentum
10.5: Conservation of Linear Momentum (Part 1)
10.6: Conservation of Linear Momentum (Part 2)
10.3: Impulse and Collisions (Part 1)
10.4: Impulse and Collisions (Part 2)
10.7: Types of Collisions
10.8: Collisions in Multiple Dimensions
10.9: Center of Mass (Part 1)
10.10: Center of Mass (Part 2)
10.11: Rocket Propulsion
10.E: Linear Momentum and Collisions (Exercises)
10.S: Linear Momentum and Collisions (Summary)

Thumbnail: A pool break-off shot. (CC-SA-BY; No-w-ay).
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10.1: Prelude to Linear Momentum and Collisions
The concepts of work, energy, and the work-energy theorem are valuable for two primary reasons: First, they are powerful
computational tools, making it much easier to analyze complex physical systems than is possible using Newton’s laws directly (for
example, systems with nonconstant forces); and second, the observation that the total energy of a closed system is conserved means
that the system can only evolve in ways that are consistent with energy conservation. In other words, a system cannot evolve
randomly; it can only change in ways that conserve energy.

Figure : The concepts of impulse, momentum, and center of mass are crucial for a major-league baseball player to
successfully get a hit. If he misjudges these quantities, he might break his bat instead. (credit: modification of work by “Cathy
T”/Flickr)

In this chapter, we develop and define another conserved quantity, called linear momentum, and another relationship (the impulse-
momentum theorem), which will put an additional constraint on how a system evolves in time. Conservation of momentum is
useful for understanding collisions, such as that shown in the above image. It is just as powerful, just as important, and just as
useful as conservation of energy and the work-energy theorem.

This page titled 10.1: Prelude to Linear Momentum and Collisions is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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10.2: Linear Momentum

Explain what momentum is, physically
Calculate the momentum of a moving object

Our study of kinetic energy showed that a complete understanding of an object’s motion must include both its mass and its velocity

However, as powerful as this concept is, it does not include any information about the direction of the moving object’s velocity
vector (e.g. the ball in Figure ). We’ll now define a physical quantity that includes direction.

Figure : The velocity and momentum vectors for the ball are in the same direction. The mass of the ball is about 0.5 kg, so
the momentum vector is about half the length of the velocity vector because momentum is velocity time mass. (credit: modification
of work by Ben Sutherland)

Like kinetic energy, this quantity includes both mass and velocity; like kinetic energy, it is a way of characterizing the “quantity of
motion” of an object. It is given the name momentum (from the Latin word movimentum, meaning “movement”), and it is
represented by the symbol .

The linear momentum  of an object is the product of its mass and its velocity:

As shown in Figure , momentum is a vector quantity (since velocity is). This is one of the things that makes momentum
useful and not a duplication of kinetic energy. It is perhaps most useful when determining whether an object’s motion is difficult to
change (Figure ) or easy to change (Figure ).
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Figure : This supertanker transports a huge mass of oil; as a consequence, it takes a long time for a force to change its
(comparatively small) velocity. (credit: modification of work by “the_tahoe_guy”/Flickr)

Unlike kinetic energy, momentum depends equally on an object’s mass and velocity. For example, as you will learn when you study
thermodynamics, the average speed of an air molecule at room temperature (Figure ) is approximately 500 m/s, with an
average molecular mass of ; its momentum is thus

For comparison, a typical automobile might have a speed of only 15 m/s, but a mass of 1400 kg, giving it a momentum of

These momenta are different by 27 orders of magnitude, or a factor of a billion billion billion!

Figure : Gas molecules can have very large velocities, but these velocities change nearly instantaneously when they collide
with the container walls or with each other. This is primarily because their masses are so tiny.
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10.5: Conservation of Linear Momentum (Part 1)

Explain the meaning of “conservation of momentum”
Correctly identify if a system is, or is not, closed
Define a system whose momentum is conserved
Mathematically express conservation of momentum for a given system
Calculate an unknown quantity using conservation of momentum

Recall Newton’s third law: When two objects of masses m  and m interact (meaning that they apply forces on each other), the
force that object 2 applies to object 1 is equal in magnitude and opposite in direction to the force that object 1 applies on object 2.
Let:

 = the force on m  from m
 = the force on m  from m

Then, in symbols, Newton’s third law says

(Recall that these two forces do not cancel because they are applied to different objects. F  causes m  to accelerate, and F  causes
m  to accelerate.)

Although the magnitudes of the forces on the objects are the same, the accelerations are not, simply because the masses (in general)
are different. Therefore, the changes in velocity of each object are different:

However, the products of the mass and the change of velocity are equal (in magnitude):

It’s a good idea, at this point, to make sure you’re clear on the physical meaning of the derivatives in Equation 9.3.3. Because of the
interaction, each object ends up getting its velocity changed, by an amount dv. Furthermore, the interaction occurs over a time
interval dt, which means that the change of velocities also occurs over dt. This time interval is the same for each object.

Let‘s assume, for the moment, that the masses of the objects do not change during the interaction. (We’ll relax this restriction later.)
In that case, we can pull the masses inside the derivatives:

and thus

This says that the rate at which momentum changes is the same for both objects. The masses are different, and the changes of
velocity are different, but the rate of change of the product of m and  are the same.

Physically, this means that during the interaction of the two objects (m  and m ), both objects have their momentum changed; but
those changes are identical in magnitude, though opposite in sign. For example, the momentum of object 1 might increase, which
means that the momentum of object 2 decreases by exactly the same amount.

In light of this, let’s re-write Equation  in a more suggestive form:
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This says that during the interaction, although object 1’s momentum changes, and object 2’s momentum also changes, these two
changes cancel each other out, so that the total change of momentum of the two objects together is zero.

Since the total combined momentum of the two objects together never changes, then we could write

from which it follows that

As shown in Figure , the total momentum of the system before and after the collision remains the same.

Figure : Before the collision, the two billiard balls travel with momenta  and . The total momentum of the system is the
sum of these, as shown by the red vector labeled  on the left. After the collision, the two billiard balls travel with different
momenta  and . The total momentum, however, has not changed, as shown by the red vector arrow  on the right.

Generalizing this result to N objects, we obtain

Equation  is the definition of the total (or net) momentum of a system of N interacting objects, along with the statement that
the total momentum of a system of objects is constant in time—or better, is conserved.

If the value of a physical quantity is constant in time, we say that the quantity is conserved.

Requirements for Momentum Conservation
There is a complication, however. A system must meet two requirements for its momentum to be conserved:

1. The mass of the system must remain constant during the interaction. As the objects interact (apply forces on each other),
they may transfer mass from one to another; but any mass one object gains is balanced by the loss of that mass from another.
The total mass of the system of objects, therefore, remains unchanged as time passes: \[ \Big[ \frac{dm}{dt} \Big]_{system} =
0 \ldotp$$

2. The net external force on the system must be zero. As the objects collide, or explode, and move around, they exert forces on
each other. However, all of these forces are internal to the system, and thus each of these internal forces is balanced by another
internal force that is equal in magnitude and opposite in sign. As a result, the change in momentum caused by each internal
force is cancelled by another momentum change that is equal in magnitude and opposite in direction. Therefore, internal forces
cannot change the total momentum of a system because the changes sum to zero. However, if there is some external force that
acts on all of the objects (gravity, for example, or friction), then this force changes the momentum of the system as a whole; that
is to say, the momentum of the system is changed by the external force. Thus, for the momentum of the system to be conserved,
we must have

( + ) = 0
d

dt
p ⃗ 1 p ⃗ 2 (10.5.6)

+ = constant.p ⃗ 1 p ⃗ 2 (10.5.7)
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∑
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N
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A system of objects that meets these two requirements is said to be a closed system (also called an isolated system). Thus, the more
compact way to express this is shown below.

The total momentum of a closed system is conserved:

This statement is called the Law of Conservation of Momentum. Along with the conservation of energy, it is one of the
foundations upon which all of physics stands. All our experimental evidence supports this statement: from the motions of galactic
clusters to the quarks that make up the proton and the neutron, and at every scale in between. In a closed system, the total
momentum never changes.

Note that there absolutely can be external forces acting on the system; but for the system’s momentum to remain constant, these
external forces have to cancel, so that the net external force is zero. Billiard balls on a table all have a weight force acting on them,
but the weights are balanced (canceled) by the normal forces, so there is no net force.

The Meaning of ‘System’
A system (mechanical) is the collection of objects in whose motion (kinematics and dynamics) you are interested. If you are
analyzing the bounce of a ball on the ground, you are probably only interested in the motion of the ball, and not of Earth; thus, the
ball is your system. If you are analyzing a car crash, the two cars together compose your system (Figure ).

Figure : The two cars together form the system that is to be analyzed. It is important to remember that the contents (the
mass) of the system do not change before, during, or after the objects in the system interact.

This page titled 10.5: Conservation of Linear Momentum (Part 1) is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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10.6: Conservation of Linear Momentum (Part 2)

Using conservation of momentum requires four basic steps. The first step is crucial:

1. Identify a closed system (total mass is constant, no net external force acts on the system).
2. Write down an expression representing the total momentum of the system before the “event” (explosion or collision).
3. Write down an expression representing the total momentum of the system after the “event.”
4. Set these two expressions equal to each other, and solve this equation for the desired quantity

Two carts in a physics lab roll on a level track, with negligible friction. These carts have small magnets at their ends, so that
when they collide, they stick together (Figure ). The first cart has a mass of 675 grams and is rolling at 0.75 m/s to the
right; the second has a mass of 500 grams and is rolling at 1.33 m/s, also to the right. After the collision, what is the velocity of
the two joined carts?

Figure : Two lab carts collide and stick together after the collision.

Strategy

We have a collision. We’re given masses and initial velocities; we’re asked for the final velocity. This all suggests using
conservation of momentum as a method of solution. However, we can only use it if we have a closed system. So we need to be
sure that the system we choose has no net external force on it, and that its mass is not changed by the collision.

Defining the system to be the two carts meets the requirements for a closed system: The combined mass of the two carts
certainly doesn’t change, and while the carts definitely exert forces on each other, those forces are internal to the system, so
they do not change the momentum of the system as a whole. In the vertical direction, the weights of the carts are canceled by
the normal forces on the carts from the track.

Solution
Conservation of momentum is

Define the direction of their initial velocity vectors to be the +x-direction. The initial momentum is then

The final momentum of the now-linked carts is

Equating:

Substituting the given numbers:

 Problem-Solving Strategy: Conservation of Momentum

 Example : Colliding Carts10.6.1

10.6.1
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=( ) .
+m1v1 m2v2

+m1 m2
î
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î

= (0.997 m/s) .î
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Significance
The principles that apply here to two laboratory carts apply identically to all objects of whatever type or size. Even for photons,
the concepts of momentum and conservation of momentum are still crucially important even at that scale. (Since they are
massless, the momentum of a photon is defined very differently from the momentum of ordinary objects. You will learn about
this when you study quantum physics.)

Suppose the second, smaller cart had been initially moving to the left. What would the sign of the final velocity have been in
this case?

A superball of mass 0.25 kg is dropped from rest from a height of h = 1.50 m above the floor. It bounces with no loss of energy
and returns to its initial height (Figure ).

a. What is the superball’s change of momentum during its bounce on the floor?
b. What was Earth’s change of momentum due to the ball colliding with the floor?
c. What was Earth’s change of velocity as a result of this collision?

(This example shows that you have to be careful about defining your system.)

Figure : A superball is dropped to the floor ( ), hits the floor ( ), bounces ( ), and returns to its initial height ( ).

Strategy

Since we are asked only about the ball’s change of momentum, we define our system to be the ball. But this is clearly not a
closed system; gravity applies a downward force on the ball while it is falling, and the normal force from the floor applies a
force during the bounce. Thus, we cannot use conservation of momentum as a strategy. Instead, we simply determine the ball’s
momentum just before it collides with the floor and just after, and calculate the difference. We have the ball’s mass, so we need
its velocities.

Solution
a. Since this is a one-dimensional problem, we use the scalar form of the equations. Let:

p  = the magnitude of the ball’s momentum at time t , the moment it was released; since it was dropped from rest, this is
zero.
p  = the magnitude of the ball’s momentum at time t , the instant just before it hits the floor.
p  = the magnitude of the ball’s momentum at time t , just after it loses contact with the floor after the bounce.

The ball’s change of momentum is

 Exercise10.6.1

 Example : A Bouncing Superball10.6.2

10.6.2

10.6.2 t0 t1 t2 t3

0 0

1 1

2 2
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Its velocity just before it hits the floor can be determined from either conservation of energy or kinematics. We use kinematics
here; you should re-solve it using conservation of energy and confirm you get the same result.

We want the velocity just before it hits the ground (at time t ). We know its initial velocity v  = 0 (at time t ), the height it falls,
and its acceleration; we don’t know the fall time. We could calculate that, but instead we use

Thus the ball has a momentum of

We don’t have an easy way to calculate the momentum after the bounce. Instead, we reason from the symmetry of the
situation.

Before the bounce, the ball starts with zero velocity and falls 1.50 m under the influence of gravity, achieving some amount of
momentum just before it hits the ground. On the return trip (after the bounce), it starts with some amount of momentum, rises
the same 1.50 m it fell, and ends with zero velocity. Thus, the motion after the bounce was the mirror image of the motion
before the bounce. From this symmetry, it must be true that the ball’s momentum after the bounce must be equal and opposite
to its momentum before the bounce. (This is a subtle but crucial argument; make sure you understand it before you go on.)
Therefore,

Thus, the ball’s change of momentum during the bounce is

b. What was Earth’s change of momentum due to the ball colliding with the floor? Your instinctive response may well have
been either “zero; the Earth is just too massive for that tiny ball to have affected it” or possibly, “more than zero, but utterly
negligible.” But no—if we re-define our system to be the Superball + Earth, then this system is closed (neglecting the
gravitational pulls of the Sun, the Moon, and the other planets in the solar system), and therefore the total change of
momentum of this new system must be zero. Therefore, Earth’s change of momentum is exactly the same magnitude:

c. What was Earth’s change of velocity as a result of this collision? This is where your instinctive feeling is probably correct:

This change of Earth’s velocity is utterly negligible

Significance
It is important to realize that the answer to part (c) is not a velocity; it is a change of velocity, which is a very different thing.
Nevertheless, to give you a feel for just how small that change of velocity is, suppose you were moving with a velocity of 4.7 x
10  m/s. At this speed, it would take you about 7 million years to travel a distance equal to the diameter of a hydrogen atom.

Δp ⃗ = −p ⃗ 2 p ⃗ 1

= −(− )p2 ĵ p1 ĵ

= ( + ) .p2 p1 ĵ

1 0 0

= − = −5.4 m/s .v ⃗ 1 ĵ 2gy
−−−√ ĵ

p ⃗ 1 = −(0.25 kg)(−5.4 m/s )ĵ

= −(1.4 kg ⋅ m/s) .ĵ

= − = +(1.4 kg ⋅ m/s) .p ⃗ 2 p ⃗ 1 ĵ

Δp ⃗ = −p ⃗ 2 p ⃗ 1
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Δv ⃗ Earth =
Δp ⃗ Earth

MEarth

= −
2.8 kg ⋅ m/s

5.97 × kg1024
ĵ

= −(4.7 × m/s) .10−25 ĵ
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Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the floor and stopped
(without bouncing)? Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the
floor and stopped (without bouncing)?

Two hockey pucks of identical mass are on a flat, horizontal ice hockey rink. The red puck is motionless; the blue puck is
moving at 2.5 m/s to the left (Figure ). It collides with the motionless red puck. The pucks have a mass of 15 g. After the
collision, the red puck is moving at 2.5 m/s, to the left. What is the final velocity of the blue puck?

Figure : Two identical hockey pucks colliding. The top diagram shows the pucks the instant before the collision, and the
bottom diagram show the pucks the instant after the collision. The net external force is zero.

Strategy

We’re told that we have two colliding objects, we’re told the masses and initial velocities, and one final velocity; we’re asked
for both final velocities. Conservation of momentum seems like a good strategy. Define the system to be the two pucks; there’s
no friction, so we have a closed system.

Before you look at the solution, what do you think the answer will be?

The blue puck final velocity will be:

a. zero
b. 2.5 m/s to the left
c. 2.5 m/s to the right
d. 1.25 m/s to the left
e. 1.25 m/s to the right
f. something else

Solution
Define the +x-direction to point to the right. Conservation of momentum then reads

Before the collision, the momentum of the system is entirely and only in the blue puck. Thus,

(Remember that the masses of the pucks are equal.) Substituting numbers:

Significance
Evidently, the two pucks simply exchanged momentum. The blue puck transferred all of its momentum to the red puck. In fact,
this is what happens in similar collision where m  = m .

 Exercise 10.6.2

 Example : Ice hockey 110.6.3

10.6.3

10.6.3
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Even if there were some friction on the ice, it is still possible to use conservation of momentum to solve this problem, but you
would need to impose an additional condition on the problem. What is that additional condition?

On November 12, 2014, the European Space Agency successfully landed a probe named Philae on Comet 67P/
Churyumov/Gerasimenko (Figure ). During the landing, however, the probe actually landed three times, because it
bounced twice. Let’s calculate how much the comet’s speed changed as a result of the first bounce.

Figure : An artist’s rendering of Philae landing on a comet. (credit: modification of work by “DLR German Aerospace
Center”/Flickr)

Let’s define upward to be the +y-direction, perpendicular to the surface of the comet, and y = 0 to be at the surface of the
comet. Here’s what we know:

The mass of Comet 67P: M  = 1.0 x 10  kg
The acceleration due to the comet’s gravity:  = −(5.0 x 10  m/s ) 
Philae’s mass: M  = 96 kg
Initial touchdown speed:  = −(1.0 m/s) 
Initial upward speed due to first bounce:  = (0.38 m/s) 
Landing impact time: t = 1.3 s

Strategy

We’re asked for how much the comet’s speed changed, but we don’t know much about the comet, beyond its mass and the
acceleration its gravity causes. However, we are told that the Philae lander collides with (lands on) the comet, and bounces off
of it. A collision suggests momentum as a strategy for solving this problem.

If we define a system that consists of both Philae and Comet 67/P, then there is no net external force on this system, and thus
the momentum of this system is conserved. (We’ll neglect the gravitational force of the sun.) Thus, if we calculate the change
of momentum of the lander, we automatically have the change of momentum of the comet. Also, the comet’s change of
velocity is directly related to its change of momentum as a result of the lander “colliding” with it.

Solution
Let  be Philae’s momentum at the moment just before touchdown, and  be its momentum just after the first bounce. Then
its momentum just before landing was

and just after was

Therefore, the lander’s change of momentum during the first bounce is

 Exercise 10.6.3

 Philae

10.6.4

10.6.4

c
13

a⃗  −3 2 ĵ

p

v ⃗ 1 ĵ

v ⃗ 2 ĵ

Δ

p ⃗ 1 p ⃗ 2

= = (96 kg)(−1.0 m/s ) = −(96 kg ⋅ m/s)p ⃗ 1 Mpv ⃗ 1 ĵ ĵ

= = (96 kg)(+0.38 m/s ) = (36.5 kg ⋅ m/s) .p ⃗ 2 Mpv ⃗ 2 ĵ ĵ
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Notice how important it is to include the negative sign of the initial momentum.

Now for the comet. Since momentum of the system must be conserved, the comet’s momentum changed by exactly the
negative of this:

Therefore, its change of velocity is

Significance
This is a very small change in velocity, about a thousandth of a billionth of a meter per second. Crucially, however, it is not
zero.

The changes of momentum for Philae and for Comet 67/P were equal (in magnitude). Were the impulses experienced by
Philae and the comet equal? How about the forces? How about the changes of kinetic energies?

This page titled 10.6: Conservation of Linear Momentum (Part 2) is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

9.6: Conservation of Linear Momentum (Part 2) by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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Δ = −Δ = −(133 kg ⋅ m/s) .p ⃗ c p ⃗  ĵ

Δ = = = −(1.33 × m/s) .v ⃗ c
Δp ⃗ c
Mc

−(133 kg ⋅ m/s)ĵ

1.0 × kg1013
10−11 ĵ
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10.3: Impulse and Collisions (Part 1)

Explain what an impulse is, physically
Describe what an impulse does
Relate impulses to collisions
Apply the impulse-momentum theorem to solve problems

We have defined momentum to be the product of mass and velocity. Therefore, if an object’s velocity should change (due to the
application of a force on the object), then necessarily, its momentum changes as well. This indicates a connection between
momentum and force. The purpose of this section is to explore and describe that connection.

Suppose you apply a force on a free object for some amount of time. Clearly, the larger the force, the larger the object’s change of
momentum will be. Alternatively, the more time you spend applying this force, again the larger the change of momentum will be,
as depicted in Figure . The amount by which the object’s motion changes is therefore proportional to the magnitude of the
force, and also to the time interval over which the force is applied.

Figure : The change in momentum of an object is proportional to the length of time during which the force is applied. If a
force is exerted on the lower ball for twice as long as on the upper ball, then the change in the momentum of the lower ball is twice
that of the upper ball.

Mathematically, if a quantity is proportional to two (or more) things, then it is proportional to the product of those things. The
product of a force and a time interval (over which that force acts) is called impulse, and is given the symbol .

Let (t) be the force applied to an object over some differential time interval  (Figure ). The resulting impulse on the
object is defined as

Figure : A force applied by a tennis racquet to a tennis ball over a time interval generates an impulse acting on the ball.

The total impulse over the interval t  − t  is

 Learning Objectives
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or

Equations  and  together say that when a force is applied for an infinitesimal time interval dt, it causes an infinitesimal
impulse d , and the total impulse given to the object is defined to be the sum (integral) of all these infinitesimal impulses.

To calculate the impulse using Equation , we need to know the force function F(t), which we often don’t. However, a result
from calculus is useful here: Recall that the average value of a function over some interval is calculated by

where x = x  − x . Applying this to the time-dependent force function, we obtain

Therefore, from Equation ,

The idea here is that you can calculate the impulse on the object even if you don’t know the details of the force as a function of
time; you only need the average force. In fact, though, the process is usually reversed: You determine the impulse (by measurement
or calculation) and then calculate the average force that caused that impulse.

To calculate the impulse, a useful result follows from writing the force in Equation  as (t) = m (t):

For a constant force  =  = m , this simplifies to

That is,

Note that the integral form, Equation , applies to constant forces as well; in that case, since the force is independent of time,
it comes out of the integral, which can then be trivially evaluated.

Approximately 50,000 years ago, a large (radius of 25 m) iron-nickel meteorite collided with Earth at an estimated speed of
1.28 x 10  m/s in what is now the northern Arizona desert, in the United States. The impact produced a crater that is still
visible today (Figure ); it is approximately 1200 m (three-quarters of a mile) in diameter, 170 m deep, and has a rim that
rises 45 m above the surrounding desert plain. Iron-nickel meteorites typically have a density of  = 7970 kg/m . Use impulse
considerations to estimate the average force and the maximum force that the meteor applied to Earth during the impact.

≡ (t)dt.J ⃗  ∫
tf

ti

F ⃗  (10.3.3)

10.3.1 10.3.3

J ⃗ 

10.3.3
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Δ f i
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tf
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ti
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= m Δt = m −m = m( − ).J ⃗  a⃗  v ⃗ f v ⃗ i v ⃗ f v ⃗ i (10.3.8)
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Figure : The Arizona Meteor Crater in Flagstaff, Arizona (often referred to as the Barringer Crater after the person who
first suggested its origin and whose family owns the land). (credit: “Shane.torgerson”/Wikimedia Commons)

Strategy

It is conceptually easier to reverse the question and calculate the force that Earth applied on the meteor in order to stop it.
Therefore, we’ll calculate the force on the meteor and then use Newton’s third law to argue that the force from the meteor on
Earth was equal in magnitude and opposite in direction.

Using the given data about the meteor, and making reasonable guesses about the shape of the meteor and impact time, we first
calculate the impulse using Equation . We then use the relationship between force and impulse Equation  to
estimate the average force during impact. Next, we choose a reasonable force function for the impact event, calculate the
average value of that function Equation , and set the resulting expression equal to the calculated average force. This
enables us to solve for the maximum force.

Solution
Define upward to be the +y-direction. For simplicity, assume the meteor is traveling vertically downward prior to impact. In
that case, its initial velocity is  = −v  , and the force Earth exerts on the meteor points upward, (t) = + F(t) . The situation
at t = 0 is depicted below.

The average force during the impact is related to the impulse by

From Equation ,  = m , so we have

The mass is equal to the product of the meteor’s density and its volume:

If we assume (guess) that the meteor was roughly spherical, we have

10.3.3

10.3.9 10.3.6

10.3.5

v ⃗ i i ĵ F ⃗  ĵ

= .F ⃗ 
ave

J ⃗ 

Δt
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ave
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Thus we obtain

The problem says the velocity at impact was −1.28 x 10  m/s  (the final velocity is zero); also, we guess that the primary
impact lasted about t  = 2 s. Substituting these values gives

This is the average force applied during the collision. Notice that this force vector points in the same direction as the change of
velocity vector .

Next, we calculate the maximum force. The impulse is related to the force function by

We need to make a reasonable choice for the force as a function of time. We define t = 0 to be the moment the meteor first
touches the ground. Then we assume the force is a maximum at impact, and rapidly drops to zero. A function that does this is

The parameter  represents how rapidly the force decreases to zero.) The average force is

where t = t  − 0 s. Since we already have a numeric value for F , we can use the result of the integral to obtain F .
Choosing  = t  (this is a common choice, as you will see in later chapters), and guessing that t  = 2 s, this integral
evaluates to

Thus, the maximum force has a magnitude of

The complete force function, including the direction, is

This is the force Earth applied to the meteor; by Newton’s third law, the force the meteor applied to Earth is

which is the answer to the original question.

Significance
The graph of this function contains important information. Let’s graph (the magnitude of) both this function and the average
force together (Figure ).

= = .F ⃗ 
ave

ρV Δv ⃗ 

Δt

ρ( π ) ( − )
4

3
R3 v ⃗ f v ⃗ i

Δt
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Figure : A graph of the average force (in red) and the force as a function of time (blue) of the meteor impact. The areas
under the curves are equal to each other, and are numerically equal to the applied impulse.

Notice that the area under each plot has been filled in. For the plot of the (constant) force F , the area is a rectangle,
corresponding to F  t = J. As for the plot of F(t), recall from calculus that the area under the plot of a function is
numerically equal to the integral of that function, over the specified interval; so here, that is F(t)dt = J. Thus, the areas are
equal, and both represent the impulse that the meteor applied to Earth during the two-second impact. The average force on
Earth sounds like a huge force, and it is. Nevertheless, Earth barely noticed it. The acceleration Earth obtained was just

which is completely immeasurable. That said, the impact created seismic waves that nowadays could be detected by modern
monitoring equipment.

A car traveling at 27 m/s collides with a building. The collision with the building causes the car to come to a stop in
approximately 1 second. The driver, who weighs 860 N, is protected by a combination of a variable-tension seatbelt and an
airbag (Figure ). (In effect, the driver collides with the seatbelt and airbag and not with the building.) The airbag and
seatbelt slow his velocity, such that he comes to a stop in approximately 2.5 s.

a. What average force does the driver experience during the collision?
b. Without the seatbelt and airbag, his collision time (with the steering wheel) would have been approximately 0.20 s. What

force would he experience in this case?

Figure : The motion of a car and its driver at the instant before and the instant after colliding with the wall. The
restrained driver experiences a large backward force from the seatbelt and airbag, which causes his velocity to decrease to zero.
(The forward force from the seatback is much smaller than the backward force, so we neglect it in the solution.)

Strategy

We are given the driver’s weight, his initial and final velocities, and the time of collision; we are asked to calculate a force.
Impulse seems the right way to tackle this; we can combine Equation  and Equation .

Solution
a. Define the +x-direction to be the direction the car is initially moving. We know

10.3.4
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ave Δ
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= = = −(5.6 × m/ )a⃗ 
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and

Since J is equal to both those things, they must be equal to each other:

We need to convert this weight to the equivalent mass, expressed in SI units:

Remembering that , and noting that the final velocity is zero, we solve for the force:

The negative sign implies that the force slows him down. For perspective, this is about 1.1 times his own weight.
b. Same calculation, just the different time interval:

which is about 14 times his own weight. Big difference!

Significance
You see that the value of an airbag is how greatly it reduces the force on the vehicle occupants. For this reason, they have been
required on all passenger vehicles in the United States since 1991, and have been commonplace throughout Europe and Asia
since the mid-1990s. The change of momentum in a crash is the same, with or without an airbag; the force, however, is vastly
different.

This page titled 10.3: Impulse and Collisions (Part 1) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

9.3: Impulse and Collisions (Part 1) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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10.4: Impulse and Collisions (Part 2)

Effect of Impulse
Since an impulse is a force acting for some amount of time, it causes an object’s motion to change. Recall

Because m  is the momentum of a system, m  is the change of momentum . This gives us the following relation, called the
impulse-momentum theorem (or relation).

An impulse applied to a system changes the system’s momentum, and that change of momentum is exactly equal to the
impulse that was applied:

The impulse-momentum theorem is depicted graphically in Figure .

Figure : Illustration of impulse-momentum theorem. (a) A ball with initial velocity  and momentum  receives an
impulse . (b) This impulse is added vectorially to the initial momentum. (c) Thus, the impulse equals the change in momentum, 

 = . (d) After the impulse, the ball moves off with its new momentum .

There are two crucial concepts in the impulse-momentum theorem:

1. Impulse is a vector quantity; an impulse of, say, −(10 N • s)  is very different from an impulse of +(10 N • s) ; they cause
completely opposite changes of momentum.

2. An impulse does not cause momentum; rather, it causes a change in the momentum of an object. Thus, you must subtract the
final momentum from the initial momentum, and—since momentum is also a vector quantity—you must take careful account of
the signs of the momentum vectors.

The most common questions asked in relation to impulse are to calculate the applied force, or the change of velocity that occurs as
a result of applying an impulse. The general approach is the same.

1. Express the impulse as force times the relevant time interval.
2. Express the impulse as the change of momentum, usually m v.
3. Equate these and solve for the desired quantity.

= mΔ .J ⃗  v ⃗  (10.4.1)

v ⃗  Δv ⃗  Δp ⃗ 

 Impulse-Momentum Theorem

= Δ .J ⃗  p ⃗  (10.4.2)

10.4.1

10.4.1 v ⃗ 0 p ⃗ 0
J ⃗ 

J ⃗  Δp ⃗  p ⃗ 
f

î î

 Problem-Solving Strategy: Impulse-Momentum Theorem
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Figure : The fictional starship Enterprise from the Star Trek adventures operated on so-called “impulse engines” that
combined matter with antimatter to produce energy.

“Mister Sulu, take us out; ahead one-quarter impulse.” With this command, Captain Kirk of the starship Enterprise (Figure 
) has his ship start from rest to a final speed of v  = (3.0 x 10  m/s). Assuming this maneuver is completed in 60 s,

what average force did the impulse engines apply to the ship?

Strategy

We are asked for a force; we know the initial and final speeds (and hence the change in speed), and we know the time interval
over which this all happened. In particular, we know the amount of time that the force acted. This suggests using the impulse-
momentum relation. To use that, though, we need the mass of the Enterprise. An internet search gives a best estimate of the
mass of the Enterprise (in the 2009 movie) as 2 x 10  kg.

Solution
Because this problem involves only one direction (i.e., the direction of the force applied by the engines), we only need the
scalar form of the impulse-momentum theorem Equation , which is

with

and

Equating these expressions gives

Solving for the magnitude of the force and inserting the given values leads to

Significance
This is an unimaginably huge force. It goes almost without saying that such a force would kill everyone on board instantly, as
well as destroying every piece of equipment. Fortunately, the Enterprise has “inertial dampeners.” It is left as an exercise for
the reader’s imagination to determine how these work.

The U.S. Air Force uses “10gs” (an acceleration equal to 10 x 9.8 m/s ) as the maximum acceleration a human can withstand
(but only for several seconds) and survive. How much time must the Enterprise spend accelerating if the humans on board are
to experience an average of at most 10gs of acceleration? (Assume the inertial dampeners are offline.)
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Apple released its iPhone 6 Plus in November 2014. According to many reports, it was originally supposed to have a screen
made from sapphire, but that was changed at the last minute for a hardened glass screen. Reportedly, this was because the
sapphire screen cracked when the phone was dropped. What force did the iPhone 6 Plus experience as a result of being
dropped?

Strategy

The force the phone experiences is due to the impulse applied to it by the floor when the phone collides with the floor. Our
strategy then is to use the impulse-momentum relationship. We calculate the impulse, estimate the impact time, and use this to
calculate the force. We need to make a couple of reasonable estimates, as well as find technical data on the phone itself. First,
let’s suppose that the phone is most often dropped from about chest height on an average-height person. Second, assume that it
is dropped from rest, that is, with an initial vertical velocity of zero. Finally, we assume that the phone bounces very little—the
height of its bounce is assumed to be negligible.

Solution
Define upward to be the +y-direction. A typical height is approximately h = 1.5 m and, as stated,  = (0 m/s) . The average
force on the phone is related to the impulse the floor applies on it during the collision:

The impulse  equals the change in momentum,

so

Next, the change of momentum is

We need to be careful with the velocities here; this is the change of velocity due to the collision with the floor. But the phone
also has an initial drop velocity [  = (0 m/s) ], so we label our velocities. Let:

 = the initial velocity with which the phone was dropped (zero, in this example)
 = the velocity the phone had the instant just before it hit the floor
 = the final velocity of the phone as a result of hitting the floor

Figure  shows the velocities at each of these points in the phone’s trajectory.

Figure : (a) The initial velocity of the phone is zero, just after the person drops it. (b) Just before the phone hits the floor,
its velocity is , which is unknown at the moment, except for its direction, which is downward (− ). (c) After bouncing off
the floor, the phone has a velocity , which is also unknown, except for its direction, which is upward (+ ).

 Example : The iPhone Drop10.4.2
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v ⃗ 2 ĵ
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With these definitions, the change of momentum of the phone during the collision with the floor is

Since we assume the phone doesn’t bounce at all when it hits the floor (or at least, the bounce height is negligible), then  is
zero, so

We can get the speed of the phone just before it hits the floor using either kinematics or conservation of energy. We’ll use
conservation of energy here; you should re-do this part of the problem using kinematics and prove that you get the same
answer.

First, define the zero of potential energy to be located at the floor. Conservation of energy then gives us:

Defining h  = 0 and using  = (0 m/s)  gives

Because v  is a vector magnitude, it must be positive. Thus, m v = mv  = m . Inserting this result into the
expression for force gives

Finally, we need to estimate the collision time. One common way to estimate a collision time is to calculate how long the
object would take to travel its own length. The phone is moving at 5.4 m/s just before it hits the floor, and it is 0.14 m long,
giving an estimated collision time of 0.026 s. Inserting the given numbers, we obtain

Significance
The iPhone itself weighs just (0.172 kg)(9.81 m/s ) = 1.68 N; the force the floor applies to it is therefore over 20 times its
weight.

What if we had assumed the phone did bounce on impact? Would this have increased the force on the iPhone, decreased it, or
made no difference?

Momentum and Force
In Example , we obtained an important relationship:

mΔ = m( − ).v ⃗  v ⃗ 2 v ⃗ 1 (10.4.12)

v ⃗ 2

mΔ = m[0 −(− )]v ⃗  v1 ĵ (10.4.13)

mΔ = +m .v ⃗  v1 ĵ (10.4.14)
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In words, the average force applied to an object is equal to the change of the momentum that the force causes, divided by the time
interval over which this change of momentum occurs. This relationship is very useful in situations where the collision time t is
small, but measurable; typical values would be 1/10th of a second, or even one thousandth of a second. Car crashes, punting a
football, or collisions of subatomic particles would meet this criterion.

For a continuously changing momentum—due to a continuously changing force—this becomes a powerful conceptual tool. In the
limit t → dt, Equation 9.3.1 becomes

This says that the rate of change of the system’s momentum (implying that momentum is a function of time) is exactly equal to the
net applied force (also, in general, a function of time). This is, in fact, Newton’s second law, written in terms of momentum rather
than acceleration. This is the relationship Newton himself presented in his Principia Mathematica (although he called it “quantity
of motion” rather than “momentum”).

If the mass of the system remains constant, Equation 9.3.3 reduces to the more familiar form of Newton’s second law. We can see
this by substituting the definition of momentum:

The assumption of constant mass allowed us to pull m out of the derivative. If the mass is not constant, we cannot use this form of
the second law, but instead must start from Equation 9.3.3. Thus, one advantage to expressing force in terms of changing
momentum is that it allows for the mass of the system to change, as well as the velocity; this is a concept we’ll explore when we
study the motion of rockets.

The net external force on a system is equal to the rate of change of the momentum of that system caused by the force:

Although Equation 9.3.3 allows for changing mass, as we will see in Rocket Propulsion, the relationship between momentum and
force remains useful when the mass of the system is constant, as in the following example.

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed of
58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’ racquet? Assume that the
ball’s speed just after impact is 58 m/s, as shown in Figure , that the initial horizontal component of the velocity before
impact is negligible, and that the ball remained in contact with the racquet for 5.0 ms.

= .F ⃗ 
ave

Δp ⃗ 

Δt
(10.4.16)

Δ

Δ

= .F ⃗  dp ⃗ 

dt
(10.4.17)

= = m = m .F ⃗  d(m )v ⃗ 

dt

dv ⃗ 

dt
a⃗  (10.4.18)

 Newton’s Second Law of Motion in Terms of Momentum

= .F ⃗  dp ⃗ 

dt
(10.4.19)

 Example : Calculating Force: Venus Williams’ Tennis Serve10.4.3
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Figure : The final velocity of the tennis ball is  = (58 m/s) .

Strategy

This problem involves only one dimension because the ball starts from having no horizontal velocity component before impact.
Newton’s second law stated in terms of momentum is then written as

As noted above, when mass is constant, the change in momentum is given by

where we have used scalars because this problem involves only one dimension. In this example, the velocity just after impact
and the time interval are given; thus, once p is calculated, we can use F =  to find the force.

Solution
To determine the change in momentum, insert the values for the initial and final velocities into the equation above:

Now the magnitude of the net external force can be determined by using

where we have retained only two significant figures in the final step.

Significance
This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact (note that the
ball also experienced the 0.57-N force of gravity, but that force was not due to the racquet). This problem could also be solved
by first finding the acceleration and then using F = ma, but one additional step would be required compared with the strategy
used in this example.

This page titled 10.4: Impulse and Collisions (Part 2) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

9.4: Impulse and Collisions (Part 2) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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10.7: Types of Collisions

Identify the type of collision
Correctly label a collision as elastic or inelastic
Use kinetic energy along with momentum and impulse to analyze a collision

Although momentum is conserved in all interactions, not all interactions (collisions or explosions) are the same. The possibilities
include:

A single object can explode into multiple objects (explosions).
Multiple objects can collide and stick together, forming a single object (inelastic).
Multiple objects can collide and bounce off of each other, remaining as multiple objects (elastic). If they do bounce off each
other, then they may recoil at the same speeds with which they approached each other before the collision, or they may move
off more slowly.

It’s useful, therefore, to categorize different types of interactions, according to how the interacting objects move before and after
the interaction.

Explosions
The first possibility is that a single object may break apart into two or more pieces. An example of this is a firecracker, or a bow
and arrow, or a rocket rising through the air toward space. These can be difficult to analyze if the number of fragments after the
collision is more than about three or four; but nevertheless, the total momentum of the system before and after the explosion is
identical.

Note that if the object is initially motionless, then the system (which is just the object) has no momentum and no kinetic energy.
After the explosion, the net momentum of all the pieces of the object must sum to zero (since the momentum of this closed system
cannot change). However, the system will have a great deal of kinetic energy after the explosion, although it had none before. Thus,
we see that, although the momentum of the system is conserved in an explosion, the kinetic energy of the system most definitely is
not; it increases. This interaction—one object becoming many, with an increase of kinetic energy of the system—is called an
explosion.

Where does the energy come from? Does conservation of energy still hold? Yes; some form of potential energy is converted to
kinetic energy. In the case of gunpowder burning and pushing out a bullet, chemical potential energy is converted to kinetic energy
of the bullet, and of the recoiling gun. For a bow and arrow, it is elastic potential energy in the bowstring.

Inelastic
The second possibility is the reverse: that two or more objects collide with each other and stick together, thus (after the collision)
forming one single composite object. The total mass of this composite object is the sum of the masses of the original objects, and
the new single object moves with a velocity dictated by the conservation of momentum. However, it turns out again that, although
the total momentum of the system of objects remains constant, the kinetic energy doesn’t; but this time, the kinetic energy
decreases. This type of collision is called inelastic.

Any collision where the objects stick together will result in the maximum loss of kinetic energy (i.e., K  will be a minimum).

Such a collision is said to be perfectly inelastic. In the extreme case, multiple objects collide, stick together, and remain motionless
after the collision. Since the objects are all motionless after the collision, the final kinetic energy is also zero; therefore, the loss of
kinetic energy is a maximum.

If 0 < K  < K , the collision is inelastic.
If K  is the lowest energy, or the energy lost by both objects is the most, the collision is perfectly inelastic (objects stick
together).
If K  = K , the collision is elastic.
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Elastic
The extreme case on the other end is if two or more objects approach each other, collide, and bounce off each other, moving away
from each other at the same relative speed at which they approached each other. In this case, the total kinetic energy of the system
is conserved. Such an interaction is called elastic.

In any interaction of a closed system of objects, the total momentum of the system is conserved (  = ) but the kinetic energy
may not be:

If 0 < K  < K , the collision is inelastic.
If K  = 0 , the collision is perfectly inelastic.
If K  = K , the collision is elastic.
If K  > K , the interaction is an explosion.

The point of all this is that, in analyzing a collision or explosion, you can use both momentum and kinetic energy.

A closed system always conserves momentum; it might also conserve kinetic energy, but very often it doesn’t. Energy-
momentum problems confined to a plane (as ours are) usually have two unknowns. Generally, this approach works well:

1. Define a closed system.
2. Write down the expression for conservation of momentum.
3. If kinetic energy is conserved, write down the expression for conservation of kinetic energy; if not, write down the

expression for the change of kinetic energy.
4. You now have two equations in two unknowns, which you solve by standard methods.

A proton (mass 1.67 x 10  kg) collides with a neutron (with essentially the same mass as the proton) to form a particle called
a deuteron. What is the velocity of the deuteron if it is formed from a proton moving with velocity 7.0 x 10  m/s to the left and
a neutron moving with velocity 4.0 x 10  m/s to the right?

Strategy

Define the system to be the two particles. This is a collision, so we should first identify what kind. Since we are told the two
particles form a single particle after the collision, this means that the collision is perfectly inelastic. Thus, kinetic energy is not
conserved, but momentum is. Thus, we use conservation of momentum to determine the final velocity of the system.

Solution
Treat the two particles as having identical masses M. Use the subscripts p, n, and d for proton, neutron, and deuteron,
respectively. This is a one-dimensional problem, so we have

The masses divide out:

The velocity is thus .

Significance

p ⃗ f p ⃗ i
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 Problem-Solving Strategy: Collisions

 Example : Formation of a deuteron10.7.1
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This is essentially how particle colliders like the Large Hadron Collider work: They accelerate particles up to very high speeds
(large momenta), but in opposite directions. This maximizes the creation of so-called “daughter particles.”

(This is a variation of an earlier example.)

Two ice hockey pucks of different masses are on a flat, horizontal hockey rink. The red puck has a mass of 15 grams, and is
motionless; the blue puck has a mass of 12 grams, and is moving at 2.5 m/s to the left. It collides with the motionless red puck
(Figure ). If the collision is perfectly elastic, what are the final velocities of the two pucks?

Figure : Two different hockey pucks colliding. The top diagram shows the pucks the instant before the collision, and the
bottom diagram show the pucks the instant after the collision. The net external force is zero.

Strategy

We’re told that we have two colliding objects, and we’re told their masses and initial velocities, and one final velocity; we’re
asked for both final velocities. Conservation of momentum seems like a good strategy; define the system to be the two pucks.
There is no friction, so we have a closed system. We have two unknowns (the two final velocities), but only one equation. The
comment about the collision being perfectly elastic is the clue; it suggests that kinetic energy is also conserved in this collision.
That gives us our second equation.

The initial momentum and initial kinetic energy of the system resides entirely and only in the second puck (the blue one); the
collision transfers some of this momentum and energy to the first puck.

Solution
Conservation of momentum, in this case, reads

Conservation of kinetic energy reads

There are our two equations in two unknowns. The algebra is tedious but not terribly difficult; you definitely should work it
through. The solution is

Substituting the given numbers, we obtain

Significance

 Example : Ice hockey 210.7.2
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Notice that after the collision, the blue puck is moving to the right; its direction of motion was reversed. The red puck is now
moving to the left.

There is a second solution to the system of equations solved in this example (because the energy equation is quadratic): v  =
−2.5 m/s, v = 0. This solution is unacceptable on physical grounds; what’s wrong with it?

The 2012 movie “The Avengers” has a scene where Iron Man and Thor fight. At the beginning of the fight, Thor throws his
hammer at Iron Man, hitting him and throwing him slightly up into the air and against a small tree, which breaks. From the
video, Iron Man is standing still when the hammer hits him. The distance between Thor and Iron Man is approximately 10 m,
and the hammer takes about 1 s to reach Iron Man after Thor releases it. The tree is about 2 m behind Iron Man, which he hits
in about 0.75 s. Also from the video, Iron Man’s trajectory to the tree is very close to horizontal. Assuming Iron Man’s total
mass is 200 kg:

a. Estimate the mass of Thor’s hammer
b. Estimate how much kinetic energy was lost in this collision

Strategy

After the collision, Thor’s hammer is in contact with Iron Man for the entire time, so this is a perfectly inelastic collision. Thus,
with the correct choice of a closed system, we expect momentum is conserved, but not kinetic energy. We use the given
numbers to estimate the initial momentum, the initial kinetic energy, and the final kinetic energy. Because this is a one-
dimensional problem, we can go directly to the scalar form of the equations.

Solution
a. First, we posit conservation of momentum. For that, we need a closed system. The choice here is the system (hammer +

Iron Man), from the time of collision to the moment just before Iron Man and the hammer hit the tree. Let:
M  = mass of the hammer
M  = mass of Iron Man
v  = velocity of the hammer before hitting Iron Man
v = combined velocity of Iron Man + hammer after the collision

Again, Iron Man’s initial velocity was zero. Conservation of momentum here reads:

We are asked to find the mass of the hammer, so we have

Considering the uncertainties in our estimates, this should be expressed with just one significant figure; thus, M  = 7 x 10  kg.

b. The initial kinetic energy of the system, like the initial momentum, is all in the hammer:

 Exercise 10.7.1
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After the collision,

Thus, there was a loss of 3500 J − 960 J = 2540 J.

Significance
From other scenes in the movie, Thor apparently can control the hammer’s velocity with his mind. It is possible, therefore, that
he mentally causes the hammer to maintain its initial velocity of 10 m/s while Iron Man is being driven backward toward the
tree. If so, this would represent an external force on our system, so it would not be closed. Thor’s mental control of his hammer
is beyond the scope of this book, however.

At a stoplight, a large truck (3000 kg) collides with a motionless small car (1200 kg). The truck comes to an instantaneous
stop; the car slides straight ahead, coming to a stop after sliding 10 meters. The measured coefficient of friction between the
car’s tires and the road was 0.62. How fast was the truck moving at the moment of impact?

Strategy

At first it may seem we don’t have enough information to solve this problem. Although we know the initial speed of the car,
we don’t know the speed of the truck (indeed, that’s what we’re asked to find), so we don’t know the initial momentum of the
system. Similarly, we know the final speed of the truck, but not the speed of the car immediately after impact. The fact that the
car eventually slid to a speed of zero doesn’t help with the final momentum, since an external friction force caused that. Nor
can we calculate an impulse, since we don’t know the collision time, or the amount of time the car slid before stopping. A
useful strategy is to impose a restriction on the analysis.

Suppose we define a system consisting of just the truck and the car. The momentum of this system isn’t conserved, because of
the friction between the car and the road. But if we could find the speed of the car the instant after impact—before friction had
any measurable effect on the car—then we could consider the momentum of the system to be conserved, with that restriction.

Can we find the final speed of the car? Yes; we invoke the work-kinetic energy theorem.

Solution
First, define some variables. Let:

M  and M  be the masses of the car and truck, respectively
v  and v  be the velocities of the truck before and after the collision, respectively
v  and v  be the velocities of the car before and after the collision, respectively
K  and K  be the kinetic energies of the car immediately after the collision, and after the car has stopped sliding (so K  = 0).
d be the distance the car slides after the collision before eventually coming to a stop.

Since we actually want the initial speed of the truck, and since the truck is not part of the work-energy calculation, let’s start
with conservation of momentum. For the car + truck system, conservation of momentum reads

Since the car’s initial velocity was zero, as was the truck’s final velocity, this simplifies to

Ki =
1

2
MHv

2
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1

2
)2

= 3500 J.
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1

2
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2
)2

= 960 J.

 Example : analyzing a car crash10.7.4
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So now we need the car’s speed immediately after impact. Recall that

where

Also,

The work is done over the distance the car slides, which we’ve called d. Equating:

Friction is the force on the car that does the work to stop the sliding. With a level road, the friction force is

Since the angle between the directions of the friction force vector and the displacement d is 180°, and cos(180°) = –1, we have

(Notice that the car’s mass divides out; evidently the mass of the car doesn’t matter.)

Solving for the car’s speed immediately after the collision gives

Substituting the given numbers:

Now we can calculate the initial speed of the truck:

Significance
This is an example of the type of analysis done by investigators of major car accidents. A great deal of legal and financial
consequences depend on an accurate analysis and calculation of momentum and energy.

Suppose there had been no friction (the collision happened on ice); that would make  zero, and thus ,
which is obviously wrong. What is the mistake in this conclusion?

Subatomic Collisions and Momentum
Conservation of momentum is crucial to our understanding of atomic and subatomic particles because much of what we know
about these particles comes from collision experiments.

At the beginning of the twentieth century, there was considerable interest in, and debate about, the structure of the atom. It was
known that atoms contain two types of electrically charged particles: negatively charged electrons and positively charged protons.
(The existence of an electrically neutral particle was suspected, but would not be confirmed until 1932.) The question was, how
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− −−−−

√ (10.7.13)

vc,f = 2(0.62)(9.81 m/ )(10 m)s2
− −−−−−−−−−−−−−−−−−−−

√

= 11.0 m/s.

=( ) (11.0 m/s) = 4.4 m/s.vT ,i
1200 kg

3000 kg
(10.7.14)
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were these particles arranged in the atom? Were they distributed uniformly throughout the volume of the atom (as J.J. Thomson
proposed), or arranged at the corners of regular polygons (which was Gilbert Lewis’ model), or rings of negative charge that
surround the positively charged nucleus—rather like the planetary rings surrounding Saturn (as suggested by Hantaro Nagaoka), or
something else?

The New Zealand physicist Ernest Rutherford (along with the German physicist Hans Geiger and the British physicist Ernest
Marsden) performed the crucial experiment in 1909. They bombarded a thin sheet of gold foil with a beam of highenergy (that is,
high-speed) alpha-particles (the nucleus of a helium atom). The alpha-particles collided with the gold atoms, and their subsequent
velocities were detected and analyzed, using conservation of momentum and conservation of energy.

If the charges of the gold atoms were distributed uniformly (per Thomson), then the alpha-particles should collide with them and
nearly all would be deflected through many angles, all small; the Nagaoka model would produce a similar result. If the atoms were
arranged as regular polygons (Lewis), the alpha-particles would deflect at a relatively small number of angles.

What actually happened is that nearly none of the alpha-particles were deflected. Those that were, were deflected at large angles,
some close to 180° —those alpha-particles reversed direction completely (Figure ). None of the existing atomic models
could explain this. Eventually, Rutherford developed a model of the atom that was much closer to what we now have—again, using
conservation of momentum and energy as his starting point.

Figure : The Thomson and Rutherford models of the atom. The Thomson model predicted that nearly all of the incident
alpha-particles would be scattered and at small angles. Rutherford and Geiger found that nearly none of the alpha particles were
scattered, but those few that were deflected did so through very large angles. The results of Rutherford’s experiments were
inconsistent with the Thomson model. Rutherford used conservation of momentum and energy to develop a new, and better model
of the atom—the nuclear model.
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10.8: Collisions in Multiple Dimensions

Express momentum as a two-dimensional vector
Write equations for momentum conservation in component form
Calculate momentum in two dimensions, as a vector quantity

It is far more common for collisions to occur in two dimensions; that is, the angle between the initial velocity vectors is neither zero
nor 180°. Let’s see what complications arise from this.

The first idea we need is that momentum is a vector; like all vectors, it can be expressed as a sum of perpendicular components
(usually, though not always, an x-component and a y-component, and a z-component if necessary). Thus, when we write down the
statement of conservation of momentum for a problem, our momentum vectors can be, and usually will be, expressed in component
form.

The second idea we need comes from the fact that momentum is related to force:

Expressing both the force and the momentum in component form,

Remember, these equations are simply Newton’s second law, in vector form and in component form. We know that Newton’s
second law is true in each direction, independently of the others. It follows therefore (via Newton’s third law) that conservation of
momentum is also true in each direction independently.

These two ideas motivate the solution to two-dimensional problems: We write down the expression for conservation of momentum
twice: once in the x-direction and once in the y-direction.

This procedure is shown graphically in Figure .

Figure : (a) For two-dimensional momentum problems, break the initial momentum vectors into their x- and y-components.
(b) Add the x- and y-components together separately. This gives you the x- and y-components of the final momentum, which are
shown as red dashed vectors. (c) Adding these components together gives the final momentum.

We solve each of these two component equations independently to obtain the x- and y-components of the desired velocity vector:

(Here, m represents the total mass of the system.) Finally, combine these components using the Pythagorean theorem,
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The method for solving a two-dimensional (or even three-dimensional) conservation of momentum problem is generally the
same as the method for solving a one-dimensional problem, except that you have to conserve momentum in both (or all three)
dimensions simultaneously:

1. Identify a closed system.
2. Write down the equation that represents conservation of momentum in the x-direction, and solve it for the desired quantity.

If you are calculating a vector quantity (velocity, usually), this will give you the x-component of the vector.
3. Write down the equation that represents conservation of momentum in the y-direction, and solve. This will give you the y-

component of your vector quantity.
4. Assuming you are calculating a vector quantity, use the Pythagorean theorem to calculate its magnitude, using the results of

steps 3 and 4.

A small car of mass 1200 kg traveling east at 60 km/hr collides at an intersection with a truck of mass 3000 kg that is traveling
due north at 40 km/hr (Figure ). The two vehicles are locked together. What is the velocity of the combined wreckage?

Figure : A large truck moving north is about to collide with a small car moving east. The final momentum vector has
both x- and y-components.

Strategy

First off, we need a closed system. The natural system to choose is the (car + truck), but this system is not closed; friction from
the road acts on both vehicles. We avoid this problem by restricting the question to finding the velocity at the instant just after
the collision, so that friction has not yet had any effect on the system. With that restriction, momentum is conserved for this
system.

Since there are two directions involved, we do conservation of momentum twice: once in the x-direction and once in the y-
direction.

Solution
Before the collision the total momentum is

After the collision, the wreckage has momentum

Since the system is closed, momentum must be conserved, so we have

= | | = .vf v ⃗ f +v2
f,x v2

f,y

− −−−−−−−
√ (10.8.7)

 Problem-Solving Strategy: Conservation of Momentum in Two Dimensions

 Example 9.14: Traffic Collision

10.8.2

10.8.2

= + .p ⃗  mcv ⃗ c mT v ⃗ T (10.8.8)
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We have to be careful; the two initial momenta are not parallel. We must add vectorially (Figure ).

Figure : Graphical addition of momentum vectors. Notice that, although the car’s velocity is larger than the truck’s, its
momentum is smaller.

If we define the +x-direction to point east and the +y-direction to point north, as in the figure, then (conveniently),

Therefore, in the x-direction:

and in the y-direction:

Applying the Pythagorean theorem gives

As for its direction, using the angle shown in the figure,

This angle is east of north, or 31° counterclockwise from the +x-direction.

Significance
As a practical matter, accident investigators usually work in the “opposite direction”; they measure the distance of skid marks
on the road (which gives the stopping distance) and use the work-energy theorem along with conservation of momentum to
determine the speeds and directions of the cars prior to the collision. We saw that analysis in an earlier section.

Suppose the initial velocities were not at right angles to each other. How would this change both the physical result and the
mathematical analysis of the collision?

10.8.3

10.8.3

= =p ⃗ c pc î mcvc î (10.8.11)

= = .p ⃗ T pT ĵ mT vT ĵ (10.8.12)

= ( + )mcvc mc mT vw,x (10.8.13)

=( )vw,x
mc

+mc mT

vc (10.8.14)

= ( + )mT vT mc mT vw,y (10.8.15)

=( ) .vw,y
mT

+mc mT

vT (10.8.16)

| |v ⃗ w = [( ) +[( )
mc

+mc mT

vc]
2 mT

+mc mT

vT ]
2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= [( ) (16.67 m/s) +[( ) (11.1 m/s)
1200 kg

4200 kg
]

2 3000 kg

4200 kg
]

2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= (4.76 m/s +(7.93 m/s)2 )2
− −−−−−−−−−−−−−−−−−−−−

√

= 9.25 m/s ≈ 33.3 km/hr.

θ = ( ) = ( ) = .tan−1
vw,x

vw,y
tan−1

7.93 m/s

4.76 m/s
59o (10.8.17)
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A common scuba tank is an aluminum cylinder that weighs 31.7 pounds empty (Figure ). When full of compressed air,
the internal pressure is between 2500 and 3000 psi (pounds per square inch). Suppose such a tank, which had been sitting
motionless, suddenly explodes into three pieces. The first piece, weighing 10 pounds, shoots off horizontally at 235 miles per
hour; the second piece (7 pounds) shoots off at 172 miles per hour, also in the horizontal plane, but at a 19° angle to the first
piece. What is the mass and initial velocity of the third piece? (Do all work, and express your final answer, in SI units.)

Figure : A scuba tank explodes into three pieces.

Strategy

To use conservation of momentum, we need a closed system. If we define the system to be the scuba tank, this is not a closed
system, since gravity is an external force. However, the problem asks for just the initial velocity of the third piece, so we can
neglect the effect of gravity and consider the tank by itself as a closed system. Notice that, for this system, the initial
momentum vector is zero.

We choose a coordinate system where all the motion happens in the xy-plane. We then write down the equations for
conservation of momentum in each direction, thus obtaining the x- and y-components of the momentum of the third piece,
from which we obtain its magnitude (via the Pythagorean theorem) and its direction. Finally, dividing this momentum by the
mass of the third piece gives us the velocity.

Solution
First, let’s get all the conversions to SI units out of the way:

Now apply conservation of momentum in each direction.

x-direction:

 Example 9.15: Exploding Scuba Tank

10.8.4

10.8.4

31.7 lb× → 14.4 kg
1 kg

2.2 lb
(10.8.18)

10 lb → 4.5 kg (10.8.19)

235 × × = 105 m/s
miles

hour

1 hour

3600 s

1609 m

mile
(10.8.20)

7 lb → 3.2 kg (10.8.21)

172 = 77 m/s
mile

hour
(10.8.22)

= 14.4 kg−(4.5 kg+3.2 kg) = 6.7 kg.m3 (10.8.23)
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y-direction:

From our chosen coordinate system, we write the x-components as

For the y-direction, we have

This gives the magnitude of p :

The velocity of the third piece is therefore

The direction of its velocity vector is the same as the direction of its momentum vector:

Because  is below the −x -axis, the actual angle is 186.49° from the +x-direction.

Significance
The enormous velocities here are typical; an exploding tank of any compressed gas can easily punch through the wall of a
house and cause significant injury, or death. Fortunately, such explosions are extremely rare, on a percentage basis.

Notice that the mass of the air in the tank was neglected in the analysis and solution. How would the solution method changed
if the air was included? How large a difference do you think it would make in the final answer?

This page titled 10.8: Collisions in Multiple Dimensions is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

9.8: Collisions in Multiple Dimensions by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.

pf,x

+ +p1,x p2,x p3,x

+ +m1v1,x m2v2,x p3,x

p3,x

= p0,x

= 0
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= −705 kg ⋅m/s.
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3

p3 = +p2
3,x p2

3,y
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√
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√
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= = = 106 m/s.v3
p3

m3

710 kg ⋅m/s

6.7 kg
(10.8.24)

ϕ = ( ) = ( ) = .tan−1
p3,y

p3,x
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10.9: Center of Mass (Part 1)

Explain the meaning and usefulness of the concept of center of mass
Calculate the center of mass of a given system
Apply the center of mass concept in two and three dimensions
Calculate the velocity and acceleration of the center of mass

We have been avoiding an important issue up to now: When we say that an object moves (more correctly, accelerates) in a way that
obeys Newton’s second law, we have been ignoring the fact that all objects are actually made of many constituent particles. A car
has an engine, steering wheel, seats, passengers; a football is leather and rubber surrounding air; a brick is made of atoms. There
are many different types of particles, and they are generally not distributed uniformly in the object. How do we include these facts
into our calculations?

Then too, an extended object might change shape as it moves, such as a water balloon or a cat falling (Figure ). This implies
that the constituent particles are applying internal forces on each other, in addition to the external force that is acting on the object
as a whole. We want to be able to handle this, as well.

Figure : As the cat falls, its body performs complicated motions so it can land on its feet, but one point in the system moves
with the simple uniform acceleration of gravity.

The problem before us, then, is to determine what part of an extended object is obeying Newton’s second law when an external
force is applied and to determine how the motion of the object as a whole is affected by both the internal and external forces.

Be warned: To treat this new situation correctly, we must be rigorous and completely general. We won’t make any assumptions
about the nature of the object, or of its constituent particles, or either the internal or external forces. Thus, the arguments will be
complex.

Internal and External Forces
Suppose we have an extended object of mass M, made of N interacting particles. Let’s label their masses as m , where j = 1, 2, 3,
…, N. Note that

If we apply some net external force  on the object, every particle experiences some “share” or some fraction of that external
force. Let:

 = the fraction of the external force that the jth particle experiences

Notice that these fractions of the total force are not necessarily equal; indeed, they virtually never are. (They can be, but they
usually aren’t.) In general, therefore,
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Next, we assume that each of the particles making up our object can interact (apply forces on) every other particle of the object. We
won’t try to guess what kind of forces they are; but since these forces are the result of particles of the object acting on other

particles of the same object, we refer to them as internal forces ; thus:

 = the net internal force that the jth particle experiences from all the other particles that make up the object.

Now, the net force, internal plus external, on the jth particle is the vector sum of these:

where again, this is for all N particles; j = 1, 2, 3, … , N. As a result of this fractional force, the momentum of each particle gets
changed:

The net force  on the object is the vector sum of these forces:

This net force changes the momentum of the object as a whole, and the net change of momentum of the object must be the vector
sum of all the individual changes of momentum of all of the particles:

Combining Equation  and Equation  gives

Let’s now think about these summations. First consider the internal forces term; remember that each  is the force on the jth
particle from the other particles in the object. But by Newton’s third law, for every one of these forces, there must be another force
that has the same magnitude, but the opposite sign (points in the opposite direction). These forces do not cancel; however, that’s not
what we’re doing in the summation. Rather, we’re simply mathematically adding up all the internal force vectors. That is, in
general, the internal forces for any individual part of the object won’t cancel, but when all the internal forces are added up, the
internal forces must cancel in pairs. It follows, therefore, that the sum of all the internal forces must be zero:

(This argument is subtle, but crucial; take plenty of time to completely understand it.)

For the external forces, this summation is simply the total external force that was applied to the whole object:

As a result,

f ⃗ int
j

f ⃗ int
j

= + .f ⃗ 
j f ⃗ int

j f ⃗ ext
j (10.9.3)
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This is an important result. Equation  tells us that the total change of momentum of the entire object (all N particles) is due
only to the external forces; the internal forces do not change the momentum of the object as a whole. This is why you can’t lift
yourself in the air by standing in a basket and pulling up on the handles: For the system of you + basket, your upward pulling force
is an internal force.

Force and Momentum
Remember that our actual goal is to determine the equation of motion for the entire object (the entire system of particles). To that
end, let’s define:

 = the total momentum of the system of N particles (the reason for the subscript will become clear shortly)

Then we have

and therefore Equation  can be written simply as

Since this change of momentum is caused by only the net external force, we have dropped the “ext” subscript. This is Newton’s
second law, but now for the entire extended object. If this feels a bit anticlimactic, remember what is hiding inside it:  is the
vector sum of the momentum of (in principle) hundreds of thousands of billions of billions of particles (6.02 x 10 ), all caused by
one simple net external force—a force that you can calculate.

Center of Mass
Our next task is to determine what part of the extended object, if any, is obeying Equation .

It’s tempting to take the next step; does the following equation mean anything?

If it does mean something (acceleration of what, exactly?), then we could write

and thus

which follows because the derivative of a sum is equal to the sum of the derivatives.

Now,  is the momentum of the jth particle. Defining the positions of the constituent particles (relative to some coordinate system)
as  = (x , y , z ), we thus have

Substituting back, we obtain

= .F ⃗ 
ext ∑

j=1

N dp ⃗ j
dt

(10.9.8)
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Dividing both sides by M (the total mass of the extended object) gives us

Thus, the point in the object that traces out the trajectory dictated by the applied force in Equation  is inside the parentheses
in Equation .

Looking at this calculation, notice that (inside the parentheses) we are calculating the product of each particle’s mass with its
position, adding all N of these up, and dividing this sum by the total mass of particles we summed. This is reminiscent of an
average; inspired by this, we’ll (loosely) interpret it to be the weighted average position of the mass of the extended object. It’s
actually called the center of mass of the object. Notice that the position of the center of mass has units of meters; that suggests a
definition:

So, the point that obeys Equation  (and therefore Equation  as well) is the center of mass of the object, which is
located at the position vector .

It may surprise you to learn that there does not have to be any actual mass at the center of mass of an object. For example, a hollow
steel sphere with a vacuum inside it is spherically symmetrical (meaning its mass is uniformly distributed about the center of the
sphere); all of the sphere’s mass is out on its surface, with no mass inside. But it can be shown that the center of mass of the sphere
is at its geometric center, which seems reasonable. Thus, there is no mass at the position of the center of mass of the sphere.
(Another example is a doughnut.) The procedure to find the center of mass is illustrated in Figure 

Figure : Finding the center of mass of a system of three different particles. (a) Position vectors are created for each object.
(b) The position vectors are multiplied by the mass of the corresponding object. (c) The scaled vectors from part (b) are added
together. (d) The final vector is divided by the total mass. This vector points to the center of mass of the system. Note that no mass
is actually present at the center of mass of this system.

Since , it follows that:

Ma⃗ =
d

dt
∑
j=1

N

mj

dr ⃗ j
dt

= .
d2

dt2
∑
j=1

N

mjr ⃗ j

= ( ) .a⃗ 
d2

dt2
1

M
∑
j=1

N

mjr ⃗ j (10.9.15)

10.9.11
10.9.15

= .r ⃗ CM
1

M
∑
j=1

N

mjr ⃗ j (10.9.16)

10.9.10 10.9.11
r ⃗ CM

10.9.2

10.9.2

= + +r ⃗ j xj î yj ĵ zjk̂
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and thus

Therefore, you can calculate the components of the center of mass vector individually.

Finally, to complete the kinematics, the instantaneous velocity of the center of mass is calculated exactly as you might suspect:

and this, like the position, has x-, y-, and z-components.

To calculate the center of mass in actual situations, we recommend the following procedure:

The center of mass of an object is a position vector. Thus, to calculate it, do these steps:

1. Define your coordinate system. Typically, the origin is placed at the location of one of the particles. This is not required,
however.

2. Determine the x, y, z-coordinates of each particle that makes up the object.
3. Determine the mass of each particle, and sum them to obtain the total mass of the object. Note that the mass of the object at

the origin must be included in the total mass.
4. Calculate the x-, y-, and z-components of the center of mass vector, using Equation , Equation , and

Equation .
5. If required, use the Pythagorean theorem to determine its magnitude.

Here are two examples that will give you a feel for what the center of mass is.

Using data from text appendix, determine how far the center of mass of the Earth-moon system is from the center of Earth.
Compare this distance to the radius of Earth, and comment on the result. Ignore the other objects in the solar system.

Strategy

We get the masses and separation distance of the Earth and moon, impose a coordinate system, and use Equation  with
just N = 2 objects. We use a subscript “e” to refer to Earth, and subscript “m” to refer to the moon.

Solution
Define the origin of the coordinate system as the center of Earth. Then, with just two objects, Equation  becomes

From Appendix D,

=rCM,x
1

m
∑
j=1

N

mjxj (10.9.17)

=rCM,y
1

m
∑
j=1

N

mjyj (10.9.18)

=rCM,z
1

m
∑
j=1

N

mjzj (10.9.19)

= + +r ⃗ CM rCM,x î rCM,y ĵ rCM,zk̂ (10.9.20)

= | | = ( + + .rCM r ⃗ CM r2CM,x r2CM,y r2CM,z)
1/2 (10.9.21)

= ( ) =v ⃗ CM
d

dt

1

M
∑
j=1

N

mjr ⃗ j
1

M
∑
j=1

N

mjv ⃗ j (10.9.22)

 Problem-Solving Strategy: Calculating the Center of Mass

10.9.17 10.9.18
10.9.19

 Example 9.16: Center of Mass of the Earth-Moon System

10.9.16

10.9.16

R= .
+mcrc mmrm

+mc mm

(10.9.23)

= 5.97× kgmc 1024 (10.9.24)
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We defined the center of Earth as the origin, so r  = 0 m. Inserting these into the equation for R gives

Significance
The radius of Earth is 6.37 x 10  m, so the center of mass of the Earth-moon system is (6.37 − 4.64) x 10  m = 1.73 x 10 m =
1730 km (roughly 1080 miles) below the surface of Earth. The location of the center of mass is shown (not to scale).

Suppose we included the sun in the system. Approximately where would the center of mass of the Earth-moon-sun system be
located? (Feel free to actually calculate it.)

Figure  shows a single crystal of sodium chloride—ordinary table salt. The sodium and chloride ions form a single unit,
NaCl. When multiple NaCl units group together, they form a cubic lattice. The smallest possible cube (called the unit cell)
consists of four sodium ions and four chloride ions, alternating. The length of one edge of this cube (i.e., the bond length) is
2.36 x 10  m. Find the location of the center of mass of the unit cell. Specify it either by its coordinates (r , r , r ),
or by r  and two angles.

Figure : A drawing of a sodium chloride (NaCl) crystal.

Strategy

We can look up all the ion masses. If we impose a coordinate system on the unit cell, this will give us the positions of the ions.
We can then apply Equation , Equation , and Equation  (along with the Pythagorean theorem).

Solution

= 7.36× kgmm 1022 (10.9.25)

= 3.82× m.rm 105 (10.9.26)

e

R =
(5.97× kg)(0 m)+(7.36× kg)(3.82× m)1024 1022 108

(5.98× kg)+(7.36× kg)1024 1022

= 4.64× m.106

6 6 6 

 Exercise 9.11

 Example 9.17: Center of Mass of a Salt Crystal

10.9.3

−10
CM,x CM,y CM,z

CM

10.9.3
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Define the origin to be at the location of the chloride ion at the bottom left of the unit cell. Figure  shows the coordinate
system.

Figure : A single unit cell of a NaCl crystal.

There are eight ions in this crystal, so N = 8:

The mass of each of the chloride ions is

so we have

For the sodium ions,

The total mass of the unit cell is therefore

From the geometry, the locations are

Substituting:

10.9.4

10.9.4

= .r ⃗ CM
1

M
∑
j=1

8

mjr ⃗ j (10.9.27)

35.453u× = 5.885× kg
1.660× kg10−27

u
10−26 (10.9.28)

= = = = 5.885× kg.m1 m3 m6 m8 10−26 (10.9.29)

= = = = 3.816× kg.m2 m4 m5 m7 10−26 (10.9.30)

M = (4)(5.885× kg)+(4)(3.816× kg) = 3.880× kg.10−26 10−26 10−25 (10.9.31)

r ⃗ 1

r ⃗ 2

r ⃗ 3

r ⃗ 4

r ⃗ 5

r ⃗ 6

r ⃗ 7

r ⃗ 8

= 0

= (2.36× m)10−10 î

= + = (2.36× m) +(2.36× m)r3x î r3y ĵ 10−10 î 10−10 ĵ

= (2.36× m)10−10 ĵ

= (2.36× m)10−10 k̂

= + = (2.36× m) +(2.36× m)r6x î r6zk̂ 10−10 î 10−10 k̂

= + + = (2.36× m) +(2.36× m) +(2.36× m)r7x î r7y ĵ r7zk̂ 10−10 î 10−10 ĵ 10−10 k̂

= + = (2.36× m) +(2.36× m) .r8y ĵ r8zk̂ 10−10 ĵ 10−10 k̂
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Similar calculations give r  = r  = 1.18 x 10  m (you could argue that this must be true, by symmetry, but it’s a good
idea to check).

Significance
As it turns out, it was not really necessary to convert the mass from atomic mass units (u) to kilograms, since the units divide
out when calculating r  anyway.

To express r  in terms of magnitude and direction, first apply the three-dimensional Pythagorean theorem to the vector
components:

Since this is a three-dimensional problem, it takes two angles to specify the direction of . Let  be the angle in the x,y-
plane, measured from the +x-axis, counterclockwise as viewed from above; then:

Let  be the angle in the y,z-plane, measured downward from the +z-axis; this is (not surprisingly):

Thus, the center of mass is at the geometric center of the unit cell. Again, you could argue this on the basis of symmetry

Suppose you have a macroscopic salt crystal (that is, a crystal that is large enough to be visible with your unaided eye). It is
made up of a huge number of unit cells. Is the center of mass of this crystal necessarily at the geometric center of the crystal?

Two crucial concepts come out of these examples:

1. 1. As with all problems, you must define your coordinate system and origin. For center-of-mass calculations, it often makes
sense to choose your origin to be located at one of the masses of your system. That choice automatically defines its distance in
Equation  to be zero. However, you must still include the mass of the object at your origin in your calculation of M, the
total mass Equation . In the Earth-moon system example, this means including the mass of Earth. If you hadn’t, you’d
have ended up with the center of mass of the system being at the center of the moon, which is clearly wrong.

2. In the second example (the salt crystal), notice that there is no mass at all at the location of the center of mass. This is an
example of what we stated above, that there does not have to be any actual mass at the center of mass of an object.

This page titled 10.9: Center of Mass (Part 1) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

| |r ⃗ CM,x = + +r2CM,x r2CM,y r2CM,z

− −−−−−−−−−−−−−−−−
√

= (
1

M
∑
j=1

8

mj rx)j

= ( + + + + + + + )
1

M
m1r1x m2r2x m3r3x m4r4x m5r5x m6r6x m7r7x m8r8x

= [(5.885× kg)(0 m)+(3.816× kg)(2.36× m)
1

3.8804× kg10−25
10−26 10−26 10−10

+(5.885× kg)(2.36× m)+(3.816× kg)(2.36× m)+0+010−26 10−10 10−26 10−10

+(3.816× kg)(2.36× m)+0]10−26 10−10

= 1.18× m.10−10

CM,y CM,z
−10

CM

CM

rCM = + +r2
CM,x

r2
CM,y

r2
CM,z

− −−−−−−−−−−−−−−−−
√

= (1.18× m)10−10 3
–

√

= 2.044× m.10−10

r ⃗ CM ϕ

ϕ= ( ) = .tan−1
rCM,y

rCM,x
45o (10.9.32)

θ

θ= ( ) = .tan−1 Rz

Ry

45o (10.9.33)
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10.10: Center of Mass (Part 2)

Center of Mass of Continuous Objects
If the object in question has its mass distributed uniformly in space, rather than as a collection of discrete particles, then m  → dm,
and the summation becomes an integral:

In this context, r is a characteristic dimension of the object (the radius of a sphere, the length of a long rod). To generate an
integrand that can actually be calculated, you need to express the differential mass element dm as a function of the mass density of
the continuous object, and the dimension r. An example will clarify this.

Find the center of mass of a uniform thin hoop (or ring) of mass  and radius .

Strategy

First, the hoop’s symmetry suggests the center of mass should be at its geometric center. If we define our coordinate system
such that the origin is located at the center of the hoop, the integral should evaluate to zero.

We replace dm with an expression involving the density of the hoop and the radius of the hoop. We then have an expression we
can actually integrate. Since the hoop is described as “thin,” we treat it as a one-dimensional object, neglecting the thickness of
the hoop. Therefore, its density is expressed as the number of kilograms of material per meter. Such a density is called a linear
mass density, and is given the symbol ; this is the Greek letter “lambda,” which is the equivalent of the English letter “l” (for
“linear”).

Since the hoop is described as uniform, this means that the linear mass density  is constant. Thus, to get our expression for the
differential mass element dm, we multiply  by a differential length of the hoop, substitute, and integrate (with appropriate
limits for the definite integral).

Solution
First, define our coordinate system and the relevant variables (Figure ).

Figure : Finding the center of mass of a uniform hoop. We express the coordinates of a differential piece of the hoop,
and then integrate around the hoop.

The center of mass is calculated with Equation :

We have to determine the limits of integration a and b. Expressing  in component form gives us

j

= ∫ dm.r ⃗ CM
1

M
r ⃗  (10.10.1)

 Example : CM of a Uniform Thin Hoop10.10.1

M r

λ

λ

λ

10.10.1

10.10.1

10.10.1

= dm.r ⃗ CM
1

M
∫

b

a

r ⃗  (10.10.2)

r ⃗ 
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In the diagram, we highlighted a piece of the hoop that is of differential length ds; it therefore has a differential mass dm = ds.
Substituting:

However, the arc length ds subtends a differential angle d , so we have

and thus

One more step: Since  is the linear mass density, it is computed by dividing the total mass by the length of the hoop:

giving us

Notice that the variable of integration is now the angle . This tells us that the limits of integration (around the circular hoop)
are θ = 0 to  = 2 , so a = 0 and b = 2 . Also, for convenience, we separate the integral into the x- and y-components of .
The final integral expression is

as expected.

Center of Mass and Conservation of Momentum
How does all this connect to conservation of momentum?

Suppose you have N objects with masses m , m , m , ...m  and initial velocities , , , ..., . The center of mass of the
objects is

Its velocity is

and thus the initial momentum of the center of mass is

= [(r cosθ) +(R sinθ) ]dm.r ⃗ CM
1

M
∫

b

a

î ĵ (10.10.3)

λ

= [(r cosθ) +(R sinθ) ]λds.r ⃗ CM
1

M
∫

b

a

î ĵ (10.10.4)

theta

ds = rdθ (10.10.5)

= [(r cosθ) +(R sinθ) ]λrdθ.r ⃗ CM
1

M
∫

b

a

î ĵ (10.10.6)

λ

λ =
M

2πr
(10.10.7)

r ⃗ CM = [(r cosθ) +(R sinθ) ]( ) rdθ
1

M
∫

b

a

î ĵ
M

2πr

= [(r cosθ) +(R sinθ) ]dθ.
1

2π
∫

b

a

î ĵ

θ

θ π π r ⃗ CM

r ⃗ CM = +rCM,x î rCM,y ĵ

= [ (2 cosθdθ] +[ (2 sinθdθ]
1

2π
∫

2π

0
î

1

2π
∫

2π

0
ĵ

= 0 +0 =î ĵ 0⃗ 

1 2 3 N v ⃗ 1 v ⃗ 2 v ⃗ 3 v ⃗ N

= .r ⃗ CM
1

M
∑
j=1

N

mjr ⃗ j (10.10.8)

= =v ⃗ CM
dr ⃗ CM
dt

1

M
∑
j=1

N

mj

dr ⃗ j

dt
(10.10.9)
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After these masses move and interact with each other, the momentum of the center of mass is

But conservation of momentum tells us that the right-hand side of both equations must be equal, which says

This result implies that conservation of momentum is expressed in terms of the center of mass of the system. Notice that as an
object moves through space with no net external force acting on it, an individual particle of the object may accelerate in various
directions, with various magnitudes, depending on the net internal force acting on that object at any time. (Remember, it is only the
vector sum of all the internal forces that vanishes, not the internal force on a single particle.) Thus, such a particle’s momentum will
not be constant—but the momentum of the entire extended object will be, in accord with Equation .

Equation  implies another important result: Since M represents the mass of the entire system of particles, it is necessarily
constant. (If it isn’t, we don’t have a closed system, so we can’t expect the system’s momentum to be conserved.) As a result,
Equation  implies that, for a closed system,

That is to say, in the absence of an external force, the velocity of the center of mass never changes.

You might be tempted to shrug and say, “Well yes, that’s just Newton’s first law,” but remember that Newton’s first law discusses
the constant velocity of a particle, whereas Equation  applies to the center of mass of a (possibly vast) collection of
interacting particles, and that there may not be any particle at the center of mass at all! So, this really is a remarkable result.

When a fireworks rocket explodes, thousands of glowing fragments fly outward in all directions, and fall to Earth in an elegant
and beautiful display (Figure ). Describe what happens, in terms of conservation of momentum and center of mass.

Figure : These exploding fireworks are a vivid example of conservation of momentum and the motion of the center of
mass.

The picture shows radial symmetry about the central points of the explosions; this suggests the idea of center of mass. We can
also see the parabolic motion of the glowing particles; this brings to mind projectile motion ideas.

Solution

[M
dr ⃗ CM
dt

]
i

Mv ⃗ CM,i

=∑
j=1

N

mj

dr ⃗ j,i

dt

= .∑
j=1

N

mjv ⃗ j,i

M = .v ⃗ CM,f ∑
j=1

N

mjv ⃗ j,f (10.10.10)

M = M .v ⃗ CM,f v ⃗ CM,i (10.10.11)

10.10.11

10.10.11

10.10.11

= .v ⃗ CM,f v ⃗ CM,i (10.10.12)

10.10.12

 Example : Fireworks Display10.10.2
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Initially, the fireworks rocket is launched and flies more or less straight upward; this is the cause of the more-or-less-straight,
white trail going high into the sky below the explosion in the upper-right of the picture (the yellow explosion). This trail is not
parabolic because the explosive shell, during its launch phase, is actually a rocket; the impulse applied to it by the ejection of
the burning fuel applies a force on the shell during the rise-time interval. (This is a phenomenon we will study in the next
section.) The shell has multiple forces on it; thus, it is not in free-fall prior to the explosion.

At the instant of the explosion, the thousands of glowing fragments fly outward in a radially symmetrical pattern. The

symmetry of the explosion is the result of all the internal forces summing to zero ; for every internal force, there
is another that is equal in magnitude and opposite in direction.

However, as we learned above, these internal forces cannot change the momentum of the center of mass of the (now exploded)
shell. Since the rocket force has now vanished, the center of mass of the shell is now a projectile (the only force on it is
gravity), so its trajectory does become parabolic. The two red explosions on the left show the path of their centers of mass at a
slightly longer time after explosion compared to the yellow explosion on the upper right.

In fact, if you look carefully at all three explosions, you can see that the glowing trails are not truly radially symmetric; rather,
they are somewhat denser on one side than the other. Specifically, the yellow explosion and the lower middle explosion are
slightly denser on their right sides, and the upper-left explosion is denser on its left side. This is because of the momentum of
their centers of mass; the differing trail densities are due to the momentum each piece of the shell had at the moment of its
explosion. The fragment for the explosion on the upper left of the picture had a momentum that pointed upward and to the left;
the middle fragment’s momentum pointed upward and slightly to the right; and the right-side explosion clearly upward and to
the right (as evidenced by the white rocket exhaust trail visible below the yellow explosion).

Finally, each fragment is a projectile on its own, thus tracing out thousands of glowing parabolas.

Significance
In the discussion above, we said, “…the center of mass of the shell is now a projectile (the only force on it is gravity)….” This
is not quite accurate, for there may not be any mass at all at the center of mass; in which case, there could not be a force acting
on it. This is actually just verbal shorthand for describing the fact that the gravitational forces on all the particles act so that the
center of mass changes position exactly as if all the mass of the shell were always located at the position of the center of mass.

How would the firework display change in deep space, far away from any source of gravity?

You may sometimes hear someone describe an explosion by saying something like, “the fragments of the exploded object always
move in a way that makes sure that the center of mass continues to move on its original trajectory.” This makes it sound as if the
process is somewhat magical: how can it be that, in every explosion, it always works out that the fragments move in just the right
way so that the center of mass’ motion is unchanged? Phrased this way, it would be hard to believe no explosion ever does anything
differently.

The explanation of this apparently astonishing coincidence is: We defined the center of mass precisely so this is exactly what we
would get. Recall that first we defined the momentum of the system:

We then concluded that the net external force on the system (if any) changed this momentum:

and then—and here’s the point—we defined an acceleration that would obey Newton’s second law. That is, we demanded that we
should be able to write

( = 0)∑j f
⃗ int
j

 Exercise 10.10.2

= .p ⃗ CM ∑
j=1

N dp ⃗ j

dt
(10.10.13)

=F ⃗  dp ⃗ CM
dt

(10.10.14)

=a⃗ 
F ⃗ 

M
(10.10.15)
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which requires that

where the quantity inside the parentheses is the center of mass of our system. So, it’s not astonishing that the center of mass obeys
Newton’s second law; we defined it so that it would.

This page titled 10.10: Center of Mass (Part 2) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

9.10: Center of Mass (Part 2) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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dt2
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10.11: Rocket Propulsion

Describe the application of conservation of momentum when the mass changes with time, as well as the velocity
Calculate the speed of a rocket in empty space, at some time, given initial conditions
Calculate the speed of a rocket in Earth’s gravity field, at some time, given initial conditions

Now we deal with the case where the mass of an object is changing. We analyze the motion of a rocket, which changes its velocity
(and hence its momentum) by ejecting burned fuel gases, thus causing it to accelerate in the opposite direction of the velocity of the
ejected fuel (Figure ). Specifically: A fully fueled rocket ship in deep space has a total mass m  (this mass includes the
initial mass of the fuel). At some moment in time, the rocket has a velocity  and mass m; this mass is a combination of the mass of
the empty rocket and the mass of the remaining unburned fuel it contains. (We refer to m as the “instantaneous mass” and  as the
“instantaneous velocity.”) The rocket accelerates by burning the fuel it carries and ejecting the burned exhaust gases. If the burn
rate of the fuel is constant, and the velocity at which the exhaust is ejected is also constant, what is the change of velocity of the
rocket as a result of burning all of its fuel?

Figure : The space shuttle had a number of reusable parts. Solid fuel boosters on either side were recovered and refueled
after each flight, and the entire orbiter returned to Earth for use in subsequent flights. The large liquid fuel tank was expended. The
space shuttle was a complex assemblage of technologies, employing both solid and liquid fuel, and pioneering ceramic tiles as
reentry heat shields. As a result, it permitted multiple launches as opposed to single-use rockets. (credit: modification of work by
NASA)

Physical Analysis
Here’s a description of what happens, so that you get a feel for the physics involved.

As the rocket engines operate, they are continuously ejecting burned fuel gases, which have both mass and velocity, and
therefore some momentum. By conservation of momentum, the rocket’s momentum changes by this same amount (with the
opposite sign). We will assume the burned fuel is being ejected at a constant rate, which means the rate of change of the rocket’s
momentum is also constant. By Equation 9.4.17, this represents a constant force on the rocket.
However, as time goes on, the mass of the rocket (which includes the mass of the remaining fuel) continuously decreases. Thus,
even though the force on the rocket is constant, the resulting acceleration is not; it is continuously increasing.
So, the total change of the rocket’s velocity will depend on the amount of mass of fuel that is burned, and that dependence is not
linear.

The problem has the mass and velocity of the rocket changing; also, the total mass of ejected gases is changing. If we define our
system to be the rocket + fuel, then this is a closed system (since the rocket is in deep space, there are no external forces acting on
this system); as a result, momentum is conserved for this system. Thus, we can apply conservation of momentum to answer the
question (Figure ).
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Figure : The rocket accelerates to the right due to the expulsion of some of its fuel mass to the left. Conservation of
momentum enables us to determine the resulting change of velocity. The mass m is the instantaneous total mass of the rocket (i.e.,
mass of rocket body plus mass of fuel at that point in time). (credit: modification of work by NASA/Bill Ingalls)

At the same moment that the total instantaneous rocket mass is m (i.e., m is the mass of the rocket body plus the mass of the fuel at
that point in time), we define the rocket’s instantaneous velocity to be  = v  (in the +x-direction); this velocity is measured
relative to an inertial reference system (the Earth, for example). Thus, the initial momentum of the system is  = mv .

The rocket’s engines are burning fuel at a constant rate and ejecting the exhaust gases in the −x-direction. During an infinitesimal
time interval dt, the engines eject a (positive) infinitesimal mass of gas dm  at velocity  = −u ; note that although the rocket
velocity v  is measured with respect to Earth, the exhaust gas velocity is measured with respect to the (moving) rocket. Measured
with respect to the Earth, therefore, the exhaust gas has velocity (v − u) .

As a consequence of the ejection of the fuel gas, the rocket’s mass decreases by dm , and its velocity increases by dv . Therefore,
including both the change for the rocket and the change for the exhaust gas, the final momentum of the system is

Since all vectors are in the x-direction, we drop the vector notation. Applying conservation of momentum, we obtain

Now, dm and dv are each very small; thus, their product dm dv is very, very small, much smaller than the other two terms in this
expression. We neglect this term, therefore, and obtain:

Our next step is to remember that, since dm represents an increase in the mass of ejected gases, it must also represent a decrease of
mass of the rocket:

Replacing this, we have

or

Integrating from the initial mass m  to the final mass m of the rocket gives us the result we are after:

and thus our final answer is

10.11.2
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This result is called the rocket equation. It was originally derived by the Soviet physicist Konstantin Tsiolkovsky in 1897. It gives
us the change of velocity that the rocket obtains from burning a mass of fuel that decreases the total rocket mass from m  down to
m. As expected, the relationship between v and the change of mass of the rocket is nonlinear.

In rocket problems, the most common questions are finding the change of velocity due to burning some amount of fuel for
some amount of time; or to determine the acceleration that results from burning fuel.

1. To determine the change of velocity, use the rocket equation Equation .
2. To determine the acceleration, determine the force by using the impulse-momentum theorem, using the rocket equation to

determine the change of velocity

A spacecraft is moving in gravity-free space along a straight path when its pilot decides to accelerate forward. He turns on the
thrusters, and burned fuel is ejected at a constant rate of , at a speed (relative to the rocket) of .
The initial mass of the spacecraft and its unburned fuel is , and the thrusters are on for 30 s.

a. What is the thrust (the force applied to the rocket by the ejected fuel) on the spacecraft?
b. What is the spacecraft’s acceleration as a function of time?
c. What are the spacecraft’s accelerations at t = 0, 15, 30, and 35 s?

Strategy

a. The force on the spacecraft is equal to the rate of change of the momentum of the fuel.
b. Knowing the force from part (a), we can use Newton’s second law to calculate the consequent acceleration. The key here is

that, although the force applied to the spacecraft is constant (the fuel is being ejected at a constant rate), the mass of the
spacecraft isn’t; thus, the acceleration caused by the force won’t be constant. We expect to get a function , therefore.

c. We’ll use the function we obtain in part (b), and just substitute the numbers given. Important: We expect that the
acceleration will get larger as time goes on, since the mass being accelerated is continuously decreasing (fuel is being
ejected from the rocket).

Solution
a. The momentum of the ejected fuel gas is

The ejection velocity v = 2.5 x 10 m/s is constant, and therefore the force is

Now,  is the rate of change of the mass of the fuel; the problem states that this is 2.0 x 10  kg/s. Substituting, we get

b. Above, we defined m to be the combined mass of the empty rocket plus however much unburned fuel it contained: m = m
+ m . From Newton’s second law,

The force is constant and the empty rocket mass m  is constant, but the fuel mass m  is decreasing at a uniform rate;
specifically:

Δv= u ln( ).
m0

m
(10.11.5)

0
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This gives us

Notice that, as expected, the acceleration is a function of time. Substituting the given numbers:

c. At t = 0 s:

At t = 15 s, a(15 s) = 2.9 m/s .

At t = 30 s, a(30 s) = 3.6 m/s .

Acceleration is increasing, as we expected.

Significance
Notice that the acceleration is not constant; as a result, any dynamical quantities must be calculated either using integrals, or
(more easily) conservation of total energy

What is the physical difference (or relationship) between  and  in this example?

Rocket in a Gravitational Field
Let’s now analyze the velocity change of the rocket during the launch phase, from the surface of Earth. To keep the math
manageable, we’ll restrict our attention to distances for which the acceleration caused by gravity can be treated as a constant g.

The analysis is similar, except that now there is an external force of  = −mg  acting on our system. This force applies an impulse
d  = dt = −mgdt , which is equal to the change of momentum. This gives us

and so

where we have again neglected the term dm dv and dropped the vector notation. Next we replace dm  with −dm:

Dividing through by  gives

and integrating, we have

= (t) − −( ) t.mg mg mg0

dmg

dt
(10.11.9)
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Unsurprisingly, the rocket’s velocity is affected by the (constant) acceleration of gravity.

Remember that t is the burn time of the fuel. Now, in the absence of gravity, Equation  implies that it makes no difference
how much time it takes to burn the entire mass of fuel; the change of velocity does not depend on t. However, in the presence of
gravity, it matters a lot. The −g t term in Equation  tells us that the longer the burn time is, the smaller the rocket’s
change of velocity will be. This is the reason that the launch of a rocket is so spectacular at the first moment of liftoff: It’s essential
to burn the fuel as quickly as possible, to get as large a v as possible.

This page titled 10.11: Rocket Propulsion is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

9.11: Rocket Propulsion by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-
1.
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10.E: Linear Momentum and Collisions (Exercises)

Conceptual Questions

9.1 Linear Momentum
1. An object that has a small mass and an object that has a large mass have the same momentum. Which object has the

largest kinetic energy?
2. An object that has a small mass and an object that has a large mass have the same kinetic energy. Which mass has the

largest momentum?

9.2 Impulse and Collisions
3. Is it possible for a small force to produce a larger impulse on a given object than a large force? Explain.
4. Why is a 10-m fall onto concrete far more dangerous than a 10-m fall onto water?
5. What external force is responsible for changing the momentum of a car moving along a horizontal road?
6. A piece of putty and a tennis ball with the same mass are thrown against a wall with the same velocity. Which object

experience a greater force from the wall or are the forces equal? Explain.

9.3 Conservation of Linear Momentum
7. Under what circumstances is momentum conserved?
8. Can momentum be conserved for a system if there are external forces acting on the system? If so, under what conditions?

If not, why not?
9. Explain in terms of momentum and Newton’s laws how a car’s air resistance is due in part to the fact that it pushes air in

its direction of motion.
10. Can objects in a system have momentum while the momentum of the system is zero? Explain your answer.
11. A sprinter accelerates out of the starting blocks. Can you consider him as a closed system? Explain.
12. A rocket in deep space (zero gravity) accelerates by firing hot gas out of its thrusters. Does the rocket constitute a closed

system? Explain.

9.4 Types of Collisions
13. Two objects of equal mass are moving with equal and opposite velocities when they collide. Can all the kinetic energy be

lost in the collision?
14. Describe a system for which momentum is conserved but mechanical energy is not. Now the reverse: Describe a system

for which kinetic energy is conserved but momentum is not.

9.5 Collisions in Multiple Dimensions
15. Momentum for a system can be conserved in one direction while not being conserved in another. What is the angle

between the directions? Give an example.

9.6 Center of Mass
16. Suppose a fireworks shell explodes, breaking into three large pieces for which air resistance is negligible. How does the

explosion affect the motion of the center of mass? How would it be affected if the pieces experienced significantly more
air resistance than the intact shell?

9.7 Rocket Propulsion
17. It is possible for the velocity of a rocket to be greater than the exhaust velocity of the gases it ejects. When that is the

case, the gas velocity and gas momentum are in the same direction as that of the rocket. How is the rocket still able to
obtain thrust by ejecting the gases?

Problems

9.1 Linear Momentum
18. An elephant and a hunter are having a confrontation. A drawing of an elephant, on the left, and hunter, on the right. An

xy-coordinate system has positive x to the right and positive y up. The elephant is labeled with m  = 2000.0 kg, and
vector v  = 7.50 m/s . An arrow above the v  vector points to the right. The hunter is labeled with m = 90.0 kg, and

E

E î E hunter 
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vector v = 7.40 m/s . An arrow above the v vector points to the right. Between the hunter and elephant is a dart
with a long arrow pointing to the left drawn near it and labeled vector v = -600 m/s , and m = 0.0400 kg.
a. Calculate the momentum of the 2000.0-kg elephant charging the hunter at a speed of 7.50 m/s.
b. Calculate the ratio of the elephant’s momentum to the momentum of a 0.0400-kg tranquilizer dart fired at a speed of

600 m/s.
c. What is the momentum of the 90.0-kg hunter running at 7.40 m/s after missing the elephant?

19. A skater of mass 40 kg is carrying a box of mass 5 kg. The skater has a speed of 5 m/s with respect to the floor and is
gliding without any friction on a smooth surface. (a) Find the momentum of the box with respect to the floor. (b) Find the
momentum of the box with respect to the floor after she puts the box down on the frictionless skating surface. (c) A car of
mass 2000 kg is moving with a constant velocity of 10 m/s due east. What is the momentum of the car?

20. The mass of Earth is 5.97 x 10  kg and its orbital radius is an average of 1.50 x 10  m. Calculate the magnitude of its
average linear momentum.

21. If a rainstorm drops 1 cm of rain over an area of 10 km  in the period of 1 hour, what is the momentum of the rain that
falls in one second? Assume the terminal velocity of a raindrop is 10 m/s.

22. What is the average momentum of an avalanche that moves a 40-cm-thick layer of snow over an area of 100 m by 500 m
over a distance of 1 km down a hill in 5.5 s? Assume a density of 350 kg/m  for the snow.

23. What is the average momentum of a 70.0-kg sprinter who runs the 100-m dash in 9.65 s?

9.2 Impulse and Collisions
25. A 75.0-kg person is riding in a car moving at 20.0 m/s when the car runs into a bridge abutment (see the following

figure).
a. Calculate the average force on the person if he is stopped by a padded dashboard that compresses an average of 1.00

cm.
b. Calculate the average force on the person if he is stopped by an air bag that compresses an average of 15.0 cm.

26. One hazard of space travel is debris left by previous missions. There are several thousand objects orbiting Earth that are
large enough to be detected by radar, but there are far greater numbers of very small objects, such as flakes of paint.
Calculate the force exerted by a 0.100-mg chip of paint that strikes a spacecraft window at a relative speed of 4.00 x 10
m/s, given the collision lasts 6.00 x 10  s.

27. A cruise ship with a mass of 1.00 x 10  kg strikes a pier at a speed of 0.750 m/s. It comes to rest after traveling 6.00 m,
damaging the ship, the pier, and the tugboat captain’s finances. Calculate the average force exerted on the pier using the
concept of impulse. (Hint: First calculate the time it took to bring the ship to rest, assuming a constant force.)

28. Calculate the final speed of a 110-kg rugby player who is initially running at 8.00 m/s but collides head-on with a padded
goalpost and experiences a backward force of 1.76 x 10  N for 5.50 x 10  s.

29. Water from a fire hose is directed horizontally against a wall at a rate of 50.0 kg/s and a speed of 42.0 m/s. Calculate the
force exerted on the wall, assuming the water’s horizontal momentum is reduced to zero.

30. A 0.450-kg hammer is moving horizontally at 7.00 m/ s when it strikes a nail and comes to rest after driving the nail 1.00
cm into a board. Assume constant acceleration of the hammer-nail pair. (a) Calculate the duration of the impact. (b) What
was the average force exerted on the nail?

31. What is the momentum (as a function of time) of a 5.0-kg particle moving with a velocity (t) = (2.0  + 4.0t ) m/s?
What is the net force acting on this particle?

32. The x-component of a force on a 46-g golf ball by a 7-iron versus time is plotted in the following figure:
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a. Find the x-component of the impulse during the intervals (i) [0, 50 ms], and (ii) [50 ms, 100 ms].
b. Find the change in the x-component of the momentum during the intervals (iii) [0, 50 ms], and (iv) [50 ms, 100 ms].

33. A hockey puck of mass 150 g is sliding due east on a frictionless table with a speed of 10 m/s. Suddenly, a constant force
of magnitude 5 N and direction due north is applied to the puck for 1.5 s. Find the north and east components of the
momentum at the end of the 1.5-s interval.

34. A ball of mass 250 g is thrown with an initial velocity of 25 m/s at an angle of 30° with the horizontal direction. Ignore
air resistance. What is the momentum of the ball after 0.2 s? (Do this problem by finding the components of the
momentum first, and then constructing the magnitude and direction of the momentum vector from the components.)

9.3 Conservation of Linear Momentum
35. Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one

another, the first having a mass of 1.50 x 10 kg and a velocity of (0.30 m/s) , and the second having a mass of 1.10 x
10 kg and a velocity of −(0.12 m/s) . What is their final velocity?

36. Two identical pucks collide elastically on an air hockey table. Puck 1 was originally at rest; puck 2 has an incoming speed
of 6.00 m/s and scatters at an angle of 30° with respect to its incoming direction. What is the velocity (magnitude and
direction) of puck 1 after the collision?

37. The figure below shows a bullet of mass 200 g traveling horizontally towards the east with speed 400 m/s, which strikes a
block of mass 1.5 kg that is initially at rest on a frictionless table. After striking the block, the bullet is embedded in the
block and the block and the bullet move together as one unit. (a) What is the magnitude and direction of the velocity of
the block/bullet combination immediately after the impact? (b) What is the magnitude and direction of the impulse by the
block on the bullet? (c) What is the magnitude and direction of the impulse from the bullet on the block? (d) If it took 3
ms for the bullet to change the speed from 400 m/s to the final speed after impact, what is the average force between the
block and the bullet during this time?
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38. A 20-kg child is coasting at 3.3 m/s over flat ground in a 4.0-kg wagon. The child drops a 1.0-kg ball out the back of the
wagon. What is the final speed of the child and wagon?

39. A 5000-kg paving truck coasts over a road at 2.5 m/s and quickly dumps 1000 kg of gravel on the road. What is the speed
of the truck after dumping the gravel?

40. Explain why a cannon recoils when it fires a shell.
41. Two figure skaters are coasting in the same direction, with the leading skater moving at 5.5 m/s and the trailing skating

moving at 6.2 m/s. When the trailing skater catches up with the leading skater, he picks her up without applying any
horizontal forces on his skates. If the trailing skater is 50% heavier than the 50-kg leading skater, what is their speed after
he picks her up?

42. A 2000-kg railway freight car coasts at 4.4 m/s underneath a grain terminal, which dumps grain directly down into the
freight car. If the speed of the loaded freight car must not go below 3.0 m/s, what is the maximum mass of grain that it
can accept?

9.4 Types of Collisions
43. A 5.50-kg bowling ball moving at 9.00 m/s collides with a 0.850-kg bowling pin, which is scattered at an angle of 15.8°

to the initial direction of the bowling ball and with a speed of 15.0 m/s. (a) Calculate the final velocity (magnitude and
direction) of the bowling ball. (b) Is the collision elastic?

44. Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that nuclei were
very small and dense by scattering helium-4 nuclei from gold-197 nuclei. The energy of the incoming helium nucleus was
8.00 x 10  J, and the masses of the helium and gold nuclei were 6.68 x 10  kg and 3.29 x 10  kg, respectively (note
that their mass ratio is 4 to 197). (a) If a helium nucleus scatters to an angle of 120° during an elastic collision with a gold
nucleus, calculate the helium nucleus’s final speed and the final velocity (magnitude and direction) of the gold nucleus.
(b) What is the final kinetic energy of the helium nucleus?

45. A 90.0-kg ice hockey player hits a 0.150-kg puck, giving the puck a velocity of 45.0 m/s. If both are initially at rest and if
the ice is frictionless, how far does the player recoil in the time it takes the puck to reach the goal 15.0 m away?

46. A 100-g firecracker is launched vertically into the air and explodes into two pieces at the peak of its trajectory. If a 72-g
piece is projected horizontally to the left at 20 m/s, what is the speed and direction of the other piece?

47. In an elastic collision, a 400-kg bumper car collides directly from behind with a second, identical bumper car that is
traveling in the same direction. The initial speed of the leading bumper car is 5.60 m/s and that of the trailing car is 6.00
m/s. Assuming that the mass of the drivers is much, much less than that of the bumper cars, what are their final speeds?

48. Repeat the preceding problem if the mass of the leading bumper car is 30.0% greater than that of the trailing bumper car.
49. An alpha particle ( He) undergoes an elastic collision with a stationary uranium nucleus ( U). What percent of the

kinetic energy of the alpha particle is transferred to the uranium nucleus? Assume the collision is one-dimensional.
50. You are standing on a very slippery icy surface and throw a 1-kg football horizontally at a speed of 6.7 m/ s. What is your

velocity when you release the football? Assume your mass is 65 kg.
51. A 35-kg child sleds down a hill and then coasts along the flat section at the bottom, where a second 35-kg child jumps on

the sled as it passes by her. If the speed of the sled is 3.5 m/s before the second child jumps on, what is its speed after she
jumps on?

52. A boy sleds down a hill and onto a frictionless ice-covered lake at 10.0 m/s. In the middle of the lake is a 1000-kg
boulder. When the sled crashes into the boulder, he is propelled over the boulder and continues sliding over the ice. If the
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boy’s mass is 40.0 kg and the sled’s mass is 2.50 kg, what is the speed of the sled and the boulder after the collision?

9.5 Collisions in Multiple Dimensions
53. A 0.90-kg falcon is diving at 28.0 m/s at a downward angle of 35°. It catches a 0.325-kg pigeon from behind in midair.

What is their combined velocity after impact if the pigeon’s initial velocity was 7.00 m/s directed horizontally? Note that 
 is a unit vector pointing in the direction in which the falcon is initially flying.

Figure  - (credit “hawk”: modification of work by “USFWS Mountain-Prairie”/Flickr; credit “dove”: modification of work
by Jacob Spinks)
54. A billiard ball, labeled 1, moving horizontally strikes another billiard ball, labeled 2, at rest. Before impact, ball 1 was

moving at a speed of 3.00 m/s, and after impact it is moving at 0.50 m/s at 50° from the original direction. If the two balls
have equal masses of 300 g, what is the velocity of the ball 2 after the impact?

55. A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 ° to the horizon at a speed of 50.0 m/s. At the highest
point in its flight, the projectile breaks into three parts of mass 1.0 kg, 0.7 kg, and 0.3 kg. The 1.0-kg part falls straight
down after breakup with an initial speed of 10.0 m/s, the 0.7-kg part moves in the original forward direction, and the 0.3-
kg part goes straight up. (a) Find the speeds of the 0.3-kg and 0.7-kg pieces immediately after the break-up. (b) How high
from the break-up point does the 0.3-kg piece go before coming to rest? (c) Where does the 0.7-kg piece land relative to
where it was fired from?

56. Two asteroids collide and stick together. The first asteroid has mass of 15 x 10  kg and is initially moving at 770 m/s. The
second asteroid has mass of 20 x 10  kg and is moving at 1020 m/s. Their initial velocities made an angle of 20° with
respect to each other. What is the final speed and direction with respect to the velocity of the first asteroid?

57. A 200-kg rocket in deep space moves with a velocity of (121 m/s)  + (38.0 m/s) . Suddenly, it explodes into three
pieces, with the first (78 kg) moving at −(321 m/s)  + (228 m/s)  and the second (56 kg) moving at (16.0 m/s)  − (88.0
m/s) . Find the velocity of the third piece.

58. A proton traveling at 3.0 x 10  m/s scatters elastically from an initially stationary alpha particle and is deflected at an
angle of 85° with respect to its initial velocity. Given that the alpha particle has four times the mass of the proton, what
percent of its initial kinetic energy does the proton retain after the collision?

59. Three 70-kg deer are standing on a flat 200-kg rock that is on an ice-covered pond. A gunshot goes off and the deer
scatter, with deer A running at (15 m/s)  + (5.0 m/s) , deer B running at (−12 m/s)  + (8.0 m/s) , and deer C running
at (1.2 m/s)  − (18.0 m/s) . What is the velocity of the rock on which they were standing?

60. A family is skating. The father (75 kg) skates at 8.2 m/s and collides and sticks to the mother (50 kg), who was initially
moving at 3.3 m/s and at 45° with respect to the father’s velocity. The pair then collides with their daughter (30 kg), who
was stationary, and the three slide off together. What is their final velocity?

61. An oxygen atom (mass 16 u) moving at 733 m/s at 15.0° with respect to the  direction collides and sticks to an oxygen
molecule (mass 32 u) moving at 528 m/s at 128° with respect to the  direction. The two stick together to form ozone.

v ⃗ 1,i
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î ĵ î ĵ
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î

î
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What is the final velocity of the ozone molecule?
62. Two cars approach an extremely icy four-way perpendicular intersection. Car A travels northward at 30 m/s and car B is

travelling eastward. They collide and stick together, traveling at 28° north of east. What was the initial velocity of car B?

9.6 Center of Mass
63. Three point masses are placed at the corners of a triangle as shown in the figure below. Find the center of mass of the

three-mass system.

64. Two particles of masses m  and m  separated by a horizontal distance D are released from the same height h at the same
time. Find the vertical position of the center of mass of these two particles at a time before the two particles strike the
ground. Assume no air resistance.

65. Two particles of masses m  and m  separated by a horizontal distance D are let go from the same height h at different
times. Particle 1 starts at t = 0 , and particle 2 is let go at t = T. Find the vertical position of the center of mass at a time
before the first particle strikes the ground. Assume no air resistance.

66. Two particles of masses m  and m  move uniformly in different circles of radii R  and R  about origin in the x,y-plane.
The x- and y-coordinates of the center of mass and that of particle 1 are given as follows (where length is in meters and t
in seconds): x (t) = 4cos(2t), y (t) = 4sin(2t) and: x (t) = 3cos(2t), y (t) = 3sin(2t). (a) Find the radius of the circle in
which particle 1 moves. (b) Find the x- and y-coordinates of particle 2 and the radius of the circle this particle moves.

67. Two particles of masses m  and m  move uniformly in different circles of radii R  and R  about the origin in the x, y-
plane. The coordinates of the two particles in meters are given as follows (z = 0 for both). Here t is in seconds: x (t) =
4cos(2t), y (t) = 4sin(2t), x (t) = 2cos , y (t) = 2sin  (a) Find the radii of the circles of motion of both
particles. (b) Find the x- and y-coordinates of the center of mass. (c) Decide if the center of mass moves in a circle by
plotting its trajectory.

68. Find the center of mass of a one-meter long rod, made of 50 cm of iron (density 8 g/cm ) and 50 cm of aluminum
(density 2.7 g/cm ).

69. Find the center of mass of a rod of length L whose mass density changes from one end to the other quadratically. That is,
if the rod is laid out along the x-axis with one end at the origin and the other end at x = L, the density is given by (x) = 

 + (  − ) , where  and  are constant values.

70. Find the center of mass of a rectangular block of length a and width b that has a nonuniform density such that when the
rectangle is placed in the x,y-plane with one corner at the origin and the block placed in the first quadrant with the two
edges along the x- and y-axes, the density is given by (x, y) = x, where  is a constant.

71. Find the center of mass of a rectangular material of length a and width b made up of a material of nonuniform density.
The density is such that when the rectangle is placed in the xy-plane, the density is given by (x, y) = xy.

72. A cube of side a is cut out of another cube of side b as shown in the figure below. Find the location of the center of mass
of the structure. (Hint: Think of the missing part as a negative mass overlapping a positive mass.)

73. Find the center of mass of cone of uniform density that has a radius R at the base, height h, and mass M. Let the origin be
at the center of the base of the cone and have +z going through the cone vertex.

74. Find the center of mass of a thin wire of mass m and length L bent in a semicircular shape. Let the origin be at the center
of the semicircle and have the wire arc from the +x axis, cross the +y axis, and terminate at the −x axis.

75. Find the center of mass of a uniform thin semicircular plate of radius R. Let the origin be at the center of the semicircle,
the plate arc from the +x axis to the −x axis, and the z axis be perpendicular to the plate.
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76. Find the center of mass of a sphere of mass M and radius R and a cylinder of mass m, radius r, and height h arranged as
shown below. Express your answers in a coordinate system that has the origin at the center of the cylinder.

9.7 Rocket Propulsion
77. A 5.00-kg squid initially at rest ejects 0.250 kg of fluid with a velocity of 10.0 m/s. (a) What is the recoil velocity of the

squid if the ejection is done in 0.100 s and there is a 5.00-N frictional force opposing the squid’s movement? (b) How
much energy is lost to work done against friction?

78. A rocket takes off from Earth and reaches a speed of 100 m/s in 10.0 s. If the exhaust speed is 1500 m/s and the mass of
fuel burned is 100 kg, what was the initial mass of the rocket?

79. Repeat the preceding problem but for a rocket that takes off from a space station, where there is no gravity other than the
negligible gravity due to the space station. 8

80. How much fuel would be needed for a 1000-kg rocket (this is its mass with no fuel) to take off from Earth and reach 1000
m/s in 30 s? The exhaust speed is 1000 m/s.

81. What exhaust speed is required to accelerate a rocket in deep space from 800 m/s to 1000 m/s in 5.0 s if the total rocket
mass is 1200 kg and the rocket only has 50 kg of fuel left?

82. Unreasonable Results Squids have been reported to jump from the ocean and travel 30.0 m (measured horizontally)
before re-entering the water. (a) Calculate the initial speed of the squid if it leaves the water at an angle of 20.0°,
assuming negligible lift from the air and negligible air resistance. (b) The squid propels itself by squirting water. What
fraction of its mass would it have to eject in order to achieve the speed found in the previous part? The water is ejected at
12.0 m/s; gravitational force and friction are neglected. (c) What is unreasonable about the results? (d) Which premise is
unreasonable, or which premises are inconsistent?

Additional Problems
83. Two 70-kg canoers paddle in a single, 50-kg canoe. Their paddling moves the canoe at 1.2 m/s with respect to the water,

and the river they’re in flows at 4 m/s with respect to the land. What is their momentum with respect to the land?
84. Which has a larger magnitude of momentum: a 3000-kg elephant moving at 40 km/h or a 60-kg cheetah moving at 112

km/h?
85. A driver applies the brakes and reduces the speed of her car by 20%, without changing the direction in which the car is

moving. By how much does the car’s momentum change?
86. You friend claims that momentum is mass multiplied by velocity, so things with more mass have more momentum. Do

you agree? Explain.
87. Dropping a glass on a cement floor is more likely to break the glass than if it is dropped from the same height on a grass

lawn. Explain in terms of the impulse.
88. Your 1500-kg sports car accelerates from 0 to 30 m/s in 10 s. What average force is exerted on it during this acceleration?
89. A ball of mass m is dropped. What is the formula for the impulse exerted on the ball from the instant it is dropped to an

arbitrary time τ later? Ignore air resistance.
90. Repeat the preceding problem, but including a drag force due to air of f  = −b .
91. A 5.0-g egg falls from a 90-cm-high counter onto the floor and breaks. What impulse is exerted by the floor on the egg?
92. A car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to

the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the
driver by the seatbelt?

93. Two hockey players approach each other head on, each traveling at the same speed v . They collide and get tangled
together, falling down and moving off at a speed . What is the ratio of their masses?

drag v ⃗ 
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94. You are coasting on your 10-kg bicycle at 15 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving
at 2.0 m/s in the same direction as you. If your mass is 60 kg, (a) what is the initial momentum of you plus your bicycle?
(b) What is the initial momentum of the bug? (c) What is your change in velocity due to the collision with the bug? (d)
What would the change in velocity have been if the bug were traveling in the opposite direction?

95. A load of gravel is dumped straight down into a 30 000-kg freight car coasting at 2.2 m/s on a straight section of a
railroad. If the freight car’s speed after receiving the gravel is 1.5 m/s, what mass of gravel did it receive?

96. Two carts on a straight track collide head on. The first cart was moving at 3.6 m/s in the positive x direction and the
second was moving at 2.4 m/s in the opposite direction. After the collision, the second car continues moving in its initial
direction of motion at 0.24 m/s. If the mass of the second car is 5.0 times that of the first, what is the final velocity of the
first car?

97. A 100-kg astronaut finds himself separated from his spaceship by 10 m and moving away from the spaceship at 0.1 m/s.
To get back to the spaceship, he throws a 10-kg tool bag away from the spaceship at 5.0 m/s. How long will he take to
return to the spaceship?

98. Derive the equations giving the final speeds for two objects that collide elastically, with the mass of the objects being m
and m  and the initial speeds being v  and v  = 0 (i.e., second object is initially stationary).

99. Repeat the preceding problem for the case when the initial speed of the second object is nonzero.
100. A child sleds down a hill and collides at 5.6 m/s into a stationary sled that is identical to his. The child is launched

forward at the same speed, leaving behind the two sleds that lock together and slide forward more slowly. What is the
speed of the two sleds after this collision?

101. For the preceding problem, find the final speed of each sled for the case of an elastic collision.
102. A 90-kg football player jumps vertically into the air to catch a 0.50-kg football that is thrown essentially horizontally at

him at 17 m/s. What is his horizontal speed after catching the ball?
103. Three skydivers are plummeting earthward. They are initially holding onto each other, but then push apart. Two skydivers

of mass 70 and 80 kg gain horizontal velocities of 1.2 m/s north and 1.4 m/s southeast, respectively. What is the
horizontal velocity of the third skydiver, whose mass is 55 kg?

104. Two billiard balls are at rest and touching each other on a pool table. The cue ball travels at 3.8 m/s along the line of
symmetry between these balls and strikes them simultaneously. If the collision is elastic, what is the velocity of the three
balls after the collision?

105. A billiard ball traveling at (2.2 m/s)  − (0.4 m/s)  collides with a wall that is aligned in the  direction. Assuming the
collision is elastic, what is the final velocity of the ball?

106. Two identical billiard balls collide. The first one is initially traveling at (2.2 m/s)  − (0.4 m/s)  and the second one at
−(1.4 m/s)  + (2.4 m/s) . Suppose they collide when the center of ball 1 is at the origin and the center of ball 2 is at the
point (2R, 0) where R is the radius of the balls. What is the final velocity of each ball?

107. Repeat the preceding problem if the balls collide when the center of ball 1 is at the origin and the center of ball 2 is at the
point (0, 2R).

108. Repeat the preceding problem if the balls collide when the center of ball 1 is at the origin and the center of ball 2 is at the

point .

109. Where is the center of mass of a semicircular wire of radius R that is centered on the origin, begins and ends on the x
axis, and lies in the x,y plane?

110. Where is the center of mass of a slice of pizza that was cut into eight equal slices? Assume the origin is at the apex of the
slice and measure angles with respect to an edge of the slice. The radius of the pizza is R.

111. If the entire population of Earth were transferred to the Moon, how far would the center of mass of the Earth-Moon-
population system move? Assume the population is 7 billion, the average human has a mass of 65 kg, and that the
population is evenly distributed over both the Earth and the Moon. The mass of the Earth is 5.97 x 10  kg and that of the
Moon is 7.34 x 10  kg. The radius of the Moon’s orbit is about 3.84 x 10 m.

112. You friend wonders how a rocket continues to climb into the sky once it is sufficiently high above the surface of Earth so
that its expelled gasses no longer push on the surface. How do you respond?

113. To increase the acceleration of a rocket, should you throw rocks out of the front window of the rocket or out of the back
window?
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Challenge Problems
114. A 65-kg person jumps from the first floor window of a burning building and lands almost vertically on the ground with a

horizontal velocity of 3 m/s and vertical velocity of −9 m/s. Upon impact with the ground he is brought to rest in a short
time. The force experienced by his feet depends on whether he keeps his knees stiff or bends them. Find the force on his
feet in each case. (a) First find the impulse on the person from the impact on the ground. Calculate both its magnitude and
direction. (b) Find the average force on the feet if the person keeps his leg stiff and straight and his center of mass drops
by only 1 cm vertically and 1 cm horizontally during the impact. (c) Find the average force on the feet if the person bends
his legs throughout the impact so that his center of mass drops by 50 cm vertically and 5 cm horizontally during the
impact. (d) Compare the results of part (b) and (c), and draw conclusions about which way is better. You will need to find
the time the impact lasts by making reasonable assumptions about the deceleration. Although the force is not constant
during the impact, working with constant average force for this problem is acceptable.

115. Two projectiles of mass m  and m  are fired at the same speed but in opposite directions from two launch sites separated
by a distance D. They both reach the same spot in their highest point and strike there. As a result of the impact they stick
together and move as a single body afterwards. Find the place they will land.

116. Two identical objects (such as billiard balls) have a one-dimensional collision in which one is initially motionless. After
the collision, the moving object is stationary and the other moves with the same speed as the other originally had. Show
that both momentum and kinetic energy are conserved.

117. A ramp of mass M is at rest on a horizontal surface. A small cart of mass m is placed at the top of the ramp and released.
What are the velocities of the ramp and the cart relative to the ground at the instant the cart leaves the ramp?

118. Find the center of mass of the structure given in the figure below. Assume a uniform thickness of 20 cm, and a uniform
density of 1 g/cm .
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10.S: Linear Momentum and Collisions (Summary)

Key Terms
center of mass weighted average position of the mass

closed system
system for which the mass is constant and the net external force on

the system is zero

elastic collision that conserves kinetic energy

explosion
single object breaks up into multiple objects; kinetic energy is not

conserved in explosions

external force
force applied to an extended object that changes the momentum of

the extended object as a whole

impulse
effect of applying a force on a system for a time interval; this time

interval is usually small, but does not have to be

impulse-momentum theorem
change of momentum of a system is equal to the impulse applied to

the system

inelastic collision that does not conserve kinetic energy

internal force
force that the simple particles that make up an extended object exert

on each other. Internal forces can be attractive or repulsive

Law of Conservation of Momentum total momentum of a closed system cannot change

linear mass density , expressed as the number of kilograms of material per meter

momentum

measure of the quantity of motion that an object has; it takes into
account both how fast the object is moving, and its mass;

specifically, it is the product of mass and velocity; it is a vector
quantity

perfectly inelastic
collision after which all objects are motionless, the final kinetic

energy is zero, and the loss of kinetic energy is a maximum

rocket equation

derived by the Soviet physicist Konstantin Tsiolkovsky in 1897, it
gives us the change of velocity that the rocket obtains from burning
a mass of fuel that decreases the total rocket mass from m  down to

m

system
object or collection of objects whose motion is currently under

investigation; however, your system is defined at the start of the
problem, you must keep that definition for the entire problem

Key Equations

Definition of momentum

Impulse

Impulse-momentum theorem

Average force from momentum

λ

i

= mp ⃗  v ⃗  (10.S.1)

≡ (t)dt or = ΔtJ ⃗  ∫
tf

ti

F ⃗  J ⃗  F ⃗ 
ave (10.S.2)

= ΔJ ⃗  p ⃗  (10.S.3)

=F ⃗  Δp ⃗ 

Δt
(10.S.4)
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Instantaneous force from momentum (Newton’s second law)

Conservation of momentum

Generalized conservation of momentum

Conservation of momentum in two dimensions

External forces

Newton’s second law for an extended object

Acceleration of the center of mass

Position of the center of mass for a system of particles

Velocity of the center of mass

Position of the center of mass of a continuous object

Rocket equation

Summary

9.1 Linear Momentum
The motion of an object depends on its mass as well as its velocity. Momentum is a concept that describes this. It is a useful and
powerful concept, both computationally and theoretically. The SI unit for momentum is kg • m/s.

9.2 Impulse and Collisions
When a force is applied on an object for some amount of time, the object experiences an impulse.
This impulse is equal to the object’s change of momentum.
Newton’s second law in terms of momentum states that the net force applied to a system equals the rate of change of the
momentum that the force causes.

9.3 Conservation of Linear Momentum
The law of conservation of momentum says that the momentum of a closed system is constant in time (conserved).
A closed (or isolated) system is defined to be one for which the mass remains constant, and the net external force is zero.
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The total momentum of a system is conserved only when the system is closed.

9.4 Types of Collisions
An elastic collision is one that conserves kinetic energy.
An inelastic collision does not conserve kinetic energy.
Momentum is conserved regardless of whether or not kinetic energy is conserved.
Analysis of kinetic energy changes and conservation of momentum together allow the final velocities to be calculated in terms of
initial velocities and masses in one-dimensional, two-body collisions.

9.5 Collisions in Multiple Dimensions
The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into components
along perpendicular axes.
Momentum is conserved in both directions simultaneously and independently.
The Pythagorean theorem gives the magnitude of the momentum vector using the x- and y-components, calculated using
conservation of momentum in each direction.

9.6 Center of Mass
An extended object (made up of many objects) has a defined position vector called the center of mass.
The center of mass can be thought of, loosely, as the average location of the total mass of the object.
The center of mass of an object traces out the trajectory dictated by Newton’s second law, due to the net external force.
The internal forces within an extended object cannot alter the momentum of the extended object as a whole.

9.7 Rocket Propulsion
A rocket is an example of conservation of momentum where the mass of the system is not constant, since the rocket ejects fuel to
provide thrust.
The rocket equation gives us the change of velocity that the rocket obtains from burning a mass of fuel that decreases the total
rocket mass.

This page titled 10.S: Linear Momentum and Collisions (Summary) is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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CHAPTER OVERVIEW

11: Fixed-Axis Rotation Introduction
We begin to address rotational motion in this chapter, starting with fixed-axis rotation. Fixed-axis rotation describes the rotation
around a fixed axis of a rigid body; that is, an object that does not deform as it moves. We will show how to apply all the ideas
we’ve developed up to this point about translational motion to an object rotating around a fixed axis. In the next chapter, we extend
these ideas to more complex rotational motion, including objects that both rotate and translate, and objects that do not have a fixed
rotational axis.

11.1: Prelude to Fixed-Axis Rotation Introduction
11.2: Rotational Variables
11.3: Rotation with Constant Angular Acceleration
11.4: Relating Angular and Translational Quantities
11.5: Moment of Inertia and Rotational Kinetic Energy
11.6: Calculating Moments of Inertia
11.7: Torque
11.8: Newton’s Second Law for Rotation
11.9: Work and Power for Rotational Motion
11.E: Fixed-Axis Rotation Introduction (Exercises)
11.S: Fixed-Axis Rotation Introduction (Summary)

Thumbnail: Brazos wind farm in west Texas. As of 2012, wind farms in the US had a power output of 60 gigawatts, enough
capacity to power 15 million homes for a year. (credit: modification of work by “ENERGY.GOV”/Flickr).
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11.1: Prelude to Fixed-Axis Rotation Introduction
In previous chapters, we described motion (kinematics) and how to change motion (dynamics), and we defined important concepts
such as energy for objects that can be considered as point masses. Point masses, by definition, have no shape and so can only
undergo translational motion. However, we know from everyday life that rotational motion is also very important and that many
objects that move have both translation and rotation. The wind turbines in our chapter opening image are a prime example of how
rotational motion impacts our daily lives, as the market for clean energy sources continues to grow.

Figure : Brazos wind farm in west Texas. As of 2012, wind farms in the US had a power output of 60 gigawatts, enough
capacity to power 15 million homes for a year. (credit: modification of work by “ENERGY.GOV”/Flickr)

We begin to address rotational motion in this chapter, starting with fixed-axis rotation. Fixed-axis rotation describes the rotation
around a fixed axis of a rigid body; that is, an object that does not deform as it moves. We will show how to apply all the ideas
we’ve developed up to this point about translational motion to an object rotating around a fixed axis. In the next chapter, we extend
these ideas to more complex rotational motion, including objects that both rotate and translate, and objects that do not have a fixed
rotational axis.

This page titled 11.1: Prelude to Fixed-Axis Rotation Introduction is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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11.2: Rotational Variables

Describe the physical meaning of rotational variables as applied to fixed-axis rotation
Explain how angular velocity is related to tangential speed
Calculate the instantaneous angular velocity given the angular position function
Find the angular velocity and angular acceleration in a rotating system
Calculate the average angular acceleration when the angular velocity is changing
Calculate the instantaneous angular acceleration given the angular velocity function

So far in this text, we have mainly studied translational motion, including the variables that describe it: displacement, velocity, and
acceleration. Now we expand our description of motion to rotation—specifically, rotational motion about a fixed axis. We will find
that rotational motion is described by a set of related variables similar to those we used in translational motion.

Angular Velocity
Uniform circular motion (discussed previously in Motion in Two and Three Dimensions) is motion in a circle at constant speed.
Although this is the simplest case of rotational motion, it is very useful for many situations, and we use it here to introduce
rotational variables.

In Figure , we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define
the particle’s position. Its position vector from the origin of the circle to the particle sweeps out the angle , which increases in the
counterclockwise direction as the particle moves along its circular path. The angle  is called the angular position of the particle.
As the particle moves in its circular path, it also traces an arc length s.

Figure : A particle follows a circular path. As it moves counterclockwise, it sweeps out a positive angle  with respect to the
x-axis and traces out an arc length s.

The angle is related to the radius of the circle and the arc length by

The angle , the angular position of the particle along its path, has units of radians (rad). There are  radians in 360°. Note that the
radian measure is a ratio of length measurements, and therefore is a dimensionless quantity. As the particle moves along its circular
path, its angular position changes and it undergoes angular displacements .

We can assign vectors to the quantities in Equation . The angle  is a vector out of the page in Figure . The angular
position vector  and the arc length  both lie in the plane of the page. These three vectors are related to each other by

That is, the arc length is the cross product of the angle vector and the position vector, as shown in Figure .
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Figure : The angle vector points along the z-axis and the position vector and arc length vector both lie in the xy-plane. We
see that . All three vectors are perpendicular to each other.

The magnitude of the angular velocity, denoted by , is the time rate of change of the angle  as the particle moves in its circular
path. The instantaneous angular velocity is defined as the limit in which t → 0 in the average angular velocity :

where  is the angle of rotation (Figure ). The units of angular velocity are radians per second (rad/s). Angular velocity can
also be referred to as the rotation rate in radians per second. In many situations, we are given the rotation rate in revolutions/s or
cycles/s. To find the angular velocity, we must multiply revolutions/s by 2 , since there are 2  radians in one complete revolution.
Since the direction of a positive angle in a circle is counterclockwise, we take counterclockwise rotations as being positive and
clockwise rotations as negative.

We can see how angular velocity is related to the tangential speed of the particle by differentiating Equation  with respect to
time. We rewrite Equation  as

Taking the derivative with respect to time and noting that the radius r is a constant, we have

where  = 0. Here,  is just the tangential speed v  of the particle in Figure . Thus, by using Equation , we arrive at

That is, the tangential speed of the particle is its angular velocity times the radius of the circle. From Equation , we see that
the tangential speed of the particle increases with its distance from the axis of rotation for a constant angular velocity. This effect is
shown in Figure . Two particles are placed at different radii on a rotating disk with a constant angular velocity. As the disk
rotates, the tangential speed increases linearly with the radius from the axis of rotation. In Figure , we see that v  = r  and

v  = r . But the disk has a constant angular velocity, so . This means  or v  = v . Thus, since r  > r , v  >

v .

Figure : Two particles on a rotating disk have different tangential speeds, depending on their distance to the axis of rotation.

Up until now, we have discussed the magnitude of the angular velocity , which is a scalar quantity—the change in angular
position with respect to time. The vector  is the vector associated with the angular velocity and points along the axis of rotation.
This is useful because when a rigid body is rotating, we want to know both the axis of rotation and the direction that the body is
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rotating about the axis, clockwise or counterclockwise. The angular velocity  gives us this information. The angular velocity 
has a direction determined by what is called the right-hand rule. The right-hand rule is such that if the fingers of your right hand
wrap counterclockwise from the x-axis (the direction in which  increases) toward the y-axis, your thumb points in the direction of
the positive z-axis (Figure ). An angular velocity  that points along the positive z-axis therefore corresponds to a
counterclockwise rotation, whereas an angular velocity  that points along the negative z-axis corresponds to a clockwise rotation.

Figure : For counterclockwise rotation in the coordinate system shown, the angular velocity points in the positive z-direction
by the right-hand-rule.

We can verify the right-hand-rule using the vector expression for the arc length , Equation . If we differentiate this
equation with respect to time, we find

Since  is constant, the term  = 0. Since  is the tangential velocity and  is the angular velocity, we have

That is, the tangential velocity is the cross product of the angular velocity and the position vector, as shown in Figure . From
part (a) of this figure, we see that with the angular velocity in the positive z-direction, the rotation in the xy-plane is
counterclockwise. In part (b), the angular velocity is in the negative z-direction, giving a clockwise rotation in the xy-plane.

Figure : The vectors shown are the angular velocity, position, and tangential velocity. (a) The angular velocity points in the
positive z-direction, giving a counterclockwise rotation in the xy-plane. (b) The angular velocity points in the negative z-direction,
giving a clockwise rotation.

A flywheel rotates such that it sweeps out an angle at the rate of  = t = (45.0 rad/s)t radians. The wheel rotates
counterclockwise when viewed in the plane of the page. (a) What is the angular velocity of the flywheel? (b) What direction is
the angular velocity? (c) How many radians does the flywheel rotate through in 30 s? (d) What is the tangential speed of a
point on the flywheel 10 cm from the axis of rotation?

Strategy

The functional form of the angular position of the flywheel is given in the problem as (t) = t, so by taking the derivative
with respect to time, we can find the angular velocity. We use the right-hand rule to find the angular velocity. To find the
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angular displacement of the flywheel during 30 s, we seek the angular displacement , where the change in angular position
is between 0 and 30 s. To find the tangential speed of a point at a distance from the axis of rotation, we multiply its distance
times the angular velocity of the flywheel.

Solution
a.  =  = 45 rad/s. We see that the angular velocity is a constant.
b. By the right-hand rule, we curl the fingers in the direction of rotation, which is counterclockwise in the plane of the page,

and the thumb points in the direction of the angular velocity, which is out of the page.
c.  = (30 s) − (0 s) = 45.0(30.0 s) − 45.0(0 s) = 1350.0 rad.
d. v  = r  = (0.1 m)(45.0 rad/s) = 4.5 m/s.

Significance
In 30 s, the flywheel has rotated through quite a number of revolutions, about 215 if we divide the angular displacement by 2 .
A massive flywheel can be used to store energy in this way, if the losses due to friction are minimal. Recent research has
considered superconducting bearings on which the flywheel rests, with zero energy loss due to friction.

Angular Acceleration
We have just discussed angular velocity for uniform circular motion, but not all motion is uniform. Envision an ice skater spinning
with his arms outstretched—when he pulls his arms inward, his angular velocity increases. Or think about a computer’s hard disk
slowing to a halt as the angular velocity decreases. We will explore these situations later, but we can already see a need to define an
angular acceleration for describing situations where  changes. The faster the change in , the greater the angular acceleration.
We define the instantaneous angular acceleration  as the derivative of angular velocity with respect to time:

where we have taken the limit of the average angular acceleration,  as . The units of angular acceleration are
(rad/s)/s, or rad/s .

In the same way as we defined the vector associated with angular velocity , we can define , the vector associated with angular
acceleration (Figure ). If the angular velocity is along the positive z-axis, as in Figure , and  is positive, then the
angular acceleration  is positive and points along the +z- axis. Similarly, if the angular velocity  is along the positive z-axis and 

 is negative, then the angular acceleration is negative and points along the +z-axis.

Figure : The rotation is counterclockwise in both (a) and (b) with the angular velocity in the same direction. (a) The angular
acceleration is in the same direction as the angular velocity, which increases the rotation rate. (b) The angular acceleration is in the
opposite direction to the angular velocity, which decreases the rotation rate.

We can express the tangential acceleration vector as a cross product of the angular acceleration and the position vector. This
expression can be found by taking the time derivative of  and is left as an exercise:

The vector relationships for the angular acceleration and tangential acceleration are shown in Figure .
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Figure : (a) The angular acceleration is the positive z-direction and produces a tangential acceleration in a counterclockwise
sense. (b) The angular acceleration is in the negative z-direction and produces a tangential acceleration in the clockwise sense.

We can relate the tangential acceleration of a point on a rotating body at a distance from the axis of rotation in the same way that
we related the tangential speed to the angular velocity. If we differentiate Equation  with respect to time, noting that the
radius r is constant, we obtain

Thus, the tangential acceleration a is the radius times the angular acceleration. Equations  and  are important for the
discussion of rolling motion (see Angular Momentum).

Let’s apply these ideas to the analysis of a few simple fixed-axis rotation scenarios. Before doing so, we present a problem-solving
strategy that can be applied to rotational kinematics: the description of rotational motion.

1. Examine the situation to determine that rotational kinematics (rotational motion) is involved.
2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.
3. Make a complete list of what is given or can be inferred from the problem as stated (identify the knowns).
4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in

terms of a translational analog, because by now you are familiar with the equations of translational motion.
5. Substitute the known values along with their units into the appropriate equation and obtain numerical solutions complete

with units. Be sure to use units of radians for angles.
6. Check your answer to see if it is reasonable: Does your answer make sense?

Now let’s apply this problem-solving strategy to a few specific examples.

A bicycle mechanic mounts a bicycle on the repair stand and starts the rear wheel spinning from rest to a final angular velocity
of 250 rpm in 5.00 s. (a) Calculate the average angular acceleration in rad/s . (b) If she now hits the brakes, causing an angular
acceleration of −87.3 rad/s , how long does it take the wheel to stop?

Strategy

The average angular acceleration can be found directly from its definition  because the final angular velocity and time
are given. We see that  =  −  = 250 rev/min and t is 5.00 s. For part (b), we know the angular acceleration
and the initial angular velocity. We can find the stopping time by using the definition of average angular acceleration and
solving for t, yielding

Solution
a. Entering known information into the definition of angular acceleration, we get

Because  is in revolutions per minute (rpm) and we want the standard units of rad/s  for angular acceleration, we need
to convert from rpm to rad/s:

11.2.7

11.2.6

= rα.at (11.2.11)

t 11.2.6 11.2.11

 Problem-Solving Strategy: Rotational Kinematics

 Example : A Spinning Bicycle Wheel11.2.2
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Entering this quantity into the expression for , we get

b. Here the angular velocity decreases from 26.2 rad/s (250 rpm) to zero, so that  is −26.2 rad/s, and  is given to be –87.3
rad/s . Thus

Significance
Note that the angular acceleration as the mechanic spins the wheel is small and positive; it takes 5 s to produce an appreciable
angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes to
zero.

The fan blades on a turbofan jet engine (shown below) accelerate from rest up to a rotation rate of 40.0 rev/s in 20 s. The
increase in angular velocity of the fan is constant in time. (The GE90-110B1 turbofan engine mounted on a Boeing 777, as
shown, is currently the largest turbofan engine in the world, capable of thrusts of 330–510 kN.) (a) What is the average angular
acceleration? (b) What is the instantaneous angular acceleration at any time during the first 20 s?

A wind turbine (Figure ) in a wind farm is being shut down for maintenance. It takes 30 s for the turbine to go from its

operating angular velocity to a complete stop in which the angular velocity function is (t) = rad/s. If the turbine

is rotating counterclockwise looking into the page, (a) what are the directions of the angular velocity and acceleration vectors?
(b) What is the average angular acceleration? (c) What is the instantaneous angular acceleration at t = 0.0, 15.0, 30.0 s?

Δω = 250 ⋅ ⋅ = 26.2 rad/s.
rev

min

2π rad

rev

1 min

60 s
(11.2.14)

α

barα = = = 5.24 rad/ .
Δω

Δt

26.2 rpm

5.00 s
s2 (11.2.15)

Δω α
2

Δt = = 0.300 s.
−26.2 rad/s

−87.3 rad/s2
(11.2.16)

 Exercise 11.2.1

 Example : Wind Turbine11.2.3

11.2.9

ω [ ]
(t −30.0s−1 )2
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Figure : A wind turbine that is rotating counterclockwise, as seen head on.

Strategy

a. We are given the rotational sense of the turbine, which is counterclockwise in the plane of the page. Using the right hand
rule (Figure 10.5), we can establish the directions of the angular velocity and acceleration vectors.

b. We calculate the initial and final angular velocities to get the average angular acceleration. We establish the sign of the
angular acceleration from the results in (a).

c. We are given the functional form of the angular velocity, so we can find the functional form of the angular acceleration
function by taking its derivative with respect to time.

Solution
a. Since the turbine is rotating counterclockwise, angular velocity  points out of the page. But since the angular velocity is

decreasing, the angular acceleration  points into the page, in the opposite sense to the angular velocity.
b. The initial angular velocity of the turbine, setting t = 0, is  = 9.0 rad/s. The final angular velocity is zero, so the average

angular acceleration is

c. Taking the derivative of the angular velocity with respect to time gives  rad/s

Significance
We found from the calculations in (a) and (b) that the angular acceleration α and the average angular acceleration  are
negative. The turbine has an angular acceleration in the opposite sense to its angular velocity.

We now have a basic vocabulary for discussing fixed-axis rotational kinematics and relationships between rotational variables. We
discuss more definitions and connections in the next section.

This page titled 11.2: Rotational Variables is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

10.2: Rotational Variables by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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2
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11.3: Rotation with Constant Angular Acceleration

Derive the kinematic equations for rotational motion with constant angular acceleration
Select from the kinematic equations for rotational motion with constant angular acceleration the appropriate equations to
solve for unknowns in the analysis of systems undergoing fixed-axis rotation
Use solutions found with the kinematic equations to verify the graphical analysis of fixed-axis rotation with constant
angular acceleration

In the preceding section, we defined the rotational variables of angular displacement, angular velocity, and angular acceleration. In
this section, we work with these definitions to derive relationships among these variables and use these relationships to analyze
rotational motion for a rigid body about a fixed axis under a constant angular acceleration. This analysis forms the basis for
rotational kinematics. If the angular acceleration is constant, the equations of rotational kinematics simplify, similar to the
equations of linear kinematics discussed in Motion along a Straight Line and Motion in Two and Three Dimensions. We can then
use this simplified set of equations to describe many applications in physics and engineering where the angular acceleration of the
system is constant. Rotational kinematics is also a prerequisite to the discussion of rotational dynamics later in this chapter.

Kinematics of Rotational Motion
Using our intuition, we can begin to see how the rotational quantities , , , and t are related to one another. For example, we saw
in the preceding section that if a flywheel has an angular acceleration in the same direction as its angular velocity vector, its angular
velocity increases with time and its angular displacement also increases. On the contrary, if the angular acceleration is opposite to
the angular velocity vector, its angular velocity decreases with time. We can describe these physical situations and many others
with a consistent set of rotational kinematic equations under a constant angular acceleration. The method to investigate rotational
motion in this way is called kinematics of rotational motion.

To begin, we note that if the system is rotating under a constant acceleration, then the average angular velocity follows a simple
relation because the angular velocity is increasing linearly with time. The average angular velocity is just half the sum of the initial
and final values:

From the definition of the average angular velocity, we can find an equation that relates the angular position, average angular
velocity, and time:

Solving for , we have

where we have set t  = 0. This equation can be very useful if we know the average angular velocity of the system. Then we could
find the angular displacement over a given time period. Next, we find an equation relating , , and t. To determine this equation,
we start with the definition of angular acceleration:

We rearrange this to get dt = d  and then we integrate both sides of this equation from initial values to final values, that is, from
t  to t and  to . In uniform rotational motion, the angular acceleration is constant so it can be pulled out of the integral,
yielding two definite integrals:

Setting t  = 0, we have

 Learning Objectives
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We rearrange this to obtain

where  is the initial angular velocity. Equation  is the rotational counterpart to the linear kinematics equation v  = v  + at.
With Equation , we can find the angular velocity of an object at any specified time t given the initial angular velocity and the
angular acceleration.

Let’s now do a similar treatment starting with the equation . We rearrange it to obtain dt = d  and integrate both sides
from initial to final values again, noting that the angular acceleration is constant and does not have a time dependence. However,
this time, the angular velocity is not constant (in general), so we substitute in what we derived above:

where we have set t  = 0. Now we rearrange to obtain

Equation  is the rotational counterpart to the linear kinematics equation found in Motion Along a Straight Line for position
as a function of time. This equation gives us the angular position of a rotating rigid body at any time t given the initial conditions
(initial angular position and initial angular velocity) and the angular acceleration.

We can find an equation that is independent of time by solving for t in Equation  and substituting into Equation .
Equation  becomes

or

Equation  through Equation  describe fixed-axis rotation for constant acceleration and are summarized in Table 10.1.

Table 10.1 - Kinematic Equations

Angular displacement from average angular velocity

Angular velocity from angular acceleration

Angular displacement from angular velocity and angular
acceleration

Angular velocity from angular displacement and angular
acceleration

αt = − .ωf ω0 (11.3.6)

= +αt,ωf ω0 (11.3.7)

ω0 11.3.7 f 0
11.3.7

ω = dθ

dt
ω θ

( +α )d∫
tf

t0

ω0 t′ t′

dt+ αtdt∫
t

t0

ω0 ∫
t

t0

= dθ;∫
θf

θ0

= dθ = [ +α = t+α( ) = − .∫
θf

θ0

ω0t
′ ( )

(t′)2

2

2

]

t

t0

ω0
t2

2
θf θ0

0

= + t+ α .θf θ0 ω0
1

2
t2 (11.3.8)

11.3.8

11.3.7 11.3.8

11.3.8

θf

−θf θ0

= + ( )+ αθ0 ω0

−ωf ω0

α

1

2
( )

−ωf ω0

α

2

= + − + − +θ0

ω0ωf

α

ω2
0

α

1

2

ω2
f

α

ω0ωf

α

1

2

ω2
0

α

= + − ,θ0
1

2

ω2
f

α

1

2

ω2
0

α

=
−ω2

f ω2
0

2α

= +2α(Δθ).ω2
f

ω2
0 (11.3.9)

11.3.3 11.3.9

= + tθf θ0 ω̄ (11.3.10)

= +αtωf ω0 (11.3.11)

= + t + αθf θ0 ω0
1

2
t2 (11.3.12)

= + 2α(Δθ)ω2
f ω2

0 (11.3.13)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46092?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/03%3A_Motion_Along_a_Straight_Line


11.3.3 https://phys.libretexts.org/@go/page/46092

Applying the Equations for Rotational Motion
Now we can apply the key kinematic relations for rotational motion to some simple examples to get a feel for how the equations
can be applied to everyday situations.

A deep-sea fisherman hooks a big fish that swims away from the boat, pulling the fishing line from his fishing reel. The whole
system is initially at rest, and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of rotation. The reel is
given an angular acceleration of 110 rad/s  for 2.00 s (Figure ).

a. What is the final angular velocity of the reel after 2 s?
b. How many revolutions does the reel make?

Figure : Fishing line coming off a rotating reel moves linearly

Strategy

Identify the knowns and compare with the kinematic equations for constant acceleration. Look for the appropriate equation that
can be solved for the unknown, using the knowns given in the problem description.

Solution
a. We are given  and t and want to determine . The most straightforward equation to use is , since all terms

are known besides the unknown variable we are looking for. We are given that  = 0 (it starts from rest), so

b. We are asked to find the number of revolutions. Because 1 rev = 2  rad, we can find the number of revolutions by finding θ
in radians. We are given  and t, and we know  is zero, so we can obtain  by using

Converting radians to revolutions gives

Significance
This example illustrates that relationships among rotational quantities are highly analogous to those among linear quantities.
The answers to the questions are realistic. After unwinding for two seconds, the reel is found to spin at 220 rad/s, which is
2100 rpm. (No wonder reels sometimes make high-pitched sounds.)

In the preceding example, we considered a fishing reel with a positive angular acceleration. Now let us consider what happens with
a negative angular acceleration.

 Example 10.4: Calculating the Acceleration of a Fishing Reel

2 11.3.1

11.3.1

α ω = +αtωf ω0

ω0

= 0 +(110 rad/ )(2.00 s) = 220 rad/s.ωf s2 (11.3.14)

π

α ω0 θ

θf = + t+ αθi ωi

1

2
t2

= 0 +0 +(0.500)(110 rad/ )(2.00 s = 220 rad.s2 )2

Number of rev= (220 rad)( ) = 35.0 rev.
1 rev

2π rad
(11.3.15)
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Now the fisherman applies a brake to the spinning reel, achieving an angular acceleration of −300 rad/s . How long does it take
the reel to come to a stop?

Strategy

We are asked to find the time t for the reel to come to a stop. The initial and final conditions are different from those in the
previous problem, which involved the same fishing reel. Now we see that the initial angular velocity is  = 220 rad/s and the
final angular velocity  is zero. The angular acceleration is given as  = −300 rad/s . Examining the available equations, we
see all quantities but t are known in , making it easiest to use this equation.

Solution
The equation states

We solve the equation algebraically for t and then substitute the known values as usual, yielding

Significance
Note that care must be taken with the signs that indicate the directions of various quantities. Also, note that the time to stop the
reel is fairly small because the acceleration is rather large. Fishing lines sometimes snap because of the accelerations involved,
and fishermen often let the fish swim for a while before applying brakes on the reel. A tired fish is slower, requiring a smaller
acceleration.

A centrifuge used in DNA extraction spins at a maximum rate of 7000 rpm, producing a “g-force” on the sample that is 6000
times the force of gravity. If the centrifuge takes 10 seconds to come to rest from the maximum spin rate: (a) What is the
angular acceleration of the centrifuge? (b) What is the angular displacement of the centrifuge during this time?

Figure  shows a graph of the angular velocity of a propeller on an aircraft as a function of time. Its angular velocity starts
at 30 rad/s and drops linearly to 0 rad/s over the course of 5 seconds. (a) Find the angular acceleration of the object and verify
the result using the kinematic equations. (b) Find the angle through which the propeller rotates during these 5 seconds and
verify your result using the kinematic equations.

Figure : A graph of the angular velocity of a propeller versus time.

Strategy

a. Since the angular velocity varies linearly with time, we know that the angular acceleration is constant and does not depend
on the time variable. The angular acceleration is the slope of the angular velocity vs. time graph, . To calculate the
slope, we read directly from Figure , and see that  = 30 rad/s at t = 0 s and  = 0 rad/s at t = 5 s. Then, we can

 Example 10.5: Calculating the Duration When the Fishing Reel Slows Down and Stops

2

ω0

ω α 2

= +αtωf ω0

= +αt.ωf ω0 (11.3.16)

t = = = 0.733 s.
−ωf ω0

α

0 −220.0 rad/s

−300.0 rad/s2
(11.3.17)

 Exercise 10.2

 Example 10.6: Angular Acceleration of a Propeller
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verify the result using .
b. We use the equation ; since the time derivative of the angle is the angular velocity, we can find the angular

displacement by integrating the angular velocity, which from the figure means taking the area under the angular velocity
graph. In other words:

Then we use the kinematic equations for constant acceleration to verify the result.

Solution
a. Calculating the slope, we get

We see that this is exactly Equation  with a little rearranging of terms.
b. We can find the area under the curve by calculating the area of the right triangle, as shown in Figure .

Figure : The area under the curve is the area of the right triangle.

\[\Delta \theta = area(triangle) = \frac{1}{2} (30\; rad/s)(5\; s) = 75\; rad \ldotp

\theta_{f} = \theta_{0} + \omega_{0} t + \frac{1}{2} \alpha t^{2} \ldotp

\theta_{0} = (30.0\; rad/s)(5.0\; s) + \frac{1}{2} (-6.0\; rad/s^{2})(5.0\; s)^{2} = 150.0 - 75.0 = 75.0\; rad \ldotp$$This verifies
the solution found from finding the area under the curve.

Significance
We see from part (b) that there are alternative approaches to analyzing fixed-axis rotation with constant acceleration. We
started with a graphical approach and verified the solution using the rotational kinematic equations. Since , we could
do the same graphical analysis on an angular acceleration-vs.-time curve. The area under an -vs.-t curve gives us the change
in angular velocity. Since the angular acceleration is constant in this section, this is a straightforward exercise.

This page titled 11.3: Rotation with Constant Angular Acceleration is shared under a CC BY license and was authored, remixed, and/or curated
by OpenStax.

10.3: Rotation with Constant Angular Acceleration by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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11.4: Relating Angular and Translational Quantities

Given the linear kinematic equation, write the corresponding rotational kinematic equation
Calculate the linear distances, velocities, and accelerations of points on a rotating system given the angular velocities and
accelerations

In this section, we relate each of the rotational variables to the translational variables defined in Motion Along a Straight Line and
Motion in Two and Three Dimensions. This will complete our ability to describe rigid-body rotations.

Angular vs. Linear Variables
In Rotational Variables, we introduced angular variables. If we compare the rotational definitions with the definitions of linear
kinematic variables from Motion Along a Straight Line and Motion in Two and Three Dimensions, we find that there is a mapping
of the linear variables to the rotational ones. Linear position, velocity, and acceleration have their rotational counterparts, as we can
see when we write them side by side:

Linear Rotational

Position

Velocity

Acceleration

Let’s compare the linear and rotational variables individually. The linear variable of position has physical units of meters, whereas
the angular position variable has dimensionless units of radians, as can be seen from the definition of , which is the ratio of
two lengths. The linear velocity has units of m/s, and its counterpart, the angular velocity, has units of rad/s. In Rotational
Variables, we saw in the case of circular motion that the linear tangential speed of a particle at a radius r from the axis of rotation is
related to the angular velocity by the relation v  = r . This could also apply to points on a rigid body rotating about a fixed axis.
Here, we consider only circular motion. In circular motion, both uniform and nonuniform, there exists a centripetal acceleration
(Motion in Two and Three Dimensions). The centripetal acceleration vector points inward from the particle executing circular
motion toward the axis of rotation. The derivation of the magnitude of the centripetal acceleration is given in Motion in Two and
Three Dimensions. From that derivation, the magnitude of the centripetal acceleration was found to be

where r is the radius of the circle.

Thus, in uniform circular motion when the angular velocity is constant and the angular acceleration is zero, we have a linear
acceleration—that is, centripetal acceleration—since the tangential speed in Equation  is a constant. If nonuniform circular
motion is present, the rotating system has an angular acceleration, and we have both a linear centripetal acceleration that is
changing (because v  is changing) as well as a linear tangential acceleration. These relationships are shown in Figure , where
we show the centripetal and tangential accelerations for uniform and nonuniform circular motion.
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Figure : (a) Uniform circular motion: The centripetal acceleration a  has its vector inward toward the axis of rotation. There
is no tangential acceleration. (b) Nonuniform circular motion: An angular acceleration produces an inward centripetal acceleration
that is changing in magnitude, plus a tangential acceleration a .

The centripetal acceleration is due to the change in the direction of tangential velocity, whereas the tangential acceleration is due to
any change in the magnitude of the tangential velocity. The tangential and centripetal acceleration vectors  and  are always
perpendicular to each other, as seen in Figure . To complete this description, we can assign a total linear acceleration vector
to a point on a rotating rigid body or a particle executing circular motion at a radius r from a fixed axis. The total linear acceleration
vector  is the vector sum of the centripetal and tangential accelerations,

The total linear acceleration vector in the case of nonuniform circular motion points at an angle between the centripetal and
tangential acceleration vectors, as shown in Figure . Since , the magnitude of the total linear acceleration is

Note that if the angular acceleration is zero, the total linear acceleration is equal to the centripetal acceleration.

Figure : A particle is executing circular motion and has an angular acceleration. The total linear acceleration of the particle is
the vector sum of the centripetal acceleration and tangential acceleration vectors. The total linear acceleration vector is at an angle
in between the centripetal and tangential accelerations.

Relationships between Rotational and Translational Motion
We can look at two relationships between rotational and translational motion.

1. Generally speaking, the linear kinematic equations have their rotational counterparts. Table 10.2 lists the four linear kinematic
equations and the corresponding rotational counterpart. The two sets of equations look similar to each other, but describe two
different physical situations, that is, rotation and translation.

Table 10.2 - Rotational and Translational Kinematic Equations
Rotational Translational

11.4.1 c

t

a⃗ t a⃗ c
11.4.1

a⃗ 

= + .a⃗  a⃗ c a⃗ t (11.4.8)

11.4.2 ⊥a⃗ c a⃗ t

| | = .a⃗  +a2
c a2

t

− −−−−−
√ (11.4.9)

11.4.2

= + tθf θ0 ω̄ (11.4.10) x = + tx0 v̄ (11.4.11)
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Rotational Translational

2. The second correspondence has to do with relating linear and rotational variables in the special case of circular motion. This is
shown in Table 10.3, where in the third column, we have listed the connecting equation that relates the linear variable to the
rotational variable. The rotational variables of angular velocity and acceleration have subscripts that indicate their definition in
circular motion.

Table 10.3 - Rotational and Translational Quantities: Circular Motion
Rotational Translational Relationship ( r = radius

A centrifuge has a radius of 20 cm and accelerates from a maximum rotation rate of 10,000 rpm to rest in 30 seconds under a
constant angular acceleration. It is rotating counterclockwise. What is the magnitude of the total acceleration of a point at the
tip of the centrifuge at t = 29.0s? What is the direction of the total acceleration vector?

Strategy

With the information given, we can calculate the angular acceleration, which then will allow us to find the tangential
acceleration. We can find the centripetal acceleration at t = 0 by calculating the tangential speed at this time. With the
magnitudes of the accelerations, we can calculate the total linear acceleration. From the description of the rotation in the
problem, we can sketch the direction of the total acceleration vector.

Solution
The angular acceleration is

Therefore, the tangential acceleration is

The angular velocity at t = 29.0 s is

= +αtωf ω0 (11.4.12) = + atvf v0 (11.4.13)

= + t + aθf θ0 ω0
1

2
t2 (11.4.14) = + t + ωxf x0 v0

1

2
t2 (11.4.15)

= + 2α(Δθ)ω2
f ω2

0 (11.4.16) = + 2a(Δx)v2
f v2

0 (11.4.17)

θ (11.4.18) s (11.4.19) θ =
s

r
(11.4.20)

ω (11.4.21) vt (11.4.22) ω =
vt

r
(11.4.23)

α (11.4.24) at (11.4.25) α =
at

r
(11.4.26)

ac (11.4.27) =ac
v2
t

r
(11.4.28)

 Example 10.7: Linear Acceleration of a Centrifuge
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Thus, the tangential speed at t = 29.0 s is

We can now calculate the centripetal acceleration at t = 29.0 s:

Since the two acceleration vectors are perpendicular to each other, the magnitude of the total linear acceleration is

Since the centrifuge has a negative angular acceleration, it is slowing down. The total acceleration vector is as shown in Figure 
. The angle with respect to the centripetal acceleration vector is

The negative sign means that the total acceleration vector is angled toward the clockwise direction.

Figure : The centripetal, tangential, and total acceleration vectors. The centrifuge is slowing down, so the tangential
acceleration is clockwise, opposite the direction of rotation (counterclockwise).

Significance
From Figure , we see that the tangential acceleration vector is opposite the direction of rotation. The magnitude of the
tangential acceleration is much smaller than the centripetal acceleration, so the total linear acceleration vector will make a very
small angle with respect to the centripetal acceleration vector.

A boy jumps on a merry-go-round with a radius of 5 m that is at rest. It starts accelerating at a constant rate up to an angular
velocity of 5 rad/s in 20 seconds. What is the distance travelled by the boy?

Check out this PhET simulation to change the parameters of a rotating disk (the initial angle, angular velocity, and angular
acceleration), and place bugs at different radial distances from the axis. The simulation then lets you explore how circular
motion relates to the bugs’ xy-position, velocity, and acceleration using vectors or graphs.

This page titled 11.4: Relating Angular and Translational Quantities is shared under a CC BY license and was authored, remixed, and/or curated
by OpenStax.

10.4: Relating Angular and Translational Quantities by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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= 1047.2 rad/s−1012.71 rad/s = 35.1 rad/s.

= rω = (0.2 m)(35.1 rad/s) = 7.0 m/s.vt (11.4.31)
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11.5: Moment of Inertia and Rotational Kinetic Energy

Describe the differences between rotational and translational kinetic energy
Define the physical concept of moment of inertia in terms of the mass distribution from the rotational axis
Explain how the moment of inertia of rigid bodies affects their rotational kinetic energy
Use conservation of mechanical energy to analyze systems undergoing both rotation and translation
Calculate the angular velocity of a rotating system when there are energy losses due to nonconservative forces

So far in this chapter, we have been working with rotational kinematics: the description of motion for a rotating rigid body with a
fixed axis of rotation. In this section, we define two new quantities that are helpful for analyzing properties of rotating objects:
moment of inertia and rotational kinetic energy. With these properties defined, we will have two important tools we need for
analyzing rotational dynamics.

Rotational Kinetic Energy
Any moving object has kinetic energy. We know how to calculate this for a body undergoing translational motion, but how about
for a rigid body undergoing rotation? This might seem complicated because each point on the rigid body has a different velocity.
However, we can make use of angular velocity—which is the same for the entire rigid body—to express the kinetic energy for a
rotating object. Figure  shows an example of a very energetic rotating body: an electric grindstone propelled by a motor.
Sparks are flying, and noise and vibration are generated as the grindstone does its work. This system has considerable energy, some
of it in the form of heat, light, sound, and vibration. However, most of this energy is in the form of rotational kinetic energy.

Figure : The rotational kinetic energy of the grindstone is converted to heat, light, sound, and vibration. (credit: Zachary
David Bell, US Navy)

Energy in rotational motion is not a new form of energy; rather, it is the energy associated with rotational motion, the same as
kinetic energy in translational motion. However, because kinetic energy is given by , and velocity is a quantity that is
different for every point on a rotating body about an axis, it makes sense to find a way to write kinetic energy in terms of the
variable , which is the same for all points on a rigid rotating body. For a single particle rotating around a fixed axis, this is
straightforward to calculate. We can relate the angular velocity to the magnitude of the translational velocity using the relation 

, where  is the distance of the particle from the axis of rotation and  is its tangential speed. Substituting into the equation
for kinetic energy, we find

In the case of a rigid rotating body, we can divide up any body into a large number of smaller masses, each with a mass  and
distance to the axis of rotation , such that the total mass of the body is equal to the sum of the individual masses: .
Each smaller mass has tangential speed , where we have dropped the subscript  for the moment. The total kinetic energy of the
rigid rotating body is
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and since  for all masses,

The units of Equation  are joules (J). The equation in this form is complete, but awkward; we need to find a way to
generalize it.

Moment of Inertia
If we compare Equation  to the way we wrote kinetic energy in Work and Kinetic Energy, ( ), this suggests we have a
new rotational variable to add to our list of our relations between rotational and translational variables. The quantity  is
the counterpart for mass in the equation for rotational kinetic energy. This is an important new term for rotational motion. This
quantity is called the moment of inertia , with units of kg·m :

For now, we leave the expression in summation form, representing the moment of inertia of a system of point particles rotating
about a fixed axis. We note that the moment of inertia of a single point particle about a fixed axis is simply , with  being the
distance from the point particle to the axis of rotation. In the next section, we explore the integral form of this equation, which can
be used to calculate the moment of inertia of some regular-shaped rigid bodies.

The moment of inertia is the quantitative measure of rotational inertia, just as in translational motion, and mass is the quantitative
measure of linear inertia—that is, the more massive an object is, the more inertia it has, and the greater is its resistance to change in
linear velocity. Similarly, the greater the moment of inertia of a rigid body or system of particles, the greater is its resistance to
change in angular velocity about a fixed axis of rotation. It is interesting to see how the moment of inertia varies with r, the distance
to the axis of rotation of the mass particles in Equation . Rigid bodies and systems of particles with more mass concentrated
at a greater distance from the axis of rotation have greater moments of inertia than bodies and systems of the same mass, but
concentrated near the axis of rotation. In this way, we can see that a hollow cylinder has more rotational inertia than a solid cylinder
of the same mass when rotating about an axis through the center. Substituting Equation  into Equation , the expression
for the kinetic energy of a rotating rigid body becomes

We see from this equation that the kinetic energy of a rotating rigid body is directly proportional to the moment of inertia and the
square of the angular velocity. This is exploited in flywheel energy-storage devices, which are designed to store large amounts of
rotational kinetic energy. Many carmakers are now testing flywheel energy storage devices in their automobiles, such as the
flywheel, or kinetic energy recovery system, shown in Figure .

= ωωj

K = ( ) .
1

2
∑

j

mjr2
j ω2 (11.5.1)

11.5.1

11.5.1 m1
2

v2

∑j mjr2
j

I 2

I = .∑
j

mjr2
j (11.5.2)

mr2 r

11.5.2

11.5.2 11.5.1

K = I .
1

2
ω2 (11.5.3)

11.5.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46094?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/07%3A_Work_and_Kinetic_Energy


11.5.3 https://phys.libretexts.org/@go/page/46094

Figure : A KERS (kinetic energy recovery system) flywheel used in cars. (credit: “cmonville”/Flickr)

The rotational and translational quantities for kinetic energy and inertia are summarized in Table 10.4. The relationship column is
not included because a constant doesn’t exist by which we could multiply the rotational quantity to get the translational quantity, as
can be done for the variables in Table 10.3.

Table 10.4: Rotational and Translational Kinetic Energies and Inertia

Rotational Translational

Six small washers are spaced 10 cm apart on a rod of negligible mass and 0.5 m in length. The mass of each washer is 20 g.
The rod rotates about an axis located at 25 cm, as shown in Figure . (a) What is the moment of inertia of the system? (b)
If the two washers closest to the axis are removed, what is the moment of inertia of the remaining four washers? (c) If the
system with six washers rotates at 5 rev/s, what is its rotational kinetic energy?

Figure : Six washers are spaced 10 cm apart on a rod of negligible mass and rotating about a vertical axis.

Strategy

a. We use the definition for moment of inertia for a system of particles and perform the summation to evaluate this quantity.
The masses are all the same so we can pull that quantity in front of the summation symbol.

b. We do a similar calculation.
c. We insert the result from (a) into the expression for rotational kinetic energy.

Solution

11.5.2

I = ∑j mjr2
j m
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 Example : Moment of Inertia of a system of particles11.5.1
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a. 
b. 
c. 

Significance
We can see the individual contributions to the moment of inertia. The masses close to the axis of rotation have a very small
contribution. When we removed them, it had a very small effect on the moment of inertia.

In the next section, we generalize the summation equation for point particles and develop a method to calculate moments of inertia
for rigid bodies. For now, though, Figure  gives values of rotational inertia for common object shapes around specified axes.

Figure : Values of rotational inertia for common shapes of objects.

Applying Rotational Kinetic Energy
Now let’s apply the ideas of rotational kinetic energy and the moment of inertia table to get a feeling for the energy associated with
a few rotating objects. The following examples will also help get you comfortable using these equations. First, let’s look at a
general problem-solving strategy for rotational energy.

1. Determine that energy or work is involved in the rotation.
2. Determine the system of interest. A sketch usually helps.
3. Analyze the situation to determine the types of work and energy involved.
4. If there are no losses of energy due to friction and other nonconservative forces, mechanical energy is conserved, that is, 

.
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5. If nonconservative forces are present, mechanical energy is not conserved, and other forms of energy, such as heat and
light, may enter or leave the system. Determine what they are and calculate them as necessary.

6. Eliminate terms wherever possible to simplify the algebra.
7. Evaluate the numerical solution to see if it makes sense in the physical situation presented in the wording of the problem.

A typical small rescue helicopter has four blades: Each is 4.00 m long and has a mass of 50.0 kg (Figure ). The blades
can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total
loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the
translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades.

Figure : (a) Sketch of a four-blade helicopter. (b) A water rescue operation featuring a helicopter from the Auckland
Westpac Rescue Helicopter Service. (credit b: modification of work by “111 Emergency”/Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The wording of the problem gives all the
necessary constants to evaluate the expressions for the rotational and translational kinetic energies.

Solution
a. The rotational kinetic energy is

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find . The
angular velocity  is

The moment of inertia of one blade is that of a thin rod rotated about its end, listed in Figure . The total  is four times
this moment of inertia because there are four blades. Thus,

Entering  and  into the expression for rotational kinetic energy gives

b. Entering the given values into the equation for translational kinetic energy, we obtain

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

 Example : Calculating helicopter energies11.5.2
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Significance
The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of
the helicopter is in its spinning blades.

A person hurls a boomerang into the air with a velocity of 30.0 m/s at an angle of 40.0° with respect to the horizontal (Figure 
). It has a mass of 1.0 kg and is rotating at 10.0 rev/s. The moment of inertia of the boomerang is given as 

where  = 0.7 m. (a) What is the total energy of the boomerang when it leaves the hand? (b) How high does the boomerang go
from the elevation of the hand, neglecting air resistance?

Figure : A boomerang is hurled into the air at an initial angle of 40°.

Strategy

We use the definitions of rotational and linear kinetic energy to find the total energy of the system. The problem states to
neglect air resistance, so we don’t have to worry about energy loss. In part (b), we use conservation of mechanical energy to
find the maximum height of the boomerang.

Solution
a. Moment of inertia: 

Angular Velocity: 

The rotational kinetic energy is therefore

The translational kinetic energy is

Thus, the total energy in the boomerang is

b. We use conservation of mechanical energy. Since the boomerang is launched at an angle, we need to write the total energies
of the system in terms of its linear kinetic energies using the velocity in the x- and y-directions. The total energy when the
boomerang leaves the hand is

= 0.380.
2.00 × J105

5.26 × J105

 Example : Energy in a boomerang11.5.3
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The total energy at maximum height is

By conservation of mechanical energy,  so we have, after canceling like terms,

Since  = 30.0 m/s ( ) = 19.28 m/s, we find

Significance
In part (b), the solution demonstrates how energy conservation is an alternative method to solve a problem that normally would
be solved using kinematics. In the absence of air resistance, the rotational kinetic energy was not a factor in the solution for the
maximum height.

A nuclear submarine propeller has a moment of inertia of 800.0 kg • m . If the submerged propeller has a rotation rate of 4.0
rev/s when the engine is cut, what is the rotation rate of the propeller after 5.0 s when water resistance has taken 50,000 J out of
the system?

This page titled 11.5: Moment of Inertia and Rotational Kinetic Energy is shared under a CC BY license and was authored, remixed, and/or
curated by OpenStax.

10.5: Moment of Inertia and Rotational Kinetic Energy by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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11.6: Calculating Moments of Inertia

Calculate the moment of inertia for uniformly shaped, rigid bodies
Apply the parallel axis theorem to find the moment of inertia about any axis parallel to one already known
Calculate the moment of inertia for compound objects

In the preceding subsection, we defined the moment of inertia but did not show how to calculate it. In this subsection, we show
how to calculate the moment of inertia for several standard types of objects, as well as how to use known moments of inertia to find
the moment of inertia for a shifted axis or for a compound object. This section is very useful for seeing how to apply a general
equation to complex objects (a skill that is critical for more advanced physics and engineering courses).

Moment of Inertia
We defined the moment of inertia I of an object to be

for all the point masses that make up the object. Because  is the distance to the axis of rotation from each piece of mass that makes
up the object, the moment of inertia for any object depends on the chosen axis. To see this, let’s take a simple example of two
masses at the end of a massless (negligibly small mass) rod (Figure ) and calculate the moment of inertia about two different
axes. In this case, the summation over the masses is simple because the two masses at the end of the barbell can be approximated as
point masses, and the sum therefore has only two terms.

In the case with the axis in the center of the barbell, each of the two masses m is a distance  away from the axis, giving a moment
of inertia of

In the case with the axis at the end of the barbell—passing through one of the masses—the moment of inertia is

From this result, we can conclude that it is twice as hard to rotate the barbell about the end than about its center.

Figure : (a) A barbell with an axis of rotation through its center; (b) a barbell with an axis of rotation through one end.

In this example, we had two point masses and the sum was simple to calculate. However, to deal with objects that are not point-
like, we need to think carefully about each of the terms in the equation. The equation asks us to sum over each ‘piece of mass’ a
certain distance from the axis of rotation. But what exactly does each ‘piece of mass’ mean? Recall that in our derivation of this
equation, each piece of mass had the same magnitude of velocity, which means the whole piece had to have a single distance r to
the axis of rotation. However, this is not possible unless we take an infinitesimally small piece of mass dm, as shown in Figure 

.
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Figure : Using an infinitesimally small piece of mass to calculate the contribution to the total moment of inertia.

The need to use an infinitesimally small piece of mass dm suggests that we can write the moment of inertia by evaluating an
integral over infinitesimal masses rather than doing a discrete sum over finite masses:

becomes

This, in fact, is the form we need to generalize the equation for complex shapes. It is best to work out specific examples in detail to
get a feel for how to calculate the moment of inertia for specific shapes. This is the focus of most of the rest of this section.

A uniform thin rod with an axis through the center

Consider a uniform (density and shape) thin rod of mass M and length L as shown in Figure . We want a thin rod so that we
can assume the cross-sectional area of the rod is small and the rod can be thought of as a string of masses along a one-dimensional
straight line. In this example, the axis of rotation is perpendicular to the rod and passes through the midpoint for simplicity. Our
task is to calculate the moment of inertia about this axis. We orient the axes so that the z-axis is the axis of rotation and the x-axis
passes through the length of the rod, as shown in the figure. This is a convenient choice because we can then integrate along the x-
axis.

Figure : Calculation of the moment of inertia I for a uniform thin rod about an axis through the center of the rod.

We define dm to be a small element of mass making up the rod. The moment of inertia integral is an integral over the mass
distribution. However, we know how to integrate over space, not over mass. We therefore need to find a way to relate mass to
spatial variables. We do this using the linear mass density  of the object, which is the mass per unit length. Since the mass
density of this object is uniform, we can write

If we take the differential of each side of this equation, we find

since  is constant. We chose to orient the rod along the x-axis for convenience—this is where that choice becomes very helpful.
Note that a piece of the rod dl lies completely along the x-axis and has a length dx; in fact, dl = dx in this situation. We can
therefore write dm = (dx), giving us an integration variable that we know how to deal with. The distance of each piece of mass
dm from the axis is given by the variable x, as shown in the figure. Putting this all together, we obtain
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The last step is to be careful about our limits of integration. The rod extends from x =  to x = , since the axis is in the middle
of the rod at x = 0. This gives us

Next, we calculate the moment of inertia for the same uniform thin rod but with a different axis choice so we can compare the
results. We would expect the moment of inertia to be smaller about an axis through the center of mass than the endpoint axis, just
as it was for the barbell example at the start of this section. This happens because more mass is distributed farther from the axis of
rotation.

A Uniform Thin Rod with Axis at the End

Now consider the same uniform thin rod of mass  and length , but this time we move the axis of rotation to the end of the rod.
We wish to find the moment of inertia about this new axis (Figure ).

Figure : Calculation of the moment of inertia  for a uniform thin rod about an axis through the end of the rod.

The quantity  is again defined to be a small element of mass making up the rod. Just as before, we obtain

However, this time we have different limits of integration. The rod extends from  to , since the axis is at the end of the
rod at . Therefore we find

Note the rotational inertia of the rod about its endpoint is larger than the rotational inertia about its center (consistent with the
barbell example) by a factor of four.

The Parallel-Axis Theorem
The similarity between the process of finding the moment of inertia of a rod about an axis through its middle and about an axis
through its end is striking, and suggests that there might be a simpler method for determining the moment of inertia for a rod about
any axis parallel to the axis through the center of mass. Such an axis is called a parallel axis. There is a theorem for this, called the
parallel-axis theorem, which we state here but do not derive in this text.
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Let m be the mass of an object and let d be the distance from an axis through the object’s center of mass to a new axis. Then
we have

Let’s apply this to the uniform thin rod with axis example solved above:

This result agrees with our more lengthy calculation (Equation ). Equation  is a useful equation that we apply in
some of the examples and problems.

What is the moment of inertia of a cylinder of radius  and mass  about an axis through a point on the surface, as shown
below?

Answer

A Uniform Thin Disk about an Axis through the Center

Integrating to find the moment of inertia of a two-dimensional object is a little bit trickier, but one shape is commonly done at this
level of study—a uniform thin disk about an axis through its center (Figure ).

Figure : Calculating the moment of inertia for a thin disk about an axis through its center.

Since the disk is thin, we can take the mass as distributed entirely in the xy-plane. We again start with the relationship for the
surface mass density, which is the mass per unit surface area. Since it is uniform, the surface mass density  is constant:

or

 Parallel-Axis Theorem

= +m .Iparallel-axis Icenter of mass d2 (11.6.15)
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so

Now we use a simplification for the area. The area can be thought of as made up of a series of thin rings, where each ring is a mass
increment dm of radius  equidistant from the axis, as shown in part (b) of the figure. The infinitesimal area of each ring  is
therefore given by the length of each ring ( ) times the infinitesimmal width of each ring :

The full area of the disk is then made up from adding all the thin rings with a radius range from  to . This radius range then
becomes our limits of integration for , that is, we integrate from  to . Putting this all together, we have

Note that this agrees with the value given in Figure 10.5.4.

Calculating the Moment of Inertia for Compound Objects

Now consider a compound object such as that in Figure , which depicts a thin disk at the end of a thin rod. This cannot be
easily integrated to find the moment of inertia because it is not a uniformly shaped object. However, if we go back to the initial
definition of moment of inertia as a summation, we can reason that a compound object’s moment of inertia can be found from the
sum of each part of the object:

It is important to note that the moments of inertia of the objects in Equation  are about a common axis. In the case of this
object, that would be a rod of length L rotating about its end, and a thin disk of radius  rotating about an axis shifted off of the
center by a distance , where  is the radius of the disk. Let’s define the mass of the rod to be m  and the mass of the disk to
be .

Figure : Compound object consisting of a disk at the end of a rod. The axis of rotation is located at .

The moment of inertia of the rod is simply , but we have to use the parallel-axis theorem to find the moment of inertia of
the disk about the axis shown. The moment of inertia of the disk about its center is  and we apply the parallel-axis theorem
(Equation ) to find

Adding the moment of inertia of the rod plus the moment of inertia of the disk with a shifted axis of rotation, we find the moment
of inertia for the compound object to be

dm = σ(dA) (11.6.19)
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Applying moment of inertia calculations to solve problems

Now let’s examine some practical applications of moment of inertia calculations.

A 25-kg child stands at a distance  from the axis of a rotating merry-go-round (Figure ). The merry-go-round
can be approximated as a uniform solid disk with a mass of 500 kg and a radius of 2.0 m. Find the moment of inertia of this
system.

Figure : Calculating the moment of inertia for a child on a merry-go-round.

Strategy

This problem involves the calculation of a moment of inertia. We are given the mass and distance to the axis of rotation of the
child as well as the mass and radius of the merry-go-round. Since the mass and size of the child are much smaller than the
merry-go-round, we can approximate the child as a point mass. The notation we use is m  = 25 kg, r  = 1.0 m, m  = 500 kg, r
= 2.0 m. Our goal is to find  (Equation ).

Solution
For the child, , and for the merry-go-round, . Therefore

Significance
The value should be close to the moment of inertia of the merry-go-round by itself because it has much more mass distributed
away from the axis than the child does.

Find the moment of inertia of the rod and solid sphere combination about the two axes as shown below. The rod has length 0.5
m and mass 2.0 kg. The radius of the sphere is 20.0 cm and has mass 1.0 kg.

Strategy

Since we have a compound object in both cases, we can use the parallel-axis theorem to find the moment of inertia about each
axis. In (a), the center of mass of the sphere is located at a distance  from the axis of rotation. In (b), the center of mass
of the sphere is located a distance  from the axis of rotation. In both cases, the moment of inertia of the rod is about an axis at
one end. Refer to Table 10.4 for the moments of inertia for the individual objects.

a.
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b.

Significance
Using the parallel-axis theorem eases the computation of the moment of inertia of compound objects. We see that the moment
of inertia is greater in (a) than (b). This is because the axis of rotation is closer to the center of mass of the system in (b). The
simple analogy is that of a rod. The moment of inertia about one end is mL , but the moment of inertia through the center of
mass along its length is mL .

A pendulum in the shape of a rod (Figure ) is released from rest at an angle of 30°. It has a length 30 cm and mass 300 g.
What is its angular velocity at its lowest point?

Figure : A pendulum in the form of a rod is released from rest at an angle of 30°.

Strategy

Use conservation of energy to solve the problem. At the point of release, the pendulum has gravitational potential energy,
which is determined from the height of the center of mass above its lowest point in the swing. At the bottom of the swing, all
of the gravitational potential energy is converted into rotational kinetic energy.

Solution
The change in potential energy is equal to the change in rotational kinetic energy, .

At the top of the swing:

At the bottom of the swing,

At the top of the swing, the rotational kinetic energy is K = 0. At the bottom of the swing, K = . Therefore:
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or

Solving for , we have

Inserting numerical values, we have

Significance
Note that the angular velocity of the pendulum does not depend on its mass.

This page titled 11.6: Calculating Moments of Inertia is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

10.6: Calculating Moments of Inertia by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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11.7: Torque

Describe how the magnitude of a torque depends on the magnitude of the lever arm and the angle the force vector makes
with the lever arm
Determine the sign (positive or negative) of a torque using the right-hand rule
Calculate individual torques about a common axis and sum them to find the net torque

An important quantity for describing the dynamics of a rotating rigid body is torque. We see the application of torque in many ways
in our world. We all have an intuition about torque, as when we use a large wrench to unscrew a stubborn bolt. Torque is at work in
unseen ways, as when we press on the accelerator in a car, causing the engine to put additional torque on the drive train. Or every
time we move our bodies from a standing position, we apply a torque to our limbs. In this section, we define torque and make an
argument for the equation for calculating torque for a rigid body with fixed-axis rotation.

Defining Torque
So far we have defined many variables that are rotational equivalents to their translational counterparts. Let’s consider what the
counterpart to force must be. Since forces change the translational motion of objects, the rotational counterpart must be related to
changing the rotational motion of an object about an axis. We call this rotational counterpart torque.

In everyday life, we rotate objects about an axis all the time, so intuitively we already know much about torque. Consider, for
example, how we rotate a door to open it. First, we know that a door opens slowly if we push too close to its hinges; it is more
efficient to rotate a door open if we push far from the hinges. Second, we know that we should push perpendicular to the plane of
the door; if we push parallel to the plane of the door, we are not able to rotate it. Third, the larger the force, the more effective it is
in opening the door; the harder you push, the more rapidly the door opens. The first point implies that the farther the force is
applied from the axis of rotation, the greater the angular acceleration; the second implies that the effectiveness depends on the
angle at which the force is applied; the third implies that the magnitude of the force must also be part of the equation. Note that for
rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise relative to the chosen pivot
point. Figure  shows counterclockwise rotations.

Figure : Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed
from overhead). Torque has both magnitude and direction. (a) A counterclockwise torque is produced by a force  acting at a
distance r from the hinges (the pivot point). (b) A smaller counterclockwise torque is produced when a smaller force  acts at the
same distance r from the hinges. (c) The same force as in (a) produces a smaller counterclockwise torque when applied at a smaller
distance from the hinges. (d) A smaller counterclockwise torque is produced by the same magnitude force as (a) acting at the same
distance as (a) but at an angle  that is less than 90°.

Now let’s consider how to define torques in the general three-dimensional case.

When a force  is applied to a point P whose position is  relative to O (Figure ), the torque  around O is
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Figure : The torque is perpendicular to the plane defined by  and  and its direction is determined by the right-
hand rule.

From the definition of the cross product, the torque  is perpendicular to the plane containing  and  and has magnitude

where  is the angle between the vectors  and . The SI unit of torque is newtons times meters, usually written as N • m. The
quantity r  = rsin  is the perpendicular distance from O to the line determined by the vector  and is called the lever arm. Note
that the greater the lever arm, the greater the magnitude of the torque. In terms of the lever arm, the magnitude of the torque is

The cross product  also tells us the sign of the torque. In Figure , the cross product  is along the positive z-axis,
which by convention is a positive torque. If  is along the negative z-axis, this produces a negative torque.

If we consider a disk that is free to rotate about an axis through the center, as shown in Figure , we can see how the angle
between the radius  and the force  affects the magnitude of the torque. If the angle is zero, the torque is zero; if the angle is 90°,
the torque is maximum. The torque in Figure  is positive because the direction of the torque by the right-hand rule is out of
the page along the positive z-axis. The disk rotates counterclockwise due to the torque, in the same direction as a positive angular
acceleration.

Figure : A disk is free to rotate about its axis through the center. The magnitude of the torque on the disk is rFsin .When  =
0°, the torque is zero and the disk does not rotate. When  = 90°, the torque is maximum and the disk rotates with maximum
angular acceleration.

Any number of torques can be calculated about a given axis. The individual torques add to produce a net torque about the axis.
When the appropriate sign (positive or negative) is assigned to the magnitudes of individual torques about a specified axis, the net
torque about the axis is the sum of the individual torques:
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Calculating Net Torque for Rigid Bodies on a Fixed Axis
In the following examples, we calculate the torque both abstractly and as applied to a rigid body. We first introduce a problem-
solving strategy.

1. Choose a coordinate system with the pivot point or axis of rotation as the origin of the selected coordinate system.
2. Determine the angle between the lever arm  and the force vector.
3. Take the cross product of  and  to determine if the torque is positive or negative about the pivot point or axis.
4. Evaluate the magnitude of the torque using r F.
5. Assign the appropriate sign, positive or negative, to the magnitude.
6. Sum the torques to find the net torque.

Four forces are shown in Figure  at particular locations and orientations with respect to a given xy-coordinate system.
Find the torque due to each force about the origin, then use your results to find the net torque about the origin.

Figure : Four forces producing torques.

Strategy

This problem requires calculating torque. All known quantities––forces with directions and lever arms––are given in the figure.
The goal is to find each individual torque and the net torque by summing the individual torques. Be careful to assign the
correct sign to each torque by using the cross product of  and the force vector .

Solution
Use | | = r F = rFsin  to find the magnitude and  to determine the sign of the torque.

The torque from force 40 N in the first quadrant is given by (4)(40)sin 90° = 160 N • m.

The cross product of  and  is out of the page, positive.

The torque from force 20 N in the third quadrant is given by −(3)(20)sin 90° = − 60 N • m.

The cross product of  and  is into the page, so it is negative.

The torque from force 30 N in the third quadrant is given by (5)(30)sin 53° = 120 N • m.

The cross product of  and  is out of the page, positive.

The torque from force 20 N in the second quadrant is given by (1)(20)sin 30° = 10 N • m.

The cross product of  and  is out of the page.

The net torque is therefore  = 160 − 60 + 120 + 10 = 230 N • m.

Significance
Note that each force that acts in the counterclockwise direction has a positive torque, whereas each force that acts in the
clockwise direction has a negative torque. The torque is greater when the distance, force, or perpendicular components are
greater.

 Problem-Solving Strategy: Finding Net Torque

r ⃗ 

r ⃗  F ⃗ 

⊥

 Example 10.14: Calculating Torque
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Figure  shows several forces acting at different locations and angles on a flywheel. We have  = 20 N,  = 30 N, 
 = 30 N, and r = 0.5 m. Find the net torque on the flywheel about an axis through the center.

Figure : Three forces acting on a flywheel.

Strategy

We calculate each torque individually, using the cross product, and determine the sign of the torque. Then we sum the torques
to find the net torque. Solution We start with . If we look at Figure , we see that  makes an angle of 90° + 60° with
the radius vector . Taking the cross product, we see that it is out of the page and so is positive. We also see this from
calculating its magnitude:

Next we look at . The angle between  and  is 90° and the cross product is into the page so the torque is negative. Its
value is

When we evaluate the torque due to , we see that the angle it makes with  is zero so  = 0. Therefore,  does not
produce any torque on the flywheel.

We evaluate the sum of the torques:

Significance
The axis of rotation is at the center of mass of the flywheel. Since the flywheel is on a fixed axis, it is not free to translate. If it
were on a frictionless surface and not fixed in place,  would cause the flywheel to translate, as well as . Its motion would
be a combination of translation and rotation.

A large ocean-going ship runs aground near the coastline, similar to the fate of the Costa Concordia, and lies at an angle as
shown below. Salvage crews must apply a torque to right the ship in order to float the vessel for transport. A force of 5.0 x 10
N acting at point A must be applied to right the ship. What is the torque about the point of contact of the ship with the ground
(Figure )?

 Example 10.15: Calculating Torque on a rigid body

11.7.5 | |F ⃗ 
1 | |F ⃗ 

2

| |F ⃗ 
3

11.7.5

F ⃗ 
1 11.7.5 F ⃗ 

1

r ⃗ 

| | = r sin = (0.5 m)(20 N)(0.5) = 5.0 N ⋅ m.τ ⃗ 1 F1 150o (11.7.5)

F ⃗ 
2 F ⃗ 

2 r ⃗ 

| | = −r sin = (−0.5 m)(30 N) = −15.0 N ⋅ m.τ ⃗ 2 F2 90o (11.7.6)

F ⃗ 
3 r ⃗  ×r ⃗  F ⃗ 

3 F ⃗ 
3

= | | = 5 −15 = −10 N ⋅ m.τnet ∑
i

τi (11.7.7)
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Figure : A ship runs aground and tilts, requiring torque to be applied to return the vessel to an upright position.
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11.8: Newton’s Second Law for Rotation

Calculate the torques on rotating systems about a fixed axis to find the angular acceleration
Explain how changes in the moment of inertia of a rotating system affect angular acceleration with a fixed applied torque

In this subsection, we put together all the pieces learned so far in this chapter to analyze the dynamics of rotating rigid bodies. We
have analyzed motion with kinematics and rotational kinetic energy but have not yet connected these ideas with force and/or
torque. In this subsection, we introduce the rotational equivalent to Newton’s second law of motion and apply it to rigid bodies with
fixed-axis rotation.

Newton’s Second Law for Rotation
We have thus far found many counterparts to the translational terms used throughout this text, most recently, torque, the rotational
analog to force. This raises the question: Is there an analogous equation to Newton’s second law,  = m , which involves
torque and rotational motion? To investigate this, we start with Newton’s second law for a single particle rotating around an axis
and executing circular motion. Let’s exert a force  on a point mass m that is at a distance r from a pivot point (Figure ). The
particle is constrained to move in a circular path with fixed radius and the force is tangent to the circle. We apply Newton’s second
law to determine the magnitude of the acceleration a =  in the direction of . Recall that the magnitude of the tangential
acceleration is proportional to the magnitude of the angular acceleration by a = r . Substituting this expression into Newton’s
second law, we obtain

Figure : An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies
centripetal force. A force  is applied to the object perpendicular to the radius r, causing it to accelerate about the pivot point. The
force is perpendicular to r.

Multiply both sides of this equation by r,

Note that the left side of this equation is the torque about the axis of rotation, where r is the lever arm and F is the force,
perpendicular to r. Recall that the moment of inertia for a point particle is I = mr . The torque applied perpendicularly to the point
mass in Figure  is therefore

The torque on the particle is equal to the moment of inertia about the rotation axis times the angular acceleration. We can
generalize this equation to a rigid body rotating about a fixed axis.

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques equals the moment of inertia times
the angular acceleration:

 Learning Objectives

∑F ⃗  a⃗ 

F ⃗  11.8.1

F
m
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α

F = mrα. (11.8.1)
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rF = m α.r2 (11.8.2)
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 Newton’s Second Law for Rotation
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The term I  is a scalar quantity and can be positive or negative (counterclockwise or clockwise) depending upon the sign of the net
torque. Remember the convention that counterclockwise angular acceleration is positive. Thus, if a rigid body is rotating clockwise
and experiences a positive torque (counterclockwise), the angular acceleration is positive.

Equation  is Newton’s second law for rotation and tells us how to relate torque, moment of inertia, and rotational
kinematics. This is called the equation for rotational dynamics. With this equation, we can solve a whole class of problems
involving force and rotation. It makes sense that the relationship for how much force it takes to rotate a body would include the
moment of inertia, since that is the quantity that tells us how easy or hard it is to change the rotational motion of an object.

Deriving Newton’s Second Law for Rotation in Vector Form

As before, when we found the angular acceleration, we may also find the torque vector. The second law  = m  tells us the
relationship between net force and how to change the translational motion of an object. We have a vector rotational equivalent of
this equation, which can be found by using Equation 10.2.10 and Figure 10.2.7. Equation 10.2.10 relates the angular acceleration to
the position and tangential acceleration vectors:

We form the cross product of this equation with  and use a cross product identity (note that  = 0):

We now form the cross product of Newton’s second law with the position vector ,

Identifying the first term on the left as the sum of the torques, and mr  as the moment of inertia, we arrive at Newton’s second law
of rotation in vector form:

This equation is exactly Equation  but with the torque and angular acceleration as vectors. An important point is that the
torque vector is in the same direction as the angular acceleration.

Applying the Rotational Dynamics Equation
Before we apply the rotational dynamics equation to some everyday situations, let’s review a general problem-solving strategy for
use with this category of problems.

1. Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch of the situation.
2. Determine the system of interest.
3. Draw a free-body diagram. That is, draw and label all external forces acting on the system of interest.
4. Identify the pivot point. If the object is in equilibrium, it must be in equilibrium for all possible pivot points––chose the one

that simplifies your work the most.
5. Apply , the rotational equivalent of Newton’s second law, to solve the problem. Care must be taken to use the

correct moment of inertia and to consider the torque about the point of rotation.
6. As always, check the solution to see if it is reasonable.

Consider the father pushing a playground merry-go-round in Figure . He exerts a force of 250 N at the edge of the
200.0-kg merry-go-round, which has a 1.50-m radius. Calculate the angular acceleration produced (a) when no one is on the
merry-go-round and (b) when an 18.0-kg child sits 1.25 m away from the center. Consider the merry-go-round itself to be a
uniform disk with negligible friction.

α

11.8.4

∑F ⃗  a⃗ 

= × .a⃗  α⃗  r ⃗  (11.8.5)
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 Problem-Solving Strategy: Rotational Dynamics
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 Example 10.16: Calculating the Effect of Mass Distribution on a Merry-Go-Round
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Figure : A father pushes a playground merry-go-round at its edge and perpendicular to its radius to achieve maximum
torque.

Strategy

The net torque is given directly by the expression , To solve for , we must first calculate the net torque  (which
is the same in both cases) and moment of inertia I (which is greater in the second case).

Solution
a. The moment of inertia of a solid disk about this axis is given in Figure 10.5.4 to be

We have M = 50.0 kg and R = 1.50 m, so

To find the net torque, we note that the applied force is perpendicular to the radius and friction is negligible, so that

Now, after we substitute the known values, we find the angular acceleration to be

b. We expect the angular acceleration for the system to be less in this part because the moment of inertia is greater when the
child is on the merry-go-round. To find the total moment of inertia I, we first find the child’s moment of inertia I by
approximating the child as a point mass at a distance of 1.25 m from the axis. Then

The total moment of inertia is the sum of the moments of inertia of the merry-go-round and the child (about the same axis):

Substituting known values into the equation for  gives

Significance
The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as expected.
The angular accelerations found are quite large, partly due to the fact that friction was considered to be negligible. If, for
example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-goround an angular velocity of 13.3 rad/s
when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per second, these angular velocities are 2.12
rev/s and 1.41 rev/s, respectively. The father would end up running at about 50 km/h in the first case.

The fan blades on a jet engine have a moment of inertia 30.0 kg • m . In 10 s, they rotate counterclockwise from rest up to a
rotation rate of 20 rev/s. (a) What torque must be applied to the blades to achieve this angular acceleration? (b) What is the

11.8.2

= Iα∑i τi α τ

M .
1

2
R2 (11.8.9)

I = (0.500)(50.0 kg)(1.50 m = 56.25 kg ⋅ .)2 m2 (11.8.10)

τ = rF sinθ = (1.50 m)(250.0 N) −375.0 N ⋅m. (11.8.11)

α = = = 6.67 rad/ .
τ

I

375.0 N ⋅m

56.25 kg ⋅m2
s2 (11.8.12)

c 

= m = (18.0 kg)(1.25 m = 28.13 kg ⋅ .Ic R2 )2 m2 (11.8.13)

I = (28.13 kg ⋅ ) +(56.25 kg ⋅ ) = 84.38 kg ⋅ .m2 m2 m2 (11.8.14)

α

α = = = 4.44 rad/s.
τ

I

375.0 N ⋅m

84.38 kg ⋅m2
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torque required to bring the fan blades rotating at 20 rev/s to a rest in 20 s?

This page titled 11.8: Newton’s Second Law for Rotation is shared under a CC BY license and was authored, remixed, and/or curated by
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11.9: Work and Power for Rotational Motion

Use the work-energy theorem to analyze rotation to find the work done on a system when it is rotated about a fixed axis for
a finite angular displacement
Solve for the angular velocity of a rotating rigid body using the work-energy theorem
Find the power delivered to a rotating rigid body given the applied torque and angular velocity
Summarize the rotational variables and equations and relate them to their translational counterparts

Thus far in the section, we have extensively addressed kinematics and dynamics for rotating rigid bodies around a fixed axis. In
this final subsection, we define work and power within the context of rotation about a fixed axis, which has applications to both
physics and engineering. The discussion of work and power makes our treatment of rotational motion almost complete, with the
exception of rolling motion and angular momentum, which are discussed in Angular Momentum. We begin this subsection with a
treatment of the work-energy theorem for rotation.

Work for Rotational Motion
Now that we have determined how to calculate kinetic energy for rotating rigid bodies, we can proceed with a discussion of the
work done on a rigid body rotating about a fixed axis. Figure  shows a rigid body that has rotated through an angle d  from
A to B while under the influence of a force . The external force  is applied to point P, whose position is , and the rigid body is
constrained to rotate about a fixed axis that is perpendicular to the page and passes through O. The rotational axis is fixed, so the
vector  moves in a circle of radius r, and the vector d  is perpendicular to .

Figure : A rigid body rotates through an angle d  from A to B by the action of an external force  applied to point P.

We have

Thus,

Note that d  is zero because  is fixed on the rigid body from the origin O to point P. Using the definition of work, we obtain

where we used the identity . Noting that , we arrive at the expression for the rotational
work done on a rigid body:

The total work done on a rigid body is the sum of the torques integrated over the angle through which the body rotates. The
incremental work is
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where we have taken the dot product in Equation , leaving only torques along the axis of rotation. In a rigid body, all
particles rotate through the same angle; thus the work of every external force is equal to the torque times the common incremental
angle d . The quantity  is the net torque on the body due to external forces.

Similarly, we found the kinetic energy of a rigid body rotating around a fixed axis by summing the kinetic energy of each particle
that makes up the rigid body. Since the work-energy theorem W  = K  is valid for each particle, it is valid for the sum of the
particles and the entire body.

The work-energy theorem for a rigid body rotating around a fixed axis is

where

and the rotational work done by a net force rotating a body from point A to point B is

We give a strategy for using this equation when analyzing rotational motion.

1. Identify the forces on the body and draw a free-body diagram. Calculate the torque for each force.
2. Calculate the work done during the body’s rotation by every torque.
3. Apply the work-energy theorem by equating the net work done on the body to the change in rotational kinetic energy

Let’s look at two examples and use the work-energy theorem to analyze rotational motion.

A 12.0 N • m torque is applied to a flywheel that rotates about a fixed axis and has a moment of inertia of 30.0 kg • m . If the
flywheel is initially at rest, what is its angular velocity after it has turned through eight revolutions?

Strategy

We apply the work-energy theorem. We know from the problem description what the torque is and the angular displacement of
the flywheel. Then we can solve for the final angular velocity.

Solution
The flywheel turns through eight revolutions, which is 16  radians. The work done by the torque, which is constant and
therefore can come outside the integral in Equation , is

We apply the work-energy theorem:

With  = 12.0 N • m,  = 16.0  rad, I = 30.0 kg • m , and  = 0, we have

dW =( ) dθ∑
i

τi (11.9.5)

11.9.4
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i Δ i

 Work-Energy Theorem for Rotation

= −WAB KB KA (11.9.6)
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1

2
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 Problem-Solving Strategy: Work-Energy Theorem for Rotational Motion

 Example 10.17: Rotational Work and Energy
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Therefore,

This is the angular velocity of the flywheel after eight revolutions.

Significance
The work-energy theorem provides an efficient way to analyze rotational motion, connecting torque with rotational kinetic
energy.

A string wrapped around the pulley in Figure  is pulled with a constant downward force  of magnitude 50 N. The
radius R and moment of inertia I of the pulley are 0.10 m and 2.5 x 10  kg • m , respectively. If the string does not slip, what
is the angular velocity of the pulley after 1.0 m of string has unwound? Assume the pulley starts from rest.

Figure : (a) A string is wrapped around a pulley of radius R. (b) The free-body diagram.

Strategy

Looking at the free-body diagram, we see that neither , the force on the bearings of the pulley, nor M , the weight of the
pulley, exerts a torque around the rotational axis, and therefore does no work on the pulley. As the pulley rotates through an
angle ,  acts through a distance d such that d = R .

Solution
Since the torque due to  has magnitude  = RF, we have

If the force on the string acts through a distance of 1.0 m, we have, from the work-energy theorem,

Solving for , we obtain

Power for Rotational Motion
Power always comes up in the discussion of applications in engineering and physics. Power for rotational motion is equally as
important as power in linear motion and can be derived in a similar way as in linear motion when the force is a constant. The linear
power when the force is a constant is P = . If the net torque is constant over the angular displacement, Equation 10.8.4
simplifies and the net torque can be taken out of the integral. In the following discussion, we assume the net torque is constant. We
can apply the definition of power derived in Power to rotational motion. From Work and Kinetic Energy, the instantaneous power
(or just power) is defined as the rate of doing work,

= 6.3 rad/s.ωB (11.9.12)

 Example 10.18: Rotational Work- A Pulley
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If we have a constant net torque, Equation 10.8.4 becomes W =  and the power is

or

A boat engine operating at 9.0 x 10  W is running at 300 rev/min. What is the torque on the propeller shaft?

Strategy

We are given the rotation rate in rev/min and the power consumption, so we can easily calculate the torque.

Solution

Significance
It is important to note the radian is a dimensionless unit because its definition is the ratio of two lengths. It therefore does not
appear in the solution.

A constant torque of 500 kN • m is applied to a wind turbine to keep it rotating at 6 rad/s. What is the power required to keep
the turbine rotating?

Rotational and Translational Relationships Summarized
The rotational quantities and their linear analog are summarized in three tables. Table 10.5 summarizes the rotational variables for
circular motion about a fixed axis with their linear analogs and the connecting equation, except for the centripetal acceleration,
which stands by itself. Table 10.6 summarizes the rotational and translational kinematic equations. Table 10.7 summarizes the
rotational dynamics equations with their linear analogs.

Table 10.5 - Rotational and Translational Variables: Summary
Rotational Translational Relationship

P = .
dW

dt
(11.9.15)

τθ

P = = (τθ) = τ
dW

dt

d

dt

dθ

dt
(11.9.16)

P = τω. (11.9.17)

 Example 10.19: Torque on a Boat Propeller

4

300.0 rev/min = 31.4 rad/s; (11.9.18)

τ = = = 2864.8 N ⋅m.
P

ω

9.0 × N ⋅m/s104

31.4 rad/s
(11.9.19)

 Exercise 10.8

θ (11.9.20) x (11.9.21) θ =
s

r
(11.9.22)

ω (11.9.23) vf (11.9.24) ω =
vt

r
(11.9.25)

α (11.9.26) at (11.9.27) α =
at

r
(11.9.28)

ac (11.9.29) =ac
v2
t

r
(11.9.30)
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Table 10.6 - Rotational and Translational Kinematic Equations: Summary
Rotational Translational

Table 10.7 - Rotational and Translational Equations: Dynamics
Rotational Translational

This page titled 11.9: Work and Power for Rotational Motion is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

10.9: Work and Power for Rotational Motion by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.

= + tθf θ0 ω̄ (11.9.31) x = + tx0 v̄ (11.9.32)

= +αtωf ω0 (11.9.33) = + atvf v0 (11.9.34)

= + t + αθf θ0 ω0
1

2
t2 (11.9.35) = + t + axf x0 v0

1

2
t2 (11.9.36)

= + 2α(Δθ)ω2
f ω2

0 (11.9.37) = + 2a(Δx)v2
f v2

0 (11.9.38)

I = ∑
i

mir
2
i (11.9.39)

m (11.9.40)

K = I
1

2
ω2 (11.9.41) K = m

1

2
v2 (11.9.42)

= Iα∑
i

τi (11.9.43) = m∑
i

F ⃗ 
i a⃗  (11.9.44)

= ( ) dθWAB ∫
θB

θA

∑
i

τi (11.9.45) W = ∫ ⋅ dF ⃗  s ⃗  (11.9.46)

P = τω (11.9.47) P = ⋅F ⃗  v ⃗  (11.9.48)
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11.E: Fixed-Axis Rotation Introduction (Exercises)

Conceptual Questions

10.1 Rotational Variables
1. A clock is mounted on the wall. As you look at it, what is the direction of the angular velocity vector of the second hand?
2. What is the value of the angular acceleration of the second hand of the clock on the wall?
3. A baseball bat is swung. Do all points on the bat have the same angular velocity? The same tangential speed?
4. The blades of a blender on a counter are rotating clockwise as you look into it from the top. If the blender is put to a

greater speed what direction is the angular acceleration of the blades?

10.2 Rotation with Constant Angular Acceleration
5. If a rigid body has a constant angular acceleration, what is the functional form of the angular velocity in terms of the time

variable?
6. If a rigid body has a constant angular acceleration, what is the functional form of the angular position?
7. If the angular acceleration of a rigid body is zero, what is the functional form of the angular velocity?
8. A massless tether with a masses tied to both ends rotates about a fixed axis through the center. Can the total acceleration

of the tether/mass combination be zero if the angular velocity is constant?

10.3 Relating Angular and Translational Quantities
9. Explain why centripetal acceleration changes the direction of velocity in circular motion but not its magnitude.

10. In circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction. Explain your
answer.

11. Suppose a piece of food is on the edge of a rotating microwave oven plate. Does it experience nonzero tangential
acceleration, centripetal acceleration, or both when: (a) the plate starts to spin faster? (b) The plate rotates at constant
angular velocity? (c) The plate slows to a halt?

10.4 Moment of Inertia and Rotational Kinetic Energy
12. What if another planet the same size as Earth were put into orbit around the Sun along with Earth. Would the moment of

inertia of the system increase, decrease, or stay the same?
13. A solid sphere is rotating about an axis through its center at a constant rotation rate. Another hollow sphere of the same

mass and radius is rotating about its axis through the center at the same rotation rate. Which sphere has a greater
rotational kinetic energy?

10.5 Calculating Moments of Inertia
14. If a child walks toward the center of a merry-go-round, does the moment of inertia increase or decrease?
15. A discus thrower rotates with a discus in his hand before letting it go. (a) How does his moment of inertia change after

releasing the discus? (b) What would be a good approximation to use in calculating the moment of inertia of the discus
thrower and discus?

16. Does increasing the number of blades on a propeller increase or decrease its moment of inertia, and why?
17. The moment of inertia of a long rod spun around an axis through one end perpendicular to its length is . Why is this

moment of inertia greater than it would be if you spun a point mass m at the location of the center of mass of the rod (at 
) (that would be )

18. Why is the moment of inertia of a hoop that has a mass M and a radius R greater than the moment of inertia of a disk that
has the same mass and radius?

10.6 Torque
19. What three factors affect the torque created by a force relative to a specific pivot point?
20. Give an example in which a small force exerts a large torque. Give another example in which a large force exerts a small

torque.
21. When reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel

rims. Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the
bicycle’s frame?
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22. Can a single force produce a zero torque?
23. Can a set of forces have a net torque that is zero and a net force that is not zero?
24. Can a set of forces have a net force that is zero and a net torque that is not zero?
25. In the expression  can  ever be less than the lever arm? Can it be equal to the lever arm?

10.7 Newton’s Second Law for Rotation
26. If you were to stop a spinning wheel with a constant force, where on the wheel would you apply the force to produce the

maximum negative acceleration?
27. A rod is pivoted about one end. Two forces  and  are applied to it. Under what circumstances will the rod not rotate?

Problems

10.1 Rotational Variables
28. Calculate the angular velocity of Earth.
29. A track star runs a 400-m race on a 400-m circular track in 45 s. What is his angular velocity assuming a constant speed?
30. A wheel rotates at a constant rate of 2.0 x 10  rev/min. (a) What is its angular velocity in radians per second? (b) Through

what angle does it turn in 10 s? Express the solution in radians and degrees.
31. A particle moves 3.0 m along a circle of radius 1.5 m. (a) Through what angle does it rotate? (b) If the particle makes this

trip in 1.0 s at a constant speed, what is its angular velocity? (c) What is its acceleration?
32. A compact disc rotates at 500 rev/min. If the diameter of the disc is 120 mm, (a) what is the tangential speed of a point at

the edge of the disc? (b) At a point halfway to the center of the disc?
33. Unreasonable results. The propeller of an aircraft is spinning at 10 rev/s when the pilot shuts off the engine. The

propeller reduces its angular velocity at a constant 2.0 rad/s  for a time period of 40 s. What is the rotation rate of the
propeller in 40 s? Is this a reasonable situation?

34. A gyroscope slows from an initial rate of 32.0 rad/s at a rate of 0.700 rad/s . How long does it take to come to rest?
35. On takeoff, the propellers on a UAV (unmanned aerial vehicle) increase their angular velocity for 3.0 s from rest at a rate

of  = (25.0t) rad/s where t is measured in seconds. (a) What is the instantaneous angular velocity of the propellers at t =
2.0 s? (b) What is the angular acceleration?

36. The angular position of a rod varies as 20.0t  radians from time t = 0. The rod has two beads on it as shown in the
following figure, one at 10 cm from the rotation axis and the other at 20 cm from the rotation axis. (a) What is the
instantaneous angular velocity of the rod at t = 5 s? (b) What is the angular acceleration of the rod? (c) What are the
tangential speeds of the beads at t = 5 s? (d) What are the tangential accelerations of the beads at t = 5 s? (e) What are the
centripetal accelerations of the beads at t = 5 s?

10.2 Rotation with Constant Angular Acceleration
37. A wheel has a constant angular acceleration of 5.0 rad/s . Starting from rest, it turns through 300 rad. (a) What is its final

angular velocity? (b) How much time elapses while it turns through the 300 radians?
38. During a 6.0-s time interval, a flywheel with a constant angular acceleration turns through 500 radians that acquire an

angular velocity of 100 rad/s. (a) What is the angular velocity at the beginning of the 6.0 s? (b) What is the angular
acceleration of the flywheel?

39. The angular velocity of a rotating rigid body increases from 500 to 1500 rev/min in 120 s. (a) What is the angular
acceleration of the body? (b) Through what angle does it turn in this 120 s?

40. A flywheel slows from 600 to 400 rev/min while rotating through 40 revolutions. (a) What is the angular acceleration of
the flywheel? (b) How much time elapses during the 40 revolutions?

41. A wheel 1.0 m in radius rotates with an angular acceleration of 4.0 rad/s . (a) If the wheel’s initial angular velocity is 2.0
rad/s, what is its angular velocity after 10 s? (b) Through what angle does it rotate in the 10-s interval? (c) What are the
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tangential speed and acceleration of a point on the rim of the wheel at the end of the 10-s interval?
42. A vertical wheel with a diameter of 50 cm starts from rest and rotates with a constant angular acceleration of 5.0 rad/s

around a fixed axis through its center counterclockwise. (a) Where is the point that is initially at the bottom of the wheel
at t = 10 s? (b) What is the point’s linear acceleration at this instant?

43. A circular disk of radius 10 cm has a constant angular acceleration of 1.0 rad/s ; at t = 0 its angular velocity is 2.0 rad/s.
(a) Determine the disk’s angular velocity at t = 5.0 s . (b) What is the angle it has rotated through during this time? (c)
What is the tangential acceleration of a point on the disk at t = 5.0 s?

44. The angular velocity vs. time for a fan on a hovercraft is shown below. (a) What is the angle through which the fan blades
rotate in the first 8 seconds? (b) Verify your result using the kinematic equations.

45. A rod of length 20 cm has two beads attached to its ends. The rod with beads starts rotating from rest. If the beads are to
have a tangential speed of 20 m/s in 7 s, what is the angular acceleration of the rod to achieve this?

10.3 Relating Angular and Translational Quantities
46. At its peak, a tornado is 60.0 m in diameter and carries 500 km/h winds. What is its angular velocity in revolutions per

second?
47. A man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes

and the merry-go-round is S = 0.5, how far from the axis of rotation can he stand without sliding?
48. An ultracentrifuge accelerates from rest to 100,000 rpm in 2.00 min. (a) What is the average angular acceleration in

rad/s ? (b) What is the tangential acceleration of a point 9.50 cm from the axis of rotation? (c) What is the centripetal
acceleration in m/s  and multiples of g of this point at full rpm? (d) What is the total distance traveled by a point 9.5 cm
from the axis of rotation of the ultracentrifuge?

49. A wind turbine is rotating counterclockwise at 0.5 rev/s and slows to a stop in 10 s. Its blades are 20 m in length. (a)
What is the angular acceleration of the turbine? (b) What is the centripetal acceleration of the tip of the blades at t = 0 s?
(c) What is the magnitude and direction of the total linear acceleration of the tip of the blades at t = 0 s?

50. What is (a) the angular speed and (b) the linear speed of a point on Earth’s surface at latitude 30° N. Take the radius of
the Earth to be 6309 km. (c) At what latitude would your linear speed be 10 m/s?

51. A child with mass 30 kg sits on the edge of a merrygo-round at a distance of 3.0 m from its axis of rotation. The merry-
go-round accelerates from rest up to 0.4 rev/s in 10 s. If the coefficient of static friction between the child and the surface
of the merry-go-round is 0.6, does the child fall off before 5 s?

52. A bicycle wheel with radius 0.3m rotates from rest to 3 rev/s in 5 s. What is the magnitude and direction of the total
acceleration vector at the edge of the wheel at 1.0 s?

53. The angular velocity of a flywheel with radius 1.0 m varies according to (t) = 2.0t. Plot a (t) and a (t) from t = 0 to 3.0 s
for r = 1.0 m. Analyze these results to explain when a  >> a  and when a  << a  for a point on the flywheel at a radius of
1.0 m.

10.4 Moment of Inertia and Rotational Kinetic Energy
54. A system of point particles is shown in the following figure. Each particle has mass 0.3 kg and they all lie in the same

plane. (a) What is the moment of inertia of the system about the given axis? (b) If the system rotates at 5 rev/s, what is its
rotational kinetic energy?
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55. (a) Calculate the rotational kinetic energy of Earth on its axis. (b) What is the rotational kinetic energy of Earth in its orbit
around the Sun?

56. Calculate the rotational kinetic energy of a 12-kg motorcycle wheel if its angular velocity is 120 rad/s and its inner radius
is 0.280 m and outer radius 0.330 m.

57. A baseball pitcher throws the ball in a motion where there is rotation of the forearm about the elbow joint as well as other
movements. If the linear velocity of the ball relative to the elbow joint is 20.0 m/s at a distance of 0.480 m from the joint
and the moment of inertia of the forearm is 0.500 kg-m , what is the rotational kinetic energy of the forearm?

58. A diver goes into a somersault during a dive by tucking her limbs. If her rotational kinetic energy is 100 J and her
moment of inertia in the tuck is 9.0 kg • m , what is her rotational rate during the somersault?

59. An aircraft is coming in for a landing at 300 meters height when the propeller falls off. The aircraft is flying at 40.0 m/s
horizontally. The propeller has a rotation rate of 20 rev/s, a moment of inertia of 70.0 kg • m , and a mass of 200 kg.
Neglect air resistance. (a) With what translational velocity does the propeller hit the ground? (b) What is the rotation rate
of the propeller at impact?

60. If air resistance is present in the preceding problem and reduces the propeller’s rotational kinetic energy at impact by
30%, what is the propeller’s rotation rate at impact?

61. A neutron star of mass 2 x 10  kg and radius 10 km rotates with a period of 0.02 seconds. What is its rotational kinetic
energy?

62. An electric sander consisting of a rotating disk of mass 0.7 kg and radius 10 cm rotates at 15 rev/s. When applied to a
rough wooden wall the rotation rate decreases by 20%. (a) What is the final rotational kinetic energy of the rotating disk?
(b) How much has its rotational kinetic energy decreased?

63. A system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg
with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the
disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic
energy?

10.5 Calculating Moments of Inertia
64. While punting a football, a kicker rotates his leg about the hip joint. The moment of inertia of the leg is 3.75 kg • m  and

its rotational kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b) What is the velocity of tip of the
punter’s shoe if it is 1.05 m from the hip joint?

65. Using the parallel axis theorem, what is the moment of inertia of the rod of mass m about the axis shown below?

66. Find the moment of inertia of the rod in the previous problem by direct integration.
67. A uniform rod of mass 1.0 kg and length 2.0 m is free to rotate about one end (see the following figure). If the rod is

released from rest at an angle of 60° with respect to the horizontal, what is the speed of the tip of the rod as it passes the
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horizontal position?

68. A pendulum consists of a rod of mass 2 kg and length 1 m with a solid sphere at one end with mass 0.3 kg and radius 20
cm (see the following figure). If the pendulum is released from rest at an angle of 30°, what is the angular velocity at the
lowest point?

69. A solid sphere of radius 10 cm is allowed to rotate freely about an axis. The sphere is given a sharp blow so that its center
of mass starts from the position shown in the following figure with speed 15 cm/s. What is the maximum angle that the
diameter makes with the vertical?

70. Calculate the moment of inertia by direct integration of a thin rod of mass M and length L about an axis through the rod
at L/3, as shown below. Check your answer with the parallel-axis theorem.

10.6 Torque
71. Two flywheels of negligible mass and differ3ent radii are bonded together and rotate about a common axis (see below).

The smaller flywheel of radius 30 cm has a cord that has a pulling force of 50 N on it. What pulling force needs to be
applied to the cord connecting the larger flywheel of radius 50 cm such that the combination does not rotate?

72. The cylinder head bolts on a car are to be tightened with a torque of 62.0 N·m. If a mechanic uses a wrench of length 20
cm, what perpendicular force must he exert on the end of the wrench to tighten a bolt correctly?

73. (a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850 m from the hinges.
What torque are you exerting relative to the hinges? (b) Does it matter if you push at the same height as the hinges? There
is only one pair of hinges.

74. When tightening a bolt, you push perpendicularly on a wrench with a force of 165 N at a distance of 0.140 m from the
center of the bolt. How much torque are you exerting in newton-meters (relative to the center of the bolt)?

75. What hanging mass must be placed on the cord to keep the pulley from rotating (see the following figure)? The mass on
the frictionless plane is 5.0 kg. The inner radius of the pulley is 20 cm and the outer radius is 30 cm.
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76. A simple pendulum consists of a massless tether 50 cm in length connected to a pivot and a small mass of 1.0 kg attached
at the other end. What is the torque about the pivot when the pendulum makes an angle of 40° with respect to the
vertical?

77. Calculate the torque about the z-axis that is out of the page at the origin in the following figure, given that F  = 3 N, F  =
2 N, F  = 3 N, F  = 1.8 N.

78. A seesaw has length 10.0 m and uniform mass 10.0 kg and is resting at an angle of 30° with respect to the ground (see the
following figure). The pivot is located at 6.0 m. What magnitude of force needs to be applied perpendicular to the seesaw
at the raised end so as to allow the seesaw to barely start to rotate?

79. A pendulum consists of a rod of mass 1 kg and length 1 m connected to a pivot with a solid sphere attached at the other
end with mass 0.5 kg and radius 30 cm. What is the torque about the pivot when the pendulum makes an angle of 30°
with respect to the vertical?

80. A torque of 5.00 x 10  N • m is required to raise a drawbridge (see the following figure). What is the tension necessary to
produce this torque? Would it be easier to raise the drawbridge if the angle  were larger or smaller?

81. A horizontal beam of length 3 m and mass 2.0 kg has a mass of 1.0 kg and width 0.2 m sitting at the end of the beam (see
the following figure). What is the torque of the system about the support at the wall?
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82. What force must be applied to end of a rod along the x-axis of length 2.0 m in order to produce a torque on the rod about
the origin of 8.0  N • m?

83. What is the torque about the origin of the force (5.0  − 2.0  + 1.0 ) N if it is applied at the point whose position is:  =
(−2.0  + 4.0 ) m?

10.7 Newton’s Second Law for Rotation
84. You have a grindstone (a disk) that is 90.0 kg, has a 0.340-m radius, and is turning at 90.0 rpm, and you press a steel axe

against it with a radial force of 20.0 N. (a) Assuming the kinetic coefficient of friction between steel and stone is 0.20,
calculate the angular acceleration of the grindstone. (b) How many turns will the stone make before coming to rest?

85. Suppose you exert a force of 180 N tangential to a 0.280-m-radius, 75.0-kg grindstone (a solid disk). (a)What torque is
exerted? (b) What is the angular acceleration assuming negligible opposing friction? (c) What is the angular acceleration
if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

86. A flywheel (I = 50 kg • m ) starting from rest acquires an angular velocity of 200.0 rad/s while subject to a constant
torque from a motor for 5 s. (a) What is the angular acceleration of the flywheel? (b) What is the magnitude of the
torque?

87. A constant torque is applied to a rigid body whose moment of inertia is 4.0 kg • m  around the axis of rotation. If the
wheel starts from rest and attains an angular velocity of 20.0 rad/s in 10.0 s, what is the applied torque?

88. A torque of 50.0 N • m is applied to a grinding wheel (I = 20.0 kg • m ) for 20 s. (a) If it starts from rest, what is the
angular velocity of the grinding wheel after the torque is removed? (b) Through what angle does the wheel move through
while the torque is applied?

89. A flywheel (I = 100.0 kg • m ) rotating at 500.0 rev/ min is brought to rest by friction in 2.0 min. What is the frictional
torque on the flywheel?

90. A uniform cylindrical grinding wheel of mass 50.0 kg and diameter 1.0 m is turned on by an electric motor. The friction
in the bearings is negligible. (a) What torque must be applied to the wheel to bring it from rest to 120 rev/min in 20
revolutions? (b) A tool whose coefficient of kinetic friction with the wheel is 0.60 is pressed perpendicularly against the
wheel with a force of 40.0 N. What torque must be supplied by the motor to keep the wheel rotating at a constant angular
velocity?

91. Suppose when Earth was created, it was not rotating. However, after the application of a uniform torque after 6 days, it
was rotating at 1 rev/day. (a) What was the angular acceleration during the 6 days? (b) What torque was applied to Earth
during this period? (c) What force tangent to Earth at its equator would produce this torque?

92. A pulley of moment of inertia 2.0 kg • m  is mounted on a wall as shown in the following figure. Light strings are
wrapped around two circumferences of the pulley and weights are attached. What are (a) the angular acceleration of the
pulley and (b) the linear acceleration of the weights? Assume the following data: r  = 50 cm, r  = 20 cm, m  = 1.0 kg, m
= 2.0 kg.
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93. A block of mass 3 kg slides down an inclined plane at an angle of 45° with a massless tether attached to a pulley with
mass 1 kg and radius 0.5 m at the top of the incline (see the following figure). The pulley can be approximated as a disk.
The coefficient of kinetic friction on the plane is 0.4. What is the acceleration of the block?

94. The cart shown below moves across the table top as the block falls. What is the acceleration of the cart? Neglect friction
and assume the following data: m  = 2.0 kg, m  = 4.0 kg, I = 0.4 kg • m , r = 20 cm.

95. A uniform rod of mass and length is held vertically by two strings of negligible mass, as shown below. (a) Immediately
after the string is cut, what is the linear acceleration of the free end of the stick? (b) Of the middle of the stick?

96. A thin stick of mass 0.2 kg and length L = 0.5 m is attached to the rim of a metal disk of mass M = 2.0 kg and radius R =
0.3 m. The stick is free to rotate around a horizontal axis through its other end (see the following figure). (a) If the
combination is released with the stick horizontal, what is the speed of the center of the disk when the stick is vertical? (b)
What is the acceleration of the center of the disk at the instant the stick is released? (c) At the instant the stick passes
through the vertical?
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10.8 Work and Power for Rotational Motion
97. A wind turbine rotates at 20 rev/min. If its power output is 2.0 MW, what is the torque produced on the turbine from the

wind?
98. A clay cylinder of radius 20 cm on a potter’s wheel spins at a constant rate of 10 rev/s. The potter applies a force of 10 N

to the clay with his hands where the coefficient of friction is 0.1 between his hands and the clay. What is the power that
the potter has to deliver to the wheel to keep it rotating at this constant rate?

99. A uniform cylindrical grindstone has a mass of 10 kg and a radius of 12 cm. (a) What is the rotational kinetic energy of
the grindstone when it is rotating at 1.5 x 10  rev/min? (b) After the grindstone’s motor is turned off, a knife blade is
pressed against the outer edge of the grindstone with a perpendicular force of 5.0 N. The coefficient of kinetic friction
between the grindstone and the blade is 0.80. Use the work energy theorem to determine how many turns the grindstone
makes before it stops.

100. A uniform disk of mass 500 kg and radius 0.25 m is mounted on frictionless bearings so it can rotate freely around a
vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a
force of 10 N. (a) How much work has the force done at the instant the disk has completed three revolutions, starting
from rest? (b) Determine the torque due to the force, then calculate the work done by this torque at the instant the disk has
completed three revolutions? (c) What is the angular velocity at that instant? (d) What is the power output of the force at
that instant?

101. A propeller is accelerated from rest to an angular velocity of 1000 rev/min over a period of 6.0 seconds by a constant
torque of 2.0 x 10  N • m. (a) What is the moment of inertia of the propeller? (b) What power is being provided to the
propeller 3.0 s after it starts rotating?

102. A sphere of mass 1.0 kg and radius 0.5 m is attached to the end of a massless rod of length 3.0 m. The rod rotates about
an axis that is at the opposite end of the sphere (see below). The system rotates horizontally about the axis at a constant
400 rev/min. After rotating at this angular speed in a vacuum, air resistance is introduced and provides a force 0.15 N on
the sphere opposite to the direction of motion. What is the power provided by air resistance to the system 100.0 s after air
resistance is introduced?

103. A uniform rod of length L and mass M is held vertically with one end resting on the floor as shown below. When the rod
is released, it rotates around its lower end until it hits the floor. Assuming the lower end of the rod does not slip, what is
the linear velocity of the upper end when it hits the floor?
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104. An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle at a rate of the pedals moving 60 rev/min.
The length of the pedal arms is 30 cm. What is the power delivered to the bicycle by the athlete?

105. A 2-kg block on a frictionless inclined plane at 40° has a cord attached to a pulley of mass 1 kg and radius 20 cm (see the
following figure). (a) What is the acceleration of the block down the plane? (b) What is the work done by the cord on the
pulley?

106. Small bodies of mass m  and m  are attached to opposite ends of a thin rigid rod of length L and mass M. The rod is
mounted so that it is free to rotate in a horizontal plane around a vertical axis (see below). What distance d from m
should the rotational axis be so that a minimum amount of work is required to set the rod rotating at an angular velocity 

?

Additional Problems
107. A cyclist is riding such that the wheels of the bicycle have a rotation rate of 3.0 rev/s. If the cyclist brakes such that the

rotation rate of the wheels decrease at a rate of 0.3 rev/s , how long does it take for the cyclist to come to a complete
stop?

108. Calculate the angular velocity of the orbital motion of Earth around the Sun.
109. A phonograph turntable rotating at 33  rev/min slows down and stops in 1.0 min. (a) What is the turntable’s angular

acceleration assuming it is constant? (b) How many revolutions does the turntable make while stopping?
110. With the aid of a string, a gyroscope is accelerated from rest to 32 rad/s in 0.40 s under a constant angular acceleration.

(a) What is its angular acceleration in rad/s ? (b) How many revolutions does it go through in the process?
111. Suppose a piece of dust has fallen on a CD. If the spin rate of the CD is 500 rpm, and the piece of dust is 4.3 cm from the

center, what is the total distance traveled by the dust in 3 minutes? (Ignore accelerations due to getting the CD rotating.)
112. A system of point particles is rotating about a fixed axis at 4 rev/s. The particles are fixed with respect to each other. The

masses and distances to the axis of the point particles are m  = 0.1 kg, r  = 0.2 m, m  = 0.05 kg, r  = 0.4 m, m  = 0.5 kg,
r  = 0.01 m. (a) What is the moment of inertia of the system? (b) What is the rotational kinetic energy of the system?

113. Calculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a
cylinder that has a 0.110-m radius. (b) The skater with arms extended is approximated by a cylinder that is 52.5 kg, has a
0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like
rods rotated about their ends.

114. A stick of length 1.0 m and mass 6.0 kg is free to rotate about a horizontal axis through the center. Small bodies of masses
4.0 and 2.0 kg are attached to its two ends (see the following figure). The stick is released from the horizontal position.
What is the angular velocity of the stick when it swings through the vertical?
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115. A pendulum consists of a rod of length 2 m and mass 3 kg with a solid sphere of mass 1 kg and radius 0.3 m attached at
one end. The axis of rotation is as shown below. What is the angular velocity of the pendulum at its lowest point if it is
released from rest at an angle of 30°?

116. Calculate the torque of the 40-N force around the axis through O and perpendicular to the plane of the page as shown
below.

117. Two children push on opposite sides of a door during play. Both push horizontally and perpendicular to the door. One
child pushes with a force of 17.5 N at a distance of 0.600 m from the hinges, and the second child pushes at a distance of
0.450 m. What force must the second child exert to keep the door from moving? Assume friction is negligible.

118. The force of 20  N is applied at  = (4.0  − 2.0 ) m. What is the torque of this force about the origin? 119. An
automobile engine can produce 200 N • m of torque. Calculate the angular acceleration produced if 95.0% of this torque
is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that
the wheels can turn freely. Each wheel acts like a 15.0-kg disk that has a 0.180-m radius. The walls of each tire act like a
2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a
10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts
like a rod that has a 3.20-cm radius.

119. A grindstone with a mass of 50 kg and radius 0.8 m maintains a constant rotation rate of 4.0 rev/s by a motor while a
knife is pressed against the edge with a force of 5.0 N. The coefficient of kinetic friction between the grindstone and the
blade is 0.8. What is the power provided by the motor to keep the grindstone at the constant rotation rate?

Challenge Problems
121. The angular acceleration of a rotating rigid body is given by  = (2.0 − 3.0t) rad/s . If the body starts rotating from rest at

t = 0, (a) what is the angular velocity? (b) Angular position? (c) What angle does it rotate through in 10 s? (d) Where does
the vector perpendicular to the axis of rotation indicating 0° at t = 0 lie at t = 10 s?

122. Earth’s day has increased by 0.002 s in the last century. If this increase in Earth’s period is constant, how long will it take
for Earth to come to rest?

123. A disk of mass m, radius R, and area A has a surface mass density  (see the following figure). What is the
moment of inertia of the disk about an axis through the center?

ĵ r ⃗  î ĵ
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124. Zorch, an archenemy of Rotation Man, decides to slow Earth’s rotation to once per 28.0 h by exerting an opposing force
at and parallel to the equator. Rotation Man is not immediately concerned, because he knows Zorch can only exert a force
of 4.00 x 10  N (a little greater than a Saturn V rocket’s thrust). How long must Zorch push with this force to accomplish
his goal? (This period gives Rotation Man time to devote to other villains.)

125. A cord is wrapped around the rim of a solid cylinder of radius 0.25 m, and a constant force of 40 N is exerted on the cord
shown, as shown in the following figure. The cylinder is mounted on frictionless bearings, and its moment of inertia is
6.0 kg • m . (a) Use the work energy theorem to calculate the angular velocity of the cylinder after 5.0 m of cord have
been removed. (b) If the 40-N force is replaced by a 40-N weight, what is the angular velocity of the cylinder after 5.0 m
of cord have unwound?
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11.S: Fixed-Axis Rotation Introduction (Summary)

Key Terms
angular acceleration time rate of change of angular velocity

angular position angle a body has rotated through in a fixed coordinate system

angular velocity time rate of change of angular position

instantaneous angular acceleration derivative of angular velocity with respect to time

instantaneous angular velocity derivative of angular position with respect to time

kinematics of rotational motion
describes the relationships among rotation angle, angular velocity,

angular acceleration, and time

lever arm
perpendicular distance from the line that the force vector lies on to

a given axis

linear mass density the mass per unit length λ of a one dimensional object

moment of inertia
rotational mass of rigid bodies that relates to how easy or hard it
will be to change the angular velocity of the rotating rigid body

Newton’s second law for rotation
sum of the torques on a rotating system equals its moment of

inertia times its angular acceleration

parallel axis
axis of rotation that is parallel to an axis about which the moment

of inertia of an object is known

parallel-axis theorem
if the moment of inertia is known for a given axis, it can be found

for any axis parallel to it

rotational dynamics
analysis of rotational motion using the net torque and moment of

inertia to find the angular acceleration

rotational kinetic energy
kinetic energy due to the rotation of an object; this is part of its

total kinetic energy

rotational work
work done on a rigid body due to the sum of the torques integrated

over the angle through with the body rotates

surface mass density mass per unit area  of a two dimensional object

torque cross product of a force and a lever arm to a given axis

total linear acceleration
vector sum of the centripetal acceleration vector and the tangential

acceleration vector

work-energy theorem for rotation
the total rotational work done on a rigid body is equal to the

change in rotational kinetic energy of the body

Key Equations

Angular position

Angular velocity

Tangential speed

σ

θ =
s

r
(11.S.1)

ω = =lim
Δt→0

Δθ

Δt

dθ

dt
(11.S.2)

= rωvt (11.S.3)
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Angular acceleration

Tangential acceleration

Average angular velocity

Angular displacement

Angular velocity from constant angular acceleration

Angular velocity from displacement and constant angular
acceleration

Change in angular velocity

Total acceleration

Rotational kinetic energy

Moment of inertia

Rotational kinetic energy in terms of the moment of inertia of a
rigid body

Moment of inertia of a continuous object

Parallel-axis theorem

Moment of inertia of a compound object

Torque vector

Magnitude of torque

Total torque

Newton’s second law for rotation

α = = =lim
Δt→0

Δω

Δt

dω

dt

θd2

dt2
(11.S.4)

= rαat (11.S.5)

=ω̄
+ω0 ωf

2
(11.S.6)

= + tθf θ0 ω̄ (11.S.7)

= +αtωf ω0 (11.S.8)

= + t + αθf θ0 ω0
1

2
t

2 (11.S.9)

= + 2a(Δθ)ω2
f ω2

0 (11.S.10)

= +a⃗  a⃗ c a⃗ t (11.S.11)

K = ( )
1

2
∑
j

mjr
2
j ω

2 (11.S.12)

I =∑
j

mjr
2
j (11.S.13)

K = I
1

2
ω

2 (11.S.14)

I = ∫ dmr2 (11.S.15)

= +mIparallel−axis Iinitial d2 (11.S.16)

=Itotal ∑
i

Ii (11.S.17)

= ×τ ⃗  r ⃗  F ⃗  (11.S.18)

| | = Fτ ⃗  r⊥ (11.S.19)

= | |τ ⃗ net ∑
i

τ ⃗ i (11.S.20)

= Iα∑
i

τi (11.S.21)
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Incremental work done by a torque

Work-energy theorem

Rotational work done by net force

Rotational power

Summary

10.1 Rotational Variables
The angular position  of a rotating body is the angle the body has rotated through in a fixed coordinate system, which serves as
a frame of reference.
The angular velocity of a rotating body about a fixed axis is defined as (rad/s), the rotational rate of the body in radians per
second. The instantaneous angular velocity of a rotating body  is the derivative with respect to time of
the angular position , found by taking the limit t → 0 in the average angular velocity . The angular velocity relates
v  to the tangential speed of a point on the rotating body through the relation v  = r , where r is the radius to the point and v  is
the tangential speed at the given point.
The angular velocity  is found using the right-hand rule. If the fingers curl in the direction of rotation about a fixed axis, the
thumb points in the direction of  (see Figure 10.5).
If the system’s angular velocity is not constant, then the system has an angular acceleration. The average angular acceleration
over a given time interval is the change in angular velocity over this time interval, . The instantaneous angular

acceleration is the time derivative of angular velocity, . The angular acceleration  is found by
locating the angular velocity. If a rotation rate of a rotating body is decreasing, the angular acceleration is in the opposite
direction to . If the rotation rate is increasing, the angular acceleration is in the same direction as .
The tangential acceleration of a point at a radius from the axis of rotation is the angular acceleration times the radius to the
point.

10.2 Rotation with Constant Angular Acceleration
The kinematics of rotational motion describes the relationships among rotation angle (angular position), angular velocity,
angular acceleration, and time.
For a constant angular acceleration, the angular velocity varies linearly. Therefore, the average angular velocity is 1/2 the initial
plus final angular velocity over a given time period:

We used a graphical analysis to find solutions to fixed-axis rotation with constant angular acceleration. From the relation 
, we found that the area under an angular velocity-vs.-time curve gives the angular displacement, 

. The results of the graphical analysis were verified using the kinematic equations for constant
angular acceleration. Similarly, since , the area under an angular acceleration-vs.-time graph gives the change in angular
velocity: .

10.3 Relating Angular and Translational Quantities
The linear kinematic equations have their rotational counterparts such that there is a mapping x → , v → , a → .
A system undergoing uniform circular motion has a constant angular velocity, but points at a distance r from the rotation axis
have a linear centripetal acceleration.

dW = ( ) dθ∑
i

τi (11.S.22)

= −WAB KB KA (11.S.23)

= ( ) dθWAB ∫
θB

θA

∑
i

τi (11.S.24)

P = τω (11.S.25)

θ

ω

ω = =limΔt→0
Δθ

Δt

dθ

dt

θ Δ =ω̄ Δθ

Δt

t t ω t

ω⃗ 

ω⃗ 

=ᾱ Δω

Δt

α = = =limΔt→0
Δω

Δt

dω

dt

θd2

dt2
α⃗ 

ω⃗  ω⃗ 

= .ω̄
+ω0 ωf

2
(11.S.26)

ω = dθ

dt

− = Δθ = ω(t)dtθf θ0 ∫ t

t0

α = dω

dt

ωf −ω0 = Δω = α(t)dt∫ t
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θ ω α
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A system undergoing nonuniform circular motion has an angular acceleration and therefore has both a linear centripetal and
linear tangential acceleration at a point a distance r from the axis of rotation.
The total linear acceleration is the vector sum of the centripetal acceleration vector and the tangential acceleration vector. Since
the centripetal and tangential acceleration vectors are perpendicular to each other for circular motion, the magnitude of the total

linear acceleration is .

10.4 Moment of Inertia and Rotational Kinetic Energy
The rotational kinetic energy is the kinetic energy of rotation of a rotating rigid body or system of particles, and is given by 

, where I is the moment of inertia, or “rotational mass” of the rigid body or system of particles.
The moment of inertia for a system of point particles rotating about a fixed axis is , where m  is the mass of the
point particle and r  is the distance of the point particle to the rotation axis. Because of the r  term, the moment of inertia
increases as the square of the distance to the fixed rotational axis. The moment of inertia is the rotational counterpart to the
mass in linear motion.
In systems that are both rotating and translating, conservation of mechanical energy can be used if there are no nonconservative
forces at work. The total mechanical energy is then conserved and is the sum of the rotational and translational kinetic energies,
and the gravitational potential energy.

10.5 Calculating Moments of Inertia
Moments of inertia can be found by summing or integrating over every ‘piece of mass’ that makes up an object, multiplied by
the square of the distance of each ‘piece of mass’ to the axis. In integral form the moment of inertia is .
Moment of inertia is larger when an object’s mass is farther from the axis of rotation.
It is possible to find the moment of inertia of an object about a new axis of rotation once it is known for a parallel axis. This is
called the parallel axis theorem given by I  = I  + md , where d is the distance from the initial axis to the
parallel axis.
Moment of inertia for a compound object is simply the sum of the moments of inertia for each individual object that makes up
the compound object.

10.6 Torque
The magnitude of a torque about a fixed axis is calculated by finding the lever arm to the point where the force is applied and
using the relation  = r F, where r  is the perpendicular distance from the axis to the line upon which the force vector lies.
The sign of the torque is found using the right hand rule. If the page is the plane containing  and , then  is out of the
page for positive torques and into the page for negative torques.
The net torque can be found from summing the individual torques about a given axis.

10.7 Newton’s Second Law for Rotation
Newton’s second law for rotation, , says that the sum of the torques on a rotating system about a fixed axis equals
the product of the moment of inertia and the angular acceleration. This is the rotational analog to Newton’s second law of linear
motion.
In the vector form of Newton’s second law for rotation, the torque vector  is in the same direction as the angular acceleration 

. If the angular acceleration of a rotating system is positive, the torque on the system is also positive, and if the angular
acceleration is negative, the torque is negative.

10.8 Work and Power for Rotational Motion
The incremental work dW in rotating a rigid body about a fixed axis is the sum of the torques about the axis times the
incremental angle d .
The total work done to rotate a rigid body through an angle  about a fixed axis is the sum of the torques integrated over the
angular displacement. If the torque is a constant as a function of θ , then W  = ( ).
The work-energy theorem relates the rotational work done to the change in rotational kinetic energy: W  = K  − K  where 

.
The power delivered to a system that is rotating about a fixed axis is the torque times the angular velocity, P = .
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CHAPTER OVERVIEW

12: Angular Momentum
Angular momentum is the rotational counterpart of linear momentum. Any massive object that rotates about an axis carries angular
momentum, including rotating flywheels, planets, stars, hurricanes, tornadoes, whirlpools, and so on. The concept of conservation
of angular momentum is discussed later in this section. In the main part of this section, we explore the intricacies of angular
momentum of rigid bodies such as a top, and also of point particles and systems of particles. But to be complete, we start with a
discussion of rolling motion, which builds upon the concepts of the previous section.

12.1: Prelude to Angular Momentum
12.2: Rolling Motion
12.3: Angular Momentum
12.4: Conservation of Angular Momentum
12.5: Precession of a Gyroscope
12.E: Angular Momentum (Exercises)
12.S: Angular Momentum (Summary)

Thumbnail: A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel
or disc in which the axis of rotation (spin axis) is free to assume any orientation by itself. When rotating, the orientation of this
axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum. (Public Domain;
LucasVB).
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12.1: Prelude to Angular Momentum
Angular momentum is the rotational counterpart of linear momentum. Any massive object that rotates about an axis carries angular
momentum, including rotating flywheels, planets, stars, hurricanes, tornadoes, whirlpools, and so on. The helicopter shown below
can be used to illustrate the concept of angular momentum. The lift blades spin about a vertical axis through the main body and
carry angular momentum. The body of the helicopter tends to rotate in the opposite sense in order to conserve angular momentum.
The small rotors at the tail of the aircraft provide a counter thrust against the body to prevent this from happening, and the
helicopter stabilizes itself. The concept of conservation of angular momentum is discussed later in this chapter. In the main part of
this chapter, we explore the intricacies of angular momentum of rigid bodies such as a top, and also of point particles and systems
of particles. But to be complete, we start with a discussion of rolling motion, which builds upon the concepts of the previous
chapter.

Figure : A helicopter has its main lift blades rotating to keep the aircraft airborne. Due to conservation of angular
momentum, the body of the helicopter would want to rotate in the opposite sense to the blades, if it were not for the small rotor on
the tail of the aircraft, which provides thrust to stabilize it.
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12.2: Rolling Motion

Describe the physics of rolling motion without slipping
Explain how linear variables are related to angular variables for the case of rolling motion without slipping
Find the linear and angular accelerations in rolling motion with and without slipping
Calculate the static friction force associated with rolling motion without slipping
Use energy conservation to analyze rolling motion

Rolling motion is that common combination of rotational and translational motion that we see everywhere, every day. Think about
the different situations of wheels moving on a car along a highway, or wheels on a plane landing on a runway, or wheels on a
robotic explorer on another planet. Understanding the forces and torques involved in rolling motion is a crucial factor in many
different types of situations.

For analyzing rolling motion in this chapter, refer to Figure 10.5.4 in Fixed-Axis Rotation to find moments of inertia of some
common geometrical objects. You may also find it useful in other calculations involving rotation.

Rolling Motion without Slipping
People have observed rolling motion without slipping ever since the invention of the wheel. For example, we can look at the
interaction of a car’s tires and the surface of the road. If the driver depresses the accelerator to the floor, such that the tires spin
without the car moving forward, there must be kinetic friction between the wheels and the surface of the road. If the driver
depresses the accelerator slowly, causing the car to move forward, then the tires roll without slipping. It is surprising to most people
that, in fact, the bottom of the wheel is at rest with respect to the ground, indicating there must be static friction between the tires
and the road surface. In Figure , the bicycle is in motion with the rider staying upright. The tires have contact with the road
surface, and, even though they are rolling, the bottoms of the tires deform slightly, do not slip, and are at rest with respect to the
road surface for a measurable amount of time. There must be static friction between the tire and the road surface for this to be so.

Figure : (a) The bicycle moves forward, and its tires do not slip. The bottom of the slightly deformed tire is at rest with
respect to the road surface for a measurable amount of time. (b) This image shows that the top of a rolling wheel appears blurred by
its motion, but the bottom of the wheel is instantaneously at rest. (credit a: modification of work by Nelson Lourenço; credit b:
modification of work by Colin Rose)

To analyze rolling without slipping, we first derive the linear variables of velocity and acceleration of the center of mass of the
wheel in terms of the angular variables that describe the wheel’s motion. The situation is shown in Figure .

 Learning Objectives

12.2.1

12.2.1

12.2.2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46006?pdf
https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/12%3A__Angular_Momentum/12.02%3A_Rolling_Motion
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/10%3A_Fixed-Axis_Rotation__Introduction/10.05%3A_Moment_of_Inertia_and_Rotational_Kinetic_Energy#Figure+10.20


12.2.2 https://phys.libretexts.org/@go/page/46006

Figure : (a) A wheel is pulled across a horizontal surface by a force . The force of static friction ,  ≤ N is large
enough to keep it from slipping. (b) The linear velocity and acceleration vectors of the center of mass and the relevant expressions
for  and . Point P is at rest relative to the surface. (c) Relative to the center of mass (CM) frame, point P has linear velocity −R

.

From Figure (a), we see the force vectors involved in preventing the wheel from slipping. In (b), point P that touches the
surface is at rest relative to the surface. Relative to the center of mass, point P has velocity −R , where R is the radius of the
wheel and  is the wheel’s angular velocity about its axis. Since the wheel is rolling, the velocity of P with respect to the surface is
its velocity with respect to the center of mass plus the velocity of the center of mass with respect to the surface:

Since the velocity of P relative to the surface is zero, v  = 0, this says that

Thus, the velocity of the wheel’s center of mass is its radius times the angular velocity about its axis. We show the correspondence
of the linear variable on the left side of the equation with the angular variable on the right side of the equation. This is done below
for the linear acceleration.

If we differentiate Equation  on the left side of the equation, we obtain an expression for the linear acceleration of the center
of mass. On the right side of the equation, R is a constant and since , we have

Furthermore, we can find the distance the wheel travels in terms of angular variables by referring to Figure . As the wheel
rolls from point A to point B, its outer surface maps onto the ground by exactly the distance traveled, which is d .

We see from Figure  that the length of the outer surface that maps onto the ground is the arc length R . Equating the two
distances, we obtain

Figure : As the wheel rolls on the surface, the arc length R  from A to B maps onto the surface, corresponding to the
distance d  that the center of mass has moved.

A solid cylinder rolls down an inclined plane without slipping, starting from rest. It has mass m and radius r. (a) What is its
acceleration? (b) What condition must the coefficient of static friction  satisfy so the cylinder does not slip?

Strategy

Draw a sketch and free-body diagram, and choose a coordinate system. We put x in the direction down the plane and y upward
perpendicular to the plane. Identify the forces involved. These are the normal force, the force of gravity, and the force due to
friction. Write down Newton’s laws in the x- and y-directions, and Newton’s law for rotation, and then solve for the
acceleration and force due to friction.
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Solution
a. The free-body diagram and sketch are shown in Figure , including the normal force, components of the weight, and

the static friction force. There is barely enough friction to keep the cylinder rolling without slipping. Since there is no
slipping, the magnitude of the friction force is less than or equal to N. Writing down Newton’s laws in the x- and y-
directions, we have

Figure : A solid cylinder rolls down an inclined plane without slipping from rest. The coordinate system has x in the
direction down the inclined plane and y perpendicular to the plane. The free-body diagram is shown with the normal force, the
static friction force, and the components of the weight m . Friction makes the cylinder roll down the plane rather than slip.

Substituting in from the free-body diagram

we can then solve for the linear acceleration of the center of mass from these equations:

However, it is useful to express the linear acceleration in terms of the moment of inertia. For this, we write down Newton’s
second law for rotation,

The torques are calculated about the axis through the center of mass of the cylinder. The only nonzero torque is provided by the
friction force. We have

Finally, the linear acceleration is related to the angular acceleration by

These equations can be used to solve for a , , and f in terms of the moment of inertia, where we have dropped the x-
subscript. We write a  in terms of the vertical component of gravity and the friction force, and make the following
substitutions.

From this we obtain

Note that this result is independent of the coefficient of static friction, .

Since we have a solid cylinder, from Figure 10.5.4, we have I  =  and

12.2.4

μS

∑ = m ; ∑ = m .Fx ax Fy ay (12.2.5)

12.2.4

g ⃗ 

mg sinθ−fs

N −mgcosθ

= m( )x,aCM

= 0

= g sinθ− .aCM
fs

m
(12.2.6)

∑ = α.τCM ICM (12.2.7)

r = α.fs ICM (12.2.8)

( = rα.aCM )x (12.2.9)

CM α S 

CM

= =fS
αICM

r

ICMaCM

r2
(12.2.10)

aCM = g sinθ− ,
ICMaCM

mr2

= .
mg sinθ

m+( )
ICM

r2

μs

CM
mr2

2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46006?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/10%3A_Fixed-Axis_Rotation__Introduction/10.05%3A_Moment_of_Inertia_and_Rotational_Kinetic_Energy#Figure+10.20


12.2.4 https://phys.libretexts.org/@go/page/46006

Therefore, we have

b. Because slipping does not occur, f  ≤ N. Solving for the friction force,

Substituting this expression into the condition for no slipping, and noting that N = mg cos , we have

or

For the solid cylinder, this becomes

Significance
a. The linear acceleration is linearly proportional to sin . Thus, the greater the angle of the incline, the greater the linear

acceleration, as would be expected. The angular acceleration, however, is linearly proportional to sin  and inversely
proportional to the radius of the cylinder. Thus, the larger the radius, the smaller the angular acceleration.

b. For no slipping to occur, the coefficient of static friction must be greater than or equal to tan . Thus, the greater the angle
of incline, the greater the coefficient of static friction must be to prevent the cylinder from slipping.

A hollow cylinder is on an incline at an angle of 60°. The coefficient of static friction on the surface is  = 0.6. (a) Does the
cylinder roll without slipping? (b) Will a solid cylinder roll without slipping?

It is worthwhile to repeat the equation derived in this example for the acceleration of an object rolling without slipping:

This is a very useful equation for solving problems involving rolling without slipping. Note that the acceleration is less than that for
an object sliding down a frictionless plane with no rotation. The acceleration will also be different for two rotating cylinders with
different rotational inertias.

Rolling Motion with Slipping
In the case of rolling motion with slipping, we must use the coefficient of kinetic friction, which gives rise to the kinetic friction
force since static friction is not present. The situation is shown in Figure . In the case of slipping, v  − R  ≠ 0, because
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point P on the wheel is not at rest on the surface, and v  ≠ 0. Thus,  ≠ , .

Figure : (a) Kinetic friction arises between the wheel and the surface because the wheel is slipping. (b) The simple
relationships between the linear and angular variables are no longer valid.

A solid cylinder rolls down an inclined plane from rest and undergoes slipping (Figure ). It has mass m and radius r. (a)
What is its linear acceleration? (b) What is its angular acceleration about an axis through the center of mass?

Strategy

Draw a sketch and free-body diagram showing the forces involved. The free-body diagram is similar to the no-slipping case
except for the friction force, which is kinetic instead of static. Use Newton’s second law to solve for the acceleration in the x-
direction. Use Newton’s second law of rotation to solve for the angular acceleration.

Solution

Figure : A solid cylinder rolls down an inclined plane from rest and undergoes slipping. The coordinate system has x in
the direction down the inclined plane and y upward perpendicular to the plane. The free-body diagram shows the normal force,
kinetic friction force, and the components of the weight m .

The sum of the forces in the y-direction is zero, so the friction force is now f  = N = mg cos . Newton’s second law in
the x-direction becomes

or

The friction force provides the only torque about the axis through the center of mass, so Newton’s second law of rotation
becomes

Solving for , we have
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We write the linear and angular accelerations in terms of the coefficient of kinetic friction. The linear acceleration is the same
as that found for an object sliding down an inclined plane with kinetic friction. The angular acceleration about the axis of
rotation is linearly proportional to the normal force, which depends on the cosine of the angle of inclination. As  → 90°, this
force goes to zero, and, thus, the angular acceleration goes to zero.

Conservation of Mechanical Energy in Rolling Motion
In the preceding chapter, we introduced rotational kinetic energy. Any rolling object carries rotational kinetic energy, as well as
translational kinetic energy and potential energy if the system requires. Including the gravitational potential energy, the total
mechanical energy of an object rolling is

In the absence of any nonconservative forces that would take energy out of the system in the form of heat, the total energy of a
rolling object without slipping is conserved and is constant throughout the motion. Examples where energy is not conserved are a
rolling object that is slipping, production of heat as a result of kinetic friction, and a rolling object encountering air resistance.

You may ask why a rolling object that is not slipping conserves energy, since the static friction force is nonconservative. The
answer can be found by referring back to Figure . Point P in contact with the surface is at rest with respect to the surface.
Therefore, its infinitesimal displacement d  with respect to the surface is zero, and the incremental work done by the static friction
force is zero. We can apply energy conservation to our study of rolling motion to bring out some interesting results.

The Curiosity rover, shown in Figure , was deployed on Mars on August 6, 2012. The wheels of the rover have a radius
of 25 cm. Suppose astronauts arrive on Mars in the year 2050 and find the now-inoperative Curiosity on the side of a basin.
While they are dismantling the rover, an astronaut accidentally loses a grip on one of the wheels, which rolls without slipping
down into the bottom of the basin 25 meters below. If the wheel has a mass of 5 kg, what is its velocity at the bottom of the
basin?

Figure : The NASA Mars Science Laboratory rover Curiosity during testing on June 3, 2011. The location is inside the
Spacecraft Assembly Facility at NASA’s Jet Propulsion Laboratory in Pasadena, California. (credit: NASA/JPL-Caltech)

Strategy

We use mechanical energy conservation to analyze the problem. At the top of the hill, the wheel is at rest and has only potential
energy. At the bottom of the basin, the wheel has rotational and translational kinetic energy, which must be equal to the initial
potential energy by energy conservation. Since the wheel is rolling without slipping, we use the relation v  = r  to relate the
translational variables to the rotational variables in the energy conservation equation. We then solve for the velocity. From
Figure , we see that a hollow cylinder is a good approximation for the wheel, so we can use this moment of inertia to
simplify the calculation.

θ

= m + +mgh.ET

1

2
v2
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1

2
ICMω2 (12.2.18)
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Solution
Energy at the top of the basin equals energy at the bottom:

The known quantities are I  = mr , r = 0.25 m, and h = 25.0 m.

We rewrite the energy conservation equation eliminating  by using  = v r. We have

or

On Mars, the acceleration of gravity is 3.71 m/s , which gives the magnitude of the velocity at the bottom of the basin as

Significance
This is a fairly accurate result considering that Mars has very little atmosphere, and the loss of energy due to air resistance
would be minimal. The result also assumes that the terrain is smooth, such that the wheel wouldn’t encounter rocks and bumps
along the way.

Also, in this example, the kinetic energy, or energy of motion, is equally shared between linear and rotational motion. If we
look at the moments of inertia in Figure 10.5.4, we see that the hollow cylinder has the largest moment of inertia for a given
radius and mass. If the wheels of the rover were solid and approximated by solid cylinders, for example, there would be more
kinetic energy in linear motion than in rotational motion. This would give the wheel a larger linear velocity than the hollow
cylinder approximation. Thus, the solid cylinder would reach the bottom of the basin faster than the hollow cylinder.

This page titled 12.2: Rolling Motion is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

11.2: Rolling Motion by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
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12.3: Angular Momentum

Describe the vector nature of angular momentum
Find the total angular momentum and torque about a designated origin of a system of particles
Calculate the angular momentum of a rigid body rotating about a fixed axis
Calculate the torque on a rigid body rotating about a fixed axis
Use conservation of angular momentum in the analysis of objects that change their rotation rate

Why does Earth keep on spinning? What started it spinning to begin with? Why doesn’t Earth’s gravitational attraction not bring
the Moon crashing in toward Earth? And how does an ice skater manage to spin faster and faster simply by pulling her arms in?
Why does she not have to exert a torque to spin faster?

The answer to these questions is that just as the total linear motion (momentum) in the universe is conserved, so is the total
rotational motion conserved. We call the total rotational motion angular momentum, the rotational counterpart to linear momentum.
In this chapter, we first define and then explore angular momentum from a variety of viewpoints. First, however, we investigate the
angular momentum of a single particle. This allows us to develop angular momentum for a system of particles and for a rigid body.

Angular Momentum of a Single Particle

Figure  shows a particle at a position  with linear momentum  = m  with respect to the origin. Even if the particle is not
rotating about the origin, we can still define an angular momentum in terms of the position vector and the linear momentum.

The angular momentum  of a particle is defined as the cross-product of  and , and is perpendicular to the plane containing 
and :

Figure : In three-dimensional space, the position vector  locates a particle in the xy-plane with linear momentum . The
angular momentum with respect to the origin is , which is in the z-direction. The direction of  is given by the right-hand
rule, as shown.

The intent of choosing the direction of the angular momentum to be perpendicular to the plane containing  and  is similar to
choosing the direction of torque to be perpendicular to the plane of  and , as discussed in Fixed-Axis Rotation. The magnitude
of the angular momentum is found from the definition of the cross-product,

where  is the angle between  and . The units of angular momentum are kg • m /s. As with the definition of torque, we can
define a lever arm  that is the perpendicular distance from the momentum vector  to the origin, . With this
definition, the magnitude of the angular momentum becomes
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We see that if the direction of  is such that it passes through the origin, then  = 0, and the angular momentum is zero because the
lever arm is zero. In this respect, the magnitude of the angular momentum depends on the choice of origin. If we take the time
derivative of the angular momentum, we arrive at an expression for the torque on the particle:

Here we have used the definition of  and the fact that a vector crossed into itself is zero. From Newton’s second law ,
the net force acting on the particle, and the definition of the net torque, we can write

Note the similarity with the linear result of Newton’s second law, . The following problem-solving strategy can serve as
a guideline for calculating the angular momentum of a particle.

1. Choose a coordinate system about which the angular momentum is to be calculated.
2. Write down the radius vector to the point particle in unit vector notation.
3. Write the linear momentum vector of the particle in unit vector notation.
4. Take the cross product  and use the right-hand rule to establish the direction of the angular momentum vector.
5. See if there is a time dependence in the expression of the angular momentum vector. If there is, then a torque exists about

the origin, and use  to calculate the torque. If there is no time dependence in the expression for the angular
momentum, then the net torque is zero.

A meteor enters Earth’s atmosphere (Figure ) and is observed by someone on the ground before it burns up in the
atmosphere. The vector  = 25 km  + 25 km  gives the position of the meteor with respect to the observer. At the instant the
observer sees the meteor, it has linear momentum  = (15.0 kg)(−2.0 km/s ), and it is accelerating at a constant 2.0 m/s  ( )
along its path, which for our purposes can be taken as a straight line.

a. What is the angular momentum of the meteor about the origin, which is at the location of the observer?
b. What is the torque on the meteor about the origin?

Figure : An observer on the ground sees a meteor at position  with linear momentum .

Strategy

We resolve the acceleration into x- and y-components and use the kinematic equations to express the velocity as a function of
acceleration and time. We insert these expressions into the linear momentum and then calculate the angular momentum using
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dt
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dt
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the cross-product. Since the position and momentum vectors are in the xy-plane, we expect the angular momentum vector to be
along the z-axis. To find the torque, we take the time derivative of the angular momentum.

Solution
The meteor is entering Earth’s atmosphere at an angle of 90.0° below the horizontal, so the components of the acceleration in
the x- and y-directions are

We write the velocities using the kinematic equations.

a. The angular momentum is

At t = 0, the angular momentum of the meteor about the origin is

This is the instant that the observer sees the meteor.
b. To find the torque, we take the time derivative of the angular momentum. Taking the time derivative of  as a function of

time, which is the second equation immediately above, we have

Then, since , we have

The units of torque are given as newton-meters, not to be confused with joules. As a check, we note that the lever arm is the
x-component of the vector  in Figure  since it is perpendicular to the force acting on the meteor, which is along its
path. By Newton’s second law, this force is

The lever arm is

Thus, the torque is

Significance

Since the meteor is accelerating downward toward Earth, its radius and velocity vector are changing. Therefore, since 
, the angular momentum is changing as a function of time. The torque on the meteor about the origin, however, is

constant, because the lever arm  and the force on the meteor are constants. This example is important in that it illustrates
that the angular momentum depends on the choice of origin about which it is calculated. The methods used in this example are
also important in developing angular momentum for a system of particles and for a rigid body.
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= 7.5 × N ⋅m(− ).105 k̂

= ×l ⃗  r ⃗  p ⃗ 

r ⃗ ⊥

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46007?pdf


12.3.4 https://phys.libretexts.org/@go/page/46007

A proton spiraling around a magnetic field executes circular motion in the plane of the paper, as shown below. The circular
path has a radius of 0.4 m and the proton has velocity 4.0 x 10  m/s. What is the angular momentum of the proton about the
origin?

Angular Momentum of a System of Particles
The angular momentum of a system of particles is important in many scientific disciplines, one being astronomy. Consider a spiral
galaxy, a rotating island of stars like our own Milky Way. The individual stars can be treated as point particles, each of which has
its own angular momentum. The vector sum of the individual angular momenta give the total angular momentum of the galaxy. In
this section, we develop the tools with which we can calculate the total angular momentum of a system of particles.

In the preceding section, we introduced the angular momentum of a single particle about a designated origin. The expression for
this angular momentum is , where the vector  is from the origin to the particle, and  is the particle’s linear momentum.
If we have a system of N particles, each with position vector from the origin given by  and each having momentum , then the
total angular momentum of the system of particles about the origin is the vector sum of the individual angular momenta about the
origin. That is,

Similarly, if particle i is subject to a net torque  about the origin, then we can find the net torque about the origin due to the
system of particles by differentiating Equation 11.7:

The sum of the individual torques produces a net external torque on the system, which we designate . Thus,

Equation  states that the rate of change of the total angular momentum of a system is equal to the net external torque
acting on the system when both quantities are measured with respect to a given origin. Equation  can be applied to any
system that has net angular momentum, including rigid bodies, as discussed in the next section.

Referring to Figure :

a. Determine the total angular momentum due to the three particles about the origin.
b. What is the rate of change of the angular momentum?
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Figure : Three particles in the xy-plane with different position and momentum vectors.

Strategy

Write down the position and momentum vectors for the three particles. Calculate the individual angular momenta and add them
as vectors to find the total angular momentum. Then do the same for the torques.

Solution
a. Particle 1:

Particle 2:

Particle 3:

We add the individual angular momenta to find the total about the origin:

b. The individual forces and lever arms are

Therefore:

Significance

This example illustrates the superposition principle for angular momentum and torque of a system of particles. Care must be
taken when evaluating the radius vectors  of the particles to calculate the angular momenta, and the lever arms,  to
calculate the torques, as they are completely different quantities.

12.3.3
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= × = 6.0 kg ⋅ /s .l ⃗ 
3 r ⃗ 3 p ⃗ 3 m2 k̂ (12.3.15)

= + + = −30 kg ⋅ /s .l ⃗ 
T l ⃗ 

1 l ⃗ 
2 l ⃗ 

3 m2 k̂ (12.3.16)

r ⃗ 1⊥

r ⃗ 2⊥

r ⃗ 3⊥

= 1.0 m , = −6.0 N , = 6.0 N ⋅mĵ F ⃗ 
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Angular Momentum of a Rigid Body
We have investigated the angular momentum of a single particle, which we generalized to a system of particles. Now we can use
the principles discussed in the previous section to develop the concept of the angular momentum of a rigid body. Celestial objects
such as planets have angular momentum due to their spin and orbits around stars. In engineering, anything that rotates about an axis
carries angular momentum, such as flywheels, propellers, and rotating parts in engines. Knowledge of the angular momenta of
these objects is crucial to the design of the system in which they are a part.

To develop the angular momentum of a rigid body, we model a rigid body as being made up of small mass segments, m . In
Figure , a rigid body is constrained to rotate about the z-axis with angular velocity . All mass segments that make up the
rigid body undergo circular motion about the z-axis with the same angular velocity. Part (a) of the figure shows mass segment m
with position vector  from the origin and radius R  to the z-axis. The magnitude of its tangential velocity is v  = R . Because the
vectors  and  are perpendicular to each other, the magnitude of the angular momentum of this mass segment is

Figure : (a) A rigid body is constrained to rotate around the z-axis. The rigid body is symmetrical about the z-axis. A mass
segment m  is located at position , which makes angle  with respect to the z-axis. The circular motion of an infinitesimal
mass segment is shown. (b)  is the angular momentum of the mass segment and has a component along the z-axis ( ) .

Using the right-hand rule, the angular momentum vector points in the direction shown in Figure . The sum of the angular
momenta of all the mass segments contains components both along and perpendicular to the axis of rotation. Every mass segment
has a perpendicular component of the angular momentum that will be cancelled by the perpendicular component of an identical
mass segment on the opposite side of the rigid body. Thus, the component along the axis of rotation is the only component that
gives a nonzero value when summed over all the mass segments. From part (b), the component of  along the axis of rotation is

The net angular momentum of the rigid body along the axis of rotation is

The summation (R )  is simply the moment of inertia I of the rigid body about the axis of rotation. For a thin hoop rotating
about an axis perpendicular to the plane of the hoop, all of the R ’s are equal to R so the summation reduces to R m  = mR ,
which is the moment of inertia for a thin hoop found in Figure 10.20. Thus, the magnitude of the angular momentum along the axis
of rotation of a rigid body rotating with angular velocity  about the axis is

This equation is analogous to the magnitude of the linear momentum p = mv. The direction of the angular momentum vector is
directed along the axis of rotation given by the right-hand rule.
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A robot arm on a Mars rover like Curiosity shown in Figure  is 1.0 m long and has forceps at the free end to pick up
rocks. The mass of the arm is 2.0 kg and the mass of the forceps is 1.0 kg (Figure ). The robot arm and forceps move
from rest to  = 0.1  rad/s in 0.1 s. It rotates down and picks up a Mars rock that has mass 1.5 kg. The axis of rotation is the
point where the robot arm connects to the rover.

a. What is the angular momentum of the robot arm by itself about the axis of rotation after 0.1 s when the arm has stopped
accelerating?

b. What is the angular momentum of the robot arm when it has the Mars rock in its forceps and is rotating upwards?
c. When the arm does not have a rock in the forceps, what is the torque about the point where the arm connects to the rover

when it is accelerating from rest to its final angular velocity?

Figure : A robot arm on a Mars rover swings down and picks up a Mars rock. (credit: modification of work by
NASA/JPL-Caltech)

Strategy

We use Equation  to find angular momentum in the various configurations. When the arm is rotating downward, the
right-hand rule gives the angular momentum vector directed out of the page, which we will call the positive z-direction. When
the arm is rotating upward, the right-hand rule gives the direction of the angular momentum vector into the page or in the
negative z-direction. The moment of inertia is the sum of the individual moments of inertia. The arm can be approximated with
a solid rod, and the forceps and Mars rock can be approximated as point masses located at a distance of 1 m from the origin.
For part (c), we use Newton’s second law of motion for rotation to find the torque on the robot arm.

Solution
a. Writing down the individual moments of inertia, we have

Robot arm:

Forceps:

Mars rock:

Therefore, without the Mars rock, the total moment of inertia is

and the magnitude of the angular momentum is

The angular momentum vector is directed out of the page in the  direction since the robot arm is rotating counterclockwise.

b. We must include the Mars rock in the calculation of the moment of inertia, so we have

 Example : Angular Momentum of a Robot Arm12.3.3
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and

Now the angular momentum vector is directed into the page in the  direction, by the right-hand rule, since the robot arm
is now rotating clockwise.

c. We find the torque when the arm does not have the rock by taking the derivative of the angular momentum using Equation 

 . But since L = I , and understanding that the direction of the angular momentum and torque vectors are
along the axis of rotation, we can suppress the vector notation and find

which is Newton’s second law for rotation. Since , we can calculate the net torque:

Significance

The angular momentum in (a) is less than that of (b) due to the fact that the moment of inertia in (b) is greater than (a), while
the angular velocity is the same.

Which has greater angular momentum: a solid sphere of mass m rotating at a constant angular frequency  about the z-axis,
or a solid cylinder of same mass and rotation rate about the z-axis?

Visit the University of Colorado’s Interactive Simulation of Angular Momentum to learn more about angular momentum.

This page titled 12.3: Angular Momentum is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

11.3: Angular Momentum by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-
volume-1.
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12.4: Conservation of Angular Momentum

Apply conservation of angular momentum to determine the angular velocity of a rotating system in which the moment of
inertia is changing
Explain how the rotational kinetic energy changes when a system undergoes changes in both moment of inertia and angular
velocity

So far, we have looked at the angular momentum of systems consisting of point particles and rigid bodies. We have also analyzed
the torques involved, using the expression that relates the external net torque to the change in angular momentum. Examples of
systems that obey this equation include a freely spinning bicycle tire that slows over time due to torque arising from friction, or the
slowing of Earth’s rotation over millions of years due to frictional forces exerted on tidal deformations.

However, suppose there is no net external torque on the system,  = 0. In this case, we can introduce the law of conservation of
angular momentum.

The angular momentum of a system of particles around a point in a fixed inertial reference frame is conserved if there is no net
external torque around that point:

or

Note that the total angular momentum  is conserved. Any of the individual angular momenta can change as long as their sum
remains constant. This law is analogous to linear momentum being conserved when the external force on a system is zero.

As an example of conservation of angular momentum, Figure  shows an ice skater executing a spin. The net torque on her is
very close to zero because there is relatively little friction between her skates and the ice. Also, the friction is exerted very close to
the pivot point. Both  and  are small, so  is negligible. Consequently, she can spin for quite some time. She can also
increase her rate of spin by pulling her arms and legs in. Why does pulling her arms and legs in increase her rate of spin? The
answer is that her angular momentum is constant, so that

or

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because I′ is
smaller, the angular velocity ′ must increase to keep the angular momentum constant.
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Figure : (a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved
because the net torque on her is negligibly small. (b) Her rate of spin increases greatly when she pulls in her arms, decreasing her
moment of inertia. The work she does to pull in her arms results in an increase in rotational kinetic energy.

It is interesting to see how the rotational kinetic energy of the skater changes when she pulls her arms in. Her initial rotational
energy is

whereas her final rotational energy is

Since I′ ′ = I , we can substitute for ′ and find

Because her moment of inertia has decreased, , her final rotational kinetic energy has increased. The source of this additional
rotational kinetic energy is the work required to pull her arms inward. Note that the skater’s arms do not move in a perfect circle—
they spiral inward. This work causes an increase in the rotational kinetic energy, while her angular momentum remains constant.
Since she is in a frictionless environment, no energy escapes the system. Thus, if she were to extend her arms to their original
positions, she would rotate at her original angular velocity and her kinetic energy would return to its original value.

The solar system is another example of how conservation of angular momentum works in our universe. Our solar system was born
from a huge cloud of gas and dust that initially had rotational energy. Gravitational forces caused the cloud to contract, and the
rotation rate increased as a result of conservation of angular momentum (Figure ).
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Figure : The solar system coalesced from a cloud of gas and dust that was originally rotating. The orbital motions and spins
of the planets are in the same direction as the original spin and conserve the angular momentum of the parent cloud. (credit:
modification of work by NASA)

We continue our discussion with an example that has applications to engineering.

A flywheel rotates without friction at an angular velocity  = 600 rev/min on a frictionless, vertical shaft of negligible
rotational inertia. A second flywheel, which is at rest and has a moment of inertia three times that of the rotating flywheel, is
dropped onto it (Figure ). Because friction exists between the surfaces, the flywheels very quickly reach the same
rotational velocity, after which they spin together.

a. Use the law of conservation of angular momentum to determine the angular velocity  of the combination.
b. What fraction of the initial kinetic energy is lost in the coupling of the flywheels?

Figure : Two flywheels are coupled and rotate together.

Strategy

Part (a) is straightforward to solve for the angular velocity of the coupled system. We use the result of (a) to compare the initial
and final kinetic energies of the system in part (b).

Solution
a. No external torques act on the system. The force due to friction produces an internal torque, which does not affect the

angular momentum of the system. Therefore conservation of angular momentum gives

b. Before contact, only one flywheel is rotating. The rotational kinetic energy of this flywheel is the initial rotational kinetic
energy of the system, . The final kinetic energy is

12.4.2
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Therefore, the ratio of the final kinetic energy to the initial kinetic energy is

Thus, 3/4 of the initial kinetic energy is lost to the coupling of the two flywheels.

Significance
Since the rotational inertia of the system increased, the angular velocity decreased, as expected from the law of conservation of
angular momentum. In this example, we see that the final kinetic energy of the system has decreased, as energy is lost to the
coupling of the flywheels. Compare this to the example of the skater in Figure  doing work to bring her arms inward and
adding rotational kinetic energy.

A merry-go-round at a playground is rotating at 4.0 rev/min. Three children jump on and increase the moment of inertia of the
merry-go-round/children rotating system by 25%. What is the new rotation rate?

An 80.0-kg gymnast dismounts from a high bar. He starts the dismount at full extension, then tucks to complete a number of
revolutions before landing. His moment of inertia when fully extended can be approximated as a rod of length 1.8 m and when
in the tuck a rod of half that length. If his rotation rate at full extension is 1.0 rev/s and he enters the tuck when his center of
mass is at 3.0 m height moving horizontally to the floor, how many revolutions can he execute if he comes out of the tuck at
1.8 m height? See Figure .

Figure : A gymnast dismounts from a high bar and executes a number of revolutions in the tucked position before
landing upright.

Strategy

Using conservation of angular momentum, we can find his rotation rate when in the tuck. Using the equations of kinematics,
we can find the time interval from a height of 3.0 m to 1.8 m. Since he is moving horizontally with respect to the ground, the
equations of free fall simplify. This will allow the number of revolutions that can be executed to be calculated. Since we are
using a ratio, we can keep the units as rev/s and don’t need to convert to radians/s.

Solution
The moment of inertia at full extension is

The moment of inertia in the tuck is
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Conservation of angular momentum:

Time interval in the tuck:

In 0.5 s, he will be able to execute two revolutions at 4.0 rev/s.

Significance
Note that the number of revolutions he can complete will depend on how long he is in the air. In the problem, he is exiting the
high bar horizontally to the ground. He could also exit at an angle with respect to the ground, giving him more or less time in
the air depending on the angle, positive or negative, with respect to the ground. Gymnasts must take this into account when
they are executing their dismounts.

A bullet of mass m = 2.0 g is moving horizontally with a speed of 500.0 m/s. The bullet strikes and becomes embedded in the
edge of a solid disk of mass M = 3.2 kg and radius R = 0.5 m. The cylinder is free to rotate around its axis and is initially at rest
(Figure ). What is the angular velocity of the disk immediately after the bullet is embedded?

Figure : A bullet is fired horizontally and becomes embedded in the edge of a disk that is free to rotate about its vertical
axis.

Strategy

For the system of the bullet and the cylinder, no external torque acts along the vertical axis through the center of the disk. Thus,
the angular momentum along this axis is conserved. The initial angular momentum of the bullet is mvR, which is taken about
the rotational axis of the disk the moment before the collision. The initial angular momentum of the cylinder is zero. Thus, the
net angular momentum of the system is mvR. Since angular momentum is conserved, the initial angular momentum of the
system is equal to the angular momentum of the bullet embedded in the disk immediately after impact.

Solution
The initial angular momentum of the system is

The moment of inertia of the system with the bullet embedded in the disk is

The final angular momentum of the system is

Thus, by conservation of angular momentum, L  = L  and
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Solving for ,

Significance
The system is composed of both a point particle and a rigid body. Care must be taken when formulating the angular momentum
before and after the collision. Just before impact the angular momentum of the bullet is taken about the rotational axis of the
disk.

This page titled 12.4: Conservation of Angular Momentum is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

11.4: Conservation of Angular Momentum by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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12.5: Precession of a Gyroscope

Describe the physical processes underlying the phenomenon of precession
Calculate the precessional angular velocity of a gyroscope

Figure  shows a gyroscope, defined as a spinning disk in which the axis of rotation is free to assume any orientation. When
spinning, the orientation of the spin axis is unaffected by the orientation of the body that encloses it. The body or vehicle enclosing
the gyroscope can be moved from place to place and the orientation of the spin axis will remain the same. This makes gyroscopes
very useful in navigation, especially where magnetic compasses can’t be used, such as in manned and unmanned spacecraft,
intercontinental ballistic missiles, unmanned aerial vehicles, and satellites like the Hubble Space Telescope.

Figure : A gyroscope consists of a spinning disk about an axis that is free to assume any orientation.

We illustrate the precession of a gyroscope with an example of a top in the next two figures. If the top is placed on a flat surface
near the surface of Earth at an angle to the vertical and is not spinning, it will fall over, due to the force of gravity producing a
torque acting on its center of mass. This is shown in Figure . However, if the top is spinning on its axis, rather than topple
over due to this torque, it precesses about the vertical, shown in . This is due to the torque on the center of mass, which
provides the change in angular momentum.

Figure : (a) If the top is not spinning, there is a torque  about the origin, and the top falls over. (b) If the top is
spinning about its axis OO′, it doesn’t fall over but precesses about the z-axis.

Figure  shows the forces acting on a spinning top. The torque produced is perpendicular to the angular momentum vector.
This changes the direction of the angular momentum vector  according to d  = dt, but not its magnitude. The top precesses
around a vertical axis, since the torque is always horizontal and perpendicular to . If the top is not spinning, it acquires angular
momentum in the direction of the torque, and it rotates around a horizontal axis, falling over just as we would expect.
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Figure : The force of gravity acting on the center of mass produces a torque  in the direction perpendicular to . The
magnitude of  doesn’t change but its direction does, and the top precesses about the z-axis.

We can experience this phenomenon first hand by holding a spinning bicycle wheel and trying to rotate it about an axis
perpendicular to the spin axis. As shown in Figure , the person applies forces perpendicular to the spin axis in an attempt to
rotate the wheel, but instead, the wheel axis starts to change direction to her left due to the applied torque.

Figure : (a) A person holding the spinning bike wheel lifts it with her right hand and pushes down with her left hand in an
attempt to rotate the wheel. This action creates a torque directly toward her. This torque causes a change in angular momentum 
in exactly the same direction. (b) A vector diagram depicting how  and  add, producing a new angular momentum pointing
more toward the person. The wheel moves toward the person, perpendicular to the forces she exerts on it.

We all know how easy it is for a bicycle to tip over when sitting on it at rest. But when riding the bicycle at a good pace, it is harder
to tip it over because we must change the angular momentum vector of the spinning wheels.

View this video on gyroscope precession for a complete demonstration of precession of the bicycle wheel.

Also, when a spinning disk is put in a box such as a Blu-Ray player, try to move it. It is easy to translate the box in a given
direction but difficult to rotate it about an axis perpendicular to the axis of the spinning disk, since we are putting a torque on the
box that will cause the angular momentum vector of the spinning disk to precess.

We can calculate the precession rate of the top in Figure . From Figure , we see that the magnitude of the torque is

Thus,

The angle the top precesses through in time dt is
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The precession angular velocity is  and from this equation we see that

or, since L = I ,

In this derivation, we assumed that  << , that is, that the precession angular velocity is much less than the angular velocity of
the gyroscope disk. The precession angular velocity adds a small component to the angular momentum along the z-axis. This is
seen in a slight bob up and down as the gyroscope precesses, referred to as nutation.

Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and currently points at Polaris, the North Star.
But Earth is slowly precessing (once in about 26,000 years) due to the torque of the Sun and the Moon on its nonspherical shape.

A gyroscope spins with its tip on the ground and is spinning with negligible frictional resistance. The disk of the gyroscope has
mass 0.3 kg and is spinning at 20 rev/s. Its center of mass is 5.0 cm from the pivot and the radius of the disk is 5.0 cm. What is
the precessional period of the gyroscope?

Strategy

We use Equation  to find the precessional angular velocity of the gyroscope. This allows us to find the period of
precession.

Solution
The moment of inertia of the disk is

The angular velocity of the disk is

We can now substitute in Equation . The precessional angular velocity is

The precessional period of the gyroscope is

Significance
The precessional angular frequency of the gyroscope, 3.12 rad/s, or about 0.5 rev/s, is much less than the angular velocity 20
rev/s of the gyroscope disk. Therefore, we don’t expect a large component of the angular momentum to arise due to precession,
and Equation 11.12 is a good approximation of the precessional angular velocity.

A top has a precession frequency of 5.0 rad/s on Earth. What is its precession frequency on the Moon?

This page titled 12.5: Precession of a Gyroscope is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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12.E: Angular Momentum (Exercises)

Conceptual Questions

11.1 Rolling Motion
1. Can a round object released from rest at the top of a frictionless incline undergo rolling motion?
2. A cylindrical can of radius R is rolling across a horizontal surface without slipping. (a) After one complete revolution of

the can, what is the distance that its center of mass has moved? (b) Would this distance be greater or smaller if slipping
occurred?

3. A wheel is released from the top on an incline. Is the wheel most likely to slip if the incline is steep or gently sloped?
4. Which rolls down an inclined plane faster, a hollow cylinder or a solid sphere? Both have the same mass and radius.
5. A hollow sphere and a hollow cylinder of the same radius and mass roll up an incline without slipping and have the same

initial center of mass velocity. Which object reaches a greater height before stopping?

11.2 Angular Momentum
6. Can you assign an angular momentum to a particle without first defining a reference point?
7. For a particle traveling in a straight line, are there any points about which the angular momentum is zero? Assume the

line intersects the origin.
8. Under what conditions does a rigid body have angular momentum but not linear momentum?
9. If a particle is moving with respect to a chosen origin it has linear momentum. What conditions must exist for this

particle’s angular momentum to be zero about the chosen origin?
10. If you know the velocity of a particle, can you say anything about the particle’s angular momentum?

11.3 Conservation of Angular Momentum
11. What is the purpose of the small propeller at the back of a helicopter that rotates in the plane perpendicular to the large

propeller?
12. Suppose a child walks from the outer edge of a rotating merry-go-round to the inside. Does the angular velocity of the

merry-go-round increase, decrease, or remain the same? Explain your answer. Assume the merry-go-round is spinning
without friction.

13. As the rope of a tethered ball winds around a pole, what happens to the angular velocity of the ball?
14. Suppose the polar ice sheets broke free and floated toward Earth’s equator without melting. What would happen to

Earth’s angular velocity?
15. Explain why stars spin faster when they collapse.
16. Competitive divers pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they

fully extend their limbs to enter straight down (see below). Explain the effect of both actions on their angular velocities.
Also explain the effect on their angular momentum.
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11.4 Precession of a Gyroscope
17. Gyroscopes used in guidance systems to indicate directions in space must have an angular momentum that does not

change in direction. When placed in the vehicle, they are put in a compartment that is separated from the main fuselage,
such that changes in the orientation of the fuselage does not affect the orientation of the gyroscope. If the space vehicle is
subjected to large forces and accelerations how can the direction of the gyroscopes angular momentum be constant at all
times?

18. Earth precesses about its vertical axis with a period of 26,000 years. Discuss whether Equation 11.12 can be used to
calculate the precessional angular velocity of Earth.

Problems

11.1 Rolling Motion
19. What is the angular velocity of a 75.0-cm-diameter tire on an automobile traveling at 90.0 km/h?
20. A boy rides his bicycle 2.00 km. The wheels have radius 30.0 cm. What is the total angle the tires rotate through during

his trip?
21. If the boy on the bicycle in the preceding problem accelerates from rest to a speed of 10.0 m/s in 10.0 s, what is the

angular acceleration of the tires?
22. Formula One race cars have 66-cm-diameter tires. If a Formula One averages a speed of 300 km/h during a race, what is

the angular displacement in revolutions of the wheels if the race car maintains this speed for 1.5 hours?
23. A marble rolls down an incline at 30° from rest. (a) What is its acceleration? (b) How far does it go in 3.0 s?
24. Repeat the preceding problem replacing the marble with a solid cylinder. Explain the new result.
25. A rigid body with a cylindrical cross-section is released from the top of a 30° incline. It rolls 10.0 m to the bottom in 2.60

s. Find the moment of inertia of the body in terms of its mass m and radius r.
26. A yo-yo can be thought of a solid cylinder of mass m and radius r that has a light string wrapped around its circumference

(see below). One end of the string is held fixed in space. If the cylinder falls as the string unwinds without slipping, what
is the acceleration of the cylinder?

27. A solid cylinder of radius 10.0 cm rolls down an incline with slipping. The angle of the incline is 30°. The coefficient of
kinetic friction on the surface is 0.400. What is the angular acceleration of the solid cylinder? What is the linear
acceleration?

28. A bowling ball rolls up a ramp 0.5 m high without slipping to storage. It has an initial velocity of its center of mass of 3.0
m/s. (a) What is its velocity at the top of the ramp? (b) If the ramp is 1 m high does it make it to the top?

29. A 40.0-kg solid cylinder is rolling across a horizontal surface at a speed of 6.0 m/s. How much work is required to stop
it?

30. A 40.0-kg solid sphere is rolling across a horizontal surface with a speed of 6.0 m/s. How much work is required to stop
it? Compare results with the preceding problem.

31. A solid cylinder rolls up an incline at an angle of 20°. If it starts at the bottom with a speed of 10 m/s, how far up the
incline does it travel?

32. A solid cylindrical wheel of mass M and radius R is pulled by a force  applied to the center of the wheel at 37° to the
horizontal (see the following figure). If the wheel is to roll without slipping, what is the maximum value of  ? The
coefficients of static and kinetic friction are  = 0.40 and  = 0.30.
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33. A hollow cylinder that is rolling without slipping is given a velocity of 5.0 m/s and rolls up an incline to a vertical height
of 1.0 m. If a hollow sphere of the same mass and radius is given the same initial velocity, how high vertically does it roll
up the incline?

11.2 Angular Momentum
34. A 0.2-kg particle is travelling along the line y = 2.0 m with a velocity 5.0 m/s. What is the angular momentum of the

particle about the origin?
35. A bird flies overhead from where you stand at an altitude of 300.0 m and at a speed horizontal to the ground of 20.0 m/s.

The bird has a mass of 2.0 kg. The radius vector to the bird makes an angle  with respect to the ground. The radius
vector to the bird and its momentum vector lie in the xy-plane. What is the bird’s angular momentum about the point
where you are standing?

36. A Formula One race car with mass 750.0 kg is speeding through a course in Monaco and enters a circular turn at 220.0
km/h in the counterclockwise direction about the origin of the circle. At another part of the course, the car enters a second
circular turn at 180 km/h also in the counterclockwise direction. If the radius of curvature of the first turn is 130.0 m and
that of the second is 100.0 m, compare the angular momenta of the race car in each turn taken about the origin of the
circular turn.

37. A particle of mass 5.0 kg has position vector  = (2.0  − 3.0 )m at a particular instant of time when its velocity is  =
(3.0 )m/s with respect to the origin. (a) What is the angular momentum of the particle? (b) If a force  = 5.0  N acts on
the particle at this instant, what is the torque about the origin?

38. Use the right-hand rule to determine the directions of the angular momenta about the origin of the particles as shown
below. The z-axis is out of the page.

39. Suppose the particles in the preceding problem have masses m  = 0.10 kg, m  = 0.20 kg, m  = 0.30 kg, m  = 0.40 kg. The
velocities of the particles are v  = 2.0  m/s, v  = (3.0  − 3.0 )m/s, v  = −1.5  m/s, v  = −4.0  m/s. (a) Calculate the
angular momentum of each particle about the origin. (b) What is the total angular momentum of the four-particle system
about the origin?

40. Two particles of equal mass travel with the same speed in opposite directions along parallel lines separated by a distance
d. Show that the angular momentum of this two-particle system is the same no matter what point is used as the reference
for calculating the angular momentum.

41. An airplane of mass 4.0 x 10  kg flies horizontally at an altitude of 10 km with a constant speed of 250 m/s relative to
Earth. (a) What is the magnitude of the airplane’s angular momentum relative to a ground observer directly below the
plane? (b) Does the angular momentum change as the airplane flies along its path?

42. At a particular instant, a 1.0-kg particle’s position is  = (2.0  − 4.0  + 6.0 )m, its velocity is  = (−1.0  + 4.0  + 1.0 
)m/s, and the force on it is  = (10.0  + 15.0 )N. (a) What is the angular momentum of the particle about the origin?

(b) What is the torque on the particle about the origin? (c) What is the time rate of change of the particle’s angular
momentum at this instant?
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43. A particle of mass m is dropped at the point (−d, 0) and falls vertically in Earth’s gravitational field −g . (a) What is the
expression for the angular momentum of the particle around the z-axis, which points directly out of the page as shown
below? (b) Calculate the torque on the particle around the z-axis. (c) Is the torque equal to the time rate of change of the
angular momentum?

44. (a) Calculate the angular momentum of Earth in its orbit around the Sun. (b) Compare this angular momentum with the
angular momentum of Earth about its axis.

45. A boulder of mass 20 kg and radius 20 cm rolls down a hill 15 m high from rest. What is its angular momentum when it
is half way down the hill? (b) At the bottom?

46. A satellite is spinning at 6.0 rev/s. The satellite consists of a main body in the shape of a sphere of radius 2.0 m and mass
10,000 kg, and two antennas projecting out from the center of mass of the main body that can be approximated with rods
of length 3.0 m each and mass 10 kg. The antenna’s lie in the plane of rotation. What is the angular momentum of the
satellite?

47. A propeller consists of two blades each 3.0 m in length and mass 120 kg each. The propeller can be approximated by a
single rod rotating about its center of mass. The propeller starts from rest and rotates up to 1200 rpm in 30 seconds at a
constant rate. (a) What is the angular momentum of the propeller at t = 10 s; t = 20 s? (b) What is the torque on the
propeller?

48. A pulsar is a rapidly rotating neutron star. The Crab nebula pulsar in the constellation Taurus has a period of 33.5 x 10
s, radius 10.0 km, and mass 2.8 x 10  kg. The pulsar’s rotational period will increase over time due to the release of
electromagnetic radiation, which doesn’t change its radius but reduces its rotational energy. (a) What is the angular
momentum of the pulsar? (b) Suppose the angular velocity decreases at a rate of 10  rad/s . What is the torque on the
pulsar?

49. The blades of a wind turbine are 30 m in length and rotate at a maximum rotation rate of 20 rev/min. (a) If the blades are
6000 kg each and the rotor assembly has three blades, calculate the angular momentum of the turbine at this rotation rate.
(b) What is the torque require to rotate the blades up to the maximum rotation rate in 5 minutes?

50. A roller coaster has mass 3000.0 kg and needs to make it safely through a vertical circular loop of radius 50.0 m. What is
the minimum angular momentum of the coaster at the bottom of the loop to make it safely through? Neglect friction on
the track. Take the coaster to be a point particle.

51. A mountain biker takes a jump in a race and goes airborne. The mountain bike is traveling at 10.0 m/s before it goes
airborne. If the mass of the front wheel on the bike is 750 g and has radius 35 cm, what is the angular momentum of the
spinning wheel in the air the moment the bike leaves the ground?

11.3 Conservation of Angular Momentum
52. A disk of mass 2.0 kg and radius 60 cm with a small mass of 0.05 kg attached at the edge is rotating at 2.0 rev/s. The

small mass suddenly separates from the disk. What is the disk’s final rotation rate?
53. The Sun’s mass is 2.0 x 10  kg, its radius is 7.0 x 10  km, and it has a rotational period of approximately 28 days. If the

Sun should collapse into a white dwarf of radius 3.5 x 10  km, what would its period be if no mass were ejected and a
sphere of uniform density can model the Sun both before and after?

54. A cylinder with rotational inertia I  = 2.0 kg • m  rotates clockwise about a vertical axis through its center with angular
speed  = 5.0 rad/s. A second cylinder with rotational inertia I  = 1.0 kg • m  rotates counterclockwise about the same
axis with angular speed  = 8.0 rad/s. If the cylinders couple so they have the same rotational axis what is the angular
speed of the combination? What percentage of the original kinetic energy is lost to friction?

55. A diver off the high board imparts an initial rotation with his body fully extended before going into a tuck and executing
three back somersaults before hitting the water. If his moment of inertia before the tuck is 16.9 kg • m  and after the tuck
during the somersaults is 4.2 kg • m , what rotation rate must he impart to his body directly off the board and before the
tuck if he takes 1.4 s to execute the somersaults before hitting the water?
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56. An Earth satellite has its apogee at 2500 km above the surface of Earth and perigee at 500 km above the surface of Earth.
At apogee its speed is 730 m/s. What is its speed at perigee? Earth’s radius is 6370 km (see below).

57. A Molniya orbit is a highly eccentric orbit of a communication satellite so as to provide continuous communications
coverage for Scandinavian countries and adjacent Russia. The orbit is positioned so that these countries have the satellite
in view for extended periods in time (see below). If a satellite in such an orbit has an apogee at 40,000.0 km as measured
from the center of Earth and a velocity of 3.0 km/s, what would be its velocity at perigee measured at 200.0 km altitude?

58. Shown below is a small particle of mass 20 g that is moving at a speed of 10.0 m/s when it collides and sticks to the edge
of a uniform solid cylinder. The cylinder is free to rotate about its axis through its center and is perpendicular to the page.
The cylinder has a mass of 0.5 kg and a radius of 10 cm, and is initially at rest. (a) What is the angular velocity of the
system after the collision? (b) How much kinetic energy is lost in the collision?

59. A bug of mass 0.020 kg is at rest on the edge of a solid cylindrical disk (M = 0.10 kg, R = 0.10 m) rotating in a horizontal
plane around the vertical axis through its center. The disk is rotating at 10.0 rad/s. The bug crawls to the center of the
disk. (a) What is the new angular velocity of the disk? (b) What is the change in the kinetic energy of the system? (c) If
the bug crawls back to the outer edge of the disk, what is the angular velocity of the disk then? (d) What is the new
kinetic energy of the system? (e) What is the cause of the increase and decrease of kinetic energy?

60. A uniform rod of mass 200 g and length 100 cm is free to rotate in a horizontal plane around a fixed vertical axis through
its center, perpendicular to its length. Two small beads, each of mass 20 g, are mounted in grooves along the rod. Initially,
the two beads are held by catches on opposite sides of the rod’s center, 10 cm from the axis of rotation. With the beads in
this position, the rod is rotating with an angular velocity of 10.0 rad/s. When the catches are released, the beads slide
outward along the rod. (a) What is the rod’s angular velocity when the beads reach the ends of the rod? (b) What is the
rod’s angular velocity if the beads fly off the rod?

61. A merry-go-round has a radius of 2.0 m and a moment of inertia 300 kg • m . A boy of mass 50 kg runs tangent to the rim
at a speed of 4.0 m/s and jumps on. If the merry-go-round is initially at rest, what is the angular velocity after the boy
jumps on?
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62. A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and it is rotating with an angular velocity of
0.500 rev/s. What is its angular velocity after a 22.0-kg child gets onto it by grabbing its outer edge? The child is initially
at rest.

63. Three children are riding on the edge of a merry-go-round that is 100 kg, has a 1.60-m radius, and is spinning at 20.0
rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the child who has a mass of 28.0 kg moves to the center of
the merry-go-round, what is the new angular velocity in rpm?

64. (a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.400 kg • m .
(b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the
value of his moment of inertia if his angular velocity decreases to 1.25 rev/s. (c) Suppose instead he keeps his arms in and
allows friction of the ice to slow him to 3.00 rev/s. What average torque was exerted if this takes 15.0 s?

65. Twin skaters approach one another as shown below and lock hands. (a) Calculate their final angular velocity, given each
had an initial speed of 2.50 m/s relative to the ice. Each has a mass of 70.0 kg, and each has a center of mass located
0.800 m from their locked hands. You may approximate their moments of inertia to be that of point masses at this radius.
(b) Compare the initial kinetic energy and final kinetic energy.

66. A baseball catcher extends his arm straight up to catch a fast ball with a speed of 40 m/s. The baseball is 0.145 kg and the
catcher’s arm length is 0.5 m and mass 4.0 kg. (a) What is the angular velocity of the arm immediately after catching the
ball as measured from the arm socket? (b) What is the torque applied if the catcher stops the rotation of his arm 0.3 s after
catching the ball?

67. In 2015, in Warsaw, Poland, Olivia Oliver of Nova Scotia broke the world record for being the fastest spinner on ice
skates. She achieved a record 342 rev/min, beating the existing Guinness World Record by 34 rotations. If an ice skater
extends her arms at that rotation rate, what would be her new rotation rate? Assume she can be approximated by a 45-kg
rod that is 1.7 m tall with a radius of 15 cm in the record spin. With her arms stretched take the approximation of a rod of
length 130 cm with 10% of her body mass aligned perpendicular to the spin axis. Neglect frictional forces.

68. A satellite in a geosynchronous circular orbit is 42,164.0 km from the center of Earth. A small asteroid collides with the
satellite sending it into an elliptical orbit of apogee 45,000.0 km. What is the speed of the satellite at apogee? Assume its
angular momentum is conserved.

69. A gymnast does cartwheels along the floor and then launches herself into the air and executes several flips in a tuck while
she is airborne. If her moment of inertia when executing the cartwheels is 13.5 kg • m  and her spin rate is 0.5 rev/s, how
many revolutions does she do in the air if her moment of inertia in the tuck is 3.4 kg • m  and she has 2.0 s to do the flips
in the air?

70. The centrifuge at NASA Ames Research Center has a radius of 8.8 m and can produce forces on its payload of 20 gs or
20 times the force of gravity on Earth. (a) What is the angular momentum of a 20-kg payload that experiences 10 gs in
the centrifuge? (b) If the driver motor was turned off in (a) and the payload lost 10 kg, what would be its new spin rate,
taking into account there are no frictional forces present?

71. A ride at a carnival has four spokes to which pods are attached that can hold two people. The spokes are each 15 m long
and are attached to a central axis. Each spoke has mass 200.0 kg, and the pods each have mass 100.0 kg. If the ride spins
at 0.2 rev/s with each pod containing two 50.0-kg children, what is the new spin rate if all the children jump off the ride?

72. An ice skater is preparing for a jump with turns and has his arms extended. His moment of inertia is 1.8 kg • m  while his
arms are extended, and he is spinning at 0.5 rev/s. If he launches himself into the air at 9.0 m/s at an angle of 45° with
respect to the ice, how many revolutions can he execute while airborne if his moment of inertia in the air is 0.5 kg • m ?

73. A space station consists of a giant rotating hollow cylinder of mass 10 kg including people on the station and a radius of
100.00 m. It is rotating in space at 3.30 rev/min in order to produce artificial gravity. If 100 people of an average mass of
65.00 kg spacewalk to an awaiting spaceship, what is the new rotation rate when all the people are off the station?
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74. Neptune has a mass of 1.0 x 10  kg and is 4.5 x 10 km from the Sun with an orbital period of 165 years. Planetesimals
in the outer primordial solar system 4.5 billion years ago coalesced into Neptune over hundreds of millions of years. If
the primordial disk that evolved into our present day solar system had a radius of 10  km and if the matter that made up
these planetesimals that later became Neptune was spread out evenly on the edges of it, what was the orbital period of the
outer edges of the primordial disk?

11.4 Precession of a Gyroscope
75. A gyroscope has a 0.5-kg disk that spins at 40 rev/s. The center of mass of the disk is 10 cm from a pivot which is also

the radius of the disk. What is the precession angular velocity?
76. The precession angular velocity of a gyroscope is 1.0 rad/s. If the mass of the rotating disk is 0.4 kg and its radius is 30

cm, as well as the distance from the center of mass to the pivot, what is the rotation rate in rev/s of the disk?
77. The axis of Earth makes a 23.5° angle with a direction perpendicular to the plane of Earth’s orbit. As shown below, this

axis precesses, making one complete rotation in 25,780 y. (a) Calculate the change in angular momentum in half this
time. (b) What is the average torque producing this change in angular momentum? (c) If this torque were created by a
pair of forces acting at the most effective point on the equator, what would the magnitude of each force be?

Additional Problems
78. A marble is rolling across the floor at a speed of 7.0 m/ s when it starts up a plane inclined at 30° to the horizontal. (a)

How far along the plane does the marble travel before coming to a rest? (b) How much time elapses while the marble
moves up the plane?

79. Repeat the preceding problem replacing the marble with a hollow sphere. Explain the new results.
80. The mass of a hoop of radius 1.0 m is 6.0 kg. It rolls across a horizontal surface with a speed of 10.0 m/s. (a) How much

work is required to stop the hoop? (b) If the hoop starts up a surface at 30° to the horizontal with a speed of 10.0 m/s, how
far along the incline will it travel before stopping and rolling back down?

81. Repeat the preceding problem for a hollow sphere of the same radius and mass and initial speed. Explain the differences
in the results.

82. A particle has mass 0.5 kg and is traveling along the line x = 5.0 m at 2.0 m/s in the positive y-direction. What is the
particle’s angular momentum about the origin?

83. A 4.0-kg particle moves in a circle of radius 2.0 m. The angular momentum of the particle varies in time according to l =
5.0t . (a) What is the torque on the particle about the center of the circle at t = 3.4 s? (b) What is the angular velocity of
the particle at t = 3.4 s?

84. A proton is accelerated in a cyclotron to 5.0 x 10  m/s in 0.01 s. The proton follows a circular path. If the radius of the
cyclotron is 0.5 km, (a) What is the angular momentum of the proton about the center at its maximum speed? (b) What is
the torque on the proton about the center as it accelerates to maximum speed?

85. (a) What is the angular momentum of the Moon in its orbit around Earth? (b) How does this angular momentum compare
with the angular momentum of the Moon on its axis? Remember that the Moon keeps one side toward Earth at all times.

86. A DVD is rotating at 500 rpm. What is the angular momentum of the DVD if has a radius of 6.0 cm and mass 20.0 g?
87. A potter’s disk spins from rest up to 10 rev/s in 15 s. The disk has a mass 3.0 kg and radius 30.0 cm. What is the angular

momentum of the disk at t = 5 s, t = 10 s?
88. Suppose you start an antique car by exerting a force of 300 N on its crank for 0.250 s. What is the angular momentum

given to the engine if the handle of the crank is 0.300 m from the pivot and the force is exerted to create maximum torque
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the entire time?
89. A solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at

600 rev/min. A second solid cylinder of the same mass is rotating clockwise around the same vertical axis at 900 rev/min.
If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?

90. A boy stands at the center of a platform that is rotating without friction at 1.0 rev/s. The boy holds weights as far from his
body as possible. At this position the total moment of inertia of the boy, platform, and weights is 5.0 kg • m . The boy
draws the weights in close to his body, thereby decreasing the total moment of inertia to 1.5 kg • m . (a) What is the final
angular velocity of the platform? (b) By how much does the rotational kinetic energy increase?

91. Eight children, each of mass 40 kg, climb on a small merry-go-round. They position themselves evenly on the outer edge
and join hands. The merry-go-round has a radius of 4.0 m and a moment of inertia 1000.0 kg • m . After the merry-go-
round is given an angular velocity of 6.0 rev/min, the children walk inward and stop when they are 0.75 m from the axis
of rotation. What is the new angular velocity of the merry-go-round? Assume there is negligible frictional torque on the
structure.

92. A thin meter stick of mass 150 g rotates around an axis perpendicular to the stick’s long axis at an angular velocity of 240
rev/min. What is the angular momentum of the stick if the rotation axis (a) passes through the center of the stick? (b)
Passes through one end of the stick?

93. A satellite in the shape of a sphere of mass 20,000 kg and radius 5.0 m is spinning about an axis through its center of
mass. It has a rotation rate of 8.0 rev/s. Two antennas deploy in the plane of rotation extending from the center of mass of
the satellite. Each antenna can be approximated as a rod has mass 200.0 kg and length 7.0 m. What is the new rotation
rate of the satellite?

94. A top has moment of inertia 3.2 x 10  kg • m  and radius 4.0 cm from the center of mass to the pivot point. If it spins at
20.0 rev/s and is precessing, how many revolutions does it precess in 10.0 s?

Challenge Problems
95. The truck shown below is initially at rest with solid cylindrical roll of paper sitting on its bed. If the truck moves forward

with a uniform acceleration a, what distance s does it move before the paper rolls off its back end? (Hint: If the roll
accelerates forward with a′, then is accelerates backward relative to the truck with an acceleration a − a′. Also, R  = a −
a′.)

96. A bowling ball of radius 8.5 cm is tossed onto a bowling lane with speed 9.0 m/s. The direction of the toss is to the left,
as viewed by the observer, so the bowling ball starts to rotate counterclockwise when in contact with the floor. The
coefficient of kinetic friction on the lane is 0.3. (a) What is the time required for the ball to come to the point where it is
not slipping? What is the distance d to the point where the ball is rolling without slipping?

97. A small ball of mass 0.50 kg is attached by a massless string to a vertical rod that is spinning as shown below. When the
rod has an angular velocity of 6.0 rad/s, the string makes an angle of 30° with respect to the vertical. (a) If the angular
velocity is increased to 10.0 rad/s, what is the new angle of the string? (b) Calculate the initial and final angular momenta
of the ball. (c) Can the rod spin fast enough so that the ball is horizontal?
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98. A bug flying horizontally at 1.0 m/s collides and sticks to the end of a uniform stick hanging vertically. After the impact,
the stick swings out to a maximum angle of 5.0° from the vertical before rotating back. If the mass of the stick is 10 times
that of the bug, calculate the length of the stick.
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12.S: Angular Momentum (Summary)

Key Terms
angular momentum rotational analog of linear momentum, found by taking the product of moment of inertia a

law of conservation of angular momentum angular momentum is conserved, that is, the initial angular momentum is equal to the final angular momentum whe

precession circular motion of the pole of the axis of a spinning object around another axis due

rolling motion combination of rotational and translational motion with or without slippin

Key Equations

Velocity of center of mass of rolling object

Acceleration of center of mass of rolling object

Displacement of center of mass of rolling object

Acceleration of an object rolling without slipping

Angular momentum

Derivative of angular momentum equals torque

Angular momentum of a system of particles

For a system of particles, derivative of angular momentum equals torque

Angular momentum of a rotating rigid body

Conservation of angular momentum

Conservation of angular momentum

Precessional angular velocity

Summary

11.1 Rolling Motion
In rolling motion without slipping, a static friction force is present between the rolling object and the surface. The relations v  = R , a  = R , and d  = R  all apply, such that the linear
velocity, acceleration, and distance of the center of mass are the angular variables multiplied by the radius of the object.
In rolling motion with slipping, a kinetic friction force arises between the rolling object and the surface. In this case, v ≠ R , a  ≠ R , and d  ≠ R .
Energy conservation can be used to analyze rolling motion. Energy is conserved in rolling motion without slipping. Energy is not conserved in rolling motion with slipping due to the heat
generated by kinetic friction.

11.2 Angular Momentum

The angular momentum  of a single particle about a designated origin is the vector product of the position vector in the given coordinate system and the particle’s linear momentum.
The angular momentum  of a system of particles about a designated origin is the vector sum of the individual momenta of the particles that make up the system.

The net torque on a system about a given origin is the time derivative of the angular momentum about that origin: 
A rigid rotating body has angular momentum L = I  directed along the axis of rotation. The time derivative of the angular momentum  gives the net torque on a rigid body and is
directed along the axis of rotation.

11.3 Conservation of Angular Momentum
In the absence of external torques, a system’s total angular momentum is conserved. This is the rotational counterpart to linear momentum being conserved when the external force on a system is
zero.
For a rigid body that changes its angular momentum in the absence of a net external torque, conservation of angular momentum gives I  = I . This equation says that the angular velocity is
inversely proportional to the moment of inertia. Thus, if the moment of inertia decreases, the angular velocity must increase to conserve angular momentum.
Systems containing both point particles and rigid bodies can be analyzed using conservation of angular momentum. The angular momentum of all bodies in the system must be taken about a
common axis.

11.4 Precession of a Gyroscope

When a gyroscope is set on a pivot near the surface of Earth, it precesses around a vertical axis, since the torque is always horizontal and perpendicular to . If the gyroscope is not spinning, it
acquires angular momentum in the direction of the torque, and it rotates about a horizontal axis, falling over just as we would expect.
The precessional angular velocity is given by , where r is the distance from the pivot to the center of mass of the gyroscope, I is the moment of inertia of the gyroscope’s spinning disk,
M is its mass, and  is the angular frequency of the gyroscope disk.

Contributors and Attributions
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing authors. This work is licensed by OpenStax University Physics under
a Creative Commons Attribution License (by 4.0).
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CHAPTER OVERVIEW

13: Gravitation
In this section, we study the nature of the gravitational force for objects as small as ourselves and for systems as massive as entire
galaxies. We show how the gravitational force affects objects on Earth and the motion of the Universe itself. Gravity is the first
force to be postulated as an action-at-a-distance force, that is, objects exert a gravitational force on one another without physical
contact and that force falls to zero only at an infinite distance. Earth exerts a gravitational force on you, but so do our Sun, the
Milky Way galaxy, and the billions of galaxies, like those shown above, which are so distant that we cannot see them with the
naked eye.

13.1: Prelude to Gravitation
13.2: Newton's Law of Universal Gravitation
13.3: Gravitation Near Earth's Surface
13.4: Gravitational Potential Energy and Total Energy
13.5: Satellite Orbits and Energy
13.6: Kepler's Laws of Planetary Motion
13.7: Tidal Forces
13.8: Einstein's Theory of Gravity
13.E: Gravitation (Exercises)
13.S: Gravitation (Summary)

Thumbnail: Our visible Universe contains billions of galaxies, whose very existence is due to the force of gravity. Gravity is
ultimately responsible for the energy output of all stars—initiating thermonuclear reactions in stars, allowing the Sun to heat Earth,
and making galaxies visible from unfathomable distances. Most of the dots you see in this image are not stars, but galaxies. (credit:
modification of work by NASA).
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13.1: Prelude to Gravitation
In this chapter, we study the nature of the gravitational force for objects as small as ourselves and for systems as massive as entire
galaxies. We show how the gravitational force affects objects on Earth and the motion of the Universe itself. Gravity is the first
force to be postulated as an action-at-a-distance force, that is, objects exert a gravitational force on one another without physical
contact and that force falls to zero only at an infinite distance. Earth exerts a gravitational force on you, but so do our Sun, the
Milky Way galaxy, and the billions of galaxies, like those shown above, which are so distant that we cannot see them with the
naked eye.

Figure : Our visible Universe contains billions of galaxies, whose very existence is due to the force of gravity. Gravity is
ultimately responsible for the energy output of all stars—initiating thermonuclear reactions in stars, allowing the Sun to heat Earth,
and making galaxies visible from unfathomable distances. Most of the dots you see in this image are not stars, but galaxies. (credit:
modification of work by NASA)
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13.2: Newton's Law of Universal Gravitation

List the significant milestones in the history of gravitation
Calculate the gravitational force between two point masses
Estimate the gravitational force between collections of mass

We first review the history of the study of gravitation, with emphasis on those phenomena that for thousands of years have inspired
philosophers and scientists to search for an explanation. Then we examine the simplest form of Newton’s law of universal
gravitation and how to apply it.

The History of Gravitation
The earliest philosophers wondered why objects naturally tend to fall toward the ground. Aristotle (384–322 BCE) believed that it
was the nature of rocks to seek Earth and the nature of fire to seek the Heavens. Brahmagupta (598~665 CE) postulated that Earth
was a sphere and that objects possessed a natural affinity for it, falling toward the center from wherever they were located.

The motions of the Sun, our Moon, and the planets have been studied for thousands of years as well. These motions were described
with amazing accuracy by Ptolemy (90–168 CE), whose method of epicycles described the paths of the planets as circles within
circles. However, there is little evidence that anyone connected the motion of astronomical bodies with the motion of objects falling
to Earth—until the seventeenth century.

Nicolaus Copernicus (1473–1543) is generally credited as being the first to challenge Ptolemy’s geocentric (Earth-centered) system
and suggest a heliocentric system, in which the Sun is at the center of the solar system. This idea was supported by the incredibly
precise naked-eye measurements of planetary motions by Tycho Brahe and their analysis by Johannes Kepler and Galileo Galilei.
Kepler showed that the motion of each planet is an ellipse (the first of his three laws, discussed in Kepler’s Laws of Planetary
Motion), and Robert Hooke (the same Hooke who formulated Hooke’s law for springs) intuitively suggested that these motions are
due to the planets being attracted to the Sun. However, it was Isaac Newton who connected the acceleration of objects near Earth’s
surface with the centripetal acceleration of the Moon in its orbit about Earth.

Finally, in Einstein’s Theory of Gravity, we look at the theory of general relativity proposed by Albert Einstein in 1916. His theory
comes from a vastly different perspective, in which gravity is a manifestation of mass warping space and time. The consequences
of his theory gave rise to many remarkable predictions, essentially all of which have been confirmed over the many decades
following the publication of the theory (including the 2015 measurement of gravitational waves from the merger of two black
holes).

Newton’s Law of Universal Gravitation
Newton noted that objects at Earth’s surface (hence at a distance of R  from the center of Earth) have an acceleration of g, but the
Moon, at a distance of about 60 R , has a centripetal acceleration about (60)  times smaller than g. He could explain this by
postulating that a force exists between any two objects, whose magnitude is given by the product of the two masses divided by the
square of the distance between them. We now know that this inverse square law is ubiquitous in nature, a function of geometry for
point sources. The strength of any source at a distance r is spread over the surface of a sphere centered about the mass. The surface
area of that sphere is proportional to r . In later chapters, we see this same form in the electromagnetic force.

Newton’s law of gravitation can be expressed as

where  is the force on object 1 exerted by object 2 and  is a unit vector that points from object 1 toward object 2.

As shown in Figure , the  vector points from object 1 toward object 2, and hence represents an attractive force between
the objects. The equal but opposite force  is the force on object 2 exerted by object 1.
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Figure : Gravitational force acts along a line joining the centers of mass of two objects.

These equal but opposite forces reflect Newton’s third law, which we discussed earlier. Note that strictly speaking, Equation 
applies to point masses—all the mass is located at one point. But it applies equally to any spherically symmetric objects, where r is
the distance between the centers of mass of those objects. In many cases, it works reasonably well for nonsymmetrical objects, if
their separation is large compared to their size, and we take r to be the distance between the center of mass of each body.

The Cavendish Experiment
A century after Newton published his law of universal gravitation, Henry Cavendish determined the proportionality constant G by
performing a painstaking experiment. He constructed a device similar to that shown in Figure , in which small masses are
suspended from a wire. Once in equilibrium, two fixed, larger masses are placed symmetrically near the smaller ones. The
gravitational attraction creates a torsion (twisting) in the supporting wire that can be measured.

The constant G is called the universal gravitational constant and Cavendish determined it to be G = 6.67 x 10  N • m /kg . The
word ‘universal’ indicates that scientists think that this constant applies to masses of any composition and that it is the same
throughout the Universe. The value of G is an incredibly small number, showing that the force of gravity is very weak. The
attraction between masses as small as our bodies, or even objects the size of skyscrapers, is incredibly small. For example, two 1.0-
kg masses located 1.0 meter apart exert a force of 6.7 x 10  N on each other. This is the weight of a typical grain of pollen.

Figure : Cavendish used an apparatus similar to this to measure the gravitational attraction between two spheres (m)
suspended from a wire and two stationary spheres (M). This is a common experiment performed in undergraduate laboratories, but
it is quite challenging. Passing trucks outside the laboratory can create vibrations that overwhelm the gravitational forces.

Although gravity is the weakest of the four fundamental forces of nature, its attractive nature is what holds us to Earth, causes the
planets to orbit the Sun and the Sun to orbit our galaxy, and binds galaxies into clusters, ranging from a few to millions. Gravity is
the force that forms the Universe.

To determine the motion caused by the gravitational force, follow these steps:

1. Identify the two masses, one or both, for which you wish to find the gravitational force.
2. Draw a free-body diagram, sketching the force acting on each mass and indicating the distance between their centers of

mass.
3. Apply Newton’s second law of motion to each mass to determine how it will move.
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Consider two nearly spherical Soyuz payload vehicles, in orbit about Earth, each with mass 9000 kg and diameter 4.0 m. They
are initially at rest relative to each other, 10.0 m from center to center. (As we will see in Kepler’s Laws of Planetary Motion,
both orbit Earth at the same speed and interact nearly the same as if they were isolated in deep space.) Determine the
gravitational force between them and their initial acceleration. Estimate how long it takes for them to drift together, and how
fast they are moving upon impact.

Strategy

We use Newton’s law of gravitation to determine the force between them and then use Newton’s second law to find the
acceleration of each. For the estimate, we assume this acceleration is constant, and we use the constant-acceleration equations
from Motion along a Straight Line to find the time and speed of the collision.

Solution
The magnitude of the force is

The initial acceleration of each payload is

The vehicles are 4.0 m in diameter, so the vehicles move from 10.0 m to 4.0 m apart, or a distance of 3.0 m each. A similar
calculation to that above, for when the vehicles are 4.0 m apart, yields an acceleration of 3.8 x 10  m/s , and the average of
these two values is 2.2 x 10  m/s . If we assume a constant acceleration of this value and they start from rest, then the vehicles
collide with speed given by

so

We use v = v  + at to find t = v/a = 1.7 x 10  s or about 4.6 hours.

Significance
These calculations—including the initial force—are only estimates, as the vehicles are probably not spherically symmetrical.
But you can see that the force is incredibly small. Astronauts must tether themselves when doing work outside even the
massive International Space Station (ISS), as in Figure , because the gravitational attraction cannot save them from even
the smallest push away from the station.

Figure : This photo shows Ed White tethered to the Space Shuttle during a spacewalk. (credit: NASA)

 Example : A Collision in Orbit13.2.1
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What happens to force and acceleration as the vehicles fall together? What will our estimate of the velocity at a collision higher
or lower than the speed actually be? And finally, what would happen if the masses were not identical? Would the force on each
be the same or different? How about their accelerations?

Answer

Add texts here. Do not delete this text first.

The effect of gravity between two objects with masses on the order of these space vehicles is indeed small. Yet, the effect of gravity
on you from Earth is significant enough that a fall into Earth of only a few feet can be dangerous. We examine the force of gravity
near Earth’s surface in the next section.

Find the acceleration of our galaxy, the Milky Way, due to the nearest comparably sized galaxy, the Andromeda galaxy (Figure 
). The approximate mass of each galaxy is 800 billion solar masses (a solar mass is the mass of our Sun), and they are

separated by 2.5 million light-years. (Note that the mass of Andromeda is not so well known but is believed to be slightly
larger than our galaxy.) Each galaxy has a diameter of roughly 100,000 light-years (1 light-year = 9.5 x 10  m) .

Figure : Galaxies interact gravitationally over immense distances. The Andromeda galaxy is the nearest spiral galaxy to
the Milky Way, and they will eventually collide. (credit: Boris Štromar)

Strategy

As in the preceding example, we use Newton’s law of gravitation to determine the force between them and then use Newton’s
second law to find the acceleration of the Milky Way. We can consider the galaxies to be point masses, since their sizes are
about 25 times smaller than their separation. The mass of the Sun (see Appendix D) is 2.0 x 10  kg and a light-year is the
distance light travels in one year, 9.5 x 10  m.

Solution
The magnitude of the force is

The acceleration of the Milky Way is

Significance
Does this value of acceleration seem astoundingly small? If they start from rest, then they would accelerate directly toward
each other, “colliding” at their center of mass. Let’s estimate the time for this to happen. The initial acceleration is ~10  m/s ,
so using v = at , we see that it would take ~10  s for each galaxy to reach a speed of 1.0 m/s, and they would be only ~0.5 x

 Exercise 13.2.1

 Example : Attraction between Galaxies13.2.2
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10  m closer. That is nine orders of magnitude smaller than the initial distance between them. In reality, such motions are
rarely simple. These two galaxies, along with about 50 other smaller galaxies, are all gravitationally bound into our local
cluster. Our local cluster is gravitationally bound to other clusters in what is called a supercluster. All of this is part of the great
cosmic dance that results from gravitation, as shown in Figure .

Figure : Based on the results of this example, plus what astronomers have observed elsewhere in the Universe, our
galaxy will collide with the Andromeda Galaxy in about 4 billion years. (credit: NASA)

This page titled 13.2: Newton's Law of Universal Gravitation is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.
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13.3: Gravitation Near Earth's Surface

Explain the connection between the constants G and g
Determine the mass of an astronomical body from free-fall acceleration at its surface
Describe how the value of g varies due to location and Earth’s rotation

In this section, we observe how Newton’s law of gravitation applies at the surface of a planet and how it connects with what we
learned earlier about free fall. We also examine the gravitational effects within spherical bodies.

Weight
Recall that the acceleration of a free-falling object near Earth’s surface is approximately g = 9.80 m/s . The force causing this
acceleration is called the weight of the object, and from Newton’s second law, it has the value mg. This weight is present regardless
of whether the object is in free fall. We now know that this force is the gravitational force between the object and Earth. If we
substitute mg for the magnitude of  in Newton’s law of universal gravitation, m for m , and M  for m , we obtain the scalar
equation

where r is the distance between the centers of mass of the object and Earth. The average radius of Earth is about 6370 km. Hence,
for objects within a few kilometers of Earth’s surface, we can take  (Figure ). The mass m of the object cancels,
leaving

This explains why all masses free fall with the same acceleration. We have ignored the fact that Earth also accelerates toward the
falling object, but that is acceptable as long as the mass of Earth is much larger than that of the object.

Figure : We can take the distance between the centers of mass of Earth and an object on its surface to be the radius of Earth,
provided that its size is much less than the radius of Earth.

Have you ever wondered how we know the mass of Earth? We certainly can’t place it on a scale. The values of g and the radius
of Earth were measured with reasonable accuracy centuries ago.

a. Use the standard values of g, R , and Equation  to find the mass of Earth.
b. Estimate the value of g on the Moon. Use the fact that the Moon has a radius of about 1700 km (a value of this accuracy

was determined many centuries ago) and assume it has the same average density as Earth, 5500 kg/m .

Strategy

With the known values of g and R , we can use Equation  to find M . For the Moon, we use the assumption of equal
average density to determine the mass from a ratio of the volumes of Earth and the Moon.

Solution
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a. Rearranging Equation , we have

b. The volume of a sphere is proportional to the radius cubed, so a simple ratio gives us

We now use Equation .

Significance
As soon as Cavendish determined the value of G in 1798, the mass of Earth could be calculated. (In fact, that was the ultimate
purpose of Cavendish’s experiment in the first place.) The value we calculated for g of the Moon is incorrect. The average
density of the Moon is actually only 3340 kg/m  and g = 1.6 m/s  at the surface. Newton attempted to measure the mass of the
Moon by comparing the effect of the Sun on Earth’s ocean tides compared to that of the Moon. His value was a factor of two
too small. The most accurate values for g and the mass of the Moon come from tracking the motion of spacecraft that have
orbited the Moon. But the mass of the Moon can actually be determined accurately without going to the Moon. Earth and the
Moon orbit about a common center of mass, and careful astronomical measurements can determine that location. The ratio of
the Moon’s mass to Earth’s is the ratio of [the distance from the common center of mass to the Moon’s center] to [the distance
from the common center of mass to Earth’s center].

Later in this section, we will see that the mass of other astronomical bodies also can be determined by the period of small
satellites orbiting them. But until Cavendish determined the value of G, the masses of all these bodies were unknown.

What is the value of g 400 km above Earth’s surface, where the International Space Station is in orbit?

Solution
Using the value of M  and noting the radius is r = R  + 400 km, we use Equation  to find g. From Equation  we
have

Significance
We often see video of astronauts in space stations, apparently weightless. But clearly, the force of gravity is acting on them.
Comparing the value of g we just calculated to that on Earth (9.80 m/s ) , we see that the astronauts in the International Space
Station still have 88% of their weight. They only appear to be weightless because they are in free fall. We will come back to
this in Satellite Orbits and Energy.

How does your weight at the top of a tall building compare with that on the first floor? Do you think engineers need to take
into account the change in the value of g when designing structural support for a very tall building?

The Gravitational Field
Equation  is a scalar equation, giving the magnitude of the gravitational acceleration as a function of the distance from the
center of the mass that causes the acceleration. But we could have retained the vector form for the force of gravity in Equation 

, and written the acceleration in vector form as

13.3.2
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We identify the vector field represented by  as the gravitational field caused by mass M. We can picture the field as shown Figure
. The lines are directed radially inward and are symmetrically distributed about the mass.

Figure : A three-dimensional representation of the gravitational field created by mass M . Note that the lines are uniformly
distributed in all directions. (The box has been added only to aid in visualization.)

As is true for any vector field, the direction of  is parallel to the field lines at any point. The strength of  at any point is inversely
proportional to the line spacing. Another way to state this is that the magnitude of the field in any region is proportional to the
number of lines that pass through a unit surface area, effectively a density of lines. Since the lines are equally spaced in all
directions, the number of lines per unit surface area at a distance r from the mass is the total number of lines divided by the surface
area of a sphere of radius r, which is proportional to r 2 . Hence, this picture perfectly represents the inverse square law, in addition
to indicating the direction of the field. In the field picture, we say that a mass m interacts with the gravitational field of mass M. We
will use the concept of fields to great advantage in the later sections on electromagnetism.

Apparent Weight: Accounting for Earth’s Rotation
As we saw in Applications of Newton’s Laws, objects moving at constant speed in a circle have a centripetal acceleration directed
toward the center of the circle, which means that there must be a net force directed toward the center of that circle. Since all objects
on the surface of Earth move through a circle every 24 hours, there must be a net centripetal force on each object directed toward
the center of that circle.

Let’s first consider an object of mass m located at the equator, suspended from a scale (Figure ). The scale exerts an upward
force  away from Earth’s center. This is the reading on the scale, and hence it is the apparent weight of the object. The weight
(mg) points toward Earth’s center. If Earth were not rotating, the acceleration would be zero and, consequently, the net force would
be zero, resulting in F  = mg . This would be the true reading of the weight.

Figure : For a person standing at the equator, the centripetal acceleration (ac) is in the same direction as the force of gravity.
At latitude , the angle the between ac and the force of gravity is  and the magnitude of ac decreases with .
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With rotation, the sum of these forces must provide the centripetal acceleration, . Using Newton’s second law, we have

Note that a  points in the same direction as the weight; hence, it is negative. The tangential speed v is the speed at the equator and r
is R . We can calculate the speed simply by noting that objects on the equator travel the circumference of Earth in 24 hours.
Instead, let’s use the alternative expression for a  from Motion in Two and Three Dimensions. Recall that the tangential speed is
related to the angular speed ( ) by v = r . Hence, we have a  = −r . By rearranging Equation 13.3 and substituting r = R , the
apparent weight at the equator is

The angular speed of Earth everywhere is

Substituting for the values of R  and , we have R  = 0.0337 m/s . This is only 0.34% of the value of gravity, so it is clearly a
small correction.

How fast would Earth need to spin for those at the equator to have zero apparent weight? How long would the length of the day
be?

Strategy

Using Equation , we can set the apparent weight (F ) to zero and determine the centripetal acceleration required. From
that, we can find the speed at the equator. The length of day is the time required for one complete rotation.

Solution
From Equation , we have F = F  − mg = ma , so setting F  = 0, we get g = a . Using the expression for a , substituting
for Earth’s radius and the standard value of gravity, we get

The period T is the time for one complete rotation. Therefore, the tangential speed is the circumference divided by T, so we
have

This is about 84 minutes.

Significance
We will see later in this section that this speed and length of day would also be the orbital speed and period of a satellite in
orbit at Earth’s surface. While such an orbit would not be possible near Earth’s surface due to air resistance, it certainly is
possible only a few hundred miles above Earth.

Results Away from the Equator
At the poles, a  → 0 and Fs = mg , just as is the case without rotation. At any other latitude , the situation is more complicated.
The centripetal acceleration is directed toward point P in the figure, and the radius becomes . The vector sum of the
weight and  must point toward point P, hence  no longer points away from the center of Earth. (The difference is small and
exaggerated in the figure.) A plumb bob will always point along this deviated direction. All buildings are built aligned along this

ac

∑F = −mg = m where = − .Fs ac ac
v2

r
(13.3.8)

c

E

c
ω ω c ω2

E

= m(g− ).Fs REω
2 (13.3.9)

ω = = 7.27 × rad/s.
2π rad

24 hr×3600 s/hr
10−5 (13.3.10)

E ω Eω
2 2

 Example : Zero Apparent Weight13.3.3

13.3.8 s

13.3.2 ∑ s c s c c

ac

v

= = g
v2

r

= = = 7.91 × m/s.gr−−
√ (9.80 m/ )(6.37 × m)s2 106

− −−−−−−−−−−−−−−−−−−−−
√ 103

v

T

=
2πr

T

= = = 5.06 × s.
2πr

v

2π(6.37 × m)106

7.91 × m/s103
103

c λ

r = cosλRE

F ⃗ 
s F ⃗ 

s

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46015?pdf
https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/04%3A_Motion_in_Two_and_Three_Dimensions


13.3.5 https://phys.libretexts.org/@go/page/46015

deviated direction, not along a radius through the center of Earth. For the tallest buildings, this represents a deviation of a few feet
at the top.

It is also worth noting that Earth is not a perfect sphere. The interior is partially liquid, and this enhances Earth bulging at the
equator due to its rotation. The radius of Earth is about 30 km greater at the equator compared to the poles. It is left as an exercise
to compare the strength of gravity at the poles to that at the equator using Equation . The difference is comparable to the
difference due to rotation and is in the same direction. Apparently, you really can lose “weight” by moving to the tropics.

Gravity Away from the Surface
Earlier we stated without proof that the law of gravitation applies to spherically symmetrical objects, where the mass of each body
acts as if it were at the center of the body. Since Equation  is derived from Equation , it is also valid for symmetrical
mass distributions, but both equations are valid only for values of . As we saw in Example 13.4, at 400 km above Earth’s
surface, where the International Space Station orbits, the value of  is 8.67 m/s . (We will see later that this is also the centripetal
acceleration of the ISS.)

For , Equation  and Equation  are not valid. However, we can determine g for these cases using a principle that
comes from Gauss’s law, which is a powerful mathematical tool that we study in more detail later in the course. A consequence of
Gauss’s law, applied to gravitation, is that only the mass within r contributes to the gravitational force. Also, that mass, just as
before, can be considered to be located at the center. The gravitational effect of the mass outside r has zero net effect.

Two very interesting special cases occur. For a spherical planet with constant density, the mass within r is the density times the
volume within r. This mass can be considered located at the center. Replacing M  with only the mass within r, M =  x (volume of
a sphere), and R  with r, Equation  becomes

The value of g, and hence your weight, decreases linearly as you descend down a hole to the center of the spherical planet. At the
center, you are weightless, as the mass of the planet pulls equally in all directions. Actually, Earth’s density is not constant, nor is
Earth solid throughout. Figure  shows the profile of  if Earth had constant density and the more likely profile based upon
estimates of density derived from seismic data.

Figure : For r < RE, the value of g for the case of constant density is the straight green line. The blue line from the PREM
(Preliminary Reference Earth Model) is probably closer to the actual profile for g.

The second interesting case concerns living on a spherical shell planet. This scenario has been proposed in many science fiction
stories. Ignoring significant engineering issues, the shell could be constructed with a desired radius and total mass, such that g at
the surface is the same as Earth’s. Can you guess what happens once you descend in an elevator to the inside of the shell, where
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there is no mass between you and the center? What benefits would this provide for traveling great distances from one point on the
sphere to another? And finally, what effect would there be if the planet was spinning?
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13.4: Gravitational Potential Energy and Total Energy

Determine changes in gravitational potential energy over great distances
Apply conservation of energy to determine escape velocity
Determine whether astronomical bodies are gravitationally bound

We studied gravitational potential energy in Potential Energy and Conservation of Energy, where the value of  remained constant. We now
develop an expression that works over distances such that g is not constant. This is necessary to correctly calculate the energy needed to place
satellites in orbit or to send them on missions in space.

Gravitational Potential Energy beyond Earth
We defined work and potential energy, previously. The usefulness of those definitions is the ease with which we can solve many problems
using conservation of energy. Potential energy is particularly useful for forces that change with position, as the gravitational force does over
large distances. In Potential Energy and Conservation of Energy, we showed that the change in gravitational potential energy near Earth’s
surface is

This works very well if  does not change significantly between y  and y . We return to the definition of work and potential energy to derive
an expression that is correct over larger distances. Recall that work (W) is the integral of the dot product between force and distance.
Essentially, it is the product of the component of a force along a displacement times that displacement. We define  as the negative of the
work done by the force we associate with the potential energy. For clarity, we derive an expression for moving a mass m from distance r
from the center of Earth to distance r . However, the result can easily be generalized to any two objects changing their separation from one
value to another.

Figure : The work integral, which determines the change in potential energy, can be evaluated along the path shown in red.

Consider Figure , in which we take m from a distance r  from Earth’s center to a distance that is r  from the center. Gravity is a
conservative force (its magnitude and direction are functions of location only), so we can take any path we wish, and the result for the
calculation of work is the same. We take the path shown, as it greatly simplifies the integration. We first move radially outward from distance
r  to distance r , and then move along the arc of a circle until we reach the final position. During the radial portion,  is opposite to the
direction we travel along d , so

Along the arc,  is perpendicular to d , so  = 0. No work is done as we move along the arc. Using the expression for the gravitational
force and noting the values for  along the two segments of our path, we have

Since  we can adopt a simple expression for :
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Note two important items with this definition. First,  as . The potential energy is zero when the two masses are infinitely far
apart. Only the difference in  is important, so the choice of  for  is merely one of convenience. (Recall that in earlier gravity
problems, you were free to take  at the top or bottom of a building, or anywhere.) Second, note that  becomes increasingly more
negative as the masses get closer. That is consistent with what you learned about potential energy in Potential Energy and Conservation of
Energy. As the two masses are separated, positive work must be done against the force of gravity, and hence,  increases (becomes less
negative). All masses naturally fall together under the influence of gravity, falling from a higher to a lower potential energy.

How much energy is required to lift the 9000-kg Soyuz vehicle from Earth’s surface to the height of the ISS, 400 km above the surface?

Strategy

Use Equation  to find the change in potential energy of the payload. That amount of work or energy must be supplied to lift the
payload.

Solution
Paying attention to the fact that we start at Earth’s surface and end at 400 km above the surface, the change in  is

We insert the values

and convert 400 km into 4.00 x 10  m. We find . It is positive, indicating an increase in potential energy, as we
would expect.

Significance

For perspective, consider that the average US household energy use in 2013 was 909 kWh per month. That is energy of

So our result is an energy expenditure equivalent to 10 months. However, this is just the energy needed to raise the payload 400 km. If
we want the Soyuz to be in orbit so it can rendezvous with the ISS and not just fall back to Earth, it needs a lot of kinetic energy. As we
see in the next section, that kinetic energy is about five times that of U. In addition, far more energy is expended lifting the propulsion
system itself. Space travel is not cheap.

Why not use the simpler expression in Equation  instead? How significant would the error be? (The value  at 400 km above the
Earth is 8.67 m/s .)

Conservation of Energy

In Potential Energy and Conservation of Energy, we described how to apply conservation of energy for systems with conservative forces.
We were able to solve many problems, particularly those involving gravity, more simply using conservation of energy. Those principles and
problem-solving strategies apply equally well here. The only change is to place the new expression for potential energy into the conservation
of energy equation,

Note that we use M, rather than M , as a reminder that we are not restricted to problems involving Earth. However, we still assume that m <<
M. (For problems in which this is not true, we need to include the kinetic energy of both masses and use conservation of momentum to relate
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the velocities to each other. But the principle remains the same.)

Escape velocity

Escape velocity is often defined to be the minimum initial velocity of an object that is required to escape the surface of a planet (or any large
body like a moon) and never return. As usual, we assume no energy lost to an atmosphere, should there be any.

Consider the case where an object is launched from the surface of a planet with an initial velocity directed away from the planet. With the
minimum velocity needed to escape, the object would just come to rest infinitely far away, that is, the object gives up the last of its kinetic
energy just as it reaches infinity, where the force of gravity becomes zero. Since U → 0 as r → , this means the total energy is zero. Thus,
we find the escape velocity from the surface of an astronomical body of mass M and radius R by setting the total energy equal to zero. At the
surface of the body, the object is located at  and it has escape velocity . It reaches  with velocity .
Substituting into Equation , we have

Solving for the escape velocity,

Notice that  has canceled out of the equation. The escape velocity is the same for all objects, regardless of mass. Also, we are not
restricted to the surface of the planet; R can be any starting point beyond the surface of the planet.

What is the escape speed from the surface of Earth? Assume there is no energy loss from air resistance. Compare this to the escape speed
from the Sun, starting from Earth’s orbit.

Strategy

We use Equation 13.6, clearly defining the values of R and M. To escape Earth, we need the mass and radius of Earth. For escaping the
Sun, we need the mass of the Sun, and the orbital distance between Earth and the Sun.

Solution
Substituting the values for Earth’s mass and radius directly into Equation 13.6, we obtain

That is about 11 km/s or 25,000 mph. To escape the Sun, starting from Earth’s orbit, we use R = R  = 1.50 x 10  m and M  = 1.99 x
10  kg. The result is v  = 4.21 x 10  m/s or about 42 km/s.

Significance

The speed needed to escape the Sun (leave the solar system) is nearly four times the escape speed from Earth’s surface. But there is help
in both cases. Earth is rotating, at a speed of nearly 1.7 km/s at the equator, and we can use that velocity to help escape, or to achieve
orbit. For this reason, many commercial space companies maintain launch facilities near the equator. To escape the Sun, there is even
more help. Earth revolves about the Sun at a speed of approximately 30 km/s. By launching in the direction that Earth is moving, we
need only an additional 12 km/s. The use of gravitational assist from other planets, essentially a gravity slingshot technique, allows space
probes to reach even greater speeds. In this slingshot technique, the vehicle approaches the planet and is accelerated by the planet’s
gravitational attraction. It has its greatest speed at the closest point of approach, although it decelerates in equal measure as it moves
away. But relative to the planet, the vehicle’s speed far before the approach, and long after, are the same. If the directions are chosen
correctly, that can result in a significant increase (or decrease if needed) in the vehicle’s speed relative to the rest of the solar system.

Energy and gravitationally bound objects
As stated previously, escape velocity can be defined as the initial velocity of an object that can escape the surface of a moon or planet. More
generally, it is the speed at any position such that the total energy is zero. If the total energy is zero or greater, the object escapes. If the total
energy is negative, the object cannot escape. Let’s see why that is the case.
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As noted earlier, we see that  as . If the total energy is zero, then as m reaches a value of r that approaches infinity, U becomes
zero and so must the kinetic energy. Hence, m comes to rest infinitely far away from M. It has “just escaped” M. If the total energy is
positive, then kinetic energy remains at  and certainly m does not return. When the total energy is zero or greater, then we say that m is
not gravitationally bound to M.

On the other hand, if the total energy is negative, then the kinetic energy must reach zero at some finite value of r, where U is negative and
equal to the total energy. The object can never exceed this finite distance from M, since to do so would require the kinetic energy to become
negative, which is not possible. We say m is gravitationally bound to M.

We have simplified this discussion by assuming that the object was headed directly away from the planet. What is remarkable is that the
result applies for any velocity. Energy is a scalar quantity and hence Equation  is a scalar equation—the direction of the velocity plays
no role in conservation of energy. It is possible to have a gravitationally bound system where the masses do not “fall together,” but maintain
an orbital motion about each other.

We have one important final observation. Earlier we stated that if the total energy is zero or greater, the object escapes. Strictly speaking,
Equation  and Equation  apply for point objects. They apply to finite-sized, spherically symmetric objects as well, provided that
the value for  in Equation  is always greater than the sum of the radii of the two objects. If r becomes less than this sum, then the
objects collide. (Even for greater values of r, but near the sum of the radii, gravitational tidal forces could create significant effects if both
objects are planet sized. We examine tidal effects in Tidal Forces.) Neither positive nor negative total energy precludes finite-sized masses
from colliding. For real objects, direction is important.

Let’s consider the preceding example again, where we calculated the escape speed from Earth and the Sun, starting from Earth’s orbit.
We noted that Earth already has an orbital speed of 30 km/s. As we see in the next section, that is the tangential speed needed to stay in
circular orbit. If an object had this speed at the distance of Earth’s orbit, but was headed directly away from the Sun, how far would it
travel before coming to rest? Ignore the gravitational effects of any other bodies.

Strategy

The object has initial kinetic and potential energies that we can calculate. When its speed reaches zero, it is at its maximum distance from
the Sun. We use Equation 13.5, conservation of energy, to find the distance at which kinetic energy is zero.

Solution
The initial position of the object is Earth’s radius of orbit and the initial speed is given as 30 km/s. The final velocity is zero, so we can
solve for the distance at that point from the conservation of energy equation. Using R  = 1.50 x 10  m and M  = 1.99 x 10  kg, we
have

where the mass m cancels. Solving for r  we get r  = 3.0 x 10  m. Note that this is twice the initial distance from the Sun and takes us
past Mars’s orbit, but not quite to the asteroid belt.

Significance

The object in this case reached a distance exactly twice the initial orbital distance. We will see the reason for this in the next section when
we calculate the speed for circular orbits.

Assume you are in a spacecraft in orbit about the Sun at Earth’s orbit, but far away from Earth (so that it can be ignored). How could you
redirect your tangential velocity to the radial direction such that you could then pass by Mars’s orbit? What would be required to change
just the direction of the velocity?

This page titled 13.4: Gravitational Potential Energy and Total Energy is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

13.4: Gravitational Potential Energy and Total Energy by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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13.5: Satellite Orbits and Energy

Describe the mechanism for circular orbits
Find the orbital periods and speeds of satellites
Determine whether objects are gravitationally bound

The Moon orbits Earth. In turn, Earth and the other planets orbit the Sun. The space directly above our atmosphere is filled with
artificial satellites in orbit. We examine the simplest of these orbits, the circular orbit, to understand the relationship between the
speed and period of planets and satellites in relation to their positions and the bodies that they orbit.

Circular Orbits
As noted at the beginning of this chapter, Nicolaus Copernicus first suggested that Earth and all other planets orbit the Sun in
circles. He further noted that orbital periods increased with distance from the Sun. Later analysis by Kepler showed that these orbits
are actually ellipses, but the orbits of most planets in the solar system are nearly circular. Earth’s orbital distance from the Sun
varies a mere 2%. The exception is the eccentric orbit of Mercury, whose orbital distance varies nearly 40%.

Determining the orbital speed and orbital period of a satellite is much easier for circular orbits, so we make that assumption in
the derivation that follows. As we described in the previous section, an object with negative total energy is gravitationally bound
and therefore is in orbit. Our computation for the special case of circular orbits will confirm this. We focus on objects orbiting
Earth, but our results can be generalized for other cases.

Figure : A satellite of mass  orbiting at radius  from the center of Earth. The gravitational force supplies the centripetal
acceleration.

Consider a satellite of mass m in a circular orbit about Earth at distance  from the center of Earth (Figure ). It has centripetal
acceleration directed toward the center of Earth. Earth’s gravity is the only force acting, so Newton’s second law gives

We solve for the speed of the orbit, noting that  cancels, to get the orbital speed

Consistent with what we saw in  and , m does not appear in Equation . The value of g, the escape

velocity, and orbital velocity depend only upon the distance from the center of the planet, and not upon the mass of the object being
acted upon. Notice the similarity in the equations for v  and v . The escape velocity is exactly  times greater, about 40%,
than the orbital velocity. This comparison was noted in Example 13.4.2, and it is true for a satellite at any radius.
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To find the period of a circular orbit, we note that the satellite travels the circumference of the orbit  in one period . Using the
definition of speed, we have

We substitute this into Equation  and rearrange to get

We see in the next section that this represents Kepler’s third law for the case of circular orbits. It also confirms Copernicus’s
observation that the period of a planet increases with increasing distance from the Sun. We need only replace  with  in
Equation .

We conclude this section by returning to our earlier discussion about astronauts in orbit appearing to be weightless, as if they were
free-falling towards Earth. In fact, they are in free fall. Consider the trajectories shown in Figure . (This figure is based on a
drawing by Newton in his Principia and also appeared earlier in Motion in Two and Three Dimensions.) All the trajectories shown
that hit the surface of Earth have less than orbital velocity. The astronauts would accelerate toward Earth along the noncircular
paths shown and feel weightless. (Astronauts actually train for life in orbit by riding in airplanes that free fall for 30 seconds at a
time.) But with the correct orbital velocity, Earth’s surface curves away from them at exactly the same rate as they fall toward
Earth. Of course, staying the same distance from the surface is the point of a circular orbit.

Figure : A circular orbit is the result of choosing a tangential velocity such that Earth’s surface curves away at the same rate
as the object falls toward Earth.

We can summarize our discussion of orbiting satellites in the following Problem-Solving Strategy.

1. Determine whether the equations for speed, energy, or period are valid for the problem at hand. If not, start with the first
principles we used to derive those equations.

2. To start from first principles, draw a free-body diagram and apply Newton’s law of gravitation and Newton’s second law.
3. Along with the definitions for speed and energy, apply Newton’s second law of motion to the bodies of interest.

Determine the orbital speed and period for the International Space Station (ISS).

Strategy

Since the ISS orbits 4.00 x 10  km above Earth’s surface, the radius at which it orbits is R  + 4.00 x 10  km. We use Equations 
 and  to find the orbital speed and period, respectively.

Solution
Using Equation , the orbital velocity is
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which is about 17,000 mph. Using Equation , the period is

which is just over 90 minutes.

Significance
The ISS is considered to be in low Earth orbit (LEO). Nearly all satellites are in LEO, including most weather satellites. GPS
satellites, at about 20,000 km, are considered medium Earth orbit. The higher the orbit, the more energy is required to put it
there and the more energy is needed to reach it for repairs. Of particular interest are the satellites in geosynchronous orbit. All
fixed satellite dishes on the ground pointing toward the sky, such as TV reception dishes, are pointed toward geosynchronous
satellites. These satellites are placed at the exact distance, and just above the equator, such that their period of orbit is 1 day.
They remain in a fixed position relative to Earth’s surface.

By what factor must the radius change to reduce the orbital velocity of a satellite by one-half? By what factor would this
change the period?

Determine the mass of Earth from the orbit of the Moon.

Strategy

We use Equation , solve for M , and substitute for the period and radius of the orbit. The radius and period of the
Moon’s orbit was measured with reasonable accuracy thousands of years ago. From the astronomical data in Appendix D, the
period of the Moon is 27.3 days = 2.36 x 10  s, and the average distance between the centers of Earth and the Moon is 384,000
km.

Solution
Solving for ,

Significance
Compare this to the value of 5.96 x 10  kg that we obtained in Example 13.3.3, using the value of  at the surface of Earth.
Although these values are very close (~0.8%), both calculations use average values. The value of g varies from the equator to
the poles by approximately 0.5%. But the Moon has an elliptical orbit in which the value of r varies just over 10%. (The
apparent size of the full Moon actually varies by about this amount, but it is difficult to notice through casual observation as
the time from one extreme to the other is many months.)

There is another consideration to this last calculation of M . We derived Equation  assuming that the satellite orbits
around the center of the astronomical body at the same radius used in the expression for the gravitational force between them.
What assumption is made to justify this? Earth is about 81 times more massive than the Moon. Does the Moon orbit about the
exact center of Earth?
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Let’s revisit Example 13.2.2. Assume that the Milky Way and Andromeda galaxies are in a circular orbit about each other.
What would be the velocity of each and how long would their orbital period be? Assume the mass of each is 800 billion solar
masses and their centers are separated by 2.5 million light years.

Strategy

We cannot use Equations  and  directly because they were derived assuming that the object of mass m orbited
about the center of a much larger planet of mass M. We determined the gravitational force in Example 13.2.2 using Newton’s
law of universal gravitation. We can use Newton’s second law, applied to the centripetal acceleration of either galaxy, to
determine their tangential speed. From that result we can determine the period of the orbit.

Solution
In Example 13.2.2, we found the force between the galaxies to be

and that the acceleration of each galaxy is

Since the galaxies are in a circular orbit, they have centripetal acceleration. If we ignore the effect of other galaxies, then, as we
learned in Linear Momentum and Collisions and Fixed-Axis Rotation, the centers of mass of the two galaxies remain fixed.
Hence, the galaxies must orbit about this common center of mass. For equal masses, the center of mass is exactly half way
between them. So the radius of the orbit, r , is not the same as the distance between the galaxies, but one-half that value, or
1.25 million light-years. These two different values are shown in Figure .

Figure : The distance between two galaxies, which determines the gravitational force between them, is r, and is different
from r , which is the radius of orbit for each. For equal masses, r  = r. (credit: modification of work by Marc Van
Norden)

Using the expression for centripetal acceleration, we have

Solving for the orbit velocity, we have . Finally, we can determine the period of the orbit directly from

to find that the period is T = 1.6 x 10  s, about 50 billion years.

Significance
The orbital speed of 47 km/s might seem high at first. But this speed is comparable to the escape speed from the Sun, which we
calculated in an earlier example. To give even more perspective, this period is nearly four times longer than the time that the
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Universe has been in existence.

In fact, the present relative motion of these two galaxies is such that they are expected to collide in about 4 billion years.
Although the density of stars in each galaxy makes a direct collision of any two stars unlikely, such a collision will have a
dramatic effect on the shape of the galaxies. Examples of such collisions are well known in astronomy

Galaxies are not single objects. How does the gravitational force of one galaxy exerted on the “closer” stars of the other galaxy
compare to those farther away? What effect would this have on the shape of the galaxies themselves?

See the Sloan Digital Sky Survey page for more information on colliding galaxies.

Use this interactive simulation to move the Sun, Earth, Moon, and space station to see the effects on their gravitational forces
and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would
happen without it.

Energy in Circular Orbits
In Gravitational Potential Energy and Total Energy, we argued that objects are gravitationally bound if their total energy is
negative. The argument was based on the simple case where the velocity was directly away or toward the planet. We now examine
the total energy for a circular orbit and show that indeed, the total energy is negative. As we did earlier, we start with Newton’s
second law applied to a circular orbit,

In the last step, we multiplied by  on each side. The right side is just twice the kinetic energy, so we have

The total energy is the sum of the kinetic and potential energies, so our final result is

We can see that the total energy is negative, with the same magnitude as the kinetic energy. For circular orbits, the magnitude of the
kinetic energy is exactly one-half the magnitude of the potential energy. Remarkably, this result applies to any two masses in
circular orbits about their common center of mass, at a distance r from each other. The proof of this is left as an exercise. We will
see in the next section that a very similar expression applies in the case of elliptical orbits.

In Example 13.4.1, we calculated the energy required to simply lift the 9000-kg Soyuz vehicle from Earth’s surface to the
height of the ISS, 400 km above the surface. In other words, we found its change in potential energy. We now ask, what total
energy change in the Soyuz vehicle is required to take it from Earth’s surface and put it in orbit with the ISS for a rendezvous
(Figure )? How much of that total energy is kinetic energy?
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Figure : The Soyuz in a rendezvous with the ISS. Note that this diagram is not to scale; the Soyuz is very small
compared to the ISS and its orbit is much closer to Earth. (credit: modification of works by NASA)

Strategy

The energy required is the difference in the Soyuz’s total energy in orbit and that at Earth’s surface. We can use Equation 
 to find the total energy of the Soyuz at the ISS orbit. But the total energy at the surface is simply the potential energy,

since it starts from rest. [Note that we do not use Equation  at the surface, since we are not in orbit at the surface.] The
kinetic energy can then be found from the difference in the total energy change and the change in potential energy found in
Example 13.4.1. Alternatively, we can use Equation  to find v  and calculate the kinetic energy directly from that. The
total energy required is then the kinetic energy plus the change in potential energy found in Example 13.4.1.

Solution
From Equation , the total energy of the Soyuz in the same orbit as the ISS is

The total energy at Earth's surface is

The change in energy is

To get the kinetic energy, we subtract the change in potential energy from Example 13.4.1, U = 3.32 x 10  J. That gives us
K  = (2.98 x 10 ) − (3.32 x 10 ) = 2.65 x 10  J. As stated earlier, the kinetic energy of a circular orbit is always one-half
the magnitude of the potential energy, and the same as the magnitude of the total energy. Our result confirms this.

The second approach is to use Equation  to find the orbital speed of the Soyuz, which we did for the ISS in Example 
.
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So the kinetic energy of the Soyuz in orbit is

the same as in the previous method. The total energy is just

Significance
The kinetic energy of the Soyuz is nearly eight times the change in its potential energy, or 90% of the total energy needed for
the rendezvous with the ISS. And it is important to remember that this energy represents only the energy that must be given to
the Soyuz. With our present rocket technology, the mass of the propulsion system (the rocket fuel, its container and combustion
system) far exceeds that of the payload, and a tremendous amount of kinetic energy must be given to that mass. So the actual
cost in energy is many times that of the change in energy of the payload itself.

This page titled 13.5: Satellite Orbits and Energy is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

13.5: Satellite Orbits and Energy by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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13.6: Kepler's Laws of Planetary Motion

Describe the conic sections and how they relate to orbital motion
Describe how orbital velocity is related to conservation of angular momentum
Determine the period of an elliptical orbit from its major axis

Using the precise data collected by Tycho Brahe, Johannes Kepler carefully analyzed the positions in the sky of all the known
planets and the Moon, plotting their positions at regular intervals of time. From this analysis, he formulated three laws, which we
address in this section.

Kepler’s First Law
The prevailing view during the time of Kepler was that all planetary orbits were circular. The data for Mars presented the greatest
challenge to this view and that eventually encouraged Kepler to give up the popular idea. Kepler’s first law states that every planet
moves along an ellipse, with the Sun located at a focus of the ellipse. An ellipse is defined as the set of all points such that the sum
of the distance from each point to two foci is a constant. Figure  shows an ellipse and describes a simple way to create it.

Figure : (a) An ellipse is a curve in which the sum of the distances from a point on the curve to two foci (f  and f ) is a
constant. From this definition, you can see that an ellipse can be created in the following way. Place a pin at each focus, then place
a loop of string around a pencil and the pins. Keeping the string taught, move the pencil around in a complete circuit. If the two foci
occupy the same place, the result is a circle—a special case of an ellipse. (b) For an elliptical orbit, if m << M , then m follows an
elliptical path with M at one focus. More exactly, both m and M move in their own ellipse about the common center of mass.

For elliptical orbits, the point of closest approach of a planet to the Sun is called the perihelion. It is labeled point A in Figure 
. The farthest point is the aphelion and is labeled point B in the figure. For the Moon’s orbit about Earth, those points are

called the perigee and apogee, respectively.

An ellipse has several mathematical forms, but all are a specific case of the more general equation for conic sections. There are four
different conic sections, all given by the equation

The variables  and  are shown in Figure  in the case of an ellipse. The constants α and e are determined by the total energy
and angular momentum of the satellite at a given point. The constant e is called the eccentricity. The values of  and e determine
which of the four conic sections represents the path of the satellite.
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Figure : As before, the distance between the planet and the Sun is , and the angle measured from the x-axis, which is along
the major axis of the ellipse, is .

One of the real triumphs of Newton’s law of universal gravitation, with the force proportional to the inverse of the distance
squared, is that when it is combined with his second law, the solution for the path of any satellite is a conic section. Every path
taken by m is one of the four conic sections: a circle or an ellipse for bound or closed orbits, or a parabola or hyperbola for
unbounded or open orbits. These conic sections are shown in Figure .

Figure : All motion caused by an inverse square force is one of the four conic sections and is determined by the energy and
direction of the moving body

If the total energy is negative, then 0 ≤ e < 1, and Equation  represents a bound or closed orbit of either an ellipse or a circle,
where e = 0. [You can see from Equation 13.10 that for e = 0, r = , and hence the radius is constant.] For ellipses, the eccentricity
is related to how oblong the ellipse appears. A circle has zero eccentricity, whereas a very long, drawn-out ellipse has an
eccentricity near one.

If the total energy is exactly zero, then e = 1 and the path is a parabola. Recall that a satellite with zero total energy has exactly the
escape velocity. (The parabola is formed only by slicing the cone parallel to the tangent line along the surface.) Finally, if the total
energy is positive, then e > 1 and the path is a hyperbola. These last two paths represent unbounded orbits, where m passes by M
once and only once. This situation has been observed for several comets that approach the Sun and then travel away, never to
return.

We have confined ourselves to the case in which the smaller mass (planet) orbits a much larger, and hence stationary, mass (Sun),
but Equation 13.10 also applies to any two gravitationally interacting masses. Each mass traces out the exact sameshaped conic
section as the other. That shape is determined by the total energy and angular momentum of the system, with the center of mass of
the system located at the focus. The ratio of the dimensions of the two paths is the inverse of the ratio of their masses.

You can see an animation of two interacting objects at the My Solar System page at PhET. Choose the Sun and Planet preset
option. You can also view the more complicated multiple body problems as well. You may find the actual path of the Moon
quite surprising, yet is obeying Newton’s simple laws of motion.

Orbital Transfers
People have imagined traveling to the other planets of our solar system since they were discovered. But how can we best do this?
The most efficient method was discovered in 1925 by Walter Hohmann, inspired by a popular science fiction novel of that time.
The method is now called a Hohmann transfer. For the case of traveling between two circular orbits, the transfer is along a
“transfer” ellipse that perfectly intercepts those orbits at the aphelion and perihelion of the ellipse. Figure  shows the case for
a trip from Earth’s orbit to that of Mars. As before, the Sun is at the focus of the ellipse.

13.6.2 r
θ

13.6.3

13.6.3

13.6.1

α

 Simulation

13.6.4

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/46018?pdf
https://openstaxcollege.org/l/21mysolarsys


13.6.3 https://phys.libretexts.org/@go/page/46018

For any ellipse, the semi-major axis is defined as one-half the sum of the perihelion and the aphelion. In Figure , the semi-
major axis is the distance from the origin to either side of the ellipse along the x-axis, or just one-half the longest axis (called the
major axis). Hence, to travel from one circular orbit of radius r  to another circular orbit of radius r , the aphelion of the transfer
ellipse will be equal to the value of the larger orbit, while the perihelion will be the smaller orbit. The semi-major axis, denoted a, is
therefore given by .

Figure : The transfer ellipse has its perihelion at Earth’s orbit and aphelion at Mars’ orbit.

Let’s take the case of traveling from Earth to Mars. For the moment, we ignore the planets and assume we are alone in Earth’s orbit
and wish to move to Mars’ orbit. From Equation 13.9, the expression for total energy, we can see that the total energy for a
spacecraft in the larger orbit (Mars) is greater (less negative) than that for the smaller orbit (Earth). To move onto the transfer
ellipse from Earth’s orbit, we will need to increase our kinetic energy, that is, we need a velocity boost. The most efficient method
is a very quick acceleration along the circular orbital path, which is also along the path of the ellipse at that point. (In fact, the
acceleration should be instantaneous, such that the circular and elliptical orbits are congruent during the acceleration. In practice,
the finite acceleration is short enough that the difference is not a significant consideration.) Once you have arrived at Mars orbit,
you will need another velocity boost to move into that orbit, or you will stay on the elliptical orbit and simply fall back to
perihelion where you started. For the return trip, you simply reverse the process with a retro-boost at each transfer point.

To make the move onto the transfer ellipse and then off again, we need to know each circular orbit velocity and the transfer orbit
velocities at perihelion and aphelion. The velocity boost required is simply the difference between the circular orbit velocity and
the elliptical orbit velocity at each point. We can find the circular orbital velocities from Equation 13.7. To determine the velocities
for the ellipse, we state without proof (as it is beyond the scope of this course) that total energy for an elliptical orbit is

where M  is the mass of the Sun and a is the semi-major axis. Remarkably, this is the same as Equation 13.9 for circular orbits, but
with the value of the semi-major axis replacing the orbital radius. Since we know the potential energy from Equation 13.4, we can
find the kinetic energy and hence the velocity needed for each point on the ellipse. We leave it as a challenge problem to find those
transfer velocities for an Earth-to-Mars trip.

We end this discussion by pointing out a few important details. First, we have not accounted for the gravitational potential energy
due to Earth and Mars, or the mechanics of landing on Mars. In practice, that must be part of the calculations. Second, timing is
everything. You do not want to arrive at the orbit of Mars to find out it isn’t there. We must leave Earth at precisely the correct time
such that Mars will be at the aphelion of our transfer ellipse just as we arrive. That opportunity comes about every 2 years. And
returning requires correct timing as well. The total trip would take just under 3 years! There are other options that provide for a
faster transit, including a gravity assist flyby of Venus. But these other options come with an additional cost in energy and danger to
the astronauts.

Visit this site (https://openstaxcollege.org/l/21plantripmars) for more details about planning a trip to Mars.

Kepler's Second Law
Kepler’s second law states that a planet sweeps out equal areas in equal times, that is, the area divided by time, called the areal
velocity, is constant. Consider Figure . The time it takes a planet to move from position A to B, sweeping out area A , is
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exactly the time taken to move from position C to D, sweeping area A , and to move from E to F, sweeping out area A . These
areas are the same: A  = A  = A .

Figure : The shaded regions shown have equal areas and represent the same time interval.

Comparing the areas in the figure and the distance traveled along the ellipse in each case, we can see that in order for the areas to
be equal, the planet must speed up as it gets closer to the Sun and slow down as it moves away. This behavior is completely
consistent with our conservation equation, Equation . But we will show that Kepler’s second law is actually a consequence of
the conservation of angular momentum, which holds for any system with only radial forces.

Recall the definition of angular momentum from Angular Momentum, . For the case of orbiting motion,  is the angular
momentum of the planet about the Sun,  is the position vector of the planet measured from the Sun, and  = m  is the
instantaneous linear momentum at any point in the orbit. Since the planet moves along the ellipse,  is always tangent to the
ellipse.

We can resolve the linear momentum into two components: a radial component  along the line to the Sun, and a component 
 perpendicular to . The cross product for angular momentum can then be written as

The first term on the right is zero because  is parallel to , and in the second term  is perpendicular to , so the magnitude
of the cross product reduces to

Note that the angular momentum does not depend upon . Since the gravitational force is only in the radial direction, it can
change only  and not ; hence, the angular momentum must remain constant.

Figure : The element of area A swept out in time t as the planet moves through angle . The angle between the radial
direction and  is .

Now consider Figure . A small triangular area  is swept out in time . The velocity is along the path and it makes an
angle  with the radial direction. Hence, the perpendicular velocity is given by . The planet moves a distance s = v

tsin  projected along the direction perpendicular to . Since the area of a triangle is one-half the base ( ) times the height ( ),
for a small displacement, the area is given by
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Substituting for , multiplying by  in the numerator and denominator, and rearranging, we obtain

The areal velocity is simply the rate of change of area with time, so we have

Since the angular momentum is constant, the areal velocity must also be constant. This is exactly Kepler’s second law. As with
Kepler’s first law, Newton showed it was a natural consequence of his law of gravitation.

You can view an animated version of Figure , and many other interesting animations as well, at the School of Physics
(University of New South Wales) site.

Kepler's Third Law
Kepler’s third law states that the square of the period is proportional to the cube of the semi-major axis of the orbit. In Satellite
Orbits and Energy, we derived Kepler’s third law for the special case of a circular orbit. Equation  gives us the period of a
circular orbit of radius r about Earth:

For an ellipse, recall that the semi-major axis is one-half the sum of the perihelion and the aphelion. For a circular orbit, the semi-
major axis ( ) is the same as the radius for the orbit. In fact, Equation  gives us Kepler’s third law if we simply replace 
with  and square both sides.

We have changed the mass of Earth to the more general , since this equation applies to satellites orbiting any large mass.

Determine the semi-major axis of the orbit of Halley’s comet, given that it arrives at perihelion every 75.3 years. If the
perihelion is 0.586 AU, what is the aphelion?

Strategy

We are given the period, so we can rearrange Equation , solving for the semi-major axis. Since we know the value for
the perihelion, we can use the definition of the semi-major axis, given earlier in this section, to find the aphelion. We note that
1 Astronomical Unit (AU) is the average radius of Earth’s orbit and is defined to be 1 AU = 1.50 x 10  m.

Solution
Rearranging Equation  and inserting the values of the period of Halley’s comet and the mass of the Sun, we have

This yields a value of 2.67 x 10  m or 17.8 AU for the semi-major axis. The semi-major axis is one-half the sum of the
aphelion and perihelion, so we have
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Substituting for the values, we found for the semi-major axis and the value given for the perihelion, we find the value of the
aphelion to be 35.0 AU.

Significance
Edmond Halley, a contemporary of Newton, first suspected that three comets, reported in 1531, 1607, and 1682, were actually
the same comet. Before Tycho Brahe made measurements of comets, it was believed that they were one-time events, perhaps
disturbances in the atmosphere, and that they were not affected by the Sun. Halley used Newton’s new mechanics to predict his
namesake comet’s return in 1758.

The nearly circular orbit of Saturn has an average radius of about 9.5 AU and has a period of 30 years, whereas Uranus
averages about 19 AU and has a period of 84 years. Is this consistent with our results for Halley’s comet?

This page titled 13.6: Kepler's Laws of Planetary Motion is shared under a CC BY license and was authored, remixed, and/or curated by
OpenStax.

13.6: Kepler's Laws of Planetary Motion by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/university-physics-volume-1.
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13.7: Tidal Forces

Explain the origins of Earth’s ocean tides
Describe how neap and leap tides differ
Describe how tidal forces affect binary systems

The origin of Earth’s ocean tides has been a subject of continuous investigation for over 2000 years. But the work of Newton is
considered to be the beginning of the true understanding of the phenomenon. Ocean tides are the result of gravitational tidal forces.
These same tidal forces are present in any astronomical body. They are responsible for the internal heat that creates the volcanic
activity on Io, one of Jupiter’s moons, and the breakup of stars that get too close to black holes.

Lunar Tides
If you live on an ocean shore almost anywhere in the world, you can observe the rising and falling of the sea level about twice per
day. This is caused by a combination of Earth’s rotation about its axis and the gravitational attraction of both the Moon and the Sun.

Let’s consider the effect of the Moon first. In Figure , we are looking “down” onto Earth’s North Pole. One side of Earth is
closer to the Moon than the other side, by a distance equal to Earth’s diameter. Hence, the gravitational force is greater on the near
side than on the far side. The magnitude at the center of Earth is between these values. This is why a tidal bulge appears on both
sides of Earth.

Figure : The tidal force stretches Earth along the line between Earth and the Moon. It is the difference between the
gravitational force from the far side to the near side that creates the tidal bulge on both sides of the planet. Tidal variations of the
oceans are on the order of few meters; hence, this diagram is greatly exaggerated.

The net force on Earth causes it to orbit about the Earth-Moon center of mass, located about 1600 km below Earth’s surface along
the line between Earth and the Moon. The tidal force can be viewed as the difference between the force at the center of Earth and
that at any other location. In Figure , this difference is shown at sea level, where we observe the ocean tides. (Note that the
change in sea level caused by these tidal forces is measured from the baseline sea level. We saw earlier that Earth bulges many
kilometers at the equator due to its rotation. This defines the baseline sea level and here we consider only the much smaller tidal
bulge measured from that baseline sea level.)

Figure : The tidal force is the difference between the gravitational force at the center and that elsewhere. In this figure, the
tidal forces are shown at the ocean surface. These forces would diminish to zero as you approach Earth’s center.

Why does the rise and fall of the tides occur twice per day? Look again at Figure . If Earth were not rotating and the Moon
was fixed, then the bulges would remain in the same location on Earth. Relative to the Moon, the bulges stay fixed—along the line
connecting Earth and the Moon. But Earth rotates (in the direction shown by the blue arrow) approximately every 24 hours. In 6
hours, the near and far locations of Earth move to where the low tides are occurring, and 6 hours later, those locations are back to
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the high-tide position. Since the Moon also orbits Earth approximately every 28 days, and in the same direction as Earth rotates, the
time between high (and low) tides is actually about 12.5 hours. The actual timing of the tides is complicated by numerous factors,
the most important of which is another astronomical body—the Sun.

The Effect of the Sun on Tides
In addition to the Moon’s tidal forces on Earth’s oceans, the Sun exerts a tidal force as well. The gravitational attraction of the Sun
on any object on Earth is nearly 200 times that of the Moon. However, as we show later in an example, the tidal effect of the Sun is
less than that of the Moon, but a significant effect nevertheless. Depending upon the positions of the Moon and Sun relative to
Earth, the net tidal effect can be amplified or attenuated.

Figure  illustrates the relative positions of the Sun and the Moon that create the largest tides, called spring tides (or leap
tides). During spring tides, Earth, the Moon, and the Sun are aligned and the tidal effects add. (Recall that the tidal forces cause
bulges on both sides.) Figure  shows the relative positions for the smallest tides, called neap tides. The extremes of both
high and low tides are affected. Spring tides occur during the new or full moon, and neap tides occur at half-moon.

You can see an animation of the tides in motion.

Figure : (a and b) The spring tides occur when the Sun and the Moon are aligned, whereas (c) the neap tides occur when the
Sun and Moon make a right triangle with Earth. (Figure is not drawn to scale.)

The Magnitude of the Tides
With accurate data for the positions of the Moon and the Sun, the time of maximum and minimum tides at most locations on our
planet can be predicted accurately.

Visit this site to generate tide predictions for up to 2 years in the past or future, at more than 3000 locations around the United
States.

The magnitude of the tides, however, is far more complicated. The relative angles of Earth and the Moon determine spring and
neap tides, but the magnitudes of these tides are affected by the distances from Earth as well. Tidal forces are greater when the
distances are smaller. Both the Moon’s orbit about Earth and Earth’s orbit about the Sun are elliptical, so a spring tide is
exceptionally large if it occurs when the Moon is at perigee and Earth is at perihelion. Conversely, it is relatively small if it occurs
when the Moon is at apogee and Earth is at aphelion.
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The greatest causes of tide variation are the topography of the local shoreline and the bathymetry (the profile of the depth) of the
ocean floor. The range of tides due to these effects is astounding. Although ocean tides are much smaller than a meter in many
places around the globe, the tides at the Bay of Fundy (Figure ), on the east coast of Canada, can be as much as 16.3 meters.

Figure : Boats in the Bay of Fundy at high and low tides. The twice-daily change in sea level creates a real challenge to the
safe mooring of boats. (credit: Dylan Kereluk)

Compare the Moon’s gravitational force on a 1.0-kg mass located on the near side and another on the far side of Earth. Repeat
for the Sun and then compare the results to confirm that the Moon’s tidal forces are about twice that of the Sun.

Strategy

We use Newton’s law of gravitation given by Equation 13.2.1. We need the masses of the Moon and the Sun and their distances
from Earth, as well as the radius of Earth. We use the astronomical data from Appendix D.

Solution
Substituting the mass of the Moon and mean distance from Earth to the Moon, we have

In the denominator, we use the minus sign for the near side and the plus sign for the far side. The results are

The Moon’s gravitational force is nearly 7% higher at the near side of Earth than at the far side, but both forces are much less
than that of Earth itself on the 1.0-kg mass. Nevertheless, this small difference creates the tides. We now repeat the problem,
but substitute the mass of the Sun and the mean distance between the Earth and Sun. The results are

We have to keep six significant digits since we wish to compare the difference between them to the difference for the Moon.
(Although we can’t justify the absolute value to this accuracy, since all values in the calculation are the same except the
distances, the accuracy in the difference is still valid to three digits.) The difference between the near and far forces on a 1.0-kg
mass due to the Moon is

whereas the difference for the Sun is

Note that a more proper approach is to write the difference in the two forces with the difference between the near and far
distances explicitly expressed. With just a bit of algebra we can show that

where r  and r  are the same to three significant digits, but their difference (r  − r ), equal to the diameter of Earth, is also
known to three significant digits. The results of the calculation are the same. This approach would be necessary if the number
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of significant digits needed exceeds that available on your calculator or computer.

Significance
Note that the forces exerted by the Sun are nearly 200 times greater than the forces exerted by the Moon. But the difference in
those forces for the Sun is half that for the Moon. This is the nature of tidal forces. The Moon has a greater tidal effect because
the fractional change in distance from the near side to the far side is so much greater for the Moon than it is for the Sun.

Earth exerts a tidal force on the Moon. Is it greater than, the same as, or less than that of the Moon on Earth? Be careful in your
response, as tidal forces arise from the difference in gravitational forces between one side and the other. Look at the
calculations we performed for the tidal force on Earth and consider the values that would change significantly for the Moon.
The diameter of the Moon is one-fourth that of Earth. Tidal forces on the Moon are not easy to detect, since there is no liquid
on the surface.

Other Tidal Effects
Tidal forces exist between any two bodies. The effect stretches the bodies along the line between their centers. Although the tidal
effect on Earth’s seas is observable on a daily basis, long-term consequences cannot be observed so easily. One consequence is the
dissipation of rotational energy due to friction during flexure of the bodies themselves. Earth’s rotation rate is slowing down as the
tidal forces transfer rotational energy into heat. The other effect, related to this dissipation and conservation of angular momentum,
is called “locking” or tidal synchronization. It has already happened to most moons in our solar system, including Earth’s Moon.
The Moon keeps one face toward Earth—its rotation rate has locked into the orbital rate about Earth. The same process is
happening to Earth, and eventually it will keep one face toward the Moon. If that does happen, we would no longer see tides, as the
tidal bulge would remain in the same place on Earth, and half the planet would never see the Moon. However, this locking will take
many billions of years, perhaps not before our Sun expires.

One of the more dramatic example of tidal effects is found on Io, one of Jupiter’s moons. In 1979, the Voyager spacecraft sent back
dramatic images of volcanic activity on Io. It is the only other astronomical body in our solar system on which we have found such
activity. Figure  shows a more recent picture of Io taken by the New Horizons spacecraft on its way to Pluto, while using a
gravity assist from Jupiter.

Figure : Dramatic evidence of tidal forces can be seen on Io. The eruption seen in blue is due to the internal heat created by
the tidal forces exerted on Io by Jupiter.

For some stars, the effect of tidal forces can be catastrophic. The tidal forces in very close binary systems can be strong enough to
rip matter from one star to the other, once the tidal forces exceed the cohesive self-gravitational forces that hold the stars together.
This effect can be seen in normal stars that orbit nearby compact stars, such as neutron stars or black holes. Figure  shows an
artist’s rendition of this process. As matter falls into the compact star, it forms an accretion disc that becomes super-heated and
radiates in the X-ray spectrum.
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Figure : Tidal forces from a compact object can tear matter away from an orbiting star. In addition to the accretion disc
orbiting the compact object, material is often ejected along relativistic jets as shown. (credit: modification of work by European
Southern Observatory (ESO))

The energy output of these binary systems can exceed the typical output of thousands of stars. Another example might be a quasar.
Quasars are very distant and immensely bright objects, often exceeding the energy output of entire galaxies. It is the general
consensus among astronomers that they are, in fact, massive black holes producing radiant energy as matter that has been tidally
ripped from nearby stars falls into them.

This page titled 13.7: Tidal Forces is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

13.7: Tidal Forces by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-physics-volume-1.
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13.8: Einstein's Theory of Gravity

Describe how the theory of general relativity approaches gravitation
Explain the principle of equivalence
Calculate the Schwarzschild radius of an object
Summarize the evidence for black holes

Newton’s law of universal gravitation accurately predicts much of what we see within our solar system. Indeed, only Newton’s
laws have been needed to accurately send every space vehicle on its journey. The paths of Earth-crossing asteroids, and most other
celestial objects, can be accurately determined solely with Newton’s laws. Nevertheless, many phenomena have shown a
discrepancy from what Newton’s laws predict, including the orbit of Mercury and the effect that gravity has on light. In this
section, we examine a different way of envisioning gravitation.

A Revolution in Perspective
In 1905, Albert Einstein published his theory of special relativity. This theory is discussed in great detail in Relativity so we say
only a few words here. In this theory, no motion can exceed the speed of light—it is the speed limit of the Universe. This simple
fact has been verified in countless experiments. However, it has incredible consequences—space and time are no longer absolute.
Two people moving relative to one another do not agree on the length of objects or the passage of time. Almost all of the
mechanics you learned in previous chapters, while remarkably accurate even for speeds of many thousands of miles per second,
begin to fail when approaching the speed of light.

This speed limit on the Universe was also a challenge to the inherent assumption in Newton’s law of gravitation that gravity is an
action-at-a-distance force. That is, without physical contact, any change in the position of one mass is instantly communicated to
all other masses. This assumption does not come from any first principle, as Newton’s theory simply does not address the question.
(The same was believed of electromagnetic forces, as well. It is fair to say that most scientists were not completely comfortable
with the action-at-a-distance concept.)

A second assumption also appears in Newton’s law of gravitation Equation 13.2.1. The masses are assumed to be exactly the same
as those used in Newton’s second law,  = m . We made that assumption in many of our derivations in this chapter. Again, there is
no underlying principle that this must be, but experimental results are consistent with this assumption. In Einstein’s subsequent
theory of general relativity (1916), both of these issues were addressed. His theory was a theory of space-time geometry and how
mass (and acceleration) distort and interact with that space-time. It was not a theory of gravitational forces. The mathematics of the
general theory is beyond the scope of this text, but we can look at some underlying principles and their consequences.

The Principle of Equivalence

Einstein came to his general theory in part by wondering why someone who was free falling did not feel his or her weight. Indeed,
it is common to speak of astronauts orbiting Earth as being weightless, despite the fact that Earth’s gravity is still quite strong there.
In Einstein’s general theory, there is no difference between free fall and being weightless. This is called the principle of
equivalence. The equally surprising corollary to this is that there is no difference between a uniform gravitational field and a
uniform acceleration in the absence of gravity. Let’s focus on this last statement. Although a perfectly uniform gravitational field is
not feasible, we can approximate it very well.

Within a reasonably sized laboratory on Earth, the gravitational field  is essentially uniform. The corollary states that any physical
experiments performed there have the identical results as those done in a laboratory accelerating at  in deep space, well away
from all other masses. Figure  illustrates the concept.
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Figure : According to the principle of equivalence, the results of all experiments performed in a laboratory in a uniform
gravitational field are identical to the results of the same experiments performed in a uniformly accelerating laboratory.

How can these two apparently fundamentally different situations be the same? The answer is that gravitation is not a force between
two objects but is the result of each object responding to the effect that the other has on the space-time surrounding it. A uniform
gravitational field and a uniform acceleration have exactly the same effect on space-time.

A Geometric Theory of Gravity
Euclidian geometry assumes a “flat” space in which, among the most commonly known attributes, a straight line is the shortest
distance between two points, the sum of the angles of all triangles must be 180 degrees, and parallel lines never intersect. Non-
Euclidean geometry was not seriously investigated until the nineteenth century, so it is not surprising that Euclidean space is
inherently assumed in all of Newton’s laws.

The general theory of relativity challenges this long-held assumption. Only empty space is flat. The presence of mass—or energy,
since relativity does not distinguish between the two—distorts or curves space and time, or space-time, around it. The motion of
any other mass is simply a response to this curved space-time. Figure  is a two-dimensional representation of a smaller mass
orbiting in response to the distorted space created by the presence of a larger mass. In a more precise but confusing picture, we
would also see space distorted by the orbiting mass, and both masses would be in motion in response to the total distortion of
space. Note that the figure is a representation to help visualize the concept. These are distortions in our three-dimensional space and
time. We do not see them as we would a dimple on a ball. We see the distortion only by careful measurements of the motion of
objects and light as they move through space.

Figure : A smaller mass orbiting in the distorted space-time of a larger mass. In fact, all mass or energy distorts space-time.
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For weak gravitational fields, the results of general relativity do not differ significantly from Newton’s law of gravitation. But for
intense gravitational fields, the results diverge, and general relativity has been shown to predict the correct results. Even in our
Sun’s relatively weak gravitational field at the distance of Mercury’s orbit, we can observe the effect. Starting in the mid-1800s,
Mercury’s elliptical orbit has been carefully measured. However, although it is elliptical, its motion is complicated by the fact that
the perihelion position of the ellipse slowly advances. Most of the advance is due to the gravitational pull of other planets, but a
small portion of that advancement could not be accounted for by Newton’s law. At one time, there was even a search for a
“companion” planet that would explain the discrepancy. But general relativity correctly predicts the measurements. Since then,
many measurements, such as the deflection of light of distant objects by the Sun, have verified that general relativity correctly
predicts the observations.

We close this discussion with one final comment. We have often referred to distortions of space-time or distortions in both space
and time. In both special and general relativity, the dimension of time has equal footing with each spatial dimension (differing in its
place in both theories only by an ultimately unimportant scaling factor). Near a very large mass, not only is the nearby space
“stretched out,” but time is dilated or “slowed.” We discuss these effects more in the next section.

Black Holes

Einstein’s theory of gravitation is expressed in one deceptively simple-looking tensor equation (tensors are a generalization of
scalars and vectors), which expresses how a mass determines the curvature of space-time around it. The solutions to that equation
yield one of the most fascinating predictions: the black hole. The prediction is that if an object is sufficiently dense, it will collapse
in upon itself and be surrounded by an event horizon from which nothing can escape. The name “black hole,” which was coined
by astronomer John Wheeler in 1969, refers to the fact that light cannot escape such an object. Karl Schwarzschild was the first
person to note this phenomenon in 1916, but at that time, it was considered mostly to be a mathematical curiosity.

Surprisingly, the idea of a massive body from which light cannot escape dates back to the late 1700s. Independently, John Michell
and Pierre Simon Laplace used Newton’s law of gravitation to show that light leaving the surface of a star with enough mass could
not escape. Their work was based on the fact that the speed of light had been measured by Ole Roemer in 1676. He noted
discrepancies in the data for the orbital period of the moon Io about Jupiter. Roemer realized that the difference arose from the
relative positions of Earth and Jupiter at different times and that he could find the speed of light from that difference. Michell and
Laplace both realized that since light had a finite speed, there could be a star massive enough that the escape speed from its surface
could exceed that speed. Hence, light always would fall back to the star. Oddly, observers far enough away from the very largest
stars would not be able to see them, yet they could see a smaller star from the same distance.

Recall that in Gravitational Potential Energy and Total Energy, we found that the escape speed, given by , is

independent of the mass of the object escaping. Even though the nature of light was not fully understood at the time, the mass of
light, if it had any, was not relevant. Hence, this equation should be valid for light. Substituting c, the speed of light, for the escape
velocity, we have

Thus, we only need values for R and M such that the escape velocity exceeds c, and then light will not be able to escape. Michell
posited that if a star had the density of our Sun and a radius that extended just beyond the orbit of Mars, then light would not be
able to escape from its surface. He also conjectured that we would still be able to detect such a star from the gravitational effect it
would have on objects around it. This was an insightful conclusion, as this is precisely how we infer the existence of such objects
today. While we have yet to, and may never, visit a black hole, the circumstantial evidence for them has become so compelling that
few astronomers doubt their existence.

Before we examine some of that evidence, we turn our attention back to Schwarzschild’s solution to the tensor equation from
general relativity. In that solution arises a critical radius, now called the Schwarzschild radius (R ). For any mass M, if that mass
were compressed to the extent that its radius becomes less than the Schwarzschild radius, then the mass will collapse to a
singularity, and anything that passes inside that radius cannot escape. Once inside R , the arrow of time takes all things to the
singularity. (In a broad mathematical sense, a singularity is where the value of a function goes to infinity. In this case, it is a point in
space of zero volume with a finite mass. Hence, the mass density and gravitational energy become infinite.) The Schwarzschild
radius is given by
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If you look at our escape velocity equation with v = c, you will notice that it gives precisely this result. But that is merely a
fortuitous accident caused by several incorrect assumptions. One of these assumptions is the use of the incorrect classical
expression for the kinetic energy for light. Just how dense does an object have to be in order to turn into a black hole?

Calculate the Schwarzschild radius for both the Sun and Earth. Compare the density of the nucleus of an atom to the density
required to compress Earth’s mass uniformly to its Schwarzschild radius. The density of a nucleus is about 2.3 x 10 kg/m .

Strategy

We use Equation  for this calculation. We need only the masses of Earth and the Sun, which we obtain from the
astronomical data given in Appendix D.

Solution
Substituting the mass of the Sun, we have

This is a diameter of only about 6 km. If we use the mass of Earth, we get R  = 8.85 x 10  m. This is a diameter of less than 2
cm! If we pack Earth’s mass into a sphere with the radius R  = 8.85 x 10  m, we get a density of

Significance

A neutron star is the most compact object known—outside of a black hole itself. The neutron star is composed of neutrons,
with the density of an atomic nucleus, and, like many black holes, is believed to be the remnant of a supernova—a star that
explodes at the end of its lifetime. To create a black hole from Earth, we would have to compress it to a density thirteen orders
of magnitude greater than that of a neutron star. This process would require unimaginable force. There is no known mechanism
that could cause an Earth-sized object to become a black hole. For the Sun, you should be able to show that it would have to be
compressed to a density only about 80 times that of a nucleus. (Note: Once the mass is compressed within its Schwarzschild
radius, general relativity dictates that it will collapse to a singularity. These calculations merely show the density we must
achieve to initiate that collapse.)

Consider the density required to make Earth a black hole compared to that required for the Sun. What conclusion can you draw
from this comparison about what would be required to create a black hole? Would you expect the Universe to have many black
holes with small mass?

The Event Horizon

The Schwarzschild radius is also called the event horizon of a black hole. We noted that both space and time are stretched near
massive objects, such as black holes. Figure  illustrates that effect on space. The distortion caused by our Sun is actually
quite small, and the diagram is exaggerated for clarity. Consider the neutron star, described in Example . Although the
distortion of space-time at the surface of a neutron star is very high, the radius is still larger than its Schwarzschild radius. Objects
could still escape from its surface.

However, if a neutron star gains additional mass, it would eventually collapse, shrinking beyond the Schwarzschild radius. Once
that happens, the entire mass would be pulled, inevitably, to a singularity. In the diagram, space is stretched to infinity. Time is also
stretched to infinity. As objects fall toward the event horizon, we see them approaching ever more slowly, but never reaching the
event horizon. As outside observers, we never see objects pass through the event horizon—effectively, time is stretched to a stop.
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Visit this site to view an animated example of these spatial distortions.

Figure : The space distortion becomes more noticeable around increasingly larger masses. Once the mass density reaches a
critical level, a black hole forms and the fabric of space-time is torn. The curvature of space is greatest at the surface of each of the
first three objects shown and is finite. The curvature then decreases (not shown) to zero as you move to the center of the object. But
the black hole is different. The curvature becomes infinite: The surface has collapsed to a singularity, and the cone extends to
infinity. (Note: These diagrams are not to any scale.)

The evidence for black holes

Not until the 1960s, when the first neutron star was discovered, did interest in the existence of black holes become renewed.
Evidence for black holes is based upon several types of observations, such as radiation analysis of X-ray binaries, gravitational
lensing of the light from distant galaxies, and the motion of visible objects around invisible partners. We will focus on these later
observations as they relate to what we have learned in this chapter. Although light cannot escape from a black hole for us to see, we
can nevertheless see the gravitational effect of the black hole on surrounding masses.

The closest, and perhaps most dramatic, evidence for a black hole is at the center of our Milky Way galaxy. The UCLA Galactic
Group, using data obtained by the W. M. Keck telescopes, has determined the orbits of several stars near the center of our galaxy.
Some of that data is shown in Figure . The orbits of two stars are highlighted. From measurements of the periods and sizes of
their orbits, it is estimated that they are orbiting a mass of approximately 4 million solar masses. Note that the mass must reside in
the region created by the intersection of the ellipses of the stars. The region in which that mass must reside would fit inside the
orbit of Mercury—yet nothing is seen there in the visible spectrum.

Figure : Paths of stars orbiting about a mass at the center of our Milky Way galaxy. From their motion, it is estimated that a
black hole of about 4 million solar masses resides at the center. (credit: UCLA Galactic Center Group – W.M. Keck Observatory
Laser Team)

The physics of stellar creation and evolution is well established. The ultimate source of energy that makes stars shine is the self-
gravitational energy that triggers fusion. The general behavior is that the more massive a star, the brighter it shines and the shorter it
lives. The logical inference is that a mass that is 4 million times the mass of our Sun, confined to a very small region, and that
cannot be seen, has no viable interpretation other than a black hole. Extragalactic observations strongly suggest that black holes are
common at the center of galaxies.
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Visit the UCLA Galactic Center Group main page for information on X-ray binaries and gravitational lensing. Visit this page
to view a three-dimensional visualization of the stars orbiting near the center of our galaxy, where the animation is near the
bottom of the page.

Dark Matter

Stars orbiting near the very heart of our galaxy provide strong evidence for a black hole there, but the orbits of stars far from the
center suggest another intriguing phenomenon that is observed indirectly as well. Recall from Gravitation Near Earth’s Surface that
we can consider the mass for spherical objects to be located at a point at the center for calculating their gravitational effects on
other masses. Similarly, we can treat the total mass that lies within the orbit of any star in our galaxy as being located at the center
of the Milky Way disc. We can estimate that mass from counting the visible stars and include in our estimate the mass of the black
hole at the center as well.

But when we do that, we find the orbital speed of the stars is far too fast to be caused by that amount of matter. Figure 
shows the orbital velocities of stars as a function of their distance from the center of the Milky Way. The blue line represents the
velocities we would expect from our estimates of the mass, whereas the green curve is what we get from direct measurements.
Apparently, there is a lot of matter we don’t see, estimated to be about five times as much as what we do see, so it has been dubbed
dark matter. Furthermore, the velocity profile does not follow what we expect from the observed distribution of visible stars. Not
only is the estimate of the total mass inconsistent with the data, but the expected distribution is inconsistent as well. And this
phenomenon is not restricted to our galaxy, but seems to be a feature of all galaxies. In fact, the issue was first noted in the 1930s
when galaxies within clusters were measured to be orbiting about the center of mass of those clusters faster than they should based
upon visible mass estimates.

Figure : The blue curve shows the expected orbital velocity of stars in the Milky Way based upon the visible stars we can
see. The green curve shows that the actually velocities are higher, suggesting additional matter that cannot be seen. (credit:
modification of work by Matthew Newby)

There are two prevailing ideas of what this matter could be—WIMPs and MACHOs. WIMPs stands for weakly interacting massive
particles. These particles (neutrinos are one example) interact very weakly with ordinary matter and, hence, are very difficult to
detect directly. MACHOs stands for massive compact halo objects, which are composed of ordinary baryonic matter, such as
neutrons and protons. There are unresolved issues with both of these ideas, and far more research will be needed to solve the
mystery.

This page titled 13.8: Einstein's Theory of Gravity is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

13.8: Einstein's Theory of Gravity by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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13.E: Gravitation (Exercises)

Conceptual Questions

13.1 Newton's Law of Universal Gravitation
1. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the

ultimate determinant of the truth in science, and why was this action at a distance ultimately accepted?
2. In the law of universal gravitation, Newton assumed that the force was proportional to the product of the two masses

(~m m ). While all scientific conjectures must be experimentally verified, can you provide arguments as to why this must
be? (You may wish to consider simple examples in which any other form would lead to contradictory results.)

13.2 Gravitation Near Earth's Surface
3. Must engineers take Earth’s rotation into account when constructing very tall buildings at any location other than the

equator or very near the poles?

13.3 Gravitational Potential Energy and Total Energy
4. It was stated that a satellite with negative total energy is in a bound orbit, whereas one with zero or positive total energy is

in an unbounded orbit. Why is this true? What choice for gravitational potential energy was made such that this is true?
5. It was shown that the energy required to lift a satellite into a low Earth orbit (the change in potential energy) is only a

small fraction of the kinetic energy needed to keep it in orbit. Is this true for larger orbits? Is there a trend to the ratio of
kinetic energy to change in potential energy as the size of the orbit increases?

13.4 Satellite Orbits and Energy
6. One student argues that a satellite in orbit is in free fall because the satellite keeps falling toward Earth. Another says a

satellite in orbit is not in free fall because the acceleration due to gravity is not 9.80 m/s . With whom do you agree with
and why?

7. Many satellites are placed in geosynchronous orbits. What is special about these orbits? For a global communication
network, how many of these satellites would be needed?

13.5 Kepler's Laws of Planetary Motion
8. Are Kepler’s laws purely descriptive, or do they contain causal information?
9. In the diagram below for a satellite in an elliptical orbit about a much larger mass, indicate where its speed is the greatest

and where it is the least. What conservation law dictates this behavior? Indicate the directions of the force, acceleration,
and velocity at these points. Draw vectors for these same three quantities at the two points where the yaxis intersects
(along the semi-minor axis) and from this determine whether the speed is increasing decreasing, or at a max/min.

13.6 Tidal Forces
10. As an object falls into a black hole, tidal forces increase. Will these tidal forces always tear the object apart as it

approaches the Schwarzschild radius? How does the mass of the black hole and size of the object affect your answer?

13.7 Einstein's Theory of Gravity
11. The principle of equivalence states that all experiments done in a lab in a uniform gravitational field cannot be

distinguished from those done in a lab that is not in a gravitational field but is uniformly accelerating. For the latter case,
consider what happens to a laser beam at some height shot perfectly horizontally to the floor, across the accelerating lab.
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(View this from a nonaccelerating frame outside the lab.) Relative to the height of the laser, where will the laser beam hit
the far wall? What does this say about the effect of a gravitational field on light? Does the fact that light has no mass
make any difference to the argument?

12. As a person approaches the Schwarzschild radius of a black hole, outside observers see all the processes of that person
(their clocks, their heart rate, etc.) slowing down, and coming to a halt as they reach the Schwarzschild radius. (The
person falling into the black hole sees their own processes unaffected.) But the speed of light is the same everywhere for
all observers. What does this say about space as you approach the black hole?

Problems

13.1 Newton's Law of Universal Gravitation
13. Evaluate the magnitude of gravitational force between two 5-kg spherical steel balls separated by a center-to-center

distance of 15 cm.
14. Estimate the gravitational force between two sumo wrestlers, with masses 220 kg and 240 kg, when they are embraced

and their centers are 1.2 m apart.
15. Astrology makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts

on Earth is gravitational. (a) Calculate the gravitational force exerted on a 4.20-kg baby by a 100-kg father 0.200 m away
at birth (he is assisting, so he is close to the child). (b) Calculate the force on the baby due to Jupiter if it is at its closest
distance to Earth, some 6.29 x 10  m away. How does the force of Jupiter on the baby compare to the force of the father
on the baby? Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there
could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an
unknown force causes it.)

16. A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight. (a) Calculate the
mass of the mountain. (b) Compare the mountain’s mass with that of Earth. (c) What is unreasonable about these results?
(d) Which premises are unreasonable or inconsistent? (Note that accurate gravitational measurements can easily detect
the effect of nearby mountains and variations in local geology.)

17. The International Space Station has a mass of approximately 370,000 kg. (a) What is the force on a 150-kg suited
astronaut if she is 20 m from the center of mass of the station? (b) How accurate do you think your answer would be?

Figure 13.33 (credit: ©ESA–David Ducros)

18. Asteroid Toutatis passed near Earth in 2006 at four times the distance to our Moon. This was the closest approach we will
have until 2060. If it has mass of 5.0 x 10  kg , what force did it exert on Earth at its closest approach?

19. (a) What was the acceleration of Earth caused by asteroid Toutatis (see previous problem) at its closest approach? (b)
What was the acceleration of Toutatis at this point?

13.2 Gravitation Near Earth's Surface
20. (a) Calculate Earth’s mass given the acceleration due to gravity at the North Pole is measured to be 9.832 m/s  and the

radius of the Earth at the pole is 6356 km. (b) Compare this with the NASA’s Earth Fact Sheet value of 5.9726 x 10  kg.
21. (a) What is the acceleration due to gravity on the surface of the Moon? (b) On the surface of Mars? The mass of Mars is

6.418 x 10  kg and its radius is 3.38 x 10  m.
22. (a) Calculate the acceleration due to gravity on the surface of the Sun. (b) By what factor would your weight increase if

you could stand on the Sun? (Never mind that you cannot.)
23. The mass of a particle is 15 kg. (a) What is its weight on Earth? (b) What is its weight on the Moon? (c) What is its mass

on the Moon? (d) What is its weight in outer space far from any celestial body? (e) What is its mass at this point?
24. On a planet whose radius is 1.2 x 10  m, the acceleration due to gravity is 18 m/s . What is the mass of the planet?
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25. The mean diameter of the planet Saturn is 1.2 x 10  m, and its mean mass density is 0.69 g/cm . Find the acceleration due
to gravity at Saturn’s surface.

26. The mean diameter of the planet Mercury is 4.88 x 10  m, and the acceleration due to gravity at its surface is 3.78 m/s .
Estimate the mass of this planet.

27. The acceleration due to gravity on the surface of a planet is three times as large as it is on the surface of Earth. The mass
density of the planet is known to be twice that of Earth. What is the radius of this planet in terms of Earth’s radius?

28. A body on the surface of a planet with the same radius as Earth’s weighs 10 times more than it does on Earth. What is the
mass of this planet in terms of Earth’s mass?

13.3 Gravitational Potential Energy and Total Energy
29. Find the escape speed of a projectile from the surface of Mars.
30. Find the escape speed of a projectile from the surface of Jupiter.
31. What is the escape speed of a satellite located at the Moon’s orbit about Earth? Assume the Moon is not nearby.
32. (a) Evaluate the gravitational potential energy between two 5.00-kg spherical steel balls separated by a center-to-center

distance of 15.0 cm. (b) Assuming that they are both initially at rest relative to each other in deep space, use conservation
of energy to find how fast will they be traveling upon impact. Each sphere has a radius of 5.10 cm.

33. An average-sized asteroid located 5.0 x 10  km from Earth with mass 2.0 x 10  kg is detected headed directly toward
Earth with speed of 2.0 km/s. What will its speed be just before it hits our atmosphere? (You may ignore the size of the
asteroid.)

34. (a) What will be the kinetic energy of the asteroid in the previous problem just before it hits Earth? b) Compare this
energy to the output of the largest fission bomb, 2100 TJ. What impact would this have on Earth?

35. (a) What is the change in energy of a 1000-kg payload taken from rest at the surface of Earth and placed at rest on the
surface of the Moon? (b) What would be the answer if the payload were taken from the Moon’s surface to Earth? Is this a
reasonable calculation of the energy needed to move a payload back and forth?

13.4 Satellite Orbits and Energy
36. If a planet with 1.5 times the mass of Earth was traveling in Earth’s orbit, what would its period be?
37. Two planets in circular orbits around a star have speeds of v and 2v. (a) What is the ratio of the orbital radii of the

planets? (b) What is the ratio of their periods?
38. Using the average distance of Earth from the Sun, and the orbital period of Earth, (a) find the centripetal acceleration of

Earth in its motion about the Sun. (b) Compare this value to that of the centripetal acceleration at the equator due to
Earth’s rotation.

39. What is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?
40. Calculate the mass of the Sun based on data for Earth’s orbit and compare the value obtained with the Sun’s actual mass.
41. Find the mass of Jupiter based on the fact that Io, its innermost moon, has an average orbital radius of 421,700 km and a

period of 1.77 days.
42. Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0 x 10  solar masses. A star

orbiting on the galaxy’s periphery is about 6.0 x 10  light-years from its center. (a) What should the orbital period of that
star be? (b) If its period is 6.0 x 10  years instead, what is the mass of the galaxy? Such calculations are used to imply the
existence of other matter, such as a very massive black hole at the center of the Milky Way.

43. (a) In order to keep a small satellite from drifting into a nearby asteroid, it is placed in orbit with a period of 3.02 hours
and radius of 2.0 km. What is the mass of the asteroid? (b) Does this mass seem reasonable for the size of the orbit?

44. The Moon and Earth rotate about their common center of mass, which is located about 4700 km from the center of Earth.
(This is 1690 km below the surface.) (a) Calculate the acceleration due to the Moon’s gravity at that point. (b) Calculate
the centripetal acceleration of the center of Earth as it rotates about that point once each lunar month (about 27.3 d) and
compare it with the acceleration found in part (a). Comment on whether or not they are equal and why they should or
should not be.

45. The Sun orbits the Milky Way galaxy once each 2.60 x 10  years, with a roughly circular orbit averaging a radius of 3.00
x 10  light-years. (A light-year is the distance traveled by light in 1 year.) Calculate the centripetal acceleration of the Sun
in its galactic orbit. Does your result support the contention that a nearly inertial frame of reference can be located at the
Sun? (b) Calculate the average speed of the Sun in its galactic orbit. Does the answer surprise you?

46. A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for
communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in
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the equatorial plane in the same direction as Earth’s rotation). Calculate the radius of such an orbit based on the data for
Earth in Appendix D.

13.5 Kepler's Laws of Planetary Motion
47. Calculate the mass of the Sun based on data for average Earth’s orbit and compare the value obtained with the Sun’s

commonly listed value of 1.989 x 10  kg.
48. Io orbits Jupiter with an average radius of 421,700 km and a period of 1.769 days. Based upon these data, what is the

mass of Jupiter?
49. The “mean” orbital radius listed for astronomical objects orbiting the Sun is typically not an integrated average but is

calculated such that it gives the correct period when applied to the equation for circular orbits. Given that, what is the
mean orbital radius in terms of aphelion and perihelion?

50. The perihelion of Halley’s comet is 0.586 AU and the aphelion is 17.8 AU. Given that its speed at perihelion is 55 km/s,
what is the speed at aphelion (1 AU = 1.496 x 10  m)? (Hint: You may use either conservation of energy or angular
momentum, but the latter is much easier.)

51. The perihelion of the comet Lagerkvist is 2.61 AU and it has a period of 7.36 years. Show that the aphelion for this comet
is 4.95 AU.

52. What is the ratio of the speed at perihelion to that at aphelion for the comet Lagerkvist in the previous problem?
53. Eros has an elliptical orbit about the Sun, with a perihelion distance of 1.13 AU and aphelion distance of 1.78 AU. What

is the period of its orbit?

13.6 Tidal Forces
54. (a) What is the difference between the forces on a 1.0-kg mass on the near side of Io and far side due to Jupiter? Io has a

mean radius of 1821 km and a mean orbital radius about Jupiter of 421,700 km. (b) Compare this difference to that
calculated for the difference for Earth due to the Moon calculated in Example 13.14. Tidal forces are the cause of Io’s
volcanic activity.

55. If the Sun were to collapse into a black hole, the point of no return for an investigator would be approximately 3 km from
the center singularity. Would the investigator be able to survive visiting even 300 km from the center? Answer this by
finding the difference in the gravitational attraction the black holes exerts on a 1.0-kg mass at the head and at the feet of
the investigator.

56. Consider Figure 13.23 in Tidal Forces. This diagram represents the tidal forces for spring tides. Sketch a similar diagram
for neap tides. (Hint: For simplicity, imagine that the Sun and the Moon contribute equally. Your diagram would be the
vector sum of two force fields (as in Figure 13.23), reduced by a factor of two, and superimposed at right angles.)

13.7 Einstein's Theory of Gravity
57. What is the Schwarzschild radius for the black hole at the center of our galaxy if it has the mass of 4 million solar

masses?
58. What would be the Schwarzschild radius, in light years, if our Milky Way galaxy of 100 billion stars collapsed into a

black hole? Compare this to our distance from the center, about 13,000 light years.

Additional Problems
59. A neutron star is a cold, collapsed star with nuclear density. A particular neutron star has a mass twice that of our Sun

with a radius of 12.0 km. (a) What would be the weight of a 100-kg astronaut on standing on its surface? (b) What does
this tell us about landing on a neutron star?

60. (a) How far from the center of Earth would the net gravitational force of Earth and the Moon on an object be zero? (b)
Setting the magnitudes of the forces equal should result in two answers from the quadratic. Do you understand why there
are two positions, but only one where the net force is zero?

61. How far from the center of the Sun would the net gravitational force of Earth and the Sun on a spaceship be zero?
62. Calculate the values of g at Earth’s surface for the following changes in Earth’s properties: (a) its mass is doubled and its

radius is halved; (b) its mass density is doubled and its radius is unchanged; (c) its mass density is halved and its mass is
unchanged.

63. Suppose you can communicate with the inhabitants of a planet in another solar system. They tell you that on their planet,
whose diameter and mass are 5.0 x 10  km and 3.6 x 10  kg, respectively, the record for the high jump is 2.0 m. Given
that this record is close to 2.4 m on Earth, what would you conclude about your extraterrestrial friends’ jumping ability?
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64. (a) Suppose that your measured weight at the equator is one-half your measured weight at the pole on a planet whose
mass and diameter are equal to those of Earth. What is the rotational period of the planet? (b) Would you need to take the
shape of this planet into account?

65. A body of mass 100 kg is weighed at the North Pole and at the equator with a spring scale. What is the scale reading at
these two points? Assume that g = 9.83 m/s  at the pole.

66. Find the speed needed to escape from the solar system starting from the surface of Earth. Assume there are no other
bodies involved and do not account for the fact that Earth is moving in its orbit. [Hint: Equation 13.6 does not apply. Use
Equation 13.5 and include the potential energy of both Earth and the Sun.

67. Consider the previous problem and include the fact that Earth has an orbital speed about the Sun of 29.8 km/ s. (a) What
speed relative to Earth would be needed and in what direction should you leave Earth? (b) What will be the shape of the
trajectory?

68. A comet is observed 1.50 AU from the Sun with a speed of 24.3 km/s. Is this comet in a bound or unbound orbit?
69. An asteroid has speed 15.5 km/s when it is located 2.00 AU from the sun. At its closest approach, it is 0.400 AU from the

Sun. What is its speed at that point?
70. Space debris left from old satellites and their launchers is becoming a hazard to other satellites. (a) Calculate the speed of

a satellite in an orbit 900 km above Earth’s surface. (b) Suppose a loose rivet is in an orbit of the same radius that
intersects the satellite’s orbit at an angle of 90°. What is the velocity of the rivet relative to the satellite just before striking
it? (c) If its mass is 0.500 g, and it comes to rest inside the satellite, how much energy in joules is generated by the
collision? (Assume the satellite’s velocity does not change appreciably, because its mass is much greater than the rivet’s.)

71. A satellite of mass 1000 kg is in circular orbit about Earth. The radius of the orbit of the satellite is equal to two times the
radius of Earth. (a) How far away is the satellite? (b) Find the kinetic, potential, and total energies of the satellite.

72. After Ceres was promoted to a dwarf planet, we now recognize the largest known asteroid to be Vesta, with a mass of
2.67 x 10  kg and a diameter ranging from 578 km to 458 km. Assuming that Vesta is spherical with radius 520 km, find
the approximate escape velocity from its surface.

73. (a) Using the data in the previous problem for the asteroid Vesta, what would be the orbital period for a space probe in a
circular orbit of 10.0 km from its surface? (b) Why is this calculation marginally useful at best?

74. What is the orbital velocity of our solar system about the center of the Milky Way? Assume that the mass within a sphere
of radius equal to our distance away from the center is about a 100 billion solar masses. Our distance from the center is
27,000 light years.

75. (a) Using the information in the previous problem, what velocity do you need to escape the Milky Way galaxy from our
present position? (b) Would you need to accelerate a spaceship to this speed relative to Earth?

76. Circular orbits in Equation 13.10 for conic sections must have eccentricity zero. From this, and using Newton’s second
law applied to centripetal acceleration, show that the value of α in Equation 13.10 is given by  where L is the
angular momentum of the orbiting body. The value of α is constant and given by this expression regardless of the type of
orbit.

77. Show that for eccentricity equal to one in Equation 13.10 for conic sections, the path is a parabola. Do this by substituting
Cartesian coordinates, x and y, for the polar coordinates, r and , and showing that it has the general form for a parabola,
x = ay  + by + c.

78. Using the technique shown in Satellite Orbits and Energy, show that two masses m  and m  in circular orbits about their
common center of mass, will have total energy . We have shown the
kinetic energy of both masses explicitly. (Hint: The masses orbit at radii r  and r , respectively, where r = r  + r . Be sure
not to confuse the radius needed for centripetal acceleration with that for the gravitational force.)

79. Given the perihelion distance, p, and aphelion distance, q, for an elliptical orbit, show that the velocity at perihelion, v , is

given by . (Hint: Use conservation of angular momentum to relate v  and v , and then substitute into

the conservation of energy equation.)
80. Comet P/1999 R1 has a perihelion of 0.0570 AU and aphelion of 4.99 AU. Using the results of the previous problem, find

its speed at aphelion. (Hint: The expression is for the perihelion. Use symmetry to rewrite the expression for aphelion.)

Challenge Problems
81. A tunnel is dug through the center of a perfectly spherical and airless planet of radius R. Using the expression for g

derived in Gravitation Near Earth’s Surface for a uniform density, show that a particle of mass m dropped in the tunnel
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will execute simple harmonic motion. Deduce the period of oscillation of m and show that it has the same period as an
orbit at the surface.

82. Following the technique used in Gravitation Near Earth’s Surface, find the value of g as a function of the radius r from
the center of a spherical shell planet of constant density  with inner and outer radii R  and R . Find g for both R  < r <
R  and for r < R . Assuming the inside of the shell is kept airless, describe travel inside the spherical shell planet.

83. Show that the areal velocity for a circular orbit of radius r about a mass M is . Does your expression give
the correct value for Earth’s areal velocity about the Sun?

84. Show that the period of orbit for two masses, m  and m , in circular orbits of radii r  and r , respectively, about their

common center-of-mass, is given by  where r = r  + r . (Hint: The masses orbit at radii r  and r ,

respectively where r = r  + r . Use the expression for the center-of-mass to relate the two radii and note that the two
masses must have equal but opposite momenta. Start with the relationship of the period to the circumference and speed of
orbit for one of the masses. Use the result of the previous problem using momenta in the expressions for the kinetic
energy.)

85. Show that for small changes in height h, such that h << R , Equation 13.4 reduces to the expression U = mgh.
86. Using Figure 13.9, carefully sketch a free body diagram for the case of a simple pendulum hanging at latitude lambda,

labeling all forces acting on the point mass, m. Set up the equations of motion for equilibrium, setting one coordinate in
the direction of the centripetal acceleration (toward P in the diagram), the other perpendicular to that. Show that the
deflection angle , defined as the angle between the pendulum string and the radial direction toward the center of Earth, is
given by the expression below. What is the deflection angle at latitude 45 degrees? Assume that Earth is a perfect sphere. 

, where  is the angular velocity of Earth.

87. (a) Show that tidal force on a small object of mass m, defined as the difference in the gravitational force that would be
exerted on m at a distance at the near and the far side of the object, due to the gravitation at a distance R from M, is given
by F  = r where r is the distance between the near and far side and r << R . (b) Assume you are falling feet
first into the black hole at the center of our galaxy. It has mass of 4 million solar masses. What would be the difference
between the force at your head and your feet at the Schwarzschild radius (event horizon)? Assume your feet and head
each have mass 5.0 kg and are 2.0 m apart. Would you survive passing through the event horizon?

88. Find the Hohmann transfer velocities, v  and v , needed for a trip to Mars. Use Equation 13.7 to find
the circular orbital velocities for Earth and Mars. Using Equation 13.4 and the total energy of the ellipse (with semi-major
axis a), given by E = − , find the velocities at Earth (perihelion) and at Mars (aphelion) required to be on the
transfer ellipse. The difference, v, at each point is the velocity boost or transfer velocity needed.
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13.S: Gravitation (Summary)

Key Terms
action-at-a-distance force type of force exerted without physical contact

aphelion farthest point from the Sun of an orbiting body; the corresponding term for the Moon’s farthest point f

apparent weight reading of the weight of an object on a scale that does not account for acceleratio

black hole mass that becomes so dense, that it collapses in on itself, creating a singularity at the center surround

escape velocity
initial velocity an object needs to escape the gravitational pull of another; it is more accurately defined as the velocity 

energy

event horizon location of the Schwarzschild radius and is the location near a black hole from within which no object

gravitational field
vector field that surrounds the mass creating the field; the field is represented by field lines, in which the direction of 

magnitude (or field strength) is inversely proportional to the spacing of the lines; other masses re

gravitationally bound two object are gravitationally bound if their orbits are closed; gravitationally bound systems have a negati

Kepler’s first law law stating that every planet moves along an ellipse, with the Sun located at a focus of th

Kepler’s second law law stating that a planet sweeps out equal areas in equal times, meaning it has a constant ar

Kepler’s third law law stating that the square of the period is proportional to the cube of the semi-major axis 

neap tide low tide created when the Moon and the Sun form a right triangle with Earth

neutron star most compact object known—outside of a black hole itself

Newton’s law of gravitation
every mass attracts every other mass with a force proportional to the product of their masses, inversely proportional to t

and with direction along the line connecting the center of mass of each

non-Euclidean geometry geometry of curved space, describing the relationships among angles and lines on the surface of a sph

orbital period time required for a satellite to complete one orbit

orbital speed speed of a satellite in a circular orbit; it can be also be used for the instantaneous speed for noncircular orbits in

perihelion point of closest approach to the Sun of an orbiting body; the corresponding term for the Moon’s closest app

principle of equivalence
part of the general theory of relativity, it states that there no difference between free fall and being weightless, or a un

acceleration

Schwarzschild radius
critical radius (R ) such that if a mass were compressed to the extent that its radius becomes less than the Schwarzschil

singularity, and anything that passes inside that radius cannot escape

space-time
concept of space-time is that time is essentially another coordinate that is treated the same way as any individual sp

represent both special and general relativity, time appears in the same context as do the spati

spring tide high tide created when the Moon, the Sun, and Earth are along one line

theory of general relativity
Einstein’s theory for gravitation and accelerated reference frames; in this theory, gravitation is the result of mass and ene

is also often referred to as Einstein’s theory of gravity

tidal force difference between the gravitational force at the center of a body and that at any other location on the body; th

universal gravitational constant constant representing the strength of the gravitational force, that is believed to be the same throug

Key Equations

Newton’s law of gravitation

Acceleration due to gravity at the surface of Earth

Gravitational potential energy beyond Earth

Conservation of energy

Escape velocity

Orbital speed

Orbital period

Energy in circular orbit
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Kepler’s third law

Schwarzschild radius

Summary

13.1 Newton's Law of Universal Gravitation
All masses attract one another with a gravitational force proportional to their masses and inversely proportional to the square of the distance between them.
Spherically symmetrical masses can be treated as if all their mass were located at the center.
Nonsymmetrical objects can be treated as if their mass were concentrated at their center of mass, provided their distance from other masses is large compared to their size.

13.2 Gravitation Near Earth's Surface
The weight of an object is the gravitational attraction between Earth and the object.
The gravitational field is represented as lines that indicate the direction of the gravitational force; the line spacing indicates the strength of the field.
Apparent weight differs from actual weight due to the acceleration of the object.

13.3 Gravitational Potential Energy and Total Energy
The acceleration due to gravity changes as we move away from Earth, and the expression for gravitational potential energy must reflect this change.
The total energy of a system is the sum of kinetic and gravitational potential energy, and this total energy is conserved in orbital motion.
Objects must have a minimum velocity, the escape velocity, to leave a planet and not return.
Objects with total energy less than zero are bound; those with zero or greater are unbounded.

13.4 Satellite Orbits and Energy
Orbital velocities are determined by the mass of the body being orbited and the distance from the center of that body, and not by the mass of a much smaller orbiting object.
The period of the orbit is likewise independent of the orbiting object’s mass.
Bodies of comparable masses orbit about their common center of mass and their velocities and periods should be determined from Newton’s second law and law of gravitation.

13.5 Kepler's Laws of Planetary Motion
All orbital motion follows the path of a conic section. Bound or closed orbits are either a circle or an ellipse; unbounded or open orbits are either a parabola or a hyperbola.
The areal velocity of any orbit is constant, a reflection of the conservation of angular momentum.
The square of the period of an elliptical orbit is proportional to the cube of the semi-major axis of that orbit.

13.6 Tidal Forces
Earth’s tides are caused by the difference in gravitational forces from the Moon and the Sun on the different sides of Earth
Spring or neap (high) tides occur when Earth, the Moon, and the Sun are aligned, and neap or (low) tides occur when they form a right triangle.
Tidal forces can create internal heating, changes in orbital motion, and even destruction of orbiting bodies.

13.7 Einstein's Theory of Gravity
According to the theory of general relativity, gravity is the result of distortions in space-time created by mass and energy.
The principle of equivalence states that that both mass and acceleration distort space-time and are indistinguishable in comparable circumstances.
Black holes, the result of gravitational collapse, are singularities with an event horizon that is proportional to their mass.
Evidence for the existence of black holes is still circumstantial, but the amount of that evidence is overwhelming.
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