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4.2: Displacement and Velocity Vectors

Calculate position vectors in a multidimensional displacement problem.
Solve for the displacement in two or three dimensions.
Calculate the velocity vector given the position vector as a function of time.
Calculate the average velocity in multiple dimensions.

Displacement and velocity in two or three dimensions are straightforward extensions of the one-dimensional definitions. However,
now they are vector quantities, so calculations with them have to follow the rules of vector algebra, not scalar algebra.

Displacement Vector
To describe motion in two and three dimensions, we must first establish a coordinate system and a convention for the axes. We
generally use the coordinates , , and  to locate a particle at point  in three dimensions. If the particle is moving, the
variables , , and  are functions of time ( ):

The position vector from the origin of the coordinate system to point P is . In unit vector notation, introduced in Coordinate
Systems and Components of a Vector, (t) is

Figure  shows the coordinate system and the vector to point , where a particle could be located at a particular time . Note
the orientation of the x, y, and z axes. This orientation is called a right-handed coordinate system and it is used throughout the
chapter.

Figure : A three-dimensional coordinate system with a particle at position .

With our definition of the position of a particle in three-dimensional space, we can formulate the three-dimensional displacement.
Figure  shows a particle at time t  located at P  with position vector (t ). At a later time t , the particle is located at P  with
position vector (t ). The displacement vector  is found by subtracting  from :

Vector addition is discussed in Vectors. Note that this is the same operation we did in one dimension, but now the vectors are in
three-dimensional space.

Figure : The displacement  is the vector from  to .

The following examples illustrate the concept of displacement in multiple dimensions

 LEARNING OBJECTIVES

x y z P (x, y, z)

x y z t

x = x(t) y = y(t) z = z(t). (4.2.1)
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r ⃗ 

(t) = x(t) +y(t) +z(t) .r ⃗  î ĵ k̂ (4.2.2)
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A satellite is in a circular polar orbit around Earth at an altitude of 400 km—meaning, it passes directly overhead at the North
and South Poles. What is the magnitude and direction of the displacement vector from when it is directly over the North Pole
to when it is at −45° latitude?

Strategy

We make a picture of the problem to visualize the solution graphically. This will aid in our understanding of the displacement.
We then use unit vectors to solve for the displacement.

Solution
Figure  shows the surface of Earth and a circle that represents the orbit of the satellite. Although satellites are moving in
three-dimensional space, they follow trajectories of ellipses, which can be graphed in two dimensions. The position vectors are
drawn from the center of Earth, which we take to be the origin of the coordinate system, with the y-axis as north and the x-axis
as east. The vector between them is the displacement of the satellite. We take the radius of Earth as 6370 km, so the length of
each position vector is 6770 km.

Figure : Two position vectors are drawn from the center of Earth, which is the origin of the coordinate system, with the y-
axis as north and the x-axis as east. The vector between them is the displacement of the satellite.

In unit vector notation, the position vectors are

Evaluating the sine and cosine, we have

Now we can find , the displacement of the satellite:

The magnitude of the displacement is

The angle the displacement makes with the x-axis is

Significance

 Example 4.1: Polar Orbiting Satellite

4.2.3

4.2.3

( )r ⃗ t1

( )r ⃗ t2

= 6770. km ĵ

= 6770. km(cos(−45°)) +6770. km(sin(−45°)) .î ĵ

( )r ⃗ t1

( )r ⃗ t2

= 6770. ĵ

= 4787 −4787 .î ĵ

Δr ⃗ 

Δ = ( ) − ( ) = 4787 −11, 557 .r ⃗  r ⃗ t2 r ⃗ t1 î ĵ

|Δ | = = 12, 509 km.r ⃗  (4787 +(−11, 557)2 )2
− −−−−−−−−−−−−−−−−

√

θ = ( ) = − .tan−1 −11, 557
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Plotting the displacement gives information and meaning to the unit vector solution to the problem. When plotting the
displacement, we need to include its components as well as its magnitude and the angle it makes with a chosen axis—in this
case, the x-axis (Figure ).

Figure : Displacement vector with components, angle, and magnitude.

Note that the satellite took a curved path along its circular orbit to get from its initial position to its final position in this
example. It also could have traveled 4787 km east, then 11,557 km south to arrive at the same location. Both of these paths are
longer than the length of the displacement vector. In fact, the displacement vector gives the shortest path between two points in
one, two, or three dimensions.

Many applications in physics can have a series of displacements, as discussed in the previous chapter. The total displacement is
the sum of the individual displacements, only this time, we need to be careful, because we are adding vectors. We illustrate this
concept with an example of Brownian motion.

Brownian motion is a chaotic random motion of particles suspended in a fluid, resulting from collisions with the molecules of
the fluid. This motion is three-dimensional. The displacements in numerical order of a particle undergoing Brownian motion
could look like the following, in micrometers (Figure ):

What is the total displacement of the particle from the origin?

Figure : Trajectory of a particle undergoing random displacements of Brownian motion. The total displacement is shown
in red.

Solution
We form the sum of the displacements and add them as vectors:

4.2.4

4.2.4

 Example 4.2: Brownian Motion

4.2.5

Δ = 2.0 + +3.0r ⃗ 1 î ĵ k̂ (4.2.4)

Δ = − +3.0r ⃗ 2 î k̂ (4.2.5)

Δ = 4.0 −2.0 +r ⃗ 3 î ĵ k̂ (4.2.6)

Δ = −3.0 + +3.0 .r ⃗ 4 î ĵ k̂ (4.2.7)

4.2.5
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To complete the solution, we express the displacement as a magnitude and direction,

with respect to the x-axis in the xz-plane.

Significance
From the figure we can see the magnitude of the total displacement is less than the sum of the magnitudes of the individual
displacements.

Velocity Vector
In the previous chapter we found the instantaneous velocity by calculating the derivative of the position function with respect to
time. We can do the same operation in two and three dimensions, but we use vectors. The instantaneous velocity vector is now

Let’s look at the relative orientation of the position vector and velocity vector graphically. In Figure  we show the vectors (t)
and (t + t), which give the position of a particle moving along a path represented by the gray line. As t goes to zero, the
velocity vector, given by Equation , becomes tangent to the path of the particle at time t.

Figure : A particle moves along a path given by the gray line. In the limit as t approaches zero, the velocity vector becomes
tangent to the path of the particle.

Equation  can also be written in terms of the components of (t). Since

we can write

where

If only the average velocity is of concern, we have the vector equivalent of the one-dimensional average velocity for two and three
dimensions:

The position function of a particle is (t) = 2.0t   + (2.0 + 3.0t) + 5.0t  m. (a) What is the instantaneous velocity and speed
at t = 2.0 s? (b) What is the average velocity between 1.0 s and 3.0 s?

Δr ⃗ Total =∑Δ = Δ +Δ +Δ +Δr ⃗ i r ⃗ 1 r ⃗ 2 r ⃗ 3 r ⃗ 4

= (2.0 −1.0 +4.0 −3.0) +(1.0 +0 −2.0 +1.0) +(3.0 +3.0 +1.0 +2.0)î ĵ k̂

= 2.0 +0 +9.0 μm.î ĵ k̂

|Δ | = = 9.2μm, θ = ( ) = ,r ⃗ Total + +2.02 02 9.02− −−−−−−−−−−−−
√ tan−1 9

2
77o (4.2.8)

(t) = = .v ⃗  lim
Δt→0

(t+Δt) − (t)r ⃗  r ⃗ 

Δt

dr ⃗ 

dt
(4.2.9)

4.2.6 r ⃗ 

r ⃗  Δ Δ

4.2.9

4.2.6 Δ

4.2.9 v ⃗ 

(t) = x(t) +y(t) +z(t) ,r ⃗  î ĵ k̂ (4.2.10)

(t) = (t) + (t) + (t)v ⃗  vx î vy ĵ vz k̂ (4.2.11)

(t) = , (t) = , (t) = .vx
dx(t)

dt
vy

dy(t)

dt
vz

dz(t)

dt
(4.2.12)

= .v ⃗ avg
( ) − ( )r ⃗ t2 r ⃗ t1

−t2 t1
(4.2.13)

 Example 4.3: Calculating the Velocity Vector

r ⃗  2 î ĵ k̂
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Solution
Using Equation  and Equation , and taking the derivative of the position function with respect to time, we find

a. 

b. From Equation ,

Significance
We see the average velocity is the same as the instantaneous velocity at t = 2.0 s, as a result of the velocity function being
linear. This need not be the case in general. In fact, most of the time, instantaneous and average velocities are not the same.

The position function of a particle is (t) = 3.0t   + 4.0 . (a) What is the instantaneous velocity at t = 3 s? (b) Is the average
velocity between 2 s and 4 s equal to the instantaneous velocity at t = 3 s?

The Independence of Perpendicular Motions
When we look at the three-dimensional equations for position and velocity written in unit vector notation, Equation  and
Equation , we see the components of these equations are separate and unique functions of time that do not depend on one
another. Motion along the x direction has no part of its motion along the y and z directions, and similarly for the other two
coordinate axes. Thus, the motion of an object in two or three dimensions can be divided into separate, independent motions along
the perpendicular axes of the coordinate system in which the motion takes place.

To illustrate this concept with respect to displacement, consider a woman walking from point A to point B in a city with square
blocks. The woman taking the path from A to B may walk east for so many blocks and then north (two perpendicular directions)
for another set of blocks to arrive at B. How far she walks east is affected only by her motion eastward. Similarly, how far she
walks north is affected only by her motion northward.

In the kinematic description of motion, we are able to treat the horizontal and vertical components of motion separately. In
many cases, motion in the horizontal direction does not affect motion in the vertical direction, and vice versa.

An example illustrating the independence of vertical and horizontal motions is given by two baseballs. One baseball is dropped
from rest. At the same instant, another is thrown horizontally from the same height and it follows a curved path. A stroboscope
captures the positions of the balls at fixed time intervals as they fall (Figure ).

4.2.11 4.2.12

v(t) = = 4.0t +3.0 +5.0 m/s
d (t)r ⃗ 

dt
î ĵ k̂ (4.2.14)

(2.0 s) = 8.0 +3.0 +5.0 m/sv ⃗  î ĵ k̂ (4.2.15)

Speed | (2.0 s)| = = 9.9 m/s.v ⃗  + +82 32 52− −−−−−−−−−√ (4.2.16)

4.2.13

v ⃗ avg = = =
( ) − ( )r ⃗ t2 r ⃗ t1

−t2 t1

(3.0 s) − (1.0 s)r ⃗  r ⃗ 

3.0 s−1.0 s

(18 +11 +15 )m−(2 +5 +5 )mî ĵ k̂ î ĵ k̂

2.0 s

= = 8.0 +3.0 +5.0 m/s.
(16 +6 +10 )mî ĵ k̂

2.0 s
î ĵ k̂

 Exercise 4.1

r ⃗  3 î ĵ

4.2.2

4.2.11

 Independence of Motion

4.2.7
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Figure : A diagram of the motions of two identical balls: one falls from rest and the other has an initial horizontal velocity.
Each subsequent position is an equal time interval. Arrows represent the horizontal and vertical velocities at each position. The ball
on the right has an initial horizontal velocity whereas the ball on the left has no horizontal velocity. Despite the difference in
horizontal velocities, the vertical velocities and positions are identical for both balls, which shows the vertical and horizontal
motions are independent.

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This similarity implies vertical
motion is independent of whether the ball is moving horizontally. (Assuming no air resistance, the vertical motion of a falling
object is influenced by gravity only, not by any horizontal forces.) Careful examination of the ball thrown horizontally shows it
travels the same horizontal distance between flashes. This is because there are no additional forces on the ball in the horizontal
direction after it is thrown. This result means horizontal velocity is constant and is affected neither by vertical motion nor by
gravity (which is vertical). Note this case is true for ideal conditions only. In the real world, air resistance affects the speed of the
balls in both directions.

The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional motions
(horizontal and vertical). The key to analyzing such motion, called projectile motion, is to resolve it into motions along
perpendicular directions. Resolving two-dimensional motion into perpendicular components is possible because the components
are independent.
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