LibreTextsm

10.4: Impulse and Collisions (Part 2)

Effect of Impulse
Since an impulse is a force acting for some amount of time, it causes an object’s motion to change. Recall
J =mAv. (10.4.1)

Because mv is the momentum of a system, mA® is the change of momentum Ap. This gives us the following relation, called the
impulse-momentum theorem (or relation).

# Impulse-Momentum Theorem

An impulse applied to a system changes the system’s momentum, and that change of momentum is exactly equal to the
impulse that was applied:

J =Ap. (10.4.2)
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Figure 10.4.1: Tllustration of impulse-momentum theorem. (a) A ball with initial velocity ¥y and momentum p, receives an
impulse J . (b) This impulse is added vectorially to the initial momentum. (c) Thus, the impulse equals the change in momentum,
J = Ap. (d) After the impulse, the ball moves off with its new momentum p Iz

There are two crucial concepts in the impulse-momentum theorem:

1. Impulse is a vector quantity; an impulse of, say, —(10 N ¢ s) iis very different from an impulse of +(10 N ¢ s) i they cause
completely opposite changes of momentum.

2. An impulse does not cause momentum; rather, it causes a change in the momentum of an object. Thus, you must subtract the
final momentum from the initial momentum, and—since momentum is also a vector quantity—you must take careful account of
the signs of the momentum vectors.

The most common questions asked in relation to impulse are to calculate the applied force, or the change of velocity that occurs as
a result of applying an impulse. The general approach is the same.

? Problem-Solving Strategy: Impulse-Momentum Theorem

1. Express the impulse as force times the relevant time interval.
2. Express the impulse as the change of momentum, usually mAv.
3. Equate these and solve for the desired quantity.
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Figure 10.4.2: The fictional starship Enterprise from the Star Trek adventures operated on so-called “impulse engines” that
combined matter with antimatter to produce energy.

“Mister Sulu, take us out; ahead one-quarter impulse.” With this command, Captain Kirk of the starship Enterprise (Figure
10.4.2) has his ship start from rest to a final speed of v; = i(B.O x 108 m/s). Assuming this maneuver is completed in 60 s,
what average force did the impulse engines apply to the ship?

Strategy

We are asked for a force; we know the initial and final speeds (and hence the change in speed), and we know the time interval
over which this all happened. In particular, we know the amount of time that the force acted. This suggests using the impulse-
momentum relation. To use that, though, we need the mass of the Enterprise. An internet search gives a best estimate of the
mass of the Enterprise (in the 2009 movie) as 2 x 10° kg.

Solution
Because this problem involves only one direction (i.e., the direction of the force applied by the engines), we only need the
scalar form of the impulse-momentum theorem Equation , which is
Ap=J (10.4.3)
with
Ap =mAv (10.4.4)
and
J=FAt. (10.4.5)
Equating these expressions gives
FAt =mAw. (10.4.6)

Solving for the magnitude of the force and inserting the given values leads to

2 x10° kg)(7.35 x 107
P mAv _ ( 9)( m/s) —92.5x%x10% N. (10.4.7)
At 60 s

Significance

This is an unimaginably huge force. It goes almost without saying that such a force would kill everyone on board instantly, as
well as destroying every piece of equipment. Fortunately, the Enterprise has “inertial dampeners.” It is left as an exercise for
the reader’s imagination to determine how these work.

? EXercise 10.4.1

The U.S. Air Force uses “10gs” (an acceleration equal to 10 x 9.8 m/s®) as the maximum acceleration a human can withstand
(but only for several seconds) and survive. How much time must the Enterprise spend accelerating if the humans on board are
to experience an average of at most 10gs of acceleration? (Assume the inertial dampeners are offline.)
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Apple released its iPhone 6 Plus in November 2014. According to many reports, it was originally supposed to have a screen
made from sapphire, but that was changed at the last minute for a hardened glass screen. Reportedly, this was because the
sapphire screen cracked when the phone was dropped. What force did the iPhone 6 Plus experience as a result of being
dropped?

Strategy

The force the phone experiences is due to the impulse applied to it by the floor when the phone collides with the floor. Our
strategy then is to use the impulse-momentum relationship. We calculate the impulse, estimate the impact time, and use this to
calculate the force. We need to make a couple of reasonable estimates, as well as find technical data on the phone itself. First,
let’s suppose that the phone is most often dropped from about chest height on an average-height person. Second, assume that it
is dropped from rest, that is, with an initial vertical velocity of zero. Finally, we assume that the phone bounces very little—the
height of its bounce is assumed to be negligible.

Solution

Define upward to be the +y-direction. A typical height is approximately h = 1.5 m and, as stated, ¥; = (0 m/s) i. The average
force on the phone is related to the impulse the floor applies on it during the collision:

Fo.= é. (10.4.8)
The impulse J equals the change in momentum,
J=Ap (10.4.9)
o)
Fo.= 2—1;. (10.4.10)
Next, the change of momentum is
Ap = mA®v. (10.4.11)

We need to be careful with the velocities here; this is the change of velocity due to the collision with the floor. But the phone
also has an initial drop velocity [v; = (0 m/s) j1, so we label our velocities. Let:

e v; = the initial velocity with which the phone was dropped (zero, in this example)
o v = the velocity the phone had the instant just before it hit the floor
e 1 = the final velocity of the phone as a result of hitting the floor

Figure 10.4.3shows the velocities at each of these points in the phone’s trajectory.
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Figure 10.4.3: (a) The initial velocity of the phone is zero, just after the person drops it. (b) Just before the phone hits the floor,
its velocity is 91, which is unknown at the moment, except for its direction, which is downward (- j). (c) After bouncing off
the floor, the phone has a velocity ¥s, which is also unknown, except for its direction, which is upward (+7).
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With these definitions, the change of momentum of the phone during the collision with the floor is

mAY =m(vg —1). (10.4.12)

Since we assume the phone doesn’t bounce at all when it hits the floor (or at least, the bounce height is negligible), then s is
Zero, so

mAS =m[0— (—v; J)] (10.4.13)

mAD = +mu, . (10.4.14)

We can get the speed of the phone just before it hits the floor using either kinematics or conservation of energy. We’ll use

conservation of energy here; you should re-do this part of the problem using kinematics and prove that you get the same
answer.

First, define the zero of potential energy to be located at the floor. Conservation of energy then gives us:

E = E
K, +U, =K;+U;

1 1
Emfu? +mghgrop = §mv% +mgh fioor-

Defining hgoor = 0 and using v; = (0 m/s) 3 gives

1
—mv? =mghdrep

2
v = + 2ghdrop-

Because v; is a vector magnitude, it must be positive. Thus, mAv = mv; = m,/2ghg,op. Inserting this result into the
expression for force gives
F_Ap
At
~ mAv
At
_ +muy 3

At
_ m+/2gh .
N

Finally, we need to estimate the collision time. One common way to estimate a collision time is to calculate how long the
object would take to travel its own length. The phone is moving at 5.4 m/s just before it hits the floor, and it is 0.14 m long,
giving an estimated collision time of 0.026 s. Inserting the given numbers, we obtain

(0.172 kg)/2(9.8 m/s?)(1.5 m) ..

F= — (36 N)j. 10.4.15
N J=@B6 N)j ( )

Significance

The iPhone itself weighs just (0.172 kg)(9.81 m/s?) = 1.68 N; the force the floor applies to it is therefore over 20 times its

weight.

? Exercise 10.4.2

What if we had assumed the phone did bounce on impact? Would this have increased the force on the iPhone, decreased it, or
made no difference?

Momentum and Force

In Example 10.4.1, we obtained an important relationship:
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Ap
At”
In words, the average force applied to an object is equal to the change of the momentum that the force causes, divided by the time

interval over which this change of momentum occurs. This relationship is very useful in situations where the collision time At is
small, but measurable; typical values would be 1/10th of a second, or even one thousandth of a second. Car crashes, punting a

Fope = (10.4.16)

football, or collisions of subatomic particles would meet this criterion.

For a continuously changing momentum—due to a continuously changing force—this becomes a powerful conceptual tool. In the
limit At - dt, Equation 9.3.1 becomes

- dp

F=—. 10.4.17

7 ( )

This says that the rate of change of the system’s momentum (implying that momentum is a function of time) is exactly equal to the
net applied force (also, in general, a function of time). This is, in fact, Newton’s second law, written in terms of momentum rather
than acceleration. This is the relationship Newton himself presented in his Principia Mathematica (although he called it “quantity
of motion” rather than “momentum”).

If the mass of the system remains constant, Equation 9.3.3 reduces to the more familiar form of Newton’s second law. We can see
this by substituting the definition of momentum:
o d(mv) dv .

F= o =g = ma (10.4.18)

The assumption of constant mass allowed us to pull m out of the derivative. If the mass is not constant, we cannot use this form of
the second law, but instead must start from Equation 9.3.3. Thus, one advantage to expressing force in terms of changing
momentum is that it allows for the mass of the system to change, as well as the velocity; this is a concept we’ll explore when we
study the motion of rockets.

# Newton’s Second Law of Motion in Terms of Momentum

The net external force on a system is equal to the rate of change of the momentum of that system caused by the force:

F==2. (10.4.19)

Although Equation 9.3.3 allows for changing mass, as we will see in Rocket Propulsion, the relationship between momentum and
force remains useful when the mass of the system is constant, as in the following example.

v/ Example 10.4.3: Calculating Force: Venus Williams' Tennis Serve

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed of
58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’ racquet? Assume that the
ball’s speed just after impact is 58 m/s, as shown in Figure 10.4.4 that the initial horizontal component of the velocity before
impact is negligible, and that the ball remained in contact with the racquet for 5.0 ms.
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Figure 10.4.4: The final velocity of the tennis ball is ¥y = (58 m/s) i
Strategy

This problem involves only one dimension because the ball starts from having no horizontal velocity component before impact.
Newton’s second law stated in terms of momentum is then written as

- dp
F=—. 10.4.20
2 ( )
As noted above, when mass is constant, the change in momentum is given by
Ap =mAv=m(vy —v;) (10.4.21)

where we have used scalars because this problem involves only one dimension. In this example, the velocity just after impact
and the time interval are given; thus, once Ap is calculated, we can use F = i—f to find the force.

Solution
To determine the change in momentum, insert the values for the initial and final velocities into the equation above:

Ap =m(vy —v;)
= (0.057 kg)(58 m/s—0 m/s)
=3.3kg-m/s.

Now the magnitude of the net external force can be determined by using

_Ap 33kg-m/s
At 50x107%s

where we have retained only two significant figures in the final step.

=6.6 x10> N. (10.4.22)

Significance

This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact (note that the
ball also experienced the 0.57-N force of gravity, but that force was not due to the racquet). This problem could also be solved
by first finding the acceleration and then using F = ma, but one additional step would be required compared with the strategy
used in this example.

This page titled 10.4: Impulse and Collisions (Part 2) is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

o 9.4: Impulse and Collisions (Part 2) by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/university-
physics-volume-1.
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