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4.10: Further Applications of Newton’s Laws of Motion

By the end of this section, you will be able to:

Apply problem-solving techniques to solve for quantities in more complex systems of forces.
Integrate concepts from kinematics to solve problems using Newton’s laws of motion.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve
also to illustrate some further subtleties of physics and to help build problem-solving skills.

Suppose two tugboats push on a barge at different angles, as shown in Figure. The first tugboat exerts a force of 
in the x-direction, and the second tugboat exerts a force of  in the y-direction.

Figure : (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only
forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the
water supporting it cancel and are not shown. Since the applied forces are perpendicular, the x- and y-axes are in the same
direction as  and  The problem quickly becomes a one-dimensional problem along the direction of , since friction is
in the direction opposite to .

If the mass of the barge is  and its acceleration is observed to be  in the direction shown, what is
the drag force of the water on the barge resisting the motion? (Note: drag force is a frictional force exerted by fluids, such as air
or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure (a). We will define the total
force of the tugboats on the barge as  so that:

Since the barge is flat bottomed, the drag of the water  will be in the direction opposite to  as shown in the free-
body diagram in Figure (b). The system of interest here is the barge, since the forces on it are given as well as its
acceleration. Our strategy is to find the magnitude and direction of the net applied force , and then apply Newton’s
second law to solve for the drag force .

Solution

Since  and  are perpendicular, the magnitude and direction of  are easily found. First, the resultant magnitude
is given by the Pythagorean theorem:
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The angle is given by

which we know, because of Newton’s first law, is the same direction as the acceleration.  is in the opposite direction
of , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as , but
its magnitude is slightly less than . The problem is now one-dimensional. From Figure (b) we can see that

But Newton’s second law states that

Thus,

This can be solved for the magnitude of the drag force of the water  in terms of known quantities:

Substituting known values gives

The direction of  has already been determined to be in the direction opposite to  or at an angle of  south of
west.

Discussion

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger
accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively
small for a well-designed hull at low speeds, consistent with the answer to this example, where  is less than 1/600th
of the weight of the ship.

In the earlier example of a tightrope walker we noted that the tensions in wires supporting a mass were equal only because the
angles on either side were equal. Consider the following example, where the angles are not equal; slightly more trigonometry is
involved.

Consider the traffic light (mass 15.0 kg) suspended from two wires as shown in Figure. Find the tension in each wire,
neglecting the masses of the wires.
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Figure : A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the
system are shown here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical (y) and
horizontal (x) axes. The horizontal components of the tensions must cancel, and the sum of the vertical components of the
tensions must equal the weight of the traffic light. (e) The free-body diagram shows the vertical and horizontal forces acting on
the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in Figure(c). The three forces involved are
not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one
axis vertical and one horizontal, and the vector projections on it are shown in part (d) of the figure. There are two
unknowns in this problem (  and T_2\)), so two equations are needed to find them. These two equations come from
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applying Newton’s second law along the vertical and horizontal axes, noting that the net external force is zero along each
axis because acceleration is zero.

Solution

First consider the horizontal or x-axis:

Thus, as you might expect,

This gives us the following relationship between  and :

Thus,

Note that  and  are not equal in this case, because the angles on either side are not equal. It is reasonable that 
ends up being greater than , because it is exerted more vertically than .

Now consider the force components along the vertical or y-axis:

This implies

Substituting the expressions for the vertical components gives

There are two unknowns in this equation, but substituting the expression for  in terms of  reduces this to one
equation with one unknown:

which yields

Solving this last equation gives the magnitude of  to be

Finally, the magnitude of  is determined using the relationship between them,  found above. Thus we
obtain

Discussion

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on
either side are the same (as they were in the earlier example of a tightrope walker).

The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it
must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if
you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about
when the elevator moves upward at a constant speed: will the scale still read more than your weight at rest? Consider the following
example.
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Figure shows a 75.0-kg man (weight of about 165 lb) standing on a bathroom scale in an elevator. Calculate the scale reading:
(a) if the elevator accelerates upward at a rate of  and (b) if the elevator moves upward at a constant speed of 1 m/s.

Figure :(a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are
approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to
scale.  is the tension in the supporting cable,  is the weight of the person,  is the weight of the scale,  is the weight of
the elevator,  is the force of the scale on the person,  is the force of the person on the scale,  is the force of the scale on
the floor of the elevator, and  is the force of the floor upward on the scale. (b) The free-body diagram shows only the external
forces acting on the designated system of interest—the person.

Strategy

If the scale is accurate, its reading will equal  the magnitude of the force the person exerts downward on it. Figure (a)
shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look much
more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn as in Figure
(b). Analysis of the free-body diagram using Newton’s laws can produce answers to both parts (a) and (b) of this
example, as well as some other questions that might arise. The only forces acting on the person are his weight  and the
upward force of the scale  According to Newton’s third law  and  are equal in magnitude and opposite in
direction, so that we need to find  in order to find what the scale reads. We can do this, as usual, by applying Newton’s
second law,

From the free-body diagram we see that  so that

Solving for  gives an equation with only one unknown:

Example : What does the Bathroom Scale Read in an Elevator?4.10.3

1.20m/s2

4.10.3

T w ws we

Fs Fp Ft

N

Fp

w

.Fs Fp Fs

Fs

= maFnet

= −w,Fnet Fs

−w = ma.Fs

Fs

= ma +w,Fs

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://phys.libretexts.org/@go/page/26509?pdf


4.10.6 https://phys.libretexts.org/@go/page/26509

or, because , simply

No assumptions were made about the acceleration, and so this solution should be valid for a variety of accelerations in
addition to the ones in this exercise.

Solution for (a)

In this part of the problem, , so that

yielding

Discussion for (a)

This is about 185 lb. What would the scale have read if he were stationary? Since his acceleration would be zero, the
force of the scale would be equal to his weight:

So, the scale reading in the elevator is greater than his 735-N (165 lb) weight. This means that the scale is pushing up on
the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the
acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus
slowly accelerating elevators.

Solution for (b)

Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight?
For any constant velocity—up, down, or stationary—acceleration is zero because  and .

Thus,

Now

which gives

Discussion for (b)

The scale reading is 735 N, which equals the person’s weight. This will be the case whenever the elevator has a constant
velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator
accelerates downward,  is negative, and the scale reading is less than the weight of the person, until a constant downward velocity
is reached, at which time the scale reading again becomes equal to the person’s weight. If the elevator is in free-fall and
accelerating downward at , then the scale reading will be zero and the person will appear to be weightless.
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Integrating Concepts: Newton’s Laws of Motion and Kinematics
Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical
principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to
solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier
chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the following
steps to approach the problem:

Problem-Solving Strategy

Step 1. Identify which physical principles are involved. Listing the givens and the quantities to be calculated will allow you to
identify the principles involved.

Step 2. Solve the problem using strategies outlined in the text. If these are available for the specific topic, you should refer to them.
You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates how
these strategies are applied to an integrated concept problem.

A soccer player starts from rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What was his average
acceleration? (b) What average force did he exert backward on the ground to achieve this acceleration? The player’s mass is
70.0 kg, and air resistance is negligible.

Strategy

1. To solve an integrated concept problem, we must first identify the physical principles involved and identify the
chapters in which they are found. Part (a) of this example considers acceleration along a straight line. This is a topic
of kinematics. Part (b) deals with force, a topic of dynamics found in this chapter.

2. The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied.
These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so forth.

Solution for (a)

We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is .
We are given the elapsed time, and so . The unknown is acceleration, which can be found from its
definition:

Substituting the known values yields

Discussion for (a)

This is an attainable acceleration for an athlete in good condition.

Solution for (b)

Here we are asked to find the average force the player exerts backward to achieve this forward acceleration. Neglecting
air resistance, this would be equal in magnitude to the net external force on the player, since this force causes his
acceleration. Since we now know the player’s acceleration and are given his mass, we can use Newton’s second law to
find the force exerted. That is,

Substituting the known values of  and  gives

Discussion for (b)

This is about 50 pounds, a reasonable average force.

Example : What Force Must a Soccer Player Exert to Reach Top Speed?4.10.4
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This worked example illustrates how to apply problem-solving strategies to situations that include topics from different
chapters. The first step is to identify the physical principles involved in the problem. The second step is to solve for the
unknown using familiar problem-solving strategies. These strategies are found throughout the text, and many worked
examples show how to use them for single topics. You will find these techniques for integrated concept problems useful
in applications of physics outside of a physics course, such as in your profession, in other science disciplines, and in
everyday life. The following problems will build your skills in the broad application of physical principles.

Summary
Newton’s laws of motion can be applied in numerous situations to solve problems of motion.
Some problems will contain multiple force vectors acting in different directions on an object. Be sure to draw diagrams, resolve
all force vectors into horizontal and vertical components, and draw a free-body diagram. Always analyze the direction in which
an object accelerates so that you can determine whether  or .
The normal force on an object is not always equal in magnitude to the weight of the object. If an object is accelerating, the
normal force will be less than or greater than the weight of the object. Also, if the object is on an inclined plane, the normal
force will always be less than the full weight of the object.
Some problems will contain various physical quantities, such as forces, acceleration, velocity, or position. You can apply
concepts from kinematics and dynamics in order to solve these problems of motion.
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