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20.2: Resonance near Double the Natural Frequency
From the above argument, the place to look for resonance is close to . Landau takes

and, bearing in mind that we’re looking for oscillations close to the natural frequency, puts in

with  slowly varying.

It’s important to realize that this is an approximate approach. It neglects nonresonant frequencies which must be present in small amounts,
for example

and the  term is thrown away.

And, since the assumption is that  are slowly varying, their second derivatives are dropped too, leaving just

This must equal

Keeping only the resonant terms, we take  and 

so this expression becomes

The equation becomes:

The zeroth-order terms cancel between the two sides, leaving

Collecting the terms in 
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The sine and cosine can’t cancel each other, so the two coefficients must both be identically zero. This gives two first order differential
equations for the functions , and we look for exponentially increasing functions, proportional to ,
which will be solutions provided

The amplitude growth rate is therefore

Parametric resonance will take place if  is real, that is, if

a band of width 
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