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22.6: Frequency Multiples
The above analysis is for frequencies not very far from . But nonlinear terms can cause resonance to occur at frequencies which

are rational multiples of . Landau shows that a small  in the potential (so an additional force  in the equation of

motion) can generate a resonance near . We’ve only considered a quartic addition to the potential, ,

we can show that gives a resonance near , and presumably this is the small bump near the beginning of the curves above

for large driving strength.

Then, for , the second term, , will have a resonant response, although it is

proportional to the (small) amplitude cubed. Similar arguments work for other fractional frequencies.
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 We have  +2λ + x = (f/m) cos γt −βẍ ẋ ω2
0 x3

 We'll write x = + +…x(0) x(1)

 Let's define   by x(0)

+2λ + = (f/m) cos γtẍ(0) ẋ(0) ω2
0x(0) (22.6.1)

 So  = b cos(γt +δ).  Then x(0)
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