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16.4: Analyzing Inverse-Square Repulsive Scattering- Kepler Again
To make further progress, we must calculate , or equivalently : what is the angle of scattering, the angle between the
outgoing velocity and the ingoing velocity, for a given impact parameter?  will of course also depend on the strength of the
repulsion, and the ingoing particle energy.

Recall our equation for Kepler orbits:

Let’s now switch from gravitational scattering with an attractive force  to an electrical repulsive force between two

charges , force strength , say. Since this is repulsive, the sign will change in the radial acceleration

equation,

Also, we want the scattering parameterized in terms of the impact parameter b and the incoming speed , so putting 
this is

So just as with the Kepler problem, the orbit is given by

From the lecture on Orbital Mathematics, the polar equation for the left hyperbola branch relative to the external (right) focus is

this is a branch symmetric about the -axis:

Figure 

But we want the incoming branch to be parallel to the axis, which we do by suitable choice of . In other words, we rotate the
hyperbola clockwise through half the angle between its asymptotes, keeping the scattering center (right-hand focus) fixed.

From the lecture on orbital mathematics (last page), the perpendicular distance from the focus to the asymptote is the hyperbola
parameter . Presumably, this is why we use  for the impact parameter. Hence the particle goes in a hyperbolic path with
parameters . This is not enough information to fix the path uniquely: we’ve only fed in the angular
momentum  not the energy, so this is a family of paths having different impact parameters but the same angular momentum .

We can, however, fix the path uniquely by equating the leading order correction to the incoming zeroth order straight path: the
particle is coming in parallel to the -axis far away to the left, perpendicular distance  from the axis, that is, from the line .
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= u = − +C cos(θ− ) = −κ+C cos(θ− ),  say. 
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So, going back to that pre-scattering time,

Figure 

and in this small  limit,

Matching the zeroth order and the first order terms

eliminates  and fixes the angle , which is the angle the hyperbola had to be rotated through to align the asymptote with the
negative -axis, and therefore half the angle between the asymptotes, which would be  minus the angle of scattering  (see the
earlier diagram),

So this is the scattering angle in terms of the impact parameter , that is, in the diagram above

Equivalently,

and the incremental cross sectional area

This is Rutherford’s formula: the incremental cross section for scattering into an incremental solid angle, the differential cross
section
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u → 0, π−θ → b/r = bu (16.4.6)
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C cos(π− ) = κ, u = bCu sin(π− )θ0 θ0 (16.4.8)
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χ = π−2 bκ = 2 bκcot−1 tan−1 (16.4.10)
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 (Recall k =  in MKS units. )
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