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2.3: General Method for the Minimization Problem
To emphasize the generality of the method, we’ll just write

Then under any infinitesimal variation  (equal to zero at the fixed endpoints)

To make further progress, we write , then integrate the second term by parts, remembering  at
the endpoints, to get

Since this is true for any infinitesimal variation, we can choose a variation which is only nonzero near one point in the interval, and
deduce that

This general result is called the Euler-Lagrange equation. It’s very important—you’ll be seeing it again.
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