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19.8: The Discrete Fourier Transform
It’s worth looking over this one more time from a slightly different perspective. In finding the energy of an oscillating continuous
string, a standard approach is to analyze the motion of the string in terms of an infinite Fourier series of shorter and shorter
wavelength oscillations, find the energy in each of these modes, and add to find the total energy. We’ll apply the same approach
here—but with a difference. Since the waves only have meaning in our chain at a discrete set of uniformly spaced points, the set of
waves needed to fully account for all possible motions is finite. In fact, it’s the same as the number of points. As we’ve discussed
above, a wave with a higher wavenumber gives an identical set of displacements of the atoms as some lower one. So a complete
Fourier analysis of the displacements at these  equally spaces points only needs linear combinations of  waves. This is the
Discrete Fourier Transform (DFT).

Writing the complex (amplitude and phase) coefficient of the  frequency eigenstate , the position of the  atom in a
superposition of such waves (with the standard normalization convention)

Given the positions  of the atoms, the amplitude coefficients can be found using the inverse mapping:

then using

gives , establishing that we have the correct form for the inverse transformation.

The instantaneous configuration of the system is completely defined by the set  and equally by the set 
. All possible particle displacements at the  equally spaced sites can be mapped into  amplitudes of the 

distinct waves (eigenvectors).

(This DFT mapping is widely used in the time domain in signal processing: the signal amplitude is sampled, say every millisecond,
then the data can be DFT’d to give the wave components down to a minimum frequency around one millisecond. A good quality
voice signal would need a shorter time interval, maybe 0.2 milliseconds.)

Now, from

and again using

we find

Back to our chain: for a physical configuration of the atoms, all the  must be real, so from
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we

see that . (This reduces the number of apparent degrees of freedom in the X representation to the correct N. 
, etc., and if there is a middle , it must be real.)

The kinetic energy of the chain particles,

We can find potential energy similarly:

and using the same routine as before,

Finally,

Putting all this together, the Lagrangian can be written in terms of the transformed variables:

The equation of motion is then

with eigenvalues

This is of course the same result we found earlier, but it is perhaps worth seeing how it comes from the (mathematically equivalent)
DFT analysis.
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