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The course begins with an introduction to the Calculus of Variations, and Hamilton's Principle. Next we go to material covered in
the last chapter of Landau, the Hamilton-Jacobi formalism that makes clear the intimate connection between classical mechanics
and quantum mechanics. (The students are taking quantum simultaneously, so this works well in helping appreciation of classical
mechanics, for example how least action is a limit of the sum over paths, and how classical adiabatic invariants are immediately
understandable from a quantum perspective.)

The rest of the course follows the sequence of the book, beginning with Keplerian orbits, which we cover in more detail than
Landau. (Perhaps his students were already familiar with this material?)

Then on to small oscillations, but including some interesting nonlinear systems, for example parametric resonance, and the
ponderomotive force. Landau treats these analytically, using perturbation theory-type approximations. The last part of the course
covers rotational motion: free body, tops, nutation, Coriolis, etc.

We have added some material using the direct Newtonian vectorial approach to Newtonian mechanics (as opposed to the
Lagrangian formulation),following Milne. In discussing orbits, we derive Hamilton's equation, a very quick route to the Runge-
Lenz vector. At the end of the course, we give Milne's elegant analysis of a ball rolling on a tilted rotating plane. The surprising
cycloidal path can be derived in a few lines from Newton's equations. (It's tough to do this nonholonomic problem using
Lagrangian methods.)
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1.1: The Catenary
What is the shape of a chain of small links hanging under gravity from two fixed points (one not directly below the other)? The
word catenary (Latin for chain) was coined as a description for this curve by none other than Thomas Jefferson! Despite the image
the word brings to mind of a chain of links, the word catenary is actually defined as the curve the chain approaches in the limit of
taking smaller and smaller links, keeping the length of the chain constant. In other words, it describes a hanging rope. A real chain
of identical rigid links is then a sort of discretization of the catenary.

We’re going to analyze this problem as an introduction to the calculus of variations. First, we’re going to solve it by a method you
already know and love—just (mentally) adding up the forces on one segment of the rope. The tension is pulling at both ends, the
segment’s weight acts downwards. Since it’s at rest, these three forces must add to zero. We’ll show that writing down the balance
of forces equation gives sufficient information to find the curve of the chain  meaning height  above ground as a function of
horizontal position . So we understand the mechanics of the problem.

But next we take a completely different approach: we assume the shape of the chain is described by an arbitrary function ,
required to go between the two fixed endpoints and to have total length equal to that of the (assumed inextensible) rope, and we
work out its gravitational energy. We know, of course, that the true curve the rope settles into will be the one of minimum potential
energy. The rope is at the bottom of a multidimensional potential well. This means that any slight variation from this minimum
shape will only affect the potential energy to second order, in precise analogy with a slight change in position of a particle at the
minimum point of a potential energy well.

So the technique, called the Calculus of Variations, is to find where the derivative of the potential energy with respect to
variations of this curve becomes zero—that will be the minimum energy configuration we’re looking for. Conceptually, this is a lot
more complicated than ordinary differentiation with respect to one, or a few, variables. We’re varying a whole function. This is why
it’s was worth solving the problem using traditional statics to begin with—it reassures us that the variational approach works.

A Cambridge mathematician, William Whewell, famously stated in unconscious rhyme,

And so no force, however great,

can pull a string, however fine,

into a horizontal line,

that shall be absolutely straight.

(Trivial fact: Whewell had a way with words—he even invented some of the words you use every day, for example the words
scientist, physicist, ion, cathode, anode, dielectric, and lots more.)

This page titled 1.1: The Catenary is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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1.2: A Tight String
Let’s take the hint and look first at a piece of uniform string at rest under high tension between two points at the same height, so
that it’s almost horizontal.

Each little bit of the string is in static equilibrium, so the forces on it balance. First, its weight acting downwards is , 
being the uniform mass per unit length. Second, the tension forces at the two ends don’t quite balance because of the small change
in slope.

Representing the string configuration as a curve , the balance of forces gives

so , taking the lowest point of the string as the origin.

So the curve is a parabola (but keep reading!).

This page titled 1.2: A Tight String is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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1.3: Not So Tight
In fact, there are hidden approximations in the above analysis—for one thing, we’ve assumed that the length of string between 

, but it’s really ds, where the distance parameter s is measured along the string. Second, we took the tension to
be nonvarying. That’s a pretty good approximation for a string that’s almost horizontal, but think about a string a meter long
hanging between two points 5 cm apart, and it becomes obvious that both these approximations are only good for a near-horizontal
string.

Obviously, with the string nearly vertical, the tension is balancing the weight of string below it, and must be close to zero at the
bottom, increasing approximately linearly with height. Not to mention, it’s clear that this is no parabola, the two sides are very
close to parallel near the top. The constant  approximation is evidently no good—but Whewell solved this problem exactly, back
in the 1830’s.

Figure 

What he did was to work with the static equilibrium equation for a finite length of string, one end at the bottom.

If the tension at the bottom is  and at a distance s away, measured along the string, the tension is , and the string’s angle to the
horizontal there is  (see diagram), then the equilibrium balance of force components is

from which the string slope

where we have introduced the constant , which sets the length scale of the problem.

So we now have an equation for the catenary,  in terms of s, distance along the string. What we want, though is an equation for
vertical position  in terms of horizontal position , the function  for the chain.

Now we’ve shown the slope is

x and x+dx is dx

T
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Figure 

and the infinitesimals are related by , so putting these equations together

that is,

Taking the square root and rearranging

which can be integrated immediately with the substitution

to give just

which integrates trivially to  a constant of integration, or

choosing the origin 

But of course what we want is the curve shape . We need to eliminate  in the favor of . That is, we need to write 
 as a function of , then substitute 

Recall one of our first equations was for the slope , and putting that together with  gives

integrating to

This is the desired equation for the catenary curve 

We’ve dropped the possible constant of integration, which is just the vertical positioning of the origin.

Question: is this the same as the curve of the chain in a suspension bridge?
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Figure : Golden Gate Bridge

(Notice the vertical ropes are uniformly spaced horizontally.)

This page titled 1.3: Not So Tight is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

1.3.3

https://libretexts.org/
https://phys.libretexts.org/@go/page/29451?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/01%3A_Introductory_Statics_-_the_Catenary_and_the_Arch/1.03%3A_Not_So_Tight
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/01%3A_Introductory_Statics_-_the_Catenary_and_the_Arch/1.03%3A_Not_So_Tight?no-cache
http://galileo.phys.virginia.edu/~mf1i/


1.4.1 https://phys.libretexts.org/@go/page/29452

1.4: Ideal Arches
Now let’s consider some upside-down curves, arches. Start with a Roman arch, an upside-down U.

Figure 

Typically, Roman arches are found in sets like this, but let’s consider one free standing arch. Assume it’s made of blocks having the
same cross-section throughout. What is the force between neighboring blocks? We’ll do an upside-down version of the chain force
analysis we just did.

Equating the pressure forces on the arch segment colored dark in the figure, we see pressure on the lowest block in the segment
must have a horizontal component, to balance the forced at the top point, so the cement between blocks is under shear stress, or, for
no cement, there’s a strong sideways static frictional force. (So a series of arches, as shown in the photograph above, support each
other with horizontal pressure.)

Figure : Pressure and weight forces on a segment of a Roman arch

A single Roman arch like this is therefore not an ideal design—it could fall apart sideways.

Let’s define an ideal arch as one that doesn’t have a tendency to fall apart sideways, outward or inward. This means no shear
(sideways) stress between blocks, and that means the pressure force between blocks in contact is a normal force—it acts along the
line of the arch. That should sound familiar! For a hanging string, obviously the tension acts along the line of the string.

Adding to our ideal arch definition that the blocks have the same mass per unit length along the entire arch, you can perhaps see
that the static force balance for the arch is identical to that for the uniform hanging string, except that everything’s reversed—the
tension is now pressure, the whole thing is upside down.

Nevertheless, apart from the signs, the equations are mathematically identical, and the ideal arch shape is a catenary. Of course,
some actual constructed arches, like the famous one in St. Louis, do not have uniform mass per unit length (It’s thicker at the
bottom) so the curve deviates somewhat from the ideal arch catenary.
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Figure 

Here’s a picture of catenary arches—these arches are in Barcelona, in a house designed by the architect Gaudi.

Figure : Gaudi's string model for the Sagreda Famila Church

In fact, Gaudi designed a church in Barcelona using a web of strings and weights to find correct shapes for the arches—he placed a
large horizontal mirror above the strings, so looking in the mirror he could see what the actual right-way-up building would look
like!—The lower image shows how he did it. (This model is in the church.)
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2: The Calculus of Variations
We’ve seen how Whewell solved the problem of the equilibrium shape of chain hanging between two places, by finding how the
forces on a length of chain, the tension at the two ends and its weight, balanced. We’re now going to look at a completely different
approach: the equilibrium configuration is an energy minimum, so small deviations from it can only make second-order changes in
the gravitational potential energy. Here we’ll find how analyzing that leads to a differential equation for the curve, and how the
technique developed can be successfully applied of a vast array of problems.

2.1: The Catenary and the Soap Film
2.2: A Soap Film Between Two Horizontal Rings- the Euler-Lagrange Equation
2.3: General Method for the Minimization Problem
2.4: An Important First Integral of the Euler-Lagrange Equation
2.5: Fastest Curve for Given Horizontal Distance
2.6: The Perfect Pendulum
2.7: Calculus of Variations with Many Variables
2.8: Multivariable First Integral
2.9: The Soap Film and the Chain
2.10: Lagrange Multipliers
2.11: Lagrange Multiplier for the Chain
2.12: The Brachistochrone
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2.1: The Catenary and the Soap Film
The catenary is the curved configuration  of a uniform inextensible rope with two fixed endpoints at rest in a constant
gravitational field. That is to say, it is the curve that minimizes the gravitational potential energy

where we have taken the rope density and gravity both equal to unity for mathematical convenience. Usually in calculus we
minimize a function with respect to a single variable, or several variables. Here the potential energy is a function of a function,
equivalent to an infinite number of variables, and our problem is to minimize it with respect to arbitrary small variations of that
function. In other words, if we nudge the chain somewhere, and its motion is damped by air or internal friction, it will settle down
again in the catenary configuration.

Formally speaking, there will be no change in that potential energy to leading order if we make an infinitesimal change in the
curve,  (subject of course to keeping the length the same, that is .

This method of solving the problem is called the calculus of variations: in ordinary calculus, we make an infinitesimal change in a
variable, and compute the corresponding change in a function, and if it’s zero to leading order in the small change, we’re at an
extreme value.

(Nitpicking footnote: Actually this assumes the second order term is nonzero—what about  near the origin? But such situations
are infrequent in the problems we’re likely to encounter.)

The difference here is that the potential energy of the hanging change isn’t just a function of a variable, or even of a number of
variables—it’s a function of a function, it depends on the position of every point on the chain (in the limit of infinitely small links,
that is, or equivalently a continuous rope).

So, we’re looking for the configuration where the potential energy doesn’t change to first order for any infinitesimal change in the
curve of its position, subject to fixed endpoints, and a fixed chain length.

As a warm up, we’ll consider a simpler—but closely related—problem.
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2.2: A Soap Film Between Two Horizontal Rings- the Euler-Lagrange Equation

Figure : Photograph of a soap film between two horizontal rings

This problem is very similar to the catenary: surface tension will pull the soap film to the minimum possible total area compatible
with the fixed boundaries (and neglecting gravity, which is a small effect).

(Interestingly, this problem is also closely related to string theory: as a closed string propagates, its path traces out as “world sheet”
and the string dynamics is determined by that sheet having minimal area.)

Figure 

Taking the axis of rotational symmetry to be the x -axis, and the radius , we need to find the function  that minimizes the
total area (  is measured along the curve of the surface). Think of the soap film as a sequence of rings or collars, of radius , and
therefore area The total area is given by integrating, adding all these incremental collars,

subject to given values of  at the two ends. (You might be thinking at this point: isn’t this identical to the catenary equation? The
answer is yes, but the chain has an additional requirement: it has a fixed length. The soap film is not constrained in that way, it can
stretch or contract to minimize the total area, so this is a different problem!)

That is, we want  to first order, if we make a change . Of course, this also means 
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∫
x2

x1

1 +y′2
− −−−−−

√ (2.2.1)

y

δJ = 0 y(x) → y(x) +δy(x)

(x) → (x) +δ (x) where δ = δ(dy/dx) = (d/dx)δyy′ y′ y′ y′
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2.3: General Method for the Minimization Problem
To emphasize the generality of the method, we’ll just write

Then under any infinitesimal variation  (equal to zero at the fixed endpoints)

To make further progress, we write , then integrate the second term by parts, remembering  at
the endpoints, to get

Since this is true for any infinitesimal variation, we can choose a variation which is only nonzero near one point in the interval, and
deduce that

This general result is called the Euler-Lagrange equation. It’s very important—you’ll be seeing it again.
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δJ[y] = [ δy(x) + δ (x)]dx = 0∫
x2

x1

∂f (y, )y′

∂y

∂f (y, )y′

∂y′
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δ = δ(dy/dx) = (d/dx)δyy′ δy = 0

δJ[y] = [ − ( )] δy(x)dx = 0∫
x2

x1

∂f (y, )y′

∂y

d

dx

∂f (y, )y′

∂y′
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− ( ) = 0
∂f (y, )y′

∂y

d

dx

∂f (y, )y′

∂y′
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2.4: An Important First Integral of the Euler-Lagrange Equation
It turns out that, since the function \(f \) does not contain x explicitly, there is a simple first integral of this equation. Multiplying
throughout by 

Since  doesn’t depend explicitly on , we have

and using this to replace  in the preceding equation gives

then multiplying by − (to match the equation as usually written) we have

giving a first integral

For the soap film between two rings problem,

so the Euler-Lagrange equation is

and has first integral

We’ll write

with a the constant of integration, which will depend on the endpoints.

This is a first-order differential equation, and can be solved.

Rearranging,

or

The standard substitution here is  from which

= dy/dxy′

− ( ) = 0
∂f (y, )y′

∂y

dy

dx

d

dx

∂f (y, )y′

∂y′
y′ (2.4.1)

f x

= +
df

dx

∂f

∂y

dy

dx

∂f

∂y′

dy′

dx
(2.4.2)

∂f (y, )y′

∂y

dy

dx

− − ( ) = 0
df

dx

∂f

∂y′

dy′

dx

d

dx

∂f (y, )y′

∂y′
y′ (2.4.3)

( −f) = 0
d

dx
y′ ∂f

∂y′
(2.4.4)

−f = constant.y′ ∂f

∂y′
(2.4.5)

f (y, ) = yy′ 1 +y′2
− −−−−−

√ (2.4.6)

− = 01 +y′2
− −−−−−

√
d

dx

yy′

1 +y′2
− −−−−−

√
(2.4.7)

−f = −y = − = constant.y′ ∂f

∂y′

yy′2

1 +y′2
− −−−−−

√
1 +y′2
− −−−−−

√
y

1 +y′2
− −−−−−

√
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y
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√
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=
dy
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−1( )

y

a

2
− −−−−−−−

√ (2.4.10)

dx =
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√
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y = a coshξ
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Here  is the second constant of integration, the fixed endpoints determine .

This page titled 2.4: An Important First Integral of the Euler-Lagrange Equation is shared under a not declared license and was authored, remixed,
and/or curated by Michael Fowler.

y = a cosh( )
x−b

a
(2.4.12)

b a, b
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2.5: Fastest Curve for Given Horizontal Distance
Suppose we want to find the curve a bead slides down to minimize the time from the origin to some specified horizontal
displacement X, but we don’t care what vertical drop that entails.

Recall how we derived the equation for the curve:

At the minimum, under any infinitesimal variation .

Writing , and integrating the second term by parts,

In the earlier treatment, both endpoints were fixed,  so we dropped that final term.

However, we are now trying to find the fastest time for a given horizontal distance, so the final vertical distance is an adjustable
parameter: 

As before, since  or arbitrary  which is only nonzero near some point not at the end, so
we must still have

However, we must also have , to first order for arbitrary infinitesimal , (imagine a variation 

only nonzero near the endpoint), this can only be true if 

For the brachistochrone,

so , the curve is horizontal at the end 

So the curve that delivers the bead a given horizontal distance the fastest is the half-cycloid (inverted) flat at the end. It’s easy to
see this fixes the curve uniquely: think of the curve as generated by a rolling wheel, one half-turn of the wheel takes the top point to
the bottom in distance 

Exercise: how low does it go?
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2.6: The Perfect Pendulum

Figure 

Around the time of Newton, the best timekeepers were pendulum clocks—but the time of oscillation of a simple pendulum depends
on its amplitude, although of course the correction is small for small amplitude. The pendulum takes longer for larger amplitude.
This can be corrected for by having the string constrained between enclosing surfaces to steepen the pendulum’s path for larger
amplitudes, and thereby speed it up.

It turns out (and was proved geometrically by Newton) that the ideal pendulum path is a cycloid. Thinking in terms of the
equivalent bead on a wire problem, with a symmetric cycloid replacing the circular arc of an ordinary pendulum, if the bead is let
go from rest at any point on the wire, it will reach the center in the same time as from any other point. So a clock with a pendulum
constrained to such a path will keep very good time, and not be sensitive to the amplitude of swing.

The proof involves similar integrals and tricks to those used above:

and with the parameterization above, , the integral becomes

As before, we can now write , etc., to find that  is in fact independent of 

This is left as an exercise for the reader. (Hint: you may find  to be useful. Can you prove this
integral is correct? Why doesn’t it depend on a,b?)

Exercise: As you well know, a simple harmonic oscillator, a mass on a linear spring with restoring force , has a period
independent of amplitude. Does this mean that a particle sliding on a cycloid is equivalent to a simple harmonic oscillator? Find out
by expressing the motion as an equation  where the distance variable from the origin is s measured along the curve.

This page titled 2.6: The Perfect Pendulum is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

2.6.1

T ( ) = ∫ = ∫ dxy0
ds

2g (y− )y0
− −−−−−−−−

√

1 +y′2
− −−−−−

√

2g (y− )y0
− −−−−−−−−

√
(2.6.1)

= sinθ/(1 −cosθ)y′

dθ
a

g

−−
√ ∫

π

θ0

1 −cosθ

cos −cosθθ0

− −−−−−−−−−−

√ (2.6.2)

1 −cosθ = 2 (θ/2)sin2 T ( )y0 y0

dx/ = π∫ b

a (x−a)(b−x)
− −−−−−−−−−−√

−kx

F = ma

https://libretexts.org/
https://phys.libretexts.org/@go/page/29528?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/02%3A_The_Calculus_of_Variations/2.06%3A_The_Perfect_Pendulum
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/02%3A_The_Calculus_of_Variations/2.06%3A_The_Perfect_Pendulum
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/02%3A_The_Calculus_of_Variations/2.06%3A_The_Perfect_Pendulum?no-cache
http://galileo.phys.virginia.edu/~mf1i/


2.7.1 https://phys.libretexts.org/@go/page/29529

2.7: Calculus of Variations with Many Variables
We’ve found the equations defining the curve  along which the integral

has a stationary value, and we’ve seen how it works in some two-dimensional curve examples.

But most dynamical systems are parameterized by more than one variable, so we need to know how to go from a curve in  to
one in a space , and we need to minimize (say)

In fact, the generalization is straightforward: the path deviation simply becomes a vector,

Then under any infinitesimal variation

Just as before, we take the variation zero at the endpoints, and integrate by parts to get now n separate equations for the stationary
path:
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2.8: Multivariable First Integral
Following and generalizing the one-variable derivation, multiplying the above equations one by one by the corresponding 

 we have the n equations

Since  doesn’t depend explicitly on , we have

and just as for the one-variable case, these equations give

and the (important!) first integral 
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2.9: The Soap Film and the Chain
We see that the soap film profile function and the hanging chain have identical analytic form. This is not too surprising, because the
potential energy of the hanging chain in simplified units is just

the same as the area function for the soap film. But there’s an important physical difference: the chain has a fixed length. The soap
film is free to adjust its “length” to minimize the total area. The chain isn’t—it’s constrained. How do we deal with that?
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2.10: Lagrange Multipliers
The problem of finding minima (or maxima) of a function subject to constraints was first solved by Lagrange. A simple example
will suffice to show the method.

Imagine we have some smooth curve in the  plane that does not pass through the origin, and we want to find the point on the
curve that is its closest approach to the origin. A standard illustration is to picture a winding road through a bowl shaped valley, and
ask for the low point on the road. (We’ll also assume that  determines  uniquely, the road doesn’t double back, etc. If it does,
the method below would give a series of locally closest points to the origin, we would need to go through them one by one to find
the globally closest point.)

Figure : Road through valley: deep green is valley bottom, hills darken with height

Let’s write the curve, the road,  (the wiggly red line in the figure below).

To find the closest approach point algebraically, we need to minimize  (square of distance to origin) subject to
the constraint .

In the figure, we’ve drawn curves

for a range of values of a (the circles centered at the origin). We need to find the point of intersection of  with the
smallest circle it intersects—and it’s clear from the figure that it must touch that circle (if it crosses, it will necessarily get closer to
the origin).

Therefore, at that point, the curves  and  are parallel.

Therefore the normals to the curves are also parallel:

(Note: yes, those are the directions of the normals— for an infinitesimal displacement along the curve 
, so the vector  is perpendicular to . This is

also analogous to the electric field  being perpendicular to the equipotential .

The constant  introduced here is called a Lagrange multiplier. It’s just the ratio of the lengths of the two normal vectors (of
course, “normal” here means the vectors are perpendicular to the curves, they are not normalized to unit length!) We can find  in
terms of ,  but at this point we don’t know their values.

The equations determining the closest approach to the origin can now be written:

(x, y)

\x \y

2.10.1

g(x, y) = 0

f(x, y) = +x2 y2

g(x, y) = 0

f(x, y) = + =x2 y2 a2 (2.10.1)

g(x, y) = 0

g(x, y) = 0 f(x, y) = a2
min

(∂f/∂x, ∂f/∂y) = λ(∂g/∂x, ∂g/∂y) (2.10.2)

f(x, y) =  constant , 0 = df = (∂f/∂x)dx+(∂f/∂y)dy (∂f/∂x, ∂f/∂y) (dx, dy)

= − φE ⃗  ∇⃗  φ(x, y) =  constant. )

λ

λ

x y
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(The third equation is just , meaning we’re on the road.)

We have transformed a constrained minimization problem in two dimensions to an unconstrained minimization problem in three
dimensions! The first two equations can be solved to find  and the ratio  the third equation then gives ,  separately.

Exercise for the reader: Work through this for  (There are two solutions because the curve  is a
hyperbola with two branches.)

Lagrange multipliers are widely used in economics, and other useful subjects such as traffic optimization.

This page titled 2.10: Lagrange Multipliers is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

(f −λg) = 0
∂

∂x

(f −λg) = 0
∂

∂y

(f −λg) = 0
∂

∂λ

(2.10.3)

g ( , ) = 0xmin ymin

λ x/y x y

g(x, y) = −2xy− −1x2 y2 g = 0
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2.11: Lagrange Multiplier for the Chain
The catenary is generated by minimizing the potential energy of the hanging chain given above,

but now subject to the constraint of fixed chain length, 

The Lagrange multiplier method generalizes in a straightforward way from variables to variable functions. In the curve example
above, we minimized  subject to the constraint . What we need to do now is minimize 

For the minimum curve  and the correct (so far unknown) value of  an arbitrary infinitesimal variation of the curve will give
zero first-order change in , we write this as

Remarkably, the effect of the constraint is to give a simple adjustable parameter, the origin in the y direction, so that we can satisfy
the endpoint and length requirements.

The solution to the equation follows exactly the route followed for the soap film, leading to the first integral

with  a constant of integration, which will depend on the endpoints.

Rearranging,

or

The standard substitution here is , we find

Here  is the second constant of integration, the fixed endpoints and length give . In general, the equations must be solved
numerically. To get some feel for why this will always work, note that changing  varies how rapidly the cosh curve climbs from
its low point of , increasing  “fattens” the curve, then by varying  we can move that lowest point to the
lowest point of the chain (or rather of the catenary, since it might be outside the range covered by the physical chain).

Algebraically, we know the curve can be written as , although at this stage we don’t know the constant a or where
the origin is. What we do know is the length of the chain, and the horizontal and vertical distances 
between the fixed endpoints. It’s straightforward to calculate that the length of the chain is , and
the vertical distance v between the endpoints is 

. All terms in this equation are known
except a, which can therefore be found numerically. (This is in Wikipedia, among other places.)

Exercise: try applying this reasoning to finding a for the soap film minimization problem. In that case, we know 
, there is no length conservation requirement, to find a we must eliminate the unknown b from the equations 

. This is not difficult, but, in contrast to the chain, does not give a in terms of 

J[y(x)] = ∫ yds = ∫ y dx(1 + )y′2

1

2 (2.11.1)

L[y(x)] = ∫ ds = ℓ

f(x, y) = +x2 y2 g(x, y) = 0

J[y(x)] subject to the constraint L[y(x)] −ℓ = 0

y(x) λ

J −λL

δ{J[y(x)] −λL[y(x)]} = δ{ (y−λ)ds} = δ{ (y−λ) dx} = 0∫
x2

x1

∫
x2

x1

1 +y′2
− −−−−

√ (2.11.2)

= a
y−λ

(1 + )y′2

1

2

(2.11.3)

a

=
dy

dx
−1( )

y−λ

a

2
− −−−−−−−−−−−

√ (2.11.4)

dx =
ady

(y−λ −)2 a2− −−−−−−−−−−
√

(2.11.5)

y−λ = c coshξ

y = λ+a cosh( )
x−b

a
(2.11.6)

b λ, a, b

a

(x, y) = (b,λ+a) a b,λ

y = a cosh(x/a)

( − )  and  ( − )x2 x1 y2 y1

ℓ = a sinh( /a) −a sinh( /a)x2 x1

v= a cosh( /a) −a cosh( /a) from which  − = 4 [( − ) /2a]x2 x1 ℓ2 v2 a2 sinh2 x2 x1

( , )  and  ( , )x1 y1 x2 y2

= a cosh(( −b) /a), = a cosh(( −b) /a)y1 x1 y2 x2
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, instead  appear separately. Explain, in terms of the physics of the two systems, why this is so different from the
chain.

This page titled 2.11: Lagrange Multiplier for the Chain is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.
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2.12: The Brachistochrone
Suppose you have two points, A and B, B is below A, but not directly below. You have some smooth, let’s say frictionless, wire,
and a bead that slides on the wire. The problem is to curve the wire from A down to B in such a way that the bead makes the trip as
quickly as possible.

This optimal curve is called the “brachistochrone”, which is just the Greek for “shortest time”.

But what, exactly, is this curve, that is, what is  in the obvious notation?

This was the challenge problem posed by Johann Bernoulli to the mathematicians of Europe in a Journal run by Leibniz in June
1696. Isaac Newton was working fulltime running the Royal Mint, recoining England, and hanging counterfeiters. Nevertheless,
ending a full day’s work at 4 pm, and finding the problem delivered to him, he solved it by 4am the next morning, and sent the
solution anonymously to Bernoulli. Bernoulli remarked of the anonymous solution “I recognize the lion by his clawmark”.

This was the beginning of the Calculus of Variations.

Here’s how to solve the problem: we’ll take the starting point A to be the origin, and for convenience measure the y -axis positive
downwards. This means the velocity at any point on the path is given by

So measuring length along the path as  as usual, the time is given by

Notice that this has the same form as the catenary equation, the only difference being that  is replaced by  the integrand
does not depend on , so we have the first integral:

That is,

so

 being a constant of integration (the 2 proves convenient).

Recalling that the curve starts at the origin A, it must begin by going vertically downward, since . For small enough , we can
approximate by ignoring the 1, so . The curve must however become horizontal if it gets as far
down as , and it cannot go below that level.

Rearranging in order to integrate,

This is not a very appealing integrand. It looks a little nicer on writing 

y(x)

m = mgy, v=
1

2
v2 2gy

−−−
√ (2.12.1)

ds

T = = =∫
B

A

ds

v
∫

B

A

ds

2gy
−−−

√
∫

X

0

dx1 +y′2− −−−−−
√

2gy
−−−

√
(2.12.2)

y 1/ 2gy
−−−

√
x

−f =  constant , f =y′ ∂f

∂y′

1 +y′2

2gy

− −−−−−

√ (2.12.3)

− = − =  constant 
y′2

(1 + ) 2gyy′2
− −−−−−−−−−

√

1 +y′2

2gy

− −−−−−

√
1

(1 + ) 2gyy′2
− −−−−−−−−−

√
(2.12.4)

+1 =( )
dy

dx

2 2a

y
(2.12.5)

2a

y = 0 y

dx ≅ dy, x ≅2/2a
−−

√ y√ 2a
−−

√ 3y
3/2

y = 2a

dx = = dy
dy

−1
2a

y

− −−−−−
√

y

2a−y

− −−−−−
√ (2.12.6)

y = a−az

dx = −a dz
1 −z

1 +z

− −−−−
√ (2.12.7)
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Now what? We’d prefer for the expression inside the square root to be a perfect square, of course. You may remember from high
school trig that . This gives immediately that

so the substitution  is what we need.

Then 

This integrates to give

where we’ve fixed the constant of integration so that the curve goes through the origin 

To see what this curve looks like, first ignore the  terms in , leaving . Evidently as  increases from
zero, the point  goes anticlockwise around a circle of radius  centered at  that is, touching the x -axis at the origin.

Now adding the  back in, this circular motion move steadily to the right, in such a way that the initial direction of the path is
vertically down. 

Visualizing the total motion as  steadily increases, the center moves from its original position at  to the right at a speed .
Meanwhile, the point is moving round the circle anticlockwise at this same speed. Putting together the center’s linear velocity with
the corresponding angular velocity, we see the motion  is the path of a point on the rim of a wheel rolling without
sliding along a road (upside down in our case, of course). This is a cycloid.
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1 +cosθ = 2 (θ/2), 1 −cosθ = 2 (θ/2)cos2 sin2

=
1 −cosθ

1 +cosθ
tan2 θ

2
(2.12.8)

z = cosθ

dz = −sinθdθ = −2 sin(θ/2) cos(θ/2)dθ

dx = −a tan dz = 2a tan sin cos dθ = 2a dθ = a(1 −cosθ)dθ
θ

2

θ

2

θ

2

θ

2
sin2 θ

2
(2.12.9)

x = a(θ−sinθ)

y = a(1 −cosθ)
(2.12.10)

( at θ = 0)

θ x x = −a sinθ, y = −a cosθ θ

(x, y) a (0, −a)

θ

 (For very small θ, y ∼ ≫ x ∼ )θ2 θ3

θ (0, −a) aθ

(x(θ), y(θ))
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3.1: Another Minimization Problem…
Here's another minimization problem from the 1600's, even earlier than the brachistochrone. Fermat famously stated in the 1630’s
that a ray of light going from point A to point B always takes the route of least time -- OK, it's trivially trivially true in a single
medium, light rays go in a straight line, but it's a lot less obvious if, say, A is in air and B in glass. Notice that this is closely related
to our previous topic, the calculus of variations -- if this is a minimal time path, varying the path by a small amount will not change
the time taken to first order. (Historical note: actually what amounted to Fermat’s principle was first stated by Alhazen, in
Baghdad, around 1000 AD.)

Figure : Fermat's principle in the case of refraction of light at a flat surface between (say) air and water. Given an object-point
A in the air, and an observation point B in the water, the refraction point P is that which minimizes the time taken by the light to
travel the path APB. If we seek the required value of x, we find that the angles α and β satisfy Snell's law. (Public Domain; Klaus-
Dieter Keller via Wikipedia)

This seemed very mysterious when first extensively discussed, in the 1600's. In the last part of that century, and through the 1700's,
Newton was the dominant figure, and he believed that light was a stream of particles. But how could the particle figure out the
shortest time path from A to B?

In fact, there was one prominent physicist, Huygens', who thought light might be a wave, and, much later, this turned out to be the
crucial insight. The main objection was that waves go around corners, at least to some extent, it seemed that light didn't. (Also, they
exhibit diffraction effects, which no one thought they'd seen for light, although in fact Newton himself had observed diffraction --
Newton's rings -- but had an ingenious explanation, as always, of why his particle picture could explain what he saw.) Anyway, in
1678, Huygens' suggested the following picture: it's a simple beginning to understanding wave propagation, most notably it omits
phases (later added by Fresnel) but it was a beginning.

This page titled 3.1: Another Minimization Problem… is shared under a not declared license and was authored, remixed, and/or curated by
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3.2: Huygens' Picture of Wave Propagation
If a point source of light is switched on, the wavefront is an expanding sphere centered at the source. Huygens suggested that this
could be understood if at any instant in time each point on the wavefront was regarded as a source of secondary wavelets, and the
new wavefront a moment later was to be regarded as built up from the sum of these wavelets. For a light shining continuously, the
process just keeps repeating.

Figure : Huygens' picture of how a spherical wave propagates: each point of the wave front is a source of secondary wavelets
that generate the new wave front

You might think that if a point on the wavefront is a new source, wouldn't the disturbance it generates be as likely to go backwards
as forwards? Huygens did not address this point. In fact, it's not easy to give a short satisfactory answer. We'll discuss propagation
of light (and of course other electromagnetic waves) fully in the second semester of E&M.

Huygens' principle does explain why the wavefront stays spherical, and more important, it explains refraction -- the change in
direction of a wavefront on entering a different medium, such as a ray of light going from air into glass. Here's how: If the light
moves more slowly in the glass, velocity , then Huygens' picture predicts Snell’s Law, that the ratio of
the sines of the angles to the normal of incident and transmitted beams is constant, and in fact is the ratio . This is evident from
the diagram below: in the time the wavelet centered at A has propagated to C, that from B has reached D, the ratio of lengths
AC/BD being .

But the angles in Snell’s Law are in fact the angles ABC, BCD, and those right-angled triangles have a common hypotenuse BC,
from which the Law follows.

Notice, though, the crucial fact: we get Snell's law on the assumption that the speed of light is slower in glass than in air. If light
was a stream of particles, the picture would have to be that they encountered a potential change on going into the glass, like a ball
rolling on a horizontal floor encountering a step, smoothed out a bit, to a different level. This would give a force perpendicular to
the interface on going from one level to the other, and if the path is bent towards the normal, as is observed, the ball must speed up
-- so this predicts light moves faster in glass. It wasn't until the nineteenth century, though, that measuring the speed of light in
glass (actually I think water) was technologically possible.
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Figure : Huygen' explanation of refraction: showing two wavelets from the wavefront AB. W  is slowed down compared with
W , since it is propagating in glass. This turns the wavefront through an angle.

In fact, even in the early nineteenth century, the wave nature of light was widely doubted. Fresnel greatly improved Huygens' crude
picture, fully taking into account the interference between secondary wavelets having different phases. One of the principal
skeptics of the wave theory, the mathematician Poisson, pointed out that it was obvious nonsense because, using Fresnel's own
arguments, it predicted that in the very center of the dark shadow of a sphere illuminated by a point source of light, there should be
a bright spot: all the "light waves" grazing the edge of the sphere would generate secondary wavelets which would land at that spot
in phase. A bright spot at the center of the dark disk seemed obvious nonsense, but an experimentalist colleague in Paris, Arago,
decided to try the experiment anyway -- and the spot was there. It's now called the Poisson spot, and it gave a big boost to the
wave theory in France (it was already fully accepted in England, where Thomas Young did the double slit interference pattern, and
compared it to the wave pattern in a similarly configured ripple tank, presenting the results to the Royal Society in 1803).

This page titled 3.2: Huygens' Picture of Wave Propagation is shared under a not declared license and was authored, remixed, and/or curated by
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3.3: Fermat’s Principle
We will now temporarily forget about the wave nature of light, and consider a narrow ray or beam of light shining from point A to
point B, where we suppose A to be in air, B in glass. Fermat showed that the path of such a beam is given by the Principle of Least
Time: a ray of light going from A to B by any other path would take longer. How can we see that? It’s obvious that any deviation
from a straight line path in air or in the glass is going to add to the time taken, but what about moving slightly the point at which
the beam enters the glass?

Figure 

Where the air meets the glass, the two rays, separated by a small distance CD = d along that interface, will look parallel:

Figure : Magnified vies of two rays passing through interface: ray 1 is the minimum time path. Rays encounter the interface a
distance CB=d apart

(Feynman gives a nice illustration: a lifeguard on a beach spots a swimmer in trouble some distance away, in a diagonal direction.
He can run three times faster than he can swim. What is the quickest path to the swimmer?)

Moving the point of entry up a small distance , the light has to travel an extra  in air, but a distance less by  in the
glass, giving an extra travel time . For the classical path, Snell’s Law gives 

 to first order. But if we look at a series of possible paths, each a small distance  away from
the next at the point of crossing from air into glass,  away from the classical path.

But now let's take a closer look at the Huygens picture of light propagation: it would suggest that the light reaching a point actually
comes from many wavelets generated at different points on the previous wavefront. A handwaving generalization might be that the
light reaching a point from another point actually includes multiple paths. To keep things manageable, let's suppose the light from
A to B actually goes along all the paths that are straight in each medium, but different crossing point. Also, we'll make the
approximation that they all reach B with equal amplitude. What will be the total contribution of all the paths at B? Since the times
along the paths are different, the signals along the different paths will arrive at B with different phases, and to get the total wave
amplitude we must add a series of unit 2D vectors, one from each path. (Representing the amplitude and phase of the wave by a
complex number for convenience -- for a real wave, we can take the real part at the end.)

When we map out these unit 2D vectors, we find that in the neighborhood of the classical path, the phase varies little, but as we go
away from it the phase spirals more and more rapidly, so those paths interfere amongst themselves destructively. To formulate this
a little more precisely, let us assume that some close by path has a phase difference  from the least time path, and goes from air to
glass a distance  away from the least time path: then for these close by paths, , where a depends on the geometric
arrangement and the wavelength. From this, the sum over the close by paths is an integral of the form  (We are assuming

3.3.1

3.3.2

d d sinθ1 d sinθ2

Δt = d sin /c−d sin /vθ1 θ2

sin / sin = n = c/v,  so Δt = 0θ1 θ2 d

Δt becomes of order d/c

φ

x φ = ax2

∫ dxeiax
2

https://libretexts.org/
https://phys.libretexts.org/@go/page/29542?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/03%3A_Fermat's_Principle_of_Least_Time/3.03%3A_Fermats_Principle


3.3.2 https://phys.libretexts.org/@go/page/29542

the wavelength of light is far less than the size of the equipment.) This is a standard integral, its value is  all its weight is
concentrated in a central area of width .

This is the explanation of Fermat’s Principle -- only near the path of least time do paths stay approximately in phase with each
other and add constructively. So this classical path rule has an underlying wave-phase explanation. In fact, the central role of phase
in this analysis is sometimes emphasized by saying the light beam follows the path of stationary phase.

Of course, we’re not summing over all paths here -- we assume that the path in air from the source to the point of entry into the
glass is a straight line, clearly the subpath of stationary phase.
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3.4: Reflection, Too
Suppose you look at a point of light reflected in a mirror. Imagine the point sending out rays in all directions, as it does. The ray
that enters your eye from the mirror goes along the shortest bouncing-off-the-mirror path. You can prove that this is equivalent to
angle of incidence equals angle of reflection by considering the path difference for a nearby path.

Of course, for a curved mirror there may be more than one shortest path. To take an extreme case, consider the two-dimensional
scenario of a perfectly reflecting ellipse with a point light source inside. If the source is at one focus of the ellipse, all the light will
be reflected to the other focus. And, all the paths will have the same length! (Recall an ellipse can be constructed with a piece of
string, the ends nailed down at the foci, the string stretched taut.) A parabolic mirror is the limiting case of an ellipse with the other
focus sent to infinity, so parallel rays coming in along the axis from a distant star will all go to the focus in phase with each other.
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3.5: The Bottom Line- Geometric Optics and Wave Optics
In geometric optics, mirrors, lenses, telescopes and so on are analyzed by tracking narrow rays of light through the system,
applying the standard rules of reflection and refraction. Despite Huygens’ picture, most people using this well-established
technique before 1800 thought the rays were streams of particles. Fermat’s Principle of Least Time was an elegant formulation of
the laws of motion of this stream -- it reduced all observed deflections, etc., to a single statement. It even included phenomena
caused by a variable refractive index, and consequent curved paths for light rays, such as mirages, reflections of distant mountains
in the middle-distance ground on hot days caused by a layer of hotter air close to the ground.

But despite its elegance, no theoretical explanation of Fermat’s Principle was forthcoming until it was established that light was a
wave -- then it became clear. The waves went out over all possible paths, but phase differences caused almost perfect cancellation
except for paths in the vicinity of the shortest possible.

We shall find a similar connection between classical mechanics and quantum mechanics.
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4.1: Introduction- Galileo and Newton
In the discussion of calculus of variations, we anticipated some basic dynamics, using the potential energy  for an element of

the catenary, and conservation of energy  for motion along the brachistochrone. Of course, we haven’t actually

covered those things yet, but you’re already very familiar with them from your undergraduate courses, and my aim was to give
easily understood physical realizations of minimization problems, and to show how to find the minimal shapes using the calculus
of variations.

At this point, we’ll begin a full study of dynamics, starting with the laws of motion. The text, Landau, begins (page 2!) by stating
that the laws come from the principle of least action, Hamilton’s principle. This is certainly one possible approach, but confronted
with it for the first time, one might well wonder where it came from. I prefer a gentler introduction, more or less following the
historical order: Galileo, then Newton, then Lagrange and his colleagues, then Hamilton. The two approaches are of course
equivalent. Naturally, you’ve seen most of this earlier stuff before, so here is a very brief summary.

To begin, then, with Galileo. His two major contributions to dynamics were:

1. The realization, and experimental verification, that falling bodies have constant acceleration (provided air resistance can
be ignored) and all falling bodies accelerate at the same rate.

2. Galilean relativity. As he put it himself, if you are in a closed room below decks in a ship moving with steady velocity, no
experiment on dropping or throwing something will look any different because of the ship’s motion: you can’t detect the
motion. As we would put it now, the laws of physics are the same in all inertial frames.

Newton’s major contributions were his laws of motion, and his law of universal gravitational attraction.

His laws of motion:

1. The law of inertia: a body moving at constant velocity will continue at that velocity unless acted on by a force. (Actually,
Galileo essentially stated this law, but just for a ball rolling on a horizontal plane, with zero frictional drag.)

2. 

3. Action = reaction.

In terms of Newton’s laws, Galilean relativity is clear: if the ship is moving at steady velocity  relative to the shore, than an object
moving at  relative to the ship is moving at  relative to the shore. If there is no force acting on the object, it is moving at
steady velocity in both frames: both are inertial frames, defined as frames in which Newton’s first law holds. And, since  is
constant, the acceleration is the same in both frames, so if a force is introduced the second law is the same in the two frames.

(Needless to say, all this is classical, meaning nonrelativistic, mechanics.)

Newton's Laws Explain Everything (in Principle...)

...in a classical mechanical system. Any dynamical system can be analyzed as a (possibly infinite) collection of parts, or particles,
having mutual interactions, so in principle Newton’s laws can provide a description of the motion developing from an initial
configuration of positions and velocities.

The problem is, though, that the equations may be intractable—we can’t do the mathematics. It is evident that in
fact the Cartesian coordinate positions and velocities might not be the best choice of parameters to specify the
system’s configuration. For example, a simple pendulum is obviously more naturally described by the angle the
string makes with the vertical, as opposed to the Cartesian coordinates of the bob. After Newton, a series of
French mathematicians reformulated his laws in terms of more useful coordinates—culminating in Lagrange’s
equations.

The Irish mathematician Hamiltonian then established that these improved dynamical equations could be derived
using the calculus of variations to minimize an integral of a function, the Lagrangian, along a path in the system’s configuration
space.

This integral is called the action, so the rule is that the system follows the path of least action from the initial to the final
configuration.

mgh

m +mgh = E
1

2
v2

= mF ⃗  a⃗ 

v ⃗ 

u⃗  +u⃗  v ⃗ 

v ⃗ 
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Nitpicking footnote: strictly, we need the path to be a stationary point in the space of possible paths, usually it's the least-action
path.

This page titled 4.1: Introduction- Galileo and Newton is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.

 Note

https://libretexts.org/
https://phys.libretexts.org/@go/page/29547?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.01%3A_Introduction-_Galileo_and_Newton
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.01%3A_Introduction-_Galileo_and_Newton?no-cache
http://galileo.phys.virginia.edu/~mf1i/


4.2.1 https://phys.libretexts.org/@go/page/29548

4.2: Derivation of Hamilton’s Principle from Newton’s Laws in Cartesian Co-
ordinates- Calculus of Variations Done Backwards!
We’ve shown how, given an integrand, we can find differential equations for the path in space time between two fixed points that
minimizes the corresponding path integral between those points.

Now we’ll do the reverse: we already know the differential equations in Cartesian coordinates describing the path taken by a
Newtonian particle in some potential. We’ll show how to use that knowledge to construct the integrand such that the action integral
is a minimum along that path. (This follows Jeffreys and Jeffreys, Mathematical Physics.)

We begin with the simplest nontrivial system, a particle of mass m moving in one dimension from one point to another in a
specified time, we’ll assume it’s in a time-independent potential , so

Its path can be represented as a graph  against time—for example, for a ball thrown directly upwards in a constant gravitational
field this would be a parabola.

Initial and final positions are given: 

Notice we have not specified the initial velocity—we don’t have that option. The differential equation is only second order, so its
solution is completely determined by the two (beginning and end) boundary conditions.

We’re now ready to embark on the calculus of variations in reverse.

Trivially, multiplying both sides of the equation of motion by an arbitrary infinitesimal function the equality still holds:

and in fact if this equation is true for arbitrary , the original equation of motion holds throughout, because we can always
choose a  nonzero only in the neighborhood of a particular time t, from which the original equation must be true at that t.

By analogy with Fermat’s principle in the preceding section, we can picture this  as a slight variation in the path from the
Newtonian trajectory,  and take the variation zero at the fixed ends, 

In Fermat’s case, the integrated time elapsed along the path was minimized—there was zero change to first order on going to a
neighboring path. Developing the analogy, we’re looking for some dynamical quantity that has zero change to first order on going
to a neighboring path having the same endpoints in space and time. We’ve fixed the time, what’s left to integrate along the path?

For such a simple system, we don’t have many options! As we’ve discussed above, the equation of motion is equivalent to (putting
in an overall minus sign that will prove convenient)

Integrating the first term by parts (recalling  at the endpoints):

using the standard notation T for kinetic energy.

The second term integrates trivially:

establishing that on making an infinitesimal variation from the physical path (the one that satisfies Newton's laws) there is zero first
order change in the integral of kinetic energy minus potential energy.

The standard notation is

U(x)

m = −dU(x)/dxẍ (4.2.1)

x(t)

x ( ) = , x ( ) = ,  and the elapsed time is  −t1 x1 t2 x2 t2 t1

m δx(t) = −(dU(x)/dx)δx(t)ẍ (4.2.2)

δx(t)

δx(t)

δx(t)

x(t) → x(t) +δx(t) δx ( ) = δx ( ) = 0t1 t2

(−m (t) −dU(x(t))/dx)δx(t)dt = 0  to leading order, for all variations δx(t)∫
t2

t1

ẍ (4.2.3)

δ(x) = 0

− m (t)δx(t)dt = m (t)δ (t)dt = δ( m (t)) dt = δT (x(t))dt∫
t2

t1

ẍ ∫
t2

t1

ẋ ẋ ∫
t2

t1

1

2
ẋ

2 ∫
t2

t1

(4.2.4)

− (dU(x)/dx)δx(t)dt = − δU(x)dt∫
t2

t1

∫
t2

t1

(4.2.5)

δS = δ (T −U)dt = δ Ldt = 0∫
t2

t1

∫
t2

t1

(4.2.6)
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The integral S is called the action integral, (also known as Hamilton’s Principal Function) and the integrand T−U=L is called the
Lagrangian.

This equation is Hamilton’s Principle.

The derivation can be extended straightforwardly to a particle in three dimensions, in fact to n interacting particles in three
dimensions. We shall assume that the forces on particles can be derived from potentials, including possibly time-dependent
potentials, but we exclude frictional energy dissipation in this course. (It can be handled—see for example Vujanovic and Jones,
Variational Methods in Nonconservative Phenomena, Academic press, 1989.)

This page titled 4.2: Derivation of Hamilton’s Principle from Newton’s Laws in Cartesian Co-ordinates- Calculus of Variations Done Backwards!
is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

https://libretexts.org/
https://phys.libretexts.org/@go/page/29548?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.02%3A_Derivation_of_Hamiltons_Principle_from_Newtons_Laws_in_Cartesian_Co-ordinates-_Calculus_of_Variations_Done_Backwards
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.02%3A_Derivation_of_Hamiltons_Principle_from_Newtons_Laws_in_Cartesian_Co-ordinates-_Calculus_of_Variations_Done_Backwards?no-cache
http://galileo.phys.virginia.edu/~mf1i/


4.3.1 https://phys.libretexts.org/@go/page/29549

4.3: But Why?
Fermat’s principle was easy to believe once it was clear that light was a wave. Imagining that the wave really propagates along all
paths, and for light the phase change along a particular path is simply the time taken to travel that path measured in units of the
light wave oscillation time. That means that if neighboring paths have the same length to first order the light waves along them will
add coherently, otherwise they will interfere and essentially cancel. So the path of least time is heavily favored, and when we look
on a scale much greater than the wavelength of the light, we don’t even see the diffraction effects caused by imperfect cancellation,
the light rays might as well be streams of particles, mysteriously choosing the path of least time.

So what has this to do with Hamilton’s principle? Everything. A standard method in quantum mechanics these days is the so-called
sum over paths, for example to find the probability amplitude for an electron to go from one point to another in a given time under
a given potential, you can sum over all possible paths it might take, multiplying each path by a phase factor: and that phase factor is
none other than Hamilton’s action integral divided by Planck’s constant, . So the true wave nature of all systems in quantum
mechanics ensures that in the classical limit  the well-defined path of a dynamical system will be that of least action.

Historical footnote: Lagrange developed these methods in a classic book that Hamilton called a “scientific poem”. Lagrange
thought mechanics properly belonged to pure mathematics, it was a kind of geometry in four dimensions (space and time).
Hamilton was the first to use the principle of least action to derive Lagrange’s equations in the present form. He built up the least
action formalism directly from Fermat’s principle, considered in a medium where the velocity of light varies with position and with
direction of the ray. He saw mechanics as represented by geometrical optics in an appropriate space of higher dimensions. But it
didn’t apparently occur to him that this might be because it was really a wave theory! (See Arnold, Mathematical Methods of
Classical Mechanics, for details.)

This page titled 4.3: But Why? is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

S/ℏ

S ≫ ℏ

https://libretexts.org/
https://phys.libretexts.org/@go/page/29549?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.03%3A_But_Why
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.03%3A_But_Why
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.03%3A_But_Why?no-cache
http://galileo.phys.virginia.edu/~mf1i/


4.4.1 https://phys.libretexts.org/@go/page/29550

4.4: Lagrange’s Equations from Hamilton’s Principle Using Calculus of Variations
We started with Newton’s equations of motion, expressed in Cartesian coordinates of particle positions. For many systems, these
equations are mathematically intractable. Running the calculus of variations argument in reverse, we established Hamilton’s
principle: the system moves along the path through configuration space for which the action integral, with integrand the Lagrangian

, is a minimum.

We’re now free to begin from Hamilton’s principle, expressing the Lagrangian in variables that more naturally describe the system,
taking advantage of any symmetries (such as using angle variables for rotationally invariant systems). Also, some forces do not
need to be included in the description of the system: a simple pendulum is fully specified by its position and velocity, we do not
need to know the tension in the string, although that would appear in a Newtonian analysis. The greater efficiency (and elegance) of
the Lagrangian method, for most problems, will become evident on working through actual examples.

We’ll define a set of generalized coordinates  by requiring that they give a complete description of the
configuration of the system (where everything is in space). The state of the system is specified by this set plus the corresponding
velocities 

For example, the x -coordinate of a particular particle a is given by some function of the 

, and the corresponding velocity component 

The Lagrangian will depend on all these variables in general, and also possibly on time explicitly, for example if there is a time-
dependent external potential. (But usually that isn’t the case.)

Hamilton’s principle gives

that is,

Integrating by parts,

Requiring the path deviation to be zero at the endpoints gives Lagrange’s equations:

This page titled 4.4: Lagrange’s Equations from Hamilton’s Principle Using Calculus of Variations is shared under a not declared license and was
authored, remixed, and/or curated by Michael Fowler.
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4.5: Generalized Momenta and Forces
For the above orbital Lagrangian,  the momentum in the r -direction, and , the angular
momentum associated with the variable .

The generalized momenta for a mechanical system are defined by

Less frequently used are the generalized forces, , defined to make the Lagrange equations look Newtonian, .
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4.6: Non-uniqueness of the Lagrangian
The Lagrangian is not uniquely defined: two Lagrangians differing by the total derivative with respect to time of some function will
give the same identical equations on minimizing the action,

and since  are all fixed, the integral over  is trivially independent of path variations, and varying the path
to minimize  gives the same result as minimizing S. This turns out to be important later—it gives us a useful new tool to change
the variables in the Lagrangian.
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4.7: First Integral- Energy Conservation and the Hamiltonian
Since Lagrange’s equations are precisely a calculus of variations result, it follows from our earlier discussion that if the Lagrangian
has no explicit time dependence then:

(This is just the first integral  discussed earlier, now with n variables.)

This constant of motion is called the energy of the system, and denoted by E. We say the energy is conserved, even in the presence
of external potentials—provided those potentials are time-independent.

(We’ll just mention that the function on the left-hand side,  is the Hamiltonian. We don’t discuss it further at
this point because, as we’ll find out, it is more naturally treated in other variables.)

We’ll now look at a couple of simple examples of the Lagrangian approach.

This page titled 4.7: First Integral- Energy Conservation and the Hamiltonian is shared under a not declared license and was authored, remixed,
and/or curated by Michael Fowler.

−L = constant∑
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q̇ i

∂L

∂q̇ i

(4.7.1)
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∂L/∂ −L∑i q̇ i q̇ i
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4.8: Example 1- One Degree of Freedom- Atwood’s Machine

Figure 

In 1784, the Rev. George Atwood, tutor at Trinity College, Cambridge, came up with a great demo for finding g. It’s still with us.
The traditional Newtonian solution of this problem is to write  for the two masses, then eliminate the tension T. (To keep
things simple, we’ll neglect the rotational inertia of the top pulley.)

The Lagrangian approach is, of course, to write down the Lagrangian, and derive the equation of motion.

Measuring gravitational potential energy from the top wheel axle, the potential energy is

and the Lagrangian

Lagrange’s equation:

gives the equation of motion in just one step.

It’s usually pretty easy to figure out the kinetic energy and potential energy of a system, and thereby write down the Lagrangian.
This is definitely less work than the Newtonian approach, which involves constraint forces, such as the tension in the string. This
force doesn’t even appear in the Lagrangian approach! Other constraint forces, such as the normal force for a bead on a wire, or the
normal force for a particle moving on a surface, or the tension in the string of a pendulum—none of these forces appear in the
Lagrangian. Notice, though, that these forces never do any work.

On the other hand, if you actually are interested in the tension in the string (will it break?) you use the Newtonian method, or
maybe work backwards from the Lagrangian solution.
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4.8.1

F = ma

U(x) = − gx− g(ℓ −x)m1 m2 (4.8.1)

L = T −U = ( + ) + gx+ g(ℓ −x)
1

2
m1 m2 ẋ

2
m1 m2 (4.8.2)

( )− = ( + ) −( − )g = 0
d

dt

∂L

∂ẋ

∂L

∂x
m1 m2 ẍ m1 m2 (4.8.3)
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4.9: Example 2- Lagrangian Formulation of the Central Force Problem
A simple example of Lagrangian mechanics is provided by the central force problem, a mass  acted on by a force

To contrast the Newtonian and Lagrangian approaches, we’ll first look at the problem using just . To take advantage of the
rotational symmetry we’ll use  coordinates, and find the expression for acceleration by the standard trick of differentiating the
complex number  twice, to get

The second equation integrates immediately to give

a constant, the angular momentum. This can then be used to eliminate  in the first equation, giving a differential equation for .

The Lagrangian approach, on the other hand, is first to write

and put it into the equations

Note now that since L doesn’t depend on , the second equation gives immediately:

and in fact  the angular momentum, we’ll call it 

The first integral (see above) gives another constant:

This is just

the energy.

Angular momentum conservation, , then gives

giving a first-order differential equation for the radial motion as a function of time. We’ll deal with this in more detail later. Note
that it is equivalent to a particle moving in one dimension in the original potential plus an effective potential from the angular
momentum term:

m

= −dU(r)/drFr

= mF ⃗  a⃗ 

(r, θ)

z = re
iθ

m( −r ) = −dU(r)/drr̈ θ̇
2

(4.9.1)

m(r +2 ) = 0θ̈ ṙ θ̇ (4.9.2)

m = ℓr
2
θ̇ (4.9.3)

θ̇ r(t)

L = T −U = m( + )−U(r)
1

2
ṙ

2
r

2
θ̇

2
(4.9.4)

( )−( ) = 0
d

dt

∂L

∂ṙ

∂L

∂r

( )−( ) = 0
d

dt

∂L

∂θ̇

∂L

∂θ

(4.9.5)

θ

= constant
∂L

∂θ̇
(4.9.6)

∂L/∂ = mθ̇ r
2
θ̇ ℓ

+ −L = constantṙ
∂L

∂ṙ
θ̇

∂L

∂θ̇
(4.9.7)

m( + )+U(r) = E
1

2
ṙ

2
r

2
θ̇

2
(4.9.8)

m = ℓr
2
θ̇

m( + )+U(r) = E
1

2
ṙ

2 ℓ2

m2r2
(4.9.9)

E = m +U(r) +
1

2
v

2 ℓ2

m2r2
(4.9.10)
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This can be understood by realizing that for a fixed angular momentum, the closer the particle approaches the center the greater its
speed in the tangential direction must be, so, to conserve total energy, its speed in the radial direction has to go down, unless it is in
a very strongly attractive potential (the usual gravitational or electrostatic potential isn’t strong enough) so the radial motion is
equivalent to that with the existing potential plus the 

term, often termed the “centrifugal barrier”.

Exercise: how strong must the potential be to overcome the centrifugal barrier? (This can happen in a black hole!)
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4.10: Conservation Laws and Noether’s Theorem
The two integrals of motion for the orbital example above can be stated as follows:

First: if the Lagrangian does not depend on the variable , that is, it’s invariant under rotation, meaning it has circular
symmetry, then

angular momentum is conserved.

Second: As stated earlier, if the Lagrangian is independent of time, that is, it’s invariant under time translation, then energy is
conserved. (This is nothing but the first integral of the calculus of variations, recall that for an integrand function 

Both these results link symmetries of the Lagrangian——invariance under rotation and time translation respectively——with
conserved quantities.

This connection was first spelled out explicitly, and proved generally, by Emmy Noether, published in 1915. The essence of the
theorem is that if the Lagrangian (which specifies the system completely) does not change when some continuous parameter is
altered, then some function of the  stays the same—it is called a constant of the motion, or an integral of the motion.

To look further at this expression for energy, we take a closed system of particles interacting with each other, but “closed” means
no interaction with the outside world (except possibly a time-independent potential).

The Lagrangian for the particles is, in Cartesian coordinates,

A set of general coordinates , by definition, uniquely specifies the system configuration, so the coordinate and velocity
of a particular particle a are given by

From this it is clear that the kinetic energy term  is a homogeneous quadratic function of the  (meaning every term
is of degree two), so

This being of degree two in the time derivatives means

(If this isn’t obvious to you, check it out with a couple of terms: )

Therefore for this system of interacting particles

This expression for the energy is called the Hamiltonian:

θ, ∂L/∂θ = 0

= = constantpθ

∂L

∂θ̇
(4.10.1)

f (y, )  not explicitly dependent on x, ∂f/∂ −f  is constant. )y′ y′ y′

∂L/∂ −L = E,  a constant ∑
i

q̇ i q̇ i (4.10.2)
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,qi q̇ i

L = −U ( , , …)∑
2

1

miv
2
i r ⃗ 1 r ⃗ 2 (4.10.3)

( , … , )q1 qn

= ( , … ) , =xa fxa
q1 qn ẋa ∑

k

∂fxa

∂qk

q̇ k (4.10.4)

T =∑
1
2 miv

2
i q̇

L = (q) −U(q)
1

2
∑
i,k

aik q̇ i q̇ k (4.10.5)

= = 2T∑
i

q̇ i

∂L

∂q̇ i

∑
i

q̇ i

∂T

∂q̇ i

(4.10.6)

,q̇ 2
1 q̇ 1 q̇ 2

E = −L = 2T −(T −U) = T +U∑
i=1

n

q̇ i

∂L

∂q̇ i

(4.10.7)

https://libretexts.org/
https://phys.libretexts.org/@go/page/29996?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.10%3A_Conservation_Laws_and_Noethers_Theorem


4.10.2 https://phys.libretexts.org/@go/page/29996

This page titled 4.10: Conservation Laws and Noether’s Theorem is shared under a not declared license and was authored, remixed, and/or
curated by Michael Fowler.

H = −L∑
i=1

n

pi q̇ i (4.10.8)
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4.11: Momentum Conservation
Another conservation law follows if the Lagrangian is unchanged by displacing the whole system through a distance . This
means, of course, that the system cannot be in some spatially varying external field—it must be mechanically isolated.

It is natural to work in Cartesian coordinates to analyze this, each particle is moved the same distance ,
so

where the “differentiation by a vector” notation means differentiating with respect to each component, then adding the three terms.
(I’m not crazy about this notation, but it’s Landau’s, so get used to it.)

For an isolated system, we must have  on displacement, moving the whole thing through empty space in any direction 
, so from the Cartesian Euler-Lagrange equations,

writing 

so, taking the system to be composed of particles of mass  and velocity 

the momentum of the system.

This vector conservation law is of course three separate directional conservation laws, so even if there is an external field, if it
doesn’t vary in a particular direction, the component of total momentum in that direction will be conserved.

In the Newtonian picture, conservation of momentum in a closed system follows from Newton’s third law. In fact, the above
Lagrangian analysis is really Newton’s third law in disguise. Since we’re working in Cartesian coordinates,

 the force on the th particle, and if there are no external fields,  just means that if you
add all the forces on all the particles, the sum is zero. For the Lagrangian of a two particle system to be invariant under translation
through space, the potential must have the form  from which automatically .
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δL = 0

 changes nothing, so it must be that the vector sum  ∂L/∂ = 0ε ⃗  ∑
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∂v ⃗ i
∑
i

miv ⃗ i P ⃗  (4.11.3)

∂L/∂ = −∂V /∂ =r ⃗ i r ⃗ i F ⃗ 
i i ∂L/∂ = 0∑

i
r ⃗ i

V ( − )r ⃗ 1 r ⃗ 2 = −F ⃗ 
12 F ⃗ 

21

https://libretexts.org/
https://phys.libretexts.org/@go/page/29997?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.11%3A_Momentum_Conservation
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.11%3A_Momentum_Conservation
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/04%3A_Hamilton's_Principle_and_Noether's_Theorem/4.11%3A_Momentum_Conservation?no-cache
http://galileo.phys.virginia.edu/~mf1i/


4.12.1 https://phys.libretexts.org/@go/page/29998

4.12: Center of Mass
If an inertial frame of reference  is moving at constant velocity  relative to inertial frame K, the velocities of individual
particles in the frames are related by , so the total momenta are related by

If we choose , the system is “at rest” in the frame . Of course, the individual particles
might be moving, what is at rest in  is the center of mass defined by

(Check this by differentiating both sides with respect to time.)

The energy of a mechanical system in its rest frame is often called its internal energy, we’ll denote it by  (This includes kinetic
and potential energies.) The total energy of a moving system is then

(Exercise: verify this.)
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4.13: Angular Momentum Conservation

Figure : An infinitesimal rotation is represented by a vector of length  along the axis

Conservation of momentum followed from the invariance of the Lagrangian on being displaced in arbitrary directions in space, the
homogeneity of space, angular momentum conservation is the consequence of the isotropy of space—there is no preferred
direction.

So angular momentum of an isolated body in space is invariant even if the body is not symmetric itself.

The strategy is just as before, except now instead of an infinitesimal displacement we make an infinitesimal rotation,

and of course the velocities will also be rotated:

We must have

Now  by definition, and from Lagrange’s equations

so the isotropy of space implies that

Notice the second term is identically zero anyway, since two of the three vectors in the triple product are parallel:

That leaves the first term. The equation can be written:

Integrating, we find that

4.13.1 δϕ

δ = δ ×r ⃗  ϕ ⃗  r ⃗  (4.13.1)

δ = δ ×v ⃗  ϕ ⃗  v ⃗  (4.13.2)
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∂L

∂r ⃗ i
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∂v ⃗ i
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( ⋅ δ × + ⋅ δ × )= 0∑
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is a constant of motion, the angular momentum.

The angular momentum of a system is different about different origins. (Think of a single moving particle.) The angular
momentum in the rest frame is often called the intrinsic angular momentum, the angular momentum in a frame in which the center
of mass is at position .

(Exercise: check this.)

For a system of particles in a fixed external central field , the system is invariant with respect to rotations about that point, so
angular momentum about that point is conserved. For a field “cylindrically” invariant for rotations about an axis, angular
momentum about that axis is conserved.

This page titled 4.13: Angular Momentum Conservation is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.

 and moving with velocity   is R⃗  V ⃗ 
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5.1: Some Examples
Similar triangles are just scaled up (or down) versions of each other, meaning they have the same angles. Scaling means the same
thing in a mechanical system: if a planet can go around the sun in a given elliptical orbit, another planet can go in a scaled up
version of that ellipse (the sun remaining at the focus). But it will take longer: so we can’t just scale the spatial dimensions, to get
the same equation of motion we must scale time as well, and not in general by the same factor.

In fact, we can establish the relative scaling of space and time in this instance with very simple dimensional analysis. We know the
planet’s radial acceleration goes as the inverse square of the distance, so

the dimensionality of this expression is

so

the square of the time of one orbit is proportional to the cube of the size of the orbit. A little more explicitly, the acceleration

so for the same , if we double the orbit size, the equation will be the same but with orbital time up by .

Galileo established that real mechanical systems, such as a person, are not scale invariant. A giant ten times the linear dimensions
of a human would break his hip on the first step. The point is that the weight would be up by a factor of 1,000, the bone strength,
going as cross sectional area, only by 100.

Mechanical similarity is important is constructing small models of large systems. A particularly important application is to fluid
flow, for example in assessing fluid drag forces on a moving ship, plane or car. There are two different types of fluid drag: viscous
frictional drag, and inertial drag, the latter caused by the body having to deflect the medium as it moves through. The patterns of
flow depend on the relative importance of these two drag forces, this dimensionless ratio, inertial/viscous, is called the Reynolds
number. To give meaningful results, airflow speeds around models must be adjusted to give the model the same Reynolds number
as the real system.
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5.2: Lagrangian Treatment
(Here we follow Landau.) Since the equations of motion are generated by minimizing the action, which is an integral of the
Lagrangian along a trajectory, the motion won’t be affected if the Lagrangian is multiplied by a constant. If the potential energy is a
homogeneous function of the coordinates, rescaling would multiply it by a constant factor. If our system consists of particles
interacting via such a potential energy, it will be possible to rescale time so that, rescaling both space and time, the Lagrangian is
multiplied by an overall constant, so the equations of motion will look the same.

Specifically, if the potential energy  is homogeneous of degree  and the spatial coordinates are scaled by a factor 

For planetary orbits, , confirming our hand waving derivation above.

For the simple harmonic oscillator,  What does that mean? Scaling up the orbit does not affect the
time—the oscillation time is always the same.

Falling under gravity:  So doubling the time scale requires quadrupling the length scale to get the scaled
motion identical to the original.
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5.3: The Virial Theorem
For a potential energy homogeneous in the coordinates, of degree , say, and spatially bounded motion, there is a simple relation
between the time averages of the kinetic energy, . It’s called the virial theorem.

Since

we have

We now average the terms in this equation over a very long time, that is, take

Since we’ve said the orbits are bounded in space, and we assume also in momentum, the exact differential term contributes

in the limit of infinite time.

So we have the time averaged

and for a potential energy a homogeneous function of degree  in the coordinates, from Euler’s theorem:

So, for example, in a simple harmonic oscillator the average kinetic energy equals the average potential energy, and for an inverse-
square system, the average kinetic energy is half the average potential energy in magnitude, and of opposite sign (being of course
positive).
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6.1: A Dynamical System’s Path in Configuration Space and in State Space
The story so far: For a mechanical system with n degrees of freedom, the spatial configuration at some instant of time is completely
specified by a set of  variables we'll call the . The n -dimensional  space is (naturally) called configuration space. It’s like
a freeze frame, a snapshot of the system at a given instant. Subsequent time evolution from that state is uniquely determined if
we're also given the initial velocities .

The set of  together define the state of the system, meaning both its configuration and how fast it’s changing,
therefore fully determining its future (and past) as well as its present. The 2n -dimensional space spanned by  is the state
space.

The system’s time evolution is along a path in configuration space parameterized by the time t. That, of course, fixes the
corresponding path in state space, since differentiating the functions .

Figure : 1-D Simple Harmonic Oscillator

Trivial one-dimensional examples of these spaces are provided by the one-dimensional simple harmonic oscillator, where
configuration space is just the x axis, say, the state space is the  plane, the system’s time path in the state space is an ellipse.

For a stone falling vertically down, the configuration space is again a line, the path in the 
.

Exercise: sketch the paths in state space for motions of a pendulum, meaning a mass at the end of a light rod, the other end fixed,
but free to rotate in one vertical plane. Sketch the paths in  coordinates.

In principle, the system’s path through configuration space can always be computed using Newton’s laws of motion, but in practice
the math may be intractable. As we’ve shown above, the elegant alternative created by Lagrange and Hamilton is to integrate the
Lagrangian

along different paths in configuration space from a given initial state to a given final state in a given time: as Hamilton proved, the
actual path followed by the physical system between the two states in the given time is the one for which this integral, called the
action, is minimized. This minimization, using the standard calculus of variations method, generates the Lagrange equations of
motion in  and so determines the path.

Notice that specifying both the initial . That’s all the degrees of freedom there are, so
the motion is completely determined, just as it would be if we’d specified instead the initial .
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6.2: Phase Space
Newton wrote his equation of motion not as force equals mass times acceleration, but as force equals rate of change of momentum.
Momentum, mass times velocity, is the natural "quantity of motion" associated with a time-varying dynamical parameter. It is some
measure of how important that coordinate's motion is to the future dynamical development of the system.

Hamilton recast Lagrange's equations of motion in these more natural variables , positions and momenta, instead of .
The q 's and p 's are called phase space coordinates.

So phase space is the same identical underlying space as state space, just with a different set of coordinates. Any particular state of
the system can be completely specified either by giving all the variables  or by giving the values of all the .
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6.3: Going From State Space to Phase Space
Now, the momenta are the derivatives of the Lagrangian with respect to the velocities, . So, how do we get
from a function  of positions and velocities to a function of positions and the derivatives of that function L with respect to
the velocities?
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6.4: How It's Done in Thermodynamics
To see how, we'll briefly review a very similar situation in thermodynamics: recall the expression that naturally arises for
incremental energy, say for the gas in a heat engine, is

where  is the entropy and  is the temperature. But  is not a handy variable in real life -- temperature  is a lot
easier to measure! We need an energy-like function whose incremental change is some function of 
The early thermodynamicists solved this problem by introducing the concept of the free energy,

so that . This change of function (and variable) was important: the free energy turns out to be more
practically relevant than the total energy, it's what's available to do work.

So we've transformed from a function  which are passive observers
here).
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6.5: Math Note - the Legendre Transform

Figure 

The change of variables described above is a standard mathematical routine known as the Legendre transform. Here’s the essence
of it, for a function of one variable. Suppose we have a function  that is convex, which is math talk for it always curves
upwards, meaning  is positive. Therefore its slope, we’ll call it

is a monotonically increasing function of x. For some physics (and math) problems, this slope y, rather than the variable x, is the
interesting parameter. To shift the focus to y, Legendre introduced a new function,  defined by

The function  is called the Legendre transform of the function .

To see how they relate, we take increments:

(Looking at the diagram, an increment  gives a related increment  as the slope increases on moving up the curve.)

From this equation,

Comparing this with , it’s clear that a second application of the Legendre transformation would get you back to the
original . So no information is lost in the Legendre transformation  in a sense contains , and vice versa.

This page titled 6.5: Math Note - the Legendre Transform is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.

6.5.1

f(x)

f(x)/dd2 x2

y = df(x)/dx (6.5.1)

g(y)

g(y) = xy−f(x) (6.5.2)

g(y) f(x)

dg(y) = ydx+xdy−df(x)

= ydx+xdy−ydx

= xdy

dx dy

x = dg(y)/dy (6.5.3)

y = df(x)/dx

f(x) g(y) f(x)

https://libretexts.org/
https://phys.libretexts.org/@go/page/29565?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/06%3A_Hamiltons_Equations/6.05%3A_Math_Note_-_the_Legendre_Transform
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/06%3A_Hamiltons_Equations/6.05%3A_Math_Note_-_the_Legendre_Transform
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/06%3A_Hamiltons_Equations/6.05%3A_Math_Note_-_the_Legendre_Transform?no-cache
http://galileo.phys.virginia.edu/~mf1i/


6.6.1 https://phys.libretexts.org/@go/page/29566

6.6: Hamilton's Use of the Legendre Transform
We have the Lagrangian , and Hamilton's insight that these are not the best variables, we need to replace the Lagrangian
with a closely related function (like going from the energy to the free energy), that is a function of the qi (that's not going to
change) and, instead of the . This is exactly a Legendre transform like the one from 

 discussed above.

The new function is

from which

analogous to  This new function is of course the Hamiltonian.
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6.7: Checking that We Can Eliminate the q˙i's
We should check that we can in fact write

as a function of just the variables , with all trace of the ’s eliminated. Is this always possible? The answer is yes.

Recall the ’s only appear in the Lagrangian in the kinetic energy term, which has the general form

where the coefficients  depend in general on some of the 's but are independent of the velocities, the  Therefore, from
the definition of the generalized momenta,

and we can write this as a vector-matrix equation,

That is,  is a linear function of the . Hence, the inverse matrix  will give us  as a linear function of the pj's, and then
putting this expression for the  into the Lagrangian gives the Hamiltonian as a function only of the qi's and the pi's, that is, the
phase space variables.

The matrix A is always invertible because the kinetic energy is positive definite (as is obvious from its Cartesian representation)
and a symmetric positive definite matrix has only positive eigenvalues, and therefore is invertible.

This page titled 6.7: Checking that We Can Eliminate the q˙i's is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.

H ( , ) = −L ( , )pi qi ∑
i=1

n
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aij qk q̇ i q̇ j (6.7.2)
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∂L
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n

aij qk q̇ j (6.7.3)
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6.8: Hamilton’s Equations
Having finally established that we can write, for an incremental change along the dynamical path of the system in phase space,

we have immediately the so-called canonical form of Hamilton’s equations of motion:

Evidently going from state space to phase space has replaced the second order Euler-Lagrange equations with this equivalent set of
pairs of first order equations.
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6.9: A Simple Example

For a particle moving in a potential in one dimension, .

Hence

Therefore

(Of course, this is just the total energy, as we expect.)

The Hamiltonian equations of motion are

So, as we’ve said, the second order Lagrangian equation of motion is replaced by two first order Hamiltonian equations. Of course,
they amount to the same thing (as they must!): differentiating the first equation and substituting in the second gives immediately 

, the original Newtonian equation (which we derived earlier from the Lagrange equations).
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1

2
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p
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(6.9.1)

H = p −L = p − m +V (q)q̇ q̇
1

2
q̇

2

= +V (q)
p2

2m

(6.9.2)

= =q̇
∂H

∂p

p

m

= − = − (q)ṗ
∂H

∂q
V ′

(6.9.3)

− (q) = m ,  that is, F = maV ′ q̈
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7.1: The Poisson Bracket
A function  of the phase space coordinates of the system and time has total time derivative

This is often written as

where

is called the Poisson bracket.

Equation  is Landau's definition for the Poisson bracket. It differs in sign from Goldstein, Wikipedia
and others.

If, for a phase space function  (that is, no explicit time dependence)  is a constant
of the motion, also called an integral of the motion.

In fact, the Poisson bracket can be defined for any two functions defined in phase space:

It’s straightforward to check the following properties of the Poisson bracket:

The Poisson brackets of the basic variables are easily found to be:

Now, using

and the basic variable P.B.’s, we find

and, in fact, the bracket of p with any reasonably smooth function of q is:
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7.2: Interlude - a Bit of History of Quantum Mechanics
It should be clear at this point that the Poisson bracket is very closely related to the commutator in quantum mechanics. In the usual
quantum mechanical notation, the momentum operator

so the commutator (which acts on a wavefunction, remember)

identical to the Poisson bracket result multiplied by the constant .

The first successful mathematical formulation of quantum mechanics, in 1925 (before Schrödinger’s equation!) was by Heisenberg.
As you know, he was the guy with the Uncertainty Principle: he realized that you couldn’t measure momentum and position of
anything simultaneously. He represented the states of a quantum system as vectors in some Hilbert space, and the dynamical
variables as matrices acting on these vectors. He interpreted the result of a measurement as finding an eigenvalue of a matrix. If
two variables couldn’t be measured at the same time, the matrices had a nonzero commutator. In particular, for a particle’s position
and momentum the matrix representations satisfied .

Dirac made the connection with Poisson brackets on a long Sunday walk, mulling over Heisenberg’s uv−vu (as it was written). He
suddenly but dimly remembered what he called “these strange quantities”—the Poisson brackets—which he felt might have
properties corresponding to the quantum mathematical formalism Heisenberg was building. But he didn’t have access to advanced
dynamics books until the college library opened the next morning, so he spent a sleepless night. First thing Monday, he read the
relevant bit of Whittaker’s Analytical Dynamics, and saw he was correct. (From the biography by Helge Kragh.)

Dirac went on to adapt the equation

to quantum mechanics: for time-independent functions,

becomes

for time development of an operator in the Heisenberg picture, where state vectors of closed systems do not vary in time (as
opposed to the Schrödinger picture, where the vectors vary and the operators remain constant).
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7.3: The Jacobi Identity
Another important identity satisfied by the Poisson brackets is the Jacobi identity

This can be proved by the incredibly tedious method of just working it out. A more thoughtful proof is presented by Landau, but
we’re not going through it here. Ironically, the Jacobi identity is a lot easier to prove in its quantum mechanical incarnation (where
the bracket just signifies the commutator of two matrix operators,  Jacobi’s identity plays an important
role in general relativity.
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7.4: Poisson’s Theorem
If  and  are two constants of the motion (i.e., they both have zero Poisson brackets with the Hamiltonian), then the Poisson
bracket  is also a constant of the motion. Of course, it could be trivial, like  or it could be a function of the original
variables. But sometimes it’s a new constant of motion. If f,g are time-independent, the proof follows immediately from Jacobi’s
identity. A proof for time dependent functions is given in Landau—it’s not difficult.
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7.5: Example- Angular Momentum Components
A moving particle has angular momentum about the origin 

Using the Poisson brackets found above,

we have

(Note: we remind the reader that we are following Landau's convention, in which the Poisson brackets have the opposite sign to the
more common use, for example in Goldstein and Wikipedia.)

We conclude that if two components of angular momentum are conserved, so is the third.
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8: A New Way to Write the Action Integral
Following Landau, we'll first find how the action integral responds to incremental changes in the endpoint coordinates and times,
then use the result to write the action integral itself in a new, more intuitive way. This new formulation shows very directly the link
to quantum mechanics, and variation of the action in this form gives Hamilton's equations immediately.
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8.2: Function of Endpoint Time
8.3: Varying Both Ends
8.4: Another Way of Writing the Action Integral
8.5: How this Classical Action Relates to Phase in Quantum Mechanics
8.6: Hamilton’s Equations from Action Minimization
8.7: How Can p, q Really Be Independent Variables?
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8.1: Function of Endpoint Position

Figure : Both P and P' are physically realizable paths

We’ll now think of varying the action in a slightly different way. (Note: We’re using Landau's notation.) Previously, we considered
the integral of the Lagrangian over all possible different paths from the initial place and time  to the final place and time 

and found the path of minimum action. Now, though, we’ll start with that path, the actual physical path, and investigate the
corresponding action as a function of the final endpoint variables, given a fixed beginning place and time.

Taking one degree of freedom (the generalization is straightforward), for a small path variation the incremental change in action

(Recall that first term comes from the calculus of variations when we allow the end point to vary -- it’s exactly the same point we
previously discussed in the brachistochrone problem of fastest time for a given horizontal distance, allowing the vertical position of
the endpoint to be a free parameter.)

With the incremental variation, we’ve gone from the physical path P (followed by the system in configuration space from 
 to a second path  beginning at the same place and time, and ending at the same time  as P, but at a slightly

different place .

Both paths  are fully determined by their initial and final positions and times, so  must correspond to slightly different
initial velocities. The important point is that since both paths describe the natural dynamical development of the system from the
initial conditions, the system obeys the equations of motion at all times along both paths, and therefore the integral term in the
above equation is identically zero.

Writing  the action, regarded as a function of the final position variable, with the final time fixed at , has
the differential

For the multidimensional case, the incremental change in the action on varying the final position variable is given by (dropping the
superscript)
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8.2: Function of Endpoint Time
What about the action as a function of the final point arrival time?

Since , the value of the Lagrangian at the endpoint. Remember we are defining the action at a point as that
from integrating along the true path up to that point.

Landau denotes 

and we’ll be doing this, but it’s crucial to keep in mind that the endpoint position and time are the variables here!

If we now allow an incremental time increase, , with the final coordinate position as a free parameter, the
dynamical path will now continue on, to an incrementally different finishing point.

This will give (with t understood from now on to mean 

Putting this together with  gives immediately the partial time derivative

and therefore, combining this with the result  from the previous section,

This, then, is the total differential of the action as a function of the spatial and time coordinates of the end of the path.
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8.3: Varying Both Ends
The argument given above for the incremental change in action from varying the endpoint is clearly equally valid for varying the
beginning point of the integral (there will be a sign change, of course), so

The initial and final coordinates and times specify the action and the time development of the system uniquely.

(Note: We’ll find this equation again in the section on canonical transformations -- the action will be seen there to be the generating
function of the time-development canonical transformation, this will become clear when we get to it.)
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8.4: Another Way of Writing the Action Integral
Up to this point, we’ve always written the action as an integral of the Lagrangian with respect to time along the path,

However, the expression derived in the last section for the increment of action generated by an incremental change in the path
endpoint is clearly equally valid for the contribution to the action from some interior increment of the path, say from 

 so we can write the total action integral as the sum of these increments:

In this integral, of course, the  add up to cover the whole path.

(In writing  we’re following Landau’s default practice of taking the action as a function of the final
endpoint coordinates and time, assuming the beginning point to be fixed. This is almost always fine—we’ll make clear when it
isn’t.)
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8.5: How this Classical Action Relates to Phase in Quantum Mechanics
The link between classical and quantum mechanics is particularly evident in the expression for the action integral given above. In
the so-called semi-classical regime of quantum mechanics, the de Broglie waves oscillate with wavelengths much smaller than
typical sizes in the system. This means that locally it’s an adequate approximation to treat the Schrödinger wave function as a plane
wave,

where the amplitude function  only varies over distances much greater than the wavelength, and times far
longer than the oscillation period. This expression is valid in almost all the classically accessible regions, invalid in the
neighborhood of turning points, but the size of those neighborhoods goes to zero in the classical limit.

As we’ve discussed earlier, in the Dirac-Feynman formulation of quantum mechanics, to find the probability amplitude of a particle
propagating from one point to another, we add contributions from all possible paths between the two points, each path contributing
a term with phase equal to  times the action integral along the path.

From the semi-classical Schrödinger wave function above, it’s clear that the change in phase from a small change in the endpoint is
 coinciding exactly with the incremental contribution to the action in

So again we see, here very directly, how the action along a classical path is a multiple of the quantum mechanical phase change
along the path.
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8.6: Hamilton’s Equations from Action Minimization
For arbitrary small path variations  in phase space, the minimum action condition using the form of action
given above generates Hamilton’s equations.

(Note for nitpickers: This may seem a bit surprising, since we generated this form of the action using the equations along the actual
dynamical path, how can we vary it and still use them? Bear with me, you’ll see.)

We’ll prove this for a one dimensional system, it’s trivial to go to many variables, but it clutters up the equations.

For a small path deviation  the change in the action  is

and integrating  by parts, with  at the endpoints,

The path variations  are independent and arbitrary, so must have identically zero coefficients—Hamilton’s
equations follow immediately,  Again, it’s worth emphasizing the close parallel with quantum mechanics:
Hamilton’s equations written using Poisson brackets are:

In quantum mechanics, the corresponding Heisenberg equations of motion for position and momentum operators in terms of
commutators are
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8.7: How Can p, q Really Be Independent Variables?
It may seem a little odd at first that varying p,q as independent variables leads to the same equations as the Lagrangian
minimization, where we only varied q, and that variation “locked in” the variation of . And, isn’t p defined
in terms of  which is some function of ? So wouldn’t varying q automatically
determine the variation of p?

The answer is, no, p is not defined as  from the start in Hamilton’s formulation. In this Hamiltonian
approach, p,q really are taken as independent variables, then varying them to find the minimum path gives the equations of motion,
including the relation between p and 

This comes about as follows: Along the minimum action path, we just established that

We also have that  so (Legendre transformation!)

from which, along the physical path, . So this identity, previously written as the definition of p, now arises
as a consequence of the action minimization in phase space.
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9.1: Divine Guidance
Incredibly, Maupertuis came up with a kind of principle of least action in 1747, long before the work of Lagrange and Hamilton.
Maupertuis thought a body moved along a path such that the sum of products of mass, speed and displacement taken over time was
minimized, and he saw that as the hand of God at work. This didn’t go over well with his skeptical fellow countrymen, such as
Voltaire, and in fact his formulation wasn’t quite right, but history has given him partial credit, his name on a least action principle.

Suppose we are considering the motion of a particle moving around in a plane from some initial point and time 
. Suppose its potential energy is a function of position, . For example, imagine aiming for the hole

on a rather bumpy putting green, but also requiring that the ball take a definite time, say two seconds, from being hit to falling in
the hole. The action principle we’ve talked about so far will give the path, parameterized by time, .
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9.2: It's Not About Time
But that’s not what you’re interested in doing! Of course you want the ball to get in the hole, but you’re not obsessed with how
long it takes to get there. Yet without that time requirement, there are obviously many possible paths. If you hit it really fast, so its
kinetic energy is far greater than the gravitational potential energy variations in the bumpy green, it will go close to a straight line
(we’re assuming that when it gets over the hole, it will drop in). As you slow down, the winning path will deviate from a straight
line because of the uneven terrain. So the physical path to the hole will vary continuously with initial kinetic energy.

Maupertuis’ principle is about what is the path  to the hole, say from  for a given initial energy
E .

So now we’re fixing the beginning and end points in space, but allowing possible variation in the final time. Also, we’re fixing the
energy:  This means that in varying the path to minimize the action, we must restrict ourselves to the class of
paths having energy E. In the bumpy putting green, you’re giving the ball a fixed initial speed , and trying different initial
directions to get it in the hole.

From the expression for the differential of action in terms of varying the endpoint (as well as the rest of the path—remember, that
gives the integral term that disappears along the dynamical path), we have all  (the endpoint is fixed at the hole), leaving

(Since we’re restricting to paths with energy E, H can be replaced by E.)
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9.3: The Abbreviated Action
Writing the action in the integral form along this constant energy path, we can trivially do the time integral:

Therefore, from the result  it necessarily follows that

 is called the abbreviated action: this is Maupertuis’ principle.

The abbreviated action for the physical path is the minimum among all paths satisfying energy conservation with total energy E and
passing through the designated final point—we don’t care when. Note that not all values of E will work—for example, if we start
putting the ball from a low point in the green, we’ll need to give it enough energy to get out of the hollow to begin with. But there
will be valid physical paths for a wide range of energy values, since the final arrival time is flexible.

Naturally, since this is a path through configuration space, to evaluate the abbreviated action

it must be expressed in terms of the q's. For the usual Lagrangian , with , and
momenta

we find the abbreviated action

This is indeed an integral along a path in configuration space, but we need to get rid of the dt. Physically, we can see how to do this
—since we know the total energy E, the kinetic energy at a point is  so that determines the speed, hence
the time .

That is, (following Landau)

from which

(This doesn’t look like a very healthy mathematical object, but as you’ll see, it’s fine.)

Hence

To take a very simple case; if there is no potential, and just a free particle,  this is nothing but the length of
the path multiplied by , minimized by a straight line between the two points.

If we have a particle of mass m in a spatially varying potential , the abbreviated action reduces to

where  is an element of path length. (This is obvious, really—the square root is the absolute value of the
momentum, and the momentum vector, of course, points along the path.)

The matrix  sometimes called the mass matrix, is evidently a metric, a measure in the configuration
space, by which the “length” of the paths, and particularly the minimum action path, are measured.

Use Maupertuis’ principle to find the path of a cannonball, energy E, fired at a target which is x meters distant horizontally,
both cannon and target being at sea level (think ships!).
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9.4: Maupertuis’ Principle and the Time-Independent Schrödinger Equation
Recall that the action, multiplied by  is equivalent to the phase in quantum mechanics. The case we’re
discussing here is evidently related to the time-independent Schrödinger equation, the one for an energy eigenstate, with the time-
dependent phase factored out. In other words, imagine solving the time-independent Schrödinger equation for a particle in a
potential by summing over paths. In the classical limit, the abbreviated action gives the total phase change along a path.
Minimizing this to find the classical path exactly parallels our earlier discussion of Fermat’s principle of least time, paths close to
Maupertuis’ minimum have total phase change along them all the same to leading order, and so add coherently.
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10.1: Point Transformations
It’s clear that Lagrange’s equations are correct for any reasonable choice of parameters labeling the system configuration. Let’s call
our first choice . Now transform to a new set, maybe even time dependent, . The
derivation of Lagrange’s equations by minimizing the action still works, so Hamilton’s equations must still also be OK too. This is
called a point transformation: we’ve just moved to a different coordinate system, we’re relabeling the points in configuration space
(but possibly in a time-dependent way).

This page titled 10.1: Point Transformations is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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10.2: General and Canonical Transformations
In the Hamiltonian approach, we’re in phase space with a coordinate system having positions and momenta on an equal footing. It
is therefore possible to think of more general transformations than the point transformation (which was restricted to the position
coordinates).

We can have transformations that mix up position and momentum variables:

where  means the whole set of the original variables.

In those original variables, the equations of motion had the nice canonical Hamilton form,

Things won’t usually be that simple in the new variables, but it does turn out that many of the “natural” transformations that arise
in dynamics, such as that corresponding to going forward in time, do preserve the form of Hamilton’s canonical equations, that is to
say

A transformation that retains the canonical form of Hamilton’s equations is said to be canonical.

(Jargon note: these transformations are occasionally referred to as contact transformations.)
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10.3: Generating Functions for Canonical Transformations
In this section, we go back to considering the full action (not the abbreviated--fixed energy--action used earlier).

Now, we've established that Hamilton’s equations in the original parameterization follow from minimizing the action in the form

For a canonical transformation, by definition the new variables must also satisfy Hamilton's equations, so, working backwards,
action minimization must be expressible in the new variables exactly as in the old ones:

Now, we’ve previously stated that two actions lead to the same equations of motion if the integrands differ by the total differential
of some function F of coordinates, momenta and time. (That’s because in adding such a function to the integrand, the function’s
contribution to the integral is just the difference between its values at the two (fixed) ends, so in varying the path between the ends
to minimize the total integral and so generate the equations of motion, this exact differential  makes no contribution.)

That is to say, the two action integrals will be minimized on the same path through phase space provided the integrands differ by an
exact differential:

 is called the generating function of the transformation. Rearranging the equation above,

Notice that the differentials here are  so these are the natural variables for expressing the generating function.

We will therefore write it as ,

and from the expression for  above,

Let’s reemphasize here that a canonical transformation will in general mix up coordinates and momenta—they are the same kind of
variable, from this Hamiltonian perspective. They can even be exchanged: for a system with one degree of freedom, for example,
the transformation

is a perfectly good canonical transformation (check out Hamilton’s equations in the new variables), even though it turns a position
into a momentum and vice versa!

If this particular transformation is applied to a simple harmonic oscillator, the Hamiltonian remains the same (we’re taking 

 so the differential  of the generating function (given above) has no  term, it is just

The generating function for this transformation is easily found to be

from which

as required.

δ∫ ( d −Hdt) = 0∑
i

pi qi (10.3.1)

δ∫ ( d − dt) = 0∑
i

Pi Qi H ′ (10.3.2)

dF

d −Hdt = d − dt+dF∑
i

pi qi ∑
i

Pi Qi H ′ (10.3.3)

F

dF = d − d +( −H)dt∑
i

pi qi ∑
i

Pi Qi H ′ (10.3.4)

d , d , dtqi Qi

F (q,Q, t)

dF

= , = − , = H +pi
∂F (q,Q, t)

∂qi
Pi

∂F (q,Q, t)

∂Qi

H ′
∂F (q,Q, t)

∂t
(10.3.5)

Q = p, P = −q (10.3.6)

H = ( + )
1

2
p2 q2 dF −HH ′

dF (q,Q) = pdq−PdQ (10.3.7)

F (q,Q) = Qq (10.3.8)

dF = Qdq+qdQ = pdq−PdQ (10.3.9)
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Another canonical transformation for a simple harmonic oscillator is . You will investigate this
in homework.
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10.4: Generating Functions in Different Variables
This  is only one example of a generating function—in discussing Liouville’s theorem later, we’ll find it
convenient to have a generating function expressed in the q 's and P 's. We get that generating function, often labeled 

 by a Legendre transformation:

Then, for this new generating function

Evidently, we can similarly use the Legendre transform to find generating functions depending on the other possible mixes of old
and new variables: p,Q, and p,P.

What’s the Point of These Canonical Transformations?

It will become evident with a few examples: it is often possible to transform to a set of variables where the equations of motion are
a lot simpler, and, for some variables, trivial. The canonical approach also gives a neat proof of Liouville’s theorem, which we’ll
look at shortly.
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10.5: Poisson Brackets under Canonical Transformations
First, note that if Hamilton’s equations have the standard canonical form

with respect to a pair of variables 

then those variables are said to be canonically conjugate.

The Poisson bracket is invariant under a canonical transformation, meaning

Let's begin by establishing that

We'll show the method by taking just one pair of variables p,q, and a generating function 

Then

With the generating function 

and

Putting these results into the Poisson bracket,

These basic results can then be used to prove the general Poisson bracket is independent of the parametrization of phase space,
details in Goldstein and elsewhere.

Landau, on the other hand, offers a one-line proof of the invariance of the Poisson bracket of two dynamical functions 
 under a canonical transformation: imagine a fictitious system having g as its Hamiltonian. Then 
 and cannot depend on the coordinate system used, so must equal .

This page titled 10.5: Poisson Brackets under Canonical Transformations is shared under a not declared license and was authored, remixed, and/or
curated by Michael Fowler.

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math
Processing Error] [Math
Processing Error] [Math Processing Error]

https://libretexts.org/
https://phys.libretexts.org/@go/page/29460?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/10%3A_Canonical_Transformations/10.05%3A_Poisson_Brackets_under_Canonical_Transformations
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/10%3A_Canonical_Transformations/10.05%3A_Poisson_Brackets_under_Canonical_Transformations
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/10%3A_Canonical_Transformations/10.05%3A_Poisson_Brackets_under_Canonical_Transformations?no-cache
http://galileo.phys.virginia.edu/~mf1i/


10.6.1 https://phys.libretexts.org/@go/page/29461

10.6: Time Development is a Canonical Transformation Generated by the Action
The transformation from the variables  has to be canonical, since the system obeys Hamilton’s
(canonical!) equations at all times.

In fact, the variation of the action along the true path from  with respect to final and initial coordinates and
times was found earlier to be

and, comparing that expression with the differential form of a canonical transformation corresponding to 
in the discussion above, which was

we see that the action itself is the generating function for the canonical transformation from the variables 
time  actually −S generates the forward motion in time, the equivalent variables in the two equations
above being
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11.1: Paths in Simple Phase Spaces - the SHO and Falling Bodies
Let’s first think further about paths in phase space. For example, the simple harmonic oscillator, with Hamiltonian 

 describes circles in phase space parameterized with the variables . (A more usual notation is to

write the potential term as )

Question: are these circles the only possible paths for the oscillator to follow?

Answer: yes: any other path would intersect a circle, and at that point, with both position and velocity defined, there is only one
path forward (and back) in time possible, so the intersection can’t happen.

Figure : Four phase space trajectories for falling objects

Here’s an example from Taylor of paths in phase space: four identical falling bodies are released simultaneously, see figure, x
measures distance vertically down. Two are released with zero momentum from the origin O and from a point  meters down, the
other two are released with initial momenta  again from the points O, 

(Note the difference in initial slope.)

Check: convince yourself that all these paths are parts of parabolas centered on the x -axis. (Just as the simple harmonic oscillator
phase space is filled with circular paths, this one is filled with parabolas.)

Bodies released with the same initial velocity at the same time will keep the same vertical distance apart, those released with
different initial velocities will keep the same velocity difference, since all accelerate at g. Therefore, the area of the parallelogram
formed by the four phase space points at a later time will have the same area as the initial square.

Exercise: convince yourself that all the points of an initial vertical side of the square all stay in line as time goes on, even though
the line does not stay vertical.

The four sides of the square deform with time to the four sides of the parallelogram, point by point. This means that if we have a
falling stone corresponding initially to a point inside the square, it will go to a point inside the parallelogram, because if somehow
its path reached the boundary, we would have two paths in phase space intersecting, and a particle at one point in phase space has a
uniquely defined future path (and past).

This page titled 11.1: Paths in Simple Phase Spaces - the SHO and Falling Bodies is shared under a not declared license and was authored,
remixed, and/or curated by Michael Fowler.
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11.2: Following Many Systems- a “Gas” in Phase Space
We’ve looked at four paths in phase space, corresponding to four falling bodies, all beginning at , but with different initial co-
ordinates in  Suppose now we have many falling bodies, so that at t=0 a region of phase space can be imagined as filled with
a “gas” of points, each representing one falling body, initially at 

The argument above about the phase space path of a point within the square at t=0 staying inside the square as time goes on and the
square distorts to a parallelogram must also be true for any dynamical system, and any closed volume in phase space, since it
depends on phase space paths never intersecting: that is,

if at t = 0 some closed surface in phase space contains a number of points of the gas, those same points remain inside the surface
as it develops in time -- none exit or enter.

For the number of points N sufficiently large, the phase space time development looks like the flow of a fluid.

This page titled 11.2: Following Many Systems- a “Gas” in Phase Space is shared under a not declared license and was authored, remixed, and/or
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11.3: Liouville’s Theorem- Local Gas Density is Constant along a Phase Space Path
The falling bodies phase space square has one more lesson for us: visualize now a uniformly dense gas of points inside the initial
square. Not only does the gas stay within the distorting square, the area it covers in phase space remains constant, as discussed
above, so the local gas density stays constant as the gas flows through phase space.

Liouville’s theorem is that this constancy of local density is true for general dynamical systems.
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11.4: Landau’s Proof Using the Jacobian
Landau gives a very elegant proof of elemental volume invariance under a general canonical transformation, proving the Jacobian
multiplicative factor is always unity, by clever use of the generating function of the canonical transformation.

Jacobians have wide applicability in different areas of physics, so this is a good time to review their basic properties, which we do
below, as a preliminary to giving the proof.

It must be admitted that there are simpler ways of deriving Liouville’s theorem, directly from Hamilton’s equations, the reader may
prefer to skip the Jacobian proof at first reading.
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11.5: Jacobian for Time Evolution
As we’ve established, time development is equivalent to a canonical coordinate transformation,

Since we already know that the number of points inside a closed volume is constant in time, Liouville’s theorem is proved if we can
show that the volume enclosed by the closed surface is constant, that is, with 

denoting the volume V evolves to become, we must prove

If you’re familiar with Jacobians, you know that (by definition)

where the Jacobian

Liouville’s theorem is therefore proved if we can establish that D=1. If you’re not familiar with Jacobians, or need reminding, read
the next section!

This page titled 11.5: Jacobian for Time Evolution is shared under a not declared license and was authored, remixed, and/or curated by Michael
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11.6: Jacobians 101
Suppose we are integrating a function over some region of ordinary three-dimensional space,

but we want to change variables of integration to a different set of coordinates  such as, for example,
. The new coordinates are of course functions of the original ones  etc., and we

assume that in the region of integration they are smooth, well-behaved functions. We can’t simply re-express f  in terms of the new
variables, and replace the volume differential  that gives the wrong answer—in a plane, you can’t replace

 with , you have to use . That extra factor 
 is called the Jacobian, it’s clear that in the plane a small element with sides of fixed lengths 

 is bigger the further it is from the origin, not all  elements are equal, so to speak. Our task is to
construct the Jacobian for a general change of coordinates.

We need to think carefully about the volumes in the three-dimensional space represented by  and by 
. Of course, the ’s are just ordinary perpendicular Cartesian axes so the volume is just

the product of the three sides of the little box, .Imagine this little box, its corner closest to the origin at
 and its furthest point at the other end of the body diagonal at  Let’s take these

two points in the qi coordinates to be at . In visualizing this, bear in mind that the q axes need not be
perpendicular to each other (but they cannot all lie in a plane, that would not be well-behaved).

For the  coordinate integration, we imagine filling the space with little cubical boxes. For the 
 integration, we have a system of space filling infinitesimal parallelepipeds, in general pointing different ways in

different regions (think . What we need to find is the volume of the incremental parallelepiped with sides
we’ll write as vectors in x -coordinates, . These three incremental vectors are along the corresponding

 coordinate axes, and the three added together are the displacement from 

Hence, in components,

Now the volume of the parallelepiped with sides the three vectors from the origin  area of the
parallelogram, then the dot product singles out the component of  perpendicular to the plane of 

).

So, the volume corresponding to the increments  in  space is

writing  (Landau’s notation) for the determinant, which is in fact the Jacobian, often denoted by 
.

The standard notation for this determinantal Jacobian is

So the appropriate replacement for the three dimensional incremental volume element represented in the integral by 
 is
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The inverse

is easily established using the chain rule for differentiation.

check this!

Thus the change of variables in an integral is accomplished by rewriting the integrand in the new variables, and replacing

The argument in higher dimensions is just the same: on going to dimension , the hypervolume element is
equal to that of the  dimensional element multiplied by the component of the new vector perpendicular to
the  dimensional element. The determinantal form does this automatically, since a determinant with two
identical rows is zero, so in adding a new vector only the component perpendicular to all the earlier vectors contributes.

We’ve seen that the chain rule for differentiation gives the inverse as just the Jacobian with numerator and denominator reversed, it
also readily yields

and this extends trivially to n dimensions.

It’s also evident form the determinantal form of the Jacobian that

identical variables in numerator and denominator can be canceled. Again, this extends easily to 
dimensions.

This page titled 11.6: Jacobians 101 is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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11.7: Jacobian proof of Liouville’s Theorem
After this rather long detour into Jacobian theory, recall we are trying to establish that the volume of a region in phase space is
unaffected by a canonical transformation, we need to prove that

and that means we need to show that the Jacobian

Using the theorems above about the inverse of a Jacobian and the chain rule product,

Now invoking the rule that if the same variables appear in both numerator and denominator, they can be cancelled,

Up to this point, the equations are valid for any nonsingular transformation—but to prove the numerator and denominator are equal
in this expression requires that the equation be canonical, that is, be given by a generating function, as explained earlier.

Recall now the properties of the generating function 

from which

In the expression for the Jacobian , the ,  element of the
numerator is .

In terms of the generating function .

Exactly the same procedure for the denominator gives the ,  element to be 

In other words, the two determinants are the same (rows and columns are switched, but that doesn’t affect the value of a
determinant). This means D=1, and Liouville’s theorem is proved.

This page titled 11.7: Jacobian proof of Liouville’s Theorem is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.
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11.8: Simpler Proof of Liouville’s Theorem
Landau’s proof given above is extremely elegant: since phase space paths cannot intersect, point inside a volume stay inside, no
matter how the volume contorts, and since time development is a canonical transformation, the total volume, given by integrating
over volume elements , stays the same, since it’s an integral over the corresponding volume elements

 and we’ve just shown that .

Figure 

Here we’ll take a slightly different point of view: we’ll look at a small square in phase space and track how its edges are moving, to
prove its volume isn’t changing. (We’ll stick to one dimension, but the generalization is straightforward.)

The points here represent a “gas” of many systems in the two dimensional  phase space, and with a small
square area  tagged by having all the systems on its boundary represented by dots of a different color.
What is the incremental change in area of this initially square piece of phase space in time ?

Begin with the top edge: the particles are all moving with velocities  but of course the only change in area
comes from the  term, that’s the outward movement of the boundary, so the area change in 

 from the movement of this boundary will be . Meanwhile, there will be a similar term
from the bottom edge, and the net contribution, top plus bottom edges, will depend on the change in  from
bottom to top, that is, a net area change from movement of these edges .

Adding in the other two edges (the sides), with an exactly similar argument, the total area change is

But from Hamilton’s equations 

and therefore

establishing that the total incremental area change as the square distorts is zero.

The conclusion is that the flow of the gas of systems in phase space is like an incompressible fluid, but with one important
qualification: the density may vary with position! It just doesn’t vary along a dynamical path.

This page titled 11.8: Simpler Proof of Liouville’s Theorem is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.
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11.9: Energy Gradient and Phase Space Velocity
For a time-independent Hamiltonian, the path in phase space  is a constant energy line, and we can think of the whole phase
space as delineated by many such lines, exactly analogous to contour lines joining points at the same level on a map of uneven
terrain, energy corresponding to height above sea level. The gradient at any point, the vector pointing exactly uphill and therefore
perpendicular to the constant energy path, is

Figure 

here . The velocity of a system’s point moving through phase space is

This vector is perpendicular to the gradient vector, as it must be, of course, since the system moves along a constant energy path.
But, interestingly, it has the same magnitude as the gradient vector! What is the significance of that? Imagine a small square
sandwiched between two phase space paths close together in energy, and suppose the distance between the two paths is decreasing,
so the square is getting squeezed, at a rate equal to the rate of change of the energy gradient. But at the same time it must be getting
stretched along the direction of the path, an amount equal to the rate of change of phase space velocity along the path—and they are
equal. So, this is just Liouville again, its area doesn’t change.

This page titled 11.9: Energy Gradient and Phase Space Velocity is shared under a not declared license and was authored, remixed, and/or curated
by Michael Fowler.

(q, p)

11.9.1

H = (∂H/∂q, ∂H/∂p)∇⃗  (11.9.1)

H = E

= ( , ) = (∂H/∂p, −∂H/∂q)v ⃗  q̇ ṗ (11.9.2)
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12.1: Back to Configuration Space…
We’ve established that the action, regarded as a function of its coordinate endpoints and time, satisfies

and at the same time  obeys the first-order differential equation

This is the Hamilton-Jacobi equation.

Notice that we’re now back in configuration space!

For example, the Hamilton-Jacobi equation for the simple harmonic oscillator in one dimension is

(Notice that this has some resemblance to the Schrödinger equation for the same system.)

If the Hamiltonian has no explicit time dependence  so the action has the form ,
and the Hamilton-Jacobi equation is

(This is analogous to the time independent Schrödinger equation for energy eigenstates.)

The Hamilton-Jacobi equation is therefore a third complete description of the dynamics, equivalent to Lagrange’s equations and to
Hamilton’s equations.

Since  only appears differentiated, if we have a solution to the equation, we can always add an arbitrary
constant term, to give an equally valid solution. For the general case, there will be a further s constants of integration, so a complete
solution has the form

the α's and  being the constants of integration. We're not saying it's easy to solve this differential in
general, just that we know how many constants of integration there must be in a final solution. Since the action determines the
motion of the system completely, the constants of integration will be determined by the given initial and final coordinates, or, they
could equally be regarded as functions of the initial coordinates and momenta (the initial momenta themselves being determined by
the given initial and final coordinates).

This page titled 12.1: Back to Configuration Space… is shared under a not declared license and was authored, remixed, and/or curated by Michael
Fowler.
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12.2: The Central Role of These Constants of Integration
To describe the time development of a dynamical system in the simplest way possible, it is desirable to find parameters that are
constant or change in a simple way. For example, motion in a spherically symmetric potential is described in terms of (constant)
angular momentum components.

Now, these constant 's are functions of the initial coordinates and momenta. Since they remain constant
during the motion, they are evidently among the "variables" that describe the dynamical development in the simplest possible way.
So, we need to construct a canonical transformation from our current set of variables (final coordinates and momenta) to a new set
of variables that includes these constant of integration "momenta". (The corresponding canonical "positions" will then be given by
differentiating the generating function with respect to the "momenta".)

How do we find the generating function for this transformation? A clue comes from one we’ve already discussed: that
corresponding to development in time, going from the initial set of variables to the final set, or back. That transformation was
generated by the action itself, expressed in terms of the two sets of positions. That is, we allowed both ends of the action integral
path to vary, and wrote the action as a function of the final (2) and initial (1) endpoint variables and times:

In the present section, the final endpoint positions are denoted simply by  these are the same as the earlier
. Explicitly, we're writing

Compare this expression for the action with the formal expression we just derived from the Hamilton Jacobi equation,

These two expressions for  have just the same form: the action is expressed as a function of the endpoint
position variables, plus another  variables needed to determine the motion uniquely. This time, instead of
the original position variables, though, the second set of variables is these constants of integration, the 's.

Now, just as we showed the action generated the transformation (either way) between the initial set of coordinates and momenta
and the final set, it will also generate a canonical transformation from the final set of coordinates and momenta to another canonical
set, having the 's as the new "momenta". We'll label the new "coordinates" (the canonical conjugates of the

's 

Taking then the action (neglecting the constant  which does nothing)  as the
generating function, it depends on the old coordinates  and the new momenta .
This is the same set of variables—old coordinates and new momenta—as those of the (previously discussed) generating function

.

Recall

so here

and

This defines the new "coordinates"  and ensures that the transformation is canonical.

To find the new Hamiltonian .

But

where  is just a constant, so
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The first equation in this section was

so the new Hamiltonian

We have made a canonical transformation that has led to a zero Hamiltonian!

What does that mean? It means that the neither the new momenta nor the new coordinates vary in time:

(The fact that all momenta and coordinates are fixed in this representation does not mean that the system doesn’t move—as will
become evident in the following simple example, the original coordinates are functions of these new (nonvarying!) variables and
time.)

The  equations  can then be used to find the  as
functions of  To see how all this works, it is necessary to work through an example.

A Simple Example of the Hamilton-Jacobi Equation: Motion Under Gravity

The Hamiltonian for motion under gravity in a vertical plane is

so the Hamilton-Jacobi equation is

First, this Hamiltonian has no explicit time dependence (gravity isn't changing!), so from , we can replace
the last term in the equation by .

A Simple Separation of Variables
Since the potential energy term depends only on , the equation is solvable using separation of variables. To
see this works, try

Putting this form into the equation, the resulting first term depends only on the variable , the second plus
third depend only on , the last term is just the constant . A function depending
only on  can only equal a function independent of  if both are constants, similarly
for .

Labeling the constants 

So these 's are constants of the motion, they are our new "momenta" (although they have dimensions of
energy).

Solving,

(We could add in constants of integration, but adding constants to the action changes nothing.)

So now we have

This is our generating function (equivalent to ), in terms of old coordinates and these new “momenta”,
 Following the Hamilton-Jacobi analysis, this action will generate a canonical transformation which

reduces the Hamiltonian to zero, meaning that not only these new momenta stay constant, but so do their conjugate “coordinate”
variables,
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These equations solve the problem. Rearranging, the trajectory is

The four “constants of motion”  are uniquely fixed by the initial coordinates and velocities, and they
parameterize the subsequent time evolution of the system.

This page titled 12.2: The Central Role of These Constants of Integration is shared under a not declared license and was authored, remixed, and/or
curated by Michael Fowler.
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12.3: Separation of Variables for a Central Potential; Cyclic Variables
Landau presents in some details the separation of variables method for a  potential, interesting here
because it results in equations you’ve met before—those arising in the standard quantum treatment of the hydrogen atom.

How do we make any progress with these formidable differential equations? One possibility is that some coordinates are cyclic,
meaning that  say, does not appear explicitly in the Hamiltonian—for example, an angle variable in a
spherically symmetric field. Then we have immediately that the corresponding momentum, , a constant.

The Hamiltonian for a central potential is:

The Hamilton-Jacobi equation is therefore

The first thing to note is that  is cyclic (it doesn't appear in the Hamiltonian), so we can immediately
replace .

Then we have:

Now we seek a solution of the form

Substituting in the equation, notice that the expression in square brackets will become

independent of , but on multiplying the full equation by , and staring at the result,
we see that in fact it is purely a function of . This means that it’s a constant, say

and then

These first-order equations can then be solved, at least numerically (and of course exactly for some cases). Physically, 
 being the total angular momentum, and  is the total energy.

Note: recall that in quantum mechanics, for example in solving the Schrödinger equation for the hydrogen atom, the separation of
variables was achieved by writing the wave function as a product of functions belonging to the different variables. Here we use a
sum—remember that the action corresponds closely to the phase of a quantum mechanical system, so a sum of actions is analogous
to a product of wave functions.

This page titled 12.3: Separation of Variables for a Central Potential; Cyclic Variables is shared under a not declared license and was authored,
remixed, and/or curated by Michael Fowler.
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13.1: Adiabatic Invariants
Imagine a particle in one dimension oscillating back and forth in some potential. The potential doesn’t have to be harmonic, but it
must be such as to trap the particle, which is executing periodic motion with period T. Now suppose we gradually change the
potential, but keeping the particle trapped. That is, the potential depends on some parameter , which we
change gradually, meaning over a time much greater than the time of oscillation: 

A crude demonstration is a simple pendulum with a string of variable length, for example one hanging from a fixed support, but the
string passing through a small loop that can be moved vertically to change the effective length (Figure ).

Figure 

If  were fixed, the system would have constant energy  and period 
. As λ is gradually changed from outside, there will be energy exchange in general, we’ll write the Hamiltonian

, the energy of the system will be  (Of course,  also
depends on the initial energy before the variation began.) Remember now that from Hamilton’s equations 
so during the variation

It’s clear from the diagram that the energy fed into the system as the ring moves slowly down varies throughout the cycle—for
example, when the pendulum is close to vertically down, its energy will be almost unaffected by moving the ring.

Moving slowly down means  varies very little in one cycle of the system, we can average over a cycle:

where

Now Hamilton’s equation  means that we can replace  with 
, so the time for going round one complete cycle is

(This won’t integrate to zero, because on the return leg both  will be negative.)

Therefore, replacing  as well,
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Now, we assume  are varying slowly enough that they are close to constant over one cycle, meaning that at
a given point q on the circuit, the momentum can be written  as constant and independent parameters. (We
can always adjust 

If we now partially differentiate  constant (appropriate infinitesimal pushes required!), we get, at point
 on the circuit,

which is the integrand in the numerator of our expression for 

In the denominator, we’ve replaced 

Rearranging,

This can be written

 is an adiabatic invariant: That means it stays constant when the parameters of the system change
gradually, even though the system’s energy changes.

Important! The partial derivative with respect to energy  determines the period of the motion:

(Note: here is another connection with quantum mechanics. If the system is connected to the outside world, for example if the
orbiting particle is charged, as it usually is, and can therefore emit radiation, since in quantum mechanics successive action
numbers  differ by integers, and the quantum of action is , the energy radiated per
quantum drop in action is . This is of course in the classical limit of high quantum numbers.)

Notice that  is the area of phase space enclosed by the integral,

For the SHO, it’s easy to check from the area of the ellipse that 

Take

The phase space elliptical orbit has semi-axes with lengths , so the area enclosed is 
.

The bottom line is that as we gradually change the spring strength (or, for that matter, the mass) of an oscillator (not necessarily
harmonic), the energy changes proportionally with the frequency.
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13.2: Adiabatic Invariance and Quantum Mechanics
This finding, the invariance of  for slow variation of the potential strength in a simple harmonic oscillator,
connects directly with quantum mechanics, as was first pointed out be Einstein in 1911. Suppose the (quantum mechanical)
oscillator is in the energy eigenstate with . Then the spatial wave function has 
zeros. If the potential is changed slowly enough (meaning little change over one cycle of oscillation) the oscillator will not jump to
another eigenstate (or, more precisely, the probability will go to zero with the speed of change). The wave function will gradually
stretch (or compress) but the number of zeroes will not change. Therefore the energy will stay at , and
track with . Of course, the classical system is a little different: the quantum system is “locked in” to a
particular state if the perturbation has vanishingly small frequency components corresponding to the energy differences 

 to available states. The classical system, on the other hand, can move to states arbitrarily close in energy. Landau
gives a nontrivial analysis of the classical system, concluding that the change in the adiabatic “invariant” is of order 

 for an external change acting over a time .

This page titled 13.2: Adiabatic Invariance and Quantum Mechanics is shared under a not declared license and was authored, remixed, and/or
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13.3: Action-Angle Variables
For a closed one-dimensional system undergoing finite motion (essentially a bound state), the equations of motion can be
reformulated using the action variable  in place of the energy . 

 is a function of energy alone in a closed one-dimensional system, and vice versa.

We’re visualizing here a particle moving back and forth in a one-dimensional well with potential zero at the origin, and the
potential never decreasing on going out from the origin to infinity. Obviously, if a potential has two low points, local bound states
can arise in different places, and the  relationship is complicated, with different branches, possibly coming
together at high energies.

Notice the integral sign in the expression for the action variable  is 
signifying an integral around a closed path, a circuit. Don’t confuse this integral with the abbreviated action integral, which has
the same integrand, but is an integral  along a contour from a fixed starting point, say the origin, to the
endpoint , not going around a closed path. (Apologies for using the same letter for the differential and
the endpoint, just following Landau.)

In the spirit of the discussion of constants of motion above, we make a canonical transformation to  as the
new “momentum”, using as generating function the abbreviated action 

The original momentum

The new “coordinate” conjugate to the momentum  will be

This is called an angle variable,  is the action variable, they are canonical.

To find Hamilton’s equations in the transformed variables, since there is no time-dependence in the transformation, and the system
is closed, the energy remains constant. Also, the energy is a function of  (meaning not of 

. )

Hence

so the angle is a linear function of time: 

One further point about the action variable and the action: since we define the action as

it follows that if we track the change in this integral as time goes on and the system moves round and round the circuit in phase
space, an additional term  will be added to the action for each time round, so the action is multi-valued.
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13.4: *Kepler Orbit Action-Angle Variables
We have not yet covered Kepler orbits, so skip this section for now: it's here to refer back to later. It's from Landau, p 167. For
motion confined to a plane, we can take the central potential analysis with , the angular momentum, so the
Hamiltonian is

The Hamilton-Jacobi equation is therefore

So, following the previous analysis of separation of variables for motion in a central potential, here

The action variable for the angular motion is just the angular momentum itself,

And the radial action variable, with potential 

(Details on doing the integral are given in the Appendix, Mathematica can do it too.)

So the energy is

The motion is degenerate: the two fundamental frequencies coincide, 

This has major consequences in quantum mechanics: the actions are all quantized in units of Planck's constant, for the hydrogen
atom, from the formula above, the energy depends only on the sum of the quantum numbers: above the ground state, energy levels
are degenerate, which is why the energy spectrum has the deceptively simple form so successfully explained by the Bohr model.

The orbital parameters, semi-latus rectum and eccentricity, from , are

Recall the semi-major axis is given by  and from the above expression

in the hydrogen atom quantum number notation.

Appendix: Doing the Integral for The Radial Action Ir
The integral can be put in the form

which can be integrated by taking a contour encircling the cut from  to . The
integral will have a contribution from the pole at the origin equal to  and another from the circle at infinity,
which is

Equating coefficients (multiplying the term inside the square root by )

So the contribution from the origin gives the .
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14.1: Preliminaries- Conic Sections

Figure 

Ellipses, parabolas and hyperbolas can all be generated by cutting a cone with a plane (see diagrams, from Wikimedia Commons).
Taking the cone to be , and substituting the z in that equation from the planar equation 

 is the vector perpendicular to the plane from the origin to the plane, gives a quadratic equation in .
This translates into a quadratic equation in the plane—take the line of intersection of the cutting plane with the 

 plane as the  axis in both, then one is related to the other by a scaling . To
identify the conic, diagonalized the form, and look at the coefficients of . If they are the same sign, it is an
ellipse, opposite, a hyperbola. The parabola is the exceptional case where one is zero, the other equates to a linear term. It is
instructive to see how an important property of the ellipse follows immediately from this construction.

Figure 

The slanting plane in the figure cuts the cone in an ellipse. Two spheres inside the cone, having circles of contact with the cone
, are adjusted in size so that they both just touch the plane, at points  respectively.

It is easy to see that such spheres exist, for example start with a tiny sphere inside the cone near the point, and gradually inflate it,
keeping it spherical and touching the cone, until it touches the plane. Now consider a point  on the ellipse.
Draw two lines: one from  to the point  where the small sphere touches, the other
up the cone, aiming for the vertex, but stopping at the point of intersection with the circle . Both these
lines are tangents to the small sphere, and so have the same length. (The tangents to a sphere from a point outside it form a cone,
they are all of equal length.) Now repeat with . We find that , the distances to the
circles measured along the line through the vertex. So  are therefore evidently the foci of the ellipse.
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14.2: The Ellipse

Squashed Circles and Gardeners

The simplest nontrivial planetary orbit is a circle:  is centered at the origin and has radius 
. An ellipse is a circle scaled (squashed) in one direction, so an ellipse centered at the origin with semimajor axis

 and semiminor axis  has equation

in the standard notation, a circle of radius  scaled by a factor  in the 
 direction. (It’s usual to orient the larger axis along . )

A circle can also be defined as the set of points which are the same distance a from a given point, and an ellipse can be defined as
the set of points such that the sum of the distances from two fixed points is a constant length (which must obviously be greater than
the distance between the two points!). This is sometimes called the gardener’s definition: to set the outline of an elliptic flower bed
in a lawn, a gardener would drive in two stakes, tie a loose string between them, then pull the string tight in all different directions
to form the outline.

Figure 

In the diagram, the stakes are at  the red lines are the string,  is an arbitrary point
on the ellipse.

 is called the semimajor axis length a,  the semiminor axis, length 
.

 are called the foci (plural of focus).

Notice first that the string has to be of length , because it must stretch along the major axis from 
 then back to  and for that configuration there’s a double length of string along 
. But the length , so the total length of string is the same as the total length 
.

Suppose now we put  at . Since , and the string has
length 
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Figure 

We get a useful result by applying Pythagoras’ theorem to the triangle 

(We shall use this shortly.)

Evidently, for a circle, 

Eccentricity
The eccentricity  of the ellipse is defined by

Eccentric just means off center, this is how far the focus is off the center of the ellipse, as a fraction of the semimajor axis. The
eccentricity of a circle is zero. The eccentricity of a long thin ellipse is just below one.

 on the diagram are called the foci of the ellipse (plural of focus) because if a point source of light is
placed at , and the ellipse is a mirror, it will reflect—and therefore focus—all the light to 

.

Equivalence of the Two Definitions
We need to verify, of course, that this gardener’s definition of the ellipse is equivalent to the squashed circle definition. From the
diagram, the total string length

and squaring both sides of

then rearranging to have the residual square root by itself on the left-hand side, then squaring again,

Ellipse in Polar Coordinates

In fact, in analyzing planetary motion, it is more natural to take the origin of coordinates at the center of the Sun rather than the
center of the elliptical orbit.

It is also more convenient to take  coordinates instead of  coordinates, because
the strength of the gravitational force depends only on . Therefore, the relevant equation describing a
planetary orbit is the  equation with the origin at one focus, here we follow the standard usage and choose
the origin at .
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For an ellipse of semi major axis  and eccentricity  the equation is:

This is also often written

where  is the semi-latus rectum, the perpendicular distance from a focus to the curve 
, see the diagram below: but notice again that this equation has 

(It’s easy to prove  using Pythagoras’ theorem, 

The directrix: writing , the equation for the ellipse can also be written as

where  (the origin x=0 being the focus).

The line  is called the directrix.

For any point on the ellipse, its distance from the focus is e times its distance from the directrix.

Deriving the Polar Equation from the Cartesian Equation
Note first that (following standard practice) coordinates  and  have different
origins!

Writing  in the Cartesian equation,

that is, with slight rearrangement,

This is a quadratic equation for  and can be solved in the usual fashion, but looking at the coefficients, it’s
evidently a little easier to solve the corresponding quadratic for 

The solution is:

from which

where we drop the other root because it gives negative , for example for . This
establishes the equivalence of the two equations.
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14.3: The Parabola
The parabola can be defines as the limiting curve of an ellipse as one focus (in the case we’re examining, that would be  going
to infinity. The eccentricity evidently goes to one,  since the center of the ellipse has gone to infinity as well. The semi-latus
rectum  is still defined as the perpendicular distance from the focus to the curve, the equation is

Note that this describes a parabola opening to the left. Taking , the equation of this parabola is .

Figure 

All parabolas look the same, apart from scaling (maybe just in one direction). The line perpendicular to the axis and the same
distance from the curve along the axis as the focus is, but outside the curve, is the parabola’s directrix. That is, .

Each point on the curve is the same distance from the focus as it is from the directrix. This can be deduced from the limit of the
ellipse property that the sum of distances to the two foci is constant. Let’s call the other focus . Then 

. So from the diagram, 

Prove by finding the slope, etc., that any ray of light emitted by a point lamp at the focus will be reflected by a parabolic mirror
to go out parallel to the axis.

From the diagram above, show that the equality  easily gives the equation for the parabola, both in (r,θ) and in
(x,y) coordinates.

This page titled 14.3: The Parabola is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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14.4: The Hyperbola

Cartesian Coordinates

The hyperbola has eccentricity . In Cartesian coordinates, it has equation

and has two branches, both going to infinity approaching asymptotes . The curve intersects the x axis at
 for any point on the curve,

the sign being opposite for the two branches.

Figure 

The semi-latus rectum, as for the earlier conics, is the perpendicular distance from a focus to the curve, and is 
. Each focus has an associated directrix, the distance of a point on the curve from the directrix multiplied by the eccentricity

gives its distance from the focus.

Polar Coordinates

The  equation with respect to a focus can be found by substituting  in the
Cartesian equation and solving the quadratic for 

Notice that  has a limited range: the equation for the right-hand curve with respect to its own focus 
 has

The equation for this curve is

in the range

This equation comes up with various signs! The left hand curve, with respect to the left hand focus, would have a positive sign
. With origin at  (on the left) the equation of the right-hand curve is 

 finally with the origin at  the left-hand curve is . These last
two describe repulsive inverse square scattering (Rutherford).

Note: A Useful Result for Rutherford Scattering
If we define the hyperbola by

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]
[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing
Error]

[Math Processing Error] [Math Processing Error]
[Math Processing Error]

[Math Processing Error] [Math
Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error]

[Math Processing Error] [Math Processing Error] [Math
Processing Error] [Math Processing Error] [Math Processing Error]

https://libretexts.org/
https://phys.libretexts.org/@go/page/29487?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/14%3A_Mathematics_for_Orbits/14.04%3A_The_Hyperbola


14.4.2 https://phys.libretexts.org/@go/page/29487

then the perpendicular distance from a focus to an asymptote is just b.

This equation is the same (including scale) as

Figure 

Proof: The triangle  is similar to triangle  and since the square of the hypotenuse

I find this a surprising result because in analyzing Rutherford scattering (and other scattering) the impact parameter, the distance of
the ingoing particle path from a parallel line through the scattering center, is denoted by . Surely this can’t
be a coincidence? But I can’t find anywhere that this was the original motivation for the notation.

This page titled 14.4: The Hyperbola is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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15.1: Preliminary- Polar Equations for Conic Section Curves
As we shall find, Newton’s equations for particle motion in an inverse-square central force give orbits that are conic section curves.
Properties of these curves are fully discussed in the accompanying “Math for Orbits” lecture, here for convenience we give the
relevant polar equations for the various possibilities.

For an ellipse, with eccentricity  and semilatus rectum (perpendicular distance from focus to curve) :

Recall the eccentricity  is defined by the distance from the center of the ellipse to the focus being , where  is the semi-major
axis, and .

For a parabola,

For a hyperbolic orbit with an attractive inverse square force, the polar equation with origin at the center of attraction is

where  (Of course, the physical path of the planet (say) is only one branch of the hyperbola.)

The  origin is at the center of attraction (the Sun), geometrically this is one focus of the hyperbola, and for this attractive case
it’s the focus “inside” the curve.

For a hyperbolic orbit with a repulsive inverse square force (such as Rutherford scattering), the origin is the focus “outside” the
curve, and to the right (in the usual representation):

with angular range .

This page titled 15.1: Preliminary- Polar Equations for Conic Section Curves is shared under a not declared license and was authored, remixed,
and/or curated by Michael Fowler.
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15.2: Summary
We’ll begin by stating Kepler’s laws, then apply Newton’s Second Law to motion in a central force field. Writing the equations
vectorially leads easily to the conservation laws for angular momentum and energy.

Next, we use Bernoulli’s change of variable  to prove that the inverse-square law gives conic section orbits.

A further vectorial investigation of the equations, following Hamilton, leads naturally to an unsuspected third conserved quantity,
after energy and angular momentum, the Runge Lenz vector.

Finally, we discuss the rather surprising behavior of the momentum vector as a function of time.

This page titled 15.2: Summary is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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15.3: Kepler’s Statement of his Three Laws
1. The planets all move in elliptical orbits with the Sun at one focus.

Figure 

2. As a planet moves in its orbit, the line from the center of the Sun to the center of the planet sweeps out equal areas in equal
times, so if the area (with curved side ) equals the area , the planet takes the same time to move from  to  as it
does from .

Figure 

3. The time it takes a planet to make one complete orbit around the sun  (one planet year) is related to the length of the semimajor
axis of the ellipse :

In other words, if a table is made of the length of year  for each planet in the Solar System, and the length of the semimajor axis
of the ellipse , and  is computed for each planet, the numbers are all the same.

These laws of Kepler’s are precise (apart from tiny relativistic corrections, undetectable until centuries later) but they are only
descriptive—Kepler did not understand why the planets should behave in this way. Newton’s great achievement was to prove that
all this complicated behavior followed from one simple law of attraction.

This page titled 15.3: Kepler’s Statement of his Three Laws is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.
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15.4: Dynamics of Motion in a Central Potential- Deriving Kepler’s Laws

Conserved Quantities

The equation of motion is:

Here we use the hat ^ to denote a unit vector, so  gives the magnitude (and sign) of the force. For Kepler’s problem, 

(Strictly speaking, we should be using the reduced mass for planetary motion, for our Solar System, that is a small correction. It
can be put in at the end if needed.)

Let's see how using vector methods we can easily find constants of motion: first, angular momentum - just act on the equation of
motion with  : 

Since , we have , which immediately integrates to 

a constant, the angular momentum, and note that  so the motion will always stay in a plane, with  perpendicular
to the plane.

This establishes that motion in a purely central force obeys a conservation law: that of angular momentum.

(As we've discussed earlier in the course, conserved quantities in dynamical systems are always related to some underlying
symmetry of the Hamiltonian. The conservation of angular momentum comes from the spherical symmetry of the system: the
attraction depends only on distance, not angle. In quantum mechanics, the angular momentum operator is a rotation operator: the
three components of the angular momentum vector are conserved, are constants of the motion, because the Hamiltonian is invariant
under rotation. That is, the angular momentum operators commute with the Hamiltonian. The classical analogy is that they have
zero Poisson brackets with the Hamiltonian.)

To get back to Kepler’s statement of his Laws, notice that when the planet moves through an incremental distance  it “sweeps

out” an area , so the rate of sweeping out area is . Kepler’s Second Law is just conservation

of angular momentum!

Second, conservation of energy: this time, we act on the equation of motion with :

This immediately integrates to

Another conservation law coming from a simple integral: conservation of energy. What symmetry does that correspond to? The
answer is the invariance of the Hamiltonian under time: the central force is time invariant, and we’re assuming there are time-
dependent potential terms, (such as from another star passing close by).

Standard Calculus Derivation of Kepler’s First Law
The first mathematical proof that an elliptic orbit about a focus meant an inverse-square attraction was given by Newton, using
Euclidean geometry (even though he invented calculus!). The proof is notoriously difficult to follow. Bernoulli found a fairly
straightforward calculus proof in polar coordinates by changing the variable to .

The first task is to express  in polar, meaning  coordinates

m = −f(r)r ⃗ ¨ r ⃗ ˆ (15.4.1)

f(r)

f(r) = GMm/r2

×r ⃗ 

m × = −f(r) ×r ⃗  r ⃗ ¨ r ⃗  r ⃗ ˆ (15.4.2)

× = 0r ⃗  r ⃗ ˆ ×m = 0r ⃗  r ⃗ ¨
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×d
1

2
r ⃗  r ⃗  dA/dt = | × | = L/2m

1

2
r ⃗  r ⃗ ˙
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The simplest way to find the expression for acceleration is to parameterize the planar motion as a complex number: position 
, notice this means  since the  term is in the positive  direction, and

differentiating again gives

For a central force, the only acceleration is in the  direction, so , which integrates to give

the constancy of angular momentum.

Equating the radial components,

This isn’t ready to integrate yet, because  varies too. But since the angular momentum  is constant, we can eliminate 
from the equation, giving:

This doesn’t look too promising, but Bernoulli came up with two clever tricks. The first was to change from the variable  to its
inverse, . The other was to use the constancy of angular momentum to change the variable  to .

Putting these together:

so

.

Therefore

and similarly

Going from  to  in the equation of motion

we get

or

r ,  velocity  + ireiθ ṙeiθ θ̇eiθ ( , r )ṙ θ̇ i ensures the rθ̇ θ

= = ( −r , +2 ) .a⃗  r ⃗ ¨ r̈ θ̇
2
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This equation is easy to solve! The solution is

where  is a constant of integration, determined by the initial conditions.

This proves that Kepler’s First Law follows from the inverse-square nature of the force, because (see beginning of lecture) the
equation above is exactly the standard  equation of an ellipse of semi major axis  and eccentricity , with the origin at one
focus:

Comparing the two equations, we can find the geometry of the ellipse in terms of the angular momentum, the gravitational
attraction, and the initial conditions. The angular momentum is

This page titled 15.4: Dynamics of Motion in a Central Potential- Deriving Kepler’s Laws is shared under a not declared license and was
authored, remixed, and/or curated by Michael Fowler.
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15.5: A Vectorial Approach- Hamilton’s Equation and the Runge Lenz Vector
(Mainly following Milne, Vectorial Mechanics, p 235 on.)

Laplace and Hamilton developed a rather different approach to this inverse-square orbit problem, best expressed vectorially, and
made a surprising discovery: even though conservation of angular momentum and of energy were enough to determine the motion
completely, for the special case of an inverse-square central force, something else was conserved. So the system has another
symmetry!

Hamilton’s approach (actually vectorized by Gibbs) was to apply the operator  to the equation of motion 

Now

so

This is known as Hamilton’s equation.

In fact, it's pretty easy to understand on looking it over:  has magnitude  and direction perpendicular to , 
, etc.

It isn’t very useful, though—except in one case, the inverse-square: 

Then it becomes tractable:  and—surprise—this integrates immediately to

where  is a vector constant of integration, that is to say we find

is constant throughout the motion!

This is unexpected: we found the usual conserved quantities, energy and angular momentum, and indeed they were sufficient for us
to find the orbit. But for the special case of the inverse-square law, something else is conserved. It’s called the Runge Lenz vector
(sometimes Laplace Runge Lenz, and in fact Runge and Lenz don’t really deserve the fame—they just rehashed Gibbs’ work in a
textbook).

From our earlier discussion, this conserved vector must correspond to a symmetry. Finding the orbit gives some insight into what’s
special about the inverse-square law.

Deriving the Orbital Equation from the Runge-Lenz Vector
The Runge Lenz vector gives a very quick derivation of the elliptic orbit, without Bernoulli’s unobvious tricks in the standard
derivation presented above.

First, taking the dot product of  with the angular momentum , we find , meaning that
the constant vector  lies in the plane of the orbit.

Next take the dot product of , we find 

×L⃗  m = −f(r)r ⃗ ¨ r ⃗ ˆ

×m = −f(r)[( ×m ) × ]L⃗  r ⃗ ¨ r ⃗  r ⃗ ˙ r ⃗ ˆ (15.5.1)
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where  is the angle between the planet’s orbital position and the Runge Lenz vector .

This is the standard  equation for an ellipse, with  the semi-latus rectum (the perpendicular distance from a focus to the
ellipse), e the eccentricity.

Evidently  points along the major axis.

The point is that the direction of the major axis remains the same: the elliptical orbit repeats indefinitely.

If the force law is changed slightly from inverse-square, the orbit precesses: the whole elliptical orbit rotates around the central
focus, the Runge Lenz vector is no longer a conserved quantity. Strictly speaking, of course, the orbit isn’t quite elliptical even for
once around in this case. The most famous example, historically, was an extended analysis of the precession of Mercury’s orbit,
most of which precession arises from gravitational pulls from other planets, but when all this was taken into account, there was left
over precession that led to a lengthy search for a planet closer to the Sun (it didn’t exist), but the discrepancy was finally, and
precisely, accounted for by Einstein’s theory of general relativity.

Variation of the Momentum Vector in the Orbit (Hodograph)
It’s interesting and instructive to track how the momentum vector changes as time progresses, this is easy from the Runge Lenz
equation. (Hamilton did this.)

From , we have

That is,

Staring at this expression, we see that  goes in a circle of radius km/L about a point distance  from the momentum plane
origin.

Of course,  is not moving in this circle at a uniform rate (except for a planet in a circular orbit), its angular progression around its
circle matches the angular progression of the planet in its elliptical orbit (because its location on the circle is always perpendicular
to the  direction from the circle center).

An orbit plotted in momentum space is called a hodograph.

Orbital Energy as a Function of Orbital Parameters Using Runge-Lenz
We’ll prove that the total energy, and the time for a complete orbit, only depend on the length of the major axis of the ellipse. So a
circular orbit and a very thin one going out to twice the circular radius take the same time, and have the same total energy per unit
mass.

Take  and square both sides, giving

Dividing both sides by 

Putting in the values found above,  we find

So the total energy, kinetic plus potential, depends only on the length of the major axis of the ellipse.
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Now for the time in orbit: we’ve shown area is swept out at a rate  so one orbit takes time  and 
, so

This is Kepler’s famous Third Law: , easily proved for circular orbits, not so easy for ellipses.

Important Hint!
Always remember that for Kepler problems with a given massive Sun, both the time in orbit and the total orbital energy/unit mass
only depend on the length of the major axis, they are independent of the length of the minor axis. This can be very useful in solving
problems.

The Runge-Lenz Vector in Quantum Mechanics
This is fully discussed in advanced quantum mechanics texts, we just want to mention that, just as spherical symmetry ensures that
the total angular momentum and its components commute with the Hamiltonian, and as a consequence there are degenerate energy
levels connected by the raising operator, an analogous operator can be constructed for the Runge-Lenz vector, connecting states
having the same energy. Furthermore, this raising operator, although it commutes with the Hamiltonian, does not commute with the
total angular momentum, meaning that states with different total angular momentum can have the same energy. This is the
degeneracy in the hydrogen atom energy levels that led to the simple Bohr atom correctly predicting all the energy levels (apart
from fine structure, etc.). It’s also worth mentioning that these two vectors, angular momentum and Runge-Lenz, both sets of
rotation operators in three dimensional spaces, combine to give a complete set of operators in a four dimensional space, and the
inverse-square problem can be formulated as the mechanics of a free particle on the surface of a sphere in four-dimensional space.

This page titled 15.5: A Vectorial Approach- Hamilton’s Equation and the Runge Lenz Vector is shared under a not declared license and was
authored, remixed, and/or curated by Michael Fowler.
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16.1: Billiard Balls
“Elastic” means no internal energy modes of the scatterer or of the scatteree are excited—so total kinetic energy is conserved. As a
simple first exercise, think of two billiard balls colliding. The best way to see it is in the center of mass frame of reference. If
they’re equal mass, they come in from opposite directions, scatter, then move off in opposite directions. In the early days of particle
accelerators (before colliders) a beam of particles was directed at a stationary target. So, the frame in which one particle is initially
at rest is called the lab frame. What happens if we shoot one billiard ball at another which is initially at rest? (We’ll ignore possible
internal energies, including spinning.) The answer is that they come off at right angles. This follows trivially from conservation of

energy (in an obvious notation)

and momentum

and Pythagoras’ theorem.
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16.2: Discovery of the Nucleus
The first significant use of scattering to learn about the internal structure of matter was Rutherford's use of  particles directed at
gold atoms. This experiment revealed the atomic nucleus for the first time. Our plan here is to analyze this kind of scattering, to
understand why it indicated the presence of a nucleus. Similar much later analyses have established that the proton itself has point
like constituents, so this is not just of distant historical interest.

For  particles on gold atoms, it’s an excellent approximation to take the scatterer as being fixed. This is not an essential
requirement, but it simplifies the calculation, and can be corrected for later.

To visualize what’s going on, think of the scatterer as a bowling ball with tiny marbles directed towards it, they’re moving fast
horizontally, along parallel but random paths. (Let’s take zero gravity here—the  particles we’re modeling are moving at about
one-twentieth the speed of light!). We observe the rate at which marbles are being scattered in various directions. Call the
scattering angle .

So, let’s assume the width of the “beam” of marbles is much greater than the size of the bowling ball. We’ll also take the intensity
of the beam to be uniform, with  marbles crossing unit area perpendicular to the beam per second. Now, if the bowling ball has
radius , and we ignore the radius of the tiny marbles, the number of marbles that strike the bowling ball and are scattered is
clearly  per second. Not surprisingly,  is called the total cross-section and usually denoted by .

This page titled 16.2: Discovery of the Nucleus is shared under a not declared license and was authored, remixed, and/or curated by Michael
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16.3: The Differential Cross Section
In a real scattering experiment, information about the scatterer can be figured out from the different rates of scattering to different
angles. Detectors are placed at various angles . Of course, a physical detector collects scattered particles over some nonzero
solid angle. The usual notation for infinitesimal solid angle is . The full solid angle (all possible scatterings) is 

 the area of a sphere of unit radius. (Note: Landau uses dο for solid angle increment, but  has become standard.)

The differential cross section, written  is the fraction of the total number of scattered particles that come out in the solid
angle , so the rate of particle scattering to this detector is  the beam intensity as defined above.

Now, we’ll assume the potential is spherically symmetric. Imagine a line parallel to the incoming particles going through the center
of the atom. For a given ingoing particle, its impact parameter is defined as the distance its ingoing line of flight is from this
central line. Landau calls this , we’ll follow modern usage and call it .

A particle coming in with impact parameter between  and  will be scattered through an angle between  and  where
we’re going to calculate,  by solving the equation of motion of a single particle in a repulsive inverse-square force.

Note: we’ve switched for this occasion from  for the angle scattered through because we want to save  for the 
coordinates describing the complete trajectory, or orbit, of the scattered particle.

Figure 

So, an ingoing cross section  scatters particles into an outgoing spherical area (centered on the scatterer) 
, that is, a solid angle 

Therefore the scattering differential cross section

(Note that  is clearly negative—increasing b means increasing distance from the scatterer, so a smaller )

This page titled 16.3: The Differential Cross Section is shared under a not declared license and was authored, remixed, and/or curated by Michael
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16.4: Analyzing Inverse-Square Repulsive Scattering- Kepler Again
To make further progress, we must calculate , or equivalently : what is the angle of scattering, the angle between the
outgoing velocity and the ingoing velocity, for a given impact parameter?  will of course also depend on the strength of the
repulsion, and the ingoing particle energy.

Recall our equation for Kepler orbits:

Let’s now switch from gravitational scattering with an attractive force  to an electrical repulsive force between two

charges , force strength , say. Since this is repulsive, the sign will change in the radial acceleration

equation,

Also, we want the scattering parameterized in terms of the impact parameter b and the incoming speed , so putting 
this is

So just as with the Kepler problem, the orbit is given by

From the lecture on Orbital Mathematics, the polar equation for the left hyperbola branch relative to the external (right) focus is

this is a branch symmetric about the -axis:

Figure 

But we want the incoming branch to be parallel to the axis, which we do by suitable choice of . In other words, we rotate the
hyperbola clockwise through half the angle between its asymptotes, keeping the scattering center (right-hand focus) fixed.

From the lecture on orbital mathematics (last page), the perpendicular distance from the focus to the asymptote is the hyperbola
parameter . Presumably, this is why we use  for the impact parameter. Hence the particle goes in a hyperbolic path with
parameters . This is not enough information to fix the path uniquely: we’ve only fed in the angular
momentum  not the energy, so this is a family of paths having different impact parameters but the same angular momentum .

We can, however, fix the path uniquely by equating the leading order correction to the incoming zeroth order straight path: the
particle is coming in parallel to the -axis far away to the left, perpendicular distance  from the axis, that is, from the line .
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So, going back to that pre-scattering time,

Figure 

and in this small  limit,

Matching the zeroth order and the first order terms

eliminates  and fixes the angle , which is the angle the hyperbola had to be rotated through to align the asymptote with the
negative -axis, and therefore half the angle between the asymptotes, which would be  minus the angle of scattering  (see the
earlier diagram),

So this is the scattering angle in terms of the impact parameter , that is, in the diagram above

Equivalently,

and the incremental cross sectional area

This is Rutherford’s formula: the incremental cross section for scattering into an incremental solid angle, the differential cross
section
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16.5: Vectorial Derivation of the Scattering Angle
The essential result of the above analysis was the scattering angle as a function of impact parameter, for a given incoming energy.
It's worth noting that this can be found more directly by vectorial methods from Hamilton's equation.

Recall from the last lecture Hamilton’s equation

and the integral for an inverse square force  (changing the sign of  for later convenience)

As previously discussed, multiplying by . establishes that  is in the plane of the orbit, and multiplying by  gives

This corresponds to the equation

(the left-hand branch with the right-hand focus as origin, note from diagram above that  is negative throughout) and

To find the scattering angle, suppose the unit vector pointing parallel to the asymptote is , so the asymptotic velocity is .

Note that as before,  is along the major axis (to give the correct form for the  equation), and  gives the asymptotic
angles from

We’re not rotating the hyperbola as we did in the alternative treatment above: here we keep it symmetric about the -axis, and find
its asymptotic angle to that axis, which is one-half the scattering angle.

Now take Hamilton’s equation in the asymptotic limit, where the velocity is parallel to the displacement:

the vector product of Hamilton’s equation  yields

It follows that

And together with , we find

This is the angle between the asymptote and the major axis: the scattering angle

agreeing with the previous result.
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17.1: Particle in a Well
We begin with the one-dimensional case of a particle oscillating about a local minimum of the potential energy . We’ll assume

that near the minimum, call it  the potential is well described by the leading second-order term,  so

we’re taking the zero of potential at , assuming that the second derivative , and (for now) neglecting higher order
terms.

Figure 

To simplify the equations, we’ll also move the  origin to , so

replacing the second derivative with the standard “spring constant” expression.

This equation has solution

(This can, of course, also be derived from the Lagrangian, easily shown to be .
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17.2: Two Coupled Pendulums
We’ll take two equal pendulums, coupled by a light spring. We take the spring restoring force to be directly proportional to the
angular difference between the pendulums. (This turns out to be a good approximation.)

For small angles of oscillation, we take the Lagrangian to be

Denoting the single pendulum frequency by , the equations of motion are (writing , so 

We look for a periodic solution, writing

(The final physical angle solutions will be the real part.)

The equations become (in matrix notation):

Denoting the 

This is an eigenvector equation, with  the eigenvalue, found by the standard procedure:

Solving, , that is

The corresponding eigenvectors are (1,1) and (1,−1).
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17.3: Normal Modes
The physical motion corresponding to the amplitudes eigenvector (1,1) has two constants of integration (amplitude and phase),
often written in terms of a single complex number, that is,

with 

Clearly, this is the mode in which the two pendulums are in sync, oscillating at their natural frequency, with the spring playing no
role.

In physics, this mathematical eigenstate of the matrix is called a normal mode of oscillation. In a normal mode, all parts of the
system oscillate at a single frequency, given by the eigenvalue.

The other normal mode,

where we have written . Here the system is oscillating with the single frequency , the pendulums are now

exactly out of phase, so when they part the spring pulls them back to the center, thereby increasing the system oscillation
frequency.

The matrix structure can be clarified by separating out the spring contribution:

All vectors are eigenvectors of the identity, of course, so the first matrix just contributes  to the eigenvalue. The second matrix is
easily found to have eigenvalues are 0,2, and eigenstates (1,1) and (1,−1).
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17.4: Principle of Superposition
The equations of motion are linear equations, meaning that if you multiply a solution by a constant, that’s still a solution, and if
you have two different solutions to the equation, the sum of the two is also a solution. This is called the principle of superposition.

The general motion of the system is therefore

where it is understood that A,B are complex numbers and the physical motion is the real part.

This is a four-parameter solution: the initial positions and velocities can be set arbitrarily, completely determining the motion.

Exercise: begin with one pendulum straight down, the other displaced, both momentarily at rest. Find values for A,B and describe
the subsequent motion.

Solution: At , the pendulums are at . This ensures zero initial velocities too, since the physical
parameters are the real parts of the complex solution, and at the initial instant the derivatives are pure imaginary.

The solution for the motion of the first pendulum is

and for small ,

Here the pendulum is oscillating at approximately , but the second term sets the overall oscillation amplitude: it's slowly varying,
going to zero periodically (at which point the other pendulum has maximum kinetic energy).

To think about: What happens if the two have different masses? Do we still get these beats -- can the larger pendulum transfer all its
kinetic energy to the smaller?

Exercise: try pendulums of different lengths, hung so the bobs are at the same level, small oscillation amplitude, same spring as
above.
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17.5: Three Coupled Pendulums
Let’s now move on to the case of three equal mass coupled pendulums, the middle one connected to the other two, but they’re not
connected to each other.

The Lagrangian is

Putting 

The equations of motion are

Putting , the equations can be written in matrix form

The normal modes of oscillation are given by the eigenstates of that second matrix.

The one obvious normal mode is all the pendulums swinging together, at the original frequency , so the springs stay at the rest
length and play no role. For this mode, evidently the second matrix has a zero eigenvalue, and eigenvector (1,1,1).

The full eigenvalue equation is

that is,

so the eigenvalues are , with frequencies

The normal mode eigenvectors satisfy

They are , normalizing them to unity.

The equations of motion are linear, so the general solution is a superposition of the normal modes:
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17.6: Normal Coordinates
Landau writes . (Actually he brings in an intermediate variable , but we'll skip that.) These “normal
coordinates” can have any amplitude and phase, but oscillate at a single frequency .

The components of the above vector equation read:

It’s worth going through the exercise of writing the Lagrangian in terms of the normal coordinates:

recall the Lagrangian:

Putting in the above expressions for the , after some algebra

We’ve achieved a separation of variables. The Lagrangian is manifestly a sum of three simple harmonic oscillators, which can have
independent amplitudes and phases. Incidentally, this directly leads to the action angle variables -- recall that for a simple harmonic
oscillator the action , and the angle is that of rotation in phase space.
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17.7: Three Equal Pendulums Equally Coupled
What if we had a third identical spring connecting the two end pendulums (we could have small rods extending down so the spring
went below the middle pendulum?

What would the modes of oscillation look like in this case?

Obviously, all three swinging together is still an option, the eigenvector (1,1,1), corresponding to eigenvalue zero of the
“interaction matrix” above. But actually we have to extend that matrix to include the new spring -- it’s easy to check this gives the
equation:

The equation for the eigenvalues is easily found to be . Putting  into the matrix yields the equation 
 This is telling us that any vector perpendicular to the all-swinging-together vector (1,1,1) is an eigenvector.

This is because the other two eigenvectors have the same eigenvalue, meaning that any linear combination of them also has that
eigenvalue—this is a degeneracy.

Think about the physical situation. If we set the first two pendulums swinging exactly out of phase, the third pendulum will feel no
net force, so will stay at rest. But we could equally choose another pair. And, the eigenvector (1,−2,1) we found before is still an
eigenvector: it's in this degenerate subspace, equal to (1,−1,0)−(0,1,−1).
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1

CHAPTER OVERVIEW

18: Driven Oscillator
Michael Fowler (closely following Landau para 22)

Consider a one-dimensional simple harmonic oscillator with a variable external force acting, so the equation of motion is

which would come from the Lagrangian

(Landau “derives” this as the leading order non-constant term in a time-dependent external potential.)

The general solution of the differential equation is , the solution of the homogeneous
equation, and  is some particular integral of the inhomogeneous equation.

An important case is that of a periodic driving force . A trial solution \(x_{1}(t)=b \cos (\gamma t+\beta)
\text { yields } b=f / m\left(\omega^{2}-\gamma^{2}\right) \text { so }\]

But what happens when  To find out, take part of the first solution into the second, that is,

\[x(t)=a^{\prime} \cos \left(\omega t+\alpha^{\prime}\right)+\dfrac{f}{m\left(\omega^{2}-\gamma^{2}\right)}[\cos (\gamma
t+\beta)-\cos (\omega t+\beta)]\)

The second term now goes to , so becomes the ratio of its first derivatives with respect to  (or, equivalently, ).

The amplitude of the oscillations grows linearly with time. Obviously, this small oscillations theory will crash eventually.

But what if the external force frequency is slightly off resonance?

Then (real part understood)

with  real.

The wave amplitude squared

We’re seeing beats, with beat frequency . Note that if the oscillator begins at the origin, , then  and the
amplitude periodically goes to zero, this evidently only occurs when .

Energy is exchanged back and forth with the driving external force.

18.1: More General Energy Exchange
18.2: Damped Driven Oscillator
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18.1: More General Energy Exchange
We’ll derive a formula for the energy fed into an oscillator by an arbitrary time-dependent external force.

The equation of motion can be written

and defining , this is

This first-order equation integrates to

The energy of the oscillator is

So if we drive the oscillator over all time, with beginning energy zero,

This is equivalent to the quantum mechanical time-dependent perturbation theory result:  are equivalent to the annihilation and
creation operators.
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ẋ2 ω2x2 1

2
|2 (18.1.4)

E =
1

2m
F (t) dt

∣

∣
∣∫

∞

−∞

e−iωt ∣

∣
∣
2

(18.1.5)

ξ, ξ∗

https://libretexts.org/
https://phys.libretexts.org/@go/page/29512?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/18%3A_Driven_Oscillator/18.01%3A_More_General_Energy_Exchange
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/18%3A_Driven_Oscillator/18.01%3A_More_General_Energy_Exchange
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/18%3A_Driven_Oscillator/18.01%3A_More_General_Energy_Exchange?no-cache
http://galileo.phys.virginia.edu/~mf1i/


18.2.1 https://phys.libretexts.org/@go/page/29513

18.2: Damped Driven Oscillator
The linear damped driven oscillator:

(Following Landau’s notation here—note it means the actual frictional drag force is )

Looking near resonance for steady state solutions at the driving frequency, with amplitude , phase lag , that is,

, we find

For a near-resonant driving frequency , and assuming the damping to be sufficiently small that we can drop the 
term along with , the leading order terms give

so the response, the dependence of amplitude of oscillation on frequency, is to this accuracy

(We might also note that the resonant frequency is itself lowered by the damping, but this is another second-order effect we ignore
here.)

Figure 

The rate of absorption of energy equals the frictional loss. The friction force  on the mass moving at  is doing work at a
rate:

The half width of the resonance curve as a function of driving frequency  is given by the damping. The total area under the curve
is independent of damping.

For future use, we’ll write the above equation for the amplitude as
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19.1: The Model
Notation! In this lecture, I use  for the spring constant (  is a wave number) and  for frequency (  is a root of unity).

A good classical model for a crystal is to represent the atoms by balls held in place by light springs, representing valence bonds,
between nearest neighbors. The simplest such crystal that has some realistic features is a single chain of connected identical atoms.
To make the math easy, we’ll connect the ends of the chain to make it a circle. This is called “imposing periodic boundary
conditions”. It is common practice in condensed matter theory, and makes little difference to the physics for a large system.

Figure 

We’ll take the rest positions of the atoms to be uniformly spaced, a apart, with the first atom at a, the  atom at na, the final     
atom at the origin.

Away from the lowest energy state, we denote the position of the , so, as in our earlier discussion of oscillating
systems,  is the displacement from equilibrium (which we take to be along the line—we are not considering transverse modes of
vibration at this time).

The Lagrangian of this circular chain system is:

We’re going to call the spring constant , we’ll need  for something else. We’ll also call the frequency 

Looking for eigenstates with frequency , we find the set of equations

Taking a solution , with the understanding that  may be complex, and at the end  is just the real part of the
formal solution, we find the eigenvalue equation for a chain of four atoms (the biggest Mathtype can handle!)

Actually we’d have a much bigger matrix, with lots of zeroes, but hopefully the pattern is already clear:  or each diagonal
element and ’s in two diagonal-slanting lines flanking the main diagonal (corresponding to the links between nearest neighbors)
and finally ’s in the two far corners, these coming from the spring joining  to complete the circle.

Notice first that if  there is an eigenvector , since the sum of the elements in one row is zero (the T means
transpose, that is, it’s really a column vector, but row vectors are a lot easier to fit into the text here).

This eigenvector is just uniform displacement of the whole system, which costs zero energy since the system isn’t anchored to a
particular place on the ring. We’ll assume, though, that the system as a whole is at rest, meaning the center of mass is stationary,
and the atoms have well-defined rest positions as in the picture at 
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19.2: The Circulant Matrix- Nature of its Eigenstates
The matrix we’ve constructed above has a very special property: each row is identical to the preceding row with the elements
moved over one place, that is, it has the form

Such matrices are called circulants, and their properties are well known. In particular, we’ll show that the eigenvectors have the

form  where .

Figure 

Recall the roots of the equation  are N points equally spaced around the unit circle,

The standard mathematical notation is to label these points  as shown in the figure, but notice that 
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19.3: Comparison with Raising Operators
Actually these matrices are related to the raising and lowering operator for angular momentum (and simple harmonic oscillators) in
quantum mechanics. For example, the  matrices would be for a spin 3/2, with four  eigenstates.

The quantum mechanical raising and lowering matrices look like

They move the spin  component up (and down) by one notch, except that on applying the raising operator, the top state 
 is annihilated, similarly the lowering operator on the bottom state.

Our circular generalizations have one extra element:

This makes the matrices circulants, and gives them a “recycling” property: the top element isn’t thrown away, it just goes to the
bottom of the pile.

(And bear in mind that the standard notation for a vector has the lowest index (0 or 1) for the top element, so when we bend the
ladder into a circle, the “raising” operator actually moves to the next lower number, in other words, it’s a shift to the left.)

We’ll take this shift operator P as our basic matrix:

It should be evident from this that the circulant matrix having top row  is just the matrix .

This generalizes trivially to  matrices.
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19.4: Finding the Eigenvectors
Now let’s look at the eigenvectors, we’ll start with those of .Let’s call the eigenvalue 

Then for an eigenstate of the shift operator, the shifted vector must be just a multiple of the original vector:

Reading off the element by element equivalence of the two vectors,

The first three equalities tell us the eigenvector has the form , the last tells us that .

From our earlier discussion of circulant matrices, writing the smallest phase nontrivial  root of unity as , the roots
of the equation  are just this basic root raised to N different powers: the roots are 

This establishes that the eigenvectors of  have the form

where  with corresponding eigenvalue the basic root raised to the . Try it out for
3×3: the eigenvalues are given by

The corresponding eigenvectors are found to be

For the  case, there are  different, linearly independent, vectors of this form, so this is a complete set of eigenvectors of 
.

They are also, of course, eigenvectors of  and therefore of all the circulant matrices! This means
that all circulant matrices commute.
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19.5: Eigenvectors of the Linear Chain
Let’s get back to our chain, with eigenfunction equation of motion the  dimensional equivalent of

. We see the matrix is a circulant, so we know the eigenvectors are of the form

, which we’ll now write

What does this mean for our chain system? Remember that the  element of the eigenvector represents the displacement of the 
 atom of the chain from its equilibrium position, that would be proportional to 

The steady phase progression on going around the chain  makes clear that this is essentially a (longitudinal) wave.
(The actual  particle displacement is the real part of the  element, but there could be an overall complex factor fixing the
phase.)
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19.6: Allowed Wavenumbers from Boundary Conditions
The usual way of representing a wave on a line in physics is to have displacement proportional to , and  is called the
wavenumber. For our discretized system, the displacement parameter for the  atom, at position na, would therefore be
proportional to .

But we know this is an eigenvector of a circulant, so we must have , and the allowed values of  are

with  an integer.

The circulant structure of the matrix has determined the eigenvectors, but not the eigenvalues 
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19.7: Finding the Eigenvalues
The eigenvalues are found by operating on the eigenvector we just found with the matrix, meaning the  dimensional
generalization of

Applying the matrix to the column vector

, and cancelling out the common  factor, we have

(Of course, this same result comes from every row.)

The complete set of eigenvalues is given by inserting in the above expression

so  is displacement of the system as a whole, as is .

Wavenumber values  repeats the eigenstates we already have, since

k are restricted to

or equivalently

The eigenvalue equation is

or

To see the dynamics of this eigenstate

, we need to multiply by the time dependence , then finally take the real part of the solution:

Notice that in the continuum limit, meaning large N and small a, the atom displacement as a function of position has the form 
 in other words we’re looking at a sinusoidal wave disturbance with wavenumber  here.

Now,  is also a solution, but that is the same as  so one must be careful not to overcount. The two frequencies 
 correspond to waves going in opposite directions.
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19.8: The Discrete Fourier Transform
It’s worth looking over this one more time from a slightly different perspective. In finding the energy of an oscillating continuous
string, a standard approach is to analyze the motion of the string in terms of an infinite Fourier series of shorter and shorter
wavelength oscillations, find the energy in each of these modes, and add to find the total energy. We’ll apply the same approach
here—but with a difference. Since the waves only have meaning in our chain at a discrete set of uniformly spaced points, the set of
waves needed to fully account for all possible motions is finite. In fact, it’s the same as the number of points. As we’ve discussed
above, a wave with a higher wavenumber gives an identical set of displacements of the atoms as some lower one. So a complete
Fourier analysis of the displacements at these  equally spaces points only needs linear combinations of  waves. This is the
Discrete Fourier Transform (DFT).

Writing the complex (amplitude and phase) coefficient of the  frequency eigenstate , the position of the  atom in a
superposition of such waves (with the standard normalization convention)

Given the positions  of the atoms, the amplitude coefficients can be found using the inverse mapping:

then using

gives , establishing that we have the correct form for the inverse transformation.

The instantaneous configuration of the system is completely defined by the set  and equally by the set 
. All possible particle displacements at the  equally spaced sites can be mapped into  amplitudes of the 

distinct waves (eigenvectors).

(This DFT mapping is widely used in the time domain in signal processing: the signal amplitude is sampled, say every millisecond,
then the data can be DFT’d to give the wave components down to a minimum frequency around one millisecond. A good quality
voice signal would need a shorter time interval, maybe 0.2 milliseconds.)

Now, from

and again using

we find

Back to our chain: for a physical configuration of the atoms, all the  must be real, so from
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we

see that . (This reduces the number of apparent degrees of freedom in the X representation to the correct N. 
, etc., and if there is a middle , it must be real.)

The kinetic energy of the chain particles,

We can find potential energy similarly:

and using the same routine as before,

Finally,

Putting all this together, the Lagrangian can be written in terms of the transformed variables:

The equation of motion is then

with eigenvalues

This is of course the same result we found earlier, but it is perhaps worth seeing how it comes from the (mathematically equivalent)
DFT analysis.

This page titled 19.8: The Discrete Fourier Transform is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.

=Xn ∑
j=0

N−1

xje−i2πjn/N (19.8.8)

= =X∗
n X−n XN−n

 is real,  =X0 X∗
1 XN−1 Xn

=∑
j=1

N

| |ẋj
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19.9: A Note on the Physics of These Waves
For wavelength long compared to the interparticle spacing,  these are like sound waves (and indeed they are what are called
acoustic phonons in a crystal). As the wavelength shortens, the wave eigenstates are moving more slowly, remember the group
velocity of a wavepacket goes as . This is because there is some Bragg reflection of the waves by the lattice. At , we
have a standing wave. This is the highest energy mode, with even numbered sites all in sync with each other, and the odd numbered
sites all half a cycle behind, so the restoring force experienced by an atom as a function of displacement is the maximum possible.

Figure : Collective motions called phonons (Public Domain; Sean Kelley via NIST)
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20.1: Introduction to Parametric Resonance
(Following Landau para 27)

A one-dimensional simple harmonic oscillator, a mass on a spring,

has two parameters,  and . For some systems, the parameters can be changed externally (an example being the length of a
pendulum if at the top end the string goes over a pulley).

We are interested here in the system’s response to some externally imposed periodic variation of its parameters, and in particular
we’ll be looking at resonant response, meaning large response to a small imposed variation.

Note first that imposed variation in the mass term is easily dealt with, by simply redefining the time variable to 

meaning, . Then

and the equation of motion becomes 

This means we can always transform the equation so all the parametric variation is in the spring constant, so we’ll just analyze the
equation

Furthermore, since we’re looking for resonance phenomena, we will only consider a small parametric variation at a single
frequency, that is, we’ll take

where  is positive (a trivial requirement—just setting the time origin).

(Note: We prefer  which is often used for a resonance width these days.)

We have now a driven oscillator:

How does this differ from our previous analysis of a driven oscillator? In a very important way!

The amplitude x is a factor in the driving force.

For one thing, this means that if the oscillator is initially at rest, it stays that way, in contrast to an ordinary externally driven
oscillator. But if the amplitude increases, so does the driving force. This can lead to an exponential increase in amplitude, unlike the
linear increase we found earlier with an external driver. (Of course, in a real system, friction and nonlinear potential terms will limit
the growth.)

What frequencies will prove important in driving the oscillator to large amplitude? It responds best, of course, to its natural
frequency . But if it is in fact already oscillating at that frequency, then the driving force, including the factor of , is
proportional to

with no component at the natural frequency 

The simplest way to get resonance is to take . Can we understand this physically? Yes. Imagine a mass oscillating
backwards and forwards on a spring, and the spring force increases just after those points where the mass is furthest away from
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equilibrium, so it gets an extra tug inwards twice a cycle. This will feed in energy. (You can drive a swing this way.) In contrast, if
you drive at the natural frequency, giving little push inwards just after it begins to swing inwards from one side, then you’ll be
giving it a little push outwards just after it begins to swing back from the other side. Of course, if you push only from one side, like
swinging a swing, this works—but it isn’t a single frequency force, the next harmonic is doing most of the work.
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20.2: Resonance near Double the Natural Frequency
From the above argument, the place to look for resonance is close to . Landau takes

and, bearing in mind that we’re looking for oscillations close to the natural frequency, puts in

with  slowly varying.

It’s important to realize that this is an approximate approach. It neglects nonresonant frequencies which must be present in small amounts,
for example

and the  term is thrown away.

And, since the assumption is that  are slowly varying, their second derivatives are dropped too, leaving just

This must equal

Keeping only the resonant terms, we take  and 

so this expression becomes

The equation becomes:

The zeroth-order terms cancel between the two sides, leaving

Collecting the terms in 
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=ẍ

=

−2 (t) sin( + ε)t −a(t)( + ε) cos( + ε)tȧ ω0 ω0
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The sine and cosine can’t cancel each other, so the two coefficients must both be identically zero. This gives two first order differential
equations for the functions , and we look for exponentially increasing functions, proportional to ,
which will be solutions provided

The amplitude growth rate is therefore

Parametric resonance will take place if  is real, that is, if

a band of width 

This page titled 20.2: Resonance near Double the Natural Frequency is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.

−(2 +bε + h b) sin( + ε)t +(2 (t) −aε + h a) cos( + ε)t = 0ȧ
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20.3: Example- Pendulum Driven at near Double the Natural Frequency
A simple pendulum of length , mass  is attached to a point which oscillates vertically . Measuring  downwards,
the pendulum position is

The Lagrangian

The purely time-dependent term will not affect the equations of motion, so we drop it, and since the equations are not affected by
adding a total derivative to the Lagrangian, we can integrate the second term by parts (meaning we’re dropping a term 

 to get

(We’ve also dropped the term  from the potential energy term—it has no  dependence, so will not affect the
equations of motion.)

The equation for small oscillations is

Comparing this with

we see that , so the parametric resonance range around .
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21.1: Introduction to the Ponderomotive Force
Imagine first a particle of mass  moving along a line in a smoothly varying potential . Now add in a
rapidly oscillating force, not necessarily small, acting on the particle:

where  are in general functions of position. This force is oscillating much more rapidly than any oscillation of the particle in
the original potential, and we’ll assume that the position of the particle as a function of time can be written as a sum of a “slow
motion” .

We’ll also assume that the amplitude of the oscillations, determined by the strength of the force and the frequency, is small
compared with distances over which the original fixed potential and the coefficients  vary substantially.

You might be thinking at this point, well, isn’t  just the path the particle would describe in  alone, and the force  just
jiggles it about that path? Surprisingly, the answer is no. For example, a rigid pendulum confined to rotation in a vertical plane, but
with its point of support driven in fairly small amplitude rapid up-and-down oscillations from the outside, can be stable pointing
upwards. For motion on the slow timescale associated with the original potential, the rapidly oscillating imposed force is equivalent
to an effective potential.

This turns out to have important practical consequences. For a charged particle in a rapidly oscillating electric field, the effective
potential from the oscillation is proportional to , generating a force driving the particle towards regions of weaker field. It is
termed the ponderomotive force.

For plasma physicists, the ponderomotive force has one very important property—it drives the positive and negative particles in the
same direction, and so gives a different tool from the usual electric and magnetic fields for containing a plasma.

In the analysis below, following Landau, we have a fixed potential and a fast oscillating field superimposed. However, we could
just have a non-uniform fast oscillating field, with an equation of motion , and still write the particle path as a sum
of slow moving and jiggling components, . Fast oscillating electric fields (crossed laser beams) are used to trap
ultracold ions and atoms, using the ponderomotive force. It has been suggested that atoms trapped in this way could be part of a
quantum computer (Turker, arXiv: 1308.0573v1).
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m V (x),  sо m = −∇V (x)ẍ

f = cos ωt + sinωtf1 f2 (21.1.1)

,f1 f2

X(t) and a rapid oscillation ξ(t)

x(t) = X(t) +ξ(t) (21.1.2)

,f1 f2

X(t) V (x) f

e2E2¯ ¯¯̄¯̄

= g(x) cos ωtẍ

x(t) = X(t) +ξ(t)
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21.2: Finding the Effective Potential Generated by the Oscillating Force
As stated above, our system is a particle of mass  moving in one dimension in a time-independent potential  and subject to a
rapidly oscillating force .

The oscillation’s strength and frequency are such that the particle only moves a small distance in  during one cycle, and the
oscillation is much faster than any oscillation possible in the potential alone.

The equation of motion is

The particle will follow a path

where  describes rapid oscillations about a smooth path , and the average value  over a period  is zero.

Expanding to first order in ,

This equation has smooth terms and rapidly oscillating terms on both sides, and we can equate them separately. The leading
oscillating terms are

We’ve dropped the terms on the right of order .

So to leading order in the rapid oscillation,

Now, averaging the full equation of motion with respect to time (smoothing out the jiggle, matching the slow-moving terms), the 
 on the left and the  on the right both disappear (but cancel each other anyway), the  term averages to zero on

the assumption that the variation of  over a cycle of the fast oscillation is negligible, but we cannot drop the average

Incorporating this nonzero term, we have an equation of “slow motion”

where, using ,

The effective potential is the original plus a term proportional to the kinetic energy of the oscillation.
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m V (x)

f = cosωt+ sinωtf1 f2

V (x)

m = −dV /dx+fẍ (21.2.1)

x(t) = X(t) +ξ(t) (21.2.2)

ξ(t) X(t)  of ξ(t)ξ(t)
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m = −d /dXẌ Veff (21.2.7)
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21.3: Stability of a Pendulum with a Rapidly Oscillating Vertical Driving Force
Recall now the Lagrangian for the simple (rigid)pendulum of length , mass , angle from vertically down , constrained to move
in a vertical plane, point of support driven to oscillate vertically with amplitude  and frequency  (from the section on parametric
resonance),

Our previous analysis of this system was for driving frequencies near double the natural frequency. Now we’ll investigate the
behavior for driving frequencies far more rapid than the natural frequency.

The equation of motion,

is

so evidently the external driving force is 

(Landau has a misprint—an extra  in this, p 95) and, from the previous section, (except that for the pendulum we are using , not 
, for the external driving frequency)

and for 

the upward position is stable!

At first glance, this may seem surprising: the extra term in the potential from the oscillations is like a kinetic energy term for the
oscillating movement. Surely the pendulum is oscillating more in the vertically up position than when it’s to one side? So why isn’t
that a maximum of the added effective potential? The point is that the relevant variable is not the pendulum’s height above some
fixed point, the variable is  —and the rapid oscillations of  are minimum (zero) in the vertically up position.
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21.4: Hand-Waving Explanation of the Ponderomotive Force
Let’s look again at the vertically stable pendulum—the quiver force has sufficient frequency that although the quivering motion is
of small amplitude, it drives the pendulum to the vertical position. To see what’s going on, we’ll replace the oscillating force with a
series of discrete impulses of alternating sign. Remember, the impulse on the pendulum will be in a vertical direction, but the
pendulum is constrained to move along the circular arc. Therefore, the impulse it feels is the component along this path. If it is
away from the vertical, the greater its deviation the greater the effective impulse, so as it quivers back and forth it feels greater
drive pushing it back up towards the vertical, since it feels that impulse when it’s further down. If it does feel a downward impulse
at its low point, that will set it up for a greater upward impulse as it goes down.

This can also be understood for a charged particle in an oscillating electromagnetic field in terms of radiation pressure. Where the
oscillating field is more intense, there is more radiation pressure, so the particle will be driven by the pressure imbalance towards
the regions where the field is weakest.
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21.5: Pendulum with Top Point Oscillating Rapidly in a Horizontal Direction
Take the coordinates of  to be

The Lagrangian, omitting the term depending only on time, and performing an integration by parts and dropping the total derivative
term, (following the details of the analysis above for the vertically driven pendulum) is

It follows that  (the only difference in f from the vertically driven point of support is the final 
) and

If 

That is, at high frequency, the rest position is at an angle to the vertical!

In this case, the ponderomotive force towards the direction of least angular quiver (in this case the horizontal direction) is balanced
by the gravitational force.
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22.1: Introduction to Resonant Nonlinear Oscillations
Landau’ next sections (Chapter 6, sections 28,29) address nonlinear one-dimensional systems. In particular, he focusses on driven
damped oscillators with nonlinear, but small, added potential terms. Using ingenious semiquantitative techniques, he predicts some
unexpected results: for example, a discontinuity in the oscillation amplitude on slowly varying the driving frequency at constant
driving force (and constant damping). He also finds resonances when the driving frequency is a fraction, for example a third, of the
oscillator’s natural frequency.

Fortunately, this system is easy to analyze numerically, and we have an applet to do just that. The parameters are set by sliders, and
one can immediately find the large discontinuity in amplitude (factor of two or so) as the frequency is slightly changed. At the end
of this lecture, we show simple plots of amplitude response to a constant driving force as the frequency is varied. These were found
using the applet, the reader can easily check them, and venture into parts of the parameter space. The applet provides a measure of
Landau’s (semiquantitative) accuracy, of course surprisingly good (of order 20% error or less) given the nature of the problem.

It should be added that this is one area where, thanks to computers, major advances have been made since Landau wrote the book,
in particular the discovery for some systems of period doubling and chaos as the driving force is increased. We’ve added a lecture
(22a) on a particular system, the driven damped pendulum, a natural extension of Landau’s oscillator. This illustrates some of the
novel features. We will follow part of chapter 12 of Taylor’s excellent text, Classical Mechanics. Taylor provides many computer-
generated graphs of the pendulum’s response as parameters are varied. We provide applets that can generate these graphs. The
reader can easily use these applets to explore other parameter inputs.

In this lecture, to gain a bit of intuition about these nonlinear potentials, we’ll begin (following Landau) with no driving and no
damping: just a particle oscillating in a potential that’s simple harmonic plus small and (positive) terms. The basic questions are,
how do these terms change the frequency of oscillation, and how does that frequency depend on the amplitude of oscillation? The
answers will guide us in understanding how a particle in such a potential will respond to a harmonic driving term, plus damping.

Next, we briefly review the driven damped linear oscillator (covered in detail in lecture 18, this is really just a reminder of the
notation). Then we add small cubic and quartic terms. We present Landau’s argument that--above a certain driving force--gradually
increasing the driving frequency leads at a critical value to a discontinuous drop in the amplitude of the response, then use an applet
to confirm and quantify his result.
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22.2: Frequency of Oscillation of a Particle is a Slightly Anharmonic Potential
See the applet illustrating this section.

Landau (para 28) considers a simple harmonic oscillator with added small potential energy terms . In leading

orders, these terms contribute separately, and differently, so it’s easier to treat them one at a time. We’ll first consider the quartic
term, an equation of motion

(We'll always take  positive)

Writing a perturbation theory expansion (following Landau):

(Standard practice in most books would be to write  with the superscript indicating the order of the
perturbation--we're following Landau's notation, hopefully reducing confusion…) We take as the leading term

with the exact value of . Of course, we don’t know the value of  yet—this is what we’re trying to find!

And, as Landau points out, you can’t just write  because that implies motion
increasing in time, and our system is a particle oscillating in a fixed potential, with no energy supply. Furthermore, even if we did
somehow have the value of  exactly right, this expression would not be a full solution to the equation: the motion is certainly
periodic with period , but the complete description of the motion is a Fourier series including frequencies n ,n an integer,
since the potential is no longer simple harmonic.

Anyway, putting this correct frequency into the equation of motion  gives a nonzero left-hand side, so we
rearrange. We subtract  from both sides to get:

Now putting the leading term  into the left-hand side does give zero: if the equation had zero on the right hand side,
this would just be a free (undamped) oscillator with natural frequency  not . This doesn’t look very promising, but keep
reading.

The equation for the first-order correction  is:

Notice that the second term on the right-hand side includes .This equation now represents a driving force on an
undamped oscillator exactly at its resonant frequency, so would cause the amplitude to increase linearly, obviously an unphysical
result, since we’re just modeling a particle sliding back and forth in a potential, with no energy being supplied from outside!

The key is that there is also a resonant driver in that first term .

Clearly these two driving terms have to cancel, and this requirement nails : here's how:

so the resonant driving terms cancel provided

Remembering , this gives (to this order)
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(Strictly,  in the denominator, but that’s a higher order correction.)

Note that the frequency increases with amplitude: the  potential gives an increasingly stronger restoring force with amplitude
than the harmonic well. You can check this with the applet. Now let’s consider the equation for a small cubic perturbation,

This represents an added potential , which is an odd function, so to leading order it won’t change the period, speeding up

one half of the oscillation and slowing the other half the same amount in leading order. The first correction to the position as a
function of time is the solution of

The solution is

Physically, adding this to the leading term, the particle is spending more of its time in the softer half of the potential, giving an
amplitude-dependent correction to its average position.

To get the correction to the frequency, we need to go to the next order,

. Dropping terms of higher order, the equation of motion for the next correction is

and with

, following Landau,

Again, there cannot be a nonzero term driving the system at resonance, so the quantity in the square brackets must be zero, this
gives us 

The total correction to frequency to leading order for the additional small potentials

is therefore (they add independently to this order)

(the  here being a convenient notation Landau employs later).

How Good Are These Approximations?
We have an applet that solves this equation numerically, so it is straightforward to check.
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Beginning with the quartic perturbation potential , Landau finds a frequency correction . Taking a rather

large perturbation  we find from the applet that  whereas Landau’s perturbation theory predicts 

. However, if we correct Landau’s denominator (as mentioned above, he pointed out it should be , but said that

was secondorder) the error is very small.

Taking , , ,  the formula gives  so less than two percent error, 
and for amplitude 0.2, the effort is less than 0.1%.

Explore with the applet here.

This page titled 22.2: Frequency of Oscillation of a Particle is a Slightly Anharmonic Potential is shared under a not declared license and was
authored, remixed, and/or curated by Michael Fowler.

mβ
1

4
x4 Δω = 3β /8a2 ω0

a = β = = 1ω0 Δω = 0.33

Δω = = 0.375
3

8
ω

α = 0.3 β = 0.1 = 0ω0 a = 1 Δω = 0.018

https://libretexts.org/
https://phys.libretexts.org/@go/page/30502?pdf
https://galileoandeinstein.phys.virginia.edu/more_stuff/Applets/AnharmonicOsc/ParticleAnharmonicPotl.html
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/22%3A_Resonant_Nonlinear_Oscillations/22.02%3A_Frequency_of_Oscillation_of_a_Particle_is_a_Slightly_Anharmonic_Potential
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/22%3A_Resonant_Nonlinear_Oscillations/22.02%3A_Frequency_of_Oscillation_of_a_Particle_is_a_Slightly_Anharmonic_Potential?no-cache
http://galileo.phys.virginia.edu/~mf1i/


22.3.1 https://phys.libretexts.org/@go/page/30503

22.3: Resonance in a Damped Driven Linear Oscillator- A Brief Review
This is just to remind you of what we covered in lecture 18, before we add anharmonic terms in the next section.

The linear damped driven oscillator has equation of motion:

(Following Landau’s notation here note it means the actual frictional drag force is )

Looking near resonance for steady state solutions at the driving frequency, with amplitude , phase lag , that is, ,
we find

For a near-resonant driving frequency

and assuming the damping to be sufficiently small that we can drop the term along with , the leading order terms give

so the response, the dependence of amplitude  on driving frequency  is to this accuracy

(Note also that the resonant frequency is itself lowered by the damping, another second-order effect we’ll ignore.)

Figure 

The rate of absorption of energy equals the frictional loss. The friction force  on the mass moving at  is doing work at an
average rate:

The half width of the resonance curve as a function of  is given by the damping. The total area under the curve is independent of
damping.

For future use, we’ll write the above equation for the amplitude  in terms of deviation  from the resonant frequency .

This page titled 22.3: Resonance in a Damped Driven Linear Oscillator- A Brief Review is shared under a not declared license and was authored,
remixed, and/or curated by Michael Fowler.
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22.4: Damped Driven Nonlinear Oscillator- Qualitative Discussion
We now add to the damped driven linear oscillator a positive quartic potential term, giving equation of motion

As mentioned above, for a particle oscillating in this potential  the frequency increases with amplitude: the bigger

swings encounter a potential becoming stronger and stronger than the simple harmonic oscillator.

So if we drive the oscillator from rest at the frequency that resonates with its small amplitude oscillations (where the 

potential term has negligible effect), as the amplitude builds up, the oscillator frequency increases, and the driving force falls out of
sync.

The way to keep the amplitude increasing is evidently to gradually increase the frequency of the driving force to match the natural
frequency at the increased amplitude. (Side note: this is the principle of the synchrocyclotron except, in that case the frequency is
lowered as the energy increases, because the particles go to bigger and bigger orbits as their mases increase relativistically.) This
way a small external driving force (enough to overcome frictional damping) can maintain a large amplitude oscillation at a
frequency well above the frequency  of small oscillations.

Figure 

But what if we apply this high frequency to a system initially at rest, rather than gradually ramping up in sync with the oscillations?
Then for a small driving force, we can treat the system as a damped simple harmonic oscillator, and this off-resonance force will
drive relatively small amplitude oscillations.

The bottom line is that for the same external driving force, with frequency in some range above , there can be two possible
steady state oscillation amplitudes, depending on the history of the system.

This page titled 22.4: Damped Driven Nonlinear Oscillator- Qualitative Discussion is shared under a not declared license and was authored,
remixed, and/or curated by Michael Fowler.
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22.5: Nonlinear Case - Landau’s Analysis
The equation of motion is:

We established earlier that the nonlinear quartic term brings in a correction to the oscillator’s frequency that depends on the
amplitude :

in Landau’s notation ,

The equation for the amplitude in the linear case (from the previous section) was, with ,

For the nonlinear case, the maximum amplitude will clearly be at the true (amplitude dependent!) resonance frequency 
 before, we now have a cubic equation for :

Figure 

Note that for small driving force  is small ( ) but the center of the peak has shifted slightly
upwards, to . The cubic equation for  has only this one real solution.

However, as the driving force is increased, the coefficients of the cubic equation change and at a critical force  two more real
roots appear.

Figure 

So what’s going on here? For a range of frequencies, including the vertical dashed red line in the figure, there appear to be three
possible amplitudes of steady oscillation at one frequency. However, it turns out that the middle one is unstable, so will
exponentially deviate, going to one of the other two, both of which are stable.

If the oscillator is being driven at , and the driving frequency is gradually increased, the amplitude will follow the upper curve to
the point C , then drop discontinuously to the lower curve. Further frequency increase (with the same strength driving force, of
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course) will give diminishing amplitude of oscillation just as happens for the ordinary simple harmonic oscillator on going away
from the resonant frequency.

If the frequency is now gradually lowered, the amplitude gradually will increase to point D, where it will jump discontinuously to
the upper curve. The overall response to driving frequency is sometimes called hysteresis, by analogy with the response of a
magnetic material to a varying imposed external field.

the same result as for small oscillations.

To find the critical value of the driving force for which the multiple solutions appear, in the graph above that’s when C, D coincide.
That is,  has coincident roots.

Differentiating the equation  for amplitude as a function of frequency (and of course this is at constant driving force )

C,D coincide when the discriminant in the denominator quadratic is zero, that is, at  where 

Putting these values into the equation for  as a function of driving force f, the critical driving force is

Numerical Applet Results
The results above are all from Landau’s book, and are semiquantitative. They can easily be checked using our online applet, which
is accurate to one percent or better. The curves below are plotted from applet results, and certainly exhibit the behavior predicted by
Landau.

These plots are for 

 To put in some numbers, the maximum amplitude for any of these curves is when  db/dε = 0,  that is, 
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 For these values, Landau's   is approximately 0.3.  Ours looks a bit more. Note for f = 0.3,  we show fk

κ = 0.38 ⋅ (0.75 = 0.21,  close to graph peak. b2 )2

https://libretexts.org/
https://phys.libretexts.org/@go/page/30505?pdf
http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/AnharmonicOsc/anharmonicOsc.html


22.5.3 https://phys.libretexts.org/@go/page/30505

Figure 

This page titled 22.5: Nonlinear Case - Landau’s Analysis is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.
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22.6: Frequency Multiples
The above analysis is for frequencies not very far from . But nonlinear terms can cause resonance to occur at frequencies which

are rational multiples of . Landau shows that a small  in the potential (so an additional force  in the equation of

motion) can generate a resonance near . We’ve only considered a quartic addition to the potential, ,

we can show that gives a resonance near , and presumably this is the small bump near the beginning of the curves above

for large driving strength.

Then, for , the second term, , will have a resonant response, although it is

proportional to the (small) amplitude cubed. Similar arguments work for other fractional frequencies.

This page titled 22.6: Frequency Multiples is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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23: Damped Driven Pendulum- Period Doubling and Chaos
23.1: Introduction
23.2: The Road to Chaos
23.3: Lyapunov Exponents and Dimensions of Strange Attractors
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23.1: Introduction
We’ve previously discussed the driven damped simple harmonic oscillator, and in the last lecture we extended that work (following
Landau) to an anharmonic oscillator, adding a quartic term to the potential. Here we make a different extension of the simple
oscillator: we go to a driven damped pendulum. (A weight at one end of a light rigid rod, the other end of the rod being at a fixed
position but the rod free to rotate about that fixed point in a vertical plane). That is, we replace the potential term  in the
linear oscillator with , or rather , to make clear we have an angular system. Going to a driven damped
pendulum leads to many surprises!

For a sufficiently weak driving force, the behavior of the driven damped pendulum is of course close to that of the driven damped
linear oscillator, but on gradually increasing the driving force, at a certain strength the period of the response doubles, then, with
further increase, it doubles again and again, at geometrically decreasing intervals, going to a chaotic (nonperiodic) response at a
definite driving strength. But that is not the end of the story—the chaotic response regime has a lot of structure: many points within
a generally chaotic region are in fact nonchaotic, well-defined cyclical patterns. And, as we’ll see later, the response pattern itself
can be fractal in nature, see for example the strange attractor discussed at the end of this lecture. You can use the accompanying
applet to generate this attractor and its cousins easily.

Obviously, this is a very rich subject, we provide only a brief overview. We closely follow the treatment in Taylor’s Classical
Mechanics, but with the addition of our applets for illustrative purposes, and also to encourage further exploration: the applets
accurately describe the motion and exhibit the strange attractors in the chaotic regime. With the applets, it is easy to check how
these strange attractors change (or collapse) on varying the driving force or the damping. We end with some discussion of the
fractal dimension of the attractors, and how it relates to the dynamics, in particular to the rate of divergence of initially close
trajectories, here following Baker and Gollub, Chaotic Dynamics.

This page titled 23.1: Introduction is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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23.2: The Road to Chaos
Equation of Motion

For the driven pendulum, the natural measure of the driving force is its ratio to the weight , Taylor calls this the drive strength,
so for driving force

the drive strength  is defined by

The equation of motion (with resistive damping force  and hence resistive torque ) is:

Dividing by  and writing the damping term  (to coincide with Taylor’s notation, his equation 12.12) we get (with 
)

Behavior on Gradually Increasing the Driving Force: Period Doubling

The driving force  is the dimensionless ratio of drive strength to weight, so if this is small the pendulum will not be
driven to large amplitudes, and indeed we find that after initial transients it settles to motion at the driving frequency, close to the
linearized case. We would expect things to get more complicated when the oscillations have amplitude of order a radian, meaning a
driving force comparable to the weight. And indeed they do.

Here we’ll show that our applet reproduces the sequence found by Taylor as the driving strength is increased.

In the equation of motion

We therefore choose his values  and gradually increase  from  to , where chaos begins.

For  (see picture) the oscillation (after brief initial transients) looks like a sine wave, although it’s slightly flatter, and
notice the amplitude (turquoise in box) is greater than , the positive and negative swings are equal in magnitude to five figure
accuracy after five or so oscillations.

You can see this for yourself by opening the applet! Click here. The applet plots the graph, and simultaneously shows the swinging
pendulum (click bar at top right).

For , there is a larger initial transient, vaguely resembling the three-cycle we’ll meet shortly. In fact, this can be
suppressed by starting at  (bottom slider on the right), but there are still transients: the peaks are not uniform to five-
figure accuracy until about forty cycles.

mg

F (t) = cosωt,F0 (23.2.1)

γ

γ = /mg.F0 (23.2.2)

−bv −bL2ϕ̇

m = −b −mgL sinϕ+LF (t)L2ϕ̈ L2ϕ̇ (23.2.3)

mL2 b/m = 2β

= g/Lω2
0

+2β + sinϕ = γ cosωt.ϕ̈ ϕ̇ ω2
0 ω2

0 (23.2.4)

γ = /mgF0

+2β + sinϕ = γ cosωt,ϕ̈ ϕ̇ ω2
0 ω2

0 (23.2.5)

= 1.5, 2β = 0.75,ω = 1ω0 γ 0.9 1.0829

γ = 0.9,

π/2

γ = 1.06

φ = −π/2
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For , there are very long transients: not evident on looking at the graph (on the applet), but revealed by monitoring the
amplitude readout (turquoise figures in the box on the graph), the value at the most recent extremum.

To get past these transients, set the applet speed to 50 (this does not affect accuracy, only prints a lot less dots). run 350 cycles then
pause and go to speed = 2. You will find the peaks now alternate in height to the five-figure accuracy displayed, looks like period
doubling—but it isn’t, run a few thousand cycles, if you have the patience, and you find all peaks have the same height. That was a
long lived transient precursor of the period doubling transition.

Going to 1.0664, you’ll see both peaks and dips now alternating in amplitude, for a well-defined period 2, which lasts until 1.0792.
(Look at 1.075 after 70 or so cycles—and set the initial angle at -90.)

Use the “ Red Line” slider just below the graph to check the heights of successive peaks or dips.

For , the period doubles again: successive peaks are now of order 0.4 radians apart, but successive “high” peaks are
suddenly about 0.01 radians apart. (To see these better on the applet, magnify the vertical scale and move the red line.)

For  there is a further doubling to an 8 cycle, then at 1.0827 to a 16 cycle.

Look at the graph for 1.0826: in particular, the faint red horizontal line near the bottom. Every fourth dip goes below the line, but
the next lowest dips alternate between touching the line and not quite reaching it. This is the 8 cycle.

It is known that the intervals between successive doublings decrease by a factor , found universally in period doubling
cascades, and called the Feigenbaum number, after its discoverer. Our five-figure accuracy is too crude to follow this sequence
further, but we can establish (or at least make very plausible!) that beyond the geometric series limit at  the periodicity

γ = 1.0662

γ = 1.0793

γ = 1.0821

δ = 4.6692

= 1.0829γc
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disappears (temporarily, as we’ll see), the system is chaotic. (Of course, the values of  depend on the chosen damping parameter,
etc., only the ratio of doubling intervals is universal.)

In fact, the full picture is complex: there are further intervals of periodicity, for example a 6 cycle at , pictured here.

Different Attractors

The periodic solutions described above are called “attractors”: configurations where the system settles down after initially
wandering around.

Clearly the attractors change with the driving strength, what is less obvious is that they may be different for different initial
conditions. Taylor shows that for  taking  gives a 3-cycle after transients, but  gives a 2-cycle.
(Easily checked with the applet!)

Looking at the initial wanderings, which can be quite different for very small changes in the driving strength (compare 1.0730 to
1.0729 and 1.0731, use speed 5, it doesn’t affect the accuracy). But you can see these initial wanderings include elements from both
attractors.

Exercise: use the next applet to plot at the same time 1.0729 and 1.0730, all other parameters the same, speed 5.

Exercise: Use the applet to find at what angle the transition from one attractor to the other takes place. And, explore what happens
over a range of driving strengths.

These are the simplest attractors: there are far more complex entities, called strange attractors, we’ll discuss later.

Exercises: Try different values of the damping constant and see how this affects the bifurcation sequence.

Sensitivity to Initial Conditions

Recall that for the linear damped driven oscillator, which can be solved exactly, we found that changing the initial conditions
changed the path, of course, but the difference between paths decayed exponentially: the curves converged.

This illustration is from an earlier applet: the red and green curves correspond to different initial conditions, the white curve is the
difference between the two, obviously exponentially decreasing, as can be verified analytically.

For the damped driven pendulum, the picture is more complicated. For  curves corresponding to slightly different
initial conditions will converge (except, for example,  where, as mentioned above, varying the initial angle at a certain

γ

γ = 1.0845

γ = 1.077 φ(0) = 0 φ(0) = −π/2

γ < = 1.0829γc
γ = 1.077
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point switches form a final three-cycle to a two-cycle).

The Liapunov Exponent

For , curves even with very small initial differences (say,  radians) separate exponentially, as  is called the
Liapunov exponent.

Bear in mind, though, that this is chaotic motion, the divergence is not as smooth as the convergence pictured above for the linear
system. This graph is from our two-track applet.

Nevertheless, the (average) exponential nature can be discerned by plotting the logarithm of the difference against time:

This is from our log difference applet. It is very close to Taylor’s fig 12.13. The red line slope gives the Lyapunov exponent.

(The red line has adjustable position and slope.)

Plotting Velocity against Time

As discussed in Taylor, further increase in the driving force beyond the chaotic threshold can lead to brief nonchaotic intervals,
such as that containing the six cycle at 1.0845 illustrated above, but there are two long stretches of nonchaotic behavior in Taylor’s
parameter range, from 1.1098 to 1.1482 and from 1.3 to 1.48.

In the stronger driving force range, the pendulum is driven completely around in each cycle, so plotting the position against time
gives a “rounded staircase” kind of graph. Check this with the applet.

γ > γc 10−4 ,λeλt
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The solution is to plot velocity against time, and thereby discover that there is a repetition of the period doubling route to chaos at
the upper end of this interval. Click to plot  instead of .

State-Space Trajectories

It can be illuminating to watch the motion develop in time in the two-dimensional state space ( ). (Equally called phase space.)
See the State Space applet!

Now for a particle in a time-independent potential, specifying position and velocity at a given instant determines the future path—
but that is not the case here, the acceleration is determined by the phase of the driving force, which is time varying, so the system
really needs three parameters to specify its subsequent motion.

That means the phase space is really three-dimensional, the third direction being the driving phase, or, equivalently, time, but
periodic with the period of the driving force. In this three-dimensional space, paths cannot cross, at any point the future path is
uniquely defined. Our two-dimensional plots are projections of these three-dimensional paths on to the ( ) plane.

Here’s the 4-cycle at , minus the first 20 cycles, to eliminate transients.

For , there is an 8-cycle. Run the applet for 40 cycles or so to get rid of transients, then look at the far-left end of the
curve generated by running, say, to 200 cycles. It doesn’t look like there are 8 lines, but the outermost line and the two innermost
lines are doubles (notice the thickness). You can check this with the applet, by pausing at the axis and noticing the position readout:

dϕ/dt ϕ

ϕ, ϕ̇

ϕ, ϕ̇

γ = 1.081

γ = 1.0826
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there are 8 different values that repeat. (You don’t have to stop right on the axis—you can stop close to it, then use the step buttons
to get there.)

For , the path is chaotic—but doesn’t look too different on this scale! Check it out with the applet. The chaos becomes
more evident on further increasing . For  the pattern is “fattened” as repeated cycles differ slightly.

For further increase in , the orbital motion covers more territory: at , here are the first three hundred or so cycles.

Plotting many orbits at high speed we find:

However, here the story gets complicated: it turns out that this chaotic series of orbits is in fact a transient, and after about 300
cycles the system skips to a 3-cycle, where it stays. In fact, we have reached a range of  (approximately 1.1098 to 1.1482) where
after initial transients (which can be quite long) the motion is not chaotic, but a 3-cycle.

Obviously, there is a lot to explore for this system! To get a better grasp of these complexities, we try a different approach,
developed by Poincaré.

Poincaré Sections

Looking at the above pictures, as we go from a single orbit to successive period doublings and then chaos, the general shape of the
orbit doesn’t change dramatically (until that final three-cycle). The interesting things are the doubling sequence, chaos, and
attractors—perhaps we’re plotting too much information.

To focus on what’s essential, Poincaré plotted a single point from each cycle, this is now called a Poincaré section. To construct
this, we begin with the  position, label it . Then add the point  precisely one cycle later, and so
on—points one cycle apart, , etc. Now, knowing the position  in state space is not enough information to
plot the future orbit—we also need to know the phase of the driving force. But by plotting points one cycle in time apart, they will
all see the same phase starting force, so the transformation that takes us from  to  just repeats in going from  to , etc.

To see these single points in the State Space applet, click “Show Red Dot”: on running, the applet will show one dot per cycle red.

Thinking momentarily of the full three-dimensional phase space, the Poincaré section is a cross-section at the initial phase of the
driving cycle. We’ve added to the applet a red dot phase option, to find the Poincaré section at a different phase. Doing this a few
times, and looking at the movement of the red dots, gives a fuller picture of the motion.

γ = 1.0830

γ γ = 1.087

γ γ = 1.1

γ

t = 0 = ( , )P0 φ0 φ̇0 = ( , )P1 φ1 φ̇1

= ( , )P2 φ2 φ̇2 P = (φ, )φ̇

P0 P1 P1 P2
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So the Poincaré section, on increasing  through the doubling sequence (and always omitting initial transients) goes from a single
point to two points, to four, etc.

To see all this a bit more clearly, the next applet, called Poincaré Section, shows only one dot per cycle, but has a phase option so
you can look at any stage in the cycle.

Exercise: check this all out with the Poincaré applet! To see it well, click Toggle Origin/Scale, use the sliders to center the pattern,
more or less, then scale it up. Run for a few hundred cycles, then click Hide Trace followed by Show Trace to get rid of transients.

Start with . The Poincaré section is eight points on a curve, at 1.0827 you can discern 16. By 1.0829, we have chaos,
and the section has finite stretches of the curve, not just points. It looks very similar at 1.0831, but—surprise—at 1.0830 it’s a set of
points (32?) some doubled. This tells us we’re in a minefield. There’s nothing smooth about chaos.

Apart from interruptions, as  increases, the Poincaré section fills a curve, which then evolves towards the strange attractor shown
by Taylor and others. Going from 1.090 in steps to 1.095, the curve evolves a second, closely parallel, branch. At 1.09650 the two
branches are equal in length, then at 1.097 the lower branch suddenly extends a long curve, looks much the same at 1.100, then by
1.15 we recognize the emergence of the strange attractor.

But in fact this is a simplified narrative: there are interruptions. For example, at  there’s a 5-cycle, no chaos (it
disappears on changing by 0.0001). And at 1.12 we’re in the 3-cycle interval mentioned earlier.

Anyway, the strange attractor keeps reappearing, and at 1.5 it looks like this:

This looks rather thin compared to Taylor’s picture for the same : the reason is we have kept the strong damping.

Changing to , we recover Taylor’s picture. Like him, we show here (from the applet) the attractor and successive
magnifications of one part, to give some hint of the fractal structure:

γ

γ = 1.0826

γ

γ = 1.0960

γ

2β = 0.375
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We have to admit that at the highest magnification Taylor’s picture is certainly superior to that generated by the applet, but does not
contradict it—actually, it reassures us that the applet is reliable up to the level of definition that is self-evident on looking at it.

Exercise: Use the last two applets to explore other regions of parameter space. What happens on varying the damping? Going from 
 to  the attractor has the same general form but is much narrower. Then go in 0.001 steps to 0.76. For some

values you see the attractor, but for others a cycle, different lengths. There is a two-cycle from 0.76 to 0.766, then a four cycle, then
2β = 0.375 2β = 0.75
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at 0.78 back to a two-cycle, at 0.814 a one-cycle. If you up the driving strength, and the damping, you can find extremely narrow
attractors.

Exercise: Baker and Gollub, Chaotic Dynamics, page 52, give a sequence of Poincaré sections at  intervals for  and 
. You can check them (and intermediate ones) with the applet, and try to imagine putting them in a stack to visualize the

full three-dimensional attractor!

This page titled 23.2: The Road to Chaos is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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23.3: Lyapunov Exponents and Dimensions of Strange Attractors

Scaling the Attractor
Looking at the strange attractor pictured in the previous section, we found that on magnifying a small part of it we saw the same
kind of structure the attractor has as a whole: if we look at a  attractor, with damping 0.75, there are long thin stretches,
they end by looping over. We notice that halving the damping to 0.375 fattens the previously quasi-one-dimensional stretches and
reveals complicated looping at several levels. (Remember that what we are looking at here is a Poincaré section of the attractor, the
other dimension is periodic time (or driver phase, the same thing) so a curve here is a section of some sheet). If more computing
power is used, going to smaller and smaller scales, it turns out that the magnified tiny part of the attractor looks much the same as
the attractor. This kind of scale invariance is a characteristic of a fractal. A mysterious aspect of fractals is their dimensionality.
Look at the strange attractor. There are no places where it solidly fills a stretch of two-dimensional space, this is clearer on going to
greater and greater magnification: we see more and more one-dimensional structures, with no end, so it surely has dimension less
than two, but greater than one—how do we make sense of that?

Fractals: the Cantor Set
To try to find a generalized concept of dimension of a set (i.e. not just an integer), we begin with perhaps the simplest example of a
fractal, the Cantor set: take the numbers between 0 and 1, and cut out the middle third. You now have two strips of numbers, from
0 to 1/3, and from 2/3 to 1. For each of those strips, cut out the middle third. You now have four strips—cut out the middle third of
each of them (it might help to draw this). Do this forever. What’s left is the Cantor set. You can see this is scale invariant: after
doing this many times, take one of the remaining tiny strips, what happens to it on continuing the process is identical (scaled down
suitably) to what happened to the initial strip.

How big is this Cantor set? At each step, we cut the total length of line included by 2/3. Since  goes to zero as  goes to
infinity, it clearly has size zero, right? But clearly there’s more to the Cantor set than there is to a single point, or for that to matter a
finite number of points. What about a countably infinite number of points—for example, the rational numbers between 0 and 1?
Well, you can write them out in a list, ordered by increasing denominators, and for one denominator by increasing numerators.
Then you can put them one by one into tiny intervals, 1/2 goes into an interval of length , 1/3 in an interval , 2/3 in one of
length , 1/4 in , and so on, the total length of the infinite number of intervals being , so all the rationals can be covered
by an arbitrarily small set of intervals. Can we count in order the numbers in the Cantor set in the same way? The answer is no, and
to see why think first about all the numbers between 0 and 1, rationals and irrationals. If you make an infinite list of them, I can
show you missed some out: I just take your list and write down a decimal that differs from your  number in the  place. So we
can’t put all the numbers in the interval in little boxes that add to zero, which is obvious anyway!

But now to the Cantor set: suppose we write all numbers between 0 and 1 using base 3, instead of the traditional base 10. That is,
each number is a string of 0’s, 1’s and 2’s. Then the Cantor set is all those numbers that don’t have any 1’s, such as 0.2, 0.02202,
etc. (Check this yourself.) But the number of these numbers is exactly the same as all the numbers between 0 and 1 in binary
notation! So surely the Cantor set has dimension 1? (These infinities are tricky.)

The bottom line from the above argument is that we can plausibly argue both that the Cantor set has dimension 0, and that it has
dimension 1. To understand and categorize fractals better, we need a working definition of dimension for fractals. One approach is
the capacity dimension.

Dimensions: Capacity and Correlation
Suppose we cover the interval 0,1 with a set of small boxes, length , there are clearly  such boxes (assume it’s an
integer). Now consider a subset of the numbers between 0 and 1, choose , and find how many boxes  are necessary to cover
this subset. The capacity dimension is defined as

For simplicity, we choose  so the necessary numbers of boxes to cover the Cantor set described in the previous
section are  out of total numbers of boxes . Therefore

γ = 1.5

(2/3)n n

ε ε/2

ε/22 ε/23 2ε

nth nth

ε N(ε) = 1/ε

ε N(ε)

= .dC lim
ε→0

logN(ε)

log(1/ε)
(23.3.1)
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2, 4, 8... 3, 9, 27, . . .
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of course between 0 and 1. (There are many ways to define dimensionality of sets of numbers—this definition gives zero for a
finite set of points, and one for all the numbers between 0 and 1, but also 1 for the set of rationals, which we’ve shown above can
be covered by an infinite set of intervals of arbitrarily small total length.)

Another measure used is the correlation dimension, in which for a large number of points (such as our representation of the
attractor) a correlation integral  is defined as the total number of pairs of two points less than  apart. For small , this goes as
a power , and it turns out that in many cases  is close to the capacity definition of the fractal dimension. (Grassberger and
Procaccia.)

Time Development of Systems in Phase Space
Recall first that the state space or phase space we have been plotting is really a projection of the full orbit space into two
dimensions, the third dimension necessary to predict future motion being the phase of the sine-wave driving force, so this is just
time (although of course cyclic).

Suppose now we populate this three-dimensional space with many points, like a gas, each representing a driven damped pendulum.
As time goes on the gas will flow, each gas atom’s path completely determined, and no two will ever be at the same point in this
full space (except perhaps asymptotically at infinite time).

Take now a small volume, say a cube with sides parallel to the axes, containing many points. Consider first the undamped system:
then Liouville’s Theorem (link to my lecture) tells us that as time goes on the cube will generally distort, but it will not change in
volume. In other words, the gas of systems flows like an incompressible fluid. (Details of the derivation are given in the linked
lecture—briefly, the motions of the sides in time  come from the equations of motion, etc.)

However, if the system has damping—as ours does—the same analysis leads to the conclusion that the volume the systems occupy
in phase space (remember, this is now three-dimensional) shrinks at a rate determined by the damping. As a trivial example, think
of undriven damped pendula—they will all tend to the low point rest position. Lightly driven pendula will go to a one-dimensional
cycle.

We can prove this shrinkage from the equation of motion:

In the three-dimensional phase space, a pendulum’s position can be written in coordinates  where , the driving
phase, between 0 and .

The local phase space velocity  can be written in terms of the coordinates (this is just the above equation rewritten!):

This is therefore the local velocity of the atoms of the gas (meaning the systems), and it is trivial to check that

This means that if we have a small sphere containing many points corresponding to systems (a “gas” of systems) then the volume
of the (now distorting) sphere enclosing those points is decreasing in volume at an exponential rate .

Relating this Picture to Lyapunov Exponents
Continuing to think about the development of a small sphere (containing many points corresponding to systems) in phase space, it
will be moving along an orbit, but at the same time distorting, let’s say to an ellipsoid as an initial first approximation, and
tumbling around. In the chaotic regime, we know it must be growing in some direction, at least on average (the rates will vary
along the orbit) because we know that points initially close together separate on average at an exponential rate given by the first

(Cantor) = = ,dC
n log 2

n log 3

log 2

log 3
(23.3.2)
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Lyapunov exponent, . We’ll make the simplifying assumption that the ellipsoid has its axes initially varying in time as 

, with . From the result above , we conclude that

We need to say something more about . We’re taking it as defined by the growth rate of distance between trajectories after any
initial transients but before the distance is comparable to the size of the system (finding this interval plausibly has been termed a
“dark art”). We envision our initially small sphere of gas elongating and tumbling around as it moves along. Hopefully its rate of
elongation correlates well with what we actually measure, that is, the rate of growth of net  displacement, the coordinate
separation of two initially close orbits, which we plot and approximately fit with an exponential, .

For the pendulum, the  direction is just time, not scaled, so . Then necessarily  to satisfy the damping
equation.

So taking a local (in phase space) collection of systems, those inside a given closed surface, like a little sphere, and following their
evolution in time in the chaotic regime, the sphere will expand in one direction; a direction, however, that varies with time, but
contract or stay constant in the other directions. As the surface grows this gets more complicated because it’s confined to a finite
total phase space. And it continues to expand at the same rate as time goes on, so the continual increase in surface must imply
tighter and tighter foldings to stay in the phase space. And this is what the strange attractor looks like.

A Fractal Conjecture
In 1979, Kaplan and Yorke conjectured that the dimensionality of the strange attractor followed from the Lyapunov exponents
taking part in its creation. In our case—the driven damped pendulum—there are only two relevant exponents, , 
and .

A plausibility argument is given in Baker and Gollub’s book, Chaotic Dynamics. They define a Lyapunov dimension  of the
attractor by

exactly analogous to the definition of capacity dimension in the previous section.

Now, as time passes a small square element will have its area multiplied by a factor . (No scaling takes place in the third
(time) direction.) At the same time, they argue that the length unit  changes as . Then  is the area  divided by
the shrinking basic area . The differential of  is , that of  is , so their argument gives

The Lyapunov applet is designed to measure  by tracking separation of initially close trajectories. Try it a few times: it becomes
clear that there is considerable uncertainty in this approach. Given ,  follows from . There are various ways to
assign a dimension to the attractor, such as the capacity and correlation dimensions mentioned above. Various attempts to verify
this relationship have been made, but the uncertainties are considerable, and although results seem to be in the right ballpark, the
results are off by ten or twenty percent typically. It seems there is work still to be done on this fascinating problem.

Recommended reading: chapter 5 of Baker and Gollub, Chaotic Dynamics. The brief discussion above is based on their
presentation.
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24.1: Definition of Rigid
We’re thinking here of an idealized solid, in which the distance between any two internal points stays the same as the body moves
around. That is, we ignore vibrations, or strains in the material resulting from inside or outside stresses. In fact, this is almost
always an excellent approximation for ordinary solids subject to typical stresses—obvious exceptions being rubber, flesh, etc.
Following Landau, we’ll usually begin by representing the body as a collection of particles of different masses 

 by massless bonds. This approach has the merit that the dynamics can be expressed cleanly in terms of
sums over the particles, but for an ordinary solid we’ll finally take a continuum limit, replacing the finite sums over the constituent
particles by integrals over a continuous mass distribution.

This page titled 24.1: Definition of Rigid is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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24.2: Rotation of a Body about a Fixed Axis
As a preliminary, let’s look at a body firmly attached to a rod fixed in space, and rotating with angular velocity  radians/sec. about

that axis. You’ll recall from freshman physics that the angular momentum and rotational energy are 

where

Figure 

But you also know that both angular velocity and angular momentum are vectors. Obviously, for this example, the angular velocity
is a vector pointing along the axis of rotation, . One might be tempted to conclude that the angular momentum also
points along the axis, but this is not always the case. An instructive example is provided by two masses m at the ends of a rod of
length  held at a fixed angle  to the z axis, which is the axis of rotation.

Evidently,

Figure : Masses are momentarily in (x,z) plane

But notice that, assuming the rod is momentarily in the xz plane, as shown, then

The total angular momentum is not parallel to the total angular velocity!

In fact, as should be evident, the total angular momentum is rotating around the constant angular velocity vector, so the axis must
be providing a torque. This is why unbalanced car wheels stress the axle.

Ω

= IΩ, = ILz Erot
1

2
Ω2

I = = ∫ dxdydzρ(x, y, z)∑
i

mir
2
⊥i r2

⊥ (24.2.1)

 (here  =  is the distance from the axis). r⊥ +x2 y2
− −−−−−

√

24.2.1

= (0, 0, )Ω⃗  Ωz

2α θ

= 2m θ ⋅ ΩLz a2 sin2 (24.2.2)

24.2.1

= −2m θ ⋅ ΩLx a2 cos2 (24.2.3)
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24.3: General Motion of a Rotating Rigid Body
We’ll follow the Landau notation (which itself tends to be bilingual between coordinates . Notice that
we’ll label the components by  even though we call the vector . Again, we’re following Landau.

We take a fixed, inertial (or lab) coordinate system labeled  and in this system the rigid body’s center of mass, labeled ,
is at . We have a Cartesian set of axes fixed in the body, origin at the center of mass, and coordinates in this system, vectors from 

  to a point in the body denoted by  are labeled  or .

A vector from the external inertial fixed origin to a point in the body is then

say, as shown in the figure.

Figure 

Suppose now that in infinitesimal time , the center of mass of the body moves  and the body rotates through . Then a
particle at  as measured from the center of mass will move through

Therefore, the velocity of that particle in the fixed frame, writing the center of mass velocity and the angular velocity as

is

Now, in deriving the above equation, we have not used the fact that the origin  fixed in the body is at the center of mass. (That
turns out to be useful shortly.) What if instead we had taken some other origin  fixed in the body? Would we find the angular

velocity ? The answer turns out to be yes, but we need to prove it! Here's the proof:

If the position of  is

A particle at 

Its velocity relative to the fixed external axes is

(x, y, z) and  ( , , ) . )x1 x2 x3

( , , ) ,  not  ( , , )x1 x2 x3 r1 r2 r3 r ⃗ 

(X,Y ,Z) O

R⃗ 

O r ⃗  (x, y, z) ( , , )x1 x2 x3

+ =R⃗  r ⃗  ρ ⃗  (24.3.1)

24.3.1

dt dR⃗  dϕ ⃗ 

r ⃗ 

d = d +d ×ρ ⃗  R⃗  ϕ ⃗  r ⃗  (24.3.2)

d /dt = , d /dt =R⃗  V ⃗  ϕ ⃗  Ω⃗  (24.3.3)

= + ×v ⃗  V ⃗  Ω⃗  r ⃗  (24.3.4)

O

O′

 about   to be the same as Ω′
→

O′ Ω⃗ 

 relative to O is   (a vector fixed in the body and so moving with it) then the velocity   of O′ a⃗  V ′
−→

O′

= + ×V ′
−→

V ⃗  Ω⃗  a⃗  (24.3.5)

 relative to O is at  = −  relative to r ⃗  r′
→

r ⃗  a⃗  O′
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this must of course equal

It follows that 

This means that if we describe the motion of any particle in the body in terms of some origin fixed in the body, plus rotation about
that origin, the angular velocity vector describing the body’s motion is the same irrespective of the origin we choose. So we can,
without ambiguity, talk about the angular velocity of the body.

From now on, we’ll assume that the origin fixed in the body is at the center of mass.

This page titled 24.3: General Motion of a Rotating Rigid Body is shared under a not declared license and was authored, remixed, and/or curated
by Michael Fowler.

= + ×v ⃗  V ′
−→

Ω′
→

r′
→

(24.3.6)

+ × = + × + × = + ×V ⃗  Ω⃗  r ⃗  V ⃗  Ω⃗  r′
→

Ω⃗  a⃗  V ⃗ ′ Ω⃗  r′
→

(24.3.7)

=Ω′
→

Ω⃗ 
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24.4: The Inertia Tensor
Regarding a rigid body as a system of individual particles, we find the kinetic energy

The first term in the last line is

where M is the total mass of the body.

The second term is

from the definition of the center of mass (our origin here) 

The third term can be rewritten:

Here we have used

Alternatively, you could use the vector product identity

together with

to find

The bottom line is that the kinetic energy

a translational kinetic energy plus a rotational kinetic energy.

Warning about notation: at this point, things get a bit messy. The reason is that to make further progress in dealing with the
rotational kinetic energy, we need to write it in terms of the individual components of the  particle position vectors . Following
Landau and others, we’ll write these components in two different ways:

The x,y,z notation is helpful in giving a clearer picture of rotational energy, but the  notation is essential in handling the math, as
will become evident.

Landau’s solution to the too many suffixes for clarity problem is to omit the suffix  labeling the individual particles, I prefer to
keep it in.

Double Suffix Summation Notation: to cut down on the number of ’s in expressions, we’ll follow Landau and others in using
Einstein’s rule that if a suffix like  appears twice in a product, it is to be summed over the values 1,2,3. It’s called a “dummy

T = = ( + × )∑n

1

2
mnv2

n ∑n

1

2
mn V ⃗  Ω⃗  r ⃗ n

= + ⋅ × +∑n

1

2
mnV

2 ∑n mnV
⃗  Ω⃗  r ⃗ n ∑n

1

2
mn( × )Ω⃗  r ⃗ n

2
(24.4.1)

= M∑
n

1

2
mnV

2 1

2
V 2 (24.4.2)

⋅ × = ⋅ × = 0∑
n

mnV ⃗  Ω⃗  r ⃗ n V ⃗  Ω⃗  ∑
n

mnr ⃗ n (24.4.3)

= 0∑n mnr ⃗ n

= [ − ]∑
n

1

2
mn( × )Ω⃗  r ⃗ n

2

∑
n

1

2
mn Ω2r2

n ( ⋅ )Ω⃗  r ⃗ n
2

(24.4.4)

| × | = Ωr sinθ, | ⋅ | = Ωr cosθΩ⃗  r ⃗  Ω⃗  r ⃗  (24.4.5)

( × ) × = − ( ⋅ ) + ( ⋅ )a⃗  b ⃗  c ⃗  a⃗  b ⃗  c ⃗  b ⃗  a⃗  c ⃗  (24.4.6)

( × ) ⋅ ( × ) = ( × ) × ⋅a⃗  b ⃗  c ⃗  d ⃗  a⃗  b ⃗  c ⃗  d ⃗  (24.4.7)

( × ) ⋅ ( × ) = ( ⋅ )( ⋅ ) −( ⋅ )( ⋅ )a⃗  b ⃗  c ⃗  d ⃗  a⃗  c ⃗  b ⃗  d ⃗  a⃗  d ⃗  b ⃗  c ⃗  (24.4.8)

T = M + [ − ] = +
1

2
V 2 ∑

n

1

2
mn Ω2r2

n ( ⋅ )Ω⃗  r ⃗ n
2

Ttr Trot (24.4.9)

n r ⃗ n

= ( , , ) ≡ ( , , )r ⃗ n xn yn zn xn1 xn2 xn3 (24.4.10)

xni

n

Σ

i, j, k
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suffix” because it doesn’t matter what you label it, as long as it appears twice. For example,

the inner product of two vectors  can be written as . Furthermore, 
.

But do not use Greek letters for dummy suffixes in this context: the standard is that they are used in relativistic equations to signify
sums over the four dimensions of space time, Latin letters for sums over the three spatial dimensions, as we are doing here.

The rotational kinetic energy is then

Warning: That first line is a bit confusing: copying Landau, I’ve written , you might think that’s ,
but a glance at the previous equation (and the second line of this equation) makes clear it’s actually . Landau should have
written . Actually I’m not even keen on  implying a double summation. Standard use in relativity, for example, is that both
of the two suffixes be explicit for summation to be implied. In GR one would write , but that’s
another story.)

Anyway, moving on, we introduce the inertia tensor

In terms of which the kinetic energy of the moving, rotating rigid body is

As usual, the Lagrangian  where the potential energy  is a function of six variables in general, the center of mass
location and the orientation of the body relative to the center of mass.

Landau writes the inertia tensor explicitly as:

but you should bear in mind that .
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⋅ =A ⃗  B⃗  ∑3
i=1 AiBi  or equally as AiBi AkBk

 means  + + =Ω2
i Ω2

1 Ω2
2 Ω2

3 Ω2

= ( − )Trot 
1

2
∑n mn Ω2

i x
2
ni ΩixniΩkxnk
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1

2
∑n mn ΩiΩkδikx

2
nl ΩiΩkxnixnk

= ( − )
1

2
ΩiΩk∑n mn δikx
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(24.4.11)

Ω2
i x

2
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n1 Ω2

2x
2
n2 Ω2
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2
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i x

2
nl Ω2

i

.  (Well, actually ΩiΩi ΩiΩ
i

= ( − )Iik ∑
n

mn x2
nlδik xnixnk (24.4.12)

T = M +
1

2
V 2 1

2
IikΩiΩk (24.4.13)

L = T −V V

=Iik

⎡

⎣

⎢⎢

∑m ( + )y2 z2

−∑mxy

−∑mxz

−∑mxy

∑m ( + )z2 x2

−∑myz

−∑mxz

−∑myz

∑m ( + )x2 y2

⎤

⎦

⎥⎥ (24.4.14)

−∑mxz means  −∑n mnxnzn
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24.5: Tensors 101
We see that the “inertia tensor” defined above as

is a  two-dimensional array of terms, called components, each of which is made up (for this particular tensor) of products of
vector components.

Obviously, if we had chosen a different set of Cartesian axes from the same origin  the vector components would be different: we
know how a vector transforms under such a change of axes, 

This can be written more succinctly as

the bold font indicating a vector or matrix.

In fact, a transformation from any set of Cartesian axes to any other set having the same origin is a rotation about some axis. This
can easily be seen by first rotating so that the  axis coincides with the x axis, then rotating about that axis. (Of course, both sets of
axes must have the same handedness.) We’ll discuss these rotation transformations in more detail later, for now we’ll just mention
that the inverse of a rotation is given by the transpose matrix (check for the example above),

so if the column vector

the row vector

a.k.a. , and the length of the vector doesn’t change:

It might be worth spelling out explicitly here that the transpose of a square matrix (and almost all our matrices are square) is found
by just swapping the rows and columns, or equivalently swapping elements which are the reflections of each other in the main
diagonal, but the transpose of a vector, written as a column, has the same elements as a row, and the product of vectors follows the
standard rules for matrix multiplication:

with the dummy suffix  summed over.

Thus,

and

but

= ( − )Iik ∑
n

mn x2
nlδik xnixnk (24.5.1)
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This will perhaps remind you of the Hilbert space vectors in quantum mechanics: the transposed vector above is analogous to the
bra, the initial column vector being the ket. One difference from quantum mechanics is that all our vectors here are real, if that were
not the case it would be natural to add complex conjugation to the transposition, to give , the length
squared of the vector.

The difference shown above between  is exactly parallel to the difference between  in quantum
mechanics—the first is a number, the norm of the vector, the second is an operator, a projection into the state 

This page titled 24.5: Tensors 101 is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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24.6: Definition of a Tensor
We have a definite rule for how vector components transform under a change of basis: . What about the components of
the inertia tensor ?

We’ll do it in two parts, and one particle at a time. First, take that second term for one particle, it has the form . But we
already know how vector components transform, so this must go to

The same rotation matrix  is applied to all the particles, so we can add over n.

In fact, the inertia tensor is made up of elements exactly of this form in all nine places, plus diagonal terms , obviously
invariant under rotation. To make this clear, we write the inertia tensor:

where 1 is the 3×3 identity matrix. (Not to be confused with )

Exercise: convince yourself that this is the same as 

This transformation property is the definition of a two-suffix Cartesian three-dimensional tensor: just as a vector in this space can
be defined as an array of three components that are transformed under a change of basis by applying the rotation matrix, 

, a tensor with two suffixes in the same space is a two-dimensional array of nine numbers that transform as

Writing this in matrix notation, and keeping an eye on the indices, we see that with the standard definition of a matrix product, 

(The transformation property for our tensor followed immediately from that for a vector, since our tensor is constructed from
vectors, but by definition the same rule applies to all Cartesian tensors, which are not always expressible in terms of vector
components.)
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24.7: Diagonalizing the Inertia Tensor
The inertial tensor has the form of a real symmetric matrix. By an appropriate choice of axes  any such tensor can be
put in diagonal form, so that

These axes, with respect to which the inertia tensor is diagonal, are called the principal axes of inertia, the moments about them 
 the principal moments of inertia.

If you’re already familiar with the routine for diagonalizing a real symmetric matrix, you can skip this review.

The diagonalization of the tensor/matrix proceeds as follows.

First, find the eigenvalues  and corresponding eigenvectors  of the inertial tensor  :

(The  for now, we need first to establish that they’re
real.)

Now since  is real and symmetric,  the eigenvalues are real. To prove this, take the equation for  above and premultiply
by the row vector , the complex conjugate transpose:

The left hand side is a real number: this can be established by taking its complex conjugate. The fact that the tensor is real and
symmetric is crucial!

And since these are dummy suffixes, we can swap the i ’s and j ’s to establish that this number is identical to its complex conjugate,
hence it’s real. Clearly,  is real and positive, so the eigenvalues are real.

(Note: a real symmetric matrix does not necessarily have positive roots: for example 

Taking the eigenvalues to be distinct (the degenerate case is easy to deal with) the eigenvectors are orthogonal, by the standard
proof, for this matrix left eigenvectors (rows) have the same eigenvalues as their transpose, so

and .

The diagonalizing matrix is made up of these eigenvectors (assumed normalized):

a column of row vectors.

To check that this is indeed a rotation vector, from one orthogonal set of axes to another, notice first that its transpose 
 is its inverse (as required for a rotation), since the eigenvectors form an orthonormal set.

Now apply this  to an arbitrary vector:

In vector language, these elements are just , the primed components are just the components of  along
the eigenvector axes, so the operator  gives the vector components relative to these axes, meaning it has rotated the coordinate

( , , )x1 x2 x3
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system to one with the principal axes of the body are now the  axes.

We can confirm this by applying the rotation to the inertia tensor itself:

Let’s examine the contribution of one particle to the inertia tensor:

Note that  here represents the column vector of the particle coordinates, in other words, it’s just  And, watch out for the inertia
tensor I and the unit tensor 1.

They transform as , note that this agrees with . Since under rotation the length of a vector is invariant 
 it is evident that in the rotated frame (the eigenvector frame) the single particle

contributes to the diagonal elements

. We’ve dropped the primes, since we’ll be working in this natural frame from now on.
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24.8: Principal Axes Form of Moment of Inertia Tensor
We already know that the transformed matrix is diagonal, so its form has to be

The moments of inertia, the diagonal elements, are of course all positive. Note that no one of them can exceed the sum of the other
two, although it can be equal in the (idealized) case of a two-dimensional object. For that case, taking it to lie in the  plane,

This page titled 24.8: Principal Axes Form of Moment of Inertia Tensor is shared under a not declared license and was authored, remixed, and/or
curated by Michael Fowler.
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24.9: Relating Angular Momentum to Angular Velocity
It’s easy to check that the angular momentum vector is

since

Exercise: verify this by putting in all the suffixes.

This page titled 24.9: Relating Angular Momentum to Angular Velocity is shared under a not declared license and was authored, remixed, and/or
curated by Michael Fowler.
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24.10: Symmetries, Other Axes, the Parallel Axis Theorem
If a body has an axis of symmetry, the center of mass must be on that axis, and it is a principal axis of inertia. To prove the center of
mass statement, note that the body is made up of pairs of equal mass particles on opposite sides of the axis, each pair having its
center of mass on the axis, and the body’s center of mass is that of all these pairs centers of mass, all of which are on the axis.

Taking this axis to be the x axis, symmetry means that for each particle at  there is one of equal mass at , so the
off-diagonal terms in the x row and column,  all add up to zero, meaning this is indeed a principal axis.

The moment of inertia about an arbitrary axis through the center of mass, in the direction of the unit vector  is

The inertia tensor about some origin  located at position  relative to the center of mass is easily found to be

In particular, we have the parallel axis theorem: the moment of inertia about any axis through some point  equals that about the
parallel axis through the center of mass O plus  is the perpendicular distance between the axes.

Exercise: check this!

This page titled 24.10: Symmetries, Other Axes, the Parallel Axis Theorem is shared under a not declared license and was authored, remixed,
and/or curated by Michael Fowler.
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25.1: Examples of Moments of Inertia

Molecules

The moment of inertia of the hydrogen molecule was historically important. It’s trivial to find: the nuclei (protons) have 99.95% of

the mass, so a classical picture of two point masses  a fixed distance  apart gives . In the nineteenth century, the

mystery was that equipartition of energy, which gave an excellent account of the specific heats of almost all gases, didn’t work for
hydrogen—at low temperatures, apparently these diatomic molecules didn’t spin around, even though they constantly collided with
each other. The resolution was that the moment of inertia was so low that a lot of energy was needed to excite the first quantized
angular momentum state,  This was not the case for heavier diatomic gases, since the energy of the lowest angular
momentum state , is lower for molecules with bigger moments of inertia .

Here’s a simple planar molecule:

Figure 

Obviously, one principal axis is through the centroid, perpendicular to the plane. We’ve also established that any axis of symmetry
is a principal axis, so there are evidently three principal axes in the plane, one along each bond! The only interpretation is that there
is a degeneracy: there are two equal-value principal axes in the plane, and any two perpendicular axes will be fine. The moment of
inertial about either of these axes will be one-half that about the perpendicular-to-the-plane axis.

What about a symmetrical three dimensional molecule?

Figure 

Here we have four obvious principal axes: only possible if we have spherical degeneracy, meaning all three principal axes have the
same moment of inertia.

Various Shapes
A thin rod, linear mass density , length :

A square of mass , side , about an axis in its plane, through the center, perpendicular to a side:

m a I = m
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2
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(It’s just a row of rods.) in fact, the moment is the same about any line in the plane through the center, from the symmetry, and the
moment about a line perpendicular to the plane through the center is twice this—that formula will then give the moment of inertia
of a cube, about any axis through its center.

A disc of mass , radius  and surface density  has

This is also correct for a cylinder (think of it as a stack of discs) about its axis.

A disc about a line through its center in its plane must be  from the perpendicular axis theorem. A solid cylinder about a line

through its center perpendicular to its main axis can be regarded as a stack of discs, of radius , height , taking the mass of a disc
as  and using the parallel axes theorem,

For a sphere, a stack of discs of varying radii,

An ellipsoid of revolution and a sphere of the same mass and radius clearly have the same motion of inertial about their common
axis (shown).

Figure 

Moments of Inertia of a Cone

Figure 

Following Landau, we take height  and base radius  and semivertical angle  so that .

As a preliminary, the volume of the cone is

I = m
1

12
ℓ2 (25.1.2)
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The center of mass is distance  from the vertex, where

The moment of inertia about the central axis of the cone is (taking density ) that of a stack of discs each having mass

and moment of inertia 

The moment of inertia about the axis  through the vertex, perpendicular to the central axis, can be calculated using the stack-of-

discs parallel axis approach, the discs having mass , it is

This page titled 25.1: Examples of Moments of Inertia is shared under a not declared license and was authored, remixed, and/or curated by
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25.2: Analyzing Rolling Motion

Kinetic Energy of a Cone Rolling on a Plane

The cone rolls without slipping on the horizontal XY plane. The momentary line of contact with the plane is OA, at an angle θ in
the horizontal plane from the X axis.

The important point is that this line of contact, regarded as part of the rolling cone, is momentarily at rest when it’s in contact with
the plane. This means that, at that moment, the cone is rotating about the stationary line OA. Therefore, the angular velocity vector 

 points along OA.

Taking the cone to have semi-vertical angle  (meaning this is the angle between OA and the central axis of the cone) the center of
mass, which is a distance a from the vertex, and on the central line, moves along a circle at height  above the plane, this
circle being centered on the Z axis, and having radius . The center of mass moves at velocity , so contributes
translational kinetic energy

Now visualize the rolling cone turning around the momentarily fixed line OA: the center of mass, at height , moves at V, so
the angular velocity

Next, we first define a new set of axes with origin O: one, is the cone’s own center line, another,  is perpendicular to that and
to OA, this determines  (For these last two, since they’re through the vertex, the moment of inertia is the one worked out at the
end of the previous section, see above.)

Since 

However, to compute the total kinetic energy, for the rotational contribution we need to use a parallel set of axes through the center
of mass. This just means subtracting from the vertex perpendicular moments of inertia found above a factor .

The total kinetic energy is

using

This page titled 25.2: Analyzing Rolling Motion is shared under a not declared license and was authored, remixed, and/or curated by Michael
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25.3: Rolling Without Slipping - Two Views

Think of a hoop, mass  radius , rolling along a flat plane at speed . It has translational kinetic energy , angular

velocity , and moment of inertia  so its angular kinetic energy  and its total kinetic energy is 

.

But we could also have thought of it as rotating about the point of contact—remember, that point of the hoop is momentarily at
rest. The angular velocity would again be , but now with moment of inertia, from the parallel axes theorem, 

, giving same total kinetic energy, but now all rotational.
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25.4: Cylinder Rolling Inside another Cylinder

Figure 

Now consider a solid cylinder radius a rolling inside a hollow cylinder radius R, angular distance from the lowest point , the solid
cylinder axis moving at  and therefore having angular velocity (compute about the point of contact) .

The kinetic energy is

The potential energy is .

The Lagrangian , the equation of motion is

so small oscillations are at frequency .
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26.1: Angular Momentum and Angular Velocity
In contrast to angular velocity, the angular momentum of a body depends on the point with respect to which it is defined. For now,
we take it (following Landau, of course) as relative to the center of mass, but we denote it by , following modern usage. This
“intrinsic” angular momentum is like the Earth’s angular momentum from its diurnal rotation, as distinct from its orbital angular
momentum in going around the Sun.

That is

where  is the inertia tensor: this just means 

Explicitly, taking the principal axes as the  axes,

For anything with spherical inertial symmetry (such as a cube or a tetrahedron!) 

Landau defines a rotator as a collection of massive particles all on a line. (I guess that includes diatomic molecules, and, for
example, , neglecting electrons and nuclear size). We know there are only two physical rotational degrees of freedom for these
molecular rotators (thanks to quantum mechanics) and obviously the two principal axes are perpendicular to the line of masses, and
degenerate. Again, then, .
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26.2: Precession of a Symmetrical Top
A more interesting case is the free rotation (zero external torque) of a symmetrical top, meaning .

Figure 

We can take any pair of orthogonal axes, perpendicular to the body’s symmetry axis, as the  axes. We’ll choose  following
Landau, as perpendicular to the plane containing  and the momentary position of the  axis, so in the diagram here  is
perpendicularly out from the paper/screen, towards the viewer.

This means the angular momentum component  and therefore  is in the same plane as 
 of every point on the axis of the top is perpendicular to this plane (into the paper/screen).

The axis of the top  must be rotating uniformly about the direction of .

The spin rate of the top around its own axis is

The angular velocity vector  can be written as a sum of two components, one along the body’s axis  and one parallel to the
angular momentum  (these components are shown dashed in the figure)

The component along the body’s axis  does not contribute to the precession, which all comes from the component along the
(fixed in space) angular momentum vector.

The speed of precession follows from

and

so

Note also the ratio of precession rate to spin around axis is

This means the precession rate and the spin are very comparable, except when  is near , when the precession becomes much
faster. Remember this is the body’s precession with no external torque, and is clearly completely different—much faster precession
—than the familiar case of a fast spinning top under gravity.
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26.3: Throwing a Football…
If you throw a football and manage to give it only spin about the long axis, it will stay pointing that way (apart from drag effects,
which will tend to line up spin direction with velocity). If when you throw it you also add some angular velocity along a shorter
axis, it will precess (wobble). Given the angle, the ratio of precession to spin is fixed.

If you take a ball that is already spinning fast about its long axis, have the two ends of the long axis (its points) in your palms, then,
as you throw it, give it a quick twist by moving one hand downwards and the other up as you throw, to give it significant angular
velocity about a short axis, at the same time keeping the fast spin about the long axis, once the ball leaves your hands, the angle
between the spin and the total angular momentum, the angle of wobble, is completely determined by the ratio of the two angular
velocities.
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26.4: Equations of Motion for Rigid Body with External Forces

Translation
A free rigid body has six degrees of freedom (for instance, the coordinates of the center of mass and the orientation of the body).
Therefore, there are six equations of motion, three for the rate of change of spatial position of the center of mass, in other words for
the components of the velocity , and three for the rate of change of orientation, the angular velocity .

These equations are of course nothing but Newton’s laws, easily derived by summing over the set of equations 
for each particle.

Denoting the total momentum of the body by .

 is the velocity of the center of mass. (This can be established by differentiating with respect

to time the definition of the center of mass, 

The total force on all the particles is a sum of the total external force on the body and the sum of internal forces between particles—
but these internal forces come in equal and opposite pairs, from Newton’s Third Law, and therefore add to zero.

The bottom line, then, is that the rate of change of momentum of a rigid body equals the total external force on the body. If this
force is from a time-independent potential, then

because if the body is moved through  (without rotation, hence the partial derivative), each individual particle moves through

the same , the work done by the external potential on the  particle is , and summing over all the particles
gives , giving the above equation as .

Rotation
To derive the equation of motion for rotation of a rigid body, we choose the inertial frame in which the center of mass is
momentarily at rest, and take the center of mass as the origin.

The rate of change of angular momentum about the center of mass (origin),

where we dropped the  to get the total
moment of the external forces about the center of mass, the torque.

The angular momentum about the center of mass is the same in any inertial frame, since the extra term on adding a velocity  to
each mass is

from the definition of the center of mass.

If the center of mass is not at the origin, denote the particle coordinates by  in the usual notation, so

a sum of an intrinsic (“spin”) angular momentum and an extrinsic (“orbital”)angular momentum.

Similarly, if the torque of external forces relative to the center of mass is  as defined above, then relative to the
new origin the torque is
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that is, the torque about the new origin is the torque about the center of mass plus the torque about the new origin of the total
external force acting at the center of mass.

An important special case is that of a couple: a pair of equal but oppositely directed forces, acting along parallel but separated lines
(like two hands oppositely placed turning a steering wheel). The forces add to zero, so from the above equation a couple exerts the
same torque about any origin.

More generally, the term couple is often used (including by Landau) to refer to any set of forces that add to zero, but give a nonzero
torque because of their lines of action, and such a set give the same torque about any origin.

Exercise: prove that for a rigid body freely falling in a uniform gravitational field, the angular momentum about the center of mass
remains constant, but about another point it will in general be changing. What about a charged rigid body moving in space (no
gravity) through a uniform electric field?
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CHAPTER OVERVIEW

27: Euler Angles
So far, our analysis of rotational motion has been of essentially one dimensional, or more precisely one angular parameter, motion:
rotating about an axis, rolling, precessing and so on. But this leaves out many interesting phenomena, for example the wobbling of
a slowing down top, nutation, and so on. We need a well-defined set of parameters for the orientation of a rigid body in space to
make further progress in analyzing the dynamics.

The standard set is Euler’s Angles. What you see as you watch a child’s top beginning to wobble as it slows down is the direction
of the axis—this is given by the first two of Euler’s angles:  the usual spherical coordinates, the angle  from the vertical
direction and the azimuthal angle  about that vertical axis. Euler’s third angle, , specifies the orientation of the top about its own
axis, completing the description of the precise positioning of the top. To describe the motion of the wobbling top as we see it, we
evidently need to cast the equations of motion in terms of these angles.

27.1: Definition of Euler Angles
27.2: Angular Velocity and Energy in Terms of Euler’s Angles
27.3: Free Motion of a Symmetrical Top
27.4: Motion of Symmetrical Top around a Fixed Base with Gravity - Nutation
27.5: Steady Precession
27.6: Stability of Top Spinning about Vertical Axis

This page titled 27: Euler Angles is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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27.1: Definition of Euler Angles
The rotational motion of a rigid body is completely defined by tracking the set of principal axes , with origin at the
center of mass, as they turn relative to a set of fixed axes (X,Y,Z). The principal axes can be completely defined relative to the fixed
set by three angles: the two angles  fix the direction of  free to turn in the plane
perpendicular to , the angle  fixes their orientation.

Figure :  follow standard physics practice for labeling the direction of body axis  relative to lab axes  is the
body rotation angle from  to the  axis in the  plane, about its  axis.

To see these angles, start with the fixed axes, draw a circle centered at the origin in the horizontal X,Y plane. Now draw a circle of
the same size, also centered at the same origin, but in the principal axes  plane. Landau calls the line of intersection of these
circles (or discs) the line of nodes. It goes through the common origin, and is a diameter of both circles.

The angle between these two planes, which is also the angle between Z,  (since they’re the perpendiculars to the planes) is
labeled .

The angle between this line of nodes and the X axis is . It should be clear that ,  together fix the direction of , then the other
axes are fixed by giving , the angle between  and the line of nodes ON. The direction of measurement of ,  around Z,  are
given by the right-hand or corkscrew rule.
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27.2: Angular Velocity and Energy in Terms of Euler’s Angles
Since the position is uniquely defined by Euler’s angles, angular velocity is expressible in terms of these angles and their
derivatives.

The strategy here is to find the angular velocity components along the body axes  in turn. Once we have the
angular velocity components along the principal axes, the kinetic energy is easy.

You might be thinking: wait a minute, aren't the axes embedded in the body? Don't they turn with it? How can you talk about
rotation about these axes? Good point: what we're doing here is finding the components of angular velocity about a set of axes
fixed in space, not the body, but momentarily coinciding with the principal axes of the body.

From the diagram,  is along the line , and therefore in the  plane: notice it is at an angle  with respect to . Its

components are therefore .

Now  is about the  axis. The principal axis  is at angle  to the  axis, so  has component  about , and  in
the  plane, that latter component along a line perpendicular to , and therefore at angle  from the  axis. Hence 

The angular velocity  is already along a principal axis, .

To summarize, the Euler angle angular velocities (components along the body’s principal axes) are:

from which, the angular velocity components along those in-body axes 

For a symmetric top, meaning , the rotational kinetic energy is therefore

For this symmetrical case, as Landau points out, we could have taken the  axis momentarily along the line of nodes ON, giving
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27.3: Free Motion of a Symmetrical Top
As a warm up in using Euler’s angles, we’ll redo the free symmetric top covered in the last lecture. With no external torques acting
the top will have constant angular momentum .

Figure :

We’ll take  in the fixed Z direction. The axis of the top is along .

Taking the  axis along the line of nodes ON (Figure ) at the instant considered, the constant angular

Figure : Free motion of symmetric top: Constant  along fixed Z

L⃗ 

27.3.1
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x1 27.3.1
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Remember, this new  axis (Figure ) is perpendicular to the Z axis we’ve taken , and  is
constant, meaning that the principal axis  describes a cone around the constant angular momentum vector . The rate of
precession follows from the constancy of . Writing the absolute magnitude of the angular momentum as L, 

 (remember L is in the Z direction, and  is momentarily along ON ) so the rate of precession . Finally, the
component of  along the  axis of symmetry of the top is , so the top’s spin along its own axis is 

.
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27.4: Motion of Symmetrical Top around a Fixed Base with Gravity - Nutation
Denoting the distance of the center of mass from the fixed bottom point P as  (along the axis) the moment of inertia about a line
perpendicular to the axis at the base point is

 being usual center of mass moment.)

The Lagrangian is ( P being the origin,  in direction 

Notice that the coordinates  do not appear explicitly, so there are two constants of motion:

That is, the angular momentum about  is conserved, because the two forces acting on the top, the gravitational pull at the center
of mass and the floor reaction at the bottom point, both act along lines intersecting the axis, so never have torque about . The
angular momentum about Z is conserved because the gravitational torque acts perpendicular to this line.

We have two linear equations in  with coefficients depending on  and the two constants of motion . The solution is
straightforward, giving

and

The (conserved) energy

Using the constants of motion to express  in terms of  and the constants , then subtracting a  independent term to
reduce clutter,

we have

The range of motion in  is given by  goes to infinity at  It has a single minimum
between these points. (This isn’t completely obvious—one way to see it is to change variable to , following Goldstein.

Multiplying throughout by , and writing  gives a one dimensional particle in a potential problem, and the
potential is a cubic in . Of course some roots of  could be in the unphysical region . In any case, there are at
most three roots, so since the potential is positive and infinite at  it has at most two roots in the physical range.)

ℓ

= +MI ′
1 I1 ℓ2 (27.4.1)
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From the one-dimensional particle in a potential analogy, it’s clear that  oscillates between these two points . This
oscillation is called nutation. Now

could change sign during this oscillation, depending on whether or not the angle  is in the range. Visualizing the
path of the top center point on a spherical surface centered at the fixed point, as it goes around it oscillates up and down, but if there
is this sign change, it will “loop the loop”, going backwards on the top part of the loop.

Figure 
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27.5: Steady Precession
Under what conditions will a top, spinning under gravity, precess at a steady rate? The constancy of ,  mean that 

, and  are constants.

The  Lagrange equation is

For constant , , so, with , and .

Since Equation  is a quadratic equation for the precession rate, there are two solutions in general: on staring at a precessing
top, this is a bit surprising! We know that for the top, when it’s precessing nicely, the spin rate  far exceeds the precession rate 

. Assuming  to be of similar size, this means the first term in the quadratic is much smaller than the second. If we just
drop the first term, we get the precession rate

Note that this is independent of angle—the torque varies as , but so does the horizontal component of the angular momentum,
which is what’s changing.

This is the familiar solution for a child’s fast-spinning top precessing slowly. But this is a quadratic equation, there’s another
possibility: in this large  limit, this other possibility is that , so now in the equation the last term, the
gravitational one, is negligible, and

This is just the nutation of a free top! In fact, of course, both of these are approximate solutions, only exact in the limit of infinite
spin (where one goes to zero, the other to infinity), and a more precise treatment will give corrections to each arising from the
other. Landau indicates the leading order gravitational correction to the free body nutation mode.
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27.6: Stability of Top Spinning about Vertical Axis
(from Landau) For ,

The vertical position is stable against small oscillations provided , or 

Suppose you set the top vertical, but spinning at less than , the value at which it is just stable. It will fall away, but
bounce back, and so on. Show the maximum angle it reaches is given by .
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Exercise 27.6.1
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28: Euler’s Equations
28.1: Introduction to Euler’s Equations
28.2: Free Rotation of a Symmetric Top Using Euler’s Equations
28.3: Using Energy and Angular Momentum Conservation
28.4: The Asymmetrical Top
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28.1: Introduction to Euler’s Equations
We’ve just seen that by specifying the rotational direction and the angular phase of a rotating body using Euler’s angles, we can
write the Lagrangian in terms of those angles and their derivatives, and then derive equations of motion. These can be solved to
describe precession, nutation, etc.

One might hope for a more direct Newtonian approach—we know, for example, that the steadily precessing child’s top is easy to
understand in terms of the gravitational torque rotating the angular momentum vector.

What about applying  (the external torque on the system) more generally? It’s certainly valid. The problem is that
in the lab frame  is

and the elements of the inertia tensor relative to the lab axes are constantly changing as the body rotates.

The Newtonian approach is only practicable if the connection between  can be made in the body frame defined by the principal
axes of inertia  is

With the body frame rotating at  relative to the fixed-in-space (X,Y,Z) frame, the rates of change of a vector in the two frames
satisfy

To understand this equation, think first of a moving particle, say a bug crawling about on the rotating body. The bug’s movement
relative to the center of rotation is equal to its movement relative to axes fixed in the rotating body, plus the rotational movement of
that body relative to the fixed-in-space axes.

You might be thinking at this point: yes, I can see this is true if the vector represents the position of a particle that’s moving around
in space, but we’re looking at the changing angular momentum, why isn’t the angular momentum just zero in a frame in which the
body is at rest? And the angular velocity, too?

But what is meant here by the vector "in the body frame" is the components of the vector in an inertial frame that is momentarily
coincident with the principal axes.

The  term represents the change on going through this succession of inertial frames.

Think of a long forward pass of an (American) football. The ball is spinning about its long axis (usually), but that axis itself is
precessing about the line of flight. Of course, air resistance presumably helps it line up this way, but is not the main effect, which is
that the angular momentum vector points in a constant direction in space, the axis of symmetry is precessing around it, as we saw
on throwing the ball in class. Imagine now running alongside the ball, holding a pencil pointing in the direction of the constant
angular momentum vector. As seen by an observer in the ball, relative to the ball’s principal axes frame of reference, the pencil will
be describing a cone—this is what we mean by the path of the angular momentum vector relative to the body axes.

The equations of motion in the body frame are then

where  are the external force and couple respectively.

Writing the angular momentum equation in components along the principal axes:

(d /dt =L⃗  )lab K⃗ 

= IL⃗  Ω⃗ 

=Li IijΩj (28.1.1)

,L⃗  Ω⃗ 

( , , ) ,  in which  = Ix1 x2 x3 L⃗  Ω⃗ 

= , = , =L1 I1Ω1 L2 I2Ω2 L3 I3Ω3 (28.1.2)

Ω⃗ 

= + ×( )
dA ⃗ 

dt
lab

( )
dA ⃗ 

dt
body

Ω⃗  A ⃗  (28.1.3)

×Ω⃗  A ⃗ 

+ × = , + × =( )
dP ⃗ 

dt
body

Ω⃗  P ⃗  F ⃗  ( )
dL⃗ 

dt
body

Ω⃗  L⃗  K⃗  (28.1.4)

,F ⃗  K⃗ 

d /dt+( − )I1 Ω1 I3 I2 Ω2Ω3

d /dt+( − )I2 Ω2 I1 I3 Ω3Ω1

d /dt+( − )I3 Ω3 I2 I1 Ω1Ω2

= K1

= K2

= K3

(28.1.5)
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These are Euler’s Equations.

In the important special case of zero torque:

This page titled 28.1: Introduction to Euler’s Equations is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.

d /dt+( − ) = 0I1 Ω1 I3 I2 Ω2Ω3

d /dt+( − ) = 0I2 Ω2 I1 I3 Ω3Ω1

d /dt+( − ) = 0I3 Ω3 I2 I1 Ω1Ω2

(28.1.6)
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28.2: Free Rotation of a Symmetric Top Using Euler’s Equations
This is a problem we’ve already solved, using Lagrangian methods and Euler angles, but it’s worth seeing just how easy it is using
Euler’s equations.

For , the third equation gives immediately .

Then, writing for convenience

the first two equations are

These equations can be combined to give

That is,  moves around a circle centered at the origin with constant angular velocity. So  stays constant,
and  is constant, the angular velocity vector has constant length and rotates steadily about the axis .

From

it follows that the angular momentum vector also precesses at a steady rate about . This is, remember, in the body frame—we
know that in the fixed space frame, the angular momentum vector is constant! It follows that, as viewed from the outside, the 
axis precesses around the fixed angular momentum vector at a steady rate.

Of course, the rate is the same as that found using Euler’s angles, recall from the previous lecture that

so in precession

so
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=I1 I2 =  constant. Ω3

( − ) / = ωΩ3 I3 I1 I1 (28.2.1)

= −ω , = ωΩ̇1 Ω2 Ω̇2 Ω1 (28.2.2)

d ( + i ) /dt = iω ( + i ) ,  sо  ( + i ) = AΩ1 Ω2 Ω1 Ω2 Ω1 Ω2 eiωt (28.2.3)

( , )Ω1 Ω2 + = |AΩ2
1 Ω2

2 |2

Ω3 x3

= , = , =L1 I1Ω1 L2 I2Ω2 L3 I3Ω3 (28.2.4)

x3

x3

= ( , , ) = ( , sinθ, ( cosθ+ ))L⃗  I1Ω1 I1Ω2 I3Ω3 I1 θ̇ I1ϕ̇ I3 ϕ̇ ψ̇ (28.2.5)

= L cosθ = ( cosθ+ ) and  = L/L3 I3 ϕ̇ ψ̇ ϕ̇ I1 (28.2.6)

= L cosθ( − ) = − ( − ) /ψ̇
1

I3

1

I1
Ω3 I3 I1 I1 (28.2.7)
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28.3: Using Energy and Angular Momentum Conservation
We can also gain some insight into the motion of the free spinning top just from conservation of energy and angular momentum.

The equations are:

Visualize these equations as surfaces in  space.

The second is a sphere, radius L, centered at the origin.

The first is an ellipsoid, also centered at the origin, with semimajor axes

Do these two surfaces intersect?

The answer is yes, they always do.

To see that, assume first that . The sphere intersects the ellipsoid in two circles.
These degenerate to one circle, the equator, when , and two points (the poles) when .

We conclude that the path of the angular momentum vector is a circle around the axis of symmetry in the body coordinate system,
and since we know that relative to the fixed space axes the angular momentum is in fact constant, this means that actually the body
is precessing about its axis of symmetry as seen by an observer.
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28.4: The Asymmetrical Top
Here we’ll generalize the above equations and argument to the general case of three different moments of inertia about the three
principal axes. That is,

We’ll take

From the limitations on energy for given angular momentum, the maximum sphere radius is the maximum semimajor axis of the
ellipsoid, the ellipsoid touches the sphere at its two extreme poles. For a slightly smaller sphere, the lines of intersection arte two
small ellipses centered at the poles, evidently the major axis will go around this elliptical cone in fixed space. At the other extreme,
the minimum allowed angular momentum for a given energy, the sphere is entirely inside the ellipsoid except that it touches at the
ends of the shortest axes. Again, for a top with slightly more angular momentum, it will precess (elliptically) around this minimum
axis.

In both these cases, spin about the axis is stable against small perturbations. This is not the case for spin about the middle axis —
for that energy, the intersection of the sphere and ellipsoid does not reduce to two points.

The equations for pure spin about the middle axis can be written

These equations define the points common to the sphere and the ellipsoid at this energy.

Figure : Contours of constant angular momentum on a constant-energy ellipsoidal surface, viewed along the intermediate
axis.

Subtracting the second from the first, we find

with solutions

So for this energy and total angular momentum squared, the intersection of the sphere and ellipsoid is in two planes, both
containing the intermediate axis. This means that any perturbation of this motion will send the system along one of these paths, or a
trajectory close to it—in other words, it will deviate far from its original motion, in contrast to spin about either of the other two
axes.

In all cases, the path followed by , the intersection of the sphere and the ellipsoid, is closed, so the angular momentum cycles
back to its original value, in periodic motion. Landau calculates the period, a straightforward (but too lengthy to repeat here)
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solution of Euler’s equations, giving elliptic functions. Actually, the top does not return to its original configuration: the angular
momentum returns, but the top has a different angular position about its axis. Landau states this (Berry like?) result, but refers to
Whittaker for the derivation.
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29.1: The Lagrangian in Accelerating and Rotating Frames
This section concerns the motion of a single particle in some potential  in a non-inertial frame of reference. (We’ll use 

 for potential in this section, since we’ll be using  for relative frame velocity.) The most general
noninertial frame has both linear acceleration and rotation, and the angular velocity of rotation may itself be changing.

Our strategy is to begin with an inertial frame , then go to a frame  having linear acceleration relative to  then finally to a
frame  rotating relative to . We will construct the Lagrangian in , and from it the equations of motion in that noninertial
frame.

First, suppose the noninertial frame  to be moving relative to  at time-varying velocity . In the inertial frame , the
Lagrangian is as usual

so Lagrange’s equations give the standard result,

the subscript 0 denoting quantities in this inertial frame.

The Principle of Least Action is a frame-independent concept, so the calculus of variations Lagrangian equations it leads to,

must also be correct in a non-inertial frame.

How can this be true? The reason is that in a non-inertial frame, the Lagrangian has a different form.

To find the Lagrangian in terms of the velocity , meaning the velocity measured in the frame , we just add the velocity of 
.

and putting this into , gives the Lagrangian 

Following Landau,  is purely a function of time, so can be expressed as the derivative of a function of time, recall terms of
that form do not affect the minimization of the action giving the equations of motion, and so can be dropped from the Lagrangian.

The second term,

Again, the total derivative term can be dropped, giving

from which the equation of motion is

Landau writes this as

U( )r ⃗ 

U( ) rather than V ( )r ⃗  r ⃗  V ⃗ 

K0 K ′ K0

K K ′ K

K ′ K0 (t)V ⃗  K0

= m −UL0
1

2
v ⃗ 20 (29.1.1)

md /dt = −∂U/∂v ⃗ 0 r ⃗  (29.1.2)

( ) =
d

dt

∂L

∂v ⃗ 

∂L

∂r ⃗ 
(29.1.3)

v ⃗ ′ K ′

 relative to KK ′

= +v ⃗ 0 v ⃗ ′ V ⃗  (29.1.4)

L0  in the accelerating frame  :L′ K ′

= m +m ⋅ (t) + m (t) −U ( )L
′ 1

2
v ⃗ ′2 v ⃗ ′ V ⃗  1

2
V ⃗ 2 r ⃗ ′ (29.1.5)

(t)V ⃗ 2

m (t) ⋅ = m ⋅ d /dt = d(m ⋅ ) /dt−m ⋅ d /dtV ⃗  v ⃗ ′ V ⃗  r ⃗ ′ V ⃗  r ⃗ ′ r ⃗ ′ V ⃗  (29.1.6)

= m −m(d (t)/dt) ⋅ −U ( )L′ 1

2
v ⃗ ′2 V ⃗  r ⃗ ′ r ⃗ ′ (29.1.7)

m = − −m( )
dv ⃗ ′

dt

∂U ( )r ⃗ ′

∂r ⃗ ′
dV ⃗ 

dt
(29.1.8)

m = − −m
dv ⃗ ′

dt

∂U

∂r ⃗ ′
W⃗  (29.1.9)

https://libretexts.org/
https://phys.libretexts.org/@go/page/30679?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/29%3A_Non-Inertial_Frame_and_Coriolis_Effect/29.01%3A_The_Lagrangian_in_Accelerating_and_Rotating_Frames


29.1.2 https://phys.libretexts.org/@go/page/30679

So the motion in the accelerating frame is the same as if an extra force is added—this extra force is just the product of the particle’s
mass and the frame’s acceleration, it’s just the "force" that pushes you back in your seat when you step on the gas, the linear
equivalent of the “centrifugal force” in a rotating frame.

Speaking of centrifugal force, we now bring in our final frame , having the same origin as , (so we can take  at a given
instant) but rotating relative to it with angular velocity .

What is the Lagrangian translated into K variables? The velocities in  are related by

and, putting this in the Lagrangian above,

From this,

(Note that this is the canonical momentum, 

Using

we have

The equation of motion

is therefore:

This page titled 29.1: The Lagrangian in Accelerating and Rotating Frames is shared under a not declared license and was authored, remixed,
and/or curated by Michael Fowler.

K K ′ =r ⃗ ′ r ⃗ 

(t)Ω⃗ 

,KK ′

= + ×v ⃗ ′ v ⃗  Ω⃗  r ⃗  (29.1.10)

L = m +m ⋅ × + m( × −m ⋅ −U( )
1

2
v ⃗ 2 v ⃗  Ω⃗  r ⃗ 

1

2
Ω⃗  r ⃗ )2

W⃗  r ⃗  r ⃗  (29.1.11)

∂L/∂ = m +m ×v ⃗  v ⃗  Ω⃗  r ⃗  (29.1.12)

= ∂L/∂ = ∂L/∂pi ẋi vi

⋅ × = × ⋅ , ( × ) ⋅ ( × ) = ( × ) × ⋅v ⃗  Ω⃗  r ⃗  v ⃗  Ω⃗  r ⃗  Ω⃗  r ⃗  Ω⃗  r ⃗  Ω⃗  r ⃗  Ω⃗  r ⃗  (29.1.13)

∂L/∂ = m × +m( × ) × −m −∂U/∂r ⃗  v ⃗  Ω⃗  Ω⃗  r ⃗  Ω⃗  W⃗  r ⃗  (29.1.14)

( ) =
d

dt

∂L

∂v ⃗ 

∂L

∂r ⃗ 
(29.1.15)

md /dt = −∂U/∂ −m +m × +2m × +m( × ) ×v ⃗  r ⃗  W⃗  r ⃗  Ω⃗ 
→

v ⃗  Ω⃗  Ω⃗  r ⃗  Ω⃗  (29.1.16)
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29.2: Uniformly Rotating Frame
For the important case of a frame having uniform rotation and no translation motion,

The last term is (as Landau states) the “centrifugal force”, but this term is now politically incorrect, since it isn’t a “real force”, just
an effect of being in a rotating frame. (It’s still OK to say gravitational force, though, although that isn’t a real force either, I guess,
since it disappears in the local inertial “freely falling” frame, as was first noticed by Galileo, and centuries later by Einstein, who
called it "the happiest thought of my life".)

The second term,  Landau calls the Coriolis force. (Again, the politically correct tend to talk about the Coriolis effect,
meaning deviation of a projectile, say, from an inertial frame trajectory resulting from the operation of this “force”.) A very nice
illustration of this “force” is in the Frames of Reference 2 movie, starting at time 3:50.

Notice the Coriolis force depends on the velocity of the particle, and is reminiscent of the magnetic force on a charged particle. For
example, it does no work on the particle, but does curve the particle’s path.

The energy of the particle can be found from the standard Lagrangian equation

where

This is interesting! Remembering , the momentum, defined in this way as a canonical variable, not as just  in
the frame we’re in, is the same in the two frames 

The angular momenta  are also equal in the two frames.

The Lagrangian is

so

The new term is the centrifugal potential energy. It’s negative because it takes work to bring something towards the axis of rotation.
To see how this energy relates to the energy in the original fixed frame, substitute in this equation  to find

true for one particle, and by addition for any system of particles.

Confirme that that . Notice the difference can be positive or negative—give a simple one-particle
illustration of this.
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L = m +m ⋅ × + m( × −U( )
1

2
v ⃗ 2 v ⃗  Ω⃗  r ⃗ 

1

2
Ω⃗  r ⃗ )2
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E = ⋅ −Lp ⃗  v ⃗ 
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2
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2
Ω⃗  r ⃗ )2 r ⃗ 

(29.2.6)

= − ×v ⃗  v ⃗ 0 Ω⃗  r ⃗ 

E = − ⋅E0 L⃗  Ω⃗  (29.2.7)

Exercise 29.2.1

= × = ×L⃗  r ⃗  p ⃗  r ⃗  p ⃗ 0
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29.3: Coriolis Effect - Particle Moving near Earth’s Surface
The Earth’s surface is a rotating frame of reference, but the angular velocity is sufficiently small that we can often drop second
order terms. Recall the equation of motion in a rotating frame is

which becomes, close to the Earth and dropping the second-order term,

The leading order solution, ignoring the small rotation term, is the familiar

The second term is much smaller than the first, so it’s OK to replace the , and to find the leading correction to the
path put

in the equation , giving

The full equation can now be integrated to give

Let’s try some numbers: in 1803, an experiment was conducted in Schlebusch, Germany that attracted the interest of the scientific
community. Twenty-nine iron pebbles were dropped into a 90-meter deep mineshaft.

In 1831 the experiment was repeated in a 158.5 m deep mine in Freiburg, Saxony. From 106 drops an average deflection of 28.3
mm was estimated, close to the theoretical value of 27.5 mm. (This agrees exactly with our formula, from Landau’s book.)

Where would you expect the particle to fall, compared with a straight down plumb line? To make visualizing a little easier,
imagine the mine to be on the equator. Then the ground is moving east faster than the bottom of the mine— so the pebble will
fall to the east.

The BL 12 inch Mk X gun on the HMS Dreadnought. Shells at 800 m/sec, range about 23 km. For vertical velocity of say 400
m/sec, time in air of order 80 secs. The two terms are about equal magnitude, around 100 meters.

I pick this ship because there is a rumor that in a 1915 naval battle near the Falkland islands, off Argentina, between the British
and German navies, the British kept missing because they corrected their aim for Coriolis deflections appropriate to the
northern hemisphere. I’m not sure if it’s true.

This page titled 29.3: Coriolis Effect - Particle Moving near Earth’s Surface is shared under a not declared license and was authored, remixed,
and/or curated by Michael Fowler.

md /dt = −∂U/∂ +2m × +m( × ) ×v ⃗  r ⃗  v ⃗  Ω⃗  Ω⃗  r ⃗  Ω⃗  (29.3.1)

d /dt = +2 ×v ⃗  g ⃗  v ⃗  Ω⃗  (29.3.2)

= + tv ⃗ 1 v ⃗ 0 g ⃗  (29.3.3)

 there by v ⃗  v ⃗ 1

= +v ⃗  v ⃗ 1 v ⃗ 2 (29.3.4)

d /dt = +2 ×v ⃗  g ⃗  v ⃗  Ω⃗ 

d /dt = 2 × ≅2t × +2 ×v ⃗ 2 v ⃗ 1 Ω⃗  g ⃗  Ω⃗  v ⃗ 0 Ω⃗  (29.3.5)

= + t+ + × + ×r ⃗  r ⃗ 0 v ⃗ 0
1

2
g ⃗ t2 1

3
t3g ⃗  Ω⃗  t2v ⃗ 0 Ω⃗  (29.3.6)

Exercise 29.3.1

Exercise : Naval Gunnery - HMS Dreadnought, 190629.3.2
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29.4: Gyroscopes and Gyrocompasses in Navigation
A gyroscope is a fast-spinning disc supported in such a way that there is no external torque, except an occasional boost to keep up
its speed (jet of air, or magnetic). Since there is no external torque, it always points the same way. A device based on this principle
and used in aircraft is termed a heading indicator.

Suppose the gyroscope is set spinning about an initially vertical axis. If it’s nighttime, this means its axis is pointing to a particular
star, overhead at that moment. It will continue to point to that star, so, unless you’re at the North or South Pole, the axis will move
from the local vertical to return 24 hours later. Since the direction of the gyroscope axis is fixed in space, and the Earth’s axis of
rotation is fixed in space, the angle between the two is obviously constant, so as seen in the lab, say, the gyroscope axis describes a
cone about a line parallel to the axis (the line a sundial pointer points along, vertical at the North Pole (so the gyro doesn’t change)
down to horizontal at the Equator.

This is useful, but it would be better to have a pointer that just points North (or South). This is achieved by damping the gyroscopes
motion—put one end in viscous liquid. Then, when it moves relative to its container, there is a couple opposing the motion. What
this does is move it inwards, relative to its cone of motion, that is, the cone shrinks, so it goes to a stable orientation parallel to the
Earth’s axis, that is, it points North (or South).

A gyrocompass is the same idea, but now constrained to lie in a horizontal plane. This plus some damping forces the compass to
orient as close to the Earth’s axis as possible in the horizontal plane, meaning it points North, in this hemisphere.

This page titled 29.4: Gyroscopes and Gyrocompasses in Navigation is shared under a not declared license and was authored, remixed, and/or
curated by Michael Fowler.
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30.1: Introduction
We’ll now consider an interesting dynamics problem not covered in most introductory texts, a rolling ball on a rotating, possibly
tilted, surface. As we’ll see, this tough sounding problem is not that difficult to solve using Newtonian methods, and leads to some
surprising results. For example, a ball rolling on a steadily rotating horizontal plane moves in a circle, and not a circle centered at
the axis of rotation. We’ll prove this—and demonstrate it in class. Even more remarkably, if the rotating plane is tilted, the ball
follows a cycloidal path, keeping at the same average height—not rolling downhill. This is exactly analogous to an electron in
crossed electric and magnetic fields. One reason the rolling ball problems are generally avoided is that they do not readily lend
themselves to Lagrangian analysis, but can in fact be solved quite quickly with a vectorized application of Newton’s laws. The
appropriate techniques are described in Milne’s book Vectorial Mechanics, which we follow.

This page titled 30.1: Introduction is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.
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30.2: Holonomic Constraints and non-Holonomic Constraints
A sphere rolling on a plane without slipping is constrained in its translational and rotational motion by the requirement that the
point of the sphere momentarily in contact with the plane is at rest. How do we incorporate this condition in the dynamical
analysis: the least action approach, for example, or the direct Newtonian equations of motion?

Figure 

We’ll begin with a simpler example, that of a cylinder rolling in the x direction, its orientation  defined as zero as it passes the x
origin, and its radius a. We see immediately that its orientation is uniquely given by its position (for no slipping) by 

. The constraint enables us to eliminate one of the dynamical variables from the equation. If we measure
its position at some later time, we know the angle it turned through. The same argument works for a cylinder rolling inside a larger
cylinder.

A constraint on a dynamical system that can be integrated in this way to eliminate one of the variables is called a holonomic
constraint. A constraint that cannot be integrated is called a nonholonomic constraint.

For a sphere rolling on a rough plane, the no-slip constraint turns out to be nonholonomic.

To see this, imagine a sphere placed at the origin in the (x,y) plane. Call the point at the top of the sphere the North Pole. Now roll
the sphere along the x axis until it has turned through ninety degrees. Its NS axis is now parallel to the x axis, the N pole pointing in
the positive x direction. Now roll it through ninety degrees in a direction parallel to the y axis. The N pole is still pointing in the
positive x direction, the sphere, taken to have unit radius, is at .

Now start again at the origin, the N pole on top. This time, first roll the sphere through ninety degrees in the y direction. The N pole
now points along the positive y axis. Next, roll the sphere through ninety degrees in the x direction: we’re back to the point 

 but this time the N pole is pointing in the y direction.

The bottom line is that, in contrast to the cylindrical case, for a rolling sphere the no-slip constraint does not allow us to eliminate
any dynamical variables—given that initially the sphere is at the origin with the N pole at the top, there is no unique relationship
between orientation  and position (x,y) at a later point, we would have to know the rolling history, and in fact we can roll
back to the origin by a different route and in general the N pole will not be at the top when we return.

So the constraint equation, which can be written

does not allow us to eliminate a variable, but it certainly plays a role in the dynamics! As we've seen, the identical equation for the
cylinder, , uniquely linking change in orientation with change in
position. We see that for a ball rolling in two dimensions, there can be no such integral.

A possible approach is to use Lagrange multipliers to take account of the constraint, just as in deriving the equation for the catenary
the fixed length of the string entered as a constraint. Doing this for the rolling ball turns out to lead to a very messy problem—for
once, the advanced approach to dynamics doesn’t pay off. But there’s a better way.

30.2.1

ϕ

x = aϕ,  or v−a = 0ϕ̇

(π/2, π/2)

(π/2, π/2)

(θ,ϕ)

−a × = 0V ⃗  Ω⃗  n⃗  (30.2.1)

dx/dt−adϕ/dt = 0,  trivially integrates to x = aϕ+c
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30.3: D’Alembert’s Principle

The “better way” is simply to write down Newton’s equations,  and the rotational equivalent  for each component
of the system, now using, of course, total force and torque, including constraint reaction forces, etc. This approach Landau calls
“d’Alembert’s principle”.

Footnote: We’re not going to pursue this here, but the “principle” stems from the concept of virtual work: if a system is in
equilibrium, then making tiny displacements of all parameters, subject to the system constraints (but not necessarily an
infinitesimal set of displacements that would arise in ordinary dynamical development in time), the total work done by all forces
acting on parts of the system is zero. This is just saying that in equilibrium, it is at a local minimum (or stationary point if we allow
unstable equilibrium) in the energy “landscape”. D’Alembert generalized this to the dynamical case by adding in effective forces
corresponding to the coordinate accelerations, he wrote essentially  as a “force”, equivalent to
Newton’s laws of motion.

Having written down the equations, the reaction forces can be cancelled out to derive equations of motion.

This page titled 30.3: D’Alembert’s Principle is shared under a not declared license and was authored, remixed, and/or curated by Michael
Fowler.
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30.4: Ball with External Forces Rolling on Horizontal Plane
Here’s how it works for a simple example (done in Landau, and see diagram below): the equation of motion of a sphere rolling on a
fixed horizontal plane under an external force  and torque \).

Taking the reaction at the plane to be  (and note that this can be in any upward direction, not in general vertical), we have

The constraint equation, differentiated, gives , so the first equation can be written

then substituting  from the second equation,

Figure 

This equation gives the components of the reaction force as functions of the external force and couple: the velocities have been
eliminated. So we can now put  in the first equation of motion giving the translational acceleration in terms of the external force
and torque. Note that any vertical component of the torque  will not affect the reaction at the plane  (it would just spin the ball

about the point of contact) so we have, using .

and substitution in the original equations of motion gives

Exercise: interpret this for the zero torque case, and for the zero force case.

Landau goes on to solve three statics problems which could be in an introductory physics course. We'll skip them.
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F ⃗  K⃗ 

R⃗ 

Md /dt = +V ⃗  F ⃗  R⃗ 

Id /dt = −a ×Ω⃗  K⃗  n⃗  R⃗ 
(30.4.1)

= a ×V ⃗ ˙
Ω⃗ ˙

n⃗ 

Ma × = +Ω⃗ ˙
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30.5: Ball Rolling on Rotating Plane
(The following examples are from Milne, Vectorial Mechanics.)

A sphere is rolling without slipping on a horizontal plane. The plane is itself rotating at constant angular velocity .

We have three vector equations: Newton’s equations for linear and angular acceleration, and the rolling condition. We want to find
the path taken by the rolling ball on the rotating surface, that is, . We’ll use our three equations to eliminate two (vector)
variables: the reaction force between the plane and the ball .

The equations of motion of the sphere (radius , mass , center at  measured in the lab, horizontally from the axis of the plane’s
rotation) with  the contact force of the plane on the sphere, are

(Of course, the gravitational force here is just balancing the vertical component of the reaction force, but this is no longer the case
for the tilted plane, treated in the next section.)

First, we’ll eliminate the reaction force  to get an equation of motion:

The rolling condition is:

the right-hand side being the local velocity of the turntable,  measured from an origin at the center of rotation.

We’ll use the rolling condition to eliminate  and give us an equation for the actual path of the sphere.

First, differentiate it (remember  are both constant) to get

Next, take the equation of motion  and  to get 

and putting these together to get rid of the angular velocity,

This integrates to

which is just the equation for steady circular motion about the point .

For a uniform sphere,  so 

So the ball rolling on the rotating plate goes around in a circle, which could be any circle. If it is put down gently at any point on
the rotating plane, and held in place until it is up to speed (meaning no slipping) it will stay at that point for quite a while (until the
less than perfect conditions, such as air resistance or vibration, cause noticeable drift). If it is nudged, it will move in a circle. In
class, we saw it circle many times—eventually, it fell off, a result of air resistance plus the shortcomings of our apparatus, but the
circular path was very clear.
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,  and the angular velocity R⃗  Ω⃗ 
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m = −mg , I = −a ×r ⃗ ¨ R⃗  n⃗ ˆ Ω⃗ ˙
n⃗ ˆ R⃗  (30.5.1)
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I = −am ×( +g ) = am ×Ω⃗ ˙
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−a × = ω ×r ⃗ ˙ Ω⃗  n⃗ ˆ n⃗ ˆ r ⃗  (30.5.3)

r ⃗ 

Ω⃗ ˙

, ωn⃗ ˆ

−a × = ω ×r ⃗ ¨ Ω⃗ ˙
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=( ) ×( − )r ⃗ ˙ ω

1 + m/Ia2
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30.6: Ball Rolling on Inclined Rotating Plane

Figure 

We’ll take unit vectors  perpendicularly up from the plane, the angle between these two unit vectors

being α. (We will need a set of orthogonal unit vectors , not fixed in the plane, but appropriately oriented, with  horizontal.)
The vector to the center of the sphere (radius , mass  ) from an origin on the axis of rotation, at a point a above the plane, is .
The contact reaction force of the plane on the sphere is .

The equations of motion are:

and the equation of rolling contact is .

First, we eliminate  from the equations of motion to give

Note that , so the spin in the direction normal to the plane is constant,  say. (Both forces on the sphere have zero
torque about this axis.)

Integrating,

Now eliminate  by multiplying both sides by  and using the equation of rolling contact

to find:

then using , we find

The constant is fixed by the initial position , giving finally

The first term in the square brackets would give the same circular motion we found for the horizontal rotating plane, the second
term adds a steady motion of the center of this circle, in a horizontal direction (not down the plane!) at constant speed 

.

(This is identical to the motion of a charged particle in crossed electric and magnetic fields.)

Bottom line: the intuitive notion that a ball rolling on a rotating inclined turntable would tend to roll downhill is wrong! Recall that
for a particle circling in a magnetic field, if an electric field is added perpendicular to the magnetic field, the particle moves in a
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 pointing vertically up, z ⃗ ˆ i ⃗ ˆ

, ,i ⃗ ˆ
j ⃗ ˆ

k⃗ ˆ
k⃗ ˆ

a m r ⃗ 

R⃗ 

m = −mg , I = −a ×r ⃗ ¨ R⃗  z ⃗ ˆ Ω⃗ ˙
i ⃗ ˆ

R⃗  (30.6.1)
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ωî r ⃗ 
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= (am/I)( +g ) ×Ω⃗ ˙
r ⃗ ¨ z ⃗ ˆ i ⃗ ˆ

(30.6.2)

⋅ = 0Ω⃗ ˙
i ⃗ ˆ
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+  const.  = (ma/I)( +gt ) ×Ω⃗  r ⃗ ˙ z ⃗ ˆ i ⃗ ˆ
(30.6.3)
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a
2
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cycloid at the same average electrical potential—it has no net movement in the direction of the electric field , only perpendicular to
it. Our rolling ball follows an identical cycloidal path—keeping the same average gravitational potential.

This page titled 30.6: Ball Rolling on Inclined Rotating Plane is shared under a not declared license and was authored, remixed, and/or curated by
Michael Fowler.
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